

Boosting

Foundations and Algorithms

Adaptive Computation and Machine Learning
Thomas Dietterich, Editor

Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, Associate Editors

A complete list of the books published in this series may be found at the back of the book.

Boosting

Foundations and Algorithms

Robert E. Schapire
Yoav Freund

The MIT Press
Cambridge, Massachusetts
London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

For information about special quality discounts, please email special_sales@mitpress.mit.edu

This book was set in Times Roman by Westchester Book Composition.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Schapire, Robert E.
Boosting : foundations and algorithms / Robert E. Schapire and Yoav Freund.

p. cm.—(Adaptive computation and machine learning series)
Includes bibliographical references and index.
ISBN 978-0-262-01718-3 (hardcover : alk. paper)
1. Boosting (Algorithms) 2. Supervised learning (Machine learning) I. Freund, Yoav. II. Title.
Q325.75.S33 2012
006.3'1—dc23
2011038972

10 9 8 7 6 5 4 3 2 1

To our families

Contents

Series Foreword xi
Preface xiii

1 Introduction and Overview 1
1.1 Classification Problems and Machine Learning 2
1.2 Boosting 4
1.3 Resistance to Overfitting and the Margins Theory 14
1.4 Foundations and Algorithms 17

Summary 19
Bibliographic Notes 19
Exercises 20

I CORE ANALYSIS 21

2 Foundations of Machine Learning 23
2.1 A Direct Approach to Machine Learning 24
2.2 General Methods of Analysis 30
2.3 A Foundation for the Study of Boosting Algorithms 43

Summary 49
Bibliographic Notes 49
Exercises 50

3 Using AdaBoost to Minimize Training Error 53
3.1 A Bound on AdaBoost’s Training Error 54
3.2 A Sufficient Condition for Weak Learnability 56
3.3 Relation to Chernoff Bounds 60
3.4 Using and Designing Base Learning Algorithms 62

Summary 70
Bibliographic Notes 71
Exercises 71

viii Contents

4 Direct Bounds on the Generalization Error 75
4.1 Using VC Theory to Bound the Generalization Error 75
4.2 Compression-Based Bounds 83
4.3 The Equivalence of Strong and Weak Learnability 86

Summary 88
Bibliographic Notes 89
Exercises 89

5 The Margins Explanation for Boosting’s Effectiveness 93
5.1 Margin as a Measure of Confidence 94
5.2 A Margins-Based Analysis of the Generalization Error 97
5.3 Analysis Based on Rademacher Complexity 106
5.4 The Effect of Boosting on Margin Distributions 111
5.5 Bias, Variance, and Stability 117
5.6 Relation to Support-Vector Machines 122
5.7 Practical Applications of Margins 128

Summary 132
Bibliographic Notes 132
Exercises 134

II FUNDAMENTAL PERSPECTIVES 139

6 Game Theory, Online Learning, and Boosting 141
6.1 Game Theory 142
6.2 Learning in Repeated Game Playing 145
6.3 Online Prediction 153
6.4 Boosting 157
6.5 Application to a “Mind-Reading” Game 163

Summary 169
Bibliographic Notes 169
Exercises 170

7 Loss Minimization and Generalizations of Boosting 175
7.1 AdaBoost’s Loss Function 177
7.2 Coordinate Descent 179
7.3 Loss Minimization Cannot Explain Generalization 184
7.4 Functional Gradient Descent 188
7.5 Logistic Regression and Conditional Probabilities 194
7.6 Regularization 202
7.7 Applications to Data-Limited Learning 211

Summary 219
Bibliographic Notes 219
Exercises 220

Contents ix

8 Boosting, Convex Optimization, and Information Geometry 227
8.1 Iterative Projection Algorithms 228
8.2 Proving the Convergence of AdaBoost 243
8.3 Unification with Logistic Regression 252
8.4 Application to Species Distribution Modeling 255

Summary 260
Bibliographic Notes 262
Exercises 263

III ALGORITHMIC EXTENSIONS 269

9 Using Confidence-Rated Weak Predictions 271
9.1 The Framework 273
9.2 General Methods for Algorithm Design 275
9.3 Learning Rule-Sets 287
9.4 Alternating Decision Trees 290

Summary 296
Bibliographic Notes 297
Exercises 297

10 Multiclass Classification Problems 303
10.1 A Direct Extension to the Multiclass Case 305
10.2 The One-against-All Reduction and Multi-label Classification 310
10.3 Application to Semantic Classification 316
10.4 General Reductions Using Output Codes 320

Summary 333
Bibliographic Notes 333
Exercises 334

11 Learning to Rank 341
11.1 A Formal Framework for Ranking Problems 342
11.2 A Boosting Algorithm for the Ranking Task 345
11.3 Methods for Improving Efficiency 351
11.4 Multiclass, Multi-label Classification 361
11.5 Applications 364

Summary 367
Bibliographic Notes 369
Exercises 369

x Contents

IV ADVANCED THEORY 375

12 Attaining the Best Possible Accuracy 377
12.1 Optimality in Classification and Risk Minimization 378
12.2 Approaching the Optimal Risk 382
12.3 How Minimizing Risk Can Lead to Poor Accuracy 398

Summary 406
Bibliographic Notes 406
Exercises 407

13 Optimally Efficient Boosting 415
13.1 The Boost-by-Majority Algorithm 416
13.2 Optimal Generalization Error 432
13.3 Relation to AdaBoost 448

Summary 453
Bibliographic Notes 453
Exercises 453

14 Boosting in Continuous Time 459
14.1 Adaptiveness in the Limit of Continuous Time 460
14.2 BrownBoost 468
14.3 AdaBoost as a Special Case of BrownBoost 476
14.4 Experiments with Noisy Data 483

Summary 485
Bibliographic Notes 486
Exercises 486

Appendix: Some Notation, Definitions, and Mathematical Background 491
A.1 General Notation 491
A.2 Norms 492
A.3 Maxima, Minima, Suprema, and Infima 493
A.4 Limits 493
A.5 Continuity, Closed Sets, and Compactness 494
A.6 Derivatives, Gradients, and Taylor’s Theorem 495
A.7 Convexity 496
A.8 The Method of Lagrange Multipliers 497
A.9 Some Distributions and the Central Limit Theorem 498

Bibliography 501
Index of Algorithms, Figures, and Tables 511
Subject and Author Index 513

Series Foreword

The goal of building systems that can adapt to their environments and learn from their
experience has attracted researchers from many fields, including computer science, engi-
neering, mathematics, physics, neuroscience, and cognitive science. Out of this research
has come a wide variety of learning techniques that are transforming many industrial and
scientific fields. Recently, several research communities have converged on a common
set of issues surrounding supervised, unsupervised, and reinforcement learning problems.
The MIT Press Series on Adaptive Computation and Machine Learning seeks to unify the
many diverse strands of machine learning research and to foster high quality research and
innovative applications.

The MIT Press is extremely pleased to publish this contribution by Robert Schapire
and Yoav Freund. The development of boosting algorithms by Schapire, Freund, and their
collaborators over the last twenty years has had an immense impact on machine learning,
statistics, and data mining. Originally developed to address a fundamental theoretical ques-
tion, boosting has become a standard tool for solving a wide variety of problems in machine
learning and optimization. The book offers a definitive, yet highly accessible, treatment of
boosting. It explains the theory underlying the basic algorithm as well as presenting exten-
sions to confidence-rated prediction, multi-class classification, and ranking. This book will
serve as a valuable reference for researchers and as a focused introduction to machine
learning for undergraduate and beginning graduate students interested in understanding
this elegant approach to machine learning.

Preface

This book is about boosting, an approach to machine learning based on the idea of creating
a highly accurate prediction rule by combining many relatively weak and inaccurate rules.
A remarkably rich theory has evolved around boosting, with connections to a wide range of
topics including statistics, game theory, convex optimization, and information geometry.
In addition, AdaBoost and other boosting algorithms have enjoyed practical success with
applications, for instance, in biology, vision, and speech processing. At various times in its
history, boosting has been the subject of controversy for the mystery and paradox that it
seems to present.

In writing this book, we have aimed to reach nearly anyone with an interest in boosting
(as well as an appropriate, but relatively minimal, technical background), whether students
or advanced researchers, whether trained in computer science, statistics, or some other field.
We specifically hope that the book will be useful as an educational tool, and have therefore
included exercises in every chapter. Although centered on boosting, the book introduces a
variety of topics relevant to machine learning generally, as well as to related fields such as
game theory and information theory.

The main prerequisite for this book is an elementary background in probability. We also
assume familiarity with calculus and linear algebra at a basic, undergraduate level. An
appendix provides background on some more advanced mathematical concepts which are
used mainly in later chapters. The central notions of machine learning, boosting, and so on
are all presented from the ground up.

Research on boosting has spread across multiple publications and disciplines over a
period of many years. This book attempts to bring together, organize, extend, and simplify
a significant chunk of this work. Some of this research is our own or with co-authors,
but a very large part of what we present—including a few of the chapters almost in their
entirety—is based on the contributions of the many other excellent researchers who work
in this area. Credit for such previously published work is given in the bibliographic notes at
the end of every chapter. Although most of the material in this book has appeared elsewhere,
the majority of chapters also include new results that have never before been published.

xiv Preface

The focus of this book is on foundations and algorithms, but also on applications. Fol-
lowing a general introduction to machine learning algorithms and their analysis, the book
explores in part I the core theory of boosting, particularly its ability to generalize (that is,
make accurate predictions on new data). This includes an analysis of boosting’s training
error, as well as bounds on the generalization error based both on direct methods and on
the margins theory. Next, part II systematically explores some of the other myriad the-
oretical viewpoints that have helped to explain and understand boosting, including the
game-theoretic interpretation, the view of AdaBoost as a greedy procedure for minimizing
a loss function, and an understanding of boosting as an iterative-projection algorithm with
connections to information geometry and convex optimization. Part III focuses on practical
extensions of AdaBoost based on the use of confidence-rated weak hypotheses, and for
multiclass and ranking problems. Finally, some advanced theoretical topics are covered in
part IV, including the statistical consistency of AdaBoost, optimal boosting, and boosting
algorithms which operate in continuous time. Although the book is organized around theory
and algorithms, most of the chapters include specific applications and practical illustrations.

Readers with particular interests, or those organizing a course, might choose one of a
number of natural tracks through this book. For a more theoretical treatment, part III could
be omitted. Atrack focused on the practical application of boosting might omit chapters 4, 6,
and 8, and all of part IV. A statistical approach might emphasize chapters 7 and 12 while
omitting chapters 4, 6, 8, 13, and 14. Some of the proofs included in this book are somewhat
involved and technical, and can certainly be skipped or skimmed. A rough depiction of how
the chapters depend on each other is shown in figure P.1.

This book benefited tremendously from comments and criticisms we received from
numerous individuals. We are especially grateful to ten students who read an earlier draft
of the book as part of a Princeton graduate seminar course: Jonathan Chang, Sean Ger-
rish, Sina Jafarpour, Berk Kapicioglu, Indraneel Mukherjee, Gungor Polatkan, Alexander

I IVIIIII

11. 4

1413

12

11

10

8

7

6

5

3

4

1

9

2

Figure P.1
An approximate depiction of how the chapters of this book depend on each other. Each edge u → v represents
a suggestion that chapter u be read before chapter v. (The dashed edge indicates that section 11.4 depends on
chapter 10, but the other sections of chapter 11 do not.)

Preface xv

Schwing, Umar Syed, Yongxin (Taylor) Xi, and Zhen (James) Xiang. Their close reading
and numerous suggestions, both in and out of class, were extraordinarily helpful and led to
significant improvements in content and presentation in every one of the chapters.

Thanks also to Peter Bartlett, Vladimir Koltchinskii, Saharon Rosset, Yoram Singer, and
other anonymous reviewers of this book for their time and their many constructive sug-
gestions and criticisms. An incomplete list of the many, many others who provided help,
comments, ideas, and insights includes: Shivani Agarwal, Jordan Boyd-Graber, Olivier
Chapelle, Kamalika Chaudhuri, Michael Collins, Edgar Dobriban, Miro Dudík, Dave
Helmbold, Ludmila Kuncheva, John Langford, Phil Long, Taesup Moon, Lev Reyzin,
Ron Rivest, Cynthia Rudin, Rocco Servedio, Matus Telgarsky, Paul Viola, and Manfred
Warmuth. Our apologies to others who were surely, though certainly not intentionally,
omitted from this list.

We are grateful to our past and present employers for supporting this work: AT&T Labs;
Columbia Center for Computational Learning Systems; Princeton University; University of
California, San Diego; and Yahoo! Research. Support for this research was also generously
provided by the National Science Foundation under awards 0325463, 0325500, 0513552,
0812598, and 1016029.

Thanks to all of our collaborators and colleagues whose research appears in this book,
and who kindly allowed us to include specific materials, especially figures, as cited and
acknowledged with gratitude in the appropriate chapters. We are grateful to Katherine
Almeida, Ada Brunstein, Jim DeWolf, Marc Lowenthal, and everyone at MIT Press for
their tireless assistance in preparing and publishing this book. Thanks also to the various
editors at other publishers we considered, and to all those who helped with some occasionally
thorny copyright issues, particularly Laurinda Alcorn and Frank Politano.

Finally, we are grateful for the love, support, encouragement, and patience provided by
our families: Roberta, Jeni, and Zak; Laurie, Talia, and Rafi; and by our parents: Hans and
Libby, Ora and Rafi.

1 Introduction and Overview

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions,
despite the weak judgment of the individual members? How can the shaky separate views
of a panel of dolts be combined into a single opinion that is very likely to be correct? That
this possibility of garnering wisdom from a council of fools can be harnessed and used to
advantage may seem far-fetched and implausible, especially in real life. Nevertheless, this
unlikely strategy turns out to form the basis of boosting, an approach to machine learning that
is the topic of this book. Indeed, at its core, boosting solves hard machine-learning problems
by forming a very smart committee of grossly incompetent but carefully selected members.

To see how this might work in the context of machine learning, consider the problem of
filtering out spam, or junk email. Spam is a modern-day nuisance, and one that is ideally
handled by highly accurate filters that can identify and remove spam from the flow of
legitimate email. Thus, to build a spam filter, the main problem is to create a method by
which a computer can automatically categorize email as spam (junk) or ham (legitimate).
The machine learning approach to this problem prescribes that we begin by gathering a
collection of examples of the two classes, that is, a collection of email messages which
have been labeled, presumably by a human, as spam or ham. The purpose of the machine
learning algorithm is to automatically produce from such data a prediction rule that can be
used to reliably classify new examples (email messages) as spam or ham.

For any of us who has ever been bombarded with spam, rules for identifying spam or
ham will immediately come to mind. For instance, if it contains the word Viagra, then it
is probably spam. Or, as another example, email from one’s spouse is quite likely to be
ham. Such individual rules of thumb are far from complete as a means of separating spam
from ham. A rule that classifies all email containing Viagra as spam, and all other email
as ham, will very often be wrong. On the other hand, such a rule is undoubtedly telling us
something useful and nontrivial, and its accuracy, however poor, will nonetheless be signi-
ficantly better than simply guessing entirely at random as to whether each email is spam
or ham.

Intuitively, finding these weak rules of thumb should be relatively easy—so easy, in
fact, that one might reasonably envision a kind of automatic “weak learning” program that,

2 1 Introduction and Overview

given any set of email examples, could effectively search for a simple prediction rule that
may be rough and rather inaccurate, but that nonetheless provides some nontrivial guidance
in separating the given examples as spam or ham. Furthermore, by calling such a weak
learning program repeatedly on various subsets of our dataset, it would be possible to extract
a collection of rules of thumb. The main idea of boosting is to somehow combine these
weak and inaccurate rules of thumb into a single “committee” whose overall predictions
will be quite accurate.

In order to use these rules of thumb to maximum advantage, there are two critical problems
that we face: First, how should we choose the collections of email examples presented to
the weak learning program so as to extract rules of thumb that will be the most useful?
And second, once we have collected many rules of thumb, how can they be combined into
a single, highly accurate prediction rule? For the latter question, a reasonable approach is
simply for the combined rule to take a vote of the predictions of the rules of thumb. For the
first question, we will advocate an approach in which the weak learning program is forced
to focus its attention on the “hardest” examples, that is, the ones for which the previously
chosen rules of thumb were most apt to give incorrect predictions.

Boosting refers to a general and provably effective method of producing a very accurate
prediction rule by combining rough and moderately inaccurate rules of thumb in a manner
similar to that suggested above. This book presents in detail much of the recent work
on boosting, focusing especially on the AdaBoost algorithm, which has undergone intense
theoretical study and empirical testing. In this first chapter, we introduceAdaBoost and some
of the key concepts required for its study. We also give a brief overview of the entire book.

See the appendix for a description of the notation used here and throughout the book, as
well as some brief, mathematical background.

1.1 Classification Problems and Machine Learning

This book focuses primarily on classification problems in which the goal is to categorize
objects into one of a relatively small set of classes. For instance, an optical character re-
cognition (OCR) system must classify images of letters into the categories A, B, C, etc. Medi-
cal diagnosis is another example of a classification problem in which the goal is to diagnose a
patient. In other words, given the symptoms manifested by the patient, our goal is to catego-
rize him or her as a sufferer or non-sufferer of a particular disease. The spam-filtering exam-
ple is also a classification problem in which we attempt to categorize emails as spam or ham.

We focus especially on a machine-learning approach to classification problems. Machine
learning studies the design of automatic methods for making predictions about the future
based on past experiences. In the context of classification problems, machine-learning
methods attempt to learn to predict the correct classifications of unseen examples through
the careful examination of examples which were previously labeled with their correct
classifications, usually by a human.

1.1 Classification Problems and Machine Learning 3

We refer to the objects to be classified as instances. Thus, an instance is a description
of some kind which is used to derive a predicted classification. In the OCR example, the
instances are the images of letters. In the medical-diagnosis example, the instances are
descriptions of a patient’s symptoms. The space of all possible instances is called the in-
stance space or domain, and is denoted by X . A (labeled) example is an instance together
with an associated label indicating its correct classification. Instances are also sometimes
referred to as (unlabeled) examples.

During training, a learning algorithm receives as input a training set of labeled examples
called the training examples. The output of the learning algorithm is a prediction rule called
a classifier or hypothesis. A classifier can itself be thought of as a computer program which
takes as input a new unlabeled instance and outputs a predicted classification; so, in math-
ematical terms, a classifier is a function that maps instances to labels. In this book, we use
the terms classifier and hypothesis fairly interchangeably, with the former emphasizing a
prediction rule’s use in classifying new examples, and the latter emphasizing the fact that
the rule has been (or could be) generated as the result of some learning process. Other
terms that have been used in the literature include rule, prediction rule, classification rule,
predictor, and model.

To assess the quality of a given classifier, we measure its error rate, that is, the frequency
with which it makes incorrect classifications. To do this, we need a test set, a separate set of
test examples. The classifier is evaluated on each of the test instances, and its predictions are
compared against the correct classifications of the test examples. The fraction of examples on
which incorrect classifications were made is called the test error of the classifier. Similarly,
the fraction of mistakes on the training set is called the training error. The fraction of correct
predictions is called the (test or training) accuracy.

Of course, the classifier’s performance on the training set is not of much interest since our
purpose is to build a classifier that works well on unseen data. On the other hand, if there is
no relationship at all between the training set and the test set, then the learning problem is
unsolvable; the future can be predicted only if it resembles the past. Therefore, in designing
and studying learning algorithms, we generally assume that the training and test examples
are taken from the same random source. That is, we assume that the examples are chosen
randomly from some fixed but unknown distribution D over the space of labeled examples
and, moreover, that the training and test examples are generated by the same distribution.
The generalization error of a classifier measures the probability of misclassifying a random
example from this distribution D; equivalently, the generalization error is the expected test
error of the classifier on any test set generated by D. The goal of learning can now be stated
succinctly as producing a classifier with low generalization error.

To illustrate these concepts, consider the problem of diagnosing a patient with coronary
artery disease. For this problem, an instance consists of a description of the patient including
items such as sex, age, cholesterol level, chest pain type (if any), blood pressure, and results
of various medical tests. The label or class associated with each instance is a diagnosis
provided by a doctor as to whether or not the patient described actually suffers from the

4 1 Introduction and Overview

disease. During training, a learning algorithm is provided with a set of labeled examples
and attempts to produce a classifier for predicting if new patients suffer from the disease.
The goal is to produce a classifier that is as accurate as possible. Later, in section 1.2.3, we
describe experiments using a publicly available dataset for this problem.

1.2 Boosting

We can now make some of the informal notions about boosting described above more
precise. Boosting assumes the availability of a base or weak learning algorithm which,
given labeled training examples, produces a base or weak classifier. The goal of boosting is
to improve the performance of the weak learning algorithm while treating it as a “black box”
which can be called repeatedly, like a subroutine, but whose innards cannot be observed
or manipulated. We wish to make only the most minimal assumptions about this learning
algorithm. Perhaps the least we can assume is that the weak classifiers are not entirely trivial
in the sense that their error rates are at least a little bit better than a classifier whose every
prediction is a random guess. Thus, like the rules of thumb in the spam-filtering example,
the weak classifiers can be rough and moderately inaccurate, but not entirely trivial and
uninformative. This assumption, that the base learner produces a weak hypothesis that is
at least slightly better than random guessing on the examples on which it was trained, is
called the weak learning assumption, and it is central to the study of boosting.

As with the words classifier and hypothesis, we use the terms base and weak roughly
interchangeably, with weak emphasizing mediocrity in performance and base connoting
use as a building block.

Like any learning algorithm, a boosting algorithm takes as input a set of training examples
(x1, y1), . . . , (xm, ym) where each xi is an instance from X , and each yi is the associated
label or class. For now, and indeed for most of this book, we assume the simplest case
in which there are only two classes, −1 and +1, although we do explore extensions to
multiclass problems in chapter 10.

A boosting algorithm’s only means of learning from the data is through calls to the base
learning algorithm. However, if the base learner is simply called repeatedly, always with
the same set of training data, we cannot expect anything interesting to happen; instead, we
expect the same, or nearly the same, base classifier to be produced over and over again, so
that little is gained over running the base learner just once. This shows that the boosting
algorithm, if it is to improve on the base learner, must in some way manipulate the data that
it feeds to it.

Indeed, the key idea behind boosting is to choose training sets for the base learner in
such a fashion as to force it to infer something new about the data each time it is called.
This can be accomplished by choosing training sets on which we can reasonably expect
the performance of the preceding base classifiers to be very poor—even poorer than their
regular weak performance. If this can be accomplished, then we can expect the base learner

1.2 Boosting 5

to output a new base classifier which is significantly different from its predecessors. This is
because, although we think of the base learner as a weak and mediocre learning algorithm,
we nevertheless expect it to output classifiers that make nontrivial predictions.

We are now ready to describe in detail the boosting algorithm AdaBoost, which incorpo-
rates these ideas, and whose pseudocode is shown as algorithm 1.1. AdaBoost proceeds in
rounds or iterative calls to the base learner. For choosing the training sets provided to the
base learner on each round, AdaBoost maintains a distribution over the training examples.
The distribution used on the t-th round is denoted Dt , and the weight it assigns to training
example i is denoted Dt(i). Intuitively, this weight is a measure of the importance of cor-
rectly classifying example i on the current round. Initially, all weights are set equally, but on
each round, the weights of incorrectly classified examples are increased so that, effectively,
hard examples get successively higher weight, forcing the base learner to focus its attention
on them.

Algorithm 1.1
The boosting algorithm AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → {−1,+1}.
• Aim: select ht to minimalize the weighted error:

εt
.= Pri∼Dt [ht (xi) �= yi] .

• Choose αt = 1

2
ln

(
1− εt

εt

)
.

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i)

Zt

×
{

e−αt if ht (xi) = yi

eαt if ht (xi) �= yi

= Dt(i) exp(−αtyiht (xi))

Zt

,

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αtht (x)

)
.

6 1 Introduction and Overview

The base learner’s job is to find a base classifier ht : X → {−1,+1} appropriate for the
distribution Dt . Consistent with the earlier discussion, the quality of a base classifier is
measured by its error weighted by the distribution Dt :

εt
.= Pri∼Dt [ht (xi) �= yi] =

∑
i:ht (xi)�=yi

Dt (i).

Here, Pri∼Dt [·] denotes probability with respect to the random selection of an example (as
specified by its index i) according to distribution Dt . Thus, the weighted error εt is the
chance of ht misclassifying a random example if selected according to Dt . Equivalently, it
is the sum of the weights of the misclassified examples. Notice that the error is measured
with respect to the same distribution Dt on which the base classifier was trained.

The weak learner attempts to choose a weak hypothesis ht with low weighted error εt . In
this setting, however, we do not expect that this error will be especially small in an absolute
sense, but only in a more general and relative sense; in particular, we expect it to be only
a bit better than random, and typically far from zero. To emphasize this looseness in what
we require of the weak learner, we say that the weak learner’s aim is to minimalize the
weighted error, using this word to signify a vaguer and less stringent diminishment than
that connoted by minimize.

If a classifier makes each of its predictions entirely at random, choosing each predicted
label to be−1 or+1 with equal probability, then its probability of misclassifying any given
example will be exactly 1

2 . Therefore, the error of this classifier will always be 1
2 , regardless

of the data on which the error is measured. Thus, a weak hypothesis with weighted error
εt equal to 1

2 can be obtained trivially by formulating each prediction as a random guess.
The weak learning assumption then, for our present purposes, amounts to an assumption
that the error of each weak classifier is bounded away from 1

2 , so that each εt is at most
1
2 − γ for some small positive constant γ . In this way, each weak hypothesis is assumed to
be slightly better than random guessing by some small amount, as measured by its error.
(This assumption will be refined considerably in section 2.3.)

As for the weights Dt(i) that AdaBoost calculates on the training examples, in practice,
there are several ways in which these can be used by the base learner. In some cases, the
base learner can use these weights directly. In other cases, an unweighted training set is
generated for the base learner by selecting examples at random from the original training
set. The probability of selecting an example in this case is set to be proportional to the
weight of the example. These methods are discussed in more detail in section 3.4.

Returning to the spam-filtering example, the instances xi correspond to email messages,
and the labels yi give the correct classification as spam or ham. The base classifiers are the
rules of thumb provided by the weak learning program where the subcollections on which
it is run are chosen randomly according to the distribution Dt .

Once the base classifier ht has been received, AdaBoost chooses a parameter αt as in
algorithm 1.1. Intuitively, αt measures the importance that is assigned to ht . The precise

1.2 Boosting 7

choice of αt is unimportant for our present purposes; the rationale for this particular choice
will become apparent in chapter 3. For now, it is enough to observe that αt > 0 if εt < 1

2 ,
and that αt gets larger as εt gets smaller. Thus, the more accurate the base classifier ht , the
more importance we assign to it.

The distribution Dt is next updated using the rule shown in the algorithm. First, all of the
weights are multiplied either by e−αt <1 for examples correctly classified by ht , or by eαt >1
for incorrectly classified examples. Equivalently, since we are using labels and predictions
in {−1,+1}, this update can be expressed more succinctly as a scaling of each example i by
exp(−αtyiht (xi)). Next, the resulting set of values is renormalized by dividing through by
the factor Zt to ensure that the new distribution Dt+1 does indeed sum to 1. The effect of this
rule is to increase the weights of examples misclassified by ht , and to decrease the weights
of correctly classified examples. Thus, the weight tends to concentrate on “hard” examples.
Actually, to be more precise, AdaBoost chooses a new distribution Dt+1 on which the last
base classifier ht is sure to do extremely poorly: It can be shown by a simple computation
that the error of ht with respect to distribution Dt+1 is exactly 1

2 , that is, exactly the trivial
error rate achievable through simple random guessing (see exercise 1.1). In this way, as
discussed above, AdaBoost tries on each round to force the base learner to learn something
new about the data.

After many calls to the base learner, AdaBoost combines the many base classifiers into a
single combined or final classifier H . This is accomplished by a simple weighted vote of the
base classifiers. That is, given a new instance x, the combined classifier evaluates all of the
base classifiers, and predicts with the weighted majority of the base classifiers’ predicted
classifications. Here, the vote of the t-th base classifier ht is weighted by the previously
chosen parameter αt . The resulting formula for H ’s prediction is as shown in the algorithm.

1.2.1 A Toy Example

To illustrate how AdaBoost works, let us look at the tiny toy learning problem shown in
figure 1.1. Here, the instances are points in the plane which are labeled+ or−. In this case,
there are m = 10 training examples, as shown in the figure; five are positive and five are
negative.

Let us suppose that our base learner finds classifiers defined by vertical or horizontal
lines through the plane. For instance, such a base classifier defined by a vertical line might
classify all points to the right of the line as positive, and all points to the left as negative.
It can be checked that no base classifier of this form correctly classifies more than seven
of the ten training examples, meaning that none has an unweighted training error below
30%. On each round t , we suppose that the base learner always finds the base hypothesis
of this form that has minimum weighted error with respect to the distribution Dt (breaking
ties arbitrarily). We will see in this example how, using such a base learner for finding such
weak base classifiers, AdaBoost is able to construct a combined classifier that correctly
classifies all of the training examples in only T = 3 boosting rounds.

8 1 Introduction and Overview

1
3

5 7

8 10

6

2

9

4

D1 h1

h2

h3

D2

D3

Figure 1.1
An illustration of how AdaBoost behaves on a tiny toy problem with m = 10 examples. Each row depicts one
round, for t = 1, 2, 3. The left box in each row represents the distribution Dt , with the size of each example scaled
in proportion to its weight under that distribution. Each box on the right shows the weak hypothesis ht , where
darker shading indicates the region of the domain predicted to be positive. Examples that are misclassified by ht

have been circled.

1.2 Boosting 9

Table 1.1
The numerical calculations corresponding to the toy example in figure 1.1

1 2 3 4 5 6 7 8 9 10

D1(i) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 ε1 = 0.30, α1 ≈ 0.42
e−α1yih1(xi) 1.53 1.53 1.53 0.65 0.65 0.65 0.65 0.65 0.65 0.65
D1(i) e−α1yih1(xi) 0.15 0.15 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 Z1 ≈ 0.92

D2(i) 0.17 0.17 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 ε2 ≈ 0.21, α2 ≈ 0.65
e−α2yih2(xi) 0.52 0.52 0.52 0.52 0.52 1.91 1.91 0.52 1.91 0.52
D2(i) e−α2yih2(xi) 0.09 0.09 0.09 0.04 0.04 0.14 0.14 0.04 0.14 0.04 Z2 ≈ 0.82

D3(i) 0.11 0.11 0.11 0.05 0.05 0.17 0.17 0.05 0.17 0.05 ε3 ≈ 0.14, α3 ≈ 0.92
e−α3yih3(xi) 0.40 0.40 0.40 2.52 2.52 0.40 0.40 2.52 0.40 0.40
D3(i) e−α3yih3(xi) 0.04 0.04 0.04 0.11 0.11 0.07 0.07 0.11 0.07 0.02 Z3 ≈ 0.69

Calculations are shown for the ten examples as numbered in the figure. Examples on which hypothesis ht makes
a mistake are indicated by underlined figures in the rows marked Dt .

On round 1, AdaBoost assigns equal weight to all of the examples, as is indicated in
the figure by drawing all examples in the box marked D1 to be of the same size. Given
examples with these weights, the base learner chooses the base hypothesis indicated by h1

in the figure, which classifies points as positive if and only if they lie to the left of this
line. This hypothesis incorrectly classifies three points—namely, the three circled positive
points—so its error ε1 is 0.30. Plugging into the formula of algorithm 1.1 gives α1 ≈ 0.42.

In constructing D2, the weights of the three points misclassified by h1 are increased while
the weights of all other points are decreased. This is indicated by the sizes of the points in
the box marked D2. See also table 1.1, which shows the numerical calculations involved
in running AdaBoost on this toy example.

On round 2, the base learner chooses the line marked h2. This base classifier correctly
classifies the three relatively high-weight points missed by h1, though at the expense of
missing three other comparatively low-weight points which were correctly classified by h1.
Under distribution D2, these three points have weight only around 0.07, so the error of h2

with respect to D2 is ε2 ≈ 0.21, giving α2 ≈ 0.65. In constructing D3, the weights of these
three misclassified points are increased while the weights of the other points are decreased.

On round 3, classifier h3 is chosen. This classifier misses none of the points misclassified
by h1 and h2 since these points have relatively high weight under D3. Instead, it misclassifies
three points which, because they were not misclassified by h1 or h2, are of very low weight
under D3. On round 3, ε3 ≈ 0.14 and α3 ≈ 0.92.

Note that our earlier remark that the error of each hypothesis ht is exactly 1
2 on the new

distribution Dt+1 can be verified numerically in this case from table 1.1 (modulo small
discrepancies due to rounding).

The combined classifier H is a weighted vote of h1, h2, and h3 as shown in figure 1.2,
where the weights on the respective classifiers are α1, α2, and α3. Although each of the
composite weak classifiers misclassifies three of the ten examples, the combined classifier,

10 1 Introduction and Overview

H = sign

=

0.42 + 0.65 + 0.92

Figure 1.2
The combined classifier for the toy example of figure 1.1 is computed as the sign of the weighted sum of the
three weak hypotheses, α1h1+α2h2+α3h3, as shown at the top. This is equivalent to the classifier shown at
the bottom. (As in figure 1.1, the regions that a classifier predicts positive are indicated using darker shading.)

as shown in the figure, correctly classifies all of the training examples. For instance, the
classification of the negative example in the upper right corner (instance #4), which is
classified negative by h1 and h2 but positive by h3, is

sign(−α1−α2+α3) = sign(−0.15) = −1.

One might reasonably ask if such a rapid reduction in training error is typical for Ada-
Boost. The answer turns out to be yes in the following sense: Given the weak learning
assumption (that is, that the error of each weak classifier εt is at most 1

2 − γ for some
γ > 0), we can prove that the training error of the combined classifier drops exponentially
fast as a function of the number of weak classifiers combined. Although this fact, which is
proved in chapter 3, says nothing directly about generalization error, it does suggest that
boosting, which is so effective at driving down the training error, may also be effective
at producing a combined classifier with low generalization error. And indeed, in chapter 4
and 5, we prove various theorems about the generalization error of AdaBoost’s combined
classifier.

Note also that although we depend on the weak learning assumption to prove these results,
AdaBoost does not need to know the “edge” γ referred to above, but rather adjusts and adapts
to errors εt which may vary considerably, reflecting the varying levels of performance among

1.2 Boosting 11

the base classifiers. It is in this sense that AdaBoost is an adaptive boosting algorithm—
which is exactly what the name stands for.1 Moreover, this adaptiveness is one of the key
qualities that make AdaBoost practical.

1.2.2 Experimental Performance

Experimentally, on data arising from many real-world applications, AdaBoost also turns out
to be highly effective. To get a sense of AdaBoost’s performance overall, we can compare it
with other methods on a broad variety of publicly available benchmark datasets, an important
methodology in machine learning since different algorithms can exhibit relative strengths
that vary substantially from one dataset to the next. Here, we consider two base learning
algorithms: one that produces quite weak and simple base classifiers called decision stumps;
and the other, called C4.5, that is an established and already highly effective program for
learning decision trees, which are generally more complex but also quite a bit more accurate
than decision stumps. Both of these base classifiers are described further in sections 1.2.3
and 1.3.

Boosting algorithms work by improving the accuracy of the base learning algorithm.
Figure 1.3 shows this effect on 27 benchmark datasets. In each scatterplot, each point shows
the test error rate of boosting (x-coordinate) versus that of the base learner (y-coordinate)
on a single benchmark. All error rates have been averaged over multiple runs and multiple
random splits of the given data into training and testing sets. In these experiments, boosting
was run for T = 100 rounds.

To “read” such a scatterplot, note that a point lands above the line y = x if and only
if boosting shows improvement over the base learner. Thus, we see that when using the
relatively strong base learner C4.5, an algorithm that is very effective in its own right, Ada-
Boost is often able to provide quite a significant boost in performance. Even more dramatic
is the improvement effected when using the rather weak decision stumps as base classifiers.
In fact, this improvement is so substantial that boosting stumps is often even better than
C4.5, as can be seen in figure 1.4. On the other hand, overall, boosting C4.5 seems to give
more accurate results than boosting stumps.

In short, empirically, AdaBoost appears to be highly effective as a learning tool for
generalizing beyond the training set. How can we explain this capacity to extrapolate beyond
the observed training data? Attempting to answer this question is a primary objective of
this book.

1.2.3 A Medical-Diagnosis Example

As a more detailed example, let us return to the heart-disease dataset described briefly in sec-
tion 1.1. To apply boosting on this dataset, we first need to choose the base learner and base

1. This is also why AdaBoost, which is short for “adaptive boosting,” is pronounced ADD-uh-boost, similar to
adaptation.

12 1 Introduction and Overview

0

20

40

60

80

0 20 40 60 80

S
tu

m
ps

Boosting stumps

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
4.

5

Boosting C4.5

Figure 1.3
Comparison of two base learning algorithms—decision stumps and C4.5—with and without boosting. Each point
in each scatterplot shows the test error rate of the two competing algorithms on one of 27 benchmark learning
problems. The x-coordinate of each point gives the test error rate (in percent) using boosting, and the y-coordinate
gives the error rate without boosting when using decision stumps (left plot) or C4.5 (right plot). All error rates
have been averaged over multiple runs.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
4.

5

Boosting stumps

0

5

10

15

20

25

30

0 5 10 15 20 25 30

B
oo

st
in

g
C

4.
5

Boosting stumps

Figure 1.4
Comparison of boosting using decision stumps as the base learner versus unboosted C4.5 (left plot) and boosted
C4.5 (right plot).

1.2 Boosting 13

classifiers. Here we have many options, but perhaps the simplest rules of thumb are those
which test on a single attribute describing the patient. For instance, such a rule might state:

If the patient’s cholesterol is at least 228.5, then predict that the patient has heart disease;
otherwise, predict that the patient is healthy.

In the experiments we are about to describe, we used base classifiers of just this form,
which are the decision stumps alluded to in section 1.2.2. (In fact, the weak classifiers used
in the toy example of section 1.2.1 are also decision stumps.) It turns out, as will be seen in
section 3.4.2, that a base learner which does an exhaustive search for the best decision stump
can be implemented very efficiently (where, as before, “best” means the one having lowest
weighted training error with respect to a given distribution Dt over training examples).
Table 1.2 shows the first six base classifiers produced by this base learner when AdaBoost
is applied to this entire dataset.

To measure performance on such a small dataset, we can divide the data randomly into
disjoint training and test sets. Because the test set for such a split is very small, we repeat this
many times, using a standard technique called cross validation. We then take the averages
of the training and test errors for the various splits of the data. Figure 1.5 shows these ave-
rage error rates for this dataset as a function of the number of base classifiers combined.
Boosting steadily drives down the training error. The test error also drops quickly, reaching
a low point of 15.3% after only three rounds, a rather significant improvement over using
just one of the base classifiers, the best of which has a test error of 28.0%. However, after
reaching this low point, the test error begins to increase again, so that after 100 rounds, the
test error is up to 18.8%, and after 1000 rounds, up to 22.0%.

This deterioration in performance with continued training is an example of an important
and ubiquitous phenomenon called overfitting. As the number of base classifiers becomes
larger and larger, the combined classifier becomes more and more complex, leading some-
how to a deterioration of test-error performance. Overfitting, which has been observed in
many machine-learning settings and which has also received considerable theoretical study,
is consistent with the intuition that a simpler explanation of the data is better than a more

Table 1.2
The first six base classifiers found when using AdaBoost on the heart-disease dataset

Round If Then Predict Else Predict

1 thalamus normal healthy sick

2 number of major vessels colored by fluoroscopy > 0 sick healthy

3 chest pain type is asymptomatic sick healthy

4 ST depression induced by exercise relative to rest ≥ 0.75 sick healthy

5 cholesterol ≥ 228.5 sick healthy

6 resting electrocardiographic results are normal healthy sick

14 1 Introduction and Overview

0

5

10

15

20

25

30

1 10 100 1000

P
er

ce
nt

 e
rr

or

Rounds of boosting

test
train

Figure 1.5
The training and test percent error rates obtained using boosting on the heart-disease dataset. Results are averaged
over multiple train-test splits of the data.

complicated one, a notion sometimes called “Occam’s razor.” With more rounds of boost-
ing, the combined classifier grows in size and complexity, apparently overwhelming good
performance on the training set. This general connection between simplicity and accuracy
is explored in chapter 2. For boosting, exactly the kind of behavior observed in figure 1.5
is predicted by the analysis in chapter 4.

Overfitting is a significant problem because it means that we have to be very careful about
when to stop boosting. If we stop too soon or too late, our performance on the test set may
suffer significantly, as can be seen in this example. Moreover, performance on the training
set provides little guidance about when to stop training since the training error typically
continues to drop even as overfitting gets worse and worse.

1.3 Resistance to Overfitting and the Margins Theory

This last example describes a case in which boosting was used with very weak base clas-
sifiers. This is one possible use of boosting, namely, in conjunction with a very simple
but truly mediocre weak learning algorithm. A rather different use of boosting is instead to
boost the accuracy of a learning algorithm that is already quite good.

This is the approach taken in the next example. Here, rather than a very weak base learner,
we used the well-known and highly developed machine-learning algorithm C4.5 as the base
learner. As mentioned earlier, C4.5 produces classifiers called decision trees. Figure 1.6
shows an example of a decision tree. The nodes are identified with tests having a small

1.3 Resistance to Overfitting and the Margins Theory 15

medium largesmall

n y n y

size?

shape = round? color = red?

Figure 1.6
An example of a decision tree.

number of outcomes corresponding to the outgoing edges of the node. The leaves are iden-
tified with predicted labels. To classify an example, a path is traversed through the tree from
the root to a leaf. The path is determined by the outcomes of the tests that are encountered
along the way, and the predicted classification is determined by the leaf that is ultimately
reached. For instance, in the figure, a large, square, blue item would be classified −
while a medium, round, red item would be classified +.

We tested boosting using C4.5 as the base learner on a benchmark dataset in which the
goal is to identify images of handwritten characters as letters of the alphabet. The features
used are derived from the raw pixel images, including such items as the average of the
x-coordinates of the pixels that are turned on. The dataset consists of 16,000 training
examples and 4000 test examples.

Figure 1.7 shows training and test error rates for AdaBoost’s combined classifier on this
dataset as a function of the number of decision trees (base classifiers) combined. A single
decision tree produced by C4.5 on this dataset has a test error rate of 13.8%. In this example,
boosting very quickly drives down the training error; in fact, after only five rounds the
training error is zero, so that all training examples are correctly classified. Note that there
is no reason why boosting cannot proceed beyond this point. Although the training error of
the combined classifier is zero, the individual base classifiers continue to incur significant
weighted error—around 5–6%—on the distributions on which they are trained, so that
εt remains in this range, even for large t . This permits AdaBoost to proceed with the
reweighting of training examples and the continued training of base classifiers.

The test performance of boosting on this dataset is extremely good, far better than a sin-
gle decision tree. And surprisingly, unlike the earlier example, the test error on this dataset
never increases, even after 1000 trees have been combined—by which point, the combined
classifier involves more than two million decision nodes. Even after the training error hits
zero, the test error continues to drop, from 8.4% on round 5 down to 3.1% on round 1000.

16 1 Introduction and Overview

10 100 1000
0

5

10

15

20

Figure 1.7
The training and test percent error rates obtained using boosting on an OCR dataset with C4.5 as the base learner.
The top and bottom curves are test and training error, respectively. The top horizontal line shows the test error rate
using just C4.5. The bottom line shows the final test error rate of AdaBoost after 1000 rounds. (Reprinted with
permission of the Institute of Mathematical Statistics.)

This pronounced lack of overfitting seems to flatly contradict our earlier intuition that sim-
pler is better. Surely, a combination of five trees is much, much simpler than a combination
of 1000 trees (about 200 times simpler, in terms of raw size), and both perform equally
well on the training set (perfectly, in fact). So how can it be that the far larger and more
complex combined classifier performs so much better on the test set? This would appear to
be a paradox.

One superficially plausible explanation is that the αt ’s are converging rapidly to zero,
so that the number of base classifiers being combined is effectively bounded. However, as
noted above, the εt ’s remain around 5–6% in this case, well below 1

2 , which means that the
weights αt on the individual base classifiers are also bounded well above zero, so that the
combined classifier is constantly growing and evolving with each round of boosting.

Such resistance to overfitting is typical of boosting, although, as we have seen in sec-
tion 1.2.3, boosting certainly can overfit. This resistance is one of the properties that make
it such an attractive learning algorithm. But how can we understand this behavior?

In chapter 5, we present a theoretical explanation of how, why, and whenAdaBoost works
and, in particular, of why it often does not overfit. Briefly, the main idea is the following.
The description above of AdaBoost’s performance on the training set took into account
only the training error, which is already zero after just five rounds. However, training error
tells only part of the story, in that it reports just the number of examples that are correctly
or incorrectly classified. Instead, to understand AdaBoost, we also need to consider how
confident the predictions being made by the algorithm are. We will see that such confidence
can be measured by a quantity called the margin. According to this explanation, although
the training error—that is, whether or not the predictions are correct—is not changing

1.4 Foundations and Algorithms 17

after round 5, the confidence in those predictions is increasing dramatically with additional
rounds of boosting. And it is this increase in confidence which accounts for the better
generalization performance.

This theory, for which we present both empirical and theoretical evidence, not only
explains the lack of overfitting but also provides a detailed framework for fundamentally
understanding the conditions under which AdaBoost can fail or succeed.

1.4 Foundations and Algorithms

The core analysis outlined above forms part I of this book, a largely mathematical study
of AdaBoost’s capacity to minimize both the training and the generalization error. Here,
our focus is on understanding how, why, and when AdaBoost is effective as a learning
algorithm.

This analysis, including the margins theory, is paramount in our study of boosting;
however, it is hardly the end of the story. Indeed, although it is an enticingly simple
algorithm, AdaBoost turns out to be understandable from a striking number of disparate
theoretical perspectives. Taken together, these provide a remarkably rich and encompassing
illumination of the algorithm, in addition to practical generalizations and variations along
multiple dimensions. Part II of the book explores three of these fundamental perspectives.

In the first of these, the interaction between a boosting algorithm and a weak learning
algorithm is viewed as a game between these two players—a game not only in the informal,
everyday sense but also in the mathematical sense studied in the field of game theory. In
fact, it turns out that AdaBoost is a special case of a more general algorithm for playing any
game in a repeated fashion. This perspective, presented in chapter 6, helps us to understand
numerous properties of the algorithm, such as its limiting behavior, in broader, game-
theoretic terms. We will see that notions that are central to boosting, such as margins and
the weak learning assumption, have very natural game-theoretic interpretations. Indeed, the
very idea of boosting turns out to be intimately entwined with one of the most fundamental
theorems of game theory. This view also unifies AdaBoost with another branch of learning
known as online learning.

AdaBoost can be further understood as an algorithm for optimizing a particular objective
function measuring the fit of a model to the available data. In this way, AdaBoost can be seen
as an instance of a more general approach that can be applied to a broader range of statistical
learning problems, as we describe in chapter 7. This view further leads to a unification
of AdaBoost with the more established statistical method called logistic regression, and
suggests how AdaBoost’s predictions can be used to estimate the probability of a particular
example being positive or negative.

From yet another vantage point, which turns out to be “dual” to the one given in chap-
ter 7, AdaBoost can be interpreted in a kind of abstract, geometric framework. Here, the
fundamental operation is projection of a point onto a subspace. In this case, the “points” are

18 1 Introduction and Overview

in fact the distributions Dt computed by AdaBoost, which exist in a kind of “information
geometric” space—one based on notions from information theory—rather than the usual
Euclidean geometry. As discussed in chapter 8, this view leads to a deeper understand-
ing of AdaBoost’s dynamics and underlying mathematical structure, and yields proofs of
fundamental convergence properties.

Part III of this book focuses on practical, algorithmic extensions of AdaBoost. In the
basic form shown in algorithm 1.1, AdaBoost is intended for the simplest learning setting
in which the goal is binary classification, that is, classification problems with only two
possible classes or categories. To apply AdaBoost to a much broader range of real-world
learning problems, the algorithm must be extended along multiple dimensions.

In chapter 9, we describe an extension to AdaBoost in which the base classifiers them-
selves are permitted to output predictions that vary in their self-rated level of confidence. In
practical terms, this modification of boosting leads to a dramatic speedup in learning time.
Moreover, within this framework we derive two algorithms designed to produce classifiers
that are not only accurate, but also understandable in form to humans.

Chapter 10 extends AdaBoost to the case in which there are more than two possible
classes, as is very commonly the case in actual applications. For instance, if recognizing
digits, there are ten classes, one for each digit. As will be seen, it turns out that there are
quite a number of methods for modifying AdaBoost for this purpose, and we will see how
a great many of these can be studied in a unified framework.

Chapter 11 extends AdaBoost to ranking problems, that is, problems in which the goal
is to learn to rank a set of objects. For instance, the goal might be to rank credit card
transactions according to the likelihood of each one being fraudulent, so that those at the
top of the ranking can be investigated.

Finally, in part IV, we study a number of advanced theoretical topics.
The first of these provides an alternative approach for the understanding of AdaBoost’s

generalization capabilities, which explicitly takes into consideration intrinsic randomness or
“noise” in the data that may prevent perfect generalization by any classifier. In such a setting,
we show in chapter 12 that the accuracy ofAdaBoost will nevertheless converge to that of the
best possible classifier, under appropriate assumptions. However, we also show that without
these assumptions, AdaBoost’s performance can be rather poor when the data is noisy.

AdaBoost can be understood in many ways, but at its foundation, it is a boosting algorithm
in the original technical meaning of the word, a provable method for driving down the error
of the combined classifier by combining a number of weak classifiers. In fact, for this specific
problem, AdaBoost is not the best possible; rather, there is another algorithm called “boost-
by-majority” that is optimal in a very strong sense, as we will see in chapter 13. However,
this latter algorithm is not practical because it is not adaptive in the sense described in
section 1.2.1. Nevertheless, as we show in chapter 14, this algorithm can be made adaptive
by taking a kind of limit in which the discrete time steps in the usual boosting framework
are replaced by a continuous sequence of time steps. This leads to the “BrownBoost”

1.4 Foundations and Algorithms 19

algorithm, which has certain properties that suggest greater tolerance to noise, and from
which AdaBoost can be derived in the “zero-noise” limit.

Although this book is about foundations and algorithms, we also provide numerous
examples illustrating how the theory we develop can be applied practically. Indeed, as seen
earlier in this chapter, AdaBoost has many practical advantages. It is fast, simple, and easy
to program. It has no parameters to tune (except for the number of rounds T). It requires no
prior knowledge about the base learner, and so can be flexibly combined with any method
for finding base classifiers. Finally, it comes with a set of theoretical guarantees, given
sufficient data and a base learner that can reliably provide only moderately accurate base
classifiers. This is a shift in mind-set for the learning-system designer: instead of trying to
design a learning algorithm that is accurate over the entire space, we can instead focus on
finding weak learning algorithms that only need to be better than random.

On the other hand, some caveats are certainly in order. The actual performance of boosting
on a particular problem is clearly dependent on the data and the base learner. Consistent
with the theory outlined above and discussed in detail in this book, boosting can fail to
perform well, given insufficient data, overly complex base classifiers, or base classifiers
that are too weak. Boosting seems to be especially susceptible to noise, as we discuss in
section 12.3. Nonetheless, as seen in section 1.2.2, on a wide range of real-world learning
problems, boosting’s performance overall is quite good.

To illustrate its empirical performance and application, throughout this book we give
examples of its use on practical problems such as human-face detection, topic identification,
language understanding in spoken-dialogue systems, and natural-language parsing.

Summary

In this chapter, we have given an introduction to machine learning, classification problems,
and boosting, particularly AdaBoost and its variants, which are the focus of this book.
We have presented examples of boosting’s empirical performance, as well as an overview
of some of the highlights of its rich and varied theory. In the chapters ahead, we explore
the foundations of boosting from many vantage points, and develop key principles in the
design of boosting algorithms, while also giving examples of their application to practical
problems.

Bibliographic Notes

Boosting has its roots in a theoretical framework for studying machine learning called the
PAC model, proposed by Valiant [221], which we discuss in more detail in section 2.3.
Working in this framework, Kearns and Valiant [133] posed the question of whether a weak
learning algorithm that performs just slightly better than random guessing can be boosted
into one with arbitrarily high accuracy. Schapire [199] came up with the first provable
polynomial-time boosting algorithm in 1989. A year later, Freund [88] developed a much

20 1 Introduction and Overview

more efficient boosting algorithm called boost-by-majority that is essentially optimal (see
chapter 13). The first experiments with these early boosting algorithms were carried out
by Drucker, Schapire, and Simard [72] on an OCR task. However, both algorithms were
largely impractical because of their nonadaptiveness. AdaBoost, the first adaptive boosting
algorithm, was introduced in 1995 by Freund and Schapire [95].

There are many fine textbooks which provide a broader treatment of machine learning, a
field that overlaps considerably with statistics, pattern recognition, and data mining. See, for
instance, [7, 22, 67, 73, 120, 134, 166, 171, 223, 224]. For alternative surveys of boosting
and related methods for combining classifiers, see refs. [40, 69, 146, 170, 214].

The medical-diagnosis data used in section 1.2.3 was collected from the Cleveland
Clinic Foundation by Detrano et al. [66]. The letter recognition dataset used in sec-
tion 1.3 was created by Frey and Slate [97]. The C4.5 decision-tree learning algorithm
used in sections 1.2.2 and 1.3 is due to Quinlan [184], and is similar to the CART algorithm
of Breiman et al. [39].

Drucker and Cortes [71] and Jackson and Craven [126] were the first to test AdaBoost
experimentally. The experiments in section 1.2.2 were originally reported by Freund and
Schapire [93] from which the right plot of figure 1.3 and left plot of figure 1.4 were adapted.
AdaBoost’s resistance to overfitting was noticed early on by Drucker and Cortes [71], as well
as by Breiman [35] and Quinlan [183]. The experiments in section 1.3, including figure 1.7,
are taken from Schapire et al. [202]. There have been numerous other systematic experi-
mental studies of AdaBoost, such as [15, 68, 162, 209], as well as Caruana and Niculescu-
Mizil’s [42] large-scale comparison of several learning algorithms, including AdaBoost.

Exercises

1.1 Show that the error of ht on distribution Dt+1 is exactly 1
2 , that is,

Pri∼Dt+1 [ht (xi) �= yi] = 1
2 .

1.2 For each of the following cases, explain how AdaBoost, as given in algorithm 1.1, will
treat a weak hypothesis ht with weighted error εt . Also, in each case, explain how this
behavior makes sense.

a. εt = 1
2 .

b. εt > 1
2 .

c. εt = 0.

1.3 In figure 1.7, the training error and test error of the combined classifier H are seen
to increase significantly on the second round. Give a plausible explanation why we might
expect these error rates to be higher after two rounds than after only one.

I CORE ANALYSIS

2 Foundations of Machine Learning

Soon we will embark on a theoretical study of AdaBoost in order to understand its proper-
ties, particularly its ability as a learning algorithm to generalize, that is, to make accurate
predictions on data not seen during training. Before this will be possible, however, it will be
necessary to take a step back to outline our approach to the more general problem of machine
learning, including some fundamental general-purpose tools that will be invaluable in our
analysis of AdaBoost.

We study the basic problem of inferring from a set of training examples a classification
rule whose predictions are highly accurate on freshly observed test data. On first encounter,
it may seem questionable whether this kind of learning should even be possible. After all,
why should there be any connection between the training and test examples, and why
should it be possible to generalize from a relatively small number of training examples to a
potentially vast universe of test examples? Although such objections have indeed often been
the subject of philosophical debate, in this chapter we will identify an idealized but realistic
model of the inference problem in which this kind of learning can be proved to be entirely
feasible when certain conditions are satisfied. In particular, we will see that if we can find
a simple rule that fits the training data well, and if the training set is not too small, then
this rule will in fact generalize well, providing accurate predictions on previously unseen
test examples. This is the basis of the approach presented in this chapter, and we will often
use the general analysis on which it is founded to guide us in understanding how, why, and
when learning is possible.

We also outline in this chapter a mathematical framework for studying machine learning,
one in which a precise formulation of the boosting problem can be clearly and naturally
expressed.

Note that, unlike the rest of the book, this chapter omits nearly all of the proofs of the
main results since these have largely all appeared in various texts and articles. See the
bibliographic notes at the end of the chapter for references.

24 2 Foundations of Machine Learning

Table 2.1
A sample dataset

Instances 1.2 2.8 8.0 3.3 5.0 4.5 7.4 5.6 3.8 6.6 6.1 1.7

Labels − − + − − − + + − + + −
Each column is a labeled example. For instance, the third example is the instance x = 8.0 with corresponding
label y = +1.

2.1 A Direct Approach to Machine Learning

We start with an introduction to our approach to machine learning. This will lead to the
identification of criteria that are sufficient to assure generalization, laying the intuitive
groundwork for the formal treatment that follows.

2.1.1 Conditions Sufficient for Learning

As described in chapter 1, a learning algorithm takes as input a labeled sequence of training
examples (x1, y1), . . . , (xm, ym), and must use these to formulate a hypothesis for classi-
fying new instances. As before, and for most of the book, we assume that there are only
two possible labels, so that each yi ∈ {−1,+1}. As is customary, we routinely refer to the
training examples as comprising a training set, or a dataset, even though they actually form
a tuple (in which the same example may appear more than once) rather than a set. Likewise
for the test set.

Let us begin with an example in which the instances xi are simply real numbers, and
in which the training set looks something like the one in table 2.1. Given such a dataset,
how might we formulate a prediction rule? After examining these examples, most of us
would eventually notice that the larger examples, above some cutoff, are positive, and the
smaller examples are negative. This would lead most people to choose a rule based on
the observed cutoff behavior exhibited by this data; in other words, they would eventually
choose a threshold rule that predicts all instances x above some threshold ν are+1, and all
instances below ν are −1; that is,

h(x) =
{ +1 if x ≥ ν

−1 otherwise
(2.1)

for some choice of ν, such as 5.3, or any other value between 5.0 (the largest negative
example) and 5.6 (the smallest positive example). Such a rule—which is essentially the
same in form as the decision stumps used in section 1.2.3—seems so obvious and irresistibly
attractive because it has the two properties that people instinctively seem to prefer: First
of all, it is consistent with the given data, meaning that it predicts the correct labels on all
of the given training examples. And second, the rule is simple.

This preference for simple explanations, as noted in chapter 1, is often referred to as
Occam’s razor, a central tenet, for instance, of mathematics and most areas of scientific

2.1 A Direct Approach to Machine Learning 25

Table 2.2
A slightly different sample dataset

Instances 1.2 2.8 8.0 3.3 5.0 4.5 7.4 5.6 3.8 6.6 6.1 1.7

Labels − − + − − − + + + − + −

inquiry. However, unlike consistency, simplicity is not at all simple to define, and seems
vague, even mystical, although most of us feel that we recognize it when we see it. The
notion of simplicity is closely related to our prior expectations: We expect the data to be
explainable by a simple rule, and conversely, we usually consider a rule to be simple if it
matches our expectations. One of the triumphs of modern research on learning has been
the development of quantitative measures of simplicity and its role in generalization, as we
will see shortly.

When faced with a harder dataset, such as the slightly modified version in table 2.2, it is
not so immediate how to find a simple and consistent rule. On the one hand, we might choose
a simple threshold rule as before, but since none are consistent with this dataset, we will
inevitably be forced to accept a small number of mistakes on the training set itself. Alterna-
tively, we might choose a considerably more complex rule that is consistent, such as this one:

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 if x < 3.4
+1 if 3.4 ≤ x < 4.0
−1 if 4.0 ≤ x < 5.2
+1 if 5.2 ≤ x < 6.3
−1 if 6.3 ≤ x < 7.1
+1 if x ≥ 7.1.

(2.2)

Thus, we face a trade-off between simplicity and fit to the data, one that will require balance
and compromise.

Generally, then, we see that a natural approach to learning is to seek a hypothesis satisfying
two basic criteria:

1. It fits the data well.

2. It is simple.

As indicated in the example above, however, these two criteria are often in conflict: We
can typically fit the data better at the cost of choosing a more complex hypothesis, and
conversely, simpler hypotheses are prone to give a poorer fit to the data. This trade-off is
quite general, and is at the heart of the most central issue in the study of machine learning.

This issue must be faced at some point in the design of every learning algorithm, since
we must eventually make an explicit or implicit decision about the form of the hypotheses
that will be used. The form that is chosen reflects an assumption about what we expect in
the data, and it is the form that determines simplicity or complexity. For instance, we might
choose to use threshold rules of the form given in equation (2.1), or we might instead use

26 2 Foundations of Machine Learning

rules of a much freer form, as in equation (2.2). In principle, the more we know about a
particular learning problem, the simpler (and more restrictive) the form of the hypotheses
that can be used.

We measure how well a particular hypothesis h fits the training data by its training (or
empirical) error, that is, the fraction of the m training examples that it misclassifies, denoted

êrr(h)
.= 1

m

m∑
i=1

1{h(xi) �= yi} ,

where 1{·} is an indicator function that is 1 if its argument is true, and 0 otherwise. Although
we seek a simple classifier h with low training error, the ultimate goal of learning is to find
a rule that is highly accurate as measured on a separate test set. We generally assume that
both the training examples and the test examples are generated from the same distribution
D on labeled pairs (x, y). With respect to this true distribution, the expected test error of a
hypothesis h is called the true or generalization error; it is the same as the probability of
misclassifying a single example (x, y) chosen at random from D, and is denoted

err(h)
.= Pr(x,y)∼D[h(x) �= y] . (2.3)

Of course, a learning algorithm does not have the means to directly measure the gener-
alization error err(h) that it aims to minimize. Instead, it must use the training error êrr(h)

as an estimate of or proxy for the generalization error. If working with a single hypothesis
h, then the training error will be a reasonable estimate of the generalization error, which it
equals in expectation; in this sense, it is an unbiased estimator. Generally, however, a learn-
ing algorithm will work with a large space of hypotheses, and will choose the hypothesis
from this space with (approximately) minimum training error. Unfortunately, the training
error of a hypothesis selected in this fashion will not be unbiased, but instead will almost
certainly underestimate its true error. This is because, in selecting the hypothesis with min-
imum training error, the algorithm favors hypotheses whose training errors are, by chance,
much lower than their true errors.

To get an intuition for this effect, imagine an experiment in which each student in a
class is asked to predict the outcomes of ten coin flips. Clearly, any individual student will,
in expectation, correctly predict just half of the flips. However, in a class of perhaps 50
students, it is highly likely that one student will be very lucky and will correctly predict
eight or even nine of the coin flips. This student will appear to possess remarkable powers
of clairvoyance, when in fact it was only chance that made the student’s true prediction
accuracy of 50% appear to be much higher. The larger the class, the greater this effect will
be: At an extreme, for a very large class of over a thousand students, we will expect there
to be one student who perfectly predicts all ten coin flips.

In the learning setting, for the same reasons, it is quite likely that the apparently good
performance of the best hypothesis on the training set will in part be the result of having

2.1 A Direct Approach to Machine Learning 27

fitted spurious patterns that appeared in the training data entirely by chance. Inevitably,
this will cause the training error to be lower than the true error for the chosen hypothesis.
Moreover, the amount of this bias depends directly on the simplicity or complexity of the
hypotheses considered—the more complex, and thus the less restrictive, the form of the
hypotheses, the larger the space from which they are selected and the greater the bias, just
as in the example above. On the other hand, we will see that the bias can be controlled when
a sufficiently large training set is available.

Finding the hypothesis with minimal or nearly minimal training error can often be accom-
plished through an exhaustive or heuristic search, even when working with an infinitely
large space of hypotheses. As an example, consider our sample dataset in table 2.2 when
using threshold rules as in equation (2.1). Figure 2.1 shows a plot of the training error
êrr(h) of such rules as a function of the threshold ν. As can be seen from the figure, even
though the set of potential classifiers of this form is uncountably infinite, a training set of
m examples partitions the classifiers into m+ 1 subsets such that all of the rules in any
single subset make the same predictions on the training examples, and thus have the same
empirical error. (For instance, the threshold rule defined by setting the threshold ν to be 3.9
makes exactly the same predictions on all m of the examples as if we instead set ν to be
4.2.) As a result, we can find a classifier that minimizes the training error by first sorting
the data according to the instance values xi , and then computing the training error for all
possible values of the threshold ν in a single scan through the sorted examples. In this case,
we would find that the minimum training error is attained when ν is between 5.0 and 5.6.
(More details of this method will be given in section 3.4.2.)

0

25

50

1.2 1.7 2.8 3.3 3.8 4.5 5.0 5.6 6.1 6.6 7.4 8.0

P
er

ce
nt

 tr
ai

ni
ng

 e
rr

or

Threshold

Figure 2.1
The empirical error, on the data in table 2.2, of a threshold rule of the form given in equation (2.1), plotted as a
function of the threshold ν.

28 2 Foundations of Machine Learning

In general, balancing simplicity against fit to the training data is key to many practical
learning algorithms. For instance, decision-tree algorithms (see section 1.3) typically grow
a large tree that fits the data very well (usually too well), and then heavily prune the tree so
as to limit its overall complexity as measured by its gross size.

2.1.2 Comparison to an Alternative Approach

As a brief aside, we take a moment to contrast the approach we are following with a well-
studied alternative. When faced with data as in tables 2.1 and 2.2, we may in some cases have
additional information available to us. For instance, maybe we know that each example i

corresponds to a person where xi represents the person’s height and yi represents the person’s
gender (say+1 means male and−1 means female); in other words, the problem is to learn
to predict a person’s gender from his or her height. This information leads to some natural
assumptions. Specifically, we might assume that height among men is normally distributed,
and likewise among women, where naturally the means μ+ and μ− will be different, with
μ+ > μ−. We might further assume equal variance σ 2 for these two normal distributions,
and that the two classes (genders) occur with equal probability.

These assumptions suggest a different way of proceeding. Our goal is still to classify
instances whose label is unknown, but now, if we know the values of the means μ+ and
μ−, we can easily calculate the best possible classifier, which in this case simply predicts,
for a given instance (height) x, with the mean that is closest; in other words, +1 if x ≥
(μ+ +μ−)/2, and−1 otherwise. (See figure 2.2.) Note that this classifier has the form of a
threshold rule as in equation (2.1), although our rationale for using such a rule here is rather
different. If the distribution parameters μ+ and μ− are unknown, they can be estimated from
training data, and then used to classify test examples in the same way.

This is sometimes called a generative approach since we attempt to model how the data
is being generated. In contrast, the approach we outlined in section 2.1.1 is often said to be
discriminative, since the emphasis is on directly discriminating between the two classes.

+

Optimal threshold

D
en

si
ty

x

Figure 2.2
A classification problem in which both classes are normally distributed with equal variances but different means.

2.1 A Direct Approach to Machine Learning 29

Optimal threshold

D
en

si
ty

x

+

Threshold if distributions
assumed to be normal

Figure 2.3
A classification problem in which both classes have the same skewed, nonnormal distribution but with different
means.

When the assumptions we have made above about the data are valid, good generalization
is assured in this simple case. Most importantly, such a guarantee of good performance
is dependent on the data actually being generated by two normal distributions. If this
assumption does not hold, then the performance of the resulting classifier can become
arbitrarily poor, as can be seen in figure 2.3. There, because the two distributions are far
from normal, the threshold between positives and negatives that is found by incorrectly
assuming normality ends up being well away from optimal, regardless of how much training
data is provided.

Normality assumptions lead naturally to the use of threshold rules as in equation (2.1),
but we see in this example that an over-dependence on this assumption can yield poor
performance. On the other hand, a discriminative approach to this problem in which the
best threshold rule is selected based on its training error would be very likely to perform well,
since the optimal classifier is a simple threshold here as well. So because the discriminative
approach is not based on distributional assumptions, it also can be more robust.

Moreover, if our only goal is to produce a good classifier, then estimating the distribution
parameters of each class is entirely irrelevant to the task at hand. We do not care what the
means of the distributions are, or even whether or not the distributions are normal. The only
thing we care about in classification is which label y is more likely to correspond to any
given instance x.

The generative approach can provide a powerful and convenient framework for incor-
porating into the learning process information that may be available about how the data
is generated. However, its performance may be sensitive to the validity of those assump-
tions. The discriminative approach, on the other hand, attempts more directly to find a good
hypothesis by searching for a simple rule that makes accurate predictions on the training
data without regard to underlying distributional assumptions. In this latter approach, pre-
conceptions about the data are used to guide how we choose the form of the rules considered,
but actual performance may be relatively robust.

30 2 Foundations of Machine Learning

2.2 General Methods of Analysis

We return now to the development of general methods for analyzing the generalization error
of classifiers generated by learning algorithms. This is the essence of proving an algorithm’s
effectiveness. As we have discussed, success in learning depends intuitively on finding a
classifier (1) that fits the training data well, that is, has low training error, and (2) that is
simple. A third prerequisite, of course, is that the learner be provided with a sufficiently
large training set. We will see that the generalization error depends on these same three
interacting factors in a way that can be formalized in precise terms. On the other hand, the
analysis we present does not in any way depend on the form of the distribution of data; for
instance, we make no assumptions of normality. This reflects the general robustness of this
approach which is largely immune to changes in the underlying distribution.

We begin by analyzing the generalization error of a single hypothesis and then move
on to analyze families of hypotheses. Along the way, we will develop several different
techniques for measuring the central notion of simplicity and complexity.

2.2.1 A Single Hypothesis

To start, consider a single, fixed hypothesis h. Earlier, we discussed how the training error
is used as a proxy for the true error. This motivates us to ask how much the training error
êrr(h) can differ from the true error err(h) as a function of the number of training examples
m. Note first that there is always a chance that the selected training set will be highly
unrepresentative, so that the training error will be a very poor estimate of the true error.
This means that it is impossible to give a guarantee that holds with absolute certainty.
Instead, we seek bounds that hold true with high probability over the choice of the random
training set.

In fact, the problem can be seen to be equivalent to one involving coin flipping. When
a training example (xi, yi) is selected at random, the probability that h(xi) �= yi is exactly
p = err(h), an event that we can identify with a flipped, biased coin coming up heads. In
this way, the training set can be viewed as a sequence of m coin flips, each of which is
heads with probability p. The problem then is to determine the probability that the fraction
p̂ of heads in the actual observed sequence of coin flips—that is, the training error—will be
significantly different from p. We can explicitly write down the probability, say, of getting
at most (p− ε)m heads, which is exactly

	(p−ε)m
∑
i=0

(
m

i

)
pi(1−p)m−i . (2.4)

This is a rather unwieldy expression, but fortunately there exist a number of tools for
bounding it. Foremost among these is the family of Chernoff bounds, including Hoeffding’s
inequality, one of the simplest and most widely used, which can be stated as follows:

2.2 General Methods of Analysis 31

Theorem 2.1 Let X1, . . . , Xm be independent random variables such that Xi ∈ [0, 1].
Denote their average value by Am = 1

m

∑m
i=1 Xi . Then for any ε > 0 we have

Pr[Am ≥ E[Am]+ ε] ≤ e−2mε2
(2.5)

and

Pr[Am ≤ E[Am]− ε] ≤ e−2mε2
. (2.6)

Hoeffding’s inequality applies to averages of arbitrary bounded and independent random
variables. In the coin flipping example, we can take Xi = 1 (heads) with probability p and
Xi = 0 (tails) with probability 1−p. Then Am is equal to p̂, the fraction of heads observed
in a sequence of m flips; its expected value E[Am] is p; and equation (2.6) tells us that the
chance of at most (p− ε)m heads, written explicitly in equation (2.4), is at most e−2mε2

.
In the learning setting, we can define the random variable Xi to be 1 if h(xi) �= yi and

0 otherwise. This means that the average value Am is exactly êrr(h), the training error
of h, and that E[Am] is exactly the generalization error err(h). Thus, theorem 2.1, using
equation (2.6), implies that the probability of a training sample of size m for which

err(h) ≥ êrr(h)+ ε

is at most e−2mε2
. Said differently, given m random examples, and for any δ > 0, we

can deduce that with probability at least 1− δ, the following upper bound holds on the
generalization error of h:

err(h) ≤ êrr(h)+
√

ln(1/δ)

2m
.

This follows by setting δ = e−2mε2
and solving for ε. This means, in quantifiable terms,

that if h has low training error on a good-size training set, then we can be quite confident
that h’s true error is also low.

Using equation (2.5) gives a corresponding lower bound on err(h). We can combine these
using the union bound, which states simply that

Pr[a ∨ b] ≤ Pr[a]+Pr[b]

for any two events a and b. Together, the two bounds imply that the chance that

|err(h)− êrr(h)| ≥ ε

is at most 2e−2mε2
, or that

|err(h)− êrr(h)| ≤
√

ln(2/δ)

2m

with probability at least 1− δ.

32 2 Foundations of Machine Learning

As with most of the results in this chapter, we do not prove theorem 2.1. However, we
note as an aside that the standard technique for proving Chernoff bounds is closely related
to the method we use in chapter 3 to analyze AdaBoost’s training error. Indeed, as will be
seen in section 3.3, a special case of Hoeffding’s inequality follows as a direct corollary of
our analysis of AdaBoost.

2.2.2 Finite Hypothesis Spaces

Thus, we can bound the difference between the training error and the true error of a single,
fixed classifier. To apply this to a learning algorithm, it might seem tempting to use the same
argument to estimate the error of the single hypothesis that is chosen by the algorithm by
minimizing the training error—after all, this is still only one hypothesis that we care about.
However, such reasoning would be entirely fallacious. Informally, the problem is that in
such an argument, the training errors are used twice—first to choose the seemingly best
hypothesis, and then to estimate its true error. Said differently, the reasoning in section 2.2.1
requires that we select the single hypothesis h before the training set is randomly chosen.
The argument is invalid if h is itself a random variable that depends on the training set as
it would be if selected to minimize the training error. Moreover, we have already argued
informally in section 2.1.1 that the hypothesis that appears best on the training set is very
likely to have a true error that is significantly higher, whereas, for a single hypothesis, the
training error is an unbiased estimate of the true error; this is another indication of the fal-
lacy of such an argument.

Despite these difficulties, we will see now how we can analyze the error of the classifier
produced by a learning algorithm, even if it is found by minimizing the training error.
The intuitive arguments outlined in section 2.1.1 indicate that such a bound will depend on
the form of the hypotheses being used, since this form defines how simple or complex they
are. Saying that a hypothesis has a particular form is abstractly equivalent to saying that it
belongs to some set of hypotheses H, since we can define H tautologically to be the set of
all hypotheses of the chosen form. For instance, H might be the set of all threshold rules,
as in equation (2.1). We call H the hypothesis class or hypothesis space.

Generally, our approach will be to show that the training error of every hypothesis h ∈ H
is close to its true error with high probability, leading to so-called uniform error or uniform
convergence bounds. This condition will ensure that the hypothesis with minimum training
error also has nearly minimal true error among all hypotheses in the class. For if

|err(h)− êrr(h)| ≤ ε (2.7)

holds for all h ∈ H, and if ĥ minimizes the training error êrr(h), and h∗ minimizes the true
error err(h), then ĥ also approximately minimizes the true error, since

err(ĥ) ≤ êrr(ĥ)+ ε

= min
h∈H

êrr(h)+ ε.

2.2 General Methods of Analysis 33

≤ êrr(h∗)+ ε

≤ (err(h∗)+ ε)+ ε

= min
h∈H

err(h)+ 2ε. (2.8)

(We assumed that the minima above exist, as will be the case, for instance, if H is finite;
it is straightforward to modify the argument if they do not.)

Although we assumed a two-sided bound as in equation (2.7), we will henceforth restrict
our attention primarily to proving one-sided bounds of the form

err(h) ≤ êrr(h)+ ε (2.9)

for all h ∈ H. We do this for simplicity of presentation, but also for the reason that we
typically are interested only in upper bounds on generalization error. This is because, first
of all, there is no harm done if the learning algorithm manages to get lucky in picking a
hypothesis whose generalization error is significantly lower than its training error. But more
importantly, this case almost never occurs: Since the learning algorithm is biased toward
choosing hypotheses that already have low training error, the generalization error is quite
unlikely to be even lower. In fact, a closer look at the argument in equation (2.8) reveals
that only one-sided uniform error bounds, as in equation (2.9), were actually used. (We did
use the fact that êrr(h∗) ≤ err(h∗)+ ε, but this does not require the use of a uniform bound
since it involves only the single, fixed hypothesis h∗.)

To prove that such uniform bounds hold with high probability, the simplest case is when
H is finite, so that the hypothesis h is selected from a finite set of hypotheses that is
fixed before observing the training set. In this case, we can use a simple argument based
on the union bound: If we fix any single hypothesis h ∈ H, then, as in section 2.2.1,
we can use theorem 2.1 to bound the probability of choosing a training set for which
err(h)− êrr(h) ≥ ε; this will be at most e−2mε2

. By the union bound, the chance that this
happens for any hypothesis in H can be upper bounded simply by summing this probability
bound over all the hypotheses in H, which gives |H|e−2mε2

. Thus, we obtain the following:

Theorem 2.2 Let H be a finite space of hypotheses, and assume that a random training
set of size m is chosen. Then for any ε > 0,

Pr[∃h ∈ H : err(h) ≥ êrr(h)+ ε] ≤ |H|e−2mε2
.

Thus, with probability at least 1− δ,

err(h) ≤ êrr(h)+
√

ln |H| + ln(1/δ)

2m
(2.10)

for all h ∈ H.

The second bound, equation (2.10), on the generalization performance of any hypothesis
h captures in a single formula the three factors noted earlier which determine the success of

34 2 Foundations of Machine Learning

a learning algorithm. With regard to the training error êrr(h), the first of these factors, we
see that the formula is consistent with the intuition that better fit to the training data implies
better generalization. The second factor is the number of training examples m, where again
the bound captures quantitatively the unarguable notion that having more data is better.
Finally, the formula contains a term that depends on the form of the hypotheses being used,
that is, on the class H from which they are chosen. Note that if hypotheses in H are written
down in some way, then the number of bits needed to give each hypothesis h ∈ H a unique
name is about lg |H|. Thus, we can think of ln |H|—the term appearing in the formula,
which is off by only a constant from lg |H|—as roughly the “description length” of the
hypotheses being used, rather a natural measure of H’s complexity, the third factor affect-
ing generalization performance. In this way, the formula is consistent with Occam’s razor,
the notion that, all else being equal, simpler hypotheses perform better than more complex
ones.

2.2.3 Infinite Hypothesis Spaces

We next consider infinitely large hypothesis spaces. The results of section 2.2.2 are useless
in such cases—for instance, when using threshold rules of the form given in equation (2.1),
where there are infinitely many choices for the threshold ν, and thus infinitely many hypothe-
ses of this form. However, this hypothesis space has an important property that was noted
in section 2.1: Any training set of m (distinct) examples partitions the infinitely large space
into just m+ 1 equivalence classes such that the predictions of any two hypotheses in the
same equivalence class are identical on all m points. Said differently, the number of distinct
labelings of the m training points that can be produced by hypotheses in H is at most m+ 1.
See figure 2.4 for an example.

Thus, in this case, although there are infinitely many hypotheses in H, there are, in a
sense, effectively only m+ 1 hypotheses of any relevance with respect to a fixed set of
m examples. It would be tempting indeed to regard m+ 1 as the “effective” size of the
hypothesis space, and then to attempt to apply theorem 2.2 with |H| replaced by m+ 1.
This would give very reasonable bounds. Unfortunately, such an argument would be flawed
because the finite set of effective hypotheses that is induced in this way depends on the
training data, so that the argument suggested earlier for proving theorem 2.2 using the
union bound cannot be applied. Nevertheless, using more sophisticated arguments, it turns
out to be possible to prove that this alluring idea actually works so that, modulo some
adjusting of the constants, |H| can be replaced in theorem 2.2 with the “effective” size of
H as measured by the number of labelings of H on a finite sample.

To make these ideas formal, for any hypothesis class H over X and for any finite sample
S = 〈x1, . . . , xm〉, we define the set of dichotomies or behaviors 	H(S) to be all possible
labelings of S by functions in H. That is,

	H(S)
.= {〈h(x1), . . . , h(xm)〉 : h ∈ H} .

2.2 General Methods of Analysis 35

Figure 2.4
Five points on the real line, and a listing of all six possible labelings of the points using threshold functions of
the form shown in equation (2.1). On each line, the left bracket [shows a sample threshold ν realizing the given
labeling.

We also define the growth function 	H(m) which measures the maximum number of
dichotomies for any sample S of size m:

	H(m)
.= max

S∈Xm
|	H(S)|.

For instance, when H is the class of threshold functions, 	H(m) = m+ 1, as we have
already seen.

We can now state a more general result than theorem 2.2 that is applicable to both finite
and infinite hypothesis spaces. Ignoring constants, this theorem has replaced |H| with the
growth function 	H(m).

Theorem 2.3 Let H be any1space of hypotheses, and assume that a random training set
of size m is chosen. Then for any ε > 0,

Pr[∃h ∈ H : err(h) ≥ êrr(h)+ ε] ≤ 8	H(m)e−mε2/32.

Thus, with probability at least 1− δ,

1. To be strictly formal, we have to restrict the class H to be measurable with respect to an appropriate probability
space. Here, and throughout this book, we ignore this finer point, which we implicitly assume to hold.

36 2 Foundations of Machine Learning

err(h) ≤ êrr(h)+
√

32(ln 	H(m)+ ln(8/δ))

m
(2.11)

for all h ∈ H.

So our attention naturally turns to the growth function 	H(m). In “nice” cases, such as
for threshold functions, the growth function is only polynomial in m, that is, O(md) for
some constant d that depends on H. In such a case, ln 	H(m) is roughly d ln m so that the
term on the far right of equation (2.11), as a function of the training set size m, approaches
zero at the favorable rate O(

√
(ln m)/m).

However, the growth function need not always be polynomial. For instance, consider
the class of all hypotheses that are defined to be +1 on some finite but unrestricted set of
intervals of the real line and−1 on the complement (where instances here are points on the
line). An example of a hypothesis in this class is given by the classifier in equation (2.2),
which is+1 on the intervals [3.4, 4.0), [5.2, 6.3), and [7.1,∞), and−1 on all other points.
This hypothesis space is so rich that for any labeling of any set of distinct training points,
there always exists a consistent classifier which can be constructed simply by choosing
sufficiently small intervals around each of the positively labeled instances. Thus, the number
of dichotomies for any set of m distinct points is exactly 2m, the worst possible value of the
growth function. In such a case, ln 	H(m) = m ln 2, so the bound in theorem 2.3 is useless,
being of order θ(1). On the other hand, the very richness that makes it so easy to find a
hypothesis consistent with any training set also strongly suggests that the generalization
capabilities of such hypotheses will be very weak indeed.

So we have seen one case in which 	H(m) is polynomial, and another in which it is 2m

for all m. It is a remarkable fact of combinatorics that these are the only two behaviors that
are possible for the growth function, no matter what the space H may be. Moreover, as we
will soon see, statistically tractable learning turns out to correspond exactly to the former
case, with the exponent of the polynomial acting as a natural measure of the complexity of
the class H.

To characterize this exponent, we now define some key combinatorial concepts. First,
when all 2m possible labelings of a sample S of size m can be realized by hypotheses in
H, we say that S is shattered by H. Thus, S is shattered by H if |	H(S)| = 2m. Further,
we define the Vapnik-Chervonenkis (VC) dimension of H to be the size of the largest
sample S shattered by H. If arbitrarily large finite samples can be shattered by H, then the
VC-dimension is∞.

For instance, for threshold functions as in equation (2.1), the VC-dimension is 1 since a
single point can be labeled +1 or −1 by such rules (which means the VC-dimension is at
least 1), but no pair of points can be shattered, since if the leftmost point is labeled +1, the
rightmost point must also be labeled+1 (thus, the VC-dimension is strictly less than 2). For
the unions-of-intervals example above, we saw that any set of distinct points is shattered,
so the VC-dimension is∞ in this case.

2.2 General Methods of Analysis 37

Indeed, when the VC-dimension is infinite, 	H(m) = 2m by definition. On the other
hand, when the VC-dimension is a finite number d, the growth function turns out to be
polynomial, specifically, O(md). This follows from a beautiful combinatorial fact known
as Sauer’s lemma:

Lemma 2.4 (Sauer’s lemma) If H is a hypothesis class of VC-dimension d < ∞, then
for all m

	H(m) ≤
d∑

i=0

(
m

i

)
.

(We follow the convention that
(
n

k

) = 0 if k < 0 or k > n.) For m ≤ d, this bound is equal to
2m (and indeed, by d’s definition, the bound matches 	H(m) in this case). For m ≥ d ≥ 1,
the following bound is often useful:

d∑
i=0

(
m

i

)
≤
(em

d

)d

(2.12)

(where, as usual, e is the base of the natural logarithm).
We can plug this bound immediately into theorem 2.3 to obtain the following:

Theorem 2.5 Let H be a hypothesis space of VC-dimension d < ∞, and assume that a
random training set of size m is chosen where m ≥ d ≥ 1. Then for any ε > 0,

Pr[∃h ∈ H : err(h) ≥ êrr(h)+ ε] ≤ 8
(em

d

)d

e−mε2/32.

Thus, with probability at least 1− δ,

err(h) ≤ êrr(h)+O

(√
d ln(m/d)+ ln(1/δ)

m

)
(2.13)

for all h ∈ H.

As before, this second bound on the generalization error captures the three factors discussed
earlier. However, the complexity of H, which was earlier measured by ln |H|, now is
measured instead by the VC-dimension d. This is an important result because it shows that
limiting the VC-dimension of a hypothesis class can be used as a general tool for avoiding
overfitting.

The VC-dimension may not at first seem intuitive as a measure of complexity. However,
it can be shown that the VC-dimension can also be used to provide a general lower bound
on the number of examples needed for learning. Thus, in this sense, VC-dimension fully
characterizes the (statistical) complexity of learning. Moreover, VC-dimension is related
to our earlier complexity measure in that it can never exceed lg |H| (see exercise 2.2).

38 2 Foundations of Machine Learning

In addition, VC-dimension turns out often (but not always!) to be equal to the number
of parameters defining hypotheses in H. For instance, suppose that examples are points x
in Rn, and that hypotheses in H are linear threshold functions of the form

h(x) =
{ +1 if w · x > 0
−1 else

for some weight vector w ∈ Rn. Then it can be shown (see lemma 4.1) that the VC-
dimension of this class is exactly n, which matches the number of parameters, that is,
the number of dimensions in the vector w that defines each hypothesis in H.

2.2.4 A More Abstract Formulation

The framework above, particularly theorem 2.3, can be stated in more abstract terms that
we will sometimes find easier to work with. However, the reader may wish to skip this
technical section and come back to it when needed later in the book.

Briefly, let Z be any set, let A be a family of subsets of Z , and let D be a distribution
over Z . We consider the problem of estimating from a random sample S = 〈z1, . . . , zm〉
the probability of each set A ∈ A. As usual, Prz∼D[·] denotes probability when z is chosen
at random according to the distribution D, and we let Prz∼S[·] denote empirical probability,
that is, probability when z is chosen uniformly at random from among the m sample points
z1, . . . , zm. We wish to show that Prz∼S[z ∈ A], the empirical probability of any set A,
is likely to be close to its true probability Prz∼D[z ∈ A], and we want this to be true
simultaneously for every set A ∈ A. For a single, fixed set A, this can be shown using
Hoeffding’s inequality (theorem 2.1). Likewise, if A is finite, then it can be shown by an
application of the union bound. But when A is infinite, we need to generalize the machinery
developed in section 2.2.3.

For any finite sample S as above, we consider the restriction of A to S, denoted 	A(S),
that is, the intersection of S (treated as a set) with each set A ∈ A:

	A(S)
.= {{z1, . . . , zm} ∩A : A ∈ A}.

Analogous to 	H(S), this collection can be viewed as the set of all “in-out behaviors” of
sets A ∈ A on the points in S. As before, the growth function is the maximum cardinality
of this set over all samples S of size m:

	A(m)
.= max

S∈Zm
|	A(S)|.

With these definitions, theorem 2.3 becomes:

Theorem 2.6 Let A be a family of subsets of Z , and suppose that a random sample S

of m points is chosen independently from Z , each point selected according to the same
distribution D. Then for any ε > 0,

Pr[∃A ∈ A : Prz∼D[z ∈ A] ≥ Prz∼S[z ∈ A]+ ε] ≤ 8	A(m)e−mε2/32.

2.2 General Methods of Analysis 39

Thus, with probability at least 1− δ,

Prz∼D[z ∈ A] ≤ Prz∼S[z ∈ A]+
√

32(ln 	A(m)+ ln(8/δ))

m

for all A ∈ A.

To obtain the formulation given in section 2.2.3 as a special case, we first let Z .=
X ×{−1,+1}, the space of all possible labeled examples. Then, for a given hypothesis
space H, we define a family A of subsets Ah, one for each h ∈ H, where Ah is the set of
examples on which h makes a mistake. That is,

A .= {Ah : h ∈ H}, (2.14)

and

Ah
.= {(x, y) ∈ Z : h(x) �= y} .

Then it can be verified with these definitions that

	H(m) = 	A(m) (2.15)

and that theorem 2.6 yields exactly theorem 2.3. (See exercise 2.9.)

2.2.5 Consistent Hypotheses

We have seen that, when possible, it is sometimes desirable for a learning algorithm to
produce a hypothesis that is consistent with the training data so that it makes no mistakes
at all on the training set. Of course, our preceding analyses hold; this is just a special case
in which êrr(h) = 0. However, the bounds obtained in this fashion are particularly loose,
giving bounds on the order of 1/

√
m. In fact, for consistent hypotheses, it turns out that

the square roots on all of our convergence bounds can generally be removed (with some
adjusting of constants), giving the far faster convergence rate of just 1/m (ignoring log
terms).

To get an intuitive feeling for why this is so, consider again the problem of estimating
the bias p of a coin, as in section 2.2.1. It turns out that a coin with bias p close to 0 or 1 is
much easier to estimate (in the sense of requiring fewer samples) than one with bias close
to 1

2 . This is reflected in the bounds that can be proved. According to Hoeffding’s inequality
(theorem 2.1), if p̂ is the observed fraction of heads in m flips, then

p ≤ p̂+
√

ln(1/δ)

2m
(2.16)

with probability at least 1− δ. In other words, the true probability p is within O(1/
√

m) of
its estimate p̂.

Now let us consider what happens when p̂ = 0, that is, when there are no heads in the
observed sequence, corresponding to the case of a hypothesis that is consistent with the entire

40 2 Foundations of Machine Learning

training set. The probability of getting no heads in m flips is exactly (1−p)m ≤ e−pm. This
means that if p ≥ ln(1/δ)/m, then p̂ will be zero with probability at most δ. Turning this
statement around implies that when p̂ = 0, we can conclude that

p <
ln(1/δ)

m

with probability at least 1− δ. Note that this estimate is O(1/m) rather than O(1/
√

m) as
in equation (2.16).

This style of argument can be applied in the learning setting as well, yielding results such
as those summarized in the following theorem:

Theorem 2.7 Let H be a space of hypotheses, and assume that a random training set S of
size m is chosen.

If H is finite, then with probability at least 1− δ,

err(h) ≤ ln |H| + ln(1/δ)

m
(2.17)

for every h ∈ H that is consistent with S.
More generally, for any (finite or infinite) H, with probability at least 1− δ,

err(h) ≤ 2 lg 	H(2m)+ 2 lg(2/δ)

m
(2.18)

for every h ∈ H that is consistent with S. If H has VC-dimension d, where m ≥ d ≥ 1,
then with probability at least 1− δ,

err(h) ≤ 2d lg(2em/d)+ 2 lg(2/δ)

m
(2.19)

for every h ∈ H that is consistent with S.

This theorem gives high-probability bounds on the true error of all consistent hypotheses.
Each of the three bounds in equations (2.17), (2.18), and (2.19) states that, with probability
at least 1− δ, err(h) ≤ ε for every h ∈ H that is consistent with S (for values of ε as given
in the theorem). In other words, using slightly different phrasing, each bound says that with
probability at least 1− δ, for every h ∈ H, if h is consistent with S, then err(h) ≤ ε. Or,
formalizing these results in more precise, mathematical terms, the bounds state that with
probability at least 1− δ, the random variable

sup {err(h) | h ∈ H is consistent with S}
is at most ε.

2.2 General Methods of Analysis 41

2.2.6 Compression-Based Bounds

We have described two general techniques for analyzing a learning algorithm, one based
simply on counting the number of hypotheses in the class H, and the other based on H’s
VC-dimension. In this section, we briefly describe a third approach.

It has already been noted that lg |H|, our first complexity measure, is closely related to
the number of bits needed to describe each hypothesis h ∈ H. Thus, from this perspective,
the learning algorithm must find a relatively short description that can be used to reconstruct
labels for the training examples. This idea depends on the description being in bits, and
thus on H being finite.

Nevertheless, even when H is infinite, it will often be the case that the hypotheses
produced by a particular algorithm can be given a short description, not in bits but in terms
of training examples themselves. For instance, for the class of threshold functions as in
equation (2.1), each classifier is defined by the threshold ν. Moreover, as we have seen,
the behavior of such classifiers is equivalent with respect to a particular training set for all
thresholds ν lying between two adjacent data points. Thus, a learning algorithm can choose
ν to be one of those data points, and, in so doing, produces a classifier that can be described
by just one of the training examples. (Alternatively, if it seems more natural, the learner
can take ν to be the midpoint between two adjacent data points. This hypothesis can be
described by two of the training examples.)

We call such an algorithm whose hypotheses can be represented by κ of the training
examples a compression scheme of size κ . Thus, formally, such an algorithm is associated
with a function K that maps κ-tuples of labeled examples to hypotheses h in some space H.
Given training examples (x1, y1), . . . , (xm, ym), such an algorithm chooses some indices
i1, . . . , iκ ∈ {1, . . . , m}, and outputs the hypothesis

h = K((xi1 , yi1), . . . , (xiκ , yiκ))

determined by the corresponding examples.
For such algorithms, which arise quite often and quite naturally, bounds on the general-

ization error can be derived in much the same way as for the case of finite H. In particular,
the following can be proved:

Theorem 2.8 Suppose a learning algorithm based on a compression scheme of size κ is
provided with a random training set of size m. Then with probability at least 1− δ, the
hypothesis h produced by this algorithm satisfies

err(h) ≤
(

m

m− κ

)
êrr(h)+

√
κ ln m+ ln(1/δ)

2(m− κ)
.

Furthermore, with probability at least 1− δ, any consistent hypothesis h produced by this
algorithm satisfies

42 2 Foundations of Machine Learning

err(h) ≤ κ ln m+ ln(1/δ)

m− κ
.

Thus, for such algorithms it is the size κ of the compression scheme that acts as a complexity
term.

2.2.7 Discussion

We have explored three general methods for analyzing learning algorithms. The techniques
are closely related, differing primarily in the complexity measure employed. These bounds
are extremely useful in understanding the qualitative behavior of learning algorithms. As
we have discussed already, the bounds describe the dependence of the generalization error
on the training error, the number of examples, and the complexity of the chosen hypothesis.
Furthermore, these bounds are quite helpful in understanding the important and ubiquitous
phenomenon of overfitting. Disregarding δ and log factors, each of the bounds in theorems
2.2, 2.5 and 2.8 have the form

err(h) ≤ êrr(h)+ Õ

(√
CH

m

)
(2.20)

where CH is some measure of the complexity of H. As the complexity of the hypotheses
used is permitted to increase, the training error tends to decrease, causing the first term in
equation (2.20) to decrease. However, this also causes the second term to increase. The
result is an idealized “learning curve” like the one in figure 2.5, which pretty well matches
the kind of overfitting behavior often observed in practice.

0

10

20

30

40

P
er

ce
nt

 e
rr

or

Complexity

Figure 2.5
An idealized plot of the generalization error of a classifier with varying complexity, as predicted by a bound of
the form in equation (2.20).

2.3 A Foundation for the Study of Boosting Algorithms 43

On the other hand, these bounds are usually too loose to be applied quantitatively on actual
learning problems. In most cases, the bounds suggest that, with the amount of training data
available, only very simple hypothesis classes can be used, while in actual practice, quite
large hypothesis classes are used regularly with good results. The problem is that the bounds
are overly pessimistic, holding as they do for all distributions, including those “worst-case”
distributions which make learning as difficult as possible. Thus, while the uniform nature
of the bounds is an unquestionable strength that lends generality and robustness to the
results, this same uniformity can also be a weakness in the sense that the results may better
characterize the theoretical worst case than the actual case encountered in practice.

One way to tighten the bounds may be to take into account additional quantities that can
be measured on the training set. Bounds of the type given in the theorems above take into
account only the training error êrr(h), but other quantities can be considered. For instance,
chapter 5 describes bounds on the generalization error of boosting algorithms which depend
on properties of the margin distribution of the training set.

2.3 A Foundation for the Study of Boosting Algorithms

We next introduce an idealized framework for the mathematical study of machine learning,
one that admits absolute guarantees on performance. As we will see, this model of learning
will allow us to define the concept of boosting in precise terms, and will thus provide a
foundation for the development and analysis of boosting algorithms.

2.3.1 Absolute Guarantees on Performance

As just discussed, the mode of analysis studied in section 2.2 is very general and quite
agnostic in the sense that we have made no assumptions about the form of the distribution D
generating the labeled examples (x, y). On the one hand, this generality has made it possible
to state results that are applicable in a very broad range of settings without the need for prior
assumptions about the data distribution. On the other hand, this same generality has also
precluded us from providing absolute guarantees on performance. Rather, the bounds that
we have discussed tell us that the generalization error will be small if during training we
can place our hands on a simple hypothesis with low training error on a sufficiently large
training set. The bounds do not tell us when it will be possible to obtain a hypothesis that
has, say, 99% generalization accuracy. This can only be deduced, according to the bounds,
after the training error has been observed.

Even as the training set becomes extremely large, the bounds do not guarantee low
generalization error. Indeed, such guarantees are impossible in such generality since the
distribution D may be such that the label y is intrinsically unpredictable. For instance,
since we assume nothing about D, it is possible that y is equally likely to be +1 or −1,
independent of x; in such an extreme case, no amount of training or computation can result

44 2 Foundations of Machine Learning

in a hypothesis with generalization error less than 50%. Thus, to develop a mathematical
model of learning which admits absolute guarantees on the generalization error, we must
accept additional assumptions about the form of the generating distribution D.

As a first step, we suppose for now that the goal is to learn a classifier with nearly perfect
accuracy. We have just seen that this is not always possible, and indeed, realistically, is
almost never attainable in practice. Nevertheless, achieving the highest possible accuracy
is the ultimate goal of learning, and as such, understanding theoretically when near perfect
accuracy can be achieved is a fundamental question.

As we have seen, when there is intrinsic randomness in the labels y themselves, so that
y is not strictly determined by x, there is no way to find a hypothesis h which can predict y

perfectly for any x, since such a hypothesis does not exist. Thus, the first necessary assump-
tion in our model is that there exists a functional relationship between the instances x and
the labels y; in other words, we assume that there exists a target function

c : X → {−1,+1}
such that, for any x, the associated label y is equal to c(x) with probability 1. That is,

Pr(x,y)∼D[y = c(x) | x] = 1.

This is equivalent to simply regarding D as a distribution over X and assuming that examples
are of the form (x, c(x)), so that each example x is deterministically assigned the label c(x).

Even with such deterministic labeling of the data, learning may be impossible. For
instance, if the target function c is an entirely arbitrary function over X , then no finite
training set can provide any connection to examples not seen during training; therefore,
we cannot hope to find a hypothesis that makes accurate predictions, other than on the
examples seen during training. Thus, for generalization to be plausible, we also must make
assumptions about the nature of the target function so that there can exist some relationship
between the labels of the training data and those on test examples. We can summarize any
such knowledge about c by assuming that c comes from some known class of functions C,
called the target (function) class.

So our problem of understanding the circumstances under which nearly perfect learning
is possible can be rephrased as that of determining for which classes C—embodying our
assumptions about the target c—such learning is achievable. Here, again, our goal is to
learn a hypothesis h with nearly perfect accuracy, that is, with generalization error below
ε for any specified value of ε > 0, though naturally more data will need to be allowed
for smaller values of ε. Moreover, to avoid further assumptions, we ask that learning be
possible for any distribution D over the instance space X , and for any target function c ∈ C.
Finally, since there is always the possibility that a highly unrepresentative random training
sample will be selected, we allow learning to fail entirely with probability δ > 0, where δ

should be controllable in a manner similar to ε.

2.3 A Foundation for the Study of Boosting Algorithms 45

So this notion of learning requires that, with high probability over the choice of the
random sample, a hypothesis h be found that is nearly perfect, or approximately correct,
hence the name probably approximately correct (PAC) learnability. To distinguish from
what is to follow, we also call this strong learnability. Formally, then, a class C is strongly
PAC learnable if there exists a learning algorithm A such that for any distribution D over
the instance space X , and for any c ∈ C and for any positive values of ε and δ, algorithm
A takes as input m = m(ε, δ) examples (x1, c(x1)), . . . , (xm, c(xm)) where xi is chosen
independently at random according to D, and produces a hypothesis h such that

Pr[err(h) > ε] ≤ δ.

Here, err(h) is the generalization error of h with respect to distribution D, and the probability
is over the random selection of training examples x1, . . . , xm. Note that the training set size
m can depend on ε and δ, and we typically require these to be polynomial in 1/ε and 1/δ.
Further, the sample size will usually also depend on properties of the class C.

When computability is not an issue, we can immediately apply the results of section 2.2.5
to obtain quite general PAC results. In particular, for any class C, consider an algorithm
A that, given any sample, selects h to be any function in C that is consistent with the
observed data. By assumption, such a hypothesis h must exist (although the computational
considerations of finding it might be prohibitive). Thus, in this case our hypothesis space
H is identical to C. When C is finite, applying theorem 2.7, we thus immediately get that
with probability at least 1− δ,

err(h) ≤ ln |C| + ln(1/δ)

m
.

Setting the right-hand side equal to ε, this means that A is PAC (so that err(h) ≤ ε with
probability at least 1− δ) when given a sample of size

m =
⌈

ln |C| + ln(1/δ)

ε

⌉
.

Similarly, for C infinite, the algorithm can be shown to be PAC for some sample size that
depends on the VC-dimension of C (provided it is finite).

Thus, our generalization bounds indicate generally that only a moderate-size sample is
statistically adequate for PAC learning. What remains is the problem of finding an efficient
learning algorithm, an issue that cannot be ignored in the real world. Therefore, we often
add an efficiency requirement that the learning algorithm A compute h in polynomial time.
Characterizing efficient PAC learnability turns out to be much more difficult and involved.
Indeed, computational tractability has very often been found to be far more limiting and
constraining in the design of learning systems than any statistical considerations. In other
words, it is often the case that a learning problem cannot be solved, even when more

46 2 Foundations of Machine Learning

than enough data has been provided to ensure statistical generalization, solely because
the associated computational problem is intractable. (For instance, it is known that this
is the case when C is the class of all polynomial-size formulas constructed using the usual
operations (and, or, and not) over n Boolean variables.)

2.3.2 Weak Learnability and Boosting Algorithms

As indicated above, requiring nearly perfect generalization is usually unrealistic, sometimes
for statistical reasons and often for purely computational reasons. What happens if we drop
this overly stringent requirement? In other words, rather than requiring a generalization
error below, say, 1%, what if we were content with error below 10%? or 25%? In the most
extreme case, what if our goal is merely to find a hypothesis whose error is just slightly
below the trivial baseline of 50%, which is attainable simply by guessing every label
at random? Surely, learning must become easier when (far) less-than-perfect accuracy is
deemed sufficient.

Learning with such a weak demand on accuracy is called weak learning. In terms of its
definition, the problem is only a slight modification of PAC learning in which we drop the
requirement that the learning algorithm achieve error at most ε for every ε > 0. Rather, we
only make this requirement for some fixed ε, say ε = 1

2 − γ , for some fixed but small “edge”
γ > 0. Formally, then, a target class C is weakly PAC learnable if for some γ > 0, there
exists a learning algorithm A such that for any distribution D over the instance space X , and
for any c ∈ C and for any positive value of δ, algorithm A takes as input m = m(δ) examples
(x1, c(x1)), . . . , (xm, c(xm)), where xi is chosen independently at random according to D,
and produces a hypothesis h such that

Pr
[
err(h) > 1

2 − γ
] ≤ δ.

Weak learnability arises as a natural relaxation of the overly demanding strong learning
model. Indeed, on its face one might be concerned that the model is now too weak, accepting
as it does any hypothesis that is even slightly better than random guessing. Surely, it would
seem, there must be many examples of classes that are weakly learnable (with accuracy
only 51%) but not strongly learnable (to accuracy 99%).

This intuition—which turns out to be entirely incorrect—points to a fundamental ques-
tion: Are the strong and weak learning models equivalent? In other words, is it the case
that there exist classes that are weakly but not strongly learnable? Or is it the case that any
class that can be weakly learned can also be strongly learned? Boosting arose as an answer
to exactly this theoretical question. The existence of boosting algorithms proves that the
models are equivalent by showing constructively that any weak learning algorithm can be
converted into a strong learning algorithm. Indeed, it is exactly this property that defines
boosting in its true technical sense.

Formally, a boosting algorithm B is given access to a weak learning algorithm A for C
which, when provided with m0(δ) examples, is guaranteed to produce a weak hypothesis

2.3 A Foundation for the Study of Boosting Algorithms 47

h with err(h) ≤ 1
2 − γ with probability at least 1− δ. In addition, like any PAC algorithm,

B is provided with ε > 0, δ > 0, and m labeled examples (x1, c(x1)), . . . , (xm, c(xm)) for
some c ∈ C (where C need not be known to B). Using its access to A, the boosting algorithm
must produce its own (strong) hypothesis H such that

Pr[err(H) > ε] ≤ δ. (2.21)

Further, there should only be a polynomial blowup in complexity. In other words, B’s sample
size m should only be polynomial in 1/ε, 1/δ, 1/γ and m0, and similarly, B’s running time
should be polynomially related to A’s (as well as the other parameters). Clearly, applying
such an algorithm to a weak learning algorithm for some class C demonstrates, by definition,
that the class is strongly learnable as well. AdaBoost is indeed a boosting algorithm in this
technical sense, as will be discussed in section 4.3.

That strong and weak learnability are equivalent implies that learning, as we have defined
it, is an “all or nothing” phenomenon in the sense that for every class C, either C is learnable
with nearly perfect accuracy for every distribution, or C cannot be learned in even the most
minimal way on every distribution. There is nothing in between these two extremes.

2.3.3 Approaches to the Analysis of Boosting Algorithms

In this chapter, we have explored two modes of analysis. In the first, the generalization error
of a selected hypothesis is bounded in terms of measurable empirical statistics, most com-
monly its training error. No explicit assumptions are made about the data, and as a result,
good generalization depends on an implicit assumption that a hypothesis with low training
error can be found. In the second style of analysis, additional assumptions are made about
the underlying data generation process, admitting absolute bounds on generalization. In the
same way, boosting algorithms can be analyzed using either approach.

Every learning algorithm depends explicitly or implicitly upon assumptions, since learn-
ing is quite impossible otherwise. Boosting algorithms are built upon the assumption of
weak learnability, the premise that a method already exists for finding poor though not
entirely trivial classifiers. In its original form, the boosting question begins by assuming
that a given class C is weakly PAC learnable as defined above. With such an assumption,
as we have seen, it is possible to prove strong absolute guarantees on the PAC learnability
of C, ensuring near perfect generalization.

However, in practical settings, this assumption may be too onerous, requiring that the
labels be deterministic according to a target function from a known class C, that weak
learning hold for every distribution, and that the edge γ be known ahead of time. Practically,
these requirements can be very difficult to check or guarantee. As we now discuss, there
are many ways in which these assumptions can be weakened, and most (but not all) of the
book is founded on such relaxed versions of the weak learning assumption.

To begin, for the sake of generality we can usually drop any explicit assumptions about
the data, returning to the more agnostic framework seen earlier in the chapter in which

48 2 Foundations of Machine Learning

labeled examples (x, y) are generated by an arbitrary distribution D with no functional
dependence assumed for the labels y. In this case, as in chapter 1, the training set consists
simply of labeled pairs (x1, y1), . . . , (xm, ym).

Furthermore, rather than the far-reaching assumption of weak PAC learnability described
above, we can instead assume only that the weak hypotheses found by the given weak learn-
ing algorithm A have weighted training error bounded away from 1

2 . This leads to a different
and weaker notion of weak learnability that is particular to the actual training set. Specifi-
cally, we say that the empirical γ -weak learning assumption holds if for any distribution D

on the indices {1, . . . , m} of the training examples, the weak learning algorithm A is able
to find a hypothesis h with weighted training error at most 1

2 − γ :

Pri∼D[h(xi) �= yi] ≤ 1
2 − γ.

Thus, empirical weak learnability is defined with respect to distributions defined on a
particular training set with particular labels, while weak PAC learnability is defined with
respect to any distribution on the entire domain X , and any labeling consistent with one of
the targets in the class C. These two notions are clearly related, but are also quite distinct.
Even so, when clear from context, we often use shortened terminology, such as “weak
learning assumption” and “weakly learnable,” omitting “PAC” or “empirical.”

This condition can be weakened still further. Rather than assuming that the weak learner
A can achieve a training error of 1

2 − γ on every distribution on the training set, we can
assume only that this happens on the particular distributions on which it is actually trained
during boosting. In the notation of algorithm 1.1 (p. 5), this means, for AdaBoost, simply
that εt ≤ 1

2 − γ for all t , for some γ > 0. This property clearly follows from the empirical
γ -weak learning assumption, and also follows from the weak PAC learnability assumption,
as will be seen in section 4.3. Furthermore, in comparison to what was earlier assumed
regarding the weak PAC learnability of a known class C, this assumption is quite benign,
and can be verified immediately in an actual learning setting.

We can even go one step farther and drop the assumption that the edge γ is known; as
discussed in chapter 1, this is the defining property of a boosting algorithm that is adaptive,
such as AdaBoost.

In the resulting fully relaxed framework, no assumptions at all are made about the data,
analogous to the agnostic approach taken earlier in the chapter. Rather, generalization
performance is analyzed in terms of the weighted training errors εt , as well as other relevant
parameters, such as the complexity of the weak hypotheses. Although the εt ’s are not
explicitly assumed to be bounded below 1

2 , when this is the case, such bounds should imply
high generalization accuracy. Since it is the most general and practical, we will mostly
follow this mode of analysis, particularly in chapters 4 and 5, where bounds of just this
form are proved.

2.3 A Foundation for the Study of Boosting Algorithms 49

Summary

This chapter has reviewed some fundamental results at the foundation of theoretical machine
learning, tools we will use extensively in later chapters in the analysis of boosting algorithms.
These general results formalize our intuition of the requirements for learning: sufficient
data, low training error, and simplicity, the last of these being measurable in various ways,
including description length, VC-dimension, and degree of compressibility. This under-
standing also captures the essential problem of learning, namely, the careful balancing of
the trade-off between fit to training data and simplicity. Finally, we looked at the formal
PAC learning framework and the notion of weak learnability from which arises the basic
question of the existence of boosting algorithms.

With this foundation, we can begin our analysis of AdaBoost.

Bibliographic Notes

The overall approach to machine learning that we have adopted in this chapter, particularly
in sections 2.1 and 2.2, was initially pioneered in the groundbreaking work of Vapnik and
Chervonenkis [225, 226]. For a more complete treatment, see, for instance, the books by
Vapnik [222, 223, 224], and by Devroye, Györfi, and Lugosi [67]. The approach and analysis
described in sections 2.2.3 and 2.2.4, including theorems 2.3, 2.5, and 2.6, lemma 2.4, and
the VC-dimension as applied in this setting, are all due to Vapnik and Chervonenkis [225].
However, the constants that appear in their versions of these theorems are slightly different
from what we have given here, which are based instead on theorem 12.5 of Devroye, Györfi,
and Lugosi [67]. This latter source includes an overview of some of the other versions that
have been proved, some of which have better constants. Also, lemma 2.4 was proved
independently by Sauer [198]. A short proof of equation (2.12) is given by Kearns and
Vazirani [134]. Examples of lower bounds on learning in terms of the VC-dimension include
the work of Ehrenfeucht et al. [80] and Gentile and Helmbold [107]. Hoeffding’s inequality
(theorem 2.1) is due to Hoeffding [123]. Regarding theorem 2.7, equation (2.17) was proved
by Vapnik and Chervonenkis [226], and later by Blumer et al. [27]. Equation (2.18) was
proved by Blumer et al. [28].

Further background on the generative (or Bayesian) approach described in section 2.1.2
can be found, for instance, in Duda, Hart, and Stork [73], and Bishop [22].

The approach given in section 2.2.6, including theorem 2.8, is due to Littlestone and
Warmuth [154], and Floyd and Warmuth [85]. The minimum description length principle,
though not discussed in this book, is the foundation for another, related approach to learning
and statistics which is also based on compression—see, for instance, Grünwald’s book [112].

The PAC learning model of section 2.3.1 was proposed by Valiant [221]. Further back-
ground can be found in Kearns and Vazirani’s book [134]. The notion of weak PAC learning

50 2 Foundations of Machine Learning

in section 2.3.2 was first considered by Kearns and Valiant [133]. This latter work also
contains examples of learning problems which are computationally intractable even when
provided with a statistically adequate amount of data, as mentioned in section 2.3.1.

Some of the exercises in this chapter are based on material from [28, 154, 198, 221, 225].

Exercises

2.1 For any hypothesis space H, let ĥ minimize the training error, and let h∗ minimize the
generalization error:

ĥ
.= arg min

h∈H
êrr(h)

h∗ .= arg min
h∈H

err(h).

Note that ĥ depends implicitly on the training set. Prove that

E
[
êrr(ĥ)

]
≤ err(h∗) ≤ E

[
err(ĥ)

]
(where expectation is with respect to the choice of the random training examples).

2.2 Show that the VC-dimension of any finite hypothesis space H is at most lg |H|. Also,
show that this bound is tight; that is, for every d ≥ 1, give an example of a hypothesis space
H with VC-dimension equal to d for which d = lg |H|.
2.3 Let X = {0, 1}n, and let C be the space of Boolean monomials, that is, functions of the
form

c(x) =
{ +1 if

∏
j∈R xj = 1

−1 else

for some R ⊆ {1, . . . , n}. In other words, c(x) = +1 if and only if all of the variables
xj = 1, for all j ∈ R. Show that C is efficiently PAC learnable. That is, describe an efficient
(polynomial-time) algorithm for finding a monomial consistent with any dataset (assuming
one exists), and show that the PAC criterion (equation (2.21)) holds for a sample of size
polynomial in 1/ε, 1/δ, and n.

2.4 Let X = Rn, and let H be the space of hypotheses defined by axis-aligned rectangles,
that is, functions of the form

h(x) =
{ +1 if aj ≤ xj ≤ bj for all j = 1, . . . , n

−1 else

for some a1, . . . , an, b1, . . . , bn ∈ R. Compute exactly the VC-dimension of H.

2.5 Let X = Rn, and let C be the space of functions defined by axis-aligned rectangles,
as in exercise 2.4. Show that C is efficiently PAC learnable (as in exercise 2.3), using a
compression scheme.

Exercises 51

2.6 Let X = R, and let C be the space of functions defined by unions of at most n intervals,
that is, functions of the form

c(x) =
{ +1 if x ∈ [a1, b1] ∪ · · · ∪ [an, bn]
−1 else

for some a1, . . . , an, b1, . . . , bn ∈ R.

a. Compute the VC-dimension of C exactly.

b. Use the result from part (a) to show that C is efficiently PAC learnable (as in exercise 2.3).

2.7 Show that Sauer’s lemma (lemma 2.4) is tight. That is, for every d ≥ 1, give an example
of a space H with VC-dimension equal to d such that for each m,

	H(m) =
d∑

i=0

(
m

i

)
.

2.8 Let H be a countably infinite space of hypotheses. Let g : H → (0, 1] be any function
such that∑
h∈H

g(h) ≤ 1.

Although g may look a bit like a probability distribution, it is just a function—any function—
whose positive values happen to add up to a number not bigger than 1. Assume a random
training set of size m has been chosen.

a. Prove that, with probability at least 1− δ,

err(h) ≤ êrr(h)+
√

ln(1/g(h))+ ln(1/δ)

2m

for all h ∈ H.

b. Suppose hypotheses in H are represented by bit strings and that |h| denotes the number
of bits needed to represent h. Show how to choose g to prove that, with probability at
least 1− δ,

err(h) ≤ êrr(h)+O

(√ |h| + ln(1/δ)

m

)
for all h ∈ H.

c. How does the bound in part (b) reflect the intuitive trade-off between fit to data and
simplicity?

2.9 Show that theorems 2.3 and 2.6 are equivalent. That is:

52 2 Foundations of Machine Learning

a. For A constructed as in equation (2.14), verify equation (2.15), and show that theorem 2.6
yields exactly theorem 2.3.

b. For a general familyA of subsets, show that theorem 2.3 can be used to prove theorem 2.6.

2.10 Let the domain be Xn = Rn, and let Hn be the space of all decision stumps of the
(simplified) form

h(x) =
{

c0 if xk ≤ ν

c1 if xk > ν

for some c0, c1 ∈ {−1,+1}, k ∈ {1, . . . , n}, and ν ∈ R. (In section 3.4.2, we will consider
decision stumps in greater generality.)

a. Show that 	Hn(m) ≤ 2nm.

b. Show that there exist positive constants a and b such that for all n ≥ 1, the VC-dimension
of Hn is at most a+ b ln n.

3 Using AdaBoost to Minimize Training Error

In this chapter, we study how AdaBoost can be used to minimize the training error, that
is, the number of mistakes on the training set itself. As discussed in chapter 1, we will prove
that AdaBoost drives the training error down very fast as a function of the error rates of
the weak classifiers, even if they all have error rates that are close (but not too close) to the
trivial error rate of 50% achievable by simple random guessing. This is AdaBoost’s most
basic theoretical property.

Note that our approach is deliberately vague with regard to the weak learning algorithm,
that is, the source of the weak hypotheses. As discussed in section 2.3.3, our analysis depends
only on an assumption of empirical weak learnability. Such an agnostic approach has the
important advantage of generality and flexibility: By leaving the weak learner unspecified,
we are able to derive a boosting algorithm and an analysis that are immediately applicable to
any choice of weak learning algorithm. However, in practice, we must at some point choose
or design an appropriate algorithm for this purpose, one that achieves better-than-guessing
accuracy on any given distribution over the training set. This chapter therefore includes a
discussion of some of the practical approaches that can be used here.

We also look at general conditions that guarantee weak learnability. And as an aside, we
dwell briefly on the close relationship between the simple proof technique used to analyze
AdaBoost’s training error and those commonly used to prove Chernoff bounds, such as
theorem 2.1.

One may wonder why it is worthwhile to study the training error at all since our prime
interest is in the generalization error. However, as was seen in chapter 2, fitting the training
data, typically by minimizing the training error, is one of the main conditions for success-
ful learning. Of course, for now, we are ignoring the other main condition for learning,
that of simplicity, an issue that will be addressed in later chapters in our upcoming analysis
of the generalization error. Moreover, for that analysis, we will see that the present study
of the training error will turn out to be very helpful.

54 3 Using AdaBoost to Minimize Training Error

3.1 A Bound on AdaBoost’s Training Error

We begin by proving a fundamental bound on AdaBoost’s training error. In proving this
main theorem, we make no assumptions about the training set and how it was generated,
nor about the weak learner. The theorem simply gives a bound on the training error in terms
of the error rates of the weak hypotheses.

In the simple version of AdaBoost shown as algorithm 1.1 (p. 5), D1 is initialized to the
uniform distribution over the training set. Here, however, we give a slightly more general
proof applicable to an arbitrary initialization of D1. The resulting proof provides an upper
bound on the weighted fraction of examples misclassified by H , where each example i

is weighted by D1(i). A bound on the ordinary, unweighted training error, when D1 is
initialized as in algorithm 1.1, follows immediately as a special case.

Theorem 3.1 Given the notation of algorithm 1.1, let γt
.= 1

2 − εt , and let D1 be an arbitrary
initial distribution over the training set. Then the weighted training error of the combined
classifier H with respect to D1 is bounded as

Pri∼D1 [H(xi) �= yi] ≤
T∏

t=1

√
1− 4γ 2

t ≤ exp

(
−2

T∑
t=1

γ 2
t

)
.

Note that because εt = 1
2 − γt , the edge γt measures how much better than the random-

guessing error rate of 1
2 is the error rate of the t-th weak classifier ht . As an illustration

of the theorem, suppose all of the γt ’s are at least 10% so that no ht has error rate above
40%. Then the theorem implies that the training error of the combined classifier is at
most(√

1− 4(0.1)2
)T ≈ (0.98)T .

In other words, the training error drops exponentially fast as a function of the number of
base classifiers combined. More discussion of this property follows below.

Here is the informal idea behind the theorem: On every round, AdaBoost increases
the weights (under distribution Dt) of the misclassified examples. Moreover, because the
final classifier H is a (weighted) majority vote of the weak classifiers, if some example is
misclassified by H , then it must have been misclassified by most of the weak classifiers
as well. This means that it must have had its weight increased on many rounds, so that
its weight under the final distribution DT+1 must be large. However, because DT+1 is a
distribution (with weights that sum to 1), there can be only a few examples with large
weights, that is, where H makes an incorrect prediction. Therefore, the training error of H

must be small.
We now give a formal argument.

3.1 A Bound on AdaBoost’s Training Error 55

Proof Let

F(x)
.=

T∑
t=1

αtht (x). (3.1)

Unraveling the recurrence in algorithm 1.1 that defines Dt+1 in terms of Dt gives

DT+1(i) = D1(i)× e−yiα1h1(xi)

Z1
× · · ·× e−yiαT hT (xi)

ZT

=
D1(i) exp

(
−yi

∑T
t=1 αtht (xi)

)
∏T

t=1 Zt

= D1(i) exp (−yiF (xi))∏T
t=1 Zt

. (3.2)

Since H(x) = sign(F (x)), if H(x) �= y, then yF(x) ≤ 0, which implies that e−yF(x) ≥ 1.
That is, 1{H(x) �= y} ≤ e−yF(x). Therefore, the (weighted) training error is

Pri∼D1 [H(xi) �= yi] =
m∑

i=1

D1(i) 1{H(xi) �= yi}

≤
m∑

i=1

D1(i) exp (−yiF (xi)) (3.3)

=
m∑

i=1

DT+1(i)

T∏
t=1

Zt (3.4)

=
T∏

t=1

Zt (3.5)

where equation (3.4) uses equation (3.2), and equation (3.5) uses the fact that DT+1 is a
distribution (which sums to 1). Finally, by our choice of αt , we have that

Zt =
m∑

i=1

Dt(i)e
−αt yiht (xi)

=
∑

i:yi=ht (xi)

Dt (i)e
−αt +

∑
i:yi �=ht (xi)

Dt (i)e
αt (3.6)

= e−αt (1− εt)+ eαt εt (3.7)

= e−αt

(
1

2
+ γt

)
+ eαt

(
1

2
− γt

)
(3.8)

=
√

1− 4γ 2
t . (3.9)

56 3 Using AdaBoost to Minimize Training Error

Here, equation (3.6) uses the fact that both yi and ht (xi) are {−1,+1}-valued; equation (3.7)
follows from the definition of εt ; and equation (3.9) uses the definition of αt , which, as we
will discuss shortly, was chosen specifically to minimize equation (3.7).

Plugging into equation (3.5) gives the first bound of the theorem. For the second bound,
we simply apply the approximation 1+ x ≤ ex for all real x.

From the proof, it is apparent where AdaBoost’s choice of αt comes from: The proof
shows that the training error is upper bounded by

∏
t Zt . To minimize this expression, we can

minimize each Zt separately. Expanding Zt gives equation (3.7), which can be minimized
over choices of αt using simple calculus giving the choice of αt used in algorithm 1.1. Note
that αt is being chosen greedily on each round t without consideration of how that choice
will affect future rounds.

As discussed above, theorem 3.1 assures a rapid drop in training error when each weak
classifier is assumed to have error bounded away from 1

2 . This assumption, that εt ≤ 1
2 − γ

for some γ > 0 on every round t , is a slight relaxation of the empirical γ -weak learning
assumption, as discussed in section 2.3.3. When this condition holds, theorem 3.1 implies
that the combined classifier will have training error at most(√

1− 4γ 2
)T ≤ e−2γ 2T ,

an exponentially decreasing function of T for any γ > 0. Although the bound on training
error is easier to understand in light of the weak-learnability condition, it is important to
remember that AdaBoost and its analysis do not require this condition. AdaBoost, being
adaptive, does not need to assume an a priori lower bound on the γt ’s, and the analysis takes
into account all of the γt ’s. If some γt ’s are large, then the progress (in terms of reducing
the bound on the training error) will be that much greater.

Although the bound implies an exponential drop in training error, the bound itself is
nevertheless rather loose. For instance, figure 3.1 shows a plot of the training error of the
combined classifier compared to the theoretical upper bound as a function of the number of
rounds of boosting for the heart-disease dataset described in section 1.2.3. The figure also
shows the training errors εt of the base classifiers ht with respect to the distributions Dt on
which they were trained.

3.2 A Sufficient Condition for Weak Learnability

The assumption of empirical γ -weak learnability is fundamental to the study of boosting,
and theorem 3.1 proves that this assumption is sufficient to ensure that AdaBoost will drive
down the training error very quickly. But when does this assumption actually hold? Is it
possible that this assumption is actually vacuous, in other words, that there are no natural
situations in which it holds? What’s more, our formulation of weak learnability is somewhat
cumbersome, depending as it does on the weighted training error of base hypotheses with
respect to virtually any distribution over the training set.

3.2 A Sufficient Condition for Weak Learnability 57

0

10

20

30

40

50

60

1 10 100 1000

P
er

ce
nt

 e
rr

or

Rounds of boosting

Theory bound
Base learner

Train error

Figure 3.1
The training percent error rate and theoretical upper bound on the training error rate of the combined classifier
obtained by using boosting on the entire heart-disease dataset from section 1.2.3. The error rates εt of the base
classifiers on their respective weighted training sets are also plotted.

In this section, we provide a simple condition that itself implies the assumption of empir-
ical weak learnability. As we will see, this condition is only in terms of the functional
relationship between the instances and their labels, and does not involve distributions over
examples. Although we show only the sufficiency of the condition, later, in section 5.4.3,
we will discuss the necessity of the condition as well, thus providing a fairly complete char-
acterization of weak learnability (but one that ignores issues of computational efficiency).

Let all the weak hypotheses belong to some class of hypotheses H. Since we are ignoring
computational issues, we simply seek a sufficient condition for there always to exist a weak
hypothesis in H that is significantly better than random for any distribution.

Suppose our training sample S is such that for some weak hypotheses g1, . . . , gk from
the given space H, and for some nonnegative coefficients a1, . . . , ak with

∑k
j=1 aj = 1,

and for some θ > 0, it holds that

yi

k∑
j=1

ajgj (xi) ≥ θ (3.10)

for each example (xi, yi) in S. This condition implies that yi can be computed by a weighted
majority vote of the weak hypotheses since equation (3.10) implies that

yi = sign

⎛⎝ k∑
j=1

ajgj (xi)

⎞⎠. (3.11)

58 3 Using AdaBoost to Minimize Training Error

However, the condition in equation (3.10) is a bit stronger; whereas equation (3.11) specifies
that barely a weighted majority of the predictions be correct on each example, equa-
tion (3.10) demands that significantly more than a bare weighted majority be correct. When
the condition in equation (3.10) holds for all i, we say that the sample S is linearly separable
with margin θ . (Margins will be discussed in far more detail in chapter 5.)

In fact, when this condition holds, the assumption of empirical weak learnability holds
as well. For suppose that D is any distribution over S. Then, taking expectations of both
sides of equation (3.10) and applying linearity of expectations gives

k∑
j=1

aj Ei∼D

[
yigj (xi)

] = Ei∼D

⎡⎣yi

k∑
j=1

aj gj (xi)

⎤⎦ ≥ θ.

Since the aj ’s constitute a distribution, this means that there exists j (and thus a corre-
sponding weak hypothesis gj ∈ H) such that

Ei∼D

[
yigj (xi)

] ≥ θ.

In general, we have that

Ei∼D

[
yigj (xi)

] = 1 ·Pri∼D

[
yi = gj (xi)

]+ (−1) ·Pri∼D

[
yi �= gj (xi)

]
= 1− 2Pri∼D

[
yi �= gj (xi)

]
,

so the weighted error of gj is

Pri∼D

[
yi �= gj (xi)

] = 1−Ei∼D

[
yigj (xi)

]
2

≤ 1

2
− θ

2
.

Thus, this argument shows that if the sample is linearly separable with margin 2γ , then
for every distribution over the sample, there exists a base hypothesis in the space H with
weighted error at most 1

2 − γ . Such a hypothesis would surely be found by an exhaustive
weak learning algorithm, meaning a (possibly prohibitively inefficient) base learning algo-
rithm that conducts a brute-force search for the best (that is, minimum weighted training
error) weak hypothesis in H. This means that when computational costs are not an issue,
linear separability with positive margin 2γ is a sufficient condition that guarantees γ -weak
learnability.

This assumption of linear separability can be shown to hold in various natural settings.
As a simple example, suppose each instance xi is a vector in Rn, and that the label yi is+1
for points xi falling inside some hyper-rectangle

[a1, b1]× · · · × [an, bn],

3.2 A Sufficient Condition for Weak Learnability 59

b2

b1

a2

a1

+1

Figure 3.2
A sample target that is +1 inside the two-dimensional rectangle [a1, b1]× [a2, b2], and −1 outside.

and −1 otherwise. (See figure 3.2 for an example in n = 2 dimensions.) Let

f (x)
.= 1

4n− 1

⎡⎣ n∑
j=1

(
1∗
{
xj ≥ aj

}+ 1∗
{
xj ≤ bj

})− (2n− 1)

⎤⎦ (3.12)

where 1∗{·} is +1 if its argument holds true, and −1 otherwise. Then it can be argued that

yif (xi) ≥ 1

4n− 1

for all i since the inner sum of equation (3.12) will be equal to 2n if xi is in the defining
hyper-rectangle, and will be at most 2n− 2 otherwise. Noting that f has been written as a
convex combination (or average) of decision stumps (over features matching the dimensions
of the instances, and including the “constant” stump that always predicts+1 or always−1),
this shows that our linear separability assumption holds, and thus that the weak learning
assumption holds as well when using decision stumps. (See section 3.4.2 for more detail
on decision stumps.)

Theorem 3.1 already provides us with the beginnings of a converse to what was shown
above. As noted earlier, if the γ -weak learning assumption holds for some γ > 0, then the
number of mistakes of the combined classifier is at most e−2γ 2T (taking D1 to be uniform).
Thus, if

T >
ln m

2γ 2

so that e−2γ 2T < 1/m, then the training error of the combined classifier, which is always an
integer multiple of 1/m, must in fact be zero. Moreover, this final classifier has the form of a

60 3 Using AdaBoost to Minimize Training Error

weighted majority vote. This means that, under the weak learning assumption, theorem 3.1
implies that equation (3.11) must hold for some choice of base classifiers and corresponding
coefficients as witnessed by AdaBoost’s own combined classifier. This is clearly weaker
than equation (3.10), as noted earlier. Nevertheless, it is a start, and in section 5.4.2 we will
have the necessary tools to prove the full converse.

3.3 Relation to Chernoff Bounds

As remarked in section 2.2.1, the proof technique used to prove theorem 3.1 is closely
related to a standard technique for proving Chernoff bounds, such as Hoeffding’s inequality
(theorem 2.1). To bring out this connection, we show, as a brief, somewhat whimsical
digression, how a special case of Hoeffding’s inequality can be derived as an immediate
corollary of theorem 3.1. Let X1, . . . , Xn be independent, identically distributed random
variables such that

Xt =
{

1 with probability 1
2 + γ

0 with probability 1
2 − γ

for some γ > 0. What is the probability that at most half of the Xt ’s are 1? That is, we seek
the probability that

1

n

n∑
t=1

Xt ≤ 1

2
. (3.13)

According to theorem 2.1, this probability is at most e−2nγ 2
since, in the notation of that

theorem, E[An] = 1
2 + γ .

This same result can be derived using our analysis of AdaBoost’s training error by con-
triving an artificially defined training set. In particular, let the instances in the “training set”
S be {0, 1}n, that is, all n-bit sequences x corresponding to outcomes of X1, . . . , Xn. Each
example in S is defined to have label y = +1. Let the initial distribution D1 be defined to
match the process generating these random variables so that

D1(x) = Pr[X1 = x1, . . . , Xn = xn] =
n∏

t=1

[(
1
2 + γ

)xt
(

1
2 − γ

)1−xt
]

.

(Here, we abuse notation slightly so that the distributions Dt are defined directly over
instances in S rather than over the indices of those examples.) Now let the number of
rounds T be equal to n, and define the t-th “weak hypothesis” ht to be

ht (x) =
{ +1 if xt = 1
−1 if xt = 0.

3.3 Relation to Chernoff Bounds 61

With these definitions, it can be shown (exercise 3.4) that

εt = Prx∼Dt [ht (x) �= +1] = 1
2 − γ. (3.14)

This follows from the independence of the predictions of the ht ’s under distribution D1,
as well as from the multiplicative nature of the updates to the distributions created by
AdaBoost. This means that all the αt ’s are equal to the same positive constant

αt = α = 1

2
ln

(
1
2 + γ

1
2 − γ

)
,

so the combined classifier H(x) is a simple (unweighted) majority vote of the ht ’s, which
is +1 if and only if

n∑
t=1

ht (x) > 0,

or, equivalently,

1

n

n∑
t=1

xt >
1

2
.

Thus, applying theorem 3.1, we have that the probability of equation (3.13) is equal to

Prx∼D1

[
1

n

n∑
t=1

xt ≤ 1

2

]
= Prx∼D1 [H(x) �= +1]

≤ (
1− 4γ 2

)n/2 ≤ e−2nγ 2
.

Again, the fact that we get the identical bound as when we apply Hoeffding’s inequality
directly is not a coincidence, but a consequence of the similar proof techniques used.
Moreover, direct generalizations of AdaBoost and theorem 3.1, such as those discussed
in section 5.4.2, can be used to prove theorem 2.1 in full generality (see exercise 5.4),
as well as some of its extensions, such as Azuma’s lemma for non-independent random
variables called martingales. That our analysis of AdaBoost applies even when the weak
hypotheses are not independent (or martingales) suggests that AdaBoost’s mechanism is
somehow forcing them to behave as if they actually were independent.

Thus, AdaBoost is a kind of analogue of Hoeffding’s inequality for the boosting setting.
Hoeffding’s inequality is an approximation of the tail of the binomial distribution (equa-
tion (2.4)). So what is the analogous boosting algorithm corresponding to the exact binomial
tail? There is no apparent reason why this strange question should have a meaningful answer.
But it does, in the form of the boost-by-majority algorithm presented in chapter 13, which

62 3 Using AdaBoost to Minimize Training Error

provides an “exact” form of boosting, and one whose corresponding bounds involve exact
tails of the binomial distribution, rather than Chernoff-style approximations to it.

3.4 Using and Designing Base Learning Algorithms

AdaBoost, like all boosting algorithms, is an inherently incomplete learning method since
it is, by its nature, a “meta-algorithm,” one which is meant to be built on top of, or in
combination with, some unspecified base learning algorithm. In this section, we explore
some general approaches in the use and choice of the base learning algorithm.

The job of the base learner is to produce base hypotheses ht . As input, the algorithm
accepts a training set

S = 〈(x1, y1), . . . , (xm, ym)〉 (3.15)

and a set of weights Dt . Its criterion for measuring the goodness of any candidate hypothesis
h is the weighted training error

εt
.= Pri∼Dt [h(xi) �= yi] . (3.16)

In other words, it seeks a base hypothesis ht that minimizes εt , or at least one for which
εt is somewhat smaller than 1

2 . Theorem 3.1 shows that this is sufficient to drive down
AdaBoost’s training error very quickly. Moreover, in later chapters we will see that the
weighted training errors εt of the base classifiers are also directly related to AdaBoost’s
generalization error.

In what follows, we simplify notation by dropping subscripts so that D = Dt , h = ht ,
and so on.

3.4.1 Using the Example Weights

The objective that the base learner seeks to minimize is nearly identical to the ordinary train-
ing error, except that training examples now have varying weights. So the first question we
need to address is how these weights should be used. Here, there are two main approaches.
The first is to use the given distribution D to generate an ordinary, unweighted training sam-
ple simply by randomly selecting a sequence of examples S ′ according to D. In other words,

S ′ = 〈(xi1 , yi1), . . . , (xim′ , yim′)〉,
where each ij is selected1 independently at random according to D. This unweighted sam-
ple can then be fed to a base learning algorithm but one that need not be concerned with

1. To select a point i from a distribution D, given access to a standard (pseudo)random number generator, we first
precompute in linear time the cumulative distribution 0 = C0 ≤ C1 ≤ . . . ≤ Cm = 1 where

Ci = Ci−1+D(i) =
i∑

j=1

D(j).

3.4 Using and Designing Base Learning Algorithms 63

weighted samples. Thus, this approach, called boosting by resampling, is often useful when
the chosen base learner cannot easily be modified to handle the given weights directly.

If m′, the size of S ′, is sufficiently large, then the unweighted training error with respect
to S ′ will be a reasonable estimate of the weighted training error on S with respect to
D—modulo the issues discussed at length in chapter 2 regarding the complexity of base
classifiers and how that complexity relates to the tendency of the error on a sample to
diverge from its true error when the sampled error is minimized. Typically, m′ is chosen to
be equal to m, though sometimes there are reasons to choose larger or smaller values. For
instance, using a sample size m′ that is significantly smaller than m can sometimes afford
a computational speedup. And although boosting by resampling introduces an additional
layer of indirection away from the goal of error minimization, this injection of randomness
can sometimes be beneficial to the learning process by providing a smoothing effect that can
counter the part of the error due to the base learner’s variable behavior. A related method
called “bagging,” which we discuss in section 5.5, works on essentially this same principle.

Of course, in boosting by resampling, the base learner only minimizes an approximation
of the weighted training error. An alternative approach is to modify the base learning
algorithm to directly utilize the given example weights so that the weighted training error
is minimized explicitly. We will see examples shortly. This approach, called boosting by
reweighting, has the advantage of being direct and exact, and of avoiding all issues of
imprecision in estimating the best base hypothesis.

3.4.2 Designing an Algorithm

In the design of the base learner itself, there are again, broadly speaking, two general
approaches. The first is to select an existing, off-the-shelf learning algorithm. Boosting is
designed for use with any learning algorithm, so there is no reason not to use boosting to
improve the performance of an algorithm that may already be pretty good. Thus, for the
base learner, we can use standard and well-studied algorithms such as decision trees (see
section 1.3) or neural networks. Some of these may expect an unweighted sample, but this
is not a problem if boosting by resampling is used. Even if boosting by reweighting is
used, many of these algorithms can be modified to handle example weights. For instance, a
standard decision tree algorithm may select a node for placement at the root of the tree that
maximizes some measure of “purity,” such as entropy or the Gini index. Such measures
can usually be modified sensibly to take example weights into consideration (this is very
natural for something like entropy which is defined for any distribution).

The other broad approach is to design a base learner that finds very simple base hypothe-
ses, ones that, in the spirit of boosting, are expected to be only a bit better than random

Next, we select r uniformly at random from [0, 1) and let i be the unique integer in {1, . . . , m} for which
r ∈ [Ci−1, Ci). This i can be found using binary search in O(log m) time. Moreover, it can be verified that such
a random i is distributed exactly according to D.

64 3 Using AdaBoost to Minimize Training Error

guessing. A typical choice would be to use decision stumps for this purpose. These are
single-level decision trees (hence the name), exactly like the ones used in section 1.2.3,
where numerous examples are given. Finding the best decision stump for a given weighted
training set—the one that minimizes equation (3.16)—can generally be computed very fast.
We illustrate this here as a concrete example of a frequently used base learner.

As in the example in section 1.2.3, we assume that our instances are described by a
given set of features or attributes f1, . . . , fn. For instance, if each instance x is a person,
then a feature fk(x) might encode the person x’s height, or the person’s gender, or the
person’s eye color, and so on. There may be a variety of types of features, such as binary
features with values in {0, 1}; discrete (or categorical) features with values taken from an
unordered, finite set; and continuous features, taking values in R. A particular decision
stump is associated with a single feature, but the exact form will depend on the type of the
feature.

Given a dataset S as in equation (3.15), and given a distribution D over S, our goal
now in designing a decision-stump base learner is to find the best decision stump with
respect to S and D. We do this by efficiently searching, eventually considering all possible
decision stumps. The “outer loop” of this search considers each of the features fk in turn,
finding the best decision stump associated with that feature, and finally selecting the best
stump overall. Since this is straightforward, let us fix a particular feature fk , and focus on
the “inner loop,” that is, the problem of finding the best stump associated with this one
feature.

If fk is binary, then the decision stump can vary only in the predictions made for each
branch of the split. Thus, it will have the form

h(x) =
{

c0 if fk(x) = 0
c1 if fk(x) = 1,

(3.17)

and we only need to choose the best values of c0 and c1 from {−1,+1}. This could be done
by trying all four possibilities, but there is a more generalizable approach. For j ∈ {0, 1}
and b ∈ {−1,+1}, let

W
j

b

.=
∑

i:fk(xi)=j∧yi=b

D(i) = Pri∼D[fk(xi) = j ∧ yi = b] (3.18)

be the weighted fraction of examples with label b and for which the feature fk is equal to j .
We also use the shorthand W

j
+ and W

j
− for W

j

+1 and W
j

−1, respectively. Then the weighted
error of h as in equation (3.17) can be computed to be

W 0
−c0
+W 1

−c1
. (3.19)

This is because if fk(x) = 0, then h(x) = c0, so the weight of examples with labels dif-
ferent from h(x) is the first term of equation (3.19), and similarly for the case fk(x) = 1.
Equation (3.19) is minimized over c0 and c1 if

3.4 Using and Designing Base Learning Algorithms 65

cj =
{ +1 if W

j
− < W

j
+

−1 if W
j
− > W

j
+

(3.20)

(and with cj chosen arbitrarily if W
j
− = W

j
+). Plugging into equation (3.19) gives that the

weighted error of h for this optimal setting is

min{W 0
−, W 0

+}+min{W 1
−, W 1

+}.
Now suppose fk is discrete with values in some finite set, say {1, . . . , J }. We might

consider stumps making a J -way split, that is, of the form

h(x) =

⎧⎪⎨⎪⎩
c1 if fk(x) = 1
...

cJ if fk(x) = J.

(3.21)

Directly generalizing the argument above, we let W
j

b be defined as in equation (3.18) for
j = 1, . . . , J . Note that all of these can be computed in a single pass through the data in
O(m) time. Then the optimal setting of cj is still exactly as in equation (3.20), giving a
stump whose weighted error is

J∑
j=1

min{Wj
−, W

j
+}. (3.22)

Alternatively, we might wish to use simpler stumps making a binary split of the form

h(x) =
{

c0 if fk(x) = r

c1 else

for some choice of c0 and c1 ∈ {−1,+1}, and r ∈ {1, . . . , J }. Again, all 4J choices could
be tried exhaustively, but a more efficient approach would be first to compute the W

j

b ’s as
above in linear time, as well as

Wb

.=
J∑

j=1

W
j

b .

Then, by arguments similar to those above, the best choices of c0 and c1 for a particular
choice of r will have a weighted training error of

min{Wr
−, Wr

+}+min{W− −Wr
− , W+ −Wr

+}.
Thus, the best choice of r can be found quickly in O(J) time to be the one minimizing this
expression, and then the best choice of c0 and c1 can be determined using an expression
analogous to equation (3.20).

66 3 Using AdaBoost to Minimize Training Error

The case where fk is continuous is the most challenging. Here, we consider decision
stumps of the form

h(x) =
{

c0 if fk(x) ≤ ν

c1 if fk(x) > ν
(3.23)

for some real-valued threshold ν. For a fixed choice of ν, we are essentially in the binary
case from above. We can compute

W 0
b

.= Pri∼D[fk(xi) ≤ ν ∧ yi = b]

W 1
b

.= Pri∼D[fk(xi) > ν ∧ yi = b]

and then set c0 and c1 as before. However, it appears that in addition to the four possible
settings of c0 and c1, we also need to consider an infinite number of settings of ν. Never-
theless, similar to arguments used in section 2.2.3, we can take advantage of the fact that
any finite set S of m examples will divide the space of possible thresholds ν ∈ R into just
m+ 1 equivalence classes, so that the behavior of a stump of the form above on the sample
S will be the same for any two choices of ν selected from the same equivalence class. More
concretely, suppose S has been sorted by fk so that

fk(x1) ≤ fk(x2) ≤ · · · ≤ fk(xm).

Then, in searching for the best stump of the form above, it suffices to consider just one
threshold value ν from each of the intervals [fk(xi), fk(xi+1)) for i = 1, . . . , m− 1, as
well as [−∞, fk(x1)) and [fk(xm),+∞].

So there are essentially 4(m+ 1) choices of c0, c1, and ν to consider. Exhaustively com-
puting the weighted training error of each would take O(m2) time. However, if the examples
have been presorted by fk , then the best decision stump can be found in only O(m) time.
This can be done by scanning through the examples, considering each threshold equivalence
class in turn, and incrementally updating the W

j

b ’s as each example is passed. Pseudocode is
shown as algorithm 3.1, for the special case in which no two examples have the same value
of fk . To see why this algorithm works, the main point to observe is that, following each iter-
ation i = 1, . . . , m− 1, the W

j

b ’s are set correctly for a decision stump defined by any ν ∈
[fk(xi), fk(xi+1)), from which the correctness of the other computations follows directly.
(If the fk values are not all distinct, the algorithm can be modified so that, on rounds in which
fk(xi) = fk(xi+1), only the W

j

b ’s are updated and all other computations are skipped.)
Note that with sufficient memory, for each feature, the examples need to be presorted

only once (not on every round), requiring time O(m log m).

3.4.3 An Application to Face Detection

The methods outlined above are intended to be general-purpose. Sometimes, however, the
base learning algorithm can be specially tailored to the application at hand, often to great

3.4 Using and Designing Base Learning Algorithms 67

Algorithm 3.1
Finding a decision stump for a single continuous feature

Given: (x1, y1), . . . , (xm, ym)

real-valued feature fk with fk(x1) < · · · < fk(xm)

distribution D over {1, . . . , m}.
Goal: find stump for fk with minimum weighted training error.
Initialize:

• W 0
b ← 0, W 1

b ←
∑

i:yi=b D(i) for b ∈ {−1,+1}.
• εbest ← min{W 1−, W 1+}.
• Pick ν ∈ [−∞, fk(x1)), and compute c0 and c1 as in equation (3.20).

For i = 1, . . . , m:

• W 0
yi
← W 0

yi
+D(i).

• W 1
yi
← W 1

yi
−D(i).

• ε ← min{W 0−, W 0+}+min{W 1−, W 1+}.

• If ε < εbest:

◦ εbest ← ε.

◦ Pick ν ∈
{ [fk(xi), fk(xi+1)) if i < m

[fk(xm),+∞) if i = m.

◦ Recompute c0 and c1 as in equation (3.20).

Output: h as in equation (3.23) for the current final values of c0, c1, and ν.

benefit. Indeed, the choice of base learning algorithm affords our greatest opportunity for
incorporating prior expert knowledge about a specific problem into the boosting process. A
beautiful example of this is given in the application of boosting to face detection. Visually
detecting all instances of some object type, such as human faces, in photographs, movies,
and other digital images is a fundamental problem in computer vision.

As a first step in applying boosting to this challenge, we need to transform what is really
a search task (looking for faces) into a classification problem. To do so, we can regard our
instances as small subimages of size, say, 24× 24 pixels, each of which would be considered
positive if and only if it captures a full frontal shot of a face at a standard scale. An example

68 3 Using AdaBoost to Minimize Training Error

Figure 3.3
The features selected on the first two rounds of boosting, shown in isolation in the top row and as overlays on the
sample face at left in the bottom row. (Copyright ©2001 IEEE. Reprinted, with permission, from [227].)

is shown on the left of figure 3.3. Clearly, an accurate classifier for such subimages can be
used to detect all faces in an image simply by scanning the entire image and reporting the
presence of a face anywhere that it registers a positive instance. Faces of varying sizes can
be found by repeating this process at various scales. Needless to say, such an exhaustive
process demands that a very fast classifier be used in the innermost loop.

The next major design decision is the choice of weak classifier and weak learning algo-
rithm. The boosting paradigm allows us to choose weak classifiers that are very simple,
even if they are individually rather inaccurate; potentially, such simple classifiers can have
the additional advantage of being very fast to evaluate. At somewhat of an extreme, we can
use weak classifiers which merely detect rectangular patterns of relative light and darkness
in the image. Examples are shown in the top row of figure 3.3. The one on the left is sensitive
to a dark region over a light region at the specified location of the image; the one on the
right is similarly sensitive to dark regions surrounding a light region. In more precise terms,
such a pattern defines a real-valued feature that is equal to the sum of the intensities of all
the pixels in the black rectangle(s) minus the sum of the intensities of all the pixels in the
white rectangle(s). Such a feature can be used to define a decision stump, as described in
section 3.4.2, that makes its predictions based on whether the feature value for a particular
image is above or below some threshold.

During training, we can consider features defined by all possible patterns of a small
number of types, such as the four given in figure 3.4. Each one of these types defines a
large number of patterns, each of which is identified with a feature. For instance, the one on
the left defines all possible patterns consisting of a white rectangle directly above a black
rectangle of equal size. In 24× 24 pixel images, the four types of figure 3.4 define some
45,396 features.

3.4 Using and Designing Base Learning Algorithms 69

Figure 3.4
The four pattern types used to define features.

Figure 3.5
The faces detected by the final classifier obtained using boosting on some sample test images. (Copyright ©2001
IEEE. Reprinted, with permission, from [227].)

Having defined this large set of real-valued features, we can apply AdaBoost using the
weak learning algorithm given in section 3.4.2 to find the best decision stump. Figure 3.3 in
fact shows the two features found on the first two rounds of boosting. The first apparently
exploits the tendency of the eyes to appear darker than the upper cheeks, while the second
exploits a similar tendency for the eyes to appear darker than the bridge of the nose. Clearly,
such weak detectors will individually do a very poor job of identifying faces.

However, when combined with boosting in this fashion, the performance of AdaBoost’s
final classifier is extremely good. For instance, after 200 rounds of boosting, on one test
dataset, the final classifier was able to detect 95% of the faces while reporting false positives
at a rate of only 1 in 14,084. Detection results of the complete system are shown on some
sample test images in figure 3.5.

In addition to its high accuracy, this approach to face detection can be made extremely
fast. Naively, the features we have described require time proportional to the size of
the rectangles involved. However, given a bit of precomputation, it becomes possible
to evaluate any feature in constant time. To see this, we can first define the integral image
I (x, y) to be the sum of the intensities of all pixels above and to the left of position (x, y).
This can be computed for all pixels (x, y) in a single pass over the image, beginning in the

70 3 Using AdaBoost to Minimize Training Error

B

C R

A

Figure 3.6
The sum of the pixels in any rectangle R can be computed in just four references to the integral image.

upper left corner. Once computed, the sum of all pixels of any rectangle can be computed
in just four references to the integral image: For suppose we want the sum of pixels in the
rectangle R in figure 3.6. This sum can be computed as

R = (A+B +C+R)− (A+C)− (A+B)+ (A), (3.24)

where, with slight abuse of notation, we use A, B, C, and R to stand both for the rectangles
in the figure and for the sum of the pixels in each. Note that each of the four parenthesized
terms in equation (3.24) can be looked up in the integral image by referencing, respectively,
the bottom right, bottom left, top right, and top left corners of rectangle R. Thus, the sum
of the pixels in any rectangle, and therefore also any feature, can be evaluated in a small
and constant number of references to the integral image. This means that these features can
be evaluated very quickly, dramatically speeding up both training and evaluation on test
examples.

Evaluation can be made even faster by using a cascading technique in which relatively
small and rough classifiers are trained which are good enough to quickly eliminate the vast
majority of background images as non-faces. The entire system is so fast that it can be used,
for instance, to find all faces in video in real time at 15 frames per second.

Summary

In summary, in this chapter we have proved a bound on the training error obtained by
AdaBoost, and we have seen that this error drops exponentially fast as a function of the
number of rounds of boosting, given the weak learning assumption. We have also proved a
general sufficient condition for the weak learning assumption to hold, and have looked at
how to choose or design a weak learning algorithm. Next, we turn to the central issue of
generalization beyond the training data.

Exercises 71

Bibliographic Notes

The bound on the training error given in theorem 3.1 is due to Freund and Schapire [95].
The connection between linear separability with positive margin and weak learnability

given in section 3.2 was first spelled out explicitly by Rätsch and Warmuth [187] using the
game-theoretic view of boosting that will be presented in chapter 6. See also more recent
work by Shalev-Shwartz and Singer [211].

For a comparison with the technique used in section 3.3 to prove a Chernoff bound, see
the proof in Hoeffding’s paper [123].

Prior to the advent of AdaBoost, Holte [125] studied “1-rules,” which are quite similar to
decision stumps, and found that such very simple rules can by themselves provide surpris-
ingly high accuracy. The algorithm described in section 3.4.2 for finding the best decision
stump is adapted from standard techniques for constructing decision trees [39, 184].

The face detection system of section 3.4.3 is due to Viola and Jones [227, 228]. Figures 3.4
and 3.6 were adapted from these sources, and figures 3.3 and 3.5 are reprinted directly from
[227].

Some of the exercises in this chapter are based on material from [88, 95, 108, 194, 199].

Exercises

3.1 Show that the AdaBoost update in algorithm 1.1 for computing Dt+1 from Dt can be
rewritten in the following equivalent form, for i = 1, . . . , m:

Dt+1(i) = Dt(i)

1+ 2yiht (xi)γt

.

3.2 Consider the following “mini” boosting algorithm which runs for exactly three rounds:

• Given training data as in AdaBoost (algorithm 1.1), let D1, h1, ε1, and D2, h2, ε2 be
computed exactly as in AdaBoost on the first two rounds.

• Compute, for i = 1, . . . , m:

D3(i) =
{

D1(i)/Z if h1(xi) �= h2(xi)

0 else

where Z is a normalization factor (chosen so that D3 will be a distribution).

• Get weak hypothesis h3.

• Output the final hypothesis:

H(x) = sign (h1(x)+h2(x)+h3(x)) .

We will see that this three-round procedure can effect a small but significant boost in
accuracy.

72 3 Using AdaBoost to Minimize Training Error

Let γt
.= 1

2 − εt be the edge on round t , and assume 0 < γt < 1
2 for t = 1, 2, 3. Let

b
.= Pri∼D2 [h1(xi) �= yi ∧h2(xi) �= yi] ,

that is, b is the probability with respect to D2 that both h1 and h2 are incorrect.

a. In terms of γ1, γ2, γ3, and b, write exact expressions for each of the following:

i. Pri∼D1 [h1(xi) �= yi ∧h2(xi) �= yi].

ii. Pri∼D1 [h1(xi) �= yi ∧h2(xi) = yi].

iii. Pri∼D1 [h1(xi) = yi ∧h2(xi) �= yi].

iv. Pri∼D1 [h1(xi) �= h2(xi)∧h3(xi) �= yi].

v. Pri∼D1 [H(xi) �= yi].
[Hint: Use exercises 1.1 and 3.1.]

b. Suppose γ = min{γ1, γ2, γ3}. Show that the training error of the final classifier H is at
most

1

2
− 3

2
γ + 2γ 3,

and show that this quantity is strictly less than 1
2 − γ , the (worst) error of the weak

hypotheses. Thus, the accuracy receives a small boost (which, we remark, can be
amplified by applying this technique recursively).

3.3 Consider a variant of AdaBoost in which the combined classifier H is replaced by a
classifier H̃ whose predictions are randomized; specifically, suppose, for any x, that H̃

predicts +1 with probability

PrH̃

[
H̃ (x) = +1

]
= eF(x)

eF(x)+ e−F(x)
,

and otherwise predicts −1, where F is as given in equation (3.1). Prove a bound on the
training error of H̃ that is half the bound for H in theorem 3.1; that is, show that

Pri∼D1,H̃

[
H̃ (xi) �= yi

]
≤ 1

2

T∏
t=1

√
1− 4γ 2

t

(where probability is computed with respect to both the choice of i according to D1 and the
randomization of H̃ ’s predictions).

3.4 Prove equation (3.14).

3.5 Suppose the weak learning condition is guaranteed to hold so that εt ≤ 1
2 − γ for some

γ > 0 which is known before boosting begins. Describe a modified version of AdaBoost

Exercises 73

whose final classifier is a simple (unweighted) majority vote, and show that its training
error is at most (1− 4γ 2)T/2.

3.6 Let Xn = {0, 1}n, and let Gn be a class of Boolean functions g : Xn → {−1,+1}. Let
Mn,k be the class of all Boolean functions that can be written as a simple majority vote of
k (not necessarily distinct) functions in Gn, where k is odd:

Mn,k
.=
⎧⎨⎩f : x �→ sign

⎛⎝ k∑
j=1

gj (x)

⎞⎠ ∣∣∣∣∣∣ g1, . . . , gk ∈ Gn

⎫⎬⎭ .

In this problem we will see, roughly speaking, that if f can be written as a majority vote
of polynomially many functions in Gn, then under any distribution, f can be approximated
by some function in Gn. But if f cannot be so written as a majority vote, then there exists
some “hard” distribution under which f cannot be approximated by any function in Gn.

a. Show that if f ∈Mn,k , then for all distributions D on Xn, there exists a function g ∈ Gn

for which

Prx∼D[f (x) �= g(x)] ≤ 1

2
− 1

2k
.

b. Show that if f �∈Mn,k then there exists a distribution D on Xn such that

Prx∼D[f (x) �= g(x)] >
1

2
−
√

n ln 2

2k

for every g ∈ Gn.

4 Direct Bounds on the Generalization Error

In chapter 3, we proved a bound on the training error of AdaBoost. However, as has already
been pointed out, what we really care about in learning is how well we can generalize
to data not seen during training. Indeed, an algorithm that drives down the training error
does not necessarily qualify as a boosting algorithm. Rather, as discussed in section 2.3, a
boosting algorithm is one that can drive the generalization error arbitrarily close to zero;
in other words, it is a learning algorithm that makes nearly perfect predictions on data
not seen during training, provided the algorithm is supplied with a reasonable number of
training examples and access to a weak learning algorithm that can consistently find weak
hypotheses that are slightly better than random.

In fact, there are numerous ways of analyzing AdaBoost’s generalization error, several
of which will be explored in this book. In this chapter, we present the first of these methods,
focusing on the direct application of the general techniques outlined in chapter 2, and basing
our analyses on the structural form of the final classifier as a combination of base hypotheses.
This will be enough to prove that AdaBoost is indeed a boosting algorithm. However, we
will also see that the bound we derive on the generalization error predicts thatAdaBoost will
overfit, a prediction that often turns out to be false in actual experiments. This deficiency
in the analysis will be addressed in chapter 5, where a margins-based analysis is presented.

4.1 Using VC Theory to Bound the Generalization Error

We begin with an analysis based directly on the form of the hypotheses output by AdaBoost.

4.1.1 Basic Assumptions

In proving a bound on the training error in chapter 3, we did not need to make any assump-
tions about the data. The (xi, yi) pairs were entirely arbitrary, as were the weak hypotheses
ht . Theorem 3.1 held regardless, without any assumptions. In turning now to the study of
generalization error, we can no longer afford this luxury, and must accept additional assump-
tions. This is because, as discussed in chapter 2, if there is no relationship between the data

76 4 Direct Bounds on the Generalization Error

observed during training and the data encountered during testing, then we cannot possibly
hope to do well in the test phase. Therefore, as in chapter 2, we assume that all examples,
during both training and testing, are generated at random according to the same (unknown)
distribution D over X ×{−1,+1}. As before, our goal is to find a classifier h with low
generalization error

err(h)
.= Pr(x,y)∼D[h(x) �= y] ,

that is, low probability of misclassifying a new example (x, y) chosen at random from the
same distribution D that generated each of the training examples (x1, y1), . . . , (xm, ym).
We assume this probabilistic framework throughout all of our analyses of AdaBoost’s
generalization error.

As discussed in chapters 1 and 2, learning is all about fitting the data well, but not
overfitting it. As in science, we want to “explain” our observations (the data) using the
“simplest” explanation (classifier) possible. A boosting algorithm has no direct control over
the base classifiers ht that are selected on each round. If these base classifiers are already
of an extremely complex form that overfits the data, then the boosting algorithm is imme-
diately doomed to suffer overfitting as well. Therefore, in order to derive a meaningful
bound on the generalization error, we also must assume something about the complexity or
expressiveness of the base classifiers. Said differently, our generalization error bounds
for AdaBoost will inevitably depend on some measure of the complexity of the base
classifiers.

To be more precise, we assume that all base classifiers are selected from some space of
classifiers H. For instance, this might be the space of all decision stumps, or the space of all
decision trees (perhaps of bounded size). As in section 2.2.2, when H is finite in cardinality,
we can measure its complexity by lg |H|, which can be interpreted as the number of bits
needed to specify one of its members. When H is infinite, we instead use the VC-dimension
of H, a combinatorial measure which, as seen in section 2.2.3, is appropriate for measuring
the difficulty of learning a class of functions. Thus, we expect our bounds to depend on one
of these two complexity measures.

Having proved in section 3.1 a bound on the training error, in this chapter we derive
bounds on the generalization error by proving a bound on the magnitude of the difference
between the generalization error and the training error. This is essentially the mode of
analysis presented in chapter 2. There, we saw that for a particular classifier h, the training
error êrr(h) can be regarded as an empirical estimate of the generalization error, an estimate
that gets better and better with more data. However, in learning, we generally select the
classifier h based on the training data, and usually from among those classifiers with the
lowest training error. Such a process for selecting h typically leads to a significant gap
between the training and generalization errors. Moreover, because we do not know which
classifier h will be chosen prior to the choice of training examples, we must bound the
difference err(h)− êrr(h) for all h which might potentially be generated by the learning

4.1 Using VC Theory to Bound the Generalization Error 77

algorithm. Here, we apply to boosting the powerful tools developed in section 2.2 for
proving such general results.

4.1.2 The Form and Complexity of AdaBoost’s Classifiers

As above, H is the base classifier space from which all of the ht ’s are selected. Let CT be
the space of combined classifiers that might potentially be generated by AdaBoost if run
for T rounds. Such a combined classifier H computes a weighted majority vote of T base
classifiers so that

H(x) = sign

(
T∑

t=1

αtht (x)

)
(4.1)

for some real numbers α1, . . . , αT , and some base classifiers h1, . . . , hT in H. Expressed
differently, we can write H in the form

H(x) = σ(h1(x), . . . , hT (x))

where σ : RT → {−1, 0,+1} is some linear threshold function of the form

σ(x) = sign(w · x) (4.2)

for some w ∈ RT . Let �T be the space of all such linear threshold functions. Then CT

is simply the space of linear threshold functions defined over T hypotheses from H.
That is,

CT = {x �→ σ(h1(x), . . . , hT (x)) : σ ∈ �T ;h1, . . . , hT ∈ H} .
Our goal, then, is to show that the training error êrr(h) is a good estimate of err(h) for all

h ∈ CT . We saw in section 2.2 that this can be proved by counting the number of functions
in CT . Unfortunately, since �T is infinite (each linear threshold function being defined by
a vector w ∈ RT), CT is as well. However, we also saw that it suffices to count the number
of possible behaviors or dichotomies that can be realized by functions in CT on a finite set
of points. We make this computation in the lemmas below.

Technically, to apply the formalism from section 2.2, the combined classifier must output
predictions in {−1,+1}, not {−1, 0,+1}. Therefore, in this chapter only, we redefine the
sign function in equations (4.1) and (4.2) to have range {−1,+1} simply by redefining
sign(0) to be −1, rather than 0 as it is defined in the rest of the book. There are other ways
of handling this technical annoyance which avoid this bit of inelegance, but this is perhaps
the most straightforward (see exercise 4.1).

In section 2.2.3, we noted that �n, the space of linear threshold functions over Rn, has
VC-dimension n, a property that we exploit below. Here we give a proof.

Lemma 4.1 The space �n of linear threshold functions over Rn has VC-dimension n.

78 4 Direct Bounds on the Generalization Error

Proof Let ei ∈ Rn be a basis vector with a 1 in dimension i and 0 in all other dimensions.
Then e1, . . . , en is shattered by �n. For if y1, . . . , yn is any set of labels in {−1,+1}, then
w = 〈y1, . . . , yn〉 realizes the corresponding dichotomy since

sign(w · ei) = yi.

Thus, the VC-dimension of �n is at least n.
By way of reaching a contradiction, suppose now that there exists a set of n+ 1 points

x1, . . . , xn+1 ∈ Rn which are shattered by �n. Then, being n+ 1 points in n-dimensional
space, there must exist real numbers β1, . . . , βn+1, not all zero, such that

n+1∑
i=1

βixi = 0.

Assume without loss of generality that βn+1 > 0. Since these points are shattered by �n,
there exists w ∈ Rn such that

sign(w · xn+1) = +1, (4.3)

and such that

sign(w · xi) =
{ +1 if βi > 0
−1 if βi ≤ 0

(4.4)

for i = 1, . . . , n. Then equation (4.3) says that w · xn+1 > 0, while equation (4.4) implies
that βi(w · xi) ≥ 0 for i = 1, . . . , n. This gives the following contradiction:

0 = w · 0

= w ·
n+1∑
i=1

βixi

=
n∑

i=1

βi(w · xi)+βn+1(w · xn+1)

> 0.

Thus, the VC-dimension of �n is at most n.

4.1.3 Finite Base Hypothesis Spaces

We are now ready to count the number of dichotomies induced by classifiers in CT on any
sample S. For simplicity, we focus mainly on the case where the base hypothesis space H
is finite.

4.1 Using VC Theory to Bound the Generalization Error 79

Lemma 4.2 Assume H is finite. Let m ≥ T ≥ 1. For any set S of m points, the number
of dichotomies realizable by CT is bounded as follows:∣∣	CT

(S)
∣∣ ≤ 	CT

(m) ≤
(em

T

)T |H|T.

Proof Let S = 〈x1, . . . , xm〉. Consider a specific fixed sequence of base hypotheses
h1, . . . , hT ∈ H. With respect to these, we create a modified sample S ′ .= 〈x′1, . . . , x′m

〉
where we define

x′i
.= 〈h1(xi), . . . , hT (xi)〉

to be the vector RT obtained by applying h1, . . . , hT to xi .
Since �T has VC-dimension equal to T by lemma 4.1, we have by Sauer’s lemma

(lemma 2.4) and equation (2.12) applied to S ′ that∣∣	�T
(S ′)
∣∣ ≤ (em

T

)T

. (4.5)

That is, for fixed h1, . . . , hT , the number of dichotomies defined by functions of the form

σ(h1(x), . . . , hT (x))

for σ ∈ �T is bounded as in equation (4.5). Since the number of choices for h1, . . . , hT

is equal to |H|T , and since for each one of these, the number of dichotomies is as in
equation (4.5), we thus obtain the bound stated in the lemma.

We can now directly apply theorems 2.3 and 2.7 to obtain the following theorem, which
provides general bounds on the generalization error of AdaBoost or, for that matter, of any
combined classifier H formed by taking a weighted majority vote of base classifiers. In
line with the results and intuitions of chapter 2, the bound is in terms of the training error
êrr(H), the sample size m, and two terms which effectively stand in for the complexity of
H , namely, the number of rounds T , and lg |H|, a measure of the complexity of the base
classifiers. These are intuitive measures of H ’s complexity since they roughly correspond
to the overall size of H , which consists of T base classifiers, each of size (in bits) lg |H|.
Theorem 4.3 Suppose AdaBoost is run for T rounds on m ≥ T random examples, using
base classifiers from a finite space H. Then, with probability at least 1− δ (over the choice
of the random sample), the combined classifier H satisfies

err(H) ≤ êrr(H)+
√

32[T ln(em|H|/T)+ ln(8/δ)]
m

.

Furthermore, with probability at least 1− δ, if H is consistent with the training set (so that
êrr(H) = 0), then

err(H) ≤ 2T lg(2em|H|/T)+ 2 lg(2/δ)

m
.

80 4 Direct Bounds on the Generalization Error

Proof This is simply a matter of plugging the bound from lemma 4.2 into theorems 2.3
and 2.7.

It is now possible to prove that the empirical weak learning assumption is enough to
guarantee that AdaBoost will achieve arbitrarily low generalization error, given sufficient
data. This is almost but not quite equivalent to saying that AdaBoost is a boosting algorithm
in the technical sense given in section 2.3, an issue we discuss in section 4.3. Nevertheless,
corollary 4.4 provides practical conditions under which AdaBoost is guaranteed to give
nearly perfect generalization.

Corollary 4.4 Assume, in addition to the assumptions of theorem 4.3, that each base
classifier has weighted error εt ≤ 1

2 − γ for some γ > 0. Let the number of rounds T be
equal to the smallest integer exceeding (ln m)/(2γ 2). Then, with probability at least 1− δ,
the generalization error of the combined classifier H will be at most

O

(
1

m

[
(ln m)(ln m+ ln |H|)

γ 2
+ ln

(
1

δ

)])
.

Proof By theorem 3.1, the training error of the combined classifier is at most e−2γ 2T <

1/m. Since there are m examples, this means that the training error must actually be zero.
Applying the second part of theorem 4.3 gives the result.

Note that, in terms of the sample size m, this bound converges to zero at the rate
O((ln m)2/m), and therefore can be made smaller than ε, for any ε > 0, for a setting of m

that is polynomial in the relevant parameters: 1/γ , 1/ε, 1/δ, and ln |H|.
Corollary 4.4 gives us a bound on the generalization error when AdaBoost is stopped

just when the theoretical bound on the training error reaches zero. What happens on other
rounds? Combining theorems 3.1 and 4.3, we get a bound on the generalization error of the
form

e−2γ 2T +O

(√
T ln(m|H|/T)+ ln(1/δ)

m

)
. (4.6)

This function is plotted in figure 4.1. When T is small, the first term dominates and we see an
exponential drop in the bound. However, as T becomes large, the second term dominates,
leading to a substantial increase in the bound. In other words, the bound predicts classic
overfitting behavior. This would seem to make sense since, as T grows, the number of base
classifiers comprising the combined classifier steadily increases, suggesting an increase
in the size and complexity of the combined classifier. Switching to the second bound of
theorem 4.3 once H is consistent does not help much since this bound also increases without
limit as a function of T , suggesting that it is best to stop running AdaBoost the moment the
training error reaches zero (if not sooner). Indeed, such overfitting behavior is sometimes
observed with AdaBoost, as was seen in section 1.2.3. However, we also saw in section 1.3

4.1 Using VC Theory to Bound the Generalization Error 81

0

10

20

30

40

50

0 100 200 300

P
er

ce
nt

 e
rr

or

Number of rounds (T)

Figure 4.1
A plot of the bound on the generalization error given in equation (4.6) as a function of the number of rounds T ,
using the constants from theorem 4.3 with γ = 0.2, m = 106, ln |H| = 10, and δ = 0.05.

that AdaBoost is often resistant to overfitting, and that there can be significant benefit in
running AdaBoost long after consistency on the training set is reached. These phenomena
cannot be explained by the analysis given above. We take up an alternative explanation of
AdaBoost’s behavior in chapter 5.

4.1.4 Infinite Base Classifier Spaces

Theorem 4.3 was proved for the case that the space of base classifiers H is finite. If H is
infinite, a similar argument can be made using its VC-dimension d. Essentially, this is just
a matter of adjusting our calculation of 	CT

(m) in lemma 4.2.

Lemma 4.5 Assume H has finite VC-dimension d ≥ 1. Let m ≥ max{d, T }. For any set
S of m points, the number of dichotomies realizable by CT is bounded as follows:∣∣	CT

(S)
∣∣ ≤ 	CT

(m) ≤
(em

T

)T (em

d

)dT

.

Proof Let S = 〈x1, . . . , xm〉. We know that H can realize only a finite set of dichotomies
on S. Let H′ be a subset of H containing exactly one “representative” for each such
dichotomy. In other words, for every h ∈ H there exists exactly one h′ ∈ H′ such that
h(xi) = h′(xi) for every example xi appearing in S. By definition and Sauer’s lemma
(lemma 2.4), together with equation (2.12),

|H′| = |	H(S)| ≤
(em

d

)d

.

82 4 Direct Bounds on the Generalization Error

Since every function in H, with regard to its behavior on S, is represented in H′, choosing
a set of functions h1, . . . , hT ∈ H as in the proof of lemma 4.2 is equivalent to choosing
functions from H′. Thus, the number of such choices is |H′|T . Therefore, by the argument
used to prove lemma 4.2,

∣∣	CT
(S)
∣∣ ≤ (em

T

)T |H′|T

≤
(em

T

)T (em

d

)dT

.

The modification of theorem 4.3 and corollary 4.4 using lemma 4.5 is straightforward.
Essentially, we end up with bounds in which ln |H| is replaced by d, plus some additional
log factors.

Theorem 4.6 Suppose AdaBoost is run for T rounds on m random examples, using base
classifiers from a space H of finite VC-dimension d ≥ 1. Assume m ≥ max{d, T }. Then
with probability at least 1− δ (over the choice of the random sample), the combined classifier
H satisfies

err(H) ≤ êrr(H)+
√

32[T (ln(em/T)+ d ln(em/d))+ ln(8/δ)]
m

.

Furthermore, with probability at least 1− δ, if H is consistent with the training set (so that
êrr(H) = 0), then

err(H) ≤ 2T (lg(2em|H|/T)+ d lg(2em/d))+ 2 lg(2/δ)

m
.

Corollary 4.7 Assume, in addition to the assumptions of theorem 4.6, that each base
classifier has weighted error εt ≤ 1

2 − γ for some γ > 0. Let the number of rounds T be
equal to the smallest integer exceeding (ln m)/(2γ 2). Then, with probability at least 1− δ,
the generalization error of the combined classifier H will be at most

O

(
1

m

[
ln m

γ 2

(
ln m+ d ln

(m

d

))
+ ln

(
1

δ

)])
.

Thus, summarizing, theorems 4.3 and 4.6 show that, ignoring log factors,

err(H) ≤ êrr(H)+ Õ

(√
T ·CH

m

)
where CH is some measure of the complexity of the base hypothesis space H. Likewise, if
H is consistent, the bounds state that

4.2 Compression-Based Bounds 83

err(H) ≤ Õ

(
T ·CH

m

)
.

As in the generalization bounds of section 2.2, these combine fit to data, complexity, and
training set size, where now we measure the overall complexity of the combination of T

base hypotheses by T ·CH.
Corollaries 4.4 and 4.7 show that when the complexity CH is finite and fixed, the

generalization error rapidly approaches zero, given the empirical weak learning assumption.

4.2 Compression-Based Bounds

So far, we have seen how AdaBoost can be analyzed in terms of the complexity of the
base hypotheses. Thus, we have focused on the hypotheses output by the base learning
algorithm. In this section, we will explore the opposing idea of instead analyzing AdaBoost
based on the input to the base learning algorithm, in particular, the number of examples used
by the base learner. This curious mode of analysis turns out to be very natural for boosting.
In addition to providing generalization bounds, this approach will allow us to prove the
general equivalence of strong and weak learnability by showing thatAdaBoost, when appro-
priately configured, is a true boosting algorithm. Moreover, in studying AdaBoost from this
perspective, we will highlight the remarkable property that in boosting, only a tiny fraction
of the training set is ever used by the weak learning algorithm—the vast majority of the
examples are never even seen by the weak learner. Indeed, it is exactly this property that
forms the basis for this analysis.

4.2.1 The Idea

We assume throughout this section that boosting by resampling is employed. In other words,
as described in section 3.4.1, we assume on each round t that the weak learner is trained on an
unweighted sample selected at random by resampling with replacement from the entire train-
ing set according to the current distribution Dt . (Thus, these results are not directly applica-
ble when boosting by reweighting is used instead.) We further assume that the unweighted
sample generated on each round consists of a fixed size m′ = m0, not dependent (or at least
not heavily dependent) on the overall sample size m. This is not unreasonable since the
weak learner is aiming for a fixed accuracy 1

2 − γ , and therefore should require only a fixed
sample size.

We also assume explicitly that the weak learning algorithm does not employ random-
ization, so that it can be regarded as a fixed, deterministic mapping from a sequence of
m0 unweighted examples to a hypothesis h. Under this assumption, any weak hypothesis
produced by the weak learner can be represented rather trivially by the very sequence of
m0 examples on which it was trained.

84 4 Direct Bounds on the Generalization Error

Moreover, if we were to suppose momentarily that AdaBoost has been modified to
output a combined classifier that is a simple (unweighted) majority vote, then this com-
bined classifier can similarly be represented by the T m0 examples on which its T weak
hypotheses were trained. In other words, under this scheme a sequence of T m0 examples
represents the combined classifier which is a majority vote of weak hypotheses that can
be computed simply by breaking the sequence into T blocks of m0 examples, each of
which is then converted into a weak hypothesis by running the weak learning algorithm
on it.

Thus AdaBoost, under the assumptions above, is in fact a compression scheme of size
κ = T m0 as described in section 2.2.6. In other words, because the combined classifier
can be represented by T m0 of the training examples, and because m0 is fixed, and con-
sistency with the training set can be achieved for T � m, we can immediately apply
theorem 2.8 to obtain a bound on the generalization error. Such an analysis is based
solely on these properties, without any consideration of the form of the base hypotheses
used.

But how can we apply this idea to AdaBoost, which in fact outputs a weighted majority
vote? We can use the same idea above to represent the weak hypotheses by a sequence of
examples, but how can we represent the real-valued weights α1, . . . , αT ? To answer this,
we provide a general hybrid approach that combines the compression-based analysis of
section 2.2.6 with the VC theory presented in section 2.2.3.

4.2.2 Hybrid Compression Schemes

In a standard compression scheme, as described in section 2.2.6, the learning algorithm
outputs a hypothesis h that can itself be represented by a sequence of training examples.
In a hybrid compression scheme of size κ , the hypothesis is instead selected from a class
of hypotheses F where the class (rather than the hypothesis itself) can be represented by
a sequence of κ training examples. Thus, a hybrid compression scheme is defined by a
size κ and a mapping K from κ-tuples of labeled examples to sets of hypotheses. Given a
training set (x1, y1), . . . , (xm, ym), the associated learning algorithm first chooses indices
i1, . . . , iκ ∈ {1, . . . , m}, thus specifying a class

F = K((xi1 , yi1), . . . , (xiκ , yiκ)). (4.7)

The algorithm then chooses and outputs one hypothesis h ∈ F from this class.
Note that a standard compression scheme is simply a special case in which F is always

a singleton.
AdaBoost is an example of a hybrid compression scheme for the setting above. We have

already seen that the T weak hypotheses h1, . . . , hT can be represented by a sequence of
κ = T m0 training examples. Then the resulting class F from which the final hypothesis
H is selected consists of all linear threshold functions (that is, weighted majority vote
classifiers) over the selected, fixed set of weak hypotheses h1, . . . , hT :

4.2 Compression-Based Bounds 85

F =
{

H : x �→ sign

(
T∑

t=1

αtht (x)

) ∣∣∣∣∣ α1, . . . , αT ∈ R

}
. (4.8)

By combining theorem 2.7 with theorem 2.8, we obtain a general result for hybrid com-
pression schemes that depends both on the size κ and on the complexity of the class F
selected by the scheme. For simplicity, we focus only on the consistent case, although the
same technique can certainly be generalized.

Theorem 4.8 Suppose a learning algorithm based on a hybrid compression scheme of size
κ with an associated function K as in equation (4.7) is provided with a random training set
S of size m. Suppose further that for every κ-tuple, the resulting class F has VC-dimension
at most d ≥ 1. Assume m ≥ d + κ . Then, with probability at least 1− δ, any hypothesis h

produced by this algorithm that is consistent with S must satisfy

err(h) ≤ 2d lg(2e(m− κ)/d)+ 2κ lg m+ 2 lg(2/δ)

m− κ
. (4.9)

Proof Let ε be equal to the quantity on the right-hand side of equation (4.9).
First, let us fix the indices i1, . . . , iκ , and let I = {i1, . . . , iκ}. Once the examples

(xi1 , yi1), . . . , (xiκ , yiκ) with indices in this set have been selected, this also fixes the class
F as in equation (4.7), Moreover, because the training examples are assumed to be inde-
pendent, the training points not in I , that is, S ′ = 〈(xi, yi)〉i �∈I , are also independent of the
class F . Thus, we can apply theorem 2.7, specifically equation (2.19), where we regard
F as the hypothesis space and S ′ as a training set of size m− |I | ≥ m− κ , and where we
replace δ by δ/mκ . Then, since F has VC-dimension at most d, with probability at least
1− δ/mκ , this result implies that err(h) ≤ ε for every h ∈ F that is consistent with S ′, and
therefore also for every h ∈ F that is consistent with the entire sample S. This holds true
for any particular selection of examples (xi1 , yi1), . . . , (xiκ , yiκ), which means that it also
holds true if these examples are selected at random.

Thus we have argued that for any fixed choice of indices i1, . . . , iκ , with probability at
least 1− δ/mκ , err(h) ≤ ε for any consistent h ∈ F . Therefore, by the union bound, since
there are mκ choices for these indices, this result holds for all sequences of indices with
probability at least 1− δ, implying the result.

4.2.3 Application to AdaBoost

We can apply this result immediately to AdaBoost, where we already have discussed the
appropriate hybrid compression scheme. Here, the class F consists of all linear threshold
functions over a fixed set of T weak hypotheses as in equation (4.8). This class cannot have
VC-dimension greater than that of linear threshold functions over points in RT , a class that

86 4 Direct Bounds on the Generalization Error

we showed in lemma 4.1 has VC-dimension exactly T . Thus, in constructing this scheme
for AdaBoost, we have proved the following:

Theorem 4.9 SupposeAdaBoost is run for T rounds on m random examples. Assume each
weak hypothesis is trained using a deterministic weak learning algorithm on m0 unweighted
examples selected using resampling, and assume m ≥ (m0+ 1)T . Then, with probability at
least 1− δ (over the choice of the random sample), if the combined classifier H is consistent
with the entire training set, then

err(H) ≤ 2T lg(2e(m− T m0)/T)+ 2T m0 lg m+ 2 lg(2/δ)

m− T m0
.

Proof Just plug κ = T m0 and d = T into theorem 4.8.

When we add the weak learning assumption, we get the following corollary analogous
to corollary 4.4.

Corollary 4.10 Assume, in addition to the assumptions of theorem 4.9, that each base
classifier has weighted error εt ≤ 1

2 − γ for some γ > 0. Let the number of rounds T be
equal to the smallest integer exceeding (ln m)/(2γ 2). Then, with probability at least 1− δ,
the generalization error of the combined classifier H will be at most

O

(
1

m

[
m0(ln m)2

γ 2
+ ln

(
1

δ

)])
(4.10)

(where, for purposes of O(·) notation, we assume T m0 ≤ cm for some constant c < 1).

In both these bounds m0, the number of examples used to train the weak learner, is acting
as a complexity measure rather than some measure based on the weak hypotheses that it
outputs. Otherwise, the bounds have essentially the same form as in section 4.1.

4.3 The Equivalence of Strong and Weak Learnability

Finally, we are ready to prove that AdaBoost is a boosting algorithm in the technical
sense, and that strong and weak learnability are equivalent in the PAC model described
in section 2.3. Note that corollaries 4.4 and 4.7 do not quite prove this since their bounds
depend on a measure of the complexity of the weak hypotheses. Thus, they implicitly
require that the sample size m be sufficiently large relative to this complexity measure.
This goes beyond a bare assumption of weak learnability. A compression-based analysis,
however, allows us to sidestep this difficulty.

Theorem 4.11 A target class C is (efficiently) weakly PAC learnable if and only if it is
(efficiently) strongly PAC learnable.

4.3 The Equivalence of Strong and Weak Learnability 87

Proof That strong learning implies weak learning is trivial. To prove the converse, we
apply AdaBoost to a given weak learning algorithm. Here are the details.

Suppose C is weakly PAC learnable. Then there exists a constant γ > 0, and an algorithm
A such that for any distribution D over the instance space X , and for any c ∈ C, A takes as
input m0 random examples (x1, c(x1)), . . . , (xm0 , c(xm0)) and, with probability at least 1

2 ,
outputs a hypothesis with err(h) ≤ 1

2 − γ . Note that here we have weakened the requirement
for A even further than the definition given in section 2.3 by requiring only that A succeed
with probability at least 1

2 , effectively fixing δ in the earlier definition to this constant.
We assume A is deterministic. If it is not, there are general constructions that can be used

here for converting a randomized PAC algorithm into a deterministic one; however, these
go beyond the scope of this book.

To construct a strong PAC learning algorithm, we apply AdaBoost with A as the weak
learning algorithm. Given m examples from some unknown target c ∈ C, and given δ > 0,
we run AdaBoost for T rounds where T is the smallest integer exceeding (ln m)/(2γ 2).
On each round t , we use boosting by resampling to select a sample of size m0 according
to distribution Dt . This sample is fed to the weak learning algorithm A, which produces a
weak hypothesis ht . If the error of ht on Dt is bigger than 1

2 − γ , that is, if it is not the case
that

Pri∼Dt [ht (xi) �= c(xi)] ≤ 1
2 − γ, (4.11)

then ht is discarded and the process is repeated until ht satisfying equation (4.11) is found.
If no such ht is found after L = �lg(2T /δ)� attempts, then boosting fails.

What is the probability of such failure? The weak learning algorithm’s training set on
round t consists of m0 examples selected from distribution Dt , so from A’s perspective, Dt is
the “true” distribution. Therefore, according to our assumptions regarding this algorithm, the
probability that its hypothesis ht will have weighted error greater than 1

2 − γ on this “true”
distribution is at most 1

2 . Thus, the chance of failure on all L (independent) attempts is at
most

2−L ≤ δ

2T
.

Therefore, the chance of failure on any of the T rounds is at most δ/2 by the union bound.
When no such failures occur, each hypothesis ht will have weighted error εt ≤ 1

2 − γ , so
that corollary 4.10 can be applied where we replace δ with δ/2 so that the overall probability
of failure either in the search for weak hypotheses or in the choice of the training set is at
most δ (again, by the union bound).

Thus, with probability at least 1− δ, AdaBoost produces a combined classifier H with
error at most as given in equation (4.10). This bound can be made smaller than any ε > 0
by choosing m to be a suitable polynomial in m0, 1/γ , 1/ε, and 1/δ. Thus, the class C is

88 4 Direct Bounds on the Generalization Error

strongly learnable in the PAC model. Furthermore, if A is efficient (that is, polynomial-
time), then AdaBoost, as we have described it, will be as well since the overall running
time is polynomial in m, 1/δ, 1/γ , and the running time of the weak learner A itself.

Note that in the construction used in this proof, only a total of

T m0 = O

(
m0 ln m

γ 2

)
examples are used by the weak learning algorithm in the computation of the weak hypotheses
comprising the combined classifier. (Even if we count runs in which the weak learner fails
to provide an adequate weak hypothesis, this number goes up by only a small factor.) Since
we regard m0 and γ as fixed, this means that only a vanishingly small fraction of the training
set—just O(ln m) of the m examples—are ever even presented as input to the weak learner.
All the work of boosting apparently goes into the careful selection of this tiny sliver of the
dataset.

Furthermore, our analysis provides bounds not only for boosting but also for learning in
a much more general sense. For instance, the proof of theorem 4.11, we gave a construction
in which the generalization error of AdaBoost was shown to drop at the rate

O

(
(ln m)2

m

)
(4.12)

as a function of m (for T chosen as above). But this same construction also shows that any
PAC learning algorithm A can be converted into one with such behavior. To make such a
conversion, we simply hardwire A’s parameters, say, to ε = 1

4 and δ = 1
2 . Then the resulting

algorithm will be a weak learning algorithm which, when combined with AdaBoost, will
have the same rate of generalization as in equation (4.12). Thus, if a class is (efficiently)
learnable at all, then it is (efficiently) learnable at the learning rate given in equation (4.12).
This kind of argument is applicable to other measures of performance as well.

Summary

In summary, we have described several modes of analysis applicable to AdaBoost. Each
of these has measured the complexity of the combined classifier in terms of its gross size,
that is, the number of base hypotheses being combined, and some varying measure of the
complexity of the base hypotheses themselves. We have seen thatAdaBoost’s generalization
error can be made very small if the weak hypotheses are a bit better than random, and thus,
that strong and weak PAC learnability, which seem superficially to be so different, actually
turn out to be equivalent. However, all of our analyses have predicted overfitting, which is
only sometimes a problem for AdaBoost. In chapter 5, we present a rather different analysis
that appears to better match AdaBoost’s behavior in many practical cases.

Exercises 89

Bibliographic Notes

The style of analysis presented in section 4.1 was applied to AdaBoost by Freund and
Schapire [95], and is based directly on the work of Baum and Haussler [16]. Lemma 4.1
was proved (in a more general setting) by Dudley [77]. See Anthony and Bartlett’s book [8]
for further background.

The hybrid compression schemes of section 4.2 are based on the standard compression
schemes of Littlestone and Warmuth [154] and Floyd and Warmuth [85]. The propensity of
boosting algorithms to compress a dataset was noted by Schapire [199], and was first used
as a basis for analyzing their generalization error by Freund [88].

The equivalence of strong and weak learnability shown in section 4.3 was first proved
by Schapire [199], and later by Freund [88], though using boosting algorithms which
precededAdaBoost. Both of these works also proved general resource requirements for PAC
learning.

The fact noted in the proof of theorem 4.11 that a randomized PAC learning algorithm
can be converted into one that is deterministic was proved by Haussler et al. [121].

Some of the exercises in this chapter are based on material from [16, 77, 85, 88, 199].

Exercises

4.1 In the development given in section 4.1, we found it necessary to redefine sign(0)

to be −1, rather than 0, so that the combined classifier H would have range {−1,+1}
rather than {−1, 0,+1} (with predictions of 0 always counting as a mistake). Show how
to modify the proofs leading to theorems 4.3 and 4.6 when sign(0) is instead defined
to be 0. [Hint: Apply the results of section 2.2.4 to an appropriate family of subsets of
X ×{−1,+1}.]
4.2 Let �′

n be the space of all functions mapping Rn to {−1,+1} of the form

x �→ sign(w · x+ b)

for some w ∈ Rn and b ∈ R (where we continue to define sign(0) to be −1). These are
sometimes called affine threshold functions, and differ from linear threshold functions only
in the “bias term” b. Find the VC-dimension of �′

n exactly.

4.3 A feedforward network, as in the example in figure 4.2, is defined by a directed acyclic
graph on a set of input nodes x1, . . . , xn, and computation nodes u1, . . . , uN . The input
nodes have no incoming edges. One of the computation nodes is called the output node,
and has no outgoing edges. Each computation node uk is associated with a function fk :
Rnk → {−1,+1}, where nk is uk’s indegree (number of ingoing edges). On input x ∈ Rn,
the network computes its output g(x) in a natural, feedforward fashion. For instance, given
input x = 〈x1, x2, x3〉, the network in figure 4.2 computes g(x) as follows:

90 4 Direct Bounds on the Generalization Error

u2

u3

u4u1

x2

x3

x1

Figure 4.2
An example feedforward network with n = 3 input nodes, x1, x2, x3; N = 4 computation nodes, u1, u2, u3, u4;
and W = 10 edges. The output node is u4.

u1 = f1(x1, x2, x3)

u2 = f2(x2, x3)

u3 = f3(u1, x2, u2)

u4 = f4(u1, u3)

g(x) = u4.

(Here, we slightly abuse notation, writing xj and uk both for nodes of the network and for
the input/computed values associated with these nodes.) The number of edges in the graph
is denoted W .

In what follows, we regard the underlying graph as fixed, but allow the functions fk

to vary, or to be learned from data. In particular, let F1, . . . , FN be spaces of functions.
As explained above, every choice of functions f1, . . . , fN induces an overall function
g : Rn → {−1,+1} for the network. We let G denote the space of all such functions when
fk is chosen from Fk for k = 1, . . . , N .

a. Prove that

	G(m) ≤
N∏

k=1

	Fk
(m).

b. Let dk be the VC-dimension of Fk , and let d
.=∑N

k=1 dk . Assume m ≥ dk ≥ 1 for all k.
Prove that

	G(m) ≤
(

emN

d

)d

.

[Hint: Use Jensen’s inequality (equation (A.4)).]

Exercises 91

c. In a typical neural network or multilayer perceptron, the functions fk are affine threshold
functions as in exercise 4.2, so that Fk = �′

nk
. For this case, give an exact expression

for d in terms of N , n, and W . Conclude by deriving a bound, analogous to theorems 4.3
and 4.6, on the generalization error of every g ∈ G which holds with probability at least
1− δ for m ≥ d , and which is expressed in terms of êrr(g), N , n, W , m, and δ. Also
give a bound for when g is consistent.

4.4 This exercise relates the size of compression schemes to VC dimension. Assume
throughout that all training examples are labeled according to some unknown target c

in a known class C of VC-dimension d ≥ 1. Assume also the existence of a (deterministic)
algorithm A which, given any dataset S, outputs some h ∈ C consistent with S. You need
not consider issues of efficiency.

a. Suppose B is a (standard) compression scheme of size κ which, when given m ≥ d

training examples labeled as above, always produces a hypothesis h that is consistent with
the given data. Being a compression scheme, each such hypothesis h can be represented
by κ of the training examples. Prove that κ ≥ d/(1+ lg d). [Hint: By counting the
number of possible inputs and outputs for B on a shattered training set, show that, when
κ is too small, there must exist two distinct labelings of the shattered set that are mapped
to the same hypothesis, leading to a contradiction.]

b. Show that there exists a compression scheme B with the same properties as in part (a)
whose size κ (when m ≥ d) is at most Cd ln m, for some absolute constant C. (We here
allow the size κ to depend moderately on the sample size m.)

4.5 Support-vector machines, which will be discussed in section 5.6, produce classifiers of
the form

h(x) = sign

(
m∑

i=1

big(xi, x)

)

for some b1, . . . , bm ∈ R, where x1, . . . , xm are the training examples, and where g : X ×
X → R is a fixed function. We say such a classifier is κ-sparse if at most κ of the bi’s are
nonzero. Show that, with probability at least 1− δ, every classifier of this form which is
κ-sparse and which is consistent with a random training set of size m has generalization
error at most

O

(
κ ln m+ ln(1/δ)

m− κ

)
.

Give explicit constants.

5 The Margins Explanation for Boosting’s Effectiveness

In chapter 4, we proved bounds on the generalization error of AdaBoost that all predicted
classic overfitting. This prediction seemed reasonable and intuitive, given the apparently
increasing complexity ofAdaBoost’s combined classifier with additional rounds of boosting.
Although such overfitting is possible, we saw in section 1.3 that AdaBoost sometimes does
not overfit. There, we gave an example in which a combined classifier of 1000 decision
trees far outperforms on test data one consisting of only five trees, even though both perform
perfectly on the training set. Indeed, extensive experiments indicate thatAdaBoost generally
tends to be quite resistant to overfitting. How can we account for this phenomenon? Why
is the theory developed in chapter 4 inadequate? How can a combined classifier as huge
and complex as the one above—consisting of 1000 trees and roughly two million decision
nodes—perform so well on test data?

In this chapter, we find a way out of this seeming paradox. We develop an alternative
theory for analyzing AdaBoost’s generalization error that provides a qualitative explanation
for its lack of overfitting, as well as specific predictions about the conditions under which
boosting can fail. The concept at the core of the new approach is the notion of confidence,
the idea that a classifier can be more sure of some predictions than of others, and that differ-
ences in confidence have consequences for generalization. Confidence was entirely ignored
in chapter 4, where our analysis took into consideration only the number of incorrect clas-
sifications on the training set, rather than the sureness of the predictions. By explicitly
taking confidence into account, our new analysis will give bounds that make very different
predictions about how AdaBoost works and when to expect overfitting.

To quantify confidence formally, we introduce a measure called the margin. Our analysis
then follows a two-part argument. First, we show that larger margins on the training set guar-
antee better generalization performance (or, more precisely, an improvement in a provable
upper bound on the generalization error). And second, we show that AdaBoost provably
tends to increase the margins on the training set, even after the training error is zero. Thus,
we show that with continued training, AdaBoost tends to become more confident in its own
predictions, and that the greater the confidence in a prediction, the more likely it is to be
correct. Note that in this analysis, the number of rounds of boosting, which is proportional

94 5 The Margins Explanation for Boosting’s Effectiveness

to the overall size of the final classifier, has little or no impact on generalization, which is
instead controlled by the margins; since these are likely to increase with further rounds, this
theory predicts an absence of overfitting under identifiable circumstances.

The methods that we use to prove both parts of the analysis outlined above build directly
on those developed in the preceding chapters. In addition, we also introduce another general
and very powerful technique based on a different measure of hypothesis complexity called
Rademacher complexity.

The view of AdaBoost as a margin-maximizing algorithm suggests that it may be pos-
sible to derive a better algorithm by modifying AdaBoost to maximize the margins more
aggressively. Later in this chapter, we consider how this might be done, as well as some of
the subtle difficulties that are involved. We also discuss AdaBoost’s connection to other
large-margin learning algorithms, particularly support-vector machines.

The margins explanation of boosting contrasts not only with the kind of analysis seen
in chapter 4, but also with a competing explanation based on bias-variance theory and the
notion that AdaBoost’s strong performance is principally due to its “averaging” or “smooth-
ing” effect on the predictions of an “unstable” base learning algorithm. We discuss further
in this chapter why these explanations, though possibly relevant to related methods, are
ultimately inadequate for AdaBoost.

Finally, we explore some practical applications of margins and their interpretation as a
measure of confidence.

5.1 Margin as a Measure of Confidence

The basis of our analysis is the margin, a quantitative measure of the confidence of a
prediction made by the combined classifier. Recall that the combined classifier has the form

H(x) = sign(F (x))

where

F(x)
.=

T∑
t=1

αtht (x).

It will be convenient to normalize the nonnegative weights αt on the base classifiers. Let

at
.= αt∑T

t ′=1 αt ′
, (5.1)

and let

f (x)
.=

T∑
t=1

atht (x) = F(x)∑T
t=1αt

. (5.2)

5.1 Margin as a Measure of Confidence 95

Then
∑T

t=1 at = 1, and since multiplying by a positive constant does not change the sign
of F(x), we can write

H(x) = sign(f (x)). (5.3)

For a given labeled example (x, y), we can now define the margin simply to be yf (x).
For clarity, this quantity is sometimes referred to as the normalized margin to distinguish it
from the unnormalized margin yF(x) obtained by omitting the normalization step above.
Later, we will be interested in both quantities, although their properties are quite distinct. We
will often use the shorter term margin when the context is sufficient to prevent confusion. In
particular, throughout this chapter, this term will refer exclusively to the normalized margin.

Recall that the base classifiers ht have range {−1,+1}, and that labels y also are in
{−1,+1}. Because the weights at are normalized, this implies that f has range [−1,+1],
and so the margin also is in [−1,+1]. Furthermore, y = H(x) if and only if y has the same
sign as f (x), that is, if and only if the margin of (x, y) is positive. Thus, the sign of the margin
indicates whether or not the example is correctly classified by the combined classifier.

As has been noted before, the combined classifier H is simply a weighted majority
vote of the predictions of the base classifiers in which the vote of ht is given weight at .
An equivalent way of thinking about the margin is as the difference between the weight
of the base classifiers predicting the correct label y and the weight of those predicting
the incorrect label −y. When this vote is very close, so that the predicted label H(x) is
based on a narrow majority, the margin will be small in magnitude and, intuitively, we will
have little confidence in the prediction. On the other hand, when the prediction H(x) is based
on a clear and substantial majority of the base classifiers, the margin will be correspondingly
large lending greater confidence in the predicted label. Thus, the magnitude of the margin
(or, equivalently, of f (x)) is a reasonable measure of confidence. These interpretations of
the range of values of the margin can be diagrammed as in figure 5.1.

We can visualize the effect AdaBoost has on the margins of the training examples by
plotting their distribution. In particular, we can create a plot showing, for each θ ∈ [−1,+1],
the fraction of training examples with margin at most θ . For such a cumulative distribution
curve, the bulk of the distribution lies where the curve rises the most steeply. Figure 5.2
shows such a margin distribution graph for the same dataset used to create figure 1.7 (p. 16),

H
incorrect

H
correct0–1 +1

Figure 5.1
An example’s margin is in the range [−1,+1]with a positive sign if and only if the combined classifier H is correct.
Its magnitude measures the confidence in the combined classifier’s prediction.

96 5 The Margins Explanation for Boosting’s Effectiveness

–1 –0.5 0.5 1

0.5

1.0
C

um
ul

at
iv

e
di

st
rib

ut
io

n

Margin

Figure 5.2
The margin distribution graph for boosting C4.5 on the letter dataset showing the cumulative distribution of margins
of the training instances after 5, 100, and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden),
and solid curves, respectively. (Reprinted with permission of the Institute of Mathematical Statistics.)

showing the margin distribution after 5, 100, and 1000 rounds of boosting. Whereas nothing
at all is happening to the training error, these curves expose dramatic changes happening on
the margin distribution. For instance, after five rounds, although the training error is zero
(so that no examples have negative margin), a rather substantial fraction of the training
examples (7.7%) have margin below 0.5. By round 100, all of these examples have been
swept to the right so that not a single example has margin below 0.5, and nearly all have
margin above 0.6. (On the other hand, many with margin 1.0 have slipped back to the 0.6–0.8
range.) In line with this trend, the minimum margin of any training example has increased
from 0.14 at round 5 to 0.52 at round 100, and 0.55 at round 1000.

Thus, this example is indicative of the powerful effect AdaBoost has on the margins,
aggressively pushing up those examples with small or negative margin. Moreover, in com-
parison with figure 1.7, we see that this overall increase in the margins appears to be
correlated with better performance on the test set.

Indeed, as will be seen, AdaBoost can be analyzed theoretically along exactly these lines.
We will first prove a bound on the generalization error of AdaBoost—or any other voting
method—that depends only on the margins of the training examples, and not on the number
of rounds of boosting. Thus, this bound predicts that AdaBoost will not overfit regardless
of how long it is run, provided that large margins can be achieved (and provided, of course,
that the base classifiers are not too complex relative to the size of the training set).

The second part of the analysis is to prove that, as observed empirically in figure 5.2,
AdaBoost generally tends to increase the margins of all training examples. All of this will
be made precise shortly.

5.2 A Margins-Based Analysis of the Generalization Error 97

5.2 A Margins-Based Analysis of the Generalization Error

We begin our analysis with a proof of a generalization-error bound in terms of the training-set
margins.

5.2.1 Intuition

Let us first try to provide a bit of intuition behind the proof. AdaBoost’s combined classifier is
a (weighted) majority vote over a possibly very large “committee” of voting base classifiers.
Similarly, real-world political elections also may be held with tens or hundreds of millions
of voters. Even so, the outcome of such an election can often be predicted by taking a
survey, that is, by randomly polling a relatively tiny subset of the electorate, usually around a
thousand voters, regardless of the size of the entire electorate. This approach works provided
that the election is not too close, that is, provided one candidate has a substantial lead over
his or her opponent. This notion of closeness is exactly what is measured by the margin.

In the same manner, the overall prediction of even a very large combined classifier
can be determined by sampling randomly among its base classifiers. The majority vote of
these “polled” base classifiers will usually be the same as the entire committee represented
by the combined classifier, provided that the margin of the overall vote is large. And the
larger the margin, the fewer the base classifiers that need to be polled.

So if most examples have large margins, then the combined classifier can be approximated
by a much smaller combination of base classifiers, allowing us to use techniques, like those
in chapter 4, which are applicable to such classifiers composed of a relatively small number
of base classifiers. Thus, the idea is to show that any combined classifier that attains large
margins, even a very big one, must be close to a fairly small classifier, and then to use more
direct techniques on this simpler approximating set of classifiers.

We now give a more formal treatment. As in chapter 4, we assume that all base classifiers
belong to some space H. For simplicity, we assume without loss of generality that H is
closed under negation so that−h ∈ H whenever h ∈ H. (This allows us to avoid considering
negative weights on the base classifiers.) We define the convex hull co(H) of H as the set
of all mappings that can be generated by taking a weighted average of classifiers from H:

co(H)
.=
{

f : x �→
T∑

t=1

atht (x)

∣∣∣∣∣a1, . . . , aT ≥ 0;
T∑

t=1

at = 1;h1, . . . , hT ∈ H; T ≥ 1

}
.

(5.4)

Note that the function f generated by AdaBoost as in equation (5.2) is a member of this set.
As usual, D is the true distribution from which all examples are generated, and S =

〈(x1, y1), . . . , (xm, ym)〉 is the training set. We will sometimes be interested in computing
probabilities or expectations with respect to an example (x, y) chosen randomly according

98 5 The Margins Explanation for Boosting’s Effectiveness

to distribution D, which we denote by PrD[·] or ED[·]. We also will sometimes consider
the choice of (x, y) from the empirical distribution, that is, selected uniformly at random
from the training set S. In this case, we use the notation PrS[·] and ES[·]. For instance,
PrD[H(x) �= y] is the true generalization error of H , and

PrS[H(x) �= y]
.= 1

m

m∑
i=1

1{H(xi) �= yi}

is the training error. Recalling that H makes a mistake if and only if the margin yf (x) is
not positive, we can write H ’s generalization error equivalently as PrD[yf (x) ≤ 0], and
similarly for the training error.

Theorems 5.1 and 5.5, the main results of this section, state that with high probability, the
generalization error of any majority vote classifier can be bounded in terms of the number of
training examples with margin below a threshold θ , plus an additional term which depends
on the number of training examples, some “complexity” measure of H, and the threshold θ

(preventing us from choosing θ too close to zero). As in chapters 2 and 4, when H is finite,
complexity is measured by log |H|; when H is infinite, its VC-dimension is used instead.

5.2.2 Finite Base Hypothesis Spaces

We begin with the simpler case that the space H of base classifiers is finite.

Theorem 5.1 Let D be a distribution over X ×{−1,+1}, and let S be a sample of m exam-
ples chosen independently at random according to D. Assume that the base classifier space
H is finite, and let δ > 0. Then with probability at least 1− δ over the random choice of the
training set S, every weighted average function f ∈ co(H) satisfies the following bound:

PrD[yf (x) ≤ 0] ≤ PrS[yf (x) ≤ θ]+O

(√
log |H|
mθ2

· log

(
mθ2

log |H|
)
+ log(1/δ)

m

)
for all θ >

√
(ln |H|)/(4m).

The term on the left is the generalization error, as noted above. The first term on the right
is the fraction of training examples with margin below some threshold θ . This term will be
small if most training examples have large margin (i.e., larger than θ). The second term on
the right is an additional term that becomes small as the size of the training set m gets larger,
provided the complexity of the base classifiers is controlled for θ bounded away from zero.
This bound is analogous to the sorts of bounds seen in chapter 2, such as theorems 2.2 and
2.5, which quantify how the generalization error depends upon fit to the training set and
complexity of the hypotheses used. Here, however, fit to the data is measured by the number
of examples with small margin (at most θ), rather than the training error and, importantly,
only the complexity of the base classifiers enters the bound—the number of nonzero terms

5.2 A Margins-Based Analysis of the Generalization Error 99

comprising f , that is, the number of rounds T in the boosting context, does not appear
anywhere in the bound.

Such an analysis is entirely consistent with the behavior observed in the example dis-
cussed in section 5.1, where no degradation in performance was observed with further
rounds of boosting. Rather, performance improved with continued boosting in a manner
apparently correlated with a general increase in the margins of the training examples. The
overfitting behavior seen in section 1.2.3 is also qualitatively consistent with this analysis;
in that case, it seems that a relatively small sample size and generally small margins together
have doomed the performance beyond just a few rounds of boosting.

Proof For the sake of the proof, we define An to be the set of unweighted averages over
n elements from H:

An
.=
⎧⎨⎩f : x �→ 1

n

n∑
j=1

hj (x)

∣∣∣∣∣∣h1, . . . , hn ∈ H

⎫⎬⎭.

Note that the same h ∈ H may appear multiple times in such an average.
As outlined above, the main idea of the proof is to approximate any weighted average

function f ∈ co(H) by randomly polling its constituents. Any such function has the form
given in equations (5.2) and (5.4). Note that the weights at on the base classifiers naturally
define a probability distribution over H according to which individual base classifiers can
be sampled randomly. Going a step further, we can imagine an experiment in which n base
classifiers h̃1, . . . , h̃n from H are selected independently at random. Thus, each h̃j is selected
independently at random from H where we choose h̃j to be equal to ht with probability at .
We can then form their unweighted average

f̃ (x)
.= 1

n

n∑
j=1

h̃j (x), (5.5)

which is clearly a member of An. It is this function f̃ that we use to approximate f .
We assume throughout this proof that f̃ is selected in this random manner, denoting

probability and expectations with respect to its random selection by Prf̃ [·] and Ef̃ [·]. The
particular choice of n will come later.

Here is an informal outline of the proof, which has two main parts. First, we will show
that f̃ is typically a good approximation of f in the sense that, for “most” examples (x, y),∣∣∣yf (x)− yf̃ (x)

∣∣∣ ≤ θ

2
.

Thus, if yf (x) ≤ 0, then it is likely that yf̃ (x) ≤ θ/2, which means that

100 5 The Margins Explanation for Boosting’s Effectiveness

PrD[yf (x) ≤ 0] � PrD

[
yf̃ (x) ≤ θ

2

]
, (5.6)

where we use � to indicate approximate inequality in a strictly informal sense. A similar
argument will show that

PrS

[
yf̃ (x) ≤ θ

2

]
� PrS[yf (x) ≤ θ]. (5.7)

The second key ingredient of the proof is an argument that the margins of functions in
An have statistics on the training set that are similar to those on the true distribution D. In
particular, we show that, with high probability, the empirical probability of a small margin
is close to its true probability for all f̃ ∈ An. That is,

PrD

[
yf̃ (x) ≤ θ

2

]
� PrS

[
yf̃ (x) ≤ θ

2

]
. (5.8)

Combining equations (5.6), (5.7), and (5.8) will give

PrD[yf (x) ≤ 0] � PrD

[
yf̃ (x) ≤ θ

2

]
� PrS

[
yf̃ (x) ≤ θ

2

]
� PrS[yf (x) ≤ θ],

proving the theorem.
We now proceed to the details. Our first observation is that, for fixed x, if n is sufficiently

large, then f̃ (x) will be close to its expectation, which by construction turns out to be f (x).
Specifically, we have:

Lemma 5.2 For fixed x, θ > 0, and n ≥ 1,

Prf̃

[∣∣∣f̃ (x)− f (x)

∣∣∣ ≥ θ

2

]
≤ 2e−nθ2/8 .= βn,θ .

Proof With x fixed, h̃j (x) is a random variable with range {−1,+1}. Since h̃j = ht with
probability at , its expected value is

Ef̃

[
h̃j (x)

]
=

T∑
t=1

atht (x) = f (x),

and so, by equation (5.5), Ef̃

[
f̃ (x)

]
= f (x) as well. Thus, with minor rescaling, we can

apply Hoeffding’s inequality (theorem 2.1) to this set of independent random variables
h̃1(x), . . . , h̃n(x) to obtain

Prf̃

[∣∣∣f̃ (x)− f (x)

∣∣∣ ≥ θ

2

]
≤ βn,θ .

5.2 A Margins-Based Analysis of the Generalization Error 101

The next lemma shows further that the margin for f , yf (x), will be close to the margin for
f̃ , yf̃ (x), “on average” if the pair (x, y) is chosen at random from an arbitrary distribution
P . Below, PrP [·] and EP [·] denote probability and expectation over the random choice of
(x, y) from P , respectively.

The proof uses marginalization, the principle that if X and Y are random variables, then
the probability of any event a can be computed as the expected probability of the event
when one of the variables is held fixed:

PrX,Y [a] = EX[PrY [a|X]] .

Lemma 5.3 Suppose P is any distribution over pairs (x, y). Then for θ > 0 and n ≥ 1,

PrP,f̃

[∣∣∣yf (x)− yf̃ (x)

∣∣∣ ≥ θ

2

]
≤ βn,θ .

Proof Using marginalization and lemma 5.2, we have that

PrP,f̃

[∣∣∣yf (x)− yf̃ (x)

∣∣∣ ≥ θ

2

]
= PrP,f̃

[∣∣∣f (x)− f̃ (x)

∣∣∣ ≥ θ

2

]
= EP

[
Prf̃

[∣∣∣f (x)− f̃ (x)

∣∣∣ ≥ θ

2

]]
≤ EP

[
βn,θ

] = βn,θ .

Thus, f̃ is a good approximation of f . In particular, we can now prove equation (5.6) in
more precise terms. Specifically, lemma 5.3, applied to distribution D, gives that

PrD[yf (x) ≤ 0] = PrD,f̃ [yf (x) ≤ 0]

≤ PrD,f̃

[
yf̃ (x) ≤ θ

2

]
+PrD,f̃

[
yf (x) ≤ 0, yf̃ (x) >

θ

2

]
(5.9)

≤ PrD,f̃

[
yf̃ (x) ≤ θ

2

]
+PrD,f̃

[∣∣∣yf (x)− yf̃ (x)

∣∣∣ >
θ

2

]
≤ PrD,f̃

[
yf̃ (x) ≤ θ

2

]
+βn,θ . (5.10)

Here, equation (5.9) uses the simple fact that for any two events a and b,

Pr[a] = Pr[a, b]+Pr[a,¬b] ≤ Pr[b]+Pr[a,¬b] . (5.11)

Equation (5.7) follows from a similar derivation that again uses equation (5.11) and
lemma 5.3 now applied instead to the empirical distribution:

102 5 The Margins Explanation for Boosting’s Effectiveness

PrS,f̃

[
yf̃ (x) ≤ θ

2

]
≤ PrS,f̃ [yf (x) ≤ θ]+PrS,f̃

[
yf̃ (x) ≤ θ

2
, yf (x) > θ

]
≤ PrS,f̃ [yf (x) ≤ θ]+PrS,f̃

[∣∣∣yf (x)− yf̃ (x)

∣∣∣ >
θ

2

]
≤ PrS[yf (x) ≤ θ]+βn,θ . (5.12)

We move on now to the second part of the proof, in which we show that equation (5.8)
holds for all f̃ ∈ An with high probability.

Lemma 5.4 Let

εn
.=
√

ln
[
n(n+ 1)2|H|n/δ

]
2m

.

Then, with probability at least 1− δ (where the probability is taken over the choice of the
random training set S), for all n ≥ 1, for all f̃ ∈ An, and for all θ ≥ 0,

PrD

[
yf̃ (x) ≤ θ

2

]
≤ PrS

[
yf̃ (x) ≤ θ

2

]
+ εn. (5.13)

Proof Let pf̃,θ = PrD

[
yf̃ (x) ≤ θ/2

]
, and let p̂f̃,θ = PrS

[
yf̃ (x) ≤ θ/2

]
. Consider first

a particular fixed choice of n, f̃ , and θ . Let Bi be a Bernoulli random variable that is 1 if
yif̃ (xi) ≤ θ/2, and 0 otherwise. Note that here the underlying random process is the choice
of the random sample S. Then

p̂f̃ ,θ =
1

m

m∑
i=1

Bi,

and

pf̃,θ = E[Bi] = E
[
p̂f̃ ,θ

]
.

Thus, by Hoeffding’s inequality (theorem 2.1),

Pr
[
pf̃ ,θ ≥ p̂f̃ ,θ + εn

]
= Pr

[
p̂f̃ ,θ ≤ E

[
p̂f̃ ,θ

]
− εn

]
≤ e−2ε2

nm, (5.14)

which means that equation (5.13) holds for fixed f̃ and θ with high probability. We next
use the union bound to show that it also holds for all f̃ and θ simultaneously with high
probability.

Note that yf̃ (x) ≤ θ/2 if and only if

y

n∑
j=1

h̃j (x) ≤ nθ

2

(by definition of f̃), which in turn holds if and only if

5.2 A Margins-Based Analysis of the Generalization Error 103

y

n∑
j=1

h̃j (x) ≤
⌊

nθ

2

⌋
,

since the term on the left is an integer. Thus, pf̃ ,θ = pf̃ ,θ and p̂f̃ ,θ = p̂f̃ ,θ , where θ is
chosen so that

nθ

2
=
⌊

nθ

2

⌋
,

that is, from the set

�n
.=
{

2i

n
: i = 0, 1, . . . , n

}
.

(There is never a need to consider θ > 2 since yf̃ (x) ∈ [−1,+1].) Thus, for fixed n, the
chance that pf̃ ,θ ≥ p̂f̃ ,θ + εn for any f̃ ∈ An and any θ ≥ 0 is

Pr
[
∃f̃ ∈ An, θ ≥ 0 : pf̃ ,θ ≥ p̂f̃ ,θ + εn

]
= Pr

[
∃f̃ ∈ An, θ ∈ �n : pf̃ ,θ ≥ p̂f̃ ,θ + εn

]
≤ |An| · |�n| · e−2ε2

nm (5.15)

≤ |H|n · (n+ 1) · e−2ε2
nm (5.16)

= δ

n(n+ 1)
. (5.17)

Equation (5.15) uses equation (5.14) and the union bound. Equation (5.16) is simple
counting. And equation (5.17) follows from our choice of εn.

Applying the union bound one last time, we have that the probability of this happening
for any n ≥ 1 is at most

∞∑
n=1

δ

n(n+ 1)
= δ.

We can now complete the proof of theorem 5.1. We assume that we are in the “good”
case in which equation (5.13) holds for all n ≥ 1, for all f̃ ∈ An, and for all θ ≥ 0 (as will
happen with probability at least 1− δ, by lemma 5.4). Using marginalization (twice), this
implies that

PrD,f̃

[
yf̃ (x) ≤ θ

2

]
= Ef̃

[
PrD

[
yf̃ (x) ≤ θ

2

]]
≤ Ef̃

[
PrS

[
yf̃ (x) ≤ θ

2

]
+ εn

]
= PrS,f̃

[
yf̃ (x) ≤ θ

2

]
+ εn. (5.18)

104 5 The Margins Explanation for Boosting’s Effectiveness

Thus, pulling everything together—specifically, equations (5.10), (5.18), and (5.12)—
we have, with probability at least 1− δ, for every f ∈ co(H), for every n ≥ 1, and for
every θ > 0,

PrD[yf (x) ≤ 0] ≤ PrD,f̃

[
yf̃ (x) ≤ θ

2

]
+βn,θ

≤ PrS,f̃

[
yf̃ (x) ≤ θ

2

]
+ εn+βn,θ

≤ PrS[yf (x) ≤ θ]+βn,θ + εn+βn,θ

= PrS[yf (x) ≤ θ]+ 4e−nθ2/8+
√

ln
[
n(n+ 1)2|H|n/δ

]
2m

.

The bound in the statement of the theorem can now be obtained by setting

n =
⌈

4

θ2
ln

(
4mθ2

ln |H|
)⌉

.

5.2.3 Infinite Base Hypothesis Spaces

Theorem 5.1 applies only to the case of a finite base classifier space H. When this space is
infinite, we instead use its VC-dimension as a measure of complexity, giving the following
analogue of theorem 5.1:

Theorem 5.5 Let D be a distribution over X ×{−1,+1}, and let S be a sample of m

examples chosen independently at random according to D. Suppose the base-classifier space
H has VC-dimension d , and let δ > 0. Assume that m ≥ d ≥ 1. Then, with probability at
least 1− δ over the random choice of the training set S, every weighted average function
f ∈ co(H) satisfies the following bound:

PrD[yf (x) ≤ 0] ≤ PrS[yf (x) ≤ θ]+O

(√
d log(m/d) log(mθ2/d)

mθ2
+ log(1/δ)

m

)

for all θ >
√

8d ln(em/d)/m.

Proof This theorem can be proved exactly like theorem 5.1, except that lemma 5.4 needs
to be modified as follows:

Lemma 5.6 Let

εn
.=
√

32[ln(n(n+ 1)2)+ dn ln(em/d)+ ln(8/δ)]
m

.

5.2 A Margins-Based Analysis of the Generalization Error 105

Then, with probability at least 1− δ (over the choice of the random training set), for all
n ≥ 1, for all f̃ ∈ An and for all θ ≥ 0,

PrD

[
yf̃ (x) ≤ θ

2

]
≤ PrS

[
yf̃ (x) ≤ θ

2

]
+ εn. (5.19)

Proof To prove the lemma, we make use of theorem 2.6 rather than the union bound. To
do so, we construct a family of subsets of the space Z = X ×{−1,+1} of instance-label
pairs. For any f̃ ∈ An and θ ≥ 0, let

Bf̃ ,θ

.=
{
(x, y) ∈ Z : yf̃ (x) ≤ θ/2

}
be the set of pairs whose margin with respect to f̃ is at most θ/2. Then let Bn be the
collection of all such subsets:

Bn
.=
{
Bf̃ ,θ : f̃ ∈ An, θ ≥ 0

}
.

To apply theorem 2.6 to this collection, we first count the number of in-out behaviors
realizable by sets in Bn on a finite set of m points, that is, 	Bn(m). Let x1, . . . , xm ∈ X and
y1, . . . , ym ∈ {−1,+1}. Since the VC-dimension of H is d, Sauer’s lemma (lemma 2.4)
and equation (2.12) give that the number of labelings of the xi’s by hypotheses in H is

|{〈h(x1), . . . , h(xm)〉 : h ∈ H}| ≤
d∑

i=0

(
m

i

)
≤
(em

d

)d

for m ≥ d ≥ 1. This implies that the number of margin behaviors associated with functions
f̃ ∈ An is∣∣∣{〈y1f̃ (x1), . . . , ymf̃ (xm)〉 : f̃ ∈ An

}∣∣∣ ≤ (em

d

)dn

,

since each f̃ ∈ An is composed of n functions from H. Since we need consider only n+ 1
distinct values of θ (that is, only θ ∈ �n as in the proof of lemma 5.4), it follows that

	Bn(m) ≤ (n+ 1)
(em

d

)dn

.

Applying theorem 2.6 now gives that, for n ≥ 1, with probability at least
1− δ/(n(n+ 1)), for all Bf̃ ,θ ∈ Bn,

Prz∼D

[
z ∈ Bf̃ ,θ

]
≤ Prz∼S

[
z ∈ Bf̃ ,θ

]
+ εn

for the choice of εn given in the lemma. This is equivalent to equation (5.19). Thus, by
the union bound, this same statement holds for all n ≥ 1 simultaneously with probability
at least 1− δ, proving the lemma.

106 5 The Margins Explanation for Boosting’s Effectiveness

The rest of the proof of theorem 5.5 is the same as before until it is time to plug in our
new choice of εn giving, with probability at least 1− δ,

PrD[yf (x) ≤ 0] ≤ PrS[yf (x) ≤ θ]+ 4e−nθ2/8

+
√

32[ln(n(n+ 1)2)+ dn ln(em/d)+ ln(8/δ)]
m

for all f ∈ co(H), n ≥ 1, and θ > 0. Setting

n =
⌈

4

θ2
ln

(
mθ2

8d ln(em/d)

)⌉
gives the bound stated in the theorem.

We have focused our attention on the general case in which some of the training examples
may have small margins below some value θ of interest. This has led to an additional term
in the bounds in theorems 5.1 and 5.5 of the form Õ

(
1/
√

m
)

as a function of m. However,
just as we saw in section 2.2.5 that better rates of convergence are possible with consistent
hypotheses, for the same reasons given in that section, these theorems can be similarly
modified to give much better bounds on the order of Õ (1/m) when all training examples
have margin above θ so that PrS[yf (x) ≤ θ] = 0.

5.3 Analysis Based on Rademacher Complexity

Before continuing forward, we pause to outline an alternative method of analysis that is
perhaps more abstract mathematically but is very general and powerful. We sketch only the
main ideas, and omit most of the proofs. (See the bibliographic notes for further reading.)

We have already explored a number of techniques for measuring the complexity of a
space of classifiers. Here we introduce yet another measure, which is at the core of this
approach. Intuitively, a space H is especially “rich” or “expressive” if we find it easy to fit
any dataset using classifiers in H. We have routinely measured how well a hypothesis h fits
a dataset (x1, y1), . . . , (xm, ym) by its training error, a measure that is essentially equivalent
to the correlation of the predictions h(xi) with the labels yi , that is,

1

m

m∑
i=1

yih(xi).

The hypothesis h ∈ H that has the best fit then has correlation

max
h∈H

1

m

m∑
i=1

yih(xi).

This gives a measure of how well the space H as a whole fits the data.

5.3 Analysis Based on Rademacher Complexity 107

Suppose now that the labels yi are chosen at random without regard to the xi’s. In
other words, suppose we replace each yi by a random variable σi that is −1 or +1 with
equal probability, independent of everything else. Thus, the σi’s represent labels that
are pure noise. We can measure how well the space H can fit this noise in expectation
by

Eσ

[
max
h∈H

1

m

m∑
i=1

σih(xi)

]
, (5.20)

where we write Eσ [·] for expectation with respect to the choice of the σi’s. Returning to
our earlier intuition, if H is a rich class, it should have an easier time fitting even random
noise, so that equation (5.20) will be large; conversely, for a more restricted class, we expect
equation (5.20) to be small. This suggests that this expression may be a reasonable measure
of H’s complexity.

This notion generalizes immediately to families of real-valued functions, not just classi-
fiers. In abstract terms, let Z be any space and F any family of functions f : Z → R. Let
S = 〈z1, . . . , zm〉 be a sequence of points in Z . Then the Rademacher complexity of F with
respect to S, which is the focus of this section, is defined to be1

RS(F)
.= Eσ

[
sup
f∈F

1

m

m∑
i=1

σif (zi)

]
. (5.21)

Note that equation (5.20) is the Rademacher complexity of H with respect to 〈x1, . . . , xm〉
obtained by taking F = H and Z = X .

Like the complexity measures introduced in section 2.2, the primary purpose of Rade-
macher complexity is in bounding the difference between empirical and true probabilities
or expectations. In particular, the following very general result can be proved.

Theorem 5.7 Let F be any family of functions f : Z → [−1,+1]. Let S be a random
sequence of m points chosen independently from Z according to some distribution D. Then
with probability at least 1− δ,

Ez∼D[f (z)] ≤ Ez∼S[f (z)]+ 2RS(F)+
√

2 ln(2/δ)

m

for all f ∈ F .

1. Rademacher complexity is commonly defined instead to be Eσ

[
supf∈F

1
m

∣∣∑m
i=1σif (zi)

∣∣]. We use the
“one-sided” version given in equation (5.21) because it turns out to be simpler and more convenient for our
purposes.

108 5 The Margins Explanation for Boosting’s Effectiveness

(As in section 2.2.4, Ez∼D[·] and Ez∼S[·] denote expectation with respect to the true and
empirical distributions, respectively.) Note that the Rademacher complexity that appears
here is relative to the sample S. Alternative results can be obtained based on either expected
or worst-case complexity.

Thus, proving uniform convergence results, according to this theorem, reduces to com-
puting Rademacher complexity. We briefly outline three techniques that are useful for this
purpose. When combined with theorem 5.7, these will be sufficient to give a complete
analysis of margin-based voting classifiers.

First, in the special case given above in which H is a space of binary classifiers and
Z=X , Rademacher complexity can be immediately related to the other complexity mea-
sures we have been using. In particular, if H is finite, then it can be shown (see exercise 6.4)
that

RS(H) ≤
√

2 ln |H|
m

(5.22)

(where m is the size of S, throughout). And in general, for any H,

RS(H) ≤
√

2 ln |	H(S)|
m

where 	H(S) is the set of dichotomies realized by H on S, as in section 2.2.3. By Sauer’s
lemma (lemma 2.4) and equation (2.12), this implies that if H has VC-dimension d, then

RS(H) ≤
√

2d ln(em/d)

m
(5.23)

for m ≥ d ≥ 1. Thus, in a sense, Rademacher complexity subsumes both lg |H| and VC-
dimension as a complexity measure, and yields results that are at least as general. For
instance, theorems 2.2 and 2.5 can now be derived as corollaries of theorem 5.7 (possibly
with some adjustment of constants).

In studying voting classifiers, we have been especially interested in the convex hull co(H)

of a space of base classifiers H, as defined in equation (5.4). Remarkably, the Rademacher
complexity of the convex hull, despite being a much larger space, is always the same as
that of the original space H. That is,

RS(co(H)) = RS(H). (5.24)

This follows immediately from the definition of Rademacher complexity given in equa-
tion (5.21) since, for any values of the σi’s and xi’s, the maximum of

m∑
i=1

σif (xi)

5.3 Analysis Based on Rademacher Complexity 109

over functions f in co(H) will be realized “at a corner,” that is, at an f that is actually
equal to one of the classifiers h in the original space H. This property makes Rademacher
complexity particularly well suited to the study of voting classifiers, as we will soon
see.

Finally, we consider what happens to the Rademacher complexity when all of the func-
tions in a class F undergo the same transformation. Specifically, let φ : R → R be any
Lipschitz function, that is, a function such that, for some constant Lφ > 0 called the Lipschitz
constant, we have that

|φ(u)−φ(v)| ≤ Lφ · |u− v|
for all u, v ∈ R. Let φ ◦F be the result of composing φ with all functions in F :

φ ◦F .= {z �→ φ(f (z)) | f ∈ F}.
Then it can be shown (see exercise 5.5) that the Rademacher complexity of the transformed
class scales that of the original class by at most Lφ . That is,

RS(φ ◦F) ≤ Lφ ·RS(F). (5.25)

With these general tools, we can now derive a margins-based analysis that is similar to
(actually, slightly better than) the one given in section 5.2.

Let H be our space of base classifiers, and let M be the space of all “margin functions”
of the form yf (x) where f is any convex combination of base classifiers:

M .= {(x, y) �→ yf (x) | f ∈ co(H)}.
Note that

RS(M) = RS(co(H)) (5.26)

since the labels yi are “absorbed” by the σi’s and so become irrelevant under the definition
of Rademacher complexity given in equation (5.21).

For any θ > 0, let φ be the piecewise-linear function

φ(u)
.=
⎧⎨⎩

1 if u ≤ 0
1− u/θ if 0 ≤ u ≤ θ

0 if u ≥ θ .
(5.27)

See figure 5.3. This function is Lipschitz with Lφ = 1/θ .
We apply theorem 5.7 to the class φ ◦M. Working through definitions, for a sample of

size m, this gives that with probability at least 1− δ,

ED[φ(yf (x))] ≤ ES[φ(yf (x))]+ 2RS(φ ◦M)+
√

2 ln(2/δ)

m
(5.28)

110 5 The Margins Explanation for Boosting’s Effectiveness

Figure 5.3
A plot of the piecewise-linear function φ given in equation (5.27).

for all f ∈ co(H). Using, in order, equations (5.25), (5.26), (5.24), and (5.23), we can
compute the Rademacher complexity that appears in this expression to be

RS(φ ◦M) ≤ Lφ ·RS(M)

= Lφ ·RS(co(H))

= Lφ ·RS(H)

≤ 1

θ
·
√

2d ln(em/d)

m
(5.29)

where d is the VC-dimension of H, and assuming m ≥ d ≥ 1. (Alternatively, a bound in
terms of ln |H| could be obtained using equation (5.22).)

Note that

1{u ≤ 0} ≤ φ(u) ≤ 1{u ≤ θ},
as is evident from figure 5.3, so that

PrD[yf (x) ≤ 0] = ED[1{yf (x) ≤ 0}] ≤ ED[φ(yf (x))]

and

ES[φ(yf (x))] ≤ ES[1{yf (x) ≤ θ}] = PrS[yf (x) ≤ θ].

Therefore, combining with equations (5.28) and (5.29) gives

PrD[yf (x) ≤ 0] ≤ PrS[yf (x) ≤ θ]+ 2

θ
·
√

2d ln(em/d)

m
+
√

2 ln(2/δ)

m

5.4 The Effect of Boosting on Margin Distributions 111

for all f ∈ co(H), with probability at least 1− δ. This is essentially the same as theorem 5.5
(actually, a bit better).

5.4 The Effect of Boosting on Margin Distributions

The analyses given in sections 5.2 and 5.3 apply to any voting classifier, not just those
produced by boosting. In this section, we give theoretical evidence that AdaBoost is espe-
cially suited to the task of maximizing the number of training examples with large margin.
Informally, this is because, at every round, AdaBoost puts the most weight on the examples
with the smallest margins.

5.4.1 Bounding AdaBoost’s Margins

In theorem 3.1, we proved that if the empirical γ -weak learning assumption holds or, more
specifically, if the weighted training errors εt of the weak classifiers are all bounded below
1
2 − γ , then the training error of the combined classifier—that is, the fraction of training
examples with margin below zero—decreases exponentially fast with the number of weak
classifiers that are combined. Here, we extend this proof to give a more general bound on the
fraction of training examples with margin below θ , for any θ ≥ 0. The resulting bound is in
terms of the edges γt of the weak hypotheses, as well as θ , and shows that, under the same
weak learning condition, if θ is not too large, then the fraction of training examples with mar-
gin below θ also decreases to zero exponentially fast with the number of rounds of boosting.

Note that theorem 3.1 is a special case of this theorem in which we set θ = 0.

Theorem 5.8 Given the notation of algorithm 1.1 (p. 5), let γt
.= 1

2 − εt . Then the fraction
of training examples with margin at most θ is at most

T∏
t=1

√
(1+ 2γt)1+θ (1− 2γt)1−θ .

Proof Let f be as defined in equation (5.2). Note that yf (x) ≤ θ if and only if

y

T∑
t=1

αtht (x) ≤ θ

T∑
t=1

αt ,

which in turn holds if and only if

exp

(
−y

T∑
t=1

αtht (x)+ θ

T∑
t=1

αt

)
≥ 1.

Thus,

112 5 The Margins Explanation for Boosting’s Effectiveness

1{yf (x) ≤ θ} ≤ exp

(
−y

T∑
t=1

αtht (x)+ θ

T∑
t=1

αt

)
.

Therefore, the fraction of training examples with margin at most θ is

PrS[yf (x) ≤ θ] = 1

m

m∑
i=1

1{yif (xi) ≤ θ}

≤ 1

m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht (xi)+ θ

T∑
t=1

αt

)

=
exp

(
θ
∑T

t=1 αt

)
m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht (xi)

)

= exp

(
θ

T∑
t=1

αt

)(
T∏

t=1

Zt

)
(5.30)

where the last equality follows from the identical derivation used in the proof of theorem 3.1.
Plugging in the values of αt and Zt from equation (3.9) gives the theorem.

To get a feeling for this bound, consider what happens when, for all t , εt ≤ 1
2 − γ for

some γ > 0. Given this assumption, we can simplify the upper bound in theorem 5.8 to(√
(1− 2γ)1−θ (1+ 2γ)1+θ

)T

.

When the expression inside the parentheses is strictly smaller than 1, that is, when√
(1− 2γ)1−θ (1+ 2γ)1+θ < 1, (5.31)

this bound implies that the fraction of training examples with yf (x) ≤ θ decreases to zero
exponentially fast with T , and must actually be equal to zero at some point since this fraction
must always be a multiple of 1/m. Moreover, by solving for θ , we see that equation (5.31)
holds if and only if

θ < ϒ(γ)

where

ϒ(γ)
.= − ln(1− 4γ 2)

ln
(

1+2γ

1−2γ

) . (5.32)

This function is plotted in figure 5.4, where it can be seen that γ ≤ ϒ(γ) ≤ 2γ for 0 ≤
γ ≤ 1

2 , and that ϒ(γ) is close to γ when γ is small. So, to rephrase, we have shown that

5.4 The Effect of Boosting on Margin Distributions 113

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

M
in

im
um

 m
ar

gi
n

Minimum edge

Figure 5.4
A plot of the minimum margin ϒ(γ) guaranteed for AdaBoost as a function of the minimum edge γ . Also plotted
are the linear lower and upper bounds, γ and 2γ .

if every weak hypothesis has edge at least γ (as will happen when the empirical γ -weak
learning assumption holds), then in the limit of a large number of rounds T , all examples
will eventually have margin at least ϒ(γ) ≥ γ . In this sense, ϒ(γ) bounds the minimum
margin as a function of the minimum edge.

Thus, when the weak classifiers are consistently better than random guessing, the margins
of the training examples are guaranteed to be large after a sufficient number of boosting
iterations. Moreover, we see that there is a direct relationship at work here: The higher
the edges γt of the weak classifiers, the higher the margins that will be attained by Ada-
Boost’s combined classifier. This tight connection between edges and margins, which arose
in section 3.2, turns out to be rooted in the game-theoretic view of boosting which will be
explored in chapter 6.

This also suggests that stronger base classifiers, such as decision trees, which produce
higher accuracy prediction rules, and therefore larger edges, will also yield larger margins
and less overfitting, exactly as observed in the example in section 5.1. Conversely, weaker
base classifiers, such as decision stumps, tend to produce smaller edges, and therefore also
smaller margins, as can be seen, for instance, in the margin distributions shown in figure 5.5
on a benchmark dataset using stumps (see further discussion of this figure below). On the
other hand, stronger base classifiers generally have higher complexity than weaker ones,
and this complexity, according both to intuition and to the bounds in theorems 5.1 and 5.5,
is likely to be a detriment to performance. Thus, we are again faced with the fundamental

114 5 The Margins Explanation for Boosting’s Effectiveness

trade-off between complexity (of the base classifiers) and fit to the data (as measured by
their edges).

5.4.2 More Aggressive Margin Maximization

Theorem 5.8 shows that, under the empirical γ -weak learning assumption, all training exam-
ples will eventually have margin at least ϒ(γ) ≥ γ . This is encouraging since the analysis
in section 5.2 suggests that larger margins are conducive to better generalization. However,
this turns out not to be the best that can be done. Although in practice AdaBoost often seems
to achieve the largest possible minimum margin (that is, the smallest of the margins of the
training examples), theoretically it can be shown that ϒ(γ) is the best general bound that
can be proved on the minimum margin attained by AdaBoost under the γ -weak learning
assumption (see exercise 5.1). In contrast, it turns out that other methods can achieve a
margin of 2γ , which is roughly twice as large as ϒ(γ) when γ is small.

In fact, the proof of theorem 5.8 can be used to derive variations of AdaBoost for more
directly maximizing the number of training examples with margin above some prespecified
level θ . AdaBoost, as was seen in the proof of theorem 3.1, was derived for the purpose
of minimizing the usual training error PrS[yf (x) ≤ 0]. Suppose instead that our goal is to
minimize PrS[yf (x) ≤ θ] for a chosen value of θ . Then equation (5.30) combined with
equation (3.8) tells us generally that

PrS[yf (x) ≤ θ] ≤
T∏

t=1

[
e(θ−1)αt

(
1
2 + γt

)+ e(θ+1)αt
(

1
2 − γt

)]
. (5.33)

Rather than choosing αt as inAdaBoost, we can instead select αt to minimize equation (5.33)
directly. Doing so gives

αt = 1

2
ln

(
1+ 2γt

1− 2γt

)
− 1

2
ln

(
1+ θ

1− θ

)
, (5.34)

which is smaller than the AdaBoost choice by the additive constant appearing as the right-
most term of this expression. Assuming each αt ≥ 0 (which is equivalent to assuming
γt ≥ θ/2), we can plug this choice into equation (5.33), which gives a bound that can be
written succinctly as

PrS[yf (x) ≤ θ] ≤ exp

(
−

T∑
t=1

REb

(
1

2
+ θ

2
‖ 1

2
+ γt

))
. (5.35)

Here, REb (p ‖ q), for p, q ∈ [0, 1], is the (binary) relative entropy:

REb (p ‖ q) = p ln

(
p

q

)
+ (1−p) ln

(
1−p

1− q

)
, (5.36)

5.4 The Effect of Boosting on Margin Distributions 115

which is really just a special case of the more general relative entropy encountered in section
6.2.3 applied to Bernoulli distributions (p, 1−p) and (q, 1− q). As in the general case,
binary relative entropy is always nonnegative, and is equal to zero if and only if p = q.
Furthermore, it is increasing in q for q ≥ p. See section 8.1.2 for further background.

So if θ is chosen ahead of time, and if the γ -weak learning assumption holds for some
γ > θ/2, then the fraction of training examples with margin at most θ will be no more than

exp

(
−T ·REb

(
1

2
+ θ

2
‖ 1

2
+ γ

))
,

which tends to zero exponentially fast in the number of rounds T . Thus, when T is suffi-
ciently large, all of the training examples will have margin at least θ . If γ is known ahead of
time, then θ can be chosen to be slightly smaller than 2γ . This shows that, with additional
information regarding the edges, AdaBoost can be modified so that all training examples
will have margins arbitrarily close to 2γ , roughly twice the bound that we derived from the-
orem 5.8 for (unmodified) AdaBoost, and also the best bound attainable by any algorithm,
as will be discussed in section 5.4.3.

When γ is not known ahead of time, methods have been developed, such as arc-gv and
AdaBoost∗ν , for adjusting θ dynamically so as to achieve the same bound on the margins
without such prior information (see exercise 5.3). In this fashion, AdaBoost can be modified
so that the minimum margin provably converges to the largest value possible. Theorems 5.1
and 5.5, which say roughly that larger margins are better, suggest that this should benefit
the algorithm’s performance. However, in practice such methods often fail to give improve-
ment, apparently for two reasons. First, by attempting to more aggressively maximize the
minimum margin, the base learning algorithm is often forced to return base classifiers of
higher complexity so that the complexity terms (lg |H| or d) appearing in these theorems
will effectively be larger, counteracting improvements in the margin. This can especially
be a problem with very flexible base classifiers, such as decision trees, which can vary
considerably in complexity based on overall size and depth.

For instance, this can be seen in table 5.1, which shows the results of running AdaBoost
and arc-gv on five benchmark datasets using the decision-tree algorithm CART as base
learner. Arc-gv consistently gives larger minimum margins than AdaBoost, but also gives
consistently higher test error. Although an attempt was made in these experiments to control
complexity by forcing CART always to return trees with a fixed number of nodes, a more
careful examination of the results shows that when run with arc-gv, CART is likely to
produce deeper, skinnier trees which, it can be argued, tend to be more specialized in their
predictions and thus more prone to overfitting.

Even when the base-classifier complexity can be controlled (for instance, by using deci-
sion stumps), there may be a second reason for a lack of improvement. Although such
methods may succeed at increasing the minimum margin among all training examples, this
increase may come at the expense of the vast majority of the other training examples,

116 5 The Margins Explanation for Boosting’s Effectiveness

Table 5.1
Test errors (in percent), minimum margins, and average tree depths, averaged over ten trials, for AdaBoost
and arc-gv, run for 500 rounds using CART decision trees pruned to 16-leaf nodes as weak classifiers

Test Error Minimum Margin Tree Depth

arc-gv AdaBoost arc-gv AdaBoost arc-gv AdaBoost

breast cancer 3.04 2.46 0.64 0.61 9.71 7.86

ionosphere 7.69 3.46 0.97 0.77 8.89 7.23

ocr 17 1.76 0.96 0.95 0.88 7.47 7.41

ocr 49 2.38 2.04 0.53 0.49 7.39 6.70

splice 3.45 3.18 0.46 0.42 7.12 6.67

so that although the minimum margin increases, the bulk of the margin distribution actu-
ally decreases. Note that the bounds in theorems 5.1 and 5.5 depend on the entire margin
distribution, not just the minimum margin.

For instance, figure 5.5 shows the margin distributions produced when running AdaBoost
and arc-gv using decision stumps as the weak hypotheses on one of the benchmark datasets.
Arc-gv does indeed achieve higher minimum margin (−0.01 for arc-gv versus −0.06 for
AdaBoost), but, as the figure shows, the bulk of the training examples have substantially
higher margin for AdaBoost.

5.4.3 A Necessary and Sufficient Condition for Weak Learnability

In section 3.2, we gave a sufficient condition for the empirical γ -weak learning assumption
to hold, namely, that the training data be linearly separable with margin 2γ , meaning
that there exists some linear threshold function (that is, some combined classifier) under
which every training example has margin at least 2γ . Now we have the tools to prove the
exact converse, and to show that this condition is both sufficient and necessary. Suppose the
empirical γ -weak learning assumption holds. Then the argument above shows that modified
AdaBoost, for any θ < 2γ , will find a combined classifier under which all training examples
have margin at least θ , in other words, witnessing that the data is linearly separable with
margin θ . Since θ can be made arbitrarily close to 2γ , this essentially proves the converse.
Thus, there exists a combined classifier for which every training example has margin at least
2γ if and only if for every distribution over the training set there exists a weak hypothesis
with edge at least γ .

Furthermore, we can define a natural notion of optimal margin, meaning the largest value
θ∗ such that for some combined classifier, every training example has margin at least θ∗.
And we can define a corresponding notion of optimal edge, meaning the largest value γ ∗

such that for every distribution, there is some weak hypothesis with edge at least γ ∗. (Like
the other concepts in this section, both of these are defined with respect to a particular
dataset and hypothesis space.) Then the equivalence outlined above implies further that the
optimal edge is equal to some value γ ∗ if and only if the optimal margin is 2γ ∗.

5.5 Bias, Variance, and Stability 117

0.5

1

0 0.5

AdaBoost
arc-gv

Figure 5.5
Cumulative margins for AdaBoost and arc-gv for the breast cancer dataset after 100 rounds of boosting on decision
stumps.

Here, we again encounter the inseparable relationship between edges and margins.
Understood more deeply, this equivalence between margins and edges, and between linear
separability and the empirical weak learning assumption, turns out to be a direct consequence
of fundamental results of game theory, as will be seen in chapter 6.

5.5 Bias, Variance, and Stability

In this chapter, we have presented an explanation of AdaBoost’s successes and failures in
terms of the margins theory. One of the main alternative explanations for the improvements
achieved by voting classifiers is based instead on separating the expected generalization
error of a classifier into a bias term and a variance term. While the details of these definitions
differ from author to author, they are all attempts to capture the following quantities: The
bias term measures the persistent error of the learning algorithm, the error that would remain
even if we had an infinite number of independently trained classifiers. The variance term
measures the error that is due to fluctuations that are a part of generating a single classifier.
The idea is that by averaging over many classifiers, one can reduce the variance term and
in that way reduce the expected error. In this section, we discuss a few of the strengths
and weaknesses of bias-variance theory as an explanation for the performance of voting
methods, especially boosting.

The origins of bias-variance analysis are in quadratic regression where performance is
measured using the squared error (see chapter 7). Averaging several independently trained

118 5 The Margins Explanation for Boosting’s Effectiveness

regression functions will never increase the expected error. This encouraging fact is nicely
reflected in the bias-variance separation of the expected quadratic error. Both bias and vari-
ance are always nonnegative, and averaging decreases the variance term without changing
the bias term.

One would naturally hope that this beautiful analysis would carry over from quadratic
regression to classification. Unfortunately, taking the majority vote over several classifica-
tion rules can sometimes result in an increase in the expected classification error (and we
will shortly see an example of how voting can make things worse). This simple observation
suggests that it may be inherently more difficult or even impossible to find a bias-variance
decomposition for classification as natural and satisfying as in quadratic regression. This
difficulty is reflected in the myriad definitions that have been proposed for bias and variance.

The principle of variance reduction is the basis of other voting methods, notably bagging.
This is a procedure quite similar to boosting, but one in which the distributions Dt are fixed
for all iterations to be uniform over the training set, and resampling, as in section 3.4.1, is
always employed so that the base classifiers are each trained on so-called bootstrap samples
of the data. That is, on each round t , the base learner is trained on a dataset consisting of m

examples, each selected uniformly at random from the original dataset (with replacement,
of course). Thus, some examples will be included more than once in a given dataset, while
more than a third, on average, will be omitted entirely.

The notion of variance certainly seems to be helpful in understanding bagging; empir-
ically, bagging appears to be most effective for learning algorithms with large variance
which are unstable in the sense that small changes in the data can cause large changes in the
learned classifier. In fact, variance has sometimes been defined to be the amount of decrease
in error effected by bagging a large number of base classifiers under idealized conditions.
This ideal situation is one in which the bootstrap samples used in bagging faithfully approx-
imate truly independent samples. However, this assumption can fail to hold in practice, in
which case bagging may not perform as well as expected, even when variance dominates
the error of the base learning algorithm.

It has been argued that boosting is also primarily a variance-reducing procedure. Some
of the evidence for this comes from the observed effectiveness of boosting when used with
decision-tree learning algorithms like C4.5 or CART, algorithms known empirically to have
high variance. As the error of these algorithms is mostly due to variance, it is not surprising
that the reduction in the error is primarily due to a reduction in the variance. However,
boosting can also be highly effective when used with learning algorithms whose error tends
to be dominated by bias rather than variance. Indeed, boosting is intended for use with quite
weak base learning algorithms, such as decision stumps, which often have high bias and
low variance.

To illustrate this point, table 5.2 shows the results of running boosting and bagging on
three artificial datasets on training sets of size 300. For the base learning algorithm, both the
decision-tree algorithm C4.5 (section 1.3) and decision stumps (section 3.4.2) were used.

5.5 Bias, Variance, and Stability 119

Ta
bl

e
5.

2
R

es
ul

ts
of

bi
as

-v
ar

ia
nc

e
ex

pe
ri

m
en

ts
us

in
g

bo
os

tin
g

an
d

ba
gg

in
g

on
th

re
e

sy
nt

he
tic

da
ta

se
ts

K
on

g
&

D
ie

tte
ri

ch
D

efi
ni

tio
ns

B
re

im
an

D
efi

ni
tio

ns

St
um

ps
C

4.
5

St
um

ps
C

4.
5

N
am

e
–

B
oo

st
B

ag
–

B
oo

st
B

ag
–

B
oo

st
B

ag
–

B
oo

st
B

ag

tw
on

or
m

bi
as

2.
5

0.
6

2.
0

0.
5

0.
2

0.
5

1.
3

0.
3

1.
1

0.
3

0.
1

0.
3

va
ri

an
ce

28
.5

2.
3

17
.3

18
.7

1.
8

5.
4

29
.6

2.
6

18
.2

19
.0

1.
9

5.
6

er
ro

r
33

.3
5.

3
21

.7
21

.6
4.

4
8.

3
33

.3
5.

3
21

.7
21

.6
4.

4
8.

3

th
re

en
or

m
bi

as
24

.5
6.

3
21

.6
4.

7
2.

9
5.

0
14

.2
4.

1
13

.8
2.

6
1.

9
3.

1
va

ri
an

ce
6.

9
5.

1
4.

8
16

.7
5.

2
6.

8
17

.2
7.

3
12

.6
18

.8
6.

3
8.

6
er

ro
r

41
.9

22
.0

36
.9

31
.9

18
.6

22
.3

41
.9

22
.0

36
.9

31
.9

18
.6

22
.3

ri
ng

no
rm

bi
as

46
.9

4.
1

46
.9

2.
0

0.
7

1.
7

32
.3

2.
7

37
.6

1.
1

0.
4

1.
1

va
ri

an
ce

–7
.9

6.
6

–7
.1

15
.5

2.
3

6.
3

6.
7

8.
0

2.
2

16
.4

2.
6

6.
9

er
ro

r
40

.6
12

.2
41

.4
19

.0
4.

5
9.

5
40

.6
12

.2
41

.4
19

.0
4.

5
9.

5

Fo
r

ea
ch

da
ta

se
ta

nd
ea

ch
le

ar
ni

ng
m

et
ho

d,
bi

as
,v

ar
ia

nc
e,

an
d

ge
ne

ra
liz

at
io

n
er

ro
r

ra
te

w
er

e
es

tim
at

ed
,t

he
n

re
po

rt
ed

in
pe

rc
en

t,
us

in
g

tw
o

se
ts

of
de

fin
iti

on
s

fo
r

bi
as

an
d

va
ri

an
ce

.B
ot

h
C

4.
5

an
d

de
ci

si
on

st
um

ps
w

er
e

us
ed

as
ba

se
le

ar
ni

ng
al

go
ri

th
m

s.
C

ol
um

ns
he

ad
ed

w
ith

a
da

sh
in

di
ca

te
th

at
th

e
ba

se
le

ar
ni

ng
al

go
ri

th
m

w
as

ru
n

by
its

el
f.

120 5 The Margins Explanation for Boosting’s Effectiveness

Bias, variance, and average generalization error were estimated by rerunning each algorithm
many times. Two different definitions of bias and variance were used, one due to Kong and
Dietterich, and the other due to Breiman. (See the bibliographic notes for references with
details.)

Clearly, these experiments show that boosting is doing more than reducing variance.
For instance, on the “ringnorm” dataset, boosting decreases the overall error of the stump
algorithm from 40.6% to 12.2%, but increases the variance from −7.9% to 6.6% using
Kong and Dietterich’s definitions, or from 6.7% to 8.0% using Breiman’s definitions. The
decrease in error is instead due to a very substantial drop in the bias.

The view of boosting as mainly a variance-reducing procedure predicts that boosting will
fail when combined with a “stable” learning algorithm with low variance. This is clearly
false, as the experiments above demonstrate. The theory presented in this chapter suggests
a different characterization of the cases in which boosting might fail. Theorems 5.1 and 5.5,
together with theorem 5.8, predict that boosting can perform poorly only when either (1)
there is insufficient training data relative to the complexity of the base classifiers, or (2) the
training errors of the base classifiers (the εt ’s in theorem 5.8) become too large too quickly.

Moreover, although bagging was originally introduced as a method based on variance
reduction, it too can be analyzed using the part of the margins theory developed in section 5.2
since this theory is generally applicable to any voting method, including bagging. Such an
analysis would, as usual, be in terms of the margin distribution, as well as base-classifier
complexity and training set size, and would not depend on the number of rounds of bagging.
In the case of bagging, the margin of a training example is simply a measure of the fraction of
selected base classifiers that correctly classify it, a quantity that must converge after a large
number of rounds to the probability of a base classifier, randomly generated according to the
bootstrap process, correctly classifying it. Thus, this analysis predicts little or no overfitting,
while providing nonasymptotic bounds on performance in terms of intuitive quantities.As an
example, figure 5.6 shows the learning curves and margin distribution when bagging is used
instead of boosting with the same base learner and dataset as in section 5.1, for comparison
with figures 1.7 and 5.2. As is typical, bagging’s margin distribution has a qualitatively
different form than boosting’s, but nevertheless shows that a fairly small fraction of the
examples have low margin (though not as few as with boosting, in this case).

The bias-variance interpretation of boosting and other voting methods is closely related
to an intuition that averaging (or really voting) many classifiers is sure to lead to better
predictions than the individual base classifiers, just as one expects that the average of many
estimates (say, of the bias of a coin) will be better than the individual estimates. This view
is supported by a supposition that a combined classifier formed by voting does not have
higher complexity than the base classifiers. Unfortunately, these intuitions do not hold
true in general for classification problems. A majority-vote classifier may be substantially
more complex and prone to overfitting than its constituent classifiers, which might be very
simple.

5.5 Bias, Variance, and Stability 121

10 100 1000
0

5

10

15

20

–1 -0.5 0.5 1

0.5

1.0

Figure 5.6
Results of running bagging on C4.5 on the letter dataset. The figure on the left shows the test (top) and training
(bottom) percent error rates for bagging as a function of the number of rounds. The figure on the right shows the
margin distribution graph. See the analogous figures 1.7 and 5.2 for further description. (Reprinted with permission
of the Institute of Mathematical Statistics.)

As an example, suppose we use base classifiers that are delta-functions which predict
+1 on a single point in the input space and −1 everywhere else, or vice versa (−1 on one
point and +1 elsewhere), or that are constant functions predicting −1 everywhere or +1
everywhere. For any training set of size m, assuming the same instance never appears twice
with different labels, and for any distribution D over this set, there must always exist a
delta-function with error (with respect to D) at most

1

2
− 1

2m
.

This is because one training example (xi, yi) must have probability at least 1/m under
D, so an appropriately constructed delta-function will classify xi correctly, as well as at
least half of the probability mass of the remaining examples. Thus, the empirical γ -weak
learning assumption holds for γ = 1/(2m), which implies that, by theorem 3.1, AdaBoost
will eventually construct a combined classifier that correctly classifies all m training exam-
ples.

As discussed in chapter 2, the very fact that we can easily fit such a rule to any training set
implies that we do not expect the rule to be very good on new test examples outside of the
training set. In other words, the complexity of these voting rules is too large, relative to
the size of the sample, to make them useful. In fact, exactly this argument shows that their
VC-dimension is infinite. Note that this complexity is entirely the result of voting. Each
one of the delta-functions is very simple (the VC-dimension of this class is exactly 3), and
would likely underfit most datasets. By voting many such simple rules, we end up with a
combined classifier that is instead overly complex, one that would certainly overfit nearly
any dataset.

122 5 The Margins Explanation for Boosting’s Effectiveness

Our analysis shows that AdaBoost controls the complexity of the combined classifier by
striving for one with large margins. Indeed, when large margins can be attained, theorems 5.1
and 5.5 show that AdaBoost will perform as if the complexity of the combined classifier is
on the same order as that of the base classifiers, so that the penalty for forming a majority
vote of a large number of these is minimized.

AdaBoost’s predicted poor performance in the example above is entirely consistent with
our margin-based analysis; if AdaBoost is run for a long time, as noted earlier, all of the
training examples will be correctly classified, but only with tiny margins of size O(1/m),
far too small to predict good generalization performance. (To be meaningful, theorems 5.1
and 5.5 require margins of size at least �(1/

√
m).)

5.6 Relation to Support-Vector Machines

Boosting is not the only classification method that seems to operate on the principle of
(approximate) margin maximization. In particular, support-vector machines (SVMs), which
are based explicitly on this principle, are currently very popular due to their effectiveness for
general machine-learning tasks. Although boosting and SVMs are both learning methods
based on maximization of quantities referred to loosely as “margins,” we will see in this
section how they differ significantly in important respects.

5.6.1 Brief Overview of SVMs

Since a full treatment of SVMs is well beyond the scope of this book, we give only an
overview of the main ingredients of this approach.

Let us for now suppose that the instances x being classified are actually points in Euclidean
space Rn. Thus, the learner is given (x1, y1), . . . , (xm, ym) where xi ∈ Rn and yi ∈
{−1,+1}. For instance, we might be given the examples in figure 5.7, where n = 2. Already
we see an important difference from boosting: SVMs are based on a strongly geometrical
view of the data.

Given such data, the first idea of SVMs is to find a linear classifier, or linear threshold
function, that correctly labels the data. In general, if there is even one, then there are likely to
be many such linear classifiers. Rather than choosing one arbitrarily, in SVMs, we choose
the hyperplane which separates the positive examples from the negative examples, and
is maximally far from the closest data point. For instance, in figure 5.7 we might find a
hyperplane (in this case, a line) like the one shown so as to maximize the indicated separation
distance. Thus, not only do we want to correctly classify the training points, we also want
those training points to be as far from the dividing boundary as possible.

More formally, a separating hyperplane is given by the equation2 w · x = 0, where w,
without loss of generality, has unit length (‖w‖2 = 1). An instance x is classified by such a

2. We have simplified our discussion by assuming that the hyperplane passes through the origin.

5.6 Relation to Support-Vector Machines 123

Figure 5.7
Sample data in two dimensions, and the separating hyperplane (a line in this case) that might be found by SVMs
in this case. The support vectors, the examples closest to the hyperplane, have been circled.

hyperplane according to which side it falls on, that is, using the prediction rule

sign(w · x).

With respect to the hyperplane defined by w, the (signed) distance of an example from the
separating hyperplane is called the margin. As we will see, it is related to, but distinct from,
the margin used in boosting. The margin of example (x, y) can be computed to be y(w · x).
The margin of an entire training set is the minimum of the margins of the individual training
examples, that is, mini yi(w · xi). The idea then is to find the hyperplane w that maximizes
this minimum margin.

Of course, it is well known that linear threshold functions are limited in their expres-
siveness, especially in low dimensions. Nevertheless, data that starts out being linearly
inseparable in its original low-dimensional space may become separable if mapped into a
higher-dimensional space.

For instance, the data in figure 5.8 is clearly linearly inseparable. However, suppose we
map these two-dimensional points x = 〈x1, x2〉 into R6 by the map

h(x) = h(x1, x2)
.= 〈1, x1, x2, x1x2, x2

1 , x2
2〉.

Then a linear hyperplane defined on these mapped points has the form

w ·h(x) = w1+w2x1+w3x2+w4x1x2+w5x
2
1 +w6x

2
2 = 0

124 5 The Margins Explanation for Boosting’s Effectiveness

Figure 5.8
Data in two dimensions that cannot be linearly separated, but can be separated using an ellipse or, equivalently,
a hyperplane following projection into six dimensions.

Figure 5.9
In their original, one-dimensional space, the seven points comprising this dataset are evidently linearly inseparable.
However, when each point x is mapped to the two-dimensional vector 〈x, x2〉, that is, onto the parabola shown in
the figure, the data now becomes linearly separable.

5.6 Relation to Support-Vector Machines 125

for scalars w1, . . . , w6. In other words, a linear hyperplane in the mapped space can be used
to represent any conic section in the original space, including, for instance, the ellipse in
figure 5.8, which clearly does separate the positive and negative examples. An even simpler
example is shown in figure 5.9.

Thus, in general, the instances x ∈ Rn may be mapped to a higher-dimensional space RN

using a map h, simply by replacing all appearances of x in the algorithm with h(x). In this
example, n = 2 dimensions were mapped to N = 6. In practice, however, points starting
out in a reasonable number of dimensions (say, 100) can easily end up being mapped into
an extremely large number of dimensions (perhaps in the billions, or worse), so this would
seem to be a very expensive computational operation.

Fortunately, in many cases a remarkable technique based on kernels can be applied to
make for computational feasibility. It turns out that the only operation that is needed to
implement SVMs is inner product between pairs of (mapped) points, that is, h(x) ·h(z).
This sometimes can be done very efficiently. For instance, we can modify the example
above slightly so that

h(x) = h(x1, x2)
.= 〈1,

√
2x1,

√
2x2,

√
2x1x2, x2

1 , x2
2 〉.

The insertion of a few constants does not change the expressiveness of the linear threshold
functions that can be computed using this mapping, but now it can be verified that

h(x) ·h(z) = 1+ 2x1z1+ 2x2z2+ 2x1x2z1z2+ x2
1z2

1+ x2
2z2

2

= (1+ x · z)2. (5.37)

Thus, the inner product of mapped points can be computed without ever expanding explicitly
into the higher-dimensional space, but rather simply by taking inner product in the original
low-dimensional space, adding 1, and squaring.

The function on the right-hand side of equation (5.37) is called a kernel function, and there
are many other such functions which make it possible to implement SVMs even when map-
ping into very high-dimensional spaces. The computational savings effected by this trick
can be tremendous. For instance, generalizing the example above, if we wanted to add all
terms up to degree k (rather than degree 2, as above), so that we are mapping from n dimen-
sions to O(nk) dimensions, we can compute inner products in this very high-dimensional
space using a kernel identical to the one in equation (5.37), but with the exponent 2
replaced by k; this kernel can be computed in O(n+ ln k) time. Using kernels to quickly
compute inner products in very high-dimensional spaces is the second key ingredient of
SVMs.

Many types of kernels have been developed; the polynomial kernels above are just one
example. In fact, kernels can even be defined on objects other than vectors, such as strings
and trees. Because the original objects need not be vectors, we therefore revert in the
following to writing instances as the more generic x rather than x.

126 5 The Margins Explanation for Boosting’s Effectiveness

Although the computational difficulty of mapping to a very high-dimensional space can
sometimes be made tractable, there remains the statistical “curse of dimensionality,” which
suggests that generalization based on high-dimensional data (relative to the number of train-
ing examples) is likely to be poor. Indeed, the VC-dimension of general linear threshold
functions in RN is equal to N (see lemma 4.1), suggesting that the number of training exam-
ples must be on the same order as the number of dimensions. However, the VC-dimension
of linear threshold functions with large margin may be much lower. In particular, sup-
pose without loss of generality that all examples are mapped inside a unit ball so that
‖h(x)‖2 ≤ 1. Then it can be shown that the VC-dimension of linear threshold functions
with margin γ > 0 is at most 1/γ 2, regardless of the number of dimensions. This suggests
that generalization may be possible even in extremely high-dimensional spaces, provided
it is possible to achieve large margins.

5.6.2 Comparison to Boosting

When using a mapping function h as above, the linear classifier produced by SVMs has the
form

sign(w ·h(x)).

AdaBoost, on the other hand, computes a final classifier of the form given in equation (5.3):

sign

(
T∑

t=1

atht (x)

)
,

where the at ’s, as in equation (5.1), are nonnegative and sum to 1. In fact, with a little bit more
notation, these can be seen to be of exactly the same form as in SVMs. For simplicity, let us
assume that the base-classifier space H is finite, and consists of the functions �1, . . . , �N .
Then we can define a vector

h(x)
.= 〈�1(x), . . . , �N(x)〉.

Although H is finite, it will typically be huge, so h(x) is an extremely high-dimensional
vector. On each round t of boosting, one coordinate jt of this vector is selected corresponding
to the chosen base classifier ht = �jt . By setting

wj =
∑

t :jt=j

at

for j = 1, . . . , N, we can also define a weight vector w ∈ RN in terms of the at ’s so that

w ·h(x) =
T∑

t=1

atht (x).

5.6 Relation to Support-Vector Machines 127

Thus, AdaBoost’s final classifier now has the identical form as SVMs, both being lin-
ear threshold functions, though over rather different spaces. This representation also
emphasizes the fact that AdaBoost, like SVMs, employs a mapping h into a very high-
dimensional space; indeed, as already noted, the number of dimensions of the mapped space
is equal to the cardinality of the entire space of base classifiers—typically, an extremely
large space.

As noted earlier, SVMs and boosting can both be understood and analyzed as methods
for maximizing some notion of margin. However, the precise forms of margin used for the
two methods are different in subtle but important ways. The margin used in SVMs for an
example (x, y) is defined to be y(w ·h(x)). The margin used in boosting would appear to
be identical:

yf (x) = y

T∑
t=1

atht (x) = y(w ·h(x)).

However, there is a major difference not revealed by the notation. In analyzing SVMs, we
assumed that w has unit Euclidean length (so that ‖w‖2 = 1) and, moreover, that h maps
into the unit ball so that ‖h(x)‖2 ≤ 1 for all x. In contrast, for boosting we found it natural
to normalize the weights at so that

∑T
t=1 |at | = 1, that is, so that ‖w‖1 = 1. Further, the

coordinates of the mapping h correspond to base classifiers, each with range {−1,+1}. Thus,

max
j
|�j (x)| = 1

or, more succinctly, ‖h(x)‖∞ = 1 for all x. (See appendix A.2 for more about �p-norms.)
Thus, both definitions of margin assume that the weight vector w and the map h are

bounded, but using different norms. The SVM approach, being intrinsically geometrical,
uses Euclidean norms, while boosting utilizes the �1- and �∞-norms.

This choice of norms can make a big difference. For instance, suppose all the components
of h(x) have range {−1,+1}, and that the weight vector w assigns unit weights to k of the N

coordinates (where k is odd), and zero weight to all others. In other words, sign(w ·h(x)) is
computing a simple majority vote of k of the dimensions or base classifiers. Although overly
simplistic, this is suggestive of learning problems in which only a subset of a very large
number of features/dimensions/base classifiers are actually relevant to what is being learned.
Normalizing appropriately, we see that the boosting (�1/�∞) margin of this classifier is 1/k,
which is reasonable if k is not too large. Also, this margin is independent of the number of
dimensions N . On the other hand, the SVM (�2/�2) margin would be 1/

√
kN, which could

be far worse if N is very large. Other examples in which the SVM margin is far superior
can also be constructed.

There is another important difference between boosting and SVMs. Both aim to find a
linear classifier in a very high-dimensional space. However, computationally they are quite

128 5 The Margins Explanation for Boosting’s Effectiveness

different in how they manage to do this: SVMs use the method of kernels to perform com-
putations in the high-dimensional space, while boosting relies on a base learning algorithm
that explores the high-dimensional space one coordinate at a time.

Finally, we point out that the SVM approach is predicated on explicitly maximizing the
minimum margin (although some variants relax this objective somewhat). AdaBoost, as
discussed in section 5.4, does not provably maximize the minimum margin, but only tends
to increase the overall distribution of margins, a property that empirically seems sometimes
to be advantageous.

5.7 Practical Applications of Margins

Although we have focused largely on their theoretical utility, in practical terms margins
can be quite useful as a reasonable measure of confidence. In this section, we describe two
applications of this principle.

5.7.1 Rejecting Low-Confidence Predictions for Higher Accuracy

As previously discussed, the larger the magnitude of the margin, the greater our confidence
in the predictions of the combined classifier. Intuitively, and also in line with our earlier theo-
retical development, we expect such high-confidence examples to have a correspondingly
greater chance of being correctly classified. Moreover, note that the absolute margin—that
is, |yf (x)| = |f (x)|—can be computed without knowledge of the label y. As we will see,
these properties can be very useful in applications that demand high accuracy predictions,
even if they are limited to only a part of the domain, since such settings require the use of
a classifier that “knows what it knows” (or does not know).

For example, consider a classifier that is used as part of a spoken-dialogue system to
categorize verbal utterances according to their meaning (see section 10.3). Knowing that a
particular classification was made with high confidence means that it can be relied upon by
the rest of the system. On the other hand, a low-confidence classification can be handled
accordingly, for instance, by asking the user to repeat a response or to provide further infor-
mation. Likewise, a classifier designed for the automatic categorization of news articles
by major topic can be used and trusted when producing high-confidence predictions, while
articles classified with low confidence can be handed off to a human for manual annotation.
In other tasks, like spam filtering, we may instead want to treat all low-confidence predic-
tions as ham so that only email messages that are predicted spam with high confidence are
filtered out, thus minimizing the number of legitimate emails mistaken for spam.

In general, we might select a threshold so that all predictions with absolute margin above
this value are trusted for their “high” confidence, while those with “low” confidence, below
the chosen threshold, are rejected, for instance, in one of the ways described above. The
particular threshold value can be chosen based on performance on held-out data not used

5.7 Practical Applications of Margins 129

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90

%
 e

rr
or

% reject rate

Figure 5.10
The trade-off between error and reject rate on the census dataset. One point is plotted for every possible margin
threshold with the x-coordinate indicating the fraction of test examples rejected (that is, with absolute margin
below threshold), and the y-coordinate giving the error as measured over the part of the test set not rejected (with
margin above threshold).

for training, taking into account the requirements of the application. Naturally, the more
examples rejected, the higher the accuracy on the examples that remain.

Figure 5.10 shows this trade-off on actual data. In this case, the instances are persons from
a 1994 US Census database, each described by age, education, marital status, and so on.
The problem is to predict whether or not a given individual’s income exceeds $50,000. In
this experiment, AdaBoost was run on 10,000 training examples using decision stumps
for 1000 rounds. (Also, real-valued weak hypotheses were employed, as described in
chapter 9.)

On the entire test set of 20,000 examples, the overall test error was 13.4%. However,
as the figure shows, a much lower error can be attained by rejecting a fraction of the test
data. For instance, when the 20% of the test set with smallest absolute margins are rejected,
the error on the remaining 80% drops by about half to 6.8%. A test error below 2% can be
achieved at the cost of rejecting about 43% of the test examples. Thus, quite high accuracy
can be attained on an identifiable and nonnegligible fraction of the dataset.

5.7.2 Active Learning

We turn next to a second application of margins. Throughout this book, we have taken for
granted an adequate supply of labeled examples. In many applications, however, although
there may well be an abundance of unlabeled examples, we may find that reliable labels

130 5 The Margins Explanation for Boosting’s Effectiveness

Algorithm 5.1
An active learning method based on AdaBoost, using the absolute margin as a measure of confidence

Given: large set of unlabeled examples
limited annotation resources.

Initialize: choose an initial set of random examples for labeling.
Repeat:

• Train AdaBoost on all examples labeled so far.

• Obtain (normalized) final hypothesis f (x) as in equation (5.2).

• Choose the k unlabeled examples x with minimum |f (x)| for labeling.

are rather scarce due to the difficulty, expense, or time involved in obtaining human anno-
tations. For example, in a vision task like face detection (section 3.4.3), it is not hard to
gather thousands or millions of images, for instance, off the Internet. However, manually
identifying all of the faces (and non-faces) in a large collection of images can be exceed-
ingly slow and tedious. Likewise, in the kind of spoken-dialogue task mentioned earlier,
obtaining recordings of utterances is relatively cheap; the expense is in annotating those
recordings according to their proper categorization.

In such a setting where we have a large number of unlabeled examples but limited
resources for obtaining labels, it makes sense to carefully and selectively choose which
examples will be labeled, an approach known as active learning. Ideally, we would like
to choose examples whose labels will be most “informative” and most helpful in driving
the learning process forward. These are generally difficult notions to quantify and measure,
especially without knowledge of the true labels. Nevertheless, intuitively, examples with
low-confidence predictions are likely to have these properties: If we are very unsure of
the correct label for a given example, then whatever that label turns out to be will be new
information that can move learning forward. So the idea is to iteratively train a classifier
using a growing pool of labeled examples where, on each iteration, the unlabeled examples
we are least confident about are selected for labeling.

In boosting, as we have discussed at length, the absolute margin |f (x)| can be used as a
measure of confidence. Putting these ideas together leads to a procedure like algorithm 5.1.
This simple approach to active learning can be surprisingly effective.

For instance, this approach has been applied to the spoken-dialogue task mentioned
above and described in detail in section 10.3. Figure 5.11 shows how actively selecting
examples for labeling in the manner described above compares with choosing the examples
at random on each iteration. In these experiments, an initial set of 1000 examples was chosen
for labeling, and k = 500 examples were added on each iteration. Decision stumps were
used as described in section 10.3, and boosting was run for 500 rounds. These experiments

5.7 Practical Applications of Margins 131

24

25

26

27

28

29

30

31

32

0 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

%
 e

rr
or

labeled examples

random
active

Figure 5.11
A comparison of the percent test error achieved on a spoken-dialogue task for an increasing number of labeled
examples selected from a fixed pool using either active learning or random selection.

were repeated ten times and the results were averaged. In each case, examples were selected
from a training pool of 40,000 examples, initially all unlabeled.3

In terms of labeling effort, figure 5.11 shows that the savings can be tremendous. For
example, as shown in table 5.3, to obtain a test error rate of 25%, some 40,000 randomly
selected examples must be labeled (that is, the entire training set), while only 13,000 actively
selected examples suffice—more than a threefold savings.

In these controlled experiments, a fixed set of 40,000 examples was used for training
so that the performance of both active and random selection must finally converge to the
same point. This means that the latter part of the active-learning curve reflects the addi-
tion of less informative examples added later in the process, once all the other examples
have been labeled, and suggests that even greater improvements in performance may be
possible with larger pools of unlabeled examples. (In some applications, where a steady
stream of unlabeled examples arrives every day, the supply is virtually infinite.) Further-
more, it is interesting that on this dataset, using only about half the data, if chosen selectively,
gives better results than using the entire dataset: With 19,000 labeled examples, active learn-
ing gives a test error of 24.4% compared to 25.0% using the entire set of 40,000 examples.

3. Since this dataset is multiclass and multi-label, a modified definition of margin was used, namely, the difference
of the “scores” predicted by the final classifier for the top two labels. Also, “one-error” was used instead of
classification error. See chapter 10.

132 5 The Margins Explanation for Boosting’s Effectiveness

Table 5.3
The number of rounds needed to achieve various test error rates for the experimental results in figure 5.11, as well
as the percentage labeling effort reduced by active learning

First Reached

% error Random Active % Label Savings

27.0 14,500 7,000 51.7

26.0 22,000 9,000 59.1

25.0 40,000 13,000 67.5

24.5 – 16,000 –

Apparently, the examples labeled toward the end of the process not only are uninformative,
but actually seem to have a “disinformative” effect, perhaps due to mislabeling.

Summary

We have explored in this chapter a theory for understanding AdaBoost’s generalization
capabilities in terms of its propensity to maximize the margins of the training examples.
Specifically, the theory provides that AdaBoost’s generalization performance is largely a
function of the number of training examples, the complexity of the base classifiers, and the
margins of the training examples. These margins in turn are intimately related to the edges of
the base classifiers. The theory gives an explanation of whyAdaBoost often does not overfit,
as well as qualitative predictions of the conditions under which the algorithm can fail.

The margins theory seems to provide a more complete explanation forAdaBoost’s behav-
ior than bias-variance analysis does, and linksAdaBoost with SVMs, another margins-based
learning method. Unfortunately, attempts to directly apply insights from the theory as a
means of improving AdaBoost have met with mixed success for a number of reasons. Even
so, margins are practically useful as a natural measure of confidence.

In the following chapters, we turn to some alternative interpretations of the AdaBoost
algorithm itself.

Bibliographic Notes

The margins explanation for the effectiveness of AdaBoost and other voting methods, as
presented in sections 5.1 and 5.2 (including figure 5.2), is due to Schapire et al. [202].
Their analysis, in turn, was based significantly on a related result of Bartlett [11] for neural
networks. An improved bound for the case in which all examples have margin above θ

(as in the last paragraph of section 5.2) was proved by Breiman [36]. See also the refined
analysis of Wang et al. [230] based on the notion of an “equilibrium margin.”

Bibliographic Notes 133

The use of Rademacher complexity as a tool in the analysis of voting methods, as in
section 5.3, was introduced by Koltchinskii and Panchenko [139]. An excellent review of
these methods, including proofs and references, is given by Boucheron, Bousquet, and
Lugosi [30].

Theorem 5.8 was proved by Schapire et al. [202]. The bound ϒ(γ) derived in section 5.4.1
on the asymptotic minimum margin is due to Rätsch and Warmuth [187]. This bound was
shown to be tight by Rudin, Schapire, and Daubechies [196]. That AdaBoost need not
always achieve the largest possible minimum margin, even when using an exhaustive weak
learner, was first proved by Rudin, Daubechies, and Schapire [194].

The modified version ofAdaBoost given by the choice of αt in equation (5.34) was initially
studied by Rätsch et al. [186] and Breiman [36], and later by Rätsch and Warmuth [187],
who called the resulting algorithm AdaBoostρ , and who gave an analysis similar to the
one in section 5.4.2. The algorithms arc-gv and AdaBoost∗ν , which provably maximize the
minimum margin, are due to Breiman [36] and Rätsch and Warmuth [187], respectively.
Other algorithms with this property have also been given by Grove and Schuurmans [111],
Rudin, Schapire, and Daubechies [196], and Shalev-Shwartz and Singer [211]. A different
approach for directly optimizing the margins (though not necessarily the minimum margin)
is given by Mason, Bartlett, and Baxter [167].

Breiman [36] conducted experiments with arc-gv which showed that it tends to achieve
higher margins than AdaBoost, but also slightly higher test errors. Results of a similar flavor
were also obtained by Grove and Schuurmans [111]. The experiments reported in table 5.1
and figure 5.5, as well as the explanation given of Breiman’s findings, are due to Reyzin
and Schapire [188].

As noted in chapter 3, the connection between optimal margins and optimal edges, as in
section 5.4.3, was first made explicit by Rätsch and Warmuth [187].

Bagging, as discussed in section 5.5, is due to Breiman [34], who also proposed a bias-
variance explanation for both bagging’s and boosting’s effectiveness [35]. The definitions
of bias and variance used here are due to Breiman [35] and Kong and Dietterich [140],
although others have been proposed [138, 217]. The main arguments and results of this
section, including table 5.2 (adapted) and figure 5.6, are taken from Schapire et al. [202].
The synthetic datasets used in table 5.2 are from Breiman [35]. Bagging is closely related
to Breiman’s random forests [37], another highly effective method for combining decision
trees.

Support-vector machines were pioneered by Boser, Guyon, and Vapnik [29] and Cortes
and Vapnik [56]. See also, for instance, the books by Cristianini and Shawe-Taylor [58],
and Schölkopf and Smola [208]. The comparison with boosting given in section 5.6 is taken
from Schapire et al. [202].

The census dataset used in section 5.7.1 originated with the U.S. Census Bureau and was
prepared by Terran Lane and Ronny Kohavi.

Research on active learning dates to the work of Cohn, Atlas, and Ladner [51], and Lewis
and Catlett [151]. The use of boosting for active learning, essentially along the lines of the

134 5 The Margins Explanation for Boosting’s Effectiveness

method used in section 5.7.2, is due to Abe and Mamitsuka [1]. The experiments and results
appearing in this section (including figure 5.11, adapted) are taken from Tur, Schapire, and
Hakkani-Tür [220]; see also Tur, Hakkani-Tür, and Schapire [219]. The observation that
less data can be more effective when using active learning was previously noted in another
context by Schohn and Cohn [207].

Some of the exercises in this chapter are based on material from [10, 13, 26, 150, 187, 196].

Exercises

5.1 Suppose AdaBoost is run for an unterminating number of rounds. In addition to our
usual notation, let

FT (x)
.=

T∑
t=1

αtht (x) and sT
.=

T∑
t=1

αt .

We assume without loss of generality that each αt ≥ 0. Let the minimum (normalized)
margin on round t be denoted

θt
.= min

i

yiFt (xi)

st

.

Finally, we define the smooth margin on round t to be

gt
.= − ln

(∑m
i=1e

−yiFt (xi)
)

st

.

a. Prove that

θt − ln m

st

≤ gt ≤ θt .

Thus, if st gets large, then gt gets very close to θt .

b. Prove that gT is a weighted average of the values ϒ(γt), specifically,

gT =
∑T

t=1αtϒ(γt)

sT

.

c. Let 0 < γmin < γmax < 1
2 . Show that if the edges γt eventually all lie in the narrow range

[γmin, γmax], then the smooth margins gt—and therefore also the minimum margins
θt—must similarly converge to the narrow range [ϒ(γmin), ϒ(γmax)]. More precisely,
suppose for some t0 > 0 that γmin ≤ γt ≤ γmax for all t ≥ t0. Prove that

lim inf
t→∞ θt = lim inf

t→∞ gt ≥ ϒ(γmin),

Exercises 135

and that

lim sup
t→∞

θt = lim sup
t→∞

gt ≤ ϒ(γmax).

(See appendix A.3 for definitions.)

d. Prove that if the edges γt converge (as t →∞) to some value γ ∈ (0, 1
2), then the

minimum margins θt converge to ϒ(γ).

5.2 Prove the following properties of binary relative entropy:

a. REb (p ‖ q) is convex in q (for any fixed p), and convex in p (for any fixed q). (Refer
to appendix A.7 for definitions.)

b. REb (p ‖ q) ≥ 2(p− q)2 for all p, q ∈ [0, 1]. [Hint: Use Taylor’s theorem (theo-
rem A.1).]

5.3 Suppose the γ ∗-weak learning assumption holds for some γ ∗ > 0 that is not known
ahead of time. In this case, the algorithm AdaBoost∗ν can be used to efficiently find a
combined classifier with minimum margin arbitrarily close to 2γ ∗, that is, with margin at
least θ

.= 2γ ∗ − ν on all training examples, where ν > 0 is a given accuracy parameter. This
algorithm proceeds exactly like AdaBoost (algorithm 1.1 (p. 5)), except that αt is computed
on round t as follows:

• γt = 1
2 − εt . (Note that γt ≥ γ ∗ by assumption.)

• γ̂t = min{γ1, . . . , γt }.
• θ̂t = 2γ̂t − ν.

• αt = 1

2
ln

(
1+ 2γt

1− 2γt

)
− 1

2
ln

(
1+ θ̂t

1− θ̂t

)
.

a. Prove that after T rounds, the fraction of training examples with margin below θ is at most

exp

(
−

T∑
t=1

REb

(
1

2
+ θ̂t

2
‖ 1

2
+ γt

))
.

b. Show that if T > 2(ln m)/ν2, then the margin on all training examples is at least θ .

5.4 Let X1, . . . , Xn be independent Bernoulli random variables with

Xi =
{

1 with probability pi

0 with probability 1−pi .

Let An
.= 1

n

∑n
i=1 Xi , and let p

.= E[An].

136 5 The Margins Explanation for Boosting’s Effectiveness

a. Generalize the technique of section 3.3 to prove that if q ≤ pi for all i, then

Pr[An ≤ q] ≤ exp

(
−

n∑
i=1

REb (q ‖ pi)

)

≤ e−2n(q−p)2
.

b. By reducing to the previous case in part (a), state and prove bounds analogous to those
in (a) on Pr[An ≥ q].

5.5 This exercise develops a proof of equation (5.25). As in section 5.3, let F be a family
of real-valued functions on Z , and let S = 〈z1, . . . , zm〉 be a sequence of points in Z .

a. Suppose φ(u)
.= au+ b for all u, where a ≥ 0 and b ∈ R. Find RS(φ ◦F) exactly in

terms of a, b, and RS(F).

b. Now let φ : R → R be any contraction, that is, a Lipschitz function with Lipschitz
constant Lφ = 1. Let U ⊆ R2 be any set of pairs of real numbers. Prove that

Eσ

[
sup

(u,v)∈U

(u+ σφ(v))

]
≤ Eσ

[
sup

(u,v)∈U

(u+ σv)

]
where expectation is with respect to a uniformly random choice of σ ∈ {−1,+1}.
[Hint: First show that for all u1, v1, u2, v2 ∈ R, (u1+φ(v1))+ (u2−φ(v2)) ≤
max{(u1+ v1)+ (u2− v2), (u1− v1)+ (u2+ v2)}.]

c. Use part (b) to prove that if φ is a contraction, then RS(φ ◦F) ≤ RS(F).

d. Conclude that if φ is a Lipschitz function with Lipschitz constant Lφ > 0, then
RS(φ ◦F) ≤ Lφ ·RS(F).

5.6 This exercise derives a generalization error bound for margin-based classifiers which
use �2/�2-norms, such as SVMs. Let X be the unit ball in Rn:

X .= {x ∈ Rn : ‖x‖2 ≤ 1
}

.

Thus, each of the m random training examples in S is a pair (xi , yi) in X ×{−1,+1}. Let
F be the set of all possible margin functions defined by unit-length weight vectors w:

F .= {(x, y) �→ y(w · x) | w ∈ Rn, ‖w‖2 = 1
}

.

a. Prove that F’s Rademacher complexity is

RS(F) ≤ 1√
m

.

[Hint: First show that RS(F) = 1
m

Eσ

[∥∥∑m
i=1σixi

∥∥
2

]
, and then apply Jensen’s inequality

(equation (A.4)).]

Exercises 137

b. For any θ > 0, show that with probability at least 1− δ, for all weight vectors w ∈ Rn

with ‖w‖2 = 1,

PrD[y(w · x) ≤ 0] ≤ PrS[y(w · x) ≤ θ]+O

(
1

θ
√

m
+
√

ln(1/δ)

m

)
.

Give explicit constants.

5.7 Suppose, as in the example given in section 5.5, that we are using delta-functions and
constant functions for base classifiers. Give an example of a random data source such that
for any training set of any (finite) size m ≥ 1, there always exists a (weighted) majority-
vote classifier (defined over these base classifiers) whose training error is zero but whose
generalization error is 100%.

5.8 Suppose we are using simplified decision stumps, as in exercise 2.10, as base classifiers.
Assume that the same instance x can never appear in the training set with opposite labels.

a. When the number of dimensions n = 1, prove or disprove that for every training set,
there must always exist a weighted majority-vote classifier defined over decision stumps
that is consistent (that is, whose training error is zero).

b. Prove or disprove the same statement for n ≥ 2.

5.9 Let the domain X be the unit sphere S in Rn, where

S .= {x ∈ Rn : ‖x‖2 = 1
}

.

Given training data (x1, y1), . . . , (xm, ym) in S ×{−1,+1}, suppose there exists an
unknown weight vector w∗ ∈ S such that yi(w∗ · xi) ≥ γ for all i, where γ ≥ 0 is known.
Thus, the data is linearly separable with positive margin, but using �2/�2-norms rather than
�1/�∞.

Consider the following weak learning algorithm for a given distribution D over the data:

• Choose w uniformly at random from S, and let hw(x)
.= sign(w · x).

• If errD(hw)
.= Pri∼D[hw(xi) �= yi] is at most 1/2− γ /4, then halt and output hw.

• Otherwise, repeat.

If this procedure halts, then clearly it has succeeded in finding a weak classifier hw with
edge γ /4. But in principle, it could take a very long time (or forever) for it to halt. We will
see that this is unlikely to happen when γ is not too small.

For parts (a) and (b), fix a particular example (xi , yi).

a. Show that the angle between w∗ and yixi is at most π/2− γ . (You can use the inequality
sin θ ≤ θ for θ ≥ 0.)

b. Conditional on w being chosen so that w ·w∗ ≥ 0, show that the probability that hw(xi) �=
yi is at most 1/2− γ /π . That is, show that

138 5 The Margins Explanation for Boosting’s Effectiveness

Prw
[
hw(xi) �= yi | w ·w∗ ≥ 0

] ≤ 1

2
− γ

π

where Prw[·] denotes probability with respect to the random choice of w. [Hint: Consider
the projection w of w into the two-dimensional plane defined by w∗ and yixi . Start by
arguing that its direction, w/‖w‖2, is uniformly distributed on the unit circle in this
plane.]

c. For some absolute constant c > 0, show that

Prw

[
errD(hw) ≤ 1

2
− γ

4

]
≥ cγ,

and therefore that the above procedure, in expectation, will halt in O(1/γ) iterations for
any distribution D.

II FUNDAMENTAL PERSPECTIVES

6 Game Theory, Online Learning, and Boosting

Having studied methods of analyzing boosting’s training and generalization errors, we
turn now to some of the other ways that boosting can be thought about, understood, and
interpreted. We begin with the fundamental and beautiful connection between boosting and
game theory. Using mathematical abstractions, game theory studies ordinary games, such
as chess and checkers, but more generally the field also attempts to model all forms of
interactions between people, animals, corporations, nations, software agents, and so on.
In boosting, there is a natural interaction between two agents, the boosting algorithm and
the weak learning algorithm. As we will see, these two agents are in fact playing a game
repeatedly in a standard game-theoretic fashion. Moreover, we will see that some of the
key concepts of boosting, including margin, edge, and the weak learning assumption, all
have direct and natural interpretations in the game-theoretic context. Indeed, the principle
that boosting should be possible at all, given the weak learning assumption, is very closely
related to von Neumann’s famous minmax theorem, the fundamental theorem of zero-sum
games. Moreover, the learning framework presented in this chapter allows us to give a very
simple proof of this classic theorem.

AdaBoost and its simplified variants turn out to be special cases of a more general algo-
rithm for playing general repeated games. We devote much of this chapter to a description
of this general game-playing algorithm. Later, we will see how boosting can be achieved
and understood as a special case for an appropriately chosen game. Moreover, by revers-
ing the roles of the two players, we will see that a solution is obtained for a different
learning problem, namely, the well-studied online prediction model in which a learning
agent predicts the classifications of a sequence of instances while attempting to mini-
mize the number of prediction mistakes. Thus, an extremely tight connection between
boosting and online learning is revealed by placing them both in a general game-theoretic
context.

We end the chapter with an application to a classic game that involves an element of
“mind-reading.”

142 6 Game Theory, Online Learning, and Boosting

6.1 Game Theory

We begin with a review of basic game theory. We study two-person games in normal form.
Such a game is defined by a matrix M. There are two players, the row player and the column
player. To play the game, the row player chooses a row i and, simultaneously, the column
player chooses a column j . The selected entry M(i, j) is the loss suffered by the row player.
(Although it is common in game theory for the players’ purpose to be specified in terms
of a “gain” or “reward” to be maximized, we use an equivalent, if gloomier, formulation
based on “loss” for the sake of consistency with the rest of the book.)

As an example, the loss matrix for the children’s game1 Rock-Paper-Scissors is given by:

Rock Paper Scissors

Rock 1
2 1 0

Paper 0 1
2 1

Scissors 1 0 1
2

For instance, if the row player plays Paper and the column player plays Scissors, then the
row player loses, suffering a loss of 1.

The row player’s goal is to minimize its loss, and we will generally focus mainly on
this player’s perspective of the game. Often, the goal of the column player is to maximize
this loss, in which case the game is said to be zero-sum, so named because the column
player’s loss can be viewed as the negative of the row player’s, so that the losses of the
two players always add up to exactly zero. Most of our results are given in the context of
a zero-sum game. However, the results also apply when no assumptions are made about
the goal or strategy of the column player, who might possibly have some other purpose in
mind. We return to this point below.

6.1.1 Randomized Play

As just described, each player chooses a single row or column. Usually, this choice of play
is allowed to be randomized. That is, the row player chooses a distribution P over the rows
of M, and (simultaneously) the column player chooses a distribution Q over columns. The
two distributions P and Q define the random choice of row or column. The row player’s
expected loss is then easily computed as

M(P, Q)
.=
∑
i,j

P (i)M(i, j)Q(j) = P MQ,

1. In this game, each of two children simultaneously throw down hand signals indicating Rock, Paper, or Scissors.
If one plays Scissors, for instance, and the other plays Paper, then the former wins since “Scissors cut Paper.”
Similarly, Paper beats Rock, and Rock beats Scissors. A tie occurs if the same object is chosen by both children.

6.1 Game Theory 143

where we sometimes, as in this expression, regard P and Q as (column) vectors. For ease
of notation, we denote this quantity by M(P, Q), as above, and refer to it simply as the loss
(rather than the expected loss). In addition, if the row player chooses a distribution P but
the column player chooses a single column j, then the (expected) loss is

∑
i P (i)M(i, j),

which we denote by M(P, j). The notation M(i, Q) is defined analogously.
Individual (deterministically chosen) rows i and columns j are called pure strategies.

Randomized plays defined by distributions P and Q over rows and columns are called mixed
strategies. The number of rows of the matrix M will be denoted by m.

6.1.2 Sequential Play

Until now, we have assumed that the players choose their (pure or mixed) strategies simul-
taneously. Suppose now that play instead is sequential. That is, suppose that the column
player chooses its strategy Q after the row player has chosen and announced its strategy P .
Assume further that the column player’s goal is to maximize the row player’s loss (that is,
that the game is zero-sum). Then, given knowledge of P , such a “worst-case” or “adver-
sarial” column player will choose Q to maximize M(P, Q); that is, if the row player plays
mixed strategy P , then its loss will be

max
Q

M(P, Q). (6.1)

(It is understood here and throughout the chapter that maxQ denotes maximum over all
probability distributions over columns; similarly, minP will always denote minimum over
all probability distributions over rows. These extrema exist because the set of distributions
over a finite space is compact.)

Equation (6.1) can be viewed as a function of P that specifies what the loss will be for
the row player if it chooses to play that particular strategy. Knowing this, the row player
should choose P to minimize this expression. Doing so will result in a loss for the row
player of exactly

min
P

max
Q

M(P, Q). (6.2)

Thus, this quantity represents the loss that will be suffered when the row player plays first,
followed by the column player, and assuming both play optimally. Note that the order of
the minmax in equation (6.2) matches the order of play (although, of course, the minimum
and maximum would be evaluated mathematically from the inside out).

A mixed strategy P ∗ realizing the minimum in equation (6.2) is called a minmax strategy,
and is optimal in this particular setting.

If now we reverse the order of play so that the column player plays first and the row
player can choose its play with the benefit of knowing the column player’s chosen strategy
Q, then by a symmetric argument, the loss of the row player will be

144 6 Game Theory, Online Learning, and Boosting

max
Q

min
P

M(P, Q).

A strategy Q∗ realizing the maximum is called a maxmin strategy.
Note that because

M(P, Q) =
n∑

j=1

M(P, j)Q(j),

the maximum over distributions Q in equation (6.1) will always be realized when Q is
concentrated on a single column j . In other words, for any P,

max
Q

M(P, Q) = max
j

M(P, j), (6.3)

and similarly, for any Q,

min
P

M(P, Q) = min
i

M(i, Q) (6.4)

(where mini and maxj will always denote minimum over all rows i or maximum over all
columns j). On the other hand, the minmax strategy P ∗, which realizes the minimum in
equation (6.2), will not, in general, be a pure strategy (likewise for Q∗).

6.1.3 The Minmax Theorem

Intuitively, we expect the player that chooses its strategy last to have the advantage since
it plays knowing its opponent’s strategy exactly—at least, we expect there to be no disad-
vantage in playing second. Thus, we expect the row player’s loss to be no greater when
playing second than when playing first, so that

max
Q

min
P

M(P, Q) ≤ min
P

max
Q

M(P, Q). (6.5)

Indeed, this is true in general. We might go on naively to conjecture that there is a real
advantage to playing last in some games, so that, at least in some cases, the inequality in
equation (6.5) is strict. Surprisingly, it turns out not to matter which player plays first. Von
Neumann’s well-known minmax theorem states that the outcome is the same in either case,
so that

max
Q

min
P

M(P, Q) = min
P

max
Q

M(P, Q) (6.6)

for every matrix M. The common value v of the two sides of the equality is called the value
of the game M. A proof of the minmax theorem will be given in section 6.2.4.

In words, equation (6.6) means that the row player has a (minmax) strategy P ∗ such that,
regardless of the strategy Q played by the column player, even if chosen with knowledge of
P ∗, the loss suffered M(P ∗, Q) will be at most v. Moreover, P ∗ is optimal in the sense that

6.2 Learning in Repeated Game Playing 145

by playing Q∗, the column player can force a loss of at least v for any strategy P played
by the row player, including P ∗. The (maxmin) strategy Q∗ is symmetrically optimal.

For instance, for Rock-Paper-Scissors, the optimal minmax strategy is to play each of
the three possible moves with equal probability 1

3 . Regardless of what the opponent does,
the expected loss for this strategy will always be exactly 1

2 , the value of this game. In this
case, playing any other (mixed) strategy, if known to an optimal opponent, will result in a
strictly higher loss.

Thus, classical game theory says that, given a (zero-sum) game M, one should play using a
minmax strategy. Computing such a strategy, a problem called solving the game, can be
accomplished using linear programming, that is, using standard techniques for maximizing a
linear function subject to linear inequality constraints (see exercise 6.9). However, there are
a number of problems with this approach. For instance,

• M may be unknown;

• M may be so large that computing a minmax strategy using linear programming becomes
infeasible;

• the column player may not be truly adversarial, and may behave in a manner that admits
loss significantly smaller than the game value v.

Regarding the last point, consider again the example of Rock-Paper-Scissors. Suppose,
as happened on one episode of The Simpsons, that Bart is playing against his sister Lisa. Lisa
thinks, “Poor predictable Bart, always takes Rock,” while Bart thinks, “Good old Rock,
nothing beats that.” If Lisa were to follow the supposedly “optimal” minmax strategy given
above, she would still suffer loss of 1

2 , and would miss an obvious opportunity to beat Bart
every single time by always playing Paper. This is because a minmax strategy is intended
for use against a fully adversarial opponent (in this case, one much smarter than Bart), and
will perform suboptimally if played against a suboptimal opponent.

6.2 Learning in Repeated Game Playing

If playing a game only once, we cannot hope to overcome a lack of prior knowledge about
either the game M or the opponent’s intentions and abilities. However, in repeated play, in
which the same game is played over and over against the same opponent, one can hope to
learn to play the game well against the particular opponent being faced. This is the main
topic of this section.

6.2.1 The Learning Model

We begin by formalizing a model of repeated play. To simplify the presentation, we assume
for the remainder of this chapter that all of the losses appearing in the matrix M are in the
range [0, 1]. This does not at all limit the generality of the results since any matrix, having

146 6 Game Theory, Online Learning, and Boosting

only a finite number of entries, can be shifted and scaled to satisfy this assumption without
fundamentally altering the game.

To emphasize the roles of the two players, we here refer to the row player as the learner,
and the column player as the environment. As before, M is a game matrix, possibly
unknown to the learner. This game is played repeatedly in a sequence of rounds. On round
t = 1, . . . , T

1. the learner chooses mixed strategy Pt ;

2. the environment chooses mixed strategy Qt (which may be chosen with knowledge
of Pt);

3. the learner is permitted to observe the loss M(i, Qt) for each row i; this is the loss it
would have suffered had it played using pure strategy i;

4. the learner suffers loss M(Pt , Qt).

The basic goal of the learner is to minimize its total cumulative loss:

T∑
t=1

M(Pt , Qt). (6.7)

If the environment is adversarial, then a related goal is to approximate the performance of
the optimal, minmax strategy P ∗. However, for more benign environments, the goal may be
to suffer the minimum loss possible, which may be much better than the value of the game.
Thus, the goal of the learner is to do almost as well as the best strategy against the actual
sequence of plays Q1, . . . , QT which were chosen by the environment. That is, the learner’s
goal is to suffer cumulative loss which is “not much worse” than the cumulative loss of the
best (fixed) strategy in hindsight, namely,

min
P

T∑
t=1

M(P, Qt). (6.8)

6.2.2 The Basic Algorithm

We now describe an algorithm for achieving this goal in repeated play, which we call MW
for “multiplicative weights.” The learning algorithm MW starts with some initial mixed
strategy P1 which it uses for the first round of the game. After each round t, the learner
computes a new mixed strategy Pt+1 by a simple multiplicative rule:

Pt+1(i) = Pt(i) exp(−ηM(i, Qt))

Zt

(6.9)

where Zt is a normalization factor

6.2 Learning in Repeated Game Playing 147

Zt =
m∑

i=1

Pt(i) exp(−ηM(i, Qt)), (6.10)

and η > 0 is a parameter of the algorithm. This is a very intuitive rule which increases the
chance of playing strategies in the future that had low loss on the preceding round (that is,
for which M(i, Qt) is small), while similarly decreasing the chance of playing strategies
with high loss. Later, we discuss the choice of P1 and η.

6.2.3 Analysis

The main theorem concerning this algorithm is given next. Roughly speaking, this general
theorem gives a bound on the learner’s cumulative loss (equation (6.7)) in terms of the cumu-
lative loss of the best strategy in hindsight (equation (6.8)), plus an additional term which
will be shown later to be relatively insignificant for large T . As we will see, this result will
have many implications.

The theorem and its proof make use of a measure of distance (or “divergence”) between
two probability distributions P and P ′ over {1, . . . , m} called relative entropy, also known
as Kullback-Leibler divergence:

RE
(
P ‖ P ′) .=

m∑
i=1

P(i) ln

(
P(i)

P ′(i)

)
. (6.11)

This measure, though not a metric, is always nonnegative, and is equal to zero if and only
if P = P ′. See section 8.1.2 for further background.

Theorem 6.1 For any matrix M with m rows and entries in [0, 1], and for any sequence of
mixed strategies Q1, . . . , QT played by the environment, the sequence of mixed strategies
P1, . . . , PT produced by algorithm MW with parameter η satisfies

T∑
t=1

M(Pt , Qt) ≤ min
P

[
aη

T∑
t=1

M(P, Qt)+ cηRE (P ‖ P1)

]

where

aη = η

1− e−η
cη = 1

1− e−η
.

Our proof uses a kind of “amortized analysis” in which relative entropy is used as a
“potential” function, or measure of progress. The heart of the proof is in the following
lemma, which bounds the change in potential before and after a single round. Note that
the potential is measured relative to an arbitrary reference distribution P̃, which can be
thought of as the “best” distribution, although the analysis actually applies simultaneously
to all possible choices of P̃ . In words, the lemma shows that whenever the learner suffers

148 6 Game Theory, Online Learning, and Boosting

significant loss relative to P̃, the potential must drop substantially. Since the potential can
never become negative, this will allow us to bound the learner’s cumulative loss relative to
that of P̃ .

Lemma 6.2 For any iteration t where MW is used with parameter η, and for any mixed
strategy P̃ ,

RE
(
P̃ ‖ Pt+1

)
−RE

(
P̃ ‖ Pt

)
≤ ηM(P̃ , Qt)+ ln

(
1− (1− e−η)M(Pt , Qt)

)
.

Proof We have the following sequence of equalities and inequalities:

RE
(
P̃ ‖ Pt+1

)
−RE

(
P̃ ‖ Pt

)
=

m∑
i=1

P̃ (i) ln

(
P̃ (i)

Pt+1(i)

)
−

m∑
i=1

P̃ (i) ln

(
P̃ (i)

Pt (i)

)
(6.12)

=
m∑

i=1

P̃ (i) ln

(
Pt(i)

Pt+1(i)

)

=
m∑

i=1

P̃ (i) ln

(
Zt

exp(−ηM(i, Qt))

)
(6.13)

= η

m∑
i=1

P̃ (i)M(i, Qt)+ ln Zt

= η

m∑
i=1

P̃ (i)M(i, Qt)+ ln

[
m∑

i=1

Pt(i) exp(−ηM(i, Qt))

]
(6.14)

≤ ηM(P̃ , Qt)+ ln

[
m∑

i=1

Pt(i)
(
1− (1− e−η)M(i, Qt)

)]
(6.15)

= ηM(P̃ , Qt)+ ln
[
1− (1− e−η)M(Pt , Qt)

]
.

Equation (6.12) is simply the definition of relative entropy. Equation (6.13) follows from
the update rule of MW given in equation (6.9). Equation (6.14) uses the definition of Zt

in equation (6.10). And equation (6.15) uses the fact that, by convexity of ex , for q ∈
[0, 1],
e−ηq = exp(q(−η)+ (1− q) · 0) ≤ qe−η+ (1− q)e0 = 1− (1− e−η)q.

Proof of Theorem 6.1 Let P̃ be any mixed row strategy. We first simplify the last term
in the inequality of lemma 6.2 by using the fact that ln(1− x) ≤ −x for any x < 1, which
implies that

6.2 Learning in Repeated Game Playing 149

RE
(
P̃ ‖ Pt+1

)
−RE

(
P̃ ‖ Pt

)
≤ ηM(P̃ , Qt)− (1− e−η)M(Pt , Qt).

Summing this inequality over t = 1, . . . , T , we get

RE
(
P̃ ‖ PT+1

)
−RE

(
P̃ ‖ P1

)
≤ η

T∑
t=1

M(P̃ , Qt)− (1− e−η)

T∑
t=1

M(Pt , Qt).

Rearranging the inequality and noting that RE
(
P̃ ‖ PT+1

)
≥ 0 gives

(1− e−η)

T∑
t=1

M(Pt , Qt) ≤ η

T∑
t=1

M(P̃ , Qt)+RE
(
P̃ ‖ P1

)
−RE

(
P̃ ‖ PT+1

)

≤ η

T∑
t=1

M(P̃ , Qt)+RE
(
P̃ ‖ P1

)
.

Since P̃ was chosen arbitrarily, this gives the statement of the theorem.

In order to use MW, we need to choose the initial distribution P1 and the parameter η. We
start with the choice of P1. In general, the closer P1 is to a good mixed strategy P̃ , the better
the bound on the total loss of MW. However, even if we have no prior knowledge about
the good mixed strategies, we can achieve reasonable performance by using the uniform
distribution over the rows as the initial strategy. This gives us a performance bound that
holds uniformly for all games with m rows. Note that there is no explicit dependence in this
bound on the number of columns and only logarithmic dependence on the number of rows.
Later, we exploit both these properties in the applications that follow.

Corollary 6.3 If MW is used with P1 set to the uniform distribution, then its total loss is
bounded by

T∑
t=1

M(Pt , Qt) ≤ aη min
P

T∑
t=1

M(P, Qt)+ cη ln m

where aη and cη are as defined in theorem 6.1.

Proof If P1(i) = 1/m for all i, then RE (P ‖ P1) ≤ ln m for all P .

Next we discuss the choice of the parameter η. As η approaches zero, aη approaches 1
from above while cη increases to infinity. On the other hand, if we fix η and let the number
of rounds T increase, then the second term cη ln m becomes negligible (since it is fixed)
relative to T . Thus, by choosing η as a function of T which approaches 0 for T →∞, the
learner can ensure that its average per-trial loss will not be much worse than the loss of the
best strategy. This is formalized in the following corollary:

150 6 Game Theory, Online Learning, and Boosting

Corollary 6.4 Under the conditions of theorem 6.1 and with η set to

ln

(
1+

√
2 ln m

T

)
,

the average per-trial loss suffered by the learner is

1

T

T∑
t=1

M(Pt , Qt) ≤ min
P

1

T

T∑
t=1

M(P, Qt)+�T

where

�T
.=
√

2 ln m

T
+ ln m

T
= O

(√
ln m

T

)
.

Proof By corollary 6.3,

T∑
t=1

M(Pt , Qt) ≤ min
P

T∑
t=1

M(P, Qt)+ (aη− 1)T + cη ln m (6.16)

= min
P

T∑
t=1

M(P, Qt)+
[(

η

1− e−η
− 1

)
T + ln m

1− e−η

]

≤ min
P

T∑
t=1

M(P, Qt)+
[(

eη− e−η

2(1− e−η)
− 1

)
T + ln m

1− e−η

]
. (6.17)

In equation (6.16), we used our assumption that the losses in M are bounded in [0, 1],
which implies that the loss in any sequence of T plays cannot exceed T . In equation (6.17),
we used the approximation η ≤ (eη− e−η)/2, which holds for any η ≥ 0 since, by Taylor
series expansion,

eη− e−η

2
= η+ η3

3! +
η5

5! + · · · ≥ η.

Minimizing the bracketed expression on the right-hand side of equation (6.17) gives the
stated choice of η. Plugging in this choice gives the stated bound.

Since �T → 0 as T →∞, we see that the amount by which the average per-trial loss of
the learner exceeds that of the best mixed strategy can be made arbitrarily small for large T .
In other words, even with no prior knowledge of M or the environment, the learner plays
almost as well online as if it knew ahead of time both the matrix M and the exact sequence
of plays of the environment Q1, . . . , QT (assuming the learner is restricted to using a fixed,
mixed strategy for the entire sequence).

6.2 Learning in Repeated Game Playing 151

Note that in the analysis we made no assumptions at all about the environment. Theo-
rem 6.1 guarantees that the learner’s cumulative loss is not much larger than that of any
fixed mixed strategy. As shown in the next corollary, this implies that the loss cannot be
much larger than the game value. However, this is a considerable weakening of the general
result: If the environment is nonadversarial, there might be a better row strategy, in which
case the algorithm is guaranteed to be almost as good as this better strategy.

Corollary 6.5 Under the conditions of corollary 6.4,

1

T

T∑
t=1

M(Pt , Qt) ≤ v+�T

where v is the value of the game M.

Proof Let P ∗ be a minmax strategy for M so that for all column strategies Q, M(P ∗, Q) ≤
v. Then, by corollary 6.4,

1

T

T∑
t=1

M(Pt , Qt) ≤ 1

T

T∑
t=1

M(P ∗, Qt)+�T ≤ v+�T .

6.2.4 Proof of the Minmax theorem

More interestingly, corollary 6.4 can be used to derive a very simple proof of von Neumann’s
minmax theorem as discussed in section 6.1.3. To prove this theorem, we need to show that

min
P

max
Q

M(P, Q) = max
Q

min
P

M(P, Q).

Proving that

min
P

max
Q

M(P, Q) ≥ max
Q

min
P

M(P, Q), (6.18)

as suggested earlier, is straightforward: For any P̃ and any Q, M(P̃ , Q) ≥ minP M(P, Q).
Thus, maxQ M(P̃ , Q) ≥ maxQ minP M(P, Q). Since this holds for all P̃, we get equa-
tion (6.18). So the hard part of proving the minmax theorem is showing that

min
P

max
Q

M(P, Q) ≤ max
Q

min
P

M(P, Q). (6.19)

Suppose that we run algorithm MW (with η set as in corollary 6.4) against a maximally
adversarial environment which always chooses strategies that maximize the learner’s loss.
That is, on each round t , the environment chooses

Qt = arg max
Q

M(Pt , Q). (6.20)

152 6 Game Theory, Online Learning, and Boosting

Let P and Q be the average of the strategies played by each side:

P
.= 1

T

T∑
t=1

Pt Q
.= 1

T

T∑
t=1

Qt. (6.21)

Clearly, P and Q are probability distributions.
Then we have

min
P

max
Q

P MQ ≤ max
Q

P

MQ

= max
Q

1

T

T∑
t=1

Pt
 MQ by definition of P

≤ 1

T

T∑
t=1

max
Q

Pt
 MQ

= 1

T

T∑
t=1

Pt
 MQt by definition of Qt

≤ min
P

1

T

T∑
t=1

P MQt +�T by corollary 6.4

= min
P

P MQ+�T by definition of Q

≤ max
Q

min
P

P MQ+�T .

Since �T can be made arbitrarily close to zero, this proves equation (6.19) and the minmax
theorem.

6.2.5 Approximately Solving a Game

Aside from yielding a proof for a famous theorem that by now has many proofs, the preceding
derivation shows that algorithm MW can be used to find an approximate minmax or maxmin
strategy, that is, for approximately solving the game M.

Skipping the first inequality of the sequence of equalities and inequalities given above,
we see that

max
Q

M(P , Q) ≤ max
Q

min
P

M(P, Q)+�T = v+�T .

Thus, the mixed strategy P is an approximate minmax strategy in the sense that for all
column strategies Q, M(P , Q) does not exceed the game value v by more than �T . Since
�T can be made arbitrarily small, this approximation can be made arbitrarily tight.

6.3 Online Prediction 153

Similarly, ignoring the last inequality of this derivation, we have that

min
P

M(P, Q) ≥ v−�T,

so Q also is an approximate maxmin strategy. Furthermore, by equation (6.3), Qt satisfy-
ing equation (6.20) can always be chosen to be a pure strategy (that is, a mixed strategy
concentrated on a single column of M). Therefore, the approximate maxmin strategy Q has
the additional favorable property of being sparse in the sense that at most T of its entries
will be nonzero.

Viewing MW as a method for approximately solving a game will be central to our deriva-
tion of a boosting algorithm in section 6.4.

6.3 Online Prediction

So far in this book, we have considered only learning in a “batch” setting in which the
learner is provided with a random batch of training examples, and must formulate a single
hypothesis that is then used for making predictions on new random test examples. Once
training is complete, no further changes are made to the chosen prediction rule.

In contrast, in the online prediction model, the learner instead observes a sequence of
examples and predicts their labels one at a time. Thus, at each of a series of time steps
t = 1, . . . , T, the learner is presented with an instance xt , predicts the label for xt , and then
immediately gets to observe the correct label for xt . A mistake occurs if the predicted and
correct labels disagree. The learner’s goal is to minimize the total number of mistakes made.

As a concrete example of where online learning might be appropriate, suppose we wish
to predict stock market behavior over the course of some time period. Each morning, based
on current market conditions, we predict whether or not some market indicator will go up
or down that day. Then each evening, we find out whether that morning’s prediction was
right or not. Our goal is to learn over time how to make accurate predictions so that the total
number of mistakes will be small.

There are important differences between the online and batch models. In the batch model,
there is a strict division between the training phase and the testing phase. In the online
model, training and testing occur together all at the same time since every example acts
both as a test of what was learned in the past and as a training example for improving our
predictions in the future.

A second key difference relates to the generation of examples. In the batch setting, we
always assumed all examples to be random, independently and identically distributed. In
the online model, no assumptions are made about the generation of examples. The sequence
of examples is entirely arbitrary, and may even be under the control of an adversary who is
deliberately trying to ruin the learner’s performance.

154 6 Game Theory, Online Learning, and Boosting

The labels also might be adversarially chosen, in which case there is no way to limit the
number of mistakes that might be forced on the learner. To provide meaningful results in
such a setting, we therefore seek learning algorithms that perform well relative to the best
fixed prediction rule or hypothesis in some possibly very large class of hypotheses. Thus, if
there is any one hypothesis in this class that makes accurate predictions, then our learning
algorithm should do so as well.

Historically, the game-playing algorithm MW presented above was a direct generalization
of an online prediction algorithm called theWeighted Majority Algorithm. It is not surprising,
therefore, that an online prediction algorithm can be derived from the more general game-
playing algorithm by an appropriate choice of game M. In this section, we make this connec-
tion explicit as a step toward exposing the fundamental link that exists between online
learning and boosting under the common umbrella of game theory.

To formalize the learning problem, let X be a finite set of instances, and let H be a finite
space of hypotheses h : X → {−1,+1}. These represent the fixed set of prediction rules
against which the performance of the learning algorithm is to be compared. Let c : X →
{−1,+1} be an unknown target, not necessarily in H, defining the true and correct labels of
each instance. This target may be entirely arbitrary. Even so, here we are implicitly introduc-
ing the mild assumption that the same instance never appears twice with different labels; this
assumption is entirely unnecessary (see exercise 6.7), but it does simplify the presentation.

Learning takes place in a sequence of rounds. On round t = 1, . . . , T :

1. the learner observes an instance xt ∈ X, selected arbitrarily;

2. the learner makes a randomized prediction ŷt ∈ {−1,+1} of the label associated with
xt ;

3. the learner observes the correct label c(xt).

The expected number of mistakes made by the learner is

E

[
T∑

t=1

1
{
ŷt �= c(xt)

}] = T∑
t=1

Pr
[
ŷt �= c(xt)

]
. (6.22)

Note that all expectations and probabilities in this context are taken with respect to the
learner’s own randomization, not the presentation of examples and labels which need not
be random in any way. The number of mistakes made by any fixed hypothesis h is equal to

T∑
t=1

1{h(xt) �= c(xt)}.

The goal of the learner is to minimize the expected number of mistakes made by the learner
relative to the number of mistakes made by the best hypothesis in the space H, determined
in hindsight, that is,

6.3 Online Prediction 155

min
h∈H

T∑
t=1

1{h(xt) �= c(xt)}.

Thus, we ask that the learner perform well whenever the target c is “close” to any one of
the hypotheses in H.

It is straightforward now to reduce the online prediction problem to a special case of
the repeated game problem, that is, to show how an algorithm for repeated game-playing
can be used as a “subroutine” to solve the online prediction problem. In this reduction, the
environment’s choice of a column will correspond to the choice of an instance x ∈ X that
is presented to the learner on a given iteration, while the learner’s choice of a row will
correspond to choosing a specific hypothesis h ∈ H which is then used to predict the label
h(x). More specifically, we define a game matrix that has |H| rows, indexed by h ∈ H, and
|X| columns, indexed by x ∈ X. The matrix entry associated with hypothesis (row) h and
instance (column) x is defined to be

M(h, x)
.= 1{h(x) �= c(x)} =

{
1 if h(x) �= c(x)

0 otherwise.

Thus, M(h, x) is 1 if and only if h disagrees with the target c on instance x. We call this
the mistake matrix.

To derive an online learning algorithm, we apply MW to the mistake matrix M. The
reduction, shown schematically in figure 6.1, creates an intermediary between MW and
the online prediction problem. On each round, Pt from MW and the selected instance xt

are used to compute a prediction ŷt . Then, after receiving c(xt), the matrix values M(·, Qt)

can be computed and passed to MW for a suitable choice of Qt .
More precisely, the distribution P1 is first initialized by MW to be uniform over the

hypotheses in H. Next, on each round t = 1, . . . , T , the online learning algorithm based
on this reduction does the following:

Online
prediction
problem

Inter-
mediary

Online learning algorithm

MW

Pt

M(·,Qt) c(xt)

xt

yt

Figure 6.1
A schematic diagram of the reduction showing how MW can be used in the context of online prediction.

156 6 Game Theory, Online Learning, and Boosting

1. receives instance xt ∈ X;

2. chooses ht ∈ H randomly according to the distribution Pt computed by MW;

3. predicts ŷt = ht (xt);

4. receives c(xt);

5. lets Qt be the pure strategy concentrated on xt , and computes

M(h, Qt) = M(h, xt) = 1{h(xt) �= c(xt)}
for all h ∈ H;

6. computes distribution Pt+1 using algorithm MW; this reduces to the following update
rule for all h ∈ H:

Pt+1(h) = Pt(h)

Zt

×
{

e−η if h(xt) �= c(xt)

1 otherwise

where Zt is a normalization factor.

For the analysis, note that

M(Pt , xt) =
∑
h∈H

Pt(h)M(h, xt)

= Prh∼Pt [h(xt) �= c(xt)]

= Pr
[
ŷt �= c(xt)

]
. (6.23)

By a direct application of corollary 6.4 (for an appropriate choice of η), we have

T∑
t=1

M(Pt , xt) ≤ min
h∈H

T∑
t=1

M(h, xt)+O
(√

T ln |H|
)
.

Rewriting using the definition of M and equations (6.22) and (6.23) gives

E

[
T∑

t=1

1
{
ŷt �= c(xt)

}] ≤ min
h∈H

T∑
t=1

1{h(xt) �= c(xt)}+O
(√

T ln |H|
)
. (6.24)

Thus, the expected number of mistakes made by the learner cannot exceed the number of
mistakes made by the best hypothesis in H by more than O

(√
T ln |H|). Equivalently,

dividing both sides by T , we have

E

[
1

T

T∑
t=1

1
{
ŷt �= c(xt)

}] ≤ min
h∈H

1

T

T∑
t=1

1{h(xt) �= c(xt)}+O

(√
ln |H|

T

)
.

6.4 Boosting 157

Since the last term vanishes as T becomes large, this says that the proportion of rounds
where a mistake is made by the algorithm becomes very close to the best possible among
all h ∈ H.

These results can be straightforwardly generalized in many ways, for instance, to any
bounded “loss” function (such as square loss rather than 0–1 mistake loss), or to a setting
in which the learner attempts to achieve performance comparable to that of the best among
a (possibly changing) set of “experts” rather than a fixed set of hypotheses.

6.4 Boosting

Finally, we come to boosting, which we study here in a simplified form. We will see now
how boosting is a special case of the general game-playing setup of this chapter, and how this
view leads not only to a (re-)derivation of an algorithm for boosting, but also to new insights
into the very nature of the boosting problem.

As in section 6.3, let X be a space of instances (typically, in this setting, the training set),
H a space of (weak) hypotheses, and c some unknown target or labeling function, used
here, again, for simplicity of presentation. We assume the availability of a weak learning
algorithm such that, for some γ > 0, and for any distribution D over the set X, the algorithm
is able to find a hypothesis h ∈ H with error at most 1

2 − γ with respect to the distribution
D; this is the empirical γ -weak learning assumption of section 2.3.3.

To review, in boosting, the weak learning algorithm is run many times on many distribu-
tions, and the selected weak hypotheses are combined into a final hypothesis whose error
should be small, or even zero. Thus, boosting proceeds in rounds. On round t = 1, . . . , T :

1. the booster constructs a distribution Dt on X which is passed to the weak learner;

2. the weak learner produces a hypothesis ht ∈ H with error at most 1
2 − γ :

Prx∼Dt [ht (x) �= c(x)] ≤ 1
2 − γ.

After T rounds, the weak hypotheses h1, . . . , hT are combined into a final hypothesis H.
As we know, the important issues for designing a boosting algorithm are (1) how to choose
distributions Dt , and (2) how to combine the ht ’s into a final hypothesis.

6.4.1 Boosting and the Minmax Theorem

Before deriving our boosting algorithm, let us step back for a moment to consider the rela-
tionship between the mistake matrix M used in section 6.3 and the minmax theorem. This
relationship will turn out to be highly relevant to the design and understanding of the
boosting algorithm that will follow.

Recall that the mistake matrix M has rows and columns indexed by hypotheses and
instances, respectively, and that M(h, x) = 1 if h(x) �= c(x) and is 0 otherwise. Assuming

158 6 Game Theory, Online Learning, and Boosting

empirical γ -weak learnability as above, what does the minmax theorem say about M?
Suppose that the value of M is v. Then, together with equations (6.3) and (6.4), the minmax
theorem tells us that

min
P

max
x∈X

M(P, x) = min
P

max
Q

M(P, Q)

= v

= max
Q

min
P

M(P, Q)

= max
Q

min
h∈H

M(h, Q). (6.25)

Note that, by M’s definition,

M(h, Q) = Prx∼Q[h(x) �= c(x)].

Therefore, the right-hand part of equation (6.25) says that there exists a distribution Q∗

on X such that for every hypothesis h, M(h, Q∗) = Prx∼Q∗ [h(x) �= c(x)] ≥ v. However,
because we assume γ -weak learnability, there must exist a hypothesis h such that

Prx∼Q∗ [h(x) �= c(x)] ≤ 1
2 − γ.

Combining these facts gives that v ≤ 1
2 − γ .

On the other hand, the left part of equation (6.25) implies that there exists a distribution
P ∗ over the hypothesis space H such that for every x ∈ X,

Prh∼P ∗ [h(x) �= c(x)] = M(P ∗, x) ≤ v ≤ 1
2 − γ < 1

2 . (6.26)

In words, this says that every instance x is misclassified by less than 1
2 of the hypotheses,

as weighted by P ∗. That is, a weighted majority-vote classifier defined over H, in which
each hypothesis h ∈ H is assigned weight P ∗(h), will correctly classify all of the instances
x; in symbols,

c(x) = sign

(∑
h∈H

P ∗(h) h(x)

)

for all x ∈ X. Thus, the weak learning assumption, together with the minmax theorem,
implies that the target c must be functionally equivalent (on X) to some weighted majority
of hypotheses in H.

This reasoning tells us something even stronger about the margins for this weighted
majority vote. Recall from chapter 5 that the margin of an example is the difference between
the weighted fraction of hypotheses voting for the correct label and the weighted fraction
voting for an incorrect label. In this case, by equation (6.26), that difference will be at least(

1
2 + γ

)− (1
2 − γ

) = 2γ.

6.4 Boosting 159

That is, the minimum margin over all examples will be at least 2γ . This is essentially the
same result as in section 5.4.3, where it was argued that empirical γ -weak learnability
implies (and is in fact equivalent to) linear separability with margin 2γ , an important
example of the tight relationship between edges and margins. Now, within a game-theoretic
context, we can see that they are both manifestations of the value of a very natural game, and
that their close connection is a direct and immediate consequence of the minmax theorem.

6.4.2 Idea for Boosting

So the assumption of empirical γ -weak learnability implies that the target c can be computed
exactly as a weighted majority of hypotheses in H. Moreover, the weights used in this
function (defined by distribution P ∗ above) are not just any old weights, but rather are
a minmax strategy for the game M. This is the basis of our boosting algorithm, namely,
the idea of fitting the target labels c by approximating the weights P ∗ of this function.
Since these weights are a minmax strategy of the game M, our hope is to apply the method
described in section 6.2 for approximately solving a game using the MW algorithm.

The problem is that the resulting algorithm does not fit the boosting model if applied to
the mistake matrix M. Recall that on each round, algorithm MW computes a distribution
over the rows of the game matrix (hypotheses, in the case of matrix M). However, in the
boosting model, we want to compute on each round a distribution over instances (columns
of M).

Since we have an algorithm which computes distributions over rows, but need one that
computes distributions over columns, the obvious solution is to reverse the roles of rows
and columns. This is exactly the approach that we follow. That is, rather than using game
M directly, we construct the dual of M, which is the identical game except that the roles of
the row and column players have been switched.

Constructing the dual M′ of a game M is straightforward. First, we need to reverse
row and column, so we take the transpose M . This, however, is not enough since the
column player of M wants to maximize the outcome, but the row player of M′ wants to
minimize the outcome (loss). Therefore, we also need to reverse the meaning of minimum
and maximum, which is easily done by negating the matrix, yielding −M . Finally, to
adhere to our convention of losses being in the range [0, 1], we add the constant 1 to every
outcome, which has no effect on the game. Thus, the dual M′ of M is simply

M′ = 1−M (6.27)

where 1 is an all 1’s matrix of the appropriate dimensions.
In the case of the mistake matrix M, the dual now has |X| rows and |H| columns indexed

by instances and hypotheses, respectively, and each entry is

M′(x, h)
.= 1−M(h, x) = 1{h(x) = c(x)} =

{
1 if h(x) = c(x)

0 otherwise.

160 6 Game Theory, Online Learning, and Boosting

Weak
learning
algorithm

Inter-
mediary

Boosting algorithm

MW

Pt

M´(·,Qt)

Dt

ht

Figure 6.2
A schematic diagram of the reduction showing how MW can be used to derive a boosting algorithm.

Note that any minmax strategy of the game M becomes a maxmin strategy of the game
M′. Therefore, whereas previously we were interested in finding an approximate minmax
strategy of M, we are now interested in finding an approximate maxmin strategy of M′.

We can now apply algorithm MW to game matrix M′ since, by the results of section 6.2.5,
this will lead to the construction of an approximate maxmin strategy. As shown in fig-
ure 6.2, the reduction now creates an intermediary between MW and the weak learning
algorithm, on each round using the distribution Pt received from MW to compute Dt , then
using the hypothesis ht received in response from the weak learner to compute M′(·, Qt)

for an appropriate choice of Qt . In more detailed terms, the reduction proceeds as follows:
The distribution P1 is initialized as in MW, that is, uniform over X. Then on each round of
boosting t = 1, . . . , T, under this reduction the boosting algorithm does the following:

1. sets Dt = Pt and passes Dt to the weak learning algorithm;

2. receives from the weak learner a hypothesis ht satisfying

Prx∼Dt [ht (x) = c(x)] ≥ 1
2 + γ ;

3. lets Qt be the pure strategy concentrated on ht , and computes

M′(x, Qt) = M′(x, ht) = 1{ht (x) = c(x)}
for all x ∈ X;

4. computes the new distribution Pt+1 using algorithm MW; that is, for all x ∈ X,

Pt+1(x) = Pt(x)

Zt

×
{

e−η if ht (x) = c(x)

1 otherwise

where Zt is a normalization factor.

Our goal, again, is to find an approximate maxmin strategy of M′ using the method of
approximately solving a game given in section 6.2.5. According to that method, on each
round t , Qt may be a pure strategy ht , and should be chosen to maximize

6.4 Boosting 161

M′(Pt , ht) =
∑

x

Pt (x)M′(x, ht) = Prx∼Pt [ht (x) = c(x)].

In other words, ht should have maximum accuracy with respect to distribution Pt . This is
exactly the goal of the weak learner. (Although it is not guaranteed to succeed in finding
the best ht , finding one of accuracy 1

2 + γ turns out to be sufficient for our purposes.)
So the weak learner aims to maximize the weighted accuracy of the weak hypotheses, as

is natural, but in this game-theoretic setting, the goal of the booster is exactly the opposite,
namely, to choose distributions Dt which make it as hard as possible for the weak learner to
find an accurate hypothesis. Thus, although we have said informally that boosting focuses
on hard examples, we see now that it would be more accurate to say that boosting focuses
on finding the hardest distribution over examples.

Finally, the method from section 6.2.5 suggests that Q = 1
T

∑T
t=1Qt is an approximate

maxmin strategy, and we know that the target c is equivalent to a majority of the hypotheses
if weighted by a maxmin strategy of M′. Since Qt is, in our case, concentrated on pure
strategy (hypothesis) ht , this leads us to choose a final hypothesis H which is the (simple)
majority of h1, . . . , hT :

H(x) = sign

(
T∑

t=1

ht (x)

)
.

Note that as a side effect,

P = 1

T

T∑
t=1

Pt = 1

T

T∑
t=1

Dt

will likewise converge to an approximate minmax solution of M′. Thus, the (average of the)
distributions Dt computed by boosting also have a natural game-theoretic interpretation.

6.4.3 Analysis

Indeed, the resulting boosting procedure will compute a final hypothesis H that is function-
ally equivalent to c for sufficiently large T. We show in this section how this follows from
corollary 6.4.

As noted earlier, for all t , by our assumption of γ -weak learnability,

M′(Pt , ht) = Prx∼Pt [ht (x) = c(x)] ≥ 1
2 + γ.

By corollary 6.4, for an appropriate choice of η, this implies that

1

2
+ γ ≤ 1

T

T∑
t=1

M′(Pt , ht) ≤ min
x∈X

1

T

T∑
t=1

M′(x, ht)+�T, (6.28)

162 6 Game Theory, Online Learning, and Boosting

and so, for all x,

1

T

T∑
t=1

M′(x, ht) ≥ 1

2
+ γ −�T >

1

2
(6.29)

where the last inequality holds for sufficiently large T (specifically, when �T < γ). Note
that by definition of M′,

∑T
t=1M′(x, ht) is exactly the number of hypotheses ht which

agree with c on instance x. Therefore, in words, equation (6.29) says that more than half
the hypotheses ht are correct on x. This means, by definition of H , that H(x) = c(x) for
all x.

For the above to hold, we need only that �T < γ , which will be the case for T =
�((ln |X|)/γ 2). Moreover, by the same argument as in section 6.4.2 applied to equa-
tion (6.29), we see that every x will have margin at least 2γ − 2�T . Thus, as T gets large
and �T approaches zero, a minimum margin of at least 2γ is obtained asymptotically.
Together with the discussion in section 5.4.3, this shows that the optimal margin is achieved
asymptotically, assuming that the “best” (minimum weighted error) weak hypothesis ht is
chosen on every round.

When the game-playing subroutine MW is “compiled out,” and when η is replaced by 2α

(for cosmetic compatibility with earlier notation), the result of our reduction is a simplified
version of AdaBoost (algorithm 1.1 (p. 5)) in which all of the αt ’s are set equal to the fixed
parameter α. We refer to this simplified algorithm as α-Boost, although it has sometimes
also been called ε-boosting or ε-AdaBoost.

The analysis above shows that α-Boost converges to the maximum margin combined
classifier when α and T are chosen together in concert according to the dictates of corol-
lary 6.4, suggesting that T must be delicately tuned as a function of α (or vice versa). In
fact, a slightly different analysis shows that the same result holds true if α is simply chosen
to be “very small” and the algorithm is then run for a “long time” (with no danger of running
for too long). In particular, instead of using corollary 6.4 in equation (6.28), we can apply
corollary 6.3. This gives

1

2
+ γ ≤ 1

T

T∑
t=1

M′(Pt , ht) ≤ aη min
x∈X

1

T

T∑
t=1

M′(x, ht)+ cη ln m

T

where η = 2α. Rearranging gives

min
x∈X

1

T

T∑
t=1

M′(x, ht) ≥ 1

aη

[(
1

2
+ γ

)
− cη ln m

T

]

=
(

1

2
+ γ

)
−
(

1− 1− e−2α

2α

)(
1

2
+ γ

)
− ln m

2αT

6.5 Application to a “Mind-Reading” Game 163

≥
(

1

2
+ γ

)
−α

(
1

2
+ γ

)
− ln m

2αT

where the last inequality uses the Taylor approximation e−z ≤ 1− z+ z2/2 for all z ≥ 0.
Thus, by similar arguments as before, all examples x will have margin at least

2γ −α(1+ 2γ)− ln m

αT
.

When T is very large, the rightmost term becomes negligible, so that asymptotically the
margins come within α(1+ 2γ) ≤ 2α of 2γ , the best possible margin for the given γ -
weak learning assumption (see section 5.4.3). Thus, this argument shows that a combined
classifier can be found with a minimum margin that is arbitrarily close to optimal by using
an appropriately small choice of α, followed by a long run of the algorithm (with specific
rates of convergence as given above).

So, as an alternative to AdaBoost or the variants given in section 5.4.2, we see that the
simpler algorithm α-Boost can be used for maximizing the minimum margin. However,
in addition to the caveats of section 5.4.2, we expect this procedure in practice to be slow
since α must be small, and T must be correspondingly large.

6.5 Application to a “Mind-Reading” Game

We end this chapter with a brief description of an application of these ideas to a simple game
called penny-matching, or odds and evens. One player is designated the “evens” player and
the other is “odds.” On every round of play, they both choose and then simultaneously
reveal a single bit, either + or − (which we sometimes identify with +1 and −1). If the
two bits match, then the evens player wins; otherwise, the odds player wins. The game is
typically played for multiple rounds.

As in Rock-Paper-Scissors, the penny-matching game incorporates elements of a mind-
reading contest in the sense that each player attempts to predict what the other player will
do, and to act accordingly, while simultaneously trying to behave unpredictably. Of course,
the players can in principle choose their bits entirely at random (which would be the minmax
strategy for the game); however, unless provided with an external source of randomness,
such as an actual coin or a computer, humans turn out to be very bad at behaving in a truly
random fashion (we will see some empirical evidence for this below). Moreover, players
who can successfully discern their opponent’s intentions will have a much better chance of
winning.

In the 1950s, David Hagelbarger and later Claude Shannon created learning machines
to play this game against a human in an early exploration of how to make “intelligent”
computing devices. In those days, this meant literally building a machine—figure 6.3 shows
a schematic diagram of Hagelbarger’s, which he called a “sequence extrapolating robot.”

Figure 6.3
(Caption on facing page)

6.5 Application to a “Mind-Reading” Game 165

(Shannon referred to his as a “mind-reading (?) machine” (sic).) Both their designs were
very simple, keeping track of how the human behaved in similar circumstances, and then
acting accordingly based on this history. On each round, their machines would consider the
current “state of play” and how the human had previously behaved when this identical state
had been encountered, then formulating a prediction of the human’s next play accordingly.
In their machines, the notion of state of play was limited to what had happened on the last
two rounds, specifically, whether the human won or lost the last round; whether the human
won or lost the time before that; and whether the human played differently or the same on
the last two rounds.

Here, we describe a more sophisticated approach to playing this game based on the online
prediction framework of section 6.3. As we have discussed, the essential problem in this
game is that of predicting what one’s opponent will do next. Moreover, these predictions
must be made in an online fashion. And regarding the “data” as random in this adversar-
ial setting seems entirely unreasonable. Given these attributes of the problem, the online
learning model seems to be especially well suited.

Recall that in online prediction, on each round t the learner receives an instance xt ,
formulates a prediction ŷt , and observes an outcome, or label c(xt), which we henceforth
denote by yt . The learner’s goal is to minimize the number of mistakes, that is, rounds in
which ŷt �= yt . To cast the penny-matching game in these terms, we first identify the learner
with the “evens” player, whose goal is to match the human opponent’s bits. On round t , we
identify yt with the human’s chosen bit on that round, and we take the learner’s prediction
ŷt to be its own chosen bit. Then the learner loses the round if and only if ŷt �= yt . In other
words, in this setup minimizing mistakes in online prediction is the same as minimizing the
number of rounds lost in penny-matching.

As presented in section 6.3, given an instance xt , an online learning algorithm formulates
its own prediction ŷt based on the predictions h(xt) made by the rules h in a space H. In the
current setting, we take the instance xt to be the entire history up to (but not including) round
t ; specifically, this means all of the plays made by both players on the first t − 1 rounds.
Given this history, each prediction rule h makes its own prediction of what the human will
do next.

The algorithm presented in section 6.3 gives a technique for combining the predictions
of the rules in H so that the composite predictions ŷt will be almost as good as those of the
best rule in the space.

So all that remains is to choose a set H of predictors. Our bounds suggest that H can
be rather large, and we only need to anticipate that one of the rules will be good. Clearly,
there are many sorts of predictors we might imagine, and here we describe just one of many
possible approaches.

Figure 6.3
The circuit design of Hagelbarger’s machine for playing penny-matching. (Copyright ©1956 IRE (now IEEE).
Reprinted, with permission, from IRE Transactions on Electronic Computers, EC-5(1):1–7, March 1956.)

166 6 Game Theory, Online Learning, and Boosting

yt–1 yt–1

yt–2 yt–2

yt–3

Figure 6.4
Two example context trees for predicting the human’s next bit yt based on those previously played, y1, . . . , yt−1.
The trees are evaluated as in section 1.3, which in this case means working our way backward through the history
of played bits until a leaf node is reached that provides the tree’s prediction for the current context.

As was done by Hagelbarger and Shannon, it seems especially natural to consider predic-
tors that take into account the recent past. For instance, suppose the human tends to alternate
between plays of − and + leading to runs like this:

−+−+−+−+−+−+−+− · · ·
Such a pattern can be captured by a rule that says if the last bit was−, then predict+ for the
current round; and if the last bit was+, then predict−. This simple rule can be represented
by a decision tree like the stubby one on the left of figure 6.4, where the nodes indicate
the bit to be tested to determine which branch to follow, and the leaves provide the rule’s
prediction for the next bit.

Suppose now that the human instead tends to create more complicated patterns like this
one:

++−−−++−−−++−−− · · ·
This pattern can be similarly captured by a decision tree as shown on the right of figure 6.4.
For instance, the tree tells us, in part, that if the last bit was + and the one before that was
−, then the next bit should be predicted +. But if the last two bits were −, then, according
to this rule, we need to look one more bit back to arrive at a prediction,

Note that although we have motivated these rules with simple patterns like the ones
above, such rules need not give perfect predictions to be useful in our setting. It is enough
that they capture general tendencies that enable them to make predictions that are better
than random.

Such decision trees are called context trees since each prediction is formulated based on
the context of the recent past and we work our way back in time until the rule has enough

6.5 Application to a “Mind-Reading” Game 167

information to make a prediction. The trees we have considered so far take into account
only how the human has played, but in general we may also wish to consider other aspects
of the recent past, such as who won the round, and whether or not the human’s predictions
changed from one round to the next. Indeed, rules based on Hagelbarger and Shannon’s
“state of play” could be put into the form of such a tree as well.

So the idea is to identify the rules used by our online prediction algorithm with such
context trees. This leads, of course, to the question of which trees to include in our rule
space. To answer this, we begin by fixing an order in which the past is probed. For instance,
the trees above, on round t , first test the last bit yt−1 played by the human, then the preceding
bit yt−2, then yt−3, and so on. This means that all the trees we consider will test the value
of yt−1 at the root, then all nodes at the next level down will test yt−2, and so on. The point
is that the tests associated with particular nodes are fixed and the same for all trees in the
family. (Although we focus on there being just a single, fixed ordering of the tests, these
methods can immediately be generalized to the case in which there are instead a small
number of orderings considered, each defining its own family of trees.)

Subject to this restriction on the ordering of the tests, we can now consider including in
H all possible context trees, meaning all possible topologies, or ways of cutting off the tree,
and all possible ways of labeling the leaves. For instance, figure 6.4 shows two possible trees
that are consistent with the specific restrictions we described above. In general, there will be
an exponential number of such trees since there are exponentially many tree topologies and
exponentially many leaf labelings to consider. As previously mentioned, this huge number
of rules is not necessarily a problem in terms of performance since the bounds (such as in
equation (6.24)) are only logarithmic in |H|. Moreover, it is not implausible to expect at
least one such rule to capture the kinds of patterns typically selected by humans.

On the other hand, computationally, having a very large number of rules is prohibitively
expensive since a naive implementation of this algorithm requires space and time-per-
round that are linear in |H|. Nevertheless, for this particular well-structured family of
rules, it turns out that the online learning algorithm of section 6.3 can be implemented
extremely efficiently in terms of both time and space. This is because the required tree-based
computations collapse into a form in which a kind of dynamic programming can be applied.

These ideas were implemented into a “mind-reading game” that is publicly available on
the Internet (seed.ucsd.edu/˜mindreader) in which the computer and the human
play against one another until one player has won a hundred rounds.

Figure 6.5 shows a histogram of the final scores for 11,882 games recorded between
March 2006 and June 2008. The score is the number of rounds won by the human minus
the number won by the computer (so it is positive if and only if the human won the entire
game). The figure shows that the computer usually wins, and often by a wide margin. In
fact, the computer won 86.6% of these games. The average score of all the games was
−41.0 with a median of −42, meaning that on half the games, the human had won 58 or
fewer rounds by the time the computer had won 100. Of course, a purely random player

168 6 Game Theory, Online Learning, and Boosting

0

20

40

60

80

100

120

140

160

180

200

–100 –75 –50 –25 0 25 50 75 100

N
um

be
r

Score

Figure 6.5
A histogram of the number of games played (out of 11,882) for each possible final score between −100 and 100,
where the score is the number of rounds won by the human minus the number won by the computer, so games
with negative scores were won by the computer. (No games had a score of zero since ties are not possible under
the rules of this game.)

0

50

100

150

200

250

300

–100 –75 –50 –25 0 25 50

A
ve

ra
ge

 d
ur

at
io

n
(s

ec
on

ds
)

Score

Figure 6.6
A plot of the average duration (in seconds) of the game compared with the final score of the game. For every
possible score, a point is plotted whose x-value is the score and whose y-value is the average of the durations of
all games which ended with that particular final score. (No point was plotted for scores with fewer than five such
games. Also, to mitigate the effect of outliers, the few games that lasted more than ten minutes were treated as if
they had lasted exactly ten minutes.)

6.5 Application to a “Mind-Reading” Game 169

would do much better than humans against the computer, necessarily winning 50% of the
games, and achieving an average and median score of zero (in expectation).

A curious phenomenon revealed by this data is shown in figure 6.6. Apparently, the faster
humans play, the more likely they are to lose. Presumably, this is because faster play tends to
be more predictable, often leading to rhythmic and patterned key banging that the learning
algorithm can quickly pick up on.

Summary

We have seen in this chapter how AdaBoost (or at least a simplified variant) can be viewed
as a special case of a more general algorithm for solving games through repeated play. This
has allowed us to understand AdaBoost more deeply, showing, for instance, that:

1. the weights on the weak hypotheses in the combined classifier must converge to an
approximate maxmin strategy for the (dual) mistake-matrix game associated with
boosting;

2. the (average of the) distributions Dt over examples must converge to an approximate
minmax strategy for this same game;

3. the notions of edge and margin are intimately connected via the minmax theorem.

Moreover, we have seen how online learning is the dual problem of boosting.

Bibliographic Notes

Our development of basic game theory in section 6.1 is standard. Further background can be
found in any of a number of introductory texts, such as [103, 174, 179, 180]. The minmax
theorem of section 6.1.3 is due to von Neumann [175].

The algorithm and its analysis, and the proof of the minmax theorem appearing in
section 6.2, are all taken from Freund and Schapire [94, 96], whose work is a direct general-
ization of Littlestone and Warmuth’s [155]. Algorithms with this same “no-regret” property
(also called “Hannan consistency” or “universal consistency”), whose loss is guaranteed to
be not much worse than that of the best fixed strategy, date back to the 1950s with the work of
Hannan [117] and Blackwell [23, 24]. Other methods include those of Foster and Vohra [86],
and Hart and Mas-Colell [118], as well as Fudenberg and Levine [101], whose method of
“exponential fictitious play” strongly resembles the Weighted Majority Algorithm.

The online prediction model studied in section 6.3 was first considered by Littlestone
and Warmuth [155] and Vovk [229], although its roots connect it with work in numerous
other fields, such as game theory and data compression. The Weighted Majority Algorithm
and its analysis, as presented here, are originally due to Littlestone and Warmuth [155]. Its

170 6 Game Theory, Online Learning, and Boosting

rederivation is due to Freund and Schapire [94]. Better bounds than those presented here for
the online prediction problem were obtained by Cesa-Bianchi et al. [45], and Vovk [229].

For further background on no-regret algorithms and online learning, see Cesa-Bianchi
and Lugosi’s excellent book [47]. A somewhat different perspective on learning and game
theory is given in Fudenberg and Levine’s book [102].

The connection between boosting and game playing described in section 6.4 is due
to Freund and Schapire [94]. However, from the very beginning, AdaBoost was linked
with online learning, having been originally derived directly from a generalization of the
Weighted Majority Algorithm called “Hedge” [95].

The α-Boost algorithm of section 6.4.3, in which all of the αt ’s are held fixed to a small
constant α, was suggested by Friedman [100]. The convergence and margin-maximizing
properties of this algorithm were studied by Rosset, Zhu, and Hastie [192], and by Zhang
and Yu [236]. The proof given here is similar to the one given by Xi et al. [233].

Any game can be solved using linear programming, and, conversely, it is known that
the solution of any linear program can be obtained by solving an appropriate zero-sum
game [62]. This equivalence also points to the close relationship between boosting and linear
programming; indeed, the problem of finding the maximum-margin classifier can be formu-
lated as a linear program. This connection is studied in depth by Grove and Schuurmans [111]
and Demiriz, Bennett, and Shawe-Taylor [65].

A method for combining online learning and boosting—specifically, for running
AdaBoost in an online fashion—is given by Oza and Russell [181].

Early machines for learning to play penny-matching, as in section 6.5, were invented
by Hagelbarger [115] and later by Shannon [213]. Figure 6.3 is reprinted from the former.
The technique of combining the predictions of all possible context trees is due to Helmbold
and Schapire [122], in a direct adaptation of Willems, Shtarkov, and Tjalkens’s method for
weighting context trees [231]. The Internet implementation was created by the authors with
Anup Doshi.

The episode of The Simpsons quoted in section 6.1.3 first aired on April 15, 1993 (episode
#9F16).

Some of the exercises in this chapter are based on material from [62, 96, 153].

Exercises

In the exercises below, assume all game matrices have entries only in [0, 1], except where
noted otherwise.

6.1 Show that the minmax theorem (equation (6.6)) is false when working with pure strate-
gies. In other words, give an example of a game M for which

min
i

max
j

M(i, j) �= max
j

min
i

M(i, j).

Exercises 171

6.2 Suppose MW is used to play against itself on an m× n game matrix M. That is, on
each round, the row player selects its mixed strategy Pt using MW, and the column player
selects Qt using another copy of MW applied to the dual matrix M′ (equation (6.27)). Use
corollary 6.4, applied to these two copies of MW, to give an alternative proof of the minmax
theorem. Also, show that P and Q, as defined in equation (6.21), are approximate minmax
and maxmin strategies.

6.3 What is the relationship between the value v of a game M and the value v′ of its dual
M′ (equation (6.27))? In particular, if M is symmetric (that is, equal to its dual), what must
its value be? Justify your answers.

6.4 Let S = 〈x1, . . . , xm〉 be any sequence of m distinct points in X . Referring to the defi-
nitions in section 5.3, prove that

RS(H) ≤ O

(√
ln |H|

m

)
(6.30)

by applying the analysis in section 6.3 to an appropriately constructed presentation of
examples and labels. (Equation (6.30) is the same as equation (5.22), but with possibly
weaker constants.) [Hint: Consider choosing all labels uniformly at random.]

6.5 The vMW algorithm is a variant of MW in which the parameter η varies from round to
round. Let u ∈ [0, 1] be a given “estimate” of the value of the game M. The vMW algorithm
starts with an arbitrary initial strategy P1. On each round t , the new mixed strategy Pt+1 is
computed from Pt as in equation (6.9), but with η replaced by ηt where

ηt
.= max

{
0, ln

(
u(1− �t)

(1− u)�t

)}
,

and where �t
.= M(Pt , Qt). Let

Q̂
.=
∑T

t=1ηtQt∑T
t=1ηt

.

For parts (a) and (b), assume �t ≥ u for all t.

a. For any mixed strategy P̃ , show that if M(P̃, Q̂) ≤ u, then

RE
(
P̃ ‖ PT+1

)
−RE

(
P̃ ‖ P1

)
≤ −

T∑
t=1

REb (u ‖ �t).

b. Show that

Pri∼P1

[
M(i, Q̂) ≤ u

]
=

∑
i:M(i,Q̂)≤u

P1(i) ≤ exp

(
−

T∑
t=1

REb (u ‖ �t)

)
.

172 6 Game Theory, Online Learning, and Boosting

c. Suppose the value v of the game is at most u, and suppose vMW is run with P1 chosen
to be the uniform distribution. For all ε > 0, show that the number of rounds t on which
�t ≥ u+ ε cannot exceed

ln m

REb (u ‖ u+ ε)
.

d. Show how AdaBoost can be derived from vMW, and how its analysis in theorem 3.1
follows as a special case of part (b). (You can assume that εt ≤ 1

2 on every round of
AdaBoost.)

e. Likewise, show how the version of AdaBoost given in section 5.4.2 with αt set as in
equation (5.34) can be derived from vMW, and how the bound in equation (5.35) follows
as a special case of part (b). (Assume γt ≥ θ/2 on every round t .)

f. Explain in precise terms, using the language of boosting, the implications of part (c) for
the boosting algorithms considered in parts (d) and (e).

6.6 In the online learning framework of section 6.3, suppose the target c is linearly separable
with margin θ . That is, suppose there exists a weight vector w on the classifiers in H such
that ‖w‖1 = 1, and for all x ∈ X,

c(x)

(∑
h∈H

whh(x)

)
≥ θ

where θ > 0 is known (but w is not). Derive and analyze an online algorithm that makes at
most

O

(
ln |H|

θ2

)
mistakes on any sequence of examples. Give explicit constants. [Hint: Use exercise 6.5.]

6.7 In the online learning framework of section 6.3, we assumed that each instance xt

is labeled by c(xt), where c is some unknown target function. This means that the same
instance x cannot appear twice with different labels. Suppose we remove this assumption
so that the “correct” label associated with each instance xt is now allowed to be an arbitrary
value yt ∈ {−1,+1}. For this relaxed setting, show that the bound in equation (6.24),
with c(xt) replaced by yt , holds for an appropriate modification of the algorithm given in
section 6.3.

6.8 In the modified online learning setting of exercise 6.7, suppose that the instance space
X is not too large, and that H is chosen to be all possible binary functions on X, that is, all
functions h : X → {−1,+1}. Since |H| = 2|X|, a naive implementation of the (modified)
algorithm of section 6.3 would require time and space that are exponential in |X|. Devise

Exercises 173

an alternative algorithm which (1) is equivalent in terms of its input-output behavior (so
that it makes identical (randomized) predictions when given identical observations), but (2)
whose space requirements are only linear in |X|, and whose per-round time requirements
are even better. Show that your algorithm has both these properties.

6.9 This exercise explores a kind of equivalence that exists between linear programming
and solving zero-sum games. A linear program is an optimization problem in which the
goal is to maximize a linear objective function subject to linear inequality constraints. Thus,
the problem has the following form:

maximize: c · x
subject to: Ax ≤ b and x ≥ 0. (6.31)

Here, our aim is to solve for x ∈ Rn given A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Also, in this
exercise we use inequality between vectors to mean componentwise inequality (that is,
u ≥ v if and only if ui ≥ vi for all i).

a. Show that the problem of solving a game, that is, finding a minmax strategy P ∗, can be
formulated as a linear program.

Every linear program in its primal form, as in program (6.31), has a corresponding dual
program over dual variables y ∈ Rm:

minimize: b · y
subject to: A y ≥ c and y ≥ 0. (6.32)

b. What is the dual of the linear program that was found in part (a)? In game-theoretic
terms, what is the meaning of its solution?

Returning to the general linear program above and its dual (programs (6.31) and (6.32)),
a vector x ∈ Rn is said to be feasible if Ax ≤ b and x ≥ 0; likewise, y ∈ Rm is feasible if
A y ≥ c and y ≥ 0.

c. Show that if x and y are both feasible, then c · x ≤ b · y. Further, if x and y are feasible and
c · x = b · y, show that x and y are solutions of the primal and dual problems, respectively.
[Hint: Consider y Ax.]

Consider the (m+ n+ 1)× (m+ n+ 1) game matrix

M .=
⎛⎝ 0 A −c
−A 0 b
c −b 0

⎞⎠ .

Here, entries of M that are matrices or vectors stand for entire blocks of entries, and each
0 is a matrix composed of 0’s of the appropriate size. (Note that here we have dropped
our convention of requiring that all entries of M be in [0, 1].)

174 6 Game Theory, Online Learning, and Boosting

d. What is the value of the game M?

e. Let P ∗ be a minmax solution of the game M which, being a vector in Rm+n+1, can be
written in the form⎛⎝ x

y
z

⎞⎠
where x ∈ Rn, y ∈ Rm, and z ∈ R. Show that if z �= 0, then x/z and y/z are solutions
of the primal and dual problems, respectively.

7 Loss Minimization and Generalizations of Boosting

In recent years many, if not most, statistical and machine learning methods have been
based in one way or another on the optimization of an objective or loss function. For
instance, in the simplest form of linear regression, given examples (x1, y1), . . . , (xm, ym),
where xi ∈ Rn and yi ∈ R, one seeks to find a weight vector w such that w · xi will be a good
approximation of yi . More precisely, the goal is to find w ∈ Rn minimizing the average (or
sum) of the squared errors:

L(w) = 1

m

m∑
i=1

(w · xi − yi)
2.

Here, the squared error of each example (w · xi − yi)
2 is the loss function—in this case, the

square or quadratic loss—and the goal is to minimize the average of the losses over all m

examples. A host of other techniques, including neural networks, support-vector machines,
maximum likelihood, logistic regression, and many more, can be viewed similarly as opti-
mization of some objective function defined over a set of real-valued parameters.

This approach of defining and then optimizing a specific optimization function has many
advantages. First of all, this approach allows us to make the goal of the learning method clear
and explicit. This clarity can help tremendously in understanding what a learning method
is doing, and in proving properties of the method, for instance, that an iterative procedure
eventually converges to something useful. A second major benefit is the decoupling of the
objective of learning (minimization of some function) from the particular numerical method
that is applied to reach this goal. This means, for instance, that fast, general-purpose
numerical methods can be developed and applied to a range of learning objectives. Finally,
objective functions can often be easily modified to fit new learning challenges; a number
of examples are given in this chapter.

All this leads to the question of whether AdaBoost, too, like so many other modern learn-
ing methods, is in fact a procedure for optimizing some associated objective function.
Certainly, AdaBoost was not designed with this purpose in mind. Nevertheless, as will be

176 7 Loss Minimization and Generalizations of Boosting

seen in this chapter, there is indeed a loss function, called the exponential loss, that Ada-
Boost turns out to greedily minimize. This realization is helpful in a number of ways. First,
the fact that AdaBoost is minimizing this particular loss function helps us to understand the
algorithm, and is useful in extending the algorithm, for instance, as a tool for estimating
conditional probabilities. Second, the AdaBoost algorithm itself can be viewed as a partic-
ular technique for minimizing this loss function. This understanding means that AdaBoost
can be generalized to handle loss functions other than exponential loss, thus admitting the
derivation of boosting-like procedures for other purposes, such as regression (prediction of
real-valued labels).

As an important example, these insights help to expose the close connection betweenAda-
Boost and logistic regression, one of the oldest and most widely used statistical approaches
for learning to classify discretely labeled data. As we will see, the exponential loss function
associated with AdaBoost is related to the loss function for logistic regression. More-
over, AdaBoost can be almost trivially modified to minimize logistic regression’s loss
function. This view also helps us to see how the predictions made by AdaBoost can be
used to estimate the probability of a particular example being labeled +1 or −1, rather
than the classification problem of predicting the most likely label, which we have focused
on through most of this book. Finally, this view provides a unified framework in which
AdaBoost and logistic regression can be regarded as sibling algorithms in the context of
convex optimization and information geometry, topics that will be explored further in
chapter 8.

Although the interpretation of AdaBoost as a method for optimizing a particular objective
function is very useful, a certain note of caution is in order. It is indisputable that AdaBoost
minimizes exponential loss. Nevertheless, this does not mean that AdaBoost’s effectiveness
comes as a direct consequence of this property. Indeed, we will see that other methods for
minimizing the same loss associated with AdaBoost can perform arbitrarily poorly. This
means that AdaBoost’s effectiveness must in some way follow from the particular dynamics
of the algorithm—not just what it is minimizing, but how it is doing it.

This chapter also studies regularization, a commonly used “smoothing” technique for
avoiding overfitting by bounding the magnitude of the weights computed on the base clas-
sifiers. Regularization and boosting turn out to be linked fundamentally. In particular, we
will see that the behavior of α-Boost (a variant of AdaBoost encountered in section 6.4.3),
when run for a limited number of rounds, can be regarded as a reasonable approximation
of a particular form of regularization. In other words, stopping boosting after fewer rounds
can be viewed in this sense as a method of regularization which may be appropriate when
working with limited or especially noisy data that might otherwise lead to overfitting. Fur-
ther, when applied in its weakest form, we will see that regularization produces classifiers
with margin-maximizing properties similar to those at the core of our understanding of
AdaBoost, as seen in chapter 5.

7.1 AdaBoost’s Loss Function 177

As further examples of how the general techniques presented in this chapter can be ap-
plied, we show in closing how two practical learning scenarios which arise naturally as a
result of limitations in the availability of data might be handled through the careful design
of an appropriate loss function.

7.1 AdaBoost’s Loss Function

So what is the loss function that is naturally associated withAdaBoost? For most of this book,
the emphasis has been on minimizing the probability of making an incorrect prediction. That
is, the loss of interest for a classifier H on labeled example (x, y) has been the classification
loss or 0-1 loss

1{H(x) �= y},
which is equal to 1 if the classifier H misclassifies (x, y), and 0 otherwise. Indeed, chapter 3
focused on deriving bounds on AdaBoost’s training error

1

m

m∑
i=1

1{H(xi) �= yi} (7.1)

where (x1, y1), . . . , (xm, ym) is the given training set, and where, as before, H is the
combined classifier of the form

H(x) = sign(F (x)),

and

F(x)
.=

T∑
t=1

αtht (x) (7.2)

is the linear combination of weak classifiers computed by AdaBoost.
So is AdaBoost a method for minimizing the objective function in equation (7.1)? The

answer is “no,” in the sense that it can be shown that AdaBoost will not necessarily find
the combined classifier of the form above that minimizes equation (7.1). In fact, this problem
turns out to be NP-complete, meaning that no polynomial-time algorithm is believed to exist
for it. Moreover, on close inspection of the proof of theorem 3.1, we can see that at least with
regard to the choice of αt ’s, the algorithm was not optimized for the purpose of minimizing
the training error in equation (7.1) per se, but rather an upper bound on the training error.

This is brought out most clearly in equation (3.3) of the proof of theorem 3.1 (where,
throughout the current discussion, we fix D1 to the uniform distribution). There, we upper
bounded the training error

178 7 Loss Minimization and Generalizations of Boosting

Algorithm 7.1
A greedy algorithm for minimizing exponential loss

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• Choose ht ∈ H, αt ∈ R to minimize

1

m

m∑
i=1

exp(−yi(Ft−1(xi)+αtht (xi)))

(over all choices of αt and ht).

• Update:

Ft = Ft−1+αtht .

Output FT .

1

m

m∑
i=1

1{sign(F (xi)) �= yi} = 1

m

m∑
i=1

1{yiF (xi) ≤ 0}

by the exponential loss

1

m

m∑
i=1

e−yiF (xi), (7.3)

using the bound 1{x ≤ 0} ≤ e−x . This is the only step where an inequality was used
in that proof; all other steps, including, for instance, the greedy choice of αt , involved
strict equalities. Thus, in a nutshell, AdaBoost’s training error was first upper bounded
by the exponential loss in equation (7.3), which in turn is greedily minimized by the al-
gorithm.

We claim that AdaBoost is in fact a greedy procedure for minimizing equation (7.3).
More precisely, consider algorithm 7.1, which iteratively constructs a linear combination
F = FT of the form given in equation (7.2), on each round choosing αt and ht so as to cause
the greatest decrease in the exponential loss of equation (7.3). We claim that this greedy
procedure is equivalent toAdaBoost, making the same choices of αt and ht if given the same
data and base hypothesis space (and assuming throughout that we are using an exhaustive
weak learner that always chooses ht to minimize the weighted training error εt over all
ht ∈ H). The proof of this is embedded in the proof of theorem 3.1. Note first that, using

7.2 Coordinate Descent 179

the notation from theorem 3.1, equation (3.2) of that proof shows that on any round t , and
for all examples i,

1

m
e−yiFt−1(xi) = Dt(i)

(
t−1∏
t ′=1

Zt ′

)
. (7.4)

This implies that

1

m

m∑
i=1

e−yiFt (xi) = 1

m

m∑
i=1

exp(−yi(Ft−1(xi)+αtht (xi)))

=
m∑

i=1

Dt(i)

(
t−1∏
t ′=1

Zt ′

)
e−yiαt ht (xi)

∝
m∑

i=1

Dt(i)e
−yiαt ht (xi) .= Zt

(where f ∝ g here means that f is equal to g times a positive constant that does not depend
on αt or ht). Thus, minimizing the exponential loss on round t as in algorithm 7.1 is
equivalent to minimizing the normalization factor Zt . Moreover, in equation (3.7) we
showed that for a given ht with weighted error εt ,

Zt = e−αt (1− εt)+ eαt εt ,

an expression that is minimized for exactly the choice of αt used by AdaBoost. Thus, for a
given ht , αt greedily minimizes the exponential loss for round t . Furthermore, plugging in
this minimizing choice of αt gives

Zt = 2
√

εt (1− εt), (7.5)

which is monotonically increasing for 0 ≤ εt ≤ 1
2 , and decreasing for 1

2 ≤ εt ≤ 1 (see
figure 7.1). Thus, the combination of αt and ht that minimizes exponential loss for round t

is found by choosing αt as above after first choosing ht with weighted error εt as far from 1
2

as possible; or, alternatively, assuming that−h can be chosen whenever h can be, this is the
same as choosing εt as close to zero as possible. This, of course, is exactly what AdaBoost
is doing, in concert with the weak learner.

7.2 Coordinate Descent

When put into slightly different terms, we will see in this section that this basic algorith-
mic technique turns out to be a numerical method called coordinate descent, which can
immediately be applied to other objective functions.

180 7 Loss Minimization and Generalizations of Boosting

0

0.5

1

0 0.5 1

Figure 7.1
A plot of the function Z(ε) = 2

√
ε(1− ε), as in equation (7.5).

7.2.1 Generalizing AdaBoost

Suppose for simplicity that we are working over a finite space H of N base hypotheses.
Because the space is finite, we can list all of its N members explicitly so that

H = {�1, . . . , �N }.
To be clear about the notation, �j represents the j -th weak hypothesis under an arbitrary but
fixed indexing of all the weak hypotheses in H, while ht , as used inAdaBoost (algorithm 1.1
(p. 5) or, equivalently, algorithm 7.1), represents the weak hypothesis from H that was
selected on round t . Note that N , though assumed to be finite, is typically extremely large.

We know that AdaBoost seeks a linear combination of H as in equation (7.2). Since each
ht is equal to some �j ∈ H, such a combination can be re-expressed in the new notation as

Fλ(x)
.=

N∑
j=1

λj�j (x) (7.6)

for some set of weights λ. Further, the exponential loss function to be minimized can be
written as

L(λ1, . . . , λN)
.= 1

m

m∑
i=1

exp(−yiFλ(xi))

7.2 Coordinate Descent 181

Algorithm 7.2
A generic greedy coordinate descent algorithm

Goal: minimization of L(λ1, . . . , λN).
Initialize: λj ← 0 for j = 1, . . . , N.
For t = 1, . . . , T :

• Let j, α minimize L(λ1, . . . , λj−1, λj +α, λj+1, . . . , λN)

over j ∈ {1, . . . , N}, α ∈ R.

• λj ← λj +α.

Output λ1, . . . , λN .

= 1

m

m∑
i=1

exp

⎛⎝−yi

N∑
j=1

λj�j (xi)

⎞⎠ . (7.7)

As we have seen, AdaBoost behaves as though the goal were minimization of this loss,
which we have here expressed as a real-valued function L over N real-valued parameters,
or weights, λ1, . . . , λN . The method that it uses is to select, on each round t , a weak classifier
ht ∈ H and a real number αt , and then to add a new term αtht to Ft−1 as in the update step of
algorithm 7.1. Since ht is in H, it must be the same as some �j , so choosing ht is equivalent
to choosing one of the weights λj . Further, adding αtht to Ft−1 is then equivalent to adding
αt to λj , that is, applying the update

λj ← λj +αt .

Thus, on each round, AdaBoost adjusts just one of the weights λj . Moreover, the argument
given in section 7.1 shows that both the weight λj and the adjustment αt are chosen so as
to cause the greatest decrease in the loss function L.

In this sense, AdaBoost can be regarded as a coordinate descent method which seeks
to minimize its objective function L by iteratively descending along just one coordinate
direction at a time. Generic pseudocode for coordinate descent is given as algorithm 7.2.
This is in contrast, say, to ordinary gradient descent, which we discuss in section 7.3, and
which adjusts all of the weights λ1, . . . , λN simultaneously on every iteration. When the
size N of the weak-classifier space H is very large (as is typically the case), a sequential
update procedure like coordinate descent may make more sense since it leads to a sparse
solution, that is, one in which the vast majority of the λj ’s remain equal to zero. This has
clear computational benefits since many computations can be carried out without regard
to the base hypotheses that have zero weight; indeed, it is for this reason that AdaBoost’s
running time does not depend at all on the total number of base hypotheses in H (although

182 7 Loss Minimization and Generalizations of Boosting

the weak learner’s running time might). There may also be statistical benefits, as was seen
in section 4.1, where we proved generalization bounds that depended directly on T , the
number of nonzero weights, but only logarithmically on N = |H|, the total number of
weights.

One still needs to search, on each round, for the best single weight to update, but in many
cases this search, at least approximately, can be carried out efficiently. For instance, in
AdaBoost this amounts to the familiar search for a base classifier with minimum weighted
error, and can be carried out using any standard learning algorithm.

7.2.2 Convergence

The exponential loss function L in equation (7.7) can be shown to be convex in the param-
eters λ1, . . . , λN (see appendix A.7). This is a very nice property because it means that a
search procedure like coordinate descent cannot get stuck in local minima since there are
none. If the algorithm reaches a point λ at which no adjustment along a coordinate direction
leads to a lower value of L, then it must be that the partial derivative ∂L/∂λj along any
coordinate λj is equal to zero. This implies that the gradient

∇L
.=
〈

∂L

∂λ1
, . . . ,

∂L

∂λN

〉
is also equal to zero, which, since L is convex, is enough to conclude that a global minimum
has been reached.

These facts, however, are not in themselves sufficient to conclude that such a global
minimum will ever be reached. In fact, even though L is convex and nonnegative, it is
entirely possible for it not to attain a global minimum at any finite value of λ. Instead,
its minimum might be attained only when some or all of the λj ’s have grown to infinity
in a particular direction. For instance, for an appropriate choice of data, the function L

could be

L(λ1, λ2) = 1
3

(
eλ1−λ2 + eλ2−λ1 + e−λ1−λ2

)
.

The first two terms together are minimized when λ1 = λ2, and the third term is minimized
when λ1+ λ2 →+∞. Thus, the minimum of L in this case is attained when we fix λ1 = λ2,
and the two weights together grow to infinity at the same pace.

Despite these difficulties, it will be proved in chapter 8 that coordinate descent—that is,
AdaBoost—does indeed converge asymptotically to the global minimum of the exponential
loss.

7.2.3 Other Loss Functions

Clearly, this coordinate-descent approach to function minimization can be applied to other
objective functions as well. To be easy to implement, effective, and efficient, the objective

7.2 Coordinate Descent 183

function L must be amenable to an efficient search for the best coordinate to adjust, and
the amount of adjustment must also be easy to compute. Moreover, to avoid local minima,
convexity and smoothness of the function L appear to be useful qualities.

For example, all of the same ideas can be applied to a quadratic loss function in place
of the exponential loss. Thus, given data (x1, y1), . . . , (xm, ym), where yi ∈ R, and given
a space of real-valued functions H = {�1, . . . , �N }, the goal is to find a linear combi-
nation

Fλ =
N∑

j=1

λj�j

with low square loss

L(λ1, . . . , λN)
.= 1

m

m∑
i=1

(Fλ(xi)− yi)
2.

This is standard linear regression, but we imagine here that the cardinality N of H is
enormous—for instance, H might be the space of all decision trees, a truly vast space of
functions. Applying coordinate descent in this case leads to a procedure like algorithm 7.1,
but with the exponential loss appearing in that algorithm replaced by

1

m

m∑
i=1

(Ft−1(xi)+αtht (xi)− yi)
2.

For a given choice of ht , it can be shown, using straightforward calculus, that the minimizing
value of αt is

αt =
m∑

i=1

ri

ht (xi)

‖ht‖2
2

(7.8)

where ri is the “residual”

ri
.= yi −Ft−1(xi), (7.9)

and

‖ht‖2 =
√√√√ m∑

i=1

ht (xi)2.

For this choice of αt , the change in L is

184 7 Loss Minimization and Generalizations of Boosting

− 1

m

(
m∑

i=1

ri

ht (xi)

‖ht‖2

)2

. (7.10)

Thus, ht should be chosen to maximize (the absolute value of) equation (7.10). This is
equivalent, up to a possible sign change in ht , to saying that ht should be chosen to minimize

1

m

m∑
i=1

(
ht (xi)

‖ht‖2
− ri

)2

,

that is, its �2-distance to the residuals (after normalizing).

7.3 Loss Minimization Cannot Explain Generalization

From the foregoing, it might seem tempting to conclude that AdaBoost’s effectiveness as
a learning algorithm is derived from the choice of loss function that it apparently aims to
minimize—in other words, thatAdaBoost works only because it minimizes exponential loss.
If this were true, then it would follow that a still better algorithm could be designed using
more powerful and sophisticated approaches to optimization thanAdaBoost’s comparatively
meek approach.

However, it is critical to keep in mind that minimization of exponential loss by itself is
not sufficient to guarantee low generalization error. On the contrary, it is very much possible
to minimize the exponential loss (using a procedure other than AdaBoost) while suffering
quite substantial generalization error (relative, say, to AdaBoost). We make this point with
both a theoretical argument and an empirical demonstration.

Beginning with the former, in the setup given above, our aim is to minimize equation (7.7).
Suppose the data is linearly separable so that there exist λ1, . . . , λN for which yiFλ(xi) >

0 for all i. In this case, given any such set of parameters λ, we can trivially minimize
equation (7.7) simply by multiplying λ by a large positive constant c, which is equivalent
to multiplying Fλ by c so that

1

m

m∑
i=1

exp (−yiFcλ(xi)) = 1

m

m∑
i=1

exp (−yicFλ(xi))

must converge to zero as c →∞. Of course, multiplying by c > 0 has no impact on the
predictions H(x) = sign(Fλ(x)). This means that the exponential loss, in the case of linearly
separable data, can be minimized by any set of separating parameters λ multiplied by a large
but inconsequential constant. Said differently, knowing that λ minimizes the exponential
loss in this case tells us nothing about λ except that the combined classifier H(x) has zero
training error. Otherwise, λ is entirely unconstrained. The complexity, or VC-dimension,

7.3 Loss Minimization Cannot Explain Generalization 185

of such classifiers is roughly the number of base classifiers N (see lemma 4.1). Since VC-
dimension provides both lower and upper bounds on the amount of data needed for learning,
this implies that the performance can be quite poor in the typical case that N is very large.

In contrast, given the weak learning assumption, AdaBoost’s generalization performance
will be much better, on the order of log N , as seen in chapter 5. This is because AdaBoost
does not construct an arbitrary zero-training-error classifier, but rather one with large (nor-
malized) margins, a property that does not follow from its status as a method for minimizing
exponential loss.

To be more concrete, we consider empirically three different algorithms for minimiz-
ing exponential loss and how they compare on a specific dataset. In this experiment, the
data was generated synthetically with each instance x a 10,000-dimensional {−1,+1}-
valued vector, that is, a point in {−1,+1}10,000. Each of the 1000 training and 10,000 test
examples was generated uniformly at random from this space. The label y associated with
an instance x was defined to be the majority vote of three designated coordinates of x;
that is,

y = sign(xa + xb+ xc)

for some fixed and distinct values a, b, and c. The weak hypotheses used were associated
with coordinates. Thus, the weak-hypothesis space H included, for each of the 10,000
coordinates j , a weak hypothesis h of the form h(x) = xj for all x. (The negatives of these
were also included.)

Three different algorithms were tested on this data. The first was ordinary AdaBoost
using an exhaustive weak learner that, on each round, finds the minimum-weighted-error
weak hypothesis. In the results below, we refer to this as exhaustive AdaBoost.

The second algorithm was gradient descent on the loss function given in equation (7.7).
In this standard approach, we iteratively adjust λ by taking a series of steps, each in the
direction that locally causes the quickest decrease in the loss L; this direction turns out to
be the negative gradient. Thus, we begin at λ = 0, and on each round we adjust λ using the
update

λ← λ−α∇L(λ)

where α is a step size. In these experiments, α > 0 was chosen on each round using a line
search to find the value that (approximately) causes the greatest decrease in the loss in the
given direction.

As we will see, gradient descent is much faster than AdaBoost at driving down the
exponential loss (where, for the purposes of this discussion, speed is with reference to the
number of rounds, not the overall computation time). A third algorithm that is much slower
was also tested. This algorithm is actually the same as AdaBoost except that the weak
learner does not actively search for the best, or even a good, weak hypothesis. Rather, on

186 7 Loss Minimization and Generalizations of Boosting

every round, the weak learner simply selects one weak hypothesis h uniformly at random
from H, returning either it or its negation−h, whichever has the lower weighted error (thus
ensuring a weighted error no greater than 1

2). We refer to this method as random AdaBoost.
All three algorithms are guaranteed to minimize the exponential loss (almost surely, in

the case of random AdaBoost). But that does not mean that they will necessarily perform
the same on actual data in terms of classification accuracy. It is true that the exponential
loss function L in equation (7.7) is convex, and therefore that it can have no local minima.
But that does not mean that the minimum is unique. For instance, the function

1
2

(
eλ1−λ2 + eλ2−λ1

)
is minimized at any values for which λ1 = λ2. In fact, in the typical case that N is very
large, we expect the minimum of L to be realized at a rather large set of values λ. The fact
that two algorithms both minimize L only guarantees that both solutions will be in this set,
telling us essentially nothing about their relative accuracy.

The results of these experiments are shown in table 7.1. Regarding speed, the table shows
that, as commented above, gradient descent is extremely fast at minimizing exponential
loss, while random AdaBoost is unbearably slow, though eventually effective. Exhaustive
AdaBoost is somewhere in between.

As for accuracy, the table shows that both gradient descent and random AdaBoost per-
formed very poorly on this data, with test errors never dropping significantly below 40%.
In contrast, exhaustive AdaBoost quickly achieved and maintained perfect test accuracy
beginning after the third round.

Of course, this artificial example is not meant to show that exhaustiveAdaBoost is always
a better algorithm than the other two methods. Rather, the point is that AdaBoost’s strong
performance as a classification algorithm cannot be credited—at least not exclusively—to

Table 7.1
Results of the experiment described in section 7.3

% Test Error [# Rounds]

Exp. Loss Exhaustive AdaBoost Gradient Descent Random AdaBoost

10−10 0.0 [94] 40.7 [5] 44.0 [24,464]

10−20 0.0 [190] 40.8 [9] 41.6 [47,534]

10−40 0.0 [382] 40.8 [21] 40.9 [94,479]

10−100 0.0 [956] 40.8 [70] 40.3 [234,654]

The numbers in brackets are the number of rounds required for each algorithm to reach specified values of the
exponential loss. The unbracketed numbers show the percent test error achieved by each algorithm at the point
in its run where the exponential loss first dropped below the specified values. All results are averaged over ten
random repetitions of the experiment.

7.3 Loss Minimization Cannot Explain Generalization 187

its effect on the exponential loss. If this were the case, then any algorithm achieving equally
low exponential loss should have equally low generalization error. But this is far from what
we see in this example where exhaustive AdaBoost’s very low exponential loss is matched
by the competitors, but their test errors are not even close. Clearly, some other factor beyond
its exponential loss must be at work to explain exhaustive AdaBoost’s comparatively strong
performance.

Indeed, these results are entirely consistent with the margins theory of chapter 5, which
does have something direct to say about generalization error. That theory states that the
generalization error can be bounded in terms of the number of training examples, the com-
plexity of the base classifiers, and the distribution of the normalized margins on the training
set. The first two of these are the same for all three methods tested. However, there were
very significant differences in the margin distributions, which are shown in figure 7.2. As
can be seen, exhaustive AdaBoost achieves very large margins of at least 0.33 on all of
the training examples, in correlation with its excellent accuracy. In sharp contrast, both of
the poorly performing competitors had margins below 0.07 on nearly all of the training
examples (even lower for random AdaBoost).

Minimization of exponential loss is a fundamental property of AdaBoost, and one that
opens the door for a range of practical generalizations of the algorithm. However, the
examples in this section demonstrate that any understanding of AdaBoost’s generalization

0.5

1

–1 –0.5 0 0.5 1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Margin

exhaustive AdaBoost
gradient descent

random AdaBoost

Figure 7.2
The distributions of margins achieved by three algorithms on synthetic data at the point where their exponential
loss first dropped below 10−40.

188 7 Loss Minimization and Generalizations of Boosting

capabilities must in some way take into account the particular dynamics of the algorithm,
not just the objective function but also what procedure is actually being used to minimize it.

7.4 Functional Gradient Descent

AdaBoost, as was seen in section 7.2, can be viewed as coordinate-descent minimization of
a particular optimization function. This view is useful and general, but can be cumbersome
to implement for other loss functions when the choice of best adjustment along the best
coordinate is not straightforward to find. In this section, we give a second view of AdaBoost
as an algorithm for optimization of an objective function, and we will see that this new view
can also be generalized to other loss functions, but in a way that may overcome possible
computational difficulties with the coordinate descent view. In fact, in many cases the
choice of best base function to add on a given round will turn out to be a matter of finding
a classifier with minimum error rate, just as in the case of boosting. Thus, this technique
allows the minimization of many loss functions to be reduced to a sequence of ordinary
classification problems.

7.4.1 A Different Generalization

In the coordinate descent view, we regarded our objective function, as in equation (7.7), as
a function of a set of parameters λ1, . . . , λN representing the weights over all of the base
functions in the space H. All optimizations then were carried out by manipulating these
parameters.

The new view provides a rather different approach in which the focus is on entire func-
tions, rather than on a set of parameters. In particular, our objective function L now takes
as input another function F . In the case of the exponential loss associated with AdaBoost,
this would be

L(F)
.= 1

m

m∑
i=1

e−yiF (xi). (7.11)

Thus, L is a functional, that is, a function whose input argument is itself a function, and the
goal is to find F minimizing L (possibly with some constraints on F).

In fact, for the purpose of optimizing equation (7.11), we only care about the value of F

at x1, . . . , xm. Thus, we can think of L as a function of just the values F(x1), . . . , F (xm),
which we can regard as m ordinary real variables. In other words, if we for the moment
write F(xi) as fi , then our goal can be viewed as that of minimizing

L(f1, . . . , fm)
.= 1

m

m∑
i=1

e−yifi .

7.4 Functional Gradient Descent 189

In this way, L can be thought of as a real-valued function on Rm.
How can we optimize such a function? As described in section 7.3, gradient descent is a

standard approach, the idea being to iteratively take small steps in the direction of steepest
descent, which is the negative gradient. Applying this idea here means repeatedly updating
F by the rule

F ← F −α∇L(F) (7.12)

where ∇L(F) represents the gradient of L at F , and α is some small positive value, some-
times called the learning rate. If we view F only as a function of x1, . . . , xm, then its
gradient is the vector in Rm,

∇L(F)
.=
〈

∂L(F)

∂F (x1)
, . . . ,

∂L(F)

∂F (xm)

〉
,

and the gradient descent update in equation (7.12) is equivalent to

F(xi) ← F(xi)−α
∂L(F)

∂F (xi)

for i = 1, . . . , m.
This technique is certainly simple. The problem is that it leaves F entirely unconstrained

in form, and therefore makes overfitting a certainty. Indeed, as presented, this approach
does not even specify meaningful predictions on test points not seen in training. Therefore,
to constrain F , we impose the limitation that each update to F must come from some class
of base functions H. That is, any update to F must be of the form

F ← F +αh (7.13)

for some α > 0 and some h ∈ H. Thus, if each h ∈ H is defined over the entire domain (not
just the training set), then F will be so defined as well, and hopefully will give meaningful
and accurate predictions on test points if the functions in H are simple enough.

How should we select the function h ∈ H to add to F as in equation (7.13)? We have
seen that moving in a negative gradient direction −∇L(F) may be sensible, but might
not be feasible since updates must be in the direction of some h ∈ H. What we can do,
however, is to choose the base function h ∈ H that is closest in direction to the negative
gradient. Ignoring issues of normalization, this can be done by choosing that h ∈ H which
maximizes its inner product with the negative gradient (since inner product measures how
much two vectors are aligned), that is, which maximizes

−∇L(F) ·h = −
m∑

i=1

∂L(F)

∂F (xi)
h(xi). (7.14)

190 7 Loss Minimization and Generalizations of Boosting

Algorithm 7.3
AnyBoost, a generic functional gradient descent algorithm

Goal: minimization of L(F).
Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• Select ht ∈ H that maximizes −∇L(Ft−1) ·ht .

• Choose αt > 0.

• Update: Ft = Ft−1+αtht .

Output FT .

Once h has been chosen, the function F can be updated as in equation (7.13) for some
appropriate α > 0. One possibility is simply to let α be a small positive constant. An alter-
native is to select α so that L (or some approximation of L) is minimized by performing a
one-dimensional line search.

The general approach that we have described here is called functional gradient descent.
The resulting procedure, in a general form, is called AnyBoost, and is shown as algo-
rithm 7.3.

In the AdaBoost case, the loss function is as given in equation (7.11). The partial deriva-
tives are easily computed to be

∂L(F)

∂F (xi)
= −yie

−yiF (xi)

m
.

Thus, on round t , the goal is to find ht maximizing

1

m

m∑
i=1

yiht (xi)e
−yiFt−1(xi), (7.15)

which, in our standard AdaBoost notation, is proportional to

m∑
i=1

Dt(i)yiht (xi) (7.16)

by equation (7.4). Assuming ht has range {−1,+1}, equation (7.16) can be shown to equal
1− 2εt , where, as usual,

εt
.= Pri∼Dt [ht (xi) �= yi].

7.4 Functional Gradient Descent 191

Thus, maximizing equation (7.15) is equivalent to minimizing the weighted error εt as
in AdaBoost. As for the choice of αt , we have already seen that AdaBoost chooses αt to
minimize exponential loss (see section 7.1). Thus, AdaBoost is a special case of the general
functional gradient descent technique given as algorithm 7.3 (assuming exhaustive weak-
hypothesis selection). Avariant in which a small constant learning rate α > 0 is used instead
yields the α-Boost algorithm discussed in section 6.4.

Applying this framework to the square loss, as in section 7.2.3, gives a similar algorithm.
In this case,

L(F)
.= 1

m

m∑
i=1

(F (xi)− yi)
2

so that

∂L(F)

∂F (xi)
= 2

m
(F(xi)− yi) .

Thus, ht should be chosen to maximize

2

m

m∑
i=1

ht (xi)ri

where ri is the residual as in equation (7.9). This is nearly the same optimization criterion for
choosing ht as in equation (7.10), but without explicit normalization. Such an ht could be
found, for instance, using a classification learning algorithm as explained in section 7.4.3.
Once ht is selected, the minimizing αt can be chosen as in equation (7.8).

7.4.2 Relation to Coordinate Descent

The ease of working with the optimization problem that is central to the functional gradient
descent approach (namely, maximization of equation (7.14)) is a key practical advantage
over the coordinate descent view where we attempted to find a parameter λj whose adjust-
ment would cause the greatest drop in the objective function. In fact, however, the two
views are rather closely related, and the functional gradient descent view can be derived
naturally as an approximation of coordinate descent. In particular, rather than selecting
the very best coordinate, we might attempt a compromise between coordinate descent and
gradient descent in which we instead select and update the coordinate in whose direction
the negative gradient is largest. Such a variant of coordinate descent is sometimes called
a Gauss-Southwell procedure. Thus, if the optimization function is L(λ1, . . . , λN), then
on each round of coordinate descent, we select the λj for which −∂L/∂λj is largest. If in
addition the objective function L can be written in the form

192 7 Loss Minimization and Generalizations of Boosting

L(λ1, . . . , λN) = L(Fλ),

where Fλ is as in equation (7.6), then by the chain rule from calculus (see appendix A.6),
this is equivalent to adjusting that λj for which

− ∂L

∂λj

= −
m∑

i=1

∂L(Fλ)

∂Fλ(xi)
�j (xi)

is maximized. This, of course, is exactly what is done in functional gradient descent.

7.4.3 Using Classification and Regression for General Loss Functions

Generalizing what was done above for AdaBoost, we can show that the central problem of
maximizing −∇L(Ft−1) ·ht on each round of AnyBoost (algorithm 7.3) can be viewed as
an ordinary classification problem if each ht is constrained to have range {−1,+1}. To see
this, let

�i = −∂L(Ft−1)

∂F (xi)
,

and let

ỹi = sign(�i)

d(i) = |�i |∑m
i=1|�i | .

The problem then is to maximize

m∑
i=1

�iht (xi) ∝
m∑

i=1

d(i)ỹiht (xi)

= 1− 2
∑

i:ỹi �=ht (xi)

d(i)

= 1− 2 Pri∼d [ỹi �= ht (xi)]

(where f ∝ g means that f is equal to g times a positive constant that does not depend
on ht). Thus, to maximize ∇L(Ft−1) ·ht , we can create “pseudolabels” ỹi ∈ {−1,+1} as
above, and assign a probability weight d(i) to each example. The maximization problem
then becomes equivalent to finding a classifier ht having minimum weighted error with
respect to the probability distribution defined by the weights d(i) on a (pseudo) train-
ing set (x1, ỹ1), . . . , (xm, ỹm). Note that these pseudolabels ỹi vary from round to round,
and might or might not agree with any labels which might have been provided as part

7.5 Logistic Regression and Conditional Probabilities 193

of the “real” dataset (although in AdaBoost’s case, they always will). Thus, in this fash-
ion, any optimization problem can in principle be reduced to a sequence of classification
problems.

Alternatively, rather than seeking a function ht ∈ H that is similar to the negative gradient
−∇L(Ft−1) by maximizing their inner product, we can instead try to minimize the Euclidean
distance between them (where we continue to treat these functions as vectors in Rm). That
is, the idea is to modify algorithm 7.3 so that rather than maximizing −∇L(Ft−1) ·ht , we
instead attempt to minimize

‖−∇L(Ft−1)−ht‖2
2 =

m∑
i=1

(
−∂L(Ft−1)

∂F (xi)
−ht (xi)

)2

. (7.17)

Finding such an ht is itself a least-squares regression problem where the real-valued
pseudolabels now are

ỹi = −∂L(Ft−1)

∂F (xi)
,

so that equation (7.17) becomes

m∑
i=1

(ỹi −ht (xi))
2.

In this formulation, it is natural to allow ht to be real-valued and, moreover, to assume that
it can be scaled by any constant (in other words, if h is in the class of allowable functions
H, then ch is assumed to be as well, for any scalar c ∈ R). After ht has been chosen, the
weight αt can be selected using the methods already discussed, such as a line search for
the value that causes the greatest drop in loss. Thus, in this way, any loss-minimization
problem can be reduced to a sequence of regression problems.

For instance, returning to the example of square loss discussed above, the pseudolabels
are proportional to the residuals ỹi = (2/m)ri so that, on each round, the problem is to find
ht that is close, in terms of squared difference, to the residuals (times an irrelevant constant).
For this purpose, we might employ a decision-tree algorithm like CART designed, in part,
for such regression problems. Once a tree is found, the value of αt that effects the greatest
decrease in square loss can be set as in equation (7.8). (On the other hand, in practice it is
often necessary to limit the magnitude of the weights to avoid overfitting, for instance, using
regularization, or by selecting αt that is only a fraction of that given in equation (7.8).) In any
case, the resulting combined hypothesis FT will now be a weighted average of regression
trees.

194 7 Loss Minimization and Generalizations of Boosting

7.5 Logistic Regression and Conditional Probabilities

Next we study the close connection between AdaBoost and logistic regression, beginning
with a brief description of the latter method. This will lead both to a boosting-like algo-
rithm for logistic regression and to a technique for using AdaBoost to estimate conditional
probabilities.

7.5.1 Logistic Regression

As usual, we assume that we are given data (x1, y1), . . . , (xm, ym) where yi ∈ {−1,+1}.
We also assume we are given a set of real-valued base functions, or what are sometimes
called features, H = {�1, . . . , �N }. These play a role analogous to weak hypotheses in the
context of boosting, and they are formally equivalent. Until now, we have generally taken
these base functions/hypotheses to be binary ({−1,+1}-valued) classifiers, but most of the
discussion that follows holds when they are real-valued instead. Boosting using real-valued
base hypotheses is studied in greater detail in chapter 9.

In logistic regression, the goal is to estimate the conditional probability of the label
y, given a particular example x, rather than merely to predict whether y is positive or
negative. Further, we posit that this conditional probability has a particular parametric
form, specifically, a sigmoid function of a linear combination of the features. That is, we
posit that instance-label pairs (x, y) are generated randomly in such a way that the true
conditional probability of a positive label is equal to

Pr[y = +1 | x;λ] = σ

⎛⎝ N∑
j=1

λj�j (x)

⎞⎠ (7.18)

for some setting of the parameters λ = 〈λ1, . . . , λN 〉, and where

σ(z) = 1

1+ e−z
(7.19)

is a sigmoid function with range [0, 1]. (See figure 7.3.) As before, let Fλ be as in equa-
tion (7.6). Note that σ(z) is greater than, equal to, or smaller than 1

2 when z is positive, zero,
or negative (respectively). Thus, in words, this model is positing that a linear hyperplane in
“feature space” (namely, Fλ(x) = 0) separates the points which are more likely to be posi-
tive from those which are more likely to be negative. Furthermore, the closer the point is
to this separating hyperplane, the more uncertain is its classification.

Note that the conditional probability of a negative label is

Pr[y = −1 | x;λ] = 1− σ(Fλ(x))

= σ(−Fλ(x))

by straightforward algebra. Thus, for y ∈ {−1,+1}, we can write

7.5 Logistic Regression and Conditional Probabilities 195

0

0.5

1

–4 0 4

Figure 7.3
A plot of the sigmoid function σ(z) given in equation (7.19).

Pr[y | x;λ] = σ(yFλ(x)).

How can we find the parameters λ so that we can estimate these conditional probabilities? A
very standard statistical approach is to find the parameters which maximize the conditional
likelihood of the data, that is, the probability of observing the given labels yi , conditioned
on the instances xi . In our case, the conditional likelihood of example (xi, yi), for some
setting of the parameters λ, is simply

Pr[yi | xi;λ] = σ(yiFλ(xi)).

Thus, assuming independence, the conditional likelihood of the entire dataset is

m∏
i=1

σ(yiFλ(xi)).

Maximizing this likelihood is equivalent to minimizing its negative logarithm, which is
(after multiplying by 1/m) equal to

− 1

m

m∑
i=1

ln σ(yiFλ(xi)) = 1

m

m∑
i=1

ln
(
1+ e−yiFλ(xi)

)
. (7.20)

This is the loss function to be minimized by logistic regression, which we henceforth refer to
as logistic loss. Once the parametersλwhich minimize this loss have been found, conditional
probabilities of the labels for a test instance x can be estimated as in equation (7.18).

196 7 Loss Minimization and Generalizations of Boosting

Alternatively, a “hard” classification can be obtained as usual by thresholding, that is, by
computing sign(Fλ(x)).

As discussed in section 7.2, AdaBoost minimizes the exponential loss given in equa-
tion (7.7). Since ln(1+ x) ≤ x for x > −1, it is clear that logistic loss is upper bounded
by exponential loss. Moreover, if the natural logarithm in equation (7.20) is replaced by
log base 2 (which is the same as multiplying by the constant log2 e), then logistic loss, like
exponential loss, upper bounds the classification loss, that is, the training error

1

m

m∑
i=1

1{yiFλ(xi) ≤ 0} = 1

m

m∑
i=1

1{yi �= sign(Fλ(xi))}.

The relationship among these loss functions can be seen in figure 7.4. However, as we will
see, the connection between exponential loss and logistic loss goes much deeper.

Both exponential and logistic loss give upper bounds on the classification error. More-
over, the two loss functions are very close when the (unnormalized) margin z = yFλ(x)

is positive. However, they diverge tremendously when z is negative, with exponential loss
growing exponentially, but logistic loss growing only linearly (since ln(1+ e−z) ≈ −z

when z is large and negative). This suggests that logistic loss could be somewhat better
behaved in some situations.

0

0.5

1

1.5

2

2.5

3

-2 -1 0 1 2 3

Lo
ss

Margin

exponential
logistic (base 2)
logistic (base e)

classification

Figure 7.4
Aplot of the exponential loss, the logistic loss (using both logarithm base 2 and logarithm base e), and classification
loss. Each loss is plotted as a function of the unnormalized margin yF(x).

7.5 Logistic Regression and Conditional Probabilities 197

7.5.2 Modifying AdaBoost for Logistic Loss

How, then, can we minimize the logistic loss function? Standard techniques, based, for
instance, on gradient descent or Newton’s method, are less effective when the number
of base functions is very large. In this situation, a boosting-like approach may be appro-
priate.

In sections 7.2 and 7.4, we discussed techniques that generalizeAdaBoost for minimizing
an objective function, so it seems natural to try to apply these to logistic loss. The first of
these approaches was coordinate descent, which entails repeatedly finding and adjusting
the parameter λj that admits the greatest decrease in the objective function. Unfortunately,
for logistic loss this turns out to be difficult analytically.

The other approach was functional gradient descent, in which, on each iteration, we select
the base function that is closest to the negative functional gradient of the objective function.
In this case, the functional of interest is

L(F) =
m∑

i=1

ln
(
1+ e−yiF (xi)

)
, (7.21)

and its partial derivatives are

∂L(F)

∂F (xi)
= −yi

1+ eyiF (xi)
.

Thus, this approach prescribes iteratively adding to F a multiple of some base function
h ∈ H that maximizes

m∑
i=1

yih(xi)

1+ eyiF (xi)
. (7.22)

In other words, the idea is to weight example i by

1

1+ eyiF (xi)
(7.23)

and then to find h most correlated with the labels yi with respect to this set of weights.
These weights are almost the same as for AdaBoost, where the weights

e−yiF (xi) (7.24)

are used instead. However, the weights in equation (7.24) may be highly unbounded, while
the weights in equation (7.23) are likely to be much more moderate, always being bounded
in the range [0, 1].

198 7 Loss Minimization and Generalizations of Boosting

Thus, the functional gradient descent approach suggests how to choose a base function
h on each round. However, the approach does not specify what multiple of h to add to F,
that is, how to select α in the method’s iterative update

F ← F +αh. (7.25)

Possibilities include a line search to select the α that causes the greatest decrease in L(F),
or simply choosing α to be “suitably small.” Neither approach seems to be easily amenable
to an analytic treatment.

However, there is another approach that essentially reduces the problem, on each round,
to the same sort of tractable minimization encountered for exponential loss. The idea is to
derive an upper bound on the change in the loss which can be minimized as a proxy for the
actual change in loss. In particular, consider an update as in equation (7.25) where α ∈ R

and h ∈ H. We can compute and upper bound the change �L in the logistic loss when the
old F is replaced by F +αh as follows:

�L .= L(F +αh)−L(F)

=
m∑

i=1

ln
(
1+ e−yi (F (xi)+αh(xi))

)− m∑
i=1

ln
(
1+ e−yiF (xi)

)
(7.26)

=
m∑

i=1

ln

(
1+ e−yi (F (xi)+αh(xi))

1+ e−yiF (xi)

)

=
m∑

i=1

ln

(
1+ e−yi (F (xi)+αh(xi))− e−yiF (xi)

1+ e−yiF (xi)

)

≤
m∑

i=1

e−yi (F (xi)+αh(xi))− e−yiF (xi)

1+ e−yiF (xi)

=
m∑

i=1

e−yiαh(xi)− 1

1+ eyiF (xi)
(7.27)

where the inequality uses ln(1+ z) ≤ z for z > −1, and each of the equalities follows from
simple algebraic manipulations. The idea now is to choose α and h so as to minimize the
upper bound in equation (7.27). Conveniently, this upper bound has exactly the same form
as the objective that is minimized by AdaBoost on every round. In other words, minimizing
equation (7.27) is equivalent to minimizing

m∑
i=1

D(i)e−yiαh(xi)

where the weights D(i) are equal (or proportional) to

7.5 Logistic Regression and Conditional Probabilities 199

Algorithm 7.4
AdaBoost.L, a variant of AdaBoost for minimizing logistic loss

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• Dt(i) = 1

Zt

· 1

1+ eyiFt−1(xi)
for i = 1, . . . , m,

where Zt is a normalization factor.

• Choose αt ∈ R and ht ∈ H to minimize (or approximately minimize if a heuristic search
is used):

m∑
i=1

Dt(i)e
−yiαt ht (xi).

• Update: Ft = Ft−1+αtht .

Output FT .

1

1+ eyiF (xi)
.

As discussed in section 7.1, this is exactly the form minimized by AdaBoost where on each
round D(i) was instead chosen to be e−yiF (xi). Thus, as was the case for AdaBoost, if each
h is binary, then the best h is the one with minimum weighted error ε with respect to D,
and the best α is

α = 1

2
ln

(
1− ε

ε

)
.

Putting these ideas together leads to algorithm 7.4, called AdaBoost.L.1 As noted earlier,
this procedure is identical to AdaBoost, except that in AdaBoost, Dt(i) is instead made
proportional to e−yiFt−1(xi). In particular, this means that the same weak learner can be used
without any changes at all.

With this slight modification in the choice of Dt , it can be proved, using techniques to
be developed in chapter 8, that this procedure asymptotically minimizes the logistic loss
rather than the exponential loss (see exercise 8.6). But at this point, we can already get

1. This algorithm has sometimes also been called LogAdaBoost and LogitBoost, although the latter name is erro-
neous since the original LogitBoost algorithm also utilized a Newton-like search that is not incorporated into
AdaBoost.L. (See exercises 7.8 and 7.9.)

200 7 Loss Minimization and Generalizations of Boosting

some intuition as to why the procedure is effective, despite the fact that we are minimizing
an upper bound on each round. Consider the derivative, with respect to α, of the upper
bound in equation (7.27), compared with the derivative of the actual change in loss in
equation (7.26). When evaluated at α = 0, the two derivatives are equal to one another;
specifically, they are both equal to the negative of equation (7.22). This means that if the
bound in equation (7.27) is never negative for any α (so that no improvement is possible),
then we must be at a minimum of this function so that its derivative is zero at α = 0, which
must also be the case for the derivative of the change in loss in equation (7.26). Therefore,
if this is the case for all h ∈ H, so that no progress is possible in the upper bound, then it
must be that we have also reached a minimum of the logistic loss (which by convexity must
be a global minimum).

Note that this approach is essentially the same as functional gradient descent, but with a
particular specification in the choice of αt . In particular, the weights Dt(i) on examples are
the same as for functional gradient descent, and if binary weak hypotheses are used, then
the choice of ht will be identical.

As noted earlier, the weights Dt(i) used in algorithm 7.4 are far less drastic than those for
AdaBoost, and in particular never leave the range [0, 1]. This may provide less sensitivity
to outliers than with AdaBoost.

7.5.3 Estimating Conditional Probabilities

An apparent advantage of logistic regression is its ability to estimate the conditional prob-
ability of y for a given example x. In many contexts, such a capability can be extremely
useful since it is so much more informative than an unqualified prediction of the most prob-
able label. In this section, we will see that AdaBoost, which until now has been described
strictly as a method for classification, also can be used to estimate conditional probabilities.

Earlier, we derived logistic regression by positing a particular form for these conditional
probabilities, and then used this form to derive a loss function. It turns out that the opposite is
possible. That is, beginning with the loss function, we can derive an estimate of conditional
label probabilities, a technique that can be applied to exponential loss as well.

Let �(z) denote the loss function for F on a single example (x, y) as a function of the
unnormalized margin z = yF(x). Thus, for logistic regression

�(z) = ln(1+ e−z), (7.28)

and the goal is to find F minimizing

1

m

m∑
i=1

�(yiF (xi)). (7.29)

This objective function can be regarded as an empirical proxy or estimate for the expected
loss

7.5 Logistic Regression and Conditional Probabilities 201

E(x,y)∼D[�(yF (x))], (7.30)

where expectation is over the choice of a random example (x, y) selected from the true
distributionD. In other words, we suppose that the ideal goal is minimization of this true risk,
or expected loss, which in practice must be approximated empirically using a training set.

Let

π(x) = Pry[y = +1 | x]

be the true conditional probability that x is positive. Let us suppose for the moment that
π(x) is known, and let us further suppose that the function F is allowed to be entirely
arbitrary and unrestricted (rather than a linear combination of features). How should we
choose F ? The expectation in equation (7.30) can be rewritten by conditioning on x as

Ex

[
Ey[�(yF (x)) | x]

] = Ex[π(x)�(F (x))+ (1−π(x))�(−F(x))] .

Thus, the optimal choice of F(x) can be made separately for each x and, in particular, should
minimize

π(x)�(F (x))+ (1−π(x))�(−F(x)).

Differentiating this expression with respect to F(x), we see that the optimal F(x) should
satisfy

π(x)�′(F (x))− (1−π(x))�′(−F(x)) = 0, (7.31)

where �′ is the derivative of �. For the choice of � given in equation (7.28), this happens to
give

F(x) = ln

(
π(x)

1−π(x)

)
.

More important for our purposes, this suggests that once an algorithm has computed a
function F that approximately minimizes the logistic loss, we can transform F(x) into an
estimate of π(x) using the inverse of this formula

π(x) = 1

1+ e−F(x)
, (7.32)

which of course is perfectly consistent with the original derivation of logistic regression
given in section 7.5.1.

This same approach can be applied to other loss functions as well. Solving equation (7.31)
in general for π(x) gives

π(x) = 1

1+ �′(F (x))

�′(−F(x))

.

202 7 Loss Minimization and Generalizations of Boosting

For exponential loss as used by AdaBoost, we have �(z) = e−z. Plugging in gives

π(x) = 1

1+ e−2F(x)
. (7.33)

Thus, to convert the output of AdaBoost

F(x) =
T∑

t=1

αtht (x)

to a conditional probability, we can simply pass F(x) through the sigmoid given in equa-
tion (7.33), a transformation that is almost identical to the one used by logistic regression
in equation (7.32).

It is important to note that this approach is founded on two possibly dubious assumptions.
First, we assumed that the empirical loss (or risk) in equation (7.29) is a reasonable estimate
of the true risk (expected loss) in equation (7.30) for all functions F of interest. This may
or may not hold, and indeed is likely to be especially suspect for unbounded loss functions
like the logistic and exponential losses. Second, we assumed that the function F computed
by logistic regression or AdaBoost is a minimum over all functions F without restriction,
whereas, as we know, both algorithms compute a function F which is a linear combination
of base functions or weak classifiers.

Figure 7.5 shows the result of applying this method to actual data, in this case, the census
dataset described in section 5.7.1, using the same setup as before. After training, AdaBoost’s
combined hypothesis F was used as in equation (7.33) to produce an estimate π(x) of the
probability of each test example x being positive (income above $50,000). To produce
the calibration curve shown in the figure, the 20,000 test examples were sorted by their
π(x) values, then broken up into contiguous groups of 100 examples each. Each point on
each plot corresponds to one such group where the x-coordinate gives the average of the
probability estimates π(x) for the instances in the group, and the y-coordinate is the fraction
of truly positive instances in the group. Thus, if the probability estimates are accurate, then
all points should be close to the line y = x. In particular, in this figure, with the large training
set of size 10,000 that was used, we see that the probability estimates are quite accurate on
test data. However, with smaller training sets, performance may degrade significantly for
the reasons cited above.

7.6 Regularization

7.6.1 Avoiding Overfitting

Throughout this book, we have discussed the central importance of avoiding overfitting in
learning. Certainly, this is important in classification, but when estimating conditional

7.6 Regularization 203

0

20

40

60

80

100

0 20 40 60 80 100

O
bs

er
ve

d
pr

ob
ab

ili
ty

Predicted probability

Figure 7.5
A calibration curve for the census dataset. Each point on the plot represents a single cluster of 100 test examples,
grouped according to their estimated probability of being positive. The x-coordinate of each point is the average
predicted percent probability of a positive label for examples in the group, according to the learned model. The
y-coordinate is the actual percent positive in the group. Thus, ideal predictions will be close to the line y = x.

probabilities, it can be even more critical. This is because the latter task entails the actual
numerical estimation of individual probabilities, while in classification it is enough merely to
predict if the probability of an example being positive is larger or smaller than its probability
of being negative. Thus, classification demands less of the learning algorithm, and is based
on a criterion that can be considerably more forgiving.

The example in section 7.5.3 shows that AdaBoost can effectively estimate probabilities.
However, far worse performance is possible when working with smaller training sets or
much noisier data. An extreme example is shown in figure 7.6. Here, the artificially gener-
ated instances x are real numbers uniformly distributed on the interval [−2,+2], and for any
x, the label y is chosen to be +1 with probability 2−x2

, and −1 otherwise. This conditional
probability, as a function of x, is plotted on the left of the figure. On the right is plotted the
estimated conditional probability function computed by running AdaBoost with decision
stumps on 500 training examples for 10,000 rounds (and applying equation (7.33)). Clearly,
these probability estimates are extremely poor, as are the corresponding classifications. The
problem, of course, is excessive overfitting of the noise or randomness in the data.

To avoid overfitting, as we saw in chapter 2, it is necessary to balance how well the
learned model fits the data against its complexity. In this example, we have not attempted
to limit the complexity of the learned model. Although we might consider restricting the
base classifier space H for this purpose, we here assume that this space has been given and

204 7 Loss Minimization and Generalizations of Boosting

0

0.5

1

–2 –1 0 1 2
0

0.5

1

–2 –1 0 1 2

Figure 7.6
Left: Aplot of the conditional probability that y = +1, given x, on the synthetic example described in section 7.6.1.
Right: The result of running AdaBoost with decision stumps on 500 examples generated in such manner. The
darker, jagged curve shows the conditional probability as estimated using equation (7.33), overlaid with the true
conditional probability.

is fixed so as to emphasize alternative techniques. (Furthermore, in this particular case H
already has very low VC-dimension.) Instead, we focus on the weight vector λ computed by
AdaBoost as in the formulation given in section 7.2 since, with H fixed, λ entirely defines
the learned model.

Since it is a vector in RN , we can measure the complexity of λ naturally by its “size,” for
instance, its Euclidean length ‖λ‖2, or as measured using some other norm. Because of its
particular relevance to what follows, we focus specifically on the �1-norm as a complexity
measure:

‖λ‖1
.=

N∑
j=1

|λj |.

With such a measure in hand, we can explicitly limit complexity by seeking to minimize
loss as before, but now subject to a strict bound on the �1-norm. For exponential loss, this
leads to the following constrained optimization problem:

minimize: L(λ)

subject to: ‖λ‖1 ≤ B (7.34)

for some fixed parameter B ≥ 0 where, throughout this section, L(λ) is the exponential loss
as defined in equation (7.7). Alternatively, we might define an unconstrained optimization
problem that attempts to minimize a weighted combination of the loss and the �1-norm:

L(λ)+β‖λ‖1 (7.35)

7.6 Regularization 205

for some fixed parameter β ≥ 0. These are both called regularization techniques. The two
forms given here can be shown to be equivalent in the sense of yielding the same solutions for
appropriate settings of the parameters B and β. Note that the minimization in equation (7.35)
can be solved numerically, for instance, using coordinate descent as in section 7.2.

Naturally, other loss functions can be used in place of exponential loss, and other reg-
ularization terms can be used in place of ‖λ‖1, such as ‖λ‖2

2. A favorable property of
�1-regularization, however, is its observed tendency to prefer sparse solutions, that is,
vectors λ with relatively few nonzero components.

For classification, limiting the norm of λ would seem to be of no consequence since
scaling λ by any positive constant has no effect on the predictions of a classifier of the
form sign(Fλ(x)). However, when combined with loss minimization as above, the effect
can be significant for both classification and estimation of conditional probabilities. For
instance, continuing the example above, figure 7.7 shows the estimated conditional prob-
ability functions that result from minimizing equation (7.35) for various settings of β. As
the results on this toy problem illustrate, regularization effectively smooths out noise in
the data, leading to much more sensible predictions. But as usual, there is a trade-off, and
too much regularization can lead to overly smooth predictions; indeed, at an extreme, λ is
forced to be 0, yielding meaningless probability estimates of 1

2 on all instances.

7.6.2 A Connection to Boosting with Early Stopping

Regularization based on the �1-norm turns out to be closely connected to boosting algo-
rithms. In particular, we will see that a simple variant of AdaBoost, when stopped after any
number of rounds, can often be viewed as providing an approximate solution to the �1-
regularized constrained optimization problem given in equation (7.34) for a corresponding
choice of the parameter B.

To make this precise, for any B ≥ 0, let λ∗B denote any solution of equation (7.34). Then,
as B varies, λ∗B traces out a path or trajectory through RN . When N is small, we can visualize
this trajectory as shown at the top of figure 7.8. In this example, data was taken from the
heart-disease dataset described in section 1.2.3. However, for illustrative purposes, rather
than using all possible decision stumps for base classifiers, we used only the six stumps
shown in table 1.2, so that N = 6 in this case.2 The figure shows all six components of λ∗B .
Specifically, each curve marked j , for j = 1, . . . , 6, is a plot of the j -th component λ∗B,j as
a function of B. Thus, the figure depicts the entire trajectory. Notice how, as B is increased,
nonzero components are added to λ∗B just one or two at a time so that this solution vector
tends to remain sparse as long as possible.

For comparison, we consider next the α-Boost variant of AdaBoost described in sec-
tion 6.4.3. Recall that this is the same as AdaBoost (algorithm 1.1), except that on each

2. We also modified the predictions of these six stumps so that each predicts +1 (healthy) when its condition is
satisfied, and−1 (sick) otherwise. Since the weights on the base classifiers can be positive or negative, this change
is of no consequence.

206 7 Loss Minimization and Generalizations of Boosting

–2 –1 0 1 2 –2 –1 0 1 2
0

0.5

1

0

0.5

1

 = 10–3 = 10–2.5

–2 –1 0 1 2 –2 –1 0 1 2
0

0.5

1

0

0.5

1

–2 –1 0 1 2 –2 –1 0 1 2
0

0.5

1

0

0.5

1

 = 10–2 = 10–1.5

 = 10–1 = 10–0.5

Figure 7.7
The result of minimizing the regularized exponential loss given in equation (7.35), for varying values of β on
the same learning problem as in figure 7.6. The darker curves in each figure show the conditional probability as
estimated using equation (7.33), overlaid with the true conditional probability.

7.6 Regularization 207

round, αt is set equal to some fixed constant α. This is also the same as coordinate descent
(section 7.2) or AnyBoost (section 7.4) applied to exponential loss, but using a fixed learn-
ing rate α on each iteration. Here, we think of α as a tiny, but positive, constant. Throughout
this discussion, we assume that an exhaustive weak learner is used and, furthermore, one
which is permitted to choose either a base classifier �j ∈ H or its negation−�j , leading to
an update to λj of α or −α, respectively.

As above, we can plot the trajectory of λT , the weight vector that defines the combined
classifier computed by α-Boost after T iterations. This is shown, for the same dataset, in
the middle of figure 7.8. Each curve j is a plot of λT,j as a function of time T, multiplied
by the constant α, so that the resulting scale αT is equal to the cumulative sum of weight
updates after T iterations. (Here, we used α = 10−6.)

Remarkably, the two plots at the top of figure 7.8—one for the trajectory of �1-
regularization, and the other for α-Boost—are practically indistinguishable. This shows
that, at least in this case, α-Boost, when run for T rounds, computes essentially the same
solution vectors as when using �1-regularization with B set to αT. This also means, of
course, that the predictions of the two methods will be nearly identical (for either classi-
fication or probability estimation). Thus, early stopping—that is, halting boosting after a
limited number of rounds—is in this sense apparently equivalent to regularization.

In fact, this correspondence is known to hold much more generally under appropriate
technical conditions. When these conditions do not hold, a variant of α-Boost can be used
instead which is known to match the computation of �1-regularization in general. Although
the details are beyond the scope of this book, we can provide some intuition as to why
α-Boost’s trajectory should be so similar to that of �1-regularization.

Suppose for some B ≥ 0 that we have already computed the �1-regularized solution
λ = λ∗B for equation (7.34), and that we now wish to compute the solution λ′ = λ∗B+α

when B is incremented by α, for some tiny α > 0. If we can do this repeatedly, then in
principle we can trace out the entire trajectory, or at least a good approximation of it. Let
us assume for this discussion that ‖λ‖1 = B, since if ‖λ‖1 < B, then it can be argued that
λ is also a solution for any larger value of B as well (see exercise 7.10). Similarly, assume
‖λ′‖1 = B +α. Let us define the difference vector δ

.= λ′ −λ. Clearly, if we can find δ,
then we can find λ′ = λ+ δ as well.

By the triangle inequality,

B +α = ‖λ′‖1 = ‖λ+ δ‖1 ≤ ‖λ‖1+‖δ‖1 = B +‖δ‖1. (7.36)

In general, equality need not hold here. However, if it happens that the signs of the compo-
nents of λ and δ align in the right way so that λjδj ≥ 0 for all j , then equation (7.36) will
indeed hold with equality, implying that ‖δ‖1 = α in this case. This suggests the heuristic
of seeking that δ with ‖δ‖1 = α which minimizes L(λ′) = L(λ+ δ). When α is small, we
have by a Taylor expansion that

0 0.5 1 1.5 2 2.5

In
di

vi
du

al
 c

la
ss

ifi
er

 w
ei

gh
ts

5

3
2

1

6

4

0 0.5 1 1.5 2 2.5

In
di

vi
du

al
 c

la
ss

ifi
er

 w
ei

gh
ts

5

3
2

1

6

4

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5

In
di

vi
du

al
 c

la
ss

ifi
er

 w
ei

gh
ts

5

3
2

1

6

4

B

T

T

t=1
| |

Figure 7.8
(Caption on facing page)

7.6 Regularization 209

L(λ+ δ) ≈ L(λ)+∇L(λ) · δ = L(λ)+
N∑

j=1

∂L(λ)

∂λj

· δj .

Among all δ with ‖δ‖1 = α, the right-hand side is minimized when δ is a vector of all
zeros, except for that single component j for which

∣∣∂L(λ)/∂λj

∣∣ is largest, which is set to
−α · sign(∂L(λ)/∂λj).

In fact, the update we have just described for computing λ′ = λ+ δ from λ is exactly what
α-Boost computes on each iteration by the arguments given in section 7.4. Thus, we have
derived α-Boost as an approximate method for incrementally following the trajectory of
�1-regularization. However, as noted above, the heuristic depends on the updates δ having
the same component-wise signs as λ. Informally, this means that the updates applied to the
weight λj associated with any base classifier �j should always be of the same sign. It is
when this condition holds, as in figure 7.8, that the trajectories will be the same. When it
does not hold, when α-Boost occasionally takes a “backwards” step, the correspondence
no longer holds exactly.

As a side note, we can compare these trajectories against that of AdaBoost as well. The
bottom of figure 7.8 shows such a plot in which the vectors λ computed by AdaBoost
are shown in a similar manner as before, but now as a function of the cumulative sum of
weight updates

∑T
t=1|αt |. Compared to the other plots, we can see some correspondence

in behavior, but the resemblance is rather coarse and stylized. Thus, this small example
suggests that the connection of AdaBoost to �1-regularization, if present, is rougher than
for α-Boost.

7.6.3 A Connection to Margin Maximization

There is another connection between �1-regularization and boosting, specifically, to margin
maximization, which was studied as a core property of AdaBoost in chapter 5. In particular,
if the regularization is relaxed to the limit so that B →∞ in the optimization problem
given in equation (7.34) (or, equivalently, if β → 0 in minimizing equation (7.35)), then
the solution vectors λ∗B turn out asymptotically to maximize the margins of the training
examples. This suggests that regularization may generalize well on classification problems
as a result of margin-maximizing properties not unlike those of AdaBoost. However, this
holds true only as the regularization is weakened to the point of apparently disappearing
altogether. In such a regime, good performance cannot be attributed to the kind of smoothing
associated with regularization that was discussed above.

Figure 7.8
The trajectories of the weight vectors λ computed on the heart-disease dataset of section 1.2.3, using only the
six base classifiers from table 1.2 (p. 13). Trajectories are plotted for �1-regularized exponential loss as in equa-
tion (7.34) (top); α-Boost with α = 10−6 (middle); and AdaBoost (bottom). Each figure includes one curve for
each of the six base classifiers from table 1.2, showing its associated weight as a function of the total weight
added.

210 7 Loss Minimization and Generalizations of Boosting

Note also the subtle distinction between B →∞ (or equivalently, β → 0) and B = ∞
(β = 0). In the former case, regularization yields a maximum margin solution; in the latter
case, in which we are minimizing unregularized exponential loss, the solution need not
have any such properties (depending on the algorithm used to effect the minimization), as
seen, for instance, in the example of section 7.3.

To make this margin-maximizing property precise, let us first define fλ, for any λ �= 0,
to be a version of Fλ (equation (7.6)) in which the weights have been normalized:

fλ(x)
.= Fλ(x)

‖λ‖1
=
∑N

j=1 λj �j (x)

‖λ‖1
.

We assume that the data is linearly separable with positive margin θ > 0, as defined in
section 3.2. That is, we assume there exists a vector λ̃ for which every training example has
margin at least θ , so that

yifλ̃(xi) ≥ θ (7.37)

for all i = 1, . . . , m. Without loss of generality, we assume ‖λ̃‖1 = 1. To simplify notation,
we also write F ∗

B and f ∗B for Fλ∗
B

and fλ∗
B

, respectively.
We claim that as B is made large, the margins yif

∗
B(xi) approach or exceed θ ; specifically,

we claim that

yif
∗
B(xi) ≥ θ − ln m

B

for each of the m training examples i, provided B > (ln m)/θ . To see this, we start with
the fact that λ∗B minimizes the exponential loss L among all vectors of �1-norm at most B;
thus, in particular,

L(λ∗B) ≤ L(Bλ̃) (7.38)

since ‖Bλ̃‖1 = B. We can bound the right-hand side using equation (7.37):

mL(Bλ̃) =
m∑

i=1

exp
(−yiFBλ̃(xi)

)
=

m∑
i=1

exp
(−yiBfλ̃(xi)

)
≤ me−Bθ.

Further, when B > (ln m)/θ , this is strictly less than 1. Combined with equation (7.38),
this implies, for any i, that

7.7 Applications to Data-Limited Learning 211

exp
(−yiF

∗
B(xi)

) ≤ mL(λ∗B) ≤ me−Bθ < 1

or, equivalently,

yi‖λ∗B‖1f
∗
B(xi) = yiF

∗
B(xi) ≥ Bθ − ln m > 0.

Thus, as claimed,

yif
∗
B(xi) ≥ Bθ − ln m

‖λ∗B‖1
≥ θ − ln m

B

since ‖λ∗B‖1 ≤ B.
So very weak �1-regularization can be used to find a maximum margin classifier, as can

other techniques discussed in section 5.4.2, as well as α-Boost with α very small, as seen in
section 6.4.3. Indeed, the fact that both α-Boost and �1-regularization can be used for this
purpose is entirely consistent with our earlier discussion linking the behavior of the two
algorithms.

7.7 Applications to Data-Limited Learning

The tools developed in this chapter are quite general purpose, and can be used, through
careful design of the loss function, for a range of learning problems. In this last section, we
give two examples of how these methods can be applied practically, in both cases to problems
that arise as a result of limitations in the availability of data.

7.7.1 Incorporating Prior Knowledge

Throughout this book, we have focused on highly data-driven learning algorithms which
derive a hypothesis exclusively through the examination of the training set itself. This ap-
proach makes sense when data is abundant. However, in some applications, data may be
severely limited. Nevertheless, there may be accessible human knowledge that, in principle,
might compensate for the shortage of data.

For instance, in the development of a spoken-dialogue system of the sort described in
section 10.3 and more briefly in section 5.7, training a classifier for categorizing spoken
utterances requires considerable data. This is a problem, however, because often such a
system must be deployed before enough data has been collected. Indeed, real data in the form
of actual conversations with genuine customers cannot be easily collected until after the
system has been deployed. The idea then is to use human-crafted knowledge to compensate
for this initial dearth of data until enough can be collected following deployment.

In its standard form, boosting does not allow for the direct incorporation of such prior
knowledge (other than implicit knowledge encoded in the choice of weak-learning algo-
rithm). Here, we describe a modification of boosting that combines and balances human

212 7 Loss Minimization and Generalizations of Boosting

expertise with available training data. The aim is to allow the human’s rough judgments to
be refined, reinforced, and adjusted by the statistics of the training data, but in a manner
that does not permit the data to entirely overwhelm human judgments.

The basic idea is to modify the loss function used by boosting so that the algorithm
balances two terms, one measuring fit to the training data and the other measuring fit to a
human-built model.

As usual, we assume we are given m training examples (x1, y1), . . . , (xm, ym) with yi ∈
{−1,+1}. Now, however, we suppose that the number of examples m is rather limited.
Our starting point is AdaBoost.L (algorithm 7.4), the boosting-style algorithm for logistic
regression presented in section 7.5. We saw earlier that this algorithm is based on the loss
function given in equation (7.21), which is the negative log conditional likelihood of the
data when the conditional probability that an example x is positive is estimated by σ(F (x)),
where σ is as defined in equation (7.19).

Into this data-driven approach we wish to incorporate prior knowledge. There are of
course many forms and representations that “knowledge” can take. Here, we assume that
a human “expert” has somehow constructed a function p̃(x) that estimates, perhaps
quite crudely, the conditional probability that any example x will be positive, that is,
PrD[y = +1 | x].

Given both a prior model and training data, we now have two possibly conflicting goals
in constructing a hypothesis: (1) fit the data, and (2) fit the prior model. As before, we can
measure fit to the data using log conditional likelihood as in equation (7.21). But how do we
measure fit to the prior model? As just discussed, the learning algorithm seeks a model of the
form σ(F (x)) which estimates the conditional distribution of labels for any example x.
This is also the same conditional distribution being estimated by the prior model p̃. Thus,
to measure the difference between the models, we can use the discrepancy between these
conditional distributions. And since distributions are involved, it is natural to measure this
discrepancy using relative entropy.

Thus, to measure fit to the prior model, for each example xi we use the relative entropy
between the prior model distribution given by p̃(xi) and the distribution over labels asso-
ciated with our constructed logistic model σ(F (xi)). These are then added over all of the
training examples so that the overall fit of the constructed hypothesis to the prior model is
computed by

m∑
i=1

REb (p̃(xi) ‖ σ(F (xi))) (7.39)

where REb (· ‖ ·) is the binary relative entropy defined in equation (5.36).
So our goal now is to minimize equations (7.21) and (7.39). These can be combined,

with the introduction of a parameter η > 0 measuring their relative importance, to arrive at
the modified loss function

7.7 Applications to Data-Limited Learning 213

m∑
i=1

[ln (1+ exp(−yiF (xi))) + ηREb (p̃(xi) ‖ σ(F (xi)))] .

This expression can be rewritten as

C+
m∑

i=1

[
ln
(
1+ e−yiF (xi)

)+ ηp̃(xi) ln
(
1+ e−F(xi)

)+ η(1− p̃(xi)) ln
(
1+ eF(xi)

)]
(7.40)

where C is a term that is independent of F , and so can be disregarded.
Note that this objective function has the same form as equation (7.21) over a larger

set, and with the addition of nonnegative weights on each term. Therefore, to minimize
equation (7.40), we apply the AdaBoost.L procedure to a larger weighted training set.
This new set includes all of the original training examples (xi, yi), each with unit weight.
In addition, for each training example (xi, yi), we create two new training examples
(xi,+1) and (xi,−1) with weights ηp̃(xi) and η(1− p̃(xi)), respectively. Thus, we
triple the number of examples (although, by noticing that (xi, yi) occurs twice, we
can get away with only doubling the training set). AdaBoost.L can be easily modi-
fied to incorporate these weights w0 in the computation of Dt in algorithm 7.4, using
instead

Dt(i) ∝ w0(i)

1+ exp (yiFt−1(xi))

(where i ranges over all of the examples in the new training set).
One final modification that we make is to add a 0-th base function h0 that is based on p̃,

so as to incorporate p̃ from the start. In particular, we take

h0(x) = σ−1(p̃(x)) = ln

(
p̃(x)

1− p̃(x)

)
and include h0 in computing the final classifier F.

As a concrete example, this technique can be applied to classify the headlines of news
articles from the Associated Press by topic. The dataset used here consists of 29,841 exam-
ples (of which only a subset were used for training) over 20 topics or classes. A multiclass
extension of the approach above was used based on the kind of techniques developed in
chapter 10.

Our framework permits prior knowledge of any kind, so long as it provides estimates,
however rough, of the probability of any example belonging to any class. Here is one
possible technique for creating such a rough model that was tested experimentally. First,
a human with no expertise beyond ordinary knowledge of news events, and with access

214 7 Loss Minimization and Generalizations of Boosting

Table 7.2
The keywords used for each class on the AP headlines dataset

Class Keywords

japan japan, tokyo, yen

bush bush, george, president, election

israel israel, jerusalem, peres, sharon, palestinian, israeli, arafat

britx britain, british, england, english, london, thatcher

gulf gulf, iraq, saudi, arab, iraqi, saddam, hussein, kuwait

german german, germany, bonn, berlin, mark

weather weather, rain, snow, cold, ice, sun, sunny, cloudy

dollargold dollar, gold, price

hostages hostages, ransom, holding, hostage

budget budget, deficit, taxes

arts art, painting, artist, music, entertainment, museum, theater

dukakis dukakis, boston, taxes, governor

yugoslavia yugoslavia

quayle quayle, dan

ireland ireland, ira, dublin

burma burma

bonds bond, bonds, yield, interest

nielsens nielsens, rating, t v, tv

boxoffice box office, movie

tickertalk stock, bond, bonds, stocks, price, earnings

to the list of categories but not to the data itself, thought up a handful of keywords for
each class. This list of keywords is shown in table 7.2. These keywords were produced
through an entirely subjective process of free association with general knowledge of what
the categories were about (and also the time period during which the data was collected),
but no other information or access to the data.

Such a list of keywords can next be used to construct a simple and naive, but very
rough, prior model. To do so, we posit that if a keyword w is present, then there is a
90% probability that the correct class is among those that list w as a keyword, and a
10% chance that it is one of the others. For instance, conditional on the presence of
the keyword price in the headline, the naive prior model estimates that there would be
a 90% probability of the correct class being “dollargold” or “tickertalk” (that is, a 45%
chance for each one separately), and a 10% chance of one of the other 18 topics being
the correct class (giving 10%/18 ≈ 0.6% probability to each). If the keyword is absent,
we posit that all classes are equally likely. These conditional probabilities can then be
combined using very naive independence assumptions, together with simple probabilistic
reasoning.

7.7 Applications to Data-Limited Learning 215

10

20

30

40

50

60

70

80

100 1000 10,000

%
 e

rr
or

 r
at

e

training examples

data+knowledge
knowledge only

data only

Figure 7.9
Comparison of test error rate using prior knowledge and data separately or together on the AP headlines dataset,
measured as a function of the number of training examples. Results are averaged over ten runs, each with a
different random partition of the data into training and testing.

Figure 7.9 shows the performance of the method above for training sets of varying sizes,
in each case using boosting with decision stumps for 1000 rounds. The figure shows test
error rate for boosting with and without prior knowledge, as well as the error rate achieved
using the prior model alone with no training examples at all. As can be seen, for fairly
small datasets, using prior knowledge gives dramatic improvements over straight boosting,
almost halving the error early on, and providing performance equivalent to using two to
four times as much data without such knowledge. With a lot of data, as expected, the effect
of the prior model is washed out.

7.7.2 Semi-Supervised Learning

In section 5.7.2, we discussed the ubiquitous problem of learning from an abundance of
unlabeled examples but a severely limited supply of labeled examples. There, we consid-
ered how to make best use of a human annotator through the careful selection of examples
for labeling. Whether or not we have the means to obtain additional labels, there sometimes
may exist an opportunity to improve classifier accuracy by directly exploiting the unla-
beled data, which otherwise is apparently wasted. Intuitively, unlabeled data may provide
distributional information that may be helpful for classification (an informal example is
given shortly). This problem is often called semi-supervised learning. Here, we present one
boosting approach based on loss minimization.

216 7 Loss Minimization and Generalizations of Boosting

In the semi-supervised framework, data is presented in two parts: a set of labeled exam-
ples (x1, y1), . . . , (xm, ym), together with another, usually much larger, set of unlabeled
examples x̃1, . . . , x̃M . Our approach to handling such mixed data will be to construct an
appropriate loss function which can then be optimized using techniques from this chapter.
For the labeled examples, we can start with standard AdaBoost, which, as discussed in
section 7.1, is based on exponential loss over the labeled examples as in equation (7.3).
This loss encourages the construction of a hypothesis F whose sign on labeled examples
xi agrees with their observed labels yi .

For the unlabeled examples, however, we obviously have no true labels available to
match. Nevertheless, in chapter 5 we studied in depth the importance of producing predic-
tions that are highly confident in the sense of having large margins. Moreover, observing
the label is not prerequisite to computing such a measure of confidence. This motivates the
idea of encouraging F to be large in magnitude, and thus more confident, on the unlabeled
examples x̃i as well. To do so, we can use a variant of exponential loss, namely,

1

M

M∑
i=1

e−|F(x̃i)|, (7.41)

an objective whose minimization will have the effect of enlarging the unnormalized absolute
margins |F(x̃i)|. Of course, the theory developed in chapter 5 emphasized the importance
of the normalized margin (in which the weights of the base hypotheses have been normal-
ized) rather than the unnormalized margin used here, but we also saw that AdaBoost, in
minimizing exponential loss, has a tendency to (approximately) maximize the normalized
margins as well.

Viewed slightly differently, with respect to a hypothesis F , if we define pseudolabels
ỹi = sign(F (x̃i)), then equation (7.41) can be rewritten as

1

M

M∑
i=1

e−ỹiF (x̃i), (7.42)

in other words, in the same form as equation (7.3) for labeled pairs (x̃i , ỹi). Since these are
exactly the choices of labels for which equation (7.42) is minimized, this means that the
loss in equation (7.41) will tend to be small for those hypotheses F which fit the unlabeled
data well for some labeling, even if it is not the true, hidden labeling.

For instance, for intuition’s sake, we can regard the unlabeled examples geometrically
as points in feature space, similar to the setup of section 5.6. Figure 7.10 shows such a
set of points. The combined classifier defines a hyperplane in this space defined by the
equation F(x) = 0. In this example, the line (hyperplane) F1, which admits a large-margin
classification of the data, will clearly be favored by the objective in equation (7.41) over

7.7 Applications to Data-Limited Learning 217

F2

F1

Figure 7.10
A hypothetical set of unlabeled examples in feature space. The linear classifier marked F1 admits significantly
higher margins for some labeling of the points than F2, and thus will be preferred when using the loss defined by
equation (7.41).

F2, which passes too close to too many examples for this to be possible. This is consistent
with our intuition that F1 divides the data, even if unlabeled, more naturally than F2.

Combining the loss functions in equations (7.3) and (7.41) yields

1

m

m∑
i=1

e−yiF (xi)+ η

M

M∑
i=1

e−|F(x̃i)|, (7.43)

where we have introduced a parameter η > 0 controlling the relative importance given to
the unlabeled examples.

To minimize equation (7.43), we can apply the functional gradient descent approach of
section 7.4, specifically, AnyBoost (algorithm 7.3). Using the pseudolabels ỹi as in equa-
tion (7.42), and differentiating the loss in equation (7.43) to evaluate equation (7.14), this
approach prescribes choosing ht to maximize

1

m

m∑
i=1

yiht (xi)e
−yiFt−1(xi)+ η

M

M∑
i=1

ỹiht (xi)e
−ỹiFt−1(x̃i).

Of course, this has the same form as equation (7.15), meaning that any ordinary base learning
algorithm designed for minimization of the weighted classification error on a labeled dataset
can be used for this purpose.

Once ht has been chosen, we need to select αt > 0. To simplify notation, let us for the
moment drop subscripts involving t . A line search would choose α to minimize the resulting
loss

218 7 Loss Minimization and Generalizations of Boosting

1

m

m∑
i=1

exp (−yi(F (xi)+αh(xi)))+ η

M

M∑
i=1

exp (−|F(x̃i)+αh(x̃i)|). (7.44)

This could be complicated to compute because of the absolute values in the exponents.
Instead, a simpler approach would continue to use the pseudolabels so that α is chosen to
minimize

1

m

m∑
i=1

exp (−yi(F (xi)+αh(xi)))+ η

M

M∑
i=1

exp (−ỹi (F (x̃i)+αh(x̃i))). (7.45)

In other words, we can use the usual AdaBoost choice of α based on the weighted error on
the entire dataset as augmented by the pseudolabels. Note that equation (7.44) is at most
equation (7.45), as follows from the simple fact that

ỹi (F (x̃i)+αh(x̃i)) ≤ |ỹi (F (x̃i)+αh(x̃i))| = |F(x̃i)+αh(x̃i)| .
Therefore, although perhaps not best possible, choosing α in this manner so as to minimize
equation (7.45) is guaranteed to effect at least as great a decrease in equation (7.44).

Once ht and αt have been selected, Ft is computed as in algorithm 7.3, the pseudolabels
are then recomputed with respect to Ft , and the process continues.

This algorithm, called ASSEMBLE.AdaBoost, was entered into a competition of semi-
supervised learning algorithms in 2001, and took first place among 34 entries. In this
case, decision trees were used as base classifiers. Also, the pseudolabel for each unlabeled
example x̃i was initialized to be the label of its nearest neighbor in the labeled set.

Table 7.3 shows the results on the datasets used in this competition, comparing AS-
SEMBLE.AdaBoost’s performance with that of AdaBoost trained just on the labeled

Table 7.3
Test results for ASSEMBLE.AdaBoost on seven datasets used in a 2001 competition of semi-supervised learning
algorithms

of # of
Examples

Dataset Features Classes Labeled Unlabeled Test % Error % Improve

P1 13 2 36 92 100 35.0 8.3

P4 192 9 108 108 216 21.3 21.4

P5 1000 2 50 3952 100 24.0 16.9

P6 12 2 530 2120 2710 24.3 0.1

P8 296 4 537 608 211 42.2 16.2

CP2 21 3 300 820 300 49.3 26.7

CP3 10 5 1000 1269 500 58.8 6.7

The last two columns show the test error of ASSEMBLE.AdaBoost, followed by the percent improvement over
running AdaBoost just on the labeled data.

7.7 Applications to Data-Limited Learning 219

examples. In most cases, the improvement in accuracy was very substantial, often in double
digits.

Summary

In summary, we have seen that AdaBoost is closely associated with the exponential loss
function. Although this connection may not explain how AdaBoost achieves high test accu-
racy, it does lead to some widely applicable techniques for extending and generalizing it.
Specifically, we have explored how, in two different ways, AdaBoost can be viewed as
a special case of more general procedures for optimization of an objective function. Also
in this chapter, we have explored the close connections between AdaBoost and logistic
regression. We have seen how this leads both to a simple modification of AdaBoost for
logistic regression and to a method for using AdaBoost to estimate conditional label prob-
abilities. We also explored how regularization can be used as a smoothing technique for
avoiding overfitting, as well as the close connections between boosting and regularization
using an �1-norm. Finally, we saw examples of how these general techniques can be applied
practically.

Bibliographic Notes

Breiman [36] was the first to interpret AdaBoost as a method for minimizing exponential
loss, as in section 7.1, a connection that was later expanded upon by various other
authors [87, 98, 168, 178, 186, 205]. The view of boosting as a form of gradient descent, as
in section 7.4, is also due to Breiman [36]. The generic AnyBoost procedure, algorithm 7.3,
is taken from Mason et al. [168]. A similar generalization was given by Friedman [100],
leading to a general procedure based on solving multiple regression problems as in sec-
tion 7.4.3. When applied to square loss, the resulting procedures are essentially the same
as Mallat and Zhang’s work on matching pursuit [163].

Friedman, Hastie, and Tibshirani [98] showed how boosting can be understood in the
context of a family of statistical techniques called additive modeling. They also provided
justification for the use of exponential loss, particularly in terms of its close relationship to
logistic loss as discussed somewhat in section 7.5.1. They showed how a function obtained
through the minimization of exponential loss can be used to estimate conditional probabili-
ties, as in section 7.5.3. Although they derived a version of AdaBoost for logistic regression
called LogitBoost, the AdaBoost.L algorithm presented in section 7.5.2 came in the later
work of Collins, Schapire, and Singer [54].

The discussion and experiment in section 7.3 are similar in spirit to work by Mease and
Wyner [169] that attempted to expose some of the difficulties with the so-called “statis-
tical view” of boosting, including its interpretation as a method for optimizing a loss as

220 7 Loss Minimization and Generalizations of Boosting

expounded in this chapter. Wyner [232] also gives a variant of AdaBoost that performs
well while keeping the exponential loss roughly constant, adding further doubts to this
interpretation.

Regularization using an �1-norm on the weights, as in section 7.6.1, is often called “the
lasso,” and was proposed in the context of least-squares regression by Tibshirani [218].
The connection to α-Boost with early stopping, as discussed in section 7.6.2, was observed
by Hastie, Tibshirani, and Friedman [120], and explored further by Rosset, Zhu, and
Hastie [192], who also showed that weak �1-regularization yields a maximum margin solu-
tion, as seen in section 7.6.3. A more advanced and general boosting-like algorithm for
tracing the entire �1-regularized trajectory is given by Zhao and Yu [237].

In addition to those given here, other boosting-like algorithms and methods for regression
have been proposed, for instance, by Freund and Schapire [95], Ridgeway, Madigan and
Richardson [190], and Duffy and Helmbold [79]. In other work, Duffy and Helmbold [78]
discussed conditions under which minimization of a loss function using functional gradient
descent can lead to a boosting algorithm in the technical PAC sense of section 2.3.

Further background on many of the statistical topics discussed in this chapter, including
regression, logistic regression, and regularization, can be found, for instance, in the text by
Hastie, Tibshirani, and Friedman [120]. For additional background on general-purpose
optimization methods, including coordinate descent and Gauss-Southwell methods, see,
for instance, Luenberger and Ye [160].

The NP-completeness of finding a linear threshold function with minimum classification
loss, alluded to in section 7.1, was proved by Höffgen and Simon [124].

The method and experiments in section 7.7.1, including table 7.2 and figure 7.9, are taken
from Schapire et al. [203, 204], using a dataset of AP headlines prepared by Lewis and
Catlett [151] and Lewis and Gale [152]. The ASSEMBLE.AdaBoost algorithm described
in section 7.7.2, including the results adapted in table 7.3, are due to Bennett, Demiriz, and
Maclin [18].

Some of the exercises in this chapter are based on material from [98, 233].

Exercises

7.1 Consider the following objective function:

L(x, y)
.= max{x− 2y, y− 2x}.

a. Sketch a contour map of L. That is, in the 〈x, y〉-plane, plot the level set {〈x, y〉 :
L(x, y) = c} for various values of c.

b. Is L continuous? Convex? Does the gradient of L exist at all values of x and y?

c. What is the minimum (or infimum) of L over all 〈x, y〉? Where is that minimum value
realized?

Exercises 221

d. Explain what will happen if we apply coordinate descent to L, starting at any initial point
〈x, y〉. Is coordinate descent successful in this case (that is, at minimizing the objective
function)?

7.2 Continuing exercise 7.1, suppose we approximate L by

L̃(x, y)
.= 1

η
ln
(
eη(x−2y)+ eη(y−2x)

)
for some large constant η > 0.

a. Show that∣∣∣L(x, y)− L̃(x, y)

∣∣∣ ≤ ln 2

η

for all 〈x, y〉.
b. How would a contour plot of L̃ compare with that of L?

c. Explain what will happen if we apply coordinate descent to L̃, starting at 〈0, 0〉. Give
the exact sequence of points 〈xt , yt 〉 that will be computed, as well as the resulting loss
L̃(xt , yt). Is coordinate descent successful in this case?

7.3 Suppose, as in section 7.3, that instances x are points in X = {−1,+1}N ; that we are
using coordinates (and their negations) as base classifiers; and that the label y associated
with each instance x is a simple majority vote of k of the coordinates:

y = sign
(
xj1 + · · ·+ xjk

)
for some (unknown, not necessarily distinct) coordinates j1, . . . , jk ∈ {1, . . . , N} (where
k is odd). Let (x1, y1), . . . , (xm, ym) be a random training set where the xi’s are generated
according to an arbitrary target distribution D on X (and the labels yi are assigned as just
described).

Show that if AdaBoost is run with an exhaustive weak learner for sufficiently many
rounds T , then with probability at least 1− δ, the generalization error of the combined
classifier H will be at most

O

(√
k2 ln N

m
· ln
(m

k2 ln N

)
+ ln(1/δ)

m

)
.

(An even better bound is also possible.) Thus, m only needs to grow faster than k2 ln N for
the generalization error to go to zero.

7.4 Continuing exercise 7.3, the exponential loss of equation (7.7), specialized to this
setting, has the form

222 7 Loss Minimization and Generalizations of Boosting

L(λ) = 1

m

m∑
i=1

exp(−yiλ · xi).

a. Compute ∇L(λ), the gradient of L at λ.

b. When using gradient descent, regardless of the learning rate, show that the computed
weight vector λ will always be in the span of the training instances, meaning

λ =
m∑

i=1

bixi

for some b1, . . . , bm ∈ R. (Throughout this problem, assume gradient descent is started
at 0.)

c. An N ×N Hadamard matrix has all entries in {−1,+1}, and all columns are orthogonal
to one another. Hadamard matrices HN in which N is a power of 2 can be constructed
recursively with H1 = (1), and

H2N =
(

HN HN

HN −HN

)
.

Verify that matrices constructed in this fashion are indeed Hadamard.

d. For N a power of 2, suppose the target distribution D on instances is uniform on
the columns of the Hadamard matrix HN . Show that regardless of how instances are
labeled, the generalization error of a classifier H(x) = sign(λ · x) computed using gra-
dient descent is at least 1/2−m/(2N). (For the purposes of this exercise, let us count
a prediction of 0 as half a mistake.) Thus, when the number of training examples m is
small compared to the number of dimensions N , the generalization error is sure to be
large.

7.5 For given real values b1, . . . , bm, c1, . . . , cm, and nonnegative weights w1, . . . , wm, let

f (α) =
m∑

i=1

wi(αbi − ci)
2.

Find explicitly the value of α that minimizes f , and also evaluate f at this value.

7.6 Let H be a class of real-valued base functions that is closed under scaling (so that if
h ∈ H, then ch is also inH for all c ∈ R). Show that choosing h ∈ H to minimize the squared
error criterion in equation (7.17) is equivalent to using AnyBoost (algorithm 7.3) with
appropriately normalized base functions from H. Specifically, show that equation (7.17)
is minimized (over H) by a function ch ∈ H where c ∈ R, and where h maximizes
−∇L(Ft−1) ·h over all functions in H with ‖h‖2 = 1. (Assume this maximum exists.)

Exercises 223

7.7 GentleAdaBoost is an algorithm for minimizing exponential loss derived using a form
of a numerical technique called Newton’s method. The algorithm turns out to be the same as
AdaBoost as depicted in algorithm 7.1, except that ht and αt are instead found by minimizing
the weighted least-squares problem:

m∑
i=1

e−yiFt−1(xi)(αtht (xi)− yi)
2. (7.46)

Assume all of the base functions in the space H are classifiers, that is, {−1,+1}-valued.

a. Under equivalent conditions (that is, the same dataset, same current value of Ft−1, etc.),
show that GentleAdaBoost selects the same base classifier ht as AdaBoost (in other
words, ht , together with some value of αt , minimizes equation (7.46) if and only if it
minimizes the corresponding criterion given in algorithm 7.1).

b. Under equivalent conditions (including the same choice of ht), let αgb
t and αab

t denote
the values of αt selected by GentleAdaBoost and AdaBoost, respectively. Show that

i. αgb
t and αab

t must have the same sign.

ii. αgb
t ∈ [−1,+1].

iii. |αgb
t | ≤ |αab

t |.
7.8 LogitBoost (algorithm 7.5) is an algorithm also derived using Newton’s method, but
applied to the logistic loss. As in exercise 7.7, assume all of the base functions in H are
classifiers.

a. Under equivalent conditions, show that LogitBoost selects the same base classifier as
AdaBoost.L. (Assume the algorithms select αt and ht using an exhaustive search.)

b. Under equivalent conditions (including the choice of ht), let αlb
t and αabl

t denote the
values of αt selected by LogitBoost and AdaBoost.L, respectively. Give explicit expres-
sions for αlb

t and αabl
t in terms of the data, ht , Dt , and Zt , where Dt and Zt are as defined

in algorithm 7.4.

c. Show that αlb
t and αabl

t must have the same sign.

d. Prove by example that |αlb
t | can be strictly smaller or strictly larger than |αabl

t |.
7.9 Suppose H consists of a single function � that is identically equal to the constant +1.
Let the training set consist of m = 2 oppositely labeled examples (x1,+1) and (x2,−1).

a. For what value of the single parameter λ is the logistic loss in equation (7.20) minimized
(where Fλ(x)

.= λ�(x) ≡ λ for all x)?

b. Suppose LogitBoost is run on this data, but with F0 initialized to the constant function
F0 = λ0� ≡ λ0, for some λ0 ∈ R which is not necessarily zero. Since ht = � on every
round, we can write Ft as λt� ≡ λt for some λt ∈ R. Write a formula for λt+1 in terms of
λt . That is, find in closed form the function U(λ) which defines the update λt+1 = U(λt).

224 7 Loss Minimization and Generalizations of Boosting

Algorithm 7.5
LogitBoost, an algorithm based on Newton’s method for minimizing logistic loss

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• For i = 1, . . . , m:

pt(i) = 1

1+ e−Ft−1(xi)

zt (i) =
{

1
pt (i)

if yi = +1

− 1
1−pt (i)

if yi = −1

wt(i) = pt(i)(1−pt(i)).

• Choose αt ∈ R and ht ∈ H to minimize (or approximately minimize if a heuristic search
is used)

m∑
i=1

wt(i)(αtht (xi)− zt (i))
2.

• Update: Ft = Ft−1+αtht .

Output FT .

c. Show that there exists a constant C > 0 such that if |λ0| ≤ C, then λt → 0 as t →∞.

d. Show that if |λ0| ≥ 3, then |λt | → ∞ as t →∞.

e. How would AdaBoost.L handle this same setting (with the same initialization of F0)?

7.10 Let L : RN → R be any convex function. Suppose λ is a solution of the constrained
optimization problem given in equation (7.34) for some B > 0. Show that if ‖λ‖1 < B,
then λ is also a solution of equation (7.34) when B is replaced by any B ′ > B.

7.11 Assume H consists only of classifiers (that is, base functions with range {−1,+1}),
and that the data is linearly separable with margin θ > 0 (as in equation (7.37)). For any
B > 0, let λ be a solution of equation (7.34) for the loss L(λ) as defined in equation (7.7).
Assume also that H is closed under negation so that λj ≥ 0 for all j , without loss of
generality.

Let us define the distribution D as D(i) = exp(−yiFλ(xi))/Z where Z is a normalization
factor, and Fλ is as in equation (7.6). For each �j ∈ H, we also define

Exercises 225

ej
.=

m∑
i=1

D(i)yi�j (xi),

which is (twice) the edge of �j with respect to D.

a. Show how to express ∂L/∂λj explicitly in terms of ej , and possibly other quantities that
are independent of j .

b. Show that for some j , ∂L/∂λj is strictly negative. Use this to show that ‖λ‖1 = B.
[Hint: If this is not the case, show how to modify λ to get strictly lower loss.]

c. We say �j is active if λj > 0. Show that if �j is active, then it has maximum edge, that
is, ej ≥ ej ′ for all j ′.

d. Show that the edges of all active base classifiers are equal, that is, if λj > 0 and λj ′ > 0,
then ej = ej ′ . Furthermore, show that if �j is active, then ej ≥ θ .

8 Boosting, Convex Optimization, and Information Geometry

In chapter 7, we saw howAdaBoost can be viewed as a special case of more general methods
for optimization of an objective function, namely coordinate descent and functional gradient
descent. In both of those cases, the emphasis was on construction of a final classifier by
manipulating the weights defining it or, equivalently, by iteratively adding multiples of base
functions to it. In this chapter, we present a different perspective on the behavior and
dynamics of AdaBoost. In this new view, the emphasis will instead be on the distributions
Dt , that is, on the weights over examples, which exist in a dual universe to the weights on
the weak classifiers that define the final hypothesis.

We will see that AdaBoost is again a special case of a more general and much older algo-
rithm, one based on an approach that combines geometry and information theory in which
the distributions Dt are regarded as points in Rm which are repeatedly projected onto hyper-
planes defined by the weak hypotheses. This new perspective will lend geometric intuition
to the workings of AdaBoost, revealing a beautiful mathematical structure underlying the
workings of the algorithm. We will see that, viewed in terms of optimization, AdaBoost
is in fact solving two problems simultaneously, one being the minimization of exponential
loss as discussed in section 7.1, and the other being a dual optimization problem involv-
ing maximization of the entropy of the distributions over examples subject to constraints.
This understanding will enable us to answer basic questions about AdaBoost’s dynamics,
particularly with regard to the convergence of the example distributions, thus providing the
means to prove that the algorithm asymptotically minimizes exponential loss.

The framework we present encompasses logistic regression as well, with only minor
modification, thus providing further and deeper unification.

We end this chapter with an application to the problem of modeling the habitats of plant
and animal species.

This chapter makes extensive use of notions from mathematical analysis which are
reviewed briefly in appendices A.4 and A.5.

228 8 Boosting, Convex Optimization, and Information Geometry

8.1 Iterative Projection Algorithms

In this section, we explain how AdaBoost can be seen to be a kind of geometric iterative
projection algorithm. Although we will eventually use a geometry based on notions from
information theory, we begin by considering the analogous setting for ordinary Euclidean
geometry.

8.1.1 The Euclidean Analogue

To get an intuitive feeling for such algorithms, consider the following simple geometric
problem. Suppose we are given a set of linear constraints on points x in Rm:

a1 · x = b1

a2 · x = b2

...

aN · x = bN . (8.1)

These N constraints define a linear subspace of Rm,

P .= {x ∈ Rm : aj · x = bj for j = 1, . . . , N}, (8.2)

which we assume to be nonempty and which we refer to as the feasible set. We are also given
a reference point x0 ∈ Rm. The problem is to find the point x satisfying the N constraints that
is closest to x0. Thus, the problem is to find x solving the following constrained optimization
problem:

minimize: ‖x− x0‖2
2

subject to: aj · x = bj for j = 1, . . . , N. (8.3)

This is the first of several convex programs to be presented in this chapter, in each of which
the goal is to minimize a convex function subject to linear constraints. Although there are
surely many ways of attacking this problem, here is a simple approach that turns out to be
rather general. Start at x = x0. If all the constraints are satisfied, then we are done. Otherwise,
select one unsatisfied constraint, say aj · x = bj , and project x onto the hyperplane defined
by this equality; that is, replace x with the closest point satisfying aj · x = bj . Now repeat
“until convergence.” Pseudocode for this technique is given as algorithm 8.1.

Like many numerical methods, it may be that the procedure never actually reaches a
solution of program (8.3) in a finite number of steps. Our intention instead is that the
sequence as a whole should converge to a solution so that we can get as close as we like to
one in finite time.

8.1 Iterative Projection Algorithms 229

Algorithm 8.1
An iterative projection algorithm for finding the closest point, subject to linear constraints

Given: aj ∈ Rm, bj ∈ R for j = 1, . . . , N

x0 ∈ Rm.
Goal: find sequence x1, x2, . . . converging to the solution of program (8.3).
Initialize: x1 = x0.
For t = 1, 2, . . .

• Choose a constraint j .

• Let xt+1 = arg min
x:aj ·x=bj

‖x− xt‖2
2.

0x

Figure 8.1
An example in R

3 of the input to an iterative projection algorithm. Here, the problem is to find the point at the
intersection of the two planes that is closest to the reference point x0. The dashed arrows depict the first three steps
of the algorithm.

A simple three-dimensional example is shown in figure 8.1. Here, there are only two
constraints depicted by the two planes. The feasible set P is the line at their intersection.
Beginning at x0, the algorithm repeatedly projects onto one plane, and then the other,
quickly converging to a point in P which turns out to be the point closest to x0.

We did not specify how to choose a constraint j on each iteration of algorithm 8.1.
One idea is simply to cycle through the constraints in order; this is called cyclic selection.
Another option is to greedily choose the hyperplane aj · x = bj that is farthest from xt , with
the expectation that bringing xt+1 into line with this most violated constraint will effect the
greatest and quickest progress. We will generally focus on this latter option, which we refer
to as greedy selection. A two-dimensional example is shown in figure 8.2.

It can be proved that with either of these options, as well as a host of others, this algorithm
is guaranteed to converge to the (unique) solution, provided the feasible set P is nonempty.

230 8 Boosting, Convex Optimization, and Information Geometry

x0

2

3

4

1

x0

Figure 8.2
In this example, points lie in the plane, and the constraints are given by the four lines so that the feasible set
consists of the single point at their common intersection. The arrows show how the iterative projection algorithm
would proceed on the first few rounds using cyclic selection of constraints (top) in the fixed order given by the
numbering of the constraints, versus greedy selection (bottom), in which the farthest constraint is always chosen.

When P is empty, the problem is no longer meaningful, but the iterative projection algorithm
can still be executed. The algorithm cannot converge to a single point since there will
always remain unsatisfied constraints. Beyond this observation, the dynamics of this simple
procedure are not fully understood in this case, especially when using greedy selection.

8.1.2 Information-Theoretic Measures

In the description above, we measured the distance between points in our space in the usual
way, using ordinary Euclidean distance. However, other distance measures could be used
instead. Indeed, when we soon cast AdaBoost as an iterative projection algorithm, it will
be natural to use relative entropy for this purpose, a measure which defines a distance or
“divergence” between probability distributions. Although relative entropy was encountered
previously in section 6.2.3 and elsewhere, we now take a short detour to comment on its
origin and connection to information theory before proceeding in our development.

8.1 Iterative Projection Algorithms 231

Suppose we wish to encode each of the m letters of some abstract alphabet {�1, . . . , �m}
in bits so that any text written in this alphabet can be encoded in as few bits as possible. The
obvious approach is to use a fixed number of bits for each letter of the alphabet; specifically,
this requires using log m bits for each letter, where for now we use base 2 for all logarithms,
and where we ignore in this discussion the fact that such quantities are likely to be non-
integers. We can do better than this naive encoding, however, because if some letters (such
as q in written English) occur much less frequently than others (such as e), then it will be
more efficient, in terms of overall code length, to give the more common letters shorter
encodings. In fact, if letter �i of the alphabet occurs with probability P(i), then the optimal
encoding of �i uses− log P(i) bits. The expected code length of a letter selected randomly
under this distribution will then be

H(P)
.= −

m∑
i=1

P(i) log P(i). (8.4)

This quantity is called the entropy of the distribution. It is evidently nonnegative, and
it is maximized when P is the uniform distribution, giving a maximum value of log m.
Entropy can be regarded as a reasonable measure of the “spread” of the distribution, or its
randomness or unpredictability.

Now suppose that the letters of our alphabet are actually distributed according to P, but
we believe (incorrectly) that they are distributed according to Q. Then the foregoing will
lead us to encode each letter �i using − log Q(i) bits, so the expected code length of a
random letter under the actual distribution P will be

−
m∑

i=1

P(i) log Q(i). (8.5)

The amount of extra coding effort that results from using Q instead of P is then the difference
between equations (8.5) and (8.4), that is,

RE (P ‖ Q)
.=
(
−

m∑
i=1

P(i) log Q(i)

)
−H(P)

=
m∑

i=1

P(i) log

(
P(i)

Q(i)

)
. (8.6)

This quantity is the relative entropy, also known as the Kullback-Leibler divergence. As
mentioned earlier, it is nonnegative, and equal to zero if and only if P = Q. It can be infinite.
We sometimes refer to it informally as a “distance,” but it lacks the formal properties of a
metric; in particular, it is not symmetric and does not satisfy the triangle inequality. Despite

232 8 Boosting, Convex Optimization, and Information Geometry

these difficulties, it often turns out to be the “right” way to measure distance between
probability distributions, arising naturally in many situations.

The binary relative entropy, encountered earlier in section 5.4.2, is simply shorthand
for relative entropy between two distributions defined on a two-letter alphabet where the
probability of one letter determines that of the other. Thus, for p, q ∈ [0, 1], we define

REb (p ‖ q)
.= RE ((p, 1−p) ‖ (q, 1− q))

= p log

(
p

q

)
+ (1−p) log

(
1−p

1− q

)
. (8.7)

Although we used base 2 logarithms above, we will find it mathematically more conve-
nient to use natural logarithm. Thus, throughout this book, we use definitions of entropy
and relative entropy in which the logarithms appearing in equations (8.4), (8.6), and (8.7)
have been redefined to the natural base.

8.1.3 AdaBoost as an Iterative Projection Algorithm

With this background, we are ready to explain how AdaBoost can be seen to be an iterative
projection algorithm that operates in the space of probability distributions over training
examples. We will need to spell out the appropriate linear constraints, and, as just discussed,
we also will need to modify how we measure distance between points.

As usual, we are given a dataset (x1, y1), . . . , (xm, ym), and a space of weak classifiers
H that is assumed, as in chapter 7, to be finite so that we can write

H = {�1, . . . , �N }
for some indexing of its N elements. For simplicity, we can assume that these are all binary
{−1,+1}-valued, although this is quite unimportant to what follows. We also assume
throughout that H is closed under negation (so −h ∈ H if h ∈ H). We follow the notation
of algorithm 1.1 (p. 5).

Unlike earlier parts of the book, our focus now is on probability distributions D over
{1, . . . , m}, the indices of the m training examples, in other words, the sort of probability
distributions Dt used by AdaBoost. What sorts of linear constraints on these distributions
does AdaBoost seem to want satisfied? We saw in section 6.4 that in a game-theoretic
context, in which the boosting algorithm opposes the weak learning algorithm, the booster’s
goal is to find a distribution over examples that is as hard as possible for the weak learner.
Thus, whereas the weak learner on round t aims to find ht maximizing the weighted accuracy
Pri∼Dt [yi = ht (xi)] or, equivalently, the weighted correlation

m∑
i=1

Dt(i)yiht (xi),

8.1 Iterative Projection Algorithms 233

the boosting algorithm aims to construct distributions Dt for which this correlation (or
accuracy) will be small for all weak classifiers.

Moreover, on every round t , the new distribution Dt+1 is constructed so that this corre-
lation with ht will be zero. This is because, keeping in mind that

Dt+1(i) = Dt(i)e
−αt yiht (xi)

Zt

,

it follows that

m∑
i=1

Dt+1(i)yiht (xi) = 1

Zt

m∑
i=1

Dt(i)e
−αt yiht (xi)yiht (xi)

= − 1

Zt

· dZt

dαt

= 0, (8.8)

where we regard the normalization factor

Zt =
m∑

i=1

Dt(i)e
−αt yiht (xi)

as a function of αt . Equation (8.8) follows from the fact that αt is chosen to minimize Zt

(as shown in section 3.1), so that dZt/dαt = 0.
Thus, it would seem that AdaBoost’s aim is to pursue a distribution D for which

m∑
i=1

D(i)yi�j (xi) = 0 (8.9)

for every �j ∈ H, that is, a distribution D that is so hard that no weak classifier �j ∈ H
is at all correlated under D with the labels yi . Equation (8.9) provides a set of N linear
constraints on D corresponding to the constraints in equation (8.1). We use these to define
the feasible set P; that is, P is now defined to be the set of all distributions D satisfying all
these constraints as in equation (8.9), for all �j ∈ H:

P .=
{

D :
m∑

i=1

D(i)yi�j (xi) = 0 for j = 1, . . . , N

}
. (8.10)

Having chosen the linear constraints defining P , we next need to choose a reference point
analogous to x0 in section 8.1.1. In the absence of other information, it seems natural to
treat all of the training examples equally, and thus to use the uniform distribution U over
{1, . . . , m} as our reference point.

234 8 Boosting, Convex Optimization, and Information Geometry

Finally, we must choose a distance measure to replace the Euclidean distance used in
section 8.1.1. Since we are working in a space of probability distributions, as discussed
in section 8.1.2, we now find it appropriate to replace Euclidean geometry with the “infor-
mation geometry” associated with the relative entropy distance measure. This change affects
how points are projected onto hyperplanes as well as what we mean by the “closest” point in
P to the reference point. Otherwise, the basic algorithm given as algorithm 8.1 will remain
unchanged.

Putting these ideas together, we arrive at the problem of finding the distribution in P that is
closest to uniform in terms of relative entropy. That is, we reach the following optimization
program:

minimize: RE (D ‖ U)

subject to:
m∑

i=1

D(i)yi�j (xi) = 0 for j = 1, . . . , N

D(i) ≥ 0 for i = 1, . . . , m

m∑
i=1

D(i) = 1. (8.11)

The program has the same form as program (8.3) except that Euclidean distance has been
replaced by relative entropy, and we have added constraints to make explicit the requirement
that D has to be a probability distribution.

Note that, by its definition,

RE (D ‖ U) = ln m−H(D) (8.12)

where H(D) is the entropy of D as in equation (8.4). Thus, minimization of RE (D ‖ U) is
equivalent to maximization of the entropy or spread of the distribution, subject to constraints.
This firmly connects this approach to a large and old body of work on maximum entropy
methods.

To solve program (8.11), the same iterative projection techniques described in sec-
tion 8.1.1 can be applied. Now, however, our method of projection must be modified
and must use relative entropy rather than Euclidean distance. Thus, we begin with D1 = U.
Then, on each round, we select a constraint j and compute Dt+1 to be the projection of Dt

onto the hyperplane defined by equation (8.9). That is, Dt+1 minimizes RE (Dt+1 ‖ Dt)

among all distributions satisfying this equality. The complete algorithm is shown as
algorithm 8.2.

This algorithm works just like algorithm 8.1, except for the change in the distance mea-
sure. We begin with the reference point, in this case U , and iteratively project onto individual
linear constraints. Like algorithm 8.1, this one is known to converge to the (unique) solution

8.1 Iterative Projection Algorithms 235

Algorithm 8.2
An iterative projection algorithm corresponding to AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
finite, binary hypothesis space H.

Goal: find sequence D1, D2, . . . converging to the solution of program (8.11).
Initialize: D1 = U .
For t = 1, 2, . . .

• Choose ht ∈ H defining one of the constraints.

• Let Dt+1 = arg min
D:∑m

i=1D(i)yiht (xi)=0
RE (D ‖ Dt).

• Greedy constraint selection: Choose ht ∈ H so that RE (Dt+1 ‖ Dt) is maximized.

of program (8.11), provided that the feasible set P is nonempty—we will give a proof in
section 8.2. From a broader perspective, Euclidean distance (squared) and relative entropy
both turn out to be instances of a more general class of distance functions called Breg-
man distances for which it is known that such an iterative projection algorithm will be
effective (see exercise 8.5). In the general case, the algorithm is known as Bregman’s
algorithm.

As with our generic description of iterative projection algorithms, we could have left the
choice of ht in algorithm 8.2 unspecified. Instead, from this point forward, we will assume
that greedy selection is used in the choice of constraints so that on each round, ht is chosen
to maximize the distance to the violated hyperplane, that is, so that

min
D:∑m

i=1D(i)yiht (xi)=0
RE (D ‖ Dt)

will be maximized over all ht ∈ H. Because of how Dt+1 is computed, this is exactly the
same as maximizing RE (Dt+1 ‖ Dt). With this assumption, as already suggested, it can
be shown that algorithm 8.2 is simply AdaBoost in disguise, and the assumption of greedy
constraint selection is equivalent to using an exhaustive weak learner. In other words, the
distributions Dt computed by the two algorithms under these assumptions are identical on
every round.

To see this, suppose ht ∈ H is chosen on round t . Then Dt+1 is chosen to minimize
RE (D ‖ Dt) subject to the constraint

m∑
i=1

D(i)yiht (xi) = 0.

236 8 Boosting, Convex Optimization, and Information Geometry

We can compute this minimization by forming the Lagrangian:

L =
m∑

i=1

D(i) ln

(
D(i)

Dt(i)

)
+α

m∑
i=1

D(i)yiht (xi)+μ

(
m∑

i=1

D(i)− 1

)
. (8.13)

(See appendix A.8 for background.) Here, α and μ are the Lagrange multipliers, and we
have explicitly taken into account the constraint that

m∑
i=1

D(i) = 1. (8.14)

(We do not, however, include the constraints D(i) ≥ 0 in the Lagrangian since these, it
turns out, will be “automatically” satisfied, as will be seen.) Computing derivatives and
equating with zero, we get that

0 = ∂L
∂D(i)

= ln

(
D(i)

Dt(i)

)
+ 1+αyiht (xi)+μ.

Thus,

D(i) = Dt(i)e
−αyiht (xi)−1−μ.

Note that μ, an arbitrary constant, will be chosen to enforce equation (8.14), giving

D(i) = Dt(i)e
−αyiht (xi)

Z

where

Z =
m∑

i=1

Dt(i)e
−αyiht (xi)

is a normalization factor. Plugging into equation (8.13) and simplifying gives

L = − ln Z.

Thus, α will be chosen to maximize L or, equivalently, to minimize Z. This is exactly how
αt is chosen by AdaBoost, as noted in section 3.1. So, identifying D, α, and Z with Dt+1,
αt , and Zt , we see that the two algorithms behave identically for the same choice of ht .

(Implicitly, we are permitting AdaBoost to choose a negative value of αt , which is equiv-
alent to our assumption that H is closed under negation. Further, we are ignoring the
degenerate case in which AdaBoost selects αt to be infinite, which is equivalent to yih(xi)

8.1 Iterative Projection Algorithms 237

all being of the same sign, for some h ∈ H, in other words, h itself being a perfect classifier
for the dataset.)

The choice of ht will also be the same as inAdaBoost. Continuing the development above,
we have that

RE (Dt+1 ‖ Dt) =
m∑

i=1

Dt+1(i) (−αtyiht (xi)− ln Zt)

= − ln Zt −αt

m∑
i=1

Dt+1(i)yiht (xi)

= − ln Zt (8.15)

where we have used equation (8.8). Thus, algorithm 8.2 chooses ht to minimize Zt , which,
as shown in section 7.1, is exactly what AdaBoost does as well.

8.1.4 Conditions for a Nonempty Feasible Set

So we conclude that the two algorithms are identical. Later, in section 8.2, we present tech-
niques that can be used to show that the distributions Dt ofAdaBoost—that is, algorithm 8.2
when depicted as an iterative projection algorithm—will converge to a distribution that is
the unique solution of program (8.11), provided the feasible set P in equation (8.10) is
nonempty.

When is this latter condition satisfied? It turns out that this condition is directly connected
to the notion of empirical weak learnability that is so fundamental to boosting. Specifically,
we claim the following:

Theorem 8.1 The feasible set P defined in equation (8.10) is empty if and only if the data
is empirically γ -weakly learnable for some γ > 0.

Proof Let us first assume empirical γ -weak learnability. By definition (as given in
section 2.3.3), this means that for every distribution D there exists �j ∈ H such that

Pri∼D

[
yi = �j (xi)

] ≥ 1
2 + γ, (8.16)

which is the same as

m∑
i=1

D(i)yi�j (xi) ≥ 2γ > 0. (8.17)

This immediately implies that the equations defining the feasible set P cannot all be
simultaneously satisfied, and thus P is empty.

238 8 Boosting, Convex Optimization, and Information Geometry

Conversely, suppose now that P is empty. Consider the function

M(D)
.= max

�j∈H

∣∣∣∣∣
m∑

i=1

D(i)yi�j (xi)

∣∣∣∣∣.
This is a continuous, nonnegative function defined over the compact space of all probability
distributions D. Therefore, its minimum is attained at some particular distribution D̃. By
M’s and P’s definitions, if M(D̃) = 0, then D̃ ∈ P , which we assumed to be empty. There-
fore, M(D̃) > 0. Let γ

.= 1
2 M(D̃). Then, because D̃ minimizes M , for every distribution D,

M(D) ≥ M(D̃) = 2γ > 0;
that is, there exists �j ∈ H for which∣∣∣∣∣

m∑
i=1

D(i)yi�j (xi)

∣∣∣∣∣ ≥ 2γ.

If the sum inside the absolute value happens to be negative, we can replace �j with −�j ,
which we assume is also in H. Thus, in either case, equation (8.17) holds, which is equiv-
alent to equation (8.16). That is, we have shown that for every distribution D, there exists
�j ∈ H for which equation (8.17) holds, the very definition of the empirical γ -weak learning
assumption.

Thus, empirical weak learnability is equivalent to the feasible set P being empty. Fur-
thermore, from the results of section 5.4.3, both of these conditions are also equivalent to
the data being linearly separable with positive margin. So if the data is not weakly learnable,
then AdaBoost’s distributions converge to the unique solution of program (8.11), as will be
seen in section 8.2. But if the data is weakly learnable—which in many respects is the more
interesting case from the viewpoint of boosting—then the distributions computed by Ada-
Boost can never converge to a single distribution since, in this case, the distance between Dt

and Dt+1 must be lower bounded by a constant. This is because, using equation (8.15), as
well as the reasoning (and notation) of theorem 3.1, particularly equation (3.9), we have that

RE (Dt+1 ‖ Dt) = − ln Zt

= − 1
2 ln(1− 4γ 2

t)

≥ − 1
2 ln(1− 4γ 2) > 0,

where we used the fact that the empirical γ -weak learning assumption holds in this case
for some γ > 0, so that γt ≥ γ for all t . Hence, RE (Dt+1 ‖ Dt) is at least some positive
constant for every t , implying that the distributions can never converge.

8.1 Iterative Projection Algorithms 239

The behavior of AdaBoost’s distributions in the weakly learnable case is not fully under-
stood. In all closely examined cases, AdaBoost’s distributions have been found to converge
eventually to a cycle. However, it is not known if this will always be the case, or if Ada-
Boost’s asymptotic behavior can sometimes be chaotic. The dynamics of these distributions
can be quite remarkable. Figure 8.3 shows plots over time of AdaBoost’s distributions on
just two of the training examples. In some cases, convergence to a tight cycle can be quick;
in other cases, the behavior may appear chaotic for some time before the algorithm finally
converges to a cycle. (An analytic example is given in exercise 8.2.)

8.1.5 Iterative Projection Using Unnormalized Distributions

To alleviate the difficulties posed to algorithm 8.2 by weakly learnable data, we can shift
our attention away from the normalized distributions used by AdaBoost, and instead con-
sider their form before normalization as unnormalized weights on the examples. This will
give us an alternative characterization of AdaBoost as an iterative projection algorithm in
a way that admits a unified treatment applicable whether or not the data is weakly learn-
able. We will use this formulation to prove the convergence of AdaBoost’s (unnormalized)
distributions, as well as the convergence of AdaBoost to the minimum of the exponential
loss.

So we will now be working with unnormalized weight vectors. Relative entropy, the dis-
tance measure we previously used, is no longer appropriate for such nondistributions.
However, as noted earlier, there exists a whole family of distance measures with which
iterative projection can be used. Unnormalized relative entropy is a natural choice. For two
nonnegative vectors p, q ∈ Rm+, it is defined to be

REu (p ‖ q)
.=

m∑
i=1

[
pi ln

(
pi

qi

)
+ qi −pi

]
. (8.18)

Like standard (normalized) relative entropy, the unnormalized version is always nonneg-
ative, and is equal to zero if and only if p = q. When it is clear from context, we write
simply RE rather than REu.

We can replace relative entropy with unnormalized relative entropy in program (8.11)
and algorithm 8.2. We also replace uniform distribution U with the vector 1 of all 1’s.
To emphasize the shift to unnormalized weight vectors, we use lowercase d, dt , etc. to
represent unnormalized weight vectors. Thus, the problem now is to find d so as to solve:

minimize: REu (d ‖ 1)

subject to:
m∑

i=1

diyi�j (xi) = 0 for j = 1, . . . , N

di ≥ 0 for i = 1, . . . , m. (8.19)

240 8 Boosting, Convex Optimization, and Information Geometry

0.20

0.15

0.05

Dt(2)

Dt(1)

Dt(2)

Dt(1)

0.35

0.25

0.05

0

0.200.150.050

0.200.150.050

0

Figure 8.3
(Caption on facing page)

8.1 Iterative Projection Algorithms 241

Algorithm 8.3
An iterative projection algorithm corresponding to AdaBoost using unnormalized relative entropy

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
finite, binary hypothesis space H.

Goal: find sequence d1, d2, . . . converging to the solution of program (8.19).
Initialize: d1 = 1.
For t = 1, 2, . . .

• Choose ht ∈ H defining one of the constraints.

• Let dt+1 = arg min
d:∑m

i=1diyiht (xi)=0
REu (d ‖ dt).

• Greedy constraint selection: Choose ht ∈ H so that REu (dt+1 ‖ dt) is maximized.

We no longer require that d be normalized. The feasible set associated with this program is

P .=
{

d ∈ Rm
+ :

m∑
i=1

diyi�j (xi) = 0 for j = 1, . . . , N

}
. (8.20)

Earlier, we faced the problem that there might be no distributions satisfying all the con-
straints. Now that difficulty is entirely erased: The set P cannot be empty since all the
constraints are trivially satisfied when d = 0, the all 0’s vector. This is the key advantage
of this shift to unnormalized vectors.

Our iterative projection algorithm is nearly unchanged, and is shown for reference as
algorithm 8.3. Of course, we need to emphasize that the relative entropy used in the figure
is unnormalized relative entropy, that is, REu (· ‖ ·). As before, we assume greedy selec-
tion of ht .

We claim first that this procedure is again equivalent to AdaBoost in the sense that
on every round, the selected ht will be the same, and the distributions will be in exact
correspondence, after normalization, that is,

Figure 8.3
Examples of AdaBoost’s dynamic behavior on two very small artificial learning problems. The plots show a
projection onto the first two components of the distribution Dt , that is, Dt(1) on the x-axis and Dt(2) on the
y-axis. More specifically, each circle corresponds to one of the rounds t . The center of each circle is positioned at
the point 〈Dt(1), Dt (2)〉; that is, the x-coordinate is equal to the value of distribution Dt on the first example in the
training set, and the y-coordinate is its value on the second example. The radius of each circle is proportional to
t , the round number, so that smaller circles indicate earlier rounds and larger circles indicate later rounds. In this
way, the entire dynamic time course of the algorithm can be observed at once. In both of the cases shown, the
algorithm is apparently converging to a cycle.

242 8 Boosting, Convex Optimization, and Information Geometry

Dt(i) = dt,i∑m
i=1 dt,i

.

This can be shown exactly as before. For given ht ∈ H, dt+1 is selected to minimize
RE (d ‖ dt) with

∑m
i=1 diyiht (xi) = 0. The Lagrangian now becomes

L =
m∑

i=1

[
di ln

(
di

dt,i

)
+ dt,i − di

]
+α

m∑
i=1

diyiht (xi).

Using calculus to minimize with respect to di gives

di = dt,ie
−αyiht (xi).

Plugging into L gives

L =
m∑

i=1

dt,i −
m∑

i=1

di

=
(

m∑
i=1

dt,i

)
(1−Z)

where

Z =
∑m

i=1dt,ie
−αyiht (xi)∑m

i=1dt,i

=
m∑

i=1

Dt(i)e
−αyiht (xi).

So again, α is selected to minimize Z, and again, with d, α, and Z identified with dt+1 αt ,
and Zt , we see an exact correspondence with the computations of AdaBoost. We also see
that the same ht will be selected on each round by the two algorithms since

RE (dt+1 ‖ dt) = −αt

m∑
i=1

dt+1,i yiht (xi)+
m∑

i=1

(dt,i − dt+1,i)

=
(

m∑
i=1

dt,i

)
(1−Zt).

So, as for AdaBoost and algorithm 8.2, ht is selected to minimize Zt . We conclude that all
three algorithms are equivalent.

8.2 Proving the Convergence of AdaBoost 243

8.2 Proving the Convergence of AdaBoost

We are now in a position to prove some important convergence properties for AdaBoost.
We will show that the unnormalized distributions associated with AdaBoost converge to the
unique solution of program (8.19). Further, as a by-product, we will prove that AdaBoost
converges asymptotically to the minimum of the exponential loss as discussed, but not
proved, in chapter 7.

8.2.1 The Setup

To ease notation, let us define an m×N matrix M with entries

Mij = yi�j (xi).

Note that all of the vectors dt computed by our algorithm are exponential in a linear com-
bination of the columns of M. That is, all the dt ’s belong to the set Q, where we define Q
to be the set of all vectors d of the form

di = exp

⎛⎝− N∑
j=1

λjMij

⎞⎠ (8.21)

for some λ ∈ RN. Since the dt ’s all belong to Q, their limit, if it exists, must be in the
closure of Q, denoted Q. Moreover, the vector we seek must belong to the feasible set P
defined in equation (8.20). Thus, informally, it would seem that the algorithm, if effective,
will converge to a point in both sets, that is, in P ∩Q. We will prove just such convergence,
and we will also prove that this is sufficient for all our purposes.

To visualize the sets P and Q, let us consider a simple example. Suppose the training set
consists of only m = 2 examples (x1, y1) and (x2, y2), both labeled positive so that y1 =
y2 = +1. Suppose further that the base hypothesis space H consists of a single hypothesis
�1 where �1(x1) = +1 and �1(x2) = −1. Then, by equation (8.20),

P = {d ∈ R2
+ : d1− d2 = 0

}
,

that is, the line d2 = d1 shown in figure 8.4. And by its definition,

Q = {d ∈ R2
+ : d1 = e−λ1 , d2 = eλ1, λ1 ∈ R

}
,

that is, the hyperbola d2 = 1/d1 shown in the figure. In this case, Q = Q.
If, as a second example, �1 is redefined so that �1(x1) = �1(x2) = +1, then

P = {d ∈ R2
+ : d1+ d2 = 0

}
,

which consists only of the origin 〈0, 0〉, and

Q = {d ∈ R2
+ : d1 = e−λ1 , d2 = e−λ1 , λ1 ∈ R

}
,

244 8 Boosting, Convex Optimization, and Information Geometry

d2

d11

1

Figure 8.4
A plot of the sets P and Q for a tiny dataset consisting of two examples, both positive, and a single base hypothesis
with �1(x1) = +1 and �1(x2) = −1.

which is the line d2 = d1, but excluding the origin (since e−λ1 > 0 for all λ1). The closure
of Q, in this case, is this same line but including the origin; that is, Q = Q∪ {〈0, 0〉}. See
figure 8.5.

We return to these examples shortly.

8.2.2 Two Problems in One

We are trying eventually to prove two convergence properties. First, we want to show that
the vectors dt asymptotically solve program (8.19). That is, written more compactly, we
want to show that their limit is equal to

arg min
p∈P

RE (p ‖ 1) . (8.22)

Our second goal is to show that AdaBoost minimizes exponential loss, which we now
rephrase as itself a kind of entropy optimization problem. By unraveling the com-
putation of

dt+1,i = dt,ie
−αt yiht (xi),

we see that the sum of these weights after T rounds is

m∑
i=1

dT+1,i =
m∑

i=1

exp

(
−yi

T∑
t=1

αtht (xi)

)
,

8.2 Proving the Convergence of AdaBoost 245

d2

d1

Figure 8.5
A plot of the sets P and Q for a second tiny dataset, exactly as in figure 8.4, but with �1(x1) = �1(x2) = +1. The
set P consists only of the origin since the dotted line d1+ d2 = 0, which defines P , only intersects the nonnegative
quadrant at this single point. Note that the origin is omitted from the set Q, but is included in its closure Q.

which of course is the exponential loss associated with the combined classifier
∑T

t=1αtht (x)

as in section 7.1. More generally, any linear combination of weak classifiers
∑N

j=1λj�j (x)

defines a vector q ∈ Q with

qi = exp

⎛⎝−yi

N∑
j=1

λj �j (xi)

⎞⎠.

Indeed, the vectors of Q are in direct correspondence with linear combinations of weak
classifiers. The exponential loss associated with this linear combination is again the sum of
the components

m∑
i=1

qi =
m∑

i=1

exp

⎛⎝−yi

N∑
j=1

λj�j (xi)

⎞⎠. (8.23)

Thus, showing convergence to minimum exponential loss is equivalent to showing that∑m
i=1dt,i converges to

inf
q∈Q

m∑
i=1

qi = min
q∈Q

m∑
i=1

qi.

246 8 Boosting, Convex Optimization, and Information Geometry

(The minimum must exist since Q is closed, and since we can restrict our attention, for
the purposes of the minimum, to a bounded subset of Q, such as only those q for which∑m

i=1qi ≤ m; this restricted set is compact.)
Note that

RE (0 ‖ q) =
m∑

i=1

qi.

Thus, we can summarize that our second goal is to show that the limit of the vectors dt is
equal to

arg min
q∈Q

RE (0 ‖ q). (8.24)

8.2.3 The Proof

We show now that AdaBoost converges to a solution of both equation (8.22) and
equation (8.24).

We begin our proof by showing that if d ∈ P ∩Q, then a certain equality holds, often
referred to as a Pythagorean theorem in analogy to the more standard case in which relative
entropy is replaced with squared Euclidean distance.

Lemma 8.2 If d ∈ P ∩Q, then for all p ∈ P and for all q ∈ Q,

RE (p ‖ q) = RE (p ‖ d)+RE (d ‖ q) .

Proof We first claim that if p ∈ P and q ∈ Q, then

m∑
i=1

pi ln qi = 0.

For if p ∈ P and q ∈ Q, then there exists λ ∈ RN for which

qi = exp

⎛⎝− N∑
j=1

λjMij

⎞⎠
for i = 1, . . . , m, and so

m∑
i=1

pi ln qi = −
m∑

i=1

pi

N∑
j=1

λjMij

= −
N∑

j=1

λj

m∑
i=1

piMij = 0

8.2 Proving the Convergence of AdaBoost 247

since p ∈ P . By continuity,1 the same holds for q ∈ Q.
It follows that, for p ∈ P and q ∈ Q,

RE (p ‖ q) =
m∑

i=1

[pi ln pi −pi ln qi + qi −pi]

=
m∑

i=1

[pi ln pi + qi −pi].

Applying this to d ∈ P ∩Q, p ∈ P , and q ∈ Q gives

RE (p ‖ d)+RE (d ‖ q) =
m∑

i=1

[pi ln pi + di −pi]+
m∑

i=1

[di ln di + qi − di]

=
m∑

i=1

[pi ln pi + qi −pi]

= RE (p ‖ q)

since
∑m

i=1di ln di = 0 by the claim above (d being both in P and Q).

We next prove the following remarkable characterization of the solutions of equa-
tions (8.22) and (8.24): If d is in P ∩Q, then d uniquely solves both of the optimization
problems of interest.

Theorem 8.3 Suppose d ∈ P ∩Q. Then

d = arg min
p∈P

RE (p ‖ 1)

and

d = arg min
q∈Q

RE (0 ‖ q).

Moreover, d is the unique minimizer in each case.

Proof By lemma 8.2, since 1 ∈ Q, for any p ∈ P,

RE (p ‖ 1) = RE (p ‖ d)+RE (d ‖ 1)

≥ RE (d ‖ 1)

1. Technically, we are using the continuity of the function q �→∑m
i=1 pi ln qi when viewed as an extended mapping

from R
m+ to [−∞,+∞).

248 8 Boosting, Convex Optimization, and Information Geometry

since relative entropy is always nonnegative. Furthermore, d is the unique minimum
since the inequality is strict if p �= d. The proof for the other minimization problem is
similar.

This theorem implies that there can be at most one point at the intersection of P and Q.
Of course, however, the theorem does not show that P ∩Q cannot be empty. Nevertheless,
this fact will follow from our analysis below of the iterative projection algorithm which
will show that the dt ’s must converge to a point in P ∩Q. Thus, in general, P ∩Q will
always consist of exactly one point to which our algorithm, which is equivalent toAdaBoost,
necessarily converges.

These facts are illustrated in the examples shown in figures 8.4 and 8.5, and discussed in
section 8.2.1. In both cases, we see that P and Q intersect at a single point (even though P
and Q do not intersect in the example shown in figure 8.5). Moreover, as claimed generally
in theorem 8.3, in both cases this point is evidently the closest point in P to 〈1, 1〉, and also
the closest point in Q to the origin 〈0, 0〉.

We now prove our main convergence result.

Theorem 8.4 The vectors dt computed by the iterative projection method of algorithm 8.3
or, equivalently, the unnormalized weight vectors computed by AdaBoost (with exhaustive
weak hypothesis selection), converge to the unique point d∗ ∈ P ∩Q, and therefore to the
unique minimum of RE (p ‖ 1) over p ∈ P , and the unique minimum of RE (0 ‖ q) over
q ∈ Q. Thus, the exponential loss of the algorithm

m∑
i=1

dt,i

converges to the minimum possible loss

inf
λ∈RN

m∑
i=1

exp

⎛⎝−yi

N∑
j=1

λj�j (xi)

⎞⎠.

Proof Based on the foregoing, particularly theorem 8.3, it suffices to show that the
sequence d1, d2, . . . converges to a point d∗ in P ∩Q.

Let

Lt
.=

m∑
i=1

dt,i

be the exponential loss at round t . By our choice of ht and αt , which, as discussed in sec-
tions 8.1.3 and 8.1.5, are chosen to cause the greatest drop in this loss, we have that

8.2 Proving the Convergence of AdaBoost 249

Lt+1 = min
j,α

m∑
i=1

dt,ie
−αMij . (8.25)

In particular, considering the case that α = 0, this implies that Lt never increases. By
equation (8.25), we can regard the difference Lt+1−Lt as a function A of the vector dt :

Lt+1−Lt = A(dt)

where

A(d)
.= min

j,α

m∑
i=1

die
−αMij −

m∑
i=1

di. (8.26)

Since Lt ≥ 0 for all t , and since the sequence of Lt ’s is nonincreasing, it follows that the
differences A(dt) must converge to zero. This fact, together with the next lemma, will help
us prove that the limit of the dt ’s is in P .

Lemma 8.5 If A(d) = 0, then d ∈ P . Furthermore, A is a continuous function.

Proof Recall our assumption that Mij ∈ {−1,+1} for all i, j . Let

W+
j (d)

.=
∑

i:Mij=+1

di

and

W−
j (d)

.=
∑

i:Mij=−1

di.

Then, using some calculus,

min
α

m∑
i=1

die
−αMij = min

α

[
W+

j (d) · e−α +W−
j (d) · eα

]
= 2
√

W+
j (d) ·W−

j (d).

Further,

m∑
i=1

di = W+
j (d) + W−

j (d).

Thus,

250 8 Boosting, Convex Optimization, and Information Geometry

A(d) = min
j

[
2
√

W+
j (d) ·W−

j (d) −
(
W+

j (d) + W−
j (d)

)]

= −max
j

(√
W+

j (d)−
√

W−
j (d)

)2

. (8.27)

When written in this form, it is clear that A is continuous since the minimum or maximum
of a finite number of continuous functions is continuous.

Suppose now that A(d) = 0. Then for all j , by equation (8.27),

0 = −A(d) ≥
(√

W+
j (d)−

√
W−

j (d)

)2

≥ 0,

and therefore

W+
j (d) = W−

j (d)

or, equivalently,

0 = W+
j (d)−W−

j (d) =
∑

i:Mij=+1

di −
∑

i:Mij=−1

di

=
m∑

i=1

diMij .

In other words, d ∈ P .

Note that the dt vectors all lie in a compact space; specifically, because they cannot have
negative components, they must all be contained in the compact space [0, m]m, since 0 ≤
dt,i ≤∑m

i=1dt,i ≤∑m
i=1d1,i = m. Therefore, there must exist a convergent subsequence

dt1 , dt2 , . . . with some limit d̃; that is,

lim
k→∞dtk = d̃.

Clearly, each dtk ∈ Q, so the limit d̃ must be in Q. Further, by continuity of A and our
earlier observation that A(dt) must converge to zero, we have

A(d̃) = lim
k→∞A(dtk) = 0.

Thus, by lemma 8.5, d̃ ∈ P . Therefore, d̃ ∈ P ∩Q, and indeed, d̃ must be the unique
member d∗ of P ∩Q.

Finally, we claim that the entire sequence d1, d2, . . . must converge to d∗. Suppose it
does not. Then there exists ε > 0 such that ‖d∗ −dt‖ ≥ ε for infinitely many of the points
in the sequence. This infinite set, being in a compact space, must include a convergent

8.2 Proving the Convergence of AdaBoost 251

subsequence which, by the argument above, must converge to d∗, the only member of
P ∩Q by theorem 8.3. But this is a contradiction since all the points in the subsequence
are at least ε away from d∗.

Therefore, the entire sequence d1, d2, . . . converges to d∗ ∈ P ∩Q.

Theorem 8.4 fully characterizes the convergence properties of the unnormalized weight
vectors. However, it tells us what happens to the normalized distributions Dt only when
the data is not weakly learnable. In this case, the unnormalized vectors dt will converge to
a unique d∗ ∈ P ∩Q, which is also the minimum of the exponential loss in equation (8.23)
by theorem 8.4. Since the data is not weakly learnable, it must be linearly inseparable as
well (as seen in section 5.4.3), so the exponent in at least one term of this sum must be
nonnegative; therefore the entire sum cannot be less than 1. Thus d∗ must be different from
0. This means that the normalized distributions Dt will converge to a unique distribution
D∗ where

D∗(i) = d∗i∑m
i=1d

∗
i

.

On the other hand, when the data is weakly learnable, the feasible set P can consist only of
the single point 0 (as follows from the reasoning used in section 8.1.4). Thus d∗, the only
element of P ∩Q, must equal 0. So in this case, nothing can be concluded about the con-
vergence of the normalized distributions Dt from the convergence of their unnormalized
counterparts; indeed, we have already discussed the fact that they cannot converge to a
single point in this case.

Theorem 8.4 only tells us that AdaBoost minimizes exponential loss asymptotically in
the limit of a large number of iterations. Later, in section 12.2.4, we will use a different
technique to prove bounds on the rate at which this loss is minimized.

8.2.4 Convex Duality

We saw in section 8.2.3 how the same optimization algorithm can be used apparently to
solve two seemingly distinct problems simultaneously. That is, the same algorithm both
solves program (8.19) and also minimizes the exponential loss. On the surface, this might
seem like a rather remarkable coincidence. However, at a deeper level, these two problems
are not at all unrelated. Rather, it turns out that one is the convex dual of the other, a distinct
but in some sense equivalent formulation of the same problem.

Starting with program (8.19), the convex dual can be found by first forming the
Lagrangian

L =
m∑

i=1

(di ln di + 1− di)+
N∑

j=1

λj

m∑
i=1

diyi�j (xi)

252 8 Boosting, Convex Optimization, and Information Geometry

where the λj ’s are the Lagrange multipliers. (As usual, we ignore the constraints di ≥ 0
since these will automatically be satisfied.) Computing partial derivatives and setting to
zero yields

0 = ∂L
∂di

= ln di +
N∑

j=1

λjyi�j (xi),

so

di = exp

⎛⎝−yi

N∑
j=1

λj �j (xi)

⎞⎠.

Plugging into L and simplifying gives

L = m−
m∑

i=1

exp

⎛⎝−yi

N∑
j=1

λj�j (xi)

⎞⎠.

Maximization of L in the λj ’s is the dual problem, which of course is equivalent to minimiza-
tion of the exponential loss. In general, the solutions of both the original “primal” problem
and the dual problem occur at the “saddle point” where the Lagrangian L is minimized in
the “primal variables” di and maximized in the “dual variables” λj .

Thus, it is because of convex duality that the same algorithm for program (8.19) also
minimizes exponential loss.

By a similar calculation, it can be shown that the dual of program (8.11) is also mini-
mization of exponential loss or, more precisely, maximization of

ln m− ln

⎛⎝ m∑
i=1

exp

⎛⎝−yi

N∑
j=1

λj �j (xi)

⎞⎠⎞⎠.

It is not surprising, then, that algorithm 8.2, which computes exactly the normalized equiva-
lents of the vectors in algorithm 8.3, and which also is equivalent toAdaBoost, is a procedure
for minimizing the exponential loss as well.

8.3 Unification with Logistic Regression

In section 7.5, we studied logistic regression, an approach that we saw is closely related
to the exponential-loss minimization employed by AdaBoost. We will now build on our
understanding of this close relationship, using the framework just developed. We will see
that the optimization problem solved by AdaBoost is only a slight variant of the one solved
by logistic regression in which a single minimization constraint is removed.

8.3 Unification with Logistic Regression 253

For starters, we observe that by slightly changing the distance function used in convex
programs (8.11) and (8.19), we arrive at a different convex program that is equivalent via
convex duality to logistic regression. In particular, rather than normalized or unnormalized
relative entropy, we can use a form of binary relative entropy, specifically,

REb (p ‖ q) =
m∑

i=1

[
pi ln

(
pi

qi

)
+ (1−pi) ln

(
1−pi

1− qi

)]
where p and q must be in [0, 1]m. We also change our reference vector from 1 to 1

2 1. The
problem now is to find d ∈ [0, 1]m to solve the following:

minimize: REb

(
d ‖ 1

2 1
)

subject to:
m∑

i=1

diyi�j (xi) = 0 for j = 1, . . . , N

0 ≤ di ≤ 1 for i = 1, . . . , m. (8.28)

By the same sort of calculation as in section 8.2.4, we find that the dual of this problem
is to maximize

m ln 2−
m∑

i=1

ln

⎛⎝1+ exp

⎛⎝−yi

N∑
j=1

λj�j (xi)

⎞⎠⎞⎠ (8.29)

or, equivalently, to minimize the logistic loss of equation (7.20) as studied in section 7.5.
An iterative projection algorithm like algorithms 8.2 and 8.3 might easily be derived for
program (8.28), and thus for logistic regression. In fact, the algorithm AdaBoost.L (algo-
rithm 7.4 (p. 199)) is an approximate, more analytically tractable version of the algorithm
that would be so derived; indeed, the convergence of this algorithm to the minimum of
the logistic loss can be proved using the same techniques presented in section 8.2 (see
exercise 8.6).

So we see that exponential and logistic loss can be treated in a unified convex-
programming framework. Their corresponding programs (8.19) and (8.28) differ only in
the choice of distance measure. In fact, these programs can be manipulated further to make
the resemblance even more striking. This formulation also addresses the estimation of
conditional probabilities as discussed in section 7.5.3.

For notational convenience, let us regard each �j as a function of both x and y where we
define �j (x, y)

.= y�j (x). The empirical average of �j is of course

1

m

m∑
i=1

�j (xi, yi). (8.30)

254 8 Boosting, Convex Optimization, and Information Geometry

Now suppose p(y|x) is the conditional probability that example x receives label y. Imagine
an experiment in which xi is chosen randomly according to its empirical probability (i.e.,
uniformly at random from the sample), but then a label y is selected at random according
to the true conditional probability distribution p(·|xi). The expected value of �j under this
“semi-empirical” distribution on pairs (xi, y) will be

1

m

m∑
i=1

∑
y

p(y|xi)�j (xi, y). (8.31)

Given enough data, we expect equations (8.30) and (8.31) to be roughly equal since the
two are equal in expectation. It therefore may seem natural, in computing an estimate of
p(y|x), that we require equality:

1

m

m∑
i=1

�j (xi, yi) = 1

m

m∑
i=1

∑
y

p(y|xi)�j (xi, y). (8.32)

Naturally, being a conditional probability distribution,

∑
y

p(y|x) = 1 (8.33)

for each x. However, for the purposes of estimating p, we might, in a perverse move, allow
this constraint to be dropped. In this case, the left-hand side of equation (8.32) needs to be
adjusted to balance the varying weight on different examples xi . This gives the requirement
that

1

m

m∑
i=1

�j (xi, yi)

(∑
y

p(y|xi)

)
= 1

m

m∑
i=1

∑
y

p(y|xi)�j (xi, y). (8.34)

So our goal will be to find a set of numbers p(y|x) satisfying equation (8.34); in other
words, we will now regard these as unknown variables to be solved for, rather than as true
conditional probabilities. Analogous to the maximum-entropy approach taken earlier in this
chapter, among all such sets of numbers satisfying the constraints in equation (8.34), we
will choose the one that, on average, gives conditional distributions over the labels that
are closest to uniform since, a priori, no label should be favored over any other. Moreover,
since p might not be normalized, a form of unnormalized relative entropy must be used.

Putting these ideas together yields the following program:

minimize:
m∑

i=1

REu (p(·|xi) ‖ 1)

8.4 Application to Species Distribution Modeling 255

subject to:
1

m

m∑
i=1

�j (xi, yi)

(∑
y

p(y|xi)

)
= 1

m

m∑
i=1

∑
y

p(y|xi)�j (xi, y) for j = 1, . . . , N

p(y|xi) ≥ 0 for i = 1, . . . , m, and for all y (8.35)

where

REu (p(·|xi) ‖ 1) =
∑

y

[p(y|x) ln p(y|x)+ 1−p(y|x)] .

For simplicity, in this section let us assume that the same example x never appears in
the dataset with different labels. Then it can be shown that this program is equivalent
to program (8.19). The correspondence is made by setting di = p(−yi |xi); the variables
p(yi |xi) turn out always to equal 1 in the solution, and so are irrelevant. Thus, program (8.35)
minimizes exponential loss.

Suppose now that we add to program (8.35) a normalization constraint as in equation
(8.33). The new program is:

minimize:
m∑

i=1

REu (p(·|xi) ‖ 1)

subject to:
1

m

m∑
i=1

�j (xi, yi)

(∑
y

p(y|xi)

)
= 1

m

m∑
i=1

∑
y

p(y|xi)�j (xi, y) for j = 1, . . . , N

p(y|xi) ≥ 0 for i = 1, . . . , m, and for all y∑
y

p(y|xi) = 1 for i = 1, . . . , m. (8.36)

With this new constraint, it turns out that this program becomes equivalent to program (8.28)
for logistic regression. As before, the correspondence can be seen by setting di = p(−yi |xi),
which implies p(yi |xi) = 1− di in this case.

Thus, from this perspective,AdaBoost and logistic regression solve identical optimization
problems, except that AdaBoost disregards a single normalization constraint.

As for estimation of conditional probabilities as discussed in section 7.5.3, it can be ver-
ified that for logistic regression, the values p(y|x) associated with program (8.36) are
consistent with those discussed in that section. Further, the estimates p(y|x) for pro-
gram (8.35), which omits the normalization constraint, also are consistent with those
obtained from AdaBoost in section 7.5.3.

8.4 Application to Species Distribution Modeling

As an example of how these ideas can be applied, we consider the problem of modeling
the geographic distribution of a given animal or plant species. This is a critical problem

256 8 Boosting, Convex Optimization, and Information Geometry

in conservation biology: To save a threatened species, one first needs to know where the
species prefers to live and what its requirements are for survival, that is, its ecological
“niche.” As will be seen shortly, such models have important applications, such as in the
design of conservation reserves.

The data available for this problem typically consists of a list of geographic coordinates
where the species has been observed, such as the set of locations at the top right of figure 8.6.
In addition, there is data on a number of environmental variables, such as average temper-
ature, average rainfall, elevation, etc., which have been measured or estimated across a
geographic region of interest. Examples are shown on the left side of figure 8.6. The goal is
to predict which areas within the region satisfy the requirements of the species’ ecological
niche, that is, where conditions are suitable for the survival of the species. At the bottom
right, figure 8.6 shows such a map produced using the method described below.

It is often the case that only presence data is available indicating the occurrence of the
species. Museum and herbarium collections constitute the richest source of occurrence
localities, but their collections typically have no information about the failure to observe
the species at any given location. In addition, many locations have not been surveyed at all.
This means that we have only positive examples, and no negative examples, from which to
learn. Moreover, the number of sightings (training examples) will often be very small by
machine-learning standards, say 100 or less.

Throughout this book, we have focused on the problem of discriminating positive and
negative examples. Now, because we have access only to positive examples, we need to
take a different approach. Specifically, in modeling the problem, we will assume that the
presence records of where the species has been observed are being chosen randomly from
a probability distribution representing the entire population of the species. Our goal, then,
is to estimate this distribution based on samples randomly chosen from it. In other words,
we treat the problem as one of density estimation.

More formally, let X be the large but finite space we are working over, namely, the set
of locations on some discretized map of interest. Let π be a probability distribution over
X representing the distribution of the species across the map. We assume we are given a
set of sample locations x1, . . . , xm from X , that is, the observed presence records, each of
which we assume has been chosen independently at random from π .

Finally, we are given a set of base functions (sometimes also called features in this
context), �1, . . . , �N , which play a role analogous to weak hypotheses in boosting. Each
base function �j provides real-valued information about every point on the map. That is, �j :
X → R. For instance, a base function might simply be equal to one of the environmental
variables discussed above (such as average temperature). But more generally, it might
instead be derived from one or more of these variables. For example, a base function might
be equal to the square of an environmental variable (such as elevation squared), or to
the product of two environmental variables (such as elevation times average rainfall). Or,
analogous to decision stumps, we might take thresholds of an environmental variable (for

8.4 Application to Species Distribution Modeling 257

temp. range

temperature

elevation

wet days

Figure 8.6
Left: some sample environmental variables (with darker areas representing higher values). Top right: a map of
the localities where the yellow-throated vireo has been observed. Bottom right: the predicted distribution of the
species (darker areas indicating locations most suitable for the species).

258 8 Boosting, Convex Optimization, and Information Geometry

instance, 1 if elevation is above 1000 meters, 0 otherwise). In this way, even beginning
with a fairly small number of environmental variables, the number of base functions may
quickly become quite large.

In all cases, for simplicity we assume without loss of generality that all base functions
have been scaled to have range [0, 1].

Given samples and base functions, the goal is to find a distribution P over X that is a
good estimate of π . Such an estimate can be interpreted as approximating a measure of the
suitability of every location on the map as habitat for the species.

Our approach will be to construct a convex program of a form similar to those studied
throughout this chapter, whose solution can be used as such an estimate. Let π̂ denote the
empirical distribution over X that places probability 1/m on each of the m samples xi . A
first idea is simply to use π̂ as an estimate of π . However, this is unlikely to work well since
we expect m to be much smaller than X , so that nearly all points in X will be assigned
zero probability mass. Nevertheless, even though the empirical distribution is a very poor
estimate of the true distribution, the empirical average of any base function �j is likely to
be quite a good estimate of its true expectation. That is, we expect

Eπ̂

[
�j

] ≈ Eπ

[
�j

]
where Eπ [·] denotes expectation with respect to the true distribution π , and similarly Eπ̂ [·]
denotes empirical average. In fact, using Hoeffding’s inequality (theorem 2.1) and the
union bound, we can compute a value of β (roughly O(

√
(ln N)/m)) such that, with high

probability,∣∣Eπ

[
�j

]−Eπ̂

[
�j

]∣∣ ≤ β (8.37)

for all base functions �j . It makes sense then, in constructing P , to ensure that it, too,
satisfies equation (8.37), that is, that it belongs to the feasible set

P .= {P : ∣∣EP

[
�j

]−Eπ̂

[
�j

]∣∣ ≤ β for j = 1, . . . , N
}

.

Note that these constraints are linear in the values of P since each of them can be rewritten
as the two inequalities

−β ≤
∑
x∈X

P(x)�j (x)−Eπ̂

[
�j

] ≤ β.

Moreover, P cannot be empty since it always contains π̂ as a member.
Of the many distributions in P , which one should we pick as our estimate of π? In the

absence of data or other information, it seems natural to assume that all the locations on the
map are equally likely to be suitable habitat, in other words, that the uniform distribution
U over X is most reasonable, a priori. This suggests that among all distributions in P , we
choose the one that is closest to U . If we are using relative entropy as a distance measure as

8.4 Application to Species Distribution Modeling 259

before, then we seek to minimize RE (P ‖ U), which, from equation (8.12), is equivalent
to maximizing H(P), the entropy or spread of the distribution P.

Pulling these ideas together, we are proposing to estimate π by selecting the distribution
P in P that has highest entropy or, equivalently, that is closest to uniform in relative entropy.
This results in the following optimization problem:

minimize: RE (P ‖ U)

subject to:
∣∣EP

[
�j

]−Eπ̂

[
�j

]∣∣ ≤ β for j = 1, . . . , N

P (x) ≥ 0 for x ∈ X∑
x∈X

P(x) = 1. (8.38)

This program is of nearly the same form as program (8.11) except that the linear constraints
are somewhat more complicated, involving inequalities rather than equalities. Still, most
of the techniques we have discussed generalize to this case.

At this point, we could adapt the iterative projection method of algorithm 8.2 to handle
such inequality constraints. Alternatively, using the techniques of section 8.2.4, it can be
shown that the solution of program (8.38) must be of the form

Qλ(x) = 1

Zλ

· exp

⎛⎝ N∑
j=1

λj�j (x)

⎞⎠
for some setting of the parameters λ = 〈λ1, . . . , λN 〉, where Zλ is a normalization factor. In
other words, the solution distribution must be proportional to an exponential in some linear
combination of the base functions. The convex dual of program (8.38) turns out to be the
problem of finding λ which minimizes

− 1

m

m∑
i=1

ln Qλ(xi)+β‖λ‖1, (8.39)

that is, which minimizes the negative log likelihood of the data (the term on the left), plus
a penalty or regularization term (on the right) that has the effect of limiting the size of the
weights λj on the base functions (see section 7.6).

So to solve program (8.38), we only need to find λ minimizing equation (8.39). Even
for a very large set of base functions, this can often be done efficiently using the general
techniques described in chapter 7 which adjust one parameter at a time to greedily minimize
the objective function. That is, although we do not give the details, it is possible to derive
a boosting-like algorithm that, on each of a series of rounds, greedily chooses one base
function �j whose associated weight λj is adjusted by some value α so as to (approximately)
cause the greatest drop in equation (8.39).

260 8 Boosting, Convex Optimization, and Information Geometry

This maxent approach to species distribution modeling has been used and tested on a
wide range of datasets. In one large-scale study, it was compared with 15 other methods on
some 226 plant and animal species from six world regions. The median dataset had fewer
than 60 presence records. Maxent, on average, performed better than all other methods
except for one based on boosted regression trees (see section 7.4.3) which was slightly
better.

Maxent was also used as part of a large 2008 study of reserve design in Madagascar. This
island nation off the southeastern coast of Africa is a biological “hot spot,” one of a small
number of areas which together cover just 2.3% of the Earth’s land surface, but where half
of all plant and three-quarters of all vertebrate species are concentrated.

In 2003, the government of Madagascar announced a commitment to triple protected land
areas from 2.9% of the island to 10%. By 2006, protected areas had already expanded to
6.3%, but an opportunity existed to carefully select the remaining 3.7%, while also evalua-
ting the design decisions made up to that point.

For this purpose, data was gathered on some 2315 species from six taxonomic groups.
Maxent was then applied to build a distributional model for all species with at least eight
presence records. Finally, with a model in hand for each species, a proposed reserve could
be constructed using an algorithm called “Zonation” with the purpose of identifying the
areas most suitable to the most species based on such models.

The study found that the existing protected areas, covering 6.3% of the island, actually
were rather deficient, entirely omitting 28% of the species studied, meaning that these
areas were not protecting any significant part of their habitat. It was further found that an
alternative design protecting an equivalent amount of land would have protected all of the
species.

Clearly, of course, it is too late to significantly modify land areas that have already been
set aside. Fortunately, however, the study found that it would still be possible to add on
to existing conservation areas in a way that protects all species without exceeding the
government’s target of designating 10% of the land for conservation. These actual and
proposed areas are shown on the maps in figure 8.7, where it can be seen, on close inspection,
that many areas considered of the highest priority in the study are entirely omitted from the
existing conservation areas, but can still be protected without exceeding the government’s
overall budget.

This study was able to successfully provide detailed recommendations in large part
because of the great number of species modeled, and because of the high-resolution models
that are possible with maxent.

Summary

In summary, we have provided another powerful perspective on AdaBoost, which turns
out to be a special case of a family of iterative projection algorithms. This view provides

8.4 Application to Species Distribution Modeling 261

A Unconstrained priority
conservation areas

0–2.9%
2.9–6.3%
6.3–10%

B Actual and proposed
protected areas

October 2002
December 2006
Proposed

Figure 8.7
On the left, a prioritized map of proposed areas for conservation in Madagascar, unconstrained by previous design
decisions. The map shows the top 2.9% of the land that would be chosen as reserve (equivalent in area to what was
actually protected in 2002), followed by the next 3.4% (giving an area equivalent to the 6.3% protected in 2006),
and finally the last 3.7%, giving total protected area of 10%. On the right, a map showing the actual 2.9% protected
in 2002, and the actual additional 3.4% protected through 2006, plus a final proposed expansion of protected areas
by 3.7% which would protect all species in the study. (From C. Kremen, A. Cameron, et al., “Aligning conservation
priorities across taxa in Madagascar with high-resolution planning tools,” Science, 320(5873):222–226, April 11,
2008. Reprinted with permission from AAAS.)

geometric intuitions as well as the necessary tools to prove fundamental convergence pro-
perties of the algorithm.

With respect to convergence, we have seen that there are two basic cases (assuming
exhaustive weak hypothesis selection): If the data satisfies the weak learning assumption,
then the distributions Dt computed by AdaBoost cannot converge, but the exponential
loss will converge to zero. If the data is not weakly learnable, then the distributions Dt

will converge to the unique solution of a certain convex program, and the weak edges will
converge to zero. In both cases, the exponential loss is asymptotically minimized.

262 8 Boosting, Convex Optimization, and Information Geometry

In addition, this approach provides further unification with logistic regression, showing
that convex programs associated with AdaBoost and logistic regression differ only in a
single constraint.

Finally, we saw how the ideas in this chapter could be applied to the general problem of
density estimation, and specifically to modeling the habitats of plant and animal species.

Bibliographic Notes

An excellent treatment of iterative projection algorithms, as in section 8.1, is given in the text
by Censor and Zenios [44]. Early references for the case of orthogonal (Euclidean) projec-
tions, as in section 8.1.1, include von Neumann [176], Halperin [116], and Gubin, Polyak,
and Raik [113]. Bregman [32] extended this work to more general projections based on
Bregman distances, yielding Bregman’s algorithm, of which AdaBoost was shown in sec-
tion 8.1.3 to be a special case. See the references in Censor and Zenios for a more complete
history.

Projections based on relative entropy were studied early on by Chentsov [43, 48], and
Csiszár [59]. These works included versions of the Pythagorean theorem, given here as
lemma 8.2, which forms the foundation of the convergence proof of section 8.2. See also
the tutorial by Csiszár and Shields [60].

A classic introduction to information theory is given by Cover and Thomas [57]. The
notion of entropy in the context of information theory is due to Shannon [212]. Relative
entropy was defined by Kullback and Leibler [144]. The principle of maximum entropy for
density estimation was proposed by Jaynes [127], and later generalized by Kullback [145].
See, for instance, Kapur and Kesavan [130] for further background.

Kivinen and Warmuth [135] were the first to point out that AdaBoost computes each suc-
cessive distribution as an entropy projection onto a hyperplane, as shown in section 8.1.3.
Lafferty [147] also, at the same time, made the connection between boosting and infor-
mation geometry, although his framework did not exactly capture the exponential loss of
AdaBoost. The unified treatment given in section 8.1.5, as well as the proof of convergence
in section 8.2, are taken principally from Collins, Schapire, and Singer [54]. However, their
approach and the one taken here are based directly on the framework and methods of Della
Pietra, Della Pietra, and Lafferty [63, 64, 148]. Since AdaBoost is a special case of Breg-
man’s algorithm, a proof of its convergence is also implicit in the earlier work mentioned
above on iterative projection algorithms. A different proof is given by Zhang and Yu [236].

Figure 8.3 is adapted from Rudin, Daubechies, and Schapire [194].
For general background on convex analysis and convex optimization, see, for instance,

Rockafellar [191], or Boyd and Vandenberghe [31].
In section 8.3, the formulation of logistic regression in program (8.28) and the result-

ing unification with AdaBoost are from Collins, Schapire, and Singer [54]. The unified

Exercises 263

view of AdaBoost as logistic regression minus a normalization constraint, as expressed in
programs (8.19) and (8.28), is due to Lebanon and Lafferty [149].

The approach to species distribution modeling given in section 8.4 was proposed by
Dudík, Phillips, and Schapire [75, 76, 182]. Figure 8.6 is adapted from Dudík [74]. The
large-scale comparison study mentioned in section 8.4 was reported by Elith et al. [82].
The application to reserve design in Madagascar is due to Kremen, Cameron, et al. [142];
figure 8.7 is reprinted from that work (with permission), and was converted to black-and-
white with the assistance of Cynthia Rudin.

Some of the exercises in this chapter are based on material from [44, 54, 63, 64, 148, 194].

Exercises

8.1 Let L : RN → R be any function that is convex, nonnegative, continuous, and whose
gradient ∇L is also continuous. Furthermore, assume that for all λ0 ∈ R, the sub-level set
{λ : L(λ) ≤ L(λ0)} is compact. Suppose coordinate descent as in algorithm 7.2 (p. 181) is
used to minimize L. Let λt denote the value of λ at the beginning of round t . Let Lt

.= L(λt).

a. Create a function A(λ) for which A(λt) = Lt+1−Lt .

b. Prove that if A(λ) = 0, then ∇L(λ) = 0, and therefore λ is a global minimum of the
function L.

c. Prove that Lt → minλ∈RN L(λ) as t →∞.

d. Why is this convergence result not generally applicable to exponential loss as defined
in equation (7.7)? In other words, which of the properties of L assumed in this exercise
might not hold when L is exponential loss?

8.2 Suppose that the training set consists of m = 3 positively labeled examples
(x1,+1), (x2,+1), (x3,+1), and that H consists of three base classifiers �1, �2, �3 where

�j (xi) =
{ −1 if i = j

+1 else.

Finally, suppose AdaBoost is used with an exhaustive weak learner which chooses, for any
given distribution D, the weak hypothesis �j ∈ H with minimum weighted error and, in
case of a tie, chooses that �j (from among those with minimum weighted error) whose
index j is smallest.

a. Give an explicit expression for the distribution Dt computed by AdaBoost on round t .
Express your answer in terms of the Fibonacci sequence: f0 = 0, f1 = 1, and fn =
fn−1+ fn−2 for n ≥ 2. (You might find it easiest to give different answers based on the
remainder of t when divided by 3.)

b. Show that the distributions Dt converge to a 3-cycle. That is, find distributions
D̃1, D̃2, D̃3 such that for r = 1, 2, 3, D3k+r → D̃r as k (an integer) grows to ∞. (You

264 8 Boosting, Convex Optimization, and Information Geometry

can use the fact that fn/fn−1 → φ as n →∞ where φ
.= (1+√5)/2 is the “golden

ratio.”)

8.3 Continuing the examples in section 8.2.1, suppose the training set consists of m = 2
positively labeled examples (x1,+1) and (x2,+1), and that H = {�1, �2} where �1(x1) =
+1, �1(x2) = −1, and �2(x1) = �2(x2) = +1. For this case, describe and sketch the sets
P and Q. Also determine Q, P ∩Q, and P ∩Q.

8.4 Assume the same example never appears in the dataset with different labels.

a. Show that if p is a solution of program (8.35), then p(yi |xi) = 1 for all i.

b. Verify that programs (8.19) and (8.35) are equivalent in the sense that one can be rewritten
exactly in the form of the other for an appropriate correspondence of variables.

c. Verify that programs (8.28) and (8.36) are equivalent.

d. Verify that the dual of program (8.28) is the problem of maximizing equation (8.29).

8.5 Let S be a nonempty, convex subset of Rm, and let S denote its closure. Let G : S → R

be a strictly convex function that is differentiable at all points in S. The Bregman distance
associated with G is defined to be

BG (p ‖ q)
.= G(p)−G(q)−∇G(q) · (p−q).

It is the distance, at p, between G and a supporting hyperplane at q (see figure 8.8). It
is always nonnegative. This definition applies when p ∈ S and q ∈ S. For each p ∈ S,

G

pq

BG (p || q)

Figure 8.8
An illustration of Bregman distance in m = 1 dimensions. In this case, BG (p ‖ q) is the vertical distance at p

between G and the line which is tangent to G at q.

Exercises 265

we assume that BG (p ‖ ·) can be extended continuously to all q ∈ S (with extended
range [0,+∞]). We also assume that BG (p ‖ q) = 0 if and only if p = q. Both of these
assumptions are true in all of the cases that will be of interest to us.

a. Find the Bregman distance for the following cases:

i. S = Rm and G(p) = ‖p‖2
2.

ii. S = Rm++ and G(p) =∑m
i=1pi ln pi .

iii. S = {p ∈ (0, 1]m :∑m
i=1pi = 1

}
and G(p) =∑m

i=1pi ln pi .

Let M be an m×N real matrix, and let p0 ∈ S and q0 ∈ S be fixed. Let

P .= {p ∈ S : p M = p 0 M
}

Q .= {q ∈ S : ∇G(q) = ∇G(q0)−Mλ for some λ ∈ RN
}
.

b. Show that if p1, p2 ∈ S and q1, q2 ∈ S, then

BG (p1 ‖ q1)−BG (p1 ‖ q2)−BG (p2 ‖ q1)+BG (p2 ‖ q2)

= (∇G(q1)−∇G(q2)) · (p2−p1).

c. Show that if p1, p2 ∈ P and q1, q2 ∈ Q, then

BG (p1 ‖ q1)−BG (p1 ‖ q2)−BG (p2 ‖ q1)+BG (p2 ‖ q2) = 0.

(You only need to show this when q1, q2 ∈ Q. The case that q1 or q2 is in Q then follows
by continuity assumptions.)

d. Suppose d ∈ P ∩Q. Show that for all p ∈ P and for all q ∈ Q,

BG (p ‖ q) = BG (p ‖ d)+BG (d ‖ q) .

Therefore,

d = arg min
p∈P

BG (p ‖ q0)

= arg min
q∈Q

RE (p0 ‖ q)

and, furthermore, d is the unique minimizer in each case, by exactly the same proof as
in theorem 8.3.

8.6 Continuing exercise 8.5, given our usual training set and hypothesis space, suppose we
define p0 = 0, q0 = 1

2 1, Mij = yi�j (xi), S = (0, 1)m, and

G(d) =
m∑

i=1

(di ln di + (1− di) ln(1− di)) .

266 8 Boosting, Convex Optimization, and Information Geometry

a. Show that

Q =
{

q ∈ (0, 1)m : qi = 1

1+ eyiFλ(xi)
for i = 1, . . . , m, for some λ ∈ RN

}
,

where Fλ is as in equation (7.6). Also show that BG (p0 ‖ q) = −∑m
i=1 ln(1− qi).

b. Referring to algorithm 7.4 (p. 199), let dt denote the unnormalized weights computed by
AdaBoost.L on round t , that is, dt,i = 1/(1+ eyiFt−1(xi)). Assume an exhaustive choice
of αt and ht on every round. Show how to modify theorem 8.4 to prove that dt → d∗,
where d∗ is the only point in P ∩Q. [Hint: Use the same definition of A(d) as in
equation (8.26).]

c. Conclude that AdaBoost.L minimizes the logistic loss, that is,

L(Ft) → inf
λ∈RN

L(Fλ)

where L is as given in equation (7.21).

8.7 This exercise proves convergence when weak hypotheses are selected in a cyclic, rather
than a greedy, fashion. We consider algorithm 8.3 (and adopt its notation), but drop our
earlier assumption of greedy constraint selection. For parts (a) and (b), you should not make
any assumptions at all about how the ht ’s are chosen.

a. Show how lemma 8.2 implies that

RE (0 ‖ dt) = RE (0 ‖ dt+1)+RE (dt+1 ‖ dt) .

b. Suppose dt1 , dt2 , . . . is a subsequence that converges to d̃. Show that the subsequence
dt1+1, dt2+1, . . . also converges to d̃.

c. Suppose now that weak hypotheses are chosen in cyclic order so that ht = �j on round
t where t ≡ j (mod N). Show that dt → d∗, where d∗ is as in theorem 8.4.

8.8 Let P be as in equation (8.20).

a. For any constant c > 0, show that the problem of minimizing RE (p ‖ c1) over p ∈ P
is equivalent to minimizing RE (p ‖ 1) over p ∈ P . In other words, show how to
transform a solution of one into a solution of the other.

b. Assume P includes at least one point p that is different from 0. Under this assump-
tion, show that the problem of minimizing RE (p ‖ 1) over all p ∈ P is equivalent to
minimizing RE (P ‖ U) over distributions P ∈ P (where U is uniform distribution).

8.9 Suppose the feasible set P is now defined by inequality constraints:

P .=
{

d ∈ Rm
+ :

m∑
i=1

diMij ≤ 0 for j = 1, . . . , N

}

Exercises 267

where M is an m×N matrix with entries in {−1,+1}. Our goal is to minimize RE (d ‖ 1)

over d ∈ P .
For any set of indices R ⊆ I .= {1, . . . , N}, let

PR
.=
{

d ∈ P :
m∑

i=1

diMij = 0 for j ∈ R

}
.

We also define Q to be all vectors d of the form given in equation (8.21), but now with
the requirement that λ ∈ RN+ . Finally, let QR ⊆ Q be all such vectors with the additional
condition that λj = 0 for j �∈ R.

a. Show that if p ∈ P and q ∈ Q, then
∑m

i=1pi ln qi ≥ 0. If, in addition, p ∈ PR and
q ∈ QR for some R ⊆ I, show that

∑m
i=1pi ln qi = 0.

b. Let R, R′ ⊆ I, and suppose d ∈ PR ∩QR , p ∈ PR′ , and q ∈ QR′ . If, in addition, it is
the case that either p ∈ PR or q ∈ QR , show that

RE (p ‖ q) ≥ RE (p ‖ d)+RE (d ‖ q) .

c. Suppose d ∈ PR ∩QR for some R ⊆ I. Show that

d = arg min
p∈P

RE (p ‖ 1)

= arg min
q∈Q

RE (0 ‖ q) ,

and that d is the unique minimizer of each problem.

8.10 Continuing exercise 8.9, suppose we use greedy coordinate descent applied to
exponential loss while maintaining the condition that λj ≥ 0 for all j at all times. See
algorithm 8.4.

a. For each possible choice of jt ∈ I, give a simple analytic formula for the value of
αt ≥ −λt,jt that minimizes the expression in the figure.

b. Let Lt
.=∑m

i=1dt,i , and let

A(d)
.= min

j∈I
min
α≥0

m∑
i=1

die
−αMij −

m∑
i=1

di.

(You can use the continuity of A in what follows without proof.) Show that for all
t , Lt+1−Lt ≤ A(dt) ≤ 0. Also show that if A(d) = 0, then d ∈ PR(d) where R(d)

.={
j ∈ I :∑m

i=1diMij = 0
}
. [Hint: For any j , consider the derivative of the objective∑m

i=1die
−αMij with respect to α, evaluated at α = 0.]

268 8 Boosting, Convex Optimization, and Information Geometry

Algorithm 8.4
A greedy coordinate-descent algorithm based on minimizing exponential loss subject to the coordinates λj never
becoming negative

Given: matrix M ∈ {−1,+1}m×N.
Initialize: λ1 = 0.
For t = 1, 2, . . .

• dt,i = exp

⎛⎝− N∑
j=1

Mijλt,j

⎞⎠ for i = 1, . . . , m.

• Choose jt ∈ {1, . . . , N}, αt ∈ R to minimize

m∑
i=1

dt,ie
−αt Mij

subject to αt ≥ −λt,jt .

• Update λt+1,j =
{

λt,j +αt if j = jt

λt,j else.

c. Let dt1 , dt2 , . . . be a subsequence that converges to some point d̃. Show that λtn,j → 0
as n →∞ for all j �∈ R(d̃). [Hint: If λtn,j �→ 0, use Taylor’s theorem to show that
Lt+1−Lt �→ 0, a contradiction.]

d. Under the conditions above, show that d̃ ∈ QR(d̃).

e. Conclude that dt → d∗, where d∗ is the unique solution of both optimization problems
given in exercise 8.9(c).

III ALGORITHMIC EXTENSIONS

9 Using Confidence-Rated Weak Predictions

Having studied AdaBoost and boosting theoretically from a variety of perspectives, we turn
next to techniques for extending AdaBoost beyond vanilla binary classification using binary
base classifiers. Our emphasis now is on algorithm design, beginning in this chapter with
techniques involving real-valued base hypotheses.

We have so far taken for granted that the base hypotheses used by AdaBoost always
produce predictions that are themselves classifications, either−1 or+1. The aim of the base
learner in such a setting is to find a base classifier with low weighted classification error, that
is, a small number of mistakes on the weighted training set. This setup is simple and natural,
and admits the use of off-the-shelf classification learning algorithms as base learners.

In some situations, however, the rigid use of such “hard” predictions can lead to difficul-
ties and significant inefficiencies. For instance, consider the data in figure 9.1, and a simple
base classifier whose predictions depend only on which side of the line L a given point falls.
Suppose for simplicity that these training examples are equally weighted, as will be the case
on the first round of boosting. Here, it would certainly seem natural to classify everything
above line L as positive, and this fact should be enough for us to construct a prediction
rule that is substantially better than random guessing. But how should this classifier predict
on the points below L? In the setup as we have described it up until now, there are only
two options: either predict all points below L are positive, or predict they are all negative.
Because of the nearly perfect predictions on points above L, either option will yield a clas-
sifier that, overall, is significantly better than random, which should be “good enough” for
boosting. On the other hand, both options will lead to a very substantial number of mistakes
on the points below L. This is a serious problem because in the process of boosting, all of
these bad predictions will eventually need to be corrected or “cleaned up” in later rounds
of boosting, a process that can add tremendously to the training time.

The problem here is that a “hard” classifier cannot express varying degrees of confidence.
Intuitively, the data suggests that we can be highly confident in predicting that points above L

are positive. On the other hand, the even split between positives and negatives on examples
below L suggests that the best prediction on these points is in fact no prediction at all, but an

272 9 Using Confidence-Rated Weak Predictions

L

Figure 9.1
A sample dataset.

abstention from prediction expressing a sentiment of absolute uncertainty about the correct
label.

Such situations arise naturally with real data as well. For instance, when classifying email
as spam or ham, one can easily find somewhat accurate patterns, such as “If Viagra occurs
in the message, then it is spam.” However, it is unclear how such a rule should predict when
Viagra does not occur in the message and, indeed, whatever prediction is made here should
probably have low confidence.

In this chapter, we describe an extension of the boosting framework in which each weak
hypothesis generates not only predicted classifications but also self-rated confidence scores
that estimate the reliability of each of its predictions. Although informally a natural and
simple idea, there are two essential questions that arise in its implementation. First, how do
we modify AdaBoost—which was designed to handle only simple {−1,+1} predictions—
to instead use confidence-rated predictions in the most effective manner? And second,
how should we design weak learners whose predictions are confidence-rated in the manner
described above? In this chapter, we give answers to both of these questions. The result is a
powerful set of boosting methods for handling more expressive weak hypotheses, as well as
an advanced methodology for designing weak learners appropriate for use with boosting
algorithms.

As specific examples, we study techniques for using weak hypotheses that abstain from
making predictions on much of the space, as well as for weak hypotheses which partition
the instance space into a relatively small number of equivalent prediction regions, such as
decision trees and decision stumps. As an application, we demonstrate how this framework
can be used as a basis for effectively learning sets of intuitively understandable rules, such
as the one given above for detecting spam. We also apply our methodology to derive an

9.1 The Framework 273

algorithm for learning a variant of standard decision trees; the classifiers produced by this
algorithm are often both accurate and compact.

In short, this chapter is about techniques for making boosting better. In some cases, the
algorithmic improvements we present lead to substantial speedups in training time, while
in other cases, we see improvement in accuracy or in the comprehensibility of the learned
prediction rules.

9.1 The Framework

The foundation for our framework involving confidence-rated predictions was laid down
already in preceding chapters. Indeed, we saw in chapter 5 how the confidence of the
predictions made by the combined classifier could be measured using the real-valued margin.
In the same fashion, we can bundle the predictions and confidences of a base classifier into
a single real number. In other words, a base hypothesis can now be formulated as a real-
valued function h : X → R, so that its range is now all of R rather than just {−1,+1}. We
interpret the sign of the real number h(x) as the predicted label (−1 or +1) to be assigned
to instance x, while its magnitude |h(x)| is interpreted as the confidence in this prediction.
Thus, the farther h(x) is from zero, the higher the confidence in the prediction. Although
the range of h may generally include all real numbers, we will sometimes restrict this range.

How does this change affect AdaBoost as depicted in algorithm 1.1 (p. 5)? In fact, the
required modifications are quite minimal. There is no need to modify the exponential rule
for updating Dt :

Dt+1(i) = Dt(i)e
−αt yiht (xi)

Zt

.

Nor do we need to modify how the combined classifier is computed:

H(x) = sign

(
T∑

t=1

αtht (x)

)
. (9.1)

These are both already consistent with how we interpret real-valued weak hypotheses: Pre-
dictions with high confidence, where ht (x) is large in absolute value, will cause a dramatic
change in the distribution Dt , and will have a major influence on the outcome of the final
classifier. Conversely, predictions with low confidence, with ht (x) near zero, will have a
correspondingly low effect.

Indeed, the only necessary modification is in the choice of αt , which earlier depended on
the weighted training error

εt
.= Pri∼Dt [ht (xi) �= yi] ,

274 9 Using Confidence-Rated Weak Predictions

Algorithm 9.1
A generalized version of AdaBoost with confidence-rated predictions

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize the normalization factor

Zt
.=

m∑
i=1

Dt(i) exp(−αtyiht (xi)).

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i) exp(−αtyiht (xi))

Zt

.

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αtht (x)

)
.

a quantity that no longer makes sense when the range of the ht ’s extends beyond {−1,+1}.
For the moment, we leave the choice of αt unspecified, but will return to this issue shortly.
The resulting generalized version of AdaBoost is given as algorithm 9.1.

Although αt is not specified, we can give a bound on the training error of this version
of AdaBoost. In fact, the entire first part of our proof of theorem 3.1 remains valid even
when αt is unspecified and ht is real-valued. Only the final part of that proof where Zt was
computed in terms of εt is no longer valid. Thus, by the first part of that proof, up through
equation (3.5), we have:

Theorem 9.1 Given the notation of algorithm 9.1, the training error of the combined
classifier H is at most

T∏
t=1

Zt .

9.2 General Methods for Algorithm Design 275

Theorem 9.1 suggests that in order to minimize overall training error, a reasonable
approach might be to greedily minimize the bound given in the theorem by minimizing
Zt on each round of boosting. In other words, the theorem suggests that the boosting algo-
rithm and weak learning algorithm should work in concert to choose αt and ht on each
round so as to minimalize the normalization factor

Zt
.=

m∑
i=1

Dt(i) exp(−αtyiht (xi)), (9.2)

as shown in the pseudocode. From the boosting algorithm’s perspective, this provides a
general principle for choosing αt . From the weak learner’s point of view, we obtain a general
criterion for constructing confidence-rated weak hypotheses that replaces the previous goal
of minimizing the weighted training error. We will soon see examples of the consequences
of both of these points.

Although we focus on minimizing Zt through the choice of αt and ht , it should be noted
that this approach is entirely equivalent to the greedy method of minimizing exponential loss
(equation (7.3)) via coordinate descent as discussed in sections 7.1 and 7.2. This is because
Zt measures exactly the ratio between the new and old values of the exponential loss so that∏

t Zt is its final value. Thus, greedy minimization of the exponential loss on each round is
equivalent to minimization of Zt .

So the approach presented in this chapter is founded on minimization of training error or,
alternatively, on minimization of exponential loss on the training set. We do not take up the
important question of the impact of such methods on generalization error, although some
of the techniques presented in previous chapters can surely be adapted (see exercise 9.2).

9.2 General Methods for Algorithm Design

Next, we develop some general techniques for working in the framework outlined above,
especially for choosing αt , and for designing weak learning algorithms, with particular con-
sideration of efficiency issues. Specific applications of these general methods are described
later in sections 9.3 and 9.4.

9.2.1 Choosing αt in General

As just discussed, given ht , the boosting algorithm should seek to choose αt to minimize
Zt . We begin by considering this problem in general.

To simplify notation, when clear from context, we take t to be fixed and omit it as a
subscript so that Z = Zt , D = Dt , h = ht , α = αt , etc. Also, let zi

.= yiht (xi). In the
following discussion, we assume without loss of generality that D(i) �= 0 for all i. Our
goal is to find α which minimizes Z as a function of α:

276 9 Using Confidence-Rated Weak Predictions

Z(α) = Z =
m∑

i=1

Dt(i)e
−αzi .

In general, this quantity can be numerically minimized. The first derivative of Z is

Z′(α) = dZ

dα
= −

m∑
i=1

Dt(i)zie
−αzi

= −Z

m∑
i=1

Dt+1(i)zi

by definition of Dt+1. Thus, if Dt+1 is formed using the value of αt which minimizes Z (so
that Z′(α) = 0), then we will have that

m∑
i=1

Dt+1(i)zi = Ei∼Dt+1 [yiht (xi)] = 0.

In words, this means that with respect to distribution Dt+1, the weak hypothesis ht will be
exactly uncorrelated with the labels yi .

Moreover,

Z′′(α) = d2Z

dα2
=

m∑
i=1

Dt(i)z
2
i e
−αzi

is strictly positive for all α ∈ R (ignoring the trivial case that zi = 0 for all i), meaning
that Z(α) is strictly convex in α. Therefore, Z′(α) can have at most one zero. In addition,
if there exists i such that zi < 0, then Z′(α) →∞ as α →∞. Similarly, Z′(α) →−∞
as α →−∞ if zi > 0 for some i. This means that Z′(α) has at least one root, except in
the degenerate case that all nonzero zi’s are of the same sign. Furthermore, because Z′(α)

is strictly increasing, we can numerically find the unique minimum of Z(α) by a simple
binary search or by more sophisticated numerical methods.

In summary, we have argued the following:

Theorem 9.2 Assume the set {yiht (xi) : i = 1, . . . , m} includes both positive and negative
values. Then there exists a unique choice of αt which minimizes Zt . Furthermore, for this
choice of αt , we have that

Ei∼Dt+1 [yiht (xi)] = 0 . (9.3)

Note that, in the language of chapter 8, the condition in equation (9.3), which is essentially
the same as equation (8.9), is equivalent to Dt+1 belonging to the hyperplane associated

9.2 General Methods for Algorithm Design 277

with the selected weak hypothesis ht . It can also be shown that Dt+1 is in fact the projection
onto that hyperplane, just as in section 8.1.3.

9.2.2 Binary Predictions

In the very special case of binary predictions in which all predictions h(xi) are in {−1,+1},
we let ε be the usual weighted error:

ε
.=

∑
i:yi �=h(xi)

D(i).

Then we can rewrite Z as

Z = εeα + (1− ε)e−α,

which is minimized when

α = 1

2
ln

(
1− ε

ε

)
,

giving

Z = 2
√

ε(1− ε). (9.4)

Thus, we immediately recover the original version of AdaBoost for {−1,+1}-valued base
classifiers, as well as the analysis of its training error given in section 3.1 via theorem 9.1.
Moreover, as discussed in section 7.1, the expression for Z in equation (9.4) is minimized
when ε is as far from 1

2 as possible. If −h can be chosen whenever h can be, then we
can assume without loss of generality that ε < 1

2 so that minimizing Z in equation (9.4) is
equivalent to minimizing the weighted training error ε. Thus, in this case, we also recover
the usual criterion for selecting binary weak hypotheses.

9.2.3 Predictions with Bounded Range

When the predictions of the weak hypotheses lie in some bounded range, say [−1,+1], we
cannot in general give analytic expressions for the minimizing choice of α and the resulting
value of Z. Nevertheless, we can give useful analytic approximations of these. Since the
predictions h(xi) are in [−1,+1], the zi’s are as well, where, as before, zi

.= yih(xi). Thus,
we can use the convexity of ex to upper bound Z as follows:

Z =
m∑

i=1

D(i)e−αzi (9.5)

=
m∑

i=1

D(i) exp

(
−α

(
1+ zi

2

)
+α

(
1− zi

2

))
(9.6)

278 9 Using Confidence-Rated Weak Predictions

≤
m∑

i=1

D(i)

[(
1+ zi

2

)
e−α +

(
1− zi

2

)
eα

]

= eα + e−α

2
− eα − e−α

2
r. (9.7)

Here,

r = rt
.=

m∑
i=1

Dt(i)yiht (xi)

= Ei∼Dt [yiht (xi)]

is a measure of the correlation between the yi’s and the predictions ht (xi) with respect to
the distribution Dt . The upper bound given in equation (9.7) is minimized when we set

α = 1

2
ln

(
1+ r

1− r

)
, (9.8)

which, plugged into equation (9.7), gives

Z ≤
√

1− r2. (9.9)

Thus, in this case, αt can be chosen analytically as in equation (9.8), and, to minimize
equation (9.9), weak hypotheses can be chosen so as to maximize rt (or |rt |). Theorem 9.1
and equation (9.9) immediately give a bound of

T∏
t=1

√
1− r2

t

on the training error of the combined classifier. Of course this approach is approximate, and
better results might be possible with more exact calculations.

9.2.4 Weak Hypotheses That Abstain

We next consider a natural special case in which the range of each weak hypothesis ht is
restricted to {−1, 0,+1}. In other words, a weak hypothesis can make a definitive prediction
that the label is −1 or +1, or it can “abstain” by predicting 0, effectively saying “I don’t
know.” No other levels of confidence are allowed.

For fixed t , let U0, U−1 and U+1 be defined by

Ub
.=
∑

i:zi=b

D(i) = Pri∼D[zi = b]

9.2 General Methods for Algorithm Design 279

for b ∈ {−1, 0,+1}. Also, for readability of notation, we often abbreviate subscripts +1
and −1 by the symbols + and − so that U+1 is written U+, and U−1 is written U−. We can
calculate Z as

Z =
m∑

i=1

D(i)e−αzi

=
∑

b∈{−1,0,+1}

∑
i:zi=b

D(i)e−αb

= U0+U−eα +U+e−α.

Then Z is minimized when

α = 1

2
ln

(
U+
U−

)
. (9.10)

For this setting of α, we have

Z = U0+ 2
√

U−U+

= 1−
(√

U+ −
√

U−
)2

(9.11)

where we have used the fact that U0+U+ +U− = 1. If U0 = 0 (so that h effectively has
range {−1,+1}), then the choices of α and resulting values of Z are identical to those
derived in section 9.2.2.

Using abstaining weak hypotheses can sometimes admit a significantly faster imple-
mentation, both of the weak learner and of the boosting algorithm. This is especially true
when using weak hypotheses that are sparse in the sense that they are nonzero on only
a relatively small fraction of the training examples. This is because the main operations
described above can often be implemented in a way that involves only examples for which
a given hypothesis is nonzero. For instance, computing U+ and U− clearly involves only
such examples, meaning that this will be the case as well for Z as in equation (9.11) and α

as in equation (9.10).
Moreover, updating the distribution Dt can also be speeded up by working instead with

a set of unnormalized weights dt that are proportional to Dt . In particular, we initialize
d1(i) = 1 for i = 1, . . . , m, and then use an unnormalized version of AdaBoost’s update
rule, namely,

dt+1(i) = dt (i)e
−αt yiht (xi). (9.12)

It can immediately be seen that dt (i) will always be off by a fixed multiplicative constant
from Dt(i). This constant does not affect the computation of α-values as in equation (9.10)
since the constant simply cancels with itself. It also does not affect the choice of the weak

280 9 Using Confidence-Rated Weak Predictions

hypothesis with the smallest Z-value, or equivalently, from equation (9.11), the largest
value of∣∣∣√U+ −

√
U−
∣∣∣

since a computation of this quantity using the unnormalized weights dt will be off by the
same multiplicative constant for every weak hypothesis. Thus, each weak hypothesis can
still be evaluated against our criterion for choosing the best in time proportional to the
number of examples for which it is nonzero. The key advantage of this technique is that
according to the update rule in equation (9.12), only the weights of examples for which
the selected weak hypothesis ht is nonzero need be updated since the weights of all other
examples, where ht is equal to zero, are unchanged.1

These ideas are brought together explicitly in algorithm 9.2. For simplicity, we have here
assumed a given space H of N weak hypotheses �1, . . . , �N that is large, but still small
enough to search over. As a preprocessing step, this implementation begins by computing,
for each weak hypothesis �j , the lists A

j
+ and A

j
− of all examples (xi, yi) on which yi�j (xi)

is +1 or −1, respectively. The algorithm also maintains unnormalized weights d(i) as
above, where we have dropped the t subscript, emphasizing the fact that only some values
change on each iteration. On every round t , for every �j , the values U

j
− and U

j
+ are computed

corresponding to U− and U+ above, though they are off by a multiplicative constant since
unnormalized weights d(i) have been used. Next, Gj , our measure of goodness for each
�j , is computed and the best jt is selected along with αt . Finally, the weights d(i) for
which �jt (xi) is nonzero are updated. Note that all operations involve only the examples
on which the weak hypotheses are nonzero, a substantial savings when these are sparse.

This idea can be carried even further. Rather than recomputing on every round the entire
sum defining U

j

b , only some of whose terms may have changed, we can instead update the
variables U

j

b just when individual terms change. In other words, whenever some particular
d(i) is updated, we can also update all those variables U

j

b whose defining sum includes d(i)

as a term; this can be done simply by adding the new value of d(i) and subtracting its old
value. To do this efficiently only requires precomputing, for each training example (xi, yi),
additional “reverse index” lists Bi+ and Bi− of all weak hypotheses �j for which yi�j (xi) is
+1 or−1, respectively, thus making it easy to find all sums affected by an update to d(i). The
revised algorithm is shown as algorithm 9.3 with all the required bookkeeping made explicit.
Note that the G variables can also be updated only when necessary, and the best chosen
efficiently, for instance, by using a priority queue. A simple induction argument shows that
the values of U

j

b and Gj are the same at the beginning of each round as in algorithm 9.2.
This version of the algorithm can be especially fast when the weak hypotheses are sparse

1. On an actual computer, the unnormalized weights dt may become so small or so large as to cause numerical
difficulties. This can be avoided by occasionally renormalizing all of the weights.

9.2 General Methods for Algorithm Design 281

Algorithm 9.2
An efficient version of confidence-rated AdaBoost with abstaining weak hypotheses

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
weak hypotheses �1, . . . , �N with range {−1, 0,+1}.

Initialize:

• A
j

b = {1 ≤ i ≤ m : yi�j (xi) = b} for j = 1, . . . , N and for b ∈ {−1,+1}
• d(i) ← 1 for i = 1, . . . , m

For t = 1, . . . , T :

• For j = 1, . . . , N :

◦ U
j

b ←
∑

i∈A
j
b

d(i) for b ∈ {−1,+1}.

◦ Gj ←
∣∣∣∣√U

j
+ −

√
U

j
−

∣∣∣∣.
• jt = arg max

1≤j≤N
Gj .

• αt = 1

2
ln

(
U

jt+
U

jt−

)
.

• for b ∈ {−1,+1}, for i ∈ A
jt

b : d(i) ← d(i)e−αt b.

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αt�jt (x)

)
.

in the additional “reverse” sense that only a few are nonzero on a given example xi so that
the sets Bi− and Bi+ are relatively small.

In section 11.5.1, we give an example of an application in which this technique results
in an improvement in computational efficiency by more than three orders of magnitude.

9.2.5 Folding αt into ht

As discussed in section 9.1 in our framework, the weak learner should attempt to find a
weak hypothesis h that minimizes equation (9.2). Before continuing, we make the small
observation that when using confidence-rated weak hypotheses, this expression can be
simplified by folding αt into ht , in other words, by assuming without loss of generality
that the weak learner can freely scale any weak hypothesis h by any constant factor α ∈ R.
Then (dropping t subscripts) the weak learner’s goal becomes that of minimizing

282 9 Using Confidence-Rated Weak Predictions

Algorithm 9.3
An even more efficient version of algorithm 9.2

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
weak hypotheses �1, . . . , �N with range {−1, 0,+1}.

For j = 1, . . . , N :

• A
j

b = {1 ≤ i ≤ m : yi�j (xi) = b} for b ∈ {−1,+1}.
• U

j

b ←
∑

i∈A
j
b

d(i) for b ∈ {−1,+1}.

• Gj ←
∣∣∣∣√U

j
+ −

√
U

j
−

∣∣∣∣.
For i = 1, . . . , m:

• d(i) ← 1.

• Bi
b = {1 ≤ j ≤ N : yi�j (xi) = b} for b ∈ {−1,+1}.

For t = 1, . . . , T :

• jt = arg max
1≤j≤N

Gj .

• αt = 1

2
ln

(
U

jt+
U

jt−

)
.

• For b ∈ {−1,+1}, for i ∈ A
jt

b :

◦ � ← d(i) (e−αt b− 1).

◦ d(i) ← d(i)e−αt b.

◦ U
j

b ← U
j

b +� for b ∈ {−1,+1} and for j ∈ Bi
b.

• Recompute Gj for all j for which U
j
+ or U

j
− has changed.

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αt�jt (x)

)
.

9.2 General Methods for Algorithm Design 283

Z =
m∑

i=1

D(i) exp(−yih(xi)). (9.13)

The technique presented in section 9.2.6 makes use of this simplified criterion. In addition,
for some algorithms, it may be possible to make appropriate modifications to handle such
a loss function directly. For instance, gradient-based algorithms, such as those used for
training neural networks, can easily be modified to minimize equation (9.13) rather than
the more traditional mean squared error.

9.2.6 Domain-Partitioning Weak Hypotheses

We focus next on weak hypotheses that make their predictions based on a partitioning of the
domain X . To be more specific, each such weak hypothesis h is associated with a partition
of X into disjoint blocks X1, . . . , XJ which cover all of X and for which h(x) = h(x ′)
for all x, x ′ ∈ Xj . In other words, h’s prediction depends only on which block Xj a given
instance falls into. A prime example of such a hypothesis is a decision tree (or stump) whose
leaves define a partition of the domain.

Suppose that we have already found a partition X1, . . . , XJ of the space. What predictions
should be made for each block of the partition? In other words, how do we find a function
h : X → R which respects the given partition, and which minimizes equation (9.13) for
the given distribution D = Dt?

For all x within each block Xj , h(x) will be equal to some fixed value cj , so our goal is
simply to find appropriate choices for cj . For each j and for b ∈ {−1,+1}, let

W
j

b

.=
∑

i:xi∈Xj∧yi=b

D(i) = Pri∼D

[
xi ∈ Xj ∧ yi = b

]
be the weighted fraction of examples which fall in block j and which are labeled b. Then
equation (9.13) can be rewritten as

Z =
J∑

j=1

∑
i:xi∈Xj

D(i) exp(−yicj)

=
J∑

j=1

(
W

j
+e−cj +W

j
−ecj

)
. (9.14)

Using standard calculus, we see that this is minimized when

cj = 1

2
ln

(
W

j
+

W
j
−

)
. (9.15)

284 9 Using Confidence-Rated Weak Predictions

Plugging into equation (9.14), this choice gives

Z = 2
J∑

j=1

√
W

j
+W

j
−. (9.16)

Equation (9.15) provides the best choice of cj according to our criterion. Note that the sign
of cj is equal to the (weighted) majority class within block j . Moreover, cj will be close to
zero (a low-confidence prediction) if there is a roughly equal split of positive and negative
examples in block j ; likewise, cj will be far from zero if one label strongly predomi-
nates.

Further, equation (9.16) provides a criterion for selecting among domain-partitioning
base classifiers: The base learning algorithm should seek a base classifier from a given
family that minimizes this quantity. Once found, the real-valued predictions for each block
are given by equation (9.15).

For example, if using decision stumps as base classifiers, we can search through the space
of all possible splits of the data based on the given features or attributes in a manner nearly
identical to that given in section 3.4.2. In fact, the only necessary changes are in the criterion
for choosing the best split, and in the values at the leaves of the stump. For instance, when
considering a J -way split as in equation (3.21), rather than using the weighted error com-
puted in equation (3.22) as the selection criterion, we would instead use the corresponding
Z-value, which in this case, by the arguments above, would be exactly as given in equa-
tion (9.16). Likewise, cj, rather than being set as in equation (3.20), would instead be set
as in equation (9.15).

In general, each candidate split creates a partition of the domain from which W
j
+ and W

j
−—

and thus also Z as in equation (9.16)—can be computed. Once the split with the smallest
Z has been determined, the actual real-valued prediction for each branch of the split can be
computed using equation (9.15).

The criterion given by equation (9.16) can also be used as a splitting criterion in growing
a decision tree for use as a weak hypothesis, rather than the more traditional Gini index
or entropic function. In other words, the decision tree could be built by greedily choosing
at each decision node the split which causes the greatest drop in the value of the function
given in equation (9.16). (See exercises 9.5 and 9.6.) In this fashion, during boosting, each
tree can be built using the splitting criterion given by equation (9.16) while the predictions
at the leaves of the boosted trees are given by equation (9.15). An alternative approach for
combining boosting with decision trees is given in section 9.4.

The scheme presented above requires that we predict as in equation (9.15) on block j .
It may well happen that W

j
− or W

j
+ is very small or even zero, in which case cj will be

very large or infinite in magnitude. In practice, such large predictions may cause numerical
problems. In addition, there may be theoretical reasons to suspect that large, overly confident
predictions will increase the tendency to overfit.

9.2 General Methods for Algorithm Design 285

To limit the magnitudes of the predictions, we can instead use the “smoothed” values

cj = 1

2
ln

(
W

j
+ + ε

W
j
− + ε

)
(9.17)

in lieu of equation (9.15) for some appropriately small positive value of ε. Because W
j
− and

W
j
+ are both bounded between 0 and 1, this has the effect of bounding |cj | by

1

2
ln

(
1+ ε

ε

)
≈ 1

2
ln

(
1

ε

)
.

Moreover, this smoothing only slightly weakens the value of Z since plugging into equa-
tion (9.14) gives

Z =
J∑

j=1

⎛⎝W
j
+

√√√√W
j
− + ε

W
j
+ + ε

+W
j
−

√√√√W
j
+ + ε

W
j
− + ε

⎞⎠
≤

J∑
j=1

(√
(W

j
− + ε)W

j
+ +

√
(W

j
+ + ε)W

j
−

)

≤
J∑

j=1

(
2
√

W
j
−W

j
+ +

√
εW

j
+ +

√
εW

j
−

)
(9.18)

≤ 2
J∑

j=1

√
W

j
−W

j
+ +

√
2Jε . (9.19)

In equation (9.18), we used the inequality
√

x+ y ≤ √x+√y for nonnegative x and y. In
equation (9.19), we used the fact that

J∑
j=1

(W
j
− +W

j
+) = 1,

which implies

J∑
j=1

(√
W

j
− +

√
W

j
+

)
≤ √2J .

(Recall that J is the number of blocks in the partition.) Thus, comparing equations (9.19)
and (9.16), we see that Z will not be greatly degraded by smoothing if we choose ε �
1/(2J). In practice, ε is typically chosen to be on the order of 1/m.

286 9 Using Confidence-Rated Weak Predictions

Practically, the use of confidence-rated predictions can lead to very dramatic improve-
ments in performance. For instance, figure 9.2 shows the results of one experiment
demonstrating this effect. Here, the problem is to classify titles of newspaper articles by
their broad topic, as in section 7.7.1. The base classifiers are decision stumps which test for
the presence or absence of a word or short phrase, and predict accordingly. When AdaBoost
is run with {−1,+1}-valued base classifiers (that is, without confidence-rated predictions),
the slow convergence described at the beginning of this chapter is observed, and for the
very reason that was earlier given.

When confidence-rated predictions are employed (using the method above for construct-
ing domain-partitioning base classifiers), the improvement in efficiency is spectacular.
Table 9.1 shows the number of iterations needed to achieve various test error rates. For

10

20

30

40

50

60

70

1 10 100 1000 10,000

%
 E

rr
or

Number of rounds

test
train

conf

no conf

Figure 9.2
Train and test error curves for boosting on decision stumps on a text-categorization task with confidence-rated
base hypotheses (bottom curves), or without (top curves).

Table 9.1
A comparison of the number of rounds needed to achieve various test accuracies both with and without confidence-
rated predictions for the same learning task as in figure 9.2

Round First Reached

% Error Conf. No conf. Speedup

40 268 16,938 63.2

35 598 65,292 109.2

30 1,888 >80,000 –

The speedup column shows how many times faster boosting is with confidence-rated predictions than without.

9.3 Learning Rule-Sets 287

instance, in this case the number of iterations to achieve a test error of 35% has been
slashed by a factor of more than 100.

9.3 Learning Rule-Sets

We look next at two learning algorithms based on the general framework and methods
developed above. The first of these is for learning sets of rules, simple “if-then” statements
for formulating a prediction. For instance, in classifying email as spam or ham, one could
easily imagine many plausible rules:

If Viagra occurs in the message, then predict spam.
If message is from my wife, then predict ham.
If message contains corrupted html links, then predict spam.
...

Such rules are generally considered to be intuitive, and easy for people to understand. In-
deed, some early spam-filtering systems asked users to formulate their own rules for identi-
fying spam, and such rule-sets have also been utilized in the past, for instance, in so-called
expert systems for medical diagnosis. A variety of learning algorithms, such as ripper, have
been devised for inferring a good rule-set from data.

Rules are in fact a special form of abstaining hypotheses. For instance, in our formalism,
the first rule above could be reformulated as the following:

h(x) =
{ +1 if Viagra occurs in message x

0 else.

In general, rules output−1 or+1 when some condition holds (in this case, Viagra occurring
in the message), and 0 otherwise. Examples which satisfy the condition are said to be covered
by the rule.

Viewed in isolation, the problem of finding a good rule-set presents many challenges:
How do we balance the natural tension that exists between the competing goals of selecting
rules that cover as many examples as possible, versus choosing rules that are as accurate
as possible on the examples that they do cover? (These goals are typically in competition,
because usually it is easier for more specialized rules to be more accurate.) What do we do
if two rules in the set contradict one another in their predictions (one predicting positive
and the other negative on an example covered by both)? How much overlap should there be
between rules in terms of the examples that they cover? And how do we construct a concise
set of rules that will be as accurate as possible in its overall predictions?

In fact, we can provide a boosting-based answer to all these challenges by directly
applying confidence-rated boosting techniques using rules as (abstaining) weak hypotheses.
Doing so will result in a combined hypothesis with the following form as a set of weighted
rules:

288 9 Using Confidence-Rated Weak Predictions

If C1, then predict s1 with confidence α1.
...

If CT then predict sT with confidence αT .

(9.20)

Here, each rule (weak hypothesis) has an associated condition Ct , prediction st ∈ {−1,+1},
and confidence αt . To evaluate such a rule-set (combined hypothesis) on a new example x,
we simply add up, for each rule covering x, the predictions st weighted by αt , and then take
the sign of the computed sum. That is,

H(x) = sign

⎛⎝ ∑
t :Ct holds on x

αt st

⎞⎠. (9.21)

This description is nothing more than an equivalent reformulation of equation (9.1) for the
present setting. Note that contradictory rules are handled simply by assigning each a weight
or confidence, and evaluating the prediction of the entire rule-set by taking a weighted sum
of the predictions of all covering rules.

The rule-set itself can be constructed using the usual boosting mechanism of repeatedly
assigning weights to examples, and then searching through some space of conditions for
the rule (weak hypothesis) that optimizes some criterion. This mechanism automatically
focuses the construction of each subsequent rule on parts of the domain where accuracy
or coverage is poor. We can directly apply the results of section 9.2.4 to set the value of
each αt , and to provide a criterion for choosing the best rule on each round. Note that this
criterion, as given in equation (9.11), provides a concrete and principled means of balancing
the trade-off between the competing goals of finding a rule with both high coverage and
high accuracy.

In addition to their intuitive interpretability, we note that rules, like abstaining weak
hypotheses in general, can sometimes admit significant efficiency improvements since,
using the techniques described in section 9.2.4, operations which might naively require
time proportional to the total number of training examples can usually be done instead in
time proportional just to the number of examples actually covered by the selected rule,
which might be much smaller.

So far, we have left unspecified the form of the condition used in defining each rule.
Here, as is so often the case, there exist myriad possibilities, of which we discuss just a few.

For concreteness, let us assume that instances are described by features or attributes as
in section 3.4.2. Along the lines of the decision stumps explored in that section, we might
consider using the same sorts of simple conditions that can naturally be defined using such
features. For instance, this leads to rules such as these:

If (eye-color = blue) then predict +1.
If (sex = female) then predict −1.

9.3 Learning Rule-Sets 289

If (height ≥ 60) then predict −1.
If (age ≤ 30) then predict +1.
...

Finding rules with conditions of these forms and optimizing the criterion in equation (9.11)
can be done efficiently using a search technique very similar to what was described in
section 3.4.2 for finding decision stumps, but using this modified criterion. Such rules are
really just a one-sided, confidence-rated version of decision stumps, and thus are rather
weak.

In some settings, it may be advantageous to use rules whose conditions are more expres-
sive, leading to rules that are more specialized but potentially more accurate on the examples
that they do cover. Conditions which are conjunctions of other base conditions are often
considered natural for this purpose. For instance, this leads to rules like this one:

If (sex = male) ∧ (age ≥ 40) ∧ (blood-pressure ≥ 135)
then predict +1.

In general, these conditions have the form B1 ∧ · · · ∧B� where each Bj is a base condition
chosen from some set that is presumably easy to search, such as conditions of the forms
given above.

Finding the optimal conjunctive condition will often be computationally infeasible. Nev-
ertheless, there are natural greedy search techniques that can be used. Specifically, starting
with an empty conjunction, we can iteratively add one conjunct at a time on each iteration,
choosing the conjunct that causes the greatest improvement in our search criterion given in
equation (9.11).

These ideas form the core of a program called slipper for learning rule-sets, although
slipper also incorporates the following variations: First, the greedy approach just described
tends to find overly specialized rules which also tend to overfit. To prevent this, on each
round of boosting, the training data is randomly split into a growing set and a pruning set.
A conjunction is grown as above using the growing set, but then this conjunction is pruned
back by choosing the pruning (truncation of the conjunction) that optimizes our usual crite-
rion on the pruning set. Second, for enhanced interpretability, slipper uses only conjunctive
rules which predict+1, that is, for the positive class; in other words, in the notation of equa-
tion (9.20), st is equal to+1 for all rules. The exceptions are the constant-value rules which
can predict +1 on all instances or −1 on all instances (such rules are equivalent to the
condition Ct always being equal to true). Third, slipper uses a cross-validation technique
to choose the number of rules in the set (or equivalently, the number of rounds of boosting).
In rough terms, this means the given dataset is repeatedly split into a training set and a
validation set. After training on the training set, the best number of rounds is selected based
on performance on the validation set. Training is then repeated on the entire dataset for the
selected number of rounds.

290 9 Using Confidence-Rated Weak Predictions

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
e

of
 s

ec
on

d
le

ar
ne

r

Error rate of SLIPPER

vs. Ripper-opt
vs. Ripper+opt

vs. C4.5rules
vs. C5.0rules

y=x

Figure 9.3
Summary of experimental results comparing slipper with some other methods for learning rule-sets. Each point in
the plot represents a comparison of slipper’s percent test error (x-coordinate) versus a competing algorithm’s per-
cent test error (y-coordinate) on a single benchmark dataset. (Copyright ©1999 Association for the Advancement
of Artificial Intelligence. Reprinted, with permission, from [50].)

Figure 9.3 compares the test accuracy of slipper on 32 benchmark datasets with a number
of other well-established algorithms for learning rule-sets, namely C4.5rules, C5.0rules,
and two variants of ripper (see the bibliographic notes for further reading on these). The
comparison is evidently quite favorable. Moreover, the rule-sets that are found tend to be
reasonably compact compared to most of the other methods, and of a form that is often under-
standable to humans.

9.4 Alternating Decision Trees

We turn next to a second application of the confidence-rated framework.
Some of the best performance results for boosting have been obtained using decision

trees as base hypotheses. However, when this approach is taken, the resulting combined
hypothesis may be quite big, being the weighted majority vote (or thresholded sum) of a
possibly large forest of trees which themselves may individually be rather sizable. In many
cases, the size and complexity of such a combined hypothesis is justified by its high accuracy.
But sometimes, it is important to find a classifier that is not only accurate but also somewhat

9.4 Alternating Decision Trees 291

more compact and understandable. We saw in section 9.3 how rule-sets can be learned
for this purpose. Here, we describe an alternative method in which boosting is used to
learn a single, though nonstandard, decision tree that can often be reasonably compact
and comprehensible while still giving accurate predictions. The basic idea is to use weak
hypotheses that roughly correspond to paths through a tree, rather than an entire tree, and to
select them in a manner that makes it possible for the combined hypothesis to be arranged
conveniently in the form of a tree.

The particular kind of tree that is found in this way is called an alternating decision tree
(ADT). Figure 9.4 shows an example of such a tree which resembles, but clearly is also quite
distinct from, an ordinary decision tree. An ADT consists of levels that alternate between
two types of nodes: Splitter nodes, drawn as rectangles in the figure, are each labeled with
a test or condition as in ordinary decision trees, while prediction nodes, drawn as ellipses,
are associated with a real-valued (confidence-rated) prediction. In an ordinary decision tree,
any instance defines a single path from the root to a leaf. In contrast, in an ADT, an instance

y y

y y

nn

nn

y n

b < 1

+0.3

1.0+2.0

b > 4

a > 2

+0.2

+0.6

b < 0a < 4.5

+0.5

Figure 9.4
An alternating decision tree. Nodes have been shaded along all paths defined by an instance in which a = 1 and
b = 0.5.

292 9 Using Confidence-Rated Weak Predictions

defines multiple paths through the tree. For instance, in figure 9.4, we have shaded the
nodes along all of the paths defined by an instance in which a = 1 and b = 0.5. These paths
are determined by starting at the root and working our way down. When a splitter node is
reached, we branch next to just one child based on the result of the test associated with the
node, just as in an ordinary decision tree. But when a prediction node is reached, we need
to traverse to all of its children.

The real-valued prediction associated with an ADT on a particular instance is the sum
of the values at the prediction nodes along all of the paths defined by that instance. For
instance, in the example above, this prediction would be

0.5− 0.5+ 0.3− 0.2+ 0.1 = +0.2.

As usual, taking the sign of this value provides the predicted classification, in this case+1.
In form, ADTs generalize both ordinary decision trees and boosted decision stumps,

while preserving much of the comprehensibility of both.
To learn an ADT, we can use boosting with appropriately defined weak hypotheses. To

see this, we note that any ADT can be decomposed into a sum of simpler hypotheses, one
for each splitter node (as well as the root), and each in the form of a single path or branch
through the tree. For instance, the tree in figure 9.4 can be decomposed into six such branch
predictors, as shown in figure 9.5. Each of these is evaluated like an ordinary decision tree,

ny

ny

y

ny

ny

ny

y y

n

b < 1

+0.3

0<b5.0+

a < 4.5 a < 4.5

+0.4

b < 1

+0.2

+0.1

a > 2

a < 4.5

+0.6

a < 4.5

b > 4

Figure 9.5
A decomposition of the alternating decision tree in figure 9.4 into six branch predictors.

9.4 Alternating Decision Trees 293

but with the stipulation that if an evaluation “falls off” the branch, then the result is 0. Thus,
the bottom-right branch predictor in the figure evaluates to +0.6 on an instance in which
a = 1 and b = 2, but evaluates to 0 on any instance in which a ≥ 4.5 or b < 1. The top-left
branch predictor always evaluates to the constant +0.5. By the manner in which ADTs are
evaluated, it can be seen that the ADT in figure 9.4 is functionally equivalent, in terms of
its predictions, to the sum of the branch predictors in figure 9.5. Moreover, any ADT can
be decomposed in this way.

(Note that there is no ordering associated with these branch predictors. The point is simply
that the ADT can be decomposed into an unordered sum of branch predictors. And although
the boosting technique described below constructs a set of branch predictors one by one,
there will still be considerable variation in the order in which they are added.)

So our approach to learning an ADT is to use boosting with weak hypotheses which
are branch predictors as above, but which are appropriately constrained so that the final,
resulting set of branch predictors can be arranged as an ADT.

Every branch predictor is defined by a condition B given by the test at the last splitter
node along the branch, together with a precondition P which holds if and only if all the
tests along the path to that last splitter node hold. For instance, the bottom-right branch
predictor in figure 9.5 has the condition “b > 4” and precondition “(a < 4.5)∧ (b ≥ 1).”
In general, the branch predictor computes a function of the form

h(x) =
⎧⎨⎩

0 if P does not hold on x

c1 if P holds and B holds on x

c2 if P holds but B does not hold on x,
(9.22)

where c1 and c2 are the real-valued predictions at its leaves.
Thus, branch predictors are both abstaining and domain-partitioning. Learning such

weak hypotheses can be accomplished by straightforwardly combining the techniques of
sections 9.2.4 and 9.2.6. In general, an abstaining domain-partitioning hypothesis h is asso-
ciated with a partition of the domain into disjoint blocks X0, X1, . . . , XJ as in section 9.2.6,
but with the added restriction that h abstain on X0 (so that h(x) = 0 for all x ∈ X0). Then
it can be shown, as before, that the best cj (prediction for h on Xj) for j = 1, . . . , J is
computed as in equation (9.15), but for this choice, we have

Z = W 0+ 2
J∑

j=1

√
W

j
+W

j
− (9.23)

where

W 0 .=
∑

i:xi∈X0

D(i) = Pri∼D[xi ∈ X0] .

294 9 Using Confidence-Rated Weak Predictions

(For simplicity, we are ignoring issues regarding the smoothing of predictions as in
section 9.2.6; these could also be applied here.)

These ideas immediately provide a means of choosing a branch predictor on each round
of boosting for a given set P of candidate preconditions, and set B of candidate condi-
tions. In particular, for each P ∈ P and B ∈ B, we consider the corresponding branch
predictor (equation (9.22)) and compute its Z-value as in equation (9.23), selecting the one
for which this value is minimized. Then the real-valued predictions c1 and c2 are given
by equation (9.15).

What should we use for the sets P and B? The set of conditions B can be some set of fixed
base conditions, such as those used for decision stumps. As for the set of preconditions, in
order that the resulting set of branch predictors be equivalent to an ADT, we need to use
preconditions corresponding to paths to splitter nodes that have already been added to the
tree. Thus, this set will grow from round to round. In particular, initially the tree is empty
and we let P = {true} where true is a condition that always holds. When a new branch
predictor defined by precondition P and condition B is found on round t , both P ∧B and
P ∧¬B, corresponding to the two splits of this branch, are added to P .

Finally, for the root node, we initialize the ADT using a weak hypothesis that predicts a
constant real value, where this value is set using the methods of section 9.2. Putting these
ideas together leads to algorithm 9.4. Here, on round t , we write Wt(C) for the sum of
the weights of examples for which condition C holds, and among these we write W+

t (C)

and W−
t (C) for the total weights of just the positive and negative examples (respectively).

These implicitly depend on the current distribution Dt . Thus,

Wb
t (C)

.= Pri∼Dt [C holds on xi ∧ yi = b] (9.24)

for b ∈ {−1,+1}, and

Wt(C)
.= Pri∼Dt [C holds on xi] . (9.25)

Although the output of this pseudocode is the (thresholded) sum of branch predictors, this
sum can immediately be put in the form of an ADT as previously discussed, a data structure
that might also provide the basis for the most convenient and efficient implementation.
Various other techniques might also be employed for improved efficiency, such as the use
of unnormalized weights as discussed in section 9.2.4.

Because the base hypotheses used by ADTs tend to be rather weak, there is a tendency
for the algorithm to overfit; in practice, this typically must be controlled using some form
of cross-validation.

As an illustration of howADTs can be interpreted, figure 9.6 shows the tree constructed by
this algorithm when run for six rounds on the heart-disease dataset described in section 1.2.3,
where “healthy” and “sick” classes have been identified with labels+1 and−1, respectively.
For this dataset, ADTs achieve a test error of about 17%, roughly the same as decision

9.4 Alternating Decision Trees 295

Algorithm 9.4
The alternating decision tree algorithm

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
set B of base conditions.

Initialize:

• h0(x) = 1
2 ln((1+ r0)/(1− r0)) for all x where r0 = 1

m

∑m
i=1yi .

• P ← {true}.
• For i = 1, . . . , m, let D1(i) =

{
1/(1+ r0) if yi = +1
1/(1− r0) if yi = −1.

For t = 1, . . . , T :

• Find P ∈ P and B ∈ B that minimize

Zt = Wt(¬P) + 2
√

W+
t (P ∧B)W−

t (P ∧B) + 2
√

W+
t (P ∧¬B)W−

t (P ∧¬B)

where W+
t , W−

t , and Wt are defined as in equations (9.24) and (9.25).

• Let ht be the corresponding branch predictor:

ht (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if P does not hold on x

1
2 ln

(
W+

t (P∧B)

W−
t (P∧B)

)
if P holds and B holds on x

1
2 ln

(
W+

t (P∧¬B)

W−
t (P∧¬B)

)
if P holds but B does not hold on x.

• P ← P ∪ {P ∧B, P ∧¬B}.
• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i) exp(−αtyiht (xi))

Zt

.

Output the final hypothesis:

H(x) = sign

(
T∑

t=0

ht (x)

)
.

296 9 Using Confidence-Rated Weak Predictions

y n y n

y n y n y n y n

+0.062

thal = normal

+0.425

oldpeak < 2.45

+0.508

+0.541

+1.057

sex = female

+0.441

cholesterol < 240.5

+0.138

Figure 9.6
The alternating decision tree constructed for the heart disease dataset.

stumps, and better than boosting on decision trees, which gives an error around 20% while
using a combined hypothesis that may be two orders of magnitude larger. This smaller size
already makes ADTs more interpretable, but so does their structure, as we now discuss.

To begin, we note that the meaning of splitter nodes can largely be understood in isola-
tion. For instance, from the figure, we can infer that a cholesterol level above 240.5 and
asymptomatic chest pain are both predictors of heart problems, as indicated by the fact that
they both generate negative contributions to the prediction sum. We also can analyze the
interactions of the nodes. Parallel splitter nodes, such as the four nodes in the first level,
represent little or no interaction. For instance, the fact that the “thal” test is normal increases
the likelihood that the person is healthy, irrespective of the “number of vessels colored” or
the type of chest pain. In contrast, the significance of the two decision nodes in the second
level depends on the evaluation of their ancestral decision nodes. Specifically, regarding the
node “sex = female,” the fact that a patient is a male appears to be more predictive of a heart
problem when chest pain is symptomatic than in the population in general. This implies that
only when the chest pain is symptomatic is it worthwhile to consider the patient’s gender.
The root of the tree is associated with the fixed (unconditional) contribution of +0.062, a
small positive number indicating that (according to this training set) there are slightly more
healthy people than sick people.

Summary

This chapter has explored a general framework for boosting using confidence-rated weak
hypotheses. This framework provides general principles for the selection and construction

Exercises 297

of weak hypotheses, as well as the modification of AdaBoost. Within this framework, we
have seen how old algorithms can be adjusted and new algorithms derived, leading to
substantial improvements in speed, accuracy, and interpretability.

Bibliographic Notes

The overall approach taken in this chapter is due to Schapire and Singer [205]. This includes
the framework and almost all of the results of sections 9.1 and 9.2, as well as algorithm 9.1.
However, the highly efficient technique for handling sparse weak hypotheses given in
section 9.2.4 and leading to algorithms 9.2 and 9.3 is an adaptation of work by Collins [52]
(see also Collins and Koo [53]). The experiments in section 9.2.6, including table 9.1 and
figure 9.2, are based on results reported by Schapire and Singer [206].

The splitting criterion given in equation (9.16) for generating domain-partitioning base
hypotheses, including decision trees, was also proposed by Kearns and Mansour [132], al-
though their motivation was rather different. The techniques used for assigning confidences
as in equation (9.15) to the individual predictions of such base hypotheses, and also for
smoothing these predictions as in equation (9.17), are closely related to those suggested
earlier by Quinlan [183].

In allowing weak hypotheses which can abstain to various degrees, the framework given
here is analogous to Blum’s “specialist” model of online learning [25].

The slipper algorithm and experiments described in section 9.3, including figure 9.3, are
due to Cohen and Singer [50]. slipper’s method for building rules (that is, the weak learner)
is similar to that of previous methods for learning rule-sets, particularly Cohen’s ripper [49]
and Fürnkranz and Widmer’s irep [104]. The C4.5rules and C5.0rules algorithms for rule-set
induction use decision-tree techniques as developed by Quinlan [184].

The alternating decision tree algorithm of section 9.4 is due to Freund and Mason [91],
including the adapted figure 9.6. ADTs are similar to the option trees of Buntine [41], de-
veloped further by Kohavi and Kunz [137].

Some of the exercises in this chapter are based on material from [54, 132, 205].

Exercises

9.1 Given the notation and assumptions of section 9.2.3, let α̃ be the value of α given in
equation (9.8), and let α̂ be the value of α which exactly minimizes equation (9.5). Show
that α̃ and α̂ have the same sign, and that |α̃| ≤ |α̂|.
9.2 Suppose the base functions h in H are confidence-rated with range [−1,+1], that is,
h : X → [−1,+1]. Most of the definitions of margin, convex hull, etc. from sections 5.1
and 5.2 carry over immediately to this setting without modification. For any h ∈ H and any
value ν ∈ [−1,+1], let

298 9 Using Confidence-Rated Weak Predictions

h′h,ν(x)
.=
{ +1 if h(x) ≥ ν

−1 else,

and let

H′ .= {h′h,ν : h ∈ H, ν ∈ [−1,+1]}
be the space of all such functions.

a. For fixed h and x, suppose ν is chosen uniformly at random from [−1,+1]. Compute
the expected value of h′h,ν(x).

b. Let d ′ be the VC-dimension of H′. Show that the bound given in theorem 5.5 holds
in this setting with probability at least 1− δ for all f ∈ co(H), but with d replaced
by d ′.

9.3 Let H and H′ be as in exercise 9.2.

a. Show that if a training set is linearly separable with margin θ > 0, using functions from
H (so that equation (3.10) holds for some g1, . . . , gk ∈ H), then the data is γ -empirically
weakly learnable by classifiers in H′ (using an exhaustive weak learner) for some γ > 0.

b. Prove or disprove that the converse holds in general.

9.4 Let H = {�1, . . . , �N } be a space of weak classifiers, each with range {−1,+1}. Sup-
pose the sets P

.= {1 ≤ i ≤ m : yi = +1} and Cj
.= {1 ≤ i ≤ m : �j (xi) = +1} have been

precomputed, and that they are quite small compared to m (so that most examples are
negative, and the weak classifiers predict −1 on most examples). Show how to implement
AdaBoost using an exhaustive weak learner over H in such a way that:

1. evaluating the weighted error (with respect to distribution Dt) of any particular weak clas-
sifier �j takes time O

(|Cj | + |P |
)
, so that an exhaustive weak learner can be implemented

in time O
(∑N

j=1(|Cj | + |P |)
)

;

2. given the currently selected weak classifier ht = �jt , the running time of the boosting
algorithm (not including the call to the weak learner) is O

(|Cjt | + |P |
)
.

In other words, the running time should depend only on the number of positive examples,
and the number of examples predicted positive by the weak classifiers.

9.5 Given our usual dataset (x1, y1), . . . , (xm, ym), a decision tree can be constructed using
a greedy, top-down algorithm. Specifically, let H be a set of binary functions h : X →
{−1,+1} representing a class of possible splits for the internal nodes of the tree. Initially,
the tree consists only of a leaf at its root. Then, on each of a sequence of iterations, one leaf
� of the current tree T is selected and replaced by an internal node associated with some
split h, leading to two new leaves depending on the outcome of that split. We write T�→h

to represent the newly formed tree. An example is shown in figure 9.7.
To describe how � and h are chosen, let I : [0, 1] → R+ be an impurity function for

which I (p) = I (1−p), and which is increasing on
[
0, 1

2

]
. For b ∈ {−1,+1}, and for � a

Exercises 299

a > 0

c < 3

a > 0

b > 4

a > 2

a > 2

a > 2

a > 2

c < 3

c < 3

Figure 9.7
Several steps in the construction of a decision tree using decision stumps as splitting functions (with the construction
progressing from left to right, and then from top to bottom). At each step, one leaf is replaced by a new internal
node and two new leaves.

leaf of a tree, let nb(�) denote the number of training examples (xi, yi) such that xi reaches
leaf �, and yi = b. Also, let n(�) = n−(�)+ n+(�). Overloading notation, we define the
impurity of a leaf � to be I (�)

.= I (n+(�)/n(�)), and the impurity of the entire tree T
to be

I (T)
.= 1

m

∑
�∈T

n(�) · I (�),

where summation is over all leaves � of the tree T .
To grow the tree as above, on each iteration the leaf � and the split h are chosen that

effect the greatest drop in impurity

�I(�, h)
.= n(�)

m
·
[
I (�)−

(
n(�h+)

n(�)
· I (�h

+)+ n(�h−)

n(�)
· I (�h

−)

)]
where �h+ and �h− are the two leaves that would be created if � were replaced by an internal
node with split h.

a. Show that �I(�, h) = I (T)− I (T�→h).

A decision tree can be viewed as defining a domain-partitioning hypothesis since the sets of
examples reaching each leaf are disjoint from one another. Suppose a real-valued prediction

300 9 Using Confidence-Rated Weak Predictions

is assigned to each leaf so that the tree defines a real-valued function F whose value, on
any instance x, is given by the leaf that is reached by x. Suppose further that these values
are chosen to minimize the exponential loss on the training set (as in equation (9.3)) over
all real-valued functions of the particular form specified by the given tree. Let L(T) be the
resulting loss for a tree T .

b. Show that if

I (p)
.= 2
√

p(1−p), (9.26)

then L(T) = I (T).

c. For this same choice of impurity function, and for any tree T , show how to assign a
binary label in {−1,+1} to each leaf � so that the resulting tree-classifier will have
training error at most I (T).

d. Consider using each of the losses listed below in place of exponential loss. In each case,
determine how the impurity function I (p) should be redefined so that L(T) = I (T)

(where L(T), as above, is the minimum loss of any real-valued function of the form
given by the tree T). Also in each case, explain how to assign a binary label to each leaf,
as in part (c), so that the resulting tree-classifier’s training error is at most I (T).

i. Logistic loss (using base-2 logarithm): 1
m

∑m
i=1 lg(1+ exp(−yiF (xi))).

ii. Square loss: 1
m

∑m
i=1(yi −F(xi))

2.

9.6 Continuing exercise 9.5, assume henceforth that we are using exponential loss and the
impurity function in equation (9.26). Also, let us assume the data is empirically γ -weakly
learnable by H (as defined in section 2.3.3).

a. Let T∗→h denote the tree that would result if every leaf of the tree T were replaced by
an internal node that splits on h, with each new node leading to two new leaves (so that
h appears many times in the tree). For any tree T , show that there exists a split h ∈ H
such that L(T∗→h) ≤ L(T)

√
1− 4γ 2.

b. For any tree T with t leaves, show that there exists a leaf � of T and a split h ∈ H such that

�I(�, h) ≥ 1−√1− 4γ 2

t
· I (T) ≥ 2γ 2

t
· I (T).

[Hint: For the second inequality, first argue that
√

1− x ≤ 1− 1
2 x for x ∈ [0, 1].]

c. Show that after T rounds of the greedy algorithm described in exercise 9.5, the resulting
tree T (with binary leaf predictions chosen as in exercise 9.5(c)) will have training error
at most exp(−2γ 2HT) where HT

.=∑T
t=1(1/t) is the T -th harmonic number. (Since

ln(T + 1) ≤ HT ≤ 1+ ln T for T ≥ 1, this bound is at most (T + 1)−2γ 2
.)

9.7 Let H = {�1, . . . , �N } be a space of real-valued base hypotheses, each with range
[−1,+1].

Exercises 301

a. Suppose on each round that the base hypothesis ht ∈ H which maximizes |rt | as in
section 9.2.3 is selected, and that αt is chosen as in equation (9.8). Show how to modify
the proof of section 8.2 to prove that this algorithm asymptotically minimizes exponential
loss (in the same sense as in theorem 8.4).

b. Prove the same result when ht and αt are instead selected on each round to exactly
minimize Zt (equation (9.2)).

10 Multiclass Classification Problems

Until now, we have focused only on using boosting for binary classification problems in
which the goal is to categorize each example into one of only two categories. In practice,
however, we are often faced with multiclass problems in which the number of categories
is more than two. For instance, in letter recognition, we need to categorize images into 26
categories for the letters A, B, C, . . . , Z.

Although AdaBoost was designed explicitly for two-class problems, one might expect
the generalization to the multiclass case to be natural and straightforward. In fact, there turn
out to be many ways of extending boosting for multiclass learning, as will be seen in this
chapter.

We begin with the most direct generalization of AdaBoost. This version, called Ada-
Boost.M1, has the advantage of simplicity and ease of implementation, but requires that
the base classifiers be much better than random guessing, a condition that for many natural
base learners cannot be fulfilled. For weaker base learners, this can be an insurmountable
problem requiring a fundamentally different approach.

Aside from AdaBoost.M1, most multiclass versions of AdaBoost are based in some
way on a reduction from the multiclass case to the simpler binary case. In other words,
the problem of making a multi-way classification is replaced by multiple yes-no ques-
tions. For instance, if we are classifying images by the letter they represent, we might
replace the question “What letter is this?” which has 26 possible answers, with 26 binary
questions:

“Is it an A or not?”
“Is it a B or not?”
“Is it a C or not?”
...

Clearly, if we can learn to answer these 26 questions accurately, then we can also answer
the original classification question. This simple “one-against-all” approach is the basis of
the multiclass AdaBoost.MH algorithm.

304 10 Multiclass Classification Problems

Asking so many questions might seem rather inefficient and, more importantly, one might
notice that only one or two wrong answers to these binary questions are enough to cause
an incorrect answer in the final classification. To alleviate this difficulty, we might consider
asking more complex binary questions, such as:

“Is it a vowel or a consonant?”

“Is it in the first half of the alphabet?”

“Is it one of the letters in the word MACHINE?”

Given predicted answers to such binary questions for a particular instance, we can formulate
a final classification by choosing the label that is “most consistent” with the binary responses.
Even if many of these are erroneous, we still stand a reasonable chance of producing an
overall prediction that is correct since the answers to the questions are more informative
and overlap one another in the information they provide. Thus, such a scheme may be both
more efficient and more robust.

Of course, the number of binary questions of this type grows extremely quickly, which
means that the number of ways of reducing multiclass to binary is still more vast. Fortunately,
as we will see, it turns out to be possible to study this problem in a general setting, and
to derive and analyze an algorithm called AdaBoost.MO that can be applied to an entire
family of reductions.

This general approach of reducing a more complicated learning problem to a simple
binary classification problem can be applied in other situations as well. In particular, as we
will see in chapter 11, we can use this method for ranking problems where the goal is
to learn to rank a set of objects. For instance, we might want to rank documents by their
relevance to a given search query. Once reduced to binary, an application of AdaBoost leads
to a ranking algorithm called RankBoost. We can further view multiclass classification as a
ranking problem, leading to yet another multiclass algorithm called AdaBoost.MR whose
purpose is to rank the correct label higher than the incorrect ones.

Moreover, although we focus only on their combination with boosting, the reduction
techniques that we present are quite general, and can certainly be applied to other learning
methods as well, such as support-vector machines.

The ability of the algorithms in this chapter to generalize beyond the provided training set
is clearly an issue of considerable importance. Nevertheless, we limit our scope in this chap-
ter only to the study of performance on the training set. We note, however, that the techniques
for analyzing generalization error given in previous chapters can certainly be applied to the
multiclass setting as well (see exercises 10.3 and 10.4).

As an illustration, this chapter also includes an application of the presented techniques
to the classification of caller utterances according to their meaning, a key component of
spoken-dialogue systems.

10.1 A Direct Extension to the Multiclass Case 305

10.1 A Direct Extension to the Multiclass Case

Our setup for multiclass learning is essentially the same as in the binary case, except that
each label yi is now assumed to belong to a set Y of all possible labels where the cardinality
of Y may be greater than 2. For instance, in the letter recognition example above, Y would
be the set {A, B, . . . , Z}. Throughout this chapter, we denote this cardinality |Y| by K .

The first multiclass version of AdaBoost is called AdaBoost.M1—the M stands for mul-
ticlass, and the 1 distinguishes this extension as the first and most direct. As is natural, the
weak learner in this setting generates hypotheses h which assign to each instance exactly
one of the K possible labels so that h : X → Y . Pseudocode for AdaBoost.M1 is shown as
algorithm 10.1, and differs only slightly from binary AdaBoost (algorithm 1.1 (p. 5)). The
goal of the weak learner is to generate on round t a base classifier ht with low classification
error

εt
.= Pri∼Dt [ht (xi) �= yi],

just as for binary AdaBoost. The update to the distribution Dt is also the same as for Ada-
Boost, as given in the first form of the update from algorithm 1.1. The final hypothesis H is
only slightly different: For a given instance x, H now outputs the label y that maximizes the
sum of the weights of the weak hypotheses predicting that label. In other words, rather than
computing a weighted majority vote as in binary classification, H computes the weighted
plurality of the predictions of the base hypotheses.

In analyzing the training error of AdaBoost.M1, we require the same weak learning as-
sumption as in the binary case, namely, that each weak hypothesis ht have weighted error
εt below 1

2 . When this condition is satisfied, theorem 10.1 (below) proves the same bound
on the training error as for binary AdaBoost, showing that the error of the combined final
hypothesis decreases exponentially, as in the binary case. This is of course good news for
base learners that are able to meet this condition. Unfortunately, this requirement on the
performance of the weak learner is much stronger than might be desired. In the binary
case, when K = 2, a random guess will be correct with probability 1

2 , so the weak learning
assumption posits performance only a little better than random. However, when K > 2,
the probability of a correct random prediction is only 1/K , which is less than 1

2 . Thus,
our requirement that the accuracy of the weak hypothesis be greater than 1

2 is significantly
stronger than simply requiring that the weak hypothesis perform better than random guess-
ing. For instance, with K = 10 classes, guessing randomly will give accuracy of 10%,
which is far less than the 50% requirement.

Moreover, in the case of binary classification, a weak hypothesis ht with error significantly
larger than 1

2 is of equal value to one with error significantly less than 1
2 since ht can be

replaced by its negation −ht (an effect that happens “automatically” in AdaBoost, which
chooses αt < 0 in such a case). However, for K > 2, a hypothesis ht with error εt above

306 10 Multiclass Classification Problems

Algorithm 10.1
AdaBoost.M1: A first multiclass extension of AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ Y .
Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → Y .

• Aim: select ht to minimalize the weighted error:

εt
.= Pri∼Dt [ht (xi) �= yi] .

• If εt ≥ 1
2, then set T = t − 1 and exit loop.

• Choose αt = 1

2
ln

(
1− εt

εt

)
.

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i)

Zt

×
{

e−αt if ht (xi) = yi

eαt if ht (xi) �= yi

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = arg max
y∈Y

T∑
t=1

αt1{ht (x) = y} .

1
2 is useless to the boosting algorithm, and generally cannot be converted into one with
error below 1

2 . This is a significant difficulty. If such a weak hypothesis is returned by
the weak learner, AdaBoost.M1, as we have presented it, simply halts, using only the weak
hypotheses that were already computed (although there are other ways one might imagine
for dealing with this).

In proving a bound on the training error, as in theorem 3.1, we give a slightly more general
proof for the weighted training error with respect to an arbitrary initial distribution D1.

Theorem 10.1 Given the notation of algorithm 10.1, assume that εt < 1
2 for all t , and

let γt
.= 1

2 − εt . Let D1 be an arbitrary initial distribution over the training set. Then the
weighted training error of AdaBoost.M1’s combined classifier H with respect to D1 is
bounded as

10.1 A Direct Extension to the Multiclass Case 307

Pri∼D1 [H(xi) �= yi] ≤
T∏

t=1

√
1− 4γ 2

t ≤ exp

(
−2

T∑
t=1

γ 2
t

)
.

Proof The proof follows the same outline as in theorem 3.1, so we focus only on the
differences from that proof.

First, let

F(x, y)
.=

T∑
t=1

αt (1{y = ht (x)}− 1{y �= ht (x)}) .

Noticing that

Dt+1(i) = Dt(i) exp (−αt (1{y = ht (x)}− 1{y �= ht (x)}))
Zt

,

we can unravel this recurrence to obtain

DT+1(i) = D1(i)e
−F(xi ,yi)∏T

t=1 Zt

.

If H(x) �= y, then there exists a label � �= y such that

T∑
t=1

αt1{y = ht (x)} ≤
T∑

t=1

αt1{� = ht (x)} ≤
T∑

t=1

αt1{y �= ht (x)} .

The last inequality uses the fact that αt ≥ 0 since εt < 1
2 . Thus, H(x) �= y implies that

F(x, y) ≤ 0. Therefore, in general,

1{H(x) �= y} ≤ e−F(x,y).

Now the same argument as in equation (3.5) gives that the (weighted) training error is

m∑
i=1

D1(i)1{H(xi) �= yi} ≤
T∏

t=1

Zt .

Finally, the computation of Zt beginning with equation (3.6) and leading to equation (3.9)
is unchanged.

It is disappointing, in the multiclass case, that we need to require such high accuracy,
exceeding 1

2 , in order to analyze AdaBoost.M1. In fact, this difficulty turns out to be prov-
ably unavoidable when the performance of the weak learner is measured only in terms
of error rate. This means that, in a sense, AdaBoost.M1 is the best we can hope for in a

308 10 Multiclass Classification Problems

multiclass boosting algorithm. To be more precise, we know that in the binary case, a base
learner that performs slightly better than random on any distribution can always be used in
conjunction with a boosting algorithm to achieve perfect training accuracy (and also arbi-
trarily good generalization accuracy, given sufficient data). Unfortunately, when K > 2,
this is simply not possible, in general. We show this next with an example of a weak learner
that consistently returns weak classifiers with accuracy significantly better than the random
guessing rate of 1/K , but for which no boosting algorithm can exist that uses such weak
classifiers to compute a combined classifier with perfect (training) accuracy.

In this simple three-class example, we suppose that X = {a, b, c}, Y = {1, 2, 3}, and
the training set consists of the three labeled examples (a, 1), (b, 2), and (c, 3). Further, we
suppose that we are using a base learner which chooses base classifiers that never distinguish
between a and b. In particular, the base learner always chooses one of the following two
base classifiers:

�1(x) =
{

1 if x = a or x = b

3 if x = c,

or

�2(x) =
{

2 if x = a or x = b

3 if x = c.

Then for any distribution over the training set, since a and b cannot both have weight
exceeding 1

2 , it can be argued that either �1 or �2 will have accuracy at least 1
2 (though

not necessarily exceeding 1
2 , as would be necessary for theorem 10.1 to be of value here).

This is substantially more than the accuracy of 1
3 which would be achieved by pure random

guessing among the three labels of Y . However, regardless of how the training distributions
are selected, and regardless of how the collected base classifiers are combined, a final
classifier H that bases its predictions only on those of the base hypotheses will necessarily
classify a and b in exactly the same way, and therefore will misclassify at least one of
them. Thus, the training accuracy of H on the three examples can never exceed 2

3 , so
perfect accuracy cannot be achieved by any boosting method. (This argument is somewhat
informal in its treatment of the notion of a general boosting algorithm; a more rigorous
proof could be devised along the lines of the lower bound proved later in section 13.2.2.
See exercise 13.10.)

Despite this limitation, in practice AdaBoost.M1 works quite effectively when using
fairly strong base classifiers, such as decision trees and neural networks, which typically
are able to find base classifiers with accuracy surpassing 1

2 , even on the difficult distribu-
tions constructed by boosting. For instance, in section 1.2.2, we looked at how AdaBoost
performs on a range of benchmark datasets using C4.5, the decision-tree learning algo-
rithm, as a base learner. Eleven of the datasets that were used were multiclass, ranging from

10.1 A Direct Extension to the Multiclass Case 309

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
4.

5

Boosting C4.5

Figure 10.1
A comparison of C4.5 with and without boosting on 11 multiclass benchmark datasets. See figure 1.3 (p. 12) for
further explanation.

3 up to 26 classes. Figure 10.1 shows the subset of the results in figure 1.3 that involve these
11 multiclass datasets. From these experiments, we see that AdaBoost.M1, when used in
combination with C4.5 (which itself handles multiclass problems directly), gives perfor-
mance that is strong overall, and apparently is not adversely affected by the 50%-accuracy
requirement.

On the other hand, when using the much weaker decision stumps as base hypotheses
(which also can be modified directly for multiclass problems), AdaBoost.M1 is not even
able to get off the ground on the nine datasets with four or more classes—on each one of
these, the best decision stump found on the very first round of boosting already has an error
exceeding 50% (which is why AdaBoost.M1 was not used in the experiments reported in
section 1.2.2). For the two datasets with exactly three classes, AdaBoost.M1 successfully
improves the test error, from 35.2% to 4.7% in one case, and from 37.0% to 9.2% in the
other; however, in the second case, a different multiclass method does significantly better,
achieving a test error of 4.4%.

Thus, when using weak base classifiers, AdaBoost.M1 is inadequate for multiclass prob-
lems. In the remainder of this chapter, as well as in section 11.4, we develop multiclass
boosting techniques that place far less stringent demands on the weak learning algorithm
(including the method that was actually used in the decision-stump experiments reported
in section 1.2.2).

310 10 Multiclass Classification Problems

10.2 The One-against-All Reduction and Multi-label Classification

To make boosting possible even with a very weak base learner, in one way or another, the
communication between the boosting algorithm and the base learner must be augmented.
We will shortly see several examples of how this can be done. As discussed earlier, the
multiclass algorithms that we now focus on are generally based on reductions to the binary
case. The first of these, called AdaBoost.MH, is based on a “one-against-all” reduction in
which the multi-way classification problem is reduced to several binary problems, each
asking if a given instance is or is not an example of a particular class. Each of these binary
problems could be treated independently, training a separate copy of AdaBoost for each.
Here, instead, we pursue a more unified approach in which the binary problems are all
handled together and simultaneously in a single run of the boosting algorithm.

Furthermore, in this section, we consider the more general multi-label setting in which
each example may be assigned more than one class. Such problems arise naturally, for
instance, in text categorization problems where the same document (say, a news article) may
easily be relevant to more than one general topic; for example, an article about a presidential
candidate who throws out the first ball at a major-league baseball game should be classified
as belonging to both the “politics” and the “sports” categories.

10.2.1 Multi-label Classification

As before, Y is a finite set of labels or classes of cardinality K . In the standard single-label
classification setting considered up to this point, each example x ∈ X is assigned a single
class y ∈ Y so that labeled examples are pairs (x, y). The goal then, typically, is to find a
hypothesis H : X → Y that minimizes the probability that y �= H(x) on a newly observed
example (x, y). In contrast, in the multi-label case, each instance x ∈ X may belong to
multiple labels in Y . Thus, a labeled example is a pair (x, Y) where Y ⊆ Y is the set of
labels assigned to x. The single-label case is clearly a special case in which |Y | = 1 for all
observations.

It is unclear in this setting precisely how to formalize the goal of a learning algorithm
and, in general, the “right” formalization may well depend on the problem at hand. One
possibility is to seek a hypothesis that attempts to predict just one of the labels assigned to
an example. In other words, the goal is to find H : X → Y which minimizes the probability
that H(x) �∈ Y on a new observation (x, Y). We call this measure the one-error of hypothesis
H since it measures the probability of not getting even one of the labels correct. We denote
the one-error of a hypothesis h with respect to a distribution D over observations (x, Y) by
one-errD(H). That is,

one-errD(H)
.= Pr(x,Y)∼D[H(x) �∈ Y] .

Note that for single-label classification problems, the one-error is identical to ordinary
classification error. In what follows, and in chapter 11, we introduce other loss measures that

10.2 The One-against-All Reduction and Multi-label Classification 311

can be used in the multi-label setting. We begin with one of these called the Hamming loss,
and we show how its minimization also leads to an algorithm for the standard single-label
multiclass case.

10.2.2 Hamming Loss

Rather than predicting just one label correctly, the goal might instead be to predict all
and only all of the correct labels. In this case, the learning algorithm generates a hypothesis
that predicts sets of labels, and the loss depends on how this predicted set differs from the
one that was observed. Thus, H : X → 2Y and, with respect to a distribution D, the loss is

1

K
·E(x,Y)∼D[|H(x)%Y |] (10.1)

where A%B denotes the symmetric difference between two sets A and B, that is, the set
of elements in exactly one of the two sets. (The 1/K appearing in equation (10.1) is meant
merely to ensure a value in [0, 1].) We call this measure the Hamming loss of H , and we
denote it by hlossD(H).

When D is the empirical distribution (that is, the uniform distribution over the m training
examples), we denote this empirical Hamming loss by ĥloss(H). Similarly, empirical one-
error is denoted ône-err(H).

To minimize Hamming loss, we can, in a natural way, decompose the problem into K

orthogonal binary classification problems following the intuitive one-against-all approach
that was described earlier. That is, we can think of Y as specifying K binary labels, each
depending on whether some label y is or is not included in Y . Similarly, H(x) can be viewed
as K binary predictions. The Hamming loss then can be regarded as an average of the error
rate of H on these K binary problems.

For Y ⊆ Y , let us define Y [�] for � ∈ Y to indicate �’s inclusion in Y :

Y [�] .=
{ +1 if � ∈ Y

−1 if � �∈ Y .
(10.2)

Thus, we can identify any subset Y with a vector in {−1,+1}K or, equivalently, a function
mapping Y to {−1,+1}. Throughout this chapter, we will move fluidly between these two
equivalent representations of Y either as a subset or as a binary vector/function. To simplify
notation, we also identify any function H : X → 2Y with a corresponding two-argument
function H : X ×Y → {−1,+1} defined by

H(x, �)
.= H(x)[�] =

{ +1 if � ∈ H(x)

−1 if � �∈ H(x).

The Hamming loss given in equation (10.1) can then be rewritten as

312 10 Multiclass Classification Problems

Algorithm 10.2
AdaBoost.MH: A multiclass, multi-label version of AdaBoost based on Hamming loss

Given: (x1, Y1), . . . , (xm, Ym) where xi ∈ X , Yi ⊆ Y .
Initialize: D1(i, �) = 1/(mK) for i = 1, . . . , m and � ∈ Y (where K = |Y|).
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X ×Y → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize the normalization factor

Zt
.=

m∑
i=1

∑
�∈Y

Dt(i, �) exp(−αt Yi[�]ht (xi, �)).

• Update, for i = 1, . . . , m and for � ∈ Y:

Dt+1(i, �) = Dt(i, �) exp(−αt Yi[�] ht (xi, �))

Zt

.

Output the final hypothesis:

H(x, �) = sign

(
T∑

t=1

αtht (x, �)

)
.

1

K

∑
�∈Y

Pr(x,Y)∼D[H(x, �) �= Y [�]] .

(Technically, we sometimes allow H to output a prediction of 0 which, in this definition, is
always counted as an error.)

With the above reduction to binary classification in mind, it is rather straightforward to
see how to use boosting to minimize Hamming loss. The main idea of the reduction is simply
to replace each training example (xi, Yi) by K examples ((xi, �), Yi[�]) for � ∈ Y . In other
words, each instance is actually a pair of the form (xi, �) whose binary label is+1 if � ∈ Yi ,
and−1 otherwise. The result is the boosting algorithm called AdaBoost.MH—M for multi-
class, H for Hamming. As shown in algorithm 10.2, the procedure maintains a distribution
Dt over examples i and labels �. On round t , the weak learner accepts the distribution Dt (as
well as the training set), and generates a weak hypothesis ht : X ×Y → R. In this way, the

10.2 The One-against-All Reduction and Multi-label Classification 313

communication between the booster and the weak learner is significantly richer than inAda-
Boost.M1, where both Dt and ht were of a much simpler form. We can interpret ht (x, �) as a
confidence-rated prediction of whether label � should or should not be assigned to example
x, as indicated by the sign of the prediction (with the magnitude measuring confidence).
Our reduction also leads to the choice of final hypothesis shown in the algorithm.

Note that we have adopted a general approach that admits the use of confidence-rated
predictions as in chapter 9. As such, we have left αt unspecified. Continuing with this
approach, we can see that the analysis for the binary case given by theorem 9.1 can be
combined with the reduction used to derive this algorithm, yielding the following bound
on the Hamming loss of the final hypothesis:

Theorem 10.2 Assuming the notation of algorithm 10.2, the empirical Hamming loss of
AdaBoost.MH’s final hypothesis H is at most

ĥloss(H) ≤
T∏

t=1

Zt .

We can immediately adapt ideas from chapter 9 to this binary classification problem. As
before, theorem 10.2 suggests that our goal, in the choice of both ht and αt , should be to
minimalize

Zt
.=

m∑
i=1

∑
�∈Y

Dt(i, �) exp(−αt Yi[�]ht (xi, �)) (10.3)

on each round. For instance, if we require that each ht have range {−1,+1}, then we should
choose

αt = 1

2
ln

(
1− εt

εt

)
(10.4)

where

εt
.= Pr(i,�)∼Dt [ht (xi, �) �= Yi[�]]

can be thought of as a weighted Hamming loss with respect to Dt . As before, this choice
gives

Zt = 2
√

εt (1− εt).

So, to minimize Zt , the weak learning algorithm should choose εt as far from 1
2 as possible;

in other words, it should seek to minimize the Hamming loss weighted by Dt . Note that, as in
the binary case, if the base classifier guesses randomly, then εt will be equal to 1

2 ; moreover,

314 10 Multiclass Classification Problems

any value of εt that is bounded away from 1
2 will give Zt that is strictly less than 1,

thus ensuring eventual perfect training accuracy. Thus, whereas AdaBoost.M1 required a
weak learning algorithm that must be very substantially better than random, we see that
AdaBoost.MH can be used with any weak learner that is just slightly better than random
guessing.

We also can combine these ideas with those in section 9.2.6 on domain-partitioning weak
hypotheses. As in that section, suppose that h is associated with a partition X1, . . . , XJ

of the space X . It is natural then to create a partition of the set X ×Y consisting of all
sets Xj ×{�} for j = 1, . . . , J and � ∈ Y . An appropriate hypothesis h can then be formed
which predicts h(x, �) = cj� for x ∈ Xj . Applied to the current setting, equation (9.15)
implies that we should choose

cj� = 1

2
ln

(
W

j�
+

W
j�
−

)
(10.5)

where

W
j�

b

.=
m∑

i=1

D(i, �)1
{
xi ∈ Xj ∧Yi[�] = b

}
.

(In this case, as in section 9.2.6, the αt ’s are fixed to be 1.) By equation (9.16), this choice
of cj� gives

Zt = 2
J∑

j=1

∑
�∈Y

√
W

j�
+ W

j�
− . (10.6)

So, in a manner similar to that described in section 9.2.6 for the binary case, we can design
base learners that seek domain-partitioning base classifiers, such as (multi-label) decision
stumps, based on the criterion in equation (10.6), and giving real-valued predictions as
in equation (10.5).

10.2.3 Relation to One-Error and Single-Label Classification

We can use AdaBoost.MH even when the goal is to minimize one-error. Perhaps the most
natural way to do this is to define a classifier H 1 that predicts the label y for which the
weighted sum of the weak-hypothesis predictions in favor of y is greatest; that is,

H 1(x) = arg max
y∈Y

T∑
t=1

αtht (x, y). (10.7)

The next simple theorem relates the one-error of H 1 and the Hamming loss of H .

10.2 The One-against-All Reduction and Multi-label Classification 315

Theorem 10.3 With respect to any distribution D over observations (x, Y) with ∅ �=
Y ⊆ Y ,

one-errD(H 1) ≤ K hlossD(H)

(where K = |Y|).
Proof Assume Y �= ∅ and suppose H 1(x) �∈ Y . We argue that this implies that H(x, �) �=
Y [�] for some � ∈ Y . First, suppose the maximum in equation (10.7) is strictly positive, and
let � = H 1(x) realize the maximum. Then H(x, �) = +1 (since the maximum is positive),
but Y [�] = −1 since � �∈ Y . On the other hand, if the maximum in equation (10.7) is non-
positive, then H(x, �) is 0 or −1 for all � ∈ Y , but Y [�] = +1 for some � ∈ Y since Y is
not empty.

Thus, in either case, if H 1(x) �∈ Y , then H(x, �) �= Y [�] for some � ∈ Y . This implies
that

1
{
H 1(x) �∈ Y

} ≤∑
�∈Y

1{H(x, �) �= Y [�]},

which, taking expectations of both sides with respect to (x, Y) ∼ D, yields the theorem.

In particular, this means that AdaBoost.MH can be applied to single-label multiclass
classification problems. Combining theorems 10.2 and 10.3 results in a bound on the training
error of the final hypothesis H 1 that is at most

K

T∏
t=1

Zt (10.8)

where Zt is as in equation (10.3). In fact, theorem 10.4 below will imply a better bound of

K

2

T∏
t=1

Zt (10.9)

for the one-error of AdaBoost.MH when applied to single-label problems. Moreover, the
leading constant K/2 can be improved somewhat by assuming without loss of generality
that, prior to examining any of the data, a 0-th weak hypothesis is chosen that predicts −1
on all example-label pairs; that is, h0 ≡ −1. For this weak hypothesis, ε0 = 1/K , and Z0

is minimized by setting α0 = 1
2 ln(K − 1), which gives Z0 = 2

√
K − 1/K . Plugging into

the bound of equation (10.9), we therefore get an improved bound of

K

2

T∏
t=0

Zt =
√

K − 1
T∏

t=1

Zt .

316 10 Multiclass Classification Problems

This hack is equivalent to modifying algorithm 10.2 only in the manner in which D1 is
initialized. Specifically, D1 should be chosen so that

D1(i, �) =
{

1/(2m) if � = yi

1/[2m(K − 1)] else.

Note that H 1 is unaffected.
An alternative to the approach taken in equation (10.7) would choose any label y for which

H(x, y) = +1. This approach has the advantage of being less specific to the representation
used by the learning algorithm but, on the other hand, fails to take into account the strength of
the predictions for each class, which we expect to be highly informative. It will be possible
to obtain an analysis of this alternate approach for single-label problems as a special case
of theorem 10.4.

10.3 Application to Semantic Classification

As a typical example of how these ideas can be applied, consider the problem of categorizing
the type of call requested by a phone customer of the telecommunications company AT&T.
Some examples of spoken customer utterances and their correct classifications are shown
in table 10.2. In this problem, there are 15 predefined categories, shown in table 10.1,
intended to capture the caller’s intention. Most of these are requests for information or
specific services, or instructions on how a call is to be billed. Note that this is in fact a
multi-label problem—the same utterance may have multiple labels.

To apply boosting, we can use AdaBoost.MH since it is designed for such multiclass,
multi-label problems. We next need to select or design a base learning algorithm. Here, we
choose the very simple decision stumps mentioned above. Specifically, each such classifier
first tests a given document for the presence or absence of a particular term. A “term”
can be a single word (such as collect), a pair of adjacent words (such as my home), or a
possibly sparse triple of adjacent words (such as person ? person, which will match any
word in place of the question mark, such as in the phrase “person to person”). The presence
or absence of a term partitions the domain of all possible documents into two disjoint sets, so

Table 10.1
The classes in the call classification task

AC AreaCode CM Competitor RA Rate

AS AttService DM DialForMe 3N ThirdNumber

BC BillingCredit DI Directory TI Time

CC CallingCard HO HowToDial TC TimeCharge

CO Collect PP PersonToPerson OT Other

10.3 Application to Semantic Classification 317

Table 10.2
Some typical example utterances and their classifications in the call classification task

yes I’d like to place a collect call long distance please Collect

operator I need to make a call but I need to bill it to my office ThirdNumber

yes I’d like to place a call on my master card please CallingCard

I’m trying to make a calling card call to five five five one two one two in chicago CallingCard, DialForMe

I just called a number in sioux city and I musta rang the wrong number because I BillingCredit
got the wrong party and I would like to have that taken off of my bill

yeah I need to make a collect call to bob Collect, PersonToPerson

we can apply the techniques of section 10.2.2 to define a criterion for selecting the “best”
base classifier on each round (equation (10.6)), and also for selecting a set of values for
every label which will be output by the base classifier, depending on whether or not the
term is present.

This leads to base classifiers of the form given in figures 10.2 and 10.3, which show
the first several base classifiers found by boosting on the actual dataset. For instance, the
second one says roughly in words:

If the word card appears in what was said, then predict positively for the class CallingCard
with high confidence, and negatively (with varying degrees of confidence) for each of the
other classes; otherwise, if card does not appear, then predict negatively for the CallingCard
class, and abstain on each of the other classes.

Many of the terms found seem natural for this task, such as collect, card, my home, and
person ? person. This suggests boosting’s usefulness for selecting “features” from a very
large space of candidates. It is curious, however, that on many rounds, terms that seem unim-
portant are chosen, such as I, how, and and. In such cases, it may be that these words are
more useful than might be guessed, perhaps because they are used or not used in typical
phrasings of these sorts of requests. In the case of and on round 13, we see in fact that all
of the predictions are low confidence, suggesting that this term, although selected, is rather
unimportant.

As can be seen on this dataset, boosting can also be used as a method for identifying
outliers. This is because such mislabeled or highly ambiguous examples tend to receive the
most weight under the distributions computed by boosting. For example, table 10.3 is a list
of some of the examples with the highest weight under the final distribution computed by
boosting. Most of these examples are indeed outliers, many of which are clearly mislabeled.
In practice, once identified, such examples could either be removed entirely from the dataset,
or their labels corrected by hand.

rnd term AC AS BC CC CO CM DM DI HO PP RA 3N TI TC OT

1 collect

2 card

3 my home

4 person ? person

5 code

6 I

7 time

8 wrong number

9 how

Figure 10.2
The first nine weak hypotheses found when confidence-rated AdaBoost.MH is run on the call classification task
using the weak learning algorithm described in the text. Each weak hypothesis has the following form and
interpretation: If the term associated with the weak hypothesis occurs in the given document, then output the first
row of values; otherwise, output the second row of values. Here, each value, represented graphically as a bar,
gives the output of the weak hypothesis for one of the classes, which may be positive or negative.

rnd term AC AS BC CC CO CM DM DI HO PP RA 3N TI TC OT

10 call

11 seven

12 trying to

13 and

14 third

15 to

16 for

17 charges

18 dial

19 just

Figure 10.3
The next ten weak hypotheses (continuing figure 10.2).

320 10 Multiclass Classification Problems

Table 10.3
Examples with the highest final weight on the call classification task

I’m trying to make a credit card call Collect

hello Rate

yes I’d like to make a long distance collect call please CallingCard

calling card please Collect

yeah I’d like to use my calling card number Collect

can I get a collect call CallingCard

yes I would like to make a long distant telephone call and have the charges billed to CallingCard, DialForMe
another number

yeah I can not stand it this morning I did oversea call is so bad BillingCredit

yeah special offers going on for long distance AttService, Rate

mister xxxxx please william xxxxx PersonToPerson

yes ma’am I I’m trying to make a long distance call to a non dialable point in san AttService, Other
miguel philippines

yes I like to make a long distance call and charge it to my home phone that’s where DialForMe
I’m calling at my home

Many of the labels supplied by human annotators are obviously incorrect.

10.4 General Reductions Using Output Codes

As described in section 10.2, AdaBoost.MH solves multiclass single-label classification
problems by reducing to a set of binary problems using a very straightforward one-against-
all approach. In this section, we describe a much more general technique that encompasses
a large family of reductions from multiclass to binary.

10.4.1 Multiclass to Multi-label

In fact, we can think about these reductions formally as mappings from the given single-label
problem to a multi-label formulation. The method used in section 10.2 maps a single-
label problem into a multi-label problem in the simplest and most obvious way, namely,
by mapping each single-label observation (x, y) to a multi-label observation (x, {y}). In
other words, an example with label y is mapped to a multi-label example with a label set
consisting of the singleton {y}, meaning that y is the one and only label that should be
associated with this instance. When combined with AdaBoost.MH, the result is a multiclass
boosting algorithm based on this one-against-all reduction.

However, it is generally possible, and often desirable, to use a more sophisticated map-
ping corresponding to some other multiclass-to-binary reduction. In general, we can use any
injective (one-to-one) mapping � : Y → 2Y for this purpose. This mapping specifies how
each example should be relabeled or “coded” to create a new multi-label example. In par-
ticular, each example (x, y) gets mapped to (x, �(y)); that is, every label y is replaced by
multi-label set �(y). Note that � maps to subsets of an unspecified label set Y of cardinality

10.4 General Reductions Using Output Codes 321

K = |Y| which typically is not the same as Y . Intuitively, each element y of Y is a binary
question or dichotomy. Examples (x, y) (in the original problem) for which y ∈ �(y) are
positive examples for class y, while those for which y �∈ �(y) are the negative examples
of y. Equivalently, we can identify � with a K ×K {−1,+1}-valued coding matrix where

�(y, y)
.= �(y)[y] =

{ +1 if y ∈ �(y)

−1 else,

and where we continue to identify �(y), a subset, with a vector in {−1,+1}K . Each
y ∈ Y corresponds, then, to a binary question in which each example (x, y) (in the original
problem) is given the binary label �(y, y).

For example, the reduction of section 10.2 is obtained simply by setting Y = Y and
�(y) = {y} for all y. A more interesting example is given in table 10.4. At the top is a
sample coding matrix � mapping the original label set Y = {a, b, c, d} to the mapped label
set Y = {1, 2, 3}. According to this coding, label 1 in Y asks if an example’s label is in
{a, d} or if it is in the complement {b, c}; label 2 asks if it is in {a, b} or {c, d}; and label 3
asks if it is in {b, c, d} or {a}. So columns of this matrix can be viewed as binary problems
or dichotomies between one set of labels and another. The rows, on the other hand, can be
viewed as binary “codewords” that encode the original set of labels: a as 〈+1,+1,−1〉,
b as 〈−1,+1,+1〉, and so on. The bottom of the figure shows how a small dataset would
be relabeled by �. We can regard the mapped labels either as multi-label sets or as the

Table 10.4
A sample coding matrix (top) and its effect on a sample dataset (bottom)

� 1 2 3

a +1 +1 −1

b −1 +1 +1

c −1 −1 +1

d +1 −1 +1

Dichotomies

original 1 2 3 multi-label

(x1, a) → (x1,+1) (x1,+1) (x1,−1) = (x1, {1, 2})
(x2, c) → (x2,−1) (x2,−1) (x2,+1) = (x2, {3})
(x3, a) → (x3,+1) (x3,+1) (x3,−1) = (x3, {1, 2})
(x4, d) → (x4,+1) (x4,−1) (x4,+1) = (x4, {1, 3})
(x5, b) → (x5,−1) (x5,+1) (x5,+1) = (x5, {2, 3})
A multiclass, single-label example in the original dataset (on the left of the bottom table) gets mapped to three
binary examples, one for each of the three dichotomies associated with this code (middle columns) or, equivalently,
to a single, multi-label example (right column).

322 10 Multiclass Classification Problems

binary labels of the three dichotomies defined by the columns of �. For instance, (x3, a)

gets mapped to the multi-labeled example (x3, {1, 2}) or, equivalently, it can be viewed as
a positive example for dichotomies 1 and 2, and a negative example for dichotomy 3.

Once such a multi-label formulation � has been chosen, we can apply AdaBoost.MH
directly to the transformed, multi-labeled training set. The result is a learning method that
attempts to solve all of the binary problems associated with � simultaneously. Because this
mapping is arbitrary, the technique and analysis that we now describe are quite general, and
can be applied to any multiclass-to-binary reduction.

After applying AdaBoost.MH to the transformed data, how should we classify a new
instance x? The most direct idea is to evaluate AdaBoost.MH’s final classifier H on x, and
then to choose the label y ∈ Y for which the mapped codeword �(y) is closest in Hamming
distance (that is, the number of coordinates where two binary vectors disagree) to H(x, ·).
In other words, we predict the label y which minimizes∑
y∈Y

1{�(y, y) �= H(x, y)}.

This is called Hamming decoding.
A weakness of this approach is that it ignores the confidence with which each label was

included or not included in the label set predicted by H . An alternative approach is to predict
that label y which, if it had been paired with x in the training set, would have caused (x, y)

to be given the smallest total weight under the final distribution for the reduction induced
by �, and thus most closely fits the learned combined hypothesis. In other words, the idea
is to predict the label y which minimizes∑
y∈Y

exp(−�(y, y) F (x, y))

where F(x, y)
.=∑T

t=1αtht (x, y) is the weighted sum of weak hypotheses output by Ada-
Boost.MH. This expression also represents the exponential loss (see section 7.1) associated
with example (x, y) for this reduction. We therefore call this approach loss-based decoding.
The resulting algorithm is called AdaBoost.MO—M for multiclass, O for output coding.
Pseudocode is given as algorithm 10.3, including both Hamming and loss-based decoding
variants.

How should we choose the code �? The one-against-all reduction corresponds to a square
matrix with+1 on the diagonal and−1 in all other entries, as shown at the top of table 10.5
for a four-class problem. Intuitively, however, it is often desirable to map different labels
to sets or codewords which are far from one another, say, in terms of their symmetric
difference, or Hamming distance. Such a reduction will be richly redundant, and thus
robust in the information that each binary problem provides. The idea is that if all of the
codewords are far apart, then even if H(x, ·) is incorrect in its predictions on many of the
mapped labels, the codeword corresponding to the correct label will remain the closest, so
that the overall prediction will still be correct.

10.4 General Reductions Using Output Codes 323

Algorithm 10.3
AdaBoost.MO: A multiclass version of AdaBoost based on output codes

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ Y
output code � : Y → 2Y .

• Run AdaBoost.MH on relabeled data: (x1, �(y1)), . . . , (xm, �(ym)).

• Get back final hypothesis H of form H(x, y) = sign(F (x, y))

where F(x, y)
.=

T∑
t=1

αtht (x, y).

• Output modified final hypothesis:

H ham(x) = arg min
y∈Y

∑
y∈Y

1{�(y, y) �= H(x, y)} (Hamming decoding)

or

H lb(x) = arg min
y∈Y

∑
y∈Y

exp (−�(y, y) F (x, y)) (loss-based decoding).

This is the essence of an approach known as error-correcting output coding which uses
codes that have been designed with exactly such an error-correcting property. Note that
when K is not too small, even an entirely random code � is likely to have this property.
Alternatively, when K is not too large, we can use a complete code consisting of all possible
dichotomies of the labels, as shown at the bottom of table 10.5. In all such codes, the
Hamming distance between any pair of rows will be roughly K/2 (or better), compared to
just 2 for the one-against-all code.

In some domains, a binary coding of the labels may already be naturally defined by the
nature of the problem. For instance, if classifying phonemes, each class (phoneme) may
be naturally described by a set of binary features: voiced or unvoiced, vowel or consonant,
fricative or not, and so on. The code � then can correspond to the values of each of these
binary output features for each phoneme.

Theorem 10.4 formalizes the intuitions above, giving a bound on the training error in terms
of the quality of the code as measured by the minimum distance (or symmetric difference)
between any pair of codewords. We do not give a proof of the theorem because it will follow
as an immediate special case of theorem 10.5 below.

Theorem 10.4 Assuming the notation of algorithm 10.3 and algorithm 10.2 (viewed as a
subroutine), let

ρ = min
�1,�2∈Y :�1 �=�2

|�(�1)%�(�2)| . (10.10)

324 10 Multiclass Classification Problems

Table 10.5
The one-against-all (top) and complete (bottom) coding matrices for a four-class problem

�

a +1 −1 −1 −1

b −1 +1 −1 −1

c −1 −1 +1 −1

d −1 −1 −1 +1

�

a +1 −1 −1 −1 +1 +1 −1

b −1 +1 −1 −1 +1 −1 +1

c −1 −1 +1 −1 −1 +1 +1

d −1 −1 −1 +1 −1 −1 −1

Names for the columns or dichotomies have been omitted. The complete code omits degenerate dichotomies which
are all +1 or all −1, and also any dichotomy which is the negation of one that has already been included.

When run with this choice of �, the training error of AdaBoost.MO is upper bounded by

2K

ρ
· ĥloss(H) ≤ 2K

ρ

T∏
t=1

Zt

for Hamming decoding, and by

K

ρ

T∏
t=1

Zt

for loss-based decoding (where K = |Y|).
We can use theorem 10.4 to improve the bound in equation (10.8) forAdaBoost.MH to that

in equation (10.9) when applied to single-label multiclass problems. We apply theorem 10.4
to the code defined by �(y) = {y} for all y ∈ Y . Clearly, ρ = 2 in this case. Moreover,
we claim that H 1, as defined in equation (10.7), produces predictions identical to those
generated by H lb when using loss-based decoding in AdaBoost.MO. This is because∑
y∈Y

exp (−�(y, y) F (x, y)) = e−F(x,y)− eF(x,y)+
∑
y∈Y

eF(x,y),

so that the minimum over y is attained when F(x, y) is maximized. Applying theorem 10.4
now gives the bound in equation (10.9).

Although an improvement, these bounds for AdaBoost.MH are still rather poor in the
sense that they depend strongly on the number of classes K , and thus will be weak on

10.4 General Reductions Using Output Codes 325

problems with a large number of classes. In fact, when using codes with strong error-
correcting properties, theorem 10.4 indicates that there does not need to be an explicit
dependence on the number of classes. For instance, if the code � is chosen at random (uni-
formly among all possible codes), then, for large K , we expect ρ/K to approach 1

2 . In this
case, the leading coefficients in the bounds of theorem 10.4 approach 4 for Hamming decod-
ing, and 2 for loss-based decoding, independent of the number of classes K in the original
label set Y . This suggests that the method may be highly effective on problems with a large
number of classes. However, there is an important trade-off here: When a random code � is
used, the resulting binary problems, which are defined by a random partition of the classes,
may be highly unnatural, making it difficult to learn these underlying binary problems.

10.4.2 More General Codes

The output-coding approach described so far requires that every dichotomy of the classes to
be learned must involve all of the classes. This is potentially a limitation since such binary
problems can be exceedingly difficult to learn due to their unnaturalness. For instance,
if attempting to optically recognize handwritten digits, it may be very hard to learn to
distinguish digits belonging to the set {0, 1, 5, 6, 9} from those belonging to {2, 3, 4, 7, 8}.
The problem is that such unnatural, disjunctive concepts are highly complex and difficult
to characterize.

For this reason, it is sometimes advantageous to use dichotomies that involve only a
subset of the classes. For instance, in the example above, we might attempt to learn to
distinguish digits in the set {1, 7} from those in the set {0, 6}. A classifier trained for this
task would be expected to give accurate predictions only when presented with examples
from one of the target classes, in this case, 0, 1, 6, or 7; nothing would be expected of its
performance on examples belonging to other classes.

Such a dichotomy involving just a few of the classes is likely to be much simpler, and thus
easier to learn. At an extreme, we can consider distinguishing just one class from one other,
for instance, distinguishing 3’s from 7’s, a problem that surely should be easier than the
complex dichotomy above involving all 10 classes. When one binary problem is solved for
each of the

(
K

2

)
pairs of classes, this leads to the all-pairs approach discussed further below.

The output-coding framework outlined above can be extended to accommodate dichot-
omies involving only a subset of the classes. We saw earlier that the code � can be viewed
as a matrix of {−1,+1} values, an interpretation that we adopt henceforth, abandoning
our earlier alternative view of � as a mapping to multi-label sets. Furthermore, we now
allow entries of � to take the value 0 so that as a function, � maps Y ×Y to {−1, 0,+1}.
We interpret the value 0 for entry �(y, y) to be an indication that class y is irrelevant
for dichotomy y, and thus that a classifier’s predictions on examples with this label are
immaterial. Such examples are simply ignored during training.

For instance, � may be a matrix such as the one at the top of table 10.6. Here, dichotomy 1
asks if an example’s class belongs to the set {a} or if it belongs to {b, d}, with examples in

326 10 Multiclass Classification Problems

Table 10.6
Another sample coding matrix (top), and its effect on a sample dataset (bottom)

� 1 2 3

a +1 −1 −1

b −1 0 +1

c 0 +1 −1

d −1 0 −1

Dichotomies

Original 1 2 3

(x1, a) → (x1,+1) (x1,−1) (x1,−1)

(x2, c) → (x2,+1) (x2,−1)

(x3, a) → (x3,+1) (x3,−1) (x3,−1)

(x4, d) → (x4,−1) (x4,−1)

(x5, b) → (x5,−1) (x5,+1)

Similar to table 10.4, each multiclass, single-label example in the original dataset is mapped to binary examples
in the three dichotomies of this code. Now, however, some of these are omitted from some of the resulting binary
datasets.

Table 10.7
The all-pairs coding matrix for a four-class problem

�

a +1 +1 +1 0 0 0

b −1 0 0 +1 +1 0

c 0 −1 0 −1 0 +1

d 0 0 −1 0 −1 −1

class c being of no relevance; dichotomy 2 asks if the example’s class is in {c} or in {a},
with classes b and d being irrelevant; and dichotomy 3 asks if it is in {b} or in {a, c, d}.
The bottom of the figure shows how a multiclass dataset gets mapped to the three binary
problems using this code. Note that examples with label c are omitted from the first binary
problem, as are examples with label b or d from the second. For instance, example (x5, b)

becomes a negative example for binary problem 1, a positive example for binary problem 3,
and is omitted from binary problem 2.

Table 10.7 shows the matrix � for the all-pairs code mentioned above for a four-class
problem. This code consists of one dichotomy for every pair of classes. Intuitively, such
dichotomies should be the easiest and most natural binary problems one could extract from
a multiclass problem. On the other hand, when the number of classes is large, the number
of dichotomies will be quadratically larger, although the training set for each dichotomy
will be relatively small. Also, the error-correcting properties of this code are not so strong.

10.4 General Reductions Using Output Codes 327

whale dolphinsealmonkeyhuman tiger lion

1

32

654

human

monkey

tiger

lion

seal

1

+1

+1

+1

+1

–1

–1

–1

3

0

0

0

0

–1

–1

+1

whale

6

0

0

0

0

–1

0

+1

dolphin

2

+1

+1

–1

–1

0

0

0

4

+1

0

0

–1

0

0

0

5

0

0

+1

–1

0

0

0

Figure 10.4
Seven classes arranged naturally in a hierarchy, and a corresponding code based on this hierarchy.

We can sometimes derive codes using known structure among the classes. For instance,
it may be that the classes form a natural hierarchy as shown in figure 10.4. In such a case,
a code corresponding exactly to this tree structure can be created in which each dichotomy
corresponds to an internal node pitting the classes in its left subtree against those in its right
subtree, ignoring all others, as shown in the figure.

We can modify AdaBoost.MO to handle such {−1, 0,+1}-valued codes by ignoring
some examples on some of the dichotomies as dictated by the code. In other words, we saw
earlier that AdaBoost.MO is a reduction to a binary classification problem in which there
is one training instance for each of the Km pairs (xi, y) for each (xi, yi) in the original

328 10 Multiclass Classification Problems

training set and each y ∈ Y; the binary label assigned to this pair is �(yi, y). Now we can
follow exactly the same reduction but omit all pairs (xi, y) for which �(yi, y) = 0. This is
equivalent in the context of boosting to setting the initial distribution of such examples to
be zero. Thus, mathematically, the only needed modification is in the initialization of D1.
In particular, we let

D1(i, y) = |�(yi, y)|
sm

=
{

0 if �(yi, y) = 0
1/(sm) else,

where s is the sparsity measuring the number of non-zeros in the output code when applied
to the dataset:

s
.= 1

m

m∑
i=1

∑
y∈Y

|�(yi, y)| = 1

m

m∑
i=1

|Syi
|, (10.11)

and where

Sy
.= {y ∈ Y : �(y, y) �= 0}.

After initializing D1 in this modified fashion, AdaBoost.MH can be applied just as before,
producing a weighted combination of weak hypotheses F(x, y) whose sign is given by
H(x, y). The decoding methods described above can be generalized to ignore zero entries
in the output code. In particular, for Hamming decoding, we redefine H ham to be

H ham(x) = arg min
y∈Y

∑
y∈Sy

1{H(x, y) �= �(y, y)} .

Likewise, for loss-based decoding, we now have

H lb(x) = arg min
y∈Y

∑
y∈Sy

exp(−�(y, y) F (x, y)).

Algorithm 10.4 shows such a generalized version of AdaBoost.MO in which the subrou-
tine call to AdaBoost.MH has been “compiled out.” Note that, because we have modified
only the distributions Dt , we can continue to use all of the preceding techniques for choos-
ing αt and for finding weak hypotheses ht . On the other hand, in many cases it may be
possible to implement this same algorithm more efficiently by taking advantage of codes
which are very sparse, or which have special structure.

Our analysis of the training error of this method, a direct generalization of theorem 10.4,
uses a generalized measure ρ of the minimum Hamming distance between two rows of the
code � in which entries are ignored if they are 0 in either (or both) of the rows. That is, for
distinct rows �1 and �2, we first define

10.4 General Reductions Using Output Codes 329

Algorithm 10.4
A generalized version of AdaBoost.MO

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ Y
output code � : Y ×Y → {−1, 0,+1}.

Initialize:
D1(i, y) = |�(yi, y)|/(sm) for i = 1, . . . , m and y ∈ Y ,
where s is as in equation (10.11).

For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X ×Y → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize the normalization factor

Zt
.=

m∑
i=1

∑
y∈Y

Dt(i, y) exp(−αt �(yi, y) ht (xi, y)).

• Update, for i = 1, . . . , m and y ∈ Y:

Dt+1(i, y) = Dt(i, y) exp(−αt �(yi, y) ht (xi, y))

Zt

.

Let

F(x, y) =
T∑

t=1

αtht (x, y)

H(x, y) = sign(F (x, y)).

Output final hypothesis:

H ham(x) = arg min
y∈Y

∑
y:�(y,y)�=0

1{H(x, y) �= �(y, y)} (Hamming decoding)

or

H lb(x) = arg min
y∈Y

∑
y:�(y,y)�=0

exp(−�(y, y) F (x, y)) (loss-based decoding).

330 10 Multiclass Classification Problems

T�1,�2

.= {y ∈ S�1 ∩ S�2 : �(�1, y) �= �(�2, y)}
to be the set of nonzero entries where �1 and �2 differ. Then ρ is the minimum cardinality
of any such set. Also, the empirical Hamming error, specialized to this setting and ignoring
zero entries, becomes

ĥloss(H)
.= 1

sm

m∑
i=1

∑
y∈Syi

1{H(xi, y) �= �(yi, y)} .

Note that by the same arguments used in theorem 10.2 applied to this modified reduction
to binary, this loss is upper bounded by the exponential loss

1

sm

m∑
i=1

∑
y∈Syi

exp(−�(y, y) F (x, y)) =
T∏

t=1

Zt .

Theorem 10.5 Assuming the notation of algorithm 10.4, and given the definitions above,
let

ρ
.= min

�1,�2∈Y :�1 �=�2
|T�1,�2 |.

When run with this choice of �, the training error of generalized AdaBoost.MO is upper
bounded by

2s

ρ
ĥloss(H) ≤ 2s

ρ

T∏
t=1

Zt

for Hamming decoding, and by

s

ρ

T∏
t=1

Zt

for loss-based decoding.

Proof We give a unified proof for both Hamming and loss-based decoding. In either case,
for a fixed example, let L(x, y, y) be the relevant loss that would be suffered on example
x if the correct label were y on dichotomy (or mapped label) y ∈ Sy . Thus, for Hamming
decoding, where the relevant loss is Hamming (or misclassification) error,

L(x, y, y) = 1{H(x, y) �= �(y, y)} ,
and for loss-based decoding, based on exponential loss,

10.4 General Reductions Using Output Codes 331

L(x, y, y) = exp(−�(y, y) F (x, y)).

Suppose the actual correct label for x is y. Then for either coding scheme, the final classifier
H ham or H lb makes a mistake only if∑
y∈S�

L(x, �, y) ≤
∑
y∈Sy

L(x, y, y)

for some � �= y. This implies that∑
y∈Sy

L(x, y, y) ≥ 1
2

∑
y∈Sy

L(x, y, y)+ 1
2

∑
y∈S�

L(x, �, y)

≥ 1
2

∑
y∈Sy∩S�

(L(x, y, y)+L(x, �, y))

≥ 1
2

∑
y∈Ty,�

(L(x, y, y)+L(x, �, y)), (10.12)

where in the second and third inequalities, we have simply dropped some nonnegative
terms.

If y ∈ Ty,�, then �(�, y) = −�(y, y). Thus, for Hamming decoding, at least one of
L(x, y, y) or L(x, �, y) will be equal to 1 in this case, which implies that equation (10.12)
is at least

|Ty,�|
2

≥ ρ

2
.

Therefore, if Mham is the number of training errors made by H ham, then this argument
shows that

Mham · ρ
2
≤

m∑
i=1

∑
y∈Syi

L(xi, yi, y)

= sm ĥloss(H)

≤ sm

T∏
t=1

Zt,

which is equivalent to the bound for Hamming decoding stated in the theorem.
For loss-based decoding, because �(�, y) = −�(y, y) for y ∈ Ty,�, and because we are

using exponential loss, equation (10.12) becomes

1

2

∑
y∈Ty,�

(
L(x, y, y)+ 1

L(x, y, y)

)
,

332 10 Multiclass Classification Problems

which is at least |Ty,�| ≥ ρ since z+ 1/z ≥ 2 for all z > 0. So again, if M lb is the number
of training errors made by H lb, then

M lbρ ≤
m∑

i=1

∑
y∈Syi

L(xi, yi, y)

= sm

T∏
t=1

Zt,

giving the bound for loss-based decoding.

Theorem 10.4 can be obtained as an immediate corollary simply by applying theorem 10.5
to an output code � with no zero entries. The theorem again formalizes the trade-off between
codes in which the codewords are far apart, as measured by ρ/s, against the difficulty of
learning the various dichotomies, as measured by the Zt ’s.

For the all-pairs reduction, ρ = 1 and s = K − 1, so that with loss-based decoding, the
overall training error is at most

(K − 1)

T∏
t=1

Zt .

For a code based on a hierarchy as in figure 10.4, ρ = 1 and s is at most the depth of the
tree.

Experimentally, loss-based decoding seems to nearly always perform at least as well as
Hamming decoding, consistent with the theory. However, the code giving best performance
on a particular dataset seems to depend very much on the problem at hand. One-against-all is
often satisfactory, but not always the best. For instance, on the 26-class “letter” benchmark
dataset used elsewhere in this book (such as in section 1.3), the test error rates shown in
table 10.8 were obtained using decision stumps as weak hypotheses. On this dataset, all-
pairs is far superior to one-against-all, while a random code (with no zero entries) does

Table 10.8
Percent test error rates for various coding and decoding schemes on two benchmark datasets

Letter Soybean-Large

Hamming Loss-based Hamming Loss-based

One-against-All 27.7 14.6 8.2 7.2

All-Pairs 7.8 7.1 9.0 8.8

Random 30.9 28.3 5.6 4.8

Bibliographic Notes 333

worse than either. On the other hand, on the “soybean-large” benchmark dataset, which
has 19 classes, the best results are obtained using a random code, and the worst with the
all-pairs reduction.

Summary

In summary, we have seen in this chapter that there are many ways of extending bi-
nary AdaBoost when confronting a multiclass learning task. When using a relatively strong
base learner, the most straightforward extension, AdaBoost.M1, can be used. For weaker
base learners, the multiclass problem must be reduced to multiple binary problems. There
are numerous ways of devising such a reduction, and we have discussed several specific
and general strategies and analyses. These include AdaBoost.MH, which can be used not
only for multiclass but also for multi-label data, as well as AdaBoost.MO, which can be
used across a very broad range of reductions or codes.

Bibliographic Notes

The AdaBoost.M1 algorithm and analysis of section 10.1 are due to Freund and
Schapire [95], as are the experiments reported at the end of that section and in fig-
ure 10.1 [93]. The AdaBoost.MH algorithm and analysis of section 10.2 are due to
Schapire and Singer [205]. The experiments in section 10.3 were conducted by Schapire
and Singer [206] on a task and with data developed by Gorin and others [109, 110, 189].

The results and methods in section 10.4.1 are from Schapire and Singer [205], and are
based directly on the error-correcting output coding technique of Dietterich and Bakiri [70].
The generalization in section 10.4.2 is essentially from Allwein, Schapire, and Singer [6],
although here we have included somewhat improved versions of AdaBoost.MO and its
analysis in theorem 10.5. Some similar, though more specialized, results were given earlier
by Guruswami and Sahai [114]. The all-pairs approach was studied previously by Fried-
man [99] and Hastie and Tibshirani [119]. The results in table 10.8 are excerpted from far
more extensive experiments reported by Allwein, Schapire, and Singer [6], who also gave
results on the generalization error of some of the methods studied in this chapter. More gen-
eral decoding schemes and improved analyses are given, for instance, by Klautau, Jevtić,
and Orlitsky [136], and Escalera, Pujol, and Radeva [83].

Other approaches for extending boosting to the multiclass setting have been proposed,
for instance, by Schapire [200], Abe, Zadrozny, and Langford [2], Eibl and Pfeiffer [81],
Zhu et al. [238], and Mukherjee and Schapire [173]. See also Beygelzimer, Langford, and
Ravikumar’s [19] more general work on reducing multiclass to binary.

Some of the exercises in this chapter are based on material from [6].

334 10 Multiclass Classification Problems

Exercises

10.1 Consider a modification of AdaBoost.M1 (algorithm 10.1) in which the algorithm is
not forced to halt when εt ≥ 1

2 , but is simply allowed to proceed. Assume the weak learner
is exhaustive, returning on each round the weak classifier h ∈ H with minimum weighted
error. Suppose on some round t that εt > 1

2 .

a. For this modified version of AdaBoost.M1, explain what will happen on all subsequent
rounds t + 1, t + 2,

b. Under these conditions, how will the resulting combined classifiers differ for the modified
and unmodified versions?

10.2 AdaBoost.Mk (algorithm 10.5) is a generalization of AdaBoost.M1 that relaxes the
requirement that the weighted errors of the weak classifiers be smaller than 1

2 , but that
provides correspondingly weaker guarantees on performance. The algorithm takes an inte-
ger parameter k ≥ 1 (with k = 1 corresponding to AdaBoost.M1). The setting of αt will
be discussed shortly. For a real-valued function f : Y → R, we use in the algorithm the
notation arg k-maxy∈Yf (y) to stand for the top k elements of Y when ordered by f , that is,
a set A ⊆ Y with |A| = k and for which f (y) ≥ f (y ′) for all y ∈ A and y ′ �∈ A. (If more
than one set A satisfies this condition, we allow one to be chosen arbitrarily.) Thus, H(x)

returns the top k labels as ordered by the weighted votes of the weak classifiers.

a. Show that

1

m

m∑
i=1

1{yi �∈ H(xi)} ≤
T∏

t=1

Zt .

b. Assume that εt < k/(k+ 1) for all t . Show how to choose αt so that the fraction of
training examples for which yi �∈ H(xi) is at most

exp

(
−

T∑
t=1

REb

(
k

k+ 1
‖ εt

))
.

c. Conclude that if the weighted accuracy of each weak classifier is at least 1/(k+ 1)+ γ ,
then after T rounds, at least a fraction 1− e−2γ 2T of the training examples i will have
the correct label yi ranked among the top k, that is, included in the set H(xi).

10.3 In this exercise and exercise 10.4, we will see one way of generalizing the margins
analysis of chapter 5 to the current multiclass setting, specifically, to AdaBoost.MO using
loss-based decoding as in algorithm 10.4. For simplicity, assume the weak hypotheses ht

are chosen from a finite space H, and all have range {−1,+1}. We also assume � includes
no zero entries, and that (without loss of generality) αt ≥ 0 for all t . The convex hull of H,

Exercises 335

Algorithm 10.5
AdaBoost.Mk, a generalization of AdaBoost.M1

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ Y
parameter k ≥ 1.

Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → Y .

• Aim: select ht to minimalize the weighted error:

εt
.= Pri∼Dt [ht (xi) �= yi] .

• If εt ≥ k/(k+ 1), then set T = t − 1, and exit loop.

• Choose αt > 0.

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i)

Zt

×
{

e−kαt if ht (xi) = yi

eαt if ht (xi) �= yi

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = arg k-max
y∈Y

T∑
t=1

αt1{ht (x) = y} .

co(H), is the same as in equation (5.4), except that the functions involved are defined on
the domain X ×Y rather than X .

For f ∈ co(H), η > 0, and (x, y) ∈ X ×Y , let

νf,η(x, y)
.= −1

η
ln

⎛⎝ 1

K

∑
y∈Y

exp (−η�(y, y)f (x, y))

⎞⎠.

We define the margin of labeled example (x, y) with respect to f, η to be

Mf,η(x, y)
.= 1

2

(
νf,η(x, y)−max

��=y
νf,η(x, �)

)
.

336 10 Multiclass Classification Problems

a. Show that Mf,η(x, y) ∈ [−1,+1]. Also, for an appropriate choice of f and η, show
that Mf,η(x, y) ≤ 0 if and only if H lb misclassifies (x, y) (where, as usual, we count a
tie in the “arg min” used to compute H lb as a misclassification).

Let f ∈ co(H) and let θ > 0 be fixed. Let n be a (fixed) positive integer, and let
An, f̃ , h̃1, . . . , h̃n be as in the proof of theorem 5.1 (but with modified domain X ×Y).
We also adopt the notation PrS[·], PrD[·], Prf̃ [·], and so on from that proof, where S is the
training set and D is the true distribution over X ×Y .

b. For fixed x ∈ X , show that

Prf̃

[
∃y ∈ Y :

∣∣∣f (x, y)− f̃ (x, y)

∣∣∣ ≥ θ

4

]
≤ βn

where βn
.= 2Ke−nθ2/32.

In what follows, you can use (without proof) the following technical fact: Let

Eθ
.=
{

4 ln K

iθ
: i = 1, . . . ,

⌈
8 ln K

θ2

⌉}
.

For any η > 0, let η̂ be the closest value in Eθ to η. Then for all f ∈ co(H) and for all
(x, y) ∈ X ×Y ,

∣∣νf,η(x, y)− νf,η̂(x, y)
∣∣ ≤ θ

4
.

c. Let η > 0, and let η̂ ∈ Eθ be as above. Suppose for some x ∈ X that |f (x, y)−
f̃ (x, y)| ≤ θ/4 for all y ∈ Y . Show the following for all y ∈ Y:

i. |νf,η(x, y)− νf̃ ,η(x, y)| ≤ θ/4.

ii. |νf,η(x, y)− νf̃ ,η̂(x, y)| ≤ θ/2.

[Hint: Prove and then use the fact that
(∑

i ai

)
/
(∑

i bi

) ≤ maxi (ai/bi) for any positive
numbers a1, . . . , an; b1, . . . , bn.]

d. For any distribution P over pairs (x, y), show that

PrP,f̃

[∣∣∣Mf,η(x, y)−Mf̃ ,η̂(x, y)

∣∣∣ ≥ θ

2

]
≤ βn.

e. Let

εn
.=
√

ln [|Eθ | · |H|n/δ]

2m
.

Show that with probability at least 1− δ over the choice of the random training set, for
all f̃ ∈ An, and for all η̂ ∈ Eθ ,

Exercises 337

PrD

[
Mf̃ ,η̂(x, y) ≤ θ

2

]
≤ PrS

[
Mf̃ ,η̂(x, y) ≤ θ

2

]
+ εn.

(Note that θ and n are fixed.)

f. Show that with probability at least 1− δ, for all f ∈ co(H), and for all η > 0,

PrD
[
Mf,η(x, y) ≤ 0

] ≤ PrS

[
Mf,η(x, y) ≤ θ

]+ 2βn+ εn.

For an appropriate choice of n, we can now obtain a result analogous to theorem 5.1
(you do not need to show this).

10.4 Continuing exercise 10.3, let

εt
.= Pr(i,y)∼Dt [ht (xi, y) �= �(yi, y)]

be the weighted error of ht , which we assume without loss of generality is at most 1
2 , and

let αt be chosen as in equation (10.4). Let f and η be chosen as in exercise 10.3(a), and let
θ > 0.

a. Suppose, for some (x, y) ∈ X ×Y , that Mf,η(x, y) ≤ θ . For y ∈ Y and � ∈ Y , let
z(y)

.= η�(y, y)f (x, y)− ηθ

z
�
(y)

.= η�(�, y)f (x, y)+ ηθ.

Show that

i.
∑
y∈Y

e−z(y) ≥
∑
y∈Y

e−z
�
(y) for some � �= y.

ii.
∑
y∈Y

e−z(y) ≥ ρ where ρ is as in equation (10.10).

b. Let γt
.= 1

2 − εt . Prove that the fraction of training examples i for which Mf,η(xi, yi) ≤ θ

is at most

K

ρ
·

T∏
t=1

√
(1+ 2γt)1+θ (1− 2γt)1−θ .

10.5 When using AdaBoost.MO with the all-pairs coding matrix, each dichotomy y is
identified with an unordered pair of distinct labels, that is,

Y = {{�1, �2} : �1, �2 ∈ Y, �1 �= �2} .
Suppose each weak hypothesis ht : X ×Y → R can be written in the form

ht (x, {�1, �2}) = �(�1, {�1, �2})
2

·
(
h̃t (x, �1)− h̃t (x, �2)

)
(10.13)

for some h̃t : X ×Y → R.

338 10 Multiclass Classification Problems

a. In equation (10.13), �1 and �2 are treated symmetrically on the left, but appear not to be
so treated on the right. Show that the right-hand side of equation (10.13) is in fact equal
to the same expression if �1 and �2 are swapped.

b. Show that if loss-based decoding is used, then

H lb(x) = arg max
y∈Y

T∑
t=1

αt h̃t (x, y).

10.6 Suppose the label set Y = {0, . . . , K − 1}, and that we apply AdaBoost.MO with
Y .= {1, . . . , K − 1} and

�(y, y)
.=
{ +1 if y ≤ y

−1 else.

Using the notation from algorithm 10.3, suppose it happens that the computed function F

is monotone in the sense that F(x, y1) ≥ F(x, y2) if y1 ≤ y2.

a. Show that the two decoding methods are equivalent in this case, that is, H ham ≡ H lb

(assuming ties in their respective arg mins are broken in the same way).

b. Show that

1

m

m∑
i=1

H lb(xi)− yi

K − 1
≤

T∏
t=1

Zt .

c. Suppose each ht has the form

ht (x, y) =
{ +1 if y ≤ h̃t (x)

−1 else

for some h̃t : X → Y , and assume also that αt ≥ 0 for all t . Show that H lb(x) is a
weighted median of the h̃t (x) values with weights αt . (Aweighted median of real numbers
v1, . . . , vn with nonnegative weights w1, . . . , wn is any number v for which

∑
i:vi<v wi ≤

1
2

∑n
i=1 wi and

∑
i:vi>v wi ≤ 1

2

∑n
i=1 wi .)

10.7 AdaBoost.MO is designed to find F to minimize 1
m

∑m
i=1L(F, (xi, yi)) where

L(F, (x, y))
.=
∑
y∈Sy

exp (−�(y, y)F (x, y)) .

a. Let � be any code (possibly with zero entries), and let p be any distribution on X ×Y .
For simplicity, assume p(y|x) > 0 for all x, y. Among all functions F : X ×Y → R,
find one that minimizes the expected loss E(x,y)∼p[L(F, (x, y))].

Exercises 339

b. Let Y , Y , �, and F be as in exercise 10.6. For any x, find a conditional probability
distribution p(y|x) such that F(x, ·) minimizes the conditional expected loss

Ey∼p(·|x)[L(F, (x, y))] .

Your answer should be in closed form, and expressed in terms of F .

11 Learning to Rank

We consider next how to learn to rank a set of objects, a problem that arises naturally in a
variety of domains. For instance, web search engines seek to rank documents or web pages
according to their relevance to a given query. Similarly, the purpose of a recommendation
system may be to rank movies according to the chance that a particular viewer will like
them. Indeed, problems that may seem on the surface to be classification problems often
turn out, when viewed in practical terms, instead to be ranking problems. For instance, in
bioinformatics, one may wish to learn to identify all the proteins with a given property. This
would seem to be a classification problem, but in practice, one is often actually seeking a
ranking of the proteins by their probability of having this property so that the ones at the
top of the ranking can be verified in a physical laboratory. And as previously mentioned,
any multiclass, multi-label classification problem can be viewed as a ranking problem in
which the goal is to rank the categories that a given instance is most likely to belong to.

In this chapter, we present a boosting-based technique for handling such ranking prob-
lems, which we study in a general framework. The main algorithm, RankBoost, is based
on a straightforward reduction from ranking to binary classification, specifically, to a set
of binary questions asking, for each pair of instances, which is to be ranked higher than
the other. Alternatively, RankBoost can be viewed as an algorithm for minimizing a par-
ticular loss function analogous to the exponential loss function minimized by AdaBoost
as discussed in chapter 7. Moreover, although distinct, these two loss functions present
minimization problems that turn out to be closely related, indicating that ordinary binary
AdaBoost may itself have unintended properties as a ranking method.

RankBoost takes advantage of techniques developed earlier, particularly for making use
of confidence-rated base hypotheses as in chapter 9. Some of these methods can provide
significant practical improvements in efficiency. Superficially, RankBoost would seem to
be an inherently inefficient approach (compared, for instance, to AdaBoost) because of its
design as an algorithm based on the handling of pairs of instances. Nevertheless, as will
be seen, when the ranking problem has a particular natural form, the algorithm can be
implemented in a way that is especially efficient.

342 11 Learning to Rank

When RankBoost is applied to solve multiclass, multi-label classification problems, the
resulting algorithm is called AdaBoost.MR, an alternative to the AdaBoost.MH algorithm
of section 10.2, and one that can be implemented with equivalent efficiency using the
techniques mentioned above.

At the end of this chapter, we present two applications of RankBoost, one for the problem
of parsing English sentences, and the other for finding genes which may be relevant to
particular forms of cancer.

11.1 A Formal Framework for Ranking Problems

We begin with a formal description of the problem of learning to rank some collection of
objects. In this setting, the objects that we are interested in ranking are called instances.
For example, in the movie-ranking task, each movie is an instance. As usual, the set of all
instances is called the domain or instance space, and is denoted by X . The goal of learning
is to compute a “good” ranking of all the instances in X —for example, a ranking of all
movies from most to least likely to be enjoyed by a particular movie-viewer.

Every learning process must begin with data. In classification learning, it is assumed that
this training data takes the form of a set of training instances, each paired with its presumably
correct label or classification. In a similar fashion, a learning algorithm in the ranking setting
must also be provided with some kind of training data. What should we assume about its
form?

Certainly, the learner must be provided with a set of training instances, that is, a relatively
small and finite subset of the domain X , which we denote by V . For instance, in movie
ranking, these training instances might comprise all the movies seen and ranked by the
target user. Of course, in addition to this sampling of instances, the learner, whose goal is
to infer a good ranking, must also be given some information about how these instances
should be properly ranked relative to one another. Ideally, we might wish to assume that
the learner is provided with a total ordering of all of these training instances, that is, a
complete ranking of every one of the training instances relative to every other instance. In
the movie-ranking setting, this would mean that the user would need to specify his favorite
movie, followed by his second favorite, his third favorite, and so on for all of the movies
seen. In practice, this might be too much to ask.

More typically, in an actual system, the user might be asked to rate each movie with, say, 1
to 5 stars. Such ratings are really providing ranking information: 5-star movies are preferred
to 4-star movies, which are preferred to 3-star movies, and so on. However, this ranking
is not a total order since no preference is expressed between two movies receiving the
same number of stars. Furthermore, there may be reason to discount comparisons between
movies of different genres; for instance, the scale used to rate children’s movies might not
be comparable to the scale used for action thrillers.

11.1 A Formal Framework for Ranking Problems 343

These considerations are indicative of the need to accommodate ranking information
that is as general in form as possible. To this end, we assume only that the learner is
provided with information about the relative ranking of individual pairs of instances. That
is, for various pairs of instances (u, v), the learner is informed as to whether v should be
ranked above or below u. In the movie setting, this means converting rating information
provided by the user into a list of pairs of movies in which one is preferred to the other by
virtue of receiving more stars. However, the list would omit pairs in which both movies
receive the same number of stars and, if appropriate, could also omit other pairs, such as
pairs of movies of different genres.

Thus, we can think of the training feedback provided to the learning algorithm as a set of
pairs of training instances indicating that one should be ranked higher than the other. The
goal of the learning algorithm then is to use this ranking feedback to infer a good ranking
of the entire domain, typically by finding a ranking that is maximally consistent with the
feedback.

Formally, then, the input to the learning algorithm is a set V of training instances from
X , together with a set E of ordered pairs of distinct training instances (u, v). We interpret
the inclusion of such a pair to mean that v should correctly be ranked above u. Members
of the set E are called preference pairs. We assume without loss of generality that every
training instance in V occurs in at least one preference pair.

Note that this feedback is equivalent to a directed graph, called the feedback graph, in
which the vertices are the training instances in V , and the edges are exactly the preference
pairs in E. Figure 11.1 shows examples of typical graphs that might be provided as feedback.
Graph (a) shows feedback that amounts to a total order over all of the training instances.
Graph (b) gives an example of bipartite feedback in which one set of instances should all
be ranked above all others, as would be the case, for example, if all movies were simply
rated as either “good” or “bad.” Graph (c) shows layered feedback in which the feedback
is arranged in layers (for instance, using a 3-star rating system). Note that both bipartite
feedback and feedback representing a total order are special cases of layered feedback.

Graph (d) emphasizes the point that the feedback can be entirely arbitrary, and may be
inconsistent in various senses. In particular, it might seem logical that if (u, v) and (v, w)

are preference pairs, then (u, w) should be as well; that is, if w is preferred to v, and v is
preferred to u, then it seems to follow that w should be preferred to u. Nevertheless, in the
formalism that we adopt, we do not require that the feedback satisfy any such transitivity
condition. We also allow the feedback graph to contain cycles. However, we do assume
that E contains no “self-loops,” that is, pairs of the form (u, u), since these do not make
sense in our setting, and there is nothing to be learned from them.

As an example of where such inconsistencies might arise, the instances could be sports
teams with each preference pair (u, v) representing the outcome of a single game in which
team v beat team u. In such a setting, there is no guarantee of any kind of transitivity: It is
entirely possible for team w to beat team v, and v to beat u, but for u later to beat team w.

344 11 Learning to Rank

(a) (b)

(c) (d)

Figure 11.1
Four sample feedback graphs. The vertices are instances, and the edges are the preference pairs indicating that
one instance should be ranked above the other.

Such inconsistent feedback is analogous to receiving the same example with contradictory
labels in the classification setting.

As noted earlier, the aim of the learning algorithm is to find a good ranking over the entire
domain X . Formally, we represent such a ranking by a real-valued function F : X → R

with the interpretation that F ranks v above u if F(v) > F(u). Note that the actual numerical
values of F are immaterial; only the relative ordering that they define is of interest (although
the algorithms that we describe shortly will in fact use these numerical values as part of the
training process).

To quantify the “goodness” of a ranking F with respect to the given feedback, we compute
the fraction of preference-pair misorderings:

1

|E|
∑

(u,v)∈E

1{F(v) ≤ F(u)} .

11.2 A Boosting Algorithm for the Ranking Task 345

In other words, using our interpretation of the ranking of X defined by F , we simply
compute the extent to which F agrees or disagrees with the pair-by-pair ordering provided
by the given set E of preference pairs. This quantity is called the empirical ranking loss,
and is denoted r̂loss(F).

More generally, we can compute such a loss measure with respect to any distribution D

over a finite set of preference pairs. Thus, formally, suppose D is a distribution over X ×X
with finite support (that is, zero on all but a finite set of pairs). Then the ranking loss of F

with respect to D, denoted rlossD(F), is the weighted fraction of misorderings:

rlossD(F)
.=
∑
u,v

D(u, v)1{F(v) ≤ F(u)} = Pr(u,v)∼D[F(v) ≤ F(u)] .

(Throughout this chapter, when a specific range is not specified on a sum, we always
assume summation over just those elements of X for which the summand is not zero.)

Of course, the real purpose of learning is to produce a ranking that performs well even
on instances not observed in training. For instance, for the movie task, we would like to
find a ranking of all movies that accurately predicts which ones a movie-viewer will like
more or less than others; obviously, this ranking is of value only if it includes movies that
the viewer has not already seen. As in other learning settings, how well the learning system
performs on unseen data depends on many factors, such as the number of instances covered
in training and the representational complexity of the ranking produced by the learner. These
issues go beyond the scope of this chapter, although many of the methods for classification
described in other parts of this book are certainly applicable here as well. We instead focus
on algorithms simply for minimizing ranking loss with respect to the given feedback.

11.2 A Boosting Algorithm for the Ranking Task

In this section, we describe an approach to the ranking problem based on boosting. We
focus on the RankBoost algorithm, its analysis, and its interpretation.

11.2.1 RankBoost

Pseudocode for RankBoost is shown as algorithm 11.1. The algorithm is very similar to
confidence-rated AdaBoost, but with some key modifications. Like AdaBoost, RankBoost
operates in rounds. On each round t , a distribution Dt is computed, and a weak learner is
called to find ht . Unlike AdaBoost, however, in RankBoost, Dt is a distribution over pairs
of instances, conceptually over all of V ×V (or even X ×X), though in fact concentrated
just on the given set E of preference pairs. The initial distribution D1 is simply the uniform
distribution over E, and for each subsequent distribution, Dt(u, v) indicates the importance
on round t of ht ranking v above u. Also, ht is now called a weak ranker; as a real-valued
function on X , we interpret ht as providing a ranking of all instances in X in much the
same way as the (final) ranking F .

346 11 Learning to Rank

Algorithm 11.1
The RankBoost algorithm, using a pair-based weak learner

Given: finite set V ⊆ X of training instances
set E ⊆ V ×V of preference pairs.

Initialize: for all u, v, let D1(u, v) =
{

1/|E| if (u, v) ∈ E

0 else.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak ranking ht : X → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize the normalization factor

Zt
.=
∑
u,v

Dt(u, v) exp
(

1
2 αt (ht (u)−ht (v))

)
.

• Update, for all u, v: Dt+1(u, v) = Dt(u, v) exp
(

1
2 αt(ht (u)−ht (v))

)
Zt

.

Output the final ranking: F(x) = 1
2

T∑
t=1

αtht (x).

RankBoost uses the weak rankings to update the distribution as shown in the algorithm.
Suppose that (u, v) is a preference pair so that we want v to be ranked higher than u (in
all other cases, Dt(u, v) will be zero). Assuming for the moment that the parameter αt > 0
(as it usually will be), this rule decreases the weight Dt(u, v) if ht gives a correct ranking
(ht (v) > ht(u)), and increases the weight otherwise. Thus, Dt will tend to concentrate on
the pairs whose relative ranking is hardest to determine correctly. The actual setting of αt

will be discussed shortly. The final ranking F is simply a weighted sum of the weak rankings.
The RankBoost algorithm can in fact be derived directly from AdaBoost, using an appro-

priate reduction to binary classification. In particular, we can regard each preference pair
(u, v) as providing a binary question of the form “Should v be ranked above or below u?”
Moreover, weak hypotheses in the reduced binary setting are assumed to have a particular
form, namely, as a scaled difference h(u, v) = 1

2 (h(v)−h(u)). The final hypothesis, which
is a linear combination of weak hypotheses, then inherits this same form “automatically,”
yielding a function that can be used to rank instances. When AdaBoost is applied, the result-
ing algorithm is exactly RankBoost. (The scaling factors of 1

2 appearing above and in the
algorithm have no significance, and are included only for later mathematical convenience.)

11.2 A Boosting Algorithm for the Ranking Task 347

Although a bound on the ranking loss falls out from the reduction, we choose to prove
such a bound directly. This theorem also provides the criterion given in the algorithm for
choosing αt and for designing the weak learner, as we discuss below. As in the proof of
theorem 3.1, we give a general result for any initial distribution D1.

Theorem 11.1 Assuming the notation of algorithm 11.1, the empirical ranking loss of
F or, more generally, the ranking loss of F with respect to any initial distribution D1, is at
most

rlossD1(F) ≤
T∏

t=1

Zt .

Proof Unraveling the update rule, we have that

DT+1(u, v) = D1(u, v) exp (F (u)−F(v))∏T
t=1Zt

.

Using the fact that 1{x ≥ 0} ≤ ex for all real x, we thus have that the ranking loss with
respect to initial distribution D1 is∑
u,v

D1(u, v)1{F(u) ≥ F(v)} ≤
∑
u,v

D1(u, v) exp (F (u)−F(v))

=
∑
u,v

DT+1(u, v)

T∏
t=1

Zt =
T∏

t=1

Zt .

This proves the theorem.

11.2.2 Choosing αt and Criteria for Weak Learners

In view of the bound established in theorem 11.1, we are guaranteed to produce a combined
ranking with low ranking loss if on each round t , we choose αt and the weak learner
constructs ht so as to (approximately) minimize

Zt
.=
∑
u,v

Dt (u, v) exp
(

1
2 αt(ht (u)−ht (v))

)
. (11.1)

This is the rationale for the objective shown in algorithm 11.1. Thus, analogous to the
approach taken in chapter 9, minimization of Zt can again be used as a guide both in the
choice of αt and in the design of the weak learner. Several of the techniques from chapter 9
for working with confidence-rated weak hypotheses can be applied here directly, as we now
sketch. To simplify notation, we here fix t and drop all t subscripts when they are clear
from the context.

348 11 Learning to Rank

First and most generally, for any given weak ranking h, as in section 9.2.1, Z can be
viewed as a convex function of α with a unique minimum that can be found numerically,
for instance via a simple binary search (except in trivial degenerate cases).

A second method of minimizing Z can be applied in the special case that h has range
{−1,+1}. Such binary weak rankers arise naturally, and are especially easy to work with in
many domains. They can be used to divide the instance space into two sets, one of which is
generally to be preferred to the other. For instance, in movie ranking, a weak ranker that is
+1 on foreign films and −1 on all others can be used to express the sentiment that foreign
films are generally preferable to nonforeign films.

For such weak rankers, the scaled difference 1
2 (h(v)−h(u)) appearing in equation (11.1)

in the exponent has range {−1, 0,+1}. Thus, we can minimize Z analytically in terms of
α using techniques from section 9.2.4. Specifically, for b ∈ {−1, 0,+1}, let

Ub
.=
∑
u,v

D(u, v)1{h(v)−h(u) = 2b} = Pr(u,v)∼D[h(v)−h(u) = 2b] .

Also, abbreviate U+1 by U+, and U−1 by U−. Then

Z = U0+U−eα +U+e−α.

As in section 9.2.4, it can be verified that Z is minimized by setting

α = 1

2
ln

(
U+
U−

)
, (11.2)

which yields

Z = U0+ 2
√

U−U+. (11.3)

Thus, if we are using weak rankings with range restricted to {−1,+1}, we should attempt
to find h minimizing equation (11.3), and we should then set α as in equation (11.2). For
instance, if using decision stumps, then the search technique described in sections 3.4.2 and
9.2.6 can be straightforwardly modified for this purpose.

Later, in section 11.3.1, we will describe further general techniques for finding weak
rankings and selecting α. Although inexact, we will see how these methods can effect
substantial computational savings by reducing the problem of finding a weak ranking to an
ordinary binary-classification problem.

11.2.3 RankBoost and AdaBoost’s Loss Functions

In chapter 7, we saw that AdaBoost naturally minimizes a particular loss function, namely,
the exponential loss. Specifically, given examples (x1, y1), . . . , (xm, ym), with labels
yi ∈ {−1,+1}, AdaBoost seeks a function Fλ which minimizes

11.2 A Boosting Algorithm for the Ranking Task 349

m∑
i=1

exp (−yiFλ(xi)) (11.4)

where

Fλ(x)
.=

N∑
j=1

λj�j (x)

is a linear combination over the given family of all base classifiers �1, . . . , �N (assumed,
as before, to be finite).

In a similar fashion, RankBoost also can be understood as a method for minimizing a
particular loss function. By arguments similar to those in section 7.1, it can be shown that
RankBoost greedily minimizes∑
(u,v)∈E

exp(Fλ(u)−Fλ(v)) (11.5)

where Fλ and the �j ’s are defined just as before. We refer to the loss in equation (11.5) as
the ranking exponential loss and, to avoid possible confusion, we here refer to the ordinary
exponential loss in equation (11.4) as the classification exponential loss.

As in chapter 7, it can be seen that RankBoost on each round t updates a single parameter
λj corresponding to ht by adding 1

2 αt to it. Then theorem 11.1 follows from the simple
observation that ranking loss is upper bounded by ranking exponential loss, which turns
out to equal

∏T
t=1Zt in the notation of that theorem.

Although the AdaBoost and RankBoost loss functions are somewhat different, they turn
out to be closely related, a connection that we pause now to spell out. In particular, under a
quite benign assumption about the family of base functions, it can be shown that any process
that minimizes AdaBoost’s classification exponential loss will simultaneously minimize
RankBoost’s ranking exponential loss for corresponding bipartite feedback. This suggests
that althoughAdaBoost is intended for use as a classification algorithm, it may inadvertently
be producing good rankings of the data as well.

To be more precise, suppose we are given binary labeled data as above, and assume
for simplicity that the data includes no duplicate instances. Given data and a family of
base functions, we could run AdaBoost on the data, as suggested above. Alternatively, we
could regard this same data as providing bipartite feedback which ranks all of the positive
examples in the dataset above all of the negative examples. Formally, this means that the
set of preference pairs E is equal to V− ×V+ where

V−
.= {xi : yi = −1}

V+
.= {xi : yi = +1}. (11.6)

350 11 Learning to Rank

With these definitions, we could now apply RankBoost. In this case, the ranking exponential
loss given in equation (11.5) is equal to∑
u∈V−

∑
v∈V+

exp (Fλ(u)−Fλ(v)) . (11.7)

By factoring, it can be seen that equation (11.7) is equal to⎛⎝∑
u∈V−

eFλ(u)

⎞⎠⎛⎝∑
v∈V+

e−Fλ(v)

⎞⎠ = L−(λ) ·L+(λ) (11.8)

where we define

Lb(λ)
.=
∑

i:yi=b

e−bFλ(xi)

for b ∈ {−1,+1}, and where we abbreviate L−1 and L+1 by L− and L+.
In comparison, AdaBoost minimizes equation (11.4), which can be written in the form

L−(λ) + L+(λ). (11.9)

We now make the very benign assumption that the base function class includes one func-
tion that is identically equal to+1; that is, one base function, say, �1, is such that �1(x) = +1
for all x. Under this assumption, it can be shown that any process, such as AdaBoost,
that minimizes classification exponential loss as in equation (11.9) also simultaneously
minimizes ranking exponential loss as in equation (11.8).

We will not prove this here in full generality. However, to give some intuition, consider the
special case in which a process like AdaBoost converges to some finite vector of parameters
λ∗ ∈ RN which minimizes the classification exponential loss in equation (11.9). Then each
partial derivative is equal to zero; that is,

0 = ∂(L− +L+)(λ∗)
∂λj

= ∂L−(λ∗)
∂λj

+ ∂L+(λ∗)
∂λj

(11.10)

for all j . In particular, when j = 1, since �1 is identically equal to +1, we have that

∂Lb(λ∗)
∂λ1

=
∑

i:yi=b

−be−bFλ(xi) = −bLb(λ∗)

for b ∈ {−1,+1}, so equation (11.10) becomes

L−(λ∗)−L+(λ∗) = 0. (11.11)

On the other hand, the partial derivatives of the ranking exponential loss in equation (11.8)
at λ∗ are

11.3 Methods for Improving Efficiency 351

∂(L− ·L+)(λ∗)
∂λj

= L−(λ∗) · ∂L+(λ∗)
∂λj

+L+(λ∗) · ∂L−(λ∗)
∂λj

= L+(λ∗)
[

∂L+(λ∗)
∂λj

+ ∂L−(λ∗)
∂λj

]
(11.12)

= 0. (11.13)

Here, equations (11.12) and (11.13) follow from equations (11.11) and (11.10), respectively.
Thus, λ∗ is also a minimum of the ranking exponential loss.

This suggests that AdaBoost, though not designed for such a purpose, may be reasonable
as a method for producing a ranking. On the other hand, RankBoost, which has ranking
as its explicit design goal, might do a better and faster job. Moreover, as earlier noted
in section 7.3, these loss functions only partially capture the essence of the associated
algorithms, and say little or nothing about their dynamics or ability to generalize.

11.3 Methods for Improving Efficiency

RankBoost would appear to be an inherently slow algorithm on large datasets since the
main operations take O(|E|) time, which is often quadratic in the number of training
instances |V |. Nevertheless, in many natural cases, this running time can be improved very
substantially, as we show in this section.

11.3.1 Reducing to Binary Classification

In section 11.2.2, we studied methods for finding weak rankings ht and selecting αt based
on minimization of Zt as in equation (11.1). Although these methods are exact, we will see
now that working instead with an approximation of Zt can make it possible to combine
RankBoost with much more efficient weak learners designed for binary classification rather
than ranking. In other words, we show that ranking problems can in principle be solved
using a weak learning algorithm intended instead for ordinary binary classification. This
approach will also pave the way for the other efficiency improvements given in the sections
that follow.

As before, we fix t and omit it from subscripts when clear from context. Our approximation
of Z is based on the convexity of eαx as a function of x, which implies that

exp
(

1
2 α(h(u)−h(v))

) ≤ 1
2

(
eαh(u)+ e−αh(v)

)
for any α and for any values of h(u) and h(v). Applied to Z as in equation (11.1), this gives

Z ≤ 1
2

∑
u,v

D(u, v)
(
eαh(u)+ e−αh(v)

)

=
∑

u

(
1
2

∑
v

D(u, v)

)
eαh(u)+

∑
v

(
1
2

∑
u

D(u, v)

)
e−αh(v). (11.14)

352 11 Learning to Rank

Motivated by the parenthesized expressions that appear here, let us now define D̃(x, y) as
follows, for all instances x ∈ X and for y ∈ {−1,+1}:
D̃(x,−1)

.= 1
2

∑
x′

D(x, x ′)

D̃(x,+1)
.= 1

2

∑
x′

D(x ′, x). (11.15)

Note that D̃ is in fact a distribution since∑
x

∑
y∈{−1,+1}

D̃(x, y) =
∑

x

(
D̃(x,−1)+ D̃(x,+1)

)

=
∑

x

((
1
2

∑
x′

D(x, x ′)

)
+
(

1
2

∑
x′

D(x ′, x)

))

= 1
2

∑
x,x′

D(x, x ′)+ 1
2

∑
x,x′

D(x ′, x) = 1.

Since the definitions in equation (11.15) are exactly the parenthesized quantities appearing
in equation (11.14), we can rewrite this bound on Z as

Z ≤
∑

x

D̃(x,−1) eαh(x)+
∑

x

D̃(x,+1) e−αh(x)

=
∑

x

∑
y∈{−1,+1}

D̃(x, y) e−αyh(x). (11.16)

This expression has precisely the same form as the weighted exponential loss encountered
in chapter 9, such as in equation (9.2), which the booster and weak learner aim to minimize
on each round of boosting in the context of ordinary binary classification, using confidence-
rated predictions. Thus, rather than working directly with Z and the possibly large set of
preference pairs given in E, the approximation in equation (11.16) suggests an alternative
approach: On each round t , we construct a binary-classification training set in which each
training instance x is replaced by two oppositely labeled examples, (x,−1) and (x,+1).
Then, using the distribution D = Dt over pairs of instances, we compute the distribution
D̃ = D̃t over labeled examples (x, y) as in equation (11.15). Finally, using the various
techniques outlined in chapter 9, we apply a binary-classification weak learning algorithm
to this data and distribution to find a (possibly confidence-rated) weak hypothesis h, and
also to select α, with the objective of minimizing equation (11.16).

As an example, for weak rankings with bounded range, say, [−1,+1], we can set α

using the approximation of Z given in section 9.2.3. Specifically, applying equation (9.7)
to equation (11.16) gives the upper bound

11.3 Methods for Improving Efficiency 353

Z ≤ eα + e−α

2
− eα − e−α

2
r, (11.17)

where now

r
.=
∑

x

∑
y∈{−1,+1}

D̃(x, y)yh(x)

=
∑

x

h(x)
(
D̃(x,+1)− D̃(x,−1)

)
. (11.18)

As seen earlier, the right-hand side of equation (11.17) is minimized when

α = 1

2
ln

(
1+ r

1− r

)
, (11.19)

which, plugging back into equation (11.17), yields Z ≤ √1− r2. Thus, to approximately
minimize Z using weak rankings with range [−1,+1], we can attempt to maximize |r| as
defined in equation (11.18), and then set α as in equation (11.19). If the range of the weak
rankings is further restricted to {−1,+1}, then it can be checked that

r = 1− 2 Pr(x,y)∼D̃[h(x) �= y] ,

so that, in this case, maximizing r is equivalent to finding a weak ranking (really a classifier)
h having small classification error with respect to the weighted binary-classification dataset
constructed as above.

Compared to working with preference pairs, this approach of reducing to a binary-
classification problem may be much more efficient, though inexact. RankBoost, in the gen-
eral form given in algorithm 11.1, uses a pair-based weak learner that aims to minimize
Zt , given a distribution over preference pairs. Now, however, we see that RankBoost can
instead be used with an instance-based weak learner that attempts to minimize the approx-
imation in equation (11.16) with respect to a distribution on binary labeled examples. Even
in this latter case, we are still left with the difficulty of maintaining and computing Dt and
D̃t efficiently. We will see next how this can be done when the feedback is well structured.

11.3.2 Layered Feedback

We begin by describing a more efficient implementation of RankBoost for feedback that is
layered. Such feedback is defined by disjoint subsets V1, . . . , VJ of X such that, for j < k,
all instances in Vk are ranked above all instances in Vj . Formally, this means that the set of
preference pairs is exactly

E =
⋃

1≤j<k≤J

Vj ×Vk. (11.20)

354 11 Learning to Rank

For example, layered feedback arises in the movie-ranking task, mentioned earlier, in
which each movie is rated with 1 to J stars. For that matter, the feedback will be layered
in any application in which individual instances are assigned a grade or rating along an
ordered scale.

When there are just J = 2 layers, the feedback is said to be bipartite since in this case,
the edges V1×V2 define a complete bipartite feedback graph. Feedback of this special
form arises naturally, for instance, in document rank-retrieval tasks common in the field of
information retrieval. Here, a set of documents may have each been judged to be relevant
or irrelevant to some topic or query. Although predicting such judgments can be viewed as
a classification task, it is generally more desirable to produce a ranked list of all documents
with the relevant ones near the top—in other words, an ordering in which the relevant
documents are preferred to irrelevant ones. Feedback that encodes such preferences is
evidently bipartite. In fact, as we have already discussed, any binary-classification problem
can instead be treated as a bipartite ranking problem in a similar fashion.

If RankBoost is implemented naively as in section 11.2, then the space and time-per-
round requirements will be O(|E|), that is, on the order of the number of preference pairs
|E|, where in this case,

|E| =
∑
j<k

|Vj | · |Vk|.

Typically, this will be quadratic in the number of training instances. To a degree, such
complexity is inevitable when working with a pair-based weak learner whose input is a
distribution Dt on E. However, in section 11.3.1, we saw that RankBoost can also be used
with an instance-based weak learner whose input is instead a distribution D̃t on the (usually)
much smaller set V ×{−1,+1}. This presents an opening for improving the efficiency of
RankBoost in the latter setting. Rather than maintaining Dt and using it to compute D̃t as
in equation (11.15), operations which require O(|E|) time and space, we will see now that
D̃t can be computed directly and much more efficiently by exploiting the special structure
of the layered feedback without first finding Dt explicitly.

Let Ft denote the combined hypothesis accumulated through round t :

Ft(x)
.= 1

2

t∑
t ′=1

αt ′ht ′(x).

By unraveling the recurrence for Dt used by RankBoost, it can be verified that

Dt(u, v) = 1

Zt

· exp (Ft−1(u)−Ft−1(v)) (11.21)

for (u, v) ∈ E (and zero for all other pairs), where Zt is a normalization factor. Now suppose
x ∈ Vj . Then plugging equation (11.21) into equation (11.15) gives

11.3 Methods for Improving Efficiency 355

D̃t (x,−1)
.= 1

2

∑
x′

Dt(x, x ′)

= 1

2Zt

·
J∑

k=j+1

∑
x′∈Vk

exp
(
Ft−1(x)−Ft−1(x

′)
)

(11.22)

= 1

2Zt

exp (Ft−1(x))

J∑
k=j+1

∑
x′∈Vk

exp
(−Ft−1(x

′)
)
. (11.23)

Equation (11.22) uses equation (11.21) along with the fact that (x, x ′) ∈ E if and only if
x ′ ∈ Vj+1 ∪Vj+2 ∪ · · · ∪VJ by definition of the layered feedback. The double sum appear-
ing in equation (11.23) may seem fairly expensive to compute for each x separately.
However, because these sums do not depend on x specifically, but only on its layer j ,
they can be computed just once for each layer, and then used repeatedly. More specifically,
to represent these sums, we define, for j = 1, . . . , J ,

St,j (−1)
.=
∑
x∈Vj

exp (−Ft−1(x))

and

Ct,j (−1)
.=

J∑
k=j+1

St,k(−1).

Notice that St,j (−1) can be computed for all j simultaneously with a single scan through
the training instances, and thus in time O(|V |) (where, as usual, V is the set of all training
instances, in this case, the union of all J disjoint layers). Further, once these have been found,
we can also compute Ct,j (−1), for all j , using the simple relation Ct,j (−1) = Ct,j+1(−1)+
St,j (−1) in a pass that takes just O(J) = O(|V |) time.

With these definitions, equation (11.23) can be rewritten as

D̃t (x,−1) = 1

2Zt

· exp (Ft−1(x)) ·Ct,j (−1)

for all x ∈ Vj . Similarly, D̃t (x,+1) can be computed using analogous quantities St,j (+1)

and Ct,j (+1). The normalization factor Zt can also be found in O(|V |) time (see
exercise 11.6).

This approach to computing D̃t is summarized in algorithm 11.2, a more efficient version
of RankBoost that we call RankBoost.L. The derivations above show that the computation of
D̃t by RankBoost.L is equivalent to finding D̃t as in equation (11.15) based on RankBoost’s
computation of Dt . Furthermore, we have argued that this implementation requires space
and time per round that are just O(|V |), regardless of the number of layers J .

356 11 Learning to Rank

Algorithm 11.2
RankBoost.L, a more efficient version of RankBoost for layered feedback using an instance-based weak learner

Given: nonempty, disjoint subsets V1, . . . , VJ of X representing preference pairs

E =
⋃

1≤j<k≤J

Vj ×Vk.

Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• For j = 1, . . . , J and y ∈ {−1,+1}, let

St,j (y) =
∑
x∈Vj

exp (yFt−1(x))

and let

Ct,j (+1) =
j−1∑
k=1

St,k(+1), Ct,j (−1) =
J∑

k=j+1

St,k(−1).

• Train instance-based weak learner using distribution D̃t where, for x ∈ Vj , j =
1, . . . , J , and y ∈ {−1,+1},

D̃t (x, y) = 1

2Zt

· exp(−yFt−1(x)) ·Ct,j (y),

and where Zt is a normalization factor (chosen so that D̃t is a distribution).

• Get weak ranking ht : X → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize
∑

x

∑
y∈{−1,+1}

D̃t (x, y) e−αt yht (x).

• Update: Ft = Ft−1+ 1
2 αtht .

Output the final ranking: F(x) = FT (x) = 1
2

T∑
t=1

αtht (x).

11.3 Methods for Improving Efficiency 357

11.3.3 Quasi-layered Feedback

So RankBoost can be implemented particularly efficiently when the feedback is layered.
This technique can be generalized to a much broader class of problems in which the feedback
is not layered per se, but can be decomposed, vaguely speaking, into a kind of union or sum
in which each component is layered.

To make this notion of decomposition precise, we will first need to generalize RankBoost
and our formalism to handle weighted feedback. We have assumed until now that all pref-
erence pairs are given equal importance; sometimes, however, we may wish to give some
pairs greater weight than others. For instance, in movie ranking, we might wish to give
pairs representing the preference for a 5-star movie over a 1-star movie greater weight than
a pair that represents a 3-star movie that is preferred to a 2-star movie.

Formally, this amounts to providing the learning algorithm with a nonnegative, real-
valued feedback function ϕ, where the weight ϕ(u, v) ≥ 0 represents the relative importance
of pair (u, v), with ϕ(u, v) strictly positive if and only if (u, v) is a preference pair. Con-
ceptually, ϕ is defined over all of X ×X , but is in fact zero everywhere except on the finite
preference-pair set E. We also can assume without loss of generality that ϕ sums to 1 so
that∑
u,v

ϕ(u, v) = 1. (11.24)

For instance, the (unweighted) feedback function used until now is defined by

ϕ(u, v) =
{

1/|E| if (u, v) ∈ E

0 else.
(11.25)

RankBoost can easily be modified for more general feedback functions ϕ simply by
using ϕ as the initial distribution D1. Theorem 11.1 then provides a bound on the empirical
ranking loss relative to ϕ, that is, rlossϕ(F).

With this extended formalism, we can now focus on quasi-layered feedback, that is,
feedback given by a function ϕ that can be decomposed as a weighted sum of layered
feedback functions. Thus, such feedback can be written in the form

ϕ(u, v) =
m∑

i=1

wiϕi(u, v) (11.26)

for some set of positive weights wi that sum to 1, and for some sequence of layered feedback
functions ϕi . The weights wi encode the relative importance assigned to each function ϕi .
Each of these, in turn, is associated with layered feedback over a subset V i of the training
instances. That is, V i is partitioned into disjoint layers V i

1 , . . . , V i
Ji

which define the set Ei

of preference pairs just as in equation (11.20). The feedback ϕi is then defined exactly as in

358 11 Learning to Rank

equation (11.25), but with E replaced by Ei . In the special case that Ji = 2 for all i so that
each component feedback function is bipartite, we say that the combined feedback function
ϕ is quasi-bipartite.

Of course, any feedback function can be written in quasi-bipartite form (and, therefore,
in quasi-layered form) by choosing the sets V i

1 and V i
2 to be singletons, with one component

for each edge. Here, however, we focus on natural cases in which the sets defining the layers
are fairly sizable.

For instance, in a different formulation of the ranked-retrieval task, our goal might be to
learn to rank documents by their relevance to a range of possible queries. In other words,
given a query q (say, a search term), we want the system to rank all of the documents in its
database by their relevance to q. To train such a system, we provide it with a set of queries
q1, . . . , qm, and for each query, we also provide a set of documents, each of which has been
judged relevant or irrelevant to that particular query. To formulate such data as a ranking
problem, we define the domain X to be the set of all pairs (q, d) of queries q and documents
d . The feedback is naturally quasi-bipartite. In particular, for each training query qi , we
define one bipartite feedback function ϕi in which V i

2 (respectively, V i
1) consists of all pairs

(qi, d) where d is a training document for qi that has been judged relevant (respectively,
irrelevant). Thus, ϕi encodes the fact that (qi, d2) should be ranked above (qi, d1) if d2 is
relevant for qi but d1 is irrelevant for qi . Assuming the queries have equal importance, we
can then let wi = 1/m.

If the documents have instead been graded along a scale of relevance (for instance, very
relevant, somewhat relevant, barely relevant, not at all relevant), then a similar formulation
leads to feedback that is quasi-layered in general, even if not quasi-bipartite.

RankBoost.L (algorithm 11.2) can be directly generalized for quasi-layered feedback
simply by treating each component separately and combining the results linearly. More
specifically, as in section 11.3.2, the main computational challenge is in computing D̃t on
each round t . As before, using the recurrent definition of Dt computed by RankBoost as
in algorithm 11.1 together with the decomposition of D1 = ϕ in equation (11.26), we can
write

Dt(u, v) = 1

Zt

·D1(u, v) exp (Ft−1(u)−Ft−1(v))

= 1

Zt

m∑
i=1

wiϕi(u, v) exp (Ft−1(u)−Ft−1(v))

= 1

Zt

m∑
i=1

wid
i
t (u, v)

where Zt is a normalization factor, and where we define

di
t (u, v)

.= ϕi(u, v) exp (Ft−1(u)−Ft−1(v)) .

11.3 Methods for Improving Efficiency 359

Although di
t is not a distribution, we can nevertheless apply equation (11.15) to it, thus

defining

d̃ i
t (x,−1)

.= 1
2

∑
x′

di
t (x, x ′)

d̃i
t (x,+1)

.= 1
2

∑
x′

di
t (x

′, x).

With these definitions, along with equation (11.15), we get that

D̃t (x,−1) = 1
2

∑
x′

Dt(x, x ′)

= 1

2Zt

∑
x′

m∑
i=1

wid
i
t (x, x ′)

= 1

Zt

m∑
i=1

wi

(
1
2

∑
x′

di
t (x, x ′)

)

= 1

Zt

m∑
i=1

wid̃
i
t (x,−1).

A similar calculation holds for D̃t (x,+1) so that, in general,

D̃t (x, y) = 1

Zt

m∑
i=1

wid̃
i
t (x, y)

for y ∈ {−1,+1}. Further, d̃ i
t (x, y) can be computed for each i separately exactly as in

section 11.3.2.
Combining these ideas leads to the algorithm RankBoost.qL, shown as algorithm 11.3.

The space and time per round needed to compute d̃ i
t , for each i, is O

(|V i |) by our earlier
arguments. Thus, the total time and space is

O

(
m∑

i=1

|V i |
)

,

a dramatic improvement (in most cases) over a direct implementation of RankBoost, which
could be as bad as

O

(
m∑

i=1

|Ei |
)

.

360 11 Learning to Rank

Algorithm 11.3
RankBoost.qL, an efficient version of RankBoost for quasi-layered feedback using an instance-based weak learner

Given:

• for i = 1, . . . , m, nonempty, disjoint subsets V i
1 , . . . , V i

Ji
of X representing preference

pairs Ei =
⋃

1≤j<k≤Ji

V i
j ×V i

k

• positive weights wi such that
∑m

i=1wi = 1.

Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• For i = 1, . . . , m, j = 1, . . . , Ji , and y ∈ {−1,+1}, let

Si
t,j (y) =

∑
x∈V i

j

exp (yFt−1(x)) ,

and let

Ci
t,j (+1) =

j−1∑
k=1

Si
t,k(+1), Ci

t,j (−1) =
Ji∑

k=j+1

Si
t,k(−1).

• For i = 1, . . . , m, x ∈ X , and y ∈ {−1,+1}, let

d̃ i
t (x, y) = exp (−yFt−1(x)) Ci

t,j (y)

2|Ei |
for x ∈ V i

j (and 0 for all x �∈ V i
1 ∪ · · · ∪V i

Ji
).

• Train instance-based weak learner using distribution D̃t where, for x ∈ X and
y ∈ {−1,+1},

D̃t (x, y) = 1

Zt

m∑
i=1

wid̃
i
t (x, y),

and where Zt is a normalization factor (chosen so that D̃t is a distribution).

• Get weak ranking ht : X → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize
∑

x

∑
y∈{−1,+1}

D̃t (x, y) e−αt yht (x).

• Update: Ft = Ft−1+ 1
2 αtht .

Output the final ranking: F(x) = FT (x) = 1
2

T∑
t=1

αtht (x).

11.4 Multiclass, Multi-label Classification 361

11.4 Multiclass, Multi-label Classification

These techniques for learning to rank provide a different approach to multiclass, multi-label
classification as studied in chapter 10. The idea is to treat any such problem as a ranking
task in which the goal is to learn to rank the labels from most to least likely to be assigned to
a particular instance. As in chapter 10, each training example is a pair (xi, Yi) where xi ∈ X
and Yi ⊆ Y , and where Y is a set of K labels. We continue to use the notation Y [�] defined
in equation (10.2). We view each example (xi, Yi) as providing feedback indicating that
for instance xi , each of the labels in Yi should be ranked higher than each of the remaining
labels in Y −Yi . Such feedback is naturally quasi-bipartite. Thus, the domain for the ranking
problem is the set of all instance-label pairs X ×Y , and we can define ϕ, as described in
section 11.3.3, with wi = 1/m, Ji = 2, and each ϕi defined by the sets

V i
1 = {xi}× (Y −Yi) = {(xi, y) : y �∈ Yi}

V i
2 = {xi}×Yi = {(xi, y) : y ∈ Yi}.

(Here, we are assuming implicitly that the xi’s are unique, although the algorithm we give
shortly will be valid even when this is not the case.)

When RankBoost.qL is applied using this reduction, we obtain a multiclass, multi-label
version of AdaBoost based on ranking. This algorithm is shown as algorithm 11.4, and
is called AdaBoost.MR—M for multiclass, R for ranking. Here, we have streamlined the
pseudocode, collapsing many of the computations of RankBoost.qL in specializing it to
the current setting. We also have simplified some of the notation, writing Ci

t (+1) for
Ci

t,2(+1) = Si
t,2(+1); Ci

t (−1) for Ci
t,1(−1) = Si

t,1(−1); and D̃t (i, �) for D̃t ((xi, �), Yi[�]).
(We can ignore Ci

t,1(+1), Ci
t,2(−1), and D̃t ((xi, �),−Yi[�]) since all of these are always

zero under this reduction. See exercise 11.3.)
The final output of the algorithm is a real-valued function F on X ×Y with the interpre-

tation that F(x, ·) provides a predicted ranking of the labels to be assigned to given instance
x (so that label �1 is ranked higher than �0 if F(x, �1) > F(x, �0)). The function F can be
used for classification simply by choosing a single best label, as in equation (10.7), yielding
the classifier

H 1(x) = arg max
y∈Y

F(x, y).

Similar to the analysis in section 10.2.3, we can then compute an upper bound on the one-
error of H 1 (that is, the probability of H 1 missing all of the correct labels) in terms of the
ranking loss. We state and prove this result only with respect to the empirical distribution
defined by the training set, although a more general result with respect to any distribution
over pairs (x, Y) holds as well.

362 11 Learning to Rank

Algorithm 11.4
The AdaBoost.MR algorithm for multiclass, multi-label classification problems

Given: (x1, Y1), . . . , (xm, Ym) where xi ∈ X , Yi ⊆ Y .
Initialize: F0 ≡ 0.
For t = 1, . . . , T :

• For i = 1, . . . , m, let

Ci
t (+1) =

∑
�∈Y−Yi

exp (Ft−1(xi, �))

Ci
t (−1) =

∑
�∈Yi

exp (−Ft−1(xi, �)) .

• Train weak learner using distribution D̃t where

D̃t (i, �) = exp (−Yi[�] ·Ft−1(xi, �)) ·Ci
t (Yi[�])

2Zt |Yi | · |Y −Yi |
for i = 1, . . . , m and � ∈ Y , where Zt is a normalization factor (chosen so that D̃t will
be a distribution on {1, . . . , m}×Y).

• Get weak hypothesis ht : X ×Y → R.

• Choose αt ∈ R.

• Aim: select ht and αt to minimalize

Z̃t
.=

m∑
i=1

∑
�∈Y

D̃t (i, �) exp (−αt Yi[�] ht (xi, �)) .

• Update: Ft = Ft−1+ 1
2 αtht .

Output the final hypothesis:

F(x, �) = FT (x, �) = 1
2

T∑
t=1

αtht (x, �).

11.5 Applications 363

Theorem 11.2 Using the notation of algorithm 11.4 and the definition of ϕ above, assume
Yi �= ∅ for all i. Then

ône-err(H 1) ≤ (K − 1) rlossϕ(F)

≤ (K − 1)

T∏
t=1

Z̃t

(where K = |Y|).
Proof Let ŷi = H 1(xi). If, for some i, ŷi �∈ Yi , then F(xi, y) ≤ F(xi, ŷi) for all y ∈ Yi .
Thus, in general,

1
{
ŷi �∈ Yi

} ≤ 1

|Yi |
∑
y∈Yi

∑
y �∈Yi

1{F(xi, y) ≤ F(xi, y)} .

Therefore,

1

K − 1
ône-err(H 1) = 1

m(K − 1)

m∑
i=1

1
{
H 1(xi) �∈ Yi

}
≤ 1

m

m∑
i=1

[
1

|Y −Yi |1
{
ŷi �∈ Yi

}]

≤ 1

m

m∑
i=1

⎡⎣ 1

|Yi | |Y −Yi |
∑
y∈Yi

∑
y �∈Yi

1{F(xi, y) ≤ F(xi, y)}
⎤⎦

= rlossϕ(F).

This proves the first inequality given in the theorem. The second inequality follows from
theorem 11.1 and equation (11.16).

Thus, in the case of single-label, multiclass classification, theorem 11.2 immediately
yields a bound on the training error of the classifier H 1 derived from AdaBoost.MR.

Note that the space and time-per-round requirements of AdaBoost.MR are O(mK), the
same asAdaBoost.MH. Furthermore, the criteria for choosing a weak hypothesis ht are iden-
tical for the two algorithms. Thus, AdaBoost.MR is entirely comparable to AdaBoost.MH,
both in complexity and in compatibility with weak learners. The difference is that Ada-
Boost.MR aims to produce good rankings of the labels for individual instances, while
AdaBoost.MH is designed to minimize Hamming loss. In practice, the two algorithms are
quite comparable in performance, both giving decent results when using a weak base learn-
ing algorithm such as decision stumps; for instance, the multiclass results in section 1.2.2
were obtained with AdaBoost.MR.

364 11 Learning to Rank

S

NP

Adj

Fruit

N

VP

V

like

NP

Det

a

N

banana.

Figure 11.2
Asample parse tree. The terminal nodes of the tree are labeled with words of the sentence being parsed. Nonterminal
nodes are labeled with syntactic units (S = sentence, NP = noun phrase, VP = verb phrase, etc.).

11.5 Applications

We end this chapter with a description of two example applications of RankBoost.

11.5.1 Parsing English Sentences

We first describe how RankBoost has been used to improve the performance of a state-
of-the-art parser. Parsing is a fundamental problem in natural language processing. Given
a sentence in English (or any other language), the problem is to compute the sentence’s
associated parse tree. For instance, the sentence

Fruit flies like a banana.

might get mapped to the tree shown in figure 11.2. Such a tree provides a wealth of informa-
tion about the sentence, including the part of speech of each word; the overall structure of
the sentence, including its hierarchical decomposition into syntactically relevant phrases;
and the grammatical relationships between these words and phrases.

Because of the ambiguity and imprecision of natural languages, there will typically be
more than one plausible parse for any given sentence. For instance, the sentence above has
(at least) two meanings—either it can be an observation about drosophila enjoying bananas,
or it can be a comparison of the aerodynamics of fruit generally with bananas in particular.
These two meanings correspond to two distinct, syntactic parses of the sentence, one shown
in figure 11.2 and the other in figure 11.3. (Indeed, the full Groucho Marx quote—“Time
flies like an arrow; fruit flies like a banana”—derives its humor from exactly this syntactic
ambiguity.)

When the meaning of the sentence is disregarded and only its syntactic structure is
considered, ambiguity becomes truly ubiquitous, yielding multiple plausible parses for a
great many English sentences. For this reason, parsers are often designed to output a ranking
of the parses that seem to be the most promising. For instance, a probabilistic parser might

11.5 Applications 365

S

NP

N

Fruit

VP

V PP

P

like

NP

Det

a

N

banana.

Figure 11.3
A different parse tree for the same sentence as in figure 11.2.

attempt to estimate the probability of each tree being associated with the given sentence,
and then output a ranking, according to this probability, of the most probable trees.

This is where there exists an opportunity to apply RankBoost, specifically, as a kind of
post-processing tool for improving the rankings produced by an existing parser. Here is one
specific scheme that has been proposed. We begin with a training set of sentence-tree pairs
(si, ti) where, for sentence si , the parse tree ti represents the “gold standard” selected by
a human expert. During training, each sentence si is fed to a given parser which generates
k candidate parse trees t̂i1, . . . , t̂ik , where k is perhaps 20. The gold standard tree ti may
or may not be included in this group, but in either case, the candidate that is closest to
it (for some reasonable definition of “close”) can be identified; without loss of generality,
let t̂i1 be this best tree among the candidates. To apply RankBoost, we can now provide
feedback encoding the fact that t̂i1 is considered better than the other candidates. Thus, the
instances are all pairs (si, t̂ij), and the preference pairs are defined so as to place (si, t̂i1)

above (si, t̂ij) for all j > 1. This feedback is quasi-bipartite, each sentence si defining its
own bipartite feedback function. Even so, RankBoost.qL provides no advantage since the
number of preference pairs is nearly equal to (actually, slightly smaller than) the number
of training instances.

For weak rankings, we can use binary rankings defined by a large set of linguistically
informed “features.” Such a ranking is a {−1,+1}-valued function on sentence-tree pairs
that is +1 if and only if the corresponding feature is present. For instance, one such weak
ranking might be+1 if the given tree contains an instance of the rule 〈S→ NP VP〉 (meaning
a sentence can consist of a noun phrase followed by a verb phrase), and −1 otherwise.
A full listing of the types of features used goes beyond the scope of this book.

This setup has many advantages. First of all, since we are using binary weak rankings, we
can use the exact method given in equations (11.2) and (11.3) for setting αt and computing

366 11 Learning to Rank

Zt . More importantly, because the weak rankings ht are {−1,+1}-valued, their scaled
differences 1

2 (ht (v)−ht (u)), as used by RankBoost, will be {−1, 0,+1}-valued, just like
the abstaining weak hypotheses in section 9.2.4. Moreover, these differences are likely to
be quite sparse. This means that we can dramatically improve efficiency by applying the
techniques described in that section for exploiting sparsity to substantially minimize the
number of weights updated on each round, and to make each round’s search for the best
feature very fast.

To get the best performance, we note that the parser we start with may already do a
decent job of ranking based on its own score, often a (log) probability as mentioned above.
It makes sense to use this information, rather than starting from scratch. Thus, on round 0,
we can use the scores given by the parser as a weak ranking of the candidates, and then
select all subsequent rankings as described above.

After training RankBoost in this fashion, we obtain a ranking function F . To use it on
a new test sentence s, we first run the parser to obtain a set of k candidate trees which are
then re-ranked using F . This technique can significantly improve the quality of the rankings
produced by the parser. For instance, on a corpus of Wall Street Journal articles, re-ranking
using RankBoost resulted in a 13% relative decrease in one standard error measure. In these
experiments, the efficiency techniques described in section 9.2.4 were especially helpful,
yielding an implementation that was faster than a naive version of the algorithm by roughly
a factor of 2600, and making it reasonable to run RankBoost for 100,000 rounds on a very
large dataset of around a million parse trees and 500,000 features (weak rankings).

11.5.2 Finding Cancer Genes

As a second example application, we describe how RankBoost has been used in a bioin-
formatics setting to identify genes which may potentially be relevant to various forms of
cancer. By training on examples of genes already known to be relevant or irrelevant, the
idea is to learn a ranking of all genes that places those related to cancer at the top of the list,
hopefully including some whose connection to cancer is not already known.

This problem fits neatly into the ranking framework described in section 11.1. The genes
are the instances. Those with known relevance or irrelevance are the training instances.
The feedback is naturally bipartite, with all genes that are relevant to cancer “preferred” to
all those that are irrelevant (since we want them to be ranked higher). Our goal is to infer
from these training instances a ranking of all the instances (genes) in which those related
to cancer are ranked higher than those that are not.

Thus, we can apply RankBoost. First, however, we need to choose a weak learning algo-
rithm for finding weak rankers. As is common for such research, each gene was described
here by microarray expression levels, that is, by a vector of N real numbers, each measuring
the degree to which the gene was measured to be expressed, or activated, in particular tissue
samples collected from various patients or under varying experimental conditions. Clearly,

11.5 Applications 367

we have many options in the design of a weak learner for such data. In this study, very
simple weak rankers were used, each identified with individual samples, that is, specific
coordinates of the expression vectors. In other words, each weak ranker was selected from
a family {�1, . . . , �N } where, for every gene represented by a vector x ∈ RN of expression
levels, the output of weak ranker �j is defined simply to be the j -th coordinate �j (x) = xj .
Although the data is bipartite, the RankBoost algorithm shown as algorithm 11.1 was used
in combination with an exhaustive, pair-based weak learning algorithm so that, on each
round t , the weak ranker ht = �jt and the value αt ∈ R were chosen together to minimize
Zt , as defined in the algorithm, over all choices of jt and αt .

One of the datasets used was for leukemia, and consisted of 7129 genes whose expression
levels had been measured on N = 72 samples. For training, just 10 of the genes were used as
instances known to be relevant, and 157 were selected as instances known to be irrelevant.
RankBoost was then trained on these 167 training instances as described above, resulting
in a ranking of all 7129 genes.

Table 11.1 shows the top 25 genes identified in this manner. For each of these genes, an
attempt was made to determine its relevance to leukemia based on a search of the scientific
literature and using assorted online tools. As can be seen from the summary given in the
table, many of these genes are already known either to be a target for possible drug therapy in
treating leukemia, or to be a marker that may be useful in its diagnosis. Many other highly
ranked genes in the table are not known at this time to be markers or targets, but show
potential to have these properties. For example, the top-ranked gene KIAA0220 encodes a
protein whose function is not currently known, but that shows strong similarity to another
protein that is known to be involved in various forms of cancer, and thus that may be
useful as a target in the treatment of leukemia. Of course, further experimental testing will
be needed to determine if these genes actually are related to leukemia, but finding such
potentially useful genes whose properties are currently unknown is precisely the goal of
this research. These results thus seem very promising.

The table also shows how these genes are ranked using two other standard statistical
methods. As can be seen, the ranking produced by RankBoost is very different from that of
these other methods, suggesting that the techniques might give results that can be used in
a complementary fashion for finding relevant genes.

Summary

In this chapter, we examined a framework for studying ranking problems, as well as a boost-
ing algorithm for ranking. This algorithm is based on a reduction to binary classification
involving the relative ordering of pairs of instances. This makes it flexible in terms of the
feedback with which it can be applied, but potentially can lead to a quadratic running time

368 11 Learning to Rank

if the feedback is dense. Nevertheless, even in such cases, we saw how the algorithm can
be implemented very efficiently in the special but natural case of layered or quasi-layered
feedback. Further, we saw how RankBoost and its variants can be used with weak learn-
ing algorithms intended for ordinary binary classification, possibly with confidence-rated
predictions. Treating multi-label, multiclass classification as a ranking problem leads to the
AdaBoost.MR algorithm. Finally, we looked at applications of RankBoost to parsing and
finding cancer-related genes.

Table 11.1
The top 25 genes ranked using RankBoost on the leukemia dataset

Relevance t-Statistic Pearson
Gene Summary Rank Rank

1. KIAA0220 � 6628 2461

2. G-gamma globin � 3578 3567

3. Delta-globin � 3663 3532

4. Brain-expressed HHCPA78 homolog � 6734 2390

5. Myeloperoxidase � 139 6573

6. Probable protein disulfide isomerase ER-60 precursor � 6650 575

7. NPM1 Nucleophosmin � 405 1115

8. CD34 � 6732 643

9. Elongation factor-1-beta × 4460 3413

10. CD24 � 81 1

11. 60S ribosomal protein L23 � 1950 73

12. 5-aminolevulinic acid synthase � 4750 3351

13. HLA class II histocompatibility antigen � 5114 298

14. Epstein-Barr virus small RNA-associated protein � 6388 1650

15. HNRPA1 Heterogeneous nuclear ribonucleoprotein A1 � 4188 1791

16. Azurocidin � 162 6789

17. Red cell anion exchanger (EPB3, AE1, Band 3) � 3853 4926

18. Topoisomerase II beta � 17 3

19. HLA class I histocompatibility antigen × 265 34

20. Probable G protein-coupled receptor LCR1 homolog � 30 62

21. HLA-SB alpha gene (class II antigen) × 6374 317

22. Int-6 ♦ 3878 912

23. Alpha-tubulin � 5506 1367

24. Terminal transferase � 6 9

25. Glycophorin B precursor � 3045 5668

For each gene, the relevance has been labeled as follows: � = known therapeutic target; � = potential therapeutic
target; � = known marker; ♦ = potential marker; × = no link found. The table also indicates the rank of each
gene according to two other standard statistical methods.

Exercises 369

Bibliographic Notes

The approach to ranking adopted in section 11.1, as well as the RankBoost algorithm
of section 11.2.1 and techniques of section 11.2.2, are all taken from Freund et al. [90].
Minimization of the ranking loss is essentially equivalent to optimization of other standard
measures, specifically, the area under the receiver-operating-characteristic curve and the
Wilcoxon-Mann-Whitney statistic; see, for instance, Cortes and Mohri [55].

The results of section 11.2.3 are due to Rudin et al. [193] (see also Rudin and
Schapire [195]), who give a more rigorous treatment.

The techniques described in section 11.3 significantly generalize the work of
Freund et al. [90], who had given such efficiency improvements only in the bipartite case.
These generalizations arose as part of an unpublished collaborative project with Olivier
Chapelle and Taesup Moon. Layered feedback is sometimes also called k-partite, as studied,
for instance, by Rajaram and Agarwal [185].

The AdaBoost.MR algorithm of section 11.4 is due to Schapire and Singer [205], and is
a generalization of the single-label version, called AdaBoost.M2, given earlier by Freund
and Schapire [95].

The application of RankBoost to parsing given in section 11.5.1 is work by Collins [52]
(see also Collins and Koo [53]). The cancer-gene study of section 11.5.2, including table 11.1
(reprinted with permission), is taken from Agarwal and Sengupta [5].

Numerous other techniques have been proposed for learning to rank; see, for instance,
the survey by Liu [156]. An alternative boosting-based approach to ranking is given by Xu
and Li [234]. Analyses of the generalization capabilities of ranking algorithms have been
given in various works including [3, 4, 90, 185, 193, 195].

Some of the exercises in this chapter are based on material from [90].

Exercises

11.1 Let (x1, y1), . . . , (xm, ym) be a multiclass training set with xi ∈ X and yi ∈ Y , where
|Y| = K > 2. Assume for simplicity that the xi’s are all unique. Consider two approaches to
this problem, one based onAdaBoost.MO (algorithm 10.4 (p. 329)) using an all-pairs coding
matrix � (see exercise 10.5), and the other based on RankBoost (algorithm 11.1). Under
appropriate conditions, we will see in this exercise that these two approaches are equivalent.

To avoid confusion, we sometimes add superscripts to the variables appearing in algo-
rithms 10.4 and 11.1—MO for the former, RB for the latter. In the all-pairs approach, we
assume each weak hypothesis hmo

t can be decomposed as in equation (10.13) for some h̃t

which, for clarity, we write here as h̃mo
t . We also assume that loss-based decoding is used

(so that Hmo refers to H lb in algorithm 10.4).
In the RankBoost approach, the domain X rb is X ×Y , and the set E of preference pairs

consists of all pairs ((xi, �), (xi, yi)) for � ∈ Y −{yi}, and for i = 1, . . . , m. Given x ∈ X ,

370 11 Learning to Rank

we use the final ranking F rb to predict a label using the rule

H rb(x) = arg max
y∈Y

F rb(x, y).

a. Suppose h̃mo
t ′ ≡ hrb

t ′ and αmo
t ′ = αrb

t ′ for all t ′ < t . Show that:

i. Dmo
t (i, {yi, �}) = Drb

t ((xi, �), (xi, yi)) for all i and for � �= yi .

ii. The criteria for selecting αt and ht are the same for the two methods, that is, if
h̃mo

t ≡ hrb
t and αmo

t = αrb
t then Zmo

t = Zrb
t .

b. Show that if h̃mo
t ≡ hrb

t and αmo
t = αrb

t for t = 1, . . . , T , then Hmo(x) = H rb(x) for all
x (assuming ties are broken in the same way).

11.2 Let (x1, y1), . . . , (xm, ym) ∈ X ×{−1,+1} be binary labeled training examples with
the xi’s all unique. Suppose we apply RankBoost.L with domain X and preference pairs
E = V1×V2 where

V1 = {xi : yi = −1}
V2 = {xi : yi = +1}.
a. In the notation of algorithm 11.2, show that D̃t (x, y) = 0 for all (x, y) ∈ X ×{−1,+1},

except for the training pairs (xi, yi).

b. Show that D̃t (xi, yi) = e−yiFt−1(xi)/(2Zt (yi)) where we here define Zt (b)
.=∑

i:yi=b e−bFt−1(xi) for b ∈ {−1,+1}.
11.3 Give details verifying that AdaBoost.MR is the algorithm obtained from Rank-
Boost.qL under the reduction given at the beginning of section 11.4.

11.4 Let (x1, y1), . . . , (xm, ym) ∈ X ×{−1,+1} be binary labeled training examples with
the xi’s all unique. Consider algorithm 11.5, a variant of confidence-rated AdaBoost (algo-
rithm 9.1 (p. 274)). Here, on each round t , rather than adding αtht to the combined classifier,
we add 1

2 (αtht +βt) where αt and βt are together tuned to minimize Zt . (The factor of 1
2

is unimportant, and is included only for later mathematical convenience.)
We compare this algorithm with RankBoost (algorithm 11.1) with domain X and

E = V− ×V+, where V− and V+ are as in equation (11.6). To avoid confusion, we some-
times add superscripts to the variables in algorithms 11.5 and 11.1 (AB for the former, RB
for the latter). Assume that αab

t , βab
t , and αrb

t are chosen numerically to exactly minimize
the respective criteria Zab

t and Zrb
t .

Show that these two algorithms are equivalent in the sense that if hab
t ′ = hrb

t ′ for t ′ < t ,
then Zab

t and Zrb
t are minimized by the same choices of αt and ht (over any space H). Thus,

if hab
t ≡ hrb

t for t = 1, . . . , T , then for some C ∈ R, F ab(x) = F rb(x)+C for all x ∈ X .
[Hint: For any given hab

t and αab
t , consider the value of Zab

t when minimized over βab
t ∈ R.]

11.5 Let V1, . . . , VJ be a disjoint collection of nonempty subsets of X , let V = V1 ∪ · · · ∪
VJ , and let E be as in equation (11.20).

Exercises 371

Algorithm 11.5
A variant of confidence-rated AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → R.

• Choose αt , βt ∈ R.

• Aim: select αt , βt and ht to minimalize the normalization factor

Zt
.=

m∑
i=1

Dt(i) exp
(− 1

2 yi(αtht (xi)+βt)
)
.

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i) exp
(− 1

2 yi(αtht (xi)+βt)
)

Zt

.

Output the final hypothesis:

H(x) = sign(F (x)) where F(x) = 1
2

T∑
t=1

(αtht (x)+βt).

a. Suppose, for given real numbers g1 < · · · < gJ , that we apply RankBoost with initial
distribution D1 = ϕ where

ϕ(u, v) = c(gk − gj) (11.27)

for all (u, v) ∈ Vj ×Vk with j < k (and ϕ(u, v) = 0 for (u, v) �∈ E), and where c > 0
is chosen so that equation (11.24) is satisfied. Given Ft−1, show how to compute the
entire distribution D̃t in time O(|V |).

b. Suppose, more generally, that we are instead given arbitrary positive real numbers gjk ,
for 1 ≤ j < k ≤ J , and that gk − gj is replaced by gjk in equation (11.27). Given Ft−1,
show how to compute the entire distribution D̃t in time O(|V | + J 2).

11.6 In RankBoost.L (algorithm 11.2), assume that all values of Ct,j (y) and St,j (y) have
already been computed. Show how to compute Zt in time O(J).

372 11 Learning to Rank

11.7 Suppose we are given bipartite feedback, that is, disjoint nonempty sets V1 and
V2 with V = V1 ∪V2 and E = V1×V2. Describe how to exactly implement RankBoost
(algorithm 11.1) subject to the following specifications:

• On round t , ht ∈ H and αt ∈ R are selected to exactly minimize Zt , where H is a given
finite set of N binary classifiers (each with range {−1,+1}).

• The total space required is O(|V | + T) (not including storage of H, which we assume is
given).

• On each round, the running time for all computations, other than the choice of ht , is
O(|V |).

• For any candidate hypothesis ht ∈ H, the time to evaluate ht (that is, the time to compute
Zt for this choice of ht and a corresponding choice of αt) is O(|V |). Thus, the best ht

can be found on each round in O(N · |V |) time.

11.8 In a multiclass version of logistic regression (section 7.5.1), we posit that there is
some function F : X ×Y → R (perhaps of a particular parametric form) for which the
probability of y given x is proportional to eF(x,y), that is,

Pr[y | x;F] = eF(x,y)∑
�∈Y eF(x,�)

.

Let (x1, y1), . . . , (xm, ym) be a set of training examples in X ×Y , and let L(F) denote the
negative conditional log likelihood of the data under F :

L(F)
.= −

m∑
i=1

ln(Pr[yi | xi;F]).

A function F that minimizes this expression can be constructed by initializing F0 ≡ 0,
and then iteratively setting Ft = Ft−1+αtht for some appropriate choice of αt ∈ R and
ht : X ×Y → R. In what follows, let us fix t and write F = Ft−1, α = αt , h = ht , etc.

a. Show that

L
(
F + 1

2 αh
)−L(F)

≤ C+
m∑

i=1

∑
��=yi

Ai exp
(
F(xi, �)−F(xi, yi)+ 1

2 α(h(xi, �)−h(xi, yi))
)

(11.28)

where

Ai = 1

1+∑��=yi
exp (F (xi, �)−F(xi, yi))

Exercises 373

and

C = −
m∑

i=1

Ai

∑
��=yi

exp (F (xi, �)−F(xi, yi)) .

Also, explain why minimizing equation (11.28) over α and h is the same as minimizing

m∑
i=1

∑
��=yi

D(i, �) exp
(

1
2 α(h(xi, �)−h(xi, yi))

)
(11.29)

where D is a distribution of the form

D(i, �) = Ai exp (F (xi, �)−F(xi, yi))

Z , (11.30)

and Z is a normalization factor.
Thus, on each iteration, we can attempt to approximately minimize L by choosing α and
h to minimalize equation (11.29).

b. Show that RankBoost, if used as in exercise 11.1, chooses αt and ht on each round to
minimalize an expression of the same form as equation (11.29), using a distribution of
the same form as equation (11.30), but for different choices of the Ai’s.

c. Alternatively, we can attempt to minimalize

1
2

m∑
i=1

∑
��=yi

D(i, �)
(
eαh(xi ,�)+ e−αh(xi ,yi)

)
, (11.31)

which is an upper bound on equation (11.29), by convexity. Show that if Yi = {yi} for all
i, then AdaBoost.MR chooses αt and ht to minimalize an expression of the same form
as equation (11.31), using a distribution of the same form as equation (11.30), but with
different choices of the Ai’s.

Thus, both RankBoost and AdaBoost.MR can be modified for logistic regression by
changing only how the relevant distributions are computed.

IV ADVANCED THEORY

12 Attaining the Best Possible Accuracy

In this last part of the book, we study a number of advanced theoretical topics with a
continuing focus on fundamental properties and limitations of boosting and AdaBoost, as
well as techniques and principles for the design of improved algorithms.

We begin, in this chapter, with a return to the central problem of understandingAdaBoost’s
ability to generalize. Previously, in chapters 4 and 5, we provided analyses of AdaBoost’s
generalization error where, as in our study of boosting generally, we took as our starting
point the weak learning assumption, that is, the premise that the classifiers generated by the
weak learning algorithm are reliably better than random guessing. Naively, this assumption
did indeed seem weak, but we have now come to see that its consequences are actually
quite strong. Not only does it imply that eventually boosting will perfectly fit any training
set, but the results of chapters 4 and 5 show that it also implies that the generalization error
can be driven arbitrarily close to zero with sufficient training data. This is an excellent
property—the very one that defines boosting.

On the other hand, we know that it cannot always be possible to attain perfect general-
ization accuracy. Typically, we expect real data to be corrupted with some form of noise,
randomness, or mislabeling that makes it impossible to perfectly predict the labels of nearly
all test examples, even with unlimited training and computation. Instead, we are faced with a
fundamental limit on how much the test error can be minimized due to intrinsic randomness
in the data itself. This minimum possible error rate is called the Bayes error.

Thus, our earlier analyses superficially appear to be inapplicable when the Bayes error
is strictly positive. However, this is not necessarily the case. Even if the weak learning
assumption does not hold so that the weighted errors of the weak hypotheses are converging
to 1

2 , these analyses can still be applied, depending as they do on the edges of all the weak
hypotheses. Moreover, in practice the weak learning assumption may in fact continue to
hold, even when perfect generalization is unachievable. This is because the weak hypothesis
space typically is not fixed, but grows in complexity with the size of the training set; for
instance, this happens “automatically” when using decision trees as base classifiers since
the generated trees will usually be bigger if trained with more data. This presents the
usual delicate balance between complexity and fit to the data, but one that leaves open

378 12 Attaining the Best Possible Accuracy

the possibility, according to our analysis, for very good generalization, as is often seen in
practice.

Nevertheless, these analyses do not explicitly provide absolute guarantees on the per-
formance of AdaBoost relative to the optimal Bayes error (other than when it is zero). In
other words, they do not specify conditions under which AdaBoost’s generalization error
will necessarily converge to the best possible error rate; rather, they provide generaliza-
tion bounds which are in terms of statistics that can be measured only after training is
complete.

In this chapter, we give an alternative analysis in which we prove that a slight variation
of AdaBoost does indeed produce a combined classifier whose accuracy is very close to
the optimum attainable by any classifier whatsoever, provided the base classifiers are suffi-
ciently but not overly expressive, and provided the training set is sufficiently large. In this
sense, the algorithm is said to be universally consistent. (Note that this notion of consistency
is entirely unrelated to and distinct from the one studied, for instance, in section 2.2.5.)

This analysis pulls together many of the topics studied earlier in this book, particularly
the view of AdaBoost as an algorithm for minimizing exponential loss. The analysis shows
first that AdaBoost quickly minimizes the true expected exponential loss relative to the
minimum possible, and then shows how this directly implies good classification accuracy
compared to the Bayes optimal.

Although these results are strong, they are limited by their underlying assumptions,
especially with regard to the expressiveness of the base hypotheses. To emphasize this point,
we also give a simple example in which minimization of exponential loss provably fails to
generate a classifier close to the Bayes optimal, even when the noise affecting the data is
of a particularly simple form.

12.1 Optimality in Classification and Risk Minimization

We begin with a discussion of optimality in classification and its relation to minimization of
exponential loss. We return to the simple problem of binary classification with X denoting
the instance space, and the set of possible labels consisting only of Y = {−1,+1}. We let D
denote the true distribution over labeled pairs in X ×Y . Unless specified otherwise, in this
chapter probabilities and expectations denoted Pr[·] and E[·] are with respect to a random
pair (x, y) generated according to D.

In general, for such a random pair, the label y will not necessarily be determined by the
instance x. In other words, the conditional probability that x is labeled positive, denoted

π(x)
.= Pr[y = +1 | x] , (12.1)

need not be equal to 0 or 1. When π(x) ∈ (0, 1), it becomes inherently impossible to predict
y perfectly from x, even with full knowledge of D. Nevertheless, we can still characterize

12.1 Optimality in Classification and Risk Minimization 379

the best that is possible in minimizing the chance of an incorrect prediction. In particular,
if y is predicted to be +1, then the probability of being incorrect is 1−π(x); and if y

is predicted to be −1, then an error occurs with probability π(x). Thus, to minimize the
chance of a mistake, we should predict using the rule

hopt(x) =
{+1 if π(x) > 1

2
−1 if π(x) < 1

2 .

(It makes no difference how we predict if π(x) = 1
2 .) This rule is called the Bayes optimal

classifier. Its error, called the Bayes (optimal) error, is exactly

err∗ .= err(hopt) = E[min{π(x), 1−π(x)}] .

This is the minimum error achievable by any classifier, regardless of any considerations
of learning or computation. (Here, as usual, err(h) denotes the generalization error of a
classifier h as in equation (2.3).)

Thus, the best we can hope for in a learning procedure is that its error will converge
to the Bayes error. The purpose of this chapter is to give general conditions under which
AdaBoost has this property.

As seen in section 7.1, AdaBoost can be interpreted as an algorithm for minimizing expo-
nential loss. That is, given a training set S = 〈(x1, y1), . . . , (xm, ym)〉, AdaBoost minimizes
the empirical risk (or loss)

r̂isk(F)
.= 1

m

m∑
i=1

e−yiF (xi)

over all linear combinations F of base classifiers in the given space H. (We assume an
exhaustive weak learner that, on every round, returns the best weak hypothesis.) The empir-
ical risk can itself be viewed as an estimate or proxy for the true risk, that is, the expected
loss with respect to the true distribution D:

risk(F)
.= E
[
e−yF(x)

]
. (12.2)

As seen in section 7.5.3, this expectation can be broken down using marginalization as

E
[
E
[
e−yF(x) | x]] = E

[
π(x)e−F(x)+ (1−π(x))eF(x)

]
, (12.3)

where the outer expectations are only with respect to x, and the inner expectation on the
left is with respect to y conditioned on x. As with classification error, we can now compute
the minimum possible value of this risk by optimizing on each instance x separately. This
can be done by setting to zero the first derivative of the expression inside the expectation
(taken with respect to F(x)). Doing so gives the optimal predictor

380 12 Attaining the Best Possible Accuracy

Fopt(x) = 1

2
ln

(
π(x)

1−π(x)

)
(12.4)

where we allow this function to include±∞ in its range in case π(x) is 0 or 1. With respect
to exponential loss, this is the optimal predictor over all real-valued functions F , not only
those that are linear combinations of the base classifiers. Plugging back into equation (12.3)
gives the optimal (exponential) risk

risk∗ .= risk(Fopt) = 2E
[√

π(x)(1−π(x))
]

.

Note that

sign(Fopt(x)) =
{+1 if π(x) > 1

2
−1 if π(x) < 1

2 .

Thus, the sign of Fopt, the minimizer of the exponential risk, is exactly equal to the Bayes
optimal classifier hopt (ignoring the case π(x) = 1

2). This means that if we can minimize the
exponential loss—not only on the training set, but also over the entire distribution—then
we can trivially convert it into a classifier that is optimal with respect to classification
accuracy.

Of course, finding Fopt exactly is sure to be infeasible since we are working only with
a finite training sample from D, and also because our learning algorithms are restricted to
use functions F of a particular form. Nevertheless, we will see that it is sufficient to find a
function F whose risk is close to optimal. That is, if F ’s true risk is close to risk∗, then the
generalization error of sign(F) will also be close to the Bayes error. This is the first part of
our analysis.

In the second part, we bound the risk of the predictor F generated by AdaBoost relative
to the optimal risk, thus also obtaining a bound on the generalization error of its combined
classifier H = sign(F) relative to the Bayes error. (Here, we are using f (g) as shorthand
for the function obtained by composing f with g.)

Beginning with the first part of the analysis, the next theorem shows generally that
closeness to the optimal risk also implies closeness to the Bayes error.

Theorem 12.1 In the notation above, suppose the function F : X → R is such that

risk(F) ≤ risk∗ + ε. (12.5)

Let h(x) = sign(F (x)) if F(x) �= 0, and let h(x) be chosen arbitrarily from {−1,+1}
otherwise. Then

err(h) ≤ err∗ +
√

2ε− ε2 ≤ err∗ +√2ε.

Proof Let us focus first on a single instance x ∈ X . Let ν(x) denote the conditional
probability that h misclassifies x relative to the conditional probability of hopt doing the
same. That is,

12.1 Optimality in Classification and Risk Minimization 381

ν(x)
.= Pr[h(x) �= y | x]−Pr

[
hopt(x) �= y | x] .

Our eventual goal is to bound

E[ν(x)] = err(h)− err(hopt) = err(h)− err∗.

Clearly, ν(x) = 0 if h(x) = hopt(x). Otherwise, suppose hopt(x) = −1 (so that π(x) ≤ 1
2)

but h(x) = +1. Then we can compute directly that

ν(x) = (1−π(x))−π(x) = 1− 2π(x).

Similarly, ν(x) = 2π(x)− 1 if hopt(x) = +1 and h(x) = −1. Thus, in general,

ν(x) =
{

0 if h(x) = hopt(x)

|1− 2π(x)| else.
(12.6)

Likewise, let ρ(x) be the corresponding quantity for the risk:

ρ(x)
.= E
[
e−yF(x) | x]−E

[
e−yFopt(x) | x] .

This quantity is always nonnegative since the risk is minimized pointwise for every x by
Fopt. By assumption,

E[ρ(x)] = risk(F)− risk(Fopt) = risk(F)− risk∗ ≤ ε.

If h(x) = +1 but hopt(x) = −1, then F(x) ≥ 0 but π(x) ≤ 1
2 . Under these circumstances,

the conditional risk

E
[
e−yF(x) | x] = π(x)e−F(x)+ (1−π(x))eF(x), (12.7)

as a function of F(x), is convex with a single minimum at Fopt(x) ≤ 0. This means that its
minimum on the restricted range F(x) ≥ 0 is realized at the point closest to Fopt(x), namely,
F(x) = 0. Thus, equation (12.7) is at least 1 in this case. A symmetric argument shows that
the same holds when h(x) = −1 but hopt(x) = +1. Therefore, by equation (12.4),

ρ(x) ≥
{

0 if h(x) = hopt(x)

1− 2
√

π(x)(1−π(x)) else.
(12.8)

Let φ : [0, 1] → [0, 1] be defined by

φ(z)
.= 1−

√
1− z2.

Then equations (12.6) and (12.8) imply that

ρ(x) ≥ φ(ν(x)) (12.9)

for all x. This is because if h(x) = hopt(x), then φ(ν(x)) = φ(0) = 0 ≤ ρ(x). And if
h(x) �= hopt(x), then

382 12 Attaining the Best Possible Accuracy

φ(ν(x)) = 1−
√

1− |1− 2π(x)|2 = 1− 2
√

π(x)(1−π(x)) ≤ ρ(x).

It can be verified (by taking derivatives) that φ is convex. Thus, by equation (12.9) and
Jensen’s inequality (equation (A.4)),

E[ρ(x)] ≥ E[φ(ν(x))] ≥ φ (E[ν(x)]) .

Since φ is strictly increasing, it has a well-defined inverse that is also increasing, namely,

φ−1(z) =
√

2z− z2. (12.10)

Pulling everything together gives

err(h)− err(hopt) = E[ν(x)]

≤ φ−1 (E[ρ(x)])

= φ−1
(
risk(F)− risk(Fopt)

)
≤ φ−1(ε) =

√
2ε− ε2.

12.2 Approaching the Optimal Risk

Theorem 12.1 shows that we can find a classifier that is close in accuracy to the Bayes
optimal if we can approximately minimize the expected exponential loss relative to the best
possible among all real-valued functions. We know that AdaBoost minimizes exponential
loss; specifically, in section 8.2 we proved that AdaBoost asymptotically (that is, in the limit
of a large number of rounds) minimizes the exponential loss on the training set relative to the
best linear combination of base classifiers. Unfortunately, this is inadequate for our current
purposes because, to apply theorem 12.1 to AdaBoost, we will need to extend this analysis
along several dimensions: First, we will need nonasymptotic results that give explicit rates
of convergence (unlike the analysis of section 8.2); second, we now need to analyze the
true, rather than the empirical, risk; and third, we now require convergence to the optimal
among all functions, not just those that are linear combinations of base classifiers.

12.2.1 Expressiveness of the Base Hypotheses

We will eventually need to address all of these, but we start with the last point, which
regards the expressiveness of the weak hypotheses in the space H. Let us denote the span
of H, that is, the set of all linear combinations of weak hypotheses in H, by

span(H)
.=
{

F : x �→
T∑

t=1

αtht (x)

∣∣∣∣∣ α1, . . . , αT ∈ R;h1, . . . , hT ∈ H; T ≥ 1

}
.

12.2 Approaching the Optimal Risk 383

For simplicity, we assume H consists only of binary classifiers with range {−1,+1}, and
we also assume H is closed under negation so that −h ∈ H whenever h ∈ H.

To apply theorem 12.1 toAdaBoost, the algorithm must at least have the potential opportu-
nity to choose a function F whose true risk is close to the best possible. Since such algorithms
output functions only in the span of H, this means that we must assume that there exist
functions in span(H) which have close to minimum risk. In other words, for any ε > 0, we
need to assume that there exists some F in span(H) which satisfies equation (12.5). This
is equivalent to assuming that

inf
F∈span(H)

risk(F) = risk∗. (12.11)

This is our strongest and most important assumption. In section 12.3, we will explore what
happens when it does not hold.

If Fopt is actually in span(H), then equation (12.11) clearly holds. However, here we are
making the slightly weaker assumption that Fopt’s risk can only be approached, not neces-
sarily attained, by functions in span(H). This assumption can be relaxed a bit further by
assuming that the smallest risk of functions in span(H) is close to, rather than equal to, the
optimal (so that equation (12.11) holds only approximately). Our analysis can be applied
in this case, yielding asymptotic error bounds that will be correspondingly close to, but
different from, the Bayes error.

To simplify the analysis, we regard H as a fixed space. However, as noted earlier, larger
training sets sometimes warrant richer hypothesis spaces. Our analysis will be applicable in
this case as well, and will quantify how quickly the hypotheses can increase in complexity
as a function of the number of training examples while still admitting convergence to the
Bayes optimal.

12.2.2 Proof Overview

Our goal is to show that risk(FT), the true risk of the function generated by AdaBoost
after T rounds, converges to the optimal risk, risk∗ = risk(Fopt). Since Fopt may not itself
belong to the span of H, we instead focus on comparing FT ’s risk with that of a fixed
reference function F̌ that is in the span. This will be sufficient for our purposes since, by
equation (12.11), F̌ can itself be chosen to have risk arbitrarily close to risk∗.

Our analysis will require that we take into account the norm, or overall magnitude, of
the weights defining functions in the span of H, especially the reference functions. If F is
in span(H), then it can be written in the form

F(x) =
T∑

t=1

αtht (x).

384 12 Attaining the Best Possible Accuracy

We define its norm, written |F |, to be

T∑
t=1

|αt |. (12.12)

If the function F can be written in more than one way as a linear combination of base
hypotheses, then we define the norm to be the minimum (or infimum) value of equa-
tion (12.12) among all such equivalent representations.

Equation (12.11) then implies that there exist, for each B > 0, reference functions F̌B in
the span of H such that |F̌B | < B, and such that

risk(F̌B) → risk∗ (12.13)

as B →∞. Thus, if we can show that the function FT produced by AdaBoost has risk
close to that of F̌B , then this will also imply risk close to optimal, for an appropriately large
choice of B.

An annoyance of working with exponential loss is its unboundedness, that is, the property
that e−yF(x) can be unboundedly large. This is particularly a problem when trying to relate
the exponential loss on the training set to its true expectation, since a random variable with
a very large range is also likely to have high variance, making the estimation of its expecta-
tion infeasible from a small sample. This difficulty is reflected, for instance, by Hoeffding’s
inequality (theorem 2.1), which requires that the random variables be bounded. (An extreme
example illustrating the problem is a lottery ticket that pays a million dollars with probabil-
ity 10−6, and otherwise results in the loss of one dollar. Its expected value is very close to
zero, but any sample of reasonable size will almost certainly consist only of losing tickets
with an empirical average of −1. The variance of this random variable is about 106.)

To sidestep this problem, we will restrict the range of the functions generated byAdaBoost
by “clamping” them within a fixed range, thus also limiting the magnitude of the exponential
loss. Specifically, for C > 0, let us define the function

clampC(z)
.=
⎧⎨⎩

C if z ≥ C

z if −C ≤ z ≤ C

−C if z ≤ −C,

which simply clamps its argument to the range [−C, C]. Next, let us define F T to be the
clamped version of FT :

F T (x)
.= clampC(FT (x)).

Note that the classifications induced by F T are the same as for FT since

sign(F T (x)) = sign(FT (x))

12.2 Approaching the Optimal Risk 385

always. Therefore, if sign(F T) converges to the Bayes optimal, then sign(FT) does as well.
By theorem 12.1, this means that it is sufficient to show that the risk of F T converges to
the optimal risk. This, in turn, can be proved using the fact that, on the one hand, F T is
bounded, so its empirical risk is close to its true risk; and, on the other hand, the empirical
risk of F T is not much worse than that of FT , which is minimized by the learning algorithm.

So we can now summarize our entire argument in four parts. We will show each of the
following, where we use the notation � to indicate informal, approximate inequality:

1. The empirical exponential loss of the function FT generated by AdaBoost, an algorithm
that provably minimizes this loss, rapidly converges to a value not much worse than that
of the reference function F̌B ; that is,

r̂isk(FT) � r̂isk(F̌B).

2. Clamping does not significantly increase risk, so that

r̂isk(F T) � r̂isk(FT).

3. The empirical risk of the clamped versions of all functions of the form generated by
AdaBoost will be close to their true risk, so that

risk(F T) � r̂isk(F T).

This is essentially a uniform-convergence result of the sort seen in chapters 2 and 4.

4. Similarly, the empirical risk of the fixed reference function F̌B will be close to its true
risk, so that

r̂isk(F̌B) � risk(F̌B).

Combining all four parts along with equation (12.13) will allow us to conclude that

risk(F T) � r̂isk(F T) � r̂isk(FT) � r̂isk(F̌B) � risk(F̌B) � risk∗,

so that, by theorem 12.1, the error of the corresponding classifier sign(F T) = sign(FT) is
also close to the Bayes optimal.

12.2.3 Formal Proofs

In more precise terms, we prove the following theorem which provides a bound on Ada-
Boost’s risk in terms of the risk of the reference function, the number of rounds T , the
number of training examples m, and the complexity of the base hypothesis space H as
measured by its VC-dimension d (see section 2.2.3). Note that both the reference function
F̌B and the clamping parameter C are used only for the sake of the mathematical argument,
and need not be known by the algorithm.

Theorem 12.2 Suppose AdaBoost is run on m random examples from distribution D for
T rounds, producing output FT , using an exhaustive weak learner and a negation-closed

386 12 Attaining the Best Possible Accuracy

base hypothesis space H of VC-dimension d. Let F̌B be a reference function as above. Then
for a suitable choice of C defining F T = clampC(FT), with probability at least 1− δ,

risk(F T) ≤ risk(F̌B)+ 2B6/5

T 1/5

+ 2

(
32

m

(
(T + 1) ln

(
me

T + 1

)
+ dT ln

(me

d

)
+ ln

(
16

δ

)))1/4

+ eB

√
ln(4/δ)

m
. (12.14)

As shown in the next corollary, this immediately implies convergence to the Bayes
optimal as the sample size m gets large, for a suitable number of rounds T . Here, for the
moment we add subscripts or superscripts, as in F m

T , Bm, Tm, etc., to emphasize explicitly
the dependence on m. Also, as used in the corollary, an infinite sequence of random variables
X1, X2, . . . is said to converge almost surely (or with probability 1) to some other random
variable X, written Xm

a.s.−→ X, if

Pr
[

lim
m→∞Xm = X

]
= 1. (12.15)

Corollary 12.3 If, under the conditions of theorem 12.2, we run AdaBoost for T = Tm =
θ(ma) rounds, where a is any constant in (0, 1), then as m →∞,

risk(F
m

Tm
)

a.s.−→ risk∗, (12.16)

and therefore,

err(Hm)
a.s.−→ err∗ (12.17)

where Hm(x) = sign(F m
Tm

(x)) = sign(F
m

Tm
(x)).

Proof Before proving the corollary, we make some general remarks concerning the con-
vergence of random variables. Almost sure convergence, as defined in equation (12.15),
is equivalent to the condition that for all ε > 0, with probability 1, all of the Xm’s come
within ε of X, for m sufficiently large; that is,

Pr[∃n ≥ 1,∀m ≥ n : |Xm−X| < ε] = 1. (12.18)

A commonly used tool for proving such convergence is the Borel-Cantelli lemma, which
states that if e1, e2, . . . is a sequence of events for which

∞∑
m=1

Pr[em does not hold] < ∞,

then

12.2 Approaching the Optimal Risk 387

Pr[∃n ≥ 1,∀m ≥ n : em holds] = 1.

In other words, with probability 1, all of the events em hold for m sufficiently large, provided
that the sum of the individual probabilities of the events not holding converges to any finite
value. Thus, setting em to the event that |Xm−X| < ε, we see that to prove equation (12.18),
it suffices to show that

∞∑
m=1

Pr[|Xm−X| ≥ ε] < ∞. (12.19)

And therefore, to show Xm
a.s.−→ X, it suffices to show that equation (12.19) holds for all

ε > 0. We will apply this technique shortly.
To prove the corollary, we set B = Bm = (ln m)/4, and δ = δm = 1/m2. With these

choices, for every ε > 0, we can choose m so large that

1. the excess risk appearing in equation (12.14)—that is, the amount by which risk(F
m

Tm
)

can exceed risk(F̌Bm)—is smaller than ε/2;

2. risk(F̌Bm) is within ε/2 of risk∗.

Together, these imply that for m sufficiently large, the probability that

risk(F
m

Tm
) < risk∗ + ε

is at least 1− δm. Since risk∗ ≤ risk(F
m

Tm
) always, and since

∑∞
m=1 δm < ∞, the Borel-

Cantelli lemma now implies, by the argument above, that risk(F
m

Tm
) converges almost

surely to risk∗, proving equation (12.16). From this, equation (12.17) now follows by a
direct application of theorem 12.1.

These results can be generalized to the case in which the complexity of the base hypotheses
depends on the number of training examples m simply by regarding the VC-dimension d

as a (not too fast-growing) function of m, and adjusting T appropriately.

12.2.4 Bounding How Fast AdaBoost Minimizes Empirical Risk

We now prove theorem 12.2 following the four-part outline given above. We begin
with part 1, in which we bound the rate at which AdaBoost minimizes the exponential
loss.

Lemma 12.4 After T rounds, the exponential loss of the function FT generated by
AdaBoost satisfies

r̂isk(FT) ≤ r̂isk(F̌B)+ 2B6/5

T 1/5
.

388 12 Attaining the Best Possible Accuracy

Proof We adopt the notation of both algorithms 1.1 (p. 5) and 7.1 (p. 178). Our approach
will be to focus on three key quantities, how they relate to one another, and how they evolve
over time. The first of these is

Rt
.= ln

(
r̂isk(Ft)

)
− ln

(
r̂isk(F̌B)

)
, (12.20)

that is, the difference between the logarithm of the exponential loss attained by AdaBoost
after T rounds, and that of the reference function F̌B . Our aim is to show that Rt gets small
quickly. Note that Rt never increases.

The second quantity of interest is

St
.= B +

t∑
t ′=1

αt ′ , (12.21)

which will provide an upper bound on the norms |F̌B | + |Ft |. Here and throughout, we
assume without loss of generality that the αt ’s are all nonnegative (or equivalently, that
εt ≤ 1

2 for all t), so that St never decreases.
And the third quantity that we focus on is the edge γt

.= 1
2 − εt .

Roughly speaking, our first claim shows that if AdaBoost’s exponential loss is large
relative to its associated norm, then the edge γt must also be large.

Claim 12.5 For t ≥ 1,

Rt−1 ≤ 2γtSt−1.

Proof As usual, Dt is the distribution computed by AdaBoost on round t . Thus, in the
present notation,

Dt(i) = exp (−yiFt−1(xi))

m · r̂isk(Ft−1)
. (12.22)

Let us also define the analogous distribution Ď for F̌B :

Ď(i)
.=

exp
(
−yiF̌B(xi)

)
m · r̂isk(F̌B)

.

Since relative entropy, as defined in equations (6.11) and (8.6) and discussed in section 8.1.2,
is never negative, we have

0 ≤ RE
(
Dt ‖ Ď

)
=

m∑
i=1

Dt(i) ln

(
Dt(i)

Ď(i)

)

12.2 Approaching the Optimal Risk 389

= ln
(

r̂isk(F̌B)
)
− ln

(
r̂isk(Ft−1)

)
−

m∑
i=1

Dt(i)yiFt−1(xi)+
m∑

i=1

Dt(i)yiF̌B(xi).

That is,

Rt−1 ≤ −
m∑

i=1

Dt(i)yiFt−1(xi)+
m∑

i=1

Dt(i)yiF̌B(xi). (12.23)

To prove the claim, we bound the two terms on the right.
We have that

2γt = (1− εt)− εt

=
m∑

i=1

Dt(i)yiht (xi)

= max
h∈H

m∑
i=1

Dt(i)yih(xi),

where the last equality uses our assumptions that the weak learner is exhaustive, and that
H is closed under negation. Thus,∣∣∣∣∣

m∑
i=1

Dt(i)yiFt−1(xi)

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

Dt(i)yi

t−1∑
t ′=1

αt ′ht ′(xi)

∣∣∣∣∣
=
∣∣∣∣∣

t−1∑
t ′=1

αt ′
m∑

i=1

Dt(i)yiht ′(xi)

∣∣∣∣∣
≤
(

t−1∑
t ′=1

αt ′

)
max
h∈H

∣∣∣∣∣
m∑

i=1

Dt(i)yih(xi)

∣∣∣∣∣
= 2γt ·

t−1∑
t ′=1

αt ′ . (12.24)

Furthermore, we can write F̌B in the form

F̌B(x) =
n∑

j=1

bj ĥj (x)

where

390 12 Attaining the Best Possible Accuracy

n∑
j=1

|bj | ≤ B, (12.25)

and ĥ1, . . . , ĥn are in H. Then by a similar argument,∣∣∣∣∣
m∑

i=1

Dt(i)yiF̌B(xi)

∣∣∣∣∣ ≤ 2γt ·B. (12.26)

Combining equations (12.23), (12.24), and (12.26), together with the definition of St−1 in
equation (12.21), yields

Rt−1 ≤
∣∣∣∣∣

m∑
i=1

Dt(i)yiFt−1(xi)

∣∣∣∣∣+
∣∣∣∣∣

m∑
i=1

Dt(i)yiF̌B(xi)

∣∣∣∣∣ ≤ 2γtSt−1,

as claimed.

Next, let us define

�Rt
.= Rt−1−Rt, (12.27)

�St
.= St − St−1,

the amounts by which Rt decreases and St increases on round t . Note that these are both
nonnegative. The next claim shows how these are related and, specifically, how their ratio
is controlled by the edge γt .

Claim 12.6 For t ≥ 1,

�Rt

�St

≥ γt .

Proof We can compute �Rt exactly as follows:

�Rt = ln
(

r̂isk(Ft−1)
)
− ln

(
r̂isk(Ft)

)
= − ln

(
1
m

∑m
i=1 exp (−yiFt (xi))

r̂isk(Ft−1)

)

= − ln

(
1
m

∑m
i=1 exp (−yi(Ft−1(xi)+αtht (xi)))

r̂isk(Ft−1)

)

= − ln

(
m∑

i=1

Dt(i) exp (−αtyiht (xi))

)

= − 1
2 ln(1− 4γ 2

t), (12.28)

12.2 Approaching the Optimal Risk 391

where the last equality uses equation (3.9) from the analysis of AdaBoost’s training error
given in theorem 3.1.

We can also obtain an exact expression for �St from the definition of αt given in
algorithm 1.1:

�St = αt = 1

2
ln

(
1+ 2γt

1− 2γt

)
.

Combining yields

�Rt

�St

= − ln(1− 4γ 2
t)

ln
(

1+2γt

1−2γt

) .= ϒ(γt)

where ϒ is the same function encountered in section 5.4.1 and defined in equation (5.32).
The claim now follows from the fact that ϒ(γ) ≥ γ for all 0 ≤ γ ≤ 1

2 (see figure 5.4
(p. 113)).

Together, these claims imply that the quantity R2
t St never increases, as we show next,

which will allow us in turn to relate Rt and St directly.

Claim 12.7 For t ≥ 1, if Rt ≥ 0, then

R2
t St ≤ R2

t−1St−1.

Proof Combining claims 12.5 and 12.6 gives

2�Rt

Rt−1
≥ �St

St−1
. (12.29)

Thus,

R2
t St = (Rt−1−�Rt)

2 (St−1+�St)

= R2
t−1St−1

(
1− �Rt

Rt−1

)2 (
1+ �St

St−1

)
≤ R2

t−1St−1 · exp

(
−2�Rt

Rt−1
+ �St

St−1

)
(12.30)

≤ R2
t−1St−1 (12.31)

where equation (12.30) uses 1+ x ≤ ex for all x ∈ R, and equation (12.31) follows from
equation (12.29).

Applying claim 12.7 repeatedly yields (when Rt−1 ≥ 0)

R2
t−1St−1 ≤ R2

0S0 ≤ B3, (12.32)

392 12 Attaining the Best Possible Accuracy

since S0 = B, and

R0 = − ln
(

r̂isk(F̌B)
)
≤ |F̌B | ≤ B.

Combining equations (12.28) and (12.32), along with claim 12.5, now implies that

�Rt = −1

2
ln(1− 4γ 2

t) ≥ 2γ 2
t ≥

1

2

(
Rt−1

St−1

)2

≥ 1

2

(
Rt−1

B3/R2
t−1

)2

= R6
t−1

2B6
. (12.33)

This shows that if the relative loss is large, then the progress that is made in reducing it will
be large as well. The next and last claim shows how this implies an inductive bound on Rt :

Claim 12.8 Let c = 1/(2B6). If Rt > 0, then

1

R5
t

≥ 1

R5
t−1

+ 5c. (12.34)

Proof Multiplying both sides by R5
t−1 and rearranging terms, equation (12.34) can be

rewritten as(
Rt−1

Rt

)5

≥ 1+ 5cR5
t−1. (12.35)

We have that(
Rt

Rt−1

)5 (
1+ 5cR5

t−1

) = (1− �Rt

Rt−1

)5 (
1+ 5cR5

t−1

)
≤ exp

(
−5�Rt

Rt−1
+ 5cR5

t−1

)
(12.36)

≤ 1, (12.37)

where equation (12.36) uses 1+ x ≤ ex for all x, and equation (12.37) follows from
equation (12.33). This implies equation (12.35) and the claim.

We can now prove lemma 12.4. If either RT ≤ 0 or T ≤ B6, then the lemma holds trivially
(since r̂isk(FT) ≤ 1), so we assume RT > 0 and T > B6 in what follows. Repeatedly
applying claim 12.8 yields

1

R5
T

≥ 1

R5
0

+ 5cT ≥ 5cT .

Thus,

RT ≤
(

2B6

5T

)1/5

≤ B6/5

T 1/5
.

12.2 Approaching the Optimal Risk 393

That is,

r̂isk(FT) ≤ r̂isk(F̌B) · exp

(
B6/5

T 1/5

)

≤ r̂isk(F̌B) ·
(

1+ 2B6/5

T 1/5

)

≤ r̂isk(F̌B)+ 2B6/5

T 1/5

since ex ≤ 1+ 2x for x ∈ [0, 1], and since r̂isk(F̌B) ≤ 1.

12.2.5 Bounding the Effect of Clamping

Moving on to part 2 of the proof, we show next that the degradation in exponential loss
caused by clamping is limited.

Lemma 12.9 For any F : X → R and C > 0, let F(x)
.= clampC(F (x)). Then

r̂isk(F) ≤ r̂isk(F)+ e−C.

Proof Let (x, y) be any labeled pair. If yF(x) ≤ C, then

yF(x) = clampC(yF (x)) ≥ yF(x),

so e−yF(x) ≤ e−yF(x). Otherwise, if yF(x) > C, then yF(x) = C, so e−yF(x) = e−C . In
either case, we conclude that

e−yF(x) ≤ e−yF(x)+ e−C.

Therefore,

1

m

m∑
i=1

e−yiF (xi) ≤ 1

m

m∑
i=1

e−yiF (xi)+ e−C

as claimed.

12.2.6 Relating Empirical and True Risks

For part 3, we relate the empirical risk to the true risk for all clamped functions of the form
produced by AdaBoost. Let spanT (H) be the subset of span(H) consisting of all linear
combinations of exactly T base hypotheses:

spanT (H)
.=
{

F : x �→
T∑

t=1

αtht (x)

∣∣∣∣∣ α1, . . . , αT ∈ R;h1, . . . , hT ∈ H
}

.

394 12 Attaining the Best Possible Accuracy

We wish to show that

risk(clampC(F)) � r̂isk(clampC(F)) (12.38)

uniformly for all F in spanT (H), and so in particular for FT generated by AdaBoost. We
prove this in two steps. First, we use techniques developed in chapters 2 and 4 to show that
the empirical probability of choosing an example (x, y) for which yF(x) ≤ θ will very
likely be close to its true probability, for all F in spanT (H) and all real θ . We then apply
this result to show equation (12.38).

Below, PrD[·] and ED[·] denote true probability and expectation, and PrS[·] and ES[·]
denote empirical probability and expectation.

Lemma 12.10 Assume m ≥ max{d, T + 1}. Then with probability at least 1− δ, for all
F ∈ spanT (H) and for all θ ∈ R,

PrD[yF(x) ≤ θ] ≤ PrS[yF(x) ≤ θ]+ ε (12.39)

where

ε =
√

32

m

(
(T + 1) ln

(
me

T + 1

)
+ dT ln

(me

d

)
+ ln

(
8

δ

))
. (12.40)

Proof We apply the general-purpose uniform-convergence results outlined in section 2.2.
For each F ∈ spanT (H) and each θ ∈ R, let us define the subset AF,θ of Z .= X ×{−1,+1}
to be

AF,θ
.= {(x, y) ∈ Z : yF(x) ≤ θ} .

Let A be the set of all such subsets:

A .= {AF,θ : F ∈ spanT (H), θ ∈ R
}

.

Proving the lemma then is equivalent to showing that

PrD[(x, y) ∈ A] ≤ PrS[(x, y) ∈ A]+ ε

for all A ∈ A, with high probability. Theorem 2.6 provides a direct means of proving this.
To apply the theorem, we need to count the number of “in-out behaviors” induced by sets
A ∈ A, that is, we need to bound the size of

	A(S)
.= {{(x1, y1), . . . , (xm, ym)} ∩A : A ∈ A}

for any finite sample S = 〈(x1, y1), . . . , (xm, ym)〉.
Suppose that θ ∈ R and that F is a function of the form

F(x) =
T∑

t=1

αtht (x). (12.41)

12.2 Approaching the Optimal Risk 395

Then clearly an example (x, y) is in AF,θ if and only if yF(x) ≤ θ , that is, if and only if
GF,θ (x, y) = −1 where

GF,θ (x, y)
.= sign (yF (x)− θ) = sign

(
T∑

t=1

αtyht (x)− θ

)
. (12.42)

(For this proof, we temporarily redefine sign(0)
.= −1.) This means that each induced

subset

{(x1, y1), . . . , (xm, ym)} ∩AF,θ

is in exact one-to-one correspondence with the dichotomies induced by the space G of all
functions GF,θ of the form given in equation (12.42). (Recall that a dichotomy refers to the
behavior, or labeling, induced by a function on the sample S—see section 2.2.3.) Thus, there
must be the same number of subsets in 	A(S) as dichotomies on S induced by functions
in G. Therefore, we focus now on counting the latter.

Similar to the proof of lemma 4.2, let us fix h1, . . . , hT and define the (T + 1)-dimensional
vectors

x′i = 〈yih1(xi), . . . , yihT (xi);−1〉.
Then for any function F as in equation (12.41) and any θ , there must exist a linear threshold
function σ on RT+1 such that GF,θ (xi, yi) = σ(x′i) for all i. (Specifically, the coeffi-
cients defining σ are 〈α1, . . . , αT ; θ〉, whose inner product with x′i is exactly yiF (xi)− θ .)
Lemma 4.1 shows that the class �T+1 of all such linear threshold functions has VC-
dimension T + 1, which means, by Sauer’s lemma (lemma 2.4) and equation (2.12), that
the number of dichotomies induced by �T+1 on the m points x′1, . . . , x′m (and thus by G on
S when h1, . . . , hT are fixed) is at most(

me

T + 1

)T+1

.

Since H has VC-dimension d , the number of behaviors of base classifiers h ∈ H on S

is at most (me/d)d . Therefore, by the same argument used in the proof of lemma 4.5, the
number of dichotomies induced by G, and thus |	A(S)|, is at most(

me

T + 1

)T+1 (me

d

)dT

.

Therefore, this is also a bound on 	A(m), the largest value of |	A(S)| on any sample S of
size m.

Plugging into theorem 2.6 now gives the claimed result.

396 12 Attaining the Best Possible Accuracy

We can now prove equation (12.38).

Lemma 12.11 Let C > 0, and assume m ≥ max{d, T + 1}. With probability at least
1− δ, for all F ∈ spanT (H),

risk(clampC(F)) ≤ r̂isk(clampC(F))+ eC · ε
where ε is as in equation (12.40).

Proof We assume equation (12.39) holds for all F ∈ spanT (H) and all θ ∈ R. By
lemma 12.10, this will be so with probability at least 1− δ. Let F(x)

.= clampC(F (x)).
Mapping equation (12.39) to the loss function of interest, we claim first that

PrD

[
e−yF(x) ≥ θ

]
≤ PrS

[
e−yF(x) ≥ θ

]
+ ε (12.43)

for all θ . For if e−C ≤ θ ≤ eC , then e−yF(x) ≥ θ if and only if yF(x) ≤ ln θ , so that equa-
tion (12.43) follows from equation (12.39). If θ > eC , then both the true and the empirical
probabilities appearing in equation (12.43) are equal to zero; likewise, if θ < e−C , then
they are both equal to 1. In either case, equation (12.43) holds trivially.

It is known that the expected value of any random variable X with range [0, M] can
be computed by integrating the complement of its cumulative distribution function.
That is,

E[X] =
∫ M

0
Pr[X ≥ θ] dθ.

Thus, applying equation (12.43) and the fact that e−yF(x) cannot exceed eC gives

risk(F) = ED

[
e−yF(x)

]
=
∫ eC

0
PrD

[
e−yF(x) ≥ θ

]
dθ

≤
∫ eC

0

(
PrS

[
e−yF(x) ≥ θ

]
+ ε
)

dθ

= ES

[
e−yF(x)

]
+ eC · ε

= r̂isk(F)+ eC · ε,

as claimed.

Part 4 of the proof is comparatively simple since we only need to show that the single
function F̌B is likely to have empirical risk close to its true risk.

12.2 Approaching the Optimal Risk 397

Lemma 12.12 With probability at least 1− δ,

r̂isk(F̌B) ≤ risk(F̌B)+ eB

√
ln(2/δ)

m
.

Proof Consider the random variables exp(−yiF̌B(xi)−B), whose average is
e−B r̂isk(F̌B), and whose expectation is e−B risk(F̌B). Because |F̌B | ≤ B and the hypotheses
in H are binary, |yiF̌B(xi)| ≤ B, so that these random variables are in [0, 1]. Applying
Hoeffding’s inequality (theorem 2.1) now gives

e−B r̂isk(F̌B) ≤ e−B risk(F̌B)+
√

ln(2/δ)

m

with probability at least 1− δ.

12.2.7 Finishing the Proof

We can now complete the proof of theorem 12.2 by combining lemmas 12.4 and 12.9
(applied to FT) as well as lemmas 12.11 and 12.12. Together with the union bound, these
give, with probability at least 1− 2δ, that

risk(F T) ≤ risk(F̌B)+B

√
ln T

T
+ e−C + eC · ε+ eB

√
ln(2/δ)

m
(12.44)

where ε is as in equation (12.40). Replacing δ with δ/2, and choosing C to minimize
equation (12.44), completes the proof of theorem 12.2.

12.2.8 Comparison to Margin-Based Bounds

As the amount of training data increases, the foregoing shows that the classification accuracy
of AdaBoost converges to optimality, provided the base hypotheses possess the right degree
of expressiveness. This guarantee is absolute, in contrast to the generalization-error bounds
given in section 5.2, which are in terms of the margins as measured on the dataset following
training. Moreover, the current analysis does not depend on the weak learning assumption,
and so is applicable even if the edges of the weak hypotheses are rapidly approaching zero.

On the other hand, the analysis given in this chapter, as in chapter 4, requires that the
number of rounds T be controlled and kept significantly smaller than the training set size
m (but also large enough for the algorithm to approach minimal exponential loss). In other
words, the analysis predicts overfitting if the algorithm is run for too long. In this way, the
analysis fails to explain the cases in which AdaBoost manages to avoid overfitting, unlike
the margins analysis whose bounds are entirely independent of T .

In short, the margins theory seems to better capture AdaBoost’s behavior when the weak
learning assumption holds, for instance, when using a reasonably strong base learner, like
a decision-tree algorithm, that does indeed generate base hypotheses that are consistently

398 12 Attaining the Best Possible Accuracy

and significantly better than random. In this case, by the results of section 5.4.1, we can
expect large margins and an accompanying resistance to overfitting. When, due to noise or
randomness in the data, the weak learning assumption does not hold without an inordinate
blowup in the complexity of the base hypotheses, the current analysis shows that boosting
can still be used—though in a mode requiring somewhat greater control—to deliver results
comparable to the best possible.

The analysis of the generalization error given in this chapter was based on minimization
of exponential loss. On the other hand, in section 7.3 we saw that this property alone is not
sufficient to guarantee good generalization, and that any analysis must also take into account
how the algorithm minimizes loss, as is done in the margins-based analysis of AdaBoost.
These results are not in contradiction. On the contrary, the current analysis is very much
based on the manner in which AdaBoost is able to generate a predictor with nearly minimal
exponential loss by combining a relatively small number of base hypotheses.

12.3 How Minimizing Risk Can Lead to Poor Accuracy

Corollary 12.3 depends crucially on the key assumption that the minimum exponential
loss can be realized or approached by linear combinations of base hypotheses as stated
formally in equation (12.11). When this assumption does not hold, AdaBoost may produce
a combined classifier whose performance is extremely poor relative to the Bayes optimal.
This is true even though the base hypotheses may be rich enough to represent the Bayes
optimal classifier as a linear threshold function, and even with unlimited training data, and
even if the noise affecting the data is of a very simple form. Moreover, the difficulty applies
to any algorithm that minimizes exponential loss, including AdaBoost.

To see this, we construct a simple example of a distribution D over labeled pairs, and a
base hypothesis space H for which the linear combination of base hypotheses with minimum
exponential loss induces a classifier with accuracy as bad as random guessing, even though
the Bayes optimal classifier can be represented by just such a linear combination.

12.3.1 A Construction Using Confidence-Rated Hypotheses

In this construction, the instance space X consists of just three instances: the “large-margin”
example, xlm; the “puller,” xpu; and the “penalizer,” xpe. (The meaning of the names will
become apparent later.) To generate a labeled example (x, y) according to D, we first
randomly choose x to be equal to xlm with probability 1

4 ; xpu with probability 1
4 ; and xpe

with probability 1
2 . The label y is chosen independently of x to be +1 with probability

1− η, and −1 with probability η, where 0 < η < 1
2 is the fixed noise rate. Thus, it is as if

the “true” label of each example, which in this case is always +1, is flipped to its opposite
value −1 with probability η prior to being observed by the learner. Such a uniform noise
model, which affects the true labels of all examples with equal probability, is perhaps the
simplest possible model of noise.

12.3 How Minimizing Risk Can Lead to Poor Accuracy 399

The hypothesis space H consists of just two hypotheses: �1 and �2. Here, as in chap-
ter 9, we allow these to be real-valued or confidence-rated. Later, we show how the same
construction can be modified for binary classifiers. The hypotheses �1 and �2 are defined
as follows:

x �1(x) �2(x)

xlm 1 0
xpe c − 1

5
xpu c 1

where c > 0 is a small constant to be chosen later. In fact, our argument will hold for all suf-
ficiently small (but positive) values of c. The hypotheses in H can be plotted geometrically
as in figure 12.1.

Note that the Bayes optimal classifier for the distribution D predicts that all instances are
positive, incurring a Bayes error rate of exactly η. This classifier can be represented as the
sign of a (trivial) linear combination of base hypotheses, namely, sign(�1(x)).

In minimizing exponential loss, we aim to find a linear combination of �1 and �2,

Fλ(x)
.= λ1�1(x)+ λ2�2(x),

1

c
1

xpu

xpe

xlm

h2

h1

Figure 12.1
A plot of the hypotheses �1 and �2 on the instances xlm, xpe , and xpu. Each instance x is represented by the
point 〈�1(x), �2(x)〉. The vector λ schematically depicts the coefficients on �1 and �2 obtained by minimizing
the exponential loss. The line perpendicular to λ represents the resulting decision boundary, which, in this case,
predicts xpe to be negative, and the other two instances to be positive.

400 12 Attaining the Best Possible Accuracy

that minimizes risk(Fλ) as defined in equation (12.2). We consider an ideal situation in
which the true risk with respect to D is minimized directly, as will be the case in the limit
of a very large training set for an algorithm like AdaBoost (if run for enough rounds). Our
aim now is to show that the resulting classifier sign(Fλ) will have very poor accuracy.

Let us define

K(z)
.= (1− η)e−z+ ηez. (12.45)

Then by construction of D and H, we can write out the risk of Fλ explicitly as

L(λ, c)
.= risk(Fλ) = 1

4 K(λ1)+ 1
2 K
(
cλ1− 1

5 λ2
)+ 1

4 K (cλ1+ λ2) , (12.46)

where the three terms on the right correspond, respectively, to the expected loss associated
with xlm, xpe, and xpu. With c fixed, the vector λ is chosen to minimize this expression.
Intuitively, when c is small, λ1 is controlled almost entirely by xlm, while λ2 is controlled
by the other two instances. In particular, the puller will tend to pull λ2 in a strongly positive
direction since it turns out that �2’s higher-confidence prediction on the puller more than
offsets the higher weight assigned to the penalizer under the distribution D. As a result, the
penalizer will be predicted negative, as seen in figure 12.1. If this happens, then the overall
error of the resulting classifier will be at least 1

2 because of the penalizer’s large weight
under D.

More formally, we prove the following:

Theorem 12.13 Given the construction described above, let λ∗(c) be any value of λ that
minimizes the exponential loss L(λ, c). Then for any sufficiently small value of c > 0, the
classification error of sign(Fλ∗(c)) is at least 1

2 . On the other hand, for some other choice of
λ, the classification error of sign(Fλ) is equal to the Bayes error rate of η.

Proof Because K(z) is convex and unbounded as s tends to ±∞, and because
L(λ∗(c), c) ≤ L(0, c) = 1, it can be argued that the vectors λ∗(c), for all c ∈ [0, 1], must
all lie in a bounded subset of R2; without loss of generality, this subset is also closed, and
therefore compact.

When c = 0,

L(λ, 0) = 1
4 K(λ1)+ 1

2 K
(− 1

5 λ2
)+ 1

4 K(λ2).

By the results of section 9.2.1, the minimizer λ∗(0) of this expression is unique. Moreover,
because its derivative with respect to λ2, ∂L(λ, 0)/∂λ2, is strictly negative when λ2 = 0,
and because L (as a function only of λ2) is convex, the minimizing value λ∗2(0) must be
strictly positive.

We claim that λ∗(c) converges to λ∗(0) as c converges to 0 (from the right). If it does
not, then there exist ε > 0 and a sequence c1, c2, . . . such that 0 < cn < 1/n, and

‖λ∗(cn)−λ∗(0)‖ > ε (12.47)

12.3 How Minimizing Risk Can Lead to Poor Accuracy 401

for all n. Because the λ∗(cn)’s lie in a compact space, the sequence must have a convergent
subsequence; without loss of generality, let that subsequence be the entire sequence so that
λ∗(cn) → λ̃ for some λ̃. By definition of λ∗(cn) as a minimizer,

L(λ∗(cn), cn) ≤ L(λ∗(0), cn)

for all n. Taking limits, this implies by the continuity of L that

L(λ̃, 0) = lim
n→∞L(λ∗(cn), cn) ≤ lim

n→∞L(λ∗(0), cn) = L(λ∗(0), 0).

But because λ∗(0) is the unique minimizer of L(λ, 0), this means that λ̃ = λ∗(0), which
contradicts equation (12.47). Therefore, λ∗(c) → λ∗(0), as claimed.

For any c, the resulting prediction on the penalizer xpe will be the sign of

Fλ∗(c)(xpe) = cλ∗1(c)− 1
5 λ∗2(c),

which, in the limit c → 0, is equal to − 1
5 λ∗2(0) < 0 by the arguments above. Thus, for c

sufficiently small, xpe will be predicted to be negative, giving an overall error with respect
to D of at least 1

2 . This is as bad as random guessing, and much worse than the Bayes
error of η, which, as observed earlier, is realized by a trivial combination of the two base
hypotheses.

12.3.2 A Modified Construction Using Binary Classifiers

This construction can be modified so that all of the weak hypotheses are in fact binary
classifiers with range {−1,+1}. In other words, for some distribution D over examples,
and for some space of binary base classifiers, minimizing exponential loss over linear com-
binations of classifiers from this hypothesis space results in a classifier with accuracy as
poor as random guessing, despite the existence of another linear combination of these same
base classifiers whose performance matches the Bayes optimal.

To show this, we now represent instances by binary vectors x in X .= {−1,+1}N , where
N

.= 2n+ 11, and where n > 0 will be chosen shortly. The base classifiers in H are each
identified with a component of x; that is, for each component j , there is a base classifier �j

for which �j (x) = xj for every instance x.
We will find it convenient to decompose every instance x into its first 2n+ 1 components,

denoted x[1], and its remaining 10 components, denoted x[2]. Thus, x = 〈x[1]; x[2]〉where x[1]

∈ {−1,+1}2n+1 and x[2] ∈ {−1,+1}10. Roughly speaking, this decomposition will corre-
spond to the two base hypotheses �1 and �2 used in the construction of section 12.3.1.

Let Sp

k denote the set of p-dimensional binary vectors whose components add up to
exactly k:

Sp

k

.=
⎧⎨⎩u ∈ {−1,+1}p :

p∑
j=1

uj = k

⎫⎬⎭ .

402 12 Attaining the Best Possible Accuracy

For instance, Sp
p consists only of the all+1’s vector, while Sp

0 consists of all p-dimensional
vectors with an exactly equal number of +1’s and −1’s.

The distribution D can now be described in terms of these sets. Specifically, a random
instance x = 〈x[1]; x[2]〉 is generated under D as follows:

• With probability 1
4 , a “large-margin” instance is chosen by selecting x[1] uniformly at

random from S2n+1
2n+1 and x[2] uniformly from S10

0 .

• With probability 1
2 , a “penalizer” instance is chosen with x[1] selected uniformly from

S2n+1
1 and x[2] from S10

−2.

• With probability 1
4 , a “puller” instance is chosen with x[1] selected uniformly from S2n+1

1

and x[2] from S10
10 .

The label y is selected just as before to be+1 with probability 1− η and−1 otherwise. Thus,
as before, the Bayes error is η, and now the Bayes optimal classifier can be represented by
the majority vote of the components of x[1].

As was done for instances, we also decompose every weight vector λ ∈ RN into
〈λ[1];λ[2]〉, where λ[1] ∈ R2n+1 and λ[2] ∈ R10. A linear combination of weak classifiers
thus has the form

Fλ(x)
.=

N∑
j=1

λjxj =
2n+1∑
j=1

λ
[1]
j x

[1]
j +

10∑
j=1

λ
[2]
j x

[2]
j . (12.48)

Its risk with respect to D is

risk(Fλ)
.= ED[exp (−yFλ(x))]

=
∑
x,y

D(x, y) exp

⎛⎝−y

⎛⎝2n+1∑
j=1

λ
[1]
j x

[1]
j +

10∑
j=1

λ
[2]
j x

[2]
j

⎞⎠⎞⎠ (12.49)

where the outer sum is over all labeled pairs (x, y) in X ×{−1,+1}.
We claim that when this risk is minimized, all of the λ

[1]
j ’s are necessarily equal

to one another, as are all of the λ
[2]
j ’s. Suppose this is not the case, and that λ =

〈λ[1];λ[2]〉 minimizes equation (12.49) with λ
[1]
1 �= λ

[1]
2 . Holding all of the other param-

eters λ
[1]
3 , λ

[1]
4 , . . . , λ

[1]
2n+1, and λ[2] fixed, and treating these as constants, we see that every

term appearing in the sum in equation (12.49) has the form

a exp
(
b1λ

[1]
1 + b2λ

[1]
2

)
for some b1, b2 ∈ {−1,+1}, and some a ≥ 0. Combining terms with the same exponent,
the risk, as a function of λ

[1]
1 and λ

[1]
2 , thus must have the form

Aeλ
[1]
1 −λ

[1]
2 +A′eλ

[1]
2 −λ

[1]
1 +Beλ

[1]
1 +λ

[1]
2 +Ce−λ

[1]
1 −λ

[1]
2 (12.50)

12.3 How Minimizing Risk Can Lead to Poor Accuracy 403

where A, A′, B, and C are nonnegative, and do not depend on λ
[1]
1 or λ

[1]
2 ; in fact, by

the manner in which the distribution D was constructed, all four of these must be strictly
positive. Moreover, because of the natural symmetry of the distribution, the probability of
a labeled example (x, y) under D is unchanged by swapping the values of x

[1]
1 and x

[1]
2 .

This implies that A = A′. But then replacing λ
[1]
1 and λ

[1]
2 with their average (λ

[1]
1 + λ

[1]
2)/2

in equation (12.50) leads to a strictly smaller risk since λ
[1]
1 �= λ

[1]
2 (and since ez+ e−z is

minimized uniquely when z = 0). This is a contradiction.
By similar arguments, at the minimizer of the risk, λ

[1]
1 = λ

[1]
j and λ

[2]
1 = λ

[2]
j for every

component j ; that is,

λ
[1]
1 = λ

[1]
2 = · · · = λ

[1]
2n+1 = λ[1]

and

λ
[2]
1 = λ

[2]
2 = · · · = λ

[2]
10 = λ[2]

for some common values λ[1] and λ[2]. Thus, henceforth, we need consider vectors λ[1] and
λ[2] of only this form.

Note that if x[1] ∈ S2n+1
k1

and x[2] ∈ S10
k2

, then by equation (12.48),

Fλ(x) = λ[1]k1+ λ[2]k2.

Thus, by the construction of D, equation (12.49) now simplifies to

1
4 K
(
(2n+ 1)λ[1]

)+ 1
2 K
(
λ[1] − 2λ[2]

)+ 1
4 K
(
λ[1] + 10λ[2]

)
(12.51)

where the three terms correspond to large-margin, penalizer, and puller instances, respec-
tively, and where K was defined in equation (12.45). If we now define

λ̃1
.= (2n+ 1)λ[1],

λ̃2
.= 10λ[2],

c̃
.= 1

2n+ 1
,

then equation (12.51) can be written

1
4 K
(
λ̃1

)
+ 1

2 K
(
c̃λ̃1− 1

5 λ̃2

)
+ 1

4 K
(
c̃λ̃1+ λ̃2

)
,

which has the identical form as equation (12.46), the risk for the construction of sec-
tion 12.3.1. In other words, we have reduced the minimization problem involving binary
classifiers to our previous, simpler construction involving real-valued base hypotheses.
Thus, we can now proceed exactly as before to show that for n sufficiently large (so that
c̃ is sufficiently small), all of the penalizer examples will be classified −1 by the classifier
induced by minimizing the risk, which therefore will have generalization error at least 1

2 .

404 12 Attaining the Best Possible Accuracy

So we conclude that AdaBoost’s classification error can be much worse than optimal
if the weak hypothesis space is not adequately expressive. In addition, in section 7.5.3,
we described a technique for estimating the conditional probability of an instance being
positive or negative. As pointed out in that section, this method relies on essentially the
same assumption of expressiveness as given in equation (12.11). The example given above
shows that this assumption is indispensable, and that the technique can fail badly without
it. With suitable modifications, the same argument can be applied to logistic regression as
well (see exercise 12.9).

Experiments based on the construction above are reported in section 14.4.

12.3.3 The Difficulty of Uniform Noise

In the preceding example, we utilized the simple uniform-noise model in which all labels
of all instances are corrupted with the same probability η > 0. The results show that even a
small positive value of η will cause the generalization error to be as bad as random guessing,
despite the fact that with no noise (η = 0), an algorithm like AdaBoost will provably
generate a classifier with perfect generalization accuracy (given enough training data). So
from η = 0 to η > 0, the generalization error jumps abruptly from 0 to 50%.

Although contrived, this suggests thatAdaBoost may be quite susceptible to such uniform
noise. Indeed, experiments have shown this to be the case. For instance, in one empirical
study, boosting was compared with bagging (another method of generating and combining
base classifiers—see section 5.5) using a decision-tree algorithm as base learner. Among
nine real-world benchmark datasets, boosting outperformed bagging significantly on five,
while bagging did not beat boosting on even one (on the other four, there was no statistically
significant difference). However, when artificial uniform-noise was added at a rate of 10%,
the results were reversed: bagging performed better than boosting on six of the datasets,
while boosting did better on just one (with a statistical tie occurring on the other two).

While we expect any algorithm to do worse on noisy data, these results show that the
degradation in performance for boosting is faster than for other algorithms. Intuitively,
this poor performance seems to be a consequence of AdaBoost’s deliberate concentration
on “hard” examples, a propensity that leads the algorithm to pile ever more weight onto
the corrupted examples in a futile effort to match the noisy labels. An example is shown
in figure 12.2. This was seen also in section 10.3, where this tendency was exploited
beneficially as a means of identifying outliers.

The example constructed above suggests that a second factor affecting performance on
noisy data may be an inability to represent the function minimizing the exponential loss
using a linear combination of base classifiers of limited complexity.

Although AdaBoost degrades disappointingly with the addition of uniform noise in such
semi-artificial experiments, it has also been observed thatAdaBoost performs quite well on a
wide array of real-world datasets. Such data is almost never “clean,” having been corrupted

12.3 How Minimizing Risk Can Lead to Poor Accuracy 405

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
w

ei
gh

t p
er

 tr
ai

ni
ng

 e
xa

m
pl

e

Iteration

Corrupted examples

Uncorrupted examples

Figure 12.2
In this experiment, prior to training, 20% of the 2800 examples comprising this benchmark dataset were selected
at random and their labels artificially corrupted. AdaBoost was then run using a decision-tree algorithm as the
base learner. The graph shows the average weight, on each round, placed on the corrupted examples, compared
with the weight placed on those that were left uncorrupted. (Copyright ©2000 Kluwer Academic Publishers (now
Springer). Reprinted from figure 9 of [68] with permission from Springer Science and Business Media, LLC.)

in one way or another by measurement or recording errors, mislabelings, deletions, and
so on. This paradox suggests that perhaps uniform noise is a poor model of the real-world
influences that lead to the corruption of data. Perhaps, in real datasets, noise does not affect
all instances equally, but instead affects instances close to the boundary that separates
positives from negatives more strongly than those that are far from this boundary. Indeed,
as discussed in section 7.5.1, logistic regression, a close relative of AdaBoost, posits just
such a noise model, further hinting at the poor fit between such methods and uniform
noise.

On the other hand, there may be an opportunity here to substantially improve AdaBoost’s
ability to handle noise. Indeed, a number of such algorithms have been suggested. Of those
that are provably resistant to uniform noise, most are based on the construction of a very
different kind of combined classifier; rather than assembling a final classifier that computes a
(weighted) majority vote of the base classifiers, these methods instead construct a branching
program, a computational structure that is much like a decision tree (see section 1.3), but
in which two or more outgoing edges can lead to the same node. Thus, rather than forming
a tree, the graph structure of a branching program forms a directed acyclic graph. A full
description of such methods is beyond the scope of this book.

406 12 Attaining the Best Possible Accuracy

An alternative approach for making boosting resistant to noise and outliers will emerge
from the theoretical study of optimal boosting given in chapter 13.

Summary

In this chapter, we have identified conditions under which AdaBoost provably converges
to the best possible accuracy. This was proved using the algorithm’s ability to minimize
exponential loss, together with a proof that nearly minimal exponential loss implies nearly
optimal classification accuracy. But we also saw in this chapter that AdaBoost’s perfor-
mance can be very poor when the weak hypotheses are insufficiently expressive, even with
effectively unlimited training data. The uniform noise assumed in this example, though
perhaps not entirely realistic, seems to be a problem for boosting, both theoretically and
empirically.

Bibliographic Notes

Results on the consistency of AdaBoost and its variants have been studied under various
conditions by a number of authors, including Breiman [38], Mannor, Meir, and Zhang [164],
Jiang [128], Lugosi and Vayatis [161], Zhang [235], Zhang and Yu [236], and Bickel,
Ritov, and Zakai [20]. The development given in sections 12.1 and 12.2 directly follows the
proof of Bartlett and Traskin [14], with some modifications, the most significant being the
improved rate of convergence given in lemma 12.4 which is due to Mukherjee, Rudin, and
Schapire [172]. Theorem 12.1 was essentially proved by Zhang [235] and, in the slightly
more refined form given here, by Bartlett, Jordan, and McAuliffe [12].

The example and proof given in section 12.3.1 are due to Long and Servedio [159], with
some modifications and simplifications. Figure 12.1 is adapted from their paper as well.
Their results show further that boosting with exponential loss will fail even when using
certain forms of regularization, or when boosting is stopped early after only a limited
number of rounds. The example in section 12.3.2 was inspired by one that they had used in
their paper, but only experimentally and without proof.

Most of the works from the literature mentioned up to this point are applicable to broad
and general classes of loss functions, not just exponential loss as presented here.

The experiments mentioned in section 12.3.3 that compare boosting and bagging with
noisy data were reported by Dietterich [68]. Figure 12.2 was reprinted, with permission,
from this work. See also Maclin and Opitz [162].

Algorithms for boosting in the presence of noise are given by Kalai and Servedio [129],
and by Long and Servedio [157, 158]. These utilize an approach to boosting originally due
to Mansour and McAllester [165], based on a branching-program representation. Other
practical and theoretical research on boosting with various kinds of noise include [9, 17,
106, 141, 143, 186, 210].

Exercises 407

Some of the exercises in this chapter are based on material from [12, 38, 159, 161, 172,
236].

Exercises

12.1 Regarding the proof of theorem 12.1, verify that:

a. φ is convex.

b. φ is strictly increasing.

c. φ−1(z) is as given in equation (12.10), and is increasing.

12.2 This exercise generalizes theorem 12.1. Let � : R → R+ be a margin-based loss func-
tion with the following properties: (1) � is convex; and (2) the derivative �′ of � exists at
0 and is negative, that is, �′(0) < 0. Note that these properties together imply that � is
decreasing on (−∞, 0].

We use the notation in section 12.1, but redefine certain key quantities in terms of �. In
particular, hopt and err∗ are exactly as before, but for F : X → R, we redefine

risk(F)
.= E[�(yF (x))]

and

risk∗ .= inf
F

risk(F),

where the infimum is taken over all possible functions F . Further, for p ∈ [0, 1] and
z ∈ R, let

C(p, z)
.= p�(z)+ (1−p)�(−z),

and let Cmin(p)
.= inf z∈R C(p, z).

As in theorem 12.1, we now let F : X → R be a given, fixed function, and let h be a
corresponding thresholded classifier. Finally, we redefine ρ(x)

.= C(π(x), F (x)).

a. Show that

ρ(x) ≥
{

0 if h(x) = hopt(x)

�(0)−Cmin(π(x)) else.

b. For r ∈ [−1,+1], we redefine

φ(r)
.= �(0)−Cmin

(
1+ r

2

)
.

408 12 Attaining the Best Possible Accuracy

Prove that φ has the following properties:

i. φ(r) = φ(−r) for r ∈ [−1,+1].
ii. φ is convex. [Hint: First prove and then apply the fact that if F is a family of convex,

real-valued functions, then the function g defined by g(x) = supf∈F f (x) is also
convex.]

iii. φ(0) = 0 and φ(r) > 0 for r �= 0. [Hint: For fixed r �= 0, consider the values of
C((1+ r)/2, z) in a small neighborhood of z = 0.]

iv. φ is strictly increasing on [0, 1].
c. Prove that

φ(err(h)− err∗) ≤ risk(F)− risk∗.

d. Let F1, F2, . . . be a sequence of functions, and h1, h2, . . . a corresponding sequence of
thresholded classifiers (that is, hn(x) = sign(Fn(x)) whenever Fn(x) �= 0). Prove that,
as n →∞, if risk(Fn) → risk∗, then err(hn) → err∗.

12.3 We continue exercise 12.2.

a. Suppose the loss �(z) = ln(1+ e−z). Show that

φ(r) = REb

(
1+ r

2
‖ 1

2

)
.

Also, show that if risk(F) ≤ risk∗ + ε, then

err(sign(F)) ≤ err∗ +√2ε.

b. Compute φ(r) for each of the following loss functions. Express your answers in as
simple a form as possible.

i. �(z) = (1− z)2.

ii. �(z) = (max{1− z, 0})2.

iii. �(z) = max{1− z, 0}.

Exercises 12.4 and 12.5 outline alternative methods for obtaining rates of convergence of
the exponential loss to its minimum for two different variants of AdaBoost. Aside from the
changes described below, we adopt the setup and notation of section 12.2. In particular, F̌B

is a reference function with |F̌B | < B.

12.4 AdaBoost.S is the same as AdaBoost, except that at the end of each round, the current
combination of weak hypotheses is scaled back, that is, multiplied by a scalar in [0, 1] if
doing so will further reduce the exponential loss. Pseudocode is shown as algorithm 12.1,
using the formulation of AdaBoost as a greedy algorithm for minimizing exponential loss

Exercises 409

Algorithm 12.1
AdaBoost.S, a modified version of AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize F0 ≡ 0.
For t = 1, . . . , T :

• Choose ht ∈ H, αt ∈ R to minimize

1

m

m∑
i=1

exp(−yi(Ft−1(xi)+αtht (xi)))

(over all choices of αt and ht).

• Update:

F̃t = Ft−1+αtht

and scale back:

Ft = st F̃t

where st ∈ [0, 1] minimizes

1

m

m∑
i=1

exp(−yist F̃t).

Output FT .

as presented in section 7.1. The code is largely the same as in algorithm 7.1 (p. 178),
maintaining a combination Ft of weak hypotheses, and greedily choosing αt and ht on each
round to effect the greatest drop in the empirical exponential loss. However, at the end of
the round, after creating the new combination F̃t = Ft−1+αtht , the result is multiplied by
the value st in [0, 1] that causes the greatest decrease in the exponential loss.

Below, Dt , Rt , and �Rt are defined as in equations (12.22), (12.20), and (12.27), but
with Ft as redefined above.

a. Prove that

m∑
i=1

Dt(i)yiFt−1(xi) ≥ 0.

[Hint: Consider the first derivative of r̂isk(sF̃t−1) when viewed as a function of s.]

410 12 Attaining the Best Possible Accuracy

b. Prove that if Rt−1 ≥ 0, then

�Rt ≥ R2
t−1

2B2
.

[Hint: Prove an upper bound on Rt−1 and a lower bound on �Rt , both in terms of γt

(appropriately redefined for AdaBoost.S).]

c. Prove that if Rt > 0, then

1

Rt

≥ 1

Rt−1
+ 1

2B2
.

d. Finally, show that

r̂isk(FT) ≤ r̂isk(F̌B)+ 4B2

T

(a much better bound than the one given for AdaBoost in lemma 12.4).

12.5 Consider a variant of AdaBoost that is the same as algorithm 7.1 (p. 178) except
that αt is restricted to the set [−ct , ct]; that is, on each round, Ft = Ft−1+αtht where
αt and ht are chosen together to greedily minimize the exponential loss over all choices
of ht ∈ H and over all choices of αt in the restricted set [−ct , ct] (rather than over all
αt ∈ R, as in algorithm 7.1). Here, c1, c2, . . . is a prespecified, nonincreasing sequence of
positive numbers for which we assume that

∑∞
t=1 ct = ∞, but

∑∞
t=1 c2

t < ∞. (For instance,
ct = t−a , where 1

2 < a ≤ 1, satisfies these conditions.) We assume B > c1.
In what follows, Rt and Dt are as defined in equations (12.20) and (12.22) (with Ft as

redefined above). However, we here redefine St
.= B +∑t

t ′=1 ct ′ .

a. For any α ∈ R and h ∈ H, use Taylor’s theorem (theorem A.1) to show that

r̂isk(Ft−1+αh) ≤ r̂isk(Ft−1)−α

m∑
i=1

Dt(i)yih(xi)+ α2

2
.

b. Let ĥ1, . . . , ĥn ∈ H, and let w1, . . . , wn ∈ R with
∑n

j=1 |wj | = 1. Show that

r̂isk(Ft) ≤ r̂isk(Ft−1)− ct

m∑
i=1

n∑
j=1

wj Dt(i)yi ĥj (xi)+ c2
t

2
.

[Hint: Prove upper and lower bounds on
∑n

j=1 |wj | r̂isk(Ft−1+ ctsign(wj)ĥj).]

c. On a particular round t , show that there exist a finite set of hypotheses ĥ1, . . . , ĥn ∈ H,
and real numbers a1, . . . , an and b1, . . . , bn such that Ft−1 and F̌B can be written in the
form

Exercises 411

Ft−1(x) =
n∑

j=1

aj ĥj (x) and F̌B(x) =
n∑

j=1

bj ĥj (x),

and for which
n∑

j=1

(|aj | + |bj |
) ≤ St−1.

(Keep in mind that H need not be finite.)

d. By setting wj = (bj − aj)/W in part (b), where W
.=∑n

j=1 |bj − aj |, show that

Rt ≤ Rt−1

(
1− ct

St−1

)
+ c2

t

2
.

[Hint: Use equation (12.23).]

e. Show that

1− ct

St−1
≤ St−1

St

.

f. Show that

RT ≤ B2

ST

+ 1

2

T∑
t=1

St

ST

· c2
t .

g. Let σ(1), σ (2), . . . be a sequence of positive integers such that 1 ≤ σ(t) ≤ t for all t ,
and as t →∞, σ(t) →∞ but Sσ(t)/St → 0. Show that such a sequence must exist.

h. Show that

RT ≤ B2

ST

+ 1

2

⎡⎣Sσ(T)

ST

σ(T)∑
t=1

c2
t +

T∑
t=σ(T)+1

c2
t

⎤⎦ , (12.52)

and that the right-hand side of this inequality approaches 0 as T →∞. This shows that
limT→∞ r̂isk(FT) ≤ r̂isk(F̌B), with rates of convergence in terms of B and the ct ’s that
can be obtained using equation (12.52).

12.6 Rather than using AdaBoost for a bounded number of rounds, consider applying
regularization to the exponential loss. To be specific, given the setup and assumptions of
theorem 12.2, and for B > 0, let F̂B be any function which minimizes r̂isk(F) over all
F ∈ span(H) with |F | ≤ B. (For simplicity, assume such a minimizing function exists.)
As usual, F̌B is a reference function from this same space.

412 12 Attaining the Best Possible Accuracy

a. Prove that, with probability at least 1− δ,

risk(F̂B) ≤ risk(F̌B)+O

(
eB ·B ·

√
d ln(m/d)

m
+ eB

√
ln(1/δ)

m

)
.

[Hint: Use the techniques of section 5.3.]

b. Conclude that risk(F̂B) converges almost surely to risk∗ as m →∞, for an appropriate
choice of B as a function of m.

12.7 Let the domain X = [0, 1]n, and let us assume that the conditional probability function
π given in equation (12.1) is Lipschitz, meaning that for some constant k > 0, and for all
x, x′ ∈ X ,∣∣π(x)−π(x′)

∣∣ ≤ k ‖x− x′‖2.

Let H be the space of all decision trees with at most cn internal nodes where each test at
each node is of the form xj ≤ ν, for some j ∈ {1, . . . , n} and some ν ∈ R. Here, c > 0 is
an absolute constant of your choosing (not dependent on n, k, or π).

a. Show that equation (12.11) holds in this case.

b. Show that the VC-dimension of H is upper bounded by a polynomial in n.

12.8 Verify the following details, which were omitted from the proof of theorem 12.13:

a. The vectors λ∗(c), for all c ∈ [0, 1], are included in some compact subset of R2.

b. The minimizer of λ∗(0) is unique.

c. The partial derivative ∂L(λ, 0)/∂λ2 is strictly negative when λ2 = 0.

d. λ∗2(0) > 0.

12.9 Let � : R → R+ be a margin-based loss function satisfying exactly the same properties
described at the beginning of exercise 12.2. Note that these properties imply that � is
continuous. Suppose that in the construction of section 12.3.1 exponential loss is replaced
by �. In particular, this means redefining

K(z)
.= (1− η)�(z)+ η�(−z).

In this exercise, we will see how to modify theorem 12.13 to prove a more general result
that holds when any loss function � with the stated properties is minimized in place of
exponential loss.

a. Prove that lims→−∞ �(s) = ∞. [Hint: Use equation (A.3).]

b. Show that there exists a compact set C ⊆ R2 such that if λ minimizes L(λ, c) for any
c ∈ [0, 1], then λ ∈ C.

c. Show that if � is strictly convex, then L(λ, 0) has a unique minimum. Also, give an
example showing that the minimum of L(λ, 0) need not be unique without this additional

Exercises 413

assumption. (You should not assume � is strictly convex in the remaining parts of this
exercise.)

d. Let M ⊆ R2 be the set of all minima of L(λ, 0). Show that there exists b > 0 such that
if λ ∈ M , then λ2 ≥ b.

e. Let λ∗(c) be as in theorem 12.13 (but for loss �). Let

d(λ0, M)
.= inf {‖λ0−λ‖ : λ ∈ M} .

Show that for all ε > 0 there exists c0 > 0 such that d(λ∗(c), M) < ε for all c ∈ (0, c0].
f. Show that there exists c1 > 0 such that for all c ∈ (0, c1], Fλ∗(c)(xpe) < 0.

12.10 Throughout this exercise, assume that instances x are binary vectors in {−1,+1}N .
We consider weighted combinations of the components of such vectors which now include
a constant term. In other words, weight vectors now have the form λ = 〈λ0, λ1, . . . , λN 〉
∈ RN+1, and (re)define the combination

Fλ(x)
.= λ0+

N∑
j=1

λjxj .

a. Suppose the weak learner produces confidence-rated decision stumps of the form

h(x) =
{

c+ if xj = +1
c− if xj = −1

for some c+, c− ∈ R and some index j ∈ {1, . . . , N}. Show that if h1, . . . , hT all have
this form, and α1, . . . , αT ∈ R, then there exists λ ∈ RN+1 for which

∑T
t=1αtht (x) =

Fλ(x) for all x ∈ {−1,+1}N .

b. Suppose D is the distribution in section 12.3.2, and that λ ∈ RN+1 minimizes the risk
ED
[
e−yFλ(x)

]
. What will be the classification error (with respect to D) of the induced

classifier, sign(Fλ)? How does this compare to the Bayes optimal?

c. For any noise rate η ∈ (0, 1
2

)
, show how to construct a modified distribution D so that if

λ minimizes the risk (with respect to this new distribution), then the induced classifier,
sign(Fλ), will have classification error at least 1

2 , even though the Bayes error can be
achieved by some other combination of the same form.

13 Optimally Efficient Boosting

Much of this book has been concerned with the efficiency of boosting, especially of Ada-
Boost. In section 3.1, we proved a bound on how quicklyAdaBoost drives down the training
error in terms of the edges of the weak classifiers. In chapters 4 and 5, we proved an assort-
ment of bounds on the generalization error that in one way or another made use of the
training-error analysis. These bounds on AdaBoost’s performance are quite good in many
respects, indicating, for instance, that AdaBoost’s training error drops exponentially fast
when the weak learning assumption holds. However, they also leave us wondering if it might
be possible to do even better, perhaps with a different algorithm. In other words, these results
raise basic questions about the nature of “optimal” boosting: Is AdaBoost the best possible
algorithm? If not, what algorithm is, and how close does AdaBoost come? These ques-
tions concern the fundamental resource requirements that are necessary for boosting to be
possible.

To find answers, we begin by studying how to optimally minimize the training error when
allowed up to T calls to a weak learning algorithm for which the empirical γ -weak learning
assumption is guaranteed to hold. Here, as in chapter 6, the interaction between the booster
and the weak learner is viewed as a game. However, whereas in chapter 6 we regarded each
round of boosting as a complete game that is repeated T times, now we regard the entire
sequence of T rounds of boosting as a single game that is played just once.

Using this formulation, we derive an algorithm called boost-by-majority (BBM) which
is very nearly optimal for this game. In terms of γ and T , its training error turns out to be
exactly the tail of a certain binomial distribution, whereas the bound for AdaBoost given in
theorem 3.1 is precisely the upper bound on this same tail that would be obtained by applying
Hoeffding’s inequality (theorem 2.1). Thus, in terms of the training error, the gap between
AdaBoost and optimality is the same as the difference between Hoeffding’s inequality and
the true probability that it is used to approximate—a gap that, in a certain sense, vanishes
asymptotically.

We next consider the generalization error, whose minimization is of course the true
purpose of boosting. Not surprisingly, the results of chapter 4 can be immediately applied
to derive an upper bound on the generalization error of BBM. More interestingly, the bounds

416 13 Optimally Efficient Boosting

so obtained turn out to be exactly the best possible for any boosting algorithm. In other
words, in terms of T and γ , there exist learning problems for which any boosting algorithm
will have generalization error at least as large as that given by the upper bound for BBM
(up to an additive difference which vanishes as the number of training examples gets large).
Equivalently, this lower bound provides a floor on the minimum number of rounds of
boosting needed to achieve a desired accuracy. Thus, in these terms, BBM is essentially
optimal, and AdaBoost is close behind.

Besides being optimal in the senses discussed above, BBM may have another potential
advantage over AdaBoost, namely, in its handling of outliers. As seen in sections 10.3 and
12.3.3, when some of the data are mislabeled or ambiguous, AdaBoost piles more and
more weight on such difficult examples, sometimes substantially degrading performance.
BBM also concentrates on harder examples but, in contrast to AdaBoost, actually puts less
weight on the very hardest examples, effectively “giving up” on the outliers. This may be
an important benefit on noisy datasets.

Unfortunately, BBM also has an important disadvantage. Unlike AdaBoost, it is non-
adaptive, meaning that the minimum edge γ must be provided before boosting begins. This
property seriously hinders its use in practical applications. In chapter 14, we describe a tech-
nique for making BBM adaptive.

13.1 The Boost-by-Majority Algorithm

We begin by considering how to optimally minimize the training error. This will lead to a
derivation of the boost-by-majority algorithm.

13.1.1 The Voting Game

As usual, we assume we have been given m training examples (x1, y1), . . . , (xm, ym). We
also assume access to a weak learning algorithm satisfying the empirical γ -weak learning
assumption, meaning that, for any distribution D over the sample, the weak learner is
guaranteed to return a weak hypothesis h whose weighted error with respect to D is at
most 1

2 − γ . Finally, we assume that the booster is allowed to access the weak learner T

times. Under these conditions, our goal is to determine the minimum training error that
can be guaranteed by any boosting algorithm. Note that this is essentially equivalent to
asking for the minimum number of rounds of boosting necessary to achieve some desired
accuracy.

For now, we further restrict our attention to boosting algorithms whose combined clas-
sifier takes the form of a simple (unweighted) majority vote over the weak hypotheses.
This restriction may slightly limit what is possible for the booster. Even so, the results of
section 13.2 will show that no boosting algorithm can do significantly better, even without
this limitation.

13.1 The Boost-by-Majority Algorithm 417

We can regard the boosting process as a game between the two interacting players, the
booster and the weak learner. The game is played as follows: On each of a sequence of
rounds t = 1, . . . , T :

1. the booster chooses a distribution Dt over the training set;

2. the weak learner chooses a hypothesis ht such that

Pri∼Dt [ht (xi) �= yi] ≤ 1
2 − γ. (13.1)

At the end of T rounds, the final hypothesis is formed as a simple majority vote of the weak
hypotheses:

H(x) = sign

(
T∑

t=1

ht (x)

)
. (13.2)

The loss of the booster in this game is the training error

1

m

m∑
i=1

1{H(xi) �= yi} = 1

m

m∑
i=1

1

{
yi

T∑
t=1

ht (xi) ≤ 0

}
. (13.3)

The booster’s goal is to minimize this loss, while the weak learner’s goal is to maximize it.
When compared with our earlier game-theoretic formulation of boosting given in sec-

tion 6.4, elements of the game described above may seem odd, or even incorrect. Indeed,
there do exist very significant differences between the two formulations, each capturing
different aspects of the boosting problem and thereby yielding different insights.

To be specific, in the formulation of section 6.4, the game of interest is played repeatedly,
once on every round, with loss suffered at the end of each round. Also, this game was defined
by a matrix over training examples and a fixed space of weak hypotheses. In the current
setup, we instead regard the entire sequence of T rounds as a single game. Although in
principle it might be possible to describe this game by a matrix, it is more natural to define
it in terms of sequential play that alternates between the two players with loss incurred only
at the end of the sequence. Further, we make no restrictions on the weak hypotheses other
than that they satisfy the γ -weak learning assumption.

A final, more subtle difference between the two games is in the apparent goals of the two
players, especially the weak learner: In the setup of section 6.4, the weak learner wishes
to minimize the weighted error of its weak hypotheses, while the booster tries to make this
difficult by choosing a hard distribution. Now, instead, the weak learner has a diametrically
opposite interest in choosing weak hypotheses with the largest weighted error possible
(though not exceeding 1

2 − γ), since these are intuitively more likely to make it difficult
for the booster to achieve its goal of producing a combined hypothesis with low error. Thus,
the weak learner’s goal is exactly reversed in the two game-theoretic models of boosting.

418 13 Optimally Efficient Boosting

Nevertheless, despite this seeming contradiction, both formulations lead to sensible insights
and algorithms.

To get some intuition for the game, let us consider some simple cases. First, consider a
“lazy booster” that chooses the uniform distribution over the training set on every round.
The response of the weak learner to this strategy is likely to be simple: Choose some weak
hypothesis h that is correct on 1

2 + γ of the training examples, and output this same weak
hypothesis on every round. The final majority-vote classifier will then be equivalent to h,
so that its training error is exactly as large as h’s. Clearly, and unsurprisingly, the booster
has to change the distribution in order to prevent the weak learner from always outputting
the same weak hypothesis.

As a second example, and one which will play a key role in the following, consider an
oblivious weak learner that entirely ignores the distributions Dt . Instead, on every round, a
random weak hypothesis is chosen by this weak learner whose prediction on every training
example xi is selected independently to match the correct label yi with probability 1

2 + γ , and
otherwise is equal to its opposite−yi (with probability 1

2 − γ). In other words, conditional
on the correct label, the predictions of the weak hypotheses on the examples are independent
of one another, and each is correct with probability 1

2 + γ . Regardless of the distributions
provided by the booster, the expected weighted error of such a weak hypothesis will be
exactly 1

2 − γ . Strictly speaking, this leaves open the possibility of the randomly chosen
weak hypothesis having an actual weighted error that exceeds 1

2 − γ . Nevertheless, for
the moment, for the purposes of this informal discussion, we ignore this complication and
allow such a weak learner, even though it does not technically satisfy the requirements of
the game.

If the weak learner uses this oblivious strategy, then the booster’s final training error is
likely to be very small. This is because each example is correctly classified independently
by each weak hypothesis with probability 1

2 + γ , and it is correctly classified by the final
hypothesis if and only if more than half of the weak hypotheses are correct. Thus, the chance
that it is misclassified is the same as the probability of at most T /2 heads in a sequence
of T coin flips when the probability of heads on each flip is 1

2 + γ . This probability is
exactly

	T/2
∑
j=0

(
T

j

) (
1
2 + γ

)j (1
2 − γ

)T−j
. (13.4)

Since this holds for each training example, the expected training error will also be exactly
equal to this quantity, which, by Hoeffding’s inequality (theorem 2.1), is at most e−2γ 2T . As
informally suggested here, when made rigorous, this argument shows that for any booster,
the oblivious weak learner (with some technical modifications) can force the training error
to be very close to the quantity in equation (13.4) when the number of training examples is
large.

13.1 The Boost-by-Majority Algorithm 419

One option for playing this game, of course, is to apply AdaBoost or, rather, the α-
Boost version given in section 6.4.3, in which, on every round, the hypothesis weight αt in
algorithm 1.1 is fixed to the constant

α = 1

2
ln

(
1+ 2γ

1− 2γ

)
(13.5)

so that the final hypothesis will be a simple majority vote as required in this game. We refer
to this algorithm, with this setting of α, as NonAdaBoost since it is a nonadaptive boosting
algorithm. A straightforward modification of theorem 3.1 then shows that the loss of this
boosting algorithm will be at most

(1− 4γ 2)T/2 ≤ e−2γ 2T,

which exactly matches the upper bound on equation (13.4) provided by Hoeffding’s inequal-
ity. Thus, already we can see that the gap between AdaBoost and optimality for this game
is not large, though perhaps not the best possible.

In fact, as we will see, the boost-by-majority algorithm achieves an upper bound on the
training error that is exactly equal to equation (13.4) for any weak learner. This will show
that both BBM and the oblivious weak learner are essentially optimal for their respective
roles in the game.

13.1.2 A Chip Game

To simplify the presentation, let us define, for example i and round t, the variable

zt,i
.= yiht (xi),

which is +1 if ht correctly classifies (xi, yi), and −1 otherwise. We also define the vari-
able

st,i
.= yi

t∑
t ′=1

ht ′(xi) =
t∑

t ′=1

zt ′,i ,

which is the unnormalized margin of the classifier constructed through round t . We write
st and zt for the corresponding vectors with components as above.

In terms of these variables, the voting game we are studying can be redescribed more
visually as a “chip game.” Here, each training example is identified with a chip, and each
of the m chips has an integer position; specifically, the position of chip i at the end of round
t is st,i . Initially, all chips are at position 0 so that s0 = 0. On every round t , the booster
chooses a distribution Dt over the chips. In general, chips at the same position need not be
assigned the same weight under Dt , although this will usually happen naturally. Given Dt ,
the weak learner next chooses to increment (move up by 1) the positions of some of the

420 13 Optimally Efficient Boosting

210

(a)

.2

.2

.2

.1

.1

.1

.1

210

(b)

210

(c)

Figure 13.1
One round of the chip game: (a) The booster selects a distribution over the chips, indicated by the numbers
appearing in each chip; (b) the weak learner chooses some of the chips to be incremented (moved right one
position), and the rest to be decremented (moved left one position), as indicated by the arrows; (c) the chips are
moved to their new positions, as specified by the weak learner.

chips, and to decrement (move down by 1) the positions of all the rest. In other words, the
weak learner chooses a vector zt ∈ {−1,+1}m and updates the chip positions:

st = st−1+ zt . (13.6)

See figure 13.1 for an example of a single round of the game.
Importantly, the weak learner is required to increment the positions of at least 1

2 + γ of
the chips, as weighted by Dt ; that is, the weak learner must choose zt so that

Pri∼Dt

[
zt,i = +1

] ≥ 1
2 + γ (13.7)

or, equivalently,

Ei∼Dt

[
zt,i

] ≥ 2γ. (13.8)

The choice of zt of course corresponds to the choice of ht , and the condition in
equation (13.7) is then simply the γ -weak learning assumption.

After T rounds, the loss suffered by the booster is the fraction of chips at nonpositive
positions:

L(sT)
.= 1

m

m∑
i=1

1
{
sT ,i ≤ 0

}
, (13.9)

a direct translation of equation (13.3).

13.1.3 Deriving Optimal Play

How, then, should this game be played optimally? In section 6.1.2, we saw the benefit of
analyzing a sequentially played game from the end of the game backward to its beginning.
We can apply the same idea here.

13.1 The Boost-by-Majority Algorithm 421

Suppose at the beginning of the final round T that the chip positions are given by the
vector sT−1, and that the booster chooses distribution DT over the chips. How would an
optimal weak learner respond? The weak learner’s goal is to choose zT ∈ {−1,+1}m so as
to maximize the resulting loss for the final chip positions, namely,

L(sT) = L(sT−1+ zT).

However, zT must satisfy the constraint in equation (13.8), that is, it must belong to the set
Z(DT) where

Z(D)
.= {z ∈ {−1,+1}m : Ei∼D[zi] ≥ 2γ

}
.

So if the booster chooses DT , then its final loss will be

max
zT ∈Z(DT)

L(sT−1+ zT). (13.10)

Therefore, when the chips are in positions sT−1 on round T , an optimal booster will select
DT which minimizes equation (13.10), giving a loss of

min
DT

max
zT ∈Z(DT)

L(sT−1+ zT)

(where such a minimum will always be understood to be taken over all distributions on
{1, . . . , m}). This expression is a function of the chip positions sT−1. Given these positions,
it computes the loss that will result if both players play optimally for the rest of the game.
It also specifically prescribes that the optimal booster use the distribution DT that realizes
the minimum.

To continue this argument, let us define for each round t a function �t(st) that is equal
to the loss that would result if the chips are in positions given by vector st at the end of
round t , and given that both players play optimally for the part of the game that remains
after this round. Note that after round T , the game is over and the loss suffered is already
determined. Thus,

�T (sT) = L(sT). (13.11)

For earlier rounds t ≤ T , we can use the same reasoning as above. The chips begin the
round in positions st−1. If the booster chooses Dt , an optimal weak learner will respond
with zt ∈ Z(Dt) to maximize the loss for the remainder of the game �t(st−1+ zt). Thus,
the booster should select Dt to minimize

max
zt∈Z(Dt)

�t (st−1+ zt),

so that the loss suffered under optimal play beginning after round t − 1 is

�t−1(st−1) = min
Dt

max
zt∈Z(Dt)

�t (st−1+ zt). (13.12)

422 13 Optimally Efficient Boosting

This recurrence, in principle, allows us to compute the optimal loss under optimal
play and, furthermore, provides the optimal strategy for both players—the booster should
play the distribution Dt that realizes the minimum and, given Dt , the weak learner should
play the vector zt that realizes the maximum. On the other hand, these strategies do not
lend themselves easily to analysis or implementation.

At the beginning of the game, under optimal play, the loss suffered by the booster with
all chips starting at position 0 at time 0 is �0(0). Thus, unraveling the recurrence in equa-
tion (13.12) gives an explicit expression for the value of the game, that is, the loss for the
entire game under optimal play:

�0(0) = min
D1

max
z1∈Z(D1)

· · · min
DT

max
zT ∈Z(DT)

L

(
T∑

t=1

zt

)
.

Needless to say, this is a rather unwieldy formula.

13.1.4 A Tractable Approximation

The function �t characterizes optimality exactly, but is difficult to compute and work with
mathematically, as are the optimal strategies that it implicitly defines. Fortunately, as we
show next, �t can be usefully approximated in a way that admits both a closed-form analysis
of the game and the derivation of the BBM algorithm, a strategy for the booster that is close
to optimal and straightforward to implement. This approximation will eventually be stated in
terms of a “potential function,” a concept at the heart of BBM and its analysis. Although this
algorithm can perhaps be stated and analyzed without giving a full derivation of �t ’s approx-
imation, we provide one anyway with the purpose of revealing where the potential function
and the algorithm itself are coming from, while also illustrating a more general approach.

The basic recurrence in equation (13.12) is especially unpleasant for two reasons: first,
because the maximum is constrained to the set Z(Dt), making it more complicated to handle
than if there were no constraint on zt ; and second, because the optimization requires consid-
eration of all m chips at once. The next important lemma eliminates both of these difficulties.
By making a slight approximation, the lemma will allow us to rewrite equation (13.12) in
such a way that the maximum is unconstrained and, moreover, the optimization will decom-
pose so that each chip can be considered separately and independently from all the rest of
the chips. Indeed, these simplifications will make it possible to solve the (approximated)
recurrence exactly.

Lemma 13.1 Let G : {−1,+1}m → R, and assume

G(z) ≤
m∑

i=1

gi(zi) (13.13)

for all z ∈ {−1,+1}m, and some sequence of functions gi : {−1,+1} → R. Then

13.1 The Boost-by-Majority Algorithm 423

min
D

max
z∈Z(D)

G(z) ≤
m∑

i=1

inf
wi≥0

max
zi∈{−1,+1}

[gi(zi)+wi · (zi − 2γ)]. (13.14)

Note that the right-hand side of equation (13.12) has exactly the form given on the left of
equation (13.14) for any fixed st−1 since we can take

G(z) = �t(st−1+ z).

The lemma says that if such a function G can be (approximately) decomposed chip by chip,
then the entire min-max expression can be as well. And, moreover, the resulting optimization
problems involve only individual chips.

At the heart of the proof is a reversal in the order of taking a minimum or a maximum as
seen in section 6.1.3.

Proof We first eliminate the restriction on the choice of z by introducing a new variable
λ and modifying the quantity being maximized. Specifically, for any D,

max
z∈Z(D)

G(z) = max
z∈{−1,+1}m

inf
λ≥0

[
G(z)+ λ

(
m∑

i=1

D(i)zi − 2γ

)]
. (13.15)

This is because if z ∈ Z(D), so that

m∑
i=1

D(i)zi ≥ 2γ, (13.16)

then the infimum appearing in equation (13.15), taken over all λ ≥ 0, will be realized when
λ = 0, and so will be equal to G(z). On the other hand, if z �∈ Z(D), so that equation (13.16)
does not hold, then the infimum will be−∞, as can be seen by setting λ to be arbitrarily large.

We now introduce an approximation based on the fact, pointed out in section 6.1.3,
that the “max min” of any function taken over any set is always upper bounded by its
“min max” (and likewise when using infima or suprema). In other words, for any function
f : U ×V → R defined over sets U and V,

sup
u∈U

inf
v∈V

f (u, v) ≤ inf
v∈V

sup
u∈U

f (u, v).

Applied here, this shows that the right-hand side of equation (13.15) is at most

inf
λ≥0

max
z∈{−1,+1}m

[
G(z)+ λ

(
m∑

i=1

D(i)zi − 2γ

)]
.

Thus,

424 13 Optimally Efficient Boosting

min
D

max
z∈Z(D)

G(z) ≤ min
D

inf
λ≥0

max
z∈{−1,+1}m

[
G(z)+ λ

(
m∑

i=1

D(i)zi − 2γ

)]

= min
D

inf
λ≥0

max
z∈{−1,+1}m

[
G(z)+

m∑
i=1

λD(i)(zi − 2γ)

]
(13.17)

since D is a distribution. Note that by setting

wi = λD(i), (13.18)

the minimum over D and the infimum over λ can be collapsed into a single infimum over
a vector w with all nonnegative components (which do not necessarily sum to 1). In this
way, equation (13.17) can be rewritten as

inf
w∈R

m+
max

z∈{−1,+1}m

[
G(z)+

m∑
i=1

wi · (zi − 2γ)

]
. (13.19)

As a final simplification, equation (13.13) implies that equation (13.19) is at most

inf
w∈R

m+
max

z∈{−1,+1}m

m∑
i=1

[gi(zi)+wi · (zi − 2γ)]

= inf
w∈R

m+

m∑
i=1

max
zi∈{−1,+1}

[gi(zi)+wi · (zi − 2γ)]

=
m∑

i=1

inf
wi≥0

max
zi∈{−1,+1}

[gi(zi)+wi · (zi − 2γ)] (13.20)

since each maximum and each infimum can be evaluated independently for each component.
This completes the proof.

In fact, the simplified optimization problem appearing on the right-hand side of equation
(13.14) can easily be solved separately for each chip using the following:

Lemma 13.2 If g(+1) ≤ g(−1), then

inf
w≥0

max
z∈{−1,+1}

[g(z)+w · (z− 2γ)] = (1
2 + γ

)
g(+1) + (

1
2 − γ

)
g(−1). (13.21)

Moreover, the infimum on the left is realized when

w = g(−1)− g(+1)

2
. (13.22)

13.1 The Boost-by-Majority Algorithm 425

Proof Writing out the maximum gives

max
z∈{−1,+1}

[g(z)+w · (z− 2γ)] = max { g(−1)+w · (−1− 2γ), g(+1)+w · (1− 2γ) }.

(13.23)

As a function of w, this is the maximum of two lines, one with negative slope and the other
with positive slope; moreover, the y-intercept of the latter line is below that of the former.
Thus, the function is as plotted in figure 13.2. Evidently, the minimum occurs where the
two lines intersect, that is, at the value given in equation (13.22). Plugging in this value for
w gives equation (13.21).

Armed with these lemmas, we can recursively derive a good, decomposable upper bound
on �t . Specifically, we will find a bound of the form

�t(s) ≤ 1

m

m∑
i=1

�t(si) (13.24)

for all rounds t and all position vectors s. To do so, we first let

�T (s)
.= 1{s ≤ 0} (13.25)

so that equation (13.24) holds with equality when t = T (by equations (13.9) and (13.11)).
Next, for t = 1, . . . , T , we define

g (+1)

g (−1)

g (−1)

w

−

− −

Figure 13.2
A plot of equation (13.23) as a function of w.

426 13 Optimally Efficient Boosting

�t−1(s)
.= inf

w≥0
max

z∈{−1,+1}
[�t(s+ z)+w · (z− 2γ)]. (13.26)

Then equation (13.24) will hold by backwards induction since, by the recursive expression
for �t given in equation (13.12) (multiplied on both sides by m), we have

m�t−1(s) = min
D

max
z∈Z(D)

m�t(s+ z)

≤
m∑

i=1

inf
w≥0

max
z∈{−1,+1}

[�t(si + z)+w · (z− 2γ)]

=
m∑

i=1

�t−1(si).

Here, we used equation (13.24) inductively and applied lemma 13.1 with

G(z) = �t(s+ z) (13.27)

and

gi(z) = �t(si + z). (13.28)

Moreover, lemma 13.2 gives

�t−1(s) =
(

1
2 + γ

)
�t(s+ 1) + (

1
2 − γ

)
�t(s− 1), (13.29)

which, with equation (13.25), can be solved in closed form to give

�t(s) = Binom

(
T − t,

T − t − s

2
,

1

2
+ γ

)
(13.30)

where Binom (n, k, p) denotes the probability of at most k heads (k not necessarily an
integer) in n flips of a coin whose probability of heads is p:

Binom (n, k, p)
.=
	k
∑
j=0

(
n

j

)
pj (1−p)n−j.

Equation (13.30) can be verified by backwards induction using equation (13.29), while
simultaneously verifying that the conditions of lemma 13.2 are satisfied (see exercise
13.3).

The function �t(s) is called the potential function. As we have seen, it can be intuitively
interpreted as the potential loss associated with a single chip at position s at the end of
round t . This is discussed further in section 13.1.7. Note that �t(s) depends implicitly on
both the total number of rounds T and the edge γ .

13.1 The Boost-by-Majority Algorithm 427

13.1.5 Algorithm

Based on this development, we can now state a bound on the loss suffered by an optimal
boosting algorithm, which we saw earlier is �0(0). In particular, setting t = 0, and noting
that all chips begin at position 0, we have shown that this optimal loss is bounded as

�0(0) ≤ 1

m

m∑
i=1

�0(0) = �0(0) = Binom

(
T ,

T

2
,

1

2
+ γ

)
(13.31)

by equations (13.24) and (13.30). This is exactly equal to equation (13.4), our earlier lower
bound for the oblivious weak learner.

This optimal algorithm, according to the argument above, selects on round t that distribu-
tion Dt which realizes the minimum in equation (13.12). It is unclear how to compute this
distribution tractably. However, we can instead use the distribution given by our approxi-
mation. In particular, the proof of lemma 13.1, specifically equation (13.18), suggests that
this distribution should be set proportionally to the values wi , where, tracing through the
proof, we see that wi realizes the infimum on the right-hand side of equation (13.14).

In our case, on round t with the chips at position s, lemma 13.1 is applied with G and
gi as in equations (13.27) and (13.28). The foregoing discussion then prescribes that we
first choose a weight wi for each chip i in the manner described above. Specifically, by our
choice of gi , we should choose wi = wt(si) where wt is the weighting function

wt(s)
.= arg min

w≥0
max

z∈{−1,+1}
[�t(s+ z)+w · (z− 2γ)] . (13.32)

Like the potential function, the weighting function is central to our development. As for
�t(s), the notation wt(s) hides implicit dependence on T and γ .

Using lemma 13.2 and equation (13.30), the expression appearing in equation (13.32)
can be put in closed form as

wt(s) = �t(s− 1)−�t(s+ 1)

2
(13.33)

=
(

T − t⌊
T−t−s+1

2

⌋)(1

2
+ γ

)	(T−t−s+1)/2
 (1

2
− γ

)�(T−t+s−1)/2�
(13.34)

(see exercise 13.3). Finally, having computed the weights wi , we can choose a distribution
for round t that is proportional to these weights:

Dt(i) ∝ wt(si).

Pulling all of these ideas together, we can finally see the boost-by-majority algorithm emerg-
ing, as in algorithm 13.1, where we have reverted to a description in terms of the original
boosting problem rather than the chip-game abstraction. The algorithm proceeds like

428 13 Optimally Efficient Boosting

Algorithm 13.1
The boost-by-majority algorithm

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
edge γ > 0 and number of rounds T .

Initialize: s0,i = 0 for i = 1, . . . , m.
For t = 1, . . . , T :

• Dt(i) = wt(st−1,i)

Zt

for i = 1, . . . , m

where Zt is a normalization factor and

wt(s)
.=
(

T − t⌊
T−t−s+1

2

⌋)(1

2
+ γ

)	(T−t−s+1)/2
 (1

2
− γ

)�(T−t+s−1)/2�
.

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → {−1,+1} with sufficiently small error:

Pri∼Dt [ht (xi) �= yi] ≤ 1
2 − γ.

• Update, for i = 1, . . . , m:

st,i = st−1,i + yiht (xi).

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

ht (x)

)
.

AdaBoost, on each round constructing a distribution and training a given weak learning
algorithm. Here, of course, we require that each weak hypothesis have weighted error at
most 1

2 − γ . The principal difference from AdaBoost is in the choice of distribution. BBM
chooses Dt(i), as described above, proportional to the weighting function wt given in equa-
tion (13.34) evaluated at the current unnormalized margin (chip position) st−1,i of example
i. The final hypothesis is an unweighted majority vote of all the weak hypotheses.

NonAdaBoost, the nonadaptive version of AdaBoost described in section 13.1.1, is
identical except that we instead would use wt(s) = e−αs where α is as set in equation (13.5).

13.1.6 Analysis

We also have everything in place to analyze this algorithm. The key to this analysis is a
proof that the total potential of all the chips (training examples) together can never increase

13.1 The Boost-by-Majority Algorithm 429

from one round to the next. This will immediately yield a bound on BBM’s training error,
which is exactly equal to the average potential at the end of the game.

Theorem 13.3 Using the notation above and in algorithm 13.1, the total potential of all
training examples in BBM can never increase. That is, for t = 1, . . . , T :

m∑
i=1

�t−1(st−1,i) ≥
m∑

i=1

�t(st,i).

Proof From equations (13.32) and (13.26), we have that for any s,

�t−1(s) = max
z∈{−1,+1}

[�t(s+ z)+wt(s) · (z− 2γ)].

Therefore, letting zt,i
.= yiht (xi) and plugging in s = st−1,i , we see that

�t−1(st−1,i) ≥ �t(st−1,i + zt,i)+wt(st−1,i) · (zt,i − 2γ) (13.35)

= �t(st,i)+wt(st−1,i) · (zt,i − 2γ). (13.36)

(Actually, it can be shown that equation (13.35) must always hold with equality, but this
stronger fact is not needed for the proof.) Since we assumed empirical γ -weak learnability,
ht must have edge γ as in equation (13.1) or, equivalently, equation (13.8). These conditions
can be rewritten as

m∑
i=1

wt(st−1,i)zt,i

m∑
i=1

wt(st−1,i)

≥ 2γ

by definition of Dt . That is,

m∑
i=1

wt(st−1,i) · (zt,i − 2γ) ≥ 0.

Combining with equation (13.36) gives

m∑
i=1

�t−1(st−1,i) ≥
m∑

i=1

[
�t(st,i)+wt(st−1,i) · (zt,i − 2γ)

]
=

m∑
i=1

�t(st,i)+
m∑

i=1

wt(st−1,i) · (zt,i − 2γ)

430 13 Optimally Efficient Boosting

≥
m∑

i=1

�t(st,i),

as claimed.

A bound on the training error now follows immediately. The optimality that the bound
implies for BBM is discussed below.

Corollary 13.4 Using the notation of algorithm 13.1, the training error of BBM’s final
classifier H is at most

Binom

(
T ,

T

2
,

1

2
+ γ

)
.=
	T/2
∑
j=0

(
T

j

) (
1
2 + γ

)j (1
2 − γ

)T−j
. (13.37)

Proof Repeatedly applying theorem 13.3 gives that

�0(0) = 1

m

m∑
i=1

�0(s0,i) ≥ 1

m

m∑
i=1

�T (sT,i).

The expression on the right is, by definition, exactly the training error of the final hypothesis
H . And by the general formula for �t(s) in equation (13.30), the expression on the left,
�0(0), is equal to equation (13.37).

13.1.7 Game-Theoretic Optimality

In section 13.1.1, we saw that when the number of chips is large, a version of the oblivious
weak learner forces any booster to have training error approaching equation (13.37). Thus,
corollary 13.4 shows that BBM and the oblivious weak learner are essentially optimal for
their respective roles in the game.

Recall that the oblivious weak learner treats each chip independently of the other chips, as
well as the history of the game. In the boosting setting, this corresponds to weak hypotheses
whose predictions are independent of one another. Such a case would intuitively seem to
be especially favorable to learning. However, we now see that this case is actually (close
to) the worst possible in our current adversarial setting. Furthermore, we see that when the
weak hypotheses are not independent, BBM is able to effectively force them to behave as if
they were, achieving exactly the same training error as if in the case of full independence.

The near optimality of the oblivious weak learner is also helpful in interpreting the poten-
tial function �t(s) and its relationship to BBM. Indeed, as can be seen from the expression
for �t(s) in equation (13.30) or, alternatively, from its recursive formulation in equa-
tions (13.29) and (13.25), �t(s) is exactly the probability that a chip at position s will end
up at a nonpositive position at the end of the game when the remaining T − t rounds of the
game are played against the oblivious weak learner. That is,

13.1 The Boost-by-Majority Algorithm 431

�t(s) = Pr[s+ zt+1+ · · ·+ zT ≤ 0], (13.38)

where zt+1, . . . , zT are independent random variables, each equal to +1 with probability
1
2 + γ , and −1 otherwise. Thus, the average potential of all the training examples, which
is the key quantity used in the analysis of section 13.1.6, is exactly the expected training
error under the same assumption. In other words, theorem 13.3 can be understood as a
proof that the expected training error never increases from one round to the next, where
expectation is over imagined random play of all future rounds by an oblivious weak learner.
And corollary 13.4 then follows by observing that the training error at the end of the game,
when there are no more rounds to be played, is therefore at most the expected training error
before the game begins.

Regarding the weights wt(s), note that a chip that begins round t at position s will either
end the round at position s+ 1 with potential �t(s+ 1), or at position s− 1 with potential
�t(s− 1). Thus, the relative impact of decrementing rather than incrementing the position
of that chip is proportional to �t(s− 1)−�t(s+ 1), which intuitively helps explain the
choice of weights wt(s) that BBM places on the chip as in equation (13.33).

As we have formulated the chip game, the optimality of BBM and the oblivious weak
learner is not entirely satisfying since the latter is technically not even a valid weak learner
for this game, and the former only approximates the optimal player of section 13.1.3. We
can, however, modify the game in such a way that the two players are both valid and optimal.
We briefly sketch two such modifications.

In the first of these, we allow the weak learner to make randomized choices in its predic-
tions for the individual examples, and thus in the movement of the chips. In other words,
the weak learner must now choose on every round a random weak hypothesis ht whose
expected error cannot exceed 1

2 − γ . In terms of the chip game, this is equivalent to the
weak learner selecting a distribution over vectors zt ∈ {−1,+1}m with the requirement that
equations (13.7) and (13.8) hold in expectation over the random choice of zt when cho-
sen according to the selected distribution. The loss of the game can then be computed in
expectation with respect to all of the randomized choices of the weak learner. Note that the
oblivious weak learner, as described in section 13.1.1, is now a valid weak learner under
this relaxed reformulation of the game. Moreover, our analysis of BBM can be shown to
hold for this relaxed game as well, thus yielding matching upper and lower bounds on the
(expected) loss, and so implying that both BBM and the oblivious weak learner are exactly
optimal for their respective roles. (See exercise 13.9.)

In an alternative but closely related relaxation of the game, we do not allow the weak
learner to make randomized choices, but instead endow the weak learner with the additional
power to split or divide chips. In other words, rather than having to increment or decrement
each chip as a single, indivisible unit, the weak learner may choose to split the chip into two
parts—not necessarily of equal size—one which is incremented and one which is decre-
mented. Thus, the chips behave more like globs of Jell-O which can be cut arbitrarily into

432 13 Optimally Efficient Boosting

smaller globs. These split globs can in turn be split again on future rounds. As before,
the weak learner must on each round increment at least a fraction 1

2 + γ of the Jell-O, as
weighted by the distribution chosen by the booster; and the final loss is the fraction of the
initial quantity of Jell-O at a final position of zero or below.

For this modified game, the counterpart of the oblivious weak learner can be imple-
mented exactly as the strategy that divides every glob into unequal halves, incrementing a
fraction 1

2 + γ of the glob, and decrementing the remaining fraction. For this strategy, the
fraction of all the Jell-O at nonpositive positions after T rounds will be exactly as given in
equation (13.4) by a similar argument.

Furthermore, BBM can be shown to be exactly optimal for this relaxed game as well.
The algorithm can be derived just as before, where now it can be shown that the central
approximation proved in lemma 13.1 holds with equality. Thus, the optimal game-theoretic
algorithm, which turns out to be BBM (suitably modified for globs rather than chips), can be
obtained exactly in this case. The argument leading to corollary 13.4 can also be modified
and shown to hold for this game. Since, as before, the upper and lower bounds match exactly,
we see that BBM and the oblivious weak learner are the game-theoretic optimal players for
this game as well.

All this suggests a different, though closely related, approach to the derivation of tractable,
nearly optimal players. To approximate the optimal player for the original game, we first
relax the game itself in a way that increases the power of the adversary (weak learner), and
then compute the optimal player for the modified game, which in this case yields BBM.

13.2 Optimal Generalization Error

Having analyzed BBM’s training error and its near optimality for the voting game, we turn
next to a study of the generalization error, whose minimization is the object of learning. We
continue to focus in this section on the case that the boosting algorithm is permitted to make
T calls to a weak learning algorithm satisfying the empirical γ -weak learning condition.
Under this assumption, we will see that BBM’s generalization error is exactly the best
possible for any boosting algorithm when the number of training examples becomes large
(with T and γ held fixed).

13.2.1 An Upper Bound for BBM

Not surprisingly, the results of chapter 4 can be immediately and directly applied to derive
bounds on the generalization error of BBM. (In fact, in most cases an even simpler analysis
could have been used since BBM always outputs a combined classifier that is an unweighted
majority vote of the base hypotheses.) Specifically, theorems 4.3 and 4.6, applied to BBM,
show that the generalization error err(H) of the combined hypothesis H can be bounded in
terms of the training error êrr(H) as

13.2 Optimal Generalization Error 433

err(H) ≤ êrr(H)+ Õ

(√
T C

m

)
(13.39)

where m is the number of training examples, T is the number of rounds, and C is a measure
of the complexity of the base hypothesis space H, either ln |H| or its VC-dimension d.

Likewise, similar to the discussion in section 4.2, when boosting by resampling is used,
we can represent H by a sequence of T m0 training examples, where m0 is the number of
examples required by the weak learner. In other words, BBM can be viewed as a compression
scheme of size T m0. Applying theorem 2.8 with κ = T m0 then gives again a bound of the
form in equation (13.39), where the complexity C is now replaced by the weak learning
sample size m0.

Thus, assuming either a bound on the number of examples needed for weak learning or a
bound on the complexity of the base hypothesis space H, we see that the generalization error
of BBM can be upper bounded as in equation (13.39). Moreover, applying corollary 13.4
immediately gives us a bound of the form

err(H) ≤ Binom

(
T ,

T

2
,

1

2
+ γ

)
+ Õ

(√
T C

m

)
.

This means that as m becomes large with T and γ fixed, the rightmost term becomes negli-
gible, and we obtain an upper bound on the generalization error that approaches the bound
given in corollary 13.4. As we show next, this latter bound is exactly the best achievable
by any boosting algorithm, meaning that BBM is, in this sense, optimal.

13.2.2 A General Lower Bound

To prove such a lower bound on the generalization error, we need to begin by defining what
we mean by a boosting algorithm. Here, we will return to the formal definitions given in
section 2.3. Recall that a weak learning algorithm A in the PAC model for target class C has
the property that for some γ > 0, for all c ∈ C, and for all distributions D over the domain
X , if given δ > 0 and m0 = m0(δ) examples (x1, c(x1)), . . . , (xm0 , c(xm0)) where each xi

is independently distributed according to D, the algorithm will, with probability at least
1− δ, output a hypothesis h with error at most 1

2 − γ with respect to D. In this context, we
refer to γ as A’s edge.

A boosting algorithm B is one which, when provided with access to a weak PAC learning
algorithm A for C, as well as ε > 0, δ > 0, and m = m(ε, δ) examples labeled according to
any c ∈ C, and drawn according to any distribution D, will with probability at least 1− δ,
output a hypothesis H with error at most ε with respect to D. Note, importantly, that a
boosting algorithm should be general in the sense of not requiring knowledge of the target
class C (although we do allow it to have other information about the weak learner, such as the
required sample size m0, the associated edge γ , etc.). We also require that B’s sample size
m be polynomial in the appropriate parameters. Aside from this requirement, B is entirely

434 13 Optimally Efficient Boosting

unrestricted and is allowed, for instance, to have a superpolynomial running time, or to
output a combined hypothesis of any form whatsoever.

We will prove a lower bound on the generalization error that can be achieved by a boosting
algorithm for a fixed number of calls T to the weak learner, and with fixed edge γ > 0. Alter-
natively, such a bound can be inverted to give a sharp lower bound on the number of rounds
that are necessary for any boosting algorithm to achieve a given target generalization error ε

(still with fixed edge γ). Thus, these bounds characterize the optimal efficiency of any boost-
ing algorithm in terms of how the number of rounds must depend on the desired accuracy.

The intuitive idea for the proof of the lower bound is the same as in section 13.1.1, namely,
to use a variant of the oblivious weak learner which produces a random hypothesis that is
correct on each example with probability 1

2 + γ . Such a hypothesis will, in expectation,
have error 1

2 − γ for any distribution. Moreover, no matter how such weak hypotheses are
combined for making predictions on new data, there will always linger some chance of
a mistake; this probability, which happens to match the upper bound for BBM given in
corollary 13.4, will provide the lower bound we seek.

Formally, we will prove the following:

Theorem 13.5 Let B be any boosting algorithm as defined above, let 0 < γ < 1
2 , and let

T be a positive odd integer. Then for any ν > 0, there exist a target class C, a distribution
D, a target function c ∈ C, and a weak learning algorithm A for C with edge γ such that if B

makes T calls to A, then the generalization error of its combined classifier will be at least

Binom

(
T ,

T

2
,

1

2
+ γ

)
− ν (13.40)

with probability at least 1− ν (where the probability is taken with respect to the random
sample provided to B and any internal randomization used by A and B).

The theorem says that it is nearly certain that B’s generalization error will be at least
equation (13.40). In other words, if B’s confidence parameter δ is chosen to be smaller
than 1− ν, then its error parameter ε cannot be made smaller than equation (13.40) without
increasing T .

The proof will occupy the remainder of this section. Although the intuitive idea outlined
above is simple, there are many subtle but technical details that will need to be worked out
to ensure that all of the formal requirements of the learning model are satisfied, especially
with respect to the definition of a weak learning algorithm. This proof is not crucial to
understanding the other material in this chapter.

13.2.3 The Construction

We begin the proof with the construction of the target class C and the weak learning algorithm
A, and later prove that the generalization error will be as given in the theorem when A is
used as a weak learner for B.

13.2 Optimal Generalization Error 435

Let the domain X = {0, 1}n, the set of all n-bit strings, and let the target distribution D
be uniform over X . The positive integer n will act as a “complexity parameter”—instances
are all of length n; the hypotheses that A constructs will be representable using strings of
length polynomial in n; and A will have time and sample complexity polynomial in n. We
will also allow B to use any number of examples m that can be bounded by a polynomial
in n. Since ε, γ , δ, and T are all effectively fixed, this will be the case for any boosting
algorithm whose sample complexity is polynomial either in the sample complexity or in
the hypothesis complexity of the weak learner.

We will use the probabilistic method to construct both C and the base hypothesis space H
used by A. This means that we will imagine that C and H are chosen randomly according to
some appropriately constructed probability distribution. We will then show that, in expec-
tation over the choice of the classes C and H, the conclusion of the theorem is satisfied,
which clearly implies the existence of such classes.

To construct the target class C, we first select a random function c : X → {−1,+1}
by independently, for each x ∈ X , choosing c(x) to be −1 or +1 with equal probability.
Then the class C is chosen simply to consist of this single function: C = {c}. This class is
obviously very small and trivial. In fact, with knowledge of C, the target c can be “learned”
with no data at all since c is the only function in the class. However, as pointed out earlier,
the boosting algorithm does not know C, even though the weak learner does.

We next construct the weak learning algorithm A. Of course, since A knows c, it might
simply output the hypothesis h = c, but this would make the learning process rather trivial
for the booster, whereas our purpose in this construction is just the opposite—that is, for A

to release as little information about c as possible while still satisfying the γ -weak learning
condition.

As suggested informally above, we would ideally like to use the notion of an oblivious
weak learner that randomly chooses a hypothesis h such that, for each x, h(x) is chosen
randomly to be c(x) with probability 1

2 + γ and −c(x) otherwise. However, there are a
number of technicalities that need to be addressed. First, although the expected error of
such a hypothesis is exactly 1

2 − γ , weak learning demands that the error actually be at
most 1

2 − γ with high probability. This difficulty can first be addressed by choosing h(x) to
be correct with slightly higher probability than 1

2 + γ , say 1
2 + γ ′ for some γ ′ > γ . It turns

out that this will be sufficient to ensure an error of 1
2 − γ (with high probability), provided

that the target distribution D generating examples for the weak learner is “smooth” in the
sense of no examples having “large” weight under the distribution. (This distribution should
not be confused with the distribution D that generates examples for the booster. The target
distribution D, from the weak learner’s perspective, is one that will be constructed by the
booster.)

However, when substantial probability mass is concentrated on one or more examples, we
face a further difficulty. At an extreme, when D is concentrated entirely on a single example
x0, choosing h randomly as above will result, with respect to D, in an error below 1

2 − γ

436 13 Optimally Efficient Boosting

exactly when h(x0) = c(x0), which happens with probability 1
2 + γ ′. Thus, in this case, there

is no way to guarantee that the weak learning condition will hold with high probability, that
is, with probability close to 1.

We can address this problem by designing a weak learner that identifies the examples
with large mass under the target distribution D, and then augments the random obliv-
ious hypothesis with an exception list that includes the correct classifications of all of
the large-mass examples. In other words, such a hypothesis predicts h(x) = c(x) if x

has large mass, and otherwise chooses h(x) randomly as before. Since the number of large-
mass examples in any distribution is necessarily small, the exception lists will also always be
short.

Finally, we note that the hypotheses we have so far discussed have very long descriptions:
every function mapping X to {−1,+1} has a nonzero probability of being generated, which
means each hypothesis requires 2n bits to specify, and that the size of the entire hypothesis
space is 22n

, far too large to admit learning. To alleviate this difficulty, before learning
begins, we will construct a much smaller hypothesis space consisting of a relatively small
number of “ground” hypotheses, each produced using the random, oblivious process above,
together with all possible hypotheses that can be obtained by adding exception lists. The
weak learner can then choose from this preselected space of hypotheses.

Having sketched the main ideas of the construction, we turn now to the details. The hy-
pothesis space H used by the weak learner is constructed as follows. First, a set of ground
hypotheses is selected:

G .= {gr : r ∈ {0, 1}n}.
Each of the 2n ground hypotheses is indexed by an n-bit string r called the seed. The
classifier gr is constructed randomly by letting

gr(x) =
{

c(x) with probability 1
2 + γ ′

−c(x) with probability 1
2 − γ ′

(13.41)

independently for each x where we define

γ ′ .= γ + 2�,

and

�
.= 1√

n
.

The weak hypotheses in H include all ground hypotheses augmented with all possible
exception lists of length at most n2. That is, each hypothesis in H has the form �r,E where
r is a seed, and E is the exception list, a set of at most n2 examples:

H .= {�r,E : r ∈ {0, 1}n, E ⊆ X , |E| ≤ n2}.

13.2 Optimal Generalization Error 437

Algorithm 13.2
The weak learning algorithm A′, designed for boosting by reweighting

Given: distribution D over X (and built-in knowledge of C, H, γ , and �).

• Choose an n-bit seed r uniformly at random.

• Let E be the set of all examples with probability mass at least 1/n2:

E =
{

x ∈ X : D(x) ≥ 1

n2

}
.

• If the error of �r,E with respect to D is at most 1
2 − γ −�,

then output �r,E ; otherwise, abort by outputting c.

Such a hypothesis correctly classifies all examples in E, and classifies all other examples
using the ground hypothesis gr :

�r,E(x) =
{

c(x) if x ∈ E

gr(x) else.

Finally, we are ready to describe the weak learning algorithm. For simplicity, we first
describe a weak learner A′ designed for boosting by reweighting. As discussed in sec-
tion 3.4.1, such a weak learner receives as input an actual distribution D over a set of
training examples (though here treated formally as a distribution over the entire domain X),
and must produce a weak hypothesis with error at most 1

2 − γ with respect to the given dis-
tribution D. Such a weak learning algorithm does not satisfy the formal definition reviewed
in section 13.2.2, although boosting is commonly combined with such weak learners, as
discussed in section 3.4.1. Later, we describe a boosting-by-resampling version as formally
required. Thus, the proof will actually apply to either form of boosting.

The algorithm A′, shown as algorithm 13.2, pulls together the informal ideas presented
earlier, identifying high-mass examples (with probability at least 1/n2) which are placed
on an exception list, and classifying all other examples using a randomly chosen ground
hypothesis. Note that |E| ≤ n2 since D is a distribution. If the resulting hypothesis �r,E still
has unacceptably high error, we say that an abort occurs, and in this case the target c is used
as the output hypothesis (its error always being zero). This guarantees that the generated
weak hypothesis will always have error below 1

2 − γ (actually, even slightly better than
this). The next lemma shows, moreover, that aborts occur only very rarely:

Lemma 13.6 Let c be fixed, and suppose A′ is run on distribution D. Let r be the seed
chosen on the first step, and assume that gr , as a random variable, is independent of D. Then

438 13 Optimally Efficient Boosting

the probability of an abort, that is, the probability that �r,E has error exceeding 1
2 − γ −�

with respect to D, is at most e−2n.

Proof The error of �r,E can be written as

err(�r,E) =
∑

x∈X−E

D(x)1
{
gr(x) �= c(x)

} = ∑
x∈X−E

D(x)Ix

where each Ix is an independent random variable that is equal to 1 with probability 1
2 − γ ′

and 0 otherwise. To bound this weighted sum, we use a generalized form of Hoeffding’s
inequality (theorem 2.1) which states the following:

Theorem 13.7 Let X1, . . . , Xm be independent random variables such that Xi ∈ [0, 1].
Let w1, . . . , wm be a set of nonnegative weights. Denote the weighted sum of the random
variables by Sm =∑m

i=1 wiXi . Then for any ε > 0 we have

Pr[Sm ≥ E[Sm]+ ε] ≤ exp

(
− 2ε2∑m

i=1w
2
i

)
and

Pr[Sm ≤ E[Sm]− ε] ≤ exp

(
− 2ε2∑m

i=1w
2
i

)
.

The expected error of �r,E is

E
[
err(�r,E)

] = (1
2 − γ ′

) ∑
x∈X−E

D(x) ≤ 1
2 − γ ′.

So applying theorem 13.7 gives

Pr
[
err(�r,E) > 1

2 − γ ′ +�
] ≤ Pr

[
err(�r,E) > E

[
err(�r,E)

]+�
]

≤ exp

(
− 2�2∑

x∈X−E D(x)2

)
. (13.42)

Since D(x) < 1/n2 for every x not in E,∑
x∈X−E

D(x)2 ≤ 1

n2

∑
x∈X−E

D(x) ≤ 1

n2
.

Thus, equation (13.42) is at most e−2n by our choice of �.

We can now build a boost-by-resampling weak learner A which uses A′ as a subroutine.
Such a weak learner, when provided with m0(δ) labeled examples chosen independently

13.2 Optimal Generalization Error 439

Algorithm 13.3
The weak learning algorithm A, designed for boosting by resampling

Given: (x1, c(x1)), . . . , (xm0 , c(xm0)).

• Let D̂ be the empirical distribution on the sample:

D̂(x)
.= 1

m0

m0∑
i=1

1{xi = x} .

• Run A′ on distribution D̂, and output the returned hypothesis.

from an unknown distribution D, must, with probability at least 1− δ, output a hypoth-
esis with error at most 1

2 − γ with respect to D. Our algorithm A, shown as algorithm

13.3, simply forms the empirical distribution D̂ in which each of the given m0 examples is
assigned probability 1/m0, and then runs A′ on this distribution, outputting the hypothesis
so obtained.

By our construction of the algorithm A′, this returned hypothesis h will always have
training error (which is the same as the error measured with respect to D̂) at most 1

2 − γ −�.
Thus, in order that this hypothesis have error at most 1

2 − γ with respect to the distribution
D that generated the training set, it suffices to show that this true error err(h) exceeds
its training error by at most � with high probability. If we are in the case h = c, this is
trivially true since both errors are exactly zero. In all other cases, we can apply the results
of section 2.2.2. In particular, each hypothesis �r,E can be represented using n bits for the
seed r , and n bits for each of up to n2 examples on the exception list. Thus,

lg |H| = O(n3).

Plugging into theorem 2.2, we can then calculate that a sample of size

m0 =
⌈

ln |H| + ln(1/δ)

2�2

⌉
= O(n4+ n ln(1/δ)) (13.43)

is sufficient to guarantee that

err(�r,E) ≤ êrr(�r,E)+�

for all �r,E ∈ H with probability at least 1− δ. Thus, in particular, for the h output by A,
we will have

err(h) ≤ êrr(h)+� ≤ (1
2 − γ −�

)+� = 1
2 − γ.

We conclude that A satisfies the definition of a weak learning algorithm for C with edge γ ,
and that its sample complexity is as given in equation (13.43).

440 13 Optimally Efficient Boosting

13.2.4 Overview of the Analysis

Having finally completed our construction of the weak learner, we are ready to analyze the
generalization error of the boosting algorithm B when it is used with this weak learner. Note
that A′ gets called on every round, whether directly by B (if using boosting by reweighting)
or as a subroutine of A.

There are many sources of randomness that are part of either the learning process or of
our construction, namely:

• the randomly constructed target function c;

• the randomly constructed weak hypothesis space H;

• the training set S consisting of a sequence of m random training instances (but not their
labels, which are determined by c);

• the random seeds r = 〈r1, . . . , rT 〉 selected on the T calls to A′;
• the boosting algorithm’s own internal randomization, denoted by the random variable R.

(This randomization might be used for various purposes, such as random resampling of the
training set when calling the weak learner. Concretely, R might take the form, for instance,
of an infinite sequence of random bits, although such details are of no concern to us.)

To prove theorem 13.5, we will show that with respect to all of the sources of randomness,
B’s error is likely to be at least β∗ − ν, for n sufficiently large, where

β∗ .= Binom

(
T ,

T

2
,

1

2
+ γ

)
. (13.44)

That is, we will show that

Prc,H,S,r,R
[
err(H, c) ≥ β∗ − ν

] ≥ 1− ν, (13.45)

where err(H, c) denotes the true error of the final hypothesis H output by B relative to the
target c. Here and throughout this proof, we often add subscripts to probabilities in order
to emphasize which random quantities the probability is taken over. Equation (13.45) is
sufficient for the proof since it is equivalent, by marginalization, to

Ec,H
[
PrS,r,R

[
err(H, c) ≥ β∗ − ν | c, H

]] ≥ 1− ν,

which, in turn, implies that there exist a particular target c and hypothesis space H for
which

PrS,r,R
[
err(H, c) ≥ β∗ − ν | c, H

] ≥ 1− ν,

exactly the statement of the theorem.
Here is a rough outline of how we will prove equation (13.45). The notation used here is

somewhat informal and will be made more precise shortly.

13.2 Optimal Generalization Error 441

First, since they have no influence on the computation of H , we can regard the choice of
labels c on instances not in S as if they were still random, even after H has been computed.
We can then compare the error of H with respect to the actual choice of c to its expectation.
By Hoeffding’s inequality, these will be close, allowing us to show that

Ec[err(H, c)] � err(H, c) (13.46)

with high probability. (As used elsewhere in this book, we write � to denote informal,
approximate inequality.)

Next, we will argue that with full knowledge of the random process generating c and H,
there is an optimal rule opt for predicting the label of a test instance, given the predictions
of the weak hypotheses. Since it is optimal, we will have

Ec[err(opt, c)] ≤ Ec[err(H, c)] . (13.47)

The quantity on the left-hand side of equation (13.47) depends on the particular predic-
tions of the weak hypotheses, which are fixed in this expression. By Hoeffding’s inequality,
applied a second time, this expression will be close to its expectation under the random
choice of H, so that

Ec,H[err(opt, c)] � Ec[err(opt, c)] (13.48)

with high probability.
Finally, this quantity on the left, in which both c and H are random according to the

process used in our construction, turns out to converge to exactly β∗ as in equation (13.44)
as n gets large. Combined with equations (13.46), (13.47), and (13.48), we will thus obtain

β∗ ≈ Ec,H[err(opt, c)] � Ec[err(opt, c)] ≤ Ec[err(H, c)] � err(H, c)

with high probability, a rough equivalent of equation (13.45), whose proof is our goal.

13.2.5 Viewing the Booster as a Fixed Function

In more detail, we begin by formulating a mathematical view of the boosting algorithm as a
fixed function, a perspective that is crucial to the proof. The boosting algorithm B computes
its final hypothesis H on the basis of the training sample and the weak hypotheses it receives
from the weak learner. And although B may be randomized, we can regard its randomization
R as itself an input to the algorithm. In this way, B’s computation of a final hypothesis can
be viewed as a fixed and deterministic function of:

• the training sample S;

• the labels (values of c) on the training instances in S, denoted c|S ;

• the weak hypotheses h1, . . . , hT returned on the T calls to A′, including their values on
all instances in X ;

• B’s internal randomization R.

442 13 Optimally Efficient Boosting

As a function, B maps these inputs to a final hypothesis H which, for simplicity, we assume
does not use randomization in formulating its predictions (although our argument can be
generalized to handle this case as well).

We can take this understanding of B’s computation a step deeper so that we are working
directly with the ground hypotheses gr , rather than the actual weak hypotheses ht returned by
A′. This will simplify the analysis since the weak hypotheses may be muddled by exception
lists or aborts. Let rt and Et denote the random seed and exception list selected by A′

on the t-th call. Let gt
.= grt

be the corresponding ground hypothesis, and let us further
define the function

g′t
.=
{

c if abort occurs on t-th call to A′

gt else.

This definition allows us to write ht in the unified form

ht (x) =
{

c(x) if x ∈ Et

g′t (x) else,
(13.49)

which holds whether or not an abort occurs.
We claim that the boosting algorithm can now be viewed instead as a fixed and deter-

ministic function of:

• the modified ground hypotheses g′1, . . . , g′T (rather than h1, . . . , hT);

• the training sample S, the training labels c|S , and B’s randomization R, just as before.

In other words, in addition to the latter items, we claim that we can view B’s computation
as a function of g′ rather than h (where we use vector notation h to stand for all of the
weak hypotheses 〈h1, . . . , hT 〉 together, and similarly for g and g′). This is because equa-
tion (13.49) shows that each ht is itself a function only of g′t , Et , and the labels c(x) on the
instances in Et . But because each exception list is a subset of the sample S, the labels of
instances appearing on such lists are actually included in c|S . Furthermore, the exception
list Et is determined by the distribution received by A′, or the sample received by A, that
is, by the history up to the point at which the weak learner was invoked. Therefore, Et is
itself a fixed function of the other elements which determine B’s computation. Thus, B’s
computation of its final hypothesis H can be viewed as a deterministic function only of S,
c|S , R, and g′.

Let us now fix several of the sources of randomness, namely, the sample S, its labeling
c|S , and the randomization R and r used by B and A′. Later, we will take expectation over
these to obtain equation (13.45). For now, these can all be arbitrary, except that we assume
that all of the seeds r1, . . . , rT are distinct.

With all of these variables held fixed and treated as constants, by the above argument
the boosting algorithm can be viewed as a deterministic function only of g′ so that its final
hypothesis H is computed as

13.2 Optimal Generalization Error 443

H = B(g′)

for some fixed, deterministic function B. We also write

B(g′, x)
.= B(g′)(x)

to denote its (fixed and deterministic) prediction on a test instance x.
We assume without loss of generality that B is a total function in the sense of being

defined for all inputs of the correct syntactic form (that is, functions g′t that map X to
{−1,+1}, and test instances x ∈ X). Although B should properly be applied only to g′,
this assumption allows us to consider its application to g instead, as in B(g) or B(g, x).
Essentially, this means always using the ground hypotheses gt on each round, ignoring the
possibility of an abort condition. Mathematically, this substitution will be very convenient
since although aborts are rare (by lemma 13.6), they are still a nuisance. Later, of course,
we will have to account for aborts as well.

13.2.6 Analyzing the Error

Given the fixed function B, our goal now is to analyze the error of the resulting final
hypothesis B(g) relative to the target c, where c and the gt ’s are generated according to the
random process described in section 13.2.3 (but with S and c|S fixed). In particular, since all
of the seeds rt are distinct, the gt ’s are generated independently of one another (conditional
on c) as in equation (13.41).

As before, we denote the error, for any given H and c, by

err(H, c)
.= Prx∼D[H(x) �= c(x)] = 2−n ·

∑
x∈X

1{H(x) �= c(x)}.

Also, since we are interested primarily in what happens off the training set, let us define X
to be the set of all instances in X not included in the sample S; let c be the restriction of c

to X (that is, the labels on all the points in X); and let

err(H, c)
.= Prx∼D

[
H(x) �= c(x) | x ∈ X

] = 1

|X | ·
∑
x∈X

1{H(x) �= c(x)}

denote the error just on X .
Following the outline above, we first show that for any g, the error of B(g) is likely to

be close to its expectation under the random choice of c.

Lemma 13.8 Let g be fixed, and let c be chosen at random, conditional on g. Then with
probability at least 1− e−2n,

err(B(g), c) ≥ Ec[err(B(g), c) | g]−
√

n

|X | .

444 13 Optimally Efficient Boosting

Proof Given g, the c(x)’s remain independent of one another. Therefore, the random
variables

Mx
.= 1{B(g, x) �= c(x)},

for x ∈ X , are independent of one another. Applying Hoeffding’s inequality (theorem 2.1)
to their average

err(B(g), c) = 1

|X | ·
∑
x∈X

Mx

now gives the result.

Let us consider a single example x in X . Given g, the probability of misclassifying x

depends only on c(x), and can be computed to be

Prc(x)[c(x) �= B(g, x) | g].

Clearly, this is at least

min
y∈{−1,+1}

Prc(x)[c(x) �= y | g] .

And since c(x) is conditionally independent, given g(x), of all the values of g on instances
other than x, this is simply equal to

min
y∈{−1,+1}

Prc(x)[c(x) �= y | g(x)] . (13.50)

Let opt(g, x) denote the value of y that minimizes this expression, and let opt(g) denote the
prediction function opt(g, ·). This is the Bayes optimal classifier encountered in section 12.1.

By taking into account the manner in which c(x) and g(x) are generated, we can determine
opt(g, x) explicitly as follows. For y ∈ {−1,+1}, we have

Pr[c(x) = y | g(x)] = Pr[g(x) | c(x) = y] ·Pr[c(x) = y]

Pr[g(x)]
(13.51)

∝ Pr[g(x) | c(x) = y] (13.52)

=
T∏

t=1

[(
1
2 + γ ′

)1{gt (x)=y} (1
2 − γ ′

)1{gt (x)�=y}]
(13.53)

=
T∏

t=1

[(
1
2 + γ ′

)(1+ygt (x))/2 (1
2 − γ ′

)(1−ygt (x))/2
]

∝
T∏

t=1

(
1+ 2γ ′

1− 2γ ′

)ygt (x)/2

.

13.2 Optimal Generalization Error 445

(In this context, we write f ∝ g to mean f is equal to g times a positive value that does not
depend on y.) Here, equation (13.51) is exactly Bayes rule. Equation (13.52) uses the fact
that c(x) is equally likely to be each label. Equation (13.53) follows from the random
process of generating ground hypotheses as in equation (13.41). And the last two lines are
straightforward manipulations.

Thus, taking the logarithm of the ratio of this final expression when y = +1 or y = −1
gives

ln

(
Pr[c(x) = +1 | g(x)]

Pr[c(x) = −1 | g(x)]

)
= ln

(
1+ 2γ ′

1− 2γ ′

)
·

T∑
t=1

gt (x).

The sign of the quantity on the left tells us which value of c(x) is more likely, and thus
which should be chosen by opt(g, x) to realize the minimum of equation (13.50). It follows,
therefore, that

opt(g, x) = sign

(
T∑

t=1

gt (x)

)
. (13.54)

(Recall that we are assuming that T is odd, so that a tie, in which the sign function receives
an argument of zero, can never occur.) In other words, taking a majority vote of the T

ground hypotheses is the best possible prediction in this setting.
Since it is optimal for every g and every x, the expected error of opt(g) is a lower bound

on that of B(g):

Ec[err(B(g), c)] = 1

|X | ·
∑
x∈X

Prc(x)[B(g, x) �= c(x) | g]

≥ 1

|X | ·
∑
x∈X

Prc(x)[opt(g, x) �= c(x) | g]

= Ec[err(opt(g), c)]. (13.55)

Note that for random g, the expected optimal error appearing in this expression can be
computed directly. This is because, for any x ∈ X ,

Eg(x)

[
Prc(x)[opt(g, x) �= c(x) | g]

] = Prc(x),g(x)[opt(g, x) �= c(x)]

= Prc(x),g(x)

[
c(x) �= sign

(
T∑

t=1

gt (x)

)]

= Binom

(
T ,

T

2
,

1

2
+ γ ′

)
.= err∗, (13.56)

446 13 Optimally Efficient Boosting

that is, the chance of fewer than half the random gt ’s correctly classifying x. Call this
probability err∗.

Using Hoeffding’s inequality again, we can further show that equation (13.55) is very
likely to be close to its expectation err∗.

Lemma 13.9 With probability at least 1− e−2n over the random choice of g,

Ec[err(opt(g), c)] ≥ err∗ −
√

n

|X | .

Proof Let us define the random variables

Ox
.= Prc(x)[opt(g, x) �= c(x) | g(x)]

for x ∈ X . Note that Eg[Ox] = err∗ by equation (13.56). Thus, applying Hoeffding’s
inequality (theorem 2.1) to their average

Ec[err(opt(g), c)] = 1

|X | ·
∑
x∈X

Ox

gives the result.

Combining lemma 13.8, equation (13.55), and lemma 13.9, along with the union bound,
we thus have shown that with probability at least 1− 2e−2n,

err(B(g), c) ≥ Ec[err(B(g), c) | g]−
√

n

|X |

≥ Ec[err(opt(g), c) | g]−
√

n

|X |

≥ err∗ − 2
√

n

|X | .

This implies that

err(B(g), c) ≥ 2−n
∑
x∈X

1{B(g, x) �= c(x)}

= |X |
2n
· err(B(g), c)

≥ |X |
2n
·
[

err∗ − 2
√

n

|X |
]

≥
(

1− m

2n

)
err∗ − 2

√
n

2n

.= βn (13.57)

13.3 Relation to AdaBoost 447

with probability at least 1− 2e−2n, where, in the last line, we used 2n−m ≤ |X | ≤ 2n since
S is a sample of m (not necessarily distinct) instances. We denote the quantity in equation
(13.57) by βn.

13.2.7 Bringing Everything Together

We can now use lemma 13.6 to factor in the possibility of an abort when B is applied, more
properly, to g′ rather than g. In particular, we have that

Prc,H
[
err(B(g′), c) < βn

] ≤ Prc,H
[
err(B(g), c) < βn ∨ g �= g′

]
(13.58)

≤ Prc,H[err(B(g), c) < βn]+Prc,H
[∃t : gt �= g′t

]
≤ 2e−2n+ T e−2n

where the last two lines use the union bound (repeatedly) together with equation (13.57)
and lemma 13.6 (which implies that gt �= g′t with probability at most e−2n).

We can now take expectation with respect to S, c|S , r, and R, which, until this point, had
been fixed. Let H denote the final hypothesis. To handle the possibility of r including two
identical seeds, we use the fact that for any two events a and b,

Pr[a] = Pr[a, b]+Pr[a,¬b]

≤ Pr[a|b]+Pr[¬b].

Thus,

PrS,c,H,r,R[err(H, c) < βn] ≤ PrS,c,H,r,R[err(H, c) < βn | r1, . . . , rT distinct]

+ PrS,c,H,r,R[r1, . . . , rT not all distinct] . (13.59)

The first term on the right is at most (T + 2)e−2n since it is the (conditional) expectation of
the probability appearing on the left-hand side of equation (13.58). As for the second term
on the right of equation (13.59), the chance that two particular random seeds are identical is
exactly 2−n. Therefore, by the union bound, the chance that T seeds are not all distinct is at
most

(
T

2

) · 2−n. Therefore,

PrS,c,H,r,R[err(H, c) < βn] ≤ (T + 2)e−2n+
(

T

2

)
· 2−n. (13.60)

Clearly, the right-hand side of equation (13.60) can be made smaller than ν > 0 for n

sufficiently large. Furthermore, keeping in mind that m, γ ′ and err∗ all depend implicitly
on n, we see that for n large, βn → β∗ (where β∗ is as in equation (13.44)) since γ ′ → γ

and since we assume that m, the sample size, is bounded by a polynomial in n. Therefore,
βn ≥ β∗ − ν for n sufficiently large. Thus, we have proved eqution (13.45), completing the
proof of theorem 13.5.

448 13 Optimally Efficient Boosting

13.3 Relation to AdaBoost

We next consider the relationship between BBM and the more familiarAdaBoost algorithm.
Not only are their error bounds related, but we will further see that a nonadaptive version
of AdaBoost can be derived as a special case of BBM. On the other hand, there also exist
some fundamental differences between the algorithms.

13.3.1 Comparison of Error Bounds

We have already seen that BBM’s error, as a function of T and γ , takes the form of the tail
of a binomial distribution as given in equation (13.37). This bound applies to the training
error, as proved in corollary 13.4, as well as to the generalization error, when the number
of training examples is large, as seen in section 13.2.1. Furthermore, in section 13.2.2,
we showed that this bound is the best possible for any boosting algorithm. So BBM is
essentially optimal when T and γ are known and fixed.

As already noted, when AdaBoost or NonAdaBoost is used, theorem 3.1 implies that the
training error will be at most e−2γ 2T, a bound that also holds for the generalization error
in the limit of large training sets. As earlier noted, this is exactly the bound Hoeffding’s
inequality (theorem 2.1) gives for the tail of the binomial in equation (13.37).

In fact, the better bound implied by theorem 3.1 for AdaBoost’s training error of(√
1− 4γ 2

)T

(13.61)

for this case is also a Chernoff bound. In particular, it can be proved (see exercise 5.4) that
the chance of at most qn heads in n flips of a coin with bias p, where q < p, is bounded as

Binom (n, qn, p) ≤ exp (−n ·REb (q ‖ p)), (13.62)

where REb (· ‖ ·) is the binary relative entropy given in equation (5.36). Thus, in the case
of the bound for BBM, we get

Binom

(
T ,

T

2
,

1

2
+ γ

)
≤ exp

(
−T ·REb

(
1

2
‖ 1

2
+ γ

))
, (13.63)

which is exactly equal to equation (13.61). Furthermore, it can be shown that

Binom

(
T ,

T

2
,

1

2
+ γ

)
≥ exp

(
−T ·

[
REb

(
1

2
‖ 1

2
+ γ

)
+O

(
ln T

T

)])
. (13.64)

Since (ln T)/T becomes negligible as T becomes large, this means that the approximation
in equation (13.63) is tight for a large number of rounds. Thus, AdaBoost’s error bounds
are quite close to the optimal bounds enjoyed by BBM.

Figure 13.3 shows a plot of the bounds for BBM and AdaBoost as a function of T . As
T grows, we know that the bounds must exhibit the same exponential behavior, as can be

13.3 Relation to AdaBoost 449

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

T

Figure 13.3
A comparison of the error bounds for nonadaptive AdaBoost (top curve, from equation (13.61)) and BBM (bottom
curve, from equation (13.37)) as a function of T with γ = 0.2. The BBM bound is defined only at integral values
of T , and appears jagged because the bound is generally worse when T is even (see exercise 13.8).

seen in the figure. On the other hand, for small T , there is clearly a big numerical difference
between them.

13.3.2 Deriving AdaBoost from BBM

In addition to the close relationship between their error bounds, AdaBoost and BBM turn out
also to be strongly connected as algorithms, with NonAdaBoost, the nonadaptive version
of AdaBoost discussed in section 13.1.1, a kind of limiting special case of BBM.

In particular, when the number of rounds T is chosen to be very large, the first T0 rounds
of BBM, for any fixed T0, will behave nearly exactly like NonAdaBoost. In this sense, non-
adaptive AdaBoost can be regarded as the limit of BBM that is obtained by letting T →∞
with γ fixed. (In chapter 14, we will look at a different limit that will yield a different
algorithm.)

To see this, we show that the weights used by BBM on round t converge, up to an
irrelevant constant factor, to those for NonAdaBoost when t is smaller than any fixed T0,
and T is increased without bound. For this, we also need to assume that the same weak
hypotheses were computed on the preceding rounds as for NonAdaBoost. Since the weights

450 13 Optimally Efficient Boosting

on all the preceding rounds of BBM are converging as T →∞ to the same weights as for
NonAdaBoost, this is likely to be the case. However, this cannot be proven to always be
true in general since some weak learning algorithms are numerically unstable, meaning
that even tiny changes in the distribution selected on a given round can cause significant
changes in the computed weak hypothesis.

In this section, we write wT
t (s), rather than wt(s), to make explicit the dependence

of the weighting function on the number of rounds T . Referring to algorithm 13.1, each
training example i begins round t with unnormalized margin st−1,i and is assigned weight
wT

t (st−1,i). Thus, to prove the claim above, it suffices to show that as T →∞, the weights
wT

t (s), suitably scaled, converge to the weights used by NonAdaBoost (with α as in
equation (13.5)), namely

e−αs =
(

1− 2γ

1+ 2γ

)s/2

(13.65)

for |s| ≤ t ≤ T0. (Multiplicative constants can be ignored because the weights are normal-
ized in forming the distribution Dt .)

For simplicity of presentation, we consider only the case that T is odd and s is even.
The other cases can be handled similarly. Note that because all the training examples begin
at position 0, and all are incremented or decremented on every round, their parities will
always remain in agreement and, furthermore, will always be opposite to the parity of t .
Let T

.= T − t , which, by the preceding discussion and assumptions, must be even.
From equation (13.34), the weight wT

t (s) used by BBM can be rewritten as(
1− 2γ

1+ 2γ

)s/2

·
(

T
T
2 − s

2

)(
1

2
+ γ

)T /2 (1

2
− γ

)T /2

. (13.66)

To deal with the binomial coefficient, we note that for any integers n ≥ k ≥ 1,(2n

n

)(2n

n+k

) = (2n

n

)(2n

n−k

) = (n+ k)(n+ k− 1) · · · (n+ 1)

n(n− 1) · · · (n− k+ 1)

=
k−1∏
j=0

(
1+ k

n− j

)
.

In the limit n →∞with k fixed, each of the k terms in the product converges to 1; therefore,
the entire product converges to 1 as well.

Thus, taking n = T /2 and k = |s|/2 in equation (13.66), and defining the constant

CT =
(

T

T /2

)(
1

2
+ γ

)T /2 (1

2
− γ

)T /2

,

13.3 Relation to AdaBoost 451

we see that for fixed s and t , wT
t (s)/CT−t converges to equation (13.65) as T (odd) grows

to infinity, proving the claim (for this case).
It follows by an inductive argument that the behavior of BBM with large T will be essen-

tially indistinguishable from NonAdaBoost on the first T0 rounds, for any fixed T0 (modulo
the technical numerical caveats mentioned above concerning the weak learning algorithm).

13.3.3 Comparison of Weights

Although their behavior is very similar on the first several rounds when T is large, there
exist important differences between AdaBoost and BBM at later stages of the algo-
rithm, particularly with respect to the weighting functions that differentiate the two
algorithms.

We have seen that NonAdaBoost weights examples with unnormalized margin s propor-
tionally to equation (13.65). Such a weighting function is shown at the top of figure 13.4.
Note that this weighting function is fixed, and does not change with additional rounds of
boosting.

In stark contrast, at the bottom, figure 13.4 shows the weighting function wt(s) used by
BBM for various values of t . Note first that this function changes significantly over time:
As t , the round number, increases, its peak value shifts steadily rightward. Moreover, the
weights become much more concentrated as the end of boosting approaches. Indeed, on
the very last round, all of the weight will be concentrated solely on the examples exactly
on the boundary between a correct or incorrect prediction since, at this point, the fate of all
other examples has already been decided.

Perhaps the most striking difference from AdaBoost is the non-monotonicity of BBM’s
weighting function. This means that whereas AdaBoost piles ever more weight on examples
which are continually misclassified by the weak hypotheses, BBM will do the same, but
only up to a point. Eventually, examples that are misclassified too many times will see their
weight actually decrease with further misclassifications. In other words, BBM is actually
giving up on these very hard examples.

This could potentially be an important advantage. AdaBoost is known to sometimes
“spin its wheels” on outliers—examples that may be hard due to labeling errors or inherent
ambiguity (see sections 10.3 and 12.3.3). The shape of BBM’s weighting function suggests
that this algorithm may instead abandon such examples for the greater good of the overall
learning process.

On the other hand, BBM is not a practical algorithm because, unlike AdaBoost, it is not
adaptive. To use it, we need to choose T and to anticipate a lower bound γ on all of the
edges of the forthcoming weak hypotheses before boosting begins. In practice, guessing
the right values for these parameters can be very difficult. To address this issue, in chapter
14 we describe a technique for making BBM adaptive.

452 13 Optimally Efficient Boosting

–30 –20 –10
s

–300 –200 –100
s

Figure 13.4
A comparison of the weighting function used by nonadaptive AdaBoost (top) and BBM (bottom) when T = 1000
and γ = 0.1. The BBM curves are plotted, from left to right, for rounds t = 50, 350, 650, and 950. (These curves
appear jagged because they are defined only at integer values.)

Exercises 453

Summary

In this chapter, we took a close look at the nature of optimality in boosting, leading to
the boost-by-majority algorithm, which we derived in an abstract framework based on a
chip game. BBM is nearly optimal in terms of minimizing both the training error and the
generalization error, as was seen, in both cases, by matching its performance to lower bounds
based on an oblivious weak learner.

We also studied the close relationship between AdaBoost and BBM, and noted that the
previously proved bounds for AdaBoost indicate that it is not far behind optimal BBM in
performance. On the other hand, the behavior of the two algorithms may be very different
on outliers. In any case, AdaBoost is much more practical than BBM because of its adap-
tiveness. To overcome this limitation, in chapter 14 we consider a technique for making
BBM adaptive.

Bibliographic Notes

The boost-by-majority algorithm and analysis of section 13.1, including the voting-game
formulation, are due to Freund [88]. The derivation given in section 13.1.4 is based on ideas
from Schapire’s [201] work on “drifting games,” a framework that generalizes BBM and
its analysis. The proof of lemma 13.1 incorporates some key (unpublished) insights that are
due to Indraneel Mukherjee.

The lower bound given in section 13.2.2 is a substantial elaboration of one originally
given by Freund [88].

Theorem 13.7 and equation (13.62) are due to Hoeffding [123]. Equation (13.64) is
based on known lower bounds on the tail of a binomial distribution which can be found,
for instance, in section 12.1 of Cover and Thomas [57], and the references therein.

Some of the exercises in this chapter are based on material from [46, 201].

Exercises

13.1 All of the boosting algorithms we have considered in this book compute the dis-
tribution Dt in a strongly sequential fashion, with each Dt depending on the preceding
weak hypotheses h1, . . . , ht−1. Is this kind of adaptiveness truly necessary? Can there exist
“universal” distributions which are effective for boosting against any weak learner without
adjustment based on the weak hypotheses actually received?

To formalize this question, consider a variant of the voting game given in section 13.1.1
that proceeds as follows:

1. the booster chooses T distributions D1, . . . , DT over a given and fixed training set of m

examples;

454 13 Optimally Efficient Boosting

2. the weak learner chooses T hypotheses h1, . . . , hT such that equation (13.1) holds for
t = 1, . . . , T .

The final hypothesis is then formed as a simple majority vote as in equation (13.2). Let us
say that the booster wins the game if H has training error zero; otherwise, the weak learner
wins.

Show either that there exists a strategy for the booster that wins the game always against
any weak learner, for some appropriate choice of T ; or prove that no such winning strategy
can exist.

13.2 Give an example showing that the inequality given in equation (13.31) can be strict,
that is, showing that it is possible that �0(0) < �0(0).

13.3 Verify that equation (13.30) satisfies both equations (13.25) and (13.29). Also verify
equation (13.34).

13.4 Suppose in the construction given in section 13.1 that abstaining weak hypotheses are
used with range {−1, 0,+1}. Now, in place of equation (13.1), we require Ei∼Dt [yiht (xi)] ≥
2γ . And in terms of the chip game, this means that chip i’s position is increased on round t

by zt,i ∈ {−1, 0,+1}with the requirement that equation (13.8) hold. The derivation leading
to equations (13.24), (13.25), and (13.26) (except lemma 13.2) can be straightforwardly
modified for this case simply by replacing {−1,+1} with {−1, 0,+1}. Thus, the potential
�T (s) is as in equation (13.25), but for t = 1, . . . , T , is now redefined to be

�t−1(s)
.= inf

w≥0
max

z∈{−1,0,+1}
[�t(s+ z)+w · (z− 2γ)] . (13.67)

Likewise, BBM can be modified for this case simply by plugging in a different definition
of wt(s). The rest of this exercise refers to these modified definitions.

a. Show that �t(s) is nonincreasing for all t , that is, �t(s) ≥ �t(s
′) if s < s ′.

b. For t = 1, . . . , T , show that

�t−1(s) = max
{
(1

2 + γ)�t(s+ 1)+ (1
2 − γ)�t(s− 1),

(1− 2γ)�t(s)+ 2γ �t(s+ 1)
}
.

Also, find wt(s), the value of w ≥ 0 which realizes the infimum in equation (13.67), in
terms of �t(s− 1), �t(s), and �t(s+ 1). (Your answer should give wt(s) explicitly, not
using an “arg min”.)

13.5 Let θ > 0 be a desired minimum normalized margin that is given and known in
advance. As in BBM, assume the γ -weak learning condition holds, where γ > 0 is also
known.

a. Show how to modify BBM and its analysis so that the fraction of training examples with
normalized margin at most θ is guaranteed not to exceed

Binom

(
T ,

(
1+ θ

2

)
T ,

1

2
+ γ

)
.

Exercises 455

b. For what (fixed) values of θ and γ does this bound approach zero as T →∞?

13.6 Suppose in equation (13.25) that we instead defined �T (s)
.= e−αs for some α >

0, thus also redefining �t(s), for t < T , via equation (13.26), as well as wt(s) via
equation (13.32).

a. Explain why equation (13.24) holds for this redefined version of �t .

b. Compute the new versions of �t(s) and wt(s) in closed form.

c. Show how to choose α to optimize �0(0), which bounds the training error.

d. Verify that the resulting bound on the training error is the same as can be obtained
for NonAdaBoost from theorem 3.1. Also verify that if the new version of wt(s) is
substituted in BBM (with the optimized choice of α), then the resulting algorithm is
exactly equivalent to NonAdaBoost.

13.7 Consider the following online prediction problem, similar to the one studied in sec-
tion 6.3. There are m experts. On each round t , expert i predicts xt,i ∈ {−1,+1}, and the
learner makes its own prediction ŷt as a weighted majority vote of the expert predictions.
The true label yt is then revealed. Thus, formally, on each round t = 1, . . . , T :

• the learner chooses a weight vector vt ∈ Rm+;

• the expert predictions xt ∈ {−1,+1}m are revealed;

• the learner predicts ŷt = sign(vt · xt);

• nature reveals yt ∈ {−1,+1}.
The learner makes a mistake if ŷt �= yt ; likewise, expert i makes a mistake if xt,i �= yt .

In this problem, we assume that one of the experts makes at most k mistakes, where k is
known ahead of time. We also assume that the learner is conservative, meaning that rounds
on which ŷt = yt are entirely ignored in the sense that the state of the algorithm does not
change. For such algorithms, we can assume without loss of generality that a mistake occurs
on every round (since other rounds are ignored). Thus, t is actually counting the number of
mistakes of the learner, rather than the number of rounds.

This can be formulated as a chip game in which the chips are now identified with experts.
In particular, we make the following redefinitions of the variables and quantities appearing
in section 13.1.2:
• zt,i

.= −ytxt,i ;

• Dt(i) = vt,i/Zt , where Zt is a normalization factor;

• γ = 0;

• L(sT)
.= 1

m

∑m
i=11

{
sT ,i ≤ 2k− T

}
.

All of the following are with respect to these new definitions, which of course also impact
st , �t , etc.

456 13 Optimally Efficient Boosting

a. Show that equation (13.8) holds for all t .

b. If the game is played for a full T rounds, show that L(sT) ≥ 1/m.

c. Calculate �t(s) and wt(s) in closed form.

d. Suppose the learner chooses the weight vector vt by setting vt,i = wt(st−1,i). Further-
more, suppose we let T = 1+ T0 where T0 is the largest positive integer for which

2T0 ≤ m ·
k∑

j=0

(
T0

j

)
.

Prove that the number of mistakes made by such a learner cannot exceed T0. (It can be
shown that T0 ≤ 2k+ 2

√
k ln m+ lg m.)

13.8 As seen in figure 13.3, the bound on BBM’s training error is significantly worse for
an even number of rounds than for an odd number of rounds. This is largely the result of
our convention of counting a tied vote among the weak hypotheses as a full mistake. This
exercise considers an alternative in which such a tie counts as only half a mistake, as is
natural if ties result in random-guess predictions.

More specifically, suppose T > 0 is even, and that the loss or training error of the booster
in equation (13.3), as well as the corresponding loss L(sT) of the chips in equation (13.9),
are replaced by

1

m

m∑
i=1

�

(
yi

T∑
t=1

ht (xi)

)
= 1

m

m∑
i=1

�(sT ,i)

where

�(s)
.=
⎧⎨⎩

1 if s < 0
1
2 if s = 0
0 if s > 0.

Note that our treatment for an odd number of rounds is unchanged since, in this case, sT ,i

will never be 0.
In this problem, we write �T

t (s) and wT
t (s) with superscripts to make explicit the depen-

dence of the potential and weighting functions on the total number of rounds T . These func-
tions are still defined by equations (13.26) and (13.32), although equation (13.25) naturally
requires appropriate modification. By the same analysis, if this modified weighting function
is used in BBM, then the training error will be at most the (modified) initial potential �T

0 (0).

a. Show, under this revised definition, that

�T
t (s) = 1

2

(
�T+1

t+1 (s− 1)+�T+1
t+1 (s+ 1)

)
.

(Keep in mind our assumption that T is even.)

Exercises 457

b. Find an analogous expression for wT
t (s).

c. Prove that

�T+1
0 (0) ≤ �T

0 (0) = �T−1
0 (0).

This shows that the bound on the (modified) training error is nonincreasing as a function
of T , and also that there is no advantage to using T rounds, rather than T − 1, if T is
even.

d. Sketch how to modify the proof of theorem 13.5 so that it applies when T is even where,
in this case, equation (13.40) is replaced by �T

0 (0)− ν, that is,

1

2

[
Binom

(
T ,

T − 1

2
,

1

2
+ γ

)
+Binom

(
T ,

T + 1

2
,

1

2
+ γ

)]
− ν.

13.9 Section 13.1.7 briefly discusses a relaxed game in which weak hypotheses—or, equiv-
alently, chip movements zt—are selected in a randomized fashion. More formally, the game
is played as follows. On each round t , the booster chooses a distribution Dt over chips,
and the weak learner responds with a distribution Qt over {−1,+1}m, the set of possible
chip movements. The vector zt is then selected at random according to Qt , and the chips
are then moved as usual as in equation (13.6). Rather than equations (13.7) and (13.8), we
instead require that these hold in expectation, that is,

Ezt∼Qt ,i∼Dt

[
zt,i

] ≥ 2γ.

The goal is to minimize the expected loss

Ez1∼Q1,...,zT ∼QT

[
L

(
T∑

t=1

zt

)]
.

(Technically, we assume that the booster and weak learner map the preceding history
of events to a decision (Dt or Qt) in a deterministic fashion so that the only source of
randomness is in the choice of zt ’s.)

As before, let �t(st) be the expected loss that will be incurred if the chips are in position
st on round t , and if the game is henceforth played optimally by both players.

a. Analogous to equations (13.11) and (13.12), for this relaxed version of the game, give
an expression for �T , and also a recursive expression for �t−1 in terms of �t . Justify
your answers.

b. Prove that

�t(s) = 1

m

m∑
i=1

�t(si)

458 13 Optimally Efficient Boosting

for all s and t (where the definition of �t is unchanged). In particular, conclude that the
value of the game is exactly as given in equation (13.37).

c. Suppose now that the weak learner (deterministically) chooses on each round t a distri-
bution Qt over weak hypotheses, and that ht is then selected at random from Qt . Rather
than equation (13.1), we now assume

Eht∼Qt

[
Pri∼Dt [ht (xi) �= yi]

] ≤ 1
2 − γ.

Under this modified assumption, show that the expected training error of the final
hypothesis H generated by BBM is at most that given in equation (13.37).

13.10 Consider boosting in a multiclass setting when the number of classes is K > 2. For
the purposes of this exercise, we modify the definition of a weak learning algorithm, as
reviewed in section 13.2.2, replacing the requirement that h’s error be at most 1

2 − γ with
the weaker condition that h’s error be at most 1− 1/K − γ .

Prove formally that for any boosting algorithm B, and for any ν > 0, there exist a target
class C, a distribution D, a target function c ∈ C, and a weak learning algorithm for C
such that, regardless of the number of times that B calls A, the generalization error of its
combined classifier will be at least

1− 1

K − 1
− ν

with probability at least 1− ν (where the probability is taken with respect to the same quan-
tities as in theorem 13.5). In other words, show that boosting, as formally defined, is not
possible when ε < 1− 1/(K − 1).

14 Boosting in Continuous Time

AdaBoost owes much of its practicality as a boosting algorithm to its adaptiveness, its
ability to automatically adjust to weak hypotheses with varying accuracies, thus alleviating
the need for knowledge prior to the start of the boosting process of a minimum edge γ ,
or even the total number of rounds T that will be run. The boost-by-majority algorithm,
studied in chapter 13, is not adaptive. Still, it may have other advantages over AdaBoost: It
is theoretically more efficient (in terms of the number of rounds to achieve some accuracy)
and, perhaps more importantly, it may be better at handling outliers. In this companion
chapter, we study a method for making BBM adaptive while, hopefully, retaining its other
positive qualities.

BBM is actually nonadaptive in two senses. First, it requires knowledge of a value γ > 0
for which the γ -weak learning assumption holds so that all weak hypotheses have edge at
least γ . And second, it is nonadaptive in its inability to fully exploit weak hypotheses which
happen to have edges significantly better than γ . We will see that this latter form of non-
adaptiveness can be overcome by adjusting the weights on the weak hypotheses and allowing
the algorithm’s “clock” to advance by more than one “tick” on each round. However,
the resulting algorithm still requires knowledge of the minimum edge γ . To handle this
difficulty, we imagine allowing γ to become very small, while simultaneously increasing
the total number of rounds T . In the limit γ → 0, the number of rounds becomes infinite.
If the total time of the entire boosting process is nevertheless squeezed into a finite interval,
then in the limit, boosting is conceptually proceeding in continuous time. The result is
a continuous-time version of BBM called BrownBoost that, like AdaBoost, can adapt to
varying edges among the weak hypotheses.

In section 13.3.2, we saw that NonAdaBoost, a nonadaptive version of AdaBoost, can be
derived from BBM. Correspondingly, we will see in this chapter that AdaBoost, in its usual,
adaptive form, is itself a special case of BrownBoost. Or, in other words, BrownBoost is a
generalization of AdaBoost. As will be seen, this generalization explicitly incorporates an
anticipated inability to drive the training error to zero, as is to be expected with noisy data,
or data containing outliers.

460 14 Boosting in Continuous Time

We end this chapter with some experiments comparing BrownBoost and AdaBoost on
noisy data.

14.1 Adaptiveness in the Limit of Continuous Time

Our goal is to make BBM adaptive. As noted above, its non-adaptiveness takes two forms,
namely, required prior knowledge of a minimum edge γ , together with an inability to fully
exploit weak hypotheses with edges much better than γ . We begin with an informal overview
of the main ideas for overcoming each of these.

14.1.1 Main Ideas

Suppose on some round t that a weak hypothesis h is received from the weak learner with
weighted error substantially below 1

2 − γ , in other words, with edge much larger than the
minimum requirement of γ . Even when this happens, BBM will treat h like any other weak
hypothesis, essentially ignoring its relative strength. Thus, h will be used just once, and an
entirely new weak hypothesis will be sought on the following round.

There is, however, a natural alternative. Under the conditions above, it may well happen
that h’s error continues to be smaller than 1

2 − γ when measured with respect to the new
distribution Dt+1. In this case, h can be used a second time on round t + 1, just as if it had
been received fresh from the weak learner. This may happen yet again on the following
round, so that h can be used a third time. And continuing in this way, the same weak
hypothesis h may be used many times until at last its error exceeds 1

2 − γ . At this point,
a new weak hypothesis must be obtained from the weak learner, and the process begins
again. In the end, weak hypotheses with edges significantly exceeding γ will be included
many times in the majority-vote classifier formed by BBM so that this final hypothesis will
actually be a weighted majority over the weak hypotheses, with the most weight assigned
to weak hypotheses with the lowest weighted error, just like AdaBoost. This already can be
seen to be a form of adaptiveness.

This idea can be understood and generalized by considering the potential function �t(s)

at the heart of BBM, as studied in detail in section 13.1. Recall that the essence of our
analysis of BBM’s training error was theorem 13.3, a proof that the total (or average)
potential of the m chips (or training examples) never increases from round to round. Since
the final average potential is exactly the training error, this implied an immediate bound
on the training error in terms of the initial potential �0(0), as seen in corollary 13.4. Thus,
a given desired training error of ε > 0 can be attained simply by choosing the number of
rounds T large enough that �0(0) ≤ ε.

In fact, this proof technique permits great freedom in how we use a given weak hypothesis,
provided that the total potential is not allowed to increase. Given a weak hypothesis h, BBM
simply increments the “clock” t :

t ← t + 1,

14.1 Adaptiveness in the Limit of Continuous Time 461

and advances the position si of each chip i by zi
.= yih(xi):

si ← si + zi .

But there are other possibilities in how these might be updated. As seen above, we can use
the same weak hypothesis h many times, say for k consecutive rounds. This is equivalent
to advancing the clock t by k:

t ← t + k,

and advancing the chips by k times their usual increment of zi :

si ← si + kzi .

Under the assumption that h has weighted error at most 1
2 − γ on each of the k time steps, the-

orem 13.3 implies that the total potential at the end of these k steps will be no larger than at the
beginning. The point, however, is that this is the only property we care about for the analysis.

This observation opens the door to immediate generalization. As a start, we can decouple
the amount by which the clock and the chips are advanced so that the clock is advanced,
say, by some positive integer ξ :

t ← t + ξ,

and the chips by some integer increment α:

si ← si +αzi,

where we no longer require ξ = α. In fact, we can allow any choice of ξ and α, so long as the
total potential does not increase. We do not here specify particular choices, but intuitively,
we may wish to choose ξ large to speed the entire process which must end when the clock
t reaches T .

Suppose, on the r-th round of this process, that a weak hypothesis hr is received, and
the clock and chips are advanced by ξr and αr as above. Then the final hypothesis will be the
weighted majority vote

H(x)
.= sign

(
R∑

r=1

αrhr(x)

)
,

where R is the total number of rounds until the clock reaches T (and where we now carefully
distinguish between “rounds” r and “time steps” t). Under this definition, an example
(xi, yi) is misclassified by H if and only if the corresponding chip has been moved by the
process described above to a final position zi that is not positive. Thus, by exactly the same
proof as in corollary 13.4, the training error of H can be shown to be at most the initial
potential �0(0), provided we respect the requirement that the total potential must never
increase.

462 14 Boosting in Continuous Time

In this way, BBM can be modified to exploit weak hypotheses with varying edges,
provided they are all at least γ . This latter condition, of course, remains a serious obstacle.
A natural idea to get around it is simply to choose γ so small that it is almost sure to fall
below the edges of all the weak hypotheses. In the limit γ → 0, this is certain to be the
case. Of course, according to our analysis of BBM, to achieve the same accuracy in the final
classifier with smaller values of γ requires a correspondingly larger number of time steps T .
Thus, as γ → 0, T becomes infinite. If we rescale our notion of time, holding it fixed within
some finite interval, this will mean in the limit that time is advancing continuously rather
than in discrete steps.

So, to summarize, to remove the assumption of γ -weak learnability, we consider the
continuous-time limit of BBM obtained by letting γ → 0, combined with the technique
given above for handling weak hypotheses with varying edges. To implement these ideas,
we will first need to derive the continuous-time limits of both the potential function �t(s)

and the weighting function wt(s). Furthermore, we will need a technique for computing
how much the clock and the chips should be advanced so as to maximize the progress that
can be wrung from each weak hypothesis, subject to the condition that the average potential
should never increase.

We turn now to a detailed treatment.

14.1.2 The Continuous-Time Limit

Our initial goal is to understand how the various elements of BBM behave in the limit as
γ → 0, and as the number of time steps T simultaneously grows to infinity. In the usual
setting for BBM, “time” is indexed by integers t = 0, 1, . . . , T , and similarly, “space”—
that is, the positions of the chips—is indexed by integers s ∈ Z. Thus, both time and space
are discrete, and the potential function �t(s) and the weighting function wt(s) are defined
in terms of these discrete quantities.

Now, as we let T get large, it will be natural to focus not on the actual number of time
steps t of BBM that have elapsed, but rather on the fraction of the T time steps that have
passed, which we denote by

τ = t

T
. (14.1)

In other words, it makes sense to rescale our notion of time so that boosting begins at time
τ = 0 and ends at time τ = 1. Each discrete time step of BBM then takes, after rescaling,
time 1/T . As T increases, this tiny increment approaches zero, at which point boosting is
conceptually proceeding in continuous time.

We will see shortly that our notion of space also will become continuous so that at each
(continuous) moment in time τ ∈ [0, 1], each chip will occupy a continuously valued posi-
tion ψ ∈ R. The potential function �t(s), which measures the potential at each chip position
at each moment in time, must thus be correspondingly replaced by a function �(ψ, τ) that

14.1 Adaptiveness in the Limit of Continuous Time 463

Table 14.1
Some key quantities used in the (discrete-time) derivation of BBM, and their continuous-time analogues

BBM Continuous Time

time t τ

margin/chip position s ψ

potential function �t(s) �(ψ, τ)

weighting function wt (s) w(ψ, τ)

is defined in terms of these continuous variables, and that is itself the limit, after appro-
priate rescaling, of �t(s). Similarly for the weighting function. (For notational reference,
table 14.1 summarizes some key quantities for BBM and their continuous-time analogues.)

We have already noted that we require a limit in which γ → 0 as T →∞. In fact, for
this limit to be meaningful, it will be necessary that the values of T and γ be coupled
appropriately to one another. Specifically, we have seen that the training error of BBM is at
most the tail of the binomial distribution given in equation (13.37), which is approximately
e−2γ 2T by Hoeffding’s inequality. Thus, for this bound to have a meaningful finite limit, we
need the product γ 2T to be held fixed. To do this, we let T →∞, and set

γ = 1

2

√
β

T
(14.2)

where β is a constant whose value we discuss later. (The factor of 1
2 has no real impact

since β is an arbitrary constant.) Clearly, this choice of γ converges to zero, while γ 2T is
held to the fixed constant β/4.

The next step is to determine the limits of the weighting and potential functions which are
at the foundation of BBM. The weighting functions plotted in figure 13.4 (p. 452) strongly
resemble normal distributions. This is because they are binomial distributions which are well
known to converge to normal distributions. To compute their limits precisely, recall from
equation (13.38) that the potential �t(s) turns out to be exactly equal to the probability that
a particular random walk on the set of integers Z, beginning at s, will end at a nonpositive
value. Specifically, equation (13.38) can be rewritten as

�t(s) = Pr
[
s+YT ≤ 0

] = Pr
[
YT ≤ −s

]
(14.3)

where

T
.= T − t = T (1− τ), (14.4)

and where

YT =
T∑

j=1

Xj

464 14 Boosting in Continuous Time

is a sum of independent random variables Xj , each of which is +1 with probability 1
2 + γ ,

and−1 otherwise. The central limit theorem tells us that such a sum of independent random
variables, if appropriately scaled and translated, will converge in distribution to a normal
distribution as T →∞. (See appendix A.9 for further background.) In this case, the mean
of the sum YT is 2γ T , and its variance is (1− 4γ 2)T . Thus, subtracting the mean and
dividing by the standard deviation gives the standardized sum

YT − 2γ T√
(1− 4γ 2)T

, (14.5)

which, by the central limit theorem, converges as T →∞ to a standard normal distribution
with mean 0 and unit variance.

As γ gets very small, its appearance in the denominator of equation (14.5) becomes
negligible. Thus, for T large, equation (14.5) can be approximated by

ỸT ,γ

.= YT − 2γ T√
T

= YT√
T (1− τ)

−√β(1− τ)

by equations (14.2) and (14.4). Since this random variable is asymptotically the same as
equation (14.5) (each differing from the other by a factor that converges to 1), its distribution
also converges to standard normal.

The event YT ≤ −s appearing in equation (14.3) holds if and only if

ỸT ,γ ≤ −
s√

T (1− τ)
−√β(1− τ). (14.6)

We would like the quantity on the right not to depend explicitly on T so that its limit will
be meaningful. This can be achieved in the way that the discrete positions s of chips are
replaced by continuous positions ψ , an operation we alluded to earlier but did not specify.
Now we can be precise and define the linear mapping from discrete to continuous positions
that we will use:

ψ = s

√
β

T
. (14.7)

Here, a scaling factor proportional to 1/
√

T has been chosen for the purpose of “absorbing”
the appearance of this same factor on the right-hand side of equation (14.6); in particular, this
definition causes the quantity s/

√
T which appears in that expression now to be replaced

simply by ψ/
√

β. (The constant
√

β in equation (14.7) is arbitrary, and was chosen for
mathematical convenience in what follows.) Thus, with ψ defined as above, the right-hand
side of equation (14.6) can now be written as

− ψ√
β(1− τ)

−√β(1− τ) = −ψ +β(1− τ)√
β(1− τ)

. (14.8)

14.1 Adaptiveness in the Limit of Continuous Time 465

Let Y ∗ be a standard normal random variable (with zero mean and unit variance). By the
argument given above, �t(s) is equal to the probability that ỸT ,γ is at most equation (14.8),
which converges to

�(ψ, τ)
.= Pr

[
Y ∗ ≤ −ψ +β(1− τ)√

β(1− τ)

]
.

To summarize, we have shown that for any ψ and τ , if s and t are chosen to satisfy
the scaling given in equations (14.1) and (14.7) (or to nearly satisfy these equations, given
that they must be integers), and if γ is chosen as in equation (14.2), then as T →∞, the
potential function �t(s), which depends implicitly on T and γ , converges to �(ψ, τ). In
other words, �(ψ, τ), under appropriate rescaling of the relevant variables, is the limit of
BBM’s potential function.

By the definition of the normal distribution, �(ψ, τ) can be defined equivalently in a
form that does not reference the random variable Y ∗, namely,

�(ψ, τ)
.= 1

2
erfc

(
ψ +β(1− τ)√

2β(1− τ)

)
(14.9)

where erfc(u) is the complementary error function

erfc(u)
.= 2√

π

∫ ∞

u

e−x2
dx, (14.10)

which is plotted in figure 14.1. Thus, we have arrived at a closed-form expression for the
limit of the potential function.

14.1.3 An Alternative Derivation

Although this derivation is complete, we here present a rather different method for deriving
the potential function �(ψ, τ), one based on setting up and solving a partial differential
equation. We start from scratch with equation (13.29), the recursive formulation of the
potential function, which, by direct substitution, implies that

�t(s)−�t−1(s) = �t(s)−
[(

1
2 + γ

)
�t(s+ 1)+ (1

2 − γ
)
�t(s− 1)

]
= − 1

2 (�t(s+ 1)− 2�t(s)+�t(s− 1))

− γ (�t(s+ 1)−�t(s− 1)) . (14.11)

Next, we rewrite this equation in the continuous domain in terms of �(ψ, τ). For the
moment, we identify �(ψ, τ) with �t(s), where τ = t/T and ψ = s

√
β/T as before,

so that �(ψ, τ) depends implicitly on T , a dependence that will vanish when the limit
T →∞ is taken. As noted earlier, every step of BBM causes τ to increase by �τ

.= 1/T.

466 14 Boosting in Continuous Time

0

1

2

–2 –1 0 1 2

Figure 14.1
A plot of the function erfc(u) as given in equation (14.10).

In addition, when s is incremented or decremented by 1, ψ , by its definition in terms of s,
is incremented or decremented by

�ψ
.=
√

β

T
= √β�τ = 2γ

by equation (14.2). Plugging in these notational changes, equation (14.11) becomes

�(ψ, τ)−�(ψ, τ −�τ) = − 1
2 [�(ψ +�ψ, τ)− 2�(ψ, τ)+�(ψ −�ψ, τ)]

− γ [�(ψ +�ψ, τ)−�(ψ −�ψ, τ)] .

Dividing both sides by

−β�τ = −(�ψ)2 = −2γ �ψ,

we arrive at the following difference equation:

− 1

β
· �(ψ, τ)−�(ψ, τ −�τ)

�τ
= 1

2
· �(ψ +�ψ, τ)− 2�(ψ, τ)+�(ψ −�ψ, τ)

(�ψ)2

+ �(ψ +�ψ, τ)−�(ψ −�ψ, τ)

2�ψ
. (14.12)

Taking the limit as T →∞, so that �τ → 0 and �ψ → 0, gives the following partial
differential equation:

− 1

β
· ∂�(ψ, τ)

∂τ
= 1

2
· ∂

2�(ψ, τ)

∂ψ2
+ ∂�(ψ, τ)

∂ψ
. (14.13)

14.1 Adaptiveness in the Limit of Continuous Time 467

To derive this, we used the fact that for any differentiable function f : R → R,

f (x+�x)− f (x)

�x

converges, in the limit �x → 0, to f ′(x), the derivative of f at x, by definition. We also
used the fact that

f (x+�x)− 2f (x)+ f (x−�x)

(�x)2
=

f (x+�x)−f (x)

�x
− f (x)−f (x−�x)

�x

�x

converges to f ′′(x), the second derivative of f , as �x → 0.
Thus, in the limit, �(ψ, τ) must satisfy equation (14.13). This equation turns out to be

well known: It describes the time evolution of a so-called Brownian process, which is the
continuous-time limit of a random walk.

Recall that at the end of a run of BBM, at time T , the potential function �T (s) is defined
to be an indicator function that counts training mistakes as in equation (13.25). Therefore, in
the continuous-time limit, the potential function at the end of the boosting process, τ = 1,
should satisfy

�(ψ, 1) = 1{ψ ≤ 0}. (14.14)

This equation acts as a kind of “boundary condition.” Solving the partial differential equation
in equation (14.13) subject to equation (14.14) gives exactly equation (14.9), as can be
verified by plugging the solution into the equation (see exercise 14.1). Thus, we have
obtained the same limiting potential function as before.

As a technical point, we note that �(ψ, τ) is continuous on its entire range, except
at the point ψ = 0, τ = 1. A discontinuity at this point is inevitable. And although equa-
tion (14.14) defines �(0, 1) to be 1, it could perhaps more reasonably be defined to be
1
2 . We discuss this annoying discontinuity further below, including how to stay away from
it.

The weighting function wt(s) also gets replaced by a function w(ψ, τ) in terms of the
new continuous variables. Since multiplying the weights by a positive constant has no
effect, due to normalization, we divide the formula for wt(s) given in equation (13.33) by
�ψ = √β/T , so that

√
T/β ·wt(s) becomes√

T

β
· �t(s− 1)−�t(s+ 1)

2
= �(ψ −�ψ, τ)−�(ψ +�ψ, τ)

2�ψ
.

In the limit �ψ → 0, this gives the weighting function

w(ψ, τ) = −∂�(ψ, τ)

∂ψ
∝ exp

(
− (ψ +β(1− τ))2

2β(1− τ)

)
, (14.15)

468 14 Boosting in Continuous Time

where we write f ∝ g to mean that f is equal to g times a positive constant that does not
depend on ψ .

Both the potential function �(ψ, τ) and the weighting function w(ψ, τ) are plotted for
sample values of τ in figure 14.2. Since these are the limits of the corresponding functions
for BBM, it is not surprising that the weighting function in this figure is almost identical to
the one shown in figure 13.4 for BBM with T = 1000 (other than being a lot smoother).

14.2 BrownBoost

Having computed the limit of the potential and weighting functions, we can return to our
earlier ideas for the design of an adaptive boost-by-majority algorithm.

14.2.1 Algorithm

Given our usual dataset of m training examples, the state of the continuous-time algorithm
can be described by the current time τ ∈ [0, 1], and by the position ψi of each chip/training
example i. From the derivation above, we can compute weights w(ψi, τ) for each of these
which, when normalized, define a distribution D. The weak learning algorithm can be used
to obtain a weak hypothesis h whose error with respect to D is less than 1

2 , as usual. What,
then, do we do with h?

According to the outline of ideas presented in section 14.1.1, the clock and chip positions
should now be advanced by some amounts, subject to various conditions. Specifically,
applying these earlier ideas to the newly derived continuous-time domain, the clock should
be advanced by some amount ξ > 0 from τ to τ ′ = τ + ξ , and each chip i should be moved
in the direction yih(xi) by some amount α to the new position

ψ ′
i = ψi +αyih(xi).

As in section 14.1.1, we treat ξ and α as distinct variables. To find values for them, we
define two conditions, or equations, that they must satisfy, and then solve the equations
simultaneously.

First, recall that in our intuitive description of the algorithm, h is used repeatedly for
many subsequent time steps of BBM until its edge has been “used up.” Thus, at the new
time τ ′, and in the new chip positions ψ ′

i , it should be the case that h’s weighted error is
exactly 1

2 , so that its edge has been reduced to zero. This condition means that

m∑
i=1

w(ψ ′
i , τ ′)1{h(xi) �= yi}
m∑

i=1

w(ψ ′
i , τ ′)

= 1

2
,

14.2 BrownBoost 469

0

1

Figure 14.2
A plot of the potential function (top) and weighting function (bottom) when β = 40, as given in equations (14.9)
and (14.15). In each figure, the curves are plotted, from left to right, with τ = 0.05, 0.35, 0.65, and 0.95. (The
four potential functions, although distinct, quickly become visually indistinguishable as they approach the limits
of their range.) Based on the derivation in the text, the values for β and τ given here correspond to the variable
settings for the plot of BBM’s weighting function given in figure 13.4, which very closely resembles the smooth
weighting function shown here.

470 14 Boosting in Continuous Time

which is equivalent to

m∑
i=1

w(ψ ′
i , τ ′) yih(xi) = 0

or

m∑
i=1

w(ψi +αyih(xi), τ + ξ) yih(xi) = 0. (14.16)

This is the first equation that α and ξ should satisfy.
For the second condition, as discussed in section 14.1.1, we must continue to respect the

key property that was used to analyze BBM: that the total potential of all the examples can
never increase. In fact, in the continuous domain, if the chips and clock advance to a point at
which the total potential has strictly decreased, then it turns out, by continuity of the potential
function �(ψ, τ), that it will always be possible to move the clock slightly further ahead
while still ensuring that the total potential does not increase, relative to its starting value (see
exercise 14.4). This means that here we can make an even stronger requirement, and insist
that the total potential actually remain unchanged—neither increasing nor decreasing—so
that

m∑
i=1

�(ψi, τ) =
m∑

i=1

�(ψ ′
i , τ ′),

or

m∑
i=1

�(ψi, τ) =
m∑

i=1

�(ψi +αyih(xi), τ + ξ). (14.17)

This is the second equation.
So α and ξ are chosen to satisfy equations (14.16) and (14.17), and then are used to

update the clock and chip positions accordingly.
This entire process of finding weak hypotheses and solving for the appropriate updates

to τ and the chip positions ψi repeats iteratively, and finally terminates when the clock τ

reaches 1. Or, to avoid difficulties arising from the discontinuity in the potential function �

when τ = 1, we may wish to terminate when τ reaches some earlier cutoff 1− c, for some
small c > 0. Upon termination, the final combined classifier is formed by taking a weighted
majority vote of the weak hypotheses where each is assigned its associated weight α. The
complete algorithm, called BrownBoost because of its connection to Brownian motion,
is shown as algorithm 14.1. The procedure works in iterations which we index by r,

14.2 BrownBoost 471

rather than t as in the rest of the book, to avoid confusion with the time steps of the
BBM algorithm that conceptually is at its underpinning. We discuss the choice of β

below.

14.2.2 Analysis

Because of the discontinuity in the potential function at τ = 1, it is possible that no simul-
taneous solution will exist to BrownBoost’s two equations (see exercise 14.6). However,
if the algorithm is permitted to terminate when the clock τ reaches or exceeds 1− c, for
some small c > 0, then the next theorem shows that a solution must always exist. (We do
not discuss computational methods for actually finding a solution, but in practice, standard
numerical methods can be applied.)

Theorem 14.1 Let � and w be defined as in equations (14.9) and (14.15). For any
ψ1, . . . , ψm ∈ R, z1, . . . , zm ∈ {−1,+1}, c > 0, and τ ∈ [0, 1− c), there exist α ∈ R and
τ ′ ∈ [τ, 1] such that

m∑
i=1

�(ψi, τ) =
m∑

i=1

�(ψi +αzi, τ ′), (14.18)

and either τ ′ ≥ 1− c, or

m∑
i=1

w(ψi +αzi, τ ′) zi = 0. (14.19)

Proof We refer to a pair 〈α, τ ′〉with the properties stated in the theorem as a BrownBoost
solution; our goal is to show that such a pair exists.

Let

	(α, τ ′) .=
m∑

i=1

�(ψi +αzi, τ ′) (14.20)

be the total potential of all chips after adjusting their positions by α, and after advancing
the clock to τ ′. In this notation, equation (14.18) holds if and only if

	(0, τ) = 	(α, τ ′).

Let

L .= {〈α, τ ′〉 : 	(α, τ ′) = 	(0, τ), α ∈ R, τ ′ ∈ [τ, 1− c]} (14.21)

be the level set of all pairs 〈α, τ ′〉 satisfying equation (14.18), and with τ ≤ τ ′ ≤ 1− c.
To prove the theorem, it is sufficient (but not necessary) to find such a pair for which

472 14 Boosting in Continuous Time

Algorithm 14.1
The BrownBoost algorithm. The potential function �(ψ, τ) and weighting function w(ψ, τ) are given in
equations (14.9) and (14.15), respectively

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
target error ε ∈ (0, 1

2

)
clock cutoff c ∈ [0, 1).

Initialize:

• Set β so that �(0, 0) = ε.

• Let τ1 = 0 and ψ1,i = 0 for i = 1, . . . , m.

For r = 1, 2, . . . until τr ≥ 1− c:

• Dr(i) = w(ψr,i , τr)

Zr

for i = 1, . . . , m,

where Zr is a normalization factor.

• Train weak learner using distribution Dr .

• Get weak hypothesis hr : X → {−1,+1}.
• Aim: select hr to minimalize the weighted error:

Pri∼Dr [hr(xi) �= yi].

• Find ξr ≥ 0 and αr ∈ R such that τr + ξr ≤ 1,

m∑
i=1

�(ψr,i , τr) =
m∑

i=1

�(ψr,i +αryihr(xi), τr + ξr),

and either τr + ξr ≥ 1− c or

m∑
i=1

w(ψr,i +αryihr(xi), τr + ξr) yihr(xi) = 0.

• Update:

τr+1 = τr + ξr

ψr+1,i = ψr,i +αryihr(xi) for i = 1, . . . , m.

Output the final hypothesis:

H(x) = sign

(
R∑

r=1

αrhr(x)

)
where R is the total number of iterations completed.

14.2 BrownBoost 473

0 0.2 0.4 0.6

0.20.2

0.40.4

0.60.6

0.2

0.4

0.6

Figure 14.3
A typical contour plot for the function 	 of equation (14.20), plotted on the very first round when τ = 0 and
ψi = 0 for all i. In this case, there are m = 3 training examples, one of which is misclassified (so z1 = z2 = +1
and z3 = −1). The parameter β was chosen so that �(0, 0) = 1/4. The level curves in the figure represent sets
of points for which the value of 	 is held constant. The level set L of interest (equation (14.21)) is the dark curve
passing through 〈0, τ 〉. The condition ∂	/∂α = 0, which is the same as equation (14.19), is equivalent to the
level curve becoming exactly horizontal; thus, in this case, a BrownBoost solution would exist at the very top of
the dark curve, as indicated by the arrow.

either τ ′ = 1− c or equation (14.19) holds, since these conditions imply that the pair is a
BrownBoost solution. An example is shown in figure 14.3.

Note that, letting ψ ′
i = ψi +αzi , we have by the chain rule from calculus that

∂	(α, τ ′)
∂α

=
m∑

i=1

∂�(ψ ′
i , τ ′)

∂ψ ′
i

· dψ ′
i

dα

= −
m∑

i=1

w(ψ ′
i , τ ′)zi (14.22)

by equation (14.15). Therefore, the left-hand side of equation (14.19), which is identical to
the right-hand side of equation (14.22), always is equal to −∂	/∂α. So equation (14.19)
is equivalent to the condition that ∂	/∂α = 0.

In terms of a contour plot as in figure 14.3, this condition is equivalent to the level curve
of interest becoming perfectly horizontal, as indicated in the figure. If this never happens,
then intuitively the curve should eventually reach τ ′ = 1− c. In either case, we obtain the
needed solution. Unfortunately, there are numerous potential complications; for instance,

474 14 Boosting in Continuous Time

in principle, the level set might not be connected, or could asymptote without either of the
conditions above being satisfied.

To prove the theorem rigorously, we show first that if the α values of pairs in L are not
bounded (so that they extend to ±∞), then a solution to equation (14.18) must exist at
τ ′ = 1, satisfying the theorem. Otherwise, when the α values are bounded, we argue that
L is compact, and thus includes a pair with a maximal τ ′ value. Finally, we show that this
pair is a BrownBoost solution.

Following this outline, suppose that the set of α-values occurring in L, that is,

L1
.= {α : 〈α, τ ′〉 ∈ L for some τ ′

}
,

is unbounded. If

sup L1 = ∞,

then there exists 〈α1, τ ′1〉, 〈α2, τ ′2〉, . . . such that 〈αn, τ ′n〉 ∈ L and αn →∞. This implies
that as αn →∞,

�(ψi +αnzi, τ ′n) = 1

2
erfc

(
ψi +αnzi +β(1− τ ′n)√

2β(1− τ ′n)

)
is approaching 0 if zi = +1, and 1 if zi = −1, since the argument to the erfc is approaching
+∞ or −∞, depending on zi . This value of 0 or 1 is the same as �(ψi + α̃zi, 1) for some
sufficiently large value of α̃. Thus,

	(0, τ) = 	(αn, τ ′n) → 	(α̃, 1).

It follows that the pair α̃ and τ̃ ′ = 1 is a BrownBoost solution with 	(0, τ) = 	(α̃, τ̃ ′),
and τ̃ ′ ≥ 1− c. (The case inf L1 = −∞ is handled symmetrically.)

Thus, we can assume henceforth that L1 is bounded and, therefore, that L is bounded
as well. Furthermore, L is closed. For if 〈α1, τ ′1〉, 〈α2, τ ′2〉, . . . is a sequence of pairs in L
converging to 〈α̂, τ̂ ′〉, then because 	 is continuous on the region of interest,

	(αn, τ ′n) → 	(α̂, τ̂ ′).

Since the left-hand side is equal to the fixed value 	(0, τ) for all n, 	(α̂, τ̂ ′) is as well.
Further, since each τ ′n is in the closed set [τ, 1− c], τ̂ ′ must be also. Therefore, 〈α̂, τ̂ ′〉 ∈ L.

So L is compact, being both closed and bounded, and is also nonempty, since it includes
〈0, τ 〉. These properties imply that there exists a pair 〈α̃, τ̃ ′〉 ∈ L with maximum τ ′-value,
so that τ̃ ′ ≥ τ ′ for all 〈α, τ ′〉 ∈ L. We claim that 〈α̃, τ̃ ′〉 is the desired solution. Suppose, by
way of reaching a contradiction, that it is not. Since it is in L, this means that τ̃ ′ < 1− c

and that ∂	/∂α, evaluated at 〈α̃, τ̃ ′〉, is different from zero, by equation (14.22). Suppose
∂	/∂α is positive at this point (the argument when it is negative is symmetric). Then
increasing α̃ slightly causes 	 to increase. That is, there exists ε+ > 0 such that

	(α̃+ ε+, τ̃ ′) > 	(α̃, τ̃ ′) = 	(0, τ). (14.23)

14.2 BrownBoost 475

Figure 14.4
Construction of a path from 〈α̃− ε−, τ̃ ′〉 to 〈α̃+ ε+, τ̃ ′〉 as used in the proof of theorem 14.1.

Likewise, there exists ε− > 0 such that

	(α̃− ε−, τ̃ ′) < 	(0, τ). (14.24)

We can now create a continuous path in the 〈α, τ ′〉-plane from 〈α̃− ε−, τ̃ ′〉 to 〈α̃+ ε+, τ̃ ′〉
in such a way that all of the points on the path, other than the endpoints, have τ ′ values
smaller than 1− c and strictly larger than τ̃ ′. (See figure 14.4.) Because 	 is continuous,
equations (14.23) and (14.24) imply that there must be an intermediate point 〈α̂, τ̂ ′〉 on the
path with 	(α̂, τ̂ ′) = 	(0, τ), that is, in the level set L. However, τ̂ ′, being on the selected
path, must be strictly larger than τ̃ ′; this is a contradiction since τ̃ ′ was itself chosen as the
maximum among points in L.

Thus, as claimed, 〈α̃, τ̃ ′〉 is the BrownBoost solution we seek, completing the proof.

There is no guarantee that BrownBoost’s termination condition τ = 1 (or even an earlier
cutoff) will ever be reached. But suppose that it does terminate, and let us momentarily
drop subscripts so that τ and ψi represent, respectively, the final time on the clock and
the final position of chip i just before termination. If the algorithm halts with τ = 1, then
the training error of its final hypothesis H is simple to analyze using the same idea as in
corollary 13.4: At time τ = 1, the average potential

1

m

m∑
i=1

�(ψi, 1)

is exactly equal to the training error by equation (14.14) and by H ’s definition. Since this
average potential never changed throughout the algorithm’s execution, it must be equal to
the average initial potential, which is

476 14 Boosting in Continuous Time

�(0, 0) = 1

2
erfc

(√
β

2

)
. (14.25)

Thus, the algorithm takes as input a parameter ε > 0, which is the target error, and sets β so
that equation (14.25) will be equal to ε. Note that this ensures that the final error at τ = 1
will be exactly ε.

If, as discussed in section 14.1.3, �(0, 1) is instead defined to be 1
2 , we still obtain

an exact result for the training error at τ = 1, but slightly redefined so that a prediction
of 0 counts as only half a mistake. This alternative definition is reasonable since such a
prediction can be regarded as a random guess that is correct with probability exactly 1

2 .
If the algorithm is permitted to terminate at some time τ < 1, we can also obtain training

error bounds. If the final hypothesis H makes a mistake on some training example i, so that
ψi ≤ 0, then because �(ψ, τ) is decreasing in ψ (since the erfc function is decreasing),
we must have �(ψi, τ) ≥ �(0, τ). Since � is never negative, we thus have, in general,

�(0, τ) · 1{ψi ≤ 0} ≤ �(ψi, τ).

Averaging both sides over all examples gives

�(0, τ) · 1

m

m∑
i=1

1{ψi ≤ 0} ≤ 1

m

m∑
i=1

�(ψi, τ).

The left-hand side is �(0, τ) times the training error. The right-hand side is the average
potential at time τ , which, as noted above, is equal to the initial potential �(0, 0) = ε.
Therefore, using �’s definition in equation (14.9), if τ ≥ 1− c, then the training error is at
most

2ε

erfc
(√

βc/2
) . (14.26)

Since the denominator approaches 1 as c → 0, this bound can be made arbitrarily close
to 2ε by choosing c sufficiently small. (For a technique that instead approaches ε, see
exercise 14.7.)

14.3 AdaBoost as a Special Case of BrownBoost

In section 13.3.2, we saw that the behavior of BBM on the initial rounds converges to that of
NonAdaBoost, a nonadaptive version of AdaBoost, as T becomes large. Correspondingly,
in this section, we will see that AdaBoost, in its usual adaptive form, can be derived from
BrownBoost, an adaptive version of BBM, by taking an appropriate limit, namely, the limit
as the error parameter ε is taken to zero. Thus, AdaBoost can be viewed as a special case of
BrownBoost in which a final training error of zero is anticipated. Or, turning this statement

14.3 AdaBoost as a Special Case of BrownBoost 477

around, BrownBoost can be viewed as a generalization of AdaBoost in which a positive
final training error is expected.

To show this, we need to argue that, under this limit, the distribution over examples
computed by BrownBoost on every round converges to that for AdaBoost, and that the
weighted-majority combined classifiers are the same for the two algorithms. We presume
here that the same sequence of weak classifiers is returned by the weak learning algorithm
for either boosting algorithm, a reasonable assumption since the distributions on which
they are trained will be nearly the same; however, as pointed out in section 13.3.2, the
assumption is unprovable in general for reasons of numerical instability. Thus, under this
assumption, to show that the combined hypotheses are the same, it suffices to show
that the coefficients αr computed by the two algorithms are the same, in the limit.

Although we are interested in what happens when ε → 0, we will find it more convenient
in what follows to frame the discussion in terms of the limit β →∞. Because of how
BrownBoost chooses β as a function of ε (so that equation (14.25) is equal to ε), these two
cases are exactly equivalent.

To clarify the notation, let us write ψ
β

r,i , D
β
r , α

β
r , etc. for the variables used by BrownBoost

(algorithm 14.1) when run with parameter β (for some corresponding choice of ε), and let
D∗

r , α∗r , etc. denote the variables used byAdaBoost (algorithm 1.1 (p. 5)), where we now use
r rather than t to index the round number for both algorithms. For BrownBoost, we assume
that the clock cutoff has been fixed to an arbitrary positive constant c ∈ (0, 1). Further, we
assume that BrownBoost is run lingeringly, meaning that it never halts unless forced to do
so; that is, on every round r , it chooses a solution to its equations with τr+1 < 1− c, unless
no such solution exists.

In precise terms, we prove the following concerning BrownBoost’s behavior under the
limit β →∞ (which, as just noted, is equivalent to ε → 0).

Theorem 14.2 Suppose BrownBoost (with fixed cutoff c ∈ (0, 1)) and AdaBoost are run
on the same dataset and are provided with the same round-by-round sequence of weak
hypotheses h1, h2, . . ., none of which are perfectly accurate or perfectly inaccurate on the
entire dataset. Assume the notation above, and that BrownBoost is run lingeringly. Let r

be any positive integer. Then for all sufficiently large β, BrownBoost will not halt before
reaching round r . Furthermore, as β →∞, BrownBoost’s distribution and hypothesis
weights on round r converge to those for AdaBoost; that is,

Dβ
r → D∗

r (14.27)

and

αβ
r → α∗r . (14.28)

Note that, because we assume the same sequence of weak classifiers h1, h2, . . . is received
by both algorithms, equation (14.28) implies that

478 14 Boosting in Continuous Time

R∑
r=1

αβ
r hr(x) →

R∑
r=1

α∗r hr(x)

for any R and x, so that the weighted-majority combined classifiers will also be the same
for AdaBoost and BrownBoost in the limit (except possibly in the degenerate case that the
sum on the right is exactly zero).

Proof Assume inductively that equation (14.28) holds on rounds 1, . . . , r − 1. We wish
to show that equations (14.27) and (14.28) hold on the current round r . We also must show
that the time τ does not reach the cutoff of 1− c within r rounds. Thus, for β sufficiently
large, we assume inductively that

τβ
r < 1− c, (14.29)

and will show that the same holds for τ
β

r+1, ensuring that the algorithm does not terminate.

Let us fix r , and drop it from the notation when it is clear from context so that τβ = τ
β
r ,

ψ
β

i = ψ
β

r,i , and so on. We also define ψ∗
i = ψ∗

r,i to be the unnormalized margin computed
by AdaBoost:

ψ∗
i

.= yi

r−1∑
r ′=1

α∗r ′hr ′(xi).

Note that by our inductive hypothesis on equation (14.28),

ψ
β

i → ψ∗
i (14.30)

as β →∞ since

ψ
β

i = yi

r−1∑
r ′=1

α
β

r ′hr ′(xi).

Finally, we will sometimes write wβ and �β to make explicit the dependence of Brown-
Boost’s weighting and potential functions on the parameter β.

So, to summarize, given our inductive assumptions, we need to prove equations (14.27)
and (14.28), and that BrownBoost does not halt. We prove each of these three in turn.

Lemma 14.3 Under the assumptions and notation above,

Dβ
r → D∗

r .

Proof We can rewrite the weighting function of equation (14.15) as follows:

wβ(ψ, τ) ∝ exp

(
−ψ2+ 2ψβ(1− τ)+β2(1− τ)2

2β(1− τ)

)

14.3 AdaBoost as a Special Case of BrownBoost 479

= exp

(
− ψ2

2β(1− τ)
−ψ − β(1− τ)

2

)

∝ exp

(
− ψ2

2β(1− τ)
−ψ

)
= exp

(
−ψ

(
1+ ψ

2β(1− τ)

))
(14.31)

(where f ∝ g means f is equal to g times a positive factor that does not depend on ψ).
Thus,

wβ(ψ
β

i , τ β) ∝ exp

(
−ψ

β

i

(
1+ ψ

β

i

2β(1− τβ)

))
. (14.32)

By equations (14.29) and (14.30), it follows that the expression on the right converges
to exp(−ψ∗

i), which is exactly proportional to D∗
r (i), the normalized weight assigned

by AdaBoost to training example i (see, for instance, equation (3.2)). Since D
β
r (i) is

proportional to equation (14.32), equation (14.27) follows immediately.

Let zi
.= yih(xi). As in the proof of theorem 14.1, let

	β(α, τ ′) .=
m∑

i=1

�β(ψ
β

i +αzi, τ ′)

be the total potential of all the training examples after adjusting their positions by α and
advancing the clock to τ ′. At the solution 〈αβ, τ ′β〉 found by BrownBoost, where τ ′β .= τ

β

r+1,
we will have

	β(αβ, τ ′β) = 	β(0, τ β). (14.33)

Further, the solution either will have τ ′β ≥ 1− c, or will satisfy

m∑
i=1

wβ(ψ
β

i +αβzi, τ ′β) zi = 0. (14.34)

To show that BrownBoost does not halt on the current round, we apply theorem 14.1, where
we proved that such a solution must exist, and we show that, for β large, the cutoff 1− c

cannot be attained by the solution guaranteed by this theorem.

Lemma 14.4 Under the assumptions and notation above,

τ ′β < 1− c.

480 14 Boosting in Continuous Time

Proof The proof of theorem 14.1 shows specifically that a solution to BrownBoost’s
equations will exist with τ ′β = 1 or τ ′β ≤ 1− c. To prove the lemma, we show that the cases
τ ′β = 1 and τ ′β = 1− c are not possible, for β large, so that a solution with τ ′β < 1− c must
necessarily exist and be chosen by BrownBoost, which we assume is being run lingeringly.

First, note that �β(ψ, 1) is always in {0, 1}, so if τ ′β = 1, then 	β(αβ, τ ′β) must
be an integer. But because the potential remains constant throughout the execution of
BrownBoost,

	β(αβ, τ ′β) = m ·�β(0, 0) = mε, (14.35)

which is not an integer for β large and ε correspondingly small but positive. Thus, τ ′β �= 1.
(This argument assumes �(0, 1)

.= 1, but can be straightforwardly modified if instead
�(0, 1)

.= 1
2 .)

Suppose next that τ ′β = 1− c. We show that this leads to a contradiction, for β large.
Let b be any constant for which c < b < 1, and let

d
.= √bc− c > 0. (14.36)

Since the current weak hypothesis h is neither perfectly accurate nor perfectly inaccurate,
there must exist i and i ′ for which zi = −zi′ . Further, for β sufficiently large,

ψ
β

i +ψ
β

i′ ≤ 2βd

since, by equation (14.30), the left-hand side is converging to a fixed value while the
right-hand side is growing to infinity. Because zi + zi′ = 0, this implies that

(ψ
β

i +αβzi)+ (ψ
β

i′ +αβzi′) ≤ 2βd,

which means at least one of the parenthesized expressions on the left, say the first, is at
most βd , that is,

ψ
β

i +αβzi ≤ βd.

Rewriting, using equation (14.36), this gives

ψ
β

i +αβzi +βc√
2βc

≤
√

βb

2
.

Thus,

	β(αβ, τ ′β) ≥ �β(ψ
β

i +αβzi, 1− c)

= 1

2
erfc

(
ψ

β

i +αβzi +βc√
2βc

)

≥ 1

2
erfc

(√
βb

2

)
(14.37)

14.3 AdaBoost as a Special Case of BrownBoost 481

by �’s definition in equation (14.9), and because the erfc function is decreasing. Using a
standard approximation to the erfc function,

2√
π
· e−u2

u+√u2+ 2
≤ erfc(u) ≤ 2√

π
· e−u2

u+√u2+ 4/π
, (14.38)

which holds for all u > 0, it follows from equation (14.37) that

	β(αβ, τ ′β) ≥ exp

(
−β

(
b

2
+ o(1)

))
(14.39)

(where o(1) represents a quantity that approaches zero as β →∞). On the other hand, as
argued earlier,

	β(αβ, τ ′β) = m ·�β(0, 0) = m

2
erfc

(√
β

2

)
≤ exp

(
−β

(
1

2
− o(1)

))
(14.40)

where we have again applied equation (14.38). Since b < 1, when β is large, equations
(14.39) and (14.40) are in contradiction.

It remains only to show that αβ → α∗. In very rough terms, this can be seen as follows:
By lemma 14.4, τ ′β < 1− c, and therefore equation (14.34) must hold at the solution
〈αβ, τ ′β〉. Approximating wβ(ψ, τ) by exp(−ψ) based on the proof of lemma 14.3, this
equation becomes

m∑
i=1

exp
(
−(ψ

β

i +αβzi)
)

zi = 0. (14.41)

Recall from section 7.1 that α∗ is chosen by AdaBoost to minimize

m∑
i=1

exp
(−(ψ∗

i +α∗zi)
)
,

in other words, to have derivative with respect to α∗ equal to zero:

m∑
i=1

exp
(−(ψ∗

i +α∗zi)
)

zi = 0. (14.42)

Since ψ
β

i → ψ∗
i , the matching equations (14.41) and (14.42) imply that αβ → α∗. The

next lemma provides a more rigorous proof of equation (14.28) based on this idea.

Lemma 14.5 Let δ > 0. Under the assumptions and notation above, forβ sufficiently large,

|αβ −α∗| < δ.

482 14 Boosting in Continuous Time

Proof For all i, we must have

ψ
β

i +αβzi +β(1− τ ′β) > 0 (14.43)

for β large. Otherwise, if this were not the case for some i, then

	β(αβ, τ ′β) ≥ �β(ψ
β

i +αβzi, τ ′β)

= 1

2
erfc

(
ψ

β

i +αβzi +β(1− τ ′β)√
2β(1− τ ′β)

)

≥ 1
2 erfc(0) = 1

2

by �’s definition in equation (14.9). This contradicts equation (14.35) for β large (and ε

therefore small). Thus, equation (14.43) holds for all i, which is equivalent to saying that

αβ ∈ (M
β
−, M

β
+)

where

M
β
−

.= max
i:zi=+1

[
−ψ

β

i −β(1− τ ′β)
]

M
β
+

.= min
i:zi=−1

[
ψ

β

i +β(1− τ ′β)
]
. (14.44)

Let

Wβ(α, τ ′) .=
m∑

i=1

exp

(
−(ψ

β

i +αzi)

(
1+ ψ

β

i +αzi

2β(1− τ ′)

))
zi .

By equations (14.31) and (14.22),

Wβ(α, τ ′) ∝
m∑

i=1

wβ(ψ
β

i +αzi, τ ′) zi = −∂	β(α, τ ′)
∂α

. (14.45)

Therefore, equation (14.34), which must be satisfied at the solution 〈αβ, τ ′β〉, is equivalent
to the condition

Wβ(αβ, τ ′β) = 0. (14.46)

Further, for β sufficiently large, we claim that Wβ(α, τ ′) is decreasing in α for α ∈
(M

β
−, M

β
+). To see this, note first that erfc(u) is convex for u > 0, as can be seen in

figure 14.1. Thus, �β(ψ
β

i +αzi, τ ′)—which, by its definition in equation (14.9), is equal
to erfc evaluated at a linear function of α—is convex in α for α satisfying equation (14.43). In
turn, this implies that 	β(α, τ ′), being the sum of several convex functions, is also convex

14.4 Experiments with Noisy Data 483

in α, for α ∈ (M
β
−, M

β
+). Therefore, ∂	β(α, τ ′)/∂α is increasing in α, which means, by

equation (14.45), that Wβ(α, τ ′) is decreasing in α, for α in this interval.
For any α and τ < 1, it is clear, using equation (14.30), that

Wβ(α, τ) → W ∗(α)

as β →∞, where

W ∗(α)
.=

m∑
i=1

exp
(−(ψ∗

i +αzi)
)
zi,

the corresponding function for AdaBoost. Moreover, this convergence is uniform for τ ∈
[0, 1− c], meaning that the convergence happens simultaneously for all values of τ so that

sup
0≤τ≤1−c

∣∣Wβ(α, τ)−W ∗(α)
∣∣→ 0.

From their definition in equation (14.44), it can be seen that M
β
− → −∞ and M

β
+ → +∞

as β →∞, by equation (14.30), and since 0 ≤ τ ′β < 1− c. Thus, α∗ ∈ (M
β
−, M

β
+) for β

sufficiently large.
It also can be checked that W ∗ is strictly decreasing and, by equation (14.42), is equal to

zero at α∗. This implies that W ∗(α∗ + δ) < 0, so for β sufficiently large,

Wβ(α∗ + δ, τ ′) < 0

for all τ ′ ∈ [0, 1− c]. Since Wβ(α, τ ′β) is decreasing in α for α ∈ (M
β
−, M

β
+), and since

α∗ > M
β
−, it follows that Wβ(α, τ ′β) < 0 for α∗ + δ ≤ α < M

β
+, precluding a solution

to equation (14.46) in this interval. And we have already argued that the solution cannot
happen for any α ≥ M

β
+. Thus, we have eliminated all possibilities for the solution αβ to

be at least α∗ + δ.
Therefore, αβ < α∗ + δ. A similar argument shows that αβ > α∗ − δ, completing the

proof.

Thus, we have also completed the proof of theorem 14.2, having shown that as β →∞,
which is the same as ε → 0, the behavior of BrownBoost converges exactly to that of
AdaBoost for any finite number of rounds.

14.4 Experiments with Noisy Data

Theorem 14.2 suggests AdaBoost may be best matched with a setting in which the training
error can be driven to zero. This agrees with the training-error analysis of section 3.1, where
we saw how the weak learning assumption suffices to assure perfect training accuracy in a
very small number of rounds. But this view is also consistent withAdaBoost’s susceptibility

484 14 Boosting in Continuous Time

to noise, discussed in section 12.3.3, and its general propensity to direct inordinate attention
to the hardest examples, which might well have been corrupted or mislabeled.

BrownBoost, on the other hand, may have a better chance of handling such noisy set-
tings. First, the algorithm explicitly anticipates a nonzero training error of ε > 0, as seen in
section 14.2.2. And furthermore, as was the case for BBM, as discussed in section 13.3.3,
BrownBoost’s weighting function causes it to deliberately “give up” on the hardest exam-
ples, focusing instead on those examples that still have a reasonable chance of eventually
being correctly classified.

As an illustration of the improvement in performance that might be possible, BrownBoost
was compared experimentally with AdaBoost on the noisy, synthetic learning problem
described in section 12.3.2, which we showed in that section will ultimately causeAdaBoost
to perform very poorly under appropriate limits. As earlier explained, examples in this
setting are binary vectors of length N = 2n+ 11 with weak hypotheses identified with
individual coordinates; here, the cases n = 5 and n = 20 were tested. The “clean” label
associated with each example can be computed as a simple majority vote over a subset of
its coordinates. The actual observed labels, however, are noisy versions of the clean labels
which have been corrupted (that is, negated) with a noise rate of η; noise rates of 0% (no
noise), 5%, and 20% were considered in the experiments.

BrownBoost was run with various values of ε, and the one giving lowest training error
was selected for use during testing. AdaBoost.L, the version of AdaBoost based on logistic
loss from section 7.5.2, was also compared, since its more moderate weighting function
suggests that it might handle noise and outliers better than AdaBoost. (Note, however, that
AdaBoost.L must also eventually perform very poorly on this data, by arguments similar to
those in section 12.3.2; see also exercise 12.9.)

Training sets of m = 1000 and 10,000 examples were used. Each algorithm was run for
a maximum of 1000 rounds but, as in algorithm 14.1, BrownBoost can stop early if the
clock τ reaches 1− c, where a cutoff of c = 0.01 was used throughout.

Table 14.2 reports the error for each algorithm on a separate test set of 5000 uncor-
rupted examples, that is, with labels that are clean. Consistent with what was proved in
section 12.3.2, AdaBoost does quite poorly on this problem. AdaBoost.L does better in the
easiest case that n = 5 and η =5%, but otherwise performs almost as badly as AdaBoost.
(Observe, incidentally, that when n = 20, performance actually gets worse for both algo-
rithms when given more data.) BrownBoost, on the other hand, performs very well, attaining
almost perfect test accuracy in most cases when n = 5, and giving far better accuracy than
either AdaBoost or AdaBoost.L in the harder case that n = 20.

These same algorithms were also tested on real-world, benchmark datasets, artificially
corrupted with additional label noise at rates of 0%, 10% and 20%. Here, each boosting
method was combined with the alternating decision tree algorithm of section 9.4. Also, a
variant of BrownBoost was used in which the “boundary condition” of equation (14.14) is
replaced by

14.4 Experiments with Noisy Data 485

Table 14.2
The results of runningAdaBoost, AdaBoost.L, and BrownBoost on the noisy, synthetic learning problem of section
12.3.2 with various settings of n, m, and η

m = 1000 m = 10,000

n η AdaBoost AdaBoost.L BrownBoost AdaBoost AdaBoost.L BrownBoost

5 0% 0.0 0.0 0.0 0.0 0.0 0.0

5% 19.4 2.7 0.4 8.5 0.0 0.0

20% 23.1 22.0 2.2 21.0 17.4 0.0

20 0% 0.0 3.7 0.8 0.0 0.0 0.1

5% 31.1 29.9 10.7 41.3 36.8 5.4

20% 30.4 30.2 21.1 36.9 36.1 12.0

Each entry shows percent error on clean (uncorrupted) test examples. All results are averaged over ten random
repetitions of the experiment.

Table 14.3
The results of runningAdaBoost, AdaBoost.L, and BrownBoost on the “letter” and “satimage” benchmark datasets

Dataset η AdaBoost AdaBoost.L BrownBoost

letter 0% 3.7 3.7 4.2

10% 10.8 9.4 7.0

20% 15.7 13.9 10.5

satimage 0% 4.9 5.0 5.2

10% 12.1 11.9 6.2

20% 21.3 20.9 7.4

After converting to binary by combining the classes into two arbitrary groups, each dataset was split randomly
into training and test sets, and corrupted for training with artificial noise at rate η. The entries of the table show
percent error on uncorrupted test examples. All results are averaged over 50 random repetitions of the experiment.

�(ψ, 1) = 1{ψ ≤ ϑ} , (14.47)

for some parameter ϑ ≥ 0; see exercise 14.2. Both ε and ϑ were chosen by training on 75%
of the training data using various settings of these parameters, and then choosing the single
setting that performed best on the remaining, held-out training examples.

Table 14.3 shows percent error on clean, uncorrupted test examples. Again, BrownBoost
performs much better than the other algorithms in the presence of noise.

Summary

In this chapter, we have described a technique for making BBM adaptive by port-
ing it to a continuous-time setting. We saw that BrownBoost, the resulting algorithm, is a

486 14 Boosting in Continuous Time

generalization of AdaBoost, but one which may have favorable properties in its handling
of noisy data and outliers.

Bibliographic Notes

The results of sections 14.1, 14.2, and 14.3 are an elaboration and extension of the work
of Freund [89] on the original version of BrownBoost, as well as later work by Freund and
Opper [92] which connected the continuous-time framework with drifting games [201],
and also introduced an approach based on differential equations similar to that given in
section 14.1.3.

The experiments summarized in section 14.4 were conducted jointly with Evan Ettinger
and Sunsern Cheamanunkul.

Further background on the central limit theorem and the convergence of distributions
can be found in any standard text on probability, such as [21, 33, 84, 215]. More about
Brownian motion and stochastic differential equations can be found, for instance, in [61,
131, 177, 216]. Equation (14.38) appears in Gautschi [105].

Some of the exercises in this chapter are based on material from [92].

Exercises

14.1 Let �(ψ, τ) be defined as in equation (14.9), for some β > 0.

a. Verify that the partial differential equation given in equation (14.13) is satisfied for all
ψ ∈ R and τ ∈ [0, 1).

b. Verify that the boundary condition given in equation (14.14) is satisfied away from
ψ = 0. More specifically, let 〈ψn, τn〉 be any sequence of pairs in R×[0, 1). Show that
if 〈ψn, τn〉 → 〈ψ, 1〉 as n →∞, where ψ �= 0, then �(ψn, τn) → 1{ψ ≤ 0}.

c. For all v ∈ [0, 1], show there exists a sequence 〈ψn, τn〉 in R×[0, 1) such that
〈ψn, τn〉 → 〈0, 1〉 and �(ψn, τn) → v as n →∞.

14.2 Let ϑ > 0 be a fixed value representing a desired margin. Suppose equation (14.14)
is replaced with the modified boundary condition given in equation (14.47).

a. Find an expression for �(ψ, τ) which satisfies equations (14.13) and (14.47) in the
sense of exercise 14.1.

b. Find an expression for the weighting function w(ψ, τ) that corresponds to this modified
potential function.

Note that if BrownBoost is used with these modified versions of � and w (for given values
of ε > 0 and ϑ > 0), and if the algorithm stops at time τ = 1, then the fraction of training
examples i with margin ψi ≤ ϑ will be exactly ε.

Exercises 487

c. Show how this potential function could alternatively be derived in the limit T →∞
from the potential associated with the version of BBM given in exercise 13.5 (for an
appropriate choice of θ in terms of T , β, and ϑ).

14.3 Suppose that �t(s) and wt(s) are redefined as in exercise 13.6, with α hardwired
using the value derived in part (c) of that exercise. We saw earlier that these choices,
in BBM, lead to NonAdaBoost. Here, we explore what happens in the continuous-time
limit.

a. For fixed β > 0, ψ ∈ R, and τ ∈ [0, 1], let s, t , and γ be chosen, as functions of T ,
to satisfy equations (14.1), (14.2), and (14.7) (or to satisfy them as nearly as possible,
subject to s and t being integers). Compute �(ψ, τ), the limit of �t(s) as T →∞.
Also, use equation (14.15) to compute w(ψ, τ). Your final answers should be in terms
of β, ψ , and τ only. [Hint: Use the fact that for any a ∈ R, limx→∞(1+ a/x)x = ea .]

b. Explain why we expect that your answer in part (a) for �(ψ, τ) should satisfy
equation (14.13). Then verify that it does.

In the remainder of this exercise, we consider a variant of BrownBoost (algorithm 14.1) in
which the potential and weighting functions have been replaced by those in part (a). We
use a cutoff of c = 0, and assume β > 0 throughout.

c. For this modified version of BrownBoost, show that there always exists a solution to
the algorithm’s two main equations. That is, for any ψ1, . . . , ψm ∈ R, z1, . . . , zm ∈
{−1,+1}, and τ ∈ [0, 1), prove that there exist α ∈ R and τ ′ ∈ [τ, 1] such that equa-
tion (14.18) holds, and either τ ′ = 1 or equation (14.19) holds (using the revised
definition of �, of course). You can assume that the zi’s are not all the same sign.
Also show that this solution is unique.

d. Suppose, for some integer R > 0, that τR+1 < 1 (so that the clock has not run out
within R rounds). Show that modified BrownBoost’s behavior on these first R rounds
is identical to that of AdaBoost (algorithm 1.1). That is, assuming the same sequence of
weak hypotheses h1, . . . , hR is provided to both algorithms, prove that Dab

r = Dbb
r and

αab
r = αbb

r for r = 1, . . . , R, where we use superscripts AB and BB to distinguish the
variables of AdaBoost and (modified) BrownBoost, respectively (and where we use r

instead of t to denote round number).

e. Let R > 0 be a fixed integer. Show that for β sufficiently large, τR+1 < 1. (You can
assume that the sequence of weak hypotheses is fixed and independent of β.)

f. Given ε ∈ (0, 1
2

)
, explain how a stopping criterion could be added to AdaBoost which

would be equivalent to the stopping criterion τr = 1 used in modified BrownBoost.
If the empirical γ -weak learning assumption holds, for some γ > 0, must (modified)
BrownBoost necessarily halt within a finite number of rounds? Why or why not?

488 14 Boosting in Continuous Time

Exercises 14.4, 14.5, and 14.6 explore the nature of BrownBoost solutions in greater detail.
For all of these, we adopt the setup and notation of theorem 14.1, including the definition of
	(α, τ ′) given in equation (14.20). Also, we let ε

.= 	(0, τ)/m, and we assume ε ∈ (0, 1
2

)
,

and that β > 0 is given and fixed.

14.4 Suppose there exist α ∈ R and τ ′ ∈ [τ, 1− c) which satisfy equation (14.19), but
for which 	(α, τ ′) < 	(0, τ). Show that there exists a BrownBoost solution 〈α̃, τ̃ ′〉 with
τ̃ ′ > τ ′.

14.5 Let δ
.= 1

2 − 1
2m

∑m
i=1zi , and assume δ ∈ (0, 1

2

)
.

a. Show that if ε is not an integer multiple of 1/m, then there cannot exist a BrownBoost
solution 〈α, τ ′〉with τ ′ = 1. Also, show that if ε �= δ, then there must exist a BrownBoost
solution with τ ′ ≤ 1− c.

b. Consider the function

G(u)
.= A erfc(u+ a)−B erfc(u+ b)

for real constants A, B, a, and b, where A > B > 0. Let G′ be its derivative. Prove the
following:

i. If a ≤ b, then G(u) > 0 for all u ∈ R.

ii. If a > b, then there exist unique values u0 and u1 such that G(u0) = 0 and G′(u1) =
0; furthermore, u0 �= u1. [Hint: Sketch G, taking into consideration its limit as
u →±∞, as well as the sign of G′(u) at all values of u.]

c. Consider the special case in which there exist values s− and s+ such that, for all i,

ψi =
{

s− if zi = −1
s+ if zi = +1.

Find a number τ0, as a function of s−, s+, and β, such that the following hold for all
τ ′ < 1:

i. If τ ′ ≥ τ0, then for all α, 	(α, τ ′) �= δm.

ii. If τ ′ < τ0, then there exists a unique α such that 	(α, τ ′) = δm. However, the pair
〈α, τ ′〉 does not satisfy equation (14.19).

d. Let z1, . . . , zm and δ be given as above. Find values for ψ1, . . . , ψm, c > 0, and τ ∈
[0, 1− c) for which the only BrownBoost solutions are when τ ′ = 1.

14.6 Prove that theorem 14.1 is false when c = 0 in the following general sense: Let
z1, . . . , zm and δ ∈ (0, 1

2

)
be as in exercise 14.5, and let c = 0. Find values for ψ1, . . . , ψm

and τ ∈ [0, 1) for which no BrownBoost solution exists.

14.7 In section 14.2.2, we saw that if BrownBoost terminates at some time τ ≥ 1− c, then
the training error of H is bounded by equation (14.26). In this exercise, we will prove a
better bound when a randomized version of H is used instead.

Exercises 489

Suppose BrownBoost halts, and in addition to the notation of algorithm 14.1, let us write
τ and ψi for the values of these variables upon termination. Given x, we redefine H to
make a random prediction that is +1 with probability

�(−F(x), τ)

�(F (x), τ)+�(−F(x), τ)
,

and −1 otherwise, where F(x)
.=∑R

r=1αrhr(x).

a. Give an exact expression for the expected training error of H in terms of the potentials
of the chips, where expectation is with respect to the randomized predictions of H .

b. For all ψ ∈ R, show that �(ψ, τ)+�(−ψ, τ) ≥ 2�(0, τ).

c. Show that the expected training error of H is at most

ε

erfc
(√

βc/2
) ,

which approaches ε as c → 0.

14.8 Using the notation and assumptions of theorem 14.2 and its proof, this exercise
explores what happens if BrownBoost is not run lingeringly. We suppose that this happens
for the first time on round r , meaning that the preceding r − 1 rounds were run lingeringly.
In particular, this implies that equations (14.29) and (14.30) are still valid. We assume
further that ψ∗

i > 0 for all i.

a. For a ∈ (0, c) and β > 0, let

Lβ
a

.= {〈α, τ ′〉 : 	β(α, τ ′) = 	β(0, τ β), 1− c ≤ τ ′ ≤ 1− a
}
.

Show that for all β sufficiently large, there exists a ∈ (0, c) for which Lβ
a is nonempty

and compact. [Hint: To show non-emptiness, first argue that 	β(0, 1) < mε, but
	β(0, 1− c) > mε.]

b. Using part (a), show that for β sufficiently large, there exists a pair 〈αβ, τ ′β〉 which
satisfies both equations (14.33) and (14.34), and where 1− c < τ ′β < 1.

c. We assume henceforth that 〈αβ, τ ′β〉 are chosen as in part (b). Let q be any constant
in (0, 1). For β sufficiently large, show that τ ′β > 1−βq−2. [Hint: Adapt the proof of
lemma 14.4.]

d. Let

μ+
.= min

i:zi=+1
ψ∗

i , μ−
.= min

i:zi=−1
ψ∗

i ,

and let α̃
.= (μ− −μ+)/2. Show that αβ → α̃ as β →∞. Is this limit α̃ necessarily

equal to α∗? Justify your answer. [Hint: For all δ > 0 and for β large, show that if
|αβ − α̃| ≥ δ, then equation (14.34) cannot be satisfied.]

Appendix: Some Notation, Definitions, and Mathematical Background

In this appendix, we describe some of the notation and definitions used in the book, and
briefly outline some general mathematical background. For a more in-depth treatment,
refer to standard texts, such as those cited, on real analysis [197]; convex analysis and
optimization [31, 191]; and probability [21, 33, 84, 215].

A.1 General Notation

If a is an event, its probability is denoted Pr[a]. The expected value of a real-valued
random variable X is written E[X]. Often, these are subscripted to clarify what sources of
randomness the probability or expectation is with respect to.

The set of all real numbers is written R, while R+ denotes the set of all nonnegative real
numbers, and R++ the set of all strictly positive real numbers. The set of all integers is
written Z.

The union of sets A1, . . . , An is denoted A1 ∪ · · · ∪An or, occasionally,
⋃n

i=1 Ai . Their
intersection is written A1 ∩ · · · ∩An. Their Cartesian product (that is, the set of all tuples
of the form 〈a1, . . . , an〉, where ai ∈ Ai for i = 1, . . . , n) is written A1× · · ·×An. When
all n sets are equal to the same set A, this is abbreviated An. The set difference of two sets
A and B (that is, the set of elements in A that are not also in B) is written A−B. We write
A ⊆ B to indicate that A is a (not necessarily proper) subset of B. The power set of a set
A (that is, the set of all its subsets) is denoted 2A. The empty set is written ∅.

The symbol
.= means “equal by definition.” For x ∈ R, we define

sign(x)
.=
⎧⎨⎩
+1 if x > 0

0 if x = 0
−1 if x < 0.

However, in some sections of the book, we temporarily redefine sign(0), as explained in
the text.

We define the indicator function 1{·} to be 1 if its argument is true, and 0 otherwise.

492 Appendix: Some Notation, Definitions, and Mathematical Background

Natural logarithm is written ln x, and its base is denoted by e ≈ 2.71828. Logarithm base
2 is written lg x. When the base is unimportant or clear from context, we sometimes write
log x generically with no base. By convention, 0 log 0 is defined to be 0. For readability,
we often write ex as exp(x).

An ordered pair (or 2-tuple) is written (x, y), or 〈x, y〉. Vectors are usually written in
bold; for instance, x. The components of such a vector x ∈ Rn are denoted x1, . . . , xn. The
inner product of two vectors x, y ∈ Rn is written x · y; thus,

x · y .=
n∑

i=1

xiyi .

When in a linear-algebraic context, a vector x ∈ Rn is treated as a column vector. More
often, however, x is simply identified with the tuple 〈x1, . . . , xn〉.

Matrices are also usually in bold, such as M, with entries Mij . The transpose of matrix
M is denoted M .

We use “big Oh” notation in a not entirely formal manner to hide constants and low-order
terms in complicated formulas. If f and g are real-valued functions on n real values, we
say that f (x) is O(g(x)) if f (x) is at most a positive constant times larger than g(x) under
“appropriate” limits. Often, this will be a limit in which all of the variables are getting large,
but sometimes we are interested in the case that one or more of the variables is approaching
0. The “right” limit is usually clear from the context. For instance, 3x3+ 2x+ x2 ln x+ 9
is O(x3) under the limit x →∞; it is also O(x4).

Analogously, f (x) is �(g(x)) if it is at least a positive constant times g(x) under appro-
priate limits. We also use the “soft Oh” notation Õ (g(x)) to hide logarithmic factors in a
similar manner. For instance, 2x2 ln x+ x1.5+ 17 is Õ

(
x2
)
. Finally, we say that f (x) is

θ(g(x)) if f (x) is both O(g(x)) and �(g(x)).

A.2 Norms

For p ≥ 1, the �p-norm of a vector x ∈ Rn, written ‖x‖p, is defined to be

‖x‖p
.=
(

n∑
i=1

|xi |p
)1/p

.

Letting p grow to∞ yields the �∞-norm:

‖x‖∞ .= max
1≤i≤n

|xi |.

These norms naturally occur in pairs, called duals. In particular, the norms �p and �q form
a dual pair if

A.4 Limits 493

1

p
+ 1

q
= 1.

This means that �1 and �∞ are duals, while the usual Euclidean norm, �2, is dual with
itself.

We sometimes write ‖x‖ when the norm �p is either unimportant or clear from context.

A.3 Maxima, Minima, Suprema, and Infima

Let A ⊆ R. We write max A for the largest element of A. Often, we work with elements
referenced by some index ι in some set I . We then write

max
ι∈I

aι

as shorthand for

max{aι : ι ∈ I },
and similarly for the other concepts described below. We also define

arg max
ι∈I

aι (A.1)

to be any index ι̃ ∈ I which realizes the maximum, that is, for which aι̃ ≥ aι for all ι ∈ I .
If more than one index has this property, then equation (A.1) is equal to any such index,
breaking ties arbitrarily (and not necessarily in a way that is “favorable” in any sense).

In general, for A ⊆ R, max A need not exist since A might not have a largest element
(for instance, if A is the set of all negative real numbers). In such cases, we can instead
work with the supremum of A, written sup A, which is defined to be the least upper bound
on A, that is, the smallest number s ∈ R such that a ≤ s for all a ∈ A. If no such number
exists, as happens if A includes unboundedly large elements, then sup A = +∞. And if
A is empty, then sup A = −∞. For instance, if A is the set of all negative numbers, then
sup A = 0. In all cases, sup A is defined and exists for all A ⊆ R, and is equal to max A

whenever the maximum exists.
The notions of min, arg min, and infimum are defined analogously. Specifically, inf A,

the infimum of A ⊆ R, is the greatest lower bound on A, that is, the largest number s for
which s ≤ a for all a ∈ A.

A.4 Limits

Let x1, x2, . . . be a sequence of points in Rn. We say the sequence converges to x̃ ∈ Rn,
written xt → x̃ as t →∞, or

494 Appendix: Some Notation, Definitions, and Mathematical Background

lim
t→∞ xt = x̃,

if for all ε > 0, there exists t0 > 0 such that

‖xt − x̃‖ < ε

for all t ≥ t0.
Similarly, if x1, x2, . . . is a sequence in R, then xt →+∞ if for all B > 0, there exists

t0 > 0 such that xt > B for all t ≥ t0. The limit xt →−∞ is defined analogously.
For any such sequence, we also define the following one-sided upper limit or limit

superior:

lim sup
t→∞

xt
.= lim

t0→∞
sup
t≥t0

xt .

In words, if this expression is equal to s, then for all ε > 0, there exists t0 > 0 such that
xt < s+ ε for all t ≥ t0. Moreover, s is the smallest number with this property. Thus, s can
be viewed as a limiting best upper bound on the sequence. Analogously, the lower limit or
limit inferior is

lim inf
t→∞ xt

.= lim
t0→∞

inf
t≥t0

xt .

Note that lim sup xt and lim inf xt exist for all sequences, although either can be infinite.
These two quantities are equal to one another if and only if the entire sequence has a limit
(which must equal their common value).

If f : A → Rm, where A ⊆ Rn, and x̃ ∈ A, then the limit

lim
x→x̃

f(x)

exists and is equal to y (also written f(x) → y as x → x̃) if for all sequences x1, x2, . . .

in A, none of whose elements are equal to x̃, if xt → x̃, then f(xt) → y (provided at least
one such sequence exists). If A ⊆ R, then the limit as x →±∞ is defined analo-
gously.

A.5 Continuity, Closed Sets, and Compactness

Let f : A → R where A ⊆ Rn. Then f is continuous at x̃ if for every sequence x1, x2, . . .

in A, if xt → x̃, then f (xt) → f (x̃). The function f is continuous if it is continuous at
every point in its domain A. Occasionally, we also consider functions with a range that
includes ±∞. Continuity is defined for such extended real-valued functions in exactly the
same way. For instance, the familiar functions x2, ex , and cos x are all continuous on R. The
function sign(x) is not continuous. The function ln x is continuous as a real-valued function

A.6 Derivatives, Gradients, and Taylor’s Theorem 495

on R++; if we define ln 0 = −∞, then it also becomes a continuous extended real-valued
function on R+.

By the intermediate value theorem, if f : [a, b] → R is continuous, then for any value
u between f (a) and f (b), there must exist x ∈ [a, b] for which f (x) = u.

We say that the set A ⊆ Rn is closed if every convergent sequence of points in A converges
to a point that is actually in A. That is, A is closed if for every sequence x1, x2, . . . in A, if
xt → x̃, then x̃ ∈ A. For instance, in R, the sets [0, 1], Z, and R are all closed, but the set
(0, 1) is not.

The closure of a set A ⊆ Rn, written A, is the smallest closed set that includes A. Said
differently, A consists exactly of those points x̃ ∈ Rn for which there exists a sequence of
points in A that converges to x̃. For instance, the closure of (0, 1) is [0, 1].

A set A ⊆ Rn is bounded if there exists B > 0 such that ‖x‖ < B for all x ∈ A. The set
A is compact if it is both closed and bounded. For instance, [0, 1] is compact, but neither
(0, 1) nor R is. Compact sets have a number of important properties:

First, if A ⊆ Rn is compact and nonempty, and if f : A → R is continuous, then f

actually attains its maximum at a point in A. In other words,

max
x∈A

f (x)

exists, meaning that there exists x0 ∈ A such that f (x) ≤ f (x0) for all x ∈ A.
Second, if A ⊆ Rn is compact, and if x1, x2, . . . is any (not necessarily convergent)

sequence of points in A, then this sequence must have a convergent subsequence. That is,
there must exist indices i1 < i2 < · · · such that the subsequence xi1 , xi2 , . . . converges, and
therefore has a limit in A.

A.6 Derivatives, Gradients, and Taylor’s Theorem

Let f : R → R. Then the first derivative of f is denoted either f ′ or df/dx, with f ′(x̃)

and df (x̃)/dx both denoting its value when evaluated at a particular value x̃. Similarly, f ′′

(or d2f/dx2) and f (k) denote second and k-th derivatives, respectively.
A form of Taylor’s theorem can be stated as follows:

Theorem A.1 Let f : [a, b] → R be k+ 1 times continuously differentiable. Then for all
x0, x ∈ [a, b], there exists x̂ between x0 and x such that

f (x) = f (x0)+ (x− x0)f
′(x0)+ · · ·+ (x− x0)

k

k! f (k)(x0)+ (x− x0)
k+1

(k+ 1)! f (k+1)(x̂).

Now let f : Rn → R be a function defined on variables x1, . . . , xn. Then ∂f/∂xi denotes
the partial derivative of f with respect to xi , and ∂f (x̃)/∂xi gives its value at a particular
point x̃. The gradient of f , denoted ∇f , is a vector consisting of its partial derivatives:

496 Appendix: Some Notation, Definitions, and Mathematical Background

∇f =
〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉
,

with ∇f (x̃) denoting its value at x̃. If d is a unit-length vector specifying a direction, then
the slope of f at x̃ in direction d is ∇f (x̃) ·d. In other words, if we let g(u)

.= f (x̃+ ud),
then

g′(0) = ∇f (x̃) ·d. (A.2)

This means that f is locally increasing most rapidly in the direction of the gradient, and
decreasing most rapidly in the direction of the negative gradient.

The chain rule states that if the variables x1, . . . , xn of a function f (x1, . . . , xn) are them-
selves functions of a single variable u, so that

f (x1, . . . , xn) = f (x1(u), . . . , xn(u))

is actually itself a function of u, then its derivative can be computed by the rule

df

du
=

n∑
i=1

∂f

∂xi

· dxi

du
.

For instance, equation (A.2) follows by letting xi(u) = x̃i + udi .

A.7 Convexity

Aset A ⊆ Rn is a convex set if for all u, v ∈ A, and for all p ∈ [0, 1], the point pu+ (1−p)v
is also in A. For such a convex set A, we say that f : A → R is a convex function if for all
u, v ∈ A, and for all p ∈ [0, 1],
f (pu+ (1−p)v) ≤ pf (u)+ (1−p)f (v).

The function f is strictly convex if this condition holds with strict inequality whenever
u �= v and p ∈ (0, 1). For instance, the functions 1− 2x, x2, ex , and − ln x are all convex
on their respective domains, and all are strictly convex except for the first one.

The property of convexity is closed under various natural operations. For instance, the
sum of two or more convex functions is convex, as is the composition of a convex function
with a linear function. A convex function has no local minima. A strictly convex function
can have at most one global minimum. If a real-valued function f : Rn → R defined on all
of Rn is convex, then it also must be continuous.

Suppose f is a function of only one variable, that is, with domain a (convex) subset of
R. If f is twice differentiable, then it is convex if and only if f ′′ is nonnegative. Further,
if f ′′ is strictly positive everywhere, then f is strictly convex (but the converse does not
necessarily hold). A convex function f must lie entirely above any tangent line at any point
x0. If f is differentiable at x0, this means

A.9 Some Distributions and the Central Limit Theorem 497

f (x) ≥ f (x0)+ f ′(x0) (x− x0) (A.3)

for all x in the domain.
Jensen’s inequality states that if f is convex, and X is any real-valued random variable,

then

f (E[X]) ≤ E[f (X)] . (A.4)

A.8 The Method of Lagrange Multipliers

Suppose we wish to find the solution, over x ∈ Rn, of a convex optimization problem of
the form

minimize: f (x)

subject to: gi(x) ≤ 0 for i = 1, . . . , m

aj · x = bj for j = 1, . . . , �

where f, g1, . . . , gm are all convex; a1, . . . , a� ∈ Rn; and b1, . . . , b� ∈ R. We refer to this
as the primal problem. A commonly used technique for handling such problems is first to
form the Lagrangian:

L(x, α, β)
.= f (x)+

m∑
i=1

αigi(x)+
�∑

j=1

βj (aj · x− bj).

This is a function of the original, “primal” variables x and the new “dual” variables, called
Lagrange multipliers, α1, . . . , αm and β1, . . . , β�. The βj ’s are unconstrained, but we restrict
the αi’s to be nonnegative.

Next, for each choice of α and β, this method prescribes finding x which minimizes L,
and plugging the result back into L. In other words, we compute

h(α, β)
.= inf

x∈Rn
L(x, α, β).

We then obtain the dual optimization problem:

maximize: h(α, β)

subject to: αi ≥ 0 for i = 1, . . . , m.

Under suitable conditions, it can be shown that this optimization problem will have the
same value as the original, primal problem. When this is the case, we can solve the dual
problem for α and β, and then obtain a solution to the primal by finding x which minimizes
L for these values.

An example is given in section 8.1.3.

498 Appendix: Some Notation, Definitions, and Mathematical Background

A.9 Some Distributions and the Central Limit Theorem

The binomial coefficient
(
n

k

)
counts the number of ways of choosing a subset of size k from

a set of n elements. Thus,(
n

k

)
.= n!

k! (n− k)! ,

and by convention,
(
n

k

) .= 0 if k < 0 or k > n.
Suppose X1, . . . , Xn are n independent random variables, each equal to 1 with proba-

bility p, and 0 otherwise. Then the distribution of the random variable

Y
.=

n∑
i=1

Xi,

which counts the total number of 1’s, is called the binomial distribution. Specifically,
we have

Pr[Y = k] =
(

n

k

)
pk(1−p)n−k.

The variance of a real-valued random variable X is defined to be

Var X
.= E
[
(X−E[X])2] .

For instance, in the example above, Var Xi = p(1−p), and Var Y = np(1−p). The stan-
dard deviation of X is

√
Var X, and is a standard measure of the “spread” of the

distribution.
In one dimension, a random variable X obeys a normal or Gaussian distribution with

mean μ and standard deviation σ if its probability density function is given by

p(x;μ, σ) = 1

σ
√

2π
exp

(
− (x−μ)2

2σ 2

)
,

meaning that for all z ∈ R,

Pr[X ≤ z] =
∫ z

−∞
p(x;μ, σ)dx.

Standard normal refers to the normal distribution with μ = 0 and σ = 1.
The central limit theorem states that the sum of a large number of independent random

variables, when properly standardized, will converge to a normal distribution. More pre-
cisely, let X1, X2, . . . be independent, identically distributed random variables, each with
mean μ and standard deviation σ . Let

A.9 Some Distributions and the Central Limit Theorem 499

Yn
.=

n∑
i=1

Xi

be the sum of the first n variables, and let

Zn
.= Yn− nμ

σ
√

n

be a standardized version of the sum with mean 0 and standard deviation 1. Then the central
limit theorem states that Zn converges in distribution to standard normal, meaning that for
all z ∈ R,

lim
n→∞Pr[Zn ≤ z] = Pr

[
Z∗ ≤ z

]
,

where Z∗ is a standard normal random variable.

Bibliography

[1] Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bagging. In Machine
Learning: Proceedings of the Fifteenth International Conference, pages 1–9, 1998.

[2] Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method for multi-class cost-sensitive learning.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 3–11, 2004.

[3] Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, and Dan Roth. Generalization bounds for
the area under the ROC curve. Journal of Machine Learning Research, 6:393–425, April 2005.

[4] Shivani Agarwal and Dan Roth. Learnability of bipartite ranking functions. In Learning Theory: 18th Annual
Conference on Learning Theory, pages 16–31, 2005.

[5] ShivaniAgarwal and Shiladitya Sengupta. Ranking genes by relevance to a disease. In 8th Annual International
Conference on Computational Systems Bioinformatics, 2009.

[6] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying approach
for margin classifiers. Journal of Machine Learning Research, 1:113–141, December 2000.

[7] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

[8] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge Uni-
versity Press, 1999.

[9] Javed A. Aslam and Scott E. Decatur. General bounds on statistical query learning and PAC learning with
noise via hypothesis boosting. Information and Computation, 141(2):85–118, March 1998.

[10] Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-supervised learning. Journal of the
ACM, 57(3), March 2010.

[11] Peter L. Bartlett. The sample complexity of pattern classification with neural networks: The size of the weights
is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525–536, March
1998.

[12] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, March 2006.

[13] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463–482, November 2002.

[14] Peter L. Bartlett and Mikhail Traskin. AdaBoost is consistent. Journal of Machine Learning Research,
8:2347–2368, 2007.

[15] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting,
and variants. Machine Learning, 36(1/2):105–139, 1999.

[16] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural Computation, 1(1):151–
160, 1989.

[17] Shai Ben-David, Philip M. Long, and Yishay Mansour. Agnostic boosting. In Proceedings 14th Annual
Conference on Computational Learning Theory and 5th European Conference on Computational Learning Theory,
pages 507–516, 2001.

502 Bibliography

[18] Kristin P. Bennett, Ayhan Demiriz, and Richard Maclin. Exploiting unlabeled data in ensemble methods. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 289–296, 2002.

[19] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-correcting tournaments. In Algorithmic
Learning Theory: 20th International Conference, pages 247–262, 2009.

[20] Peter J. Bickel, Ya’acov Ritov, and Alon Zakai. Some theory for generalized boosting algorithms. Journal of
Machine Learning Research, 7:705–732, 2006.

[21] Patrick Billingsley. Probability and Measure, third edition. Wiley, 1995.

[22] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[23] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics,
6(1):1–8, Spring 1956.

[24] David Blackwell. Controlled random walks. In Proceedings of the International Congress of Mathematicians,
1954, volume 3, pages 336–338. North-Holland, 1956.

[25] Avrim Blum. Empirical support for Winnow and Weighted-Majority algorithms: Results on a calendar
scheduling domain. Machine Learning, 26(1):5–23, 1997.

[26] Avrim Blum. Random projection, margins, kernels, and feature-selection. In Subspace, Latent Structure and
Feature Selection, pages 52–68. Springer, 2005.

[27] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s razor. Information
Processing Letters, 24(6):377–380, April 1987.

[28] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):929–965, October
1989.

[29] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pages 144–152,
1992.

[30] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of some recent
advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

[31] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[32] L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics,
7(3):200–217, 1967.

[33] Leo Breiman. Probability. SIAM, 1992. (Originally Addison-Wesley, 1962.)

[34] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[35] Leo Breiman. Arcing classifiers. Annals of Statistics, 26(3):801–849, 1998.

[36] Leo Breiman. Prediction games and arcing classifiers. Neural Computation, 11(7):1493–1517, 1999.

[37] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[38] Leo Breiman. Population theory for boosting ensembles. Annals of Statistics, 32(1):1–11, 2004.

[39] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and Regression
Trees. Chapman & Hall/CRC, 1984.

[40] Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction and model fitting.
Statistical Science, 22(4):477–505, 2007.

[41] Wray Buntine. Learning classification trees. Statistics and Computing, 2:63–73, 1992.

[42] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning algorithms.
In Proceedings of the 23rd International Conference on Machine Learning, pages 161–168, 2006.

[43] N. N. Čencov. Statistical Decision Rules and Optimal Inference. American Mathematical Society, 1982.

[44] Yair Censor and Stavros A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, 1997.

Bibliography 503

[45] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and Manfred K.
Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, May 1997.

[46] Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, and Manfred K. Warmuth. On-line prediction and
conversion strategies. Machine Learning, 25:71–110, 1996.

[47] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

[48] N. N. Chentsov. Nonsymmetrical distance between probability distributions, entropy and the theorem of
Pythagoras. Mathematical Notes, 4:686–691, September 1968.

[49] William W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International Conference on
Machine Learning, pages 115–123, 1995.

[50] William W. Cohen and Yoram Singer. Asimple, fast, and effective rule learner. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages 335–342, 1999.

[51] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine
Learning, 15(2):201–221, 1994.

[52] Michael Collins. Discriminative reranking for natural language parsing. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 175–182, 2000.

[53] Michael Collins and Terry Koo. Discriminative reranking for natural language parsing. Computational
Linguistics, 31(1):25–70, March 2005.

[54] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and Bregman
distances. Machine Learning, 48(1/2/3): 253–285, 2002.

[55] Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. In Advances in Neural
Information Processing Systems 16, 2004.

[56] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
September 1995.

[57] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

[58] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge University Press, 2000.

[59] I. Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals of
Probability, 3(1):146–158, 1975.

[60] Imre Csiszár and Paul C. Shields. Information theory and statistics: A tutorial. Foundations and Trends in
Communications and Information Theory, 1(4):417–528, 2004.

[61] Sasha Cyganowski, Peter Kloeden, and Jerzy Ombach. From Elementary Probability to Stochastic
Differential Equations with MAPLE. Springer, 2002.

[62] George B. Dantzig. A proof of the equivalence of the programming problem and the game problem. In
Activity Analysis of Production and Allocation: Proceedings of a Conference, pages 330–335. John Wiley & Sons,
1951.

[63] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, April 1997.

[64] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Duality and auxiliary functions for Bregman
distances. Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University, 2001.

[65] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming boosting via column
generation. Machine Learning, 46(1/2/3):225–254, 2002.

[66] Robert Detrano, Andras Janosi, Walter Steinbrunn, Matthias Pfisterer, Johann-Jakob Schmid, Sarbjit Sandhu,
Kern H. Guppy, Stella Lee, and Victor Froelicher. International application of a new probability algorithm for the
diagnosis of coronary artery disease. American Journal of Cardiology, 64(5):304–310, August 1989.

[67] Luc Devroye, Lázló Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
1996.

[68] Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–158, 2000.

504 Bibliography

[69] Thomas G. Dietterich. Ensemble learning. In Michael A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks, pages 405–408, second edition, MIT Press, 2002.

[70] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.

[71] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural Information Processing
Systems 8, pages 479–485. MIT Press, 1996.

[72] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neural networks. International
Journal of Pattern Recognition and Artificial Intelligence, 7(4):705–719, 1993.

[73] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification, second edition. Wiley, 2001.

[74] Miroslav Dudík. Maximum Entropy Density Estimation and Modeling Geographic Distributions of Species.
Ph.D. thesis, Princeton University, 2007.

[75] Miroslav Dudík, Steven J. Phillips, and Robert E. Schapire. Performance guarantees for regularized maximum
entropy density estimation. In Learning Theory: 17th Annual Conference on Learning Theory, pages 472–486,
2004.

[76] Miroslav Dudík, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density estimation with
generalized regularization and an application to species distribution modeling. Journal of Machine Learning
Research, 8:1217–1260, 2007.

[77] R. M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6(6):899–929, 1978.

[78] Nigel Duffy and David Helmbold. Potential boosters? In Advances in Neural Information Processing Systems
12, pages 258–264. MIT Press, 2000.

[79] Nigel Duffy and David Helmbold. Boosting methods for regression. Machine Learning, 47(2/3):153–200.
2002.

[80] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general lower bound on the
number of examples needed for learning. Information and Computation, 82(3):247–261, September 1989.

[81] Günther Eibl and Karl-Peter Pfeiffer. Multiclass boosting for weak classifiers. Journal of Machine Learning
Research, 6:189–210, 2005.

[82] Jane Elith, Catherine H. Graham, Robert P. Anderson, Miroslav Dudík, Simon Ferrier, Antoine Guisan,
Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lucia G. Lohmann, Bette A.
Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob McC. M. Overton,
A. Townsend Peterson, Steven J. Phillips, Karen Richardson, Ricardo Scachetti-Pereira, Robert E. Schapire, Jorge
Soberón, Stephen Williams, Mary S. Wisz, and Niklaus E. Zimmermann. Novel methods improve prediction of
species’ distributions from occurrence data. Ecography, 29:129–151, 2006.

[83] Sergio Escalera, Oriol Pujol, and Petia Radeva. On the decoding process in ternary error-correcting output
codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):120–134, January 2010.

[84] William Feller. An Introduction to Probability Theory and Its Applications, volume 2, second edition. Wiley,
1971.

[85] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis
dimension. Machine Learning, 21(3):269–304, 1995.

[86] Dean P. Foster and Rakesh Vohra. Regret in the on-line decision problem. Games and Economic Behavior,
29:7–35, 1999.

[87] Marcus Frean andTom Downs.Asimple cost function for boosting. Technical report, Department of Computer
Science and Electrical Engineering, University of Queensland, 1998.

[88] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256–
285, 1995.

[89] Yoav Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 43(3):293–318,
June 2001.

[90] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933–969, 2003.

[91] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In Proceedings of the
Sixteenth International Conference on Machine Learning, pages 124–133, 1999.

Bibliography 505

[92] Yoav Freund and Manfred Opper. Drifting games and Brownian motion. Journal of Computer and System
Sciences, 64:113–132, 2002.

[93] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Machine Learning:
Proceedings of the Thirteenth International Conference, pages 148–156, 1996.

[94] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In Proceedings of the
Ninth Annual Conference on Computational Learning Theory, pages 325–332, 1996.

[95] Yoav Freund and Robert E. Schapire. Adecision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

[96] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29:79–103, 1999.

[97] Peter W. Frey and David J. Slate. Letter recognition using Holland-style adaptive classifiers. Machine
Learning, 6(2):161–182, 1991.

[98] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical view of
boosting. Annals of Statistics, 28(2):337–407, April 2000.

[99] Jerome H. Friedman. Another approach to polychotomous classification. Technical report, Stanford Univer-
sity, 1996.

[100] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29(5):1189–1232, October 2001.

[101] Drew Fudenberg and David K. Levine. Consistency and cautious fictitious play. Journal of Economic
Dynamics and Control, 19(5–7):1065–1089, 1995.

[102] Drew Fudenberg and David K. Levine. The Theory of Learning in Games. MIT Press, 1998.

[103] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[104] Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning. In Machine Learning:
Proceedings of the Eleventh International Conference, pages 70–77, 1994.

[105] Walter Gautschi. Error function and Fresnel integrals. In Milton Abramowitz and Irene A. Stegun, editors,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pages 295–329. U.S.
Department of Commerce, 1972.

[106] Dmitry Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of
Machine Learning Research, 4:101–117, 2003.

[107] Claudio Gentile and David P. Helmbold. Improved lower bounds for learning from noisy examples: An
information-theoretic approach. Information and Computation, 166(2):133–155, May 2001.

[108] Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs. general weighted threshold
gates. Computational Complexity, 2:277–300, 1992.

[109] A. L. Gorin, B. A. Parker, R. M. Sachs, and J. G. Wilpon. How may I help you? In Proceedings Third IEEE
Workshop on Interactive Voice Technology for Telecommunications Applications, pages 57–60, 1996.

[110] A. L. Gorin, G. Riccardi, and J. H. Wright. How may I help you? Speech Communication, 23(1–2):113–127,
October 1997.

[111] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of learned ensembles.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 692–699, 1998.

[112] Peter D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

[113] L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projections for finding the common point of
convex sets. USSR Computational Mathematics and Mathematical Physics, 7(6):1–24, 1967.

[114] Venkatesan Guruswami and Amit Sahai. Multiclass learning, boosting, and error-correcting codes. In Pro-
ceedings of the Twelfth Annual Conference on Computational Learning Theory, pages 145–155, 1999.

[115] D. W. Hagelbarger. SEER, A SEquence Extrapolating Robot. IRE Transactions on Electronic Computers,
EC-5(1):1–7, March 1956.

[116] I. Halperin. The product of projection operators. Acta Scientiarum Mathematicarum, 23:96–99, 1962.

[117] James Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume 3, pages 97–139. Princeton University Press, 1957.

506 Bibliography

[118] Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies. Journal of Economic Theory,
98(1):26–54, 2001.

[119] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(2):451–
471, 1998.

[120] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, second edition. Springer, 2009.

[121] David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equivalence of models for
polynomial learnability. Information and Computation, 95(2):129–161, December 1991.

[122] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best pruning of a decision tree.
Machine Learning, 27(1):51–68, April 1997.

[123] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, March 1963.

[124] Klaus-U. Höffgen and Hans-U. Simon. Robust trainability of single neurons. In Proceedings of the Fifth
Annual ACM Workshop on Computational Learning Theory, pages 428–439, 1992.

[125] Robert C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine
Learning, 11(1):63–90, 1993.

[126] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances in Neural Information
Processing Systems 8, pages 654–660. MIT Press, 1996.

[127] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630, May 15,
1957.

[128] Wenxin Jiang. Process consistency for AdaBoost. Annals of Statistics, 32(1):13–29, 2004.

[129] Adam Tauman Kalai and Rocco A. Servedio. Boosting in the presence of noise. Journal of Computer and
System Sciences, 71(3):266–290, 2005.

[130] J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles with Applications. Academic Press, 1992.

[131] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, second edition. Springer,
1991.

[132] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learning algorithms.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 459–468, 1996.

[133] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae and finite
automata. Journal of the Association for Computing Machinery, 41(1):67–95, January 1994.

[134] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
1994.

[135] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, pages 134–144, 1999.

[136] Aldebaro Klautau, Nikola Jevtić, and Alon Orlitsky. On nearest-neighbor error-correcting output codes with
application to all-pairs multiclass support vector machines. Journal of Machine Learning Research, 4:1–15, April
2003.

[137] Ron Kohavi and Clayton Kunz. Option decision trees with majority votes. In Machine Learning:
Proceedings of the Fourteenth International Conference, pages 161–169, 1997.

[138] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one loss functions. In Machine
Learning: Proceedings of the Thirteenth International Conference, pages 275–283, 1996.

[139] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of
combined classifiers. Annals of Statistics, 30(1):1–50, February 2002.

[140] Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects bias and variance. In
Proceedings of the Twelfth International Conference on Machine Learning, pages 313–321, 1995.

[141] Nir Krause and Yoram Singer. Leveraging the margin more carefully. In Proceedings of the Twenty-First
International Conference on Machine Learning, pages 496–503, 2004.

[142] C. Kremen, A. Cameron, A. Moilanen, S. J. Phillips, C. D. Thomas, H. Beentje, J. Dransfield, B. L. Fisher,
F. Glaw, T. C. Good, G. J. Harper, R. J. Hijmans, D. C. Lees, E. Louis Jr., R. A. Nussbaum, C. J. Raxworthy,

Bibliography 507

A. Razafimpahanana, G. E. Schatz, M. Vences, D. R. Vieites, P. C. Wright, and M. L. Zjhra. Aligning conservation
priorities across taxa in Madagascar with high-resolution planning tools. Science, 320(5873):222–226, April 11,
2008.

[143] Abba Krieger, Chuan Long, and Abraham Wyner. Boosting noisy data. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 274–281, 2001.

[144] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22(1):79–
86, 1951.

[145] Solomon Kullback. Information Theory and Statistics. Wiley, 1959.

[146] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2004.

[147] John Lafferty. Additive models, boosting and inference for generalized divergences. In Proceedings of the
Twelfth Annual Conference on Computational Learning Theory, pages 125–133, 1999.

[148] John D. Lafferty, Stephen Della Pietra, and Vincent Della Pietra. Statistical learning algorithms based on
Bregman distances. In Proceedings of the Canadian Workshop on Information Theory, pages 77–80,
1997.

[149] Guy Lebanon and John Lafferty. Boosting and maximum likelihood for exponential models. In Advances
in Neural Information Processing Systems 14, pages 447–454. MIT Press, 2002.

[150] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Springer-
Verlag, 1991.

[151] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In Machine
Learning: Proceedings of the Eleventh International Conference, pages 148–156, 1994.

[152] David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Proceedings of
the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 3–12, 1994.

[153] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1988.

[154] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Unpublished
manuscript, November 1987.

[155] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Computation,
108(2):212–261, 1994.

[156] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[157] Philip M. Long and Rocco A. Servedio. Martingale boosting. In Learning Theory: 18th Annual Conference
on Learning Theory, pages 79–94, 2005.

[158] Philip M. Long and Rocco A. Servedio. Adaptive martingale boosting. In Advances in Neural Information
Processing Systems 21, pages 977–984. 2009.

[159] Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex potential boosters.
Machine Learning, 78(3):287–304, 2010.

[160] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming, third edition. Springer, 2008.

[161] Gábor Lugosi and Nicolas Vayatis. On the Bayes-risk consistency of regularized boosting methods. Annals
of Statistics, 32(1):30–55, 2004.

[162] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence, pages 546–551, 1997.

[163] Stéphane G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, December 1993.

[164] Shie Mannor, Ron Meir, and Tong Zhang. Greedy algorithms for classification—consistency, convergence
rates, and adaptivity. Journal of Machine Learning Research, 4:713–742, October 2003.

[165] Yishay Mansour and David McAllester. Boosting using branching programs. Journal of Computer and
System Sciences, 64(1):103–112, 2002.

[166] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 2009.

508 Bibliography

[167] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins improves generalization
in combined classifiers. In Advances in Neural Information Processing Systems 11, pages 288–294. MIT Press,
1999.

[168] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Functional gradient techniques for com-
bining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers, pages 221–246. MIT Press, 2000.

[169] David Mease and Abraham Wyner. Evidence contrary to the statistical view of boosting. Journal of Machine
Learning Research, 9:131–156, February 2008.

[170] Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola,
editors, Advanced Lectures on Machine Learning, pages 119–184. Springer, 2003.

[171] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[172] Indraneel Mukherjee, Cynthia Rudin, and Robert E. Schapire. The rate of convergence of AdaBoost. In
Proceedings of the 24th Annual Conference on Learning Theory, 2011.

[173] Indraneel Mukherjee and Robert E. Schapire. A theory of multiclass boosting. In Advances in Neural
Information Processing Systems 23, 2011.

[174] Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[175] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928.

[176] John von Neumann. Functional Operators, Volume II: The Geometry of Orthogonal Spaces. Princeton
University Press, 1950.

[177] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications, sixth edition.
Springer, 2003.

[178] T. Onoda, G. Rätsch, and K.-R. Müller. An asymptotic analysis of AdaBoost in the binary classification
case. In Proceedings of the 8th International Conference on Artificial Neural Networks, pages 195–200, 1998.

[179] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

[180] Guillermo Owen. Game Theory, third edition. Academic Press, 1995.

[181] Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In Proceedings of the Eighth International
Workshop on Artificial Intelligence and Statistics, pages 105–112, 2001.

[182] Steven J. Phillips, Miroslav Dudík, and Robert E. Schapire. A maximum entropy approach to species
distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, 2004.

[183] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 725–730, 1996.

[184] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[185] Shyamsundar Rajaram and Shivani Agarwal. Generalization bounds for k-partite ranking. In Proceedings
of the NIPS-2005 Workshop on Learning to Rank, 2005.

[186] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287–320,
2001.

[187] Gunnar Rätsch and Manfred K. Warmuth. Efficient margin maximizing with boosting. Journal of Machine
Learning Research, 6:2131–2152, December 2005.

[188] Lev Reyzin and Robert E. Schapire. How boosting the margin can also boost classifier complexity. In
Proceedings of the 23rd International Conference on Machine Learning, pages 753–760, 2006.

[189] G. Riccardi, A. L. Gorin, A. Ljolje, and M. Riley. Spoken language understanding for automated call routing.
In Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume
2, pages 1143–1146, 1997.

[190] Greg Ridgeway, David Madigan, and Thomas Richardson. Boosting methodology for regression problems.
In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, pages 152–161,
1999.

[191] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[192] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

Bibliography 509

[193] Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire. Margin-based ranking meets
boosting in the middle. In Learning Theory: 18th Annual Conference on Learning Theory, pages 63–78,
2005.

[194] Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The dynamics of AdaBoost: Cyclic behavior
and convergence of margins. Journal of Machine Learning Research, 5:1557–1595, December 2004.

[195] Cynthia Rudin and Robert E. Schapire. Margin-based ranking and an equivalence between AdaBoost and
RankBoost. Journal of Machine Learning Research, 10:2193–2232, 2009.

[196] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Analysis of boosting algorithms using the
smooth margin function. Annals of Statistics, 35(6):2723–2768, 2007.

[197] Walter Rudin. Principles of Mathematical Analysis, third edition. McGraw-Hill, 1976.

[198] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, series A, 13:145–147, 1972.

[199] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

[200] Robert E. Schapire. Using output codes to boost multiclass learning problems. In Machine Learning:
Proceedings of the Fourteenth International Conference, pages 313–321, 1997.

[201] Robert E. Schapire. Drifting games. Machine Learning, 43(3):265–291, June 2001.

[202] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, October 1998.

[203] Robert E. Schapire, Marie Rochery, Mazin Rahim, and Narendra Gupta. Incorporating prior knowledge
into boosting. In Proceedings of the Nineteenth International Conference on Machine Learning, 2002.

[204] Robert E. Schapire, Marie Rochery, Mazin Rahim, and Narendra Gupta. Boosting with prior knowledge
for call classification. IEEE Transactions on Speech and Audio Processing, 13(2):174–181, March 2005.

[205] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, December 1999.

[206] Robert E. Schapire andYoram Singer. BoosTexter: Aboosting-based system for text categorization. Machine
Learning, 39(2/3):135–168, May/June 2000.

[207] Greg Schohn and David Cohn. Less is more: Active learning with support vector machines. In Proceedings
of the Seventeenth International Conference on Machine Learning, pages 839–846, 2000.

[208] Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press, 2002.

[209] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of neural networks. In
Advances in Neural Information Processing Systems 10, pages 647–653. MIT Press, 1998.

[210] Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning
Research, 4:633–648, September 2003.

[211] Shai Shalev-Shwartz and Yoram Singer. On the equivalence of weak learnability and linear separability:
New relaxations and efficient boosting algorithms. Machine Learning, 80(2–3):141–163, 2010.

[212] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,
July 1948, and 623–656, October 1948.

[213] Claude E. Shannon. A mind-reading (?) machine. Technical report, Bell Laboratories, 1953.

[214] Amanda J. C. Sharkey, editor. Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems.
Springer, 1999.

[215] A. N. Shiryaev. Probability, second edition. Springer, 1996.

[216] S. K. Srinivasan and R. Vasudevan. Introduction to Random Differential Equations and Their Applications.
Elsevier, 1971.

[217] Robert Tibshirani. Bias, variance and prediction error for classification rules. Technical report. Department
of Statistics, University of Toronto, November 1996.

[218] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
series B (Methodological), 58(1):267–288, 1996.

[219] Gokhan Tur, Dilek Hakkani-Tür, and Robert E. Schapire. Combining active and semi-supervised learning
for spoken language understanding. Speech Communication, 45(2):171–186, 2005.

510 Bibliography

[220] Gokhan Tur, Robert E. Schapire, and Dilek Hakkani-Tür. Active learning for spoken language understand-
ing. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 1, pages 276–279, 2003.

[221] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November 1984.

[222] Vladimir Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

[223] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[224] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[225] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and Its Applications, 16(2):264–280, 1971.

[226] V. N. Vapnik and A. Ya. Chervonenkis. Theory of Pattern Recognition. Nauka, 1974. (In Russian.)

[227] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In Pro-
ceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1,
pages 511–518, 2001.

[228] Paul Viola and Michael Jones. Robust real-time object detection. In Proceeding of IEEE Workshop on
Statistical and Computational Theories of Vision, 2001.

[229] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computational
Learning Theory, pages 371–383, 1990.

[230] Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou, and Jufu Feng. A refined
margin analysis for boosting algorithms via equilibrium margin. Journal of Machine Learning Research, 12:1835–
1863, June 2011.

[231] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The context tree weighting method: Basic
properties. IEEE Transactions on Information Theory, 41(3):653–664, 1995.

[232] Abraham J. Wyner. On boosting and the exponential loss. In Proceedings of the Ninth InternationalWorkshop
on Artificial Intelligence and Statistics, 2003.

[233] Yongxin Taylor Xi, Zhen James Xiang, Peter J. Ramadge, and Robert E. Schapire. Speed and sparsity
of regularized boosting. In Proceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics, pages 615–622, 2009.

[234] Jun Xu and Hang Li. AdaRank: A boosting algorithm for information retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
391–398, 2007.

[235] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. Annals of Statistics, 32(1):56–134, 2004.

[236] Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. Annals of Statistics,
33(4):1538–1579, 2005.

[237] Peng Zhao and Bin Yu. Stagewise Lasso. Journal of Machine Learning Research, 8:2701–2726, December
2007.

[238] Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie. Multi-class AdaBoost. Statistics and Its Interface,
2:349–360, 2009.

Index of Algorithms, Figures, and Tables

Algorithm 1.1 5
Algorithm 3.1 67
Algorithm 5.1 130
Algorithm 7.1 178
Algorithm 7.2 181
Algorithm 7.3 190
Algorithm 7.4 199
Algorithm 7.5 224
Algorithm 8.1 229
Algorithm 8.2 235
Algorithm 8.3 241
Algorithm 8.4 268
Algorithm 9.1 274
Algorithm 9.2 281
Algorithm 9.3 282
Algorithm 9.4 295
Algorithm 10.1 306
Algorithm 10.2 312
Algorithm 10.3 323
Algorithm 10.4 329
Algorithm 10.5 335
Algorithm 11.1 346
Algorithm 11.2 356
Algorithm 11.3 360
Algorithm 11.4 362
Algorithm 11.5 371
Algorithm 12.1 409
Algorithm 13.1 428
Algorithm 13.2 437
Algorithm 13.3 439
Algorithm 14.1 472

Figure P.1 xiv
Figure 1.1 8
Figure 1.2 10
Figure 1.3 12
Figure 1.4 12
Figure 1.5 14
Figure 1.6 15
Figure 1.7 16
Figure 2.1 27
Figure 2.2 28

Figure 2.3 29
Figure 2.4 35
Figure 2.5 42
Figure 3.1 57
Figure 3.2 59
Figure 3.3 68
Figure 3.4 69
Figure 3.5 69
Figure 3.6 70
Figure 4.1 81
Figure 4.2 90
Figure 5.1 95
Figure 5.2 96
Figure 5.3 110
Figure 5.4 113
Figure 5.5 117
Figure 5.6 121
Figure 5.7 123
Figure 5.8 124
Figure 5.9 124
Figure 5.10 129
Figure 5.11 131
Figure 6.1 155
Figure 6.2 160
Figure 6.3 164
Figure 6.4 166
Figure 6.5 168
Figure 6.6 168
Figure 7.1 180
Figure 7.2 187
Figure 7.3 195
Figure 7.4 196
Figure 7.5 203
Figure 7.6 204
Figure 7.7 206
Figure 7.8 208
Figure 7.9 215
Figure 7.10 217
Figure 8.1 229
Figure 8.2 230
Figure 8.3 240
Figure 8.4 244

512 Index of Algorithms, Figures, and Tables

Figure 8.5 245
Figure 8.6 257
Figure 8.7 261
Figure 8.8 264
Figure 9.1 272
Figure 9.2 286
Figure 9.3 290
Figure 9.4 291
Figure 9.5 292
Figure 9.6 296
Figure 9.7 299
Figure 10.1 309
Figure 10.2 318
Figure 10.3 319
Figure 10.4 327
Figure 11.1 344
Figure 11.2 364
Figure 11.3 365
Figure 12.1 399
Figure 12.2 405
Figure 13.1 420
Figure 13.2 425
Figure 13.3 449
Figure 13.4 452
Figure 14.1 466
Figure 14.2 469
Figure 14.3 473
Figure 14.4 475

Table 1.1 9
Table 1.2 13
Table 2.1 24
Table 2.2 25
Table 5.1 116
Table 5.2 119
Table 5.3 132
Table 7.1 186
Table 7.2 214
Table 7.3 218
Table 9.1 286
Table 10.1 316
Table 10.2 317
Table 10.3 320
Table 10.4 321
Table 10.5 324
Table 10.6 326
Table 10.7 326
Table 10.8 332
Table 11.1 368
Table 14.1 463
Table 14.2 485
Table 14.3 485

Subject and Author Index

Note: Numbers, symbols, Greek letters, etc. are alphabetized as if spelled out in words. Page
listings tagged with “n” refer to footnotes; those tagged with “x” refer to exercises.

Abe, Naoki, 134, 333
abort, 437
abstaining weak hypotheses, 278–279

algorithmic speed-ups using sparse, 279–281
domain-partitioning, 293–294
rule as, 287

accuracy, 3
active learning, 129–132
AdaBoost, 5–7

adaptiveness of, 10–11, 56
analysis of error (see error analysis of AdaBoost)
Bayes error not reached, 398–404
benchmark experiments, 11
and boost-by-majority, 448–452
and Chernoff bounds, 60–62, 448
confidence-rated (see confidence-rated AdaBoost)
convergence of, 243–251
as coordinate descent, 180–181
dynamics of, 239, 263–264x
effect on margins, 111–114
and estimating conditional probabilities, 202
exhaustive, 185
and exponential loss, 177–179
for face detection, 66–70
and filtering of examples, 88
and functional gradient descent, 190–191
initial distribution modified in, 54
as iterative projection algorithm, 232–237, 239–242
as limit of BrownBoost, 476–483
and logistic regression, 197–200, 252–255
loss compared to RankBoost, 348–351
and maximum entropy, 234
multiclass (see multiclass boosting)
and noise, 404–405, 483–484
and optimal risk, 385–387
and overfitting, 15–16, 99
pronunciation, 11n
sample run, 7–10
training error of, 54–56
trajectory of, 209
and universal consistency, 386–387
and vMW, 172x

AdaBoost.L, 197–200
convergence of, 265–266x
experiments, 484–485
versus LogitBoost, 223–224x
with prior knowledge, 213

AdaBoost.MH, 312–314
versus AdaBoost.MR, 363
Hamming loss of, 313
one-error of, 314–315
training error of, 315–316, 324
weak learner for, 313–314

AdaBoost.Mk, 334x
AdaBoost.MO, 322

experiments, 332–333
generalization error of, 334–337x
generalized, 327–328
and RankBoost, 369–370x
training error of, 323–325, 328–332

AdaBoost.M1, 305
experiments, 308–309
training error of, 306–307
weak learning assumption, 305–306

AdaBoost.MR, 361
versus AdaBoost.MH, 363
for multiclass logistic regression, 372–373x
one-error of, 361–363
training error of, 363

AdaBoost.M2, 369
AdaBoost∗ν , 115, 135x
AdaBoostρ , 133
AdaBoost.S, 408–410x
adaptiveness, 10–11, 56, 459
additive modeling, 219
ADTs. See alternating decision trees
adversarial player, 143, 151
affine threshold functions, 89x
Agarwal, Shivani, 369
all-pairs reduction, 325
and loss-based decoding, 337–338x
and RankBoost, 369–370x
training error of, 332

Allwein, Erin L., 333

514 Subject and Author Index

almost sure convergence, 386
alphabet, 231
α-Boost, 162

and margin maximization, 162–163
and MW, 162
and regularization, 207–209
trajectory of, 205–207
See also NonAdaBoost

αt , choosing, 275–279
in RankBoost, 347–348

alternating decision trees, 290–296
boosting algorithm for, 293–294
defined, 291–292
interpretability, 294–296
and overfitting, 294
as sum of branch predictors, 292–293

ambiguity of natural languages, 364
amortized analysis, 147
analysis of AdaBoost’s error. See error

analysis of AdaBoost
analysis of generalization error. See error

bounds; generalization error
Anthony, Martin, 89
AnyBoost, 190

See also functional gradient descent
AP headlines dataset, 213–215

and confidence-rated predictions, 286
approximability of Boolean functions, 73x
approximate maxmin strategy, 153

and boosting, 161
approximate minmax strategy, 152

and boosting, 161
arc-gv, 115–116
arg max, 493
arg min, 493
ASSEMBLE.AdaBoost, 218
Associated Press. See AP headlines dataset
AT&T, 316
Atlas, Les, 133
attributes. See features
axis-aligned rectangles

learning, 50x
linear separability of, 58–59
VC-dimension of, 50x

Azuma’s lemma, 61

bagging, 118
and margins theory, 120
and variance reduction, 118

Bakiri, Ghulum, 333
Bartlett, Peter L., 89, 132–133, 406
base classifiers. See weak hypotheses
base functions, 256–258
base hypotheses. See weak hypotheses
base learning algorithm. See weak learning algorithms
batch learning, 153–154
Baum, Eric B., 89

Baxter, Jonathan, 133
Bayes error, 377, 379

approached by AdaBoost, 386–387
and generalized risk, 407–408x
not achieved by AdaBoost, 398–404
not achieved by general risk minimization, 412–413x
and optimal risk, 380–382

Bayes optimal classifier, 379
and optimal predictor, 380

Bayes optimal error. See Bayes error
BBM. See boost-by-majority
behaviors. See dichotomies
benchmark datasets

experiments with AdaBoost, 11
experiments with added noise, 484–485
with multiclass boosting, 308–309

Bennett, Kristin P., 170, 220
Beygelzimer, Alina, 333
bias. See bias-variance analysis
bias-variance analysis, 117–122

and bagging, 118
and boosting, 118–120
definitions, 120

Bickel, Peter J., 406
big Oh, 492
binary relative entropy, 114–115, 232

basic properties, 135x
on vectors, 253

binomial coefficient, 498
binomial distribution, 498

and Hoeffding’s inequality, 30–31
lower bound on, 448
See also Chernoff bounds; Hoeffding’s

inequality
biological hot spot, 260
bipartite feedback, 343, 354
Bishop, Christopher M., 49
bits, 231
Blackwell, David, 169
Blum, Avrim, 297
Blumer, Anselm, 49
Boolean functions, approximability of, 73x
boost-by-majority

and AdaBoost, 448–452
algorithm, 427–428
analysis, 428–430
continuous-time limit, 462–468
generalization error of, 432–433
making adaptive, 460–462
with margin target, 454–455x
NonAdaBoost as limit of, 449–451
non-adaptiveness, 459
optimality of, 430–432
with randomized weak learner, 431, 458x
weighting function non-monotonic, 451

boosting, 4–5
and bias-variance analysis, 118–120

Subject and Author Index 515

definition, 46–47, 433–434
effect on margins, 111–116
game formulations compared, 417–418
lower bound on efficiency, 433–447
“mini” (three-round) algorithm, 71–72x
and minmax theorem, 157–159
modes of analysis, 47–48
multiclass (see multiclass boosting)
optimal (see optimal boosting)
with prior knowledge, 211–213
for ranking (see RankBoost)
and regularization, 205–209
as repeated game, 159–163
by resampling, 62–63
by reweighting, 63
for semi-supervised learning, 215–219
sequential nature, 453–454x
and support-vector machines, 126–128
as voting game (see voting game)
See also AdaBoost

Borel-Cantelli lemma, 386–387
Boser, Bernhard E., 133
Boucheron, Stéphane, 133
boundary condition, 467
bounded (set), 495
bounded updates, 410–411x
bounds, generalization error. See error

bounds; generalization error
Bousquet, Olivier, 133
Boyd, Stephen, 262
branching program, 405
branch predictor, 292–293
Bregman, L. M., 262
Bregman distance, 235, 264–265x
Bregman’s algorithm, 235
Breiman, Leo, 120, 132–133, 219, 406
BrownBoost
AdaBoost as limit of, 476–483
algorithm, 468–471
cutoff, early, 470–471
derived from boost-by-majority, 460–468
differential equations for, 465–467
discontinuity of potential function, 467, 486x
equations defining update, 468–470
experiments, 484–485
lingering run of, 477
with margin target, 486–487x
and noise, 484
potential function, 465
solution, existence of, 471–475, 488x
target error, 476
training error of, 475–476
weighting function, 467–468

Brownian process, 467
Buntine, Wray, 297

calibration curve, 202
call classification, 316–317

Cameron, A., 263
cancer genes, 366

found using RankBoost, 366–367
CART, 115

See also decision trees
Cartesian product, 491
cascading of classifiers, 70
Catlett, Jason, 133, 220
Čencov, N. N., 262
Censor, Yair, 262
census dataset, 129

and estimating conditional probabilities,
202

central limit theorem, 498–499
Cesa-Bianchi, Nicolò, 170
C4.5, 11, 14–15, 118, 290

See also decision trees
C4.5rules, 290
chain rule, 496
Chapelle, Olivier, 369
Cheamanunkul, Sunsern, 486
Chentsov, N. N., 262
Chernoff bounds, 30

and AdaBoost error, 448
optimality of, 448
See also Hoeffding’s inequality

Chervonenkis, A. Ya., 49
chip, 419
chip game, 419–420

approximating optimal play, 422–427
and online prediction, 455–456x
optimal play in, 420–422, 430–432
potential function, 426
relaxed versions, 431–432, 457–458x

clamping, 384–385
limited effect of, 393

classification exponential loss, 349
See also exponential loss

classification loss, 177
classification problem, learning, 2–4
classification rule, 3
classifier, 3
closed (set), 495
closure (of set), 495
code length, 231
codes, output. See output codes
codeword, 321
coding matrix, 321
Cohen, William W., 297
Cohn, David, 133–134
coin flipping, 30–31, 39–40

See also binomial distribution
Collins, Michael, 219, 262, 297, 369
combined classifier, 7

form of AdaBoost’s, 77
randomized, 72x
in support-vector machines versus AdaBoost,

126–127

516 Subject and Author Index

compact (set), 495
complementary error function, 465

approximation of, 481
complexity. See simplicity
complexity measures

for finite hypothesis spaces, 34
VC-dimension, 37–38

compression achieved by AdaBoost, 88
compression-based analysis of AdaBoost, 83–86
compression schemes, 41–42

hybrid, 84–85
and VC-dimension, 91x

computation node (of feedforward network), 89x
conditional likelihood, 195
conditional probability, 194

as function, 378
conditional probability, estimating

caveats, 202
and convex program formulation, 253–255
with exponential loss, 202
with general loss functions, 200–201
with logistic regression, 194–195
and overfitting, 202–203

conditions sufficient for learning, 24–28
confidence

in active learning, 129–132
applications of, 128–132
measured by margin, 95
rejection with low, 128–129

confidence-rated AdaBoost, 273–274
for alternating decision trees, 293–294
convergence of, 300–301x
for rule-set learning, 287–289
training error of, 274
See also confidence-rated predictions

confidence-rated predictions
abstaining, 278–279 (see also abstaining weak

hypotheses)
binary, 277
bounded range, 277–278
with domain partitioning, 283–285
dropping αt , 281–283
experiments, 286
general methods, 275–277
interpretation, 273
and margins analysis, 297–298x
motivating example, 271–272
smoothed, 284–285

conservation biology, 255–256
conservative learner, 455x
consistency (with training set), 24

improved error bounds, 39–40
consistency, statistical. See universal consistency

(statistical)
consistency, universal. See universal consistency (in

online prediction); universal consistency
(statistical)

constrained optimization
and regularization, 204
See also convex program; linear programming

constraint selection
in AdaBoost, 235
cyclic, 229, 266x
greedy, 229

context trees, 166–167
continuous functions, 494–495
continuous-time limit of boost-by-majority, 462–468

differential equations for, 465–467
potential function, 463–467
weighting function, 467–468

contour map, 220x
convergence

of AdaBoost, 243–251
of AdaBoost.L, 265–266x
of AdaBoost to Bayes optimal, 386–387
almost sure, 386
of confidence-rated AdaBoost, 300–301x
of coordinate descent, 182, 263x
of distributions, 251
with probability one, 386
rate for AdaBoost, 387–393
rate for AdaBoost.S, 408–410x
rate for AdaBoost with bounded updates, 410–411x
of unnormalized weight vectors, 248

convex duality, 251–252
convex hull, 97

Rademacher complexity of, 108–109
convexity, 496–497
convex loss

and Bayes error, 407–408x
poor accuracy if minimized, 412–413x
See also exponential loss; logistic loss

convex program, 228
for AdaBoost, 234, 239, 253–255
for density estimation, 258–259
for logistic regression, 253–255

coordinate descent, 179–184
and AdaBoost, 180–181
convergence of, 182, 263x
and functional gradient descent, 191–192
for general loss functions, 182–184
and gradient descent, 181–182
on logistic loss, 197
on square loss, 183–184

Cortes, Corinna, 133, 369
Cover, Thomas M., 262, 453
Cristianini, Nello, 133
cross validation, 13, 289
Csiszár, Imre, 262
cumulative loss (in repeated game), 146

bounds on, 147–151
curse of dimensionality, 126
cutoff, early (in BrownBoost),

470–471

Subject and Author Index 517

cyclic behavior, 239
example, 263–264x

cyclic constraint selection, 229
convergence of, 266x

data compression, 169
data-limited learning, 129–132, 211–219
datasets. See AP headlines dataset; benchmark

datasets; census dataset; heart-disease dataset; letter
dataset; spoken-dialogue task

Daubechies, Ingrid, 133, 262
decision stumps, 13

algorithm for, 64–66
bias and variance of, 118–120
for binary features, 64–65
confidence-rated, 284
consistency of voted, 137x
for continuous features, 66
for discrete features, 65
growth function of, 52x
and learning hyper-rectangles, 59
VC-dimension of, 52x
See also threshold rules

decision trees, 14–15
algorithm for learning, 298–300x
alternating (see alternating decision trees)
bias and variance of, 118–120
boosting-style analysis, 300x
as domain-partitioning weak hypotheses, 283
optimal risk of, 412x
in penny-matching, 166–167
uncontrolled complexity of, 115
See also CART; C4.5

Della Pietra, Stephen, 262
Della Pietra, Vincent, 262
delta functions, 121, 137x
Demiriz, Ayhan, 170, 220
density estimation, 256–258

convex program for, 258–259
derivative, 495–496
Devroye, Luc, 49
dichotomies, 34

in output code, 321
realized by AdaBoost’s combined classifier, 78–79,

81–82
Dietterich, Thomas G., 120, 133, 333, 406
difference (of sets), 491
differential equations, 465–467
direct approach, 24–28
direct bounds for AdaBoost. See form-based analysis
discriminative approach, 28–29
distribution modeling. See species distribution

modeling
document retrieval, 354, 358
domain, 3
domain-partitioning weak hypotheses, 283–285

abstaining, 293–294

multiclass, 314
smoothed predictions for, 284–285

Doshi, Anup, 170
drifting games, 453, 486
dual (of game), 159

value of, 171x
dual form (of linear program), 173x
duality, convex, 251–252
dual norms, 492–493
dual optimization problem, 497
Duda, Richard O., 49
Dudík, Miroslav, 263
Dudley, R. M., 89
Duffy, Nigel, 220
dynamics of AdaBoost, 239

example, 263–264x

early stopping, 207
ECOC, 322–323

See also output codes
ecological niche, 256
edges, 54

and margins, 112–114, 116–117, 158–159
efficiency, optimal, 433–447
Ehrenfeucht, Andrzej, 49
Eibl, Günther, 333
elections, 97
Elith, Jane, 263
email, junk, 1
empirical error. See training error
empirical ranking loss, 345
empirical risk, 379

of AdaBoost.S, 408–410x
of AdaBoost with bounded updates, 410–411x
rate minimized by AdaBoost, 387–393
and true risk, 393–396

empirical weak learning assumption. See weak
learning assumptions

empty set, 491
entropy, 231

base of, 232
maximum, 234, 258–260

environment (in game), 146
adversarial, 151

environmental variables, 256
ε-AdaBoost. See α-Boost
ε-boosting. See α-Boost
equilibrium margin, 132
erfc. See complementary error function
error. See Bayes error; generalization error; test error;

training error
error, weighted, 6
error analysis of AdaBoost

for AdaBoost.MO, 334–337x
basic assumptions, 75–77
compression-based, 83–86
form-based (see form-based analysis)

518 Subject and Author Index

error analysis of AdaBoost (cont.)
margins-based (see margins analysis)
with Rademacher complexity, 106–111

error bounds, 30–43
absolute, 43–46
for compression schemes, 41–42
for consistent hypotheses, 39–40
for countable hypothesis spaces, 51x
for finite hypothesis spaces, 32–34
and hybrid compression schemes, 84–85
for infinite hypothesis spaces, 34–38
looseness of, 43
lower bound for boosting, 433–447
lower bound for multiclass boosting, 458x
with Rademacher complexity, 107–108
for single hypothesis, 30–32
using growth function, 35–36
using union bound, 33
using VC-dimension, 37
See also margins analysis

error-correcting output codes, 322–323
See also output codes

error function, complementary. See complementary
error function

Escalera, Sergio, 333
Ettinger, Evan, 486
Euclidean geometry

in iterative projection algorithms, 230
in support-vector machines, 122

Euclidean norms. See norms
example, 3
example weights, 62–63
exception list, 436
exhaustive AdaBoost, 185
exhaustive weak learning algorithm, 58
experiments

active learning, 130–132
on benchmarks, 11
with confidence-rated predictions, 286
on heart-disease dataset, 11–13
incorporating prior knowledge, 213–215
multiclass boosting, 308–309
noisy, with AdaBoost, 404
noisy, with BrownBoost, 484–485
with output codes, 332–333
penny-matching, 167–169
species distribution modeling, 260

exponential fictitious play, 169
exponential loss, 178

and AdaBoost, 177–179
in confidence-rated AdaBoost, 275
convex program for minimizing, 253–255
and functional gradient descent, 190–191
and generalization error, 184–188
and gradient descent, 185–186
and iterative projection algorithms, 244–246
versus logistic loss, 196
no finite minimum, 182

non-unique minimum, 186
poor accuracy if minimized, 398–404
provably minimized, 248
versus ranking exponential loss,

348–351
rate minimized by AdaBoost, 387–393
for semi-supervised learning, 216–217
See also risk

exponential weights. See MW
expression levels, 366

face detection, 66–70
and active learning, 130
and cascade of classifiers, 70
rectangular patterns for, 68

feasibility (of linear program), 173x
feasible set, 228

for AdaBoost, 233, 241
with inequality constraints, 266–267x
nonemptiness conditions, 237–239

features, 64, 194, 256–258
feature space, 194
feedback (for ranking), 343–344

bipartite, 343, 354
inconsistent, 343–344
layered, 343, 353–354
quasi-bipartite, 358
quasi-layered, 357–358
weighted, 357

feedback function, 357
feedback graph, 343
feedforward network, 89–91x
Fibonacci sequence, 263x
fictitious play, exponential, 169
final classifier. See combined classifier
Floyd, Sally, 49, 89
form-based analysis

for finite hypothesis spaces, 78–81
for infinite hypothesis spaces, 81–83
and overfitting, 80–81

Foster, Dean P., 169
Freund, Yoav, 71, 89, 169–170, 220, 297, 333, 369,

453, 486
Friedman, Jerome H., 170, 219–220, 333
Fudenberg, Drew, 169–170
functional, 188
functional gradient descent, 188–193

and AdaBoost, 190–191
with classification learner, 192–193
and coordinate descent, 191–192
on logistic loss, 197–200
with regression learner, 193
for semi-supervised learning, 217–218
on square loss, 193

Fürnkranz, Johannes, 297

Gale, William A., 220
game, voting. See voting game

Subject and Author Index 519

games, learning in repeated, 145–151
and approximately solving a game, 152–153
and boosting, 159–163
model for, 145–146
and online prediction, 155–157
and proof of minmax theorem, 151–152
versus voting game, 417–418
See also MW

games, matrix
bounded range, 145–146
defined, 142
minmax and maxmin strategies, 143–144
randomized play in, 142–143
sequential play in, 143–144
solving, 145
value of, 144–145
See also games, learning in repeated

games, repeated. See games, learning in repeated
games, zero-sum, 142
game theory, 142–145

and boosting, 157–163
game value, 144–145

of dual, 171x
and MW analysis, 151

Gaussian distribution, 28–29, 498
Gauss-Southwell, 191
Gautschi, Walter, 486
gene expression levels, 366
generalization error, 3, 26

absolute guarantees, 43–46
of AdaBoost (see error analysis of AdaBoost)
of boost-by-majority, 432–433
bounds on (see error bounds)
form-based analysis of (see form-based analysis)
and loss minimization, 184–188
margin-based analysis of (see margins analysis)
of support-vector machines, 91x

generalized AdaBoost. See confidence-rated
AdaBoost

generalized output codes, 325–327
generative approach, 28–29
genes, cancer, 366

found using RankBoost, 366–367
Gentile, Claudio, 49
GentleAdaBoost, 223x
geometry. See Euclidean geometry; information

geometry
Gorin, A. L., 333
gradient, 182, 495–496
gradient descent, 185, 221–222x

and coordinate descent, 181–182
on exponential loss, 185–186
See also functional gradient descent

greedy constraint selection, 229
ground hypothesis, 436
Grove, Adam J., 133, 170
growth function, 35–36

in abstract formulation, 38
of feedforward network, 90x

Grünwald, Peter D., 49
Gubin, L. G., 262
Guruswami, Venkatesan, 333
Guyon, Isabelle M., 133
Györfi, Lázló, 49

Hadamard matrix, 222x
Hagelbarger, D. W., 163, 170
Hakkani-Tür, Dilek, 134
Halperin, I., 262
Hamming decoding, 322, 328
Hamming loss, 311–312

and one-error, 315
Hannan, James, 169
Hannan consistency, 169
“hard” distributions, 73x
hard predictions, 271–272
Hart, Peter E., 49
Hart, Sergiu, 169
Hastie, Trevor, 170, 219–220, 333
Haussler, David, 89
heart-disease dataset, 3–4

and alternating decision trees, 294–296
experiments with AdaBoost, 11–13

Helmbold, David P., 49, 170, 220
hierarchy of classes, 327
Hoeffding, Wassily, 49, 71, 453
Hoeffding’s inequality, 30–31

and AdaBoost’s training error, 60–62
generalized, 438
proof of, 135–136x
See also Chernoff bounds

Höffgen, Klaus-U., 220
Holte, Robert C., 71
hot spot, biological, 260
hybrid compression schemes, 84–85

applied to AdaBoost, 85–86
hyper-rectangles. See axis-aligned rectangles
hypothesis, 3
hypothesis class. See hypothesis space
hypothesis space, 32

complexity of, 34
convex hull of, 97
span of, 382–383

if-then rules. See rule (if-then)
indicator function, 26, 491
inequality constraints, 266x
infimum, 493
information geometry, 234
information retrieval, 354, 358
information-theoretic measures, 230–232

See also binary relative entropy; entropy; relative
entropy; unnormalized relative entropy

initial distribution, 54

520 Subject and Author Index

inner product, 492
and kernels, 125

input node (of feedforward network), 89x
instance-based weak learner (for ranking), 352–353
instances, 3
instance space, 3
integral image, 69–70
intermediate value theorem, 495
intersection (of sets), 491
intervals, unions of, 36

learning, 51x
VC-dimension of, 36, 51x
irep, 297
iterative projection algorithms, 228–230

and AdaBoost, 232–237, 239–242
constraint selection, 229–230
with Euclidean geometry, 228–230
examples, 229
and exponential loss minimization, 244–246
geometry of solution, 243–244, 247–248
with inequality constraints, 266–268x
proof of convergence, 246–251

Jaynes, E. T., 262
Jell-O, 431–432
Jensen’s inequality, 497
Jevtić, Nikola, 333
Jiang, Wenxin, 406
Jones, Michael, 71
Jordan, Michael I., 406

Kalai, Adam Tauman, 406
Kapur, J. N., 262
Kearns, Michael J., 49–50, 297
kernels, 125, 128
Kesavan, H. K., 262
Kivinen, Jyrki, 262
Klautau, Aldebaro, 333
KL divergence. See relative entropy
Kohavi, Ron, 133, 297
Koltchinskii, V., 133
Kong, Eun Bae, 120, 133
Koo, Terry, 297, 369
k-partite feedback. See layered feedback
Kremen, C., 263
Kullback, Solomon, 262
Kullback-Leibler divergence. See relative entropy
Kunz, Clayton, 297

label, 3
Ladner, Richard, 133
Lafferty, John D., 262–263
Lagrange multipliers, method of, 497
Lagrangian, 497
Lane, Terran, 133
Langford, John, 333
large-margin instance, 398, 402

lasso, 220
See also regularization

layered feedback, 343, 353–354
lazy booster, 418
learner (in game), 146
learning, conditions for, 24–28
learning algorithm, 3

See also individual algorithms by name
learning rate, 189
learning repeated games. See games, learning in

repeated
learning to rank. See ranking
least-squares regression. See linear regression
Lebanon, Guy, 263
Leibler, R. A., 262
letter dataset, 15

margin distribution graph for, 95–96
leukemia, 367
level set, 220x, 471
Levine, David K., 169–170
Lewis, David D., 133, 220
Li, Hang, 369
likelihood, 259

conditional, 195
lim inf, 494
limit, 493–494
lim sup, 494
linear constraints, 228
linear programming, 170

and games, 173–174x
linear regression, 175, 183
linear separability, 57–60

definition, 57–58
and online prediction, 172x
and weak learnability, 58–60, 116, 158–159

linear threshold functions, 38
and AdaBoost’s combined classifiers, 77
in support-vector machines, 122
in support-vector machines versus AdaBoost,

126–127
VC-dimension of, 77–78
See also voting classifiers

line search, 185
lingering (run of BrownBoost), 477
Lipschitz functions, 109, 136x
Littlestone, Nick, 49, 89, 169
Liu, Tie-Yan, 369
LogAdaBoost, 199n
logarithm, 492
logistic loss, 195

convex program for minimizing, 253–255
versus exponential loss, 196
modifying AdaBoost for, 197–200

logistic regression, 194–196
as convex program, 253–255
loss function for, 195
modifying AdaBoost for, 197–200

Subject and Author Index 521

multiclass, 372–373x
unified with AdaBoost, 252–255
See also AdaBoost.L; logistic loss

LogitBoost, 199n, 223–224x
See also AdaBoost.L

log likelihood, 259
�1-norm, 204
Long, Philip M., 406
loss (in matrix games), 142

See also cumulative loss (in repeated game)
loss-based decoding, 322, 328

for all-pairs reduction, 337–338x
loss function, 175

of AdaBoost, 177–179
comparison of, 196
coordinate descent for general, 182–184
incorporating prior knowledge, 212–213
for semi-supervised learning, 216–217
See also Hamming loss; classification loss;

exponential loss; logistic loss; ranking loss; risk;
square loss

lower bound, boosting, 433–447
multiclass, 458x

lower limit, 494
�p-norms, 492–493
See also norms

Luenberger, David G., 220
Lugosi, Gábor, 49, 133, 170, 406

machine learning, approaches to
alternatives compared, 28–29
direct, 24–28

Maclin, Richard, 220, 406
Madagascar, 260
Madigan, David, 220
Mallat, Stéphane G., 219
Mamitsuka, Hiroshi, 134
Mannor, Shie, 406
Mansour, Yishay, 297, 406
marginalization, 101
margin-based classifiers. See AdaBoost;

support-vector machines
margin distribution graph, 95–96

for bagging, 120
margin maximization, 111–116

and AdaBoost, 111–114
and AdaBoost∗ν , 135x
aggressive, 114–116
and α-Boost, 162–163
and regularization, 209–211
and support-vector machines, 122–123
under weak learning condition, 112–113

margins, 94–95
and boost-by-majority, 454–455x
and BrownBoost, 486–487x
and edges, 112–114, 116–117, 158–159
as measure of confidence, 95
multiclass, 131n

normalized versus unnormalized, 95
for support-vector machines versus AdaBoost, 127

margins analysis, 97–106
and bagging, 120
and confidence-rated predictions, 297–298x
for finite hypothesis spaces, 98–104
for infinite hypothesis spaces, 104–106
interpretation of bounds, 98–99
minimum margin versus entire distribution, 115–116
multiclass, 334–337x
and overfitting, 99
using minimum margin, 106
using Rademacher complexity, 109–111

margins theory
and active learning, 129–132
applications of, 128–132
versus loss minimization, 187
and universal consistency, 397–398
See also margin maximization; margins; margins

analysis
martingales, 61
Marx, Groucho, 364
Mas-Colell, Andreu, 169
Mason, Llew, 133, 219, 297
matching pursuit, 219
matrix games. See games, matrix
maxent. See maximum entropy
maximum, 493
maximum entropy, 234

for species distribution modeling, 258–260
species-modeling experiments, 260

maxmin strategy, 144
approximate, 153
and boosting, 161

McAllester, David, 406
McAuliffe, Jon D., 406
Mease, David, 219
medical diagnosis, 3–4
Meir, Ron, 406
microarray, 366
mind-reading game. See penny-matching
mind-reading machine, 165
“mini” boosting algorithm, 71–72x
minimalize (versus minimize), 6
minimum, 493
minimum description length principle, 49
minmax strategy, 143

approximate, 152
and boosting, 161
problems with playing, 145

minmax theorem, 144–145
and boosting, 157–159
proof of, 151–152, 171x
with pure strategies, 170x

mislabeled data. See noise
misorderings, 345
mistake-bounded learning. See online

prediction

522 Subject and Author Index

mistake matrix, 155
dual of, 159–160
value of, 157–159

mixed strategies, 143
model, 3
Mohri, Mehryar, 369
monomials, Boolean, 50x
Moon, Taesup, 369
movie ranking, 342
Mukherjee, Indraneel, 333, 406, 453
multiclass boosting

based on ranking, 361
experiments, 308–309
lower bound on error, 458x
and margins analysis, 334–337x
weak learning assumptions, 305–308
See also AdaBoost.MH; AdaBoost.MO;

AdaBoost.MR; AdaBoost.M1; multiclass-to-binary
reductions

multiclass-to-binary reductions, 303–304
all-pairs, 325
with generalized output codes, 325–328
with hierarchy of classes, 327
one-against-all, 303, 311–313
with output codes, 320–322

multi-label classification, 310
multilayer perceptron, 91x
multiplicative weights. See MW
MW, 146–147

and α-Boost, 162
analysis of, 147–151
and approximately solving a game, 152–153
for boosting, 159–162
and game value, 151
for online prediction, 155–156
and proof of minmax theorem, 151–152
self-play with, 171x
setting parameters of, 149–150
with varying parameter values, 171–172x

natural languages, ambiguity of, 364
neural network, 91x, 132
Newton’s method, 223x
niche, 256
noise

effect on AdaBoost, 398, 404–405
experiments with AdaBoost, 404
experiments with BrownBoost, 484–485
handling, 405

NonAdaBoost, 419
continuous-time limit of, 487x
as limit of boost-by-majority, 449–451

non-adaptive boosting. See NonAdaBoost
normal distribution, 28–29, 498
normal form, 142
normalization factor, 179

in confidence-rated AdaBoost, 275

norms, 492–493
of functions in span, 383–384
in support-vector machines versus AdaBoost, 127

notation, general, 491–492
NP-completeness, 177
numerical difficulties, 280n

O (big Oh notation), 492
objective function. See loss function
oblivious weak learner, 418

optimality of, 430–432
and potential function, 430–431

Occam’s razor, 13–14
odds and evens. See penny-matching
one-against-all reduction, 303, 311–313
one-error, 310–311

of AdaBoost.MH, 314–315
of AdaBoost.MR, 361–363
and Hamming loss, 315

online learning. See online prediction
online prediction, 153–157

versus batch, 153–154
as chip game, 455–456x
as game playing, 155–157
and linear separability, 172x
model for, 154–155
and penny-matching, 165–167
and Rademacher complexity, 171x

Opitz, David, 406
Opper, Manfred, 486
optimal boosting

lower bound, 433–447
See also boost-by-majority

optimal edge, 116
optimal encoding, 231
optimal margin, 116
optimal play (in chip game), 420–422,

430–432
approximated, 422–427

optimal predictor, 379–380
and Bayes optimal classifier, 380

optimal risk, 379–380
approached by AdaBoost, 385–387
approached by decision trees, 412x
approached by functions in span, 383
and Bayes error, 380–382
and regularization, 411–412x

optimal strategy. See maxmin strategy; minmax
strategy

optimization problem. See convex program; linear
programming

option trees, 297
ordered pair, 492
Orlitsky, Alon, 333
outliers

and boost-by-majority, 451
detection, 317

Subject and Author Index 523

output codes, 320–322
based on hierarchy, 327
design of, 322–323, 326–327
error-correcting, 322–323
experiments with, 332–333
generalized (ternary), 325–327

output node (of feedforward network), 89x
overfitting, 13–14
AdaBoost’s resistance to, 15–16
and estimating conditional probabilities, 202–203
and margins analysis, 99
and theoretical bounds, 42
and universal consistency, 397
of voting classifiers, 120–122, 137x

Oza, Nikunj C., 170

PAC learning, 44–47
and computational intractability, 45–46
equivalence of strong and weak, 46–47, 86–88
general resource requirements, 88
strong, 45
weak, 46

pair, ordered, 492
pair-based weak learner (for ranking), 353
Panchenko, D., 133
parsing, 364–365

using RankBoost, 365–366
partial derivative, 495
partition, 283
patterns, rectangular, 68
penalizer instance, 398, 402
penny-matching, 163–169

experiments, 167–169
and online prediction, 165–167

perceptron, multilayer, 91x
Pfeiffer, Karl-Peter, 333
Phillips, Steven J., 263
polling, 97, 99
Polyak, B. T., 262
position (of chip), 419

in continuous time, 464
potential function

of BrownBoost, 465
for chip game, 426
in continuous-time limit, 463–467
discontinuity of BrownBoost’s, 467, 486x
in MW analysis, 147
and random play of oblivious weak learner, 430–431

power set, 491
prediction node, 291
prediction rule, 3
predictor, 3
preference pairs, 343
presence-only data, 256
primal form (of linear program), 173x
prior knowledge, incorporating, 211–215
prior model, 212
probabilistic method, 435

probability density function, 498
probably approximately correct. See

PAC learning
projection, 228
projection, iterative. See iterative projection

algorithms
Pujol, Oriol, 333
puller instance, 398, 402
pure strategies, 143

and minmax theorem, 170x
Pythagorean theorem, 246–247

quadratic loss. See square loss
quasi-bipartite feedback, 358
quasi-layered feedback, 357–358
Quinlan, J. Ross, 297

Rademacher complexity, 106–111
alternative definition, 107n
for classifiers, 108, 171x
and error bounds, 107–108
and Lipschitz functions, 109, 136x
and margins analysis, 109–111
and support-vector machines, 136–137x
of voting classifiers, 108–109

Radeva, Petia, 333
Raik, E. V., 262
Rajaram, Shyamsundar, 369
random AdaBoost, 185–186
random forests, 133
randomized play, 142–143
randomized predictions, 72x
random projections, 137–138x
random variables, unbounded, 384
RankBoost, 345–348

and AdaBoost.MO, 369–370x
based on reduction, 346
with binary weak learner, 351–353
choosing αt in, 347–348
and confidence-rated AdaBoost, 370x
criterion to optimize, 347–348
for finding cancer genes, 366–367
for graded feedback, 370–371x
for layered feedback, 354–355
loss compared to AdaBoost, 348–351
for multiclass classification, 361
for multiclass logistic regression, 372–373x
for parsing, 365–366
for quasi-layered feedback, 358–359
ranking loss of, 347
See also weak learner (for ranking)

RankBoost.L, 354–355
RankBoost.qL, 358–359

for multiclass classification, 361
ranked retrieval, 354, 358
ranking

boosting for (see RankBoost)
feedback, 343–344

524 Subject and Author Index

ranking (cont.)
framework, 342–345
inconsistent feedback, 343–344
for multiclass classification, 361
for multiclass logistic regression, 372–373x
reduction to binary, 346

ranking exponential loss, 349
versus exponential loss, 348–351

ranking loss, 344–345
of RankBoost, 347

Rätsch, Gunnar, 71, 133
Ravikumar, Pradeep, 333
real-valued weak hypotheses. See confidence-rated

predictions
receiver-operating-characteristic curve, 369
rectangles, axis-aligned. See axis-aligned rectangles
reductions

boosting to repeated game, 160
online prediction to repeated game, 155–156
ranking to binary, 346
See also multiclass-to-binary reductions

reference distribution, 147
reference function, 383–384
regression. See linear regression; logistic regression
regret, 169

See also cumulative loss (in repeated game); online
prediction

regularization, 204–205
and boosting, 205–209
for density estimation, 259
and margin maximization, 209–211
properties of solutions, 224–225x
and true risk, 411–412x

regularization path, 205
and trajectory of AdaBoost, 209
and trajectory of α-Boost, 207–209

rejecting low-confidence predictions, 128–129
relative entropy, 147, 231–232

base of, 232
in MW analysis, 147–149
See also binary relative entropy; unnormalized

relative entropy
relative loss. See cumulative loss (in repeated game);

online prediction
repeated games. See games, learning in repeated
resampling, 62–63, 62n
reserve design, 260
residual, 183
reverse index, 280
reweighting, 63
Reyzin, Lev, 133
Richardson, Thomas, 220
Ridgeway, Greg, 220
ripper, 290
risk, 201

empirical, 379
for general loss, 407–408x, 412–413x
optimal (see optimal risk)

optimal predictor, 379–380
poor accuracy if minimized, 398–404, 412–413x
true, 379
See also exponential loss; loss function

Ritov, Ya’acov, 406
ROC curve, 369
Rockafellar, R. Tyrrell, 262
Rock-Paper-Scissors, 142

and minmax theorem, 145
and The Simpsons, 145

Rosset, Saharon, 170, 220
Rudin, Cynthia, 133, 262–263, 369, 406
rule (if-then), 287

condition of, 288–289
examples covered by, 287

rule (prediction), 3
rule of thumb, 1–2
rule-sets, 287–290

boosting algorithm for, 287–289
other algorithms for, 297

Russell, Stuart, 170

Sahai, Amit, 333
Sauer, N., 49
Sauer’s lemma, 37

tightness of, 51x
Schapire, Robert E., 71, 89, 132–134, 169–170,

219–220, 262–263, 297, 333, 369, 406, 453
Schohn, Greg, 134
Schölkopf, Bernhard, 133
Schuurmans, Dale, 133, 170
seed, 436
semantic classification, 316–317

rejecting low-confidence predictions, 128
semi-supervised learning, 215–219
Sengupta, Shiladitya, 369
sequence extrapolating robot, 163
sequences, convergence of, 493–494
sequential play, 143–144
Servedio, Rocco A., 406
set difference, 491
Shalev-Shwartz, Shai, 71, 133
Shannon, Claude E., 163, 170, 262
shattering, 36
Shawe-Taylor, John, 133, 170
Shields, Paul C., 262
Shtarkov, Yuri M., 170
sigmoid function, 194
sign function, 491

avoiding redefinition, 89x
Simon, Hans-U., 220
simplicity, 24–26
Simpsons, The, 145
Singer, Yoram, 71, 133, 219, 262, 297,

333, 369
slipper, 289–290
Smola, Alex, 133
smoothed predictions, 284–285

Subject and Author Index 525

smooth margin, 134–135x
soft Oh, 492
solution, BrownBoost, 471–475, 488x
solving a game, 145

approximately, 152–153
and linear programming, 173–174x

spam filtering, 1
rejecting low-confidence predictions, 128

span, 382–383
sparsity

in abstaining weak hypotheses, 279–281
of approximate minmax strategy, 153
of output codes, 328

specialist, 297
species distribution modeling, 255–260

convex program for, 258–259
as density estimation, 256
experiments, 260

splitter node, 291
spoken-dialogue task, 316–317

and active learning, 130–132
limited data, 211
rejecting low-confidence predictions, 128

square loss, 175
coordinate descent on, 183–184

stability. See bias-variance analysis
standard deviation, 498
standard normal, 498
state of play, 165
“statistical view” of boosting, 219–220
stochastic coordinate descent. See random AdaBoost
stochastic differential equations, 486
Stork, David G., 49
strong learnability, 45

equivalent to weak learnability, 86–88
subsequence, convergent, 495
support-vector machines, 122–128

and boosting, 126–128
generalization error of, 91x
kernel trick, 125
with linearly inseparable data, 123
mapping to high dimensions, 123–125
and margin maximization, 122–123
and Rademacher complexity, 136–137x
VC-dimension of, 126

supremum, 493
SVMs. See support-vector machines
symmetric difference, 311

tail bounds. See binomial distribution
target class, 44
target error, 476
target function, 44, 154
Taylor’s theorem, 495

and empirical risk, 410–411x
term, 316
ternary output codes, 325–327

test error, 3
test examples, 3
test set, 3
Thomas, Joy A., 262, 453
three-round boosting algorithm, 71–72x
threshold rules, 24

compression scheme for, 41
finding best, 27
labelings induced by, 34
VC-dimension of, 36
See also decision stumps

Tibshirani, Robert, 219–220, 333
time, continuous. See continuous-time limit of

boost-by-majority
Tjalkens, Tjalling J., 170
top-down decision-tree algorithm, 298–300x
training error, 3, 26

of AdaBoost, 54–56
of AdaBoost.MH, 315–316, 324
of AdaBoost.MO, 323–325, 328–332
of AdaBoost.M1, 306–307
of AdaBoost.MR, 363
as biased estimate of generalization error, 26–27
of boost-by-majority, 428–430
of BrownBoost, 475–476
of confidence-rated AdaBoost, 274
looseness of bounds, 56
and randomized predictions, 72x

training examples, 3
training instances (for ranking), 342
training set, 3

as tuple, 24
trajectory of boosting, 205–207

and regularization path, 207–209
transpose (of matrix), 492
Traskin, Mikhail, 406
true error. See generalization error
true risk, 379

and empirical risk, 393–396
optimal (see optimal risk)
and regularization, 411–412x

tuples, 491
Tur, Gokhan, 134

unbounded random variables, 384
uniform convergence bounds, 32–33

abstract formulation, 38–39
for exponential loss (risk), 393–396
See also error bounds

union (of sets), 491
union bound, 31

and generalization error bounds, 33
unions of intervals. See intervals, unions of
universal consistency (in online prediction), 169
universal consistency (statistical), 378

of AdaBoost, 386–387
counterexample with binary predictions, 401–404

526 Subject and Author Index

counterexample with confidence-rated predictions,
398–401

and margins theory, 397–398
and overfitting, 397

unlabeled data
in active learning, 129–132
in semi-supervised learning, 215–219

unnormalized relative entropy, 239
upper limit, 494

Valiant, Leslie G., 49–50
value. See game value
Vandenberghe, Lieven, 262
Vapnik, Vladimir N., 49, 133
Vapnik-Chervonenkis dimension. See VC-dimension
variance, 498

of unbounded random variables, 384
See also bias-variance analysis

Vayatis, Nicolas, 406
Vazirani, Umesh V., 49
VC-dimension, 36

of affine threshold functions, 89x
of axis-aligned rectangles, 50x
as complexity measure, 37–38
and compression schemes, 91x
of decision stumps, 52x
of feedforward network, 90x
of finite hypothesis space, 50x
and generalization error, 37
of linear threshold functions, 77–78
and Rademacher complexity, 108
of support-vector machines, 126

Viola, Paul, 71
vMW, 171–172x
Vohra, Rakesh, 169
von Neumann, John, 169, 262
von Neumann minmax theorem. See minmax theorem
voting classifiers

in boost-by-majority, 461
and elections, 97
more complex than constituents, 120–122
Rademacher complexity of, 108–109
See also linear threshold functions

voting game, 417
versus repeated game, 417–418

Vovk, Volodimir G., 169–170

Warmuth, Manfred K., 49, 71, 89, 133, 169, 262
weak classifier. See weak hypotheses
weak hypotheses, 4

abstaining (see abstaining weak hypotheses)
complexity of, 76
domain-partitioning, 283–285
real-valued (see confidence-rated predictions)
sparse, 279–281

weak learnability, 46
and empty feasible set, 237–239
equivalent to strong learnability, 86–88

and linear separability, 58–60, 116, 158–159
and minmax theorem, 157–159
sufficient conditions for, 56–60
See also weak learning assumptions

weak learner (for classification). See weak learning
algorithms

weak learner (for ranking)
design of, 347–348
instance-based, 352–353
pair-based, 353

weak learning algorithms, 4, 62–70
for decision stumps, 64–66
design approaches, 63–64
example weights used by, 62–63
exhaustive, 58
oblivious, 418
using random projections, 137–138x

weak learning assumptions, 4, 47–48
effect on boosting, 112–113
empirical, 48
and generalization error, 80–81
for multiclass, 305–308
in PAC model, 46
and training error of AdaBoost, 56
See also weak learnability

weak learning condition. See weak learning
assumptions

weighted error, 6
weighted feedback, 357
Weighted Majority Algorithm, 154
weighted majority-vote classifiers. See voting

classifiers
weighting function, 427

of BrownBoost, 467–468
in continuous-time limit, 467–468

weights. See αt , choosing; example weights
Widmer, Gerhard, 297
Wilcoxon-Mann-Whitney statistic, 369
Willems, Frans M. J., 170
Wyner, Abraham J., 219–220

Xi, Yongxin Taylor, 170
Xu, Jun, 369

Ye, Yinyu, 220
Yu, Bin, 170, 220, 262, 406

Zadrozny, Bianca, 333
Zakai, Alon, 406
Zenios, Stavros A., 262
0-1 loss. See classification loss
zero-sum games, 142
Zhang, Tong, 170, 262, 406
Zhang, Zhifeng, 219
Zhao, Peng, 220
Zhu, Ji, 170, 220, 333
Zonation, 260

Adaptive Computation and Machine Learning
Thomas Dietterich, Editor
Christopher Bishop, David Heckerman, Michael Jordan,
and Michael Kearns, Associate Editors

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Søren Brunak

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

Graphical Models for Machine Learning and Digital Communication, Brendan J. Frey

Learning in Graphical Models, Michael I. Jordan

Causation, Prediction, and Search, second edition, Peter Spirtes, Clark Glymour, and Richard
Scheines

Principles of Data Mining, David Hand, Heikki Mannila, and Padhraic Smyth

Bioinformatics: The Machine Learning Approach, second edition, Pierre Baldi and Søren Brunak

Learning Kernel Classifiers: Theory and Algorithms, Ralf Herbrich

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,
Bernhard Schölkopf and Alexander J. Smola

Introduction to Machine Learning, Ethem Alpaydin

Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Christopher K. I. Williams

Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, Eds.

The Minimum Description Length Principle, Peter D. Grünwald

Introduction to Statistical Relational Learning, Lise Getoor and Ben Taskar, Eds.

Probabilistic Graphical Models: Principles and Techniques, Daphne Koller and Nir Friedman

Introduction to Machine Learning, second edition, Ethem Alpaydin

Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation,
Masashi Sugiyama and Motoaki Kawanabe

Boosting: Foundations and Algorithms, Robert E. Schapire and Yoav Freund

	Contents
	Series Foreword
	Preface
	1 Introduction and Overview
	1.1 Classification Problems and Machine Learning
	1.2 Boosting
	1.3 Resistance to Overfitting and the Margins Theory
	1.4 Foundations and Algorithms

	I CORE ANALYSIS
	2 Foundations of Machine Learning
	2.1 A Direct Approach to Machine Learning
	2.2 General Methods of Analysis
	2.3 A Foundation for the Study of Boosting Algorithms

	3 Using AdaBoost to Minimize Training Error
	3.1 A Bound on AdaBoost’s Training Error
	3.2 A Sufficient Condition for Weak Learnability
	3.3 Relation to Chernoff Bounds
	3.4 Using and Designing Base Learning Algorithms

	4 Direct Bounds on the Generalization Error
	4.1 Using VC Theory to Bound the Generalization Error
	4.2 Compression-Based Bounds
	4.3 The Equivalence of Strong and Weak Learnability

	5 The Margins Explanation for Boosting’s Effectiveness
	5.1 Margin as a Measure of Confidence
	5.2 A Margins-Based Analysis of the Generalization Error
	5.3 Analysis Based on Rademacher Complexity
	5.4 The Effect of Boosting on Margin Distributions
	5.5 Bias, Variance, and Stability
	5.6 Relation to Support-Vector Machines
	5.7 Practical Applications of Margins

	II FUNDAMENTAL PERSPECTIVES
	6 Game Theory, Online Learning, and Boosting
	6.1 Game Theory
	6.2 Learning in Repeated Game Playing
	6.3 Online Prediction
	6.4 Boosting
	6.5 Application to a “Mind-Reading” Game

	7 Loss Minimization and Generalizations of Boosting
	7.1 AdaBoost’s Loss Function
	7.2 Coordinate Descent
	7.3 Loss Minimization Cannot Explain Generalization
	7.4 Functional Gradient Descent
	7.5 Logistic Regression and Conditional Probabilities
	7.6 Regularization
	7.7 Applications to Data-Limited Learning

	8 Boosting, Convex Optimization, and Information Geometry
	8.1 Iterative Projection Algorithms
	8.2 Proving the Convergence of AdaBoost
	8.3 Unification with Logistic Regression
	8.4 Application to Species Distribution Modeling

	III ALGORITHMIC EXTENSIONS
	9 Using Confidence-Rated Weak Predictions
	9.1 The Framework
	9.2 General Methods for Algorithm Design
	9.3 Learning Rule-Sets
	9.4 Alternating Decision Trees

	10 Multiclass Classification Problems
	10.1 A Direct Extension to the Multiclass Case
	10.2 The One-against-All Reduction and Multi-label Classification
	10.3 Application to Semantic Classification
	10.4 General Reductions Using Output Codes

	11 Learning to Rank
	11.1 A Formal Framework for Ranking Problems
	11.2 A Boosting Algorithm for the Ranking Task
	11.3 Methods for Improving Efficiency
	11.4 Multiclass, Multi-label Classification
	11.5 Applications

	IV ADVANCED THEORY
	12 Attaining the Best Possible Accuracy
	12.1 Optimality in Classification and Risk Minimization
	12.2 Approaching the Optimal Risk
	12.3 How Minimizing Risk Can Lead to Poor Accuracy

	13 Optimally Efficient Boosting
	13.1 The Boost-by-Majority Algorithm
	13.2 Optimal Generalization Error
	13.3 Relation to AdaBoost

	14 Boosting in Continuous Time
	14.1 Adaptiveness in the Limit of Continuous Time
	14.2 BrownBoost
	14.3 AdaBoost as a Special Case of BrownBoost
	14.4 Experiments with Noisy Data

	Appendix: Some Notation, Definitions, and Mathematical Background
	A.1 General Notation
	A.2 Norms
	A.3 Maxima, Minima, Suprema, and Infima
	A.4 Limits
	A.5 Continuity, Closed Sets, and Compactness
	A.6 Derivatives, Gradients, and Taylor’s Theorem
	A.7 Convexity
	A.8 The Method of Lagrange Multipliers
	A.9 Some Distributions and the Central Limit Theorem

	Bibliography
	Index of Algorithms, Figures, and Tables
	Subject and Author Index

