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INTRODUCTION
Richard Brown

Elegant geometry
Mathematicians often ‘see’ mathematical objects like equations using geometry.

This is a visual proof of the famous Pythagorean Theorem, a2 + b2 = c2.

It is said that mathematics is the art of pure reason. It is the
fundamental logical structure of all that exists, and all that doesn’t exist, in
this reality of ours. Far removed from the simple calculations that allow us to
balance our accounts and calculate our everyday affairs, mathematics helps
us to order and understand the very notion of everything we can imagine in
life. Like music, art and language, the essential symbols and concepts of
mathematics, many of which are defined and discussed in this book, allow us
to express ourselves in amazingly intricate ways and to define unimaginably
complex and beautiful structures. While the practical uses for mathematics
are rife, what makes mathematics so magical is its elegance and beauty
outside of any real application. We give the concepts in mathematics meaning
only because they make sense and help us to order our existence. But outside



of the meaning we give these elements of maths, they do not really exist at all
except in our imagination.

The natural and social sciences use mathematics to describe their theories
and provide structure to their models, and arithmetic and algebra allow us to
conduct our business and learn how to think. But beyond these practical
applications lies the true nature of the discipline; mathematics is the
framework and provides the rules of engagement for the entire system of
structured thought.

This text is a glimpse into the world a mathematician sees in everyday life.
Herein lies a set of some of the more basic and fundamental elements in the
field today, with definitions, a little history, and some insight into the nature
of many basic mathematical concepts. This book contains 50 entries, each of
which centres on an important topic in mathematics. They are ordered into
seven categories, which roughly help to define their context. In Numbers &
Counting, we explore the basic building blocks that allow us to enumerate
our surroundings. We study some of the operations and structures on
numbers in Making Numbers Work. These entries basically describe the
arithmetic system that helps us to use mathematics in our everyday lives. In
Chance is a Fine Thing, we detail some ideas and consequences when using
mathematics to understand random events and chance happenings. Next, we
lay out some of the deeper, more complex structures of numbers in Algebra &
Abstraction. It is here that the path towards higher mathematics begins. In
turn, we explore the more visual aspects of mathematical relationships in
Geometry & Shapes. Since mathematical abstraction is one of pure
imagination, we then explore what happens outside of our three dimensions in
Another Dimension. And finally, in Proofs & Theorems, we discuss some of
the more profound ideas and facts that our mathematical path has led us to.

Individually, each entry is a brief glimpse into one of the more beautiful and
important ideas central to mathematics today. Each topic is presented in the
same format, aimed at facilitating a proper introduction; the 3-second sum
offers the briefest overview, the 30-second maths goes into further depth on
the topic, and a 3-minute addition begins the process of pondering the deeper
connections between the idea and its importance in the world. It is hoped
that, taken together, these elements will help to open your eyes to a closer
understanding of the nuts and bolts of what mathematics is really all about.

When used as a reference text, this book will provide the basics of some of
the more profound ideas in mathematics. When read in full, this text may
provide a glimpse into another world as rich and meaningful as the one you
live in now: the world of mathematics.



Dimensional beauty
There are only five ways to construct a three-dimensional solid using regular
polygons. It is not hard to see why. But does that make these objects special?

Mathematicians think so.



NUMBERS & COUNTING



NUMBERS & COUNTING
GLOSSARY

algebra One of the main branches of pure mathematics which studies
operations and relations on numbers. Elementary algebra involves studying
the rules of arithmetic on expressions involving variables. Advanced algebra
involves studying these operations and relations on mathematical objects and
constructions other than numbers.

algebraic number Any number that is a root of a non-zero polynomial that
has integer coefficients. In other words algebraic numbers are solutions to
polynomial equations (see here), such as x2 − 2 = 0, where x = √2. All rational
numbers are algebraic, but irrational numbers can be either algebraic or not.
One of the best-known algebraic numbers is the golden ratio (1.6180339…),
which is usually written φ.

binary (base 2) The counting system in which only the numbers 1 and 0
feature. Just as in our base 10 system there is a 1s column (100 = 1), 10s
column (101) and 100s (102) column, and so on, in base 2 there is a 1s (20)
column, a 2s column (21 = 1), a 4s column (22), and so on. For example, the
binary version of 7 is written 111, as in 1 × 1 + 1 × 2 + 1 × 4.

coefficient A number that is used to multiply a variable; in the expression 4x
= 8, 4 is the coefficient, x is the variable. Although usually numbers, symbols
such as a can be used to represent coefficients. Coefficients that have no
variables are called constant coefficients or constant terms.

complex number Any number that comprises both real and imaginary
number components, such as a + bi, in which a and b represent any real
number and i represents √−1. See imaginary number.

factor One of two or more numbers that divides a third number exactly. For
example 3 and 4 are factors of 12, as are 1, 2, 6 and 12.

figurate number Any number that can be represented as a regular geometric
shape, such as a triangle, square or hexagon.

fractional number (fraction) Any number that represents part of a whole.
The most common fractions are called common or vulgar fractions, in which
the bottom number, the denominator, is a non-zero integer denoting how
many parts make up the whole, whereas the top number, the numerator,
represents the number of equal divisions of the whole. Proper fractions
represent a value of less than 1, e.g., ⅔, whereas improper fractions represent
a value greater than 1, e.g., 3/2, or 1⅓.



imaginary number A number that when squared provides a negative result.
As no real number when squared provides a negative result, mathematicians
developed the concept of the imaginary number unit i, so that i × i = −1 or put
another way i = √−1. Having an imaginary number unit that represents √−1
helps solve a number of otherwise unsolvable equations, and has practical
applications in a number of fields.

integer Any natural number (the counting numbers 1, 2, 3, 4, 5 and so on), 0
or the negative natural numbers.

irrational number Any number that cannot be expressed as a ratio of the
integers on a number line. The most commonly cited examples of irrational
numbers are π and √2. A good way of identifying an irrational number is to
check that its decimal expansion does not repeat. Most real numbers are
irrational numbers.

number line The visual representation of all real numbers on a horizontal
scale, with negative values running indefinitely to the left and positive to the
right, divided by zero. Most number lines usually show the positive and
negative integers spaced evenly apart.

polynomial An expression using numbers and variables, which only allows
the operations of addition, multiplication and positive integer exponents, i.e.,
x2. (See Polynomial Equations.)

rational number Any number that can be expressed as a ratio of the integers
on a number line; or more simply any number that can be written as a
fraction, including whole numbers. Rational numbers are also identified by
finite or repeating decimals.

real number Any number that expresses a quantity along a number line or
continuum. Real numbers include all of the rational and the irrational
numbers.

transcendental number Any number that cannot be expressed as a root of a
non-zero polynomial with integer coefficients; in other words non-algebraic
numbers. π is the best-known transcendental number, and following the
opening definition π therefore could not satisfy the equation π2 = 10. Most
real numbers are transcendental.

whole number Also known as a natural or counting number, a whole number
is any positive integer on a number line or continuum. Opinion varies,
however, on whether 0 is a whole number.



FRACTIONS & DECIMALS
the 30-second maths

The whole numbers, 0, 1, 2, 3…, are the bedrock of mathematics,
and have been used by humans for millennia. But not everything can be
measured using whole numbers. If 15 hectares of land are divided between 7
farmers, each will have 15/7 (or 21/7) hectares. The simplest non-whole
numbers can be expressed in a fractional form like this. But for other
numbers, such as π, this is awkward or impossible. With the development of
science came the need to subdivide quantities ever more accurately. Enter the
decimal system, an efficient column-based method using Hindu-Arabic
numerals. Here, the number 725 has three columns, and stands for 7
hundreds, 2 tens and 5 units. By adding a decimal point after the units, and
extra columns to its right, this approach easily extends to numbers smaller
than a unit. So 725.43 stands for 7 hundreds, 2 tens, 5 units, 4 tenths (of a
unit) and 3 hundredths. By incorporating ever more columns to the left or to
the right, numbers both large and small can be written as precisely as needed.
In fact every number in between the whole numbers can be expressed as a
decimal (but not as a fraction), giving us the ‘real’ number system.

3-SECOND SUM
The starting point for mathematics is the system of whole numbers, 0, 1, 2,
3… But many things fall between the gaps, and there are two ways to measure
them.

3-MINUTE ADDITION
Translating between fractions and decimals is not always straightforward. It is
easy to recognize 0.25, 0.5 and 0.75 as ¼, ½ and ¾ respectively. But the
decimal equivalent of ⅓, is 0.333333…, where the string of 3s never ends, and
1/7 is 0.142857142857142857…, also with a never-ending repeating pattern.
It turns out all fractional numbers have repeating patterns in their decimal,
while non-fractional numbers like π have decimals that do not repeat. These
are the irrational real numbers.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

COUNTING BASES

ZERO

3-SECOND BIOGRAPHIES



ABU ‘ABDALLAH MUHAMMAD IBN MUSA AL-KHWARIZMI

c. 790–850
ABU’L HASAN AHMAD IBN IBRAHIM AL-UQLIDISI

c. 920–980
IBN YAHYA AL-MAGHRIBI AL-SAMAWAL

c. 1130–1180
LEONARDO PISANO (FIBONACCI)

c. 1170–1250
30-SECOND TEXT
Richard Elwes

Whole numbers can be subdivided into fractions, and decimals express
these divisions even more precisely.



RATIONAL & IRRATIONAL NUMBERS
the 30-second maths

Real numbers consist of positive numbers, negative numbers and 0,
and these values can be categorized in several ways. The most fundamental
way is to distinguish the real numbers that can be expressed as the fraction of
two integers, such as ½ or −7/3 (called rational numbers), from those that
cannot (called irrational numbers). The ancient Greeks believed all numbers
were rational, until a follower of Pythagoras proved that √2 is not rational. You
can tell if a number is rational or irrational by looking at its decimal
expansion – if the digits ultimately repeat, the number is rational (think 3/11
= 0.272727…). Decimal expansions of irrational numbers (for example, π =
3.14159265…) have digits that do not repeat. But there’s more. Rational
numbers and many irrational numbers have something in common – they are
algebraic, that is they are solutions to polynomial equations with integer
coefficients. For example, √2 solves x2 − 2 = 0 (see Polynomial Equations). But
many more irrational numbers are not algebraic, and π is one example.
Numbers that are not algebraic are called transcendental – only irrational
numbers can be transcendental.

3-SECOND SUM
‘Real’ numbers — the numbers used to express quantities and representable
via a decimal expansion — are either rational or irrational. But some
irrationals are more unusual than others.

3-MINUTE ADDITION
The philosophy of the ancient Greeks held that all things measurable are, at
worst, the ratio of whole numbers. Anecdotal history holds that the
Pythagoreans were so distraught to discover that √2 is irrational that
Hippasus of Metapontum was murdered to prevent revelation of this truth to
the world. A number like π is perhaps more intuitively irrational, but it was
only 250 years ago that this was proved true, and another century would pass
before π was proved to be transcendental.

RELATED THEORIES
FRACTIONS & DECIMALS

EXPONENTIALS & LOGARITHMS

POLYNOMIAL EQUATIONS

PI – THE CIRCLE CONSTANT



PYTHAGORAS

3-SECOND BIOGRAPHIES
HIPPASUS OF METAPONTUM

active fifth century BCE

JOHANN LAMBERT

1728–1777
CHARLES HERMITE

1822–1901
FERDINAND VON LINDERMANN

1852–1939
30-SECOND TEXT
David Perry

Be real – numbers are rational if they can be written as a fraction.
Otherwise they are irrational.



IMAGINARY NUMBERS
the 30-second maths

Over the years, mathematicians have enlarged the number system
several times. An early expansion was the inclusion of negative numbers. In
business, for example, if +4 represents being in profit by 4 units, then −4
stands for being 4 units in debt. Negative arithmetic has a surprising
property. Multiply a positive number by a negative, and you get a negative
result: e.g., −4 × 3 = −12. But multiply one negative number by another, and
you get a positive result: −4 × −3 = 12. So there was no number (positive or
negative) which, when multiplied by itself, gives a negative answer. This meant
that some simple equations, such as x2 = −1, could never be solved, which
was an obstacle to solving more sophisticated equations, even when solutions
existed. This was corrected by a new ‘imaginary’ number i, defined as the
square root of −1; that is to say i × i = −1. This started off as a cheat to assist
in calculations and was controversial early on; Descartes coined the term
‘imaginary’ as a derogatory term. Over time, however, it has become as
accepted as all other types of number. Today, the number system that
mathematicians prefer is termed ‘complex numbers’, comprising the likes of 2
+ 3i, or ½ −¼i, or more generally a + bi, where a and b are any ‘real’ (that is to
say decimal) numbers.

3-SECOND SUM
Today’s mathematicians work in an expanded number system, which includes
a new ‘imaginary’ number i, the square root of −1.

3-MINUTE ADDITION
The complex numbers allow for solutions to equations like x × x = −1. One
might ask next whether there are solutions to x × x = i, for example, or
whether we have to expand the system yet again. As it turns out, the complex
numbers contain solutions to all possible polynomial equations, meaning that
they are all we will ever need. This wonderful fact is known as the
fundamental theorem of algebra.

RELATED THEORIES
FRACTIONS & DECIMALS

POLYNOMIAL EQUATIONS

RIEMANN’S HYPOTHESIS

3-SECOND BIOGRAPHIES



NICCOLÒ FONTANA (‘TARTAGLIA’)

1500–1557
GIROLAMO CARDANO

1501–1576
RAFAEL BOMBELLI

1526–1572
CARL-FRIEDRICH GAUSS

1777–1855
AUGUSTIN-LOUIS CAUCHY

1789–1857
30-SECOND TEXT
Richard Elwes

Positive and negative integers weren’t enough for some mathematicians
– they needed imaginary numbers.



COUNTING BASES
the 30-second maths

When we count numbers beyond nine, we are used to putting a ‘1’ in
the next column and reusing the symbols. This is because we use the base 10
or decimal system. But base 10 has not always been the preferred system.
Ancient Babylonians used base 60 (the sexagesimal system), for counting.
Rather than stopping at nine and moving into the next column, they stopped
at 59. Some reminders of this system include the continued use of 60 minutes
in an hour, and 360° in a circle. References to base 12 counting, the
duodecimal system, give us the concepts of dozen and gross (a dozen dozen).
Base 20 counting, the vigesimal system, was common in early Europe (the
‘score’ in Abraham Lincoln’s famous Gettysburg Address line, ‘4 score and 7
years ago’, is 20). Modern computers use the base 2 or binary number system,
where only 0 and 1 are used. Here it was easy to produce early systems for
counting where only two mutually exclusive states are needed, like an open or
closed electrical circuit. In any base, addition and multiplication are well-
defined and one can do algebra. Try that the next time someone asks you for
the value of 1 plus 1. It is obviously 10 (in binary arithmetic)!

3-SECOND SUM
A base refers to the number of unique digits that a counting system uses to
represent numerical values.

3-MINUTE ADDITION
The Mayans of Central America also used base 20 for the ‘long count’ of their
calendar, although they ‘corrected’ the third column from the normal 400 = 20
× 20 part to 18 × 20 = 360, maybe to reflect the approximate number of days
in a year. If we prefer base 10 simply because our fingers are good calculators,
did the Mayans see the value of their open-shoed toes in this endeavour?

RELATED THEORIES
ZERO

3-SECOND BIOGRAPHIES
GOTTFRIED LEIBNIZ

1646–1716
GEORGE BOOLE

1815–1864



30-SECOND TEXT
Richard Brown

The most commonly used counting system is base 10 – the Babylonians
thought big with 60 unique digits. Computer code keeps it simple with a

mere two digits.



PRIME NUMBERS
the 30-second maths

Most whole numbers will factor into smaller parts. For example, 100
= 4 × 25. It’s also true that 100 = 20 × 5. If we take either of those and break
the factors into still smaller factors, we ultimately come to the prime
factorization of 100:100 = 2 × 2 × 5 × 5. We cannot break down the factors
further – they are prime, divisible only by 1 and themselves. When
mathematicians started listing the prime numbers, they searched for a pattern
but did not see one. They raised the question of whether the list was finite or if
one could find larger and larger primes. Euclid gave an elegant proof in his
Elements that there are infinitely many primes. 17,463,991,229 is a large
prime. How do we know it’s prime? We could try dividing this integer by all
smaller integers and find no factors other than 1, then declare it prime. This is
slow, however, and there are better ways. The largest known primes have over
10,000,000 digits, and clever methods are required to establish them as such.
Finding large primes might seem frivolous, but a revolutionary idea in the
1970s created a technique to effect secure communications by use of a system
requiring the generation of large prime numbers. This technique pervades the
internet, allowing us to shop online in safety.

3-SECOND SUM
A prime number is a positive integer that is divisible only by 1 and itself.
Primes cannot be ‘broken apart’, and are to integers as the elements are to
matter.

3-MINUTE ADDITION
When we take prime factorizations of numbers, it seems obvious that we will
always get the same prime numbers at the end. The more one studies
numbers, however, the less obvious this fact becomes. It’s true, and is so
important, that this fact bears the title of the fundamental theorem of
arithmetic. Although no formula will generate each prime number in turn, the
prime number theorem gives us an idea of what proportion of whole numbers
are prime.

RELATED THEORIES
NUMBER THEORY

EUCLID’S ELEMENTS

3-SECOND BIOGRAPHIES



EUCLID

fl. 300 BCE

CARL FRIEDRICH GAUSS

1777–1855
JACQUES HADAMARD

1865–1963
CHARLES JEAN DE LA VALLÉE-POUSSIN

1866–1962
30-SECOND TEXT
David Perry

Only divisible by 1 and themselves, prime numbers have fascinated
mathematicians for centuries. The discovery of large primes has

practical applications today.



FIBONACCI NUMBERS
the 30-second maths

In the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
… each term is the sum of the previous two terms. The resulting sequence,
which plays a special role in number theory, possesses many curious
numerical properties. If you add the terms in the Fibonacci sequence up to a
certain point, the sum is always one less than a Fibonacci number; e.g., 1 + 1
+ 2 + 3 + 5 + 8 is one less than the Fibonacci 21. Adding the squares of these
numbers produces a product of two Fibonacci numbers: 1 + 1 + 4+ 9 + 25 +
64 = 8 × 13. The ratios 1:1, 2:1, 3:2, 5:3, 8:5, … approach the golden ratio φ ≈
1.618. Geometrically, squares whose sides are Fibonacci numbers in length fit
together nicely to form a golden spiral. Long before humans became fascinated
with these patterns, plants had discovered the economy of Fibonacci numbers.
The leaves or buds of many plants with a spiral structure – such as
pineapples, sunflowers and artichokes – exhibit a pair of consecutive
Fibonacci numbers. Examining a pineapple, you’ll find 8 rows spiralling
around in one direction and 13 in the other direction. In the animal kingdom,
a honeybee has a Fibonacci number of ancestors in each generation.

3-SECOND SUM
A simple rule, adding the two previous terms to get the next term, produces
one of Mother Nature’s favourite sequences of numbers.

3-MINUTE ADDITION
In 1202, Leonardo Pisano, also known as Fibonacci, posed a riddle about
breeding rabbits in his book Liber Abaci (The Book of the Abacus). Fibonacci
posited, perhaps unrealistically, that after every month, each pair of adult
rabbits produces one pair of baby rabbits, and baby rabbits take one month to
become adults. If you start with a single pair of baby rabbits in January, you
will have 144 pairs of rabbits by December!

RELATED THEORIES
NUMBER THEORY

THE GOLDEN RATIO

3-SECOND BIOGRAPHY
LEONARDO PISANO (FIBONACCI)

c. 1170–c. 1250
30-SECOND TEXT



Jamie Pommersheim

Fibonacci numbers appear in the ancestral tree of a honeybee. Each
male bee has only a female parent, while each female has two parents,

one male and one female.



PASCAL’S TRIANGLE
the 30-second maths

What comes next in this sequence: (1 1), (1 2 1), (1 3 3 1), (1 4 6 4 1),
…? This riddle is an important problem in algebra, known as ‘expanding
brackets’. Start with the expression (1 + x) and multiply it by itself. This gives
(1 + x)2 = 1 + 2x + 1x2. Multiplying three brackets gives (1 + x)3 = 1 + 3x + 3x2

+ 1x3. Four produces (1 + x)4 = 1 + 4x + 6x2 + 4x3 + lx4. It is not the algebra
which is difficult here, but the numbers. The next expression will look
something like this: (1 + x)5 = 1 + ?x + ?x2 + ?x3 + ?x4 + 1x5. But what are the
right numbers to fill in here? Blaise Pascal wanted a way to find the answer
quickly, and find it he did, in the rows of his famous triangle. It begins with a
1. Below that, there are two more 1s. Pascal’s insight was that the process
could be continued, with each number coming from the two above it, added
together. (Earlier thinkers had come to similar conclusions, including the
Indian thinker Pingala, over a thousand years earlier.) This process is simple
to do: just a little addition and no complicated algebra. Each row then gives
the answer to a bracket expanding problem. So to find (1 + x)5, just read the
numbers along the sixth row: 1, 5, 10, 10, 5, 1.

3-SECOND SUM
Blaise Pascal’s celebrated triangle not only contains many fascinating
numerical patterns, it is also an essential tool in algebra.

3-MINUTE ADDITION
Pascal’s triangle contains many fascinating patterns. The first diagonal is a
row of 1s, and the second counts: 1, 2, 3, 4, … But the third comprises what
are known as the triangular numbers: 1, 3, 6, 10, 15, … If you want to
arrange balls into a triangle (at the start of a game of pool, for example), these
are the numbers that work. The Fibonacci numbers are also hiding in the
triangle, as the totals of successive ‘shallow diagonals’ – see if you can find
them!

RELATED THEORIES
FIBONACCI NUMBERS

THE VARIABLE PLACEHOLDER

POLYNOMIAL EQUATIONS

3-SECOND BIOGRAPHIES
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c. 200 BCE

ABU BEKR IBN MUHAMMAD IBN AL-HUSAYN AL-KARAJI

953–1029
YANG HUI

1238–1298
BLAISE PASCAL

1623–1662
ISAAC NEWTON

1643–1727
30-SECOND TEXT
Richard Elwes

Pascal’s triangle contains numerous mathematical patterns and
provides a neat solution to some algebraic problems.



BLAISE PASCAL
Suffering from chronic migraines, insomnia and dyspepsia, Pascal’s
short but productive life was lived for the most part in great pain. Despite this,
he became an outstanding mathematician, physicist, philosopher and
theologian, and worked (and quarrelled) with the greatest minds of his time.
Home schooled and motherless from the age of six, Pascal was forbidden to
study maths by his father, so of course he did it in secret. When he was 12,
his father relented and the young Pascal applied himself even harder,
developing a calculating machine to help with his father’s work as a tax
collector. Called the ‘Pascaline’, it was not the first mechanical calculator, and
although 50 were made it was not a commercial success; but its design and
the theory behind it were a great influence on Gottfried Leibniz.

Throughout his adult life Pascal had regular spats with the philosopher
Descartes over the existence (or not) of a vacuum. Descartes wrongly opined
that there was no such thing, which led to Pascal’s book on hydrostatics. He
also found time to develop the idea of ‘Pascal’s Triangle’ (see here), and
establish the principles of probability theory in correspondence with Pierre de
Fermat. We have inveterate gambler Chevalier de Méré to thank for this; he
asked Pascal if he could work out how to divide up the pot if two players of
equal abilities decided to quit the tables in mid-game. In 1646, Pascal’s father
fell ill and was nursed by Jansenist brothers from Port Royal monastery;
Pascal and his sister Jacqueline were profoundly influenced by this and
underwent religious conversion. Towards the end of his life, Pascal spent
much of his time trying to reconcile faith and reason; his attempts are
probably best exemplified by ‘Pascal’s Wager’, which appears in Pensées, a
collection of philosophical considerations unfinished at the time of his death.
The wager was concerned with the existence of God, and whether one should
bet on it. Pascal set the odds in God’s favour, reasoning that if He does exist,
your place in heaven is secure, and if He doesn’t, you have lost nothing.

19 June, 1623
Born in Clermont (now Clermont-Ferrand)

1631
Moved to Paris with his family

1639
Wrote Essay on Conics; family moved to Rouen

1642–1645
Constructed the Pascaline, a mechanical calculator



1647
Met Descartes and published New Experiments concerning Vacuums

1650
Converted to Jansenism

1653
Returned to scientific study

1653
Published Treatise on the Equilibrium of Liquids which explained his law of
pressure

1654
Corresponded with Fermat

1655
Method for ‘Pascal’s Triangle’ printed; met Antoine Arthaud, leading Jansenist
philosopher

1656–1657
Wrote Lettres Provinciales, in defence of Jansenism

1658
Wrote Essay on the Cycloids

1668
Began work on Pensées, a collection of philosophical and theological notes

19 August, 1662
Died in Paris

1670
Pensées published posthumously

1779
Essay on Conics published



NUMBER THEORY
the 30-second maths

Number theory is the study of interesting properties that numbers
possess. For example, choose any odd prime number and divide it by 4. The
remainder will be either 1 or 3. It can be proven that if the remainder is 1, you
can find two square numbers that add up to that prime. For example, dividing
73 by 4 gives 18 with a remainder of 1. After a short search, you can
determine that 73 = 9 + 64 = 32 + 82. On the other hand, a remainder of 3
means that no matter how hard you look, it is impossible to find two squares
that add up to that prime (try 7 or 59). This begs the question: why?
Mathematicians are never satisfied with discovering this kind of interesting
behaviour – they want to prove that such properties are always true. Ancient
Greek mathematicians began exploring properties of divisibility of integers,
leading them to study prime numbers. They also enjoyed studying figurate
numbers and their interrelationships. If you have a number of stones that can
be arranged into an equilateral triangle, or a square, or a pentagon, and so
forth, it is called figurate. Euclid even provided a formula for when any two
squares add up to a third square. Pondering similar equations led Pierre de
Fermat to conjecture what became his famous Last Theorem.

3-SECOND SUM
Number theory is the discipline devoted to the study of properties and the
behaviour of various classes of numbers.

3-MINUTE ADDITION
Carl Friedrich Gauss declared that mathematics was the queen of the sciences
and that number theory was the queen of mathematics. G. H. Hardy echoed
this sentiment some 70 years ago, relishing an area of mathematics that is
only studied for the surprising beauty of the discovered truths, an area
unsullied by practical application. When number theory later began to show
unanticipated application to cryptology, few thought the beauty of the queen
of mathematics was in any way diminished.

RELATED THEORIES
PRIME NUMBERS

RINGS & FIELDS

EUCLID’S ELEMENTS

FERMAT’S LAST THEOREM



3-SECOND BIOGRAPHIES
PYTHAGORAS

c. 570–c. 495 BCE

EUCLID

fl. 300 BCE

PIERRE DE FERMAT

1601–1665
CARL FRIEDRICH GAUSS

1777–1855
G. H. HARDY

1877–1947
30-SECOND TEXT
David Perry

Figurate numbers are a branch of number theory – numbers that can
expressed as a geometric arrangement.

> Any square number is the sum of two triangular numbers – here 52 is
the result of adding 10 + 15.

> The addition of successive odd integers, starting with 1, gives you a
square number: 82 = 64.





MAKING NUMBERS WORK



MAKING NUMBERS WORK
GLOSSARY

algebraic expression Mathematical expression in which letters or other
symbols are used to represent numbers. Algebraic expressions can also
feature Arabic numerals and any of the signs of operation, such as +
(addition), × (multiplication), √ (square root), and so on. No matter how
complex the algebraic expression, it always represents a single value.

associative A property of an operation on numbers such that when an
expression involves two or more occurrences of the operation it does not
matter in which order the operations are performed. For example,
multiplication of numbers is associative, since (a × b) × c = a × (b × c).

Boolean logic (Boolean algebra) A form of algebra in which logical
propositions are represented by algebraic equations in which ‘multiplication’
and ‘addition’ (and negatives) are replaced with ‘and’ and ‘or’ (and ‘no’), and
where the numbers 0 and 1 represent ‘false’ and ‘true’ respectively. Boolean
algebra played (and still plays) a significant role in the development of
computer programming.

Cartesian coordinates Numbers that represent the position of a specific point
on a graph or map by a grid-like positioning system. The coordinates are given
by values representing the distance on both the horizontal (x) axis, and on the
vertical (y) axis away from a reference point, usually the crossing point of the
axes.

commutative A property of an operation on numbers such that when the
order is reversed the answer is still the same. For example, multiplication of
numbers is commutative since 3 × 5 = 5 × 3.

differential equation An equation involving an unknown function and some
of its derivatives. Differential equations are the primary tools used by
scientists to model physical and mechanical processes in physics and
engineering.

exponent The number of times by which another number, known as the base
number, is to multiply itself. In the expression 43 = 64, the exponent is 3 and
the base is 4. The exponent is also known as the index or power.

expression A collection of numbers, and/or symbols, which together with any
of the signs of operation, such as + (addition) or × (multiplication), determine a
value.

function When applied to a quantity, known as the input, running a function
results in another quantity, known as the output. A function is often written



as f(x). For example f(x) = x2 is a function in that for every input value of x you
get an output value of x2, so that f(5) = 25, f(9) = 81, and so on. The collection
of all inputs and outputs can be thought of as individual sets so that a
function relates each element of the input set to another element of the output
set.

monadology Gottfried Leibniz’s metaphysical philosophy as expressed in his
work The Monadology (1714). The philosophy is based around the concept of
monads, simple substances Leibniz called ‘the elements of things’, each of
which is programmed to behave in a certain way.

multiplier The quantity by which a number, known as the multiplicand, is to
be multiplied. In the expression 3 × 9 = 27, the multiplier is 3 and the
multiplicand is 9.

number line The visual representation of all real numbers on a horizontal
scale, with negative values running indefinitely to the left and positive to the
right, divided by zero. Most number lines usually show the positive and
negative integers spaced evenly apart.

quantum mechanics A branch of physics in which mathematical formulae
play a central role in describing the motion and interaction of subatomic
particles, including, for example, wave-particle duality.

real number Any number that expresses a quantity along a number line or
continuum. Real numbers include all the rational numbers (that is, numbers
that can be expressed as a ratio or fraction; including the positive and
negative integers and decimals), the irrational numbers (those numbers that
cannot be written as a vulgar fraction, such as √2), and the transcendental
numbers (such as π).

variable A quantity that can change its numerical value. Variables are often
expressed as letters such as x or y, and are often used as placeholders in
expressions and equations such as 3x = 6, in which 3 is the coefficient, x is
the variant, and 6 is the constant.



ZERO
the 30-second maths

Zero was used as a placeholder in numeral systems by several
ancient peoples, including the Babylonians, Greeks (but only astronomers!),
and Mayans. It was also used this way in India, where our modern system of
numerals originated. In 628 CE, Brahmagupta wrote the first book that treats
zero as a number rather than just a placeholder, giving rules for arithmetic
using zero and negative numbers. Al-Khwarizmi introduced the Indian
numeral system to the Islamic world in 820. Fibonacci introduced it to Europe
in 1202 in Liber Abaci, popularizing the use of zero in Europe. Zero is the only
real number that is neither positive nor negative, and any number that is not
zero is called ‘non-zero’. Zero is the additive identity, i.e., a + 0 = a, where a is
any real number, adding zero to it leaves it unchanged. Furthermore, a × 0 =
0, and 0/a = 0 for non-zero a. While one might think that a real number
divided by zero is infinity, that doesn’t make sense in a rigorous manner, so
mathematicians just say division by zero is undefined. Because it is divisible
by 2, 0 is an even number. However, if the exponent is 0 the answer is always
1, for example a0 = 1 for any real number a other than 0. Some
mathematicians prefer to count starting with 0 instead of 1.

3-SECOND SUM
Zero, the symbol for which is 0, is the absence of quantity. Synonyms for zero
include nil, naught, zilch, zip, cipher, and goose egg.

3-MINUTE ADDITION
In Boolean logic 0 denotes false, and in electrical appliances 0 is shorthand
notation for off. In physics, absolute zero is the theoretical minimum
temperature. ‘Subzero’ is used to mean negative numbers or quantities. To
‘zero’ a device is to adjust it to zero value. And a ‘zero’ is often used to mean
an insignificant person or thing – hardly, for this very important and most
versatile of our real numbers!

RELATED THEORIES
COUNTING BASES

INFINITY

ADDITION & SUBTRACTION

MULTIPLICATION & DIVISION

EXPONENTIALS & LOGARITHMS



3-SECOND BIOGRAPHIES
BRAHMAGUPTA

598–c. 670
ABU ‘ABDALLAH MUHAMMAD IBN MUSA AL-KHWARIZMI

c. 780–c. 850
LEONARDO FIBONACCI

1170–1250
30-SECOND TEXT
Robert Fathauer

Much ado about nothing – zero is an integer in its own right.



INFINITY
the 30-second maths

That the natural numbers are infinite (never ending) is easy to see.
Declare any number to be the highest and you can always add one more. That
there are an infinite number of numbers between 0 and 1 is also true, but a
little trickier. The concept of infinity has fascinated mathematicians for
millennia. The Greek stoic Zeno studied the idea through a series of
paradoxes. His most famous posited that all motion is impossible, since to go
from point A to point B, one must pass through an infinite number of in-
between points, each taking a positive time to get from one to the next, and
since an infinite number of positive numbers must add to infinity, one can go
nowhere in finite time. We now know where he went wrong (an infinite
number of positive numbers can have a finite sum!), but the thought provoked
much study. Today the central idea behind calculus involves infinity. Average
rates of change using an infinite sequence of increasingly small positive time
intervals (we say ‘infinitesimally small’) help define the instantaneous rate of
change. This works much like a car’s speedometer, which registers your
speed; your distance travelled over a very small positive interval of time.
Without infinity, maybe we really cannot go anywhere!

3-SECOND SUM
All good things must come to an end, but not in mathematics.

3-MINUTE ADDITION
Buzz Lightyear, the famous space hero in Pixar’s Toy Story series, proudly
proclaims ‘To infinity and beyond!’ But like the end of the real number line
and the horizon for intrepid sailors, no matter how far we travel, we are never
any closer to it than when we started. Even the total number of subatomic
particles in the universe, estimated at far less than 10100 (a googol), is no
closer to infinity than 1 is. To get beyond infinity, one must first reach it. Even
Zeno would have appreciated that.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

CALCULUS

THE CONTINUUM HYPOTHESIS

3-SECOND BIOGRAPHY
ZENO OF ELEA



c. 490–c. 430 BCE

GEORG CANTOR

1845–1918
30-SECOND TEXT
Richard Brown

Will there ever be an end to all this? Not according to the
mathematicians.



ADDITION & SUBTRACTION
the 30-second maths

Ancient cultures such as the Egyptians and Babylonians were using
addition and subtraction as early as 2000 BCE. The decimal numeral system
used in India, which lent itself more readily to arithmetic operations, was
adopted in Europe through Fibonacci’s book Liber Abaci. Aryabhata and
Brahmagupta made important contributions to Indian mathematics in the
sixth and seventh centuries, and the + and − symbols first appeared in print
in a book by Johannes Widmann published in 1489. In addition, the numbers
being added are called the addends, and the result the sum. Carrying is
performed when the sum of a column of addends is more than 9. Addition is
commutative, meaning a + b = b + a, and associative, meaning (a + b) + c = a +
(b + c). Adding zero to a number results in that same number, making zero the
additive identity, e.g., a + 0 = a. Subtraction is the inverse of addition. In
subtraction, for example in a − b, a is the minuend and b the subtrahend. In
contrast to addition, subtraction is neither commutative nor associative. Just
as carrying is often required when adding a column of numbers, borrowing is
often required when subtracting numbers. The symbol ±, read ‘plus or minus’,
can be used to denote an uncertainty or a pair of values (e.g., the two roots of
the quadratic equation).

3-SECOND SUM
Addition is the combining of two or more numbers. Subtraction is taking the
difference of two numbers.

3-MINUTE ADDITION
Infinitely many numbers may be added or subtracted in an infinite series. A
series with a finite limit is said to be convergent. A simple example is the
series ½ + ¼ + ⅛ + 1/16 + … = 1. To see this, imagine walking half way across
a room, then half the remaining distance (¼ of the total), then half the
remaining distance (⅛) and so on. Some infinite series yield surprising results.
For example, 1 − ⅓ + ⅕ − 1/7 + 1/9 − 1/11 + 1/13 − 1/15 … = π/4.

RELATED THEORIES
FRACTIONS & DECIMALS

COUNTING BASES

ZERO

MULTIPLICATION & DIVISION



3-SECOND BIOGRAPHIES
ARYABHATA

476–550
BRAHMAGUPTA

598–670/668
LEONARDO FIBONACCI

1170–1250
JOHANNES WIDMANN

c. 1462–c. 1498
30-SECOND TEXT
Robert Fathauer

The sum of all things – addition and subtraction have been part of daily
life since ancient times.



MULTIPLICATION & DIVISION
the 30-second maths

Multiplication and division were extremely challenging using early
numeral systems that did not employ positional notation, such as Egyptian,
Greek, and Roman numerals. The numeral and arithmetic system eventually
adopted in Europe was developed in India, with important advances made in
the sixth and seventh centuries. In the multiplication a × b = c, a is the
multiplier, b the multiplicand and c the product; a and b are also called
factors. Notation for multiplication of two numbers a and b includes a × b, a ·
b, (a)(b) and, favoured by mathematicians, simply ab. Similar to addition,
carrying is necessary when the product of a column of digits is more than 9.
In the example a × 1 = a, 1 is the multiplicative identity. Multiplication is
commutative, meaning a × b = b × a, and associative, meaning (a × b) × c = a ×
(b × c). Division is neither. In the division a ÷ b = c, a is the dividend, b the
divisor, and c the quotient. Mathematicians favour the notation a/b to a ÷ b.
Long division is a division algorithm that displays the dividend (the amount to
divide), divisor (number you divide by), and quotient (the answer) in a tableau.
For mathematicians, division of any number by zero is undefined because it
doesn’t make sense in a rigorous manner.

3-SECOND SUM
Multiplication is repeated addition of a first number a specified second
number of times. Division is determining how many times one quantity is
contained in another.

3-MINUTE ADDITION
Using logarithms, multiplication and division can be performed using addition
and subtraction, respectively. This is made possible by the fact that
multiplying or dividing numbers expressed as powers of a common base can
be accomplished by adding or subtracting the exponents. Before the advent of
desk and handheld calculators, slide rules marked with logarithmic axes were
commonly employed to facilitate arithmetic calculation.

RELATED THEORIES
FRACTIONS & DECIMALS

NUMBER THEORY

ADDITION & SUBTRACTION

EXPONENTIALS & LOGARITHMS



3-SECOND BIOGRAPHIES
ARYABHATA

476–550
BRAHMAGUPTA

598–670/668
LEONARDO FIBONACCI

1170–1250
30-SECOND TEXT
Robert Fathauer

Multiplication takes one number and repeats it by a second number of
times. Division is the opposite, splitting one number into equal portions.



EXPONENTIALS & LOGARITHMS
the 30-second maths

If I add £1 to my piggy bank every week and track the amount I’ve
saved, I will chart an amount that grows linearly (at a constant rate). If I add
£1 to a bank account every week that gains interest, the amount will grow
exponentially (at a rate that is increasing along with the amount itself, as we
start generating interest on previously earned interest, which has a cascading
snowball effect). A generous bank might give me a 100% interest rate,
meaning I would earn £1 interest on the original £1 I invested, giving me £2
after one year. If I never added money but just left that amount to continue to
accrue interest, it would double every year, giving me £8 after three years,
because 2 × 2 × 2 = 23 = 8. After four years, I would have £16, and so on. In
the expression 23 = 8, we call the constant multiplier 2 the base; the exponent
3 is the number of times we multiply the base by itself. It is natural to want to
reverse this calculation. What if I know the interest rate but want to know how
many years it will take before £1 becomes £8? A logarithm reverses the
exponentiation, and we write log2 8 = 3. In general, the function log2 tells me
what exponent to raise 2 by to get x. In the bank example, with my money
doubling every year, it tells me how many years it will take to earn £x.

3-SECOND SUM
Exponentiation is a shorthand notation for repeated multiplication. A
logarithm is to exponentiation as division is to multiplication – a mathematical
way to undo it.

3-MINUTE ADDITION
The mathematician John Napier first used the term logarithm to denote the
inverse of exponentiation, and in the 16th century produced tables of values
to calculate logarithms. You have likely seen buttons on your calculator for
log10(x) (the logarithm for base 10) and In(x), referred to as the ‘natural
logarithm’. The base for this logarithm is a number between 2 and 3 called e,
a special number, like π, frequently seen in formulas in physics, biology and
economics.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

MULTIPLICATION & DIVISION

FUNCTIONS



3-SECOND BIOGRAPHIES
JOHN NAPIER

1550–1617
LEONARD EULER

1707–1783
30-SECOND TEXT
David Perry

Whereas logarithmic growth tapers off drastically, exponential growth
is explosive.



FUNCTIONS
the 30-second maths

Examples of functions are found very early in recorded history but the modern
concept of the mathematical function appears much later. In its most basic
form, a function is a relationship that creates a single output value for a single
input value. The symbol f(x) is used to denote a function of the variable x. For
example, f(x) = x2 is a function for which an output value of 9 (32) is obtained
for an input value of 3. In the 14th century, the work of Oresme included
ideas of dependent and independent variables. Galileo constructed formulae
that mapped one set of points to another, and Descartes introduced the
concept of constructing a curve using an algebraic expression. The term
‘function’ was coined by Leibniz in the late 17th century. The set of all inputs
of a function is called the domain, while the set of all outputs is called the
image or range. Functions of a single variable (or argument) are often plotted
using Cartesian coordinates, where x is the abscissa (horizontal axis), and f(x)
is the ordinate (vertical axis). For example for f(x) = 2x + 3 a graph of f(x) would
show a line made up of all ordered pairs (x,y) that satisfy this equation. These
include (1,5), since 5 = 2 × 1 + 3 and (2,7) since 7 = 2 × 2 + 3. Functions of the
two variables can be plotted with f(x,y) as the vertical axis and the x−y plane
lying horizontal.

3-SECOND SUM
A mathematical function is a relation that associates each element of a set
with an element of another set.

3-MINUTE ADDITION
The concept of a function is widely employed in the physical sciences and
engineering, in which case the function and its arguments usually correspond
to measurable physical quantities like temperature, volume and gravitational
attraction. Functions are also commonly used in economics and business,
where the variables could be demand, time, interest, profit and so on. Indeed,
studying the functional relationships between two or more entities is at the
core of understanding the mathematical processes of nature and business.
Works for understanding people, also, no?

RELATED THEORIES
EXPONENTIALS & LOGARITHMS

THE EQUATION

TRIGONOMETRY



GRAPHS

3-SECOND BIOGRAPHIES
NICOLE D’ORESME

c. 1320–1382
RENÉ DESCARTES

1596–1650
GOTTFRIED LEIBNIZ

1646–1716
30-SECOND TEXT
Robert Fathauer

When any value of x is plugged into the equation 1.7x3 − 5x2 − 0.3x + 1,
the result it yields can be plotted on a graph, giving a visual

representation of the function.

> This plot shows the value of f(x) in the range shown from −2 to
approximately 1.2. For example, at x = 1 the result is −6. So one of the

points making up the curve is described by the coordinates (1,−6).



GOTTFRIED LEIBNIZ
A gifted polymath of the late 17th and early 18th centuries, whose
work is, in the main, written down in short treatises, notes, papers in learned
journals and correspondence, Leibniz suffered the curse of the early adopter.
This may reflect the sheer breadth of his intellectual application. Many of
Leibniz’s ideas foreshadow modern thought and theory in the fields of physics,
technology, biology, medicine, geology, psychology, linguistics, politics, law,
theology, history, philosophy and mathematics. He improved on Pascal’s
calculating machine (anticipating the work of Babbage and Lovelace),
developed binary theory that underpins modern digital technology, developed
what we now know as Boolean algebra and symbolic logic, and outlined the
concept of feedback that inspired Norbert Wiener.

An academic wunderkind and son of a university professor, Leibniz was
fluent in Latin at the age of 12 and took his first degree at 16. The holder of
degrees in mathematics, philosophy and law, he later eschewed academia and
spent most of his life working under the patronage of the House of Brunswick,
living and working in Leipzig, Paris, London, Vienna and Hanover, meeting
and corresponding with leading scientists and philosophers of his day.
Probably his best-known philosophical theory is monadology (monads being
the smallest indivisible unit of philosophical thought). Sadly however, for such
an intellectual powerhouse, due to a bitter controversy he was not recognized
at his death, despite his royal and intellectual connections, and his grave went
unmarked for 50 years. The controversy, between Leibniz and Newton over
who invented calculus, sprang up in 1711 and has never gone away. Leibniz
knew Newton, was a fellow member of the Royal Society, and had been in
London at the same time that Newton was developing calculus; when Leibniz
brought out his own version, most mathematicians sided with Newton, and
Leibniz was vilified. Whether or not he stole the idea and presented it as his
own, or whether they both came to the same conclusion working in ignorance
of each other, may never be known and today they are both credited with the
invention.

1 July 1646
Born in Leipzig

1662
Completed BA in Philosophy at University of Leipzig

1664
Gained Masters degree in Philosophy

1665



Gained BA in Law

1673
Elected as a member of the Royal Society and appointed counsellor by the
Duke of Brunswick

November 1675
Achieved breakthrough in infinitesimal calculus

1677
Appointed Privy Counsellor of Justice to the House of Brunswick

1684
Published his notes on calculus

1686
Published Discourse on Metaphysics

1710
Theodicee published

1711
Accused of plagiarism

1712–1714
Wrote Monadology

14 November 1716
Died in Hanover



CALCULUS
the 30-second maths

Many branches of science study objects that move and change over
time. As a ball rolls down a hill, for instance, its position changes. The rate of
change of position is the ball’s speed. But, of course, that may change too. The
rate of change of speed is called acceleration. The question is, if you have a
mathematical formula describing the position of the ball, can you then
calculate its speed and acceleration? The geometrical problem is to start with
a curved line in the plane, and determine how steep it is at any given point. If
the curve is a graph of a ball’s position against time, then its steepness
represents the ball’s speed. This had been understood since the time of
Archimedes, but only approximate methods were originally known for
calculating the all-important steepness of the curve. In the late 17th century,
Isaac Newton and Gottfried Leibniz separately developed calculus, a beautiful
set of rules for describing the steepness of graphs and related ideas. The
subject has two branches. Starting with a curve, differential calculus will tell
you its steepness, while integral calculus describes the area trapped
underneath it. Unexpectedly, these are opposite procedures, a fact known as
the fundamental theorem of calculus.

3-SECOND SUM
Calculus is a branch of mathematics that describes how systems and other
mathematical constructions change across time and space.

3-MINUTE ADDITION
The discovery of calculus by Newton and Leibniz is one of the most important
moments in mathematical history. From climate modelling and economics to
quantum mechanics and relativity theory, a huge range of applications of
mathematics to the physical world are expressed in terms of ‘differential
equations’ and studied via calculus. Solving these sorts of equations is
therefore one of the biggest technical challenges for today’s scientists and
mathematicians.

RELATED THEORIES
THE EQUATION

GRAPHS

3-SECOND BIOGRAPHIES
ARCHIMEDES



c.287–212 BCE

ISAAC NEWTON

1643–1727
GOTTFRIED LEIBNIZ

1646–1716
AUGUSTIN-LOUIS CAUCHY

1789–1857
KARL WEIERSTRASS

1815–1897
30-SECOND TEXT
Richard Elwes

From the position of a travelling ball, calculus can tell us its speed and
acceleration. When applied to a hill, calculus produces the tangent

plane that determines the hill’s steepness.





CHANCE IS A FINE THING



CHANCE IS A FINE THING
GLOSSARY

bell curve In probability theory, the name given to describe the shape of a
smooth graph representing a standard normal distribution. The peak of the
curve represents the mean, down from which two sloping sides, equal in
shape and representing all possible variations, drop quickly before flattening
out.

binary sequence In computer science, a long string of ‘0s’ and ‘1s’ that
represent ‘off’ and ‘on’ respectively. Binary sequences essentially provide
instructions for a computer.

central limit theorem In probability theory, the central limit theorem states
that if an equally random variable, such as throwing a dice, is performed a
sufficient number of times, the mean will tend towards normal; and the
results, if plotted on a graph, will describe a bell curve.

equilibrium In game theory, equilibrium describes the point in a game at
which all players are employing strategies that ensure no player has a greater
chance of winning.

false positive Name given to an error in, for example, a medical trial. False
positives occur due to the inaccuracy of the testing procedure resulting in a
positive reading or result when in actual fact the true reading or result should
be negative. Due to the occurrence of false positives in many testing
environments it’s impossible to accurately determine the probability of
something or someone testing positive until there is sufficient data to
calculate prior probability. See prior probability; true positive.

frequency The number of times a specific event occurs during a set period of
time or over a larger set of trials of an experiment. The greater the number of
occurrences, the higher or greater the frequency.

odds Odds express the likelihood of something happening by measuring the
ways it would happen against the ways it wouldn’t. If the probability of an
event happening is p, and its probability of not happening is 1 – p, then the
‘odds’ in favour of it happening are p/(1 – p). The ‘odds’ against it happening
are (1 – p)/p. For example, the probability of rolling a 4 with a standard die is
1/6. The probability against rolling a 4 is 5/6. The ‘odds’ in favour of rolling a
4 are then (1/6)/(5/6), or 1/5. Expressed the usual way, we would say the
odds of rolling a 4 are 1:5 in favour. The ‘odds’ against rolling a 4 are 5:1
(against). This means that there are ‘five ways to lose for every one way to win’.

prior probability In statistics, the probability of an event which is set before
new data or evidence is tested to calculate other probabilities. Prior probability



plays a crucial role in Bayes’ theorem of probability.

probability Probability is a way of expressing the likelihood of a specific event
occurring by comparing it against all possible outcomes. It is the ratio of the
number of desirable outcomes to the number of possible outcomes, which is
then written as a number between 0 (zero likelihood) and 1 (certainty). For
example, when picking a card from a full deck, the probability of choosing a
heart is 13/52 or 1/4. So the probability of choosing a heart is 0.25.

true positive An accurate positive result given during, for example, a medical
trial. True positives differ from false positives in that, whereas a true positive
is a truly accurate positive result, a false positive is an inaccurate positive
result that occurs due to an inaccuracy or failure in the testing procedure. See
false positive.



GAME THEORY
the 30-second maths

For millennia people have enjoyed games of strategy, from noughts and
crosses to chess and checkers. Some are easier than others. In noughts and
crosses for instance, it is fairly easy to formulate a good strategy. With a little
practice, you should never lose. Game theory is the mathematical study of
such strategies. Take a game like ‘scissors, paper, stone’. What is the best
strategy for winning here? If you decide to play scissors more often than paper
or stone, then your opponent can exploit this by increasing the number of
times she plays stone. Unless you can find a pattern in your opponent’s
behaviour, however, the best long-term strategy is to pick from the three
options at random each time. When playing this way, you will win, lose, and
draw equally often. This is what is known as an ‘equilibrium’ of the game,
since if both players are using this strategy, there is no way either of them can
increase their number of wins by changing tactic. A centrepiece of game
theory is the celebrated fact, proved by John von Neumann and expanded by
John Nash, that a huge variety of games are guaranteed to have equilibria.

3-SECOND SUM
The strategies used in games such as chess can be mathematically analysed,
and appear in a wide range of scientific subjects.

3-MINUTE ADDITION
Game theory has moved beyond the study of games, with applications from
political science to artificial intelligence. But games still pose challenges. In
2007, the Canadian professor Jonathan Schaeffer and colleagues developed
an infallible strategy for checkers. Their program will never lose. While
computers can beat humans at chess, a perfect strategy like this remains a
distant dream. The obstacle is the sheer number of ways a game of chess can
develop, far outnumbering the number of atoms in the universe.

RELATED THEORIES
THE LAW OF LARGE NUMBERS

THE GAMBLER’S FALLACY – LAW OF AVERAGES

THE GAMBLER’S FALLACY – DOUBLING UP

BAYES’ THEOREM

3-SECOND BIOGRAPHIES
JOHN VON NEUMANN



1903–1957
CLAUDE SHANNON

1916–2001
JOHN NASH

1928–
JOHN CONWAY

1937–
30-SECOND TEXT
Richard Elwes

Scissors, paper, stone – do you have a strategy? Mathematicians do.



CALCULATING THE ODDS
the 30-second maths

If you roll a die, the odds of getting a 6 are ‘5 to 1’ against. This means
that there are six outcomes in total, all equally likely, of which five are
unsuccessful and one is a success. A mathematician would express the same
thing via a fraction, by saying the ‘probability’ of getting a 6 is 1/6; one
successful outcome out of the six total possibilities. Similarly, the odds of
pulling the ace of spades from a standard deck of cards are 51 to 1 against, or
1/52. So long as all outcomes are equally likely (so that the dice or cards are
unbiased), these odds can be calculated by counting successful and
unsuccessful outcomes. The science of probability assigns numbers to events
to describe their likelihood of happening. These numbers always sit between 0
and 1, with 0 corresponding to impossible events, and 1 to certainties.
Unlikely events have low probabilities: if you flip a fair coin ten times, the
chance of getting ten heads is 1/1024 (1023 to 1 against). On the other hand,
likely events have high probabilities (and good odds): if you pick a card from a
deck, the chance of avoiding the ace of spades is 51/52 (or 1 to 51). A safe bet,
no?

3-SECOND SUM
Likely and unlikely events can be measured on a scale, in the language either
of bookmakers’ odds or of mathematicians’ probabilities.

3-MINUTE ADDITION
Bookmakers offer better odds (and more money) on events that are very
unlikely to happen. That is why we use the word ‘against’. Long odds mean
that the event is unlikely; be careful betting on a 40 to 1 horse, no one else
thinks he’s a winner. It’s possible, but his probability of winning is 1/41. On
the other hand, short odds like 2 to 3 against help define the favourite (3/5
probability of winning). The payout will be small, but at least you are ‘playing
the odds’.

RELATED THEORIES
THE LAW OF LARGE NUMBERS

THE GAMBLER’S FALLACY – LAW OF AVERAGES

RANDOMNESS

BAYES’ THEOREM

3-SECOND BIOGRAPHIES



PIERRE DE FERMAT

1601–1665
BLAISE PASCAL

1623–1662
CHRISTIAAN HUYGENS

1629–1695
ANDREY KOLMOGOROV

1903–1987
30-SECOND TEXT
Richard Elwes

When you roll a die, the likelihood of rolling an odd number is 3/6, so
the odds are 1 to 1 or ‘even money’ – three ways to lose and three ways

to win.



GIROLAMO CARDANO
Doctor, mathematician, geologist, natural scientist, alchemist,
astrologer, astronomer and inventor, Cardano was the incarnation of
Renaissance man (the exception to his genius being the arts) – a dark mirror
to Leonardo da Vinci, a family friend with whom he sometimes collaborated
(detractors say plagiarized). Both were the illegitimate sons of lawyers, both
were men of exceptional talent; Leonardo went on to fame and glory, but
Cardano’s unpleasant personality and hypercritical manner nullified his gift
and, despite being greatly sought after for his intellect, he managed to make
himself loathed almost everywhere he went.

Medicine was his first career; he was an excellent clinician, consulted by the
great, yet full of open contempt for his colleagues; lacking a bedside manner,
or manners, his medical practice at Sacco did not flourish although he was to
be compared later with Vesalius and became Professor of Medicine at the
University of Pavia, his alma mater.

He turned his mind to mathematics, which he had studied with his father,
and produced two books, one of which, Ars magna (1545) is a key
Renaissance text that tackles the solution of cubic and quartic equations (see
here). Again he courted controversy; he had extracted the proof of cubic
equations from Niccolò Tartaglia, who told Cardano on the promise that he
would not publish for six years. However, discovering that Tartaglia had been
rather economical with the truth, Cardano went ahead, published, and was
damned by Tartaglia and his many enemies.

Disaster struck in 1560, when Cardano’s revived medical career was
blooming. His eldest son murdered his adulterous wife, and was tried and
executed. His death devastated Cardano and ruined him professionally; he
moved to Rome, stripped of his professorships, and was briefly imprisoned for
heresy for casting a horoscope for Jesus Christ. Throughout his controversial
career, Cardano had been addicted to gambling; he was very good at it, and
wrote a book, Liber de ludo aleae (On Casting the Die), the first to look at
probability – based on what comes up when the die is rolled – in mathematical
terms. Some purists sneer, but it is a great favourite with gamblers and casino
owners, mainly because it contains a very good section on how to cheat. After
a long, prolific but chaotic life, Cardano died on 21 September, 1576. It is said
that he predicted his death to the hour. It is also said that he committed
suicide at the appointed time, so that he would not be proved wrong.

1501
Born 24 September in Pavia, Italy

1520



Enrolled at the University of Pavia

1525
Achieved Doctorate in Medicine from the University of Pavia; applied to College
of Physicians in Milan, but rejected until 1539

1526
Wrote Liber de ludo aleae (On Casting the Die), published posthumously in
1663

1536
Wrote De malo recentiorum medicorum usu libellus (on medicine)

1539
Wrote Practica arithmetice et mensurandi singularis (on mathematics)

1545
Wrote Artis magnae, sive de regulis algebraicis (also known as Ars magna)

1545
Cast and published the horoscope of Jesus Christ

1550
Invented the Cardan grille, a cryptographic tool

1570
Accused of heresy

1570
Wrote Opus novum de proportionibus (on mechanics)

1576
Died 21 September in Rome

1576
De vita propria (autobiography) published on his death







THE LAW OF LARGE NUMBERS
the 30-second maths

Take any experiment with chance outcomes – such as throwing a
ball through the top of a basket-ball hoop or tossing a coin – that is repeatable
as often as you like under the same conditions. The probability of flipping ten
heads in a row is small, but it is possible. If we flip this coin for ever, unlikely
events like this one will occur from time to time. But in the long run, the
percentage of occurrence of, say, heads will home in on its probability of
occurrence. This is the law of large numbers – it is the principle that, in the
long run, the probability of an event occurring determines its eventual
frequency of occurring. The law of large numbers isn’t restricted only to
chance events. Say you want to know the average height of women living in
Britain. In studying large populations, the larger the sample size, the better
the average of the sample represents the average of the population. The
precision of your estimate of an average increases only with the square root of
the sample size. And for a good estimate, you need a larger sample when what
you are measuring has higher variability. But this law assures us that, with
enough data, we can always get as good an estimate as we need.

3-SECOND SUM
Given enough trials, the frequency of a chance event will be very close to the
probability of it occurring.

3-MINUTE ADDITION
The first significant step to demonstrate a relation between probability and
frequency was made by Jacob Bernoulli in 1713. This was reinforced by the
work of Irénée-Jules Bienaymé and Pafnuty Chebychev 150 years later, and
the icing on the cake, giving complete confidence that estimates will eventually
be as good as we would like, came from Émile Borel in 1909.

RELATED THEORIES
THE GAMBLER’S FALLACY – LAW OF AVERAGES

3-SECOND BIOGRAPHIES
JACOB BERNOULLI

1654–1705
IRÉNÉE-JULES BIENAYMÉ

1796–1878



PAFNUTY CHEBYCHEV

1821–1894
ÉMILE BOREL

1871–1956
30-SECOND TEXT
John Haigh

What are the chances of shooting three out of ten hoops over a period of
time? In the long run they are pretty much the same.



THE GAMBLER’S FALLACY – LAW OF AVERAGES
the 30-second maths

When a series of ten coin tosses all show heads, it is tempting to
argue that tails is more likely next time. People say, ‘By the law of averages
that heads and tails are equally likely, tails must start to catch up.’ Nonsense:
with a fair coin, no matter what the previous outcomes have been, the
chances of heads or tails next time remain fixed at 50% heads, 50% tails.
Similarly with roulette and lotteries: the fact that zero has not come up for
100 spins does not increase the chance it will come up next time. In Italy, the
number 53 failed to appear in the lottery for over two years, apparently
resulting in numerous bankruptcies and suicides. Coins, roulette wheels and
lottery balls are inanimate objects with no ability to remember previous
outcomes and adjust their frequency. Frequencies will settle down to their
different probabilities, in the long run – which may take a very long time
indeed! Any genuine ‘law of averages’ is strictly a paraphrase of the law of
large numbers, and cannot be used to claim that past results will influence
the immediate future.

3-SECOND SUM
In games of chance, using previous performance to bet on future behaviour is
definitely a losing strategy.

3-MINUTE ADDITION
Coins, dice and roulette wheels all have outcomes that are equally likely at
each trial. And unlikely events do occur: ten heads in a row, 12 consecutive
rolls of ‘7’, no number above ‘30’ among 20 spins, and so on. There are so
many ‘rare’ things that might happen that some of them must occur (‘rare
events happen often!’). But they can in no way affect future performance or
our predictions of it.

RELATED THEORIES
THE LAW OF LARGE NUMBERS

THE GAMBLER’S FALLACY – DOUBLING UP

3-SECOND BIOGRAPHY
GIROLAMO CARDANO

1501–1576
30-SECOND TEXT



John Haigh

Each time you flip a coin, the chances of getting heads or tails always
remains the same – even if you flip several heads or tails in a row.



THE GAMBLER’S FALLACY – DOUBLING UP
the 30-second maths

A European roulette wheel has 37 slots, comprising 18 red, 18 black,
and one green (0). Bets on red or black pay out at even money. A gambler
resolves to always bet on red, and to double up his bet after a loss. Since the
chance of red is non-zero at any spin, it is inevitable that red turns up
sometime; maybe the first red occurs on the fourth attempt: he has losses of
size 1, 2 and 4 (total 7), then a profit of 8, resulting in a net profit of 1 unit.
This 1-unit profit always arises, no matter how long it takes for the first red to
arise. The gambler argues that he inevitably wins 1 unit whenever red
appears. Unfortunately for the gambler, this is false. All casinos impose a
maximum stake, usually around 100 times the minimum. So after seven
losses of size 1, 2, 4, 8, 16, 32, 64 (total 127), casino rules prevent the
required stake of 128 units, even if the gambler possesses the necessary
capital to make the bet! The gambler may use this system and win 1 unit
several times, but it is inevitable that, at some stage, the size of bet his system
demands is not permitted; his losses will more than wipe out his gains.

3-SECOND SUM
In roulette, doubling your stakes after each loss on red/black bets is a losing,
not a winning, strategy.

3-MINUTE ADDITION
American wheels have an additional ‘double-zero’, but the payout odds are the
same. In either case, the casino’s advantage on any bet is small, but real.
There is no way of combining different bets on one spin, or combining bets on
different spins, to overcome this advantage. If the roulette wheel is in pristine
condition, with all outcomes random every time, and a maximum stake is
imposed, a gambler will lose, in the long run.

RELATED THEORIES
THE LAW OF LARGE NUMBERS

THE GAMBLERS’S FALLACY – LAW OF AVERAGES

3-SECOND BIOGRAPHY
GIROLAMO CARDANO

1501–1576
30-SECOND TEXT



John Haigh

Don’t bet on doubling your stakes – it’s a losing game.



RANDOMNESS
the 30-second maths

Imagine two long sequences of heads (H) and tails (T), each beginning
HHTHTH… One is truly random, the result of repeatedly tossing an unbiased
coin. The other is not; it is carefully chosen by a human being. Is there any
way of telling which is which? One simple test says that, in the long term,
heads and tails should appear equally often in a random sequence. But this
alone is not enough. It should also be that every pair of results (HH, HT, TH
and TT) should, on average, appear equally often as every other. The same is
true of every triple, quadruple or longer sequence. But all of these are not
enough, since it is still possible to meet these conditions artificially. The
simplest sequence runs HHHHHH… This is obviously non-random. But there
is something else: it can be easily compressed. The phrase ‘one million heads’
describes this sequence very succinctly, and allows anyone to communicate
and recreate it with perfect accuracy. Truly random sequences cannot be
compressed at all. The only way to communicate a random sequence to
someone else is by writing it out in full. It is a deep, recent discovery that
randomness and incompressibility are essentially the same thing.

3-SECOND SUM
Randomness is central to science, but very difficult to detect mathematically.

3-MINUTE ADDITION
The internet runs on binary sequences: long strings of 0s and 1s which
computers can translate into all the programs and files we wish to use. For
maximum efficiency, these strings should be compressed as much as possible,
by using file-compression software. When a string has been compressed, by
stripping out any predictable or repetitive patterns, it becomes
indistinguishable from a purely random sequence. Perfectly compressed
information is therefore mathematically identical to randomness.

RELATED THEORIES
THE LAW OF LARGE NUMBERS

BAYES’ THEOREM

ALGORITHMS

GÖDEL’S INCOMPLETENESS THEOREM

3-SECOND BIOGRAPHIES
EMILE BOREL



1871–1956
ANDREY KOLMOGOROV

1903–1987
RAY SOLOMONOFF

1926–2009
GREGORY CHAITIN

1947–
LEONID LEVIN

1948–
30-SECOND TEXT
Richard Elwes

Which sequence is random? Even the mathematicians can’t tell.



BAYES’ THEOREM
the 30-second maths

Suppose that a test for a certain disease is 90% accurate. Now
suppose that a randomly chosen person, Bob, tests positive. What is the
probability that Bob actually has the disease? It turns out that you can’t
answer this question! You need one additional piece of information, namely
how common the disease is. That is, you need to know the prior probability
that a randomly chosen person has the disease. Let’s suppose that 1% of the
population has the disease. Bayes’ theorem tells us how to find the probability
of having the disease given a positive test. In a group of 1,000 people, on
average 10 have the disease (1%) and 9 of these will test positive (‘true
positives’). The remaining 990 do not have the disease, and 10% of these, or
99, will still test positive (‘false positives’). The false positives outnumber the
true positives by 99 to 9, so the odds are 11:1 against Bob having the disease.
An unlikely event remains unlikely even in spite of the evidence provided by
the accurate test!

3-SECOND SUM
Bayes’ theorem helps you find the likelihood of an event given all the evidence,
but only if you know the prior probability of the event.

3-MINUTE ADDITION
Bayes’ theorem is named after the Reverend Thomas Bayes, a Presbyterian
minister who lived in 18th-century England. His work on the subject was not
published until several years after his death. Bayes’ theorem raises
philosophical questions about the very nature of probability. In particular, the
appearance of prior probabilities in Bayes’ theorem suggests that you cannot
meaningfully assign probabilities to events without first using repeated trials
to determine the frequency of the event.

RELATED THEORIES
CALCULATING THE ODDS

THE GAMBLER’S FALLACY – LAW OF AVERAGES

RANDOMNESS

3-SECOND BIOGRAPHY
THOMAS BAYES

c. 1702–1761



30-SECOND TEXT
Jamie Pommersheim

The odds of an event happening is the ratio of the number of true
positives (9) to the number of false positives (99).





ALGEBRA & ABSTRACTION



ALGEBRA & ABSTRACTION
GLOSSARY

algebraic geometry The branch of mathematics that combines geometry with
algebra; it involves the study of geometric shapes that are created from the
graphs of solutions to algebraic polynomial equations.

associative A property of an operation on numbers such that when an
expression involves two or more occurrences of the operation it does not
matter in which order the operations are performed. For example,
multiplication of numbers is associative, since (a × b) × c = a × (b × c).

coefficient A number that is used to multiply a variable; in the expression 4x
= 8, 4 is the coefficient, x is the variable. Although usually numbers, symbols
such as a can be used to represent coefficients. Coefficients that have no
variables are called constant coefficients or constant terms.

commutative A property of an operation on numbers such that when the
order is reversed the answer is still the same. For example, multiplication of
numbers is commutative since 3 × 5 = 5 × 3.

constant A number, letter, or symbol on its own that represents a fixed value.
For example, in the equation 3x − 8 = 4, 3 is the coefficient, x is the variable,
while 8 and 4 are the constants.

differential equation An equation involving an unknown function and some
of its derivatives. Differential equations are the primary tools used by
scientists to model physical and mechanical processes in physics and
engineering.

exponent The number of times by which another number, known as the base
number, is to multiply itself. In the expression 43 = 64, the exponent is 3 and
the base is 4. The exponent is also known as the index or power.

identity (or identity element) An element in a set that, when combined with
another element in a binary operation, results in the second element
remaining the same. For example, in the set of positive integers where the
operation is addition, the identity is 0. In the same set where the operation is
multiplication, the identity is 1.

incompleteness theorem Theorem proposed by Kurt Gödel, in which he
stated that any system of mathematical rules that includes the rules of
arithmetic cannot be complete. This means that it will always be the case that
there are mathematical statements that cannot be proved or disproved using
just the rules of the system.



integer Any whole number, that is the counting numbers 1, 2, 3, 4, 5, and so
on, 0, or the negative whole numbers.

intersection In set theory, the name for the set which contains only those
elements common to two or more other sets. For example, given two sets A
and B, the intersection describes the set of entities that belong precisely to
both A and B.

inverse (or inverse operation) An operation that reverses the effect of
another operation. For example the inverse of addition is subtraction, and vice
versa, while the inverse of multiplication is division, and vice versa.

operation Any formal set of rules that produces a new value for any input
value or set of values. The four most common operations in arithmetic are
addition, multiplication, subtraction and division.

polynomial An expression using numbers and variables, which only allow the
operations of addition, multiplication and positive integer exponents, i.e., x2.
(See Polynomial Equations.)

property A characteristic or attribute that can be applied to an entity.
Properties don’t have to be physical in nature; for example the numbers 2, 4,
6, 8 share the property of being even numbers.

quintic polynomial Polynomial equation in which the highest exponent of an
occurrence of a variable is 5.

real number Any number that expresses a quantity along a number line or
continuum. Real numbers include all the rational numbers (that is, numbers
that can be expressed as a ratio or fraction; including the positive and
negative integers and decimals), the irrational numbers (those numbers that
cannot be written as a vulgar fraction, such as √2), and the transcendental
numbers (such as π).

term A single number or variable, or a combination of numbers and variables
which are divided by an operation such as + or − to form an expression. For
example in the equation 4x + y2 − 34 = 9, 4x, y2 and 34 are terms.

variable A quantity that can change its numerical value. Variables are often
expressed as letters such as x or y, and are often used as placeholders in
expressions and equations such as 3x = 6, in which 3 is the coefficient, x is
the variant, and 6 is the constant.



THE VARIABLE PLACEHOLDER
the 30-second maths

Scientists are always discussing numbers, but they often want to do
so without pinning down their exact values. For example, we might want to
say that in a certain room there are twice as many women as men. It is
possible to express this relationship between the two numbers without
knowing their values, by using a placeholding symbol such as x. If the (as yet
unknown) number of men in the room is x, then the number of women is 2
times x (usually abbreviated to 2x). If we later establish that x = 7, say, we can
then substitute this value in order to get the number of women: 2x = 14. This
abstract, algebraic approach is useful throughout science. If a car travels at a
constant speed s, over a distance d, for a time t, then a certain relationship
must hold between the numbers s, d and t, whatever their specific values.
Namely the speed must be equal to the distance divided by the time, that is s
= d/t. This is a general law, but substituting in numerical values allows
calculations in specific cases. If we subsequently discover any two of the
values (such as d = 10 and t = 2) we can then use this formula to find the
third (s = 10/2 = 5).

3-SECOND SUM
In algebra, symbols such as x and y are used to represent unknown numbers,
or quantities whose values can change.

3-MINUTE ADDITION
Within mathematics, algebra allows general laws of numbers to be expressed.
For example, start with two numbers: 4 and 5. Then multiply each of them by
a third number, 3, giving 12 and 15. Then add up the results: 27. This
produces the same answer as adding together the two original numbers (4 + 5
= 9) and then multiplying by the third (9 × 3 = 27). This is true for any three
initial numbers. This law can be expressed algebraically: (x + y)z = xz + yz.

RELATED THEORIES
THE EQUATION

POLYNOMIAL EQUATIONS

3-SECOND BIOGRAPHIES
DIOPHANTUS

c. 200–284
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1048–1131
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30-SECOND TEXT
Richard Elwes

In algebra x marks the spot, when you’ve got an unknown number.



THE EQUATION
the 30-second maths

The most important symbol in mathematics is =. This asserts that the
two quantities on either side of it are equal. An equation is any statement of
this form. Of course, obvious equations like 7 = 7 are rather uninteresting.
But equations can be informative when the equality is less immediate. One
famous example is E = MC2, the equation in physics which asserts that the
energy (E) contained within an object is equal to its mass (M) multiplied by the
speed of light (c) twice. Many fundamental laws in physics are in the form of
equations. A common type of equation involves an unknown number. If x is a
number such that 2x + 1 = 9, that is to say ‘2 times x plus 1 equals 9’, then
this equation contains enough information to pin down x exactly. There is only
one possible value of x if that equation is true. With any equation, the primary
rule is ‘always do the same thing to both sides in order to keep it true’. So if
you want to subtract 1 from one side, you must do it to both: 2x = 8.
Similarly, when dividing one side by 2, you must do it to both: x = 4. This is
now the ‘solution’ to the original equation.

3-SECOND SUM
Whenever two quantities are asserted to be equal, we have an equation. Most
scientific statements take this form.

3-MINUTE ADDITION
Equations may not simply assert that numbers are equal to each other, but
can deal with more sophisticated objects. ‘Differential equations’ say that two
different geometrical quantities are actually the same. Einstein’s ‘field
equation’ in general relativity says that the way matter moves within a region
of space is equal to the way that space itself is curved. Understanding the
geometry of the universe involves solving this equation.

RELATED THEORIES
CALCULUS

THE VARIABLE PLACEHOLDER

POLYNOMIAL EQUATIONS

3-SECOND BIOGRAPHIES
EUCLID

c. 325–265 BCE
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All things being equal, science is built from equations, from
kindergarten arithmetic to relativity theory.



POLYNOMIAL EQUATIONS
the 30-second maths

High school algebra students learn to solve equations such as 3x2 +
5x − 1 = 0. This is an example of a polynomial equation, which by definition
involves a sum of terms (e.g., 3x2) in which a variable (e.g., x) is raised to
positive integer power (in this case 2). The above equation is a second-degree
equation, or quadratic, since the highest exponent (i.e., the number of times
the base number is to multiply itself) is 2. Thornier operations – involving
fractional exponents, trigonometric and exponential functions – aren’t allowed
in a polynomial, which puts polynomials among the most basic of all
equations. Methods for solving quadratic polynomials (finding values for the
variable that render the equation consistent) were discovered in ancient times
independently in several parts of the globe. The culmination of these efforts
was the quadratic formula, which allows one easily to find the exact solutions.
A complete solution of cubic (degree 3 – where the highest exponent is 3 ) and
quartic (degree 4) equations had to wait until 16th-century Italy, when
mathematicians found formulas similar to the quadratic formula but more
complicated. The search for a quintic (degree 5) formula ended more than 200
years later when Niels Abel proved one of the first great negative results in
mathematics: there is no general formula for solving a degree 5 or higher
polynomial equation!

3-SECOND SUM
Polynomials are the formulas you get using numbers and variables, allowing
only the operations of addition, multiplication and positive integer exponents
(such as x2).

3-MINUTE ADDITION
Being geometrically inclined, the ancient Greeks solved quadratic equations by
intersecting lines and circles constructed with straightedge and compass. The
geometry of shapes defined by polynomial equations in more than one
variable, known as algebraic geometry, is a central area of current
mathematical research. And in science, the paraboloid, given by the 3-variable
polynomial equation z = x2 + y2, defines a shape useful for satellite dishes and
car headlights.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

FUNCTIONS



THE VARIABLE PLACEHOLDER

3-SECOND BIOGRAPHIES
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30-SECOND TEXT
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Polynomial equations create beautiful three-dimensional shapes.

> A paraboloid described by the polynomial equation z = x2 + y2

> A hyperboloid described by the polynomial equation x2 + y2 − z2 = 1



ABU ‘ABDALLAH MUHAMMAD IBN MUSA AL-KHWARIZMI
Abu ‘Abdallah Muhammad ibn Musa al-Khwarizmi was one of the
greatest minds of Islam and his work, translated into Latin four centuries
after his death, formed the bedrock for mathematical study in the West. Little
is known about his personal life; his family was Persian, and moved south to
Baghdad (an Arab caliphate since the mid-seventh century) where he became
a scholar in Caliph al Ma’ mun’s House of Wisdom (Bait al-Hikma), the library
and academic institute at the heart of the Islamic Golden Age. Here al-
Khwarizmi studied Greek and Sanskrit translations of scientific texts and
works by Babylonian and Persian scholars. Although a formidable geographer,
cartographer (he revised and corrected Ptolemy’s Geographica, and wrangled
70 geographers to produce a map of the world for the caliph), and astronomer,
his greatest and most invaluable contribution was to mathematics –
specifically, algebra, arithmetic and trigonometry. He brought together
techniques, methods and concepts from India and farther east and added
innovations and improvements of his own.

It is al-Khwarizmi we have to thank for the introduction to the West of Indian
numeration, including zero (which he learned from Hindu mathematicians,
acknowledged in the title of his 825 work On the Calculation with Hindu
Numerals), Arabic numerals, tens and units, fractions, and the decimal point.
He is probably best known as the father of algebra (although this again was a
matter of synthesizing existing knowledge, then adding his own interpretation
and techniques). In fact the word ‘algebra’ comes from al-jabr (meaning
‘completion, restoring’), part of the title of his great work The Compendious
Book on Calculation by Completion and Balancing, the first systematic solution
of linear and quadratic equations. This had been commissioned by the caliph
to be a practical, accessible work with real-world examples, offering solutions
to problems in trade and commerce.

When al-Khwarizmi’s work was translated into Latin in the 12th century,
mathematics gained another new word. The Latinized form of his name is
Algoritmi, from which is derived the word algorithm. There is also a crater
named for him on the dark side of the moon.

c. 770–780
Born in Khwarizm, modern Uzbekistan

825
Wrote On the Calculation with Hindu Numerals

c. 830
Wrote The Compendious Book on Calculation by Completion and Balancing



830
Produced a map of the world

c. 850
Died

Mid 12th century
Robert of Chester translated The Compendious Book on Calculation by
Completion and Balancing

1126
Adelard of Bath translated al-Khwarizmi’s Astronomical Tables

12th century
Adelard of Bath translated On the Calculation with Hindu Numerals

1857
Algoritmi de numero Indorum (al-Khwarizmi on the Hindu Art of Reckoning) by
Baldassarre Boncompagni published



ALGORITHMS
the 30-second maths

The information revolution of the 20th century saw the rise of the
computer. But computers are nothing without programs, and computer
programs are nothing more than realizations of mathematical objects called
algorithms. An algorithm is not complex, it is just a list of instructions for
carrying out a task, where every step is completely unambiguous, and so can
be carried out by an unthinking agent. The word algorithm derives from al-
Khwarizmi, who discovered foolproof procedures for solving certain equations.
Many mathematicians developed similar ideas over the centuries, but it was
not until the work of Alan Turing and Alonzo Church in the 1930s that the
notion of an algorithm was finally made precise. Turing considered a device
comprising a paper tape, along which a ‘Turing machine’ crawled, writing and
erasing symbols according to strict internal rules. Turing used this theoretical
contraption to demonstrate that no single procedure could ever answer every
mathematical question. Even among the whole numbers there are some
‘uncomputable’ problems. This echoed Gödel’s incompleteness theorem, and
was just as shocking to mathematics. But it was when the Turing machine
crossed from the abstract mathematical domain into the real world that the
digital computer was born.

3-SECOND SUM
Algorithms were conceived as theoretical procedures for carrying out
mathematical tasks. They are now in constant use in computers around the
world.

3-MINUTE ADDITION
The biggest questions in computer science concern how fast algorithms can
run. For instance, start with two large prime numbers, and multiply them
together. The challenge is to discover the two original numbers from the final
result. There is an algorithm to do this, but it may take millions of years, even
on the fastest modern processor. Is there a quicker way? No one knows. But
we hope not, because this is what keeps our bank accounts safe online!

RELATED THEORIES
POLYNOMIAL EQUATIONS

HILBERT’S PROGRAM

GÖDEL’S INCOMPLETENESS THEOREM

AL-KHWARIZMI



3-SECOND BIOGRAPHIES
ALONZO CHURCH

1903–1995
STEPHEN KLEENE

1909–1994
ALAN TURING

1912–1954
STEPHEN COOK

1939–
30-SECOND TEXT
Richard Elwes

Every computer program encodes an algorithm, an idea dating back to
the ninth century.



SETS & GROUPS
the 30-second maths

Collecting and categorizing objects is a key element of mathematics.
Collections of objects (sets) allow us to define the common properties of the
things we are studying. Creating unions of sets (combining them by taking one
of each of their objects into a new set), or intersections (taking only what is
common to both), helps us to refine their properties. As with numbers, we can
combine objects in a set to make other objects in the same set. A group is a
set with some special properties. (1) Any two objects in the set can be
combined, via an operation (addition, for example), and the combination of
any two objects must already be in the set. (2) There is a special object in the
set called the identity, with the property that any object combined with the
identity leaves the object unchanged – for example 0 is the additive identity
since you can add it to any other integer and the value will not change. And
(3) to every group object there is another group object called its inverse. Any
object combined with its inverse is the identity. Think of all of the integers
with addition as the combining operation and 0 as the identity and you get the
idea, e.g., 5 + −5 = 0.

3-SECOND SUM
Any collection of objects is a mathematical set. A group is created by
combining objects in a set to make other objects in the set.

3-MINUTE ADDITION
Although we’ve been thinking of numbers as our objects, things can become
more interesting when you introduce different types of elements as your
objects. Indeed, the famous Circle of Fifths in music theory is the set of the 12
major scales. It can be given a group structure called a cyclic group.

RELATED THEORIES
FUNCTIONS

RINGS & FIELDS

3-SECOND BIOGRAPHIES
JOSEPH-LOUIS LAGRANGE

1736–1813
NEILS HENRIK ABEL

1802–1829



ÉVARISTE GALOIS

1811–1832
ARTHUR CAYLEY

1821–1895
GEORG CANTOR

1845–1918
BENOÎT MANDELBROT

1924–2010
30-SECOND TEXT
David Perry

Venn diagrams provide visual aids to understanding the relationships
between several sets.



RINGS & FIELDS
the 30-second maths

Arithmetic with integers involves two fundamental operations:
addition and multiplication (after which one learns about subtraction and
division as well). In school we learn that the sum 1 + 4 + 9 + 16 requires no
parentheses because we can start anywhere in this sum, even rearranging the
terms, and always get the same answer (because addition is associative and
commutative). We learn how the operations interact when we learn the
distributive property of integers: a × (b + c) = a × b + a × c. Many sets possess
these same useful properties exhibited by integers. We won’t list them here,
but we give all sets with these properties a name: rings. The set of real
numbers is also a ring, although it has an additional useful property integers
don’t possess. With integers, although you can add or multiply two integers
and obtain an integer, and you can also subtract two integers and get an
integer, you cannot necessarily divide two integers and get an integer. On the
other hand, you can divide any real number by any other real number (other
than zero!) and get a real number. This distinction gives the set of real
numbers the designation of field.

3-SECOND SUM
The set of integers has nice properties that earn it the designation of ring. The
set of real numbers is even nicer, and is called a field.

3-MINUTE ADDITION
Rings and fields were historically important as they allowed mathematicians
to translate some classical problems into a brand-new language. This new
language allowed for long-desired proofs that the circle cannot be squared, nor
the cube doubled, nor an arbitrary angle trisected using only straightedge and
compass. It also allowed mathematicians to prove that in spite of the existence
of a quadratic formula – and cubic and quartic formulas – no such formula
could exist for quintic polynomials.

RELATED THEORIES
ADDITION & SUBTRACTION

MULTIPLICATION & DIVISION

POLYNOMIAL EQUATIONS

SETS & GROUPS

SQUARING THE CIRCLE



3-SECOND BIOGRAPHIES
ÉVARISTE GALOIS

1811–1832
RICHARD DEDEKIND

1831–1916
EMMY NOETHER

1882–1935
30-SECOND TEXT
David Perry

The distributive property concerns how addition and multiplication
interact – sets with these properties are called rings.





GEOMETRY & SHAPES



GEOMETRY & SHAPES
GLOSSARY

axiom A proposition or statement that is self-evidently true or which has been
accepted as true without proof.

circumference The boundary line or perimeter of a curved figure, most
usually used in reference to a circle.

conic section A curved figure created by the intersection of a plane with a
circular cone. A conic section can either be a circle, an ellipse, a parabola or a
hyperbola depending on the angle at which the plane intersects the cone.

constant A number, letter, or symbol on its own that represents a fixed value.
For example, in the equation 3x − 8 = 4, 3 is the coefficient, x is the variable,
while 8 and 4 are the constants. However, the term is usually more closely
associated with symbols such as π or e.

crank In mathematical circles, the term ‘crank’ is affectionately applied to
those people who refuse to accept proven mathematical theorems.

diameter A straight line passing through the centre of a circle or sphere,
running from one side to the opposite side. More generally, the largest
distance between any two points in the same figure.

dodecahedron Term usually used to describe a regular polyhedron with 12
faces, each of which forms a pentagon. Dodecahedrons are one of the five
Platonic solids. A rhomboid dodecahedron is an example of an irregular
dodecahedron.

Euclidean geometry The study of lines, points and angles in planes and
solids. Named after the ancient Greek mathematician, Euclid of Alexandria,
Euclidean geometry is the entire mathematical system of rules and laws based
around five axioms which he postulated in his work The Elements.

Galois theory Methods by which algebraic structures, known as groups, can
be used to solve algebraic equations.

geometry The branch of mathematics that deals primarily with shapes, lines,
points, surfaces and solids.

hexagon Polygon with six straight sides and six angles.

hyperbolic geometry A form of non-Euclidean geometry in which the parallel
postulate in Euclidean geometry is replaced with the postulate that there are
at least two lines in the plane that do not intersect a given line. In hyperbolic
geometry, the sum of the angles of a triangle is less than 180°. See Euclidean
geometry.



hypotenuse In a right-angled triangle, the side opposite the right angle. The
hypotenuse plays a fundamental role in the Pythagorean theorem. See
Pythagorean theorem.

icosahedron A regular polyhedron made up of 20 faces, each of which forms
an equilateral triangle. Icosahedrons are one of the five Platonic solids.

lemma A mathematical truth that is used to support a more important
mathematical truth, such as a theorem. Also, a stepping stone to a larger
mathematical truth.

number theory The branch of mathematics that deals primarily with the
properties and relationships of numbers, with particular attention being given
to positive integers.

pentagon Polygon with five straight sides and five angles.

pentagram Five-pointed star made up of five straight lines.

polyhedron Any solid with four or more faces made up of polygons. In regular
polyhedrons, such as the five Platonic solids, the faces are made up of regular
polygons.

proposition A statement of a theorem or problem. Propositions are usually
accompanied by a demonstration of their truth (a proof).

Pythagorean theorem A theorem attributed to Pythagoras which states that
for a right-angled triangle, the square of the length of the hypotenuse (the side
opposite the right angle) is equal to the sum of the squares of the lengths of
the other two sides. It is commonly formulated as a2 + b2 = c2.

radius The distance from the centre of a circle to its edge. The radius is half
the value of the diameter.

theorem A mathematical fact or truth, which has been established as a
logical consequence or arising from previously accepted mathematical facts or
axioms.

transcendental number Any number that cannot be expressed as a root of a
non-zero polynomial with integer coefficients; in other words non-algebraic
numbers. π is the best-known transcendental number, and following the
opening definition π therefore could not satisfy the equation π2 = 10. Most
real numbers are transcendental.



EUCLID’S ELEMENTS
the 30-second maths

Euclid was a Greek mathematician who lived and taught in
Alexandria around 300 BCE. He is revered not only for his specific theorems
concerning triangles, circles and prime numbers, but for his entire approach
to mathematical thought in providing definitions, identifying the postulates
being assumed, then carrying forward the logical consequences of those basic
assumptions, lemma by lemma, theorem by theorem. He provided a
methodology for mathematical reasoning that served as an inspiration for the
next 22 centuries of geometry instruction throughout the world. Although
much of his most celebrated, 13-book work, The Elements, concerns geometry
(in Book I Euclid proves the Pythagorean theorem, while he explains the
construction of the five Platonic solids in Book XIII), Euclid made a three-book
excursion into number theory. In Book VII he explains how to find the greatest
common divisor of two integers, detailing an algorithm that bears his name. In
Book IX he returns to the Pythagorean theorem and provides a formula that
generates whole numbers whose squares add up to the square of another
whole number, such as 32 + 42 = 52, giving lengths of sides of a right-angled
triangle.

3-SECOND SUM
The 13 books of The Elements, in which Euclid presented staggering and
beautiful truths in the disciplines of geometry and number theory, have had
an inestimable influence on civilization.

3-MINUTE ADDITION
There are famous anecdotes concerning Euclid’s philosophy. After proving the
proposition in a course, a student asked Euclid what practical use the
material would provide. Euclid gave the student a coin and sent him away,
since he clearly required recompense from knowledge rather than learning
simply for the sake of learning. When Ptolemy I asked Euclid to provide him
with a simpler means to grasp the theorems, Euclid replied, ‘There is no royal
road to geometry.’

RELATED THEORIES
PRIME NUMBERS

SQUARING THE CIRCLE

PARALLEL LINES



PLATONIC SOLIDS

3-SECOND BIOGRAPHIES
PYTHAGORAS

c. 570–c. 490 BCE

EUCLID

fl. 300 BCE

30-SECOND TEXT
David Perry

A proof of the Pythagorean triple. Congruent triangles can be used to
show that the grey square has the same area as the yellow rectangle

and that the red square has the same area as the blue rectangle.



PI – THE CIRCLE CONSTANT
the 30-second maths

Arguably the best- and longest- known easy-to-see-but-hard-to-
calculate mathematical constant, the irrational (transcendental) number π =
3.1415926535897… was known to all of the ancient civilizations due to its
simple relationship to the circle. It is the ratio of the circumference of a circle
to its diameter. It is widely thought that the choice of the Greek letter for the
constant came from the word for ‘perimeter’ (περíμετρος), and it is sometimes
called Archimedes’ constant due to his famous attempts to calculate it.
Indeed, from the circle approximations by inscribed or circumscribed polygons
of people like Archimedes or the Chinese mathematician Liu Hui, through the
finite sums of an infinite number of fractions via the calculus of Leibniz, to
fascinating equations like the formulas of the Indian mathematician
Ramanujan, π has most likely spawned more mathematical study than any
other single concept and plays a central role in almost every natural and
social science. Always the enigmatic number, π has spawned contests for
humans to recall its decimal digits in order and for computers to calculate
ever more accurate approximations. Celebrations of the number include π-day
(March 14, or 3/14), a now global phenomenon, and the development of a new
(serious but rather humorous) field of study called π-philology, or piphilology.

3-SECOND SUM
‘Quantitas, in quam cum multiplicetur diameter, proveniet circumferentia’ —
‘The quantity which, when the diameter is multiplied by it, yields the
circumference.’ That’s π (or pi) to you and me.

3-MINUTE ADDITION
In piphilology, a ‘piem’ is a poem devised so that the letter-length of each word
coincides with the decimal expansion of π. Sir James Jeans started the game:
‘How I want a drink, alcoholic of course, after the heavy lectures involving
quantum mechanics.’ Get it? The Cadaeic Cadenza, a short story written by
Mike Keith in 1996, is said to be written in pilish. It is a piem in prose, whose
word-length is 3,835!

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

TRIGONOMETRY

SQUARING THE CIRCLE



3-SECOND BIOGRAPHIES
PYTHAGORAS

c. 570–c. 490 BCE

ARCHIMEDES

c. 287–212 BCE

ISAAC NEWTON

1643–1727
WILLIAM JONES

1675–1749
30-SECOND TEXT
Richard Brown

Archimedes’ method of drawing a series of polygons inside and outside
a circle enabled him to work out the approximate value of π.



THE GOLDEN RATIO
the 30-second maths

If you divide a line into larger and smaller parts a and b so that the
sum of the two parts divided by the larger part is equal to the larger part
divided by the smaller part, i.e., (a + b)/a = a/b, you obtain the golden ratio. It
is also known as the golden section, golden mean and divine proportion and is
denoted by the Greek letter phi (φ), which is the irrational number yielded
through solving the equation: φ = (1 + √5)/2 = 1.6180339887498… For
mathematicians, it is interesting to note that φ also satisfies φ2 = 1 + φ and
1/φ = φ − 1. The golden ratio is also the measure of the diagonal of a regular
pentagon with sides of length 1. The pentagram, a figure formed by the
diagonals of a pentagon, had mystical associations for Pythagoras and his
followers. Artists and architects use the golden ratio to create proportions that
are pleasing to the eye. The Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
has the property that the ratio of two consecutive numbers approaches φ as
the numbers become large. The golden rectangle, with sides in proportion to
the golden ratio, is found in both the dodecahedron and icosahedron. A golden
spiral is formed by fitting quarter-circular arcs in squares with edge lengths
that diminish sequentially by φ.

3-SECOND SUM
The number for which the ratio of the sum of two parts to the larger part is
the same as the ratio of the larger part to the smaller part.

3-MINUTE ADDITION
The golden ratio is often cited as playing an aesthetic role in art, architecture
and design dating back to the pyramids of the ancient Egyptians, the temples
of classical Greece, through to the paintings of Leonardo da Vinci, and even to
today’s iPod. However, although there are examples of artists and designers
deliberately incorporating the ratio into their work (the architect le Corbusier,
for example), there are many that question the golden ratio’s artistic
significance.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

FIBONACCI NUMBERS

PLATONIC SOLIDS

3-SECOND BIOGRAPHIES



PYTHAGORAS

c. 570–c. 490 BCE

LEONARDO FIBONACCI

1170–1250
ROGER PENROSE

1931–
30-SECOND TEXT
Robert Fathauer

A series of squares with relative side lengths scaled by the golden ratio
fit neatly together in a spiralling configuration. Quarter-circular arcs

inscribed in the square form the Golden Spiral.



PYTHAGORAS
Most non-mathematicians have a schoolroom memory of Pythagoras’
theorem, and that is what he is best remembered for in the modern mind. The
man himself was far more enigmatic and a whole academic industry has
grown up around what is known as the ‘Pythagorean Question’, which tries to
disentangle the real, historical Pythagoras and his achievements and the
layers of myth, spin and almost hagiographic legend that have accreted
around him. As he never wrote anything down, and nor did his
contemporaries, hardly anything is known about him and to his many
followers he became a semi-divine, mystical character – a King Arthur of the
ancient world.

A mysterious and charismatic figure, he is said to have had a golden thigh,
to have performed wonders and possessed the shamanic ability to be in two
places at once. Pythagoras believed that the soul was immortal and went
through several reincarnations, and he was the founder of an esoteric
religious cult, much admired for its principled and rigorous austerity, and
significant enough to be persecuted by the political establishment. We know
this much because devoted followers – Pythagoreans were a flourishing sect
until the fifth century CE – began to write about him some 150 years after his
death. They rewrote history and glorified his achievements, maintaining that
Pythagoras was the source of all Aristotelian and Platonic ideas. The many
treatises put out under his name are forgeries. However, as far as maths is
concerned, although Pythagoras recognized a divine and mystical meaning to
numbers and their relationship with each other, it is unlikely that he ever
proved his theorem. The only piece of evidence that he studied geometry is
based on retrospective propaganda. We now know that the theorem was
known to Babylonian scholars in arithmetical form, although they did not
prove it either, so it could be that the seed of the story was that Pythagoras
was simply recognized as passing on a significant and elegant piece of
mathematical knowledge.

c. 570 BCE
Born in Samos

c. 530 BCE
Moved to Croton, southern Italy

c. 490 BCE
Died, probably in Metapontum

c. 200–250 CE



Diogenes Laertius, author of Lives and Opinions of Eminent Philosophers

c. 234–305 CE
Porphyry, author of a Life of Pythagoras

c. 245–325 CE
Iamblichus, author of On the Pythagorean Life



TRIGONOMETRY
the 30-second maths

A right-angled triangle has the property that the angles are related to
ratios of the side lengths. This relationship forms the basic ‘sine function’ (and
its cousins such as ‘cosine’), where the sine of an angle equals the ratio of the
opposite side length to that of the hypotenuse (the side opposite the right
angle). Knowing how to calculate length from angle measurements had
enormous practical implications to ancient astronomers and explorers, from
the Sumerians and the ancient Greeks to the Indians and Persians.
Hipparchus, the second century BCE Greek astronomer, is considered the
‘father of trigonometry’. Modern scientists view ‘trig’ functions more broadly.
Points on a circle can be pinpointed via a right-angled triangle; if the radius is
1, the coordinates of a point on the circle are the cosine and sine of the angle
Θ. As Θ is increased, the y value (sine of Θ) first increases then decreases,
becomes negative and returns to zero. As Θ continues to increase beyond 2 it
repeats this cycle over and over, so that a graph of the sine of Θ vs. Θ has a
periodic (repeating) wave shape. Hence all phenomena that look or act wave-
like, from radiation in physics, through sound in music, to oceanography,
medical imaging, and much of engineering and architecture, can be studied
using the basic trig functions such as sine and cosine.

3-SECOND SUM
Trigonometry is the study of the relationships between the angles of a triangle
and the lengths of its sides. It is fundamental to all modern science.

3-MINUTE ADDITION
In plane trigonometry, widely taught in school, all triangles have angles that
add up to 180°. Spherical trigonometry, however, is what is used for
astronomy and was of greater interest to ancient civilizations. On a sphere,
the angles of a triangle add up to more than 180°. In fact, with one point at
the North Pole and two other points on the Equator (one a quarter turn away
from the other), all three angles of the resulting triangle are 90°!

RELATED THEORIES
FUNCTIONS

CALCULUS

PI – THE CIRCLE CONSTANT

GRAPHS



3-SECOND BIOGRAPHIES
HIPPARCHUS

c. 190–120 BCE

PTOLEMY

c. 90–165 CE

LEONHARD EULER

1707–1783
30-SECOND TEXT
Robert Fathauer

The cosine and sine functions are defined as the x- and y coordinates of
the point at which a line at angle Θ from the x-axis intersects the unit

circle.



SQUARING THE CIRCLE
the 30-second maths

The ancient Greeks thought of all numbers as lengths, so their maths
was almost exclusively done geometrically. Dividing a number by two was seen
as a geometric construction. First, consider the number as the length of a line
segment. Then, use the tools of geometry, namely a straightedge and a
compass, to divide that segment in half. You have achieved division by two.
Starting with a circle, one can attempt to construct a square whose area is the
same as that of the circle. Thousands of years ago mathematicians came close
to ‘squaring the circle’, but the early attempts relied on the assumption that π
can be expressed as the ratio of two whole numbers. Not only is π now known
to be irrational, it was proven to be transcendental in the 19th century.
Centuries earlier, mathematicians had separately shown that transcendental
numbers could not be constructed with straightedge and compass, resolving
the issue definitively. Attempts at solutions had wonderful unforeseen
benefits, however. Conic sections were invented by Menaechmus to solve these
problems, as were abstract algebra and Galois theory, subjects of immense
importance to mathematics today.

3-SECOND SUM
With basic tools, the task of drawing a square with the same area as a given
circle seems quite straightforward. Alas, mathematicians know that this task
is impossible.

3-MINUTE ADDITION
The tradition of performing geometric constructions allowing only the use of
straightedge and compass is founded in the axioms codified in Euclid’s
Elements. The limitations of what one can do with these tools are built into the
tools themselves. This does not deter a throng of amateur and professional
mathematicians from claiming solutions to these impossible problems every
year. Such men and women are affectionately called ‘cranks’ in the business.
It seems to be in human nature to engage in quixotic quests.

RELATED THEORIES
RATIONAL & IRRATIONAL NUMBERS

EUCLID’S ELEMENTS

PI – THE CIRCLE CONSTANT

3-SECOND BIOGRAPHIES



HIPPIAS OF ELIS

c. 450 BCE– ?
EUCLID

fl. 300 BCE

ARCHIMEDES

c. 287–c. 212 BCE

30-SECOND TEXT
David Perry

With only straightedge and compass, you can easily bisect an angle or
construct a regular hexagon. You cannot, however, square the circle.



PARALLEL LINES
the 30-second maths

Parallel lines took centre stage in Euclid’s Elements, as he set about
building the geometry of a two-dimensional plane from first principles. Euclid
began with five fundamental laws of geometry. From these, he deduced facts
familiar to generations of students, such as the corresponding angles theorem:
if a pair of parallel lines is crossed by a third line, the angles in corresponding
positions are equal. Euclid’s fifth law, known as the ‘parallel postulate’, says
that if you draw a straight line, and then pick a point away from it, there is
only one possible parallel that can be drawn through that point. Anyone who
tries it on a piece of paper will easily be persuaded that it is true, but for
thousands of years geometers tried to understand why it should be. Many
were convinced that it was a consequence of the other four, simpler, laws. It
was not until the 19th century that Gauss, Bolyai and Lobachevsky
independently discovered an entirely new form of geometry satisfying the first
four of Euclid’s axioms, in which the parallel postulate failed. In this non-
Euclidean ‘hyperbolic’ geometry, there are infinitely many lines that could
pass through a single point, parallel to a given line.

3-SECOND SUM
Parallel lines are lines in the plane that continue for ever without meeting, like
train tracks. The laws of parallel lines play a defining role in different forms of
geometry.

3-MINUTE ADDITION
Hyperbolic geometry, with its abundance of parallel lines, fascinated
geometers. It found a home in 20th-century physics in Einstein’s new theory
of special relativity. Hermann Minkowski showed that the geometry of the
universe is fundamentally hyperbolic. It does not immediately appear that
way, but when approached from the perspective that all speeds below the
speed of light are equivalent, the hyperbolic nature of motion was revealed.

RELATED THEORIES
EUCLID’S ELEMENTS

3-SECOND BIOGRAPHIES
EUCLID

fl. 300 BCE

CARL-FRIEDRICH GAUSS



1777–1855
NICOLAI LOBACHEVSKY

1796–1856
JÁNOS BOLYAI

1802–1860
HERMANN MINKOWSKI

1864–1909
30-SECOND TEXT
Richard Elwes

Parallel lines are among the most familiar patterns, and the keys to the
most unfamiliar geometrical worlds.

> Corresponding angles across parallel lines
> The Poincaré disc demonstrates hyperbolic parallel lines



GRAPHS
the 30-second maths

In mathematics, graphs are most commonly used to depict
mathematical functions. In other fields, from biology to business, graphs are
primarily used to display data. Mathematical graphs are traditionally
displayed on a set of two perpendicular axes labelled x and y in two
dimensions. Any point in the plane can be specified via an ‘ordered pair’ (x, y)
specifying its distance from the y- and x-axes. The same concept is used for
displaying information in three dimensions by adding a third axis
conventionally labelled z. This system is known as Cartesian coordinates, after
its discoverer, French mathematician and philosopher René Descartes. His
contemporary, Pierre de Fermat, developed similar ideas independently.
However, the invention of the graph may more properly be credited to Nicole
d’Oresme, who three centuries earlier used horizontal and vertical axes to
graphically prove a rule relating the distance covered by two objects moving at
different rates. Descartes’ realization of the potential of the graph was a
seminal development in the history of mathematics, joining numbers and
geometric figures. This made possible the representation of such figures with
equations, bringing together algebra and geometry to create the field of
analytical geometry.

3-SECOND SUM
A graph is a pictorial representation of the relationship between two or more
variables.

3-MINUTE ADDITION
There are other coordinate systems in addition to the Cartesian one, such as
polar coordinates, in which a radial coordinate r and angular coordinate Θ are
specified. This allows a more ready solution of problems that deal with
phenomena radiating from a point, such as antenna strength. More broadly,
any map can also be considered a type of graph, as it relates data such as city
and road names, elevation, etc. to geographical location.

RELATED THEORIES
IMAGINARY NUMBERS

FUNCTIONS

CALCULUS

PARALLEL LINES



3-SECOND BIOGRAPHIES
NICOLE D’ORESME

c. 1320–1382
RENÉ DESCARTES

1596–1650
PIERRE DE FERMAT

1601–1665
30-SECOND TEXT
Robert Fathauer

The algebraic description of a particular ellipse (top) and the associated
geometric figure graphed using Cartesian coordinates.





ANOTHER DIMENSION



ANOTHER DIMENSION
GLOSSARY

axiom A proposition or statement that is self-evidently true or which has been
accepted as true without proof.

complex number Any number that comprises both real and imaginary
number components, such as a + bi, in which a and b represent any real
number and i represents √−1.

cube A solid with six sides, each of which is a regular square. Cubes are one
of the five Platonic solids.

dodecahedron Term usually used to describe a regular polyhedron with 12
faces, each of which forms a pentagon. Dodecahedrons are one of the five
Platonic solids. A rhomboid dodecahedron is an example of an irregular
dodecahedron.

Euler characteristic In topology, term used to describe a shape’s specific
topological data. For three-dimensional polyhedra, it is based around the
equation V − E + F = Euler characteristic, in which V is the number of dots or
vertices, E is the number of edges, and F is the number of faces.

factorial The product of a series of descending positive integers, such 6 × 5 ×
4 × 3 × 2 × 1. The symbol for factorial is !, therefore 4! = 4 × 3 × 2 × 1 = 24.

fractional dimension The size or dimension of a fractal set may be a number
between two natural numbers. The fractional dimension is a measure of the
apparent self-similarity of a fractal.

icosahedron A regular polyhedron made up of 20 faces, each of which forms
an equilateral triangle. Icosahedrons are one of the five Platonic solids.

iteration In fractal geometry, a repeated operation that performs the same
task each time.

Jones polynomial In knot theory, a polynomial that describes certain
characteristics of specific knots.

Klein bottle An object with an enclosed surface that has only one side and no
edges. A Klein bottle cannot be visualized in three dimensions without self-
intersections. It was named after the German mathematician Felix Klein, who
first described the surface in 1882.

Koch snowflake In fractal geometry, one of the earliest fractals. Each side of
an equilateral triangle undergoes an iteration (repeated operation) in which
the middle third section of each side is replaced by a motif made up of two



lines that form a point away from the main body of the triangle. The process is
repeated infinitely.

octahedron Term usually used to describe a regular polyhedron made up of
eight sides, each of which is an equilateral triangle. Octahedrons are one of
the five Platonic solids.

polygon Any two-dimensional shape that has three or more straight sides.

polyhedron Any solid with four or more faces made up of polygons. In regular
polyhedrons, such as the five Platonic solids, the faces are made up of regular
polygons.

polynomial An expression using numbers and variables, which only allows
the operations of addition, multiplication and positive integer exponents, i.e.,
x2. (See Polynomial Equations.)

tetrahedron A term that is usually used to describe a regular polyhedron
made up of four sides, each of which is an equilateral triangle (hence its
alternative name of a triangular pyramid). Tetrahedrons are one of the five
Platonic solids.

torus In geometry, a doughnut-shaped figure.

vertex Any angular point or corner on a polygon or polyhedron.



PLATONIC SOLIDS
the 30-second maths

Attaching different regular polygons together to form a solid is not so
difficult. Think of the standard football, with its interlocking hexagons and
pentagons. Doing so with only one polygonal shape, however, is more difficult.
In fact, there are only five ways of doing this: the cube, with its six squares as
sides, the tetrahedron, octahedron, and icosahedron, using four, eight and 20
equilateral triangles respectively, and the dodecahedron, with its 12
pentagons. The ancient Greeks studied the collection extensively. Plato wrote
about them in his dialogue Timaeus, and it is thought that Theatetus (Plato’s
contemporary) was the first to give a proof that there are no others. The idea?
If more than two equilateral polygons meet, they must meet at a corner or
vertex. At a corner, the sum of the angles of the polygons meeting there must
add up to less than 360° (they cannot add up to more, and at 360° the shape
would be flat). This is very restrictive. Any regular polygon with six or more
sides has an angle of more than 120°. Three of those together wouldn’t work!
And there are precious few ways to have the remaining equilateral polygons
meet like this. In fact, five is the precious few!

3-SECOND SUM
A Platonic solid is a three-dimensional solid all of whose faces (sides) are two-
dimensional regular polygons.

3-MINUTE ADDITION
In Timaeus, Plato equated these ‘polyhedra’ with the five natural ‘elements’ of
the time: the cube with earth, the tetrahedron with fire, the octahedron with
air, the icosahedron with water, and the dodecahedron with the ether, from
which the universe was made. In modern times, all of these solids have found
their way into the games we play, as the perfect shapes for the dice we throw
when we need to randomize our number choices.

RELATED THEORIES
ARCHIMEDES OF SYRACUSE

3-SECOND BIOGRAPHIES
PYTHAGORAS

c. 570–c. 490 BCE

PLATO

c. 429–347 BCE



ARCHIMEDES

c. 287–212 BCE

30-SECOND TEXT
Richard Brown

Meet the five Platonic solids – clockwise from left: the cube, the
tetrahedron, the dodecahedron, the icosahedron and the octahedron.



TOPOLOGY
the 30-second maths

In topology a cube, a pyramid and a sphere are all the same thing.
The reason is that topologists are not interested in the fine geometrical details
of a shape (length, area, angle or curvature). Rather topology focuses on the
global aspects of a shape, and on information that overrides stretching and
twisting (though never cutting or gluing). What features of a shape can survive
this process? Typical topological information is the number and type of holes
within a shape. For example, a lower case ‘i’ consists of two parts separated by
a gap, and topological morphing does not allow the gap to be closed. So, while
‘i’ is equivalent to ‘j’ and to the number ‘11’, it is not equivalent to ‘L’ or ‘3’.
Meanwhile the hole in an ‘O’ also cannot be removed, making it topologically
identical to an ‘A’ and a ‘9’ but not to an ‘8’ with its two holes. The London
Tube Map is an example of topology in action. The precise geography of the
city is eliminated, allowing the essential topological features such as the order
of the stations and the intersection points of different lines to be displayed
clearly.

3-SECOND SUM
Like geometry, topology, or rubber-sheet geometry, is the study of shapes. The
difference is that topologists class two shapes as being the same if one can
morph into the other.

3-MINUTE ADDITION
An important piece of topological data is a shape’s ‘Euler characteristic’. This
involves drawing dots and connecting them with edges. On a sphere, we might
draw two dots and two edges, dividing the surface into two faces. A
fundamental fact states that with V dots, E edges and F faces, it must be true
that V − E + F = 2 on any topological sphere. (A cube has V = 8, E = 12, and F
= 6.) Meanwhile, a torus has Euler characteristic 0, meaning that V − E + F =
0.

RELATED THEORIES
THE MÖBIUS STRIP

KNOT THEORY

POINCARÉ’S CONJECTURE

3-SECOND BIOGRAPHIES
LEONHARD EULER



1707–1783
JULES HENRI POINCARÉ

1854–1912
FELIX HAUSDORFF

1868–1942
MAURICE RENÉ FRÉCHET

1878–1973
LUITZEN EGBERTUS

JAN BROUWER

1881–1966
30-SECOND TEXT
Richard Elwes

What’s the difference between a sphere and a cube? To a topologist,
nothing.



EULER BRICKS
the 30-second maths

It’s easy to draw a rectangle in which the height and width are both
whole numbers. But it’s harder if we also want the diagonal distance across to
be a whole number. If we try a square 1cm wide by 1cm high, then the
diagonal comes out at around 1.41cm – in fact√2cm, by Pythagoras’ theorem.
The same thing happens with every square: if the sides are whole numbers,
the diagonal can’t be. This is also true for many rectangles, but there are some
that work. One 3cm wide and 4cm tall has a diagonal of exactly 5cm. Another
has sides of 5cm and 12cm with diagonal 13cm. Euler wanted a brick in
which all the edges were whole numbers, as were the diagonals of each face.
The first was discovered by Paul Halcke in 1719. It’s 44 units high, 117 wide
and 240 long, and its faces have diagonals of 125, 244 and 267. Since then
other examples have been found. A further challenge is to arrange the body-
diagonal (the internal distance from a corner to the one opposite) also to be a
whole number. Such a brick would be called perfect. Unfortunately, no one
has yet found a perfect Euler brick – in fact we don’t know if one exists.

3-SECOND SUM
A brick is a shape built from six rectangles. The Swiss mathematician
Leonhard Euler was interested in special bricks with dimensions that are all
whole numbers.

3-MINUTE ADDITION
Whether perfect bricks exist or not, there are no ‘small’ examples. Using
computers, mathematicians have established that if a perfect Euler brick does
exist, one of its sides must be more than 1,000,000,000,000 units long. The
closest thing found so far is a perfect parallelepiped, built from two rectangles
with four parallelograms (like rectangles but the sides aren’t perpendicular).
This has all dimensions and diagonals as whole numbers.

RELATED THEORIES
NUMBER THEORY

PYTHAGORAS

TRIGONOMETRY

3-SECOND BIOGRAPHIES
PAUL HALCKE

d. 1731



LEONHARD EULER

1707–1783
CLIFFORD REITER

1957–
30-SECOND TEXT
Richard Elwes

Everyone knows what a brick looks like. But has anyone seen a perfect
brick? Mathematicians haven’t.



THE MÖBIUS STRIP
the 30-second maths

Start with a rectangular strip of paper. Gluing one end to the other
produces a cylindrical loop of paper. But if you give the rectangle a half-twist
before joining the ends, you end up with something much more exciting: a
Möbius strip. This simple paper band’s point of interest is that it has only one
side and one edge! If you start drawing a line along the centre of the strip, it
will cross both the ‘inside’ and the ‘outside’ before reconnecting with itself,
since the two sides are actually one and the same. You might wonder what
would happen if you cut along that central line. Interestingly, cutting the strip
in half does not produce two new loops, but only one. Try it and see! August
Möbius’ strips have fascinated children and adults since he discovered them
in 1858. But for mathematicians, their importance is in the further shapes
that can be built from them. If you take two Möbius strips and glue them
together along their edges, you produce a single-sided surface known as a
Klein bottle. (The only trouble is that it is impossible to create in three-
dimensional space, without the surface of the bottle passing through itself.)

3-SECOND SUM
August Möbius’ one-sided loop of paper is a passport to a world of exotic
shapes.

3-MINUTE ADDITION
Take a sphere, cut two holes in it, and connect their edges with a cylinder.
You have created a torus (a doughnut shape). Take another sphere, cut a
single hole, and sew in a Möbius strip along the edge (unfortunately, this is
impossible to accomplish in three-dimensional space). It is a fundamental fact
of topology that all surfaces can be produced from a sphere through repeating
these processes of punching holes and sewing in cylinders and Möbius strips.

RELATED THEORIES
TOPOLOGY

KNOT THEORY

POINCARÉ’S CONJECTURE

3-SECOND BIOGRAPHIES
LEONHARD EULER

1707–1783



AUGUST FERDINAND MÖBIUS

1790–1868
JOHANN BENEDICT LISTING

1802–1882
FELIX KLEIN

1849–1925
30-SECOND TEXT
Richard Elwes

A loop with a twist, August Möbius’ strip has perplexed and delighted
for hundreds of years.



ARCHIMEDES OF SYRACUSE
In popular imagination, Archimedes is the inventive engineer who ran
naked, dripping from his bath through the streets shouting ‘Eureka!’ (I have
found it), having discovered a way of determining the volume of an irregular
object (by measuring the amount of water it displaces). Like most compelling
stories, this is probably not true: but he did discover what is now called
Archimedes’ Principle (a law of hydrostatics): the weight of water that a body
displaces when immersed in fluid equals the amount of weight it loses to
buoyancy. Ancient Greece’s best-known practical mathematician is also
famous for his eponymous screw pump (based on the lifting properties of the
spiral), and his explanation of the principle of the lever. He also invented
military weapons, the ‘claw of Archimedes’ (a crane that lifted enemy ships out
of the water) and the ‘heat ray’ (a large array of mirrors angled to catch and
concentrate the Sun’s rays, in an attempt to set fire to a hostile fleet);
although it is doubtful that either of these worked.

Although his work was known by Greek scholars, written down in the sixth
century CE, and familiar to medieval scholars, until recently modern
mathematicians could only extrapolate backwards that his inventions were
based on sound mathematical theory. It was not until 1906, when the
Archimedes Palimpsest manuscript was discovered, that the detail of his
theoretical work was brought to light. Some deciphering was achieved in the
1910s, but modern imaging techniques have finally revealed all that is known
of Archimedes’ methods, showing how close he came to determining the value
of π, his method for working out the area under a parabola, the invention of
the myriad, and the proof with which he was most satisfied, that a sphere has
two-thirds of the volume and surface area of a cylinder of the same height and
diameter (including its bases). A sculpted sphere and cylinder appeared on
Archimedes’ tomb (now lost), which had lain neglected until it was discovered
and cleaned up by the orator Cicero in 75 BCE, long after his death at the
hands of an overzealous Roman soldier during the Siege of Syracuse.

c. 287 BCE
Born in Syracuse

c. 270 BCE
Studied in Alexandria, Egypt (probably)

c. 212 BCE
Died at Siege of Syracuse

c. 530 CE
First comprehensive compilation of his works by Isidor of Miletus



6th century CE
Commentaries on Archimedes’ On the Sphere and the Cylinder, the Quadrature
of the Parabola, and the Two Books on Equilibrium written by Eutocius of
Ascalon

1906
Archimedes Palimpsest discovered in Constantinople

29 October, 2008
All data relating to Archimedes on the Palimpsest made freely available on the
internet



FRACTALS
the 30-second maths

In the late 19th and early 20th centuries, mathematicians devised a
variety of constructs that were difficult to understand using the mathematics
of the time. The Cantor set is an infinite set of points obtained by starting with
a line segment, removing the middle third, removing the middle thirds of the
two remaining bits, removing the middle thirds of the four remaining bits, and
so on. This process of repeating the same step or series of steps is called
iteration, and it lies at the heart of fractals. Early examples include curves
such as the Koch and Peano curves, and the Sierpinski triangle, which is
related to Pascal’s triangle. In the Koch curve (related to the Koch snowflake),
each straight-line segment is replaced with four one-third scale segments at
each iteration, so that the length of the curve increases with each iteration.
Such objects are said to have fractional dimension, for example between that
of a regular line and the plane. Applying iteration to simple functions like x2 +
c, where x and c are complex numbers (having both real and imaginary parts),
and graphing the results in the complex plane yields complicated, beautiful
objects known as Julia sets. Benoît Mandelbrot used computers to visualize
these sets, as well as the related Mandelbrot set, and developed fractals as a
distinct branch of geometry in mathematics.

3-SECOND SUM
A fractal is an abstract or physical object that exhibits similar structure at
different magnifications.

3-MINUTE ADDITION
The idea of iterating a simple set of instructions to create complicated objects
is very efficient, and many objects in nature exhibit fractal character over a
limited range of magnification. These include branching structures like trees,
river networks, and the human circulatory system. The coastline of Great
Britain is an example of a fractal curve. Fractal surfaces are found in broccoli,
mountains and clouds.

RELATED THEORIES
IMAGINARY NUMBERS

INFINITY

FUNCTIONS

GRAPHS



3-SECOND BIOGRAPHIES
GEORG CANTOR

1845–1918
HELGE VON KOCH

1870–1924
WACLAW SIERPINSKI

1882–1969
GASTON JULIA

1893–1978
BENOÎT MANDELBROT

1924–2010
30-SECOND TEXT
Robert Fathauer

The first four steps in the iterative construction of the classical fractal
known as the Koch curve.



ORIGAMI GEOMETRY
the 30-second maths

Origami, the centuries-old Japanese art of paper-folding, is inherently
geometric. In recent decades, numerous advances have been made involving
the mathematics of origami. Huzita, Justin and Hatori formulated a set of
axioms for origami, similar to the way in which axioms have been formulated
for geometry. In addition, mathematical theorems addressing theoretical
questions about origami have been proven in recent years. Algorithms that aid
in finding optimal solutions for the folding of complex figures have been
developed by Lang and others, along with computer programs that utilize
them. Using these, crease patterns can be produced that indicate the
mountain and valley folds needed to create a desired form. While origami
traditionally has focused on creating representational forms such as animals
and flowers, geometric forms are the primary goal in some modern origami
techniques. In origami tessellations a grid of creases is used as the starting
point in the creation of geometric forms that often involve repetition. Shuzo
Fujimoto is largely credited with starting this branch of origami. In modular
origami, multiple geometric modules, each made from a single sheet of paper,
are combined to form more complex models.

3-SECOND SUM
Origami geometry is the mathematics of the art of folding a generally square
piece of paper to create a more complex form.

3-MINUTE ADDITION
Origami mathematics has been used to address several real-world engineering
problems. An origami-based folding solar panel was used on a Japanese
satellite. Origami techniques have been used to determine the optimal folding
of an airbag for deployment in an automobile crash. An origami-inspired stent
has been developed for enlarging clogged arteries and veins. A thin plastic lens
that folds out for use in a large-area space telescope has also been designed.

RELATED THEORIES
ALGORITHMS

EUCLID’S ELEMENTS

PLATONIC SOLIDS

3-SECOND BIOGRAPHIES
SHUZO FUJIMOTO



1922–
HUMIAKI HUZITA

1924–2005
ROBERT LANG

1961–
30-SECOND TEXT
Robert Fathauer

An origami tessellation in which a single sheet of paper has been folded
into a repeating pattern of squares.



RUBIK’S CUBE
the 30-second maths

The Rubik’s Cube was invented by Ernö Rubik in 1974 and sold in
his native Hungary from 1977. In 1980, Ideal Toy Company began selling it
worldwide, and today more than 300 million have been sold. A pivot
mechanism allows each of the six faces of the Cube to be rotated
independently. There are over 43 quintillion (1018) possible arrangements
(permutations) of the 26 pieces. Solving the Cube is made easier by
memorizing algorithms for accomplishing a desired result, such as cycling
three corners without effecting other changes. A move notation developed by
David Singmaster allows algorithms to be written down. Singmaster also
developed one of the most popular general solutions for the Cube. To
mathematicians, the Cube is nothing more than a physical manifestation of
an algebraic group. Analysis of the Cube from this perspective shows that it
can be solved from any starting position in no more than 20 moves. Only in
2010 was a mathematical proof of this result obtained. The current (mid-
2011) world record for solving the Cube is held by Feliks Zendegs at under
seven seconds. Variations on ‘speedcubing’ include blindfolded solving, solving
the Cube using a single hand, and even with one’s feet.

3-SECOND SUM

The Rubik’s Cube® is a mechanical permutation puzzle solved by arranging
the pieces so that each face of a 3 x 3 cube is a uniform colour.

3-MINUTE ADDITION
In addition to the original 3 × 3 Rubik’s Cube, 2 × 2, 4 × 4, 5 × 5, 6 × 6 and 7
× 7 Cubes have also been produced. The number of permutations for the 7 × 7
Cube is over 10160 (1 followed by 160 zeroes!). Other cuboid versions include
the 2 × 2 × 3, 3 × 3 × 2 and 3 × 3 × 4. Versions based on the other four
Platonic solids, the tetrahedron, octahedron, dodecahedron, and icosahedron
have been made as well. Other polyhedral versions include the
rhombicuboctahedron, truncated tetrahedron, truncated octahedron, and
stellated cuboctahedron.

RELATED THEORIES
CALCULATING THE ODDS

ALGORITHMS

SETS & GROUPS



PLATONIC SOLIDS

3-SECOND BIOGRAPHIES
DAVID SINGMASTER

1939–
ERNÖ RUBIK

1944–
30-SECOND TEXT
Robert Fathauer

In a Rubik’s Cube a series of twists is carried out in order to rearrange
a scrambled Cube so that each face is a single colour – the number of

possible permutations is a mindboggling 43 quintillion!



KNOT THEORY
the 30-second maths

As every sailor and scout knows, there are many varieties of knot. All
differ based on the number of times the string crosses over and loops around
itself. In knot theory, the central question is whether two knots that look
different are in fact different. Two knotted loops are judged to be the same if
one can be pulled and stretched into the shape of the other, without cutting or
gluing the string. The simplest knot of all is called the unknot: a plain
unknotted loop. But even this demonstrates a fundamental difficulty: it is
easy to make the unknot appear thoroughly tangled and knotted (as anyone
who has gone fishing can tell you). A breakthrough came in 1984 with the
discovery of the Jones polynomial, which assigns an algebraic expression to
each knot. Each knot has one, and if two knots have different Jones
polynomials they cannot be the same. This works well for distinguishing a
knot from its mirror image, for example, which was previously a difficult
problem. However, there is still no known technique that can tell whether any
two knots are the same (some knots known to be different have the same
Jones polynomials), or even whether any given knot is knotted at all!

3-SECOND SUM
Cut a loop of string, tie some knots in it and then recombine the ends. How
can we tell whether two such knotted loops are really the same? This puzzle
has perplexed scientists for over a century.

3-MINUTE ADDITION
The mathematics of knot theory is very important in the wider world of
science. For instance, DNA strands in our cells are constantly being knotted
and unknotted by an army of enzymes. If the DNA becomes too knotted, the
cells usually die. Biochemists who want to understand what the enzymes are
doing must analyse the resulting knots mathematically.

RELATED THEORIES
TOPOLOGY

3-SECOND BIOGRAPHIES
WILLIAM THOMSON

(LORD KELVIN)

1824–1907
JAMES WADDELL ALEXANDER



1888–1971
JOHN CONWAY

1937–
LOUIS KAUFFMAN

1945–
VAUGHAN JONES

1952–
30-SECOND TEXT
Richard Elwes

Knots come in many forms. But it’s tough to tell whether two tangles
are really the same.





PROOFS & THEOREMS



PROOFS & THEOREMS
GLOSSARY

algebraic number theory The branch of mathematics that deals primarily
with the properties and relationships of algebraic numbers (any number that
is a root of a non-zero polynomial that has integer coefficients).

axiom A proposition or statement that is self-evidently true or which has been
accepted as true without proof.

complex number Any number that comprises both real and imaginary
number components, such as a + bi, in which a and b represent any real
number and i represents √–1.

decimal number Any number on the counting line that features a decimal
point, e.g., 10.256

hypersphere A three-dimensional version of a two-dimensional sphere
(surface of a globe). It is a compact manifold without boundary or holes. The
hypersphere can be visualized only in four or more dimensions. See also
manifold.

Klein bottle An object with an enclosed surface that has only one side and no
edges. A Klein bottle cannot be visualized in three dimensions without self-
intersections. It was named after the German mathematician Felix Klein, who
first described the surface in 1882.

linear equation Any equation which when plotted on a graph results in a
straight line, hence the word linear. Linear equations are made up of terms
that are either constants or products of a constant and a variable.

manifold A manifold is a shape where each region looks like ordinary
Euclidean (or real) space. Manifolds exist in every dimension. A curve (e.g., a
circle) is a one-dimensional manifold, since every small region resembles a
one-dimensional line. A two-dimensional manifold is a surface (e.g., a sphere)
where every patch appears as a piece of two-dimensional plane. A hypersphere
is an example of a three-dimensional manifold, since every small region
resembles ordinary three-dimensional space. See also hypersphere.

Möbius strip A surface that has one continuous side and one edge. It can be
made by twisting a rectangular piece of paper and joining the two ends
together.

natural number Also known as a whole or counting number, a natural
number is any positive integer on a number line or continuum. Opinion
varies, however, on whether 0 is a natural number.



nontrivial solution Any solution to a linear equation in which not all of the
variables of the equation simultaneously count as zero. A solution arrived at
in which all of the variables count as zero is said to be trivial.

prime number Any positive integer that is divisible only by 1 and itself.

proof theory The branch of mathematical logic that describes proofs as
mathematical entities in their own right. Proof theory plays a fundamental role
in the philosophy of mathematics.

Pythagorean triple Any set of three positive integers (a, b and c) that follows
the rule a2 + b2 = c2. The smallest and best-known Pythagorean triple is 3, 4
and 5, since 32 + 42 = 52.

real number Any number that expresses a quantity along a number line. Real
numbers include all the rational numbers (numbers expressible as a ratio or
fraction) and the irrational numbers (those numbers that cannot be written as
a vulgar fraction, such as √2).

theorem A non-self-evident mathematical truth, the truth of which can be
established by a combination of previously accepted facts and/or axioms.

torus In geometry, a doughnut-shaped figure.

whole number See natural number.



FERMAT’S LAST THEOREM
the 30-second maths

A 17th-century French lawyer and amateur mathematician, Pierre de
Fermat, was working his way through a copy of Diophantus’ Arithmetica, when
he came to a section concerning Pythagorean triples (whole number squares
that add up to a square, such as 32 + 42 = 52). A formula for generating all
such triples occurs in Euclid’s Elements. Fermat claimed that no such triples
would be found if instead of squares one used cubes, or fourth powers, and so
on. He wrote in his copy of Arithmetica that he had a marvellous proof of the
claim, but the margin of the book could not contain it. Hundreds of
mathematicians spent thousands of hours trying to discover this proof, but at
best were only able to show that the equation had no solutions for specific
exponents. Fermat himself published a proof for the case n = 4 later in his life.
Heavyweights like Euler and Gauss also proved special cases. The first
sophisticated attempt to resolve the general case for all n was made by Sophie
Germain in the early 19th century. Fermat’s Last Theorem was really only a
conjecture until 1994, when it was finally proven definitively by the British
mathematician Andrew Wiles.

3-SECOND SUM

There are no (nontrivial) whole number solutions to the equation xn + yn = zn if
n > 2. It took over three centuries for mathematicians to prove this simple
statement to be true.

3-MINUTE ADDITION
Fermat’s assertion has no obvious practical benefit. However, the elusiveness
of a proof fired the imaginations of generations of mathematicians. It is easy to
argue that the entire field of mathematics called ‘algebraic number theory’ was
brought into existence to tackle this single question, and this field has yielded
applications of great importance. Wiles’ work stood on the shoulders of giants,
and his original announcement made the front page of The New York Times.

RELATED THEORIES
NUMBER THEORY

EUCLID’S ELEMENTS

3-SECOND BIOGRAPHIES
PIERRE DE FERMAT
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1776–1831
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1777–1855
ANDREW WILES

1953–
30-SECOND TEXT
David Perry

Fermat’s marginal note was discovered only after his death. Andrew
Wiles’ first paper on the proof of Fermat’s Theorem takes up 108 pages

– the margins are empty.



PIERRE DE FERMAT
Thanks to the mystery that for centuries surrounded his eponymous
theorem, Fermat is among the best-known mathematicians to non-
mathematicians. Despite making original and important contributions in the
fields of geometry, probability, physics and calculus, and now hailed as the
founder of modern number theory, Fermat fiercely guarded his amateur status
all his life. He communicated all his ideas and discoveries in correspondence
and manuscript form, and eschewed publication in his lifetime, possibly
because he did not want the bother of getting his notes and theories up to
publication standard. Like his mentor figure, François Viète (1540–1603) he
was by day a lawyer, a councillor in the legislature at Toulouse. Keeping out of
the academic world ensured that he did not need to demonstrate rigorously
his proofs or suffer the indignity of peer-review – indeed some colleagues
muttered darkly that he would not produce his proofs because there weren’t
any, and that he consistently challenged them with problems too difficult to
solve. Fermat riposted by proving that some problems had no solutions.

He was highly regarded by the lions of the day such as Beaugard, Cavanci
and, when he was living and working in Paris for a time, Mersenne. Newton
publicly acknowledged that he would not have got to differential calculus
without Fermat’s pioneering work on curves and tangents, and his
advancement of the concept of adequality. He enjoyed a famous
correspondence with Pascal, in which the two wrestled with a gambling
problem and came up with the principles of probability theory. Fermat also
(inevitably) had a run-in with Descartes (surely the most tetchy of
mathematicians) about geometric theory, and pipped the philosopher to the
post, putting out his own theory a year before Descartes published his;
Fermat was right, but Descartes, a man of the establishment, used his
influence and connections to blacken Fermat’s name and trivialize his
reputation. Controversial, brilliant and enigmatic to the end, Fermat left the
world with what seemed yet another insoluble puzzle: his famous, teasing Last
Theorem, scribbled as if an afterthought in the margin of one of his text
books, and unsolved for more than 300 years after his death.

17 August 1601
Born Beaumont de Lomagne, Tarn et Garonne, France

1620s
Studied in Bordeaux

1631
Degree in Civil Law from University of Orleans



1636
Appointed Royal Librarian, Paris

1636
Manuscript of Introduction to Plane and Solid Loci circulated, predating
Descartes’ La Géométrie

1654
Corresponded with Pascal on probability theory

1656
Corresponded with Huygens

1659
Account of Discoveries in the Science of Numbers sent to Huygens and Carcavi

12 January 1665
Died at Castres

1670
Edition of Diophantus’ Arithmetica published by Samuel Fermat, with notes by
Pierre de Fermat

1679
Introduction to Plane and Solid Loci published posthumously in Varia Opera
Mathematica

1994
Fermat’s Last Theorem proved by Andrew Wiles



THE FOUR COLOUR MAPPING PROBLEM
the 30-second maths

You’ve drawn a world map, and you wish to make your map more aesthetically
pleasing by colouring in the countries. You decide that any two countries that
share a border cannot share the same colour. France, Belgium, Germany and
Luxembourg will all require a different colour, since each of these four
countries shares a border with the other three. So you will need at least four
different colours. Will you be forced at some point to use a fifth colour? The
four colour theorem asserts that you will not. No matter how large or
complicated a map you wish to colour, as long as each country is a contiguous
region, it is possible to colour the countries with only four colours. In spite of
its simple statement, the four colour theorem is extremely difficult to prove. It
was only in 1976, 100 years after the theorem was first stated, that US
mathematicians Kenneth Appel and Wolfgang Haken found a proof. While four
colours are sufficient to colour maps on a sphere or plane, this is not the case
for maps on other types of surfaces. Map-makers colouring a torus require as
many as seven colours, while on a Möbius strip, six may be needed.

3-SECOND SUM
You need only four colours to colour in the countries on a map so that no
adjacent countries are the same colour; why never a fifth?

3-MINUTE ADDITION
The four colour theorem is the first major theorem proved using the assistance
of a computer. Appel and Haken found a mathematical argument reducing the
matter from all possible maps to a property of several thousand particular
maps, which a computer could check. The use of this nascent technology
sparked a debate, continuing today, about whether computer-assisted proofs
should be accepted as valid mathematical proofs.

RELATED THEORIES
TOPOLOGY

3-SECOND BIOGRAPHIES
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Jamie Pommersheim

When shading a map, only four colours are required to ensure that no
two bordering countries have the same colour. It took mathematicians a

century to prove why a fifth colour isn’t needed.



HILBERT’S PROGRAM
the 30-second maths

In the early 20th century, mathematics was in the grip of a
‘foundational crisis’. While mathematicians were solving increasingly complex
problems, certain basic questions were left unanswered. Where do numbers
come from? What are their fundamental laws? Why are some questions about
numbers so extraordinarily difficult? David Hilbert had a bold idea for
addressing these challenges. He wanted to strip maths down to its bare bones,
and treat it as nothing more than a game. Just as chess is played with pieces
such as pawns and castles, so the game of maths has symbols as its basic
constituents: 0, 1, +, ×, =, and so on. By reducing maths to a game of
symbols, and forgetting what they ‘mean’, Hilbert sought to discover its
fundamental rules. With this done, he hoped that an ultimate strategy for
winning would emerge. This would be a single method that could determine
whether any statement about numbers is true or false. Unfortunately,
Hilbert’s program was never realized. Kurt Gödel’s incompleteness theorem
showed that a complete set of rules could never be known. And later, Alan
Turing’s work on algorithms demonstrated that there could never be a single
procedure capable of evaluating the truth of any mathematical statement.

3-SECOND SUM
David Hilbert hoped to use the logic underlying the structure of arithmetic to
find the ultimate theory of mathematics. Unfortunately, his plans were never
to be.

3-MINUTE ADDITION
Although Hilbert’s program failed to meet his high hopes, his work had a
lasting impact on mathematics. His ‘formalist’ approach of treating numerical
systems as games sparked new interest in mathematical logic. Although a
single computer program or algorithm can never solve all mathematical
problems, several special subclasses of problems can be resolved this way.
Today’s mathematicians continue to salvage positive results from Hilbert’s
program.

RELATED THEORIES
ALGORITHMS

GÖDEL’S INCOMPLETENESS THEOREM

3-SECOND BIOGRAPHIES
DAVID HILBERT



1862–1943
WILHELM ACKERMANN

1896–1962
JOHN VON NEUMANN

1903–1957
KURT GÖDEL

1906–1978
ALAN TURING

1912–1954
30-SECOND TEXT
Richard Elwes

Like chess, mathematics is just a game. But what are its rules?



GÖDEL’S INCOMPLETENESS THEOREM
the 30-second maths

The centrepiece of mathematics is arithmetic: the system of whole
numbers 0, 1, 2, 3, … together with the well-known ways to combine them:
addition, subtraction, multiplication and division. Mathematicians grappled
with this system for thousands of years, and in the late 19th century the focus
turned to finding its fundamental laws. What mathematicians sought was a
list of the basic rules for arithmetic, from which all higher-level theorems
could be logically deduced. Several candidate rulebooks appeared, notably the
three-volume work Principia Mathematica, by Bertrand Russell and Alfred
North Whitehead, which sought to build up the whole of mathematics, starting
with a list of fundamental assumptions. However, in 1931 Kurt Gödel proved
that all such efforts were doomed. He proved a theorem stating that it is
impossible to write down a full list of rules for arithmetic. Any attempt will
automatically be ‘incomplete’. There will always be some statement about
whole numbers that is missed out: despite being true, it cannot be deduced
from the given laws. Of course, you could expand the rulebook to incorporate
this statement as a new law, but that would still leave other gaps in the
theory. Gödel’s theorem guarantees that you can never hope to plug them all.

3-SECOND SUM
Kurt Gödel stunned the world with his revelation that no one will ever be able
to write down a complete set of laws of numbers.

3-MINUTE ADDITION
Although Gödel assures us that no complete rulebook for arithmetic can ever
be written, a hierarchy of logical systems for arithmetic has subsequently been
constructed, where each system plugs many of the gaps of the system below.
The subject of ‘proof theory’ compares the logical strengths of these different
systems, while ‘reverse mathematicians’ aim to understand where classical
mathematical results fit in, asking exactly what underlying assumptions are
needed to prove a given theorem.

RELATED THEORIES
INFINITY
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Arithmetic is full of gaps. However many logicians plug, there will
always be more.



POINCARÉ’S CONJECTURE
the 30-second maths

The surface of a sphere contains no holes. This is obvious. But what
does it mean for a surface to have a hole? The mathematical definition is this:
if you draw a loop on a sphere, it can be drawn in until it shrinks away to a
single point. On a torus (the surface of a doughnut) this does not always work;
a loop circling the shape in the right way will get stuck around its hole. For
mathematicians, ‘no holes’ means that all loops contract. A double-torus also
has holes in it, as does the more exotic Klein bottle. Since the early 19th
century, we’ve known that the sphere is actually the only closed surface
without holes, when viewed from the perspective of topology (or ‘rubber-sheet
geometry’). This means every closed surface without holes, such as a cube,
can be pulled into the shape of a sphere. Surfaces are two-dimensional
shapes. What Poincaré asked was whether the same thing remains true when
we step into three dimensions, where surfaces are replaced by shapes called
‘manifolds’. Poincaré believed that the only three-dimensional manifold
without holes is the ‘hypersphere’, the bigger brother of the ordinary sphere.
This was finally proved in 2003 by Grigori Perelman.

3-SECOND SUM
French mathematician Henri Poincaré believed spheres, in all dimensions, to
be the only shapes that contain no holes. Over a century later he was finally
proved right.

3-MINUTE ADDITION
The Poincaré conjecture can be stated for manifolds in higher dimensions too.
In 1961, Steven Smale and Max Newman proved that in all dimensions from
five upwards, hyperspheres are indeed the only shapes without holes. Then in
1982, Michael Freedman proved that the same thing is true in four
dimensions. So the three-dimensional version, the one that had most
interested Poincaré, was in fact the final piece of the jigsaw.

RELATED THEORIES
TOPOLOGY

THE MÖBIUS STRIP
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If every loop can shrink away to nothing, then the shape must be a
sphere.



THE CONTINUUM HYPOTHESIS
the 30-second maths

The list of natural numbers runs on for ever: 1, 2, 3, 4, 5, … There
are also infinitely many real numbers (decimal numbers such as .5 or π or
0.1234567891011121314…). These two types of infinity are known as
‘countable infinity’ and the ‘continuum’ respectively. To the dismay of his
contemporaries, Georg Cantor proved that these are actually different sizes. In
a very real sense, the collection of decimal numbers is a bigger infinity than
that of the whole numbers. This was not the end of it: Cantor identified more
levels of infinity than these two (infinitely many in fact). But for most ordinary
mathematics, these are the two most important types of infinity. Cantor had
shown that the continuum is a bigger infinity than the countable level. What
he didn’t know was whether there were any intermediate levels between them.
He believed that there were not, and this conjecture became known as the
‘continuum hypothesis’. It remained open until 1963, when US mathematician
Paul Cohen proved the shocking result that the continuum hypothesis is
formally undecidable. This means that, given the present set of all
mathematical laws, the continuum hypothesis is neither provable nor
disprovable.

3-SECOND SUM
German mathematician Georg Cantor discovered that infinity comes in many
varieties. How these different levels of infinity relate to each other still remains
a mystery today.

3-MINUTE ADDITION
Cantor’s legacy is one of the few places where mathematics meets ideology.
Cantor’s contemporary Leopold Kronecker dismissed the entire subject, saying
‘God created the integers [whole numbers], all else is the work of man.’ David
Hilbert, on the other hand, declared, ‘No one shall expel us from the paradise
that Cantor has created.’ These differences of opinion continue today. While
some set-theorists search for new laws that would allow the continuum
hypothesis finally to be decided, others hold that we can never know.
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Infinity comes in different sizes. But how can we know when we’ve
found them all?



RIEMANN’S HYPOTHESIS
the 30-second maths

Even today, prime numbers remain one of mathematicians’ main
concerns. The trouble is that they are so unpredictable. It is very difficult to
tell when the next prime will occur: sometimes they come thick and fast (e.g.,
191, 193, 197, 199), and at other points there are longer gaps between them
(e.g., 773, 787, 797, 809). Yet in 1859, Bernhard Riemann produced a formula
making sense out of this chaos. It was exactly what mathematicians were
seeking. It could tell the exact number of primes below any limit, thereby
predicting the next prime with complete accuracy. Although experiments
suggested that it worked perfectly, Riemann wasn’t able to prove that it would
always give the right answer. The formula centred on a mysterious object,
called the ‘Riemann’s Zeta function’. A function is a rule which takes in one
number as input and spits out another as output. In Riemann’s case, this
function had both inputs and outputs being complex numbers (see Imaginary
Numbers). What Riemann needed to know was which of the inputs produced
zero. He believed and hypothesized that all the important zeroes lie on a
vertical line that hits the real axis (a) at 1/2, dubbed the ‘critical line’. Yet
neither he nor anyone since has been able to prove for certain that it is true.

3-SECOND SUM
Bernhard Riemann formulated a rule describing the distribution of the prime
numbers. It works, but no one has been able to prove it correct.

3-MINUTE ADDITION
Although Riemann’s hypothesis has not been proved, his ideas were enough to
prove an important weaker result: the prime number theorem. Conjectured by
Gauss in 1849, it provides an excellent estimate of the number of primes up to
any limit. It is not exact, but good to a high level of accuracy. Though Gauss
was not able to prove it, in 1896 Hadamard and de la Vallée-Poussin
independently deduced it by narrowing Riemann’s zeroes to within a
rectangular critical strip between 0 and 1.

RELATED THEORIES
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NUMBER THEORY
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Do Riemann’s zeroes all lie on the vertical line at 1/2? This question
stands between us and the mysteries of the prime numbers.
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