

Arduino Android Blueprints

Get the best out of Arduino by interfacing it with
Android to create engaging interactive projects

Marco Schwartz

Stefan Buttigieg

BIRMINGHAM - MUMBAI

Arduino Android Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1151214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-038-9

www.packtpub.com

www.packtpub.com

Credits

Authors
Marco Schwartz

Stefan Buttigieg

Reviewers
Simone Bianchi

Kyrre Havik Eriksen

Adam Laskowitz

Rufael Negash

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Anand Singh

Technical Editor
Indrajit A. Das

Copy Editors
Janbal Dharmaraj

Vikrant Phadkay

Project Coordinator
Rashi Khivansara

Proofreaders
Martin Diver

Maria Gould

Samantha Lyon

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Authors

Marco Schwartz is an electrical engineer, entrepreneur, and blogger. He has a
Master's degree in Electrical Engineering and Computer Science from Supélec in
France and a Master's degree in Micro Engineering from the EPFL in Switzerland.

He has more than 5 years of experience working in the domain of electrical
engineering. His interests gravitate around electronics, home automation, the
Arduino and Raspberry Pi platforms, open source hardware projects, and 3D printing.

He runs several websites around Arduino, including the Open Home Automation
website, which is dedicated to building home automation systems using open
source hardware.

He has written another book on home automation and Arduino, called Home
Automation with Arduino and another book on how to build the Internet of Things
projects with Arduino, called Internet of Things with the Arduino Yún, Packt Publishing.

Stefan Buttigieg is a medical doctor, mobile developer, and entrepreneur.
He graduated as a Doctor of Medicine and Surgery at the University of Malta,
and he is currently enrolled at the University of Sheffield where he is undertaking
a Master's degree in Health Informatics.

He has more than 5 years of experience working in various technical positions in
international and local student organizations, and has founded MD Geeks, an online
community that brings health professionals, developers, and entrepreneurs together
from around the world to share their passion for the intersection of healthcare and
information technology.

His main interests are in mobile development, specifically, Android and iOS,
open source healthcare projects, user interface design, mobile user experience,
and project management.

I would like to thank Angelika Biernacka-Buttigieg, my wife, for
her unconditional support and patience throughout the creation
of this book.
My parents, Joseph Buttigieg and Anne Buttigieg, for their support
for this book project.
Christopher Svanefalk for his amazing insight and patience with
code reviews and support.
Don Coleman, for his invaluable help in Chapter 8, Control an
Arduino Board via NFC. We recommend his expertise on near
field communication technologies.

About the Reviewers

Simone Bianchi lives in Italy, where after a degree in electronic engineering,
he started to work as a programmer developing web applications using technologies
such as Java, JSP, JQuery, and Oracle. When time permits, he likes to explore other
topics, contribute to the open source community developing free components for the
Talend Platform (for example, the tDBFInput and tDBFOutput components), develop
Android apps (SleepyTimer), or return to the subjects of his studies, delighting
himself building small IoT projects using microcontrollers like the ones of the
Arduino family.

I'd like to thank Pack Publishing for again giving me the opportunity
to review their book after Talend for Big Data, and I hope you can find
this book as inspiring as it has been for me reviewing it.

Kyrre Havik Eriksen is an independent and curious person, with a Master's
degree in Informatics from the University of Oslo, Norway. He works full time as
a Java developer, but in his spare time, he studies Android and game development
with Löve and Libgdx. He has also taught Processing and Arduino while he studied.

Adam Laskowitz received his Master's degree in Architecture and Master's degree
in Fine Arts from the University at Buffalo in 2012. Adam has designed and built a
number of interactive installations, notably Diep International Art Festival in 2011,
Dieppe, France; SIGGRAPH in 2012, Los Angeles, CA; and HERE Art Center in
2013, New York. Adam has worked as a designer, researcher, and prototyper at Intel
Labs and Intel New Devices Group. In October 2014, he joined Target Technology
Innovation Center as an experience design lead. He has been featured in a number of
articles and productions, including a BBC interview discussing citizen science and air
quality research.

Rufael Negash is an interaction designer and creative coder, based in Malmö,
Sweden.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Setting Up Your Workspace 7

Hardware and software requirements 8
Installing Java Developer Kit 10

Checking the JDK version 10
Mac 10
Windows 10

Installing Java 11
Installing Android Studio 12

Mac 14
Windows 15

Setting up the Android Software Development Kit 15
Setting up your physical Android device for development 17

Enabling developer options 18
Enabling USB debugging 18
Entrusting the computer with the installed IDE using secure USB debugging
(devices with Android 4.4.2) 18

Hardware configuration 18
Learning to use the aREST library 20
Creating your first Android project 26

Setting up your first Hello Arduino project 27
Installing your app on your physical device 30

Summary 33

Table of Contents

[ii]

Chapter 2: Controlling an Arduino Board via Bluetooth 35
Hardware and software requirements 36

Configuring the hardware 37
Writing the Arduino sketch 38

How to create a simple Android app to connect to the BLE module 42
Modifying the Android layout file 47
Connecting the modified layout to the corresponding activity 50
How to go further 54

Summary 55
Chapter 3: Bluetooth Weather Station 57

Hardware and software requirements 57
Hardware configuration 59
Testing the sensors 61

Writing the Arduino sketch 64
Wireframing our Android application and modifying the layout files 67
Implementing Android layouts in the main activity 69

Enhancing the user interface 73
Creating and adding our very own app icon 73
Centering and enlarging the data output text 77
Modifying the buttons and adding some color to our text 78
How to go further 80

Summary 81
Chapter 4: Wi-Fi Smart Power Plug 83

Hardware and software requirements 83
Configuring the hardware 85
Testing the relay 89

Writing the Arduino sketch 90
Wireframing our Android application 97
Implementing our layouts into the code 98
Polishing the user interface and experience 105
Adding a new app icon 106
Centering and enlarging the data output text 109
Aligning and styling the buttons 109
Changing the application name within the action bar 111
How to go further 112

Summary 112

Table of Contents

[iii]

Chapter 5: Wi-Fi Remote Security Camera 113
Hardware and software requirements 113

Hardware configuration 116
Setting up video streaming 117
Implementing a fullscreen stream player on Android 119
How to go further 126

Summary 126
Chapter 6: Android Phone Sensor 127

Hardware and software requirements 127
Configuring the hardware 129
Testing the servo 130

Writing the Arduino sketch 132
Setting up the Android app project 136
Laying out the Android user interface and permissions 137
Setting up the app's internals 139
How to go further 146

Summary 146
Chapter 7: Voice-activated Arduino 147

Hardware and software requirements 147
Configuring the hardware 149

Writing the Arduino sketch 151
Setting up the Android app 154
Laying out the Android user interface and permissions 155
Coding the app's internals 156
How to go further 166

Summary 167
Chapter 8: Control an Arduino Board via NFC 169

Hardware and software requirements 169
Configuring the hardware 170
Testing the NFC shield 171

Writing the Arduino sketch 173
Setting up the Android app 175
Laying out the Android user interface and permissions 176
Coding the app's internals 178
How to go further 182

Summary 182

Table of Contents

[iv]

Chapter 9: Bluetooth Low Energy Mobile Robot 183
Hardware and software requirements 184

Configuring the hardware 185
Testing the robot 188

Writing the Arduino sketch 191
Setting up the Android app 192
Laying out the Android user interface and setting permissions 193
Coding the app's internals 196

Enhancing the user interface further 204
Adding a new app icon 205
Styling the user interface buttons 205
How to go further 207

Summary 208
Chapter 10: Pulse Rate Sensor 209

Hardware and software requirements 209
Configuring our hardware 211
Testing the sensor 212

Writing the Arduino sketch 214
Setting up the Android app 216
Laying out the Android user interface and setting permissions 216
Coding the app's internals 219
How to go further 227

Summary 228
Index 229

Preface
When directly comparing Arduino and Android, one can see that they are two
incredibly different platforms with different targets. Arduino is mostly focused on
connecting physical everyday objects to embedded microcontrollers. On the other
hand, Android intends to provide the necessary operating system and framework
to operate countless smartphones around the world.

This reality also reflects the contrasting realities of the authors, who come from very
different backgrounds and cultures; Stefan hails from the Island of Malta, and he
brings with him a medical background and passion for the intersection of technology
and medicine, whereas Marco originates from France and has an electrical
engineering background.

The power of combining the efforts of Arduino and Android platforms bring about
incredibly implemented practical projects that enhance daily life. Keeping this
motivation in mind is what brought two authors from contrasting backgrounds
together to work on this book. We believe in the intersection of technology and real
life and visualize a future where technology will keep on forming an integral part of
our day-to-day life.

What this book covers
Chapter 1, Setting Up Your Workspace, covers the necessary steps that you will have
to take in order to build all the projects of the book. You will learn how to set up the
Android development environment. We will also build our first Arduino project.

Chapter 2, Controlling an Arduino Board via Bluetooth, teaches us how to link Arduino
and Android for the first time. We will build an Arduino system with a Bluetooth
Low Energy module, and control a simple LED from an Android application.

Preface

[2]

Chapter 3, Bluetooth Weather Station, teaches us how to build our first useful
application using Arduino and Android. We will build a weather measurement
station, and visualize the measurements via an Android application, which we
will build from scratch.

Chapter 4, Wi-Fi Smart Power Plug, teaches us how to build a DIY version of a popular
device: a wireless power switch. We will use an Android application to communicate
with the switch via Wi-Fi, control it, and measure the energy consumption of the
connected device.

Chapter 5, Wi-Fi Remote Security Camera, introduces a powerful Arduino board,
the Arduino Yún, to build a DIY wireless security camera. We will also build an
Android application to monitor this camera remotely from an Android phone.

Chapter 6, Android Phone Sensor, explains how to turn things around, and use the
sensors from our phone to control the Arduino board. Applying this, we will
use the gyroscope of the phone to control the angle of a servomotor.

Chapter 7, Voice-activated Arduino, teaches us how to use the powerful Android
speech API to control an Arduino board via Bluetooth.

Chapter 8, Control an Arduino Board via NFC, shows how to use the NFC chip present
in many Android phones to activate a relay connected to an Arduino board.

Chapter 9, Bluetooth Low Energy Mobile Robot, uses everything we learned so far in the
book to build a mobile robot based on the Arduino. The robot will be controlled via
Wi-Fi from an Android application.

Chapter 10, Pulse Rate Sensor, is dedicated to a medical application that measures
the heart rate. We will connect a heart rate sensor to Arduino and monitor the
measurements via Bluetooth Low Energy.

What you need for this book
You will need two kind of software for this book: the software you will need for
Arduino, and the software you will need for Android. For Arduino, here is what
you will need in all chapters:

• Arduino IDE (Version 1.5.7 is recommended)

You will also need several Arduino libraries depending on the chapter, but the links
to these libraries are given in the relevant chapters.

Preface

[3]

On the Android side, you will need the following:

• Android Studio
• Android 4.3 or higher on your Android phone

Who this book is for
Arduino Android Blueprints is aimed for anyone who is knowledgeable in either the
Arduino or Android ecosystems and who would like to get started with building
exciting applications using both platforms.

For example, this book is for you if you are already using the Arduino platform
and you want to build mobile applications to control your projects remotely.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Your Arduino folder is where all the sketches are stored, and you can define this
folder in the preferences of the Arduino IDE."

A block of code is set as follows:

android:textSize="200dp"
 android:gravity="center"

Any command-line input or output is written as follows:

/distance

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Depending on your device, this option might vary slightly, but as from
Android 4.2 and higher, the Developer options screen is hidden by default."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/0389OS_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/0389OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/0389OS_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Setting Up Your Workspace
The first chapter of this book will teach you the basics of the Arduino and Android
development so that you can be sure you have the basics required for the more
advanced tutorials you will find in the rest of this book.

On the Arduino side, we will build a very simple project with a relay module
(which is basically a switch that can be controlled with Arduino) and a temperature
and humidity sensor. We will also see the basics of the Arduino IDE and the basic
commands of the aREST library, which is a framework to easily control Arduino
boards. We will use this library in several chapters of this book to make it really easy
to control the Arduino board from an Android device. In this first chapter, we will
simply try out the commands of the aREST library by having the Arduino board
connected to your computer via a USB.

From the Android development point of view, we will work together to set up a
development environment and ensure that your computer and the Android device
are ready for development purposes. We will start off with a simple Android app
that displays the legendary text, Hello World.

Android Studio is an IntelliJ-based Integrated Development Environment (IDE)
fully supported by the Android development team, which will provide you with
the necessary tools and resources to make sure that you develop a functional and
aesthetic Android app.

Android Studio is in beta but the software is updated on a frequent and regular
basis by a dedicated team at Google, which makes it the natural choice to develop
our Android projects.

Setting Up Your Workspace

[8]

Hardware and software requirements
The first thing you will need is an Arduino Uno board. We will use this board
throughout this book to connect sensors, actuators, and wireless modules and make
them interact with Android. Then, we will need a relay module. A relay is basically
an electrical switch that we can command from Arduino, which can allow us to
control devices such as lamps. This project uses a 5V relay module from Polulu,
which properly integrates a relay on a board, along with all the required components
to control the relay from Arduino. The following is the image of the relay module
that was used in this chapter:

You will also need a DHT11 (or DHT22) sensor, along with a 4.7K resistor, for
temperature and humidity measurements. A resistor is basically a device to limit
the current flowing into an electrical device. Here, it is necessary to ensure the
correct functioning of the DHT sensor.

Finally, you will need a small breadboard and jumper wires to make the different
hardware connections.

Chapter 1

[9]

The following is the list of all hardware parts you will need for this project,
along with links to find these parts on the Web:

• The Arduino Uno board (http://www.adafruit.com/product/50)
• The 5V relay module (http://www.pololu.com/product/2480)
• The DHT11 sensor and 4.7K Ohm resistor (https://www.adafruit.com/

product/386)
• The breadboard (https://www.adafruit.com/product/64)
• Jumper wires (https://www.adafruit.com/product/758)

On the software side, you will need the Arduino IDE that we will also use in the
rest of this book. You can get it at http://arduino.cc/en/Main/Software.

The installation process of the IDE is very simple; you simply have to open the
file and follow the onscreen instructions.

You will need the library for the DHT11 sensor, which can be found at
https://github.com/adafruit/DHT-sensor-library.

You will also need the aREST library found at https://github.com/
marcoschwartz/aREST.

To install a given library, simply extract the folder in your Arduino/libraries
folder (or create this folder if it doesn't exist yet). Your Arduino folder is where
all the sketches are stored, and you can define this folder in the preferences of
the Arduino IDE.

Preparing for Android development requires that we get ready to design and
develop the app, and the following checklist will guide you with having the
basics ready for any project:

• Java Developer Kit Version 6 (or higher)
• Android Studio
• Android Software Development Kit
• Android Device with Bluetooth SMART technology

We will also work together to make sure that you have everything properly set up.

http://www.adafruit.com/product/50
http://www.pololu.com/product/2480
https://www.adafruit.com/product/386
https://www.adafruit.com/product/386
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
http://arduino.cc/en/Main/Software
https://github.com/adafruit/DHT-sensor-library
https://github.com/marcoschwartz/aREST
https://github.com/marcoschwartz/aREST

Setting Up Your Workspace

[10]

Installing Java Developer Kit
Android Studio will not work without Java Developer Kit (JDK); therefore,
it's necessary to know what Java version you have installed (in this particular
case, the Java Runtime Environment will not be enough).

Checking the JDK version
It is mandatory that you check the version of your JDK for compatibility purposes.

Mac
Open Terminal and type the following command:

java –version

This is what will be shown on the screen:

Windows
Open Command Prompt and type the following command:

java -version

Chapter 1

[11]

This is what will be shown on the screen:

Installing Java
If you do not have Java installed, or if your version is below 6.0, install the Java JDK
by clicking on the following customized and shortened link and choosing the version
that applies for you:

http://j.mp/javadevkit-download

The following window will open:

http://j.mp/javadevkit-download

Setting Up Your Workspace

[12]

The main recommendation for these projects is that you install a version of
JDK 6.0 or higher.

Select the JDK for your operating system. On an Intel-based Mac, you can follow
this useful table to see whether your Mac is 32-bit or 64-bit:

Processor Name 32- or 64-bit processor
Intel Core Solo 32 bit
Intel Core Duo 32 bit
Intel Core 2 Duo 64 bit
Intel Quad-Core Xeon 64 bit
Dual-Core Intel Xeon 64 bit
Quad-Core Intel Xeon 64 bit
Core i3 64 bit
Core i5 64 bit
Core i7 64 bit

You can check for Processor Name by clicking on the Apple logo in the top-left
corner of your screen followed by About my Mac.

In the case of Windows, to see whether your computer is running a 32-bit or 64-bit
version of Windows, you need to do the following:

1. Click on the Start button.
2. Right-click on My Computer, and then click on Properties.

If x64 edition is listed under system, your processor is capable
of running 64-bit-enabled applications.

Installing Android Studio
Let's see how we install Android Studio on Mac and Windows:

1. Go to the Android Developers site at http://developer.android.com.
The following screen will appear:

http://developer.android.com

Chapter 1

[13]

2. Click on Android Studio; you will be directed to the landing page
where your operating system version will be detected automatically,
as shown in the following screenshot:

Setting Up Your Workspace

[14]

3. Accept the Terms and Conditions of the software use agreement:

Mac
Double-click on the downloaded file, follow the prompts, and then drag the Android
Studio icon into your Applications folder:

Chapter 1

[15]

Windows
Open the downloaded file, and then go through the following Android Studio Setup
Wizard window to complete the installation process:

Setting up the Android Software
Development Kit
The process of setting up the Android Software Development Kit (SDK) has
improved vastly with the introduction of Android Studio, as the latest SDKs come
preinstalled with the Android Studio install package. In order to develop the projects
detailed in the following chapters, it would be very helpful to understand how you
can install (or even uninstall) SDKs within Android Studio.

There are a number of ways to access the SDK Manager. The most straightforward
way is through the following Android Studio main toolbar:

Setting Up Your Workspace

[16]

Another option would be via the Launch menu where you will be faced with the
following options:

In order to access the SDK Manager, you will need to click on Configure, where the
following screen will appear, and then click on SDK Manager:

Chapter 1

[17]

The previous screenshot shows us what the SDK Manager looks like. If you need
to install any packages, you need to check the mark of that particular package,
click on Install packages, and then finally accept the licenses, as shown in the
following screenshot:

Setting up your physical Android device for
development
The following are the three main steps that need to be executed in order to enable
your Android device for development:

1. Enable Developer options on your specific Android device.
2. Enable USB debugging.
3. Entrust the computer with an installed IDE via secure USB debugging

(devices with Android 4.4.2).

Setting Up Your Workspace

[18]

Enabling Developer options
Depending on your device, this option might vary slightly, but from Android 4.2
and higher, the Developer options screen is hidden by default.

To make it available, go to Settings | About phone and tap on Build number seven
times. You will find Developer options enabled by returning to the previous screen.

Enabling USB debugging
USB debugging enables the IDE to communicate with the device via the USB port.
This can be activated after enabling Developer options and is done by checking
the USB debugging option by navigating to Settings | Developer options |
Debugging | USB debugging.

Entrusting the computer with the installed
IDE using secure USB debugging
(devices with Android 4.4.2)
You have to accept the RSA key on your phone or tablet before anything can flow
between the device via Android Debug Bridge (ADB). This is done by connecting
the device to the computer via a USB, which triggers a notification entitled Enable
USB Debugging.

Check Always allow from this Computer followed by clicking on OK.

Hardware configuration
For the first project of this book, there are only a few hardware connections
to make. We simply need to connect the relay module and the DHT11 sensor to
the Arduino board.

Chapter 1

[19]

The following image summarizes the hardware connections for this chapter (with the
DHT sensor on the left of the breadboard, and the relay module on the right):

The first thing you need to do is to connect the power from the Arduino board to the
power rails on the side of the breadboard. Connect the Arduino 5V pin to the red
power rail on the breadboard, and the Arduino GND pin to the blue power rail on
the breadboard.

For the DHT11 sensor, you first need to have a look at the pins configuration
of the sensor by visiting http://www.rlocman.ru/i/Image/2012/09/06/DHT11_
Pins.jpg.

You need to first connect the power supply; the VCC pin goes to the red power rail
on the breadboard, and the GND pin goes to the blue power rail. You also need to
connect the DATA pin to pin number 7 of the Arduino board. Finally, place the
4.7K Ohm resistor between the VCC and the DATA pin of the sensor.

For the relay module, you have three pins to connect: VCC, GND, and SIG.
Connect the VCC pin to the red power rail on the breadboard, GND to the
blue power rail, and finally, connect the SIG pin to Arduino pin 8.

http://www.rlocman.ru/i/Image/2012/09/06/DHT11_Pins.jpg
http://www.rlocman.ru/i/Image/2012/09/06/DHT11_Pins.jpg

Setting Up Your Workspace

[20]

The following is an image of the completely assembled project:

Learning to use the aREST library
Now that our hardware is assembled, we are going to see the basics of the Arduino
environment, and how to use the aREST library that we are going to use in several
chapters of this book to control Arduino from an Android phone.

The aREST library will allow us to simply control the Arduino board externally using
the same commands, whether it is using an USB cable, Bluetooth, or Wi-Fi. Without
this library, we will have to rewrite the same code several times for all the chapters
of the book. To find a complete documentation on the aREST library, you can visit
https://github.com/marcoschwartz/aREST.

The main window of the Arduino IDE is where you enter the code to program the
Arduino board.

https://github.com/marcoschwartz/aREST

Chapter 1

[21]

Arduino code files are usually called sketches. The following screenshot is of the
Arduino IDE with the code of this chapter already loaded:

You will basically use two buttons that you can find on the left-hand side of
the toolbar. The first one, with the check sign, can be use to compile the code.
The second one will be used to upload the code to the Arduino board. Note that
if the code has not been compiled yet, the upload button will also compile the
code before uploading.

The second important window of the Arduino IDE is called the serial monitor.
This is where you can monitor what your Arduino project is doing, using the
Serial.print() statements in the code to generate debug output. You can
access it by clicking on the top-right icon of the Arduino IDE main window.

Setting Up Your Workspace

[22]

The following screenshot shows what the serial monitor looks like:

We are now going to build our first Arduino sketch in this book. What we want to
achieve is simply to control the relay and read data from the DHT11 sensor. To do so,
you are going to use the aREST library by sending commands from your computer.
In the next chapter of this book, we are going to use the same commands but via a
Bluetooth or Wi-Fi connection. The goal of this section is really to make you familiar
with the commands of the aREST library.

The following code is the complete Arduino sketch for this part:

// Libraries
#include <aREST.h>
#include "DHT.h"

// DHT sensor
#define DHTPIN 7
#define DHTTYPE DHT11

// Create aREST instance
aREST rest = aREST();

// DHT instance
DHT dht(DHTPIN, DHTTYPE);

// Variables to be exposed to the API
int temperature;
int humidity;

Chapter 1

[23]

void setup(void) {
 // Start Serial (with 115200 as the baud rate)
 Serial.begin(115200);

 // Expose variables to REST API
 rest.variable("temperature",&temperature);
 rest.variable("humidity",&humidity);

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("arduino_project");

 // Start temperature sensor
 dht.begin();

}

void loop() {

 // Measure from DHT
 float h = dht.readHumidity();
 float t = dht.readTemperature();

 temperature = (int)t;
 humidity = (int)h;

 // Handle REST calls
 rest.handle(Serial);

}

Let's explore the details of this Arduino sketch using the following steps:

1. The Arduino sketch starts by importing the required libraries for the project:
#include <aREST.h>
#include "DHT.h"

2. After that, we need to define on which pin the DHT11 sensor is connected to,
and which is the type of the sensor:
#define DHTPIN 7
#define DHTTYPE DHT11

3. We also need to create an instance of the aREST library:
aREST rest = aREST();

Setting Up Your Workspace

[24]

4. We also need to create an instance of the DHT11 sensor so that we can
measure data from it:
DHT dht(DHTPIN, DHTTYPE);

5. Finally, we need to create two variables that will contain our measurements:
int temperature;
int humidity;

6. In the setup() function of the sketch, we need to start the serial port:
Serial.begin(115200);

7. Next, we need to expose our two measurement variables so that we can
access them via the serial port using the aREST library. Note that we have
to pass the reference to these variables, not their values, as shown in the
following code:
rest.variable("temperature",&temperature);
rest.variable("humidity",&humidity);

8. We also set an ID and name to our project. This will not play any role here,
but is simply to identify our board in case we have many of them:
rest.set_id("001");
rest.set_name("arduino_project");

9. Finally, we start the DHT11 sensor:
dht.begin();

10. Now, in the loop() function of the sketch, we make the measurements
from the DHT11 sensor, and convert these measurements to integers
(which is called "casting" in C):
float h = dht.readHumidity();
float t = dht.readTemperature();

temperature = (int)t;
humidity = (int)h;

11. Note that here we are converting these numbers into integers because it
is the only variable type supported by the aREST library. However, as the
resolution of the DHT11 sensor is limited, we are not losing any information
here. Finally, we handle any requests coming from the outside using the
following code:

rest.handle(Serial);

Chapter 1

[25]

Note that all the code for this chapter can be found in the GitHub
repository of the book at the following link:
https://github.com/marcoschwartz/arduino-android-
blueprints

It's now time to upload the sketch to your Arduino board. If you have any error
when compiling, make sure that you installed all the required Arduino libraries
for this chapter.

When this is done, simply open the serial monitor (making sure the serial speed
is set to 115200). Note that you could do the same with your own serial terminal
software, for example, CoolTerm found at http://freeware.the-meiers.org/.

Now, we are going to test that the aREST library is working correctly. Let's proceed
with the following steps:

1. First, we are going to query the board for its ID and name. To do so,
type the following:
/id

2. You should be greeted by the following answer:
{"id": "001", "name": "arduino_project", "connected": true}

3. We are now going to see how to control the relay, as this is something we
are going to do several times in this book. First, we need to define that the
relay pin, which is pin number 8 of the Arduino board, is an output. To do
so, we can simply type:
/mode/8/o

4. You should receive the following answer on the serial monitor:
{"message": "Pin D8 set to output", "id": "001", "name": "arduino_
project", "connected": true}

5. Now, to activate the relay, we need to set the pin 8 to a HIGH state.
This is done the following command:
/digital/8/1

6. You should instantly receive a confirmation message, and hear the relay
click. To switch the relay off again, simply type the following code:
/digital/8/0

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints
http://freeware.the-meiers.org/

Setting Up Your Workspace

[26]

7. Now, we are going to read data from the board using the aREST library.
For example, to read the temperature variable, you can simply type the
following code:
/temperature

8. You will receive the following confirmation message with the value
of the temperature:
{"temperature": 28, "id": "001", "name": "arduino_project",
"connected": true}

9. You can do the same for humidity:
/humidity

10. You will receive a similar message back:

{"humidity": 35, "id": "001", "name": "arduino_project",
"connected": true}

If this is working, congratulations! You now know the basics of the aREST
library that we will use throughout the book. Note that for now we are using these
commands via serial communications, but later in the book, we will first use the
same commands via Bluetooth, and then via Wi-Fi to command the Arduino board
from an Android device.

Now that we have seen how the aREST library is working, we are going to create
our first Android project. Note that in this introductory chapter, we won't connect
both together; this will be done in the next chapter of the book.

Creating your first Android project
In order to get started in the world of Android application projects, it would be
very useful to set up a very basic project that goes through the two main processes
in Android application development: coding the application and then testing it on
an Android physical device.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[27]

Setting up your first Hello Arduino project
Click on New Project when Android Studio launches as shown in the
following screenshot:

An important step within Android application development is configuring your
project. This project will be using Android 4.3 as the minimum target SDK, since
we intend to use the Bluetooth Low Energy API, which was introduced in this
particular version of Android. In this case, we will name the project Hello Arduino
and write down your company domain, as the convention for application package
names is the reverse of your chosen domain.

Setting Up Your Workspace

[28]

Refer to the following screenshot:

For the purposes of this particular project, we will go ahead and choose the most
basic project, Blank Activity, as shown in the following screenshot. The other
choices provide added functionality that we do not need at this stage.

Chapter 1

[29]

In the following screenshot, we choose Blank Activity, and we need to give a name
to our main Java file. Let's keep it as MyActivity:

Once you follow through all the previous steps, you will be welcomed to this
workspace, which gives a good overview of the project tree, main code editor,
and the device that shows a preview of the User Interface (UI), as shown in the
following screenshot:

Setting Up Your Workspace

[30]

In this particular project, there will be no need to modify the existing code and
therefore we will proceed with building our app and launching it on our physical
Android device.

Installing your app on your physical device
Previously, we have connected and enabled our physical Android device via
a USB. Within Android Studio, we need to set up the configuration to run our
Android application.

This is done by choosing Editing Configurations from the main toolbar as shown
in the following screenshot:

In the Editing Configurations window, we will click on the + sign and choose
Android Application where we set up the configuration with the following
settings and confirm them by pressing OK:

Chapter 1

[31]

After setting up everything, we are ready to run the app. Choose the App
configuration, which we previously set up, and press the Play button (green triangle)
as shown in the following screenshot:

There is the possibility of creating an Android Virtual Device (AVD) to install the
application. However, at this point in time, there are no virtual emulators that support
Bluetooth, which we will need for a number of projects in this book. So, we will focus
on setting up your Android physical device running Android 4.3 or higher.

In the next step, choose your physical device and press OK, as shown in the
following screenshot:

Setting Up Your Workspace

[32]

You should expect the following to show up on your Android device if you have set
up everything in the correct manner:

Chapter 1

[33]

Summary
Let's summarize what we did in this chapter of the book. We built a very simple
Arduino project comprising an Arduino board, a relay module, and a temperature
and humidity sensor. We saw how to connect these components together so that
we can control the relay as an output and read data from the sensor. We also saw
the basics of the aREST library, which we will use in the whole book to control the
Arduino board from an Android device.

On the Android side, we have prepared our IDE and Android device for development,
which will prepare us for the upcoming projects that we have prepared for you in this
book and help us have a seamless experience. We also had the opportunity to compile
our first app and get it up and running on our Android device.

At this stage, you can already repeat the steps we took in this chapter to really get
familiar with the Arduino IDE, the commands of the aREST library, and the Android
development environment. We will use these tools extensively in the rest of this
book; so, it is crucial that are you familiar with them.

Controlling an Arduino
Board via Bluetooth

This second chapter of the book will be about putting things together and writing
our first app to control an Arduino board via Bluetooth Low Energy (BLE). We
chose to use BLE for all the Bluetooth projects of this book as it is the latest standard
for Bluetooth communication at the time of publication. Compared to previous
Bluetooth modules, BLE modules have low energy consumption as the standard
works in bursts rather than maintaining a persistent connection. In addition, BLE
offers low latency and has a comparable range to the older Bluetooth standards.

We will connect a BLE module to Arduino as well as an LED that we will control via
an Android app. Then, we will write an Arduino sketch that uses the aREST library
so that we can receive commands via Bluetooth coming from a smartphone or tablet.

The Android app will also be able to control the board remotely and we will have
the opportunity to enhance the user experience by learning how to include buttons
to switch the LED on and off.

The following will be the main takeaways from this chapter:

• Connecting a BLE module to an Arduino board
• Writing an Arduino sketch to enable Bluetooth communications on the

Arduino board
• Writing an Android application to send commands to the Arduino board

via Bluetooth

Controlling an Arduino Board via Bluetooth

[36]

Hardware and software requirements
The first thing you will need for this project is an Arduino Uno board.

Then, you will need a BLE module. We chose the Adafruit nRF8001 chip because it
comes with a nice Arduino library, and it already has existing examples of Android
apps to control the module.

The following is a close-up picture of the module we used for this project:

You will also need one LED of the color of your choice, and a 330 Ohm resistor.
Finally, to make the different electrical connections, you will also need a breadboard
and some jumper wires.

The following is the list of all hardware parts you will need for this project, along
with links to find these parts on the Web:

• The Arduino Uno board (http://www.adafruit.com/product/50)
• LEDs (https://www.sparkfun.com/products/9590)
• The 330 Ohm resistor (https://www.sparkfun.com/products/8377)
• The Adafruit nRF8001 breakout board (https://www.adafruit.com/

products/1697)
• The breadboard (https://www.adafruit.com/product/64)
• Jumper wires (https://www.adafruit.com/product/758)

http://www.adafruit.com/product/50
https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/8377
https://www.adafruit.com/products/1697
https://www.adafruit.com/products/1697
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758

Chapter 2

[37]

On the software side, you will need the following:

• The Arduino IDE (http://arduino.cc/en/Main/Software)
• The Arduino aREST library (https://github.com/marcoschwartz/aREST/)
• The nRF8001 Arduino library for the BLE chip (https://github.com/

adafruit/Adafruit_nRF8001)

To install a given library, simply extract the folder in your Arduino /libraries
folder (or create this folder if it doesn't exist yet). To find your Arduino folder or
define a new one, you can go to the Preferences option of the Arduino IDE.

Configuring the hardware
We will now build the hardware part of the project. To help you out, the following is
a schematic of the project:

Now, we will perform the following steps:

1. The first step is to place the Bluetooth module and the LED on
the breadboard.

2. Then, connect the power supply from the Arduino board to the breadboard:
5V of the Arduino board goes to the red power rail, and GND goes to the
blue power rail.

3. We will now connect the BLE module. First, connect the power supply
of the module: GND goes to the blue power rail, and VIN goes to the
red power rail.

http://arduino.cc/en/Main/Software
https://github.com/marcoschwartz/aREST/
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001

Controlling an Arduino Board via Bluetooth

[38]

4. After this, you need to connect the different wires responsible for the Serial
Peripheral Interface (SPI) communications: SCK to Arduino pin 13, MISO
to Arduino pin 12, and MOSI to Arduino pin 11.

5. Then, connect the REQ pin to Arduino pin 10. Finally, connect the RDY pin
to Arduino pin 2, and the RST pin to Arduino pin 9.

6. For the LED, simply place the resistor on the breadboard so it is in series
with the LED, connected to the anode of the LED, which is the longest pin
of the LED.

7. Then, connect the other side of the resistor to Arduino pin 7.
8. Finally, connect the other pin of the LED (the cathode) to the blue power rail,

that is to the ground.

This is an image of the completely assembled project:

Writing the Arduino sketch
We will now write the Arduino sketch so that the Arduino board can talk with
the BLE module and receive commands from Android via Bluetooth. Here is the
complete sketch for this part:

#define LIGHTWEIGHT 1

#include <SPI.h>
#include "Adafruit_BLE_UART.h"

Chapter 2

[39]

#include <aREST.h>

// Pins
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, //
on Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

// Create aREST instance
aREST rest = aREST();

// BLE instance
Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

void setup(void)
{
 // Start Serial
 Serial.begin(9600);
 Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo
demo"));

 // Start BLE
 BTLEserial.begin();

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("my_arduino");
}

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

void loop() {

 // Tell the nRF8001 to do whatever it should be working on.
 BTLEserial.pollACI();

 // Ask what is our current status
 aci_evt_opcode_t status = BTLEserial.getState();
 // If the status changed....
 if (status != laststatus) {
 // print it out!
 if (status == ACI_EVT_DEVICE_STARTED) {
 Serial.println(F("* Advertising started"));

Controlling an Arduino Board via Bluetooth

[40]

 }
 if (status == ACI_EVT_CONNECTED) {
 Serial.println(F("* Connected!"));
 }
 if (status == ACI_EVT_DISCONNECTED) {
 Serial.println(F("* Disconnected or advertising timed out"));
 }
 // OK set the last status change to this one
 laststatus = status;
 }

 // Handle REST calls
 if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }
}

Now, let's see the details of this sketch. It starts by importing the required libraries
for the nRF8001 BLE module and the aREST library:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>

We will also specify an option for the aREST library, called LIGHTWEIGHT. This
means that the Arduino board will only return a limited amount of data back to the
Android phone. It will return the value of a variable when we read from the board,
and no data at all when we send a command to the board. This is required when
using BLE communications. This is done with the following piece of code:

#define LIGHTWEIGHT 1

Then, we will define which pin the BLE module is connected to:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on
Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

Note that we don't define the pins for the SPI pins of the BLE module, as they are
already defined in the module's library.

After this, we can create an instance of the aREST API that will be used to handle the
requests coming via Bluetooth:

aREST rest = aREST();

Chapter 2

[41]

We also need to create an instance for the BLE module, with the pins we
defined earlier:

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

Now, in the setup() function of the sketch, we will start the serial communications,
and print a welcome message:

Serial.begin(9600);
Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo
demo"));

Note that the welcome message is printed using the F() function around
the message, which puts the string variable directly into the Arduino program
memory. This is done to save some dynamic memory (RAM) for this sketch.

We will also initialize the BLE module:

 BTLEserial.begin();

Finally, we will give an ID and a name to our board:

rest.set_id("001");
rest.set_name("my_arduino");

In the loop() function of the sketch, we will check the status of the BLE module:

BTLEserial.pollACI();

After this, we will get this status and store it in a variable:

aci_evt_opcode_t status = BTLEserial.getState();

If there is some device connected to our BLE module, we will then handle the
incoming request using the aREST library:

if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }

Note that all the code for this chapter can be found inside the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

It's now time to upload the sketch to your Arduino board. When this is done, you
can move on to the development of the Android app to control the Arduino board
via the BLE sketch.

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Controlling an Arduino Board via Bluetooth

[42]

How to create a simple Android app
to connect to the BLE module
Connecting the Adafruit BLE module will give us the opportunity to:

• Learn how to work with existing open source projects
• Analyze Java and understand how the Main activity connects to the

layout files
• Modify the code to light up an LED via Bluetooth and get it to work

For this project, we will be using an open source project that works perfectly with
our Adafruit Bluetooth module and is optimized for the Android Studio IDE.
Throughout this chapter, we will also have the opportunity to explain what the
different parts of the code are for.

To make the project work successfully, you need to make sure that you have
installed the necessary SDKs outlined in Chapter 1, Setting Up Your Workspace.
The SDK is available via SDK Manager, which is accessible by going to Tools >
Android > SDK Manager.

The first step is to go to Tony Dicola's GitHub public repository, at
https://github.com/tdicola/BTLETest, as shown in the following screenshot:

https://github.com/tdicola/BTLETest

Chapter 2

[43]

At this point, you can either opt to Clone in Desktop using the GitHub desktop
application or download the ZIP file and extract the file to your desktop, as shown
in the following screenshot:

Double-click on the extracted file (Windows and Mac).

Open Android Studio, then click on Import Project and Choose Extracted Folder,
as shown here:

Controlling an Arduino Board via Bluetooth

[44]

To aid you in the selection process, you will be able to see a small Android logo next
to the folder you need to choose, as shown in the following screenshot:

After successfully importing the project, you might need to modify the Gradle
settings file so that it compiles correctly and is successfully built. The Gradle settings
file acts as a preferences manager for our Android project and allows us to manage
what libraries we would like to include for our project.

You can modify the Gradle settings file by accessing the project tree and clicking on
app > src followed by build.gradle, as shown in the following screenshot :

Chapter 2

[45]

Our recommendation is to alter buildToolsVersion to 19.1.0. Do not be confused
by app showing up in the tabs. The correct settings can be seen as follows:

Controlling an Arduino Board via Bluetooth

[46]

Once you modify the settings in the Gradle Settings option, you will be asked
to sync your project settings, and you will be able to do that by clicking on Sync
Now. Once the Gradle settings file is set up, you can go ahead and test the app on
your physical Android device that supports BLE (the device should be running
Android 4.3 or higher). Run the app by going to the toolbar, clicking on Run, and
selecting Run app, followed by choosing the right physical device, as shown in the
following screenshot:

You can send out the following messages to the Bluetooth module by tapping on the
Text Field and then tapping on Send:

• /mode/7/o /
• /digital/7/1 /
• /digital/7/0 /

When you see that the preceding messages respond with the right responses via the
LED, which will switch on and switch off if you follow the previous order, we will
then proceed to modifying the layout file.

Chapter 2

[47]

Modifying the Android layout file
Modification of the Android layout file will simplify the user experience and allow
us to switch the LED on and off with the tap of a button. In the Android layout file,
we will add buttons for the following:

• Activating the pin to accept inputs
• Switch on LED
• Switch off LED

Go to the project tree, as shown in the following screenshot and follow this
path: app > src > res > layout > activity_main.xml. Double-click on the
activity_main.xml file.

Controlling an Arduino Board via Bluetooth

[48]

The Android layout files are managed either via the design view or via the text view,
where the dimensions and properties are set using the XML format. In this particular
case, we will stick to modifying the layout using the design view, as shown in the
following screenshot:

Within the design view, there is a palette with defined user-interface elements that
the developer can use to drag-and-drop into the design view and create customized
layouts. To follow proper design-develop-distribute methodology, we will start off
by creating a paper prototype of how we would like the app to look and work out, as
shown in the following screenshot. At this point of time, our paper prototypes will
be neither sophisticated nor adherent to design principles, but we would like to help
you get used to the process to enable you to design high-quality apps.

Chapter 2

[49]

Having this paper prototype as our guide, we can then start modifying the design.
We will start off by resizing the Scroll View area, which shows the response that the
Android physical device receives when connecting with the BLE module. This will
allow us to visualize how we would like to design the layout.

Adding buttons to the interface is as easy as dragging and dropping buttons from the
Palette option to the user interface. The Palette option is available on the left-hand
side of the design view. In this case, we will add the following three buttons:

• Set output
• Switch on
• Switch off

If you double-click on the button that you've included in the interface, you will be
able to change the text and ID. Standard Java naming conventions recommend the
use of the camel-case naming convention; thus, you should identify them as follows:

• The Set Output button
 ° Text: Set Output
 ° ID: setOutputBtn

Controlling an Arduino Board via Bluetooth

[50]

• The Switch On button
 ° Text: Switch On LED
 ° ID: switchOnBtn

• The Set Output button
 ° Text: Switch Off LED
 ° ID: switchOffBtn

With the layout setup, we can proceed to connecting the layout to our main
activity code.

Connecting the modified layout to the
corresponding activity
From the project tree, follow the path: app > src > main > java > com.tonydicola.
bletest.app > MainActivity, as shown in the following screenshot:

Chapter 2

[51]

Double-click on MainActivity.java. The screen for MainActivity.java will look
as follows. In the following paragraphs, we will have an opportunity to go through
the code and understand what role it plays within the app. There are a number of
comments within the code (statements starting with //////) that will further explain
the role of those lines of code.

If we quickly analyze the code, we can see the following structure:

• The package name.
• An import statement.
• Declaration of private and public variables (which can be used throughout

the whole activity).
• BluetoothGattCallback: This is the method that deals with the callback

and where much of the logic takes place.
• onServicesDiscovered: This is the method that deals with Bluetooth

service discovery.
• onCharacteristicChanged: This is the method that takes care of any change

in characteristics.

Controlling an Arduino Board via Bluetooth

[52]

• onCreate: This is the method that deals with the main layout and how it
functions. The onCreate method is called when the activity is first shown,
and plays a very important role in the Android app life cycle. Most of the
code in this section will relate to the Android layout.

• onResume and onStop: These are the methods that form a part of the Android
app life cycle and determine how the app will react at different points.

• sendClick: This is the method that deals with what processes will be run
when the Send button is clicked.

• parseIDs: This is the method that will return the Bluetooth module's ID in
string format.

• Boilerplate: This is the code that is available within the primary template
when creating this project, but it is not necessarily relevant for it.

Understanding the code will help us to make the right modifications; we will start by
declaring the UI elements as private variables by adding the following code:

private Button setoutput;
private Button switchon;
private Button switchoff;

We then proceed to the onCreate method, where we will add the code that will
recognize the actual buttons within the layout and where we will also add the
onClickListener method to each button, which allows the Android app to listen
to any of the users' interactions with the button and act accordingly.

First, we will start off by grabbing references to the UI elements by adding the
following code:

setoutput = (Button) findViewById(R.id.setToOutputBtn);
switchon = (Button) findViewById(R.id.switchOnBtn);
switchoff = (Button) findViewById(R.id.switchOffBtn);

Just after these references to the UI elements, we will add some more code, which
will allow us to send the right messages to the BLE module and to switch on and
switch off the light:

setoutput.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String setOutputMessage = "/mode/7/o /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));

Chapter 2

[53]

 if (gatt.writeCharacteristic(tx)) {
 writeLine("Sent: " + setOutputMessage);
 }
 else {
 writeLine("Couldn't write TX characteristic!");
 }

 }
 });

 switchon.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String switchOnMessage = "/digital/7/1 /";
 tx.setValue(switchOnMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeLine("Sent: " + switchOnMessage);
 }
 else {
 writeLine("Couldn't write TX characteristic!");
 }
 }
 });

 switchoff.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String switchOffMessage = "/digital/7/0 /";
 tx.setValue(switchOffMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeLine("Sent: " + switchOffMessage);
 }
 else {
 writeLine("Couldn't write TX characteristic!");
 }
 }
 });

Controlling an Arduino Board via Bluetooth

[54]

With the preceding methods implemented, we should now be able to build the app
and test it on our physical device. The final result should look as follows:

You should now successfully be able to switch on and switch off the light from the
Android app.

How to go further
There are several things you can do to go further with what you learned in this
chapter. You can use what you learned to control more than just a simple LED. For
example, you can connect the relay module we used in the first chapter and control
it via Bluetooth. This already allows you to control much bigger devices, such as
lamps, all via your Android phone. Of course, such projects require that you take
safety precautions, which will be detailed in the chapter where we will build such
an application.

You can also work on improving the Android application by improving the
user interface and learning how to further modify the Android layout files with
better-looking buttons, customized app icons, and general improvements to the
user experience. As we go on in this book, we will have further opportunities
to build on this code and enable more functions and capabilities.

Chapter 2

[55]

Summary
Let's summarize what we learned in this chapter. We connected a BLE module
to Arduino as well as a simple red LED that we controlled remotely. After this,
we wrote a sketch that enabled the Arduino board to receive commands via the
Bluetooth module.

On the Android side, we took the opportunity to take an existing project, analyze it,
modify it, and run the final application on our physical Android device.

In the next chapter, we will build a wireless weather station using what we just
learnt in this chapter. We will connect several sensors to an Arduino board, and
read data coming from these sensors using an Android app communicating with
the Arduino board via Bluetooth.

Bluetooth Weather Station
In this chapter, we will build the first complete application of this book using
Arduino and Android. We will build a small weather station using Arduino,
which will be accessed by an Android app via Bluetooth.

On the Arduino side, we will build a simple weather station using a temperature
and humidity sensor along with an ambient light-level sensor. We will connect a
Bluetooth Low Energy (BLE) module to the project so that the Android phone
can access the measurements wirelessly.

We will develop a simple Android app with an interface that allows us to:

• Access all the measurements performed by the weather station with
the tap of a button

• Display each measurement within an enlarged text view

Hardware and software requirements
The first thing you will need for this project is an Arduino Uno board.

Then, you need a BLE module. We chose the Adafruit nRF8001 chip because it comes
with a nice Arduino library, and it already has existing examples of Android apps to
control the module. This is the same module that we used in the previous chapter.

For the sensors, I chose a DHT11 sensor to measure the temperature and the ambient
humidity. DHT11 is a digital temperature and humidity sensor that is really easy to
integrate with Arduino. There are several solutions available for Arduino, but this
sensor was chosen because it is one of the easiest to interface with Arduino. To make
the sensor work with Arduino, we will also need a 4.7K Ohm resistor.

Bluetooth Weather Station

[58]

We will also use a photocell in series with a 10K Ohm resistor to measure
the ambient light level. The photocell is basically a resistor that will change its
resistance depending on the incoming light on the cell. It will be connected to
the Arduino analog input to measure the ambient light level.

Finally, you will need a breadboard and some jumper wires to make the
different connections.

The following is a list of all hardware parts you will need for this project,
along with links to find these parts on the Web:

• The Arduino Uno board (http://www.adafruit.com/product/50)
• The DHT11 sensor and 4.7K Ohm resistor (https://www.adafruit.com/

products/386)
• The photocell (https://www.sparkfun.com/products/9088)
• The 10K Ohm resistor (https://www.sparkfun.com/products/8374)
• Adafruit nRF8001 breakout board (https://www.adafruit.com/

products/1697)
• The breadboard (https://www.adafruit.com/product/64)
• Jumper wires (https://www.adafruit.com/product/758)

On the software side, you will need the Arduino IDE as usual, and the Arduino
aREST library, which is found at https://github.com/marcoschwartz/aREST/.

The photocell make measurements from the DHT11 sensor, you will need the DHT
library found at https://github.com/adafruit/DHT-sensor-library.

For the BLE chip, you will also need the nRF8001 Arduino library found at
https://github.com/adafruit/Adafruit_nRF8001.

To install a given library, simply extract the folder in your Arduino /libraries
folder (or create this folder if it doesn't exist yet).

https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.sparkfun.com/products/9088
https://www.adafruit.com/products/1697
https://www.adafruit.com/products/1697
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://github.com/marcoschwartz/aREST/
https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_nRF8001

Chapter 3

[59]

Hardware configuration
We will now build the hardware for this project. To help you out, here is a
schematic of the project:

Now, we will perform the following steps:

1. The first step is to place the Bluetooth module, the DHT11 sensor, and the
photocell on the breadboard.

2. Then, connect the power supply from the Arduino board to the breadboard:
5V of the Arduino board goes to the red power rail, and GND goes to the
blue power rail.

3. We will now connect the BLE module. First, connect the power supply
of the module: GND goes to the blue power rail, and VIN goes to the
red power rail.

4. After that, you need to connect the different wires responsible for the SPI
interface: SCK to Arduino pin 13, MISO to Arduino pin 12, and MOSI
to Arduino pin 11.

Bluetooth Weather Station

[60]

5. Then, connect the REQ pin to Arduino pin 10. Finally, connect the RDY
pin to Arduino pin 2, and the RST pin to Arduino pin 9.
For the DHT sensor, this is the function of each pin on the sensor:

6. You need to first connect the power supply: the VCC pin goes to the red
power rail on the breadboard, and the GND pin goes to the blue power rail.

7. You also need to connect the DATA pin to pin number 7 of the
Arduino board.

8. Finally, place the 4.7K Ohm resistor between the VCC and the DATA
pin of the sensor.

9. For the photocell, connect the 10K Ohm resistor in series with the photocell.
This means that one pin of the photocell should be in contact (on the same
row on the breadboard) with one pin of the resistor.

10. Then, connect the other pin of the resistor to the blue power rail, and the
other pin of the photocell to the red power rail of the breadboard.

Chapter 3

[61]

11. Finally, connect the common pin between the photocell and resistor to the
analog pin A0 of the Arduino board.
This is an image of the completely assembled project:

Testing the sensors
We will now write a simple Arduino sketch to test all the sensors of the project.
This will ensure that all the connections were made correctly before writing our
Android app using Bluetooth. This is the complete sketch for testing the sensors:

#include "DHT.h"

// DHT sensor
#define DHTPIN 7
#define DHTTYPE DHT11

// DHT instance
DHT dht(DHTPIN, DHTTYPE);

void setup()
{
 // Initialize the Serial port
 Serial.begin(9600);

Bluetooth Weather Station

[62]

 // Init DHT
 dht.begin();
}

void loop()
{
 // Measure from DHT
 float temperature = dht.readTemperature();
 float humidity = dht.readHumidity();

 // Measure light level
 float sensor_reading = analogRead(A0);
 float light = sensor_reading/1024*100;

 // Display temperature
 Serial.print("Temperature: ");
 Serial.print((int)temperature);
 Serial.println(" C");

 // Display humidity
 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.println("%");

 // Display light level
 Serial.print("Light: ");
 Serial.print(light);
 Serial.println("%");
 Serial.println("");

 // Wait 500 ms
 delay(500);

}

Let's now look at this sketch in more detail. It starts by including the DHT11 library:

#include "DHT.h"

We also declare that the sensor is attached to pin number 7, and that the DHT sensor
we are using is a DHT11 sensor by declaring constants:

#define DHTPIN 7

#define DHTTYPE DHT11

Chapter 3

[63]

After that, we can declare an instance of the DHT sensor:

DHT dht(DHTPIN, DHTTYPE);

In the setup() function of the sketch, we will start the serial communications:

Serial.begin(9600);

We will also initialize the DHT sensor:

dht.begin();

In the loop() function of the sketch, we will perform the temperature and humidity
measurements from the sensor:

float temperature = dht.readTemperature();
float humidity = dht.readHumidity();

We will also read out from the photocell, and convert this reading to a percentage of
illumination. To do so, we must know that the analog input of the Arduino returns a
value going from 0 to 1,023 (10 bits). Therefore, we need to divide the reading from
the input by 1,023. Then, to get a result in percent, we will multiply this value by 100:

float sensor_reading = analogRead(A0);
float light = sensor_reading/1024*100;

When the measurements are done, we print out the value of each of them on the
serial port so that we can visualize the data. This is for example the code that prints
out the temperature:

Serial.print("Temperature: ");
Serial.print((int)temperature);
Serial.println(" C");

We will also repeat each loop() function every 500 ms:

delay(500);

Note that all the code for this chapter can be found inside the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Bluetooth Weather Station

[64]

It's now time to test this simple Arduino sketch to check if our sensors are working.
Upload the sketch to the Arduino board, and open the serial monitor (making sure
the serial speed is set to 9,600). You should get a similar result inside the serial
monitor, depending on your surroundings:

Temperature: 26 C
Humidity: 35%
Light: 75.42%

Writing the Arduino sketch
Now that we know that our sensors are working correctly, we can write the final
sketch that allows the Arduino board to be accessed by the Android application
we will write later on. The following is the complete sketch for this part:

// Control Arduino board from BLE

// Enable lightweight
#define LIGHTWEIGHT 1

// Libraries
#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>
#include "DHT.h"

// Pins
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2
#define ADAFRUITBLE_RST 9

// DHT sensor
#define DHTPIN 7
#define DHTTYPE DHT11

// DHT instance
DHT dht(DHTPIN, DHTTYPE);

// Create aREST instance
aREST rest = aREST();

// BLE instance
Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

Chapter 3

[65]

// Variables to be exposed to the API
int temperature;
int humidity;
int light;

void setup(void)
{
 // Start Serial
 Serial.begin(9600);

 // Start BLE
 BTLEserial.begin();

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("weather_station");

 // Expose variables to API
 rest.variable("temperature",&temperature);
 rest.variable("humidity",&humidity);
 rest.variable("light",&light);

 // Init DHT
 dht.begin();

 // Welcome message
 Serial.println("Weather station started");
}

void loop() {

 // Measure from DHT
 float t = dht.readTemperature();
 float h = dht.readHumidity();
 temperature = (int)t;
 humidity = (int)h;

 // Measure light level
 float sensor_reading = analogRead(A0);
 light = (int)(sensor_reading/1024*100);

 // Tell the nRF8001 to do whatever it should be working on.
 BTLEserial.pollACI();

Bluetooth Weather Station

[66]

 // Ask what is our current status
 aci_evt_opcode_t status = BTLEserial.getState();

 // Handle REST calls
 if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }
 }

Now, let's look at this sketch in more detail. Some of the parts are similar to
the sketch we saw earlier to test the sensor; we will not detail these parts again.
It starts by declaring that we want to use the lightweight mode of the aREST library:

#define LIGHTWEIGHT 1

Then, we will define that we want to use the library for the Bluetooth chip,
the aREST library, and the library for the DHT sensor:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>
#include "DHT.h"

After this, we will define the pins on which we connected the BLE module:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2
#define ADAFRUITBLE_RST 9

We need to create an instance of the aREST library:

aREST rest = aREST();

We also need to create an instance of the BLE module:

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

Just before the setup() function of the sketch, we will declare the following three
variables that contain the measurements coming from the sensor:

int temperature;
int humidity;
int light;

Then, in the setup() function of the sketch, we will initialize the BLE module:

BTLEserial.begin();

Chapter 3

[67]

After that, we will set an ID and a name for our project:

rest.set_id("001");
rest.set_name("weather_station");

We also have to expose the different measurement variables to the aREST API so that
they can be accessed by the Android app:

rest.variable("temperature",&temperature);
rest.variable("humidity",&humidity);
rest.variable("light",&light);

In the loop() function of the sketch, we will poll the status of the BLE module:

BTLEserial.pollACI();

We will also get the state of the module and store it in a variable:

aci_evt_opcode_t status = BTLEserial.getState();

If this status indicates that the Bluetooth module is connected to another device,
we will process the incoming request with the aREST library:

if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
}

Note that all the code for this chapter can be found inside the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

It's now time to upload the sketch to your Arduino board. When this is done, you
can move on to the development of the Android app to control the Arduino board
via the BLE sketch.

Wireframing our Android application and
modifying the layout files
We will start off our BLE weather station project by creating a new project in
Android Studio with a blank activity.

We will target our project for a minimum SDK of 18 and a maximum SDK of 19.

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Bluetooth Weather Station

[68]

We will first start off by drawing a paper prototype of how our application will
work and the basic user flow, as shown in the following image. This will
help us understand how the application will work as well as facilitating our
development process.

Upon analyzing the preceding image, we can see that this design will require two
TextView objects. The upper TextView object will show all the Bluetooth callbacks,
state changes, and characteristics written to the BLE module, while the lower
TextView object will show the output from the temperature, light, and humidity
sensor depending on which button was tapped.

The TextView objects will give them the following IDs:

• connectionStatusView

• dataOutputTextView

In the lower part of the layout, we will have three buttons reflecting the three
parameters that we will be requesting, that is, temperature, light, and humidity.
We will name the buttons as follows:

• The temperature button will be named as follows:
 ° Text: Temperature
 ° ID: temperatureButton

Chapter 3

[69]

• The humidity button will be named as follows:
 ° Text: Humidity
 ° ID: humidityButton

• The light button will be named as follows:

 ° Text: Light
 ° ID: lightButton

Implementing Android layouts in the
main activity
Before we embark on this project, we will enable the Auto-Import function,
which will enable us to compile our project even more effectively and gives
us one thing less to worry about.

You can enable Auto-Import by going to the Preferences option and selecting all the
available options. The Auto-Import preferences are available on Mac and Windows
as follows:

• On a Mac, navigate to Android Studio > Preferences > Editor > Auto-Import
• On Windows, navigate to File > Settings > Editor > Auto-Import

With all the necessary settings in place, we will first start off by creating a new
project, where we will choose the following within the New Project setup:

• Name: Bluetooth Weather Station
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: MainActivity
• Domain: arduinoandroid.com

We will build on our previous project in Chapter 2, Controlling an Arduino
Board via Bluetooth, that is, the Arduino BLE Android project will start off by
importing the arduinoBLE project from the Github repository and clone it to
our desktop or download it as a ZIP file as explained in Chapter 2, Controlling
an Arduino Board via Bluetooth.

Bluetooth Weather Station

[70]

Once imported, we will open MainActivity.java, select all the code below the
import statement and copy it. When all the code has been copied, we will open our
current project (Android Bluetooth Weather Station), go into MainActivity.java,
delete all the code below the import statement, and paste the code.

In case you get stuck at this stage of the project, our code will be available in the
repository in two stages, the version with all the necessary code that needs to be
modified and the completed project. These are all available in the GitHub repository
at https://github.com/marcoschwartz/arduino-android-blueprints.

Once the code is in our project, we will proceed by changing references to the
UI elements to reflect our latest additions to the Android layout file in the
onCreate() method:

dataOutput = (TextView) findViewById(R.id.dataOutputTextView);
connectionOutput = (TextView) findViewById(R.id.connectionStatusView);

adapter = BluetoothAdapter.getDefaultAdapter();
temperature = (Button) findViewById(R.id.temperatureButton);
light = (Button) findViewById(R.id.lightButton);
humidity = (Button) findViewById(R.id.humidityButton);

In this project, we will modify onClickListeners to connect to the buttons that we
have included in the Android layout file:

temperature.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String setTempMessage = "/temperature /";
 tx.setValue(setTempMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeLine("Sent: " + setTempMessage);
 } else {
 writeLine("Couldn't write TX characteristic!");
 }

 }
 });

 light.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String setLightMessage = "/light /";
 tx.setValue(setLightMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {

https://github.com/marcoschwartz/arduino-android-blueprints

Chapter 3

[71]

 writeLine("Sent: " + setLightMessage);
 }
 else {
 writeLine("Couldn't write TX characteristic!");
 }
 }
 });

 humidity.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String setHumidityMessage = "/humidity /";
 tx.setValue(setHumidityMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeLine("Sent: " + setHumidityMessage);
 }
 else {
 writeLine("Couldn't write TX characteristic!");
 }
 }
 });

We will also modify the code that deals with writing remoteCharacteristics,
namely, the writeLine() method, and in addition, we will add another method
known as writeSensorData(), which will deal with the remote data arriving
from our different sensors:

private void writeLine(final CharSequence text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 connectionOutput.setText("");
 connectionOutput.append(text);
 connectionOutput.append("\n");
 }
 });
 }

 //Implement the method below to output temperature/humidity/light
readings to dataOutputView

 private void writeSensorData(final CharSequence text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {

Bluetooth Weather Station

[72]

 Log.e(LOG_TAG,text.toString());
 output=text.toString().trim();
 if (output.length() > 0 && output.length() <=3) {

 dataOutput.setText(output);
 }
 else {
 return;
 }
 }
 });
 }

Before we are able to move ahead with compiling the project, we need to work on the
onCharacteristicChanged method so that the data that is received from the sensor
data will be set to the dataOutput text view:

public void onCharacteristicChanged(BluetoothGatt gatt,
BluetoothGattCharacteristic characteristic) {
 super.onCharacteristicChanged(gatt, characteristic);
 writeSensorData(characteristic.getStringValue(0));
 }

At this point in time, the project will be unable to function as the necessary
permissions have not been implemented yet. User permissions are necessary as it
allows the application to access different capabilities of the device. In this case, we
will need to add the following two permissions within the AndroidManifest.xml
file, which you will find by navigating to app > src > main > AndroidManifest.xml:

<uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_
ADMIN"/>

When we perform all these changes, we should expect the rudimentary user
interface to look as follows, with the sensor data showing up after tapping on
the different parameters:

Chapter 3

[73]

Enhancing the user interface
The current user interface requires further enhancements to make it user friendly.
One can easily notice that the sensor data output needs to be enlarged and centered
and the buttons can definitely be more attractive. Also, we want to make sure that
our Weather Station app stands out from the user's current list of apps, so our app
would definitely benefit from a change in the icon.

We will work on the following main tasks:

• Creating and adding our very own Android app icon
• Centering and enlarging the data output text
• Modifying the buttons and adding some color to our text

Creating and adding our very own app icon
One of our very first steps to enhance the user experience is to have our very
own icon.

First, we will start off by downloading the image asset. This is available publicly at
http://bit.ly/chapter3-iclauncher.

http://bit.ly/chapter3-iclauncher

Bluetooth Weather Station

[74]

You should navigate using the project tree, followed by a right-click on app,
as shown in the following screenshot:

After you right-click on app, create a new image asset by going to New >
Image Asset, as shown in the following screenshot:

Chapter 3

[75]

You will then be shown an Asset Studio pop-up window, which will allow you
to choose your very own image file. For optimization purposes, we recommend
going for a .png file with a resolution of 144 pixels by 144 pixels. Android Studio
automatically does all the resizing and resource creation to adapt your graphic to
different screens, as shown in the following screenshot:

Bluetooth Weather Station

[76]

Once you choose the ic_launcher image file, which we have provided you with,
you will be shown a screen with the icon in different sizes. Click on Next, where
you will see the following screen:

The preceding screen warns you that previous files will be overwritten and shows
you the image launcher file in a number of different resolutions once again. Click on
Finish, then compile the app, launch it on your physical device, and you should see
something as pleasant as the following in your app tray and in the app's action bar:

Chapter 3

[77]

Here's what the app's action bar will look like:

Centering and enlarging the data output text
In order to edit the layout for the main text output where the sensor data will be
shown, we will need to open the project tree and navigate towards the layout file,
which is available at app > src > main > res > layout > activity_main_screen.xml.

Once in this view, we recommend that you modify the text using the text view. This
will allow you finer control and will also get you used to the different conventions
used when editing Android layout files programmatically.

When opening the activity_main_screen.xml file, we will be seeing the different
XML codes for the buttons and text views. At this point, look out for the code that
takes care of the Sensor Data Output TextView and add the following code:

android:textSize="200dp"
 android:gravity="center"

The whole block of code responsible for the Sensor Data Output TextView will
now look as follows:

<TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
 android:id="@+id/dataOutputTextView"
 android:layout_gravity="center_vertical"
 android:textSize="200dp"
 android:gravity="center"
 android:text="99" />

In this block of code, we have temporarily used the placeholder text 99 so that
we can approximate how it will look with the Android layout designer. With this
modification, the sensor data output is now big enough to be seen by the user,
thus enhancing the user experience.

Bluetooth Weather Station

[78]

Modifying the buttons and adding some color
to our text
Finally, we will modify our buttons and add some color to the text by performing the
following steps:

1. We will follow these two steps to create new buttons:
1. Create a drawable folder with a new XML drawable file known as

buttonshape.xml.
2. We will then connect the drawable resource file to the main Android

layout file.
2. Create the drawable folder by right-clicking on the res folder, which is

available by navigating to App > src > main > res.
3. After creating the drawable folder within the res folder, we need to once

again right-click on the new drawable folder and click on New and choose
Drawable resource file, as shown in the following screenshot:

4. Name the file buttonshape and type down shape as the Root element
followed by clicking on OK, as shown in the following screenshot:

Chapter 3

[79]

5. Within the buttonshape.xml file, we will add the following code:
<?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 android:shape="rectangle" >
 <corners
 android:radius="10dp"
 />
 <solid
 android:color="#FFFFFF"
 />
 <padding
 android:left="0dp"
 android:top="0dp"
 android:right="0dp"
 android:bottom="0dp"
 />
 <size
 android:width="85dp"
 android:height="99dp"
 />
 <stroke
 android:width="2dp"
 android:color="#4A90E2"
 />
</shape>

6. Then, we go towards the activity_main_screen.xml file and refer to this
drawable by including the following line of code within the button modules:
android:background="@drawable/buttonshape"

7. We will also add some flavor by adding the following line of code to the
button and TextView modules within the activity_main_screen.xml file:
android:textColor="#4A90E2"

In the preceding code, #4A90E2 refers to the hex code of the main color used in the
app icon so that we maintain some consistency with the main user interface.

Bluetooth Weather Station

[80]

The final layout will look as follows on a Nexus 5 smartphone:

It's important to note that different Android devices have different dimensions. So,
for your specific Android device, you might need to do further optimizations within
the Android layout files to improve the interface.

How to go further
A large number of improvements could be done towards improving the user
interface process within the Android app. Currently, service discovery is refreshed
only by physically rotating the device, as the onResume() method is called upon
rotation of the device. This could easily be improved by adding a refresh icon in the
action bar and connecting this icon to the code, so that this method is called when the
icon is tapped.

Chapter 3

[81]

In addition, further user interface customizations can make it possible
to personalize the app to your own liking; with regards to this app, you can get
an idea of the possibilities by looking at the following links from the Android
developers site:

• Button widget documentation at http://developer.android.com/
reference/android/widget/Button.html

• TextView documentation at http://developer.android.com/reference/
android/widget/TextView.html

You can even expand the app further with real-time monitoring, statistics, and trends.

Summary
In this chapter, we built a simple weather station using Arduino and Android. We
attached several sensors to our Arduino board, along with a Bluetooth Low Energy
module. We also built the corresponding Android app so that we can access all the
data measured by the Arduino board just by tapping on a button of the phone.

In the next chapter, we will use a different technology to interact with an Arduino
board via Android: Wi-Fi. We will build a smart power switch, to control an electrical
device remotely, and also to measure the device power consumption via Wi-Fi.

 http://developer.android.com/reference/android/widget/Button.html
 http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

Wi-Fi Smart Power Plug
In this chapter, we will build an open source version of a very commonly connected
object—a Wi-Fi power plug. Indeed, these kind of plugs can be bought from many
stores, and usually come with their own iOS or Android app.

In this chapter, we will build such a power plug from scratch, based on Arduino.
We will connect a relay module, a current sensor, and a Wi-Fi module to an Arduino
board to make our own Wi-Fi power plug. The power plug will be able to switch
any device on and off, and will continuously measure the power consumption
of the device.

We will build an Android app to switch on and off the power plug remotely via
Wi-Fi. We will also be able to get the power output on request and display it on
a screen.

The following topics will be the major takeaways from this chapter:

• Connecting a relay module, a current sensor, and a Wi-Fi module to Arduino
• Controlling the project by sending commands via Wi-Fi
• Building an Android application to control the project from a mobile phone

or tablet

Hardware and software requirements
First, let's see the required hardware components for this chapter.

We need an Arduino Uno board. To control the lamp remotely (the lamp was used as
an example in the chapter, but of course any 110V or 230V device can be used here),
you will also need a relay module. We used a 5V relay module from Polulu, but you
can use any 5V relay module that you want.

Wi-Fi Smart Power Plug

[84]

To measure the instant power consumption of the device connected to the plug, you
will also need a current sensor. For this part, we will choose a breakout board based
on the ACS712 chip. The following is a picture of the board I used:

You will also need a board that includes the CC3000 Wi-Fi chip, which we will use to
receive commands via the Android device. For this project, we will choose a CC3000
breakout board from Adafruit. Of course, you can also use a shield from the same
brand for this project; the code will be exactly the same.

To make the different connections, you will also need a breadboard and some
jumper wires.

The following is a list of the components that were used in this project:

• The Arduino Uno board (https://www.adafruit.com/products/50)
• The 5V relay module (http://www.pololu.com/product/2480)
• The current sensor (http://imall.iteadstudio.com/im120710011.html)
• The Adafruit CC3000 Wi-Fi breakout board (https://www.adafruit.com/

product/1469)
• The breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

https://www.adafruit.com/products/50
http://www.pololu.com/product/2480
http://imall.iteadstudio.com/im120710011.html
https://www.adafruit.com/product/1469
https://www.adafruit.com/product/1469
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Chapter 4

[85]

To connect a lamp or any other device to the project, you will need a pair of power
cables: one male power plug and one female power plug. You will also need some
screw terminals to make the required connections. The following is an image of the
cables I used for this project:

Warning:
It can be dangerous to use high-voltage devices with such project. So,
make sure to carefully follow all the instructions in the next section. Of
course, you can make the entire project without connecting the project
to the mains electricity; the principles are exactly the same.

On the software side, you will need the latest version of the Arduino IDE. You will
need the library for the CC3000 chip found at https://github.com/adafruit/
Adafruit_CC3000_Library.

You will also need the aREST library found at https://github.com/
marcoschwartz/aREST.

To install an Arduino library, simply put the library folder into your /libraries
folder inside your main Arduino folder.

Configuring the hardware
It's now time to assemble the hardware part of the project. Let's start by connecting
the Adafruit CC3000 breakout board. First, connect the Arduino Uno +5V pin to the
red rail on the breadboard, and the ground pin to the blue rail.

https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/marcoschwartz/aREST
https://github.com/marcoschwartz/aREST

Wi-Fi Smart Power Plug

[86]

Then, connect the IRQ pin of the CC3000 board to pin number 3 of the Arduino
board, VBAT to pin 5, and CS to pin 10. After that, you will need to connect the
SPI pins to the Arduino board: MOSI, MISO, and CLK go to pins 11, 12, and 13,
respectively. Finally, take care of the power supply: VIN goes to the Arduino 5V
(red power rail) and GND to GND (blue power rail).

The following is a schematic of the project, without the relay module connected:

We will now connect the relay module. First, connect the power supply: the VCC
pin of the relay goes to the red power rail, and the GND pin goes to the blue power
rail. Then, connect the signal pin of the relay (usually denoted as SIG) to Arduino
pin number 8 followed by the current sensor. Like the relay, connect the power first:
the VCC pin of the relay goes to the red power rail, and the GND pin goes to the
blue power rail. Then, connect the signal pin of the sensor (usually denoted as SIG or
OUT) to Arduino analog pin A0.

Chapter 4

[87]

We will now take care of connecting the project to the device you want to control,
and to the mains electricity.

Be very careful at this step as it involves high voltages (110V or 230V),
which can be lethal. Also, make sure that you always connect the
project to the mains electricity when you check everything else. When
all other connections are done, make sure that you are not touching
any bare cables. It is also recommended that you put the complete
project in a plastic enclosure.

The following schematic describes how the different cables are connected to the relay
and to the current sensor:

Note that as we are using AC voltages, the polarity of the cables doesn't matter here.

Wi-Fi Smart Power Plug

[88]

The following is an image illustrating the different connections between the cables,
the relay, and the current sensor:

Finally, the following is an image of the complete project, with the male cable
connected to the mains electricity, and a lamp connected to the female plug:

Chapter 4

[89]

Testing the relay
We will now test the project, by testing the relay and switching it on and off. This
will ensure that the relay is correctly connected to your Arduino board, and that
the power cable connections are correctly done (otherwise, no electricity will flow
through the connected device). Again, check every single connection before plugging
the project into the mains electricity.

The following is the complete Arduino sketch for this part:

// Relay pin
const int relay_pin = 8;

void setup() {
 pinMode(relay_pin,OUTPUT);
}

void loop() {

 // Activate relay
 digitalWrite(relay_pin, HIGH);

 // Wait for 5 seconds
 delay(5000);

 // Deactivate relay
 digitalWrite(relay_pin, LOW);

 // Wait for 5 seconds
 delay(5000);
}

We will now consider the details of this sketch. It starts by declaring which pin the
relay is connected to:

const int relay_pin = 8;

Then, in the setup() function of the sketch, we will declare this pin as an output:

pinMode(relay_pin,OUTPUT);

Finally, in the loop() function of the sketch, we will switch the pin from the on state
to the off state every 5 seconds:

// Activate relay
digitalWrite(relay_pin, HIGH);

// Wait for 5 seconds
delay(5000);

Wi-Fi Smart Power Plug

[90]

Note that you can find the complete code for this part in the GitHub repository of the
book at https://github.com/marcoschwartz/arduino-android-blueprints.

Make sure that everything is connected correctly, that you have a device (like a lamp)
connected to our project and that the project is plugged into the mains electricity.
Again, check that every connection is correctly made before plugging the project into
the mains electricity. You can now upload the sketch to your Arduino board. You
should hear the relay switching on and off, and see the lamp switching on and off
as well.

Writing the Arduino sketch
Now that we are sure that the connections of the relay, the current sensor, and the
power cables are correct, we will write an Arduino sketch to accept connections
coming via Wi-Fi from the Android device.

The following is the complete sketch for this part:

// Import required libraries
#include <Adafruit_CC3000.h>
#include <SPI.h>
#include <aREST.h>

// Relay state
const int relay_pin = 8;

// Define measurement variables
float amplitude_current;
float effective_value;
float effective_voltage = 230.; // Set voltage to 230V (Europe) or
110V (US)
float zero_sensor;

// These are the pins for the CC3000 chip if you are using a breakout
board
#define ADAFRUIT_CC3000_IRQ 3
#define ADAFRUIT_CC3000_VBAT 5
#define ADAFRUIT_CC3000_CS 10

// Create CC3000 instance
Adafruit_CC3000 cc3000 = Adafruit_CC3000(ADAFRUIT_CC3000_CS, ADAFRUIT_
CC3000_IRQ, ADAFRUIT_CC3000_VBAT,
 SPI_CLOCK_DIV2);

https://github.com/marcoschwartz/arduino-android-blueprints

Chapter 4

[91]

// Create aREST instance
aREST rest = aREST();

// Your WiFi SSID and password
#define WLAN_SSID "yourWiFiNetworkName"
#define WLAN_PASS "yourPassword"
#define WLAN_SECURITY WLAN_SEC_WPA2

// The port to listen for incoming TCP connections
#define LISTEN_PORT 80

// Server instance
Adafruit_CC3000_Server restServer(LISTEN_PORT);

// Variables to be exposed to the API
int power;

void setup(void)
{
 // Start Serial
 Serial.begin(115200);

 // Init variables and expose them to REST API
 rest.variable("power",&power);

 // Set relay pin to output
 pinMode(relay_pin,OUTPUT);

 // Calibrate sensor with null current
 zero_sensor = getSensorValue(A0);

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("smart_lamp");

 // Set up CC3000 and get connected to the wireless network.
 if (!cc3000.begin())
 {
 while(1);
 }

 if (!cc3000.connectToAP(WLAN_SSID, WLAN_PASS, WLAN_SECURITY)) {
 while(1);
 }

Wi-Fi Smart Power Plug

[92]

 while (!cc3000.checkDHCP())
 {
 delay(100);
 }

 // Display connection details
 displayConnectionDetails();

 // Start server
 restServer.begin();
 Serial.println(F("Listening for connections..."));
}

void loop() {

 // Perform power measurement
 float sensor_value = getSensorValue(A0);

 // Convert to current
 amplitude_current = (float)(sensor_value-zero_
sensor)/1024*5/185*1000000;
 effective_value = amplitude_current/1.414;
 power = (int)(abs(effective_value*effective_voltage/1000));

 // Handle REST calls
 Adafruit_CC3000_ClientRef client = restServer.available();
 rest.handle(client);

}

// Function to display connection details
bool displayConnectionDetails(void)
{
 uint32_t ipAddress, netmask, gateway, dhcpserv, dnsserv;

 if(!cc3000.getIPAddress(&ipAddress, &netmask, &gateway, &dhcpserv,
&dnsserv))
 {
 Serial.println(F("Unable to retrieve the IP Address!\r\n"));
 return false;
 }
 else
 {

Chapter 4

[93]

 Serial.print(F("\nIP Addr: ")); cc3000.printIPdotsRev(ipAddress);
 Serial.print(F("\nNetmask: ")); cc3000.printIPdotsRev(netmask);
 Serial.print(F("\nGateway: ")); cc3000.printIPdotsRev(gateway);
 Serial.print(F("\nDHCPsrv: ")); cc3000.printIPdotsRev(dhcpserv);
 Serial.print(F("\nDNSserv: ")); cc3000.printIPdotsRev(dnsserv);
 Serial.println();
 return true;
 }
}

// Get the reading from the current sensor
float getSensorValue(uint8_t pin)
{
 uint16_t sensorValue;
 float avgSensor = 0;
 uint8_t nb_measurements = 100;
 for (uint8_t i = 0; i < nb_measurements; i++) {
 sensorValue = analogRead(pin);
 avgSensor = avgSensor + float(sensorValue);
 }
 avgSensor = avgSensor/float(nb_measurements);
 return avgSensor;
}

Now, let's look in more detail at the Arduino sketch. It starts by importing the
required libraries for this project:

#include <Adafruit_CC3000.h>
#include <SPI.h>
#include <CC3000_MDNS.h>
#include <aREST.h>

We also have to define which pin the relay module is connected to:

const int relay_pin = 8;

Then, we have to declare some variables that will help us to measure and calculate
the power consumption of the device:

float amplitude_current;
float effective_value;
float effective_voltage = 230.; // Set voltage to 230V (Europe) or
110V (US)
float zero_sensor;

Wi-Fi Smart Power Plug

[94]

At this point, you should also change the value of the effective voltage so that it
matches the voltage of your country.

Then, we have to define the pins on which the CC3000 Wi-Fi chip is connected to:

#define ADAFRUIT_CC3000_IRQ 3
#define ADAFRUIT_CC3000_VBAT 5
#define ADAFRUIT_CC3000_CS 10

We can now create an instance of the CC3000 Wi-Fi chip:

Adafruit_CC3000 cc3000 = Adafruit_CC3000(ADAFRUIT_CC3000_CS, ADAFRUIT_
CC3000_IRQ, ADAFRUIT_CC3000_VBAT,
 SPI_CLOCK_DIV2);

We will also need to create an instance of the aREST library:

aREST rest = aREST();

You will now have to modify the code to put your Wi-Fi network credentials:

#define WLAN_SSID "yourWiFiNetworkName"
#define WLAN_PASS "yourPassword"
#define WLAN_SECURITY WLAN_SEC_WPA2

We will also define the port we want to listen to with the Wi-Fi chip:

#define LISTEN_PORT 80

After that, we will declare a server listening on that port:

Adafruit_CC3000_Server restServer(LISTEN_PORT);

Finally, we declare a variable that will contain the power consumption of the device,
which will be accessible from the outside via HTTP requests (within the same local
Wi-Fi network):

int power;

In the setup() function of the sketch, we will start the Serial connection:

Serial.begin(115200);

We will also expose the power consumption variable to the aREST API:

rest.variable("power",&power);

We will also declare the relay pin as an output:

pinMode(relay_pin,OUTPUT);

Chapter 4

[95]

Then, we need to first take a measurement from the current sensor to get the value
that the current sensor returns when no current is flowing through the connected
device. This is done by a function that we won't detail here:

zero_sensor = getSensorValue(A0);

We will also assign an ID and name to our project:

rest.set_id("001");
rest.set_name("smart_lamp");

After this, we will call a function to display the details of the Wi-Fi connection,
such as the CC3000 chip IP address:

displayConnectionDetails();

To end the setup() function, we will start our Wi-Fi server:

restServer.begin();
Serial.println(F("Listening for connections..."));

Now, in the loop() function of the sketch, we will read data from the sensor,
which is connected on the analog pin A0:

float sensor_value = getSensorValue(A0);

Once we get this value, we can calculate the current from it as well as the device
power consumption:

amplitude_current = (float)(sensor_value-zero_
sensor)/1024*5/185*1000000;
effective_value = amplitude_current/1.414;
power = (int)(abs(effective_value*effective_voltage/1000));

Basically, the manufacturer of the current sensor gives the first formula. Then, we
get the effective current by dividing the amplitude current by the square root of 2,
which is approximately 1.414. Finally, we get the effective power by multiplying the
effective current with the effective voltage (and dividing it by 1,000 to have a result
in Watts). Once the measurements are done, we process the incoming requests using
the aREST library:

Adafruit_CC3000_ClientRef client = restServer.available();
rest.handle(client);

Note that you can find the complete code for this part inside the GitHub repository of
the book at https://github.com/marcoschwartz/arduino-android-blueprints.

https://github.com/marcoschwartz/arduino-android-blueprints

Wi-Fi Smart Power Plug

[96]

Don't forget to change the sketch to include your own Wi-Fi network name and
Wi-Fi network password. You can now upload the code to your Arduino board,
and open the Serial monitor. The following result is what you should see after
a while (of course, the IP address of your board and the other parameters will
probably be different):

IP Addr: 192.168.1.130
Netmask: 255.255.255.0
Gateway: 192.168.1.1
DHCPsrv: 0.0.0.0
DNSserv: 192.168.1.1
Listening for connections...

Write down the IP address that appeared in your Serial monitor—you will need
it now, and while writing the Android application later. Now, we will test the Wi-Fi
connection by sending some command to the project. You can go to your favorite
web browser and type the following:

192.168.1.130/digital/8/1

Of course, you need to change the IP address with your own board's IP address as it
was displayed in the Serial monitor. You should see that the relay instantly switches
on, and you should be greeted by the following message:

{"message": "Pin D8 set to 1", "id": "001", "name": "smart_lamp",
"connected": true}

You can now switch it off again with:

192.168.1.130/digital/8/0

We are now going to try to read the power consumption of the device. You can do
so by typing:

192.168.1.130/power

You should be greeted by the following answer:

{"power": 0, "id": "001", "name": "smart_lamp", "connected": true}

If you can see this, then it means that the sensor was correctly calibrated (as the
power is 0) and that the power variable was correctly exposed to the aREST API.

Chapter 4

[97]

Wireframing our Android application
The rigorous approach of wireframing our application before starting to write
any code will help us provide a better user experience. The following is the paper
prototype that we would like to follow when it comes to implementing our final code:

We will go ahead and create a new project entitled Arduino Wifi in Android Studio
with a minimum SDK of 15 and maximum SDK of 19 (which at the time of writing
is the most stable version of the Android SDK). This will enable us to cater to more
than 80% of Android devices in the market. A project with a blank activity should be
enough to start off this project.

Once you've got the project set up, we will go ahead and direct the Android layout
files, which can be found by navigating to app > src > res > layout > activity_
main_screen.xml.

Wi-Fi Smart Power Plug

[98]

We will apply a relative layout first, and within this layout, drag-and-drop
four buttons together with a TextView, which will look roughly as follows
(at this point, there is no need to focus on the aesthetic quality of the layout):

We will also identify each user interface item as follows:

• The Open the Gate button: openGateButton
• The Switch On button: switchOnButton
• The Switch Off button: switchOffButton
• The Check Power button: checkPowerButton
• The Power Output text view: powerOutput

Implementing our layouts into the code
We will first start off by declaring a String TAG object, which refers to
MainActivity and which will be used for logging purposes:

public static final String TAG = MainScreen.class.getSimpleName();

Then, we will follow this by declaring all our view variables and assigning them to
the layout elements within the onCreate method, which means that the onCreate
method will look as follows:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Chapter 4

[99]

 setContentView(R.layout.activity_main_screen);

 //Declare our View Variables and assign them to the layout
elements
 Button checkPowerButton = (Button) findViewById(R.
id.checkPowerButton);
 Button openTheGateButton = (Button) findViewById(R.
id.openGateButton);
 Button switchOnButton = (Button) findViewById(R.
id.switchOnButton);
 Button switchOffButton = (Button) findViewById(R.
id.switchOffButton);

 checkPowerButton.setOnClickListener(new View.OnClickListener()
{
 @Override
 public void onClick(View v) {
 if (isNetworkAvailable()) {
 checkPowerTask getPowerTask = new
checkPowerTask();
 getPowerTask.execute();
 }
 }
 });

 openTheGateButton.setOnClickListener(new View.
OnClickListener() {
 @Override
 public void onClick(View v) {
 if (isNetworkAvailable()) {
 SwitchOpenTask switchOpenTask = new
SwitchOpenTask();
 switchOpenTask.execute();
 }
 }
 });

 switchOnButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (isNetworkAvailable()) {
 SwitchOnTask switchOnTask = new SwitchOnTask();
 switchOnTask.execute();
 }
 }

Wi-Fi Smart Power Plug

[100]

 });

 switchOffButton.setOnClickListener(new View.OnClickListener()
{
 @Override
 public void onClick(View v) {
 if (isNetworkAvailable()) {
 SwitchOffTask switchOffTask = new SwitchOffTask();
 switchOffTask.execute();
 }
 }
 });

 }

As you can see in the preceding code, we refer to a number of ASync tasks, which we
will refer to together with a JSON parser that we will be using to parse the data from
the Arduino and adapt it to the power output text view.

ASync tasks will help us run the application tasks separately from the main user
interface thread and hence significantly improve the responsiveness of the user
interface and thus enhance the user experience.

With the following code, you will need to replace the yourip part with your own IP
address, which you have found in the Arduino IDE Serial monitor. You will be able
to declare the IP address within the Main Activity declaration as follows:

public static final String URL = "yourip";

We will then declare the following AsyncTasks object to enable the different actions
we would like to achieve:

private class SwitchOpenTask extends AsyncTask<Object,Void,String> {

 @Override
 protected String doInBackground(Object... arg0) {

 int responseCode = -1;

 try {
 URL restApiUrl = new URL("http:// " + URL +
"mode/8/o");
 HttpURLConnection connection = (HttpURLConnection)
restApiUrl.openConnection();
 connection.connect();

Chapter 4

[101]

 responseCode = connection.getResponseCode();
 Log.i(TAG, "Code" + responseCode);
 }
 catch(MalformedURLException e) {
 Log.e(TAG, "Malformed Exception Caught:", e);
 }
 catch(IOException e) {
 Log.e(TAG, "IO Exception Caught:", e);
 e.printStackTrace();
 }
 catch(Exception e){
 Log.e(TAG, "Generic Exception Caught:", e);
 }

 return "Code: " + responseCode;

 }

 }

 private class SwitchOnTask extends AsyncTask<Object,Void,String> {

 @Override
 protected String doInBackground(Object... arg0) {

 int responseCode = -1;

 try {
 URL restApiUrl = new URL("http://" + URL + "/
digital/8/1");
 HttpURLConnection connection = (HttpURLConnection)
restApiUrl.openConnection();
 connection.connect();

 responseCode = connection.getResponseCode();
 Log.i(TAG, "Code" + responseCode);
 }
 catch(MalformedURLException e) {
 Log.e(TAG, "Malformed Exception Caught:", e);
 }
 catch(IOException e) {
 Log.e(TAG, "IO Exception Caught:", e);
 e.printStackTrace();
 }
 catch(Exception e){
 Log.e(TAG, "Generic Exception Caught:", e);
 }

Wi-Fi Smart Power Plug

[102]

 return "Code: " + responseCode;

 }

 }

 private class SwitchOffTask extends AsyncTask<Object,Void,String>
{

 @Override
 protected String doInBackground(Object... arg0) {

 int responseCode = -1;

 try {
 URL restApiUrl = new URL("http://" + URL + "/
digital/8/0");
 HttpURLConnection connection = (HttpURLConnection)
restApiUrl.openConnection();
 connection.connect();

 responseCode = connection.getResponseCode();
 Log.i(TAG, "Code" + responseCode);
 }
 catch(MalformedURLException e) {
 Log.e(TAG, "Malformed Exception Caught:", e);
 }
 catch(IOException e) {
 Log.e(TAG, "IO Exception Caught:", e);
 e.printStackTrace();
 }
 catch(Exception e){
 Log.e(TAG, "Generic Exception Caught:", e);
 }

 return "Code: " + responseCode;

 }

 }

 private class checkPowerTask extends AsyncTask<Object,Void,String>
{

 @Override
 protected String doInBackground(Object... arg0) {

 int responseCode = -1;
 String result = null;

Chapter 4

[103]

 try {
 URL restApiUrl = new URL("http://" + URL + "/power");
 HttpURLConnection connection = (HttpURLConnection)
restApiUrl.openConnection();
 connection.connect();
 responseCode = connection.getResponseCode();

 InputStream is = null;
 //http post request
 try{
 String postQuery = "http://" + URL + "/power";
 HttpClient httpclient = new DefaultHttpClient();
 HttpPost httppost = new HttpPost(postQuery);
 HttpResponse response = httpclient.
execute(httppost);
 HttpEntity entity = response.getEntity();
 is = entity.getContent();
 }catch(Exception e){
 Log.e("log_tag", "Error in http connection "+e.
toString());
 }

 //convert response to string
 try{
 BufferedReader reader = new BufferedReader(new Inp
utStreamReader(is,"UTF-8"),8);
 StringBuilder sb = new StringBuilder();
 String line = null;

 while ((line = reader.readLine()) != null) {
 sb.append(line + "\n");
 }

 is.close();

 result=sb.toString();
 Log.v(TAG,result);

 } catch(Exception e){
 Log.e("log_tag", "Error converting result "+e.
toString());
 }

 //parse json data
 try {

Wi-Fi Smart Power Plug

[104]

 JSONObject userObject = new JSONObject(result);
 final String powerOutputText = userObject.
getString("power");

 activity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 TextView powerOutput = (TextView)
findViewById(R.id.powerOutput);
 powerOutput.setText(powerOutputText +
"W");

 }
 });

 } catch(JSONException e){
 Log.e(TAG, "JSON Exception Caught:", e);
 }
 }
 catch(MalformedURLException e) {
 Log.e(TAG, "Malformed Exception Caught:", e);
 }
 catch(IOException e) {
 Log.e(TAG, "IO Exception Caught:", e);
 e.printStackTrace();
 }
 catch(Exception e){
 Log.e(TAG, "Generic Exception Caught:", e);
 }

 return "Code: " + responseCode;
 }

 }

We will add another helper method at the bottom to make sure that Wi-Fi network
connectivity is available:

private boolean isNetworkAvailable() {
 ConnectivityManager manager = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = manager.getActiveNetworkInfo();

 boolean isAvailable = false;
 if (networkInfo != null && networkInfo.isConnected()) {

Chapter 4

[105]

 isAvailable = true;
 }

 return isAvailable;

 }

Before going ahead, we will need to add the following permissions to our Android
Manifest file, which is available at app > src > main > AndroidManifest.xml.

The following permissions will allow us to access the Wi-Fi network capabilities of
the Android device:

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />
 <uses-permission android:name="android.permission.ACCESS_WIFI_
STATE" />

After this, you can go ahead and compile the app. It's also important to note that
Wi-Fi has a latency of about 300 ms and, depending on your Wi-Fi network, the
value might take a significant amount of time to update the user interface.

If you are struggling with following along, you can also refer to the final project
by checking out the GitHub repository at https://github.com/marcoschwartz/
arduino-android-blueprints.

Polishing the user interface and experience
Once we have managed to finalize our code and assure ourselves that the user
interface is being updated with the power value and that we can switch on and
off the lamp, we can proceed to improve our user interface.

We will improve the user interface with the following main actions:

• Adding a new app icon
• Enlarging the power output text
• Aligning and styling the buttons
• Changing the application name in the action bar

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Wi-Fi Smart Power Plug

[106]

Adding a new app icon
First, we will start off by downloading the image asset. It's available within the GitHub
repository and as a public download at http://bit.ly/iclauncherchapter4.

You should navigate using the project tree, followed by a right-click on the app
folder, as shown in the following screenshot:

When you right-click on app, create a new image asset by navigating to New >
Image Asset, as shown in the following screenshot:

http://bit.ly/iclauncherchapter4

Chapter 4

[107]

You will then be shown an Asset Studio pop-up window, which will allow you
to choose your very own image file, as shown in the following screenshot. For
optimization purposes, we recommend that you go for a .png file with a resolution
of 144 pixels by 144 pixels. Android Studio automatically does all the resizing and
resource creation to adapt your graphic to different screens:

Wi-Fi Smart Power Plug

[108]

Once you choose the ic_launcher image file that we have provided you with, you
will be shown a screen with the icon in different sizes. Click on Next, where you will
see the following screen:

This screen warns you that the previous files will be overwritten and shows you the
image launcher file in a number of different resolutions once again. Click on Finish,
compile the app, launch it on your physical device, and you should see something
pleasant in your app tray and in the app's action bar, which is shown as follows:

Chapter 4

[109]

Centering and enlarging the data output text
In order to edit the layout for the main text output where the sensor data will be
shown, we will need to open the project tree and navigate towards the layout file,
which is available at app > src > main > res > layout > activity_main_screen.xml.

Once in this view, we recommend that you modify the text using the text view. This
will allow you finer control and get you used to the different conventions used when
editing Android layout files programmatically.

When opening the activity_main_screen.xml file, we will see the different XML
codes for the buttons and Text Views. At this point, look out for the code that takes
care of the Power Data Output TextView and add the following code:

android:textSize="100sp"
android:textAlignment="center"

The whole block of code responsible for the Sensor Data Output TextView will
now look as follows:

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="100W"
 android:textSize="100sp"
 android:id="@+id/powerOutput"
 android:textAlignment="center"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="78dp"
 />

In this block of code, we temporarily used the placeholder text 100W so that we
can approximate how it will look with the Android layout designer. With this
modification, the sensor data is now big enough to show to the user and will
be part of the enhancement within the user experience.

Aligning and styling the buttons
For our final steps, we will modify our buttons and add some color to the text.

There will be two steps when creating the new buttons:
1. Create a drawable folder with a new XML drawable file known

as button.xml.
2. We will then connect the drawable resource file to the main Android

layout file.

Wi-Fi Smart Power Plug

[110]

Create the drawable folder by right-clicking on the res folder, which is available at
app > src > main > res.

After creating the drawable folder within the res folder, we need to once
again right-click on the new drawable folder and navigate to New > Drawable
Resource File.

Name the file button and type down shape as the root element followed by clicking
on OK.

Within the button.xml file, we will add the following code:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 android:shape="rectangle" >
 <corners
 android:radius="30dp"/>
 <solid
 android:color="#FFFFFF"/>
 <padding
 android:left="0dp"
 android:top="0dp"
 android:right="0dp"
 android:bottom="0dp"/>
 <size
 android:width="120dp"
 android:height="60dp"/>
 <stroke
 android:width="2dp"
 android:color="#4A90E2"/>
</shape>

Then, we go towards the activity_main_screen.xml file and refer to this drawable
by including the following line of code within the button modules:

android:background="@drawable/button"

We will add some flavor by adding the following line of code to the Button and
TextView modules within the activity_main_screen.xml file:

android:textColor="#4A90E2"

The #4A90E2 term refers to the hex code of the main color used in the app icon so
that we maintain some consistency with the main user interface.

Chapter 4

[111]

Changing the application name within the
action bar
We all would like to customize the name of the app to one of our own liking and that
will be the easiest thing within our project! We will just go over to the strings.xml
file where we have all our constant text values within the project. This is available at
app > src > res > values > string.xml.

Then, you can change the text of arduinoWifi to any name of your liking. In this
case, we will stick to WiFi Lamp Switch:

<string name="app_name">WiFi Lamp Switch</string>

Our final project should now look as follows (device used in this case is a Nexus 4):

It's important to note that screen layouts might vary depending on different devices.
In this case, you might have to adapt your Android layout file to your specific
physical device.

Wi-Fi Smart Power Plug

[112]

How to go further
The options are endless when it comes to further modifying the Android app, and
there are a number of implementations that can improve the app, such as real-time
monitoring, where the power data output will refresh automatically. In addition, this
data can provide a use case for data that is being generated to be stored in the cloud,
which can be analyzed, allowing for the creation of graphical interpretations of this
data. Such graphical interpretations can be correlated to the time of day and can help
the user understand when the greatest power consumption occurs.

From a coding point of view, we can refactor our code, which implies that we simplify
and reuse our code effectively. In fact, refactoring could definitely be achieved with
the JSON parser, which could be refactored into its own class and which we opted on
leaving out in the current setup so as to facilitate the learning process.

With regards to user experience, a new EditText field could be introduced together
with a Submit button so as to allow the user to manually change the IP address,
which will be called when discovering the IP address from the Arduino Serial
monitor. Within this code, we use the concatenation and URL builder to form the
right command.

Summary
We created a DIY version of a smart power switch, based on Arduino, and controlled
by an Android application via Wi-Fi. We connected all the required components to
the Arduino board, wrote an Arduino sketch to accept commands via Wi-Fi, and
finally, created an Android application to control the switch remotely.

In the next chapter, we will use another Arduino board, called the Arduino Yún,
where we will be able to plug an USB camera. As this board will have Wi-Fi as well,
we will use the project to create a remote Wi-Fi security camera.

Wi-Fi Remote Security
Camera

In this chapter, we will build a Wi-Fi remote security camera. The camera itself will
be based on the Arduino Yùn and a standard USB webcam. The Arduino Yùn is a
powerful Arduino board that has an onboard Linux machine and Wi-Fi connectivity.
The Arduino Yùn will take the video coming from the camera and stream it on the
local Wi-Fi network.

Then, we will be able to access the video stream from our physical Android device.
This will give us the mobile flexibility to access our video stream from anywhere in
our home.

From this chapter, you will learn how to:

• Use the Arduino Yùn and connect a USB camera to it
• Configure the Yùn to stream the video over your local Wi-Fi network
• Build an Android application to get the stream from the USB camera

Hardware and software requirements
The Wi-Fi remote security camera project is based around the Arduino Yùn board.
The Arduino Yùn is a powerful Arduino board with integrated Wi-Fi and an
onboard Linux machine based on a very small Linux distribution called OpenWrt.
It also has a USB port so that you can connect hard drives, cameras, or other USB
devices. We will use all these features in this project.

Wi-Fi Remote Security Camera

[114]

The following is an image of the board that was used in this project:

You will also need a USB camera to stream live video with the Yùn. You can
basically get any camera that is compatible with USB Video Class (UVC).
For this project, I used a Logitech C270 HD camera.

If you plan to use the camera for other applications, such as recording still pictures
on the Yùn, you will also need a microSD card to save the data. Finally, you will
need a micro USB cable to power the Yùn. The following is a list of all hardware
components that are required for this chapter:

• Arduino Yùn (https://www.adafruit.com/products/1498)
• A UVC compatible USB camera (http://en.wikipedia.org/wiki/List_

of_USB_video_class_devices)
• A micro USB cable
• A 4 GB microSD card, which is optional (https://www.adafruit.com/

products/102)

https://www.adafruit.com/products/1498
http://en.wikipedia.org/wiki/List_of_USB_video_class_devices
http://en.wikipedia.org/wiki/List_of_USB_video_class_devices
https://www.adafruit.com/products/102
https://www.adafruit.com/products/102

Chapter 5

[115]

You will need to configure your Arduino Yùn by following the official guide so that
it can connect to your Wi-Fi network:

http://arduino.cc/en/Guide/ArduinoYùn

Note that you might have problems configuring your Arduino Yùn if you are behind
a proxy. If this is the case, try disabling the proxy to see if it solves the problem.

If your Yùn is not recent, you might need to update OpenWrt (the Yùn's operating
system) to the latest version. The procedure is described in the guide and can be
found at http://arduino.cc/en/Tutorial/YùnSysupgrade.

After the Wi-Fi configuration is done, we will install the required packages to
handle the camera and stream video on your local Wi-Fi network. Go to a terminal
(use a terminal software, such as PuTTY or OpenSSH, if you are using Windows),
and type the following command:

ssh root@yourYùnName.local

Of course, you need to change the command with the name of your Arduino Yùn
that you defined when configuring it. If you forgot the name of your board, you will
need to reset the Yùn and configure it again.

You will then be prompted to enter your password that you defined during the
Yùn's configuration step. You will then be greeted by a screen similar to the one
shown in the following screenshot:

http://arduino.cc/en/Guide/ArduinoY�n
http://arduino.cc/en/Tutorial/Y�nSysupgrade

Wi-Fi Remote Security Camera

[116]

You can are now logged into the Arduino Yùn. You can type the following command
to update the list of available packages:

opkg update

Then type this command to install the required packages for live video streaming:

opkg install kmod-video-uvc mjpg-streamer

Hardware configuration
The hardware configuration for this project is really simple. First, insert the
formatted microSD card into the Arduino Yùn SD card reader, as shown in the
following screenshot:

Chapter 5

[117]

After this, you just have to connect the USB camera to the host USB port of the Yùn,
as shown in the following screenshot:

To finish the hardware configuration of the project, simply connect the board to
power via the micro USB port (actually, you don't even need to connect it to your
computer, the Arduino Yùn can work completely independently!).

Setting up video streaming
We will now set up the Arduino Yùn so that it continuously streams video.
Once more log in to your Arduino Yùn using the following command:

ssh root@yourYùnName

Again, replace the command with the name of your Arduino Yùn. Then type the
following command:

mjpg_streamer -i "input_uvc.so -d /dev/video0 -r 640x480 -f 25" -o
"output_http.so -p 8080 -w /www/webcam" &

Wi-Fi Remote Security Camera

[118]

This basically means that it will start the streaming at a resolution of 640 x 480,
at 25 frames per second, and on the 8080 port.

You should see a series of commands being printed inside the terminal, meaning
that the Yùn is now streaming live video on your Wi-Fi network. Now, go to your
favorite web browser and type yourYùnName.local:8080.

This will open the main streaming interface, where you can select the desired
streaming type. To access the stream itself for a test, go to http://arduinoYùn.
local:8080/stream.html.

Note that this link is only valid within your own local Wi-Fi network. You will
be greeted with the live stream coming from your Arduino Yùn, as shown in the
following screenshot:

http://arduinoY�n.local:8080/stream.html
http://arduinoY�n.local:8080/stream.html

Chapter 5

[119]

Implementing a fullscreen stream player
on Android
In this project, we will implement a very simple Android app that will show the
MJPEG stream from our Arduino Yùn. We will assume that you will have switched
on the Auto-Import function within your Android Studio preferences. If not, kindly
activate it by going to the Auto-Import preferences and selecting all the available
options. The Auto-Import preferences are available on Mac and Windows as follows:

• Mac: Android Studio > Preferences > Editor > Auto-Import
• Windows: File > Settings > Editor > Auto-Import

With all the necessary settings in place, we will first start off by creating a new
project where we will choose the following within the New Project setup:

• Name: Android Yùn Security
• Minimum SDK: 15
• Project: Blank Activity
• Activity Name: StreamActivity

In this project, we will be working with three Java classes and we will need to
create two classes, namely MjpegInputStream and MjpegView. The Java classes
are as follows:

• StreamActivity (the main activity that is created upon the start of a new
project)

• MjpegInputStream

• MjpegView

To create a new class, you will need to go to app > src > main > java > com.
domainofyourchoice.androidYùnsecurity.

Wi-Fi Remote Security Camera

[120]

Right-click on the package name and go on New > Java Class, as shown in the
following screenshot:

First things first; this application won't be able to work if we don't declare the
Internet user permission. So, we head off to AndroidManifest.xml and we add
the following line of code below the package name:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"

The Android manifest will look as follows when completed:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.arduinoandroid.androidYùnsecurity" >

 <uses-permission android:name="android.permission.ACCESS_WIFI_
STATE"/>
 <uses-permission android:name="android.permission.INTERNET"/>

Chapter 5

[121]

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".StreamActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.
LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Then we head off to StreamActivity.java where we will start off our main
streaming activity. In this project, we will use ASync tasks to do our network activity.

We will first declare String TAG (which we will be using for logging) and
MjpegView (which refers to an instance of class that we have already created):

public class StreamActivity extends Activity {
 private static final String TAG = "MjpegActivity";

 private MjpegView mv;

In the onCreate method, we will declare our URL and also declare a number
of parameters to set the video stream to fullscreen. It's important to replace
youripaddress with the IP address that you can easily find out from the
Arduino Yùn web panel:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //sample public ca
 String URL = "http://youripaddress:8080/?action=stream";

 requestWindowFeature(Window.FEATURE_NO_TITLE);

Wi-Fi Remote Security Camera

[122]

 getWindow().setFlags(WindowManager.LayoutParams.FLAG_
FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 mv = new MjpegView(this);
 setContentView(mv);

 new DoRead().execute(URL);
 }

We will also need to declare the onPause() method that will be implemented when
the Android application is closed, where this method will pause the live stream so as
to not use the battery resources of the Android device:

 public void onPause() {
 super.onPause();
 mv.stopPlayback();
 }

After this, we will implement DoRead AsyncTask, which will perform HttpRequest
and communicate with the Arduino Yùn server:

 public class DoRead extends AsyncTask<String, Void,
MjpegInputStream> {
 protected MjpegInputStream doInBackground(String... url) {

 HttpResponse res = null;
 DefaultHttpClient httpclient = new DefaultHttpClient();
 Log.d(TAG, "1. Sending http request");
 try {
 res = httpclient.execute(new HttpGet(URI.
create(url[0])));
 Log.d(TAG, "2. Request finished, status = " + res.
getStatusLine().getStatusCode());
 if(res.getStatusLine().getStatusCode()==401){
 //You must turn off camera User Access Control
before this will work
 return null;
 }
 return new MjpegInputStream(res.getEntity().
getContent());
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 Log.d(TAG, "Request failed-ClientProtocolException",
e);

Chapter 5

[123]

 //Error connecting to camera
 } catch (IOException e) {
 e.printStackTrace();
 Log.d(TAG, "Request failed-IOException", e);
 //Error connecting to camera
 }

 return null;
 }

Within the StreamActivity.Java class, we will implement onPostExecute(),
which as part of the AsyncTask API will make sure that the video stream player
shows up in the Main UI thread:

 protected void onPostExecute(MjpegInputStream result) {
 mv.setSource(result);
 mv.setDisplayMode(MjpegView.SIZE_BEST_FIT);
 mv.showFps(true);
 }
 }
}

We will then open MjpegInputStream.java, where we will declare all the
necessary code needed to parse the data that is streamed from the Arduino Yùn
to the Android device:

public class MjpegInputStream extends DataInputStream {
 private static final String TAG = "MjpegInputStream";

 private final byte[] SOI_MARKER = { (byte) 0xFF, (byte) 0xD8 };
 private final byte[] EOF_MARKER = { (byte) 0xFF, (byte) 0xD9 };
 private final String CONTENT_LENGTH = "Content-Length";
 private final static int HEADER_MAX_LENGTH = 100;
 private final static int FRAME_MAX_LENGTH = 40000 + HEADER_MAX_
LENGTH;
 private int mContentLength = -1;

 public MjpegInputStream(InputStream in) {
 super(new BufferedInputStream(in, FRAME_MAX_LENGTH));
 }

 private int getEndOfSeqeunce(DataInputStream in, byte[] sequence)
throws IOException {

Wi-Fi Remote Security Camera

[124]

 int seqIndex = 0;
 byte c;
 for(int i=0; i < FRAME_MAX_LENGTH; i++) {
 c = (byte) in.readUnsignedByte();
 if(c == sequence[seqIndex]) {
 seqIndex++;
 if(seqIndex == sequence.length) {
 return i + 1;
 }
 } else {
 seqIndex = 0;
 }
 }
 return -1;
 }

 private int getStartOfSequence(DataInputStream in, byte[]
sequence) throws IOException {
 int end = getEndOfSeqeunce(in, sequence);
 return (end < 0) ? (-1) : (end - sequence.length);
 }

 private int parseContentLength(byte[] headerBytes) throws
IOException, NumberFormatException {
 ByteArrayInputStream headerIn = new ByteArrayInputStream(head
erBytes);
 Properties props = new Properties();
 props.load(headerIn);
 return Integer.parseInt(props.getProperty(CONTENT_LENGTH));
 }

 public Bitmap readMjpegFrame() throws IOException {
 mark(FRAME_MAX_LENGTH);
 int headerLen = getStartOfSequence(this, SOI_MARKER);
 reset();
 byte[] header = new byte[headerLen];
 readFully(header);
 try {
 mContentLength = parseContentLength(header);
 } catch (NumberFormatException nfe) {
 nfe.getStackTrace();
 Log.d(TAG, "catch NumberFormatException hit", nfe);
 mContentLength = getEndOfSeqeunce(this, EOF_MARKER);
 }

Chapter 5

[125]

 reset();
 byte[] frameData = new byte[mContentLength];
 skipBytes(headerLen);
 readFully(frameData);
 return BitmapFactory.decodeStream(new ByteArrayInputStream(fr
ameData));
 }
}

Last but not least, we will head off to MjpegView.java, where we will be declaring
a number of important methods to consolidate all of our application processes.
The MjpegView.java class is available at http://git.io/_Mu_Gw.

Replace all the code within your version of the MjpegView.java class with the
one from the online repository and ensure that the package name and other class
references match the ones within your project.

Once you make sure that all your import statements are included within each
class with the Auto-Import function, you could go ahead and build the app and
test it on your physical device that is connected to the same Wi-Fi Network as your
Arduino Yùn.

The final project should look something as follows:

http://git.io/_Mu_Gw

Wi-Fi Remote Security Camera

[126]

How to go further
An interesting implementation and further improvement on the basic Android app
would be to include the ability to take a snapshot when motion is detected in front of
the camera. This can be achieved through the OpenCV library for Android, which is
available at http://opencv.org/platforms/android.html.

Furthermore, the user interface could be improved to include the ability to take a
picture of that particular scene. This project could also be combined with the mobile
robot project, which we shall talk about later on, to have a live-streaming mobile
robot that can be controlled from the same Android application. The use cases for
modifying such a setup are endless, starting from remote baby monitors to medical
monitoring devices.

Summary
Let's summarize what we did in this chapter. We learned how to connect a USB
camera to the Arduino Yùn, and configure the Arduino board so that it streams
video to our local Wi-Fi network. Then we created a new Android application to
watch the video stream of the camera on our Android phone or tablet. Therefore,
we created a simple Wi-Fi security camera based on Arduino and Android.

In the next chapter, we will do something different. We will use the gyroscope
of the Android phone to control a servomotor connected to an Arduino board.
We will be able to control the angle of rotation of the servomotor just by titling
the Android phone.

http://opencv.org/platforms/android.html

Android Phone Sensor
In this book so far, we have used an Android device to control Arduino projects and
get readings from sensors connected to the Arduino board. In this chapter, we will
do something different: we will use the phone's sensors to control an Arduino board.

We will connect a servomotor to an Arduino board so that it can be controlled from
the Android phone. A servomotor is basically a motor whose angular position can
be precisely controlled by a microcontroller. We will use BLE once more to receive
commands from the Android device.

On the Android side, we will basically measure data coming from the phone's
gyroscope sensor continuously and convert this data into meaningful commands
for the servo. The goal is that the servo motor continuously follows the movement
of the Android device.

In this chapter, you will learn how to:

• Connect a servo motor to the Arduino platform
• Write a sketch to receive commands via BLE
• Write an Android application to control the servomotor using the

Android phone gyroscope

Hardware and software requirements
The first thing you will need for this project is an Arduino Uno board.

Then you will need a BLE module. We chose the Adafruit nRF8001 chip because it
comes with a nice Arduino library, and it has already existing examples of Android
apps to control the module.

Android Phone Sensor

[128]

For the servomotor, we chose a simple 5V servo motor module. You can use one
from any brand you want, as long as it can be controlled with 5V voltage levels.
The following is an image of the servo that was used for this project:

Finally, you will need a breadboard and some jumper wires to make the
different connections.

This is the list of the required components for the project:

• Arduino Uno (https://www.adafruit.com/product/50)
• The Adafruit nRF8001 BLE breakout board (https://www.adafruit.com/

product/1697)
• A 5V servo motor (https://www.adafruit.com/product/1143)
• The breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will need the usual Arduino IDE. It is recommended that
you use the Arduino IDE Version 1.5.7 for this chapter.

You will need the following libraries:

• The library for the nRF8001 board found at https://github.com/
adafruit/Adafruit_nRF8001

• The aREST library found at https://github.com/marcoschwartz/aREST

To install a given library, simply extract the library folder into your Arduino/
libraries folder.

https://www.adafruit.com/product/50
https://www.adafruit.com/product/1697
https://www.adafruit.com/product/1697
https://www.adafruit.com/product/1143
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/marcoschwartz/aREST

Chapter 6

[129]

Configuring the hardware
Let's now make the necessary hardware connections for the project. To help you out,
this is the schematic of the project:

The first step is to place the Bluetooth module on the breadboard. Then, connect the
power supply from the Arduino board to the breadboard: 5V of the Arduino board
goes to the red power rail, and GND goes to the blue power rail.

We will connect the BLE module. First, connect the power supply of the module:
GND goes to the blue power rail, and VIN goes to the red power rail. After this,
you will need to connect the different wires responsible for the SPI interface: SCK
to Arduino pin 13, MISO to Arduino pin 12, and MOSI to Arduino pin 11. Then
connect the REQ pin to Arduino pin 10. Finally, connect the RDY pin to Arduino
pin 2, and the RST pin to Arduino pin 9. If you need additional help to connect this
module, you can visit the manufacturer's guide at https://learn.adafruit.com/
getting-started-with-the-nrf8001-bluefruit-le-breakout.

For the servo motor, connect the red cable of the servo to the red power rail and the
black cable of the servo to the blue power rail. Finally, connect the remaining cable to
pin number 7 of the Arduino board.

https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-breakout
https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-breakout

Android Phone Sensor

[130]

The following is a picture of the assembled project:

Testing the servo
We will now write a very simple sketch to test the servomotor and also see how the
Arduino Servo library is working. The following is the complete sketch for this part:

#include <Servo.h>

// Create servo object
Servo myservo;

// Servo position
int pos = 0;

void setup()
{
 // Attaches the servo on pin 7 to the servo object
 myservo.attach(7);

Chapter 6

[131]

}

void loop()
{
 // Goes from 0 degrees to 180 degrees
 for(pos = 0; pos < 180; pos += 1)
 {
 myservo.write(pos);
 delay(15);
 }

 // Goes from 180 degrees to 0 degrees
 for(pos = 180; pos >= 1; pos -= 1)
 {
 myservo.write(pos);
 delay(15);
 }
}

Let's now see the details of the sketch. This starts by including the Servo library
as follows:

#include <Servo.h>

Then we create an instance of the Servo library:

Servo myservo;

We will also declare a variable called pos that will contain the angular position of the
servo motor:

int pos = 0;

After this, in the setup() function of the sketch, we will attach the servo to pin 7 of
the Arduino board:

myservo.attach(7);

After this, we will sweep the pos variable from 0 to 180, meaning we cover all the
possible angular positions of the servo motor:

for(pos = 0; pos < 180; pos += 1)
{
 myservo.write(pos);
 delay(15);
}

Android Phone Sensor

[132]

Still in this test code, we will make the servo motor go in the other direction with a
similar loop.

Note that all the code for this chapter can be found in the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

It's now time to test this Arduino sketch. Simply upload the code to the Arduino
board. You should see that the servo motor is going all the way in one direction,
and then going back to its starting position. After this, this loop should repeat itself.
If this is working, you can move on to the next section.

Writing the Arduino sketch
We will now write the sketch to control the servo motor via BLE. This is the complete
sketch for this part:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>
#include <Servo.h>

// Lightweight mode
#define LIGHTWEIGHT 1

// Pins
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be pin 2 or 3
#define ADAFRUITBLE_RST 9

// Create servo object
Servo myservo;

// Create aREST instance
aREST rest = aREST();

// Servo position
int pos = 0;

// BLE instance

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Chapter 6

[133]

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

void setup()
{
 // Start Serial
 Serial.begin(115200);

 // Attaches the servo on pin 7 to the servo object
 myservo.attach(7);

 // Start BLE
 BTLEserial.begin();

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("servo_control");

 // Expose function to API
 rest.function("servo",servoControl);
}

void loop()
{
 // Tell the nRF8001 to do whatever it should be working on.
 BTLEserial.pollACI();

 // Ask what is our current status
 aci_evt_opcode_t status = BTLEserial.getState();

 // Handle REST calls
 if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }
}

// Control servo from REST API
int servoControl(String command) {

 // Get position from command
 int pos = command.toInt();

Android Phone Sensor

[134]

 Serial.println(pos);

 myservo.write(pos);

 return 1;
}

Let's now see the details of this sketch. It starts by including the required libraries for
the project:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>
#include <Servo.h>

We will also declare that we want to use the lightweight mode of the aREST library:

#define LIGHTWEIGHT 1

After this, we will define which pin the Bluetooth module is connected to:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on
Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

We will also create an instance of the Servo library:

Servo myservo;

We will also need to create an instance of the aREST library:

aREST rest = aREST();

We will also need to create an instance of the nRF8001 library:

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

In the setup() function of the sketch, we will attach the servo motor to pin number 7
of the Arduino board:

myservo.attach(7);

We will also initialize the BLE board:

BTLEserial.begin();

Chapter 6

[135]

After this, we will give a name and an ID to the board:

rest.set_id("001");
rest.set_name("servo_control");

We will also expose the servoControl function to the aREST API so that we
can access it via Bluetooth. We will see the details of the servoControl function
in a moment:

rest.function("servo",servoControl);

In the loop() function of the sketch, we will poll the Bluetooth chip to see if a device
is connected to it:

BTLEserial.pollACI();

We will store the state of the chip into a status variable:

aci_evt_opcode_t status = BTLEserial.getState();

Then, if the status shows that some device is connect to the Bluetooth chip, we will
handle any incoming requests:

if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
}

Let's now see the details of the servoControl function that we will use to control the
servo motor remotely. It simply takes a string as an input, containing the position
that we want to apply on the servo motor:

int servoControl(String command) {

 // Get position from command
 int pos = command.toInt();
 Serial.println(pos);

 myservo.write(pos);

 return 1;
}

Note that all the code for this chapter can be found inside the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

You can now upload the code to the Arduino board and move to the next section.

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Android Phone Sensor

[136]

Setting up the Android app project
In this project, we will design a very simple Android app that will show the
Bluetooth callback in a single-line text view and the sensor output in another text
view. This time around, we will also implement a Refresh button, which will restart
the Bluetooth callback if there is a need for a refresh.

The part of the project that will be more sophisticated is accessing the hardware
sensors available for us in order to send commands to the Servo and rotate the
shaft according to the x-axis orientation of our Android device, determined by
the gyroscope hardware, which is included in the device.

It is important to note that sensor readings and data could vary between different
Android devices due to different hardware setups. Then again, you could use this
project as a baseline to further your ventures.

We will assume that you have switched on the Auto-Import function within your
Preferences option. If not, kindly activate it by going to the Auto-Import preferences
and selecting all the available options. The Auto-Import preferences are available on
Mac and Windows as follows:

• On a Mac, Navigate to Android Studio | Preferences | Editor | Auto-Import.
• On Windows, Navigate to File | Settings| Editor| Auto-Import.

With all the necessary settings in place, we will first start off by creating a new
project where we will choose the following within the New Project setup:

• Name: Android Gyroscope Servo Control
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: MainScreen

In order to make this project work, we will need to first go over to the Android
Manifest file, which is available at app > src > main > AndroidManifest.xml.

Chapter 6

[137]

Laying out the Android user interface and
permissions
Once we open the file, we will need to add permissions for access to Bluetooth and
access to the gyroscope sensor hardware. The final Android Manifest.xml file will
look as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.arduinoandroid.androidarduinosensserv" >

 <uses-permission android:name="android.hardware.sensor.
gyroscope"/>
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_
ADMIN"/>

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainScreen"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.
LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

In this particular project, we will not put an emphasis on getting the user interface to
be highly polished but instead, we will focus more on getting the orientation sensors
to function appropriately with the servo motor.

Android Phone Sensor

[138]

In our project, we will navigate to the main layout file, which can be accessed by
navigating to app > src > res > layout > activity_main_screen.xml.

The following code will implement a linear layout that has two TextView
modules and a button. Go ahead and replace the current code in your project
with the following:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 android:weightSum="1">

 <TextView
 android:id="@+id/btView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="80dp"
 android:text="bluetooth text"
 android:textAppearance="?android:attr/textAppearanceSmall" />

 <Button
 android:id="@+id/refreshButton"
 style="?android:attr/buttonStyleSmall"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="60dp"
 android:text="Refresh" />

 <TextView
 android:id="@+id/tv"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|center_horizontal"
 android:layout_marginTop="250dp"
 android:text="Gyro output" />
</LinearLayout>

Chapter 6

[139]

Setting up the app's internals
We will then move on to the MainScreen.java file, which is available at app > src >
main > java > package name > MainScreen.java.

We will then replace the current code with the following code that we will
walk through step-by-step and with Auto-import enabled; Android Studio
will automatically import all the statements that we need for our project.

We start off by declaring the class that extends Activity and, in addition, we will
need to add the capability for the Java class to implement SensorEventListener,
which encompasses the main methods that are needed for detection of sensor
activity:

public class MainScreen extends Activity implements
SensorEventListener {

The following are all the variables that need to be declared in order to work with the
BLE module, log tag for logging purposes, user interface elements, handler methods,
and Bluetooth characteristics:

 // UUIDs for UAT service and associated characteristics.
 public static UUID UART_UUID = UUID.fromString("6E400001-B5A3-
F393-E0A9-E50E24DCCA9E");
 public static UUID TX_UUID = UUID.fromString("6E400002-B5A3-F393-
E0A9-E50E24DCCA9E");
 public static UUID RX_UUID = UUID.fromString("6E400003-B5A3-F393-
E0A9-E50E24DCCA9E");
// UUID for the BTLE client characteristic which is necessary for
notifications.
 public static UUID CLIENT_UUID = UUID.fromString("00002902-0000-
1000-8000-00805f9b34fb");

 //Getting the name for Log Tags
 private final String LOG_TAG = MainScreen.class.getSimpleName();

 /**
 * Indicates which angle we are currently pointing the phone (and
hence servo) in:
 * -2: 0-45 degrees
 * -1: 45-90 degrees
 * 0: 90 degrees
 * 1: 90-135 degrees
 * 2: 135-180 degrees
 * <p/>

Android Phone Sensor

[140]

 * Default is the neutral position, i.e. 0.
 */
 int currentPosition = 0;

 long lastSensorChangedEventTimestamp = 0;

 //Declaring UI Elements
 private TextView gyroTextView;
 private TextView bluetoothTv;

 //Declaring SensorManager variables
 private SensorManager sensorManager;

 //Sensor Delay Methods
 int PERIOD = 1000000000; // read sensor data each second
 Handler handler;
 boolean canTransmitSensorData = false;
 boolean isHandlerLive = false;

 private boolean areServicesAccessible = false;

The custom UART service for the Adafruit Bluetooth module uses the
following UUIDs, which are the values you need to know to make our
Android application talk to the appropriate characteristic. There is one
characteristic for TX and another for RX, similar to the way that UART
uses two lines to send and receive data as follows:
UART service UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E
TX characteristic UUID: 6E400002-B5A3-F393-E0A9-E50E24DCCA9E
RX characteristic UUID: 6E400003-B5A3-F393-E0A9-E50E24DCCA9E

The Bluetooth logic that plays an important role in our project to deal with all the
callbacks is available in its entirety in our GitHub repository. The main Java activity
with all the Bluetooth logic is available at http://git.io/XSHnow.

In the following section of code, we will be declaring what will happen when the
activity will be created and setting all the necessary functions to make the application
logic connect to the layout files.

http://git.io/XSHnow

Chapter 6

[141]

In the onCreate() method, we will also be initializing the SensorManager class,
which will be needed to get access to the system's service.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main_screen);

 handler = new Handler();

 // Setup the refresh button
 final Button refreshButton = (Button) findViewById(R.
id.refreshButton);
 refreshButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 restartScan();
 }
 });

 //get the TextView from the layout file
 gyroTextView = (TextView) findViewById(R.id.tv);
 bluetoothTv = (TextView) findViewById(R.id.btView);

 //get a hook to the sensor service
 sensorManager = (SensorManager) getSystemService(SENSOR_
SERVICE);
 }

In the onStart() method, we will use the SensorManager class to register the type
of sensor that we will be using. In this case, we will be using the orientation sensors
and setting SENSOR_DELAY_NORMAL, which we will need to modify later on so as to
ensure that there is enough delay between each call. In the onStart() method, we
will also be initializing the Bluetooth adapter to start listening for devices:

 @Override
 protected void onStart() {
 super.onResume();

 /*register the sensor listener to listen to the gyroscope
sensor, use the
 callbacks defined in this class, and gather the sensor
information as quick

Android Phone Sensor

[142]

 as possible*/
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_
ORIENTATION),
 SensorManager.SENSOR_DELAY_NORMAL
);

 //handler.post(processSensors);

 // Scan for all BTLE devices.
 // The first one with the UART service will be chosen--see the
code in the scanCallback.

 bluetoothAdaper = BluetoothAdapter.getDefaultAdapter();

 startScan();
 }

It's always important to unregister the sensor listener and disconnect the BLE
connection when the app is closed so as to prevent the battery drain and device
memory resources:

 //When this Activity isn't visible anymore
 @Override
 protected void onStop() {
 //unregister the sensor listener
 sensorManager.unregisterListener(this);
 //disconnect and close Bluetooth Connection for better
reliability
 if (gatt != null) {
 gatt.disconnect();
 gatt.close();
 gatt = null;
 tx = null;
 rx = null;
 }

 super.onStop();
 areServicesAccessible = false;
 }

Chapter 6

[143]

The following code will deal with all the Sensor methods that need to be
implemented in order to ensure there is enough delay between each sensor reading
and to send the necessary commands to the Bluetooth-enabled Arduino for the servo
motor to rotate the shaft according to the x-axis of the device:

 //SENSOR METHODS

 private final Runnable processSensors = new Runnable() {
 @Override
 public void run() {
 // Do work with the sensor values.
 canTransmitSensorData = !canTransmitSensorData;
 // The Runnable is posted to run again here:
 handler.postDelayed(this, PERIOD);
 }
 };

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {
 //Do nothing.
 }

 @Override
 public void onSensorChanged(SensorEvent event) {

 if ((event.accuracy != SensorManager.SENSOR_STATUS_UNRELIABLE)
 && (event.timestamp - lastSensorChangedEventTimestamp
> PERIOD)) {

 System.out.println(event.timestamp -
lastSensorChangedEventTimestamp);
 lastSensorChangedEventTimestamp = event.timestamp;

 // Truncate to an integer, since precision loss is really
not a serious
 // matter here, and it will make it much easier (and
cheaper) to compare.
 // We will also log the integer values of [2]
 int xTilt = (int) event.values[2];
 int yTilt = (int) event.values[1];
 int zTilt = (int) event.values[0];

Android Phone Sensor

[144]

 gyroTextView.setText("Orientation X (Roll) :" + xTilt +
"\n" +
 "Orientation Y (Pitch) :" + yTilt + "\n" +
 "Orientation Z (Yaw) :" + zTilt);

 //Log.i(LOG_TAG, "The XTilt is:" + String.valueOf(xTilt));

 if (areServicesAccessible) {
 turnServoFinegrained(xTilt);
 }
 }
 }

 private void turnServoFinegrained(int xTilt) {

 // Default to vertical position
 int rotationAngle = 90;

 // Turn left
 if (xTilt > 0) {
 rotationAngle = 90 - xTilt;
 }

 // Turn right
 else {
 rotationAngle = 90 + Math.abs(xTilt);
 }

 String setServoMessage = "/servo?params=" + rotationAngle + "
/";
 tx.setValue(setServoMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeSensorData("Sent: " + setServoMessage);
 } else {
 writeSensorData("Couldn't write TX characteristic!");
 }
 }

Chapter 6

[145]

The following code will ensure that the commands that are sent to the BLE module
are shown in the Bluetooth text output on our user interface layout:

 private void writeSensorData(final CharSequence text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Log.e(LOG_TAG, text.toString());
 //bluetoothTv = (TextView) findViewById(R.id.btView);
 output = text.toString();
 bluetoothTv.setText(output);
 }
 });
 }
}

Once you've written all the code, which you can easily follow along on our GitHub
repository, available at https://github.com/marcoschwartz/arduino-android-
blueprints/tree/master/chapter6, make sure that you have a physical device
that is running Android 4.3 or higher and Bluetooth switched on. Once you build the
project, you should see something similar to the following screenshot:

https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter6
https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter6

Android Phone Sensor

[146]

How to go further
Orientation readings from the Android app can be further visualized in the app with
real-time graphs, and this project could be further advanced and integrated into a
remote object control app where the Android smartphone's user can control an
object that is connected to the servo motor from a specific distance.

Simple yet useful application of such an action would be to open a gate or control
a mobile robot via a gyroscope. Android smartphones also have a number of
other sensors available for us, such as the accelerometer and magnetometer,
which could effectively be used to control different components connected to
the Arduino microcontroller.

Summary
Throughout this chapter, we learned how to take advantage of one of the most
important sensors on the Android phone, the gyroscope sensor, to be able to control
the Arduino-controlled servo motor. We achieve this communication and action via
the BLE capabilities of the Arduino equipped with the Adafruit BLE module and the
possibilities of the Android operating system running 4.3 or higher.

This chapter also provides the foundation steps to the following chapter, which will
access one of the Android device's most important hardwares.

Voice-activated Arduino
In this chapter, we will use another feature of Android devices to control an Arduino
system: voice recognition. We will control a relay that is connected to an Arduino
board by sending vocal commands from the phone.

This relay can be connected to many things. For example, it can be connected to an
electric door lock so that you could open and close a door by just speaking into your
phone. You can also connect the relay to a lamp, to switch the lamp on and off by
giving a vocal command to your phone.

In this chapter, you will learn how to:

• Connect a relay and a Bluetooth module to an Arduino board so that it can
be controlled from the Android application

• Build an application using the Android speech API
• Control the relay on the Arduino board by voice

Hardware and software requirements
The first thing you will need for this project is an Arduino Uno board.

Then you will need a BLE module. We chose the Adafruit nRF8001 chip because it
comes with a nice Arduino library and it has already existing examples of Android
apps to control the module.

Voice-activated Arduino

[148]

You will also need a relay module. For this project, we used a 5V relay module from
Polulu, which is the same as the one we used in the previous chapters. This is an
image of the relay we used for this chapter:

Finally, to make the different electrical connections, you will also need a breadboard
and some jumper wires.

This is the list of all hardware parts you will need for this project, along with links to
find these parts on the Web:

• The Arduino Uno board (http://www.adafruit.com/product/50)
• The 5V relay module (http://www.pololu.com/product/2480)
• The Adafruit nRF8001 breakout board (https://www.adafruit.com/

products/1697)
• The breadboard (https://www.adafruit.com/product/64)
• Jumper wires (https://www.adafruit.com/product/758)

Note that these are all the components we already used in the previous chapters.

http://www.adafruit.com/product/50
http://www.pololu.com/product/2480
https://www.adafruit.com/products/1697
https://www.adafruit.com/products/1697
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758

Chapter 7

[149]

On the software side, you will need the following:

• The Arduino IDE (http://arduino.cc/en/Main/Software)
• The Arduino aREST library (https://github.com/marcoschwartz/aREST/)
• The nRF8001 Arduino library for the BLE chip (https://github.com/

adafruit/Adafruit_nRF8001)

To install a given library, simply extract the folder in your Arduino/libraries
folder (or create this folder if it doesn't exist yet).

Configuring the hardware
We will now build the hardware part of the project. To help you out, the following
is the schematic of the project, without the relay being connected yet:

Note that these instructions are the same as in the previous chapter. Therefore,
you can just use the same configuration if you still have it built on your desk.

The first step is to place the Bluetooth module on the breadboard. Then, connect the
power supply from the Arduino board to the breadboard: 5V of the Arduino board
goes to the red power rail and GND goes to the blue power rail.

http://arduino.cc/en/Main/Software
https://github.com/marcoschwartz/aREST/
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001

Voice-activated Arduino

[150]

We will now connect the BLE module. First, connect the power supply of the
module: GND goes to the blue power rail, and VIN goes to the red power rail.
After this, you need to connect the different wires responsible for the SPI interface:
SCK to Arduino pin 13, MISO to Arduino pin 12, and MOSI to Arduino pin 11.
Then connect the REQ pin to Arduino pin 10. Finally, connect the RDY pin to
Arduino pin 2, and the RST pin to Arduino pin 9.

For the relay module, connect the VCC pin to the red power rail on the breadboard
and the GND pin on the blue power rail. Finally, connect the SIG pin of the relay to
pin number 7 of the Arduino board.

The following is an image of an overview of the assembled project (for the precise
connections between the elements, refer to the preceding instructions):

Chapter 7

[151]

The close-up image of the relay and BLE module can be seen as follows:

Writing the Arduino sketch
We will now write the sketch to control the relay from an Android device. Note that
this is the same sketch as in the previous chapter, so you can skip it if you already
did this part for the last chapter. The following is the complete sketch for this part:

// Control Arduino board from BLE

// Libraries
#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>

Voice-activated Arduino

[152]

// Pins
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // Should be pin 2 or 3
#define ADAFRUITBLE_RST 9

// Relay pin
const int relay_pin = 7;

// Create aREST instance
aREST rest = aREST();

// BLE instance
Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

void setup(void)
{
 // Start Serial
 Serial.begin(115200);

 // Start BLE
 BTLEserial.begin();

 // Give name and ID to device
 rest.set_id("001");
 rest.set_name("relay_control");

 // Init relay pin
 pinMode(relay_pin,OUTPUT);
}

void loop() {

 // Tell the nRF8001 to do whatever it should be working on.
 BTLEserial.pollACI();

 // Ask what is our current status
 aci_evt_opcode_t status = BTLEserial.getState();

 // Handle REST calls
 if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }
 }

Chapter 7

[153]

Now, let's see the details of the sketch. It starts by importing the required libraries for
the nRF8001 module and the aREST library:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>

Then we will define which pin the BLE module is connected to:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on
Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

We also need to declare which pin the relay is connected to:

const int relay_pin = 7;

After this, we can create an instance of the aREST API that will be used to handle the
requests coming via Bluetooth:

aREST rest = aREST();

We will also create an instance of the nRF8001 chip library:

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

Now, in the setup() function of the sketch, we will initialize serial communications
and print a welcome message as follows:

BTLEserial.begin();

We will also give a name to the device:

rest.set_id("001");
rest.set_name("relay_control");

Finally, we will set the relay pin so it becomes an output:

pinMode(relay_pin,OUTPUT);

Now, in the loop() function of the sketch, we will check the status of the BLE chip:

BTLEserial.pollACI();
aci_evt_opcode_t status = BTLEserial.getState();

Voice-activated Arduino

[154]

Then, if any device is connected to the chip, we will process any incoming request
with the aREST library:

if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
}

Note that all the code for this chapter can be found in the GitHub repository of the
book at https://github.com/marcoschwartz/arduino-android-blueprints.

It's now time to upload the sketch to your Arduino board. When this is done, you
can move on to the development of the Android app to control the Arduino board
via the BLE sketch.

Setting up the Android app
In this project, we will be implementing an Android app that leverages the use
of the Speech Recognition API and we are going output that text in an EditText
field. In the background, we will also include the BLE services in order to connect
to the BLE module and be able to send messages to it. Once we have the BLE and
Speech Recognition API set up, we will be able to connect them both by setting up
conditions where if the speech is recognized as switch on, it will switch on the
relay, whereas if switch off is recognized, the relay will be switched off.

We will assume that you will switch on the Auto-Import function within your
preferences. If not, kindly activate it by going to the Auto-Import preferences and
selecting all the available options. The Auto-Import preferences are available on Mac
and Windows as follows:

• On a Mac, navigate to Android Studio > Preferences > Editor >
Auto-Import

• On Windows, navigate to File > Settings > Editor > Auto-Import
With all the necessary settings in place, we will first start off by creating a new
project where we will choose the following within the New Project setup:

• Name: Talk to Arduino
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: MainScreen
• Domain: arduinoandroid.com

In order to make this project work, we will need to first go over to the Android
Manifest file, which is available at app > src > main > AndroidManifest.xml.

https://github.com/marcoschwartz/arduino-android-blueprints

Chapter 7

[155]

Laying out the Android user interface and
permissions
Once we open the file, we need to add permissions for access to Bluetooth
functionality; this will allow us to transmit the voice messages to the Arduino.
The following two lines of XML need to be added to the Android Manifest file:

 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_
ADMIN"/>

The next step that we will take is to set up the very basic Android layout file so that
we are able to implement the app's functions and to allow the user to activate the
voice recognition intent.

In our project, we will navigate to the main layout file, which can be accessed from
app > src > res > layout > activity_speech.xml.

By replacing the current code with the following, we will add a relative layout with
two buttons, an EditText field and a TextView field, which will allow us to see the
outcome of our voice input:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".SpeechActivity">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Talk to Arduino"
 android:id="@+id/talktoArduino"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Voice-activated Arduino

[156]

 android:id="@+id/recordedTalk"
 android:text="What is recorded will be written here"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="139dp" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:text="Bluetooth Output"
 android:id="@+id/btView"
 android:layout_marginTop="76dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Refresh"
 android:id="@+id/refreshBtn"
 android:layout_above="@+id/talktoArduino"
 android:layout_alignStart="@+id/talktoArduino"
 android:layout_alignEnd="@+id/talktoArduino" />
</RelativeLayout>

Coding the app's internals
We will then move on to the MainScreen.java file, which is available
at app > src > main > java > package name > MainScreen.java.

We will then replace the current code with the following code, which we will
walk through step-by-step and with Auto-import enabled; Android Studio will
automatically import all the statements that we will need for our project.

Feel free to follow along the project through the GitHub repository
where all the source is available for the users of our book in its
entirety. The repository is available at https://github.com/
marcoschwartz/arduino-android-blueprints/tree/
master/chapter7/TalktoArduino.

https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter7/TalktoArduino
https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter7/TalktoArduino
https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter7/TalktoArduino

Chapter 7

[157]

We will start off by declaring the class that extends Activity:

public class SpeechActivity extends Activity {

The following are all the variables that are needed to be declared in order to work
with the BLE module, log tag for logging purposes, user interface elements, and
Bluetooth characteristics for voice recognition requests:

 private static final int VOICE_RECOGNITION_REQUEST = 1;

 //Getting the name for Log Tags
 private final String LOG_TAG = SpeechActivity.class.
getSimpleName();

 //Declare U.I Elements
 private Button startTalk;
 private Button refresh;
 private EditText speechInput;
 private TextView btv;

 // UUIDs for UAT service and associated characteristics.
 public static UUID UART_UUID = UUID.fromString("6E400001-B5A3-
F393-E0A9-E50E24DCCA9E");
 public static UUID TX_UUID = UUID.fromString("6E400002-B5A3-F393-
E0A9-E50E24DCCA9E");
 public static UUID RX_UUID = UUID.fromString("6E400003-B5A3-F393-
E0A9-E50E24DCCA9E");
 // UUID for the BTLE client characteristic which is necessary for
notifications.
 public static UUID CLIENT_UUID = UUID.fromString("00002902-0000-
1000-8000-00805f9b34fb");

 // BTLE stateta
 private BluetoothAdapter adapter;
 private BluetoothGatt gatt;
 private BluetoothGattCharacteristic tx;
 private BluetoothGattCharacteristic rx;

 private boolean areServicesAccessible = false;

Voice-activated Arduino

[158]

In the OnCreate() method, we will initialize the user interface layout that we
implemented earlier and connect the user interface elements to the different
methods within our code:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_speech);
 startTalk = (Button) findViewById(R.id.talktoArduino);
 refresh = (Button) findViewById(R.id.refreshBtn);
 speechInput = (EditText) findViewById(R.id.recordedTalk);
 btv = (TextView) findViewById(R.id.btView);

 startTalk.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 recordSpeech();
 }
 });

 refresh.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 restartScan();
 }
 });

 }

The recordSpeech() method allows us to launch the Google speech recognition
intent where we can modify the message that we will show the user. In this case,
we decided to replace the default text with the prompt, "You can now send a
command to the Arduino":

 public void recordSpeech() {

 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_
SPEECH);

 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

Chapter 7

[159]

 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "You can now
send a command to the Arduino");

 startActivityForResult(intent, VOICE_RECOGNITION_REQUEST);
 }

The onActivityResult() method allows the application to process what has
been recognized and implement methods based on what has been received. In the
following method, we will take the speech that has been recognized, output it in the
EditText field that we set up earlier and, depending on the output, we will send the
commands via BLE to switch on or switch off the relay:

 @Override

 protected void onActivityResult(int requestCode, int resultCode,
Intent data) {

 if (requestCode == VOICE_RECOGNITION_REQUEST && resultCode ==
RESULT_OK) {

 ArrayList<String> matches = data.getStringArrayListExtra(R
ecognizerIntent.EXTRA_RESULTS);

 String userInput = matches.get(0);

 TextView textSaid = (TextView) findViewById(R.
id.recordedTalk);

 textSaid.setText(matches.get(0));

 //add an if else loop or case statement

 if (userInput.equalsIgnoreCase("switch on")) {
 String setOutputMessage = "/digital/7/1 /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeSensorData("Sent: " + setOutputMessage);
 } else {
 writeSensorData("Couldn't write TX
characteristic!");
 }

Voice-activated Arduino

[160]

 } else if (userInput.equalsIgnoreCase("switch off")) {
 String setOutputMessage = "/digital/7/0 /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeSensorData("Sent: " + setOutputMessage);
 } else {
 writeSensorData("Couldn't write TX
characteristic!");
 }
 }

 }
 super.onActivityResult(requestCode, resultCode, data);
 }

The following code deals with making sure the Bluetooth callback output is being
sent to its associated TextView:

 private void writeSensorData(final CharSequence text) {
 Log.e(LOG_TAG, text.toString());
 btv.setText(text.toString());
 }

Here, we will deal with all the BluetoothGattCallback class that needs to be
implemented to connect to the BLE module:

 // BTLE device scanning bluetoothGattCallback.

 // Main BTLE device bluetoothGattCallback where much of the logic
occurs.
 private BluetoothGattCallback bluetoothGattCallback = new
BluetoothGattCallback() {
 // Called whenever the device connection state changes, i.e.
from disconnected to connected.
 @Override
 public void onConnectionStateChange(BluetoothGatt gatt, int
status, int newState) {
 super.onConnectionStateChange(gatt, status, newState);
 if (newState == BluetoothGatt.STATE_CONNECTED) {
 writeSensorData("Connected!");
 // Discover services.
 if (!gatt.discoverServices()) {

Chapter 7

[161]

 writeSensorData("Failed to start discovering
services!");
 }
 } else if (newState == BluetoothGatt.STATE_DISCONNECTED) {
 writeSensorData("Disconnected!");
 } else {
 writeSensorData("Connection state changed. New state:
" + newState);
 }
 }

 // Called when services have been discovered on the remote
device.
 // It seems to be necessary to wait for this discovery to
occur before
 // manipulating any services or characteristics.
 public void onServicesDiscovered(BluetoothGatt gatt, int
status) {
 super.onServicesDiscovered(gatt, status);
 if (status == BluetoothGatt.GATT_SUCCESS) {
 writeSensorData("Service discovery completed!");
 } else {
 writeSensorData("Service discovery failed with status:
" + status);
 }
 // Save reference to each characteristic.
 tx = gatt.getService(UART_UUID).getCharacteristic(TX_
UUID);
 rx = gatt.getService(UART_UUID).getCharacteristic(RX_
UUID);

 // Setup notifications on RX characteristic changes (i.e.
data received).
 // First call setCharacteristicNotification to enable
notification.
 if (!gatt.setCharacteristicNotification(rx, true)) {
 writeSensorData("Couldn't set notifications for RX
characteristic!");
 }

 // Next update the RX characteristic's client descriptor
to enable notifications.

Voice-activated Arduino

[162]

 if (rx.getDescriptor(CLIENT_UUID) != null) {
 BluetoothGattDescriptor desc =
rx.getDescriptor(CLIENT_UUID);
 desc.setValue(BluetoothGattDescriptor.ENABLE_
NOTIFICATION_VALUE);
 if (!gatt.writeDescriptor(desc)) {
 writeSensorData("Couldn't write RX client
descriptor value!");
 }
 } else {
 writeSensorData("Couldn't get RX client descriptor!");
 }
 areServicesAccessible = true;
 }
 };

In the following onStart() and onStop() methods, we are making sure that we
start scanning of BLE devices and that Bluetooth scanning stops when we close the
application so as to prevent the battery drain and ensure optimization of device
memory resources for tasks running in the foreground:

 protected void onStart() {
 Log.d(LOG_TAG,"onStart has been called");
 super.onStart();
 // / Scan for all BTLE devices.
 // The first one with the UART service will be chosen--see the
code in the scanCallback.
 adapter = BluetoothAdapter.getDefaultAdapter();
 startScan();
 }

 //When this Activity isn't visible anymore
 protected void onStop() {
 Log.d(LOG_TAG,"onStop has been called");
 //disconnect and close Bluetooth Connection for better
reliability
 if (gatt != null) {
 gatt.disconnect();
 gatt.close();
 gatt = null;
 tx = null;
 rx = null;
 }
 super.onStop();
 }

Chapter 7

[163]

The following methods deal with the starting, stopping, and restarting of the
Bluetooth scan callback:

 private void startScan() {
 if (!adapter.isEnabled()) {
 adapter.enable();
 }
 if (!adapter.isDiscovering()) {
 adapter.startDiscovery();
 }
 writeSensorData("Scanning for devices...");
 adapter.startLeScan(scanCallback);
 }

 private void stopScan() {
 if (adapter.isDiscovering()) {
 adapter.cancelDiscovery();
 }
 writeSensorData("Stopping scan");
 adapter.stopLeScan(scanCallback);
 }

 private void restartScan() {
 stopScan();
 startScan();
 }

The scanCallback() method is concerned mostly with the main logic to get the
Bluetooth device addresses and maintain the necessary connections between the
Android device and BLE module:

 /**
 * Main callback following an LE device scan
 */
 private BluetoothAdapter.LeScanCallback scanCallback = new
BluetoothAdapter.LeScanCallback() {
 // Called when a device is found.
 @Override
 public void onLeScan(BluetoothDevice bluetoothDevice, int i,
byte[] bytes) {
 Log.d(LOG_TAG, bluetoothDevice.getAddress());

 writeSensorData("Found device: " + bluetoothDevice.
getAddress());

Voice-activated Arduino

[164]

 // Check if the device has the UART service.
 if (BluetoothUtils.parseUUIDs(bytes).contains(UART_UUID))
{
 // Found a device, stop the scan.
 adapter.stopLeScan(scanCallback);
 writeSensorData("Found UART service!");
 // Connect to the device.
 // Control flow will now go to the
bluetoothGattCallback functions when BTLE events occur.
 gatt = bluetoothDevice.connectGatt(getApplicationConte
xt(), false, bluetoothGattCallback);
 }
 }
 };
}

In contrast to the previous chapters of the book, you will recognize that we have
transferred the UUID parsing to a utility class in order to refactor the code and
make our code more readable. In order to create a utility class, we first need to
right-click on our package name and create a new package and call it Bluetooth.

After this, we will right-click on the new package, select New > Java Class,
and name the new class as BluetoothUtils.

After those two steps, we will replace the code within the class with the
following code:

public class BluetoothUtils {

 // Filtering by custom UUID is broken in Android 4.3 and 4.4, see:
 // http://stackoverflow.com/questions/18019161/startlescan-with-
128-bit-uuids-doesnt-work-on-native-android-ble-implementation?noredir
ect=1#comment27879874_18019161
 // This is a workaround function from the SO thread to manually
parse advertisement data.
 public static List<UUID> parseUUIDs(final byte[] advertisedData) {
 List<UUID> uuids = new ArrayList<UUID>();

 int offset = 0;
 while (offset < (advertisedData.length - 2)) {
 int len = advertisedData[offset++];
 if (len == 0)
 break;

Chapter 7

[165]

 int type = advertisedData[offset++];
 switch (type) {
 case 0x02: // Partial list of 16-bit UUIDs
 case 0x03: // Complete list of 16-bit UUIDs
 while (len > 1) {
 int uuid16 = advertisedData[offset++];
 uuid16 += (advertisedData[offset++] << 8);
 len -= 2;
 uuids.add(UUID.fromString(String.format("%08x-
0000-1000-8000-00805f9b34fb", uuid16)));
 }
 break;
 case 0x06:// Partial list of 128-bit UUIDs
 case 0x07:// Complete list of 128-bit UUIDs
 // Loop through the advertised 128-bit UUID's.
 while (len >= 16) {
 try {
 // Wrap the advertised bits and order
them.
 ByteBuffer buffer = ByteBuffer.
wrap(advertisedData, offset++, 16).order(ByteOrder.LITTLE_ENDIAN);
 long mostSignificantBit = buffer.
getLong();
 long leastSignificantBit = buffer.
getLong();
 uuids.add(new UUID(leastSignificantBit,
 mostSignificantBit));
 } catch (IndexOutOfBoundsException e) {
 // Defensive programming.
 //Log.e(LOG_TAG, e.toString());
 continue;
 } finally {
 // Move the offset to read the next uuid.
 offset += 15;
 len -= 16;
 }
 }
 break;
 default:
 offset += (len - 1);
 break;
 }
 }
 return uuids;
 }
}

Voice-activated Arduino

[166]

Once you have included this code, you can go ahead and build and run this app
on your Android physical device, which is running Android 4.3 or higher and
connected to the Internet, due to the fact that most of the speech recognition
services work via the Internet.

When you load the app, you should start off with something as follows:

How to go further
This base project offers endless possibilities and you can possibly include other
commands that can be recognized and connect other components and sensors in
order to enhance the capabilities of your voice-activated app. We hope that with
this baseline project, we can inspire you to enhance your projects further on.

Chapter 7

[167]

Summary
Let's summarize what we did in this chapter. As usual, we connected a BLE module
to our Arduino board so that it can receive commands via the Android phone. We
also connected a simple relay module to the board, to control it via an Android
application. Then we designed an application using the Android speech engine to
control the relay depending on what the user says to the Android phone.

In the next chapter, we will use another feature of the Android phone to control
Arduino projects: NFC. We will use NFC to control the state of a relay just by
putting our phone in front of an Arduino NFC shield.

Control an Arduino Board
via NFC

In this chapter, we will see the capabilities of integrating the Arduino Near Field
Communications (NFC) shield from Seeed Studio with an NFC-enabled Android
application that uses the Android Beam technology to send a message from the
Android app to the NFC shield antenna. NFC allows instant communication between
two devices that are close to each other, which makes it the perfect technology to open
door locks or for payment services.

We will make a home automation application in this chapter. The NFC shield
will be connected to the Arduino Uno board, along with the relay. Therefore,
we will be able to switch the relay on or off depending on the message sent by
the Android application.

This baseline project will help you develop interesting projects that use NFC and
will potentially expand the capabilities of such a project.

The following will be the major takeaways from this chapter:

• Connecting an NFC shield to an Arduino board
• Building an Android app to communicate with the NFC Arduino shield
• Opening and closing a relay from an Android device via NFC

Hardware and software requirements
The first thing you will need for this project is an Arduino Uno board.

Then, you need an NFC shield. There are many NFC shields available on the market,
but for this project, we chose an NFC shield V2.0 from SeeedStudio. We made this
choice as the shield has good documentation and because some example code was
already available.

Control an Arduino Board via NFC

[170]

You will also need a relay module. For this project, we used a 5V relay module
from Polulu.

Finally, to make the different electrical connections, you will need some jumper wires.

The following is the list of all hardware parts you will need for this project, along
with links to find these parts on the Web:

• The Arduino Uno board (http://www.adafruit.com/product/50)
• The 5V relay module (http://www.pololu.com/product/2480)
• The Arduino NFC shield (http://www.seeedstudio.com/depot/nfc-

shield-v20-p-1370.html)
• The breadboard (https://www.adafruit.com/product/64)
• Jumper wires (https://www.adafruit.com/product/758)

On the software side, you will of course need the Arduino IDE. You will also need
the following libraries to make the NFC chip work:

1. First, download the PN532 library (https://github.com/Seeed-Studio/
PN532) and put all the folders into your Arduino's libraries folder.

2. Then, download the NDEF library (https://github.com/don/NDEF), and
put it in your Arduino's libraries folder and rename the folder to NDEF.

Configuring the hardware
Now, let's assemble the project. The first step is to simply put the NFC shield on top
of the Arduino Uno board, and to connect the NFC reader to the shield. Note that
the NFC can come without the header being soldered; in this case, you will need to
solder the headers on the shield yourself. To assemble the NFC reader to the shield,
simply connect the reader via the antenna connector on the shield.

Now, let's connect the relay. Simply connect the relay module VCC pin to the 5V
pin of the Arduino board, and the GND pin to the GND pin of the board. Finally,
connect the SIG pin of the relay to pin number 8 of the Arduino board.

http://www.adafruit.com/product/50
http://www.pololu.com/product/2480
http://www.seeedstudio.com/depot/nfc-shield-v20-p-1370.html
http://www.seeedstudio.com/depot/nfc-shield-v20-p-1370.html
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://github.com/Seeed-Studio/PN532
https://github.com/Seeed-Studio/PN532
https://github.com/don/NDEF

Chapter 8

[171]

The following is what you should end up with:

Testing the NFC shield
Before writing the application to control the relay via NFC, we will first make sure
that the shield is functional and that all the libraries were correctly installed. To do
so, we will write a simple Arduino sketch. The following is the complete code for
this part:

#include <SPI.h>
#include <PN532_SPI.h>
#include <PN532.h>
#include <NfcAdapter.h>

// NFC instances
PN532_SPI pn532spi(SPI, 10);
NfcAdapter nfc = NfcAdapter(pn532spi);

void setup(void) {

 // Start Serial
 Serial.begin(9600);

 // Start NFC chip
 Serial.println("NFC shield started");
 nfc.begin();
}

Control an Arduino Board via NFC

[172]

void loop(void) {

 // Start scan
 Serial.println("\nScan a NFC tag\n");
 if (nfc.tagPresent())
 {
 NfcTag tag = nfc.read();
 tag.print();
 }
 delay(5000);
}

Let's now look at the details of this sketch. It starts by including the
required libraries:

#include <SPI.h>
#include <PN532_SPI.h>
#include <PN532.h>
#include <NfcAdapter.h>

Then, we can create an instance of the NFC adapter with these two lines of code:

PN532_SPI pn532spi(SPI, 10);
NfcAdapter nfc = NfcAdapter(pn532spi);

Now, in the setup() function of the sketch, we will initialize the serial
communications:

Serial.begin(9600);

We will also start the NFC chip, and print a message on the serial monitor:

nfc.begin();
Serial.println("NFC shield started");

Now, in the loop() function of the sketch, we will check if an NFC tag is present,
and we will read it if this is the case:

if (nfc.tagPresent())
{
 NfcTag tag = nfc.read();
 tag.print();
}
 delay(5000);
}

Chapter 8

[173]

Note that all the code for this chapter can be found in the GitHub
repository of the book at https://github.com/marcoschwartz/
arduino-android-blueprints.

You can now upload the sketch to the Arduino board and open the serial monitor.
You should see that the NFC chip is being initialized, and then it starts checking for
available tags. If you have a simple NFC tag, you can test it now.

As an example, you can also use a simple tag from SeeedStudio (http://www.
seeedstudio.com/depot/MifareOne-RFID-Tag-1356MHz-p-923.html).

These kinds of tags are actually simpler than the actual RFID technology, but they
will work just fine to test our project.

Writing the Arduino sketch
We will now write the code that will receive commands from the Android NFC
app. The goal of this code will be to switch the relay on or off when the NFC shield
receives a given code from the Android device. As the code for this part is quite long,
we will split the code into several parts that will be detailed individually.

The code starts by including the required libraries:

#include "SPI.h"
#include "PN532_SPI.h"
#include "snep.h"
#include "NdefMessage.h"

We will also define on which pin the relay is connected:

#define RELAY_PIN 8

After this, we will define the code that should be received from the Android app to
switch the relay on or off:

#define RELAY_ON "oWnHV6uXre"

We will also need to create an instance of the NFC chip:

PN532_SPI pn532spi(SPI, 10);
SNEP nfc(pn532spi);

To store data coming from the Android phone via NFC, we will create a char buffer:

uint8_t ndefBuf[128];

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints
http://www.seeedstudio.com/depot/MifareOne-RFID-Tag-1356MHz-p-923.html
http://www.seeedstudio.com/depot/MifareOne-RFID-Tag-1356MHz-p-923.html

Control an Arduino Board via NFC

[174]

In the setup() function of the sketch, we will start the serial communications:

Serial.begin(9600);
Serial.println("NFC Peer to Peer Light Switch");

We will also declare the relay pin as an output:

pinMode(RELAY_PIN, OUTPUT);

Now, in the loop() function, we will constantly check for data coming from the
phone via NFC:

Serial.println("Waiting for message from Peer");
int msgSize = nfc.read(ndefBuf, sizeof(ndefBuf));

Now, if the message has a size different from zero, we store it, process it, and then
check if it contains the correct key that we defined before. If this is the case, we will
switch the state of the relay. The following piece of code does exactly the same:

if (msgSize > 0) {

 // Read message
 NdefMessage message = NdefMessage(ndefBuf, msgSize);

 // Make sure there is at least one NDEF Record
 if (message.getRecordCount() > 0) {

 NdefRecord record = message.getRecord(0);
 Serial.println("Got first record");

 // Check the TNF and Record Type
 if (record.getTnf() == TNF_MIME_MEDIA && record.getType() ==
"application/com.arduinoandroid.arduinonfc") {
 Serial.println("Type is OK");

 // Get the bytes from the payload
 int payloadLength = record.getPayloadLength();
 byte payload[payloadLength];
 record.getPayload(payload);

 // Convert the payload to a String
 String payloadAsString = "";
 for (int c = 0; c < payloadLength; c++) {
 payloadAsString += (char)payload[c];
 }

Chapter 8

[175]

 // Print out the data on the Serial monitor
 Serial.print("Payload is ");Serial.println(payloadAsString);

 // Modify the state of the light, based on the tag contents
 if (payloadAsString == RELAY_ON) {
 digitalWrite(RELAY_PIN, HIGH);
 } else {
 digitalWrite(RELAY_PIN, LOW);
 }
 } else {
 Serial.print("Expecting TNF 'Mime Media' (0x02) with type
'application/com.arduinoandroid.arduinonfc' but found TNF ");
 Serial.print(record.getTnf(), HEX);
 Serial.print(" type ");
 Serial.println(record.getType());
 }
 }
 }
}

Note that all the code for this chapter can be found in the GitHub repository of the
book at https://github.com/marcoschwartz/arduino-android-blueprints.

You can now upload the code to the Arduino board, and move on to the
development of the Android application.

Setting up the Android app
In this project, we will be implementing an Android app that leverages the use of the
NFC API and hardware allowing us to send a MIME-type message to switch on and
switch off the relay.

We will assume that you will have switched on the Auto-Import function within
your preferences. If not, activate it by going to the Auto-Import preferences and
selecting all available options. The Auto-Import preferences are available on Mac
and Windows as follows:

• On a Mac, navigate to Android Studio > Preferences| Editor| Auto-Import
• On Windows, navigate to File | Settings > Editor > Auto-Import

https://github.com/marcoschwartz/arduino-android-blueprints

Control an Arduino Board via NFC

[176]

With all the necessary settings in place, we will first start off by creating a new
project, where we will choose the following within the New Project setup:

• Name: Arduino NFC
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: MainScreen
• Domain: arduinoandroid.com

In order to make this project work, we will need to first go over to the Android
Manifest file, which is available at app > src > main > AndroidManifest.xml.

Laying out the Android user interface and
permissions
Once we open the file, we need to add permissions for the Android application to
be able to access the NFC hardware. We will need to add the following two lines of
code to our AndroidManifest.xml file in order to access both the user permissions
and the actual NFC hardware:

<uses-permission android:name="android.permission.NFC" />
<uses-feature android:name="android.hardware.nfc"
android:required="true" />

The next step is to set up the basic Android layout file. This will allow us to implement
a user interface consisting of two buttons (switch on and off) and a text view.

The text within the TextView will be the message that we will be sending to our NFC
shield. The first step will be to navigate to the Android layout file, which is available
at app > src > res > layout > activity_nfc.xml.

Once we are within this layout file, we will switch to the text view of the Android
layout file, and we will replace the current code with the following lines of code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"

Chapter 8

[177]

 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".NFCActivity">

 <TextView
 android:text="NFC Status"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/nfcTextStatus"
 android:layout_marginTop="83dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Switch On"
 android:id="@+id/switchOnBtn"
 android:layout_marginTop="59dp"
 android:layout_below="@+id/nfcTextStatus"
 android:layout_toLeftOf="@+id/nfcTextStatus"
 android:layout_toStartOf="@+id/nfcTextStatus" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Switch Off"
 android:id="@+id/switchOffBtn"
 android:layout_alignTop="@+id/switchOnBtn"
 android:layout_toRightOf="@+id/nfcTextStatus"
 android:layout_toEndOf="@+id/nfcTextStatus" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="NFC Message to be sent"
 android:id="@+id/messageToBeam"
 android:layout_below="@+id/switchOnBtn"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="93dp" />

</RelativeLayout>

Control an Arduino Board via NFC

[178]

At this point, we should have something that looks as follows:

Coding the app's internals
We will then move on to the MainScreen.java file, which is available at app > src >
main > java > package name > NFCActivity.java.

We will implement the project step by step within our code. Don't worry
about importing the right statements for our project, as Android Studio will
automatically import all the statements that we will need for our project if you
have the Auto-Import function switched on. If not, please follow the instructions
present in the Android section of this chapter.

Feel free to follow along the project through the GitHub Repository where all the
source code is available for the readers of our book in its entirety. The repository
for this chapter is available at https://github.com/marcoschwartz/arduino-
android-blueprints/tree/master/chapter8/ArduinoNFC.

https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter8/ArduinoNFC
https://github.com/marcoschwartz/arduino-android-blueprints/tree/master/chapter8/ArduinoNFC

Chapter 8

[179]

We will first start off by declaring the user interface's variables and the necessary
variables to get the NFC up and running:

 //Declaring the User Interface Variables for mStatusText as a
TextView
 private TextView mStatusText;
 private TextView messageToBeam;
 private Button switchOn;
 private Button switchOff;

 //Initializing the NFC Adapater for sending messages
 NfcAdapter mNfcAdapter;
 private static final int BEAM_BEAMED = 0x1001;
 public static final String MIMETYPE = "application/com.
arduinoandroid.arduinonfc";

 //Keys for Opening and Closing the Relay
 String open_key = "oWnHV6uXre";
 String close_key = "C19HNuqNU4";

 //Getting the name for Log Tags
 private final String TAG = NFCActivity.class.getSimpleName();

Within the onCreate method, we will implement a number of anonymous classes
that we will go through step by step.

In the first part, we will connect the user interface elements to the main
Android code:

 mStatusText = (TextView) findViewById(R.id.nfcTextStatus);
 messageToBeam = (TextView) findViewById(R.id.messageToBeam);
 switchOn = (Button) findViewById(R.id.switchOnBtn);
 switchOff = (Button) findViewById(R.id.switchOffBtn);

Then, in the following code, we need to set onClickListeners to our button to be
able to change the TextView part to the right text to beam the message to our NFC
shield. The term beam is used in this code section since Android Beam is the feature
of the Android mobile operating system that allows data to be transferred via NFC.

// Adding OnClick Listeners to the Buttons
 switchOn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 messageToBeam.setText(open_key);
 }
 });

Control an Arduino Board via NFC

[180]

 switchOff.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 messageToBeam.setText(close_key);
 }
 });

In order to enhance the user experience, we need to send a message to the users that
they are unable to use this Android application as they don't have NFC enabled on
their device:

// Check for available NFC Adapter
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 mStatusText.setText("NFC is not available on this
device.");
 }

In the onCreate() method, we will also implement our basic NFC callback functions
to be able to send and receive a message via NFC:

// Register to create and NDEF message when another device is in range
 mNfcAdapter.setNdefPushMessageCallback(new NfcAdapter.
CreateNdefMessageCallback() {
 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 //the variable message is from the EditText field
 String message = messageToBeam.getText().toString();
 String text = (message);
 byte[] mime = MIMETYPE.getBytes(Charset.forName("US-
ASCII"));
 NdefRecord mimeMessage = new NdefRecord(
 NdefRecord.TNF_MIME_MEDIA, mime, new byte[0],
text
 .getBytes());
 NdefMessage msg = new NdefMessage(
 new NdefRecord[]{
 mimeMessage,
 NdefRecord
 .createApplicationRecord("com.
arduinoandroid.arduinonfc")});
 return msg;
 }
 }, this);

Chapter 8

[181]

 // And handle the send status
 mNfcAdapter.setOnNdefPushCompleteCallback(
 new NfcAdapter.OnNdefPushCompleteCallback() {

 @Override
 public void onNdefPushComplete(NfcEvent event) {
 mHandler.obtainMessage(BEAM_BEAMED).
sendToTarget();
 }
 }, this);

We need to also implement a method known as Handler, which will notify the user
via the NFC status text view as to whether the message has been beamed or not:

 @SuppressLint("HandlerLeak")
 private final Handler mHandler = new Handler() {
 @Override
 public void handleMessage(Message message) {
 switch (message.what) {
 case BEAM_BEAMED:
 mStatusText.setText("Your message has been
beamed");
 break;
 }
 }
 };

For the sake of completeness, we will also include the necessary methods to be
able to read NDEF messages sent via NFC and to improve app performance by
not including a number of different instances within the application:

 @Override
 public void onResume() {
 super.onResume();
 // Did we receive an NDEF message?

 Intent intent = getIntent();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.
getAction())) {
 try {
 Parcelable[] rawMsgs = intent
 .getParcelableArrayExtra(NfcAdapter.EXTRA_
NDEF_MESSAGES);

 // we created the message, so we know the format

Control an Arduino Board via NFC

[182]

 NdefMessage msg = (NdefMessage) rawMsgs[0];
 NdefRecord[] records = msg.getRecords();
 byte[] firstPayload = records[0].getPayload();
 String message = new String(firstPayload);
 mStatusText.setText(message);
 } catch (Exception e) {
 Log.e(TAG, "Error retrieving beam message.", e);
 }
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);
 }

Once you have included all the methods, you should be able to build the app and
run it on your Android physical device with NFC capabilities, running Android 4.3
or higher, and with Android Beam activated within the settings.

You can switch on the relay by tapping the Switch On button and, holding the
phone against the NFC shield for at least 5 to 10 seconds, and the user interface will
get smaller in size. At this point, you need to tap again on the user interface to send
your message.

How to go further
This project focused mainly on using NFC to transmit a message and have it read by
the Arduino NFC shield.

The ideal user experience would be the user merely tapping the phone against
the NFC shield and switching on the light. This could be achieved via Host-Card
Emulation or with further modification of this baseline project.

Summary
In this chapter, we learned the basic essentials of setting an NFC-enabled Android
app. This app communicates with Arduino using the NFC shield and the NFC
capabilities of Android 4.3 and higher.

In this, we highlighted the opportunities available for user-engaging projects using
NFC. In the next chapter, we will take this to the next level and use Bluetooth to give
the user the opportunity to control and engage with a robot.

Bluetooth Low Energy
Mobile Robot

In this chapter, we are going to use most of the concepts we have learned throughout
the book to control a mobile robot via an Android app. The robot will have two
motors that we can control, and also an ultrasonic sensor in the front so that it can
detect obstacles. The robot will also have a BLE chip so that it can receive commands
from the Android app.

The application will have the following basic commands that you will need to
control the robot:

• Go forward
• Go backward
• Turn left
• Turn right
• Display the connection status to the robot

The following will be the major takeaways from this chapter:

• Building a mobile robot based on the Arduino platform
• Connecting a BLE module to the Arduino robot
• Building an Android application to control the robot remotely

Bluetooth Low Energy Mobile Robot

[184]

Hardware and software requirements
Let's first see what we need for this project.

The base of this project is of course the robot itself. For this project, we used a
DFRobot miniQ two-wheeled robot chassis. It comes with a round robot chassis,
two DC motors, two wheels, and some screws and bolts so that you can mount
multiple Arduino boards on it. You can basically use any equivalent robot chassis
that has two wheels coupled with DC motors and on which you can mount
Arduino-compatible boards.

To control the robot, we are actually going to use three different Arduino boards.
The "brain" of the robot will be a simple Arduino Uno board. On top of that, we will
use a DFRobot motor shield to control the two DC motors of the robot. And on top of
these two boards, we will put a prototyping shield so that we can connect different
modules to the robot.

To control the robot remotely, we will again use BLE. To give BLE connectivity to the
robot, we used an Adafruit nRF8001 breakout board.

To give the robot the ability to detect what is in front of it, we added an URM37
ultrasonic sensor to the project. As we will see, this sensor is really easy to interface
with Arduino.

Finally, you will also need some jumper wires to make the different connections
between the robot, the sensor, and the Bluetooth module.

The following is a list of all of the hardware you will need for this project, along with
links to these parts on the web:

• An Arduino Uno board (http://www.dfrobot.com/index.
php?route=product/product&search=uno&description=true&produ
ct_id=838)

• An Arduino motor shield (http://www.dfrobot.com/index.
php?route=product/product&path=35_39&product_id=59)

• An Arduino prototyping shield (http://www.dfrobot.com/index.
php?route=product/product&product_id=55)

• An nRF8001 breakout board (https://www.adafruit.com/products/1697)
• An ultrasonic range sensor (http://www.dfrobot.com/index.

php?route=product/product&search=ultrasonic&description=true&pa
ge=1&product_id=53)

http://www.dfrobot.com/index.php?route=product/product&search=uno&description=true&product_id=838
http://www.dfrobot.com/index.php?route=product/product&search=uno&description=true&product_id=838
http://www.dfrobot.com/index.php?route=product/product&search=uno&description=true&product_id=838
http://www.dfrobot.com/index.php?route=product/product&path=35_39&product_id=59
http://www.dfrobot.com/index.php?route=product/product&path=35_39&product_id=59
http://www.dfrobot.com/index.php?route=product/product&product_id=55
http://www.dfrobot.com/index.php?route=product/product&product_id=55
https://www.adafruit.com/products/1697
http://www.dfrobot.com/index.php?route=product/product&search=ultrasonic&description=true&page=1&product_id=53
http://www.dfrobot.com/index.php?route=product/product&search=ultrasonic&description=true&page=1&product_id=53
http://www.dfrobot.com/index.php?route=product/product&search=ultrasonic&description=true&page=1&product_id=53

Chapter 9

[185]

• An ultrasonic sensor mounting kit (http://www.dfrobot.com/index.
php?route=product/product&product_id=322)

• A DFRobot miniQ chassis (http://www.dfrobot.com/index.
php?route=product/product&search=miniq&description=true&produ
ct_id=367)

• A 7.4 V battery (http://www.dfrobot.com/index.php?route=product/
product&product_id=489)

• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will of course need the Arduino IDE. You will also need
the following:

• A library for the nRF8001 chip (https://github.com/adafruit/Adafruit_
nRF8001)

• The aREST library to send commands to the robot (https://github.com/
marcoschwartz/aREST)

Configuring the hardware
We are first going to assemble the robot itself, and then see how to connect the
Bluetooth module and the ultrasonic sensor. To give you an idea of what you should
end up with, the following is a front-view image of the robot when fully assembled:

http://www.dfrobot.com/index.php?route=product/product&product_id=322
http://www.dfrobot.com/index.php?route=product/product&product_id=322
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&product_id=489
http://www.dfrobot.com/index.php?route=product/product&product_id=489
https://www.adafruit.com/products/1957
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/marcoschwartz/aREST
https://github.com/marcoschwartz/aREST

Bluetooth Low Energy Mobile Robot

[186]

The following image shows the back of the robot when fully assembled:

The first step is to assemble the robot chassis. To do so, you can watch the DFRobot
assembly guide at https://www.youtube.com/watch?v=tKakeyL_8Fg.

Then, you need to attach the different Arduino boards and shields to the robot.
Use the spacers found in the robot chassis kit to mount the Arduino Uno board first.
Then put the Arduino motor shield on top of that. At this point, use the screw header
terminals to connect the two DC motors to the motor shield. This is how it should
look at this point:

https://www.youtube.com/watch?v=tKakeyL_8Fg

Chapter 9

[187]

Finally, mount the prototyping shield on top of the motor shield.

We are now going to connect the BLE module and the ultrasonic sensor to the
Arduino prototyping shield. The following is a schematic diagram showing the
connections between the Arduino Uno board (done via the prototyping shield in
our case) and the components:

Now perform the following steps:

1. First, we are now going to connect the BLE module.
2. Place the module on the prototyping shield.
3. Connect the power supply of the module as follows: GND goes to the

prototyping shield's GND pin, and VIN goes to the prototyping shield's +5V.
4. After that, you need to connect the different wires responsible for the SPI

interface: SCK to Arduino pin 13, MISO to Arduino pin 12, and MOSI to
Arduino pin 11.

5. Then connect the REQ pin to Arduino pin 10.
6. Finally, connect the RDY pin to Arduino pin 2 and the RST pin to

Arduino pin 9.

Bluetooth Low Energy Mobile Robot

[188]

7. For the URM37 module, connect the VCC pin of the module to Arduino +5V,
GND to GND, and the PWM pin to the Arduino A3 pin.

To review the pin order on the URM37 module, you can
check the official DFRobot documentation at http://www.
dfrobot.com/wiki/index.php?title=URM37_V3.2_
Ultrasonic_Sensor_(SKU:SEN0001).

The following is a close-up image of the prototyping shield with the BLE
module connected:

8. Finally, connect the 7.4 V battery to the Arduino Uno board power jack.
The battery is simply placed below the Arduino Uno board.

Testing the robot
We are now going to write a sketch to test the different functionalities of the robot,
first without using Bluetooth. As the sketch is quite long, we will look at the code
piece by piece. Before you proceed, make sure that the battery is always plugged
into the robot. Now perform the following steps:

1. The sketch starts by including the aREST library that we will use to control
the robot via serial commands:
#include <aREST.h>

http://www.dfrobot.com/wiki/index.php?title=URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001)
http://www.dfrobot.com/wiki/index.php?title=URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001)
http://www.dfrobot.com/wiki/index.php?title=URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001)

Chapter 9

[189]

2. Now we declare which pins the motors are connected to:
int speed_motor1 = 6;
int speed_motor2 = 5;
int direction_motor1 = 7;
int direction_motor2 = 4;

3. We also declare which pin the ultrasonic sensor is connected to:
int distance_sensor = A3;

4. Then, we create an instance of the aREST library:
aREST rest = aREST();

5. To store the distance data measured by the ultrasonic sensor, we declare
a distance variable:
int distance;

6. In the setup() function of the sketch, we first initialize serial communications
that we will use to communicate with the robot for this test:
Serial.begin(115200);

7. We also expose the distance variable to the REST API, so we can access
it easily:
rest.variable("distance",&distance);

8. To control the robot, we are going to declare a whole set of functions that will
perform the basic operations: going forward, going backward, turning on
itself (left or right), and stopping. We will see the details of these functions
in a moment; for now, we just need to expose them to the API:
rest.function("forward",forward);
rest.function("backward",backward);
rest.function("left",left);
rest.function("right",right);
rest.function("stop",stop);

9. We also give the robot an ID and a name:
rest.set_id("001");
rest.set_name("mobile_robot");

10. In the loop() function of the sketch, we first measure the distance from
the sensor:
distance = measure_distance(distance_sensor);

11. We then handle the requests using the aREST library:
rest.handle(Serial);

Bluetooth Low Energy Mobile Robot

[190]

12. Now, we will look at the functions for controlling the motors. They are all
based on a function to control a single motor, where we need to set the motor
pins, the speed, and the direction of the motor:
void send_motor_command(int speed_pin, int direction_pin, int pwm,
boolean dir)
{
 analogWrite(speed_pin, pwm); // Set PWM control, 0 for stop, and
255 for maximum speed
 digitalWrite(direction_pin, dir); // Dir set the rotation
direction of the motor (true or false means forward or reverse)
}

13. Based on this function, we can now define the different functions to move the
robot, such as forward:
int forward(String command) {

 send_motor_command(speed_motor1,direction_motor1,100,1);
 send_motor_command(speed_motor2,direction_motor2,100,1);
 return 1;
}

14. We also define a backward function, simply inverting the direction of
both motors:
int backward(String command) {
 send_motor_command(speed_motor1,direction_motor1,100,0);
 send_motor_command(speed_motor2,direction_motor2,100,0);
 return 1;
}

15. To make the robot turn left, we simply make the motors rotate in
opposite directions:
int left(String command) {
 send_motor_command(speed_motor1,direction_motor1,75,0);
 send_motor_command(speed_motor2,direction_motor2,75,1);
 return 1;
}

16. We also have a function to stop the robot:
int stop(String command) {
 send_motor_command(speed_motor1,direction_motor1,0,1);
 send_motor_command(speed_motor2,direction_motor2,0,1);
 return 1;
}

Chapter 9

[191]

There is also a function to make the robot turn right, which is not detailed here. Note
that all of the code used in this chapter can be found in the GitHub repository of the
book at https://github.com/marcoschwartz/arduino-android-blueprints.

We are now going to test the robot. Before you do anything, ensure that the battery is
always plugged into the robot. This will ensure that the motors are not trying to get
power from your computer USB port, which could damage it.

Also place some small support at the bottom of the robot so that the wheels don't touch
the ground. This will ensure that you can test all the commands of the robot without
the robot moving too far from your computer, as it is still attached via the USB cable.

Now you can upload the sketch to your Arduino Uno board. Open the serial monitor
and type the following:

/forward

This should make both the wheels of the robot turn in the same direction. You can
also try the other commands to move the robot to make sure they all work properly.
Then, test the ultrasonic distance sensor by typing the following:

/distance

You should get back the distance (in centimeters) in front of the sensor:

{"distance": 24, "id": "001", "name": "mobile_robot", "connected": true}

Try changing the distance by putting your hand in front of the sensor and typing the
command again.

Writing the Arduino sketch
Now that we have made sure that the robot is working properly, we can write the
final sketch that will receive the commands via Bluetooth. As the sketch shares many
similarities with the test sketch, we are only going to see what is added compared
to the test sketch. We first need to include more libraries:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>

We also define which pins the BLE module is connected to:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on
Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

https://github.com/marcoschwartz/arduino-android-blueprints

Bluetooth Low Energy Mobile Robot

[192]

We have to create an instance of the BLE module:

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

In the setup() function of the sketch, we initialize the BLE chip:

BTLEserial.begin();

In the loop() function, we check the status of the BLE chip and store it in
a variable:

BTLEserial.pollACI();
aci_evt_opcode_t status = BTLEserial.getState();

If we detect that a device is connected to the chip, we handle the incoming request
with the aREST library, which will allow us to use the same commands as before
to control the robot:

if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
}

You can now upload the code to your Arduino board, again by making sure that
the battery is connected to the Arduino Uno board via the power jack. You can now
move on to the development of the Android application to control the robot.

Setting up the Android app
The Android application that we will be creating will give us the opportunity to
control the robot via BLE from the physical Android device. This application will
have five basic controls, that is, Forward, Backward, Left, Right, and Stop. In
addition, it will also show the BLE connection status and there will be a Refresh
button that will allow us to refresh the Bluetooth callback.

We will assume that you will have switched on the Auto-Import function within
your preferences. If not, activate it by going to the Auto-Import preferences and
selecting all the available options. The Auto-Import preferences are available
on Mac and Windows as follows:

• On a Mac, navigate to Android Studio > Preferences > Editor >
Auto-Import

• On Windows, navigate to File > Settings > Editor > Auto-Import

Chapter 9

[193]

With all the necessary settings in place, we will start off by creating a new project
where we will choose the following within the New Project setup walkthrough:

• Name: Mobile Robot
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: RobotControlActivity
• Domain: arduinoandroid.com

Laying out the Android user interface and
setting permissions
In order to make this project work, we will need to first go over to the Android
Manifest file, which is available at app > src > main > AndroidManifest.xml.

Since this Android application uses BLE to connect the Android physical device to
the robot, we will need to add the following permissions to the Android Manifest
file. These permissions will allow the application to connect to the paired Bluetooth
devices that have been discovered:

<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

The next step that we will take is to set up the very basic Android layout file so
that we can implement the app's functions and allow the user to activate the voice
recognition intent.

In our project, we will navigate to the main layout file which can be accessed from
app > src > res > layout > activity_robot_control.xml.

There are a number of layout formats with the Android user interface design, and in
this particular case, we will be using a horizontal linear layout with a vertical linear
layout as a child. Keeping these concepts in mind, we will replace the current code
with the following lines of code:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Bluetooth Low Energy Mobile Robot

[194]

 android:text="Connect"
 android:id="@+id/connectBtn"
 android:layout_gravity="center_horizontal"
 />

 <Button
 style="?android:attr/buttonStyleSmall"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Forward"
 android:id="@+id/fwdBtn"
 android:layout_gravity="center_horizontal"
 />

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="57dp">

 <Button
 style="?android:attr/buttonStyleSmall"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Left"
 android:id="@+id/leftBtn"
 android:layout_weight="1"
 />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Stop"
 android:id="@+id/stopBtn"
 android:layout_gravity="center_horizontal"
 android:layout_weight="1"
 />

 <Button
 style="?android:attr/buttonStyleSmall"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Right"
 android:id="@+id/rightBtn"
 android:layout_weight="1"
 />

Chapter 9

[195]

 </LinearLayout>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Backward"
 android:id="@+id/backwardBtn"
 android:layout_gravity="center_horizontal"
 />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Connection Status View"
 android:id="@+id/connectionStsView"
 android:layout_gravity="center_horizontal"
 />

</LinearLayout>

At this point, you should end up with something that looks like the following
screenshot. This is based on the LG Nexus 5:

Bluetooth Low Energy Mobile Robot

[196]

Coding the app's internals
At this point, we want to start connecting our freshly designed Android user
interface to the main Android code, and we will start doing this by opening the
RobotControlActivity.java file, which is available at app > src > main > java >
package name > RobotControlActivity.java.

We will start off by declaring the user interface element variables together with the
main variable, which we could use for logging, as follows:

//User Interface Elements
 Button fwdBtn;
 Button leftBtn;
 Button rightBtn;
 Button backBtn;
 Button stopBtn;
 Button connectBtn;
 TextView connectionSts;

 //Logging Variables
 private final String LOG_TAG = RobotControlActivity.class.
getSimpleName();

We will declare all the necessary variables for the BluetoothCallback variable,
where we will primarily declare the UUIDs associated with our specific BLE module,
followed by the Bluetooth adapter variables and characteristics:

 // UUIDs for UAT service and associated characteristics.
 public static UUID UART_UUID = UUID.fromString("6E400001-B5A3-
F393-E0A9-E50E24DCCA9E");
 public static UUID TX_UUID = UUID.fromString("6E400002-B5A3-F393-
E0A9-E50E24DCCA9E");
 public static UUID RX_UUID = UUID.fromString("6E400003-B5A3-F393-
E0A9-E50E24DCCA9E");

 // UUID for the BTLE client characteristic which is necessary for
notifications.
 public static UUID CLIENT_UUID = UUID.fromString("00002902-0000-
1000-8000-00805f9b34fb");

 // BTLE states
 private BluetoothAdapter adapter;
 private BluetoothGatt gatt;
 private BluetoothGattCharacteristic tx;
 private BluetoothGattCharacteristic rx;

Chapter 9

[197]

We will then proceed to the onCreate() method and connect the different user
interface elements to the code:

 fwdBtn = (Button) findViewById(R.id.fwdBtn);
 leftBtn = (Button) findViewById(R.id.leftBtn);
 rightBtn = (Button) findViewById(R.id.rightBtn);
 backBtn = (Button) findViewById(R.id.backwardBtn);
 stopBtn = (Button) findViewById(R.id.stopBtn);
 connectBtn = (Button) findViewById(R.id.connectBtn);

 connectionSts = (TextView)findViewById(R.
id.connectionStsView);

In this project, we would like to send specific BLE messages to our robot when the
user taps on the buttons, and in this part, we will be adding onClickListeners to
our buttons which we have connected earlier to send the messages that we need
to interface with the robot:

fwdBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/forward /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }
 }
 });

 leftBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/left /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }

Bluetooth Low Energy Mobile Robot

[198]

 }
 });

 rightBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/right /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }
 }
 });
 backBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/backward /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }
 }
 });
 stopBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/stop /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }
 }
 });

Chapter 9

[199]

 connectBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 restartScan();
 }
 });

In the next section, we need to declare a new method, which we will name
writeConnectionData. Its main role is writing the status of the Bluetooth
callback to the connection status text view:

private void writeConnectionData(final CharSequence text) {
 Log.e(LOG_TAG, text.toString());
 connectionSts.setText(text.toString());
 }

The following code is all the necessary Bluetooth callback which needs to take place
in order to establish a connection between the Android physical device and BLE
module on the robot:

private BluetoothGattCallback bluetoothGattCallback = new
BluetoothGattCallback() {
 // Called whenever the device connection state changes, i.e.
from disconnected to connected.
 @Override
 public void onConnectionStateChange(BluetoothGatt gatt, int
status, int newState) {
 super.onConnectionStateChange(gatt, status, newState);
 if (newState == BluetoothGatt.STATE_CONNECTED) {
 writeConnectionData("Connected!");
 // Discover services.
 if (!gatt.discoverServices()) {
 writeConnectionData("Failed to start discovering
services!");
 }
 } else if (newState == BluetoothGatt.STATE_DISCONNECTED) {
 writeConnectionData("Disconnected!");
 } else {
 writeConnectionData("Connection state changed. New
state: " + newState);
 }
 }

Bluetooth Low Energy Mobile Robot

[200]

 // Called when services have been discovered on the remote
device.
 // It seems to be necessary to wait for this discovery to
occur before
 // manipulating any services or characteristics.
 public void onServicesDiscovered(BluetoothGatt gatt, int
status) {
 super.onServicesDiscovered(gatt, status);
 if (status == BluetoothGatt.GATT_SUCCESS) {
 writeConnectionData("Service discovery completed!");
 } else {
 writeConnectionData("Service discovery failed with
status: " + status);
 }
 // Save reference to each characteristic.
 tx = gatt.getService(UART_UUID).getCharacteristic(TX_
UUID);
 rx = gatt.getService(UART_UUID).getCharacteristic(RX_
UUID);

 // Setup notifications on RX characteristic changes (i.e.
data received).
 // First call setCharacteristicNotification to enable
notification.
 if (!gatt.setCharacteristicNotification(rx, true)) {
 writeConnectionData("Couldn't set notifications for RX
characteristic!");
 }

 // Next update the RX characteristic's client descriptor
to enable notifications.
 if (rx.getDescriptor(CLIENT_UUID) != null) {
 BluetoothGattDescriptor desc =
rx.getDescriptor(CLIENT_UUID);
 desc.setValue(BluetoothGattDescriptor.ENABLE_
NOTIFICATION_VALUE);
 if (!gatt.writeDescriptor(desc)) {
 writeConnectionData("Couldn't write RX client
descriptor value!");
 }
 } else {
 writeConnectionData("Couldn't get RX client
descriptor!");
 }
 areServicesAccessible = true;
 }
 };

Chapter 9

[201]

The Android application's life cycle gives us the ability to add methods that can be
activated at different parts of this cycle. The following onStart() and onStop()
methods, which are invoked on starting and exiting the application respectively,
allow us to conserve the device's energy and memory resources:

protected void onStart() {
 Log.d(LOG_TAG,"onStart has been called");
 super.onStart();
 // / Scan for all BTLE devices.
 // The first one with the UART service will be chosen--see the
code in the scanCallback.
 adapter = BluetoothAdapter.getDefaultAdapter();
 startScan();
 }

 //When this Activity isn't visible anymore
 protected void onStop() {
 Log.d(LOG_TAG,"onStop has been called");
 //disconnect and close Bluetooth Connection for better
reliability
 if (gatt != null) {
 gatt.disconnect();
 gatt.close();
 gatt = null;
 tx = null;
 rx = null;
 }
 super.onStop();
 }

In order to allow the starting, stopping, and restarting of Bluetooth scans,
we need to declare methods to do these particular actions, which is the purpose
of the following code:

private void startScan() {
 if (!adapter.isEnabled()) {
 adapter.enable();
 }
 if (!adapter.isDiscovering()) {
 adapter.startDiscovery();
 }
 writeConnectionData("Scanning for devices...");
 adapter.startLeScan(scanCallback);
 }

Bluetooth Low Energy Mobile Robot

[202]

 private void stopScan() {
 if (adapter.isDiscovering()) {
 adapter.cancelDiscovery();
 }
 writeConnectionData("Stopping scan");
 adapter.stopLeScan(scanCallback);
 }

 private void restartScan() {
 stopScan();
 startScan();
 }

The most important part of the Bluetooth callback is to connect to the right BLE
device, and the following code helps the user to achieve that:

private BluetoothAdapter.LeScanCallback scanCallback = new
BluetoothAdapter.LeScanCallback() {
 // Called when a device is found.
 @Override
 public void onLeScan(BluetoothDevice bluetoothDevice, int i,
byte[] bytes) {
 Log.d(LOG_TAG, bluetoothDevice.getAddress());

 writeConnectionData("Found device: " + bluetoothDevice.
getAddress());

 // Check if the device has the UART service.
 if (BluetoothUtils.parseUUIDs(bytes).contains(UART_UUID))
{
 // Found a device, stop the scan.
 adapter.stopLeScan(scanCallback);
 writeConnectionData("Found UART service!");
 // Connect to the device.
 // Control flow will now go to the
bluetoothGattCallback functions when BTLE events occur.
 gatt = bluetoothDevice.connectGatt(getApplicationConte
xt(), false, bluetoothGattCallback);
 }
 }
 };

UUID parsing, unlike in the previous chapters, has been moved to a utility class
in order to refactor the code and make it more readable. In order to create a utility
class, we first need to right-click on our package name and create a new package
called Bluetooth.

Chapter 9

[203]

After that, we will right-click on the new package, select New > Java Class,
and name the new class as BluetoothUtils.

After the preceding two steps, we will replace the code within the class with the
following code:

public class BluetoothUtils {

 // Filtering by custom UUID is broken in Android 4.3 and 4.4, see:
 // http://stackoverflow.com/questions/18019161/startlescan-with-
128-bit-uuids-doesnt-work-on-native-android-ble-implementation?noredir
ect=1#comment27879874_18019161
 // This is a workaround function from the SO thread to manually
parse advertisement data.
 public static List<UUID> parseUUIDs(final byte[] advertisedData) {
 List<UUID> uuids = new ArrayList<UUID>();

 int offset = 0;
 while (offset < (advertisedData.length - 2)) {
 int len = advertisedData[offset++];
 if (len == 0)
 break;

 int type = advertisedData[offset++];
 switch (type) {
 case 0x02: // Partial list of 16-bit UUIDs
 case 0x03: // Complete list of 16-bit UUIDs
 while (len > 1) {
 int uuid16 = advertisedData[offset++];
 uuid16 += (advertisedData[offset++] << 8);
 len -= 2;
 uuids.add(UUID.fromString(String.format("%08x-
0000-1000-8000-00805f9b34fb", uuid16)));
 }
 break;
 case 0x06:// Partial list of 128-bit UUIDs
 case 0x07:// Complete list of 128-bit UUIDs
 // Loop through the advertised 128-bit UUID's.
 while (len >= 16) {
 try {
 // Wrap the advertised bits and order
them.
 ByteBuffer buffer = ByteBuffer.
wrap(advertisedData, offset++, 16).order(ByteOrder.LITTLE_ENDIAN);

Bluetooth Low Energy Mobile Robot

[204]

 long mostSignificantBit = buffer.
getLong();
 long leastSignificantBit = buffer.
getLong();
 uuids.add(new UUID(leastSignificantBit,
 mostSignificantBit));
 } catch (IndexOutOfBoundsException e) {
 // Defensive programming.
 //Log.e(LOG_TAG, e.toString());
 continue;
 } finally {
 // Move the offset to read the next uuid.
 offset += 15;
 len -= 16;
 }
 }
 break;
 default:
 offset += (len - 1);
 break;
 }
 }
 return uuids;
 }
}

At this point, you could go ahead, build, and run the project on an Android
physical device running Android 4.3 with Bluetooth switched on.

Enhancing the user interface further
Once we have managed to finalize our code and assure ourselves that the user
interface includes all the basic functionalities required to control the robot,
we can proceed to improving our user interface.

We will improve the user interface with two main actions:

• Adding a new app icon
• Styling the user interface buttons

Chapter 9

[205]

Adding a new app icon
First, we will download the image asset. It's available within the GitHub repository
and also as a public download at http://bit.ly/mobileroboticon.

You should navigate to the project tree, followed by a right-click on app.

When you right-click on app, create a new image asset by going to
New > Image Asset.

You will then be shown an Asset Studio pop-up window, which will allow you to
choose your very own image file. For optimization purposes, we recommend that
you go for a .png file with a resolution of 144 pixels by 144 pixels. Android Studio
automatically does all the resizing and resource creation to adapt your graphic
to different screens.

Once you choose the ic_launcher image file that we have provided you with,
you will be shown a screen with the icon in different sizes. Click on Next where
you will see the screen with the launcher icons in different sizes.

This screen warns you that previous files will be overwritten and shows you the
image launcher file in a number of different resolutions once again. Click on Finish.
Then compile the app, launch it on your physical device, and you should see
something pleasant in your app tray and in the app's action bar.

Styling the user interface buttons
The final steps that we will be taking about are to modify our buttons and add some
color to the text.

There are two steps required while creating the new buttons:

1. Create a Drawable folder with a new XML drawable file known
as button.xml.

2. Then connect the drawable resource file to the main Android layout file.

Create the Drawable folder by right-clicking on the res folder, which is available
at App > src > main > res.

After creating the Drawable folder within the res folder, we need to once
again right-click on the new drawable folder and navigate to New > Drawable
Resource File.

http://bit.ly/mobileroboticon

Bluetooth Low Energy Mobile Robot

[206]

Name the file buttonshape and type shape as the root element, followed by clicking
on OK.

Within the button.xml file, replace the current code with the following:

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <corners
 android:radius="30dp"/>
 <solid
 android:color="#FFFFFF"/>
 <padding
 android:left="10dp"
 android:top="10dp"
 android:right="10dp"
 android:bottom="10dp"/>
 <stroke
 android:width="2dp"
 android:color="#4A90E2"/>
</shape>

At this point, the buttons have not been modified yet, so we will go to the robot
control activity layout file, which is available at app > main > res > layout >
activity_robot_control.xml.

Within this file, we will also be connecting the changes within the buttonshape.xml
file to the main layout file, and we will be adding margin to the buttons so that there
is enough spacing between the buttons for a presentable layout.

We will add the following code to all the button elements to give them the
buttonshape styling:

android:background="@drawable/buttonshape"

After that, we will add the margins by adding the following code to the Connect,
Backward, and Forward buttons:

android:layout_margin="10dp"

For the left and right buttons, we will add the following code since they're within
a different kind of layout:

android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"

Chapter 9

[207]

At this point, you should have a layout that looks like the following screenshot on
Nexus 4, which is more attractive and presentable to the user:

How to go further
The Android application can be further enhanced with more refined controls that
could quantify the exact angle by which you would like the robot to turn left or right.
We can also extract data from the ultrasonic sensor and display it within the Android
application to get data about the proximity to obstacles.

In addition, the Android application will definitely benefit from the addition of a
Connection dialog that shows the user all the available BLE devices, and the user
can choose the BLE Chip connected to the robot. This will enhance user experience
and, at the same time, provide a more stable connection with the robot, especially
if you're working in an environment surrounded by other BLE transmitters.

Last but not least, the reader can also go ahead and do further modifications
to the user interface and layout to make the app even more attractive and
presentable. Our main recommendation is to follow the design guidelines
available at http://developer.android.com.

http://developer.android.com

Bluetooth Low Energy Mobile Robot

[208]

Summary
In this chapter, we managed to create our very own mobile robot together with a
companion Android application that we can use to control our robot.

We achieved this step by step by setting up an Arduino-enabled robot and coding
the companion Android application. It uses the BLE software and hardware of an
Android physical device running on Android 4.3 or higher.

In the final chapter, we will consider a more direct form of user interaction,
by measuring our pulse rate using Android, Arduino, and a specific sensor.

Pulse Rate Sensor
In this chapter, we will start exploring the possibilities of using Arduino and
Android in a health context. The most natural way to start off such an adventure is
to create a project that involves an open source pulse rate sensor. This sensor will be
connected to a BLE-equipped Arduino. The data will be displayed in an interesting
way within the Android app to make the experience as seamless as possible.

The following will be the major takeaways from this chapter:

• Using a pulse rate sensor with Arduino to measure your heart rate
• Connecting a BLE module to Arduino to transmit pulse rate data
• Visualizing this data in an Android application

Hardware and software requirements
Let's first see what we need for this project. As usual, we will use an Arduino
Uno board.

You will also need a heart rate sensor, which is the most important component of this
chapter. We used a sensor that is compatible with Arduino, simply called the pulse
sensor (http://pulsesensor.com/).

http://pulsesensor.com/

Pulse Rate Sensor

[210]

The following is an image of the sensor we used:

For wireless communications, we used the nRF8001 BLE breakout board that we
used in previous chapters.

Finally, you will need a breadboard and some jumper wires to make the connections
between the different parts.

This is the list of all of the hardware you will need for this project, along with links to
find these parts on the web:

• Arduino Uno board (https://www.adafruit.com/products/50)
• nRF8001 breakout board (https://www.adafruit.com/products/1697)
• Heart rate sensor (http://pulsesensor.myshopify.com/products/pulse-

sensor-amped)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will of course need the Arduino IDE. You will also need
the following:

• The library for the nRF8001 chip, available at https://github.com/
adafruit/Adafruit_nRF8001

• The aREST library to send commands to the robot, available at
https://github.com/marcoschwartz/aREST

https://www.adafruit.com/products/50
https://www.adafruit.com/products/1697
http://pulsesensor.myshopify.com/products/pulse-sensor-amped
http://pulsesensor.myshopify.com/products/pulse-sensor-amped
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001
https://github.com/marcoschwartz/aREST

Chapter 10

[211]

Configuring our hardware
We are now going to build the project by performing the following steps:

1. First, connect the BLE breakout board to the Arduino Uno board.
2. Place the module on the breadboard.
3. Connect the power supply of the module: GND goes to prototyping shield

GND and VIN goes to the prototyping shield +5V.
4. Connect the different wires responsible for the SPI interface: SCK to

Arduino pin 13, MISO to Arduino pin 12, and MOSI to Arduino pin 11.
5. Then connect the REQ pin to Arduino pin 10.
6. Finally, connect the RDY pin to Arduino pin 2 and the RST pin to

Arduino pin 9.
The following is a schematic diagram to help you out for this part:

7. Now, connecting the pulse rate sensor is actually very simple. You simply
need to connect the red wire to the Arduino +5V pin, the black cable to the
Arduino GND pin, and the remaining pin to the Arduino A0 pin.

Pulse Rate Sensor

[212]

This is an image of the fully assembled project:

If you want more details about the pulse rate sensor, you can visit the official
documentation at http://pulsesensor.myshopify.com/pages/code-and-guide.

Testing the sensor
We are now going to write some basic code to make sure that the pulse sensor is
correctly wired and that it is not damaged. Thanks to the work done by the creator
of the sensor, it is actually very easy to extract the heart pulse rate from the sensor
readings. The following sketch starts by defining a lot of variables that are required
for the calculation of the Beats Per Minute (BPM):

// Sensor and pins variables
int pulsePin = 0;
int blinkPin = 13;

// Pulse rate variable
volatile int BPM;

http://pulsesensor.myshopify.com/pages/code-and-guide

Chapter 10

[213]

// Raw signal
volatile int Signal;

// Interval between beats
volatile int IBI = 600; // Default Inter Beats Interval

// Becomes true when the pulse is high
volatile boolean Pulse = false;

// Becomes true when Arduino finds a pulse (QS stands for Quantified
Self here)
volatile boolean QS = false;

In the setup() function of the sketch, we simply start the serial communications
and initialize the readings from the pulse sensor:

// Start Serial
Serial.begin(115200);

// Sets up to read Pulse Sensor signal every 2mS
interruptSetup();

Then, in the loop() function of the sketch, we constantly check to see if we found a
heart beat, and we print it on the serial monitor if this is the case:

 // If heart beat is found
 if (QS == true) {

 // Print heart rate
 Serial.print("Heart rate: ");
 Serial.println(BPM);

 // Reset the Quantified Self flag for next time
 QS = false;
 }

 // Wait 20 ms
 delay(20);
}

Note that all of the code used in this chapter can be found in
the GitHub repository of the book at https://github.com/
marcoschwartz/arduino-android-blueprints.

https://github.com/marcoschwartz/arduino-android-blueprints
https://github.com/marcoschwartz/arduino-android-blueprints

Pulse Rate Sensor

[214]

It is now time to test the code. Before uploading the code to your board, it's
recommended that you watch a video found at http://pulsesensor.myshopify.
com/blogs/news/7406100-getting-started-video in order to understand how
to put the sensor correctly on your finger.

You can now upload the code to your Arduino board and open the serial monitor.
Then place the sensor on your finger. After a while (there can be strange readings at
first), you should see your heart rate being displayed on the serial monitor. You will
know that it is correct when the value is between 60 and 100 BPM (if you are in a
resting state).

Writing the Arduino sketch
Now that we are sure that the sensor is working correctly, we can write the final
Arduino sketch for this chapter. This sketch will perform the BPM measurements
as before, and will also expose the BPM variable via the aREST API so that the
measurements can be accessed via Bluetooth. As the sketch is really similar to the
test sketch, we will only detail the changes here.

The sketch starts by importing the required libraries:

#include <SPI.h>
#include "Adafruit_BLE_UART.h"
#include <aREST.h>

We also define the pins on which the BLE module is connected:

#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on
Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

Then we create an instance of the aREST library and the BLE module:

aREST rest = aREST();

// BLE instance
Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

http://pulsesensor.myshopify.com/blogs/news/7406100-getting-started-video
http://pulsesensor.myshopify.com/blogs/news/7406100-getting-started-video

Chapter 10

[215]

We also need to define a variable that will contain the BPM measurements and that
will be exposed to the API:

int bpm = 0;

In the setup() function, we need to initialize the BLE module:

BTLEserial.begin();

We also give the project a name and ID:

rest.set_id("1");
rest.set_name("pulse_sensor");

Still in the setup() function, we expose the BPM variable to the aREST API:

rest.variable("bpm",&bpm);

In the loop() function of the sketch, we assign the measured BPM to the variable
that is exposed to the API:

bpm = BPM;

Then, as usual, we process the incoming requests on the BLE module with the
aREST API:

// Tell the nRF8001 to do whatever it should be working on.
BTLEserial.pollACI();

// Ask what is our current status
aci_evt_opcode_t status = BTLEserial.getState();

// Handle REST calls
if (status == ACI_EVT_CONNECTED) {
 rest.handle(BTLEserial);
 }
}

Note that all the code for this chapter can be found in the GitHub repository of the
bookat https://github.com/marcoschwartz/arduino-android-blueprints.
You can now upload the code to your Arduino board and move on to the
development of the Android application.

https://github.com/marcoschwartz/arduino-android-blueprints

Pulse Rate Sensor

[216]

Setting up the Android app
The Android application that we will be creating will give us the ability to
display the data that is measured by the pulse rate sensor within the Android app.
In addition, it will show the BLE connection status, and there will be the Refresh
button to allow us to refresh the Bluetooth callback.

We will assume that you will have switched on the Auto-Import function within
your preferences. If not, kindly activate it by going to the Auto-Import preferences
and selecting all available options. The Auto-Import preferences are available on
Mac and Windows as follows:

• On a Mac, navigate to Android Studio > Preferences > Editor >
Auto-Import

• On Windows, navigate to File > Settings > Editor > Auto-Import

With all the necessary settings in place, we will start off by creating a new project
where we will choose the following within the New Project setup walkthrough:

• Name: Pulse Rate Sensor
• Minimum SDK: 18
• Project: Blank Activity
• Activity Name: PulseActivity
• Domain: arduinoandroid.com

Laying out the Android user interface and
setting permissions
In order to make this project work, we will need to first go to the Android Manifest
file which is available at app > src > main > AndroidManifest.xml.

Since this Android application uses BLE to connect the Android physical device to
the pulse rate sensor, we will need to add the following permissions to the Android
Manifest file:

 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_
ADMIN"/>

The next step that we will be taking is setting up the very basic Android layout file
so that we are able to implement the app functions.

Chapter 10

[217]

In our project, we will navigate to the main layout file which can be accessed from
app > src > res > layout > activity_pulse.xml.

There are a number of layout formats with Android user interface design, and in this
particular case, we will be implementing two linear layouts: one will be designed
to act as a placeholder for the graph view, and the other will support the different
buttons and text views.

Replace the current code available in the layout file with the following code:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout
 android:id="@+id/rest"
 android:layout_width="fill_parent"
 android:layout_height="250dip"
 android:orientation="vertical"
 android:weightSum="1">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:id="@+id/pulseValueView"
 android:layout_gravity="center_horizontal"
 android:textSize="150dp"
 android:gravity="center"
 android:text="120"/>
 </LinearLayout>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Refresh Connection"
 android:id="@+id/refreshBtn"
 android:layout_gravity="center_horizontal" />

Pulse Rate Sensor

[218]

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get Pulse Rate"
 android:id="@+id/heartRateBtn"
 android:layout_gravity="center_horizontal" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Connection Status"
 android:id="@+id/connectionStsView"
 android:layout_gravity="center_horizontal" />
</LinearLayout>

The end result will look as follows within the IDE:

Chapter 10

[219]

The text 120 is meant to be a placeholder text to ensure that there is enough
place within the user interface to accommodate the pulse rate readings. In the
final implementation, you have the option of removing the placeholder text and
leaving it blank.

Coding the app's internals
We need to start off by declaring all the necessary variables that are needed to work
with the Bluetooth logic, user interface, and for logging purposes:

 //Logging Variables
 private final String LOG_TAG = PulseActivity.class.
getSimpleName();

 //User Interface Variables
 Button getPulseRate;
 Button refreshButton;
 TextView pulseRateView;
 TextView connectionStsView;

 //Data Output
 private String output;

 // UUIDs for UAT service and associated characteristics.
 public static UUID UART_UUID = UUID.fromString("6E400001-B5A3-
F393-E0A9-E50E24DCCA9E");
 public static UUID TX_UUID = UUID.fromString("6E400002-B5A3-F393-
E0A9-E50E24DCCA9E");
 public static UUID RX_UUID = UUID.fromString("6E400003-B5A3-F393-
E0A9-E50E24DCCA9E");

 // UUID for the BTLE client characteristic which is necessary for
notifications.
 public static UUID CLIENT_UUID = UUID.fromString("00002902-0000-
1000-8000-00805f9b34fb");

 // BTLE stateta
 private BluetoothAdapter adapter;
 private BluetoothGatt gatt;
 private BluetoothGattCharacteristic tx;
 private BluetoothGattCharacteristic rx;

 private boolean areServicesAccessible = false;

Pulse Rate Sensor

[220]

Following this, we will need to connect the user interface elements within the
onCreate() method to the user interface, and set an onClickListener class to the
Get Pulse Rate and Refresh buttons, which will allow us to request the pulse rate
sensor data and refresh Bluetooth connections:

 //Connect U.I Elements
 getPulseRate = (Button) findViewById(R.id.heartRateBtn);
 pulseRateView = (TextView) findViewById(R.id.pulseValueView);
 connectionStsView = (TextView) findViewById(R.
id.connectionStsView);
 refreshButton = (Button) findViewById(R.id.refreshBtn);

 getPulseRate.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 String setOutputMessage = "/bpm /";
 tx.setValue(setOutputMessage.getBytes(Charset.
forName("UTF-8")));
 if (gatt.writeCharacteristic(tx)) {
 writeConnectionData("Sent: " + setOutputMessage);
 } else {
 writeConnectionData("Couldn't write TX
characteristic!");
 }
 }
 });

 refreshButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 restartScan();
 }
 });
 }

Since we are using Bluetooth in our projects, we need to implement the methods that
allow us to take the character data sequences, convert them into string, and finally
connect them to the user interface to display the data:

 private void writeConnectionData(final CharSequence text) {
 Log.e(LOG_TAG, text.toString());

Chapter 10

[221]

 connectionStsView.setText(text.toString());
 }

 private void writeSensorData(final CharSequence text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Log.e(LOG_TAG,text.toString());
 output=text.toString().trim();

 if (output.length() > 0 && output.length() <=3) {
 pulseRateView.setText(output);
 }
 else {
 return;
 }
 }
 });
 }

The following methods will allow us to do the necessary Bluetooth callback and send
or receive data from the Arduino pulse rate sensor via the BLE module:

 // BTLE device scanning bluetoothGattCallback.

 // Main BTLE device bluetoothGattCallback where much of the logic
occurs.
 private BluetoothGattCallback bluetoothGattCallback = new
BluetoothGattCallback() {
 // Called whenever the device connection state changes, i.e.
from disconnected to connected.
 @Override
 public void onConnectionStateChange(BluetoothGatt gatt, int
status, int newState) {
 super.onConnectionStateChange(gatt, status, newState);
 if (newState == BluetoothGatt.STATE_CONNECTED) {
 writeConnectionData("Connected!");
 // Discover services.
 if (!gatt.discoverServices()) {
 writeConnectionData("Failed to start discovering
services!");
 }

Pulse Rate Sensor

[222]

 } else if (newState == BluetoothGatt.STATE_DISCONNECTED) {
 writeConnectionData("Disconnected!");
 } else {
 writeConnectionData("Connection state changed. New
state: " + newState);
 }
 }

 // Called when services have been discovered on the remote
device.
 // It seems to be necessary to wait for this discovery to
occur before
 // manipulating any services or characteristics.
 public void onServicesDiscovered(BluetoothGatt gatt, int
status) {
 super.onServicesDiscovered(gatt, status);
 if (status == BluetoothGatt.GATT_SUCCESS) {
 writeConnectionData("Service discovery completed!");
 } else {
 writeConnectionData("Service discovery failed with
status: " + status);
 }
 // Save reference to each characteristic.
 tx = gatt.getService(UART_UUID).getCharacteristic(TX_
UUID);
 rx = gatt.getService(UART_UUID).getCharacteristic(RX_
UUID);

 // Setup notifications on RX characteristic changes (i.e.
data received).
 // First call setCharacteristicNotification to enable
notification.
 if (!gatt.setCharacteristicNotification(rx, true)) {
 writeConnectionData("Couldn't set notifications for RX
characteristic!");
 }

 // Next update the RX characteristic's client descriptor
to enable notifications.
 if (rx.getDescriptor(CLIENT_UUID) != null) {
 BluetoothGattDescriptor desc =
rx.getDescriptor(CLIENT_UUID);
 desc.setValue(BluetoothGattDescriptor.ENABLE_
NOTIFICATION_VALUE);

Chapter 10

[223]

 if (!gatt.writeDescriptor(desc)) {
 writeConnectionData("Couldn't write RX client
descriptor value!");
 }
 } else {
 writeConnectionData("Couldn't get RX client
descriptor!");
 }
 areServicesAccessible = true;
 }
 // Called when a remote characteristic changes (like the RX
characteristic).
 @Override
 public void onCharacteristicChanged(BluetoothGatt gatt,
BluetoothGattCharacteristic characteristic) {
 super.onCharacteristicChanged(gatt, characteristic);
 writeSensorData(characteristic.getStringValue(0));
 }
 };

private BluetoothAdapter.LeScanCallback scanCallback = new
BluetoothAdapter.LeScanCallback() {
 // Called when a device is found.
 @Override
 public void onLeScan(BluetoothDevice bluetoothDevice, int i,
byte[] bytes) {
 Log.d(LOG_TAG, bluetoothDevice.getAddress());

 writeConnectionData("Found device: " + bluetoothDevice.
getAddress());

 // Check if the device has the UART service.
 if (BluetoothUtils.parseUUIDs(bytes).contains(UART_UUID))
{
 // Found a device, stop the scan.
 adapter.stopLeScan(scanCallback);
 writeConnectionData("Found UART service!");
 // Connect to the device.
 // Control flow will now go to the
bluetoothGattCallback functions when BTLE events occur.
 gatt = bluetoothDevice.connectGatt(getApplicationConte
xt(), false, bluetoothGattCallback);
 }
 }
 };
}

Pulse Rate Sensor

[224]

The Android application life cycle allows us to implement methods at its different
stages, so in the following code, we will be implementing two methods which allow
us to start Bluetooth scanning when the application is activated, and stop Bluetooth
scanning and other related activities when the user exits the application:

 protected void onStart() {
 Log.d(LOG_TAG,"onStart has been called");
 super.onStart();
 // / Scan for all BTLE devices.
 // The first one with the UART service will be chosen--see the
code in the scanCallback.
 adapter = BluetoothAdapter.getDefaultAdapter();
 startScan();
 }

 //When this Activity isn't visible anymore
 protected void onStop() {
 Log.d(LOG_TAG,"onStop has been called");
 //disconnect and close Bluetooth Connection for better
reliability
 if (gatt != null) {
 gatt.disconnect();
 gatt.close();
 gatt = null;
 tx = null;
 rx = null;
 }
 super.onStop();
 }

We will also be including a number of methods that facilitate the BLE scan callback
and enable us to refactor the code and keep our code clean:

 //BLUETOOTH METHODS
 private void startScan() {
 if (!adapter.isEnabled()) {
 adapter.enable();
 }
 if (!adapter.isDiscovering()) {
 adapter.startDiscovery();
 }
 writeConnectionData("Scanning for devices...");
 adapter.startLeScan(scanCallback);
 }

Chapter 10

[225]

 private void stopScan() {
 if (adapter.isDiscovering()) {
 adapter.cancelDiscovery();
 }
 writeConnectionData("Stopping scan");
 adapter.stopLeScan(scanCallback);
 }

 private void restartScan() {
 stopScan();
 startScan();
 }

UUID parsing, unlike the previous chapters, has been moved to a utility class in
order to refactor the code and make it more readable. In order to create a utility
class, we first need to right-click on our package name and create a new package
called Bluetooth.

Then we will right-click on the new package, select New > Java Class, and name
the new class as BluetoothUtils.

After these two steps, we will replace the code within the class with the
following code:

public class BluetoothUtils {

 // Filtering by custom UUID is broken in Android 4.3 and 4.4, see:
 // http://stackoverflow.com/questions/18019161/startlescan-with-
128-bit-uuids-doesnt-work-on-native-android-ble-implementation?noredir
ect=1#comment27879874_18019161
 // This is a workaround function from the SO thread to manually
parse advertisement data.
 public static List<UUID> parseUUIDs(final byte[] advertisedData) {
 List<UUID> uuids = new ArrayList<UUID>();

 int offset = 0;
 while (offset < (advertisedData.length - 2)) {
 int len = advertisedData[offset++];
 if (len == 0)
 break;

 int type = advertisedData[offset++];
 switch (type) {
 case 0x02: // Partial list of 16-bit UUIDs
 case 0x03: // Complete list of 16-bit UUIDs
 while (len > 1) {
 int uuid16 = advertisedData[offset++];

Pulse Rate Sensor

[226]

 uuid16 += (advertisedData[offset++] << 8);
 len -= 2;
 uuids.add(UUID.fromString(String.format("%08x-
0000-1000-8000-00805f9b34fb", uuid16)));
 }
 break;
 case 0x06:// Partial list of 128-bit UUIDs
 case 0x07:// Complete list of 128-bit UUIDs
 // Loop through the advertised 128-bit UUID's.
 while (len >= 16) {
 try {
 // Wrap the advertised bits and order
them.
 ByteBuffer buffer = ByteBuffer.
wrap(advertisedData, offset++, 16).order(ByteOrder.LITTLE_ENDIAN);
 long mostSignificantBit = buffer.
getLong();
 long leastSignificantBit = buffer.
getLong();
 uuids.add(new UUID(leastSignificantBit,
 mostSignificantBit));
 } catch (IndexOutOfBoundsException e) {
 // Defensive programming.
 //Log.e(LOG_TAG, e.toString());
 continue;
 } finally {
 // Move the offset to read the next uuid.
 offset += 15;
 len -= 16;
 }
 }
 break;
 default:
 offset += (len - 1);
 break;
 }
 }
 return uuids;
 }
}

At this point, you could go ahead, build, and run the project on an Android physical
device running on Android 4.3 with Bluetooth switched on. In order to get your
pulse rate in this project, you will need to follow the instructions as mentioned
previously and tap on the Get Pulse Rate button.

Chapter 10

[227]

How to go further
We believe that this project can be taken further by possibly including other
health-related sensors that are available from a number of online outlets and
displaying the related data within a graph.

The Android graph view library supports multiple inputs using multiple
series. Further information about this can be obtained at the official website
for documentation at http://android-graphview.org/.

A screenshot of how this application could possibly look with Android graph
view would be similar to the following:

Further improvements could also be done to the user interface and user experience
where the data can be updated in real time via handler or timer implementations.
Finally, one of the most advanced integrations that could be included in this kind
of application is integration with the Google Fit SDK, which is Google's proprietary
health data platform. Another option could be storage of health data using cloud
storage APIs and local databases.

http://android-graphview.org/

Pulse Rate Sensor

[228]

Summary
In this chapter, we integrated what we had learned from the previous chapters and
created a baseline project to measure our own pulse rate.

We achieved this by creating an Android app which shows the data produced by
the pulse rate sensor connected to the Arduino Uno. Communication between both
devices is via BLE.

The baseline projects that we have introduced throughout this book are present to
motivate you to be creative and solve your daily challenges. We have realized that
the possibilities of combining Arduino and Android are endless, and we hope that
you will stretch the limitations of what is possible.

Index
Symbols
4.7K Ohm resistor

reference link 9
4 GB microSD card

reference link 114
5V relay module

reference link 9
5V servo motor

reference link 128
7.4 V battery

reference link 185
10K Ohm resistor

reference link 58
330 Ohm resistor

reference link 36

A
Adafruit CC3000 Wi-Fi breakout board

reference link 84
Adafruit nRF8001 BLE breakout board

reference link 128
Adafruit nRF8001 breakout board

reference link 36
Android Beam 169, 179
Android Developers site

URL 12
Android device, enabling for development

Developer options, enabling 18
USB debugging, enabling 18
USB debugging, using 18

Android graph view library
URL 227

Android phone sensor project
Arduino sketch, writing 132-135
diagrammatic representation, for assembled

project 130
enhancing 146
hardware, configuring 129
hardware requisites 127, 128
servomotor, testing 130-132
software requisites 127, 128

Android project
app, installing on physical Android

device 30, 31
creating 26
Hello Arduino project, setting up 27-29

Android Software Development Kit (SDK)
Android device, setting up for

development 17
aREST library, using 20-26
hardware configuration 18, 19
setting up 15, 16

Android Studio
about 7
installing 12-14
installing, on Mac 14
installing, on Windows 15

Android Virtual Device (AVD) 31
Arduino board via Bluetooth Low

Energy (BLE) project
Arduino sketch, writing 38-41
enhancing 54
hardware, configuring 37
hardware requisites 36, 37
software requisites 36, 37

[230]

Arduino board via NFC project
about 169
Arduino sketch, writing 173-175
building 169
enhancing 182
hardware, configuring 170
hardware requisites 169, 170
NFC shield, testing 171-173
software requisites 169, 170

Arduino IDE
reference link 37

Arduino motor shield
reference link 184

Arduino NFC shield
reference link 170

Arduino prototyping shield
reference link 184

Arduino sketch, Android phone
sensor project

Android app project, setting up 136
Android user interface, laying out 137, 138
code internals, setting up 139-145
permissions, setting 137, 138
writing 132-135

Arduino sketch, Arduino board via
Bluetooth Low Energy (BLE) project

Android app, creating for BLE module
connection 42-46

Android layout file, modifying 47-50
modified layout, connecting to

corresponding activity 50-54
writing 38-40

Arduino sketch, Arduino board via
NFC project

Android app, setting up 175
Android user interface, laying out 176-178
code internals, coding 178-181
permissions, setting 176-178
writing 173-175

Arduino sketch, Bluetooth weather
station project

Android application, wireframing 67-69
Android layouts, implementing in

main activity 69-72

layout files, modifying 67, 68
writing 64-67

Arduino sketch, mobile robot project
Android app, setting up 192, 193
Android user interface, laying out 193-195
basic controls, Android app 192
code internals, coding 196-204
permissions, setting 193-195
writing 191, 192

Arduino sketch, pulse rate sensor project
Android app, setting up 216
Android user interface, laying out 216-219
code internals, coding 219-226
permissions, setting 216-219
writing 214, 215

Arduino sketch, voice-activated project
Android app, setting up 154
Android user interface, laying out 155
code internals, coding 156-166
permissions, setting 155
writing 151-154

Arduino sketch, Wi-Fi power plug project
Android application, wireframing 97, 98
app icon, adding 106-108
application name, changing within

action bar 111
buttons, aligning 109, 110
buttons, styling 109, 110
data output text, centering 109
data output text, enlarging 109
layouts, implementing into code 98-105
user interface, improving 105
writing 90-96

Arduino Uno board
about 8
reference link 9

Arduino Yùn
reference link 114

aREST library
reference link 9
using 20-26

[231]

B
Beats Per Minute (BPM) 212
BluetoothGattCallback method 51
Bluetooth Low Energy API 27
Bluetooth Low Energy (BLE) module 35, 57
Bluetooth weather station project

Arduino sketch, writing 64-67
building 57
enhancing 80, 81
hardware, configuring 59, 60
hardware requisites 57, 58
sensors, testing 61-63
software requisites 57, 58
user interface, enhancing 73

Boilerplate method 52
breadboard

reference link 9
Button widget documentation

reference link 81

C
code, for Android phone sensor project

reference link 132
code, for Arduino board via

Bluetooth Low Energy (BLE) project
reference link 41

code, for Arduino board via NFC project
reference link 173

code, for Bluetooth weather station project
reference link 63

code, for mobile robot project
reference link 191

code, for pulse rate sensor project
reference link 213

code, for voice-activated project
reference link 154

code, for Wi-Fi power plug project
reference link 90

CoolTerm
reference link 25

current sensor
reference link 84

D
design guidelines

reference link 207
DFRobot miniQ chassis

about 184
reference link 185
reference link, for assembly guide 186
reference link, for documentation 188

DHT11 sensor
reference link 9
reference link, for pins configuration 19

F
fullscreen stream player, Wi-Fi remote

security camera project
Auto-Import preferences 119
implementing, on Android 119-125

G
GitHub public repository

reference link 42

H
hardware connections, Android phone

sensor project
diagrammatic representation 129
reference link 129

hardware requisites 8, 9
heart rate sensor

reference link 210
Host-Card Emulation 182

I
image asset

reference link 73
installation

Android Studio 12
Java JDK 11, 12
JDK 10

Integrated Development
Environment (IDE) 7

[232]

J
Java classes 119
Java Developer Kit. See JDK
Java JDK

installing 11, 12
JDK

installing 10
Java, installing 11, 12
version, checking 10
version, checking for Mac 10
version, checking for Windows 10

jumper wires
reference link 9

L
LEDs

reference link 36
library, for CC3000 chip

reference link 85
library, for nRF8001 chip

reference link 185

M
MjpegView.java class

reference link 125
mobile robot project

Arduino sketch, writing 191, 192
creating 183
enhancing 207
functionalities, testing 188-191
hardware, configuring 185-188
hardware requisites 184, 185
software requisites 184, 185
user interface, enhancing 204

N
NDEF library

reference link 170
Near Field Communications shield

(NFC shield)
about 169
testing 171-173

nRF8001 Arduino library, for BLE chip
reference link 37

nRF8001 board, library
reference link 128

nRF8001 breakout board
reference link 184

O
onCharacteristicChanged method 51
onCreate method 52
onResume method 52
onServicesDiscovered method 51
onStop method 52
OpenCV library for Android

reference link 126

P
parseIDs method 52
photocell

reference link 58
PN532 library

reference link 170
pulse rate sensor

reference link 212
pulse rate sensor project

about 209
Arduino sketch, writing 214, 215
enhancing 227
hardware, configuring 211, 212
hardware requisites 209, 210
sensor, testing 212-214
software requisites 209, 210

R
RX characteristic UUID 140

S
SDK Manager 15
SeeedStudio

reference link 173
sendClick method 52
serial monitor 21
Serial Peripheral Interface (SPI) 38

[233]

servomotor
about 127
testing 130, 131

sketches 21
software requisites 8, 9
stream

accessing 118

T
TextView documentation

reference link 81
TX characteristic UUID 140

U
UART service UUID 140
ultrasonic range sensor

reference link 184
ultrasonic sensor mounting kit

reference link 185
USB Video Class (UVC) 114
user interface enhancements, Bluetooth

weather station project
about 73
buttons, modifying 78-80
color, adding to text 78-80
custom app icon, adding 73-76
custom app icon, creating 73-77
data output text, centering 77
data output text, enlarging 77

user interface, mobile robot project
app icon, adding 205
buttons, styling 205, 206
enhancing 204

User Interface (UI) 29
UVC compatible USB camera

reference link 114

V
video streaming, Wi-Fi remote security

camera project
setting up 117, 118

voice-activated project
about 147
Arduino sketch, writing 151-154

enhancing 166
hardware, configuring 149-151
hardware requisites 147-149
software requisites 147-149

W
Wi-Fi power plug project

Arduino sketch, writing 90-96
building 83
enhancing 112
hardware, configuring 85-88
hardware requisites 83-85
layouts, implementing into code 100
relay, testing 89, 90
software requisites 83-85

Wi-Fi remote security camera project
advancing 126
building 113
fullscreen stream player, implementing on

Android 119-125
hardware components 114
hardware, configuring 116, 117
hardware requisites 113-116
software requisites 113-116
video streaming, setting up 117, 118

Thank you for buying
Arduino Android Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1. Learn how to dynamically adjust your
living environment with detailed
step-by-step examples.

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3. Revolutionize the way you interact with your
home on a daily basis.

C Programming for Arduino
ISBN: 978-1-84951-758-4 Paperback: 512 pages

Learn how to program and use Ardunio boards
with a series of engaging examples, illustrating
each core concept

1. Use Arduino boards in your own electronic
hardware and software projects.

2. Sense the world by using several sensory
components with your Arduino boards.

3. Create tangible and reactive interfaces with
your computer.

Please check www.PacktPub.com for information on our titles

Arduino Robotic Projects
ISBN: 978-1-78398-982-9 Paperback: 240 pages

Build awesome and complex robots with the power
of Arduino

1. Develop a series of exciting robots that can sail,
go under water, and fly.

2. Simple, easy-to-understand instructions to
program Arduino.

3. Effectively control the movements of all types
of motors using Arduino.

Arduino Networking
ISBN: 978-1-78398-686-6 Paperback: 118 pages

Connect your projects to the Web using the Arduino
Ethernet library

1. Learn to use the Arduino Ethernet shield
and Ethernet library.

2. Control the Arduino projects from your
computer using the Arduino Ethernet.

3. This is a step-by-step guide to creating
Internet of Things projects using the
Arduino Ethernet shield.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Your Workspace
	Hardware and software requirements
	Installing Java Developer Kit
	Checking the JDK version
	Mac
	Windows

	Installing Java

	Installing Android Studio
	Mac
	Windows

	Setting up the Android Software Development Kit
	Setting up your physical Android device for development
	Enabling developer options
	Enabling USB debugging
	Entrusting the computer with the installed IDE using secure USB debugging (devices with Android 4.4.2)

	Hardware configuration
	Learning to use the aREST library
	Creating your first Android project
	Setting up your first Hello Arduino project
	Installing your app on your physical device

	Summary

	Chapter 2: Controlling an Arduino Board via Bluetooth
	Hardware and software requirements
	Configuring the hardware

	Writing the Arduino sketch
	How to create a simple Android app to connect to the BLE module
	Modifying the Android layout file
	Connecting the modified layout to the corresponding activity
	How to go further

	Summary

	Chapter 3: Bluetooth Weather Station
	Hardware and software requirements
	Hardware configuration
	Testing the sensors

	Writing the Arduino sketch
	Wireframing our Android application and modifying the layout files
	Implementing Android layouts in the main activity

	Enhancing the user interface
	Creating and adding our very own app icon
	Centering and enlarging the data output text
	Modifying the buttons and adding some color to our text
	How to go further

	Summary

	Chapter 4: Wi-Fi Smart Power Plug
	Hardware and software requirements
	Configuring the hardware
	Testing the relay

	Writing the Arduino sketch
	Wireframing our Android application
	Implementing our layouts into the code
	Polishing the user interface and experience
	Adding a new app icon
	Centering and enlarging the data output text
	Aligning and styling the buttons
	Changing the application name within the action bar
	How to go further

	Summary

	Chapter 5: Wi-Fi Remote Security Camera
	Hardware and software requirements
	Hardware configuration
	Setting up video streaming
	Implementing a fullscreen stream player on Android
	How to go further

	Summary

	Chapter 6: Android Phone Sensor
	Hardware and software requirements
	Configuring the hardware
	Testing the servo

	Writing the Arduino sketch
	Setting up the Android app project
	Laying out the Android user interface and permissions
	Setting up the app's internals
	How to go further

	Summary

	Chapter 7: Voice-activated Arduino
	Hardware and software requirements
	Configuring the hardware

	Writing the Arduino sketch
	Setting up the Android app
	Laying out the Android user interface and permissions
	Coding the app's internals
	How to go further

	Summary

	Chapter 8: Control an Arduino Board via NFC
	Hardware and software requirements
	Configuring the hardware
	Testing the NFC shield

	Writing the Arduino sketch
	Setting up the Android app
	Laying out the Android user interface and permissions
	Coding the app's internals
	How to go further

	Summary

	Chapter 9: Bluetooth Low Energy Mobile Robot
	Hardware and software requirements
	Configuring the hardware
	Testing the robot

	Writing the Arduino sketch
	Setting up the Android app
	Laying out the Android user interface and setting permissions
	Coding the app's internals

	Enhancing the user interface further
	Adding a new app icon
	Styling the user interface buttons
	How to go further

	Summary

	Chapter 10: Pulse Rate Sensor
	Hardware and software requirements
	Configuring our hardware
	Testing the sensor

	Writing the Arduino sketch
	Setting up the Android app
	Laying out the Android user interface and setting permissions
	Coding the app's internals
	How to go further

	Summary

	Index

