

978-1-492-05351-4

[LSI]

Web Development with Node and Express
by Ethan Brown

Copyright © 2020 Ethan Brown. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Developmental Editor: Angela Rufino
Production Editor: Nan Barber
Copyeditor: Kim Wimpsett
Proofreader: Sharon Wilkey

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: Second Edition

Revision History for the Second Edition
2019-11-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492053514 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Web Development with Node and
Express, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492053514

This book is dedicated to my family:

My father, Tom, who gave me a love of engineering; my mother, Ann, who gave me a
love of writing; and my sister, Meris, who has been a constant companion.

Table of Contents

Preface. xiii

1. Introducing Express. 1
The JavaScript Revolution 1
Introducing Express 3
Server-Side and Client-Side Applications 4
A Brief History of Express 5
Node: A New Kind of Web Server 5
The Node Ecosystem 7
Licensing 8
Conclusion 9

2. Getting Started with Node. 11
Getting Node 11
Using the Terminal 12
Editors 13
npm 14
A Simple Web Server with Node 15

Hello World 15
Event-Driven Programming 16
Routing 17
Serving Static Resources 18

Onward to Express 20

3. Saving Time with Express. 21
Scaffolding 21
The Meadowlark Travel Website 22
Initial Steps 22

v

Views and Layouts 26
Static Files and Views 29
Dynamic Content in Views 30
Conclusion 30

4. Tidying Up. 31
File and Directory Structure 31
Best Practices 32
Version Control 32
How to Use Git with This Book 33

If You’re Following Along by Doing It Yourself 33
If You’re Following Along by Using the Official Repository 34

npm Packages 36
Project Metadata 37
Node Modules 37
Conclusion 39

5. Quality Assurance. 41
The QA Plan 42
QA: Is It Worth It? 43
Logic Versus Presentation 44
The Types of Tests 45
Overview of QA Techniques 45
Installing and Configuring Jest 45
Unit Testing 46

Mocking 47
Refactoring the Application for Testability 47
Writing Our First Test 48
Test Maintenance 50
Code Coverage 50

Integration Testing 51
Linting 54
Continuous Integration 58
Conclusion 58

6. The Request and Response Objects. 59
The Parts of a URL 59
HTTP Request Methods 61
Request Headers 61
Response Headers 62
Internet Media Types 62
Request Body 63

vi | Table of Contents

The Request Object 63
The Response Object 65
Getting More Information 67
Boiling It Down 68

Rendering Content 68
Processing Forms 69
Providing an API 70

Conclusion 72

7. Templating with Handlebars. 73
There Are No Absolute Rules Except This One 75
Choosing a Template Engine 75
Pug: A Different Approach 76
Handlebars Basics 77

Comments 78
Blocks 78
Server-Side Templates 80
Views and Layouts 81
Using Layouts (or Not) in Express 82
Sections 83
Partials 85
Perfecting Your Templates 87

Conclusion 88

8. Form Handling. 89
Sending Client Data to the Server 89
HTML Forms 90
Encoding 91
Different Approaches to Form Handling 91
Form Handling with Express 93
Using Fetch to Send Form Data 95
File Uploads 97

File Uploads with Fetch 99
Improving File Upload UI 100
Conclusion 100

9. Cookies and Sessions. 103
Externalizing Credentials 105
Cookies in Express 106
Examining Cookies 107
Sessions 107

Memory Stores 108

Table of Contents | vii

Using Sessions 109
Using Sessions to Implement Flash Messages 110
What to Use Sessions For 112
Conclusion 112

10. Middleware. 113
Middleware Principles 114
Middleware Examples 115
Common Middleware 118
Third-Party Middleware 120
Conclusion 120

11. Sending Email. 121
SMTP, MSAs, and MTAs 121
Receiving Email 122
Email Headers 122
Email Formats 123
HTML Email 123
Nodemailer 124

Sending Mail 125
Sending Mail to Multiple Recipients 126

Better Options for Bulk Email 127
Sending HTML Email 127

Images in HTML Email 127
Using Views to Send HTML Email 128
Encapsulating Email Functionality 130

Conclusion 131

12. Production Concerns. 133
Execution Environments 133
Environment-Specific Configuration 134
Running Your Node Process 136
Scaling Your Website 137

Scaling Out with App Clusters 138
Handling Uncaught Exceptions 140
Scaling Out with Multiple Servers 142

Monitoring Your Website 143
Third-Party Uptime Monitors 143

Stress Testing 143
Conclusion 145

viii | Table of Contents

13. Persistence. 147
Filesystem Persistence 147
Cloud Persistence 149
Database Persistence 150

A Note on Performance 151
Abstracting the Database Layer 151
Setting Up MongoDB 153
Mongoose 154
Database Connections with Mongoose 154
Creating Schemas and Models 155
Seeding Initial Data 156
Retrieving Data 158
Adding Data 160
PostgreSQL 162
Adding Data 168

Using a Database for Session Storage 169
Conclusion 172

14. Routing. 173
Routes and SEO 175
Subdomains 175
Route Handlers Are Middleware 177
Route Paths and Regular Expressions 178
Route Parameters 179
Organizing Routes 180
Declaring Routes in a Module 181
Grouping Handlers Logically 182
Automatically Rendering Views 183
Conclusion 184

15. REST APIs and JSON. 185
JSON and XML 186
Our API 186
API Error Reporting 187
Cross-Origin Resource Sharing 188
Our Tests 189
Using Express to Provide an API 191
Conclusion 192

16. Single-Page Applications. 193
A Short History of Web Application Development 193
SPA Technologies 196

Table of Contents | ix

Creating a React App 197
React Basics 198

The Home Page 200
Routing 201
Vacations Page—Visual Design 204
Vacations Page—Server Integration 205
Sending Information to the Server 208
State Management 210
Deployment Options 212

Conclusion 212

17. Static Content. 215
Performance Considerations 216
Content Delivery Networks 217
Designing for CDNs 218

Server-Rendered Website 218
Single-Page Applications 219

Caching Static Assets 219
Changing Your Static Content 220
Conclusion 221

18. Security. 223
HTTPS 223

Generating Your Own Certificate 224
Using a Free Certificate Authority 225
Purchasing a Certificate 226
Enabling HTTPS for Your Express App 228
A Note on Ports 229
HTTPS and Proxies 230

Cross-Site Request Forgery 231
Authentication 232

Authentication Versus Authorization 232
The Problem with Passwords 233
Third-Party Authentication 234
Storing Users in Your Database 234
Authentication Versus Registration and the User Experience 236
Passport 236
Role-Based Authorization 246
Adding Authentication Providers 247

Conclusion 248

x | Table of Contents

19. Integrating with Third-Party APIs. 249
Social Media 249

Social Media Plugins and Site Performance 249
Searching for Tweets 250
Rendering Tweets 253

Geocoding 256
Geocoding with Google 256
Geocoding Your Data 258
Displaying a Map 260

Weather Data 261
Conclusion 263

20. Debugging. 265
The First Principle of Debugging 265
Take Advantage of REPL and the Console 266
Using Node’s Built-in Debugger 267
Node Inspector Clients 268
Debugging Asynchronous Functions 272
Debugging Express 272
Conclusion 275

21. Going Live. 277
Domain Registration and Hosting 277

Domain Name System 278
Security 279
Top-Level Domains 279
Subdomains 280
Nameservers 281
Hosting 283
Deployment 285

Conclusion 288

22. Maintenance. 291
The Principles of Maintenance 291

Have a Longevity Plan 291
Use Source Control 293
Use an Issue Tracker 293
Exercise Good Hygiene 294
Don’t Procrastinate 294
Do Routine QA Checks 294
Monitor Analytics 295
Optimize Performance 295

Table of Contents | xi

Prioritize Lead Tracking 296
Prevent “Invisible” Failures 297

Code Reuse and Refactoring 298
Private npm Registry 298
Middleware 298

Conclusion 300

23. Additional Resources. 301
Online Documentation 301
Periodicals 302
Stack Overflow 302
Contributing to Express 304
Conclusion 306

Index. 307

xii | Table of Contents

Preface

Who This Book Is For
This book is for programmers who want to create web applications (traditional web‐
sites; single-page applications with React, Angular, or Vue; REST APIs; or anything in
between) using JavaScript, Node, and Express. One of the exciting aspects of Node
development is that it has attracted a whole new audience of programmers. The
accessibility and flexibility of JavaScript have attracted self-taught programmers from
all over the world. At no time in the history of computer science has programming
been so accessible. The number and quality of online resources for learning to pro‐
gram (and getting help when you get stuck) is truly astonishing and inspiring. So to
those new (possibly self-taught) programmers, I welcome you.

Then, of course, there are the programmers like me, who have been around for a
while. Like many programmers of my era, I started off with assembler and BASIC and
went through Pascal, C++, Perl, Java, PHP, Ruby, C, C#, and JavaScript. At university,
I was exposed to more niche languages such as ML, LISP, and PROLOG. Many of
these languages are near and dear to my heart, but in none of these languages do I see
so much promise as I do in JavaScript. So I am also writing this book for program‐
mers like myself, who have a lot of experience and perhaps a more philosophical out‐
look on specific technologies.

No experience with Node is necessary, but you should have some experience with
JavaScript. If you’re new to programming, I recommend Codecademy. If you’re an
intermediate or experienced programmer, I recommend my own book, Learning
JavaScript, 3rd Edition (O’Reilly). The examples in this book can be used with any sys‐
tem that Node works on (which covers Windows, macOS, and Linux, among others).
The examples are geared toward command-line (terminal) users, so you should have
some familiarity with your system’s terminal.

Most important, this book is for programmers who are excited. Excited about the
future of the internet and want to be part of it. Excited about learning new things,

xiii

http://bit.ly/2KfDqkQ
http://shop.oreilly.com/product/0636920035534.do
http://shop.oreilly.com/product/0636920035534.do

new techniques, and new ways of looking at web development. If, dear reader, you are
not excited, I hope you will be by the time you reach the end of this book….

Notes on the Second Edition
It was a joy to write the first edition of this book, and I am to this day pleased with the
practical advice I was able to put into it and the warm response of my readers. The
first edition was published just as Express 4.0 was released from beta, and while
Express is still on version 4.x, the middleware and tools that go along with Express
have undergone massive changes. Furthermore, JavaScript itself has evolved, and even
the way web applications are designed has undergone a tectonic shift (away from
pure server-side rendering and toward single-page applications [SPAs]). While many
of the principles in the first edition are still useful and valid, the specific techniques
and tools are almost completely different. A new edition is overdue. Because of the
ascendancy of SPAs, the focus of this second edition has also shifted to place more
emphasis on Express as a server for APIs and static assets, and it includes an SPA
example.

How This Book Is Organized
Chapter 1 and Chapter 2 will introduce you to Node and Express and some of the
tools you’ll be using throughout the book. In Chapter 3 and Chapter 4, you start
using Express and build the skeleton of a sample website that will be used as a run‐
ning example throughout the rest of the book.

Chapter 5 discusses testing and QA, and Chapter 6 covers some of Node’s more
important constructs and how they are extended and used by Express. Chapter 7 cov‐
ers templating (using Handlebars), which lays the foundation of building useful web‐
sites with Express. Chapter 8 and Chapter 9 cover cookies, sessions, and form
handlers, rounding out the things you need to know to build basic functional web‐
sites with Express.

Chapter 10 delves into middleware, a concept central to Express. Chapter 11 explains
how to use middleware to send email from the server and discusses security and lay‐
out issues inherent to email.

Chapter 12 offers a preview into production concerns. Even though at this stage in
the book you don’t have all the information you need to build a production-ready
website, thinking about production now can save you from major headaches in the
future.

Chapter 13 is about persistence, with a focus on MongoDB (one of the leading docu‐
ment databases) and PostgreSQL (a popular open-source relational database manage‐
ment system).

xiv | Preface

Chapter 14 gets into the details of routing with Express (how URLs are mapped to
content), and Chapter 15 takes a diversion into writing APIs with Express. Chapter 17
covers the details of serving static content, with a focus on maximizing performance.

Chapter 18 discusses security: how to build authentication and authorization into
your app (with a focus on using a third-party authentication provider), as well as how
to run your site over HTTPS.

Chapter 19 explains how to integrate with third-party services. Examples used are
Twitter, Google Maps, and the US National Weather Service.

Chapter 16 takes what we’ve learned about Express and uses it to refactor the running
example as an SPA, with Express as the backend server providing the API we created
in Chapter 15.

Chapter 20 and Chapter 21 get you ready for the big day: your site launch. They cover
debugging, so you can root out any defects before launch, and the process of going
live. Chapter 22 talks about the next important (and oft-neglected) phase: mainte‐
nance.

The book concludes with Chapter 23, which points you to additional resources,
should you want to further your education about Node and Express, and where you
can go to get help.

Example Website
Starting in Chapter 3, a running example will be used throughout the book: the
Meadowlark Travel website. I wrote the first edition just after getting back from a trip
to Lisbon, and I had travel on my mind, so the example website I chose is for a fic‐
tional travel company in my home state of Oregon (the Western Meadowlark is the
state songbird of Oregon). Meadowlark Travel allows travelers to connect to local
“amateur tour guides,” and it partners with companies offering bike and scooter rent‐
als and local tours, with a focus on ecotourism.

Like any pedagogical example, the Meadowlark Travel website is contrived, but it is
an example that covers many of the challenges facing real-world websites: third-party
component integration, geolocation, ecommerce, performance, and security.

As the focus on this book is backend infrastructure, the example website will not be
complete; it merely serves as a fictional example of a real-world website to provide
depth and context to the examples. Presumably, you are working on your own web‐
site, and you can use the Meadowlark Travel example as a template for it.

Conventions Used in This Book
The following typographical conventions are used in this book:

Preface | xv

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/EthanRBrown/web-development-with-node-and-express-2e.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐

xvi | Preface

https://github.com/EthanRBrown/web-development-with-node-and-express-2e

cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Web Development with Node and
Express, Second Edition by Ethan Brown (O’Reilly). Copyright 2019 Ethan Brown,
978-1-492-05351-4.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/web_dev_node_express_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xvii

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/web_dev_node_express_2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
So many people in my life have played a part in making this book a reality; it would
not have been possible without the influence of all the people who have touched my
life and made me who I am today.

I would like to start out by thanking everyone at Pop Art: not only has my time at Pop
Art given me a renewed passion for engineering, but I have learned so much from
everyone there, and without their support, this book would not exist. I am grateful to
Steve Rosenbaum for creating an inspiring place to work, and to Del Olds for bring‐
ing me on board, making me feel welcome, and being an honorable leader. Thanks to
Paul Inman for his unwavering support and inspiring attitude toward engineering,
and Tony Alferez for his warm support and for helping me carve out time for writing
without impacting Pop Art. Finally, thanks to all the great engineers I have worked
with, who keep me on my toes: John Skelton, Dylan Hallstrom, Greg Yung, Quinn
Michaels, CJ Stritzel, Colwyn Fritze-Moor, Diana Holland, Sam Wilskey, Cory Buck‐
ley, and Damion Moyer.

I owe a great debt of gratitude to my current team at Value Management Strategies,
Inc. I have learned so much about the business side of software from Robert Stewart
and Greg Brink, and so much about team communication, cohesion, and effective‐
ness from Ashley Carson (thanks for your unwavering support, Scratch Chromatic).
Terry Hays, Cheryl Kramer, and Eric Trimble, thank you all for your hard work and
support! And thanks to Damon Yeutter, Tyler Brenton, and Brad Wells for their criti‐
cal work on requirements analysis and project management. Most importantly, thank
you to the talented and dedicated developers who have worked with me—tirelessly—
at VMS: Adam Smith, Shane Ryan, Jeremy Loss, Dan Mace, Michael Meow, Julianne
Soifer, Matt Nakatani, and Jake Feldmann.

Thanks to all of my bandmates at School of Rock! What a crazy journey it’s been and
what a joyful creative outlet to have. Special thanks to the instructors who share their
passion and knowledge of music: Josh Thomas, Amanda Sloane, Dave Coniglio, Dan
Lee, Derek Blackstone, and Cory West. Thank you all for giving me the opportunity
to be a rock star!

Zach Mason, thank you for being an inspiration to me. This book may be no The Lost
Books of the Odyssey, but it is mine, and I don’t know if I would have been so bold
without your example.

Elizabeth and Ezra, thank you for the gifts you both gave me. I will love you both for‐
ever.

xviii | Preface

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I owe everything to my family. I couldn’t have wished for a better, more loving educa‐
tion than the one they gave me, and I see their exceptional parenting reflected in my
sister too.

Many thanks to Simon St. Laurent for giving me this opportunity, and to Angela
Rufino (second edition) and Brian Anderson (first edition) for their steady and
encouraging editing. Thanks to everyone at O’Reilly for their dedication and passion.
Thanks to Alejandra Olvera-Novack, Chetan Karande, Brian Sletten, Tamas Piros,
Jennifer Pierce, Mike Wilson, Ray Villalobos, and Eric Elliot for their thorough and
constructive technical reviews.

Katy Roberts and Hanna Nelson provided invaluable feedback and advice on my
“over the transom” proposal that made this book possible. Thank you both so much!
Thanks to Chris Cowell-Shah for his excellent feedback on the QA chapter.

Lastly, thanks to my dear friends, without whom I surely would have gone insane:
Byron Clayton, Mark Booth, Katy Roberts, and Kimberly Christensen. I love you all.

Preface | xix

CHAPTER 1

Introducing Express

The JavaScript Revolution
Before I introduce the main subject of this book, it is important to provide a little
background and historical context, and that means talking about JavaScript and
Node. The age of JavaScript is truly upon us. From its humble beginnings as a client-
side scripting language, not only has it become completely ubiquitous on the client
side, but its use as a server-side language has finally taken off too, thanks to Node.

The promise of an all-JavaScript technology stack is clear: no more context switching!
No longer do you have to switch mental gears from JavaScript to PHP, C#, Ruby, or
Python (or any other server-side language). Furthermore, it empowers frontend engi‐
neers to make the jump to server-side programming. This is not to say that server-
side programming is strictly about the language; there’s still a lot to learn. With
JavaScript, though, at least the language won’t be a barrier.

This book is for all those who see the promise of the JavaScript technology stack. Per‐
haps you are a frontend engineer looking to extend your experience into backend
development. Perhaps you’re an experienced backend developer like myself who is
looking to JavaScript as a viable alternative to entrenched server-side languages.

If you’ve been a software engineer for as long as I have, you have seen many lan‐
guages, frameworks, and APIs come into vogue. Some have taken off, and some have
faded into obsolescence. You probably take pride in your ability to rapidly learn new
languages, new systems. Every new language you come across feels a little more
familiar: you recognize a bit here from a language you learned in college, a bit there
from that job you had a few years ago. It feels good to have that kind of perspective,
certainly, but it’s also wearying. Sometimes you want to just get something done,
without having to learn a whole new technology or dust off skills you haven’t used in
months or years.

1

JavaScript may seem, at first, an unlikely champion. I sympathize, believe me. If you
told me in 2007 that I would not only come to think of JavaScript as my language of
choice, but also write a book about it, I would have told you you were crazy. I had all
the usual prejudices against JavaScript: I thought it was a “toy” language, something
for amateurs and dilettantes to mangle and abuse. To be fair, JavaScript did lower the
bar for amateurs, and there was a lot of questionable JavaScript out there, which did
not help the language’s reputation. To turn a popular saying on its head, “Hate the
player, not the game.”

It is unfortunate that people suffer this prejudice against JavaScript; it has prevented
people from discovering how powerful, flexible, and elegant the language is. Many
people are just now starting to take JavaScript seriously, even though the language as
we know it now has been around since 1996 (although many of its more attractive
features were added in 2005).

By picking up this book, you are probably free of that prejudice: either because, like
me, you have gotten past it or because you never had it in the first place. In either
case, you are fortunate, and I look forward to introducing you to Express, a technol‐
ogy made possible by a delightful and surprising language.

In 2009, years after people had started to realize the power and expressiveness of
JavaScript as a browser scripting language, Ryan Dahl saw JavaScript’s potential as a
server-side language, and Node.js was born. This was a fertile time for internet tech‐
nology. Ruby (and Ruby on Rails) took some great ideas from academic computer
science, combined them with some new ideas of its own, and showed the world a
quicker way to build websites and web applications. Microsoft, in a valiant effort to
become relevant in the internet age, did amazing things with .NET and learned not
only from Ruby and JavaScript but also from Java’s mistakes, while borrowing heavily
from the halls of academia.

Today, web developers have the freedom to use the very latest JavaScript language fea‐
tures without fear of alienating users with older browsers, thanks to transcompilation
technologies like Babel. Webpack has become the ubiquitous solution for managing
dependencies in web applications and ensuring performance, and frameworks such
as React, Angular, and Vue are changing the way people approach web development,
relegating declarative Document Object Model (DOM) manipulation libraries (such
as jQuery) to yesterday’s news.

It is an exciting time to be involved in internet technology. Everywhere there are
amazing new ideas (or amazing old ideas revitalized). The spirit of innovation and
excitement is greater now than it has been in many years.

2 | Chapter 1: Introducing Express

Introducing Express
The Express website describes Express as a “minimal and flexible Node.js web appli‐
cation framework that provides a robust set of features for web and mobile applica‐
tions.” What does that really mean, though? Let’s break that description down:

Minimal
This is one of the most appealing aspects of Express. Many times, framework
developers forget that usually “less is more.” The Express philosophy is to provide
the minimal layer between your brain and the server. That doesn’t mean that it’s
not robust or that it doesn’t have enough useful features. It means that it gets in
your way less, allowing you full expression of your ideas, while at the same time
providing something useful. Express provides you a minimal framework, and
you can add in different parts of Express functionality as needed, replacing what‐
ever doesn’t meet your needs. This is a breath of fresh air. So many frameworks
give you everything, leaving you with a bloated, mysterious, and complex project
before you’ve even written a single line of code. Often, the first task is to waste
time carving off unneeded functionality or replacing the functionality that
doesn’t meet requirements. Express takes the opposite approach, allowing you to
add what you need when you need it.

Flexible
At the end of the day, what Express does is very simple: it accepts HTTP requests
from a client (which can be a browser, a mobile device, another server, a desktop
application…anything that speaks HTTP) and returns an HTTP response. This
basic pattern describes almost everything connected to the internet, making
Express extremely flexible in its applications.

Web application framework
Perhaps a more accurate description would be “server-side part of a web applica‐
tion framework.” Today, when you think of “web application framework,” you
generally think of a single-page application framework like React, Angular, or
Vue. However, except for a handful of standalone applications, most web applica‐
tions need to share data and integrate with other services. They generally do so
through a web API, which can be considered the server-side component of a web
application framework. Note that it’s still possible (and sometimes desirable) to
build an entire application with server-side rendering only, in which case Express
may very well constitute the entire web application framework!

In addition to the features of Express explicitly mentioned in its own description, I
would add two of my own:

Fast
As Express became the go-to web framework for Node.js development, it attrac‐
ted a lot of attention from big companies that were running high-performance,

Introducing Express | 3

high-traffic websites. This created pressure on the Express team to focus on per‐
formance, and Express now offers leading performance for high-traffic websites.

Unopinionated
One of the hallmarks of the JavaScript ecosystem is its size and diversity. While
Express is often at the center of Node.js web development, there are hundreds (if
not thousands) of community packages that go into an Express application. The
Express team recognized this ecosystem diversity and responded by providing an
extremely flexible middleware system that makes it easy to use the components
of your choice in creating your application. Over the course of Express’s develop‐
ment, you can see it shedding “built-in” components in favor of configurable
middleware.

I mentioned that Express is the “server-side part” of a web application framework…so
we should probably consider the relationship between server-side and client-side
applications.

Server-Side and Client-Side Applications
A server-side application is one where the pages in the application are rendered on the
server (as HTML, CSS, images and other multimedia assets, and JavaScript) and sent
to the client. A client-side application, by contrast, renders most of its own user inter‐
face from an initial application bundle that is sent only once. That is, once the
browser receives the initial (generally very minimal) HTML, it uses JavaScript to
modify the DOM dynamically and doesn’t need to rely on the server to display new
pages (though raw data usually still comes from the server).

Prior to 1999, server-side applications were the standard. As a matter of fact, the term
web application was officially introduced that year. I think of the period roughly
between 1999 and 2012 as the Web 2.0 era, during which the technologies and techni‐
ques that would eventually become client-side applications were being developed. By
2012, with smartphones firmly entrenched, it was common practice to send as little
information as possible over the network, a practice that favored client-side applica‐
tions.

Server-side applications are often called server-side rendered (SSR), and client-side
applications are usually called single-page applications (SPAs). Client-side applications
are fully realized in frameworks such as React, Angular, and Vue. I’ve always felt that
“single-page” was a bit of a misnomer because—from the user’s perspective—there
can indeed be many pages. The only difference is whether the page is shipped from
the server or dynamically rendered in the client.

In reality, there are many blurred lines between server-side applications and client-
side applications. Many client-side applications have two to three HTML bundles that
can be sent to that client (for example, the public interface and the logged-in inter‐

4 | Chapter 1: Introducing Express

face, or a regular interface and an admin interface). Furthermore, SPAs are often
combined with SSR to increase first-page-load performance and aid in search engine
optimization (SEO).

In general, if the server sends a small number of HTML files (generally one to three),
and the user experiences a rich, multiview experience based on dynamic DOM
manipulation, we consider that client-side rendering. The data (usually in the form of
JSON) and multimedia assets for different views generally still come from the net‐
work.

Express, of course, doesn’t really care much if you’re making a server-side or client-
side application; it is happy to fill either role. It makes no difference to Express if you
are serving one HTML bundle or a hundred.

While SPAs have definitively “won” as the predominant web application architecture,
this book begins with examples consistent with server-side applications. They are still
relevant, and the conceptual difference between serving one HTML bundle or many
is small. There is an SPA example in Chapter 16.

A Brief History of Express
The creator of Express, TJ Holowaychuk, describes Express as a web framework
inspired by Sinatra, which is a web framework based on Ruby. It is no surprise that
Express borrows from a framework built on Ruby: Ruby spawned a wealth of great
approaches to web development, aimed at making web development faster, more effi‐
cient, and more maintainable.

As much as Express was inspired by Sinatra, it was also deeply intertwined with Con‐
nect, a “plug-in” library for Node. Connect coined the term middleware to describe
pluggable Node modules that can handle web requests to varying degrees. In 2014, in
version 4.0, Express removed its dependency on Connect, but it still owes its concept
of middleware to Connect.

Express underwent a fairly substantial rewrite between 2.x and 3.0,
then again between 3.x and 4.0. This book focuses on version 4.0.

Node: A New Kind of Web Server
In a way, Node has a lot in common with other popular web servers, like Microsoft’s
Internet Information Services (IIS) or Apache. What is more interesting, though, is
how it differs, so let’s start there.

A Brief History of Express | 5

1 Often called just in time (JIT) compilation.

Much like Express, Node’s approach to web servers is very minimal. Unlike IIS or
Apache, which a person can spend many years mastering, Node is easy to set up and
configure. That is not to say that tuning Node servers for maximum performance in a
production setting is a trivial matter; it’s just that the configuration options are sim‐
pler and more straightforward.

Another major difference between Node and more traditional web servers is that
Node is single threaded. At first blush, this may seem like a step backward. As it turns
out, it is a stroke of genius. Single threading vastly simplifies the business of writing
web apps, and if you need the performance of a multithreaded app, you can simply
spin up more instances of Node, and you will effectively have the performance bene‐
fits of multithreading. The astute reader is probably thinking this sounds like smoke
and mirrors. After all, isn’t multithreading through server parallelism (as opposed to
app parallelism) simply moving the complexity around, not eliminating it? Perhaps,
but in my experience, it has moved the complexity to exactly where it should be. Fur‐
thermore, with the growing popularity of cloud computing and treating servers as
generic commodities, this approach makes a lot more sense. IIS and Apache are pow‐
erful indeed, and they are designed to squeeze the very last drop of performance out
of today’s powerful hardware. That comes at a cost, though: they require considerable
expertise to set up and tune to achieve that performance.

In terms of the way apps are written, Node apps have more in common with PHP or
Ruby apps than .NET or Java apps. While the JavaScript engine that Node uses (Goo‐
gle’s V8) does compile JavaScript to native machine code (much like C or C++), it
does so transparently,1 so from the user’s perspective, it behaves like a purely inter‐
preted language. Not having a separate compile step reduces maintenance and
deployment hassles: all you have to do is update a JavaScript file, and your changes
will automatically be available.

Another compelling benefit of Node apps is that Node is incredibly platform inde‐
pendent. It’s not the first or only platform-independent server technology, but plat‐
form independence is really more of a spectrum than a binary proposition. For
example, you can run .NET apps on a Linux server thanks to Mono, but it’s a painful
endeavor thanks to spotty documentation and system incompatibilities. Likewise, you
can run PHP apps on a Windows server, but it is not generally as easy to set up as it is
on a Linux machine. Node, on the other hand, is a snap to set up on all the major
operating systems (Windows, macOS, and Linux) and enables easy collaboration.
Among website design teams, a mix of PCs and Macs is quite common. Certain plat‐
forms, like .NET, introduce challenges for frontend developers and designers, who
often use Macs, which has a huge impact on collaboration and efficiency. The idea of

6 | Chapter 1: Introducing Express

being able to spin up a functioning server on any operating system in a matter of
minutes (or even seconds!) is a dream come true.

The Node Ecosystem
Node, of course, lies at the heart of the stack. It’s the software that enables JavaScript
to run on the server, uncoupled from a browser, which in turn allows frameworks
written in JavaScript (like Express) to be used. Another important component is the
database, which will be covered in more depth in Chapter 13. All but the simplest of
web apps will need a database, and there are databases that are more at home in the
Node ecosystem than others.

It is unsurprising that database interfaces are available for all the major relational
databases (MySQL, MariaDB, PostgreSQL, Oracle, SQL Server); it would be foolish to
neglect those established behemoths. However, the advent of Node development has
revitalized a new approach to database storage: the so-called NoSQL databases. It’s
not always helpful to define something as what it’s not, so we’ll add that these NoSQL
databases might be more properly called “document databases” or “key/value pair
databases.” They provide a conceptually simpler approach to data storage. There are
many, but MongoDB is one of the front-runners, and it’s the NoSQL database we will
be using in this book.

Because building a functional website depends on multiple pieces of technology,
acronyms have been spawned to describe the “stack” that a website is built on. For
example, the combination of Linux, Apache, MySQL, and PHP is referred to as the
LAMP stack. Valeri Karpov, an engineer at MongoDB, coined the acronym MEAN:
Mongo, Express, Angular, and Node. While it’s certainly catchy, it is limiting: there
are so many choices for databases and application frameworks that “MEAN” doesn’t
capture the diversity of the ecosystem (it also leaves out what I believe is an important
component: rendering engines).

Coining an inclusive acronym is an interesting exercise. The indispensable compo‐
nent, of course, is Node. While there are other server-side JavaScript containers,
Node is emerging as the dominant one. Express, also, is not the only web app frame‐
work available, though it is close to Node in its dominance. The two other compo‐
nents that are usually essential for web app development are a database server and a
rendering engine (either a templating engine like Handlebars or an SPA framework
like React). For these last two components, there aren’t as many clear front-runners,
and this is where I believe it’s a disservice to be restrictive.

What ties all these technologies together is JavaScript, so in an effort to be inclusive, I
will be referring to the JavaScript stack. For the purposes of this book, that means
Node, Express, and MongoDB (there is also a relational database example in Chap‐
ter 13).

The Node Ecosystem | 7

Licensing
When developing Node applications, you may find yourself having to pay more
attention to licensing than you ever have before (I certainly have). One of the beauties
of the Node ecosystem is the vast array of packages available to you. However, each of
those packages carries its own licensing, and worse, each package may depend on
other packages, meaning that understanding the licensing of the various parts of the
app you’ve written can be tricky.

However, there is some good news. One of the most popular licenses for Node pack‐
ages is the MIT license, which is painlessly permissive, allowing you to do almost any‐
thing you want, including use the package in closed source software. However, you
shouldn’t just assume every package you use is MIT licensed.

There are several packages available in npm that will try to figure
out the licenses of each dependency in your project. Search npm
for nlf or license-report.

While MIT is the most common license you will encounter, you may also see the fol‐
lowing licenses:

GNU General Public License (GPL)
The GPL is a popular open source license that has been cleverly crafted to keep
software free. That means if you use GPL-licensed code in your project, your
project must also be GPL licensed. Naturally, this means your project can’t be
closed source.

Apache 2.0
This license, like MIT, allows you to use a different license for your project,
including a closed source license. You must, however, include notice of compo‐
nents that use the Apache 2.0 license.

Berkeley Software Distribution (BSD)
Similar to Apache, this license allows you to use whatever license you wish for
your project, as long as you include notice of the BSD-licensed components.

Software is sometimes dual licensed (licensed under two different
licenses). A common reason for doing this is to allow the software
to be used in both GPL projects and projects with more permissive
licensing. (For a component to be used in GPL software, the com‐
ponent must be GPL licensed.) This is a licensing scheme I often
employ with my own projects: dual licensing with GPL and MIT.

8 | Chapter 1: Introducing Express

Lastly, if you find yourself writing your own packages, you should be a good citizen
and pick a license for your package, and document it correctly. There is nothing more
frustrating to a developer than using someone’s package and having to dig around in
the source to determine the licensing or, worse, find that it isn’t licensed at all.

Conclusion
I hope this chapter has given you some more insight into what Express is and how it
fits into the larger Node and JavaScript ecosystem, as well some clarity on the rela‐
tionship between server-side and client-side web applications.

If you’re still feeling confused about what Express actually is, don’t worry: sometimes
it’s much easier to just start using something to understand what it is, and this book
will get you started building web applications with Express. Before we start using
Express, however, we’re going to take a tour of Node in the next chapter, which is
important background information to understanding how Express works.

Conclusion | 9

CHAPTER 2

Getting Started with Node

If you don’t have any experience with Node, this chapter is for you. Understanding
Express and its usefulness requires a basic understanding of Node. If you already
have experience building web apps with Node, feel free to skip this chapter. In this
chapter, we will be building a very minimal web server with Node; in the next chap‐
ter, we will see how to do the same thing with Express.

Getting Node
Getting Node installed on your system couldn’t be easier. The Node team has gone to
great lengths to make sure the installation process is simple and straightforward on
all major platforms.

Go to the Node home page. Click the big green button that has a version number fol‐
lowed by “LTS (Recommended for Most Users).” LTS stands for Long-Term Support,
and is somewhat more stable than the version labeled Current, which contains more
recent features and performance improvements.

For Windows and macOS, an installer will be downloaded that walks you through the
process. For Linux, you will probably be up and running more quickly if you use a
package manager.

If you’re a Linux user and you do want to use a package manager,
make sure you follow the instructions in the aforementioned web
page. Many Linux distributions will install an extremely old version
of Node if you don’t add the appropriate package repository.

You can also download a standalone installer, which can be helpful if you are distrib‐
uting Node to your organization.

11

http://nodejs.org
http://bit.ly/36UYMxI
http://bit.ly/36UYMxI
https://nodejs.org/en/download

Using the Terminal
I’m an unrepentant fan of the power and productivity of using a terminal (also called
a console or command prompt). Throughout this book, all examples will assume
you’re using a terminal. If you’re not friends with your terminal, I highly recommend
you spend some time familiarizing yourself with your terminal of choice. Many of the
utilities in this book have corresponding GUI interfaces, so if you’re dead set against
using a terminal, you have options, but you will have to find your own way.

If you’re on macOS or Linux, you have a wealth of venerable shells (the terminal
command interpreter) to choose from. The most popular by far is bash, though zsh
has its adherents. The main reason I gravitate toward bash (other than long familiar‐
ity) is ubiquity. Sit down in front of any Unix-based computer, and 99% of the time,
the default shell will be bash.

If you’re a Windows user, things aren’t quite so rosy. Microsoft has never been partic‐
ularly interested in providing a pleasant terminal experience, so you’ll have to do a
little more work. Git helpfully includes a “Git bash” shell, which provides a Unix-like
terminal experience (it has only a small subset of the normally available Unix
command-line utilities, but it’s a useful subset). While Git bash provides you with a
minimal bash shell, it’s still using the built-in Windows console application, which
leads to an exercise in frustration (even simple functionality like resizing a console
window, selecting text, cutting, and pasting is unintuitive and awkward). For this rea‐
son, I recommend installing a more sophisticated terminal such as ConsoleZ or Con‐
Emu. For Windows power users—especially for .NET developers or for hardcore
Windows systems or network administrators—there is another option: Microsoft’s
own PowerShell. PowerShell lives up to its name: people do remarkable things with it,
and a skilled PowerShell user could give a Unix command-line guru a run for their
money. However, if you move between macOS/Linux and Windows, I still recom‐
mend sticking with Git bash for the consistency it provides.

If you’re using Windows 10 or later, you can now install Ubuntu Linux directly on
Windows! This is not dual-boot or virtualization but some great work on behalf of
Microsoft’s open source team to bring the Linux experience to Windows. You can
install Ubuntu on Windows through the Microsoft App Store.

A final option for Windows users is virtualization. With the power and architecture
of modern computers, the performance of virtual machines (VMs) is practically
indistinguishable from actual machines. I’ve had great luck with Oracle’s free Virtual‐
Box.

Finally, no matter what system you’re on, there are excellent cloud-based develop‐
ment environments, such as Cloud9 (now an AWS product). Cloud9 will spin up a
new Node development environment that makes it extremely easy to get started
quickly with Node.

12 | Chapter 2: Getting Started with Node

https://github.com/cbucher/console
https://conemu.github.io
https://conemu.github.io
http://bit.ly/2KcSfEI
https://www.virtualbox.org/
https://www.virtualbox.org/
https://aws.amazon.com/cloud9/

1 These days, vi is essentially synonymous with vim (vi improved). On most systems, vi is aliased to vim, but I
usually type vim to make sure I’m using vim.

Once you’ve settled on a shell that makes you happy, I recommend you spend some
time getting to know the basics. There are many wonderful tutorials on the internet
(The Bash Guide is a great place to start), and you’ll save yourself a lot of headaches
later by learning a little now. At minimum, you should know how to navigate directo‐
ries; copy, move, and delete files; and break out of a command-line program (usually
Ctrl-C). If you want to become a terminal ninja, I encourage you to learn how to
search for text in files, search for files and directories, chain commands together (the
old “Unix philosophy”), and redirect output.

On many Unix-like systems, Ctrl-S has a special meaning: it will
“freeze” the terminal (this was once used to pause output quickly
scrolling past). Since this is such a common shortcut for Save, it’s
easy to unthinkingly press, which leads to a confusing situation for
most people (this happens to me more often than I care to admit).
To unfreeze the terminal, simply hit Ctrl-Q. So if you’re ever con‐
founded by a terminal that seems to have suddenly frozen, try
pressing Ctrl-Q and see if that releases it.

Editors
Few topics inspire such heated debate among programmers as the choice of editors,
and for good reason: the editor is your primary tool. My editor of choice is vi (or an
editor that has a vi mode).1 vi isn’t for everyone (my coworkers constantly roll their
eyes at me when I tell them how easy it would be to do what they’re doing in vi), but
finding a powerful editor and learning to use it will significantly increase your pro‐
ductivity and, dare I say it, enjoyment. One of the reasons I particularly like vi
(though hardly the most important reason) is that, like bash, it is ubiquitous. If you
have access to a Unix system, vi is there for you. Most popular editors have a “vi
mode” that allows you to use vi keyboard commands. Once you get used to it, it’s
hard to imagine using anything else. vi is a hard road at first, but the payoff is worth
it.

If, like me, you see the value in being familiar with an editor that’s available anywhere,
your other option is Emacs. Emacs and I have never quite gotten on (and usually
you’re either an Emacs person or a vi person), but I absolutely respect the power and
flexibility that Emacs provides. If vi’s modal editing approach isn’t for you, I would
encourage you to look into Emacs.

While knowing a console editor (like vi or Emacs) can come in incredibly handy, you
may still want a more modern editor. A popular choice is Visual Studio Code (not to

Editors | 13

https://guide.bash.academy
https://code.visualstudio.com/

be confused with Visual Studio without the “Code”). I can heartily endorse Visual
Studio Code; it is a well-designed, fast, efficient editor that is perfectly suited for
Node and JavaScript development. Another popular choice is Atom, which is also
popular in the JavaScript community. Both of these editors are available for free on
Windows, macOS, and Linux (and both have vi modes!).

Now that we have a good tool to edit code, let’s turn our attention to npm, which will
help us get packages that other people have written so we can take advantage of the
large and active JavaScript community.

npm
npm is the ubiquitous package manager for Node packages (and is how we’ll get and
install Express). In the wry tradition of PHP, GNU, WINE, and others, npm is not an
acronym (which is why it isn’t capitalized); rather, it is a recursive abbreviation for
“npm is not an acronym.”

Broadly speaking, a package manager’s two primary responsibilities are installing
packages and managing dependencies. npm is a fast, capable, and painless package
manager, which I feel is in large part responsible for the rapid growth and diversity of
the Node ecosystem.

There is a popular competing package manager called Yarn that
uses the same package database that npm does; we’ll be using Yarn
in Chapter 16.

npm is installed when you install Node, so if you followed the steps listed earlier,
you’ve already got it. So let’s get to work!

The primary command you’ll be using with npm (unsurprisingly) is install. For
example, to install nodemon (a popular utility to automatically restart a Node pro‐
gram when you make changes to the source code), you would issue the following
command (on the console):

npm install -g nodemon

The -g flag tells npm to install the package globally, meaning it’s available globally on
the system. This distinction will become clearer when we cover the package.json files.
For now, the rule of thumb is that JavaScript utilities (like nodemon) will generally be
installed globally, whereas packages that are specific to your web app or project will
not.

14 | Chapter 2: Getting Started with Node

https://atom.io

Unlike languages like Python—which underwent a major language
change from 2.0 to 3.0, necessitating a way to easily switch between
different environments—the Node platform is new enough that it is
likely that you should always be running the latest version of Node.
However, if you do find yourself needing to support multiple ver‐
sions of Node, check out nvm or n, which allow you to switch envi‐
ronments. You can find out what version of Node is installed on
your computer by typing node --version.

A Simple Web Server with Node
If you’ve ever built a static HTML website before or are coming from a PHP or ASP
background, you’re probably used to the idea of the web server (Apache or IIS, for
example) serving your static files so that a browser can view them over the network.
For example, if you create the file about.html and put it in the proper directory, you
can then navigate to http://localhost/about.html. Depending on your web server con‐
figuration, you might even be able to omit the .html, but the relationship between
URL and filename is clear: the web server simply knows where the file is on the com‐
puter and serves it to the browser.

localhost, as the name implies, refers to the computer you’re on.
This is a common alias for the IPv4 loopback address 127.0.0.1 or
the IPv6 loopback address ::1. You will often see 127.0.0.1 used
instead, but I will be using localhost in this book. If you’re using a
remote computer (using SSH, for example), keep in mind that
browsing to localhost will not connect to that computer.

Node offers a different paradigm than that of a traditional web server: the app that
you write is the web server. Node simply provides the framework for you to build a
web server.

“But I don’t want to write a web server,” you might be saying! It’s a natural response:
you want to be writing an app, not a web server. However, Node makes the business
of writing this web server a simple affair (just a few lines, even), and the control you
gain over your application in return is more than worth it.

So let’s get to it. You’ve installed Node, you’ve made friends with the terminal, and
now you’re ready to go.

Hello World
I’ve always found it unfortunate that the canonical introductory programming exam‐
ple is the uninspired message “Hello world.” However, it seems almost sacrilegious at

A Simple Web Server with Node | 15

https://github.com/creationix/nvm
https://github.com/tj/n

this point to fly in the face of such ponderous tradition, so we’ll start there and then
move on to something more interesting.

In your favorite editor, create a file called helloworld.js (ch02/00-helloworld.js in the
companion repo):

const http = require('http')
const port = process.env.PORT || 3000

const server = http.createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/plain' })
 res.end('Hello world!')
})

server.listen(port, () => console.log(`server started on port ${port}; ` +
 'press Ctrl-C to terminate....'))

Depending on when and where you learned JavaScript, you may be
disconcerted by the lack of semicolons in this example. I used to be
a die-hard semicolon promoter, and I grudgingly stopped using
them as I did more React development, where it is conventional to
omit them. After a while, the fog lifted from my eyes, and I won‐
dered why I was ever so excited about semicolons! I’m now firmly
on team “no-semicolon,” and the examples in this book will reflect
that. It’s a personal choice, and you are welcome to use semicolons
if you wish.

Make sure you are in the same directory as helloworld.js, and type node hello
world.js. Then open a browser and navigate to http://localhost:3000, and voilà! Your
first web server. This particular one doesn’t serve HTML; rather, it just displays the
message “Hello world!” in plain text to your browser. If you want, you can experi‐
ment with sending HTML instead: just change text/plain to text/html and change
'Hello world!' to a string containing valid HTML. I didn’t demonstrate that,
because I try to avoid writing HTML inside JavaScript for reasons that will be dis‐
cussed in more detail in Chapter 7.

Event-Driven Programming
The core philosophy behind Node is that of event-driven programming. What that
means for you, the programmer, is that you have to understand what events are avail‐
able to you and how to respond to them. Many people are introduced to event-driven
programming by implementing a user interface: the user clicks something, and you
handle the click event. It’s a good metaphor, because it’s understood that the program‐
mer has no control over when, or if, the user is going to click something, so event-
driven programming is really quite intuitive. It can be a little harder to make the
conceptual leap to responding to events on the server, but the principle is the same.

16 | Chapter 2: Getting Started with Node

In the previous code example, the event is implicit: the event that’s being handled is
an HTTP request. The http.createServer method takes a function as an argument;
that function will be invoked every time an HTTP request is made. Our simple pro‐
gram just sets the content type to plain text and sends the string “Hello world!”

Once you start thinking in terms of event-driven programming, you start seeing
events everywhere. One such event is when a user navigates from one page or area of
your application to another. How your application responds to that navigation event
is referred to as routing.

Routing
Routing refers to the mechanism for serving the client the content it has asked for.
For web-based client/server applications, the client specifies the desired content in the
URL; specifically, the path and querystring (the parts of a URL will be discussed in
more detail in Chapter 6).

Server routing traditionally hinges on the path and the querystring,
but there is other information available: headers, the domain, the
IP address, and more. This allows servers to take into considera‐
tion, for example, the approximate physical location of the user or
the preferred language of the user.

Let’s expand our “Hello world!” example to do something more interesting. Let’s
serve a really minimal website consisting of a home page, an About page, and a Not
Found page. For now, we’ll stick with our previous example and just serve plaintext
instead of HTML (ch02/01-helloworld.js in the companion repo):

const http = require('http')
const port = process.env.PORT || 3000

const server = http.createServer((req,res) => {
 // normalize url by removing querystring, optional
 // trailing slash, and making it lowercase
 const path = req.url.replace(/\/?(?:\?.*)?$/, '').toLowerCase()
 switch(path) {
 case '':
 res.writeHead(200, { 'Content-Type': 'text/plain' })
 res.end('Homepage')
 break
 case '/about':
 res.writeHead(200, { 'Content-Type': 'text/plain' })
 res.end('About')
 break
 default:
 res.writeHead(404, { 'Content-Type': 'text/plain' })
 res.end('Not Found')
 break

A Simple Web Server with Node | 17

 } })

server.listen(port, () => console.log(`server started on port ${port}; ` +
 'press Ctrl-C to terminate....'))

If you run this, you’ll find you can now browse to the home page (http://localhost:
3000) and the About page (http://localhost:3000/about). Any querystrings will be
ignored (so http://localhost:3000/?foo=bar will serve the home page), and any other
URL (http://localhost:3000/foo) will serve the Not Found page.

Serving Static Resources
Now that we’ve got some simple routing working, let’s serve some real HTML and a
logo image. These are called static resources because they generally don’t change (as
opposed to, for example, a stock ticker: every time you reload the page, the stock pri‐
ces may change).

Serving static resources with Node is suitable for development and
small projects, but for larger projects, you will probably want to use
a proxy server such as NGINX or a CDN to serve static resources.
See Chapter 17 for more information.

If you’ve worked with Apache or IIS, you’re probably used to just creating an HTML
file, navigating to it, and having it delivered to the browser automatically. Node
doesn’t work like that: we’re going to have to do the work of opening the file, reading
it, and then sending its contents along to the browser. So let’s create a directory in our
project called public (why we don’t call it static will become evident in the next chap‐
ter). In that directory, we’ll create home.html, about.html, 404.html, a subdirectory
called img, and an image called img/logo.png. I’ll leave that up to you; if you’re reading
this book, you probably know how to write an HTML file and find an image. In your
HTML files, reference the logo thusly: .

Now modify helloworld.js (ch02/02-helloworld.js in the companion repo):

const http = require('http')
const fs = require('fs')
const port = process.env.PORT || 3000

function serveStaticFile(res, path, contentType, responseCode = 200) {
 fs.readFile(__dirname + path, (err, data) => {
 if(err) {
 res.writeHead(500, { 'Content-Type': 'text/plain' })
 return res.end('500 - Internal Error')
 }
 res.writeHead(responseCode, { 'Content-Type': contentType })
 res.end(data)
 })

18 | Chapter 2: Getting Started with Node

}

const server = http.createServer((req,res) => {
 // normalize url by removing querystring, optional trailing slash, and
 // making lowercase
 const path = req.url.replace(/\/?(?:\?.*)?$/, '').toLowerCase()
 switch(path) {
 case '':
 serveStaticFile(res, '/public/home.html', 'text/html')
 break
 case '/about':
 serveStaticFile(res, '/public/about.html', 'text/html')
 break
 case '/img/logo.png':
 serveStaticFile(res, '/public/img/logo.png', 'image/png')
 break
 default:
 serveStaticFile(res, '/public/404.html', 'text/html', 404)
 break
 }
})

server.listen(port, () => console.log(`server started on port ${port}; ` +
 'press Ctrl-C to terminate....'))

In this example, we’re being pretty unimaginative with our routing.
If you navigate to http://localhost:3000/about, the public/about.html
file is served. You could change the route to be anything you want,
and change the file to be anything you want. For example, if you
had a different About page for each day of the week, you could
have files public/about_mon.html, public/about_tue.html, and so on,
and provide logic in your routing to serve the appropriate page
when the user navigates to http://localhost:3000/about.

Note we’ve created a helper function, serveStaticFile, that’s doing the bulk of the
work. fs.readFile is an asynchronous method for reading files. There is a synchro‐
nous version of that function, fs.readFileSync, but the sooner you start thinking
asynchronously, the better. The fs.readFile function uses a pattern called callbacks.
You provide a function called a callback function, and when the work has been done,
that callback function is invoked (“called back,” so to speak). In this case, fs.read
File reads the contents of the specified file and executes the callback function when
the file has been read; if the file didn’t exist or there were permissions issues reading
the file, the err variable is set, and the function returns an HTTP status code of 500
indicating a server error. If the file is read successfully, the file is sent to the client with
the specified response code and content type. Response codes will be discussed in
more detail in Chapter 6.

A Simple Web Server with Node | 19

__dirname will resolve to the directory the executing script resides
in. So if your script resides in /home/sites/app.js, __dirname will
resolve to /home/sites. It’s a good idea to use this handy global
whenever possible. Failing to do so can cause hard-to-diagnose
errors if you run your app from a different directory.

Onward to Express
So far, Node probably doesn’t seem that impressive to you. We’ve basically replicated
what Apache or IIS do for you automatically, but now you have some insight into how
Node does things and how much control you have. We haven’t done anything partic‐
ularly impressive, but you can see how we could use this as a jumping-off point to do
more sophisticated things. If we continued down this road, writing more and more
sophisticated Node applications, you might very well end up with something that
resembles Express….

Fortunately, we don’t have to: Express already exists, and it saves you from imple‐
menting a lot of time-consuming infrastructure. So now that we’ve gotten a little
Node experience under our belt, we’re ready to jump into learning Express.

20 | Chapter 2: Getting Started with Node

CHAPTER 3

Saving Time with Express

In Chapter 2, you learned how to create a simple web server using only Node. In this
chapter, we will re-create that server using Express. This will provide a jumping-off
point for the rest of the content of this book and introduce you to the basics of
Express.

Scaffolding
Scaffolding is not a new idea, but many people (myself included) were introduced to
the concept by Ruby. The idea is simple: most projects require a certain amount of so-
called boilerplate code, and who wants to re-create that code every time you begin a
new project? A simple way is to create a rough skeleton of a project, and every time
you need a new project, you just copy this skeleton, or template.

Ruby on Rails took this concept one step further by providing a program that would
automatically generate scaffolding for you. The advantage of this approach is that it
could generate a more sophisticated framework than just selecting from a collection
of templates.

Express has taken a page from Ruby on Rails and provided a utility to generate scaf‐
folding to start your Express project.

While the Express scaffolding utility is useful, I think it’s valuable to learn how to set
up Express from scratch. In addition to learning more, you have more control over
what gets installed and the structure of your project. Also, the Express scaffolding
utility is geared toward server-side HTML generation and is less relevant for APIs
and single-page applications.

While we won’t be using the scaffolding utility, I encourage you to take a look at it
once you’ve finished the book: by then you’ll be armed with everything you need to

21

know to evaluate whether the scaffolding it generates is useful for you. For more
information, see the express-generator documentation.

The Meadowlark Travel Website
Throughout this book, we’ll be using a running example: a fictional website for
Meadowlark Travel, a company offering services for people visiting the great state of
Oregon. If you’re more interested in creating an API, have no fear: the Meadowlark
Travel website will expose an API in addition to serving a functional website.

Initial Steps
Start by creating a new directory: this will be the root directory for your project. In
this book, whenever we refer to the project directory, app directory, or project root,
we’re referring to this directory.

You’ll probably want to keep your web app files separate from all
the other files that usually accompany a project, such as meeting
notes, documentation, etc. For that reason, I recommend making
your project root a subdirectory of your project directory. For
example, for the Meadowlark Travel website, I might keep the
project in ~/projects/meadowlark, and the project root in ~/projects/
meadowlark/site.

npm manages project dependencies—as well as metadata about the project—in a file
called package.json. The easiest way to create this file is to run npm init: it will ask
you a series of questions and generate a package.json file to get you started (for the
“entry point” question, use meadowlark.js for the name of your project).

Every time you run npm, you may get warnings about a missing
description or repository field. It’s safe to ignore these warnings,
but if you want to eliminate them, edit the package.json file and
provide values for the fields npm is complaining about. For more
information about the fields in this file, see the npm package.json
documentation.

The first step will be installing Express. Run the following npm command:

npm install express

Running npm install will install the named package(s) in the node_modules
directory and update the package.json file. Since the node_modules directory can be
regenerated at any time with npm, we will not save it in our repository. To ensure we
don’t accidentally add it to our repository, we create a file called .gitignore:

22 | Chapter 3: Saving Time with Express

http://bit.ly/2CyvvLr
http://bit.ly/2O8HrbW
http://bit.ly/2O8HrbW

ignore packages installed by npm
node_modules

put any other files you don't want to check in here, such as .DS_Store
(OSX), *.bak, etc.

Now create a file called meadowlark.js. This will be our project’s entry point.
Throughout the book, we will simply be referring to this file as the app file (ch03/00-
meadowlark.js in the companion repo):

const express = require('express')

const app = express()

const port = process.env.PORT || 3000

// custom 404 page
app.use((req, res) => {
 res.type('text/plain')
 res.status(404)
 res.send('404 - Not Found')
})

// custom 500 page
app.use((err, req, res, next) => {
 console.error(err.message)
 res.type('text/plain')
 res.status(500)
 res.send('500 - Server Error')
})

app.listen(port, () => console.log(
 `Express started on http://localhost:${port}; ` +
 `press Ctrl-C to terminate.`))

Many tutorials, as well as the Express scaffolding generator,
encourage you to name your primary file app.js (or sometimes
index.js or server.js). Unless you’re using a hosting service or
deployment system that requires your main application file to have
a specific name, I don’t feel there’s a compelling reason to do this,
and I prefer to name the primary file after the project. Anyone
who’s ever stared at a bunch of editor tabs that all say “index.html”
will immediately see the wisdom of this. npm init will default to
index.js; if you use a different name for your application file, make
sure to update the main property in package.json.

You now have a minimal Express server. You can start the server (node meadow
lark.js) and navigate to http://localhost:3000. The result will be disappointing: you

Initial Steps | 23

haven’t provided Express with any routes, so it will simply give you a generic 404
message indicating that the page doesn’t exist.

Note how we choose the port that we want our application to run
on: const port = process.env.PORT || 3000. This allows us to
override the port by setting an environment variable before you
start the server. If your app isn’t running on port 3000 when you
run this example, check to see whether your PORT environment
variable is set.

Let’s add some routes for the home page and an About page. Before the 404 handler,
we’ll add two new routes (ch03/01-meadowlark.js in the companion repo):

app.get('/', (req, res) => {
 res.type('text/plain')
 res.send('Meadowlark Travel');
})

app.get('/about', (req, res) => {
 res.type('text/plain')
 res.send('About Meadowlark Travel')
})

// custom 404 page
app.use((req, res) => {
 res.type('text/plain')
 res.status(404)
 res.send('404 - Not Found')
})

app.get is the method by which we’re adding routes. In the Express documentation,
you will see app.METHOD. This doesn’t mean that there’s literally a method called
METHOD; it’s just a placeholder for your (lowercased) HTTP verbs (get and post being
the most common). This method takes two parameters: a path and a function.

The path is what defines the route. Note that app.METHOD does the heavy lifting for
you: by default, it doesn’t care about the case or trailing slash, and it doesn’t consider
the querystring when performing the match. So the route for the About page will
work for /about, /About, /about/, /about?foo=bar, /about/?foo=bar, etc.

The function you provide will get invoked when the route is matched. The parameters
passed to that function are the request and response objects, which we’ll learn more
about in Chapter 6. For now, we’re just returning plain text with a status code of 200
(Express defaults to a status code of 200—you don’t have to specify it explicitly).

24 | Chapter 3: Saving Time with Express

I highly recommend getting a browser plug-in that shows you the
status code of the HTTP request as well as any redirects that took
place. It will make it easier to spot redirect issues in your code or
incorrect status codes, which are often overlooked. For Chrome,
Ayima’s Redirect Path works wonderfully. In most browsers, you
can see the status code in the Network section of the developer
tools.

Instead of using Node’s low-level res.end, we’re switching to using Express’s exten‐
sion, res.send. We are also replacing Node’s res.writeHead with res.set and
res.status. Express is also providing us a convenience method, res.type, which
sets the Content-Type header. While it’s still possible to use res.writeHead and
res.end, it isn’t necessary or recommended.

Note that our custom 404 and 500 pages must be handled slightly differently. Instead
of using app.get, we are using app.use. app.use is the method by which Express
adds middleware. We’ll be covering middleware in more depth in Chapter 10, but for
now, you can think of this as a catchall handler for anything that didn’t get matched
by a route. This brings us to an important point: in Express, the order in which routes
and middleware are added is significant. If we put the 404 handler above the routes,
the home page and About page would stop working; instead, those URLs would
result in a 404. Right now, our routes are pretty simple, but they also support wild‐
cards, which can lead to problems with ordering. For example, what if we wanted to
add subpages to About, such as /about/contact and /about/directions? The following
will not work as expected:

app.get('/about*', (req,res) => {
 // send content....
}) app.get('/about/contact', (req,res) => {
 // send content....
}) app.get('/about/directions', (req,res) => {
 // send content....
})

In this example, the /about/contact and /about/directions handlers will never be
matched because the first handler uses a wildcard in its path: /about*.

Express can distinguish between the 404 and 500 handlers by the number of argu‐
ments their callback functions take. Error routes will be covered in depth in Chap‐
ter 10 and Chapter 12.

Now you can start the server again and see that there’s a functioning home page and
About page.

So far, we haven’t done anything that couldn’t be done just as easily without Express,
but already Express is providing us some functionality that isn’t immediately obvious.
Remember in the previous chapter how we had to normalize req.url to determine

Initial Steps | 25

what resource was being requested? We had to manually strip off the querystring and
the trailing slash and convert to lowercase. Express’s router is now handling those
details for us automatically. While it may not seem like a large thing now, it’s only
scratching the surface of what Express’s router is capable of.

Views and Layouts
If you’re familiar with the “model-view-controller” paradigm, then the concept of a
view will be no stranger to you. Essentially, a view is what gets delivered to the user. In
the case of a website, that usually means HTML, though you could also deliver a PNG
or a PDF or anything that can be rendered by the client. For our purposes, we will
consider views to be HTML.

A view differs from a static resource (like an image or CSS file) in that a view doesn’t
necessarily have to be static: the HTML can be constructed on the fly to provide a
customized page for each request.

Express supports many different view engines that provide different levels of abstrac‐
tion. Express gives some preference to a view engine called Pug (which is no surprise,
because it is also the brainchild of TJ Holowaychuk). The approach Pug takes is mini‐
mal: what you write doesn’t resemble HTML at all, which certainly represents a lot
less typing (no more angle brackets or closing tags). The Pug engine then takes that
and converts it to HTML.

Pug was originally called Jade, and the name changed with the
release of version 2 because of a trademark issue.

Pug is appealing, but that level of abstraction comes at a cost. If you’re a frontend
developer, you have to understand HTML and understand it well, even if you’re
actually writing your views in Pug. Most frontend developers I know are uncomforta‐
ble with the idea of their primary markup language being abstracted away. For this
reason, I am recommending the use of another, less abstract templating framework
called Handlebars.

Handlebars (which is based on the popular language-independent templating lan‐
guage Mustache) doesn’t attempt to abstract away HTML for you: you write HTML
with special tags that allow Handlebars to inject content.

26 | Chapter 3: Saving Time with Express

In the years following the original release of this book, React has
taken the world by storm…which abstracts HTML away from
frontend developers! Viewed through that lens, my prediction that
frontend developers didn’t want HTML abstracted away hasn’t
stood the test of time. However, JSX (the JavaScript language exten‐
sion that most React developers use) is (almost) identical to writing
HTML, so I wasn’t entirely wrong.

To provide Handlebars support, we’ll use Eric Ferraiuolo’s express-handlebars
package. In your project directory, execute the following:

npm install express-handlebars

Then in meadowlark.js, modify the first few lines (ch03/02-meadowlark.js in the com‐
panion repo):

const express = require('express')
const expressHandlebars = require('express-handlebars')

const app = express()

// configure Handlebars view engine
app.engine('handlebars', expressHandlebars({
 defaultLayout: 'main',
}))
app.set('view engine', 'handlebars')

This creates a view engine and configures Express to use it by default. Now create a
directory called views that has a subdirectory called layouts. If you’re an experienced
web developer, you’re probably already comfortable with the concepts of layouts
(sometimes called master pages). When you build a website, there’s a certain amount
of HTML that’s the same—or very close to the same—on every page. It not only
becomes tedious to rewrite all that repetitive code for every page, but also creates a
potential maintenance nightmare: if you want to change something on every page,
you have to change all the files. Layouts free you from this, providing a common
framework for all the pages on your site.

So let’s create a template for our site. Create a file called views/layouts/main.handle‐
bars:

<!doctype html>
<html>
 <head>
 <title>Meadowlark Travel</title>
 </head>
 <body>
 {{{body}}}
 </body>
</html>

Initial Steps | 27

The only thing that you probably haven’t seen before is this: {{{body}}}. This expres‐
sion will be replaced with the HTML for each view. When we created the Handlebars
instance, note we specified the default layout (defaultLayout: \'main'). That
means that unless you specify otherwise, this is the layout that will be used for any
view.

Now let’s create view pages for our home page, views/home.handlebars:
<h1>Welcome to Meadowlark Travel</h1>

Then our About page, views/about.handlebars:
<h1>About Meadowlark Travel</h1>

Then our Not Found page, views/404.handlebars:
<h1>404 - Not Found</h1>

And finally our Server Error page, views/500.handlebars:
<h1>500 - Server Error</h1>

You probably want your editor to associate .handlebars and .hbs
(another common extension for Handlebars files) with HTML to
enable syntax highlighting and other editor features. For vim, you
can add the line au BufNewFile,BufRead *.handlebars set file
type=html to your ~/.vimrc file. For other editors, consult your
documentation.

Now that we have some views set up, we have to replace our old routes with new ones
that use these views (ch03/02-meadowlark.js in the companion repo):

app.get('/', (req, res) => res.render('home'))

app.get('/about', (req, res) => res.render('about'))

// custom 404 page
app.use((req, res) => {
 res.status(404)
 res.render('404')
})

// custom 500 page
app.use((err, req, res, next) => {
 console.error(err.message)
 res.status(500)
 res.render('500')
})

Note that we no longer have to specify the content type or status code: the view
engine will return a content type of text/html and a status code of 200 by default. In

28 | Chapter 3: Saving Time with Express

the catchall handler, which provides our custom 404 page, and the 500 handler, we
have to set the status code explicitly.

If you start your server and check out the home or About page, you’ll see that the
views have been rendered. If you examine the source, you’ll see that the boilerplate
HTML from views/layouts/main.handlebars is there.

Even though every time you visit the home page, you get the same HTML, these
routes are considered dynamic content, because we could make a different decision
each time the route gets called (which we’ll see plenty of later in this book). However,
content that really never changes, in other words, static content, is common and
important, so we’ll consider static content next.

Static Files and Views
Express relies on middleware to handle static files and views. Middleware is a concept
that will be covered in more detail in Chapter 10. For now, it’s sufficient to know that
middleware provides modularization, making it easier to handle requests.

The static middleware allows you to designate one or more directories as contain‐
ing static resources that are simply to be delivered to the client without any special
handling. This is where you would put things such as images, CSS files, and client-
side JavaScript files.

In your project directory, create a subdirectory called public (we call it public because
anything in this directory will be served to the client without question). Then, before
you declare any routes, you’ll add the static middleware (ch03/02-meadowlark.js in
the companion repo):

app.use(express.static(__dirname + '/public'))

The static middleware has the same effect as creating a route for each static file you
want to deliver that renders a file and returns it to the client. So let’s create an img
subdirectory inside public and put our logo.png file in there.

Now we can simply reference /img/logo.png (note, we do not specify public; that
directory is invisible to the client), and the static middleware will serve that file, set‐
ting the content type appropriately. Now let’s modify our layout so that our logo
appears on every page:

<body>
 <header>

 </header>
 {{{body}}}
</body>

Initial Steps | 29

Remember that middleware is processed in order, and static mid‐
dleware—which is usually declared first or at least very early—will
override other routes. For example, if you put an index.html file in
the public directory (try it!), you’ll find that the contents of that file
get served instead of the route you configured! So if you’re getting
confusing results, check your static files and make sure there’s
nothing unexpected matching the route.

Dynamic Content in Views
Views aren’t simply a complicated way to deliver static HTML (though they can cer‐
tainly do that as well). The real power of views is that they can contain dynamic infor‐
mation.

Let’s say that on the About page, we want to deliver a “virtual fortune cookie.” In our
meadowlark.js file, we define an array of fortune cookies:

const fortunes = [
 "Conquer your fears or they will conquer you.",
 "Rivers need springs.",
 "Do not fear what you don't know.",
 "You will have a pleasant surprise.",
 "Whenever possible, keep it simple.",
]

Modify the view (/views/about.handlebars) to display a fortune:

<h1>About Meadowlark Travel</h1>
{{#if fortune}}
 <p>Your fortune for the day:</p>
 <blockquote>{{fortune}}</blockquote>
{{/if}}

Now modify the route /about to deliver the random fortune cookie:

app.get('/about', (req, res) => {
 const randomFortune = fortunes[Math.floor(Math.random()*fortunes.length)]
 res.render('about', { fortune: randomFortune })
})

Now if you restart the server and load the /about page, you’ll see a random fortune,
and you’ll get a new one every time you reload the page. Templating is incredibly use‐
ful, and we will be covering it in depth in Chapter 7.

Conclusion
We’ve created a basic website with Express. Even though it’s simple, it contains all the
seeds we need for a full-featured website. In the next chapter, we’ll be crossing our ts
and dotting our is in preparation for adding more advanced functionality.

30 | Chapter 3: Saving Time with Express

CHAPTER 4

Tidying Up

In the previous two chapters, we were just experimenting: dipping our toes into the
waters, so to speak. Before we proceed to more complex functionality, we’re going to
do some housekeeping and build some good habits into our work.

In this chapter, we’ll start our Meadowlark Travel project in earnest. Before we start
building the website itself, though, we’re going to make sure we have the tools we
need to produce a high-quality product.

The running example in this book is not necessarily one you have
to follow. If you’re anxious to build your own website, you could
follow the framework of the running example but modify it
accordingly so that by the time you finish this book, you could have
a finished website!

File and Directory Structure
Structuring applications has spawned many a religious debate, and there’s no one
right way to do it. However, there are some common conventions that are helpful to
know about.

It’s typical to try to restrict the number of files in your project root. Typically, you’ll
find configuration files (like package.json), a README.md file, and a bunch of direc‐
tories. Most source code goes under a directory often called src. For the sake of brev‐
ity, we won’t be using that convention in this book (nor does the Express scaffolding
application do this, surprisingly). For real-world projects, you’ll probably eventually
find that your project root gets cluttered if you’re putting source code there, and
you’ll want to collect those files under a directory like src.

31

I’ve also mentioned that I prefer to name my main application file (sometimes called
the entry point) after the project itself (meadowlark.js) as opposed to something
generic like index.js, app.js, or server.js.

It’s largely up to you how to structure your application, and I recommend providing a
road map to your structure in the README.md file (or a readme linked from it).

At minimum, I recommend you always have the following two files in your project
root: package.json and README.md. The rest is up to your imagination.

Best Practices
The phrase best practices is one you hear thrown around a lot these days, and it means
that you should “do things right” and not cut corners (we’ll talk about what this
means specifically in a moment). No doubt you’ve heard the engineering adage that
your options are “fast,” “cheap,” and “good,” and you can pick any two. The thing that’s
always bothered me about this model is that it doesn’t take into account the accrual
value of doing things correctly. The first time you do something correctly, it may take
five times as long to do it as it would have to do it quick and dirty. The second time,
though, it’s going to take only three times as long. By the time you’ve done it correctly
a dozen times, you’ll be doing it almost as fast as the quick and dirty way.

I had a fencing coach who would always remind us that practice doesn’t make perfect;
practice makes permanent. That is, if you do something over and over again, eventu‐
ally it will become automatic, rote. That is true, but it says nothing about the quality
of the thing you are practicing. If you practice bad habits, then bad habits become
rote. Instead, you should follow the rule that perfect practice makes perfect. In that
spirit, I encourage you to follow the rest of the examples in this book as if you were
making a real-live website, as if your reputation and remuneration were depending
on the quality of the outcome. Use this book to not only learn new skills but to prac‐
tice building good habits.

The practices we will be focusing on are version control and QA. In this chapter, we’ll
be discussing version control, and we’ll discuss QA in the next chapter.

Version Control
I hope I don’t have to convince you of the value of version control (if I did, that might
take a whole book itself). Broadly speaking, version control offers these benefits:

Documentation
Being able to go back through the history of a project to see the decisions that
were made and the order in which components were developed can be valuable
documentation. Having a technical history of your project can be quite useful.

32 | Chapter 4: Tidying Up

Attribution
If you work on a team, attribution can be hugely important. Whenever you find
something in code that is opaque or questionable, knowing who made that
change can save you many hours. It could be that the comments associated with
the change are sufficient to answer your questions, and if not, you’ll know who to
talk to.

Experimentation
A good version control system enables experimentation. You can go off on a tan‐
gent, trying something new, without fear of affecting the stability of your project.
If the experiment is successful, you can fold it back into the project, and if it is
not successful, you can abandon it.

Years ago, I made the switch to distributed version control systems (DVCSs). I nar‐
rowed my choices down to Git and Mercurial and went with Git, because of its ubiq‐
uity and flexibility. Both are excellent and free version control systems, and I
recommend you use one of them. In this book, we will be using Git, but you are wel‐
come to substitute Mercurial (or another version control system altogether).

If you are unfamiliar with Git, I recommend Jon Loeliger’s excellent Version Control
with Git (O’Reilly). Also, GitHub has a good listing of Git learning resources.

How to Use Git with This Book
First, make sure you have Git. Type git --version. If it doesn’t respond with a ver‐
sion number, you’ll need to install Git. See the Git documentation for installation
instructions.

There are two ways to follow along with the examples in this book. One is to type out
the examples yourself and follow along with the Git commands. The other is to clone
the companion repository I am using for all of the examples and check out the associ‐
ated files for each example. Some people learn better by typing out examples, while
some prefer to just see and run the changes without having to type it all in.

If You’re Following Along by Doing It Yourself
We already have a very rough framework for our project: some views, a layout, a logo,
a main application file, and a package.json file. Let’s go ahead and create a Git reposi‐
tory and add all those files.

First, we go to the project directory and initialize a Git repository there:

git init

Now before we add all the files, we’ll create a .gitignore file to help prevent us from
accidentally adding things we don’t want to add. Create a text file called .gitignore in

How to Use Git with This Book | 33

http://bit.ly/Version_Ctrl_Git
http://bit.ly/Version_Ctrl_Git
https://try.github.io
https://git-scm.com

your project directory in which you can add any files or directories you want Git to
ignore by default (one per line). It also supports wildcards. For example, if your editor
creates backup files with a tilde at the end (like meadowlark.js~), you might put *~ in
the .gitignore file. If you’re on a Mac, you’ll want to put .DS_Store in there. You’ll also
want to put node_modules in there (for reasons that will be discussed soon). So for
now, the file might look like this:

node_modules
*~
.DS_Store

Entries in the .gitignore file also apply to subdirectories. So if you
put *~ in the .gitignore in the project root, all such backup files will
be ignored even if they are in subdirectories.

Now we can add all of our existing files. There are many ways to do this in Git. I gen‐
erally favor git add -A, which is the most sweeping of all the variants. If you are new
to Git, I recommend you either add files one by one (git add meadowlark.js, for
example) if you want to commit only one or two files, or add all of your changes
(including any files you might have deleted) using git add -A. Since we want to add
all the work we’ve already done, we’ll use the following:

git add -A

Newcomers to Git are commonly confused by the git add

command; it adds changes, not files. So if you’ve modified meadow‐
lark.js, and then you type git add meadowlark.js ,what you’re
really doing is adding the changes you’ve made.

Git has a “staging area,” where changes go when you run git add. So the changes
we’ve added haven’t actually been committed yet, but they’re ready to go. To commit
the changes, use git commit:

git commit -m "Initial commit."

The -m "Initial commit." allows you to write a message associated with this com‐
mit. Git won’t even let you make a commit without a message, and for good reason.
Always strive to make meaningful commit messages; they should briefly but concisely
describe the work you’ve done.

If You’re Following Along by Using the Official Repository
To get the official repository for this book, run git clone:

34 | Chapter 4: Tidying Up

git clone https://github.com/EthanRBrown/web-development-with-node-and-express-2e

This repository has a directory for each chapter that contains code samples. For
example, the source code for this chapter can be found in the ch04 directory. The
code samples in each chapter are generally numbered for ease of reference. Through‐
out the repository, I have liberally added README.md files containing additional
notes about the samples.

In the first version of this book, I took a different approach with
the repository, with a linear history as if you were developing an
increasingly sophisticated project. While this approach pleasantly
mirrored the way a project in the real world might develop, it
caused a lot of headache, both for me and for my readers. As npm
packages changed, the code samples would change, and short of
rewriting the entire history of the repo, there was no good way to
update the repository or note the changes in the text. While the
chapter-per-directory approach is more artificial, it allows the text
to be synced more closely with the repository and also enables eas‐
ier community contribution.

As this book is updated and improved, the repository will also be updated, and when
it is, I will add a version tag so you can check out a version of the repository that cor‐
responds to the version of the book you’re reading now. The current version of the
repository is 2.0.0. I am roughly following semantic versioning principles here (more
on this later in this chapter); the PATCH increment (the last number) represents
minor changes that shouldn’t impact your ability to follow along with the book. That
is, if the repo is at version 2.0.15, that should still correspond with this version of the
book. However, if the MINOR increment (the second number) is different (2.1.0),
that indicates that the content in the companion repo may have diverged from what
you’re reading, and you may want to check out a tag starting with 2.0.

The companion repo liberally makes use of README.md files to add additional
explanation to the code samples.

If at any point you want to experiment, keep in mind that the tag
you have checked out puts you in what Git calls a “detached
HEAD” state. While you are free to edit any files, it is unsafe to
commit anything you do without creating a branch first. So if you
do want to base an experimental branch off of a tag, simply create a
new branch and check it out, which you can do with one com‐
mand: git checkout -b experiment (where experiment is the
name of your branch; you can use whatever you want). Then you
can safely edit and commit on that branch as much as you want.

How to Use Git with This Book | 35

npm Packages
The npm packages that your project relies on reside in a directory called node_mod‐
ules. (It’s unfortunate that this is called node_modules and not npm_packages, as Node
modules are a related but different concept.) Feel free to explore that directory to sat‐
isfy your curiosity or to debug your program, but you should never modify any code
in this directory. In addition to that being bad practice, all of your changes could
easily be undone by npm.

If you need to make a modification to a package your project depends on, the correct
course of action would be to create your own fork of the package. If you do go this
route and feel that your improvements would be useful to others, congratulations:
you’re now involved in an open source project! You can submit your changes, and if
they meet the project standards, they’ll be included in the official package. Contribu‐
ting to existing packages and creating customized builds is beyond the scope of this
book, but there is a vibrant community of developers out there to help you if you
want to contribute to existing packages.

Two of the main purposes of the package.json file are to describe your project and to
list its dependencies. Go ahead and look at your package.json file now. You should see
something like this (the exact version numbers will probably be different, as these
packages get updated often):

{
 "dependencies": {
 "express": "^4.16.4",
 "express-handlebars": "^3.0.0"
 }
}

Right now, our package.json file contains only information about dependencies. The
caret (^) in front of the package versions indicates that any version that starts with the
specified version number—up to the next major version number—will work. For
example, this package.json indicates that any version of Express that starts with 4.0.0
will work, so 4.0.1 and 4.9.9 would both work, but 3.4.7 would not, nor would 5.0.0.
This is the default version specificity when you use npm install, and is generally a
pretty safe bet. The consequence of this approach is that if you want to move up to a
newer version, you will have to edit the file to specify the new version. Generally,
that’s a good thing because it prevents changes in dependencies from breaking your
project without your knowing about it. Version numbers in npm are parsed by a
component called semver (for “semantic versioning”). If you want more information
about versioning in npm, consult the Semantic Versioning Specification and this arti‐
cle by Tamas Piros.

36 | Chapter 4: Tidying Up

http://try.github.io/
http://bit.ly/34Vr3lX
http://bit.ly/34Vr3lX

The Semantic Versioning Specification states that software using
semantic versioning must declare a “public API.” I’ve always found
this wording to be confusing; what they really mean is “someone
must care about interfacing with your software.” If you consider
this in the broadest sense, it could really be construed to mean any‐
thing. So don’t get hung up on that part of the specification; the
important details are in the format.

Since the package.json file lists all the dependencies, the node_modules directory is
really a derived artifact. That is, if you were to delete it, all you would have to do to
get the project working again would be to run npm install, which will re-create the
directory and put all the necessary dependencies in it. It is for this reason that I rec‐
ommend putting node_modules in your .gitignore file and not including it in source
control. However, some people feel that your repository should contain everything
necessary to run the project and prefer to keep node_modules in source control. I find
that this is “noise” in the repository, and I prefer to omit it.

As of version of 5 of npm, an additional file, package-lock.json, will
be created. Whereas package.json can be “loose” in its specification
of dependency versions (with the ^ and ~ version modifiers),
package-lock.json records the exact versions that were installed,
which can be helpful if you need to re-create the exact dependency
versions in your project. I recommend you check this file into
source control and don’t modify it by hand. See the package-
lock.json documentation for more information.

Project Metadata
The other purpose of the package.json file is to store project metadata, such as the
name of the project, authors, license information, and so on. If you use npm init to
initially create your package.json file, it will populate the file with the necessary fields
for you, and you can update them at any time. If you intend to make your project
available on npm or GitHub, this metadata becomes critical. If you would like more
information about the fields in package.json, see the package.json documentation. The
other important piece of metadata is the README.md file. This file can be a handy
place to describe the overall architecture of the website, as well as any critical infor‐
mation that someone new to the project might need. It is in a text-based wiki format
called Markdown. Refer to the Markdown documentation for more information.

Node Modules
As mentioned earlier, Node modules and npm packages are related but different con‐
cepts. Node modules, as the name implies, offer a mechanism for modularization and

Project Metadata | 37

http://bit.ly/2O8IjNK
http://bit.ly/2O8IjNK
http://bit.ly/2X7GVPs
http://bit.ly/2q7BQur

encapsulation. npm packages provide a standardized scheme for storing, versioning,
and referencing projects (which are not restricted to modules). For example, we
import Express itself as a module in our main application file:

const express = require('express')

require is a Node function for importing a module. By default, Node looks for mod‐
ules in the directory node_modules (it should be no surprise, then, that there’s an
express directory inside of node_modules). However, Node also provides a mechanism
for creating your own modules (you should never create your own modules in the
node_modules directory). In addition to modules installed into node_modules via a
package manager, there are more than 30 “core modules” provided by Node, such as
fs, http, os, and path. To see the whole list, see this illuminating Stack Overflow
question and refer to the official Node documentation.

Let’s see how we can modularize the fortune cookie functionality we implemented in
the previous chapter.

First let’s create a directory to store our modules. You can call it whatever you want,
but lib (short for “library”) is a common choice. In that folder, create a file called
fortune.js (ch04/lib/fortune.js in the companion repo):

const fortuneCookies = [
 "Conquer your fears or they will conquer you.",
 "Rivers need springs.",
 "Do not fear what you don't know.",
 "You will have a pleasant surprise.",
 "Whenever possible, keep it simple.",
]

exports.getFortune = () => {
 const idx = Math.floor(Math.random()*fortuneCookies.length)
 return fortuneCookies[idx]
}

The important thing to note here is the use of the global variable exports. If you want
something to be visible outside of the module, you have to add it to exports. In this
example, the function getFortune will be available from outside this module, but our
array fortuneCookies will be completely hidden. This is a good thing: encapsulation
allows for less error-prone and fragile code.

There are several ways to export functionality from a module. We
will be covering different methods throughout the book and sum‐
marizing them in Chapter 22.

38 | Chapter 4: Tidying Up

http://bit.ly/2NDIkKH
http://bit.ly/2NDIkKH
https://nodejs.org/en/docs/

Now in meadowlark.js, we can remove the fortuneCookies array (though there
would be no harm in leaving it; it can’t conflict in any way with the array of the same
name defined in lib/fortune.js). It is traditional (but not required) to specify imports
at the top of the file, so at the top of the meadowlark.js file, add the following line
(ch04/meadowlark.js in the companion repo):

const fortune = require('./lib/fortune')

Note that we prefix our module name with ./. This signals to Node that it should not
look for the module in the node_modules directory; if we omitted that prefix, this
would fail.

Now in our route for the About page, we can utilize the getFortune method from our
module:

app.get('/about', (req, res) => {
 res.render('about', { fortune: fortune.getFortune() })
})

If you’re following along, let’s commit those changes:

git add -A git commit -m "Moved 'fortune cookie' into module."

You will find modules to be a powerful and easy way to encapsulate functionality,
which will improve the overall design and maintainability of your project, as well as
make testing easier. Refer to the official Node module documentation for more
information.

Node modules are sometimes called CommonJS (CJS) modules, in
reference to an older specification that Node took inspiration from.
The JavaScript language is adopting an official packaging mecha‐
nism, called ECMAScript Modules (ESM). If you’ve been writing
JavaScript in React or another progressive frontend language, you
may already be familiar with ESM, which uses import and export
(instead of exports, module.exports, and require). For more
information, see Dr. Axel Rauschmayer’s blog post “ECMAScript 6
modules: the final syntax”.

Conclusion
Now that we’re armed with some more information about Git, npm, and modules,
we’re ready to discuss how we can produce a better product by employing good qual‐
ity assurance (QA) practices in our coding.

I encourage you to keep in mind the following lessons from this chapter:

• Version control makes the software development process safer and more predict‐
able, and I encourage you to use it even for small projects; it builds good habits!

Conclusion | 39

https://nodejs.org/api/modules.html
http://bit.ly/2X8ZSkM
http://bit.ly/2X8ZSkM

• Modularization is an important technique for managing the complexity of soft‐
ware. In addition to providing a rich ecosystem of modules others have devel‐
oped through npm, you can package your own code in modules to better
organize your project.

• Node modules (also called CJS) use a different syntax than ECMAScript modules
(ESM), and you may have to switch between the two syntaxes when you go
between frontend and backend code. It’s a good idea to be familiar with both.

40 | Chapter 4: Tidying Up

CHAPTER 5

Quality Assurance

Quality assurance is a phrase that is prone to send shivers down the spines of develop‐
ers—which is unfortunate. After all, don’t you want to make quality software? Of
course you do. So it’s not the end goal that’s the sticking point; it’s the politics of the
matter. I’ve found that two common situations arise in web development:

Large or well-funded organizations
There’s usually a QA department, and, unfortunately, an adversarial relationship
springs up between QA and development. This is the worst thing that can hap‐
pen. Both departments are playing on the same team, for the same goal, but QA
often defines success as finding more bugs, while development defines success as
generating fewer bugs, and that serves as the basis for conflict and competition.

Small organizations and organizations on a budget
Often, there is no QA department; the development staff is expected to serve the
dual role of establishing QA and developing software. This is not a ridiculous
stretch of the imagination or a conflict of interest. However, QA is a very differ‐
ent discipline than development, and it attracts different personalities and talents.
This is not an impossible situation, and certainly there are developers out there
who have the QA mind-set, but when deadlines loom, it’s usually QA that gets the
short shrift, to the project’s detriment.

With most real-world endeavors, multiple skills are required, and increasingly, it’s
harder to be an expert in all of those skills. However, some competency in the areas
for which you are not directly responsible will make you more valuable to the team
and make the team function more effectively. A developer acquiring QA skills offers a
great example: these two disciplines are so tightly intertwined that cross-disciplinary
understanding is extremely valuable.

41

It is also common to shift activities traditionally done by QA to development, making
developers responsible for QA. In this paradigm, software engineers who specialize in
QA act almost as consultants to developers, helping them build QA into their devel‐
opment workflow. Whether QA roles are divided or integrated, it is clear that under‐
standing QA is beneficial to developers.

This book is not for QA professionals; it is aimed at developers. So my goal is not to
make you a QA expert but to give you some experience in that area. If your organiza‐
tion has a dedicated QA staff, it will make it easier for you to communicate and col‐
laborate with them. If you do not, it will give you a starting point to establishing a
comprehensive QA plan for your project.

In this chapter, you’ll learn the following:

• Quality fundamentals and effective habits
• The types of tests (unit and integration)
• How to write unit tests with Jest
• How to write integration tests with Puppeteer
• How to configure ESLint to help prevent common errors
• What continuous integration is and where to start learning about it

The QA Plan
Development is, by and large, a creative process: envisioning something and then
translating it into reality. QA, in contrast, lives more in the realm of validation and
order. As such, a large part of QA is simply a matter of knowing what needs to be done
and making sure it gets done. It is a discipline well-suited for checklists, procedures,
and documentation. I would go so far as to say the primary activity of QA is not the
testing of software itself but the creation of a comprehensive, repeatable QA plan.

I recommend the creation of a QA plan for every project, no matter how big or small
(yes, even your weekend “fun” project!). The QA plan doesn’t have to be big or elabo‐
rate; you can put it in a text file or a word processing document or a wiki. The objec‐
tive of the QA plan is to record all of the steps you’ll take to ensure that your product
is functioning as intended.

In whatever form it takes, the QA plan is a living document. You will update it in
response to the following:

• New features
• Changes in existing features
• Removed features

42 | Chapter 5: Quality Assurance

• Changes in testing technologies or techniques
• Defects that were missed by the QA plan

That last point deserves special mention. No matter how robust your QA is, defects
will happen. And when they do, you should ask yourself, “How could we have pre‐
vented this?” When you answer that question, you can modify your QA plan accord‐
ingly to prevent future instances of this type of defect.

By now you might be getting a feel for the not insignificant effort involved in QA, and
you might be reasonably wondering how much effort you want to put into it.

QA: Is It Worth It?
QA can be expensive—sometimes very expensive. So is it worth it? It’s a complicated
formula with complicated inputs. Most organizations operate on some kind of
“return on investment” model. If you spend money, you must expect to receive at
least as much money in return (preferably more). With QA, though, the relationship
can be muddy. A well-established and well-regarded product, for example, may be
able to get by with quality issues for longer than a new and unknown project. Obvi‐
ously, no one wants to produce a low-quality product, but the pressures in technology
are high. Time-to-market can be critical, and sometimes it’s better to come to market
with something that’s less than perfect than to come to market with the perfect prod‐
uct months later.

In web development, quality can be broken down into four dimensions:

Reach
Reach refers to the market penetration of your product: the number of people
viewing your website or using your service. There’s a direct correlation between
reach and profitability: the more people who visit the website, the more people
who buy the product or service. From a development perspective, search engine
optimization (SEO) will have the biggest impact on reach, which is why we will
be including SEO in our QA plan.

Functionality
Once people are visiting your site or using your service, the quality of your site’s
functionality will have a large impact on user retention; a site that works as
advertised is more likely to drive return visits than one that isn’t. Functionality
offers the most opportunity for test automation.

Usability
Where functionality is concerned with functional correctness, usability evaluates
human-computer interaction (HCI). The fundamental question is, “Is the
functionality delivered in a way that is useful to the target audience?” This often
translates to “Is it easy to use?” though the pursuit of ease can often oppose flexi‐

QA: Is It Worth It? | 43

bility or power; what seems easy to a programmer might be different from what
seems easy to a nontechnical consumer. In other words, you must consider your
target audience when assessing usability. Since a fundamental input to a usability
measurement is a user, usability is not usually something that can be automated.
However, user testing should be included in your QA plan.

Aesthetics
Aesthetics is the most subjective of the four dimensions and is therefore the least
relevant to development. While there are few development concerns when it
comes to your site’s aesthetics, routine reviews of your site’s aesthetics should be
part of your QA plan. Show your site to a representative sample audience, and
find out if it feels dated or does not invoke the desired response. Keep in mind
that aesthetics is time sensitive (aesthetic standards shift over time) and audience
specific (what appeals to one audience may be completely uninteresting to
another).

While all four dimensions should be addressed in your QA plan, functionality testing
and SEO can be tested automatically during development, so that will be the focus of
this chapter.

Logic Versus Presentation
Broadly speaking, in your website, there are two “realms”: logic (often called business
logic, a term I eschew because of its bias toward commercial endeavor) and presenta‐
tion. You can think of your website’s logic existing in kind of a pure intellectual
domain. For example, in our Meadowlark Travel scenario, there might be a rule that a
customer must possess a valid driver’s license before renting a scooter. This is a sim‐
ple data-based rule: for every scooter reservation, the user needs a valid driver’s
license. The presentation of this is disconnected. Perhaps it’s just a checkbox on the
final form of the order page, or perhaps the customer has to provide a valid driver’s
license number, which is validated by Meadowlark Travel. It’s an important distinc‐
tion, because things should be as clear and simple as possible in the logic domain,
whereas the presentation can be as complicated or as simple as it needs to be. The
presentation is also subject to usability and aesthetic concerns, whereas the business
domain is not.

Whenever possible, you should seek a clear delineation between your logic and pre‐
sentation. There are many ways to do that, and in this book, we will be focusing on
encapsulating logic in JavaScript modules. Presentation, on the other hand, will be a
combination of HTML, CSS, multimedia, JavaScript, and frontend frameworks like
React, Vue, or Angular.

44 | Chapter 5: Quality Assurance

The Types of Tests
The type of testing we will be considering in this book falls into two broad categories:
unit testing and integration testing (I am considering system testing to be a type of
integration testing). Unit testing is very fine-grained, testing single components to
make sure they function properly, whereas integration testing tests the interaction
between multiple components or even the whole system.

In general, unit testing is more useful and appropriate for logic testing. Integration
testing is useful in both realms.

Overview of QA Techniques
In this book, we will be using the following techniques and software to accomplish
thorough testing:

Unit tests
Unit tests cover the smallest units of functionality in your application, usually a
single function. They are almost always written by developers, not QA (though
QA should be empowered to assess the quality and coverage of unit tests). In this
book, we’ll be using Jest for unit tests.

Integration tests
Integration tests cover larger units of functionality, usually involving multiple
parts of your application (functions, modules, subsystems, etc.). Since we are
building web applications, the “ultimate” integration test is to render the applica‐
tion in a browser, manipulate that browser, and verify that the application
behaves as expected. These tests are typically more complicated to set up and
maintain, and since the focus of this book isn’t QA, we’ll have only one simple
example of this, using Puppeteer and Jest.

Linting
Linting isn’t about finding errors but potential errors. The general concept of lint‐
ing is that it identifies areas that could represent possible errors, or fragile con‐
structs that could lead to errors in the future. We will be using ESLint for linting.

Let’s start with Jest, our test framework (which will run both unit and integration
tests).

Installing and Configuring Jest
I struggled somewhat to decide which testing framework to use in this book. Jest
began its life as a framework to test React applications (and it is still the obvious
choice for that), but Jest is not React-specific and is an excellent general-purpose test‐

The Types of Tests | 45

ing framework. It’s certainly not the only one: Mocha, Jasmine, Ava, and Tape are also
excellent choices.

In the end, I chose Jest because I feel it offers the best overall experience (an opinion
backed by Jest’s excellent scores in the State of JavaScript 2018 survey). That said,
there are a lot of similarities among the testing frameworks mentioned here, so you
should be able to take what you learn and apply it to your favorite test framework.

To install Jest, run the following from your project root:

npm install --save-dev jest

(Note that we use --save-dev here; this tells npm that this is a development depend‐
ency and is not needed for the application itself to function; it will be listed in the
devDependencies section of the package.json file instead of the dependencies sec‐
tion.)

Before we move on, we need a way to run Jest (which will run any tests in our
project). The conventional way to do that is to add a script to package.json. Edit pack‐
age.json (ch05/package.json in the companion repo), and modify the scripts prop‐
erty (or add it if it doesn’t exist):

 "scripts": {
 "test": "jest"
 },

Now you can run all the tests in your project simply by typing that:

npm test

If you try that now, you’ll probably get an error that there aren’t any tests config‐
ured…because we haven’t added any yet. So let’s write some unit tests!

Normally, if you add a script to your package.json file, you would
run it with npm run. For example, if you added a script foo, you
would type npm run foo to run it. The test script is so common,
however, that npm knows to run it if you simply type npm test.

Unit Testing
Now we’ll turn our attention to unit testing. Since the focus of unit testing is on iso‐
lating a single function or component, we’ll first need to learn about mocking, an
important technique for achieving that isolation.

46 | Chapter 5: Quality Assurance

https://mochajs.org
https://jasmine.github.io
https://github.com/avajs/ava
https://github.com/substack/tape
http://bit.ly/33ErHUE

Mocking
One of the challenges you’ll frequently face is how to write code that is “testable.” In
general, code that tries to do too much or assumes a lot of dependencies is harder to
test than focused code that assumes few or no dependencies.

Whenever you have a dependency, you have something that needs to be mocked
(simulated) for effective testing. For example, our primary dependency is Express,
which is already thoroughly tested, so we don’t need or want to test Express itself, just
how we use it. The only way we can determine if we’re using Express correctly is to
simulate Express itself.

The routes we currently have (the home page, About page, 404 page, and 500 page)
are pretty difficult to test because they assume three dependencies on Express: they
assume we have an Express app (so we can have app.get), as well as request and
response objects. Fortunately, it’s pretty easy to eliminate the dependence on the
Express app itself (the request and response objects are harder…more on that later).
Fortunately, we’re not using very much functionality from the response object (we’re
using only the render method), so it will be easy to mock it, which we will see shortly.

Refactoring the Application for Testability
We don’t really have a lot of code in our application to test yet. To date, we’ve cur‐
rently added only a handful of route handlers and the getFortune function.

To make our app more testable, we’re going to extract the actual route handlers to
their own library. Create a file lib/handlers.js (ch05/lib/handlers.js in the companion
repo):

const fortune = require('./fortune')

exports.home = (req, res) => res.render('home')

exports.about = (req, res) =>
 res.render('about', { fortune: fortune.getFortune() })

exports.notFound = (req, res) => res.render('404')

exports.serverError = (err, req, res, next) => res.render('500')

Now we can rewrite our meadowloark.js application file to use these handlers (ch05/
meadowlark.js in the companion repo):

// typically at the top of the file
const handlers = require('./lib/handlers')

app.get('/', handlers.home)

app.get('/about', handlers.about)

Unit Testing | 47

// custom 404 page
app.use(handlers.notFound)

// custom 500 page
app.use(handlers.serverError)

It’s easier now to test those handlers: they are just functions that take request and
response objects, and we need to verify that we’re using those objects correctly.

Writing Our First Test
There are multiple ways to identify tests to Jest. The two most common are to put
tests in subdirectories named __test__ (two underscores before and after test) and to
name files with the extension .test.js. I personally like to combine the two techniques
because they both serve a purpose in my mind. Putting tests in __test__ directories
keeps my test from cluttering up my source directories (otherwise, everything will
look doubled in your source directory…you’ll have a foo.test.js for every file foo.js),
and having the .test.js extension means that if I’m looking at a bunch of tabs in my
editor, I can see at a glance what is a test and what is source code.

So let’s create a file called lib/__tests__/handlers.test.js (ch05/lib/__tests__/
handlers.test.js in the companion repo):

const handlers = require('../handlers')

test('home page renders', () => {
 const req = {}
 const res = { render: jest.fn() }
 handlers.home(req, res)
 expect(res.render.mock.calls[0][0]).toBe('home')
})

If you’re new to testing, this will probably look pretty weird, so let’s break it down.

First, we import the code we’re trying to test (in this case, the route handlers). Then
each test has a description; we’re trying to describe what’s being tested. In this case,
we want to make sure that the home page gets rendered.

To invoke our render, we need request and response objects. We’d be writing code all
week if we wanted to simulate the whole request and response objects, but fortunately
we don’t actually need much from them. We know that we don’t need anything at all
from the request object in this case (so we just use an empty object), and the only
thing we need from the response object is a render method. Note how we construct
the render function: we just call a Jest method called jest.fn(). This creates a generic
mock function that keeps track of how it’s called.

Finally, we get to the important part of the test: assertions. We’ve gone to all the trou‐
ble to invoke the code we’re testing, but how do we assert that it did what it should?

48 | Chapter 5: Quality Assurance

In this case, what the code should do is call the render method of the response object
with the string home. Jest’s mock function keeps track of all the times it got called, so
all we have to do is verify it got called exactly once (it would probably be a problem if
it got called twice), which is what the first expect does, and that it gets called with
home as its first argument (the first array index specifies which invocation, and the
second one specifies which argument).

It can get tedious to constantly be rerunning your tests every time
you make a change to your code. Fortunately, most test frameworks
have a “watch” mode that constantly monitors your code and tests
for changes and reruns them automatically. To run your tests in
watch mode, type npm test -- --watch (the extra double-dash is
necessary to let npm know to pass the --watch argument to Jest).

Go ahead and change your home handler to render something other than the home
view; you’ll notice that your test has now failed, and you caught a bug!

We can now add tests for our other routes:

test('about page renders with fortune', () => {
 const req = {}
 const res = { render: jest.fn() }
 handlers.about(req, res)
 expect(res.render.mock.calls.length).toBe(1)
 expect(res.render.mock.calls[0][0]).toBe('about')
 expect(res.render.mock.calls[0][1])
 .toEqual(expect.objectContaining({
 fortune: expect.stringMatching(/\W/),
 }))
})

test('404 handler renders', () => {
 const req = {}
 const res = { render: jest.fn() }
 handlers.notFound(req, res)
 expect(res.render.mock.calls.length).toBe(1)
 expect(res.render.mock.calls[0][0]).toBe('404')
})

test('500 handler renders', () => {
 const err = new Error('some error')
 const req = {}
 const res = { render: jest.fn() }
 const next = jest.fn()
 handlers.serverError(err, req, res, next)
 expect(res.render.mock.calls.length).toBe(1)
 expect(res.render.mock.calls[0][0]).toBe('500')
})

Unit Testing | 49

Note some extra functionality in the “about” and server error tests. The “about” ren‐
der function gets called with a fortune, so we’ve added an expectation that it will get a
fortune that is a string that contains at least one character. It’s beyond the scope of this
book to describe all of the functionality that is available to you through Jest and its
expect method, but you can find comprehensive documentation on the Jest home
page. Note that the server error handler takes four arguments, not two, so we have to
provide additional mocks.

Test Maintenance
You might be realizing that tests are not a “set it and forget it” affair. For example, if
we renamed our “home” view for legitimate reasons, our test would fail, and then we
would have to fix the test in addition to fixing the code.

For this reason, teams put a lot of effort into setting realistic expectations about what
should be tests and how specific the tests should be. For example, we didn’t have to
check to see if the “about” handler was being called with a fortune…which would save
us from having to fix the test if we ditch that feature.

Furthermore, I can’t offer much advice about how thoroughly you should test your
code. I would expect you to have very different standards for testing code for avionics
or medical equipment than for testing the code behind a marketing website.

What I can offer you is a way to answer the question, “How much of my code is tes‐
ted?” The answer to that is called code coverage, which we’ll discuss next.

Code Coverage
Code coverage offers a quantitative answer to how much of your code is tested, but
like most topics in programming, there are no simple answers.

Jest helpfully provides some automated code coverage analysis. To see how much of
your code is tested, run the following:

npm test -- --coverage

If you’ve been following along, you should see a bunch of reassuringly green “100%”
coverage numbers for the files in lib. Jest will report on the coverage percentage of
statements (Stmts), branches, functions (Funcs), and lines.

Statements are referring to JavaScript statements, such as every expression, control
flow statement, etc. Note that you could have 100% line coverage but not 100% state‐
ment coverage because you can put multiple statements on a single line in JavaScript.
Branch coverage refers to control flow statements, such as if-else. If you have an
if-else statement and your test exercises only the if part, you will have 50% branch
coverage for that statement.

50 | Chapter 5: Quality Assurance

https://jestjs.io
https://jestjs.io

You may note that meadowlark.js does not have 100% coverage. This is not necessar‐
ily a problem; if you look at our refactored meadowlark.js file, you’ll see that most of
what’s in there now is simply configuration…we’re just gluing things together. We’re
configuring Express with the relevant middleware and starting the server. Not only
would it be hard to meaningfully test this code, but it’s a reasonable argument that
you shouldn’t have to since it’s merely assembling well-tested code.

You could even make the argument that the tests we’ve written so far are not particu‐
larly useful; they’re also just verifying that we’re configuring Express correctly.

Once again, I have no easy answers. At the end of the day, the type of application
you’re building, your level of experience, and the size and configuration of your team
will have a large impact on how far down the test rabbit hole you go. I encourage you
to err on the side of too much testing than not enough, but with experience, you’ll find
the “just right” sweet spot.

Testing Entropic Functionality
Testing entropic functionality (functionality that is random) comes with its own chal‐
lenges. Another test we could add for our fortune cookie generator would be a test to
make sure that it returns a random fortune cookie. But how do you know if some‐
thing is random? One approach is to get a large number of fortunes—a thousand, for
example—and then measure the distribution of the responses. If the function is prop‐
erly random, no one response will stand out. The downside of this approach is that it’s
nondeterministic: it’s possible (but unlikely) to get one fortune 10 times more fre‐
quently than any other fortune. If that happened, the test could fail (depending on
how aggressive you set the threshold of what is “random”), but that might not actually
indicate that the system being tested is failing; it’s just a consequence of testing
entropic systems. In the case of our fortune generator, it would be reasonable to gen‐
erate 50 fortunes and expect at least three different ones. On the other hand, if we
were developing a random source for a scientific simulation or security component,
we would probably want to have much more detailed tests. The point is that testing
entropic functionality is difficult and requires more thought.

Integration Testing
There’s currently nothing interesting to test in our application; we just have a couple
of pages and there’s no interaction. So before we write an integration test, let’s add
some functionality that we can test. In the interest of keeping things simple, we’ll let
that functionality be a link that allows you to get from the home page to the About
page. It doesn’t get much simpler than that! And yet, as simple as that would appear
to a user, it is a true integration test because it’s exercising not only two Express route

Integration Testing | 51

handlers, but also the HTML and the DOM interaction (the user clicking the link and
the resulting page navigation). Let’s add a link to views/home.handlebars:

<p>Questions? Checkout out our
About Us page!</p>

You might be wondering about the data-test-id attribute. To make testing, we need
some way to identify the link so we can (virtually) click it. We could have used a CSS
class for this, but I prefer to reserve classes for styling and use data attributes for auto‐
mation. We also could have searched for the text About Us, but that would be a fragile
and expensive DOM search. We also could have queried against the href parameter,
which would make sense (but then it would be harder to make this test fail, which we
want to do for educational purposes).

We can go ahead and run our application and verify with our clumsy human hands
that the functionality works as intended before we move on to something more auto‐
mated.

Before we jump into installing Puppeteer and writing an integration test, we need to
modify our application so that it can be required as a module (right now it is designed
only to be run directly). The way to do that in Node is a little opaque: at the bottom of
meadowlark.js, replace the call to app.listen with the following:

if(require.main === module) {
 app.listen(port, () => {
 console.log(`Express started on http://localhost:${port}` +
 '; press Ctrl-C to terminate.')
 })
} else {
 module.exports = app
}

I’ll skip the technical explanation for this as it’s rather tedious, but if you’re curious, a
careful reading of Node’s module documentation will make it clear. What’s important
to know is that if you run a JavaScript file directly with node, require.main will equal
the global module; otherwise, it’s being imported from another module.

Now that we’ve got that out of the way, we can install Puppeteer. Puppeteer is essen‐
tially a controllable, headless version of Chrome. (Headless simply means that the
browser is capable of running without actually rendering a UI on-screen.) To install
Puppeteer:

npm install --save-dev puppeteer

We’ll also install a small utility to find an open port so that we don’t get a lot of test
errors because our app can’t start on the port we requested:

npm install --save-dev portfinder

Now we can write an integration that does the following:

52 | Chapter 5: Quality Assurance

http://bit.ly/32BDO3H

1. Starts our application server on an unoccupied port
2. Launches a headless Chrome browser and opens a page
3. Navigates to our application’s home page
4. Finds a link with data-test-id="about" and clicks it
5. Waits for the navigation to happen
6. Verifies that we are on the /about page

Create a directory called integration-tests (you’re welcome to call it something else if
you like) and a file in that directory called basic-navigation.test.js (ch05/integration-
tests/basic-navigation.test.js in the companion repo):

const portfinder = require('portfinder')
const puppeteer = require('puppeteer')

const app = require('../meadowlark.js')

let server = null
let port = null

beforeEach(async () => {
 port = await portfinder.getPortPromise()
 server = app.listen(port)
})

afterEach(() => {
 server.close()
})

test('home page links to about page', async () => {
 const browser = await puppeteer.launch()
 const page = await browser.newPage()
 await page.goto(`http://localhost:${port}`)
 await Promise.all([
 page.waitForNavigation(),
 page.click('[data-test-id="about"]'),
])
 expect(page.url()).toBe(`http://localhost:${port}/about`)
 await browser.close()
})

We are using Jest’s beforeEach and afterEach hooks to start our server before each
test and stop it after each test (right now we have only one test, so this will really be
meaningful when we add more tests). We could instead use beforeAll and afterAll
so we’re not starting and tearing down our server for every test, which may speed up
your tests, but at the cost of not having a “clean” environment for each test. That is, if
one of your tests makes changes that affect the outcome of future tests, you’re intro‐
ducing hard-to-maintain dependencies.

Integration Testing | 53

1 If you are unfamiliar with await, I recommend this article by Tamas Piros.

Our actual test uses Puppeteer’s API, which gives us a lot of DOM query functional‐
ity. Note that almost everything here is asynchronous, and we’re using await liberally
to make the test easier to read and write (almost all of the Puppeteer API calls return
a promise).1 We wrap the navigation and the click together in a call to Promise.all to
prevent race conditions per the Puppeteer documentation.

There’s far more functionality in the Puppeteer API than I could hope to cover in this
book. Fortunately, it has excellent documentation.

Testing is a vital backstop in ensuring the quality of your product, but it’s not the only
tool at your disposal. Linting helps you prevent common errors in the first place.

Linting
A good linter is like having a second set of eyes: it will spot things that will slide right
past our human brains. The original JavaScript linter is Douglas Crockford’s JSLint.
In 2011, Anton Kovalyov forked JSLint, and JSHint was born. Kovalyov found that
JSLint was becoming too opinionated, and he wanted to create a more customizable,
community-developed JavaScript linter. After JSHint came Nicholas Zakas’ ESLint,
which has become the most popular choice (it won by a landslide in the 2017 State of
JavaScript survey). In addition to its ubiquity, ESLint appears to be the most actively
maintained linter, and I prefer its flexible configuration over JSHint, and it is what I
am recommending.

ESLint can be installed on a per project basis or globally. To avoid inadvertently
breaking things, I try to avoid global installations (for example, if I install ESLint
globally and update it frequently, old projects may no longer lint successfully because
of breaking changes, and now I have to do the extra work of updating my project).

To install ESLint in your project:

npm install --save-dev eslint

ESLint requires a configuration file to tell it which rules to apply. Doing this from
scratch would be a time-consuming task, so fortunately ESLint provides a utility for
creating one for you. From your project root, run the following:

./node_modules/.bin/eslint --init

54 | Chapter 5: Quality Assurance

http://bit.ly/2rEXU0d
http://bit.ly/2KctokI
https://eslint.org
http://bit.ly/2Q7w32O
http://bit.ly/2Q7w32O

If we installed ESLint globally, we could just use eslint --init.
The awkward ./node_modules/.bin path is required to directly
run locally installed utilities. We’ll see soon that we don’t have to do
that if we add utilities to the scripts section of our package.json
file, which is recommended for things we do frequently. However,
creating an ESLint configuration is something we have to do only
once per project.

ESLint will ask you some questions. For most of them, it’s safe to choose the defaults,
but a couple deserve note:

What type of modules does your project use?
Since we’re using Node (as opposed to code that will run in the browser), you’ll
want to choose “CommonJS (require/exports).” You may have client-side Java‐
Script in your project too, in which case you may want a separate lint configura‐
tion. The easiest way to do this is to have two separate projects, but it is possible
to have multiple ESLint configurations in the same project. Consult the ESLint
documentation for more information.

Which framework does your project use?
Unless you see Express on there (I don’t at the time of this writing), choose
“None of these.”

Where does your code run?
Choose Node.

Now that ESLint is set up, we need a convenient way of running it. Add the following
to the scripts section of your package.json:

 "lint": "eslint meadowlark.js lib"

Note that we have to explicitly tell ESLint what files and directories we want to lint.
This is an argument for collecting all of your source under one directory (usually src).

Now brace yourself and run the following:

npm run lint

You’ll probably see a lot of unpleasant-looking errors—that’s usually what happens
when you first run ESLint. However, if you’ve been following along with the Jest test,
there will be some spurious errors related to Jest, which look like this:

 3:1 error 'test' is not defined no-undef
 5:25 error 'jest' is not defined no-undef
 7:3 error 'expect' is not defined no-undef
 8:3 error 'expect' is not defined no-undef
 11:1 error 'test' is not defined no-undef
 13:25 error 'jest' is not defined no-undef
 15:3 error 'expect' is not defined no-undef

Linting | 55

https://eslint.org/
https://eslint.org/

ESLint (quite sensibly) doesn’t appreciate unrecognized global variables. Jest injects
global variables (notably test, describe, jest, and expect). Fortunately, this is an
easy problem to fix. In your project root, open the .eslintrc.js file (this is the ESLint
configuration). In the env section, add the following:

"jest": true,

Now if you run npm run lint again, you should see a lot fewer errors.

So what to do about the remaining errors? Here’s where I can offer wisdom but no
specific guidance. Broadly speaking, a linting error has one of three causes:

• It’s a legitimate problem, and you should fix it. It may not always be obvious, in
which case you may need to refer to the ESLint documentation for the particular
error.

• It’s a rule you don’t agree with, and you can simply disable it. Many of the rules in
ESLint are a matter of opinion. I’ll demonstrate disabling a rule in a moment.

• You agree with the rule, but there’s an instance where it’s infeasible or costly to fix
in some specific circumstance. For those situations, you can disable rules for only
specific lines in a file, which we’ll also see an example of.

If you’ve been following along, you should currently see the following errors:

/Users/ethan/wdne2e-companion/ch05/meadowlark.js
 27:5 error Unexpected console statement no-console

/Users/ethan/wdne2e-companion/ch05/lib/handlers.js
 10:39 error 'next' is defined but never used no-unused-vars

ESLint complains about console logging because it’s not necessarily a good way to
provide output for your application; it can be noisy and inconsistent, and, depending
on how you run it, the output can get swept under the rug. However, for our use, let’s
say it doesn’t bother us and we want to disable that rule. Open your .eslintrc file, find
the rules section (if there isn’t a rules section, create one at the top level of the
exported object), and add the following rule:

 "rules": {
 "no-console": "off",
 },

Now if we run npm run lint again, we’ll see that error is no more! The next one is a
little trickier….

Open lib/handlers.js and consider the line in question:

exports.serverError = (err, req, res, next) => res.render('500')

ESLint is correct; we’re providing next as an argument but not doing anything with it
(we’re also not doing anything with err and req, but because of the way JavaScript

56 | Chapter 5: Quality Assurance

treats function arguments, we have to put something there so we can get at res, which
we are using).

You may be tempted to just remove the next argument. “What’s the harm?” you may
think. And indeed, there would be no runtime errors, and your linter would be
happy…but a hard-to-see harm would be done: your custom error handler would
stop working! (If you want to see for yourself, throw an exception from one of your
routes and try visiting it, and then remove the next argument from the serverError
handler.)

Express is doing something subtle here: it’s using the number of actual arguments you
pass to it to recognize that it’s supposed to be an error handler. Without that next
argument—whether you use it or not—Express no longer recognizes it as an error
handler.

What the Express team has done with the error handler is undenia‐
bly “clever,” but clever code can often be confusing, easy to break,
or inscrutable. As much as I love Express, this is one choice I think
the team got wrong: I think it should have found a less idiosyn‐
cratic and more explicit way to specify an error handler.

We can’t change our handler code, and we need our error handler, but we like this
rule and don’t want to disable it. We could just live with the error, but the errors will
accumulate and be a constant irritation, and they will eventually corrode the very
point of having a linter. Fortunately, we can fix it by disabling that rule for that single
line. Edit lib/handlers.js and add the following around your error handler:

// Express recognizes the error handler by way of its four
// arguments, so we have to disable ESLint's no-unused-vars rule
/* eslint-disable no-unused-vars */
exports.serverError = (err, req, res, next) => res.render('500')
/* eslint-enable no-unused-vars */

Linting can be a little frustrating at first—it may feel like it’s constantly tripping you
up. And certainly you should feel free to disable rules that don’t suit you. Eventually,
you will find it less and less frustrating as you learn to avoid the common mistakes
that linting is designed to catch.

Testing and linting are undeniably useful, but any tool is worthless if you never use it!
It may seem crazy that you would go to the time and trouble to write unit tests and
set up linting, but I’ve seen it happen, especially when the pressure is on. Fortunately,
there is a way to ensure that these helpful tools don’t get forgotten: continuous inte‐
gration.

Linting | 57

Continuous Integration
I’ll leave you with another extremely useful QA concept: continuous integration (CI).
It’s especially important if you’re working on a team, but even if you’re working on
your own, it can provide some helpful discipline.

Basically, CI runs some or all of your tests every time you contribute code to a source
code repository (you can control which branches this applies to). If all of the tests
pass, nothing usually happens (you may get an email saying “good job,” depending on
how your CI is configured).

If, on the other hand, there are failures, the consequences are usually more…public.
Again, it depends on how you configure your CI, but usually the entire team gets an
email saying that you “broke the build.” If your integration master is really sadistic,
sometimes your boss is also on that email list! I’ve even known teams that set up
lights and sirens when someone broke the build, and in one particularly creative
office, a tiny robotic foam missile launcher fired soft projectiles at the offending
developer! It’s a powerful incentive to run your QA toolchain before committing.

It’s beyond the scope of this book to cover installing and configuring a CI server, but a
chapter on QA wouldn’t be complete without mentioning it.

Currently, the most popular CI server for Node projects is Travis CI. Travis CI is a
hosted solution, which can be appealing (it saves you from having to set up your own
CI server). If you’re using GitHub, it offers excellent integration support. CircleCI is
another option.

If you’re working on a project on your own, you may not get much benefit from a CI
server, but if you’re working on a team or an open source project, I highly recom‐
mend looking into setting up CI for your project.

Conclusion
This chapter covered a lot of ground, but I consider these essential real-world skills in
any development framework. The JavaScript ecosystem is dizzyingly large, and if
you’re new to it, it can be hard to know where to start. I hope this chapter pointed
you in the right direction.

Now that we have some experience with these tools, we’ll turn our attention to some
fundamentals of the Node and Express objects that bracket everything that happens
in an Express application: the request and response objects.

58 | Chapter 5: Quality Assurance

https://travis-ci.org/
https://circleci.com

CHAPTER 6

The Request and Response Objects

In this chapter, we’ll learn the important details of the request and response objects—
which are very much the beginning and end of everything that happens in an Express
application. When you’re building a web server with Express, most of what you’ll be
doing starts with a request object and ends with a response object.

These two objects originate in Node and are extended by Express. Before we delve
into what these objects offer us, let’s establish a little background on how a client (a
browser, usually) requests a page from a server and how that page is returned.

The Parts of a URL
We see URLs all the time, but we don’t often stop to think about their component
parts. Let’s consider three URLs and examine their component parts:

Protocol
The protocol determines how the request will be transmitted. We will be dealing
exclusively with http and https. Other common protocols include file and ftp.

59

1 Ports 0–1023 are “well-known ports” reserved for common services.

Host
The host identifies the server. Servers on your computer (localhost) or a local
network may be identified simply be one word or by a numeric IP address. On
the internet, the host will end in a top-level domain (TLD) like .com or .net.
Additionally, there may be subdomains, which prefix the hostname. www is a
common subdomain, though it can be anything. Subdomains are optional.

Port
Each server has a collection of numbered ports. Some port numbers are special,
like 80 and 443. If you omit the port, port 80 is assumed for HTTP and 443 for
HTTPS. In general, if you aren’t using port 80 or 443, you should use a port num‐
ber greater than 1023.1 It’s common to use easy-to-remember port numbers like
3000, 8080, and 8088. Only one server can be associated with a given port, and
even though there are plenty of numbers to choose from, you may have to change
the port number if you’re using a commonly used port number.

Path
The path is generally the first part of the URL that your app cares about (it is pos‐
sible to make decisions based on protocol, host, and port, but it’s not good prac‐
tice). The path should be used to uniquely identify pages or other resources in
your app.

Querystring
The querystring is an optional collection of name/value pairs. The querystring
starts with a question mark (?), and name/value pairs are separated by amper‐
sands (&). Both names and values should be URL encoded. JavaScript provides a
built-in function to do that: encodeURIComponent. For example, spaces will be
replaced with plus signs (+). Other special characters will be replaced with
numeric character references. Sometimes the querystring will be referred to as
the search string or simply the search.

Fragment
The fragment (or hash) is not passed to the server at all; it is strictly for use by the
browser. Some single-page applications use the fragment to control application
navigation. Originally, the fragment’s sole purpose was to cause the browser to
display a specific part of the document, marked by an anchor tag (for example:).

60 | Chapter 6: The Request and Response Objects

http://bit.ly/33InJu7

HTTP Request Methods
The HTTP protocol defines a collection of request methods (often referred to as
HTTP verbs) that a client uses to communicate with a server. Far and away, the most
common methods are GET and POST.

When you type a URL into a browser (or click a link), the browser issues an HTTP
GET request to the server. The important information passed to the server is the URL
path and querystring. The combination of method, path, and querystring is what
your app uses to determine how to respond.

For a website, most of your pages will respond to GET requests. POST requests are usu‐
ally reserved for sending information back to the server (form processing, for exam‐
ple). It’s quite common for POST requests to respond with the same HTML as the
corresponding GET request after the server has processed any information included in
the request (like a form). Browsers will primarily use the GET and POST methods when
communicating with your server. The Ajax requests your application makes, however,
may use any HTTP verb. For example, there’s an HTTP method called DELETE that is
useful for, well, an API call that deletes things.

With Node and Express, you are fully in charge of what methods you respond to. In
Express, you’ll usually be writing handlers for specific methods.

Request Headers
The URL isn’t the only thing that’s passed to the server when you navigate to a page.
Your browser is sending a lot of “invisible” information every time you visit a website.
I’m not talking about spooky personal information (though if your browser is infec‐
ted by malware, that can happen). The browser will tell the server what language it
prefers to receive the page in (for example, if you download Chrome in Spain, it will
request the Spanish version of pages you visit, if they exist). It will also send informa‐
tion about the user agent (the browser, operating system, and hardware) and other
bits of information. All this information is sent as a request header, which is made
available to you through the request object’s headers property. If you’re curious to see
the information your browser is sending, you can create a simple Express route to
display that information (ch06/00-echo-headers.js in the companion repo):

app.get('/headers', (req, res) => {
 res.type('text/plain')
 const headers = Object.entries(req.headers)
 .map(([key, value]) => `${key}: ${value}`)
 res.send(headers.join('\n'))
})

HTTP Request Methods | 61

Response Headers
Just as your browser sends hidden information to the server in the form of request
headers, when the server responds, it also sends information back that is not neces‐
sarily rendered or displayed by the browser. The information typically included in
response headers is metadata and server information. We’ve already seen the
Content-Type header, which tells the browser what kind of content is being transmit‐
ted (HTML, an image, CSS, JavaScript, etc.). Note that the browser will respect the
Content-Type header regardless of what the URL path is. So you could serve HTML
from a path of /image.jpg or an image from a path of /text.html. (There’s no legitimate
reason to do this; it’s just important to understand that paths are abstract, and the
browser uses Content-Type to determine how to render content.) In addition to
Content-Type, headers can indicate whether the response is compressed and what
kind of encoding it’s using. Response headers can also contain hints for the browser
about how long it can cache the resource. This is an important consideration for opti‐
mizing your website, and we’ll be discussing that in detail in Chapter 17.

It is also common for response headers to contain some information about the server,
indicating what type of server it is and sometimes even details about the operating
system. The downside about returning server information is that it gives hackers a
starting point to compromise your site. Extremely security-conscious servers often
omit this information or even provide false information. Disabling Express’s default
X-Powered-By header is easy (ch06/01-disable-x-powered-by.js in the companion
repo):

app.disable('x-powered-by')

If you want to see the response headers, they can be found in your browser’s devel‐
oper tools. To see the response headers in Chrome, for example:

1. Open the JavaScript console.
2. Click the Network tab.
3. Reload the page.
4. Pick the HTML from the list of requests (it will be the first one).
5. Click the Headers tab; you will see all response headers.

Internet Media Types
The Content-Type header is critically important; without it, the client would have to
painfully guess how to render the content. The format of the Content-Type header is
an internet media type, which consists of a type, subtype, and optional parameters.
For example, text/html; charset=UTF-8 specifies a type of “text,” a subtype of

62 | Chapter 6: The Request and Response Objects

“html,” and a character encoding of UTF-8. The Internet Assigned Numbers Author‐
ity maintains an official list of internet media types. Often, you will hear “content
type,” “Internet media type,” and “MIME type” used interchangeably. MIME (Multi‐
purpose Internet Mail Extensions) was a precursor of internet media types and, for
the most part, is equivalent.

Request Body
In addition to the request headers, a request can have a body (just like the body of a
response is the actual content that’s being returned). Normal GET requests don’t have
bodies, but POST requests usually do. The most common media type for POST bodies
is application/x-www-form-urlencoded, which is simply encoded name/value pairs
separated by ampersands (essentially the same format as a querystring). If the POST
needs to support file uploads, the media type is multipart/form-data, which is a
more complicated format. Lastly, Ajax requests can use application/json for the
body. We’ll learn more about request bodies in Chapter 8.

The Request Object
The request object (which is passed as the first parameter of a request handler, mean‐
ing you can name it whatever you want; it is common to name it req or request)
starts its life as an instance of http.IncomingMessage, a core Node object. Express
adds further functionality. Let’s look at the most useful properties and methods of the
request object (all of these methods are added by Express, except for req.headers
and req.url, which originate in Node):

req.params

An array containing the named route parameters. We’ll learn more about this in
Chapter 14.

req.query

An object containing querystring parameters (sometimes called GET parameters)
as name/value pairs.

req.body

An object containing POST parameters. It is so named because POST parameters
are passed in the body of the request, not in the URL as querystring parameters
are. To make req.body available, you’ll need middleware that can parse the body
content type, which we will learn about in Chapter 10.

req.route

Information about the currently matched route. This is primarily useful for route
debugging.

Request Body | 63

https://www.iana.org/assignments/media-types/media-types.xhtml

req.cookies/req.signedCookies
Objects containing cookie values passed from the client. See Chapter 9.

req.headers

The request headers received from the client. This is an object whose keys are the
header names and whose values are the header values. Note that this comes from
the underlying http.IncomingMessage object, so you won’t find it listed in the
Express documentation.

req.accepts(types)

A convenience method to determine whether the client accepts a given type or
types (optional types can be a single MIME type, such as application/json, a
comma-delimited list, or an array). This method is of primary interest to those
writing public APIs; it is assumed that browsers will always accept HTML by
default.

req.ip

The IP address of the client.

req.path

The request path (without protocol, host, port, or querystring).

req.hostname

A convenience method that returns the hostname reported by the client. This
information can be spoofed and should not be used for security purposes.

req.xhr

A convenience property that returns true if the request originated from an Ajax
call.

req.protocol

The protocol used in making this request (for our purposes, it will be either http
or https).

req.secure

A convenience property that returns true if the connection is secure. This is
equivalent to req.protocol === 'https'.

req.url/req.originalUrl
A bit of a misnomer, these properties return the path and querystring (they do
not include protocol, host, or port). req.url can be rewritten for internal routing
purposes, but req.originalUrl is designed to remain the original request and
querystring.

64 | Chapter 6: The Request and Response Objects

The Response Object
The response object (which is passed as the second parameter of a request handler,
meaning you can name it whatever you want; it is common to name it res, resp, or
response) starts its life as an instance of http.ServerResponse, a core Node object.
Express adds further functionality. Let’s look at the most useful properties and meth‐
ods of the response object (all of these are added by Express):

res.status(code)

Sets the HTTP status code. Express defaults to 200 (OK), so you will have to use
this method to return a status of 404 (Not Found) or 500 (Server Error), or any
other status code you want to use. For redirects (status codes 301, 302, 303, and
307), there is a method redirect, which is preferable. Note that res.status
returns the response object, meaning you can chain calls: res.sta

tus(404).send('Not found').

res.set(name, value)

Sets a response header. This is not something you will normally be doing man‐
ually. You can also set multiple headers at once by passing a single object argu‐
ment whose keys are the header names and whose values are the header values.

res.cookie(name, value, [options]), res.clearCookie(name, [options])
Sets or clears cookies that will be stored on the client. This requires some middle‐
ware support; see Chapter 9.

res.redirect([status], url)

Redirects the browser. The default redirect code is 302 (Found). In general, you
should minimize redirection unless you are permanently moving a page, in
which case you should use the code 301 (Moved Permanently).

res.send(body)

Sends a response to the client. Express defaults to a content type of text/html, so
if you want to change it to text/plain (for example), you’ll have to call
res.type('text/plain’) before calling res.send. If body is an object or an
array, the response is sent as JSON (with the content type being set appropri‐
ately), though if you want to send JSON, I recommend doing so explicitly by call‐
ing res.json instead.

res.json(json)

Sends JSON to the client.

res.jsonp(json)

Sends JSONP to the client.

The Response Object | 65

res.end()

Ends the connection without sending a response. To learn more about the differ‐
ences between res.send, res.json, and res.end, see this article by Tamas Piros.

res.type(type)

A convenience method to set the Content-Type header. This is essentially equiva‐
lent to res.set(\'Content-Type ', type), except that it will also attempt to
map file extensions to an internet media type if you provide a string without a
slash in it. For example, res.type(\'txt ') will result in a Content-Type of
text/plain. There are areas where this functionality could be useful (for exam‐
ple, automatically serving disparate multimedia files), but in general, you should
avoid it in favor of explicitly setting the correct internet media type.

res.format(object)

This method allows you to send different content depending on the Accept
request header. This is of primary use in APIs, and we will discuss this more in
Chapter 15. Here’s a simple example: res.format({'text/plain': 'hi there',
'text/html': 'hi there'}).

res.attachment([filename]), res.download(path, [filename], [callback])
Both of these methods set a response header called Content-Disposition to
attachment; this will prompt the browser to download the content instead of dis‐
playing it in a browser. You may specify filename as a hint to the browser. With
res.download, you can specify the file to download, whereas res.attachment
just sets the header; you still have to send content to the client.

res.sendFile(path, [options], [callback])

This method will read a file specified by path and send its contents to the client.
There should be little need for this method; it’s easier to use the static middle‐
ware and put files you want available to the client in the public directory. How‐
ever, if you want to have a different resource served from the same URL
depending on some condition, this method could come in handy.

res.links(links)

Sets the Links response header. This is a specialized header that has little use in
most applications.

res.locals, res.render(view, [locals], callback)
res.locals is an object containing default context for rendering views. res.ren
der will render a view using the configured templating engine (the locals
parameter to res.render shouldn’t be confused with res.locals: it will override
the context in res.locals, but context not overridden will still be available).
Note that res.render will default to a response code of 200; use res.status to

66 | Chapter 6: The Request and Response Objects

https://blog.fullstacktraining.com/res-json-vs-res-send-vs-res-end-in-express/

specify a different response code. Rendering views will be covered in depth in
Chapter 7.

Getting More Information
Because of JavaScript’s prototypal inheritance, knowing exactly what you’re dealing
with can sometimes be challenging. Node provides you with objects that Express
extends, and packages that you add may also extend those. Figuring out exactly what’s
available to you can be challenging sometimes. In general, I recommend working
backward: if you’re looking for some functionality, first check the Express API docu‐
mentation. The Express API is pretty complete, and chances are, you’ll find what
you’re looking for there.

If you need information that isn’t documented, sometimes you have to dive into the
Express source. I encourage you to do this! You’ll probably find that it’s a lot less
intimidating than you might think. Here’s a quick roadmap to where you’ll find
things in the Express source:

lib/application.js
The main Express interface. If you want to understand how middleware is linked
in or how views are rendered, this is the place to look.

lib/express.js
A relatively short file that primarily provides the createApplication function
(the default export of this file), which creates an Express application instance.

lib/request.js
Extends Node’s http.IncomingMessage object to provide a robust request object.
For information about all the request object properties and methods, this is
where to look.

lib/response.js
Extends Node’s http.ServerResponse object to provide the response object. For
information about response object properties and methods, this is where to look.

lib/router/route.js
Provides basic routing support. While routing is central to your app, this file is
less than 230 lines long; you’ll find that it’s quite simple and elegant.

As you dig into the Express source code, you’ll probably want to refer to the Node
documentation, especially the section on the HTTP module.

Getting More Information | 67

http://expressjs.com/api.html
http://expressjs.com/api.html
https://github.com/expressjs/express
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/

Boiling It Down
This chapter has provided an overview of the request and response objects, which are
the meat and potatoes of an Express application. However, the chances are that you
will be using a small subset of this functionality most of the time. So let’s break it
down by functionality you’ll be using most frequently.

Rendering Content
When you’re rendering content, you’ll be using res.render most often, which ren‐
ders views within layouts, providing maximum value. Occasionally, you may want to
write a quick test page, so you might use res.send if you just want a test page. You
may use req.query to get querystring values, req.session to get session values, or
req.cookie/req.signedCookies to get cookies. Example 6-1 to Example 6-8 demon‐
strate common content rendering tasks.

Example 6-1. Basic usage (ch06/02-basic-rendering.js)

// basic usage
app.get('/about', (req, res) => {
 res.render('about')
})

Example 6-2. Response codes other than 200 (ch06/03-different-response-codes.js)

app.get('/error', (req, res) => {
 res.status(500)
 res.render('error')
})

// or on one line...

app.get('/error', (req, res) => res.status(500).render('error'))

Example 6-3. Passing a context to a view, including querystring, cookie, and session
values (ch06/04-view-with-content.js)

app.get('/greeting', (req, res) => {
 res.render('greeting', {
 message: 'Hello esteemed programmer!',
 style: req.query.style,
 userid: req.cookies.userid,
 username: req.session.username
 })
})

68 | Chapter 6: The Request and Response Objects

Example 6-4. Rendering a view without a layout (ch06/05-view-without-layout.js)

// the following layout doesn't have a layout file, so
// views/no-layout.handlebars must include all necessary HTML
app.get('/no-layout', (req, res) =>
 res.render('no-layout', { layout: null })
)

Example 6-5. Rendering a view with a custom layout (ch06/06-custom-layout.js)

// the layout file views/layouts/custom.handlebars will be used
app.get('/custom-layout', (req, res) =>
 res.render('custom-layout', { layout: 'custom' })
)

Example 6-6. Rendering plain text output (ch06/07-plaintext-output.js)

app.get('/text', (req, res) => {
 res.type('text/plain')
 res.send('this is a test')
})

Example 6-7. Adding an error handler (ch06/08-error-handler.js)

// this should appear AFTER all of your routes
// note that even if you don't need the "next" function, it must be
// included for Express to recognize this as an error handler
app.use((err, req, res, next) => {
 console.error('** SERVER ERROR: ' + err.message)
 res.status(500).render('08-error',
 { message: "you shouldn't have clicked that!" })
})

Example 6-8. Adding a 404 handler (ch06/09-custom-404.js)

// this should appear AFTER all of your routes
app.use((req, res) =>
 res.status(404).render('404')
)

Processing Forms
When you’re processing forms, the information from the forms will usually be in
req.body (or occasionally in req.query). You may use req.xhr to determine whether
the request was an Ajax request or a browser request (this will be covered in depth in
Chapter 8). See Example 6-9 and Example 6-10. For the following examples, you’ll
need to have body parser middleware linked in:

Boiling It Down | 69

const bodyParser = require('body-parser')
app.use(bodyParser.urlencoded({ extended: false }))

We’ll learn more about body parser middleware in Chapter 8.

Example 6-9. Basic form processing (ch06/10-basic-form-processing.js)

app.post('/process-contact', (req, res) => {
 console.log(`received contact from ${req.body.name} <${req.body.email}>`)
 res.redirect(303, '10-thank-you')
})

Example 6-10. More robust form processing (ch06/11-more-robust-form-processing.js)

app.post('/process-contact', (req, res) => {
 try {
 // here's where we would try to save contact to database or other
 // persistence mechanism...for now, we'll just simulate an error
 if(req.body.simulateError) throw new Error("error saving contact!")
 console.log(`contact from ${req.body.name} <${req.body.email}>`)
 res.format({
 'text/html': () => res.redirect(303, '/thank-you'),
 'application/json': () => res.json({ success: true }),
 })
 } catch(err) {
 // here's where we would handle any persistence failures
 console.error(`error processing contact from ${req.body.name} ` +
 `<${req.body.email}>`)
 res.format({
 'text/html': () => res.redirect(303, '/contact-error'),
 'application/json': () => res.status(500).json({
 error: 'error saving contact information' }),
 })
 }
})

Providing an API
When you’re providing an API, much like processing forms, the parameters will usu‐
ally be in req.query, though you can also use req.body. What’s different about APIs
is that you’ll usually be returning JSON, XML, or even plain text, instead of HTML,
and you’ll often be using less common HTTP methods like PUT, POST, and DELETE.
Providing an API will be covered in Chapter 15. Example 6-11 and Example 6-12 use
the following “products” array (which would normally be retrieved from a database):

const tours = [
 { id: 0, name: 'Hood River', price: 99.99 },
 { id: 1, name: 'Oregon Coast', price: 149.95 },
]

70 | Chapter 6: The Request and Response Objects

The term endpoint is often used to describe a single function in an
API.

Example 6-11. Simple GET endpoint returning only JSON (ch06/12-api.get.js)

app.get('/api/tours', (req, res) => res.json(tours))

Example 6-12 uses the res.format method in Express to respond according to the
preferences of the client.

Example 6-12. GET endpoint that returns JSON, XML, or text (ch06/13-api-json-xml-
text.js)

app.get('/api/tours', (req, res) => {
 const toursXml = '<?xml version="1.0"?><tours>' +
 tours.map(p =>
 `<tour price="${p.price}" id="${p.id}">${p.name}</tour>`
).join('') + '</tours>'
 const toursText = tours.map(p =>
 `${p.id}: ${p.name} (${p.price})`
).join('\n')
 res.format({
 'application/json': () => res.json(tours),
 'application/xml': () => res.type('application/xml').send(toursXml),
 'text/xml': () => res.type('text/xml').send(toursXml),
 'text/plain': () => res.type('text/plain').send(toursXml),
 })
})

In Example 6-13, the PUT endpoint updates a product and returns JSON. Parameters
are passed in the request body (the :id in the route string tells Express to add an id
property to req.params).

Example 6-13. PUT endpoint for updating (ch06/14-api-put.js)

app.put('/api/tour/:id', (req, res) => {
 const p = tours.find(p => p.id === parseInt(req.params.id))
 if(!p) return res.status(404).json({ error: 'No such tour exists' })
 if(req.body.name) p.name = req.body.name
 if(req.body.price) p.price = req.body.price
 res.json({ success: true })
})

Finally, Example 6-14 shows a DELETE endpoint.

Boiling It Down | 71

Example 6-14. DELETE endpoint for deleting (ch06/15-api-del.js)

app.delete('/api/tour/:id', (req, res) => {
 const idx = tours.findIndex(tour => tour.id === parseInt(req.params.id))
 if(idx < 0) return res.json({ error: 'No such tour exists.' })
 tours.splice(idx, 1)
 res.json({ success: true })
})

Conclusion
I hope the micro-examples in this chapter gave you a feel for the kind of functionality
that is common in an Express application. These examples are intended to be a quick
reference you can revisit in the future.

In the next chapter, we’ll dig deeper into templating, which we touched on in the ren‐
dering examples in this chapter.

72 | Chapter 6: The Request and Response Objects

CHAPTER 7

Templating with Handlebars

In this chapter, we’ll cover templating, which is a technique for constructing and for‐
mating your content to display to the user. You can think of templating as an evolu‐
tion of the form letter: “Dear [Name]: we regret to inform you nobody uses
[Outdated Technology] anymore, but templating is alive and well!” To send that letter
to a bunch of people, you just have to replace [Name] and [Outdated Technology].

This process of replacing fields is sometimes called interpolation,
which is just a fancy word for “supplying missing information” in
this context.

While server-side templating is being fast supplanted by frontend frameworks like
React, Angular, and Vue, it still has applications, like creating HTML email. Also,
Angular and Vue both use a template-like approach to writing HTML, so what you
learn about server-side templating will transfer to those frontend frameworks.

If you’re coming from a PHP background, you may wonder what the fuss is all about:
PHP is one of the first languages that could really be called a templating language.
Almost all major languages that have been adapted for the web have included some
kind of templating support. What is different today is that the templating engine is
being decoupled from the language.

So what does templating look like? Let’s start with what templating is replacing by
considering the most obvious and straightforward way to generate one language from
another (specifically, we’ll generate some HTML with JavaScript):

document.write('<h1>Please Don\'t Do This</h1>')
document.write('<p>document.write is naughty,\n')

73

document.write('and should be avoided at all costs.</p>')
document.write('<p>Today\'s date is ' + new Date() + '.</p>')

Perhaps the only reason this seems “obvious” is that it’s the way programming has
always been taught:

10 PRINT "Hello world!"

In imperative languages, we’re used to saying, “Do this, then do that, then do some‐
thing else.” For some things, this approach works fine. If you have 500 lines of Java‐
Script to perform a complicated calculation that results in a single number, and every
step is dependent on the previous step, there’s no harm in it. What if it’s the other way
around, though? You have 500 lines of HTML and 3 lines of JavaScript. Does it make
sense to write document.write 500 times? Not at all.

Really, the problem boils down to this: switching context is problematic. If you’re
writing lots of JavaScript, it’s inconvenient and confusing to be mixing in HTML. The
other way isn’t so bad. We’re quite used to writing JavaScript in <script> blocks, but I
hope you see the difference: there’s still a context switch, and either you’re writing
HTML or you’re in a <script> block writing JavaScript. Having JavaScript emit
HTML is fraught with problems:

• You have to constantly worry about what characters need to be escaped and how
to do that.

• Using JavaScript to generate HTML that itself includes JavaScript quickly leads to
madness.

• You usually lose the nice syntax highlighting and other handy language-specific
features your editor has.

• It can be much harder to spot malformed HTML.
• Your code is hard to visually parse.
• It can make it harder for other people to understand your code.

Templating solves the problem by allowing you to write in the target language, while
at the same time providing the ability to insert dynamic data. Consider the previous
example rewritten as a Mustache template:

<h1>Much Better</h1>
<p>No document.write here!</p>
<p>Today's date is {{today}}.</p>

Now all we have to do is provide a value for {{today}}, and that’s at the heart of tem‐
plating languages.

74 | Chapter 7: Templating with Handlebars

There Are No Absolute Rules Except This One
I’m not suggesting that you should never write HTML in JavaScript, only that you
should avoid it whenever possible. In particular, it’s slightly more palatable in front‐
end code, especially if you’re using a robust frontend framework. For example, this
would pass with little comment from me:

document.querySelector('#error').innerHTML =
 'Something very bad happened!'

However, say that eventually mutated into this:

document.querySelector('#error').innerHTML =
 '<div class="error"><h3>Error</h3>' +
 '<p>Something <a href="/error-detail/' + errorNumber +
 '">very bad ' +
 'happened. Try again<a>, or ' +
 'contact support.</p></div>'

Then I might suggest it’s time to employ a template. The point is, I suggest you
develop good judgment when deciding where to draw the line between HTML in
strings and using templates. I would err on the side of templates, however, and avoid
generating HTML with JavaScript except for the simplest cases.

Choosing a Template Engine
In the Node world, you have many templating engines to choose from, so how to
pick? It’s a complicated question, and very much depends on your needs. Here are
some criteria to consider, though:

Performance
Clearly, you want your templating engine to be as fast as possible. It’s not some‐
thing you want slowing down your website.

Client, server, or both?
Most, but not all, templating engines are available on both the server and client
sides. If you need to use templates in both realms (and you will), I recommend
you pick something that is equally capable in either capacity.

Abstraction
Do you want something familiar (like normal HTML with curly brackets thrown
in, for example), or do you secretly hate HTML and would love something that
saves you from all those angle brackets? Templating (especially server-side tem‐
plating) gives you some choices here.

These are just some of the more prominent criteria in selecting a templating lan‐
guage. Templating options are pretty mature at this point, so you probably can’t go
too wrong with whatever you pick.

There Are No Absolute Rules Except This One | 75

Express allows you to use any templating engine you wish, so if Handlebars is not to
your liking, you’ll find it’s easy to switch it out. If you want to explore your options,
you can use the fun and useful Template-Engine-Chooser (it’s still useful even though
it’s no longer being updated).

Let’s take a look at a particularly abstract templating engine before we get to our dis‐
cussion of Handlebars.

Pug: A Different Approach
Whereas most templating engines take an HTML-centric approach, Pug stands out
by abstracting the details of HTML away from you. It is also worth noting that Pug is
the brainchild of TJ Holowaychuk, the same person who brought us Express. It
should come as no surprise, then, that Pug integration with Express is very good. The
approach that Pug takes is noble: at its core is the assertion that HTML is a fussy and
tedious language to write by hand. Let’s take a look at what a Pug template looks like,
along with the HTML it will output (originally taken from the Pug home page and
modified slightly to fit the book format):

doctype html <!DOCTYPE html>
html(lang="en") <html lang="en">
 head <head>
 title= pageTitle <title>Pug Demo</title>
 script. <script>
 if (foo) { if (foo) {
 bar(1 + 5) bar(1 + 5)
 } }
 body </script>
 <body>
 h1 Pug <h1>Pug</h1>
 #container <div id="container">
 if youAreUsingPug
 p You are amazing <p>You are amazing</p>
 else
 p Get on it!
 p. <p>
 Pug is a terse and Pug is a terse and
 simple templating simple templating
 language with a language with a
 strong focus on strong focus on
 performance and performance and
 powerful features. powerful features.
 </p>
 </body>
 </html>

Pug certainly represents a lot less typing (no more angle brackets or closing tags).
Instead, it relies on indentation and some commonsense rules, making it easier to say
what you mean. Pug has an additional advantage: theoretically, when HTML itself

76 | Chapter 7: Templating with Handlebars

http://bit.ly/2CExtK0
https://pugjs.org

changes, you can simply get Pug to retarget the newest version of HTML, allowing
you to “future proof ” your content.

As much as I admire the Pug philosophy and the elegance of its execution, I’ve found
that I don’t want the details of HTML abstracted away from me. As a web developer,
HTML is at the heart of everything I do, and if the price is wearing out the angle
bracket keys on my keyboard, then so be it. A lot of frontend developers I talk to feel
the same, so maybe the world just isn’t ready for Pug.

Here’s where we’ll part ways with Pug; you won’t be seeing it in this book. However, if
the abstraction appeals to you, you will certainly have no problems using Pug with
Express, and there are plenty of resources to help you do so.

Handlebars Basics
Handlebars is an extension of Mustache, another popular templating engine. I recom‐
mend Handlebars for its easy JavaScript integration (both frontend and backend) and
familiar syntax. For me, it strikes all the right balances and is what we’ll be focusing
on in this book. The concepts we’re discussing are broadly applicable to other tem‐
plating engines, though, so you will be well prepared to try different templating
engines if Handlebars doesn’t strike your fancy.

The key to understanding templating is understanding the concept of context. When
you render a template, you pass the templating engine an object called the context
object, and this is what allows replacements to work.

For example, if my context object is

{ name: 'Buttercup' }

and my template is

<p>Hello, {{name}}!</p>

then {{name}} will be replaced with Buttercup. What if you want to pass HTML to
the template? For example, if our context was instead

{ name: 'Buttercup' }

then using the previous template will result in <p>Hello, Butter

cup</p>, which is probably not what you’re looking for. To solve this prob‐
lem, simply use three curly brackets instead of two: {{{name}}}.

Handlebars Basics | 77

While we’ve already established that we should avoid writing
HTML in JavaScript, the ability to turn off HTML escaping with
triple curly brackets has some important uses. For example, if you
were building a content management system (CMS) with what you
see is what you get (WYSIWYG) editors, you would probably want
to be able to pass HTML to your views. Also, the ability to render
properties from the context without HTML escaping is important
for layouts and sections, which we’ll learn about shortly.

In Figure 7-1, we see how the Handlebars engine uses the context (represented by an
oval) combined with the template to render HTML.

Figure 7-1. Rendering HTML with Handlebars

Comments
Comments in Handlebars look like {{! comment goes here }}. It’s important to
understand the distinction between Handlebars comments and HTML comments.
Consider the following template:

{{! super-secret comment }}
<!-- not-so-secret comment -->

Assuming this is a server-side template, the super-secret comment will never be sent
to the browser, whereas the not-so-secret comment will be visible if the user inspects
the HTML source. You should prefer Handlebars comments for anything that expo‐
ses implementation details, or anything else you don’t want exposed.

Blocks
Things start to get more complicated when you consider blocks. Blocks provide flow
control, conditional execution, and extensibility. Consider the following context
object:

{
 currency: {

78 | Chapter 7: Templating with Handlebars

 name: 'United States dollars',
 abbrev: 'USD',
 },
 tours: [
 { name: 'Hood River', price: '$99.95' },
 { name: 'Oregon Coast', price: '$159.95' },
],
 specialsUrl: '/january-specials',
 currencies: ['USD', 'GBP', 'BTC'],
}

Now let’s examine a template we can pass that context to:

 {{#each tours}}
 {{! I'm in a new block...and the context has changed }}

 {{name}} - {{price}}
 {{#if ../currencies}}
 ({{../currency.abbrev}})
 {{/if}}

 {{/each}}

{{#unless currencies}}
 <p>All prices in {{currency.name}}.</p>
{{/unless}}
{{#if specialsUrl}}
 {{! I'm in a new block...but the context hasn't changed (sortof) }}
 <p>Check out our specials!</p>
{{else}}
 <p>Please check back often for specials.</p>
{{/if}}
<p>
 {{#each currencies}}
 {{.}}
 {{else}}
 Unfortunately, we currently only accept {{currency.name}}.
 {{/each}}
</p>

A lot is going on in this template, so let’s break it down. It starts off with the each
helper, which allows us to iterate over an array. What’s important to understand is
that between {{#each tours}} and {{/each tours}}, the context changes. On the
first pass, it changes to { name: 'Hood River', price: '$99.95' }, and on the
second pass, the context is { name: 'Oregon Coast', price: '$159.95' }. So
within that block, we can refer to {{name}} and {{price}}. However, if we want to
access the currency object, we have to use ../ to access the parent context.

If a property of the context is itself an object, we can access its properties as normal
with a period, such as {{currency.name}}.

Handlebars Basics | 79

Both if and each have an optional else block (with each, if there are no elements in
the array, the else block will execute). We’ve also used the unless helper, which is
essentially the opposite of the if helper: it executes only if the argument is false.

The last thing to note about this template is the use of {{.}} in the {{#each curren
cies}} block. {{.}} refers to the current context; in this case, the current context is
simply a string in an array that we want to print out.

Accessing the current context with a lone period has another use: it
can distinguish helpers (which we’ll learn about soon) from prop‐
erties of the current context. For example, if you have a helper
called foo and a property in the current context called foo, {{foo}}
refers to the helper, and {{./foo}} refers to the property.

Server-Side Templates
Server-side templates allow you to render HTML before it’s sent to the client. Unlike
client-side templating, where the templates are available for the curious user who
knows how to view the HTML source, your users will never see your server-side tem‐
plate or the context objects used to generate the final HTML.

Server-side templates, in addition to hiding your implementation details, support
template caching, which is important for performance. The templating engine will
cache compiled templates (recompiling and recaching only when the template itself
changes), which will improve the performance of templated views. By default, view
caching is disabled in development mode and enabled in production mode. If you
want to explicitly enable view caching, you can do so thusly:

app.set('view cache', true)

Out of the box, Express supports Pug, EJS, and JSHTML. We’ve already discussed
Pug, and I find little to recommend EJS or JSHTML (neither go far enough, syntacti‐
cally, for my taste). So we’ll need to add a Node package that provides Handlebars
support for Express:

npm install express-handlebars

Then we’ll link it into Express (ch07/00/meadowlark.js in the companion repo):

const expressHandlebars = require('express-handlebars')
app.engine('handlebars', expressHandlebars({
 defaultLayout: 'main',
})
app.set('view engine', 'handlebars')

80 | Chapter 7: Templating with Handlebars

express-handlebars expects Handlebars templates to have
the .handlebars extension. I’ve grown used to this, but if it’s too
wordy for you, you can change the extension to the also com‐
mon .hbs when you create the express-handlebars instance:
app.engine('handlebars', expressHandlebars({ extname:

'.hbs' })).

Views and Layouts
A view usually represents an individual page on your website (though it could repre‐
sent an Ajax-loaded portion of a page, an email, or anything else for that matter). By
default, Express looks for views in the views subdirectory. A layout is a special kind of
view—essentially, a template for templates. Layouts are essential because most (if not
all) of the pages on your site will have an almost identical layout. For example, they
must have an <html> element and a <title> element, they usually all load the same
CSS files, and so on. You don’t want to have to duplicate that code for every single
page, which is where layouts come in. Let’s look at a bare-bones layout file:

<!doctype html>
<html>
 <head>
 <title>Meadowlark Travel</title>
 <link rel="stylesheet" href="/css/main.css">
 </head>
 <body>
 {{{body}}}
 </body>
</html>

Notice the text inside the <body> tag: {{{body}}}. That’s so the view engine knows
where to render the content of your view. It’s important to use three curly brackets
instead of two: our view is most likely to contain HTML, and we don’t want Handle‐
bars trying to escape it. Note that there’s no restriction on where you place the
{{{body}}} field. For example, if you were building a responsive layout in Bootstrap,
you would probably want to put your view inside a container <div>. Also, common
page elements like headers and footers usually live in the layout, not the view. Here’s
an example:

<!-- ... -->
<body>
 <div class="container">
 <header>
 <div class="container">
 <h1>Meadowlark Travel</h1>

 </div>
 </header>
 <div class="container">

Handlebars Basics | 81

 {{{body}}}
 </div>
 <footer>© 2019 Meadowlark Travel</footer>
 </div>
</body>

In Figure 7-2, we see how the template engine combines the view, layout, and context.
The important thing that this diagram makes clear is the order of operations. The
view is rendered first, before the layout. At first, this may seem counterintuitive: the
view is being rendered inside the layout, so shouldn’t the layout be rendered first?
While it could technically be done this way, there are advantages to doing it in
reverse. Particularly, it allows the view itself to further customize the layout, which
will come in handy when we discuss sections later in this chapter.

Because of the order of operations, you can pass a property called
body into the view, and it will render correctly in the view. How‐
ever, when the layout is rendered, the value of body will be over‐
written by the rendered view.

Using Layouts (or Not) in Express
Chances are, most (if not all) of your pages will use the same layout, so it doesn’t
make sense to keep specifying the layout every time we render a view. You’ll notice
that when we created the view engine, we specified the name of the default layout:

app.engine('handlebars', expressHandlebars({
 defaultLayout: 'main',
})

By default, Express looks for views in the views subdirectory, and layouts in views/
layouts. So if you have a view views/foo.handlebars, you can render it this way:

app.get('/foo', (req, res) => res.render('foo'))

It will use views/layouts/main.handlebars as the layout. If you don’t want to use a lay‐
out at all (meaning you’ll have to have all of the boilerplate in the view), you can spec‐
ify layout: null in the context object:

app.get('/foo', (req, res) => res.render('foo', { layout: null }))

82 | Chapter 7: Templating with Handlebars

Figure 7-2. Rendering a view with a layout

Or, if we want to use a different template, we can specify the template name:

app.get('/foo', (req, res) => res.render('foo', { layout: 'microsite' }))

This will render the view with layout views/layouts/microsite.handlebars.

Keep in mind that the more templates you have, the more basic HTML layout you
have to maintain. On the other hand, if you have pages that are substantially different
in layout, it may be worth it; you have to find a balance that works for your projects.

Sections
One technique I’m borrowing from Microsoft’s excellent Razor template engine is the
idea of sections. Layouts work well if all of your view fits neatly within a single ele‐
ment in your layout, but what happens when your view needs to inject itself into dif‐

Handlebars Basics | 83

ferent parts of your layout? A common example of this is a view needing to add
something to the <head> element or to insert a <script>, which is sometimes the
very last thing in the layout, for performance reasons.

Neither Handlebars nor express-handlebars has a built-in way to do this. Fortu‐
nately, Handlebars helpers make this really easy. When we instantiate the Handlebars
object, we’ll add a helper called section (ch07/01/meadowlark.js in the companion
repo):

app.engine('handlebars', expressHandlebars({
 defaultLayout: 'main',
 helpers: {
 section: function(name, options) {
 if(!this._sections) this._sections = {}
 this._sections[name] = options.fn(this)
 return null
 },
 },
}))

Now we can use the section helper in a view. Let’s add a view (views/section-
test.handlebars) to add something to the <head> and a script:

{{#section 'head'}}
 <!-- we want Google to ignore this page -->
 <meta name="robots" content="noindex">
{{/section}}

<h1>Test Page</h1>
<p>We're testing some script stuff.</p>

{{#section 'scripts'}}
 <script>
 document.querySelector('body')
 .insertAdjacentHTML('beforeEnd', '<small>(scripting works!)</small>')
 </script>
{{/section}}

Now in our layout, we can place the sections just as we place {{{body}}}:

{{#section 'head'}}
 <!-- we want Google to ignore this page -->
 <meta name="robots" content="noindex">
{{/section}}

<h1>Test Page</h1>
<p>We're testing some script stuff.</p>

{{#section 'scripts'}}
 <script>
 const div = document.createElement('div')
 div.appendChild(document.createTextNode('(scripting works!)'))

84 | Chapter 7: Templating with Handlebars

 document.querySelector('body').appendChild(div)
 </script>
{{/section}}

Partials
Very often, you’ll have components that you want to reuse on different pages (some‐
times called widgets in frontend circles). One way to achieve that with templates is to
use partials (so named because they don’t render a whole view or a whole page). Let’s
imagine we want a Current Weather component that displays the current weather
conditions in Portland, Bend, and Manzanita. We want this component to be reusable
so we can easily put it on whatever page we want, so we’ll use a partial. First, we create
a partial file, views/partials/weather.handlebars:

<div class="weatherWidget">
 {{#each partials.weatherContext}}
 <div class="location">
 <h3>{{location.name}}</h3>

 {{weather}}, {{temp}}

 </div>
 {{/each}}
 <small>Source:
 National Weather Service</small>
</div>

Note that we namespace our context by starting with partials.weatherContext.
Since we want to be able to use the partial on any page, it’s not practical to pass the
context in for every view, so instead we use res.locals (which is available to every
view). But because we don’t want to interfere with the context specified by individual
views, we put all partial context in the partials object.

express-handlebars allows you to pass in partial templates as part
of the context. For example, if you add partials.foo = "Tem
plate!" to your context, you can render this partial with {{>
foo}}. This usage will override any .handlebars view files, which is
why we used partials.weatherContext earlier, instead of parti
als.weather, which would override views/partials/weather.handle‐
bars.

In Chapter 19, we’ll see how to get current weather information from the free
National Weather Service API. For now, we’re just going to use dummy data returned
from a function we’ll call getWeatherData.

Handlebars Basics | 85

In this example, we want this weather data to be available to any view, and the best
mechanism for that is middleware (which we’ll learn more about in Chapter 10). Our
middleware will inject the weather data into the res.locals.partials object, which
will make it available as the context for our partial.

To make our middleware more testable, we’ll put it in its own file, lib/middleware/
weather.js (ch07/01/lib/middleware/weather.js in the companion repo):

const getWeatherData = () => Promise.resolve([
 {
 location: {
 name: 'Portland',
 coordinates: { lat: 45.5154586, lng: -122.6793461 },
 },
 forecastUrl: 'https://api.weather.gov/gridpoints/PQR/112,103/forecast',
 iconUrl: 'https://api.weather.gov/icons/land/day/tsra,40?size=medium',
 weather: 'Chance Showers And Thunderstorms',
 temp: '59 F',
 },
 {
 location: {
 name: 'Bend',
 coordinates: { lat: 44.0581728, lng: -121.3153096 },
 },
 forecastUrl: 'https://api.weather.gov/gridpoints/PDT/34,40/forecast',
 iconUrl: 'https://api.weather.gov/icons/land/day/tsra_sct,50?size=medium',
 weather: 'Scattered Showers And Thunderstorms',
 temp: '51 F',
 },
 {
 location: {
 name: 'Manzanita',
 coordinates: { lat: 45.7184398, lng: -123.9351354 },
 },
 forecastUrl: 'https://api.weather.gov/gridpoints/PQR/73,120/forecast',
 iconUrl: 'https://api.weather.gov/icons/land/day/tsra,90?size=medium',
 weather: 'Showers And Thunderstorms',
 temp: '55 F',
 },
])

const weatherMiddleware = async (req, res, next) => {
 if(!res.locals.partials) res.locals.partials = {}
 res.locals.partials.weatherContext = await getWeatherData()
 next()
}

module.exports = weatherMiddleware

Now that everything is set up, all we have to do is use the partial in a view. For exam‐
ple, to put our widget on the home page, edit views/home.handlebars:

86 | Chapter 7: Templating with Handlebars

<h2>Home</h2>
{{> weather}}

The {{> partial_name}} syntax is how you include a partial in a view: express-
handlebars will know to look in views/partials for a view called partial_name.handle‐
bars (or weather.handlebars, in our example).

express-handlebars supports subdirectories, so if you have a lot
of partials, you can organize them. For example, if you have some
social media partials, you could put them in the views/partials/
social directory and include them using {{> social/facebook}},
{{> social/twitter}}, etc.

Perfecting Your Templates
Your templates are at the heart of your website. A good template structure will save
you development time, promote consistency across your website, and reduce the
number of places that layout quirks can hide. To achieve these benefits, though, you
must spend some time crafting your templates carefully. Deciding how many tem‐
plates you should have is an art; generally, fewer is better, but there is a point of
diminishing returns, depending on the uniformity of your pages. Your templates are
also your first line of defense against cross-browser compatibility issues and valid
HTML. They should be lovingly crafted and maintained by someone who is well
versed in frontend development. A great place to start—especially if you’re new—is
HTML5 Boilerplate. In the previous examples, we’ve been using a minimal HTML5
template to fit the book format, but for our actual project, we’ll be using HTML5
Boilerplate.

Another popular place to start with your template are third-party themes. Sites like
Themeforest and WrapBootstrap have hundreds of ready-to-use HTML5 themes that
you can use as a starting place for your template. Using a third-party theme starts
with taking the primary file (usually index.html), renaming it to main.handlebars (or
whatever you choose to call your layout file), and placing any resources (CSS, Java‐
Script, images) in the public directory you use for static files. Then you’ll have to edit
the template file and figure out where you want to put the {{{body}}} expression.

Depending on the elements of your template, you may want to move some of them
into partials. A great example is a hero (a tall banner designed to grab the user’s atten‐
tion. If the hero appears on every page (probably a poor choice), you would leave the
hero in the template file. If it appears on only one page (usually the home page), then
it would go only in that view. If it appears on several—but not all—pages, then you
might consider putting it in a partial. The choice is yours, and herein lies the artistry
of making a unique, captivating website.

Handlebars Basics | 87

http://html5boilerplate.com
http://bit.ly/34Tdkfj
https://wrapbootstrap.com

Conclusion
We’ve seen how templating can make our code easier to write, read, and maintain.
Thanks to templates, we don’t have to painfully cobble together HTML from Java‐
Script strings; we can write HTML in our favorite editor and use a compact and easy-
to-read templating language to make it dynamic.

Now that we’ve seen how to format our content for display, we’ll turn our attention to
how to get data into our system with HTML forms.

88 | Chapter 7: Templating with Handlebars

CHAPTER 8

Form Handling

The usual way you collect information from your users is to use HTML forms.
Whether you let the browser submit the form normally, use Ajax, or employ fancy
frontend controls, the underlying mechanism is generally still an HTML form. In this
chapter, we’ll discuss the different methods for handling forms, form validation, and
file uploads.

Sending Client Data to the Server
Broadly speaking, your two options for sending client data to the server are the
querystring and the request body. Normally, if you’re using the querystring, you’re
making a GET request, and if you’re using the request body, you’re using a POST
request. (The HTTP protocol doesn’t prevent you from doing it the other way
around, but there’s no point to it: best to stick to standard practice here.)

It is a common misperception that POST is secure and GET is not: in reality, both are
secure if you use HTTPS, and neither is secure if you don’t. If you’re not using
HTTPS, an intruder can look at the body data for a POST just as easily as the query‐
string of a GET request. However, if you’re using GET requests, your users will see all of
their input (including hidden fields) in the querystring, which is ugly and messy.
Also, browsers often place limits on querystring length (there is no such restriction
for body length). For these reasons, I generally recommend using POST for form sub‐
mission.

89

HTML Forms
This book is focusing on the server side, but it’s important to understand some basics
about constructing HTML forms. Here’s a simple example:

<form action="/process" method="POST">
 <input type="hidden" name="hush" val="hidden, but not secret!">
 <div>
 <label for="fieldColor">Your favorite color: </label>
 <input type="text" id="fieldColor" name="color">
 </div>
 <div>
 <button type="submit">Submit</button>
 </div>
</form>

Notice the method is specified explicitly as POST in the <form> tag; if you don’t do
this, it defaults to GET. The action attribute specifies the URL that will receive the
form when it’s posted. If you omit this field, the form will be submitted to the same
URL the form was loaded from. I recommend that you always provide a valid action,
even if you’re using Ajax (this is to prevent you from losing data; see Chapter 22 for
more information).

From the server’s perspective, the important attributes in the <input> fields are the
name attributes: that’s how the server identifies the field. It’s important to understand
that the name attribute is distinct from the id attribute, which should be used for styl‐
ing and frontend functionality only (it is not passed to the server).

Note the hidden field: this will not render in the user’s browser. However, you should
not use it for secret or sensitive information; all the user has to do is examine the page
source, and the hidden field will be exposed.

HTML does not restrict you from having multiple forms on the same page (this was
an unfortunate restriction of some early server frameworks; ASP, I’m looking at you).
I recommend keeping your forms logically consistent; a form should contain all the
fields you would like submitted at once (optional/empty fields are OK) and none that
you don’t. If you have two different actions on a page, use two different forms. An
example of this would be to have a form for a site search and a separate form for sign‐
ing up for an email newsletter. It is possible to use one large form and figure out what
action to take based on what button a person clicked, but it is a headache and often
not friendly for people with disabilities (because of the way accessibility browsers ren‐
der forms).

When the user submits the form in this example, the /process URL will be invoked,
and the field values will be transmitted to the server in the request body.

90 | Chapter 8: Form Handling

Encoding
When the form is submitted (either by the browser or via Ajax), it must be encoded
somehow. If you don’t explicitly specify an encoding, it defaults to application/x-
www-form-urlencoded (this is just a lengthy media type for “URL encoded”). This is a
basic, easy-to-use encoding that’s supported by Express out of the box.

If you need to upload files, things get more complicated. There’s no easy way to send
files using URL encoding, so you’re forced to use the multipart/form-data encoding
type, which is not handled directly by Express.

Different Approaches to Form Handling
If you’re not using Ajax, your only option is to submit the form through the browser,
which will reload the page. However, how the page is reloaded is up to you. There are
two things to consider when processing forms: what path handles the form (the
action) and what response is sent to the browser.

If your form uses method="POST" (which is recommended), it is quite common to use
the same path for displaying the form and processing the form: these can be distin‐
guished because the former is a GET request, and the latter is a POST request. If you
take this approach, you can omit the action attribute on the form.

The other option is to use a separate path to process the form. For example, if your
contact page uses the path /contact, you might use the path /process-contact to process
the form (by specifying action="/process-contact"). If you use this approach, you
have the option of submitting the form via GET (which I do not recommend; it need‐
lessly exposes your form fields on the URL). Using a separate endpoint for form sub‐
mission might be preferred if you have multiple URLs that use the same submission
mechanism (for example, you might have an email sign-up box on multiple pages on
the site).

Whatever path you use to process the form, you have to decide what response to send
back to the browser. Here are your options:

Direct HTML response
After processing the form, you can send HTML directly back to the browser (a
view, for example). This approach will produce a warning if the user attempts to
reload the page and can interfere with bookmarking and the Back button, and for
these reasons, it is not recommended.

302 redirect
While this is a common approach, it is a misuse of the original meaning of the
302 (Found) response code. HTTP 1.1 added the 303 (See Other) response code,

Encoding | 91

which is preferable. Unless you have reason to target browsers made before 1996,
you should use 303 instead.

303 redirect
The 303 (See Other) response code was added in HTTP 1.1 to address the misuse
of the 302 redirect. The HTTP specification specifically indicates that the
browser should use a GET request when following a 303 redirect, regardless of the
original method. This is the recommended method for responding to a form sub‐
mission request.

Since the recommendation is that you respond to a form submission with a 303 redi‐
rect, the next question is, “Where does the redirection point to?” The answer to that
is up to you. Here are the most common approaches:

Redirect to dedicated success/failure pages
This method requires that you dedicate URLs for appropriate success or failure
messages. For example, if the user signs up for promotional emails but there was
a database error, you might want to redirect to /error/database. If a user’s email
address were invalid, you could redirect to /error/invalid-email, and if everything
was successful, you could redirect to /promo-email/thank-you. One of the advan‐
tages of this method is that it’s analytics friendly: the number of visits to your /
promo-email/thank-you page should roughly correlate to the number of people
signing up for your promotional email. It is also straightforward to implement. It
has some downsides, however. It does mean you have to allocate URLs to every
possibility, which means pages to design, write copy for, and maintain. Another
disadvantage is that the user experience can be suboptimal: users like to be
thanked, but then they have to navigate back to where they were or where they
want to go next. This is the approach we’ll be using for now: we’ll switch to using
flash messages (not to be confused with Adobe Flash) in Chapter 9.

Redirect to the original location with a flash message
For small forms that are scattered throughout your site (like an email sign-up, for
example), the best user experience is not to interrupt the user’s navigation flow.
That is, provide a way to submit an email address without leaving the page. One
way to do this, of course, is Ajax, but if you don’t want to use Ajax (or you want
your fallback mechanism to provide a good user experience), you can redirect
back to the page the user was originally on. The easiest way to do this is to use a
hidden field in the form that’s populated with the current URL. Since you want
there to be some feedback that the user’s submission was received, you can use
flash messages.

Redirect to a new location with a flash message
Large forms generally have their own page, and it doesn’t make sense to stay on
that page once you’ve submitted the form. In this situation, you have to make an
intelligent guess about where the user might want to go next and redirect accord‐

92 | Chapter 8: Form Handling

ingly. For example, if you’re building an admin interface, and you have a form to
create a new vacation package, you might reasonably expect your user to want to
go to the admin page that lists all vacation packages after submitting the form.
However, you should still employ a flash message to give the user feedback about
the result of the submission.

If you are using Ajax, I recommend a dedicated URL. It’s tempting to start Ajax
handlers with a prefix (for example, /ajax/enter), but I discourage this approach: it’s
attaching implementation details to a URL. Also, as we’ll see shortly, your Ajax han‐
dler should handle regular browser submissions as a fail-safe.

Form Handling with Express
If you’re using GET for your form handling, your fields will be available on the
req.query object. For example, if you have an HTML input field with a name
attribute of email, its value will be passed to the handler as req.query.email. There’s
really not much more that needs to be said about this approach; it’s just that simple.

If you’re using POST (which I recommend), you’ll have to link in middleware to parse
the URL-encoded body. First, install the body-parser middleware (npm install
body-parser); then, link it in (ch08/meadowlark.js in the companion repo):

const bodyParser = require('body-parser')
app.use(bodyParser.urlencoded({ extended: true }))

Once you’ve linked in body-parser, you’ll find that req.body now becomes available
for you, and that’s where all of your form fields will be made available. Note that
req.body doesn’t prevent you from using the querystring. Let’s go ahead and add a
form to Meadowlark Travel that lets the user sign up for a mailing list. For demon‐
stration’s sake, we’ll use the querystring, a hidden field, and visible fields in /views/
newsletter-signup.handlebars:

<h2>Sign up for our newsletter to receive news and specials!</h2>
<form class="form-horizontal" role="form"
 action="/newsletter-signup/process?form=newsletter" method="POST">
 <input type="hidden" name="_csrf" value="{{csrf}}">
 <div class="form-group">
 <label for="fieldName" class="col-sm-2 control-label">Name</label>
 <div class="col-sm-4">
 <input type="text" class="form-control"
 id="fieldName" name="name">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldEmail" name="email">

Form Handling with Express | 93

 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-primary">Register</button>
 </div>
 </div>
</form>

Note we are using Bootstrap styles, as we will be throughout the rest of the book. If
you are unfamiliar with Bootstrap, you may want to refer to the Bootstrap documen‐
tation.

We’ve already linked in our body parser, so now we need to add handlers for our
newsletter sign-up page, processing function, and thank-you page (ch08/lib/
handlers.js in the companion repo):

exports.newsletterSignup = (req, res) => {
 // we will learn about CSRF later...for now, we just
 // provide a dummy value
 res.render('newsletter-signup', { csrf: 'CSRF token goes here' })
}
exports.newsletterSignupProcess = (req, res) => {
 console.log('Form (from querystring): ' + req.query.form)
 console.log('CSRF token (from hidden form field): ' + req.body._csrf)
 console.log('Name (from visible form field): ' + req.body.name)
 console.log('Email (from visible form field): ' + req.body.email)
 res.redirect(303, '/newsletter-signup/thank-you')
}
exports.newsletterSignupThankYou = (req, res) =>
 res.render('newsletter-signup-thank-you')

(If you haven’t already, create a views/newsletter-signup-thank-you.handlebars file.)

Lastly, we’ll link our handlers into our application (ch08/meadowlark.js in the com‐
panion repo):

app.get('/newsletter-signup', handlers.newsletterSignup)
app.post('/newsletter-signup/process', handlers.newsletterSignupProcess)
app.get('/newsletter-signup/thank-you', handlers.newsletterSignupThankYou)

That’s all there is to it. Note that in our handler, we’re redirecting to a “thank you”
view. We could render a view here, but if we did, the URL field in the visitor’s browser
would remain /process, which could be confusing. Issuing a redirect solves that prob‐
lem.

94 | Chapter 8: Form Handling

http://getbootstrap.com
http://getbootstrap.com

It’s important that you use a 303 (or 302) redirect, not a 301 redi‐
rect in this instance. 301 redirects are “permanent,” meaning your
browser may cache the redirection destination. If you use a 301
redirect and try to submit the form a second time, your browser
may bypass the /process handler altogether and go directly to /
thank-you since it correctly believes the redirect to be permanent.
The 303 redirect, on the other hand, tells your browser, “Yes, your
request is valid, and you can find your response here,” and does not
cache the redirect destination.

With most frontend frameworks, it is more common to see form data sent in JSON
form with the fetch API, which we’ll be looking at next. However, it’s still good to
understand how browsers handle form submission by default, as you will still find
forms implemented this way.

Let’s turn our attention to form submission with fetch.

Using Fetch to Send Form Data
Using the fetch API to send JSON-encoded form data is a much more modern
approach that gives you more control over the client/server communication and
allows you to have fewer page refreshes.

Since we are not making round-trip requests to the server, we no longer have to
worry about redirects and multiple user URLs (we’ll still have a separate URL for the
form processing itself), and for that reason, we’ll just consolidate our entire “newslet‐
ter signup experience” under a single URL called /newsletter.

Let’s start with the frontend code. The contents of the HTML form itself don’t need to
be changed (the fields and layout are all the same), but we don’t need to specify an
action or method, and we’ll wrap our form in a container <div> element that will
make it easier to display our “thank you” message:

<div id="newsletterSignupFormContainer">
 <form class="form-horizontal role="form" id="newsletterSignupForm">
 <!-- the rest of the form contents are the same... -->
 </form>
</div>

Then we’ll have a script that intercepts the form submit event and cancels it (using
Event#preventDefault) so we can handle the form processing ourselves (ch08/views/
newsletter.handlebars in the companion repo):

<script>
 document.getElementById('newsletterSignupForm')
 .addEventListener('submit', evt => {
 evt.preventDefault()
 const form = evt.target

Using Fetch to Send Form Data | 95

 const body = JSON.stringify({
 _csrf: form.elements._csrf.value,
 name: form.elements.name.value,
 email: form.elements.email.value,
 })
 const headers = { 'Content-Type': 'application/json' }
 const container =
 document.getElementById('newsletterSignupFormContainer')
 fetch('/api/newsletter-signup', { method: 'post', body, headers })
 .then(resp => {
 if(resp.status < 200 || resp.status >= 300)
 throw new Error(`Request failed with status ${resp.status}`)
 return resp.json()
 })
 .then(json => {
 container.innerHTML = 'Thank you for signing up!'
 })
 .catch(err => {
 container.innerHTML = `We're sorry, we had a problem ` +
 `signing you up. Please try again`
 })
 })
</script>

Now in our server file (meadowlark.js), make sure we’re linking in middleware that
can parse JSON bodies, before we specify our two endpoints:

app.use(bodyParser.json())

//...

app.get('/newsletter', handlers.newsletter)
app.post('/api/newsletter-signup', handlers.api.newsletterSignup)

Note that we’re putting our form-processing endpoint at a URL starting with api; this
is a common technique to distinguish between user (browser) endpoints and API
endpoints meant to be accessed with fetch.

Now we’ll add those endpoints to our lib/handlers.js file:

exports.newsletter = (req, res) => {
 // we will learn about CSRF later...for now, we just
 // provide a dummy value
 res.render('newsletter', { csrf: 'CSRF token goes here' })
}
exports.api = {
 newsletterSignup: (req, res) => {
 console.log('CSRF token (from hidden form field): ' + req.body._csrf)
 console.log('Name (from visible form field): ' + req.body.name)
 console.log('Email (from visible form field): ' + req.body.email)
 res.send({ result: 'success' })
 },
}

96 | Chapter 8: Form Handling

We can do whatever processing we need in the form processing handler; usually we
would be saving the data to the database. If there are problems, we send back a JSON
object with an err property (instead of result: success).

In this example, we’re assuming all Ajax requests are looking for
JSON, but there’s no requirement that Ajax must use JSON for
communication (as a matter of fact, Ajax used to be an acronym in
which the “X” stood for XML). This approach is very JavaScript-
friendly, as JavaScript is adept in handling JSON. If you’re making
your Ajax endpoints generally available or if you know your Ajax
requests might be using something other than JSON, you should
return an appropriate response exclusively based on the Accepts
header, which we can conveniently access through the req.accepts
helper method. If you’re responding based only on the Accepts
header, you might want to also look at res.format, which is a
handy convenience method that makes it easy to respond appropri‐
ately depending on what the client expects. If you do that, you’ll
have to make sure to set the dataType or accepts property when
making Ajax requests with JavaScript.

File Uploads
We’ve already mentioned that file uploads bring a raft of complications. Fortunately,
there are some great projects that help make file handling a snap.

There are four popular and robust options for multipart form processing: busboy,
multiparty, formidable, and multer. I have used all four, and they’re all good, but I feel
multiparty is the best maintained, and so we’ll use it here.

Let’s create a file upload form for a Meadowlark Travel vacation photo contest (views/
contest/vacation-photo.handlebars):

<h2>Vacation Photo Contest</h2>

<form class="form-horizontal" role="form"
 enctype="multipart/form-data" method="POST"
 action="/contest/vacation-photo/{{year}}/{{month}}">
 <input type="hidden" name="_csrf" value="{{csrf}}">
 <div class="form-group">
 <label for="fieldName" class="col-sm-2 control-label">Name</label>
 <div class="col-sm-4">
 <input type="text" class="form-control"
 id="fieldName" name="name">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">

File Uploads | 97

http://bit.ly/33Syx92

 <input type="email" class="form-control" required
 id="fieldEmail" name="email">
 </div>
 </div>
 <div class="form-group">
 <label for="fieldPhoto" class="col-sm-2 control-label">Vacation photo</label>
 <div class="col-sm-4">
 <input type="file" class="form-control" required accept="image/*"
 id="fieldPhoto" name="photo">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-primary">Register</button>
 </div>
 </div>
</form>

Note that we must specify enctype="multipart/form-data" to enable file uploads.
We’re also restricting the type of files that can be uploaded by using the accept
attribute (which is optional).

Now we need to create route handlers, but we have something of a dilemma. We want
to maintain our ability to easily test our route handlers, which will be complicated by
multipart form processing (in the same way we use middleware to process other types
of body encoding before we even get to our handlers). Since we don’t want to test
multipart form decoding ourselves (we can assume this is done thoroughly by multi‐
party), we’ll keep our handlers “pure” by passing them the already-processed infor‐
mation. Since we don’t know what that looks like yet, we’ll start with the Express
plumbing in meadowlark.js:

const multiparty = require('multiparty')

app.post('/contest/vacation-photo/:year/:month', (req, res) => {
 const form = new multiparty.Form()
 form.parse(req, (err, fields, files) => {
 if(err) return res.status(500).send({ error: err.message })
 handlers.vacationPhotoContestProcess(req, res, fields, files)
 })
})

We’re using multiparty’s parse method to parse the request data into the data fields
and the files. This method will store the files in a temporary directory on the server,
and that information will be returned in the files array passed back.

So now we have extra information to pass to our (testable) route handler: the fields
(which won’t be in req.body as in previous examples since we’re using a different
body parser) and information about the file(s) that were collected. Now that we know
what that looks like, we can write our route handler:

98 | Chapter 8: Form Handling

exports.vacationPhotoContestProcess = (req, res, fields, files) => {
 console.log('field data: ', fields)
 console.log('files: ', files)
 res.redirect(303, '/contest/vacation-photo-thank-you')
}

(Year and month are being specified as route parameters, which you’ll learn about in
Chapter 14.) Go ahead and run this and examine the console log. You’ll see that your
form fields come across as you would expect: as an object with properties corre‐
sponding to your field names. The files object contains more data, but it’s relatively
straightforward. For each file uploaded, you’ll see there are properties for size, the
path it was uploaded to (usually a random name in a temporary directory), and the
original name of the file that the user uploaded (just the filename, not the whole path,
for security and privacy reasons).

What you do with this file is now up to you: you can store it in a database, copy it to a
more permanent location, or upload it to a cloud-based file storage system. Remem‐
ber that if you’re relying on local storage for saving files, your application won’t scale
well, making this a poor choice for cloud-based hosting. We will be revisiting this
example in Chapter 13.

File Uploads with Fetch
Happily, using fetch for file uploads is nearly identical to letting the browser handle
it. The hard work of file uploads is really in the encoding, which is being handled for
us with middleware.

Consider this JavaScript to send our form contents using fetch:

<script>
 document.getElementById('vacationPhotoContestForm')
 .addEventListener('submit', evt => {
 evt.preventDefault()
 const body = new FormData(evt.target)
 const container =
 document.getElementById('vacationPhotoContestFormContainer')
 const url = '/api/vacation-photo-contest/{{year}}/{{month}}'
 fetch(url, { method: 'post', body })
 .then(resp => {
 if(resp.status < 200 || resp.status >= 300)
 throw new Error(`Request failed with status ${resp.status}`)
 return resp.json()
 })
 .then(json => {
 container.innerHTML = 'Thank you for submitting your photo!'
 })
 .catch(err => {
 container.innerHTML = `We're sorry, we had a problem processing ` +
 `your submission. Please try again`
 })

File Uploads | 99

 })
</script>

The important detail to note here is that we convert the form element to a FormData
object, which fetch can accept directly as the request body. That’s all there is to it!
Because the encoding is exactly the same as it was when we let the browser handle it,
our handler is almost exactly the same. We just want to return a JSON response
instead of a redirect:

exports.api.vacationPhotoContest = (req, res, fields, files) => {
 console.log('field data: ', fields)
 console.log('files: ', files)
 res.send({ result: 'success' })
}

Improving File Upload UI
The browser’s built-in <input> control for file uploads is, shall we say, a bit lacking
from a UI perspective. You’ve probably seen drag-and-drop interfaces and file upload
buttons that are styled more attractively.

The good news is that the techniques you’ve learned here will apply to almost all of
the popular “fancy” file upload components. At the end of the day, most of them are
putting a pretty face on the same form upload mechanism.

Some of the most popular file upload frontends are as follows:

• jQuery File Upload
• Uppy (this one has the benefit of offering support for many popular upload tar‐

gets)
• file-upload-with-preview (this one gives you full control; you have access to an

array of file objects that you can use to construct a FormData object to use with
fetch)

Conclusion
In this chapter, you learned the various techniques to use for processing forms. We
explored the traditional way forms are handled by browsers (letting the browser issue
a POST request to the server with the form contents and rendering the response from
the server, usually a redirect) as well as the increasingly ubiquitous approach of pre‐
venting the browser from submitting the form and handling it ourselves with fetch.

100 | Chapter 8: Form Handling

https://mzl.la/2CErVzb
http://bit.ly/2Qbcd6I
http://bit.ly/2rEFWeb
http://bit.ly/2X5fS7F

We learned about the common ways forms are encoded:

application/x-www-form-urlencoded

Default and easy-to-use encoding typically associated with traditional form pro‐
cessing

application/json

Common for (nonfile) data sent with fetch

multipart/form-data

The encoding to use when you need to transfer files

Now that we’ve covered how to get user data into our server, let’s turn our attention to
cookies and sessions, which also help synchronize the server and the client.

Conclusion | 101

CHAPTER 9

Cookies and Sessions

In this chapter, you’ll learn how to use cookies and sessions to provide a better expe‐
rience to your users by remembering their preferences from page to page, and even
between browser sessions.

HTTP is a stateless protocol. That means that when you load a page in your browser
and then you navigate to another page on the same website, neither the server nor the
browser has any intrinsic way of knowing that it’s the same browser visiting the same
site. Another way of saying this is that the way the web works is that every HTTP
request contains all the information necessary for the server to satisfy the request.

This is a problem, though: if the story ended there, we could never log in to anything.
Streaming media wouldn’t work. Websites wouldn’t be able to remember your prefer‐
ences from one page to the next. So there needs be a way to build state on top of
HTTP, and that’s where cookies and sessions enter the picture.

Cookies, unfortunately, have gotten a bad name thanks to the nefarious things that
people have done with them. This is unfortunate because cookies are really quite
essential to the functioning of the “modern web” (although HTML5 has introduced
some new features, like local storage, that could be used for the same purpose).

The idea of a cookie is simple: the server sends a bit of information, and the browser
stores it for some configurable period of time. It’s really up to the server what the par‐
ticular bit of information is. Often it’s just a unique ID number that identifies a spe‐
cific browser so that the illusion of state can be maintained.

There are some important things you need to know about cookies:

Cookies are not secret from the user
All cookies that the server sends to the client are available for the client to look at.
There’s no reason you can’t send something encrypted to protect its contents, but

103

there’s seldom any need for this (at least if you’re not doing anything nefarious!).
Signed cookies, which we’ll discuss in a bit, can obfuscate the contents of the
cookie, but this is in no way cryptographically secure from prying eyes.

The user can delete or disallow cookies
Users have full control over cookies, and browsers make it possible to delete
cookies in bulk or individually. Unless you’re up to no good, there’s no real rea‐
son for users to do this, but it is useful during testing. Users can also disallow
cookies, which is more problematic because only the simplest web applications
can make do without cookies.

Regular cookies can be tampered with
Whenever a browser makes a request of your server that has an associated cookie
and you blindly trust the contents of that cookie, you are opening yourself up for
attack. The height of foolishness, for example, would be to execute code con‐
tained in a cookie. To ensure cookies aren’t tampered with, use signed cookies.

Cookies can be used for attacks
A category of attacks called cross-site scripting (XSS) attacks has sprung up in
recent years. One technique of XSS attacks involves malicious JavaScript modify‐
ing the contents of cookies. This is an additional reason not to trust the contents
of cookies that come back to your server. Using signed cookies helps (tampering
will be evident in a signed cookie whether the user or malicious JavaScript modi‐
fied it), and there’s also a setting that specifies that cookies are to be modified
only by the server. These cookies can be limited in usefulness, but they are cer‐
tainly safer.

Users will notice if you abuse cookies
If you set a lot of cookies on your users’ computers or store a lot of data, it will
irritate your users, which is something you should avoid. Try to keep your use of
cookies to a minimum.

Prefer sessions over cookies
For the most part, you can use sessions to maintain state, and it’s generally wise to
do so. It’s easier, you don’t have to worry about abusing your users’ storage, and it
can be more secure. Sessions rely on cookies, of course, but with sessions,
Express will be doing the heavy lifting for you.

Cookies are not magic: when the server wants the client to store a
cookie, it sends a header called Set-Cookie containing name/value
pairs, and when a client sends a request to a server for which it has
cookies, it sends multiple Cookie request headers containing the
value of the cookies.

104 | Chapter 9: Cookies and Sessions

Externalizing Credentials
To make cookies secure, a cookie secret is necessary. The cookie secret is a string that’s
known to the server and used to encrypt secure cookies before they’re sent to the cli‐
ent. It’s not a password that has to be remembered, so it can just be a random string. I
usually use a random password generator inspired by xkcd to generate the cookie
secret or simply a random number.

It’s a common practice to externalize third-party credentials, such as the cookie
secret, database passwords, and API tokens (Twitter, Facebook, etc.). This not only
eases maintenance (by making it easy to locate and update credentials), but also
allows you to omit the credentials file from your version control system. This is espe‐
cially critical for open source repositories hosted on GitHub or other public source
control repositories.

To that end, we’re going to externalize our credentials in a JSON file. Create a file
called .credentials.development.json:

{
 "cookieSecret": "...your cookie secret goes here"
}

This will be the credentials file for our development work. In this way, you could have
different credentials files for production, test, or other environments, which will
come in handy.

We’re going to add a layer of abstraction on top of this credentials file to make it eas‐
ier to manage our dependencies as our application grows. Our version will be very
simple. Create a file called config.js:

const env = process.env.NODE_ENV || 'development'
const credentials = require(`./.credentials.${env}`)
module.exports = { credentials }

Now, to make sure we don’t accidentally add credentials to our repository, add .cre‐
dentials.* to your .gitignore file. To import your credentials into your application, all
you need to do is this:

const { credentials } = require('./config')

We’ll be using this same file to store other credentials later, but for now, all we need is
our cookie secret.

If you’re following along by using the companion repository, you’ll
have to create your own credentials file, as it is not included in the
repository.

Externalizing Credentials | 105

http://bit.ly/2QcjuDb

Cookies in Express
Before you start setting and accessing cookies in your app, you need to include the
cookie-parser middleware. First, use npm install cookie-parser, and then (ch09/
meadowlark.js in the companion repo):

const cookieParser = require('cookie-parser')
app.use(cookieParser(credentials.cookieSecret))

Once you’ve done this, you can set a cookie or a signed cookie anywhere you have
access to a response object:

res.cookie('monster', 'nom nom')
res.cookie('signed_monster', 'nom nom', { signed: true })

Signed cookies take precedence over unsigned cookies. If you name
your signed cookie signed_monster, you cannot have an unsigned
cookie with the same name (it will come back as undefined).

To retrieve the value of a cookie (if any) sent from the client, just access the cookie or
signedCookie properties of the request object:

const monster = req.cookies.monster
const signedMonster = req.signedCookies.signed_monster

You can use any string you want for a cookie name. For example,
we could have used \'signed monster' instead of \'signed_mon
ster', but then we would have to use the bracket notation to
retrieve the cookie: req.signedCookies[\'signed monster']. For
this reason, I recommend using cookie names without special char‐
acters.

To delete a cookie, use req.clearCookie:

res.clearCookie('monster')

When you set a cookie, you can specify the following options:

domain

Controls the domains the cookie is associated with; this allows you to assign
cookies to specific subdomains. Note that you cannot set a cookie for a different
domain than the server is running on; it will simply do nothing.

106 | Chapter 9: Cookies and Sessions

path

Controls the path this cookie applies to. Note that paths have an implicit wildcard
after them; if you use a path of / (the default), it will apply to all pages on your
site. If you use a path of /foo, it will apply to the paths /foo, /foo/bar, etc.

maxAge

Specifies how long the client should keep the cookie before deleting it, in milli‐
seconds. If you omit this, the cookie will be deleted when you close your browser.
(You can also specify a date for expiration with the expires option, but the syn‐
tax is frustrating. I recommend using maxAge.)

secure

Specifies that this cookie will be sent only over a secure (HTTPS) connection.

httpOnly

Setting this to true specifies the cookie will be modified only by the server. That
is, client-side JavaScript cannot modify it. This helps prevent XSS attacks.

signed

Setting this to true signs this cookie, making it available in res.signedCookies
instead of res.cookies. Signed cookies that have been tampered with will be
rejected by the server, and the cookie value will be reset to its original value.

Examining Cookies
As part of your testing, you’ll probably want a way to examine the cookies on your
system. Most browsers have a way to view individual cookies and the values they
store. In Chrome, open the developer tools, and select the Application tab. In the tree
on the left, you’ll see Cookies. Expand that, and you’ll see the site you’re currently vis‐
iting listed. Click that, and you will see all the cookies associated with this site. You
can also right-click the domain to clear all cookies or right-click an individual cookie
to remove it specifically.

Sessions
Sessions are really just a more convenient way to maintain state. To implement ses‐
sions, something has to be stored on the client; otherwise, the server wouldn’t be able
to identify the client from one request to the next. The usual method of doing this is a
cookie that contains a unique identifier. The server then uses that identifier to retrieve
the appropriate session information.

Cookies aren’t the only way to accomplish this: during the height of the “cookie scare”
(when cookie abuse was rampant), many users were simply turning off cookies, and
other ways to maintain state were devised, such as decorating URLs with session

Examining Cookies | 107

information. These techniques were messy, difficult, and inefficient, and they are best
left in the past. HTML5 provides another option for sessions called local storage,
which offers an advantage over cookies if you need to store larger amounts of data.
See the MDN documentation for Window.localStorage for more information about
this option.

Broadly speaking, there are two ways to implement sessions: store everything in the
cookie or store only a unique identifier in the cookie and everything else on the
server. The former are called cookie-based sessions and merely represent a conve‐
nience over using cookies. However, it still means that everything you add to the ses‐
sion will be stored on the client’s browser, which is an approach I don’t recommend. I
recommend this approach only if you know that you will be storing just a small
amount of information, that you don’t mind the user having access to the informa‐
tion, and that it won’t be growing out of control over time. If you want to take this
approach, see the cookie-session middleware.

Memory Stores
If you would rather store session information on the server, which I recommend, you
have to have somewhere to store it. The entry-level option is memory sessions. They
are easy to set up, but they have a huge downside: when you restart the server (which
you will be doing a lot of over the course of this book!), your session information dis‐
appears. Even worse, if you scale out by having multiple servers (see Chapter 12), a
different server could service a request every time; session data would sometimes be
there, and sometimes not. This is clearly an unacceptable user experience. However,
for our development and testing needs, it will suffice. We’ll see how to permanently
store session information in Chapter 13.

First, install express-session (npm install express-session); then, after linking
in the cookie parser, link in express-session (ch09/meadowalrk.js in the companion
repo):

const expressSession = require('express-session')
// make sure you've linked in cookie middleware before
// session middleware!
app.use(expressSession({
 resave: false,
 saveUninitialized: false,
 secret: credentials.cookieSecret,
}))

The express-session middleware accepts a configuration object with the following
options:

108 | Chapter 9: Cookies and Sessions

https://mzl.la/2CDrGo4
http://bit.ly/2qNv9h6

resave

Forces the session to be saved back to the store even if the request wasn’t modi‐
fied. Setting this to false is generally preferable; see the express-session docu‐
mentation for more information.

saveUninitialized

Setting this to true causes new (uninitialized) sessions to be saved to the store,
even if they haven’t been modified. Setting this to false is generally preferable
and is required when you need to get the user’s permission before setting a
cookie. See the express-session documentation for more information.

secret

The key (or keys) used to sign the session ID cookie. This can be the same key
used for cookie-parser.

key

The name of the cookie that will store the unique session identifier. Defaults to
connect.sid.

store

An instance of a session store. Defaults to an instance of MemoryStore, which is
fine for our current purposes. We’ll see how to use a database store in Chapter 13.

cookie

Cookie settings for the session cookie (path, domain, secure, etc.). Regular
cookie defaults apply.

Using Sessions
Once you’ve set up sessions, using them couldn’t be simpler; just use properties of the
request object’s session variable:

req.session.userName = 'Anonymous'
const colorScheme = req.session.colorScheme || 'dark'

Note that with sessions, we don’t have to use the request object for retrieving the
value and the response object for setting the value; it’s all performed on the request
object. (The response object does not have a session property.) To delete a session,
you can use JavaScript’s delete operator:

req.session.userName = null // this sets 'userName' to null,
 // but doesn't remove it

delete req.session.colorScheme // this removes 'colorScheme'

Sessions | 109

Using Sessions to Implement Flash Messages
Flash messages (not to be confused with Adobe Flash) are simply a way to provide
feedback to users in a way that’s not disruptive to their navigation. The easiest way to
implement flash messages is to use sessions (you can also use the querystring, but in
addition to those having uglier URLs, the flash messages will be included in a book‐
mark, which is probably not what you want). Let’s set up our HTML first. We’ll be
using Bootstrap’s alert messages to display our flash messages, so make sure you have
Bootstrap linked in (see Bootstrap’s “getting started” documentation; you can link in
the Bootstrap CSS and JavaScript files in your main template—there is an example in
the companion repo). In your template file, somewhere prominent (usually directly
below your site’s header), add the following:

{{#if flash}}
 <div class="alert alert-dismissible alert-{{flash.type}}">
 <button type="button" class="close"
 data-dismiss="alert" aria-hidden="true">×</button>
 {{flash.intro}} {{{flash.message}}}
 </div>
{{/if}}

Note that we use three curly brackets for flash.message; this will allow us to provide
some simple HTML in our messages (we might want to emphasize words or include
hyperlinks). Now let’s add some middleware to add the flash object to the context if
there’s one in the session. After we’ve displayed a flash message once, we want to
remove it from the session so it isn’t displayed on the next request. We’ll create some
middleware to check the session to see whether there’s a flash message and, if there is,
transfer it to the res.locals object, making it available to the views. We’ll put our
middleware in a file called lib/middleware/flash.js:

module.exports = (req, res, next) => {
 // if there's a flash message, transfer
 // it to the context, then clear it
 res.locals.flash = req.session.flash
 delete req.session.flash
 next()
})

And in our meadowalrk.js file, we’ll link in the flash message middleware, before any
of our view routes:

const flashMiddleware = require('./lib/middleware/flash')
app.use(flashMiddleware)

Now let’s see how to actually use the flash message. Imagine we’re signing up users for
a newsletter and we want to redirect them to the newsletter archive after they sign up.
This is what our form handler might look like:

110 | Chapter 9: Cookies and Sessions

http://bit.ly/36YxeYf

// slightly modified version of the official W3C HTML5 email regex:
// https://html.spec.whatwg.org/multipage/forms.html#valid-e-mail-address
const VALID_EMAIL_REGEX = new RegExp('^[a-zA-Z0-9.!#$%&\'*+\/=?^_`{|}~-]+@' +
 '[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?' +
 '(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)+$')

app.post('/newsletter', function(req, res){
 const name = req.body.name || '', email = req.body.email || ''
 // input validation
 if(VALID_EMAIL_REGEX.test(email)) {
 req.session.flash = {
 type: 'danger',
 intro: 'Validation error!',
 message: 'The email address you entered was not valid.',
 }
 return res.redirect(303, '/newsletter')
 }
 // NewsletterSignup is an example of an object you might create; since
 // every implementation will vary, it is up to you to write these
 // project-specific interfaces. This simply shows how a typical
 // Express implementation might look in your project.
 new NewsletterSignup({ name, email }).save((err) => {
 if(err) {
 req.session.flash = {
 type: 'danger',
 intro: 'Database error!',
 message: 'There was a database error; please try again later.',
 }
 return res.redirect(303, '/newsletter/archive')
 }
 req.session.flash = {
 type: 'success',
 intro: 'Thank you!',
 message: 'You have now been signed up for the newsletter.',
 };
 return res.redirect(303, '/newsletter/archive')
 })
})

Note that we’re careful to distinguish between input validation and database errors.
Remember that even if we do input validation on the frontend (and you should), you
should also perform it on the backend, because malicious users can circumvent front‐
end validation.

Flash messages are a great mechanism to have available in your website, even if other
methods are more appropriate in certain areas (for example, flash messages aren’t
always appropriate for multiform “wizards” or shopping cart checkout flows). Flash
messages are also great during development, because they are an easy way to provide
feedback, even if you replace them with a different technique later. Adding support
for flash messages is one of the first things I do when setting up a website, and we’ll
be using this technique throughout the rest of the book.

Using Sessions to Implement Flash Messages | 111

Because the flash message is being transferred from the session to
res.locals.flash in middleware, you have to perform a redirect
for the flash message to be displayed. If you want to display a flash
message without redirecting, set res.locals.flash instead of
req.session.flash.

The example in this chapter used browser form submission with
redirects because the use of sessions to control UI like this is typi‐
cally not used in applications that use Ajax for form submission. In
that event, you would want to indicate any errors in the JSON
returned from the form handler and have the frontend modify the
DOM to dynamically display error messages. That’s not to say that
sessions aren’t useful for frontend rendered applications, but they
are seldom used for this purpose.

What to Use Sessions For
Sessions are useful whenever you want to save a user preference that applies across
pages. Most commonly, sessions are used to provide user authentication information:
you log in, and a session is created. After that, you don’t have to log in again every
time you reload the page. Sessions can be useful even without user accounts, though.
It’s quite common for sites to remember how you like things sorted or what date for‐
mat you prefer—all without your having to log in.

While I encourage you to prefer sessions over cookies, it’s important to understand
how cookies work (especially because they enable sessions to work). It will help you
with diagnosing issues and understanding the security and privacy considerations of
your application.

Conclusion
Understanding cookies and sessions gives us a better understanding of how web
applications maintain the illusion of state when the underlying protocol (HTTP) is
stateless. We learned techniques for handling cookies and sessions to control the
user’s experience.

We’ve also been writing middleware as we went along without too much explanation
of middleware. In the next chapter, we’re going to dive into middleware and learn
everything there is to know about it!

112 | Chapter 9: Cookies and Sessions

CHAPTER 10

Middleware

By now, we’ve already had some exposure to middleware: we’ve used existing middle‐
ware (body-parser, cookie-parser, static, and express-session, to name a few),
and we’ve even written some of our own (for adding weather data to our template
context, configuring flash messages, and our 404 handler). But what is middleware,
exactly?

Conceptually, middleware is a way to encapsulate functionality—specifically, func‐
tionality that operates on an HTTP request to your application. Practically, middle‐
ware is simply a function that takes three arguments: a request object, a response
object, and a next() function, which will be explained shortly. (There is also a form
that takes four arguments, for error handling, which will be covered at the end of this
chapter.)

Middleware is executed in what’s known as a pipeline. You can imagine a physical
pipe, carrying water. The water gets pumped in at one end, and then there are gauges
and valves before the water gets where it’s going. The important part about this anal‐
ogy is that order matters; if you put a pressure gauge before a valve, it has a different
effect than if you put the pressure gauge after the valve. Similarly, if you have a valve
that injects something into the water, everything “downstream” from that valve will
contain the added ingredient. In an Express app, you insert middleware into the pipe‐
line by calling app.use.

Prior to Express 4.0, the pipeline was complicated by your having to link in the router
explicitly. Depending on where you linked in the router, routes could be linked in out
of order, making the pipeline sequence less clear when you mix middleware and
route handlers. In Express 4.0, middleware and route handlers are invoked in the
order in which they were linked in, making the sequence much clearer.

113

It’s common practice to have the last middleware in your pipeline be a catchall han‐
dler for any request that doesn’t match any other routes. This middleware usually
returns a status code of 404 (Not Found).

So how is a request “terminated” in the pipeline? That’s what the next function passed
to each middleware does: if you don’t call next(), the request terminates with that
middleware.

Middleware Principles
Learning how to think flexibly about middleware and route handlers is key to under‐
standing how Express works. Here are the things you should keep in mind:

• Route handlers (app.get, app.post, etc.—often referred to collectively as
app.METHOD) can be thought of as middleware that handles only a specific HTTP
verb (GET, POST, etc.). Conversely, middleware can be thought of as a route han‐
dler that handles all HTTP verbs (this is essentially equivalent to app.all, which
handles any HTTP verb; there are some minor differences with exotic verbs such
as PURGE, but for the common verbs, the effect is the same).

• Route handlers require a path as their first parameter. If you want that path to
match any route, simply use *. Middleware can also take a path as its first
parameter, but it is optional (if it is omitted, it will match any path, as if you had
specified *).

• Route handlers and middleware take a callback function that takes two, three, or
four parameters (technically, you could also have zero or one parameters, but
there is no sensible use for these forms). If there are two or three parameters, the
first two parameters are the request and response objects, and the third parame‐
ter is the next function. If there are four parameters, it becomes error-handling
middleware, and the first parameter becomes an error object, followed by the
request, response, and next objects.

• If you don’t call next(), the pipeline will be terminated, and no more route han‐
dlers or middleware will be processed. If you don’t call next(), you should send a
response to the client (res.send, res.json, res.render, etc.); if you don’t, the
client will hang and eventually time out.

• If you do call next(), it’s generally inadvisable to send a response to the client. If
you do, middleware or route handlers further down the pipeline will be executed,
but any client responses they send will be ignored.

114 | Chapter 10: Middleware

Middleware Examples
If you want to see this in action, let’s try some really simple middleware (ch10/00-
simple-middleware.js in the companion repo):

app.use((req, res, next) => {
 console.log(`processing request for ${req.url}....`)
 next()
})

app.use((req, res, next) => {
 console.log('terminating request')
 res.send('thanks for playing!')
 // note that we do NOT call next() here...this terminates the request
})

app.use((req, res, next) => {
 console.log(`whoops, i'll never get called!`)
})

Here we have three examples of middleware. The first one simply logs a message to
the console before passing on the request to the next middleware in the pipeline by
calling next(). Then the next middleware actually handles the request. Note that if
we omitted the res.send here, no response would ever be returned to the client.
Eventually, the client would time out. The last middleware will never execute, because
all requests are terminated in the prior middleware.

Now let’s consider a more complicated, complete example (ch10/01-routing-
example.js in the companion repo):

const express = require('express')
const app = express()

app.use((req, res, next) => {
 console.log('\n\nALLWAYS')
 next()
})

app.get('/a', (req, res) => {
 console.log('/a: route terminated')
 res.send('a')
})
app.get('/a', (req, res) => {
 console.log('/a: never called');
})
app.get('/b', (req, res, next) => {
 console.log('/b: route not terminated')
 next()
})
app.use((req, res, next) => {

Middleware Examples | 115

 console.log('SOMETIMES')
 next()
})
app.get('/b', (req, res, next) => {
 console.log('/b (part 2): error thrown')
 throw new Error('b failed')
})
app.use('/b', (err, req, res, next) => {
 console.log('/b error detected and passed on')
 next(err)
})
app.get('/c', (err, req) => {
 console.log('/c: error thrown')
 throw new Error('c failed')
})
app.use('/c', (err, req, res, next) => {
 console.log('/c: error detected but not passed on')
 next()
})

app.use((err, req, res, next) => {
 console.log('unhandled error detected: ' + err.message)
 res.send('500 - server error')
})

app.use((req, res) => {
 console.log('route not handled')
 res.send('404 - not found')
})

const port = process.env.PORT || 3000
app.listen(port, () => console.log(`Express started on http://localhost:${port}` +
 '; press Ctrl-C to terminate.'))

Before trying this example, imagine what the result will be. What are the different
routes? What will the client see? What will be printed on the console? If you can cor‐
rectly answer all of those questions, you’ve got the hang of routes in Express! Pay par‐
ticular attention to the difference between a request to /b and a request to /c; in both
instances, there was an error, but one results in a 404, and the other results in a 500.

Note that middleware must be a function. Keep in mind that in JavaScript, it’s quite
easy (and common) to return a function from a function. For example, you’ll note
that express.static is a function, but we actually invoke it, so it must return
another function. Consider the following:

app.use(express.static) // this will NOT work as expected

console.log(express.static()) // will log "function", indicating
 // that express.static is a function
 // that itself returns a function

116 | Chapter 10: Middleware

Note also that a module can export a function, which can in turn be used directly as
middleware. For example, here’s a module called lib/tourRequiresWaiver.js (Meadow‐
lark Travel’s rock-climbing packages require a liability waiver):

module.exports = (req,res,next) => {
 const { cart } = req.session
 if(!cart) return next()
 if(cart.items.some(item => item.product.requiresWaiver)) {
 cart.warnings.push('One or more of your selected ' +
 'tours requires a waiver.')
 }
 next()
}

We could link this middleware in like so (ch10/02-item-waiver.example.js in the com‐
panion repo):

const requiresWaiver = require('./lib/tourRequiresWaiver')
app.use(requiresWaiver)

More commonly, though, you would export an object that contains properties that
are middleware. For example, let’s put all of our shopping cart validation code in lib/
cartValidation.js:

module.exports = {

 resetValidation(req, res, next) {
 const { cart } = req.session
 if(cart) cart.warnings = cart.errors = []
 next()
 },

 checkWaivers(req, res, next) {
 const { cart } = req.session
 if(!cart) return next()
 if(cart.items.some(item => item.product.requiresWaiver)) {
 cart.warnings.push('One or more of your selected ' +
 'tours requires a waiver.')
 }
 next()
 },

 checkGuestCounts(req, res, next) {
 const { cart } = req.session
 if(!cart) return next()
 if(cart.items.some(item => item.guests > item.product.maxGuests)) {
 cart.errors.push('One or more of your selected tours ' +
 'cannot accommodate the number of guests you ' +
 'have selected.')
 }
 next()
 },

Middleware Examples | 117

}

Then you could link the middleware in like this (ch10/03-more-cart-validation.js in
the companion repo):

const cartValidation = require('./lib/cartValidation')

app.use(cartValidation.resetValidation)
app.use(cartValidation.checkWaivers)
app.use(cartValidation.checkGuestCounts)

In the previous example, we have middleware aborting early with
the statement return next(). Express doesn’t expect middleware
to return a value (and it doesn’t do anything with any return val‐
ues), so this is just a shortened way of writing next(); return.

Common Middleware
While there are thousands of middleware projects on npm, there are a handful that
are common and fundamental, and at least some of these will be found in every non-
trivial Express project. Some of this middleware was so common that it was actually
bundled with Express, but it has long since been moved into individual packages. The
only middleware still bundled with Express itself is static.

This list attempts to cover the most common middleware:

basicauth-middleware

Provides basic access authorization. Keep in mind that basic auth offers only the
most basic security, and you should use basic auth only over HTTPS (otherwise,
usernames and passwords are transmitted in the clear). You should use basic auth
only when you need something quick and easy and you’re using HTTPS.

body-parser

Provides parsing for HTTP request bodies. Provides middleware for parsing both
URL-encoded and JSON-encoded bodies, as well as others.

busboy, multiparty, formidable, multer
All of these middleware options parse request bodies encoded with multipart/
form-data.

compression

Compresses response data with gzip or deflate. This is a good thing, and your
users will thank you, especially those on slow or mobile connections. It should be
linked in early, before any middleware that might send a response. The only thing
that I recommend linking in before compress is debugging or logging middle‐

118 | Chapter 10: Middleware

ware (which do not send responses). Note that in most production environ‐
ments, compression is handled by a proxy like NGINX, making this middleware
unnecessary.

cookie-parser

Provides cookie support. See Chapter 9.

cookie-session

Provides cookie-storage session support. I do not generally recommend this
approach to sessions. It must be linked in after cookie-parser. See Chapter 9.

express-session

Provides session ID (stored in a cookie) session support. Defaults to a memory
store, which is not suitable for production and can be configured to use a data‐
base store. See Chapter 9 and Chapter 13.

csurf

Provides protection against cross-site request forgery (CSRF) attacks. This uses
sessions, so it must be linked in after express-session middleware. Unfortu‐
nately, simply linking in this middleware does not magically protect against
CSRF attacks; see Chapter 18 for more information.

serve-index

Provides directory listing support for static files. There is no need to include this
middleware unless you specifically need directory listing.

errorhandler

Provides stack traces and error messages to the client. I do not recommend link‐
ing this in on a production server, as it exposes implementation details, which
can have security or privacy consequences. See Chapter 20 for more information.

serve-favicon

Serves the favicon (the icon that appears in the title bar of your browser). This is
not strictly necessary; you can simply put a favicon.ico in the root of your static
directory, but this middleware can improve performance. If you use it, it should
be linked in high in the middleware stack. It also allows you to designate a file‐
name other than favicon.ico.

morgan

Provides automated logging support; all requests will be logged. See Chapter 20
for more information.

method-override

Provides support for the x-http-method-override request header, which allows
browsers to “fake” using HTTP methods other than GET and POST. This can be
useful for debugging. This is needed only if you’re writing APIs.

Common Middleware | 119

response-time

Adds the X-Response-Time header to the response, providing the response time
in milliseconds. You usually don’t need this middleware unless you are doing per‐
formance tuning.

static

Provides support for serving static (public) files. You can link in this middleware
multiple times, specifying different directories. See Chapter 17 for more details.

vhost

Virtual hosts (vhosts), a term borrowed from Apache, makes subdomains easier
to manage in Express. See Chapter 14 for more information.

Third-Party Middleware
Currently, there is no comprehensive “store” or index for third-party middleware.
Almost all Express middleware, however, will be available on npm, so if you search
npm for “Express” and “middleware,” you’ll get a pretty good list. The official Express
documentation also contains a useful list of middleware.

Conclusion
In this chapter, we delved into what middleware is, how to write our own, and how
it’s processed as part of an Express application. If you’re starting to think that an
Express application is simply a collection of middleware, you’re starting to under‐
stand Express! Even the route handlers we’ve been using heretofore are just special‐
ized cases of middleware.

In the next chapter, we’ll be looking at another common infrastructure need: sending
email (and you had better believe there is going to be some middleware involved!).

120 | Chapter 10: Middleware

http://bit.ly/36UrbnL

CHAPTER 11

Sending Email

One of the primary ways your application can communicate with the world is email.
From user registration to password reset instructions to promotional emails, the abil‐
ity to send email is an important feature. In this chapter, you’ll learn how to format
and send email with Node and Express to help communicate with your users.

Neither Node nor Express has any built-in way of sending email, so we have to use a
third-party module. The package I recommend is Andris Reinman’s excellent Node‐
mailer. Before we dive into configuring Nodemailer, let’s get some email basics out of
the way.

SMTP, MSAs, and MTAs
The lingua franca for sending email is the Simple Mail Transfer Protocol (SMTP).
While it is possible to use SMTP to send an email directly to the recipient’s mail
server, this is generally a bad idea: unless you are a “trusted sender” like Google or
Yahoo!, chances are your email will be tossed directly into the spam bin. It’s better to
use a mail submission agent (MSA), which will deliver the email through trusted
channels, reducing the chance that your email will be marked as spam. In addition to
ensuring that your email arrives, MSAs handle nuisances like temporary outages and
bounced emails. The final piece of the equation is the mail transfer agent (MTA),
which is the service that actually sends the email to its final destination. For the pur‐
poses of this book, MSA, MTA, and SMTP server are essentially equivalent.

So you’ll need access to an MSA. While it is possible to get started using a free con‐
sumer email service such as Gmail, Outlook, or Yahoo!, these services are no longer
as friendly to automated emails as they once were (in an effort to cut down on abuse).
Fortunately, there are a couple of excellent email services to choose from that have a

121

http://bit.ly/2Ked7vy
http://bit.ly/2Ked7vy

free option for low-volume use: Sendgrid and Mailgun. I’ve used both services, and I
like them both. The examples in this book will be using SendGrid.

If you’re working for an organization, the organization itself may have an MSA; you
can contact your IT department and ask them if there’s an SMTP relay available for
sending automated emails.

If you’re using SendGrid or Mailgun, go ahead and set up your account now. For
SendGrid, you’ll need to create an API key (which will be your SMTP password).

Receiving Email
Most websites only need the ability to send email, like password reset instructions and
promotional emails. However, some applications need to receive email as well. A
good example is an issue-tracking system that sends out an email when someone
updates an issue, and if you reply to that email, the issue is automatically updated
with your response.

Unfortunately, receiving email is much more involved and will not be covered in this
book. If this is functionality you need, you should allow your mail provider to main‐
tain the mailbox and have a periodic process to access it with an IMAP agent such as
imap-simple.

Email Headers
An email message consists of two parts: the header and the body (very much like an
HTTP request). The header contains information about the email: who it’s from, who
it’s addressed to, the date it was received, the subject, and more. Those are the headers
that are normally displayed to the user in an email application, but there are many
more headers. Most email clients allow you to look at the headers; if you’ve never
done so, I recommend you take a look. The headers give you all the information
about how the email got to you; every server and MTA that the email passed through
will be listed in the header.

It often comes as a surprise to people that some headers, like the “from” address, can
be set arbitrarily by the sender. When you specify a “from” address other than the
account from which you’re sending, it’s often referred to as spoofing. There is nothing
preventing you from sending an email with the “from” address Bill Gates
<billg@microsoft.com>. I’m not recommending that you try this, just driving home
the point that you can set certain headers to be whatever you want. Sometimes there
are legitimate reasons to do this, but you should never abuse it.

An email you send must have a “from” address, however. This can sometimes cause
problems when sending automated email, which is why you often see email with a
return addresses like DO NOT REPLY <do-not-reply@meadowlarktravel.com>.

122 | Chapter 11: Sending Email

https://sendgrid.com
https://www.mailgun.com
http://bit.ly/2qQK0r5

Whether you want to take this approach or have automated emails come from an
address like Meadowlark Travel <info@meadowlarktravel.com> is up to you; if you
take the latter approach, though, you should be prepared to respond to emails that
come to info@meadowlarktravel.com.

Email Formats
When the internet was new, all email was simply ASCII text. The world has changed a
lot since then, and people want to send email in different languages and do more
sophisticated things like include formatted text, images, and attachments. This is
where things start to get ugly: email formats and encoding are a horrible jumble of
techniques and standards.

Fortunately, we won’t really have to address these complexities. Nodemailer will han‐
dle that for us. What’s important for you to know is that your email can be either
plain text (Unicode) or HTML.

Almost all modern email applications support HTML email, so it’s generally pretty
safe to format your emails in HTML. Still, there are “text purists” out there who
eschew HTML email, so I recommend always including both text and HTML email.
If you don’t want to have to write text and HTML email, Nodemailer supports a
shortcut that will automatically generate the plain text version from the HTML.

HTML Email
HTML email is a topic that could fill an entire book. Unfortunately, it’s not as simple
as just writing HTML as you would for your site: most mail clients support only a
small subset of HTML. Mostly, you have to write HTML as if it were still 1996; it’s not
much fun. In particular, you have to go back to using tables for layout (cue sad
music).

If you have experience with browser compatibility issues with HTML, you know what
a headache it can be. Email compatibility issues are much worse. Fortunately, there
are some things that can help.

First, I encourage you to read MailChimp’s excellent article about writing HTML
email. It does a good job covering the basics and explaining the things you need to
keep in mind when writing HTML email.

The next is a real time-saver: HTML Email Boilerplate. It’s essentially a very well-
written, rigorously tested template for HTML email.

Finally, there’s testing. You’ve read up on how to write HTML email, and you’re using
HTML Email Boilerplate, but testing is the only way to know for sure your email is
not going to explode on Lotus Notes 7 (yes, people still use it). Feel like installing 30

Email Formats | 123

http://bit.ly/33CsaXs
http://bit.ly/33CsaXs
http://bit.ly/2qJ1XIe

different mail clients to test one email? I didn’t think so. Fortunately, there’s a great
service that does it for you: Litmus. It’s not an inexpensive service; plans start at about
$100 a month. But if you send a lot of promotional emails, it’s hard to beat.

On the other hand, if your formatting is modest, there’s no need for an expensive test‐
ing service like Litmus. If you’re sticking to things like headers, bold/italic text, hori‐
zontal rules, and some image links, you’re pretty safe.

Nodemailer
First, we need to install the Nodemailer package:

npm install nodemailer

Then, require the nodemailer package and create a Nodemailer instance (a transport
in Nodemailer parlance):

const nodemailer = require('nodemailer')

const mailTransport = nodemailer.createTransport({

 auth: {
 user: credentials.sendgrid.user,
 pass: credentials.sendgrid.password,
 }
})

Notice we’re using the credentials module we set up in Chapter 9. You’ll need to
update your .credentials.development.json file accordingly:

{
 "cookieSecret": "your cookie secret goes here",
 "sendgrid": {
 "user": "your sendgrid username",
 "password": "your sendgrid password"
 }
}

Common configuration options for SMTP are the port, authentication type, and TLS
options. However, most of the major mail services use the default options. To find out
what settings to use, consult your mail service documentation (try searching for send‐
ing SMTP email or SMTP configuration or SMTP relay). If you’re having trouble send‐
ing SMTP email, you may need to check the options; see the Nodemailer
documentation for a complete list of supported options.

124 | Chapter 11: Sending Email

http://bit.ly/2NI6JPo
https://nodemailer.com/smtp
https://nodemailer.com/smtp

If you’re following along with the companion repo, you’ll find that
there aren’t any settings in the credentials file. In the past, I have
had many readers contact me asking why the file is missing or
empty. I intentionally don’t provide valid credentials for the same
reason you should be careful with your credentials! I trust you very
much, dear reader, but not so much that I’m going to give you my
email password!

Sending Mail
Now that we have our mail transport instance, we can send mail. We’ll start with a
simple example that sends text mail to only one recipient (ch11/00-smtp.js in the com‐
panion repo):

try {
 const result = await mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joecustomer@gmail.com',
 subject: 'Your Meadowlark Travel Tour',
 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
 })
 console.log('mail sent successfully: ', result)
} catch(err) {
 console.log('could not send mail: ' + err.message)
}

In the code samples in this section, I’m using fake email addresses
like joecustomer@gmail.com. For verification purposes, you’ll prob‐
ably want to change those email addresses to an email you control
so you can see what’s happening. Otherwise, poor joecusto‐
mer@gmail.com is going to be getting a lot of nonsense email!

You’ll notice that we’re handling errors here, but it’s important to understand that no
errors doesn’t necessarily mean your email was delivered successfully to the recipient.
The callback’s error parameter will be set only if there was a problem communicating
with the MSA (such as a network or authentication error). If the MSA was unable to
deliver the email (for example, because of an invalid email address or an unknown
user), you will have to check your account activity in your mail service, which you
can do either from the admin interface or through an API.

If you need your system to automatically determine whether the email was delivered
successfully, you’ll have to use your mail service’s API. Consult the API documenta‐
tion for your mail service for more information.

Nodemailer | 125

Sending Mail to Multiple Recipients
Nodemail supports sending mail to multiple recipients by using commas (ch11/01-
multiple-recipients.js in the companion repo):

try {
 const result = await mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joe@gmail.com, "Jane Customer" <jane@yahoo.com>, ' +
 'fred@hotmail.com',
 subject: 'Your Meadowlark Travel Tour',
 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
 })
 console.log('mail sent successfully: ', result)
} catch(err) {
 console.log('could not send mail: ' + err.message)
}

Note that, in this example, we mixed plain email addresses (joe@gmail.com) with
email addresses specifying the recipient’s name (“Jane Customer”
<jane@yahoo.com>). This is allowed syntax.

When sending email to multiple recipients, you must be careful to observe the limits
of your MSA. SendGrid, for example, recommends limiting the number of recipients
(SendGrid recommends no more than a thousand in one email). If you’re sending
bulk email, you probably want to deliver multiple messages, each with multiple recip‐
ients (ch11/02-many-recipients.js in the companion repo):

// largeRecipientList is an array of email addresses
const recipientLimit = 100
const batches = largeRecipientList.reduce((batches, r) => {
 const lastBatch = batches[batches.length - 1]
 if(lastBatch.length < recipientLimit)
 lastBatch.push(r)
 else
 batches.push([r])
 return batches
}, [[]])
try {
 const results = await Promise.all(batches.map(batch =>
 mailTransport.sendMail({
 from: '"Meadowlark Travel", <info@meadowlarktravel.com>',
 to: batch.join(', '),
 subject: 'Special price on Hood River travel package!',
 text: 'Book your trip to scenic Hood River now!',
 })
))
 console.log(results)
} catch(err) {
 console.log('at least one email batch failed: ' + err.message)
}

126 | Chapter 11: Sending Email

Better Options for Bulk Email
While you can certainly send bulk email with Nodemailer and an appropriate MSA,
you should think carefully before going this route. A responsible email campaign
must provide a way for people to unsubscribe from your promotional emails, and
that is not a trivial task. Multiply that by every subscription list you maintain (per‐
haps you have a weekly newsletter and a special announcements campaign, for exam‐
ple). This is an area in which it’s best not to reinvent the wheel. Services like Emma,
Mailchimp, and Campaign Monitor offer everything you need, including great tools
for monitoring the success of your email campaigns. They’re very affordable, and I
highly recommend using them for promotional emails, newsletters, etc.

Sending HTML Email
So far, we’ve just been sending plain-text email, but most people these days expect
something a little prettier. Nodemailer allows you to send both HTML and plaintext
versions in the same email, allowing the email client to choose which version is dis‐
played (usually HTML) (ch11/03-html-email.js in the companion repo):

const result = await mailTransport.sendMail({
 from: '"Meadowlark Travel" <info@meadowlarktravel.com>',
 to: 'joe@gmail.com, "Jane Customer" <jane@yahoo.com>, ' +
 'fred@hotmail.com',
 subject: 'Your Meadowlark Travel Tour',
 html: '<h1>Meadowlark Travel</h1>\n<p>Thanks for book your trip with ' +
 'Meadowlark Travel. We look forward to your visit!',
 text: 'Thank you for booking your trip with Meadowlark Travel. ' +
 'We look forward to your visit!',
})

Providing both HTML and text versions is a lot of work, especially if very few of your
users prefer text-only email. If you want to save some time, you can write your emails
in HTML and use a package like html-to-formatted-text to automatically generate
text from your HTML. (Just keep in mind that it won’t be as high quality as hand-
crafted text; HTML won’t always translate cleanly.)

Images in HTML Email
While it is possible to embed images in HTML email, I strongly discourage it. They
bloat your email messages, and it isn’t generally considered good practice. Instead,
you should make images you want to use in email available on your web server and
link appropriately from the email.

It is best to have a dedicated location in your static assets folder for email images. You
should even keep assets that you use both on your site and in emails separate. It
reduces the chance of negatively affecting the layout of your emails.

Better Options for Bulk Email | 127

https://myemma.com
http://mailchimp.com
http://www.campaignmonitor.com
http://bit.ly/34RX8Lq

Let’s add some email resources in our Meadowlark Travel project. In your public
directory, create a subdirectory called email. You can place your logo.png in there, and
any other images you want to use in your email. Then, in your email, you can use
those images directly:

<img src="//meadowlarktravel.com/email/logo.png"
 alt="Meadowlark Travel Logo">

It should be obvious that you do not want to use localhost when
sending out email to other people; they probably won’t even have a
server running, much less on port 3000! Depending on your mail
client, you might be able to use localhost in your email for testing
purposes, but it won’t work outside of your computer. In Chap‐
ter 17, we’ll discuss some techniques to smooth the transition from
development to production.

Using Views to Send HTML Email
So far, we’ve been putting our HTML in strings in JavaScript, a practice you should
try to avoid. Our HTML has been simple enough, but take a look at HTML Email
Boilerplate: do you want to put all that boilerplate in a string? Absolutely not.

Fortunately, we can leverage views to handle this. Let’s consider our “Thank you for
booking your trip with Meadowlark Travel” email example, which we’ll expand a little
bit. Let’s imagine that we have a shopping cart object that contains our order infor‐
mation. That shopping cart object will be stored in the session. Let’s say the last step
in our ordering process is a form that’s processed by /cart/checkout, which sends a
confirmation email. Let’s start by creating a view for the thank-you page, views/cart-
thank-you.handlebars:

<p>Thank you for booking your trip with Meadowlark Travel,
 {{cart.billing.name}}!</p>
<p>Your reservation number is {{cart.number}}, and an email has been
sent to {{cart.billing.email}} for your records.</p>

Then we’ll create an email template for the email. Download HTML Email Boiler‐
plate, and put in views/email/cart-thank-you.handlebars. Edit the file, and modify the
body:

<table cellpadding="0" cellspacing="0" border="0" id="backgroundTable">
 <tr>
 <td valign="top">
 <table cellpadding="0" cellspacing="0" border="0" align="center">
 <tr>
 <td width="200" valign="top"><img class="image_fix"
 src="//placehold.it/100x100"
 alt="Meadowlark Travel" title="Meadowlark Travel"
 width="180" height="220" /></td>

128 | Chapter 11: Sending Email

http://bit.ly/2qJ1XIe
http://bit.ly/2qJ1XIe

 </tr>
 <tr>
 <td width="200" valign="top"><p>
 Thank you for booking your trip with Meadowlark Travel,
 {{cart.billing.name}}.</p><p>Your reservation number
 is {{cart.number}}.</p></td>
 </tr>
 <tr>
 <td width="200" valign="top">Problems with your reservation?
 Contact Meadowlark Travel at
 555-555-0123.</td>
 </tr>
 </table>
 </td>
 </tr>
</table>

Because you can’t use localhost addresses in email, if your site isn’t
live yet, you can use a placeholder service for any graphics. For
example, http://placehold.it/100x100 dynamically serves a 100-
pixel-square graphic you can use. This technique is used quite
often for for-placement-only (FPO) images and layout purposes.

Now we can create a route for our cart Thank-you page (ch11/04-rendering-html-
email.js in the companion repo):

app.post('/cart/checkout', (req, res, next) => {
 const cart = req.session.cart
 if(!cart) next(new Error('Cart does not exist.'))
 const name = req.body.name || '', email = req.body.email || ''
 // input validation
 if(!email.match(VALID_EMAIL_REGEX))
 return res.next(new Error('Invalid email address.'))
 // assign a random cart ID; normally we would use a database ID here
 cart.number = Math.random().toString().replace(/^0\.0*/, '')
 cart.billing = {
 name: name,
 email: email,
 }
 res.render('email/cart-thank-you', { layout: null, cart: cart },
 (err,html) => {
 console.log('rendered email: ', html)
 if(err) console.log('error in email template')
 mailTransport.sendMail({
 from: '"Meadowlark Travel": info@meadowlarktravel.com',
 to: cart.billing.email,
 subject: 'Thank You for Book your Trip with Meadowlark Travel',
 html: html,
 text: htmlToFormattedText(html),
 })
 .then(info => {

Sending HTML Email | 129

http://placehold.it/100x100

 console.log('sent! ', info)
 res.render('cart-thank-you', { cart: cart })
 })
 .catch(err => {
 console.error('Unable to send confirmation: ' + err.message)
 })
 }
)
})

Note that we’re calling res.render twice. Normally, you call it only once (calling it
twice will display only the results of the first call). However, in this instance, we’re cir‐
cumventing the normal rendering process the first time we call it: notice that we pro‐
vide a callback. Doing that prevents the results of the view from being rendered to the
browser. Instead, the callback receives the rendered view in the parameter html: all
we have to do is take that rendered HTML and send the email! We specify layout:
null to prevent our layout file from being used, because it’s all in the email template
(an alternate approach would be to create a separate layout file for emails and use that
instead). Lastly, we call res.render again. This time, the results will be rendered to
the HTML response as normal.

Encapsulating Email Functionality
If you’re using email a lot throughout your site, you may want to encapsulate the
email functionality. Let’s assume you always want your site to send email from the
same sender (“Meadowlark Travel” <info@meadowlarktravel.com>) and you always
want the email to be sent in HTML with automatically generated text. Create a mod‐
ule called lib/email.js (ch11/lib/email.js in the companion repo):

const nodemailer = require('nodemailer')
const htmlToFormattedText = require('html-to-formatted-text')

module.exports = credentials => {

 const mailTransport = nodemailer.createTransport({
 host: 'smtp.sendgrid.net',
 auth: {
 user: credentials.sendgrid.user,
 pass: credentials.sendgrid.password,
 },
 })

 const from = '"Meadowlark Travel" <info@meadowlarktravel.com>'
 const errorRecipient = 'youremail@gmail.com'

 return {
 send: (to, subject, html) =>
 mailTransport.sendMail({
 from,

130 | Chapter 11: Sending Email

 to,
 subject,
 html,
 text: htmlToFormattedText(html),
 }),
 }

}

Now all we have to do to send an email is the following (ch11/05-email-library.js in
the companion repo):

const emailService = require('./lib/email')(credentials)

emailService.send(email, "Hood River tours on sale today!",
 "Get 'em while they're hot!")

Conclusion
In this chapter, you learned the basics of how email is delivered on the internet. If you
were following along, you set up a free email service (most likely SendGrid or Mail‐
gun) and used the service to send text and HTML email. You learned how we can use
the same template rendering mechanism we use for rendering HTML in our Express
applications to render HTML for email.

Email remains an important way your application can communicate to your users. Be
mindful not to abuse this power! If you’re like me, you have an inbox overflowing
with automated email that you mostly ignore. When it comes to automated emails,
less is more. There are legitimate and useful reasons your application could send an
email to your users, but you should always ask yourself, “Do my users really want this
email? Is there another way to communicate this information?”

Now that we’ve covered some basic infrastructure that we’ll need to create applica‐
tions, we’ll spend some time talking about the eventual production launch of our
application and the kinds of things we’ll want to consider to make that launch suc‐
cessful.

Conclusion | 131

CHAPTER 12

Production Concerns

While it may feel premature to start discussing production concerns at this point, you
can save yourself a lot of time and suffering down the line if you start thinking about
production early on. Launch day will be here before you know it.

In this chapter, you’ll learn about Express’s support for different execution environ‐
ments, methods to scale your website, and how to monitor your website’s health.
You’ll see how you can simulate a production environment for testing and develop‐
ment and also how to perform stress testing so you can identify production problems
before they happen.

Execution Environments
Express supports the concept of execution environments: a way to run your applica‐
tion in production, development, or test mode. You could actually have as many dif‐
ferent environments as you want. For example, you could have a staging
environment, or a training environment. However, keep in mind that development,
production, and test are “standard” environments, and both Express and third-party
middleware often make decisions based on those environments. In other words, if
you have a “staging” environment, there’s no way to make it automatically inherit the
properties of a production environment. For this reason, I recommend you stick with
the standards of production, development, and test.

While it is possible to specify the execution environment by calling app.set('env',
\'production'), it is inadvisable to do so; it means your app will always run in that
environment, no matter what the situation. Worse, it may start running in one envi‐
ronment and then switch to another.

133

It’s preferable to specify the execution environment by using the environment vari‐
able NODE_ENV. Let’s modify our app to report on the mode it’s running in by calling
app.get('env’):

const port = process.env.PORT || 3000
app.listen(port, () => console.log(`Express started in ` +
 `${app.get('env')} mode at http://localhost:${port}` +
 `; press Ctrl-C to terminate.`))

If you start your server now, you’ll see you’re running in development mode; it’s the
default if you don’t specify otherwise. Let’s try putting it in production mode:

$ export NODE_ENV=production
$ node meadowlark.js

If you’re using Unix/BSD, there’s a handy syntax that allows you to modify the envi‐
ronment only for the duration of that command:

$ NODE_ENV=production node meadowlark.js

This will run the server in production mode, but once the server terminates, the
NODE_ENV environment variable won’t be modified. I’m particularly fond of this short‐
cut, and it reduces the chance that I accidentally leave environment variables set to
values that I don’t necessarily want for everything.

If you start Express in production mode, you may notice warnings
about components that are not suitable for use in production
mode. If you’ve been following along with the examples in this
book, you’ll see that connect.session is using a memory store,
which is not suitable for a production environment. Once we
switch to a database store in Chapter 13, this warning will
disappear.

Environment-Specific Configuration
Just changing the execution environment won’t do much, though Express will log
more warnings to the console in production mode (for example, informing you of
modules that are deprecated and will be removed in the future). Also, in production
mode, view caching is enabled by default (see Chapter 7).

Mainly, the execution environment is a tool for you to leverage, allowing you to easily
make decisions about how your application should behave in the different environ‐
ments. As a word of caution, you should try to minimize the differences between
your development, test, and production environments. That is, you should use this
feature sparingly. If your development or test environments differ wildly from pro‐
duction, you are increasing your chances of different behavior in production, which
is a recipe for more defects (or harder-to-find ones). Some differences are inevitable;

134 | Chapter 12: Production Concerns

for example, if your app is highly database driven, you probably don’t want to be
messing with the production database during development, and that would be a good
candidate for environment-specific configuration. Another low-impact area is more
verbose logging. There are a lot of things you might want to log in development that
are unnecessary to record in production.

Let’s add some logging to our server. The twist is that we want different behavior for
production and development. For development, we can leave the defaults, but for
production, we want to log to a file. We’ll use morgan (don’t forget npm install mor
gan), which is the most common logging middleware (ch12/00-logging.js in the com‐
panion repo):

const morgan = require('morgan')
const fs = require('fs')

switch(app.get('env')) {
 case 'development':
 app.use(morgan('dev'))
 break
 case 'production':
 const stream = fs.createWriteStream(__dirname + '/access.log',
 { flags: 'a' })
 app.use(morgan('combined', { stream }))
 break
}

If you start the server as you normally would (node meadowlark.js) and visit the
site, you’ll see the activity logged to the console. To see how the application behaves in
production mode, run it with NODE_ENV=production instead. Now if you visit the
application, you won’t see any activity on the terminal (probably what we want for a
production server), but all of the activity is logged in Apache’s Combined Log Format,
which is a staple for many server tools.

We accomplished this by creating an appendable ({ flags: a }) write stream and
passing it to the morgan configuration. Morgan has many options; to see them all,
check out the morgan documentation.

In the previous example, we’re using __dirname to store the request
log in a subdirectory of the project itself. If you take this approach,
you will want to add log to your .gitignore file. Alternatively, you
could take a more Unix-like approach and save the logs in a subdir‐
ectory of /var/log, as Apache does by default.

I will stress again that you should use your best judgment when making
environment-specific configuration choices. Always keep in mind that when your site
is live, your production instances will be running in production mode (or they
should be). Whenever you’re tempted to make a development-specific modification,

Environment-Specific Configuration | 135

http://bit.ly/2NGC592
http://bit.ly/32H5wMr

you should always think first about how that might have QA consequences in pro‐
duction. We’ll see a more robust example of environment-specific configuration in
Chapter 13.

Running Your Node Process
So far, we’ve been running our application by invoking it directly with node (for
example, node meadowlark.js). This is fine for development and testing, but it has
disadvantages for production. Notably, there are no protections if your app crashes or
gets terminated. A robust process manager can address this problem.

Depending on your hosting solution, you may not need a process manager if one is
provided by the hosting solution itself. That is, the hosting provider will give you a
configuration option to point to your application file, and it will handle the process
management.

But if you need to manage the process yourself, there are two popular options for
process managers:

• Forever
• PM2

Since production environments can vary widely, we won’t go into the specifics of set‐
ting up and configuring a process manager. Both Forever and PM2 have excellent
documentation, and you can install and use them on your development machine to
learn how to configure them.

I have used them both, and I don’t have a strong preference. Forever is a little more
straightforward and easy to get started, and PM2 offers more features.

If you want to experiment with a process manager without investing a lot of time, I
recommend giving Forever a try. You can try it in two steps. First, install Forever:

npm install -g forever

Then, start your application with Forever (run this from your application root):

forever start meadowlark.js

Your application is now running…and it will stay running even if you close your ter‐
minal window! You can restart the process with forever restart meadowlark.js
and stop it with forever stop meadowlark.js.

Getting started with PM2 is a little more involved but is worth looking into if you
need to use your own process manager for production.

136 | Chapter 12: Production Concerns

https://github.com/foreversd/forever
https://github.com/Unitech/pm2

Scaling Your Website
These days, scaling usually means one of two things: scaling up or scaling out. Scaling
up refers to making servers more powerful: faster CPUs, better architecture, more
cores, more memory, etc. Scaling out, on the other hand, simply means more servers.
With the increased popularity of cloud computing and the ubiquity of virtualization,
server computational power is becoming less relevant, and scaling out is usually the
most cost-effective method for scaling websites according to your needs.

When developing websites for Node, you should always consider the possibility of
scaling out. Even if your application is tiny (maybe it’s even an intranet application
that will always have a limited audience) and will never conceivably need to be scaled
out, it’s a good habit to get into. After all, maybe your next Node project will be the
next Twitter, and scaling out will be essential. Fortunately, Node’s support for scaling
out is very good, and writing your application with this in mind is painless.

The most important thing to remember when building a website designed to be
scaled out is persistence. If you’re used to relying on file-based storage for persistence,
stop right there. That way lies madness.

My first experience with this problem was nearly disastrous. One of our clients was
running a web-based contest, and the web application was designed to inform the
first 50 winners that they would receive a prize. With that particular client, we were
unable to easily use a database because of some corporate IT restrictions, so most per‐
sistence was achieved by writing flat files. I proceeded just as I always had, saving
each entry to a file. Once the file had recorded 50 winners, no more people would be
notified that they had won. The problem is that the server was load-balanced, so half
the requests were served by one server, and the other half by another. One server
notified 50 people that they had won…and so did the other server. Fortunately, the
prizes were small (fleece blankets) and not something expensive like iPads, and the
client took their lumps and handed out 100 prizes instead of 50 (I offered to pay for
the extra 50 blankets out of pocket for my mistake, but they generously refused to
take me up on my offer).

The moral of this story is that unless you have a filesystem that’s accessible to all of
your servers, you should not rely on the local filesystem for persistence. The excep‐
tions are read-only data, like logging, and backups. For example, I have commonly
backed up form submission data to a local flat file in case the database connection
failed. In the case of a database outage, it is a hassle to go to each server and collect
the files, but at least no damage has been done.

Scaling Your Website | 137

Scaling Out with App Clusters
Node itself supports app clusters, a simple, single-server form of scaling out. With app
clusters, you can create an independent server for each core (CPU) on the system
(having more servers than the number of cores will not improve the performance of
your app). App clusters are good for two reasons: first, they can help maximize the
performance of a given server (the hardware or virtual machine), and second, it’s a
low-overhead way to test your app under parallel conditions.

Let’s go ahead and add cluster support to our website. While it’s quite common to do
all of this work in your main application file, we are going to create a second applica‐
tion file that will run the app in a cluster, using the nonclustered application file we’ve
been using all along. To enable that, we have to make a slight modification to mead‐
owlark.js first (see ch12/01-server.js in the companion repo for a simplified example):

function startServer(port) {
 app.listen(port, function() {
 console.log(`Express started in ${app.get('env')} ` +
 `mode on http://localhost:${port}` +
 `; press Ctrl-C to terminate.`)
 })
}

if(require.main === module) {
 // application run directly; start app server
 startServer(process.env.PORT || 3000)
} else {
 // application imported as a module via "require": export
 // function to create server
 module.exports = startServer
}

If you recall from Chapter 5, if require.main === module, it means the script has
been run directly; otherwise, it has been called with require from another script.

Then, we create a new script, meadowlark-cluster.js (see ch12/01-cluster in the com‐
panion repo for a simplified example):

const cluster = require('cluster')

function startWorker() {
 const worker = cluster.fork()
 console.log(`CLUSTER: Worker ${worker.id} started`)
}

if(cluster.isMaster){

 require('os').cpus().forEach(startWorker)

 // log any workers that disconnect; if a worker disconnects, it

138 | Chapter 12: Production Concerns

 // should then exit, so we'll wait for the exit event to spawn
 // a new worker to replace it
 cluster.on('disconnect', worker => console.log(
 `CLUSTER: Worker ${worker.id} disconnected from the cluster.`
))

 // when a worker dies (exits), create a worker to replace it
 cluster.on('exit', (worker, code, signal) => {
 console.log(
 `CLUSTER: Worker ${worker.id} died with exit ` +
 `code ${code} (${signal})`
)
 startWorker()
 })

} else {

 const port = process.env.PORT || 3000
 // start our app on worker; see meadowlark.js
 require('./meadowlark.js')(port)

}

When this JavaScript is executed, it will be either in the context of master (when it is
run directly, with node meadowlark-cluster.js) or in the context of a worker, when
Node’s cluster system executes it. The properties cluster.isMaster and clus
ter.isWorker determine which context you’re running in. When we run this script,
it’s executing in master mode, and we start a worker using cluster.fork for each
CPU in the system. Also, we respawn any dead workers by listening for exit events
from workers.

Finally, in the else clause, we handle the worker case. Since we configured meadow‐
lark.js to be used as a module, we simply import it and immediately invoke it
(remember, we exported it as a function that starts the server).

Now start up your new clustered server:

node meadowlark-cluster.js

If you are using virtualization (like Oracle’s VirtualBox), you may
have to configure your VM to have multiple CPUs. By default, vir‐
tual machines often have a single CPU.

Assuming you’re on a multicore system, you should see some number of workers
started. If you want to see evidence of different workers handling different requests,
add the following middleware before your routes:

Scaling Your Website | 139

const cluster = require('cluster')

app.use((req, res, next) => {
 if(cluster.isWorker)
 console.log(`Worker ${cluster.worker.id} received request`)
 next()
})

Now you can connect to your application with a browser. Reload a few times and see
how you can get a different worker out of the pool on each request. (You may not be
able to; Node is designed to handle large numbers of connections, and you may not
be able to stress it sufficiently simply by reloading your browser; later we’ll explore
stress testing, and you’ll be able to better see the cluster in action.)

Handling Uncaught Exceptions
In the asynchronous world of Node, uncaught exceptions are of particular concern.
Let’s start with a simple example that doesn’t cause too much trouble (I encourage you
to follow along with these examples):

app.get('/fail', (req, res) => {
 throw new Error('Nope!')
})

When Express executes route handlers, it wraps them in a try/catch block, so this isn’t
actually an uncaught exception. This won’t cause too much of a problem: Express will
log the exception on the server side, and the visitor will get an ugly stack dump. How‐
ever, your server is stable, and other requests will continue to be served correctly. If
we want to provide a “nice” error page, create a file views/500.handlebars and add an
error handler after all of your routes:

app.use((err, req, res, next) => {
 console.error(err.message, err.stack)
 app.status(500).render('500')
})

It’s always a good practice to provide a custom error page; it not only looks more pro‐
fessional to your users when errors do occur, but also allows you to take action when
errors occur. For example, this error handler would be a good place to notify your dev
team that an error occurred. Unfortunately, this helps only for exceptions that
Express can catch. Let’s try something worse:

app.get('/epic-fail', (req, res) => {
 process.nextTick(() =>
 throw new Error('Kaboom!')
)
})

Go ahead and try it. The result is considerably more catastrophic: it brings your
whole server down! In addition to not displaying a friendly error message to your

140 | Chapter 12: Production Concerns

user, now your server is down, and no requests are being served. This is because set
Timeout is executing asynchronously; execution of the function with the exception is
being deferred until Node is idle. The problem is, when Node is idle and gets around
to executing the function, it no longer has context about the request it was being
served from, so it has no recourse but to unceremoniously shut down the whole
server, because now it’s in an undefined state. (Node can’t know the purpose of the
function or its caller, so it can no longer assume that any further functions will work
correctly.)

process.nextTick is similar to calling setTimeout with an
argument of 0, but it’s more efficient. We’re using it here for dem‐
onstration purposes; it’s not something you would generally use in
server-side code. However, in coming chapters, we will be dealing
with many things that execute asynchronously, such as database
access, filesystem access, and network access, to name a few, and
they are all subject to this problem.

There is action that we can take to handle uncaught exceptions, but if Node can’t
determine the stability of your application, neither can you. In other words, if there is
an uncaught exception, the only recourse is to shut down the server. The best we can
do in this circumstance is to shut down as gracefully as possible and have a failover
mechanism. The easiest failover mechanism is to use a cluster. If your application is
operating in clustered mode and one worker dies, the master will spawn another
worker to take its place. (You don’t even need multiple workers; a cluster with one
worker will suffice, though the failover may be slightly slower.)

So with that in mind, how can we shut down as gracefully as possible when confron‐
ted with an unhandled exception? Node’s mechanism for dealing with this is the
uncaughtException event. (Node also has a mechanism called domains, but this
module has been deprecated, and its use is no longer recommended.)

process.on('uncaughtException', err => {
 console.error('UNCAUGHT EXCEPTION\n', err.stack);
 // do any cleanup you need to do here...close
 // database connections, etc.
 process.exit(1)
})

It’s unrealistic to expect that your application will never experience uncaught excep‐
tions, but you should have a mechanism in place to record the exception and notify
you when it happens, and you should take it seriously. Try to determine why it hap‐
pened so you can fix it. Services like Sentry, Rollbar, Airbrake, and New Relic are a
great way to record these kinds of errors for analysis. For example, to use Sentry, first
you have to register for a free account, at which point you will receive a data source
name (DSN), and then you can modify your exception handler:

Scaling Your Website | 141

https://sentry.io
https://rollbar.com
https://airbrake.io/
https://newrelic.com

const Sentry = require('@sentry/node')
Sentry.init({ dsn: '** YOUR DSN GOES HERE **' })

process.on('uncaughtException', err => {
 // do any cleanup you need to do here...close
 // database connections, etc.
 Sentry.captureException(err)
 process.exit(1)
})

Scaling Out with Multiple Servers
Although scaling out using clustering can maximize the performance of an individual
server, what happens when you need more than one server? That’s where things get a
little more complicated. To achieve this kind of parallelism, you need a proxy server.
(It’s often called a reverse proxy or forward-facing proxy to distinguish it from proxies
commonly used to access external networks, but I find this language to be confusing
and unnecessary, so I will simply refer to it as a proxy.)

Two very popular options are NGINX (pronounced “engine X”) and HAProxy.
NGINX servers in particular are springing up like weeds. I recently did a competitive
analysis for my company and found upward of 80% of our competitors were using
NGINX. NGINX and HAProxy are both robust, high-performance proxy servers and
are capable of the most demanding applications. (If you need proof, consider that
Netflix, which accounts for as much as 15% of all internet traffic, uses NGINX.)

There are also some smaller Node-based proxy servers, such as node-http-proxy.
This is a great option if your needs are modest, or for development. For production, I
recommend using NGINX or HAProxy (both are free, though they offer support for
a fee).

Installing and configuring a proxy is beyond the scope of this book, but it is not as
hard as you might think (especially if you use node-http-proxy or another lightweight
proxy). For now, using clusters gives us some assurance that our website is ready for
scaling out.

If you do configure a proxy server, make sure you tell Express that you are using a
proxy and that it should be trusted:

app.enable('trust proxy')

Doing this will ensure that req.ip, req.protocol, and req.secure will reflect the
details about the connection between the client and the proxy, not between the client
and your app. Also, req.ips will be an array that indicates the original client IP and
the names or IP addresses of any intermediate proxies.

142 | Chapter 12: Production Concerns

https://www.nginx.com
http://www.haproxy.org
http://bit.ly/34RWyNN

Monitoring Your Website
Monitoring your website is one of the most important—and most often overlooked—
QA measures you can take. The only thing worse than being up at 3 a.m. fixing a bro‐
ken website is being woken up at 3 a.m. by your boss because the website is down (or,
worse still, arriving in the morning to realize that your client just lost $10,000 in sales
because the website had been down all night and no one noticed).

There’s nothing you can do about failures: they are as inevitable as death and taxes.
However, if there is one thing you can do to convince your boss and your clients that
you are great at your job, it’s to always know about failures before they do.

Third-Party Uptime Monitors
Having an uptime monitor running on your website’s server is as effective as having a
smoke alarm in a house that nobody lives in. It might be able to catch errors if a cer‐
tain page goes down, but if the whole server goes down, it may go down without even
sending out an SOS. That’s why your first line of defense should be third-party
uptime monitors. UptimeRobot is free for up to 50 monitors and is simple to config‐
ure. Alerts can go to email, SMS (text message), Twitter, or Slack (among others). You
can monitor for the return code from a single page (anything other than a 200 is con‐
sidered an error) or to check for the presence or absence of a keyword on the page.
Keep in mind that if you use a keyword monitor, it may affect your analytics (you can
exclude traffic from uptime monitors in most analytics services).

If your needs are more sophisticated, there are other, more expensive services out
there such as Pingdom and Site24x7.

Stress Testing
Stress testing (or load testing) is designed to give you some confidence that your server
will function under the load of hundreds or thousands of simultaneous requests. This
is another deep area that could be the subject for a whole book: stress testing can be
arbitrarily sophisticated, and how complicated you want to get depends largely on the
nature of your project. If you have reason to believe that your site could be massively
popular, you might want to invest more time in stress testing.

Let’s add a simple stress test using Artillery. First, install Artillery by running npm
install -g artillery; then edit your package.json file and add the following to the
scripts section:

 "scripts": {
 "stress": "artillery quick --count 10 -n 20 http://localhost:3000/"
 }

Monitoring Your Website | 143

http://uptimerobot.com
http://pingdom.com
http://www.site24x7.com
https://artillery.io/

This will simulate 10 “virtual users” (--count 10), each of whom will send 20
requests (-n 20) to your server.

Make sure your application is running (in a separate terminal window, for example)
and then run npm run stress. You’ll see statistics like this:

Started phase 0, duration: 1s @ 16:43:37(-0700) 2019-04-14
Report @ 16:43:38(-0700) 2019-04-14
Elapsed time: 1 second
 Scenarios launched: 10
 Scenarios completed: 10
 Requests completed: 200
 RPS sent: 147.06
 Request latency:
 min: 1.8
 max: 10.3
 median: 2.5
 p95: 4.2
 p99: 5.4
 Codes:
 200: 200

All virtual users finished
Summary report @ 16:43:38(-0700) 2019-04-14
 Scenarios launched: 10
 Scenarios completed: 10
 Requests completed: 200
 RPS sent: 145.99
 Request latency:
 min: 1.8
 max: 10.3
 median: 2.5
 p95: 4.2
 p99: 5.4
 Scenario counts:
 0: 10 (100%)
 Codes:
 200: 200

This test was run on my development laptop. You can see Express didn’t take more
than 10.3 milliseconds to serve any requests, and 99% of them were served in under
5.4 milliseconds. I can’t offer concrete guidance about what kind of numbers you
should be looking for, but to ensure a snappy application, you should be looking for
total connection times under 50 milliseconds. (Don’t forget that this is just the time it
takes the server to deliver the data to the client; the client still has to render it, which
takes time, so the less time you spend transmitting the data, the better.)

If you stress test your application regularly and benchmark it, you’ll be able to recog‐
nize problems. If you just finished a feature and you find that your connection times
have tripled, you might want to do some performance tuning on your new feature!

144 | Chapter 12: Production Concerns

Conclusion
I hope this chapter has given you some insight into the things you’ll want to think
about as you approach the launch of your application. There is a lot of detail that goes
into a production application, and while you can’t anticipate everything that might
happen when you launch, the more you can anticipate, the better off you’ll be. To par‐
aphrase Louis Pasteur, fortune favors the prepared.

Conclusion | 145

CHAPTER 13

Persistence

All but the simplest websites and web applications are going to require persistence of
some kind; that is, some way to store data that’s more permanent than volatile mem‐
ory so that your data will survive server crashes, power outages, upgrades, and reloca‐
tions. In this chapter, we’ll be discussing the options available for persistence and
demonstrating both document databases and relational databases. Before we jump in
to databases, however, we’ll start with the most basic form of persistence: filesystem
persistence.

Filesystem Persistence
One way to achieve persistence is to simply save data to so-called flat files (flat
because there’s no inherent structure in a file; it’s just a sequence of bytes). Node
makes filesystem persistence possible through the fs (filesystem) module.

Filesystem persistence has some drawbacks. In particular, it doesn’t scale well. The
minute you need more than one server to meet traffic demands, you will run into
problems with filesystem persistence, unless all of your servers have access to a
shared filesystem. Also, because flat files have no inherent structure, the burden of
locating, sorting, and filtering data will be on your application. For these reasons, you
should favor databases over filesystems for storing data. The one exception is storing
binary files, such as images, audio files, or videos. While many databases can handle
this type of data, they rarely do so more efficiently than a filesystem (though informa‐
tion about the binary files is usually stored in a database to enable searching, sorting,
and filtering).

If you do need to store binary data, keep in mind that filesystem storage still has the
problem of not scaling well. If your hosting doesn’t have access to a shared filesystem
(which is usually the case), you should consider storing binary files in a database

147

(which usually requires some configuration so the database doesn’t grind to a stop) or
a cloud-based storage service, like Amazon S3 or Microsoft Azure Storage.

Now that we have the caveats out of the way, let’s look at Node’s filesystem support.
We’ll revisit the vacation photo contest from Chapter 8. In our application file, let’s fill
in the handler that processes that form (ch13/00-mongodb/lib/handlers.js in the com‐
panion repo):

const pathUtils = require('path')
const fs = require('fs')

// create directory to store vacation photos (if it doesn't already exist)
const dataDir = pathUtils.resolve(__dirname, '..', 'data')
const vacationPhotosDir = pathUtils.join(dataDir, 'vacation-photos')
if(!fs.existsSync(dataDir)) fs.mkdirSync(dataDir)
if(!fs.existsSync(vacationPhotosDir)) fs.mkdirSync(vacationPhotosDir)

function saveContestEntry(contestName, email, year, month, photoPath) {
 // TODO...this will come later
}

// we'll want these promise-based versions of fs functions later
const { promisify } = require('util')
const mkdir = promisify(fs.mkdir)
const rename = promisify(fs.rename)

exports.api.vacationPhotoContest = async (req, res, fields, files) => {
 const photo = files.photo[0]
 const dir = vacationPhotosDir + '/' + Date.now()
 const path = dir + '/' + photo.originalFilename
 await mkdir(dir)
 await rename(photo.path, path)
 saveContestEntry('vacation-photo', fields.email,
 req.params.year, req.params.month, path)
 res.send({ result: 'success' })
}

There’s a lot going on there, so let’s break it down. We first create a directory to store
the uploaded files (if it doesn’t already exist). You’ll probably want to add the data
directory to your .gitignore file so you don’t accidentally commit uploaded files. Recall
from Chapter 8 that we’re handling the actual file upload in meadowlark.js and calling
our handler with the files already decoded. What we get is an object (files) that con‐
tains the information about the uploaded files. Since we want to prevent collisions,
we can’t just use the filename the user uploaded (in case two users both upload port‐
land.jpg). To avoid this problem, we create a unique directory based on the time‐
stamp; it’s pretty unlikely that two users will both upload portland.jpg in the same
millisecond! Then we rename (move) the uploaded file (our file processor will have
given it a temporary name, which we can get from the path property) to our con‐
structed name.

148 | Chapter 13: Persistence

Finally, we need some way to associate the files that users upload with their email
addresses (and the month and year of the submission). We could encode this infor‐
mation into the file or directory names, but we are going to prefer storing this infor‐
mation in a database. Since we haven’t learned how to do that yet, we’re going to
encapsulate that functionality in the vacationPhotoContest function and complete
that function later in this chapter.

In general, you should never trust anything that the user uploads
because it’s a possible vector for your website to be attacked. For
example, a malicious user could easily take a harmful executable,
rename it with a .jpg extension, and upload it as the first step in an
attack (hoping to find some way to execute it at a later point). Like‐
wise, we are taking a little risk here by naming the file using the
name property provided by the browser; someone could also abuse
this by inserting special characters into the filename. To make this
code completely safe, we would give the file a random name, taking
only the extension (making sure it consists only of alphanumeric
characters).

Even though filesystem persistence has its drawbacks, it’s frequently used for inter‐
mediate file storage, and it’s useful to know how to use the Node filesystem library.
However, to address the deficiencies of filesystem storage, let’s turn our attention to
cloud persistence.

Cloud Persistence
Cloud storage is becoming increasingly popular, and I highly recommend you take
advantage of one of these inexpensive, robust services.

When using cloud services, there’s a certain amount of up-front work you have to do.
Obviously, you have to create an account, but you also have to understand how your
application authenticates with the cloud service, and it’s also helpful to understand
some basic terminology (for example, AWS calls its file storage mechanism buckets,
while Azure calls them containers). It’s beyond the scope of this book to detail all of
that information, and it is well-documented:

• AWS: Getting Started in Node.js
• Azure for JavaScript and Node.js Developers

The good news is that once you get past this initial configuration, using cloud persis‐
tence is quite easy. Here’s an example of how easy it is to save a file to an Amazon S3
account:

Cloud Persistence | 149

https://amzn.to/2CCYk9s
http://bit.ly/2NEkTku

const filename = 'customerUpload.jpg'

s3.putObject({
 Bucket: 'uploads',
 Key: filename,
 Body: fs.readFileSync(__dirname + '/tmp/ + filename),
})

See the AWS SDK documentation for more information.

Here’s an example of how to do the same thing with Microsoft Azure:

const filename = 'customerUpload.jpg'

const blobService = azure.createBlobService()
blobService.createBlockBlobFromFile('uploads', filename, __dirname +
 '/tmp/' + filename)

See the Microsoft Azure documentation for more information.

Now that we know a couple of techniques for file storage, let’s consider the storage of
structured data with databases.

Database Persistence
All except the simplest websites and web applications require a database. Even if the
bulk of your data is binary and you’re using a shared filesystem or cloud storage, the
chances are you’ll want a database to help catalog that binary data.

Traditionally, the word database is shorthand for relational database management sys‐
tem (RDBMS). Relational databases, such as Oracle, MySQL, PostgreSQL, or SQL
Server, are based on decades of research and formal database theory. It is a technol‐
ogy that is quite mature at this point, and the power of these databases is unquestion‐
able. However, we now have the luxury of expanding our ideas of what constitutes a
database. NoSQL databases have come into vogue in recent years, and they’re chal‐
lenging the status quo of internet data storage.

It would be foolish to claim that NoSQL databases are somehow better than relational
databases, but they do have certain advantages (and vice versa). While it is quite easy
to integrate a relational database with Node apps, there are NoSQL databases that
seem almost to have been designed for Node.

The two most popular types of NoSQL databases are document databases and key-
value databases. Document databases excel at storing objects, which makes them a
natural fit for Node and JavaScript. Key-value databases, as the name implies, are
extremely simple and are a great choice for applications with data schemas that are
easily mapped into key-value pairs.

150 | Chapter 13: Persistence

https://amzn.to/2O3e1MA
http://bit.ly/2Kd3rRK

I feel that document databases represent the optimal compromise between the con‐
straints of relational databases and the simplicity of key-value databases, and for that
reason, we will be using a document database for our first example. MongoDB is the
leading document database and is robust and established at this point.

For our second example, we’ll be using PostgreSQL, a popular and robust open
source RDBMS.

A Note on Performance
The simplicity of NoSQL databases is a double-edged sword. Carefully planning a
relational database can be an involved task, but the benefit of that careful planning is
a database that offers excellent performance. Don’t be fooled into thinking that
because NoSQL databases are generally simpler, there isn’t an art and a science to tun‐
ing them for maximum performance.

Relational databases have traditionally relied on their rigid data structures and deca‐
des of optimization research to achieve high performance. NoSQL databases, on the
other hand, have embraced the distributed nature of the internet and, like Node, have
instead focused on concurrency to scale performance (relational databases also sup‐
port concurrency, but this is usually reserved for the most demanding applications).

Planning for database performance and scalability is a large, complex topic that is
beyond the scope of this book. If your application requires a high level of database
performance, I recommend starting with Kristina Chodorow and Michael Dirolf ’s
MongoDB: The Definitive Guide (O’Reilly).

Abstracting the Database Layer
In this book, we’ll be implementing the same features and demonstrating how to do
that with two databases (and not just two databases but two substantially different
database architectures). While the objective in this book is to cover two popular
options for database architecture, it reflects a real-world scenario: switching a major
component of your web application midproject. This could happen for many reasons.
Usually it boils down to discovering that a different technology is going to be more
cost-effective or allow you to implement necessary features more quickly.

Whenever possible, there is value in abstracting your technology choices, which refers
to writing some kind of API layer to generalize the underlying technology choices. If
done right, it reduces the cost of switching out the component in question. However,
it comes at a cost: writing the abstraction layer is one more thing you have to write
and maintain.

Happily, our abstraction layer will be very small, as we’re supporting only a handful of
features for the purposes of this book. For now, the features will be as follows:

Database Persistence | 151

http://bit.ly/Mongo_DB_Guide

• Returning a list of active vacations from the database
• Storing the email address of users who want to be notified when certain vacations

are in season

While this seems simple enough, there are a lot of details here. What does a vacation
look like? Do we always want to get all the vacations from the database, or do we want
to be able to filter them or paginate them? How do we identify vacations? And so on.

We’re going to keep our abstraction layer simple for the purposes of this book. We’ll
contain it in a file called db.js that will export two methods that we’ll start by just pro‐
viding dummy implementations:

module.exports = {
 getVacations: async (options = {}) => {
 // let's fake some vacation data:
 const vacations = [
 {
 name: 'Hood River Day Trip',
 slug: 'hood-river-day-trip',
 category: 'Day Trip',
 sku: 'HR199',
 description: 'Spend a day sailing on the Columbia and ' +
 'enjoying craft beers in Hood River!',
 location: {
 // we'll use this for geocoding later in the book
 search: 'Hood River, Oregon, USA',
 },
 price: 99.95,
 tags: ['day trip', 'hood river', 'sailing', 'windsurfing', 'breweries'],
 inSeason: true,
 maximumGuests: 16,
 available: true,
 packagesSold: 0,
 }
]
 // if the "available" option is specified, return only vacations that match
 if(options.available !== undefined)
 return vacations.filter(({ available }) => available === options.available)
 return vacations
 },
 addVacationInSeasonListener: async (email, sku) => {
 // we'll just pretend we did this...since this is
 // an async function, a new promise will automatically
 // be returned that simply resolves to undefined
 },
}

This sets an expectation about how our database implementation should look to the
application…and all we have to do is make our databases conform to that interface.
Note that we’re introducing the concept of vacation “availability”; we’re doing this so

152 | Chapter 13: Persistence

we can easily disable vacations temporarily instead of deleting them from the data‐
base. An example use case for this would be a bed and breakfast that contacts you to
let you know they are closed for several months for remodeling. We’re keeping this
separate from the concept of being “in season” because we may want to list out-of-
season vacations on the website because people like to plan in advance.

We also include some very generic “location” information; we’ll be getting more spe‐
cific about this in Chapter 19.

Now that we have an abstraction foundation for our database layer, let’s look at how
we can implement database storage with MongoDB.

Setting Up MongoDB
The difficulty involved in setting up a MongoDB instance varies with your operating
system. For this reason, we’ll be avoiding the problem altogether by using an excellent
free MongoDB hosting service, mLab.

mLab is not the only MongoDB service available. The MongoDB
company itself is now offering free and low-cost database hosting
through its product MongoDB Atlas. Free accounts are not recom‐
mended for production purposes, though. Both mLab and Mon‐
goDB Atlas offer production-ready accounts, so you should look
into their pricing before making a choice. It will be less hassle to
stay with the same hosting service when you make the switch to
production.

Getting started with mLab is simple. Just go to https://mlab.com and click Sign Up.
Fill out the registration form and log in, and you’ll be at your home screen. Under
Databases, you’ll see “no databases at this time.” Click “Create new,” and you will be
taken to a page with some options for your new database. The first thing you’ll select
is a cloud provider. For a free (sandbox) account, the choice is largely irrelevant,
though you should look for a data center near you (not every data center will offer
sandbox accounts, however). Select SANDBOX, and choose a region. Then choose a
database name, and click through to Submit Order (it’s still an order even though it’s
free!). You will be taken back to the list of your databases, and after a few seconds,
your database will be available for use.

Having a database set up is half the battle. Now we have to know how to access it with
Node, and that’s where Mongoose comes in.

Database Persistence | 153

https://www.mongodb.com
https://mlab.com

Mongoose
While there’s a low-level driver available for MongoDB, you’ll probably want to use
an object document mapper (ODM). The most popular ODM for MongoDB is Mon‐
goose.

One of the advantages of JavaScript is that its object model is extremely flexible. If
you want to add a property or method to an object, you just do it, and you don’t need
to worry about modifying a class. Unfortunately, that kind of freewheeling flexibility
can have a negative impact on your databases because they can become fragmented
and hard to optimize. Mongoose attempts to strike a balance by introducing schemas
and models (combined, schemas and models are similar to classes in traditional
object-oriented programming). The schemas are flexible but still provide some neces‐
sary structure for your database.

Before we get started, we’ll need to install the Mongoose module:

npm install mongoose

Then we’ll add our database credentials to our .credentials.development.json file:

"mongo": {
 "connectionString": "your_dev_connection_string"
 }
}

You’ll find your connection string on the database page in mLab. From your home
screen, click the appropriate database. You’ll see a box with your MongoDB connec‐
tion URI (it starts with mongodb://). You’ll also need a user for your database. To cre‐
ate one, click Users, and then “Add database user.”

Notice that we could establish a second set of credentials for production by creating
a .credentials.production.js file and using NODE_ENV=production; you’ll want to do this
when it’s time to go live!

Now that we have all the configuration done, let’s actually make a connection to the
database and do something useful!

Database Connections with Mongoose
We’ll start by creating a connection to our database. We’ll put our database initializa‐
tion code in db.js, along with the dummy API we created earlier (ch13/00-mongodb/
db.js in the companion repo):

const mongoose = require('mongoose')
const { connectionString } = credentials.mongo
if(!connectionString) {
 console.error('MongoDB connection string missing!')
 process.exit(1)
}

154 | Chapter 13: Persistence

http://bit.ly/2Kfw0hE

mongoose.connect(connectionString)
const db = mongoose.connection
db.on('error' err => {
 console.error('MongoDB error: ' + err.message)
 process.exit(1)
})
db.once('open', () => console.log('MongoDB connection established'))

module.exports = {
 getVacations: async () => {
 //...return fake vacation data
 },
 addVacationInSeasonListener: async (email, sku) => {
 //...do nothing
 },
}

Any file that needs to access the database can simply import db.js. However, we want
the initialization to happen right away, before we need the API, so we’ll go ahead and
import this from meadowlark.js (where we don’t need to do anything with the API):

require('./db')

Now that we’re connecting to the database, it’s time to consider how we’re going to
structure data that we’re transferring to and from the database.

Creating Schemas and Models
Let’s create a vacation package database for Meadowlark Travel. We start by defining a
schema and creating a model from it. Create the file models/vacation.js (ch13/00-
mongodb/models/vacation.js in the companion repo):

const mongoose = require('mongoose')

const vacationSchema = mongoose.Schema({
 name: String,
 slug: String,
 category: String,
 sku: String,
 description: String,
 location: {
 search: String,
 coordinates: {
 lat: Number,
 lng: Number,
 },
 },
 price: Number,
 tags: [String],
 inSeason: Boolean,
 available: Boolean,
 requiresWaiver: Boolean,

Database Persistence | 155

 maximumGuests: Number,
 notes: String,
 packagesSold: Number,
})

const Vacation = mongoose.model('Vacation', vacationSchema)
module.exports = Vacation

This code declares the properties that make up our vacation model, and the types of
those properties. You’ll see there are several string properties, some numeric proper‐
ties, two Boolean properties, and an array of strings (denoted by [String]). At this
point, we can also define methods on our schema. Each product has a stock keeping
unit (SKU); even though we don’t think about vacations being “stock items,” the con‐
cept of an SKU is pretty standard for accounting, even when tangible goods aren’t
being sold.

Once we have the schema, we create a model using mongoose.model: at this point,
Vacation is very much like a class in traditional object-oriented programming. Note
that we have to define our methods before we create our model.

Because of the nature of floating-point numbers, you should always
be careful with financial computations in JavaScript. We could
store our prices in cents instead of dollars, which would help, but it
doesn’t eliminate the problems. For the modest purposes of our
travel website, we’re not going to worry about it, but if your appli‐
cation involves very large or very small financial amounts (for
example, fractional cents from interest or volume trading), you
should consider using a library such as currency.js or decimal.js-
light. Also, JavaScript’s BigInt built-in object, which is available as
of Node 10 (with limited browser support as I write this), can be
used for this purpose.

We are exporting the Vacation model object created by Mongoose. While we could
use this model directly, that would be undermining our effort to provide a database
abstraction layer. So we will choose to import it only from the db.js file and let the rest
of our application use its methods. Add the Vacation model to db.js:

const Vacation = require('./models/vacation')

All of our structures are now defined, but our database isn’t very interesting because
there’s nothing actually in it. Let’s make it useful by seeding it with some data.

Seeding Initial Data
We don’t yet have any vacation packages in our database, so we’ll add some to get us
started. Eventually, you may want to create a way to manage products, but for the

156 | Chapter 13: Persistence

https://currency.js.org
http://bit.ly/2X6kbQ5
http://bit.ly/2X6kbQ5
https://mzl.la/2Xhs45r

purposes of this book, we’re just going to do it in code (ch13/00-mongodb/db.js in the
companion repo):

Vacation.find((err, vacations) => {
 if(err) return console.error(err)
 if(vacations.length) return

 new Vacation({
 name: 'Hood River Day Trip',
 slug: 'hood-river-day-trip',
 category: 'Day Trip',
 sku: 'HR199',
 description: 'Spend a day sailing on the Columbia and ' +
 'enjoying craft beers in Hood River!',
 location: {
 search: 'Hood River, Oregon, USA',
 },
 price: 99.95,
 tags: ['day trip', 'hood river', 'sailing', 'windsurfing', 'breweries'],
 inSeason: true,
 maximumGuests: 16,
 available: true,
 packagesSold: 0,
 }).save()

 new Vacation({
 name: 'Oregon Coast Getaway',
 slug: 'oregon-coast-getaway',
 category: 'Weekend Getaway',
 sku: 'OC39',
 description: 'Enjoy the ocean air and quaint coastal towns!',
 location: {
 search: 'Cannon Beach, Oregon, USA',
 },
 price: 269.95,
 tags: ['weekend getaway', 'oregon coast', 'beachcombing'],
 inSeason: false,
 maximumGuests: 8,
 available: true,
 packagesSold: 0,
 }).save()

 new Vacation({
 name: 'Rock Climbing in Bend',
 slug: 'rock-climbing-in-bend',
 category: 'Adventure',
 sku: 'B99',
 description: 'Experience the thrill of climbing in the high desert.',
 location: {
 search: 'Bend, Oregon, USA',
 },
 price: 289.95,

Database Persistence | 157

 tags: ['weekend getaway', 'bend', 'high desert', 'rock climbing'],
 inSeason: true,
 requiresWaiver: true,
 maximumGuests: 4,
 available: false,
 packagesSold: 0,
 notes: 'The tour guide is currently recovering from a skiing accident.',
 }).save()
})

There are two Mongoose methods being used here. The first, find, does just what it
says. In this case, it’s finding all instances of Vacation in the database and invoking
the callback with that list. We’re doing that because we don’t want to keep re-adding
our seed vacations: if there are already vacations in the database, it’s been seeded, and
we can go on our merry way. The first time this executes, though, find will return an
empty list, so we proceed to create two vacations and then call the save method on
them, which saves these new objects to the database.

Now that data is in the database, it’s time to get it back out!

Retrieving Data
We’ve already seen the find method, which is what we’ll use to display a list of vaca‐
tions. However, this time we’re going to pass an option to find that will filter the data.
Specifically, we want to display only vacations that are currently available.

Create a view for the products page, views/vacations.handlebars:
<h1>Vacations</h1>
{{#each vacations}}
 <div class="vacation">
 <h3>{{name}}</h3>
 <p>{{description}}</p>
 {{#if inSeason}}
 {{price}}
 Buy Now!
 {{else}}
 We're sorry, this vacation is currently
 not in season.
 {{! The "notify me when this vacation is in season"
 page will be our next task. }}
 Notify me when
 this vacation is in season.
 {{/if}}
 </div>
{{/each}}

Now we can create route handlers that hook it all up. In lib/handlers.js (don’t forget to
import ../db), we create the handler:

158 | Chapter 13: Persistence

exports.listVacations = async (req, res) => {
 const vacations = await db.getVacations({ available: true })
 const context = {
 vacations: vacations.map(vacation => ({
 sku: vacation.sku,
 name: vacation.name,
 description: vacation.description,
 price: '$' + vacation.price.toFixed(2),
 inSeason: vacation.inSeason,
 }))
 }
 res.render('vacations', context)
}

We add a route that calls the handler in meadowlark.js:
app.get('/vacations', handlers.listVacations)

If you run this example, you’ll see only the one vacation from our dummy database
implementation. That’s because we’ve initialized the database and seeded its data, but
we haven’t replaced the dummy implementation with a real one. So let’s do that now.
Open db.js and modify getVacations:

module.exports = {
 getVacations: async (options = {}) => Vacation.find(options),
 addVacationInSeasonListener: async (email, sku) => {
 //...
 },
}

That was easy! A one-liner. Partially this is because Mongoose is doing a lot of the
heavy lifting for us, and the way we’ve designed our API is similar to the way Mon‐
goose works. When we adapt this later to PostgreSQL, you’ll see we have to do a little
more work.

The astute reader may worry that our database abstraction layer
isn’t doing much to “protect” its technology-neutral objective. For
example, a developer may read this code and see that they can pass
any Mongoose options along to the vacation model, and then the
application would be using features that are specific to Mongoose,
which will make it harder to switch databases. We could take some
steps to prevent this. Instead of just passing things to Mongoose,
we could look for specific options and handle them explicitly, mak‐
ing it clear that any implementation would have to provide those
options. But for the sake of this example, we’re going to let this
slide and keep this code simple.

Most of this should be looking pretty familiar, but there might be some things that
surprise you. For instance, how we’re handling the view context for the vacation list‐

Database Persistence | 159

ing might seem odd. Why did we map the products returned from the database to a
nearly identical object? One reason is that we want to display the price in a neatly for‐
matted way, so we have to convert it to a formatted string.

We could have saved some typing by doing this:

const context = {
 vacations: products.map(vacations => {
 vacation.price = '$' + vacation.price.toFixed(2)
 return vacation
 })
}

That would certainly save us a few lines of code, but in my experience, there are good
reasons not to pass unmapped database objects directly to views. The view gets a
bunch of properties it may not need, possibly in formats that are incompatible with it.
Our example is pretty simple so far, but once it starts to get more complicated, you’ll
probably want to do even more customization of the data that’s passed to a view. It
also makes it easy to accidentally expose confidential information or information that
could compromise the security of your website. For these reasons, I recommend
mapping the data that’s returned from the database and passing only what’s needed
onto the view (transforming as necessary, as we did with price).

In some variations of the MVC architecture, a third component
called a view model is introduced. A view model essentially distills
and transforms a model (or models) so that it’s more appropriate
for display in a view. What we’re doing here is creating a view
model on the fly.

We’ve come a long way at this point. We’re successfully using a database to store
information about our vacations. But databases wouldn’t be very useful if we couldn’t
update them. Let’s turn our attention to that aspect of interfacing with databases.

Adding Data
We’ve already seen how we can add data (we added data when we seeded the vacation
collection) and how we can update data (we update the count of packages sold when
we book a vacation), but let’s take a look at a slightly more involved scenario that
highlights the flexibility of document databases.

When a vacation is out of season, we display a link that invites the customer to be
notified when the vacation is in season again. Let’s hook up that functionality. First,
we create the schema and model (models/vacationInSeasonListener.js):

const mongoose = require('mongoose')

const vacationInSeasonListenerSchema = mongoose.Schema({

160 | Chapter 13: Persistence

 email: String,
 skus: [String],
})
const VacationInSeasonListener = mongoose.model('VacationInSeasonListener',
 vacationInSeasonListenerSchema)

module.exports = VacationInSeasonListener

Then we’ll create our view, views/notify-me-when-in-season.handlebars:
<div class="formContainer">
 <form class="form-horizontal newsletterForm" role="form"
 action="/notify-me-when-in-season" method="POST">
 <input type="hidden" name="sku" value="{{sku}}">
 <div class="form-group">
 <label for="fieldEmail" class="col-sm-2 control-label">Email</label>
 <div class="col-sm-4">
 <input type="email" class="form-control" required
 id="fieldEmail" name="email">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-4">
 <button type="submit" class="btn btn-default">Submit</button>
 </div>
 </div>
 </form>
</div>

Then the route handlers:

exports.notifyWhenInSeasonForm = (req, res) =>
 res.render('notify-me-when-in-season', { sku: req.query.sku })

exports.notifyWhenInSeasonProcess = (req, res) => {
 const { email, sku } = req.body
 await db.addVacationInSeasonListener(email, sku)
 return res.redirect(303, '/vacations')
}

Finally, we add a real implementation to db.js:
const VacationInSeasonListener = require('./models/vacationInSeasonListener')

module.exports = {
 getVacations: async (options = {}) => Vacation.find(options),
 addVacationInSeasonListener: async (email, sku) => {
 await VacationInSeasonListener.updateOne(
 { email },
 { $push: { skus: sku } },
 { upsert: true }
)
 },
}

Database Persistence | 161

What magic is this? How can we “update” a record in the VacationInSeasonLis
tener collection before it even exists? The answer lies in a Mongoose convenience
called an upsert (a portmanteau of “update” and “insert”). Basically, if a record with
the given email address doesn’t exist, it will be created. If a record does exist, it will be
updated. Then we use the magic variable $push to indicate that we want to add a
value to an array.

This code doesn’t prevent multiple SKUs from being added to the
record if the user fills out the form multiple times. When a vacation
comes into season and we find all the customers who want to be
notified, we will have to be careful not to notify them multiple
times.

We’ve certainly covered the important bases by now! We learned how to connect to a
MongoDB instance, seed it with data, read that data out, and write updates to it!
However, you may prefer to use an RDBMS, so let’s shift gears and see how we can do
the same thing with PostgreSQL instead.

PostgreSQL
Object databases like MongoDB are great and are generally quicker to get started
with, but if you’re trying to build a robust application, you may put as much work—
or more—into structuring your object databases as you would planning out a tradi‐
tional relational database. Furthermore, you may already have experience with rela‐
tional databases, or you might have an existing relational database you want to
connect with.

Fortunately, there is robust support for every major relational database in the Java‐
Script ecosystem, and if you want or need to use a relational database, you shouldn’t
have any problem.

Let’s take our vacation database and reimplement it using a relational database. For
this example, we’ll use PostgreSQL, a popular and sophisticated open source rela‐
tional database. The techniques and principles we’ll use will be similar for any rela‐
tional database.

Similar to the ODM we used for MongoDB, there are object-relational mapping
(ORM) tools available for relational databases. However, since most readers interes‐
ted in this topic are probably already familiar with relational databases and SQL, we’ll
use a Node PostgreSQL client directly.

Like MongoDB, we’ll use a free online PostgreSQL service. Of course, if you’re com‐
fortable installing and configuring your own PostgreSQL database, you are welcome
to do that as well. All that will change is the connection string. If you do use your own

162 | Chapter 13: Persistence

PostgreSQL instance, make sure you’re using 9.4 or later, because we will be using the
JSON data type, which was introduced in 9.4 (as I write this, I am using 11.3).

There are many options for online PostgreSQL; for this example, I’ll be using Ele‐
phantSQL. Getting started couldn’t be simpler: create an account (you can use your
GitHub account to log in), and click Create New Instance. All you have to do is give it
a name (for example, “meadowlark”) and select a plan (you can use their free plan).
You’ll also specify a region (try to pick the one closest to you). Once you’re all set up,
you’ll find a Details section that lists information about your instance. Copy the URL
(connection string), which includes the username, password, and instance location all
in one convenient string.

Put that string in your .credentials.development.json file:

"postgres": {
 "connectionString": "your_dev_connection_string"
}

One difference between object databases and RDBMSs is that you typically do more
up-front work to define the schema of an RDBMS and use data definition SQL to cre‐
ate the schema before adding or retrieving data. In keeping with this paradigm, we’ll
do that as a separate step instead of letting our ODM or ORM handle it, as we did
with MongoDB.

We could create SQL scripts and use a command-line client to execute the data defi‐
nition scripts that will create our tables, or we could do this work in JavaScript with
the PostgreSQL client API, but in a separate step that’s done only once. Since this is a
book about Node and Express, we’ll do the latter.

First, we’ll have to install the pg client library (npm install pg). Then create db-
init.js, which will be run only to initialize our database and is distinct from our db.js
file, which is used every time the server starts up (ch13/01-postgres/db.js in the com‐
panion repo):

const { credentials } = require('./config')

const { Client } = require('pg')
const { connectionString } = credentials.postgres
const client = new Client({ connectionString })

const createScript = `
 CREATE TABLE IF NOT EXISTS vacations (
 name varchar(200) NOT NULL,
 slug varchar(200) NOT NULL UNIQUE,
 category varchar(50),
 sku varchar(20),
 description text,
 location_search varchar(100) NOT NULL,
 location_lat double precision,
 location_lng double precision,

Database Persistence | 163

https://www.elephantsql.com
https://www.elephantsql.com

 price money,
 tags jsonb,
 in_season boolean,
 available boolean,
 requires_waiver boolean,
 maximum_guests integer,
 notes text,
 packages_sold integer
);
`

const getVacationCount = async client => {
 const { rows } = await client.query('SELECT COUNT(*) FROM VACATIONS')
 return Number(rows[0].count)
}

const seedVacations = async client => {
 const sql = `
 INSERT INTO vacations(
 name,
 slug,
 category,
 sku,
 description,
 location_search,
 price,
 tags,
 in_season,
 available,
 requires_waiver,
 maximum_guests,
 notes,
 packages_sold
) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12, $13, $14)
 `
 await client.query(sql, [
 'Hood River Day Trip',
 'hood-river-day-trip',
 'Day Trip',
 'HR199',
 'Spend a day sailing on the Columbia and enjoying craft beers in Hood River!',
 'Hood River, Oregon, USA',
 99.95,
 `["day trip", "hood river", "sailing", "windsurfing", "breweries"]`,
 true,
 true,
 false,
 16,
 null,
 0,
])
 // we can use the same pattern to insert other vacation data here...

164 | Chapter 13: Persistence

}

client.connect().then(async () => {
 try {
 console.log('creating database schema')
 await client.query(createScript)
 const vacationCount = await getVacationCount(client)
 if(vacationCount === 0) {
 console.log('seeding vacations')
 await seedVacations(client)
 }
 } catch(err) {
 console.log('ERROR: could not initialize database')
 console.log(err.message)
 } finally {
 client.end()
 }
})

Let’s start at the bottom of this file. We take our database client (client) and call con
nect() on it, which establishes a database connection and returns a promise. When
that promise resolves, we can take actions against the database.

The first thing we do is invoke client.query(createScript), which will create our
vacations table (also known as a relation). If we look at createScript, we’ll see this
is data definition SQL. It’s beyond the scope of this book to delve into SQL, but if
you’re reading this section, I assume you have at least a passing understanding of
SQL. One thing you may note is that we use snake_case to name our fields instead of
camelCase. That is, what was “inSeason” has become “in_season.” While it is possible
to use camelCase to name structures in PostgreSQL, you have to quote any identifiers
with capital letters, which ends up being more trouble than it’s worth. We’ll come
back to that a little later.

You’ll see we’re already having to put more thought into our schema. How long can a
vacation name be? (We’re arbitrarily capping it at 200 characters here.) How long can
category names and the SKU be? Notice we’re using PostgreSQL’s money type for the
price and making the slug be our primary key (instead of adding a separate ID).

If you’re already familiar with relational databases, there won’t be anything surprising
about this simple schema. However, the way we’ve handled “tags” might have jumped
out at you.

In traditional database design, we would probably create a new table to relate vaca‐
tions to tags (this is called normalization). And we could do that here. But here is
where we might decide to strike some compromises between traditional relational
database design and doing things in the “JavaScript way.” If we went with two tables
(vacations and vacation_tags, for example), we’d have to query data from both
tables to create a single object that contains all the information about a vacation, as

Database Persistence | 165

we had in our MongoDB example. And there may be performance reasons for that
extra complexity, but let’s assume there isn’t, and we just want to be able to quickly
determine the tags for a particular vacation. We could make this a text field and sepa‐
rate our tags with commas, but then we would have to parse out our tags, and Post‐
greSQL gives us a better way in JSON data types. We’ll see shortly that by specifying
this as JSON (jsonb, a binary representation that’s usually higher performance), we
can store this as a JavaScript array, and a JavaScript array comes out, just as we had in
MongoDB.

Finally, we insert our seed data into the database by using the same basic concept as
before: if the vacations table is empty, we add some initial data; otherwise, we
assume we’ve already done that.

You’ll note that inserting our data is a little more unwieldy than it was with Mon‐
goDB. There are ways to solve this problem, but for this example, I want to be explicit
about the use of SQL. We could write a function to make insert statements more nat‐
urally, or we could use an ORM (more on this later). But for now, the SQL gets the
job done, and it should be comfortable for anyone who already knows SQL.

Note that although this script is designed to be run only once to initialize and seed
our database, we’ve written it in a way that it’s safe to run multiple times. We included
the IF NOT EXISTS option, and we check to see whether the vacations table is empty
before adding seed data.

We can now run the script to initialize our database:

$ node db-init.js

Now that we have our database set up, we can write some code to use it in our web‐
site.

Database servers can typically handle only a limited number of connections at a time,
so web servers usually implement a strategy called connection pooling to balance the
overhead of establishing a connection with the danger of leaving connections open
too long and choking the server. Fortunately, the details of this are handled for you by
the PostgreSQL Node client.

We’ll take a slightly different strategy with our db.js file this time. Instead of a file we
just require to establish the database connection, it will return an API that we write
that handles the details of communicating with the database.

We also have a decision to make about our vacation model. Recall that when we cre‐
ated our model, we used snake_case for our database schema, but all of our JavaScript
code uses camelCase. Broadly speaking, we have three options here:

• Refactor our schema to use camelCase. This will make our SQL uglier because we
have to remember to quote our property names correctly.

166 | Chapter 13: Persistence

• Use snake_case in our JavaScript. This is less than ideal because we like standards
(right?).

• Use snake_case on the database side, and translate to camelCase on the JavaScript
side. This is more work that we have to do, but it keeps our SQL and our Java‐
Script pristine.

Fortunately, the third option can be done automatically. We could write our own
function to do that translation, but we’ll rely on a popular utility library called
Lodash, which makes it extremely easy. Just run npm install lodash to install it.

Right now, our database needs are very modest. All we need to do is fetch all available
vacation packages, so our db.js file will look like this (ch13/01-postgres/db.js in the
companion repo):

const { Pool } = require('pg')
const _ = require('lodash')

const { credentials } = require('./config')

const { connectionString } = credentials.postgres
const pool = new Pool({ connectionString })

module.exports = {
 getVacations: async () => {
 const { rows } = await pool.query('SELECT * FROM VACATIONS')
 return rows.map(row => {
 const vacation = _.mapKeys(row, (v, k) => _.camelCase(k))
 vacation.price = parseFloat(vacation.price.replace(/^\$/, ''))
 vacation.location = {
 search: vacation.locationSearch,
 coordinates: {
 lat: vacation.locationLat,
 lng: vacation.locationLng,
 },
 }
 return vacation
 })
 }
}

Short and sweet! We’re exporting a single method called getVacations that does as
advertised. It also uses Lodash’s mapKeys and camelCase functions to convert our
database properties to camelCase.

One thing to note is that we have to handle the price attribute carefully. PostgreSQL’s
money type is converted to an already-formatted string by the pg library. And for good
reason: as we’ve already discussed, JavaScript has only recently added support for
arbitrary precision numeric types (BigInt), but there isn’t yet a PostgreSQL adapter
that takes advantage of that (and it might not be the most efficient data type in any

Database Persistence | 167

https://lodash.com

event). We could change our database schema to use a numeric type instead of the
money type, but we shouldn’t let our frontend choices drive our schema. We could
also deal with the preformatted strings that are being returned from pg, but then we
would have to change all of our existing code, which is relying on price being a num‐
ber. Furthermore, that approach would undermine our ability to do numeric calcula‐
tions on the frontend (such as summing the prices of the items in your cart). For all
of these reasons, we’re opting to parse the string to a number when we retrieve it from
the database.

We also take our location information—which is “flat” in the table—and turn it into a
more JavaScript-like structure. We’re doing this only to achieve parity with our Mon‐
goDB example; we could use the data structured as it is (or modify our MongoDB
example to have a flat structure).

The last thing we need to learn to do with PostgreSQL is to update data, so let’s fill in
the “vacation in season” listener feature.

Adding Data
As with the MongoDB example, we’ll use our “vacation in season” listener example.
We’ll start by adding the following data definition to the createScript string in db-
init.js:

CREATE TABLE IF NOT EXISTS vacation_in_season_listeners (
 email varchar(200) NOT NULL,
 sku varchar(20) NOT NULL,
 PRIMARY KEY (email, sku)
);

Remember that we took care to write db-init.js in a nondestructive fashion so we
could run it at any time. So we can just run it again to create the vacation_in_sea
son_listeners table.

Now we can modify db.js to include a method to update this table:

module.exports = {
 //...
 addVacationInSeasonListener: async (email, sku) => {
 await pool.query(
 'INSERT INTO vacation_in_season_listeners (email, sku) ' +
 'VALUES ($1, $2) ' +
 'ON CONFLICT DO NOTHING',
 [email, sku]
)
 },
}

PostgreSQL’s ON CONFLICT clause essentially enables upserts. In this case, if the exact
combination of email and SKU is already present, the user has already registered to

168 | Chapter 13: Persistence

be notified, so we don’t need to do anything. If we had other columns in this table
(such as the date of last registration), we might want to use a more sophisticated ON
CONFLICT clause (see the PostgreSQL INSERT documentation for more information).
Note also that this behavior is dependent on the way we defined the table. We made
email and SKU a composite primary key, meaning that there can’t be any duplicates,
which in turn necessitated the ON CONFLICT clause (otherwise, the INSERT command
would result in an error the second time a user tried to register for a notification on
the same vacation).

Now we’ve seen a complete example of hooking up two types of databases, an object
database and an RDBMS. It should be clear that the function of the database is the
same: storing, retrieving, and updating data in a consistent and scalable fashion.
Because the function is the same, we were able to create an abstraction layer so we
could choose a different database technology. The last thing we might need a database
for is for persistent session storage, which we hinted at in Chapter 9.

Using a Database for Session Storage
As we discussed in Chapter 9, using a memory store for session data is unsuitable in a
production environment. Fortunately, it’s easy to use a database as a session store.

While we could use our existing MongoDB or PostgreSQL database for a session
store, a full-blown database is overkill for session storage, which is a perfect use case
for a key-value database. As I write this, the most popular key-value databases for ses‐
sion stores are Redis and Memcached. In keeping with the other examples in this
chapter, we’ll be using a free online service to provide a Redis database.

Start by heading over to Redis Labs and create an account. Then create a free sub‐
scription and plan. Choose Cache for the plan and give the database a name; you can
leave the rest of the settings at their defaults.

You’ll reach a View Database screen, and, as I write this, the critical information
doesn’t populate for a few seconds, so be patient. What you’ll want is the Endpoint
field and the Redis Password under Access Control & Security (it’s hidden by default,
but there’s a little button next to it that will show it). Take these and put them in
your .credentials.development.json file:

"redis": {
 "url": "redis://:<YOUR PASSWORD>@<YOUR ENDPOINT>"
}

Note the slightly odd URL: normally there would be a username before the colon pre‐
ceding your password, but Redis allows connection with a password only; the colon
that separates username from password is still required, however.

Using a Database for Session Storage | 169

http://bit.ly/3724FJI
https://redis.io
https://memcached.org
https://redislabs.com

We’ll be using a package called connect-redis to provide Redis session storage. Once
you’ve installed it (npm install connect-redis), we can set it up in our main appli‐
cation file. We still use expression-session, but now we pass a new property to it,
store, which configures it to use a database. Note that we have to pass expressSes
sion to the function returned from connect-redis to get the constructor: this is a
pretty common quirk of session stores (ch13/00-mongodb/meadowlark.js or ch13/01-
postgres/meadowlark.js in the companion repo):

const expressSession = require('express-session')
const RedisStore = require('connect-redis')(expressSession)

app.use(cookieParser(credentials.cookieSecret))
app.use(expressSession({
 resave: false,
 saveUninitialized: false,
 secret: credentials.cookieSecret,
 store: new RedisStore({
 url: credentials.redis.url,
 logErrors: true, // highly recommended!
 }),
}))

Let’s use our newly minted session store for something useful. Imagine we want to be
able to display vacation prices in different currencies. Furthermore, we want the site
to remember the user’s currency preference.

We’ll start by adding a currency picker at the bottom of our vacations page:

<hr>
<p>Currency:
 USD |
 GBP |
 BTC
</p>

Now here’s a little CSS (you can put this inline in your views/layouts/main.handlebars
file or link to a CSS file in your public directory):

a.currency {
 text-decoration: none;
}
.currency.selected {
 font-weight: bold;
 font-size: 150%;
}

Lastly, we’ll add a route handler to set the currency and modify our route handler
for /vacations to display prices in the current currency (ch13/00-mongodb/lib/
handlers.js or ch13/01-postgres/lib/handlers.js in the companion repo):

exports.setCurrency = (req, res) => {
 req.session.currency = req.params.currency

170 | Chapter 13: Persistence

 return res.redirect(303, '/vacations')
}

function convertFromUSD(value, currency) {
 switch(currency) {
 case 'USD': return value * 1
 case 'GBP': return value * 0.79
 case 'BTC': return value * 0.000078
 default: return NaN
 }
}

exports.listVacations = (req, res) => {
 Vacation.find({ available: true }, (err, vacations) => {
 const currency = req.session.currency || 'USD'
 const context = {
 currency: currency,
 vacations: vacations.map(vacation => {
 return {
 sku: vacation.sku,
 name: vacation.name,
 description: vacation.description,
 inSeason: vacation.inSeason,
 price: convertFromUSD(vacation.price, currency),
 qty: vacation.qty,
 }
 })
 }
 switch(currency){
 case 'USD': context.currencyUSD = 'selected'; break
 case 'GBP': context.currencyGBP = 'selected'; break
 case 'BTC': context.currencyBTC = 'selected'; break
 }
 res.render('vacations', context)
 })
}

You’ll also have to add a route for setting the currency in meadowlark.js:
app.get('/set-currency/:currency', handlers.setCurrency)

This isn’t a great way to perform currency conversion, of course. We would want to
utilize a third-party currency conversion API to make sure our rates are up-to-date.
But this will suffice for demonstration purposes. You can now switch between the
various currencies and—go ahead and try it—stop and restart your server. You’ll find
it remembers your currency preference! If you clear your cookies, the currency pref‐
erence will be forgotten. You’ll notice that now we’ve lost our pretty currency format‐
ting; it’s now more complicated, and I will leave that as an exercise for the reader.

Another reader’s exercise would be to make the set-currency route general-purpose
to make it more useful. Currently, it will always redirect to the vacations page, but

Using a Database for Session Storage | 171

what if you wanted to use it on a shopping cart page? See if you can think of one or
two ways of solving this problem.

If you look in your database, you’ll find there’s a new collection called sessions. If you
explore that collection, you’ll find a document with your session ID (property sid)
and your currency preference.

Conclusion
We’ve certainly covered a lot of ground in this chapter. For most web applications, the
database is at the heart of what makes the application useful. Designing and tuning
databases is a vast topic that could span many books, but I hope this has given you
the basic tools you need to connect two types of databases and move data around.

Now that we have this fundamental piece in place, we’re going to revisit routing and
the importance it plays in web applications.

172 | Chapter 13: Persistence

CHAPTER 14

Routing

Routing is one of the most important aspects of your website or web service; fortu‐
nately, routing in Express is simple, flexible, and robust. Routing is the mechanism by
which requests (as specified by a URL and HTTP method) are routed to the code that
handles them. As we’ve already noted, routing used to be file based and simple. For
example, if you put the file foo/about.html on your website, you would access it from
the browser with the path /foo/about.html. Simple but inflexible. And, in case you
hadn’t noticed, having html in your URL is extremely passé these days.

Before we dive into the technical aspects of routing with Express, we should discuss
the concept of information architecture (IA). IA refers to the conceptual organization
of your content. Having an extensible (but not overcomplicated) IA before you begin
thinking about routing will pay huge dividends down the line.

One of the most intelligent and timeless essays on IA is by Tim Berners-Lee, who
practically invented the internet. You can (and should) read it now: http://
www.w3.org/Provider/Style/URI.html. It was written in 1998. Let that sink in for a
minute; there’s not much that was written on internet technology in 1998 that is just
as true today as it was then.

From that essay, here is the lofty responsibility we are being asked to take on:
It is the duty of a Webmaster to allocate URIs which you will be able to stand by in 2
years, in 20 years, in 200 years. This needs thought, and organization, and commit‐
ment.

—Tim Berners-Lee

I like to think that if web design ever required professional licensing, like other kinds
of engineering, that we would take an oath to that effect. (The astute reader of that
article will find humor in the fact that the URL to that article ends with .html.)

173

http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html

To make an analogy (that may sadly be lost on the younger audience), imagine that
every two years your favorite library completely reordered the Dewey decimal sys‐
tem. You would walk into the library one day and you wouldn’t be able to find any‐
thing. That’s exactly what happens when you redesign your URL structure.

Put some serious thought into your URLs. Will they still make sense in 20 years? (200
years may be a bit of a stretch: who knows if we’ll even be using URLs by then. Still, I
admire the dedication of thinking that far into the future.) Carefully consider the
breakdown of your content. Categorize things logically, and try not to paint yourself
into a corner. It’s a science, but it’s also an art.

Perhaps most important, work with others to design your URLs. Even if you are the
best information architect for miles around, you might be surprised at how people
look at the same content with a different perspective. I’m not saying that you should
try for an IA that makes sense from everyone’s perspective (because that is usually
quite impossible), but being able to see the problem from multiple perspectives will
give you better ideas and expose the flaws in your own IA.

Here are some suggestions to help you achieve a lasting IA:

Never expose technical details in your URLs
Have you ever been to a website, noticed that the URL ended in .asp, and thought
that the website was hopelessly out-of-date? Remember that, once upon a time,
ASP was cutting-edge. Though it pains me to say it, so too shall fall JavaScript
and JSON and Node and Express. I hope it’s not for many, many productive
years, but time is not often kind to technology.

Avoid meaningless information in your URLs
Think carefully about every word in your URL. If it doesn’t mean anything, leave
it out. For example, it always makes me cringe when websites use the word home
in URLs. Your root URL is your home page. You don’t need to additionally have
URLs like /home/directions and /home/contact.

Avoid needlessly long URLs
All things being equal, a short URL is better than a longer URL. However, you
should not try to make URLs short at the expense of clarity or SEO. Abbrevia‐
tions are tempting, but think carefully about them. They should be common and
ubiquitous before you immortalize them in a URL.

Be consistent with word separators
It’s quite common to separate words with hyphens, and a little less common to do
so with underscores. Hyphens are generally considered more aesthetically pleas‐
ing than underscores, and most SEO experts recommend them. Whether you
choose hyphens or underscores, be consistent in their use.

174 | Chapter 14: Routing

Never use whitespace or untypable characters
Whitespace in a URL is not recommended. It will usually just be converted to a
plus sign (+), leading to confusion. It should be obvious that you should avoid
untypable characters, and I caution you strongly against using any characters
other than alphanumeric characters, numbers, dashes, and underscores. It may
feel clever at the time, but “clever” has a way of not standing the test of time.
Obviously, if your website is not for an English audience, you may use non-
English characters (using percent codes), though that can cause headaches if you
ever want to localize your website.

Use lowercase for your URLs
This one will cause some debate. There are those who feel that mixed case in
URLs is not only acceptable, but preferable. I don’t want to get in a religious
debate over this, but I will point out that the advantage of lowercase is that it can
always automatically be generated by code. If you’ve ever had to go through a
website and sanitize thousands of links or do string comparisons, you will appre‐
ciate this argument. I personally feel that lowercase URLs are more aesthetically
pleasing, but in the end, this decision is up to you.

Routes and SEO
If you want your website to be discoverable (and most people do), then you need to
think about SEO and how your URLs can affect it. In particular, if there are certain
keywords that are important—and it makes sense—consider making them part of the
URL. For example, Meadowlark Travel offers several Oregon Coast vacations. To
ensure high search engine ranking for these vacations, we use the string “Oregon
Coast” in the title, header, body, and meta description, and the URLs start with /vaca‐
tions/oregon-coast. The Manzanita vacation package can be found at /vacations/
oregon-coast/manzanita. If, to shorten the URL, we simply used /vacations/manzanita,
we would be losing out on valuable SEO.

That said, resist the temptation to carelessly jam keywords into URLs in an attempt to
improve your rankings. It will fail. For example, changing the Manzanita vacation
URL to /vacations/oregon-coast-portland-and-hood-river/oregon-coast/manzanita in
an effort to say “Oregon Coast” one more time, and also work the “Portland” and
“Hood River” keywords in at the same time, is wrong-headed. It flies in the face of
good IA and will likely backfire.

Subdomains
Along with the path, subdomains are the other part of the URL that is commonly
used to route requests. Subdomains are best reserved for significantly different parts
of your application—for example, a REST API (api.meadowlarktravel.com) or an

Routes and SEO | 175

admin interface (admin.meadowlarktravel.com). Sometimes subdomains are used for
technical reasons. For example, if we were to build our blog with WordPress (while
the rest of our site uses Express), it can be easier to use blog.meadowlarktravel.com (a
better solution would be to use a proxy server, such as NGINX). There are usually
SEO consequences to partitioning your content using subdomains, which is why you
should generally reserve them for areas of your site that aren’t important to SEO, such
as admin areas and APIs. Keep this in mind and make sure there’s no other option
before using a subdomain for content that is important to your SEO plan.

The routing mechanism in Express does not take subdomains into account by
default: app.get(/about) will handle requests for http://meadowlarktravel.com/about,
http://www.meadowlarktravel.com/about, and http://admin.meadowlarktravel.com/
about. If you want to handle a subdomain separately, you can use a package called
vhost (for “virtual host,” which comes from an Apache mechanism commonly used
for handling subdomains). First, install the package (npm install vhost). To test
domain-based routing on your dev machine, you’ll need some way to “fake” domain
names. Fortunately, this is what your hosts file is for. On macOS and Linux machines,
it can be found at /etc/hosts, and on Windows, it’s at c:\windows\system32\drivers\etc
\hosts. Add the following to your hosts file (you will need admin privileges to edit it):

127.0.0.1 admin.meadowlark.local
127.0.0.1 meadowlark.local

This tells your computer to treat meadowlark.local and admin.meadowlark.local
just like regular internet domains but to map them to localhost (127.0.0.1). We use
the .local top-level domain so as not to get confused (you could use .com or any
other internet domain, but it would override the real domain, which can lead to frus‐
tration).

Then you can use the vhost middleware to use domain-aware routing (ch14/00-
subdomains.js in the companion repo):

// create "admin" subdomain...this should appear
// before all your other routes
var admin = express.Router()
app.use(vhost('admin.meadowlark.local', admin))

// create admin routes; these can be defined anywhere
admin.get('*', (req, res) => res.send('Welcome, Admin!'))

// regular routes
app.get('*', (req, res) => res.send('Welcome, User!'))

express.Router() essentially creates a new instance of the Express router. You can
treat this instance just like your original instance (app). You can add routes and mid‐
dleware just as you would to app. However, it won’t do anything until you add it to
app. We add it through vhost, which binds that router instance to that subdomain.

176 | Chapter 14: Routing

express.Router is also useful for partitioning your routes so that
you can link in many route handlers at once. See the Express rout‐
ing documentation for more information.

Route Handlers Are Middleware
We’ve already seen basic routing of matching a given path. But what does
app.get(\'/foo', ...) actually do? As we saw in Chapter 10, it’s simply a special‐
ized piece of middleware, down to having a next method passed in. Let’s look at some
more sophisticated examples (ch14/01-fifty-fifty.js in the companion repo):

app.get('/fifty-fifty', (req, res, next) => {
 if(Math.random() < 0.5) return next()
 res.send('sometimes this')
})
app.get('/fifty-fifty', (req,res) => {
 res.send('and sometimes that')
})

In the previous example, we have two handlers for the same route. Normally, the first
one would win, but in this case, the first one is going to pass approximately half the
time, giving the second one a chance. We don’t even have to use app.get twice: you
can use as many handlers as you want for a single app.get call. Here’s an example
that has an approximately equal chance of three different responses (ch14/02-red-
green-blue.js in the companion repo):

app.get('/rgb',
 (req, res, next) => {
 // about a third of the requests will return "red"
 if(Math.random() < 0.33) return next()
 res.send('red')
 },
 (req, res, next) => {
 // half of the remaining 2/3 of requests (so another third)
 // will return "green"
 if(Math.random() < 0.5) return next()
 res.send('green')
 },
 function(req, res){
 // and the last third returns "blue"
 res.send('blue')
 },
)

While this may not seem particularly useful at first, it allows you to create generic
functions that can be used in any of your routes. For example, let’s say we have a
mechanism that shows special offers on certain pages. The special offers change fre‐
quently, and they’re not shown on every page. We can create a function to inject the

Route Handlers Are Middleware | 177

http://bit.ly/2X8VC59
http://bit.ly/2X8VC59

specials into the res.locals property (which you’ll remember from Chapter 7)
(ch14/03-specials.js in the companion repo):

async function specials(req, res, next) {
 res.locals.special = await getSpecialsFromDatabase()
 next()
}

app.get('/page-with-specials', specials, (req, res) =>
 res.render('page-with-specials')
)

We could also implement an authorization mechanism with this approach. Let’s say
our user authorization code sets a session variable called req.session.authorized.
We can use the following to make a reusable authorization filter (ch14/04-
authorizer.js in the companion repo):

function authorize(req, res, next) {
 if(req.session.authorized) return next()
 res.render('not-authorized')
}

app.get('/public', () => res.render('public'))

app.get('/secret', authorize, () => res.render('secret'))

Route Paths and Regular Expressions
When you specify a path (like /foo) in your route, it’s eventually converted to a regu‐
lar expression by Express. Some regular expression metacharacters are available in
route paths: +, ?, *, (, and). Let’s look at a couple of examples. Let’s say you want the
URLs /user and /username to be handled by the same route:

app.get('/user(name)?', (req, res) => res.render('user'))

One of my favorite novelty websites—now sadly defunct—was http://khaaan.com. All
it was was everyone’s favorite starship captain belting his most iconic line. Useless,
but made me smile every time. Let’s say we want to make our own
“KHAAAAAAAAN” page but we don’t want our users to have to remember if it’s 2
a’s or 3 or 10. The following will get the job done:

app.get('/khaa+n', (req, res) => res.render('khaaan'))

Not all normal regex metacharacters have meaning in route paths, though—only the
ones listed earlier. This is important, because periods, which are normally a regex
metacharacter meaning “any character,” can be used in routes unescaped.

Lastly, if you really need the full power of regular expressions for your route, that is
supported:

178 | Chapter 14: Routing

app.get(/crazy|mad(ness)?|lunacy/, (req,res) =>
 res.render('madness')
)

I have yet to find a good reason for using regex metacharacters in my route paths,
much less full regexes, but it’s good to be aware the functionality is there.

Route Parameters
While regex routes may find little day-to-day use in your Expression toolbox, you’ll
most likely be using route parameters quite frequently. In short, it’s a way to turn part
of your route into a variable parameter. Let’s say in our website we want to have a
page for each staff member. We have a database of staff members with bios and pic‐
tures. As our company grows, it becomes more and more unwieldy to add a new
route for each staff member. Let’s see how route parameters can help us (ch14/05-
staff.js in the companion repo):

const staff = {
 mitch: { name: "Mitch",
 bio: 'Mitch is the man to have at your back in a bar fight.' },
 madeline: { name: "Madeline", bio: 'Madeline is our Oregon expert.' },
 walt: { name: "Walt", bio: 'Walt is our Oregon Coast expert.' },
}

app.get('/staff/:name', (req, res, next) => {
 const info = staff[req.params.name]
 if(!info) return next() // will eventually fall through to 404
 res.render('05-staffer', info)
})

Note how we used :name in our route. That will match any string (that doesn’t
include a forward slash) and put it in the req.params object with the key name. This is
a feature we will be using often, especially when creating a REST API. You can have
multiple parameters in our route. For example, if we want to break up our staff listing
by city, we can use this:

const staff = {
 portland: {
 mitch: { name: "Mitch", bio: 'Mitch is the man to have at your back.' },
 madeline: { name: "Madeline", bio: 'Madeline is our Oregon expert.' },
 },
 bend: {
 walt: { name: "Walt", bio: 'Walt is our Oregon Coast expert.' },
 },
}

app.get('/staff/:city/:name', (req, res, next) => {
 const cityStaff = staff[req.params.city]
 if(!cityStaff) return next() // unrecognized city -> 404
 const info = cityStaff[req.params.name]

Route Parameters | 179

 if(!info) return next() // unrecognized staffer -> 404
 res.render('staffer', info)
})

Organizing Routes
It may be clear to you already that it would be unwieldy to define all of our routes in
the main application file. Not only will that file grow over time, it’s also not a great
separation of functionality because there’s a lot going on in that file already. A simple
site may have only a dozen routes or fewer, but a larger site could have hundreds of
routes.

So how to organize your routes? Well, how do you want to organize your routes?
Express is not opinionated about how you organize your routes, so how you do it is
limited only by your own imagination.

I’ll cover some popular ways to handle routes in the next sections, but at the end of
the day, I recommend four guiding principles for deciding how to organize your
routes:

Use named functions for route handlers
Writing route handlers inline by actually defining the function that handles the
route right then and there is fine for small applications or prototyping, but it will
quickly become unwieldy as your website grows.

Routes should not be mysterious
This principle is intentionally vague because a large, complex website may by
necessity require a more complicated organizational scheme than a 10-page web‐
site. At one end of the spectrum is simply putting all of the routes for your web‐
site in one single file so you know where they are. For large websites, this may be
undesirable, so you break the routes out by functional areas. However, even then,
it should be clear where you should go to look for a given route. When you need
to fix something, the last thing you want to do is have to spend an hour figuring
out where the route is being handled. I had an ASP.NET MVC project at work
that was a nightmare in this respect. The routes were handled in at least 10 differ‐
ent places, and it wasn’t logical or consistent and was often contradictory. Even
though I was intimately familiar with that (very large) website, I still had to spend
a significant amount of time tracking down where certain URLs were handled.

Route organization should be extensible
If you have 20 or 30 routes now, defining them all in one file is probably fine.
What about in three years when you have 200 routes? It can happen. Whatever
method you choose, you should ensure you have room to grow.

180 | Chapter 14: Routing

Don’t overlook automatic view-based route handlers
If your site consists of many pages that are static and have fixed URLs, all of your
routes will end up looking like this: app.get('/static/thing', (req, res) =>
res.render(\'static/thing')). To reduce needless code repetition, consider
using an automatic view-based route handler. This approach is described later in
this chapter and can be used together with custom routes.

Declaring Routes in a Module
The first step to organizing our routes is getting them all into their own module.
There are multiple ways to do this. One approach is to have your module return an
array of objects containing method and handler properties. Then you could define
the routes in your application file thusly:

const routes = require('./routes.js')

routes.forEach(route => app[route.method](route.handler))

This method has its advantages and could be well suited to storing our routes dynam‐
ically, such as in a database or a JSON file. However, if you don’t need that functional‐
ity, I recommend passing the app instance to the module and letting it add the routes.
That’s the approach we’ll take for our example. Create a file called routes.js and move
all of our existing routes into it:

module.exports = app => {

 app.get('/', (req,res) => app.render('home'))

 //...

}

If we just cut and paste, we’ll probably run into some problems. For example, if we
have inline route handlers that use variables or methods not available in the new con‐
text, those references will now be broken. We could add the necessary imports, but
hold off on that. We’ll be moving the handlers into their own module soon, and we’ll
solve the problem then.

So how do we link our routes in? Simple: in meadowlark.js, we simply import our
routes:

require('./routes')(app)

Or we could be more explicit and add a named import (which we name addRoutes to
better reflect its nature as a function; we could also name the file this way if we
wanted):

Declaring Routes in a Module | 181

const addRoutes = require('./routes')

addRoutes(app)

Grouping Handlers Logically
To meet our first guiding principle (use named functions for route handlers), we’ll
need somewhere to put those handlers. One rather extreme option is to have a sepa‐
rate JavaScript file for every handler. It’s hard for me to imagine a situation in which
this approach would have benefit. It’s better to somehow group related functionality
together. That makes it easier not only to leverage shared functionality, but also to
make changes in related methods.

For now, let’s group our functionality into separate files: handlers/main.js, where we’ll
put the home page handler, the “about” handler, and generally any handler that
doesn’t have another logical home; handlers/vacations.js, where vacation-related han‐
dlers will go; and so on.

Consider handlers/main.js:
const fortune = require('../lib/fortune')

exports.home = (req, res) => res.render('home')

exports.about = (req, res) => {
 const fortune = fortune.getFortune()
 res.render('about', { fortune })
}

//...

Now let’s modify routes.js to make use of this:

const main = require('./handlers/main')

module.exports = function(app) {

 app.get('/', main.home)
 app.get('/about', main.about)
 //...

}

This satisfies all of our guiding principles. /routes.js is very straightforward. It’s easy to
see at a glance what routes are in your site and where they are being handled. We’ve
also left ourselves plenty of room to grow. We can group related functionality in as
many different files as we need. And if routes.js ever gets unwieldy, we can use the
same technique again and pass the app object on to another module that will in turn
register more routes (though that is starting to veer into the “overcomplicated” terri‐
tory—make sure you can really justify an approach that complicated!).

182 | Chapter 14: Routing

Automatically Rendering Views
If you ever find yourself wishing for the days of old where you could just put an
HTML file in a directory and—presto!—your website would serve it, then you’re not
alone. If your website is content-heavy without a lot of functionality, you may find it a
needless hassle to add a route for every view. Fortunately, we can get around this
problem.

Let’s say you want to add the file views/foo.handlebars and just magically have it avail‐
able on the route /foo. Let’s see how we might do that. In our application file, right
before the 404 handler, add the following middleware (ch14/06-auto-views.js in the
companion repo):

const autoViews = {}
const fs = require('fs')
const { promisify } = require('util')
const fileExists = promisify(fs.exists)

app.use(async (req, res, next) => {
 const path = req.path.toLowerCase()
 // check cache; if it's there, render the view
 if(autoViews[path]) return res.render(autoViews[path])
 // if it's not in the cache, see if there's
 // a .handlebars file that matches
 if(await fileExists(__dirname + '/views' + path + '.handlebars')) {
 autoViews[path] = path.replace(/^\//, '')
 return res.render(autoViews[path])
 }
 // no view found; pass on to 404 handler
 next()
})

Now we can just add a .handlebars file to the view directory and have it magically ren‐
der on the appropriate path. Note that regular routes will circumvent this mechanism
(because we placed the automatic view handler after all other routes), so if you have a
route that renders a different view for the route /foo, that will take precedence.

Note that this approach will run into problems if you delete a view that had been vis‐
ited; it will have been added to the autoViews object, so subsequent views will try to
render it even though it’s been deleted, resulting in an error. The problem could be
solved by wrapping the rendering in a try/catch block and removing the view from
autoViews when an error is discovered; I will leave this enhancement as a reader’s
exercise.

Automatically Rendering Views | 183

Conclusion
Routing is an important part of your project, and there are many more possible
approaches to organizing your route handlers than outlined here, so feel free to
experiment and find a technique that works for you and your project. I encourage
you to favor techniques that are clear and easy to trace. Routing is very much a map
from the outside world (the client, usually a browser) to the server-side code that
responds to it. If that map is convoluted, it makes it difficult for you to trace the flow
of information in your application, which will hinder both development and debug‐
ging.

184 | Chapter 14: Routing

CHAPTER 15

REST APIs and JSON

While we saw some REST API examples in Chapter 8, our paradigm so far has mostly
been “process the data on the server side and send formatted HTML to the client.”
Increasingly, this is not the default mode of operation for web applications. Instead,
most modern web applications are single-page applications (SPAs) that receive all of
their HTML and CSS in one static bundle and then rely on receiving unstructured
data as JSON and manipulating HTML directly. Similarly, the importance of posting
forms to communicate changes to the server is giving way to communicating directly
using HTTP requests to an API.

So it’s time to turn our attention to using Express to provide API endpoints instead of
preformatted HTML. This will serve us well in Chapter 16, when we demonstrate
how our API could be used to dynamically render an application.

In this chapter, we’ll strip down our application to providing a “coming soon” HTML
interface: we’ll fill that in in Chapter 16. Instead, we’ll focus on an API that will pro‐
vide access to our vacation database and provide API support for registering “out of
season” listeners.

Web service is a general term that means any application programming interface
(API) that’s accessible over HTTP. The idea of web services has been around for quite
some time, but until recently, the technologies that enabled them were stuffy, Byzan‐
tine, and overcomplicated. There are still systems that use those technologies (such as
SOAP and WSDL), and there are Node packages that will help you interface with
these systems. We won’t be covering those, though. Instead, we will be focused on
providing so-called RESTful services, which are much more straightforward to inter‐
face with.

The acronym REST stands for representational state transfer, and the grammatically
troubling RESTful is used as an adjective to describe a web service that satisfies the

185

principles of REST. The formal description of REST is complicated and steeped in
computer science formality, but the basics are that REST is a stateless connection
between a client and a server. The formal definition of REST also specifies that the
service can be cached and that services can be layered (that is, when you use a REST
API, there may be other REST APIs beneath it).

From a practical standpoint, the constraints of HTTP actually make it difficult to cre‐
ate an API that’s not RESTful; you’d have to go out of your way to establish state, for
example. So our work is mostly cut out for us.

JSON and XML
Vital to providing an API is having a common language to speak in. Part of the com‐
munication is dictated for us: we must use HTTP methods to communicate with the
server. But past that, we are free to use whatever data language we choose. Tradition‐
ally, XML has been a popular choice, and it remains an important markup language.
While XML is not particularly complicated, Douglas Crockford saw that there was
room for something more lightweight, and JavaScript Object Notation (JSON) was
born. In addition to being JavaScript-friendly (though it is by no means proprietary;
it is an easy format for any language to parse), it also has the advantage of being gen‐
erally easier to write by hand than XML.

I prefer JSON over XML for most applications: there’s better JavaScript support, and
it’s a simpler, more compact format. I recommend focusing on JSON and providing
XML only if existing systems require XML to communicate with your app.

Our API
We’ll plan our API before we start implementing it. In addition to listing vacations
and subscribing to “in-season” notifications, we’ll add a “delete vacation” endpoint.
Since this is a public API, we won’t actually delete the vacation. We’ll simply mark it
as “delete requested” so an administrator can review. For example, you might use this
unsecured endpoint to allow vendors to request the removal of vacations from the
site, which could then later be reviewed by an administrator. Here are our API end‐
points.

GET /api/vacations

Retrieves vacations

GET /api/vacation/:sku

Returns a vacation by its SKU

POST /api/vacation/:sku/notify-when-in-season

Takes email as a querystring parameter and adds a notification listener for the
specified vacation

186 | Chapter 15: REST APIs and JSON

1 If your client can’t use different HTTP methods, see this module, which allows you to “fake” different HTTP
methods.

DELETE /api/vacation/:sku

Requests the deletion of a vacation; takes email (the person requesting the dele‐
tion) and notes as querystring parameters

[NOTE]

Example 15-1.

There are many HTTP verbs available. GET and POST are the most common, fol‐
lowed by DELETE and PUT. It has become a standard to use POST for creating
something, and PUT for updating (or modifying) something. The English mean‐
ing of these words doesn’t support this distinction in any way, so you may want to
consider using the path to distinguish between these two operations to avoid
confusion. If you want more information about HTTP verbs, I recommend start‐
ing with this Tamas Piros article.

There are many ways we could have described our API. Here, we’ve chosen to use
combinations of HTTP methods and paths to distinguish our API calls, and a mix of
querystring and body parameters for passing data. As an alternative, we could have
had different paths (such as /api/vacations/delete) with the same method.1 We could
also have passed data in a consistent way. For example, we might have chosen to pass
all the necessary information for retrieving parameters in the URL instead of using a
querystring: DEL /api/vacation/:id/:email/:notes. To avoid excessively long
URLs, I recommend using the request body to pass large blocks of data (for example,
the deletion request notes).

There is a popular and well-respected convention for JSON APIs,
creatively named JSON:API. It’s a bit verbose and repetitive for my
taste, but I also believe that an imperfect standard is better than no
standard at all. While we’re not using JSON:API for this book, you
will learn everything you need to adopt the conventions laid down
by JSON:API. See the JSON:API home page for more information.

API Error Reporting
Error reporting in HTTP APIs is usually achieved through HTTP status codes. If the
request returns 200 (OK), the client knows the request was successful. If the request
returns 500 (Internal Server Error), the request failed. In most applications, however,
not everything can (or should be) categorized coarsely into “success” or “failure.” For

API Error Reporting | 187

http://bit.ly/2O7nr9E
http://bit.ly/32L4QWt
https://jsonapi.org

example, what if you request something by an ID but that ID doesn’t exist? This does
not represent a server error. The client has asked for something that doesn’t exist. In
general, errors can be grouped into the following categories:

Catastrophic errors
Errors that result in an unstable or unknown state for the server. Usually, this is
the result of an unhandled exception. The only safe way to recover from a cata‐
strophic error is to restart the server. Ideally, any pending requests would receive
a 500 response code, but if the failure is severe enough, the server may not be
able to respond at all, and the request will time out.

Recoverable server errors
Recoverable errors do not require a server restart, or any other heroic action. The
error is a result of an unexpected error condition on the server (for example, a
database connection being unavailable). The problem may be transient or perma‐
nent. A 500 response code is appropriate in this situation.

Client errors
Client errors are a result of the client making the mistake—usually missing or
invalid parameters. It isn’t appropriate to use a 500 response code. After all, the
server has not failed. Everything is working normally; the client just isn’t using
the API correctly. You have a couple of options here: you could respond with a
status code of 200 and describe the error in the response body, or you could addi‐
tionally try to describe the error with an appropriate HTTP status code. I recom‐
mend the latter approach. The most useful response codes in this case are 404
(Not Found), 400 (Bad Request), and 401 (Unauthorized). Additionally, the
response body should contain an explanation of the specifics of the error. If you
want to go above and beyond, the error message would even contain a link to
documentation. Note that if the user requests a list of things and there’s nothing
to return, this is not an error condition. It’s appropriate to simply return an
empty list.

In our application, we’ll be using a combination of HTTP response codes and error
messages in the body.

Cross-Origin Resource Sharing
If you’re publishing an API, you’ll likely want to make the API available to others.
This will result in a cross-site HTTP request. Cross-site HTTP requests have been the
subject of many attacks and have therefore been restricted by the same-origin policy,
which restricts where scripts can be loaded from. Specifically, the protocol, domain,
and port must match. This makes it impossible for your API to be used by another
site, which is where cross-origin resource sharing (CORS) comes in. CORS allows
you to lift this restriction on a case-by-case basis, even allowing you to list which

188 | Chapter 15: REST APIs and JSON

domains specifically are allowed to access the script. CORS is implemented through
the Access-Control-Allow-Origin header. The easiest way to implement it in an
Express application is to use the cors package (npm install cors). To enable CORS
for your application, use this:

const cors = require('cors')

app.use(cors())

Because the same-origin API is there for a reason (to prevent attacks), I recommend
applying CORS only where necessary. In our case, we want to expose our entire API
(but only the API), so we’re going to restrict CORS to paths starting with /api:

const cors = require('cors')

app.use('/api', cors())

See the package documentation for information about more advanced use of CORS.

Our Tests
If we use HTTP verbs other than GET, it can be a hassle to test our API, since brows‐
ers only know how to issue GET requests (and POST requests for forms). There are
ways around this, such as the excellent application Postman. However, whether or not
you use such a utility, it’s good to have automated tests. Before we write tests for our
API, we need a way to actually call a REST API. For that, we’ll be using a Node pack‐
age called node-fetch, which replicates the browser’s fetch API:

npm install --save-dev node-fetch@2.6.0

We’ll put the tests for the API calls we’re going to implement in tests/api/api.test.js
(ch15/test/api/api.test.js in the companion repo):

const fetch = require('node-fetch')

const baseUrl = 'http://localhost:3000'

const _fetch = async (method, path, body) => {
 body = typeof body === 'string' ? body : JSON.stringify(body)
 const headers = { 'Content-Type': 'application/json' }
 const res = await fetch(baseUrl + path, { method, body, headers })
 if(res.status < 200 || res.status > 299)
 throw new Error(`API returned status ${res.status}`)
 return res.json()
}

describe('API tests', () => {

 test('GET /api/vacations', async () => {
 const vacations = await _fetch('get', '/api/vacations')

Our Tests | 189

https://github.com/expressjs/cors
https://www.getpostman.com

 expect(vacations.length).not.toBe(0)
 const vacation0 = vacations[0]
 expect(vacation0.name).toMatch(/\w/)
 expect(typeof vacation0.price).toBe('number')
 })

 test('GET /api/vacation/:sku', async() => {
 const vacations = await _fetch('get', '/api/vacations')
 expect(vacations.length).not.toBe(0)
 const vacation0 = vacations[0]
 const vacation = await _fetch('get', '/api/vacation/' + vacation0.sku)
 expect(vacation.name).toBe(vacation0.name)
 })

 test('POST /api/vacation/:sku/notify-when-in-season', async() => {
 const vacations = await _fetch('get', '/api/vacations')
 expect(vacations.length).not.toBe(0)
 const vacation0 = vacations[0]
 // at this moment, all we can do is make sure the HTTP request is successful
 await _fetch('post', `/api/vacation/${vacation0.sku}/notify-when-in-season`,
 { email: 'test@meadowlarktravel.com' })
 })

 test('DELETE /api/vacation/:id', async() => {
 const vacations = await _fetch('get', '/api/vacations')
 expect(vacations.length).not.toBe(0)
 const vacation0 = vacations[0]
 // at this moment, all we can do is make sure the HTTP request is successful
 await _fetch('delete', `/api/vacation/${vacation0.sku}`)
 })

})

Our test suite starts off with a helper function _fetch, which handles some common
housekeeping. It will JSON encode the body if it isn’t already, add the appropriate
headers, and throw an appropriate error if the response status code isn’t in the 200s.

We have a single test for each of our API endpoints. I’m not suggesting that these tests
are robust or complete; even with this simple API, we could (and should) have several
tests for each endpoint. What we have here is more of a starting point that illustrates
techniques for testing an API.

There are a couple of important characteristics of these tests that deserve mention.
One is that we are relying on the API being already started and running on port 3000.
A more robust test suite would find an open port, start the API on that port as part of
its setup, and stop it when all the tests have run. Second, this test relies on data
already being present in our API. For example, the first test expects there to be at least
one vacation, and for that vacation to have a name and a price. In a real application,
you may not be able to make these assumptions (for example, you may start with no
data, and you may want to test for allowable missing data). Again, a more robust test‐

190 | Chapter 15: REST APIs and JSON

ing framework would have a way of setting and resetting the initial data in the API so
you could start from a known state every time. For example, you might have scripts
that set up and seed a test database, attach the API to it, and tear it down for every
test run. As we saw in Chapter 5, testing is a large and complicated topic, and we can
only scratch the surface here.

The first test covers our GET /api/vacations endpoint. It fetches all of the vacations,
validates that there is at least one, and checks the first one to see if it has a name and a
price. We could also conceivably test other data properties. I’ll leave it as a reader’s
exercise to think about which properties are most important to test.

The second test covers our GET /api/vacation/:sku endpoint. Since we don’t have
consistent test data, we start by fetching all of the vacations and getting the SKU from
the first one so we can test this endpoint.

Our last two tests cover our POST /api/vacation/:sku/notify-when-in-season
and DELETE /api/vacation/:sku endpoints. Unfortunately, with our current API
and testing framework, we can do very little to verify that these endpoints are doing
what they are supposed to, so we default to invoking them and trusting the API is
doing the right thing when it doesn’t return an error. If we wanted to make these tests
more robust, we would have to either add endpoints that allow us to verify the
actions (for example, an endpoint that determined if a given email was registered for
a specific vacation) or somehow give the tests “backdoor” access to our database.

If you run the tests now, they will time out and fail…because we haven’t implemented
our API or even started our server. So let’s get started!

Using Express to Provide an API
Express is quite capable of providing an API. There are various npm modules avail‐
able that provide helpful functionality (see connect-rest and json-api, for exam‐
ple), but I find that Express is perfectly capable out of the box, and we’ll be sticking
with a pure Express implementation.

We’ll start by creating the handlers in lib/handlers.js (we could create a separate file,
such as lib/api.js, but let’s keep things simple for now):

exports.getVacationsApi = async (req, res) => {
 const vacations = await db.getVacations({ available: true })
 res.json(vacations)
}

exports.getVacationBySkuApi = async (req, res) => {
 const vacation = await db.getVacationBySku(req.params.sku)
 res.json(vacation)
}

Using Express to Provide an API | 191

exports.addVacationInSeasonListenerApi = async (req, res) => {
 await db.addVacationInSeasonListener(req.params.sku, req.body.email)
 res.json({ message: 'success' })
}

exports.requestDeleteVacationApi = async (req, res) => {
 const { email, notes } = req.body
 res.status(500).json({ message: 'not yet implemented' })
}

Then we hook up the API in meadowlark.js:
app.get('/api/vacations', handlers.getVacationsApi)
app.get('/api/vacation/:sku', handlers.getVacationBySkuApi)
app.post('/api/vacation/:sku/notify-when-in-season',
 handlers.addVacationInSeasonListenerApi)
app.delete('/api/vacation/:sku', handlers.requestDeleteVacationApi)

Nothing here should be particularly surprising by now. Note that we’re using our
database abstraction layer, so it doesn’t matter if we use our MongoDB implementa‐
tion or our PostgreSQL implementation (though you will find minor inconsequential
extra fields depending on the implementation, which we could remove if necessary).

I am leaving requestDeleteVacationsApi as a reader’s exercise, mainly because this
functionality could be implemented so many different ways. The simplest approach
would be to just modify our vacation schema to have “delete requested” fields that
just get updated with the email and notes when the API is called. A more sophistica‐
ted approach would be to have a separate table, like a moderation queue, that records
the deletion requests separately, referencing the vacation in question, which would
better lend itself to administrator use.

Assuming you set up Jest correctly in Chapter 5, you should just be able to run npm
test, and the API tests will be picked up (Jest will look for any file that ends
in .test.js). You’ll see we have three passing tests and one failing one: the incom‐
plete DELETE /api/vacation/:sku.

Conclusion
I hope this chapter has left you asking, “That’s it?” At this point, you’re probably real‐
izing that the primary function of Express is to respond to HTTP requests. What the
requests are for—and how they respond—is entirely up to you. Do they need to
respond with HTML? CSS? Plain text? JSON? All easy to do with Express. You could
even respond with binary file types. For example, it would not be hard to dynamically
construct and return images. In this sense, an API is just another one of the many
ways Express can respond.

In the next chapter, we’ll put this API to use by building a single-page application,
and replicate what we’ve done in previous chapters in a different way.

192 | Chapter 15: REST APIs and JSON

1 For performance reasons, the bundle might be split into “chunks” that are loaded as needed (called lazy load‐
ing), but the principle is the same.

CHAPTER 16

Single-Page Applications

The term single-page application (SPA) is something of a misnomer, or it is at least
confusing two meanings of the word “page.” SPAs, from the user’s perspective, can
(and usually do) still appear to have different pages: the home page, the Vacations
page, the About page, and so on. As a matter of fact, you could create a traditional
server-side rendered application and an SPA that were indistinguishable to the user.

The “single page” has more to do with where and how the HTML is constructed than
the user’s experience. In an SPA, the server delivers a single HTML bundle when the
user first loads the application,1 and any changes in the UI (which may appear as dif‐
ferent pages to the user) are the result of JavaScript manipulating the DOM in
response to user activity or network events.

SPAs still need to communicate frequently with the server, but HTML is usually only
sent as part of that first request. After that, only JSON data and static assets are trans‐
ferred between the client and server.

Understanding the reason for this now-dominant approach to web application devel‐
opment requires a little history….

A Short History of Web Application Development
The way we approach web development has undergone a massive shift in the last 10
years, but one thing has remained relatively consistent: the components involved in a
website or web application. Namely:

193

• HTML and the Document Object Model (DOM)
• JavaScript
• CSS
• Static assets (generally multimedia: images and videos, etc.)

Put together by a browser, these components are what provide the user experience.

How that experience is constructed, however, started shifting drastically around 2012.
Today, the dominant paradigm for web development is single-page applications, or
SPAs.

To understand SPAs, we need to understand what to contrast them with, so we’re
going to go even further back in time, to 1998, the year before the term “Web 2.0” was
first whispered, and eight years before jQuery was introduced.

In 1998, the dominant method for delivering web applications was for web servers to
send HTML, CSS, JavaScript, and multimedia assets in response to every request.
Imagine you’re watching TV, and you want to change the channel. The metaphorical
equivalent here is that you would have to throw away your TV, go buy another one,
schlep it into your house, and set it up—just to change the channel (navigate to a dif‐
ferent page, even on the same site).

The problem with this approach is that there’s a lot of overhead involved. Sometimes
the HTML—or large chunks of it—wouldn’t change at all. The CSS changed even less.
Browsers mitigated some of this overhead cost by caching assets, but the pace of
innovation in web applications was straining this model.

In 1999, the term “Web 2.0” was coined to try to describe the richness of experience
that people were beginning to expect from websites. The years between 1999 and
2012 saw technological advancements that were laying the groundwork for SPAs.

Clever web developers began to realize that if they were going to keep their users
engaged, the overhead of shipping the entire website every time the user wanted to
(metaphorically) change the channel was unacceptable. These developers realized
that not every change in an application required information from the server, and not
every change that required information from the server needed the entire application
just to deliver a small change.

In this period from 1999 to 2012, pages were still generally pages: when you first went
to a website, you got the HTML, the CSS, and the static assets. When you navigated
to a different page, you would get different HTML, different static assets, and some‐
times different CSS. However, on each page, the page itself might change in response
to user interaction, and instead of asking the server for a whole new application, Java‐
Script would change the DOM directly. If information needed to be fetched from the
server, that information was sent in XML or JSON, without all the attendant HTML.

194 | Chapter 16: Single-Page Applications

It was, once again, up to the JavaScript to interpret the data and change the user inter‐
face accordingly. In 2006, jQuery was introduced, which significantly eased the bur‐
den of DOM manipulation and dealing with network requests.

Many of these changes were being driven by the increasing power of computers and
—by extension—browsers, Web developers were finding that more and more of the
work to make a website or web application look pretty could be done directly on the
user’s computer instead of being done on the server and then sent to the user.

This shift in approach went into overdrive in the late 2000s, when smartphones were
introduced. Now, not only were browsers capable of doing more, but people wanted
to access web applications over wireless networks. Suddenly, the overhead cost of
sending data went up, making it even more attractive to ship as little as possible over
the network, and let the browser do as much work as possible.

By 2012, it was common practice to try to send as little information as possible over
the network, and do as much as possible in the browser. Like the primordial soup giv‐
ing rise to the first life, this rich environment provided the conditions for the natural
evolution of the this technique: the single-page application.

The idea is simple enough: for any given web application, the HTML, JavaScript, and
CSS (if any) are shipped exactly once. Once the browser has the HTML, it is up to the
JavaScript to make all changes to the DOM to make the user feel that they are navi‐
gating to a different page. No more does the server need to send different HTML
when you navigate from the home page to the Vacations page, for example.

Of course the server is still involved: it’s still responsible for providing up-to-date
data, and being the “single source of truth” in a multiuser application. But in an SPA
architecture, the way the application appears to the user is no longer the concern of
the server: it’s the concern of JavaScript and the frameworks that enable this clever
illusion.

While Angular is generally considered the first SPA framework, it has been joined by
many others: React, Vue, and Ember being the most prominent among Angular’s
competition.

If you are new to development, SPAs may be your only frame of reference, making
this simply some interesting history. But if you’re a veteran, you may find the shift
confusing and jarring. Whichever group you fall into, this chapter is designed to help
you understand how web applications are delivered as SPAs, and what the role of
Express is in that.

This history is relevant to Express because the role of the server has changed during
this shift in web development techniques. When the first edition of this book was
published, Express was still commonly used to serve multi-page applications (along
with the APIs that supported Web 2.0–like functionality). Now Express is almost

A Short History of Web Application Development | 195

entirely used to serve SPAs, development servers, and APIs, reflecting the changing
nature of web development.

Interestingly, there are still valid reasons for a web application to be able to serve a
specific page (instead of the “generic” page, which will be reformatted by the
browser). While this may seem like we are coming full-circle, or throwing away the
gains of SPAs, the technique to do this better mirrors the architecture of SPAs. Called
server-side rendering (SSR), this technique allows the servers to use the same code that
the browser uses to create individual pages to increase first-page load. The key here is
that the server doesn’t have to do much thinking: it simply uses the same techniques
as the browser to generate a specific page. This kind of SSR is usually done to
enhance first-page loading experience, and to support search engine optimization. It’s
a more advanced topic that we won’t be covering here, but you should be aware of the
practice.f1603.450

Now that we have some insight into how and why SPAs came into being, let’s look at
the SPA frameworks that are available today.

SPA Technologies
There are many choices for SPA technologies now:

React
For the moment, React seems to be the king of the SPA hill, though there are for‐
mer greats (Angular) on one side of it, and ambitious usurpers (Vue) on the
other side. Sometime in 2018, React surpassed Angular in usage statics. React is
an open source library, but it started its life as a Facebook project, and Facebook
is still an active contributor. We’ll be using React for our Meadowlark Travel
refactor.

Angular
By most accounts, the “original” SPA, Google’s Angular became massively popu‐
lar but was eventually dethroned by React. In late 2014, Angular announced ver‐
sion 2, which was a massive change from the first version, and alienated many
existing users and scared off new ones. I believe this shift (while probably neces‐
sary) contributed to React eventually outpacing Angular. Another reason is that
Angular is a much larger framework than React. This has advantages and disad‐
vantages: Angular provides a much more complete architecture for building full
applications, and there’s always a clear “Angular way” to do things, whereas
frameworks like React and Vue leave a lot more up to personal choice and crea‐
tivity. Regardless of which approach is better, bigger frameworks are more pon‐
derous and slow to evolve, which gave React an innovation edge.

196 | Chapter 16: Single-Page Applications

Vue.js
An upstart challenger to React, and the brainchild of a single developer, Evan
You. In a remarkably short time, it has gained an impressive following, and it is
extremely well-liked by its adherents, but it is still far behind React’s runaway
popularity. I have had some experience with Vue, and I appreciate its clear docu‐
mentation and lightweight approach, but I have come to prefer React’s architec‐
ture and philosophy.

Ember
Like Angular, Ember offers a comprehensive application framework. There’s a
large and active development community and, while not as innovative as React
or Vue, it offers a lot of functionality and clarity. I have found I far prefer lighter
frameworks, and have stuck with React for this reason.

Polymer
I have no experience with Polymer, but it is backed by Google, which lends it
credibility. People seem to be curious about what Polymer is bringing to the table,
but I haven’t seen a lot of people rushing to adopt it.

If you’re looking for a robust out-of-the-box framework, and you don’t mind coloring
within the lines, you should consider Angular or Ember. If you want room for crea‐
tive expression and innovation, I recommend React or Vue. I don’t yet know where
Polymer fits in yet, but it’s worth keeping an eye on.

Now that we’ve seen the players, let’s move forward with React, and refactor Meadow‐
lark Travel as an SPA!

Creating a React App
The best way to get started with a React app is to use the create-react-app (CRA)
utility, which creates all of the boilerplate, developer tooling, and provides a minimal
starter application that you can build on. Furthermore, create-react-app will keep
its configuration up-to-date so you can focus on building your application instead of
on framework tooling. That said, if you ever reach the point where you need to con‐
figure your tooling, you can “eject” your application: you’ll lose the ability to keep up-
to-date with the latest CRA tooling, but you’ll have full control over all of the
application configuration.

Unlike what we’ve been doing so far, where all of our application artifacts lived along‐
side our Express application, SPAs are best thought of as a completely separate, inde‐
pendent application. To that end, we’ll have two application roots instead of one. For
clarity, when I’m referring to the directory where your Express application lives, I’ll
say the server root, and for the directory where your React application lives, I’ll say
the client root. The application root is where both of those directories now live.

Creating a React App | 197

So go to your application root and create a directory called server; this is where your
Express server will live. Don’t create a directory for your client app; CRA will do that
for us.

Before we run CRA, we should install Yarn. Yarn is a package manager like npm…
actually, yarn is mostly a drop-in replacement for npm. It’s not mandatory for React
development, but it is the de facto standard, and not using it would be swimming
upstream. There are some minor differences in usage between Yarn and npm, but the
only one you’ll probably notice is that you run yarn add instead of npm install. To
install Yarn, simply follow the Yarn installation instructions.

Once you’ve installed Yarn, run the following from your application root:

yarn create react-app client

Now go into your client directory and type yarn start. After a few seconds, you’ll
see a new browser window pop up, with your React app running in it!

Go ahead and leave the terminal window running. CRA has really good support for
“hot reloading,” so when you make changes in your source code, it will get built very
quickly and the browser will automatically reload. Once you get used to it, you won’t
be able to live without it.

React Basics
React has excellent documentation, which I won’t re-create here. So if you’re new to
React, start with the Intro to React tutorial, and then the Main Concepts guide.

You’ll find that React is organized around components, which are the main building
blocks of React. Everything the user sees or interacts with is generally a component in
React. Let’s take a look at client/src/App.js (the contents of yours may differ slightly—
CRA does change over time):

import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"

198 | Chapter 16: Single-Page Applications

https://yarnpkg.com
http://bit.ly/2xHZ2Cx
http://bit.ly/36VdKUq
http://bit.ly/2KgT939

 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}

export default App;

One of the core concepts in React is that the UI is generated by functions. And the
simplest React component is just a function that returns HTML, as we see here. You
may be looking at this and thinking that it isn’t valid JavaScript; it looks like HTML is
mixed in! The reality is a little more complicated. React, by default, enables a superset
of JavaScript called JSX. JSX allows you to write what looks like HTML. It’s not
actually HTML; it creates React elements, and the purpose of a React element is to
(eventually) correspond to a DOM element.

At the end of the day, however, you can think of it as HTML. Here, App is a function
that will render the HTML corresponding to the JSX it returns.

A couple of things to note: since JSX is close to—but not exactly—HTML, there are
some subtle differences. You may have already noticed we use className instead of
class, which is because class is a reserved word in JavaScript.

All you have to do to specify HTML is to start an HTML element anywhere an
expression is expected. You can also “go back to” JavaScript with curly braces within
the HTML. For example:

const value = Math.floor(Math.random()*6) + 1
const html = <div>You rolled a {value}!</div>

In this example, the <div> starts the HTML, and the curly brackets around value
drop back into JavaScript to provide the number stored in value. We could have just
as easily inlined the calculation:

const html = <div>You rolled a {Math.floor(Math.random()*6) + 1}!</div>

Any valid JavaScript expression can be contained within curly brackets within JSX—
including other HTML elements! A common use case of this is rendering lists:

const colors = ['red', 'green', 'blue']
const html = (

 {colors.map(color =>
 <li key={color}>{color}
)}

)

React Basics | 199

A couple of things to note about this example. First, note that we mapped over our
colors to return the elements. This is critical: JSX works entirely by evaluating
expressions. So the has to contain either an expression or an array of expressions.
If you changed the map to a forEach, you would find that the elements would
not get rendered. Second, note that the elements receive a property key: this is a
performance concession. For React to know when to re-render the elements in an
array, it needs a unique key for each element. Since our array elements are unique, we
just used that value, but commonly you would use a an ID or—if nothing else is avail‐
able—the index of the item in the array.

I encourage you to play around with some of these examples in the JSX in client/src/
App.js before moving on. If you’ve left yarn start running, every time you save your
changes, they will be automatically reflected in the browser, which should speed up
your learning cycle.

We have one more topic to touch on before we move on from React basics, and that
concept is state. Every component can have its own state, which basically means that
“data associated with the component that can change.” A shopping cart is a great
example of this. A shopping cart component’s state would contain a list of items; as
you add and remove items from the cart, the component’s state is changing. It may
seem like an overly simple or obvious concept, but most of the details of making a
React application come down to effectively designing and managing the state of your
components. We’ll see an example of state when we tackle the Vacations page.

Let’s move on and create our Meadowlark Travel home page.

The Home Page
Recall from our Handlebars views that we had a main “layout” file that established the
primary look and feel of our website. Let’s start by focusing on what’s in the <body>
tag (except the scripts):

<div class="container">
 <header>
 <h1>Meadowlark Travel</h1>

 </header>
 {{{body}}}
</div>

This will be pretty easy to refactor into a React component. First, we copy our own
logo into the client/src directory. Why not the public directory? For small or com‐
monly used graphical items, it may be more efficient to inline them in the JavaScript
bundle, and the bundler that you got with CRA will make an intelligent choice about
that. The example app you got from CRA placed its logo directly in the client/src

200 | Chapter 16: Single-Page Applications

directory, but I still like collecting image assets in a subdirectory, so put our logo
(logo.png) in client/src/img/logo.png.

The only other tricky bit is what to do about {{{body}}}? In our views, this is where
another view would be rendered—the content for the specific page you’re on. We can
replicate the same basic idea in React. Since all content is rendered in the form of
components, we’re just going to render another component here. We’ll start with an
empty Home component and build that out in a moment:

import React from 'react'
import logo from './img/logo.png'
import './App.css'

function Home() {
 return (<i>coming soon</i>)
}

function App() {
 return (
 <div className="container">
 <header>
 <h1>Meadowlark Travel</h1>

 </header>
 <Home />
 </div>
)
}

export default App

We’re using the same approach that the sample app did for CSS: we can simply create
a CSS file and import it. So we can edit that file and apply whatever styles we need to.
We’ll keep things basic for this example, though nothing fundamental has changed in
the way we style HTML with CSS, so we still have all the tools we’re used to.

CRA sets up linting for you, and as you progress through this chap‐
ter, you’ll probably see warnings (both in the CRA terminal output
and in your browser’s JavaScript console). This is only because
we’re adding things incrementally; by the time we reach the end of
this chapter, there should be no more warnings…if there are, make
sure you haven’t missed a step! You can also check the companion
repository.

Routing
The core concept of routing we learned about in Chapter 14 hasn’t changed: we’re still
using the URL path to determine what part of the interface the user is seeing. The

React Basics | 201

difference is that it’s up to the client application to handle that. Changing the UI
based on the route is the client app’s responsibility: if the navigation requires new or
updated data from the server, that’s fine, and it’s up to the client app to request that
from the server.

There are a lot of options for—and a lot of strong opinions about—routing in React
apps. However, there is a dominant library for routing: React Router. There’s quite a
lot I don’t like about React Router, but it’s so common that you’re bound to come
across it. Furthermore, it is a good option to get something basic up and running, and
for those two reasons, we’ll be using it here.

We’ll get started by installing the DOM version of React Router (there’s also a version
for React Native, for mobile development):

yarn add react-router-dom

Now we’ll hook up the router, and add an About and a Not Found page. We’ll also
link the site logo back to the home page:

import React from 'react'
import {
 BrowserRouter as Router,
 Switch,
 Route,
 Link
} from 'react-router-dom'
import logo from './img/logo.png'
import './App.css'

function Home() {
 return (
 <div>
 <h2>Welcome to Meadowlark Travel</h2>
 <p>Check out our "<Link to="/about">About</Link>" page!</p>
 </div>
)
}

function About() {
 return (<i>coming soon</i>)
}

function NotFound() {
 return (<i>Not Found</i>)
}

function App() {
 return (
 <Router>
 <div className="container">
 <header>

202 | Chapter 16: Single-Page Applications

http://bit.ly/32GvAXK

 <h1>Meadowlark Travel</h1>
 <Link to="/"></Link>
 </header>
 <Switch>
 <Route path="/" exact component={Home} />
 <Route path="/about" exact component={About} />
 <Route component={NotFound} />
 </Switch>
 </div>
 </Router>
)
}

export default App

The first thing to notice is that we’re wrapping our entire application in a <Router>
component. This is what enables the routing, as you might expect. Inside <Router>,
we can use <Route> to conditionally render a component based on the URL path.
We’ve placed our content routes inside a <Switch> component: this ensures that only
one of the components contained therein gets rendered.

There are some subtle differences between the routing we’ve done with Express and
React Router. In Express, we would render the page according to the first successful
match (or the 404 page if one couldn’t be found). With React Router, the path is sim‐
ply a “hint” to determine what combination of components should display. In this
way, it’s more flexible than routing with Express. Because of this, React Router routes
behave by default as if they have an asterisk (*) at the end. That is, the route / would,
by default, match every page (since they all start with a forward slash). Because of
this, we use the exact property to make this route behave more like an Express route.
Similarly, without the exact property, the /about route would also match /about/
contact, which is probably not what we want. For your main content routing, it’s
likely that you’ll want all of your routes (except the Not Found route) to have exact.
Otherwise, you will have to make sure to arrange them correctly within the <Switch>
so they match in the correct order.

The second thing to notice is the use of <Link>. You might be wondering why we
don’t just use <a> tags. The problem with <a> tags is that—without some extra work
—the browser will dutifully treat them as “going elsewhere” even if it’s on the same
site, and it will result in a new HTTP request to the server…and the HTML and the
CSS will be downloaded again, defeating the SPA agenda. It will work in the sense that
when the page loads, React Router will do the right thing, but it won’t be as fast or
efficient, invoking unnecessary network requests. Seeing the difference is actually an
instructive exercise that should drive home the nature of SPAs. As an experiment,
create two navigation elements, one using <Link> and another using <a>:

<Link to="/">Home (SPA)</Link>
Home (reload)</Link>

React Basics | 203

Then open your dev tools, open the Network tab, clear the traffic, and click “Preserve
log” (on Chrome). Now click the “Home (SPA)” link and notice there’s no network
traffic at all. Click the “Home (reload)” link and observe the network traffic. And
that, in a nutshell, is the nature of an SPA.

Vacations Page—Visual Design
So far we’ve just been building a pure frontend application…so where does Express
come in? Our server is still the single source of truth. In particular, it maintains the
database of vacations that we want to display on our site. Fortunately, we’ve already
done most of the work in Chapter 15: we exposed an API that will return our vaca‐
tions in JSON format, ready for use in a React application.

Before we hook those two things up, however, let’s go ahead and build our Vacations
page. There won’t be any vacations to render, but let’s not let that stop us.

In the previous section, we included all of the content pages in client/src/App.js, which
is generally considered poor practice: its more conventional for each component to
live in its own file. So we’ll take the time to break our Vacations component out into
its own component. Create the file client/src/Vacations.js:

import React, { useState, useEffect } from 'react'
import { Link } from 'react-router-dom'

function Vacations() {
 const [vacations, setVacations] = useState([])
 return (
 <>
 <h2>Vacations</h2>
 <div className="vacations">
 {vacations.map(vacation =>
 <div key={vacation.sku}>
 <h3>{vacation.name}</h3>
 <p>{vacation.description}</p>
 {vacation.price}
 </div>
)}
 </div>
 </>
)
}

export default Vacations

What we have so far is pretty simple: we’re just returning a <div> that contains addi‐
tional <div> elements, each of which represents a vacation. So where is this vaca
tions variable coming from? In this example, we’re using a newer feature of React,
called React hooks. Prior to hooks, if a component wanted to have its own state (in
this case, a list of vacations), you had to use a class implementation. Hooks enable us

204 | Chapter 16: Single-Page Applications

to have function-based components that have their own state. In our Vacations func‐
tion, we call useState to set up our state. Note we pass an empty array to useState:
that will be the initial value of vacations in state (we’ll discuss how we populate that
shortly). What setState returns is an array containing the state value itself (vaca
tions) and a way to update the state (setVacations).

You may wonder why we can’t modify vacations directly: it’s just an array, so
couldn’t we call push to add vacations to it? We could, but this would be defeating the
very purpose of React’s state management system, which ensures consistency, perfor‐
mance, and communication between components.

You may also be wondering about what looks like an empty component (<>…</>) sur‐
rounding our vacations. This is called a fragment. The fragment is necessary because
every component must render a single element. In our case, we have two elements,
the <h2> and the <div>. The fragment simply provides a “transparent” root element
in which to contain these two elements so we can render a single element.

Let’s add our Vacations component to our application, even though there aren’t yet
any vacations to show. In client/src/App.js, first import your vacations page:

import Vacations from './Vacations'

Then all we have to do is create a route for it in our router’s <Switch> component:

<Switch>
 <Route path="/" exact component={Home} />
 <Route path="/about" exact component={About} />
 <Route path="/vacations" exact component={Vacations} />
 <Route component={NotFound} />
</Switch>

Go ahead and save that; your application should automatically reload, and you can
navigate to your /vacations page, though there isn’t much interesting to see yet. Now
that we have most of the client infrastructure in place, let’s turn our attention to inte‐
grating with Express.

Vacations Page—Server Integration
We’ve already done most of the work necessary for the Vacations page; we have an
API endpoint that gets vacations from the database and returns them in JSON for‐
mat. Now we have to figure out how to get the server and the client communicating.

We can start with our work from Chapter 15; we don’t need to add anything to it, but
we can take some things away that we no longer need. We can remove the following:

• Handlebars and views support (we’ll leave the static middleware, though, for rea‐
sons we’ll see later).

React Basics | 205

http://bit.ly/2ryneVj

• Cookies and sessions (our SPA may still use cookies, but it no longer needs the
server’s help here…and we think about sessions in a completely different way).

• All routes that render a view (we obviously keep the API routes, however).

This leaves us with a much simplified server. So what do we do with it now? The first
thing we have to do is address the fact that we’ve been using port 3000, and the CRA
development server also uses port 3000 by default. We could change either, so I’m
going to arbitrarily suggest changing the Express port. I usually use 3033—just
because I like the sound of that number. You’ll recall that we set the default port in
our meadowlark.js, so we just need to change it:

const port = process.env.PORT || 3033

We could, of course, use an environment variable to control it, but since we’re going
to frequently use it together with our SPA dev server, we might as well change the
code.

Now that both servers are running, we can communicate between them. But how? In
our React app, we could do something like this:

fetch('http://localhost:3033/api/vacations')

The problem with that approach is that we’re going to be making requests like that all
over our application…and now we’re embedding http://localhost:3033 all over
the place…which isn’t going to work in production, and it may not work on your col‐
league’s computer because maybe it needs to use different ports, and maybe the port
needs to be different for the testing servers…and on and on. Using this approach is
asking for a configuration headache. Yes, you could store the base URL as a variable
that you use everywhere, but there’s a better way.

In the ideal world, from your application’s perspective, everything’s hosted from the
same place: it’s the same protocol, host, and port to get the HTML, the static assets,
and the API. It simplifies a lot of things and ensures consistency in your source code.
If everything’s coming from the same place, you can simply omit the protocol, host
and port, and just call fetch(/api/vacations). It’s a nice approach, and fortunately
very easy to do!

The configuration for CRA comes with proxy support, allowing you to pass web
requests on to your API. Edit your client/package.json file, and add the following:

"proxy": "http://localhost:3033",

It doesn’t matter where you add it. I usually put it between "private" and "dependen
cies" just because I like to see it high in the file. Now—as long as your Express server
is running on port 3033—your CRA development server will pass API requests
through to your Express server.

206 | Chapter 16: Single-Page Applications

http://localhost:3033

Now that that configuration is in place, let’s use an effect (another React hook) to
fetch and update vacation data. Here’s the entire Vacations component with the
useEffect hook:

function Vacations() {
 // set up state
 const [vacations, setVacations] = useState([])

 // fetch initial data
 useEffect(() => {
 fetch('/api/vacations')
 .then(res => res.json())
 .then(setVacations)
 }, [])

 return (
 <>
 <h2>Vacations</h2>
 <div className="vacations">
 {vacations.map(vacation =>
 <div key={vacation.sku}>
 <h3>{vacation.name}</h3>
 <p>{vacation.description}</p>
 {vacation.price}
 </div>
)}
 </div>
 </>
)
}

As before, useState is configuring our component state to have a vacations array,
with a companion setter. Now we’ve added useEffect, which calls our API to retrieve
vacations, and then calls that setter asynchronously. Note that we pass in an empty
array as the second argument to useEffect; this is a signal to React that this effect
should be run only once, when the component is mounted. On the surface, that may
seem like an odd way to signal that, but once you learn more about hooks, you’ll see
that it’s actually quite consistent. To learn more about hooks, see the React hooks doc‐
umentation.

Hooks are relatively new—they were added in version 16.8 in February 2019—so
even if you have some experience with React, you may not be familiar with hooks. I
firmly believe that hooks are an excellent innovation in the React architecture, and,
while they may seem alien at first, you’ll find that they actually simplify your compo‐
nents and reduce some of the trickier state-related mistakes that people commonly
make.

Now that we’ve learned how to retrieve data from the server, let’s turn our attention to
sending information the other way.

React Basics | 207

http://bit.ly/34MGSeK
http://bit.ly/34MGSeK

Sending Information to the Server
We already have an API endpoint to make changes on the server; we have an end‐
point to be emailed when is back in season. Let’s go ahead and modify our Vacations
component to show a sign-up form for vacations that are out of season. In true React
fashion, we’ll create two new components: we’ll break out the individual vacation
view into Vacation and a NotifyWhenInSeason component. We could do it all in one,
but the recommended approach to React development is to have many specific-
purpose components instead of gigantic multipurpose components (for the sake of
brevity, however, we are going to stop short of putting these components in their own
files: I’ll leave that as a reader’s exercise):

import React, { useState, useEffect } from 'react'

function NotifyWhenInSeason({ sku }) {
 return (
 <>
 <i>Notify me when this vacation is in season:</i>
 <input type="email" placeholder="(your email)" />
 <button>OK</button>
 </>
)
}

function Vacation({ vacation }) {
 return (
 <div key={vacation.sku}>
 <h3>{vacation.name}</h3>
 <p>{vacation.description}</p>
 {vacation.price}
 {!vacation.inSeason &&
 <div>
 <p><i>This vacation is not currently in season.</i></p>
 <NotifyWhenInSeason sky={vacation.sku} />
 </div>
 }
 </div>
)
}

function Vacations() {
 const [vacations, setVacations] = useState([])
 useEffect(() => {
 fetch('/api/vacations')
 .then(res => res.json())
 .then(setVacations)
 }, [])
 return (
 <>
 <h2>Vacations</h2>

208 | Chapter 16: Single-Page Applications

 <div className="vacations">
 {vacations.map(vacation =>
 <Vacation key={vacation.sku} vacation={vacation} />
)}
 </div>
 </>
)
}

export default Vacations

Now, if you have any vacations that have inSeason as false (and you will, unless you
changed your database or initialization scripts), you will update the form. Now let’s
hook up our button to make the API call. Modify NotifyWhenInSeason:

function NotifyWhenInSeason({ sku }) {
 const [registeredEmail, setRegisteredEmail] = useState(null)
 const [email, setEmail] = useState('')
 function onSubmit(event) {
 fetch(`/api/vacation/${sku}/notify-when-in-season`, {
 method: 'POST',
 body: JSON.stringify({ email }),
 headers: { 'Content-Type': 'application/json' },
 })
 .then(res => {
 if(res.status < 200 || res.status > 299)
 return alert('We had a problem processing this...please try again.')
 setRegisteredEmail(email)
 })
 event.preventDefault()
 }
 if(registeredEmail) return (
 <i>You will be notified at {registeredEmail} when
 this vacation is back in season!</i>
)
 return (
 <form onSubmit={onSubmit}>
 <i>Notify me when this vacation is in season:</i>
 <input
 type="email"
 placeholder="(your email)"
 value={email}
 onChange={({ target: { value } }) => setEmail(value)}
 />
 <button type="submit">OK</button>
 </form>
)
}

We’re choosing here to have the component track two different values: the email
address as the user types it, and the final value after they press OK. The former is a
technique known as controlled components, and you can read more about it on the

React Basics | 209

React forms documentation. The latter we’re keeping track of so we can know when
the user took the action of pressing OK so we can change the UI accordingly. We
could have also had a simple boolean “registered,” but this allows our UI to remind
the user what email they registered with.

We also had to do a little more work with our API communication: we had to specify
the method (POST), encode the body as JSON, and specify the content type.

Note that we make a decision about which UI to return. If the user has already regis‐
tered, we return a simple message, and if they haven’t, we render the form. This is a
very common pattern in React.

Whew! It seems like a lot of work for that small bit of functionality…and pretty crude
functionality at that. Our error-handling if there’s something wrong with the API call
is functional, but less than user-friendly, and while the component will remember
which vacations we’ve signed up for, it will do so only while we’re on this page. If we
navigate away and come back, we’ll see the form again.

There are steps we could take to make this code a little more palatable. For starters,
we might write an API wrapper that will handle the messy details of encoding input
and determining errors; that will certainly pay dividends as we use more and more
API endpoints. There are also many popular form-processing frameworks for React
that go a long way to ease the burden of form processing.

Addressing the problem of “remembering” what vacations the user has signed up for
is a little trickier. What would really serve us would be a way for our vacation objects
to have that information available (whether or not the user had registered). However,
our special-purpose component doesn’t know anything about the vacation; it’s only
given the SKU. In the next section, we’ll talk about state management, which points to
a solution to that problem.

State Management
Most of the architectural work that goes into planning and designing a React applica‐
tion is focused around state management—and not usually the state management of
single components, but how they share and coordinate state. Our sample application
does share some state: the Vacations component passes down a vacation object to the
Vacation component, and the Vacation component in turn passes down the vaca‐
tion’s SKU to the NotifyWhenInSeason listener. But so far, our information is only
flowing down the tree; what happens when information needs to go back up?

The most common approach is to pass functions around that are responsible for
updating state. For example, the Vacations component might have a function for
modifying a vacation, which it could pass to Vacation, which could in turn be passed
down to NotifyWhenInSeason. When NotifyWhenInSeason calls it to modify the

210 | Chapter 16: Single-Page Applications

http://bit.ly/2X9P9qh

vacation, Vacations, at the top of the tree, would recognize that things had changed,
which would cause it to re-render, which in turns causes all of its descendants to re-
render.

It sounds exhausting and complicated, and sometimes it can be, but there are techni‐
ques that can help. They are so varied and sometimes complex that we can’t com‐
pletely cover them here (nor is this a book about React), but I can point you to some
further reading:

Redux
Redux is usually the first thing that comes to people’s minds when they think
about comprehensive state management for React applications. It was one of the
first formalized state management architectures, and it is still incredibly popular.
In concept, it is extremely simple, and it is still the state management framework
that I prefer. Even if you don’t end up choosing Redux, I recommend you watch
the free tutorial videos by its creator, Dan Abramov.

MobX
MobX came along after Redux. It has gained an impressive following in a short
amount of time and is probably the second most popular state container, behind
Redux. MobX can certainly result in code that seems easier to write, but I still feel
that Redux has an edge in providing a good framework as your application scales,
even with its increased boilerplate.

Apollo
Apollo isn’t a state management library per se, but the way its used often takes the
place of one. It’s essentially a frontend interface for GraphQL--an alternative to
REST APIs—that offers a lot of integration with React. If you’re using GraphQL
(or interested in it), it’s definitely worth looking into.

React Context
React itself has gotten into the game by providing the Context API, now built
into React. It accomplishes some of the same things that Redux does with less
boilerplate. However, I feel that React Context is less robust and that Redux is a
better choice for applications as they grow.

When you start out with React, you can essentially ignore the complexities of state
management across your application, but pretty quickly you’ll realize the need for a
more organized way to manage state. When you reach that point, you’ll want to look
into some of these options and pick one that resonates with you.

React Basics | 211

https://redux.js.org
https://egghead.io/courses/getting-started-with-redux
https://mobx.js.org
https://www.apollographql.com
https://graphql.org
https://reactjs.org/docs/context.html

Deployment Options
So far, we’ve been using CRA’s built-in development server—which really is the best
choice for development, and I recommend sticking with it. However, when it comes
time for deployment, it’s not a suitable choice. Fortunately, CRA comes loaded with a
build script that creates a bundle optimized for production, and then you have many
options. When you’re ready to create a deployment bundle, simply run yarn build,
and a build directory will be created. All of the assets in the build directory are static
and can be deployed anywhere.

My current deployment of choice is to put the CRA build in an AWS S3 bucket with
Static Website Hosting turned on. This is far from the only option: every major cloud
provider and CDN offers something similar.

In this configuration, we have to create routing so that the API calls are routed to
your Express server and your static bundle is served from a CDN. For my AWS
deployments, I use AWS CloudFront to perform this routing; the static assets are
served from the aforementioned S3 bucket, and the API requests are routed to either
an Express server on an EC2 instance, or on a Lambda.

Another option is to let Express do the whole thing. This has the advantage of being
able to consolidate your entire application onto a single server, which makes for a
pretty simple deployment, and makes management easy. It may not be ideal for scala‐
bility or performance, but it’s a valid choice for small applications.

To serve your application entirely from Express, simply take contents of the build
directory that was created when you ran yarn build, and copy it into the public
directory in your Express application. As long as you have your static middleware
linked in, it will automatically serve the index.html file, which is all you need.

Go ahead and try it: if your Express server is still running on port 3033, you should
be able to visit http://localhost:3033 and see the same application that your CRA dev
server is providing!

In case you’re wondering how CRA’s dev server works, it uses a
package called webpack-dev-server, which uses Express under the
hood! So it all comes back to Express in the end!

Conclusion
This chapter has only scratched the surface of React, and the technologies that swirl
around it. If you want to take a deeper dive into React, Learning React by Alex Banks
and Eve Porcello (O’Reilly) is a great place to start. This book also covers state man‐

212 | Chapter 16: Single-Page Applications

https://amzn.to/3736fuT
https://amzn.to/2KglZRb
https://oreil.ly/ROqku

agement with Redux (however, it does not currently cover hooks). The official React
documentation is also comprehensive and well-written.

SPAs have certainly changed the way we think about and deliver web applications,
and have enabled significant performance improvements, especially on mobile. Even
though Express was written in an era when most HTML was still substantially ren‐
dered on the server, it has certainly not made Express obsolete. Quite the contrary,
the need to provide APIs to single-page applications has, if anything, given Express
new life!

It should also be clear from reading this chapter that it’s really all the same game: data
getting sent back and forth between browsers and servers. It’s only the nature of that
data that’s changed, and getting used to changing HTML through dynamic DOM
manipulation.

Conclusion | 213

http://bit.ly/37377Qb
http://bit.ly/37377Qb

1 It is possible to use uncompiled LESS in a browser, with some JavaScript magic. There are performance conse‐
quences to this approach, so I don’t recommend it.

CHAPTER 17

Static Content

Static content refers to the resources your app will be serving that don’t change on a
per-request basis. Here are the usual suspects:

Multimedia
Images, videos, and audio files. It’s quite possible to generate image files on the
fly, of course (and video and audio, though that’s far less common), but most
multimedia resources are static.

HTML
If our web application is using views to render dynamic HTML, it wouldn’t gen‐
erally qualify as static HTML (though for performance reasons, you may dynam‐
ically generate HTML, cache it, and serve it as a static resource). SPA
applications, as we’ve seen, commonly send a single, static HTML file to the cli‐
ent, which is the most common reason to treat HTML as a static resource. Note
that requiring the client to use an .html extension is not very modern, so most
servers now allow static HTML resources to be served without the extension
(so /foo and /foo.html would return the same content).

CSS
Even if you use an abstracted CSS language like LESS, Sass, or Stylus, at the end
of the day, your browser needs plain CSS, which is a static resource.1

JavaScript
Just because the server is running JavaScript doesn’t mean there won’t be client-
side JavaScript. Client-side JavaScript is considered a static resource. Of course,

215

now the line is starting to get a bit hazy: what if there was common code that we
wanted to use on the backend and client side? There are ways to solve this prob‐
lem, but at the end of the day, the JavaScript that gets sent to the client is gener‐
ally static.

Binary downloads
This is the catchall category: any PDFs, ZIP files, Word documents, installers,
and the like.

If you are building an API only, there may be no static resources. If
that’s the case, you may skip this chapter.

Performance Considerations
The way you handle static resources significantly impacts the real-world performance
of your website, especially if your site is multimedia-heavy. The two primary perfor‐
mance considerations are reducing the number of requests and reducing content size.

Of the two, reducing the number of (HTTP) requests is more critical, especially for
mobile (the overhead of making an HTTP request is significantly higher over a cellu‐
lar network). Reducing the number of requests can be accomplished in two ways:
combining resources and browser caching.

Combining resources is primarily an architectural and frontend concern: as much as
possible, small images should be combined into a single sprite. Then use CSS to set
the offset and size to display only the portion of the image you want. For creating
sprites, I highly recommend the free service SpritePad. It makes generating sprites
incredibly easy, and it generates the CSS for you as well. Nothing could be easier.
SpritePad’s free functionality is probably all you’ll ever need, but if you find yourself
creating a lot of sprites, you might find their premium offerings worth it.

Browser caching helps reduce HTTP requests by storing commonly used static
resources in the client’s browser. Though browsers go to great lengths to make cach‐
ing as automatic as possible, it’s not magic: there’s a lot you can and should do to
enable browser caching of your static resources.

Lastly, we can increase performance by reducing the size of static resources. Some
techniques are lossless (size reduction can be achieved without losing any data), and
some techniques are lossy (size reduction is achieved by reducing the quality of static
resources). Lossless techniques include minification of JavaScript and CSS, and opti‐
mizing PNG images. Lossy techniques include increasing JPEG and video compres‐

216 | Chapter 17: Static Content

http://bit.ly/33GYvwm

sion levels. We’ll be discussing minification and bundling (which also reduces HTTP
requests) in this chapter.

The importance of reducing HTTP requests will diminish over
time as HTTP/2 becomes more commonplace. One of the primary
improvements in HTTP/2 is request and response multiplexing,
which reduces the overhead of fetching multiple resources in paral‐
lel. See “Introduction to HTTP/2” by Ilya Grigorikfor more infor‐
mation.

Content Delivery Networks
When you move your website into production, the static resources must be hosted on
the internet somewhere. You may be used to hosting them on the same server where
all your dynamic HTML is generated. Our example so far has also taken this
approach: the Node/Express server we spin up when we type node meadowlark.js
serves all of the HTML as well as static resources. However, if you want to maximize
the performance of your site (or allow for doing so in the future), you will want to
make it easy to host your static resources on a content delivery network (CDN). A
CDN is a server that’s optimized for delivering static resources. It leverages special
headers (that we’ll learn about soon) that enable browser caching.

CDNs also can enable geographic optimization (often called edge caching); that is, they
can deliver your static content from a server that is geographically closer to your cli‐
ent. While the internet is very fast indeed (not operating at the speed of light, exactly,
but close enough), it is still faster to deliver data over a hundred miles than a thou‐
sand. Individual time savings may be small, but if you multiply across all of your
users, requests, and resources, it adds up fast.

Most of your static resources will be referenced in HTML views (<link> elements to
CSS files, <script> references to JavaScript files, tags referencing images, and
multimedia embedding tags). It is also common to have static references in CSS, usu‐
ally the background-image property. Lastly, static resources are sometimes referenced
in JavaScript, such as JavaScript code that dynamically changes or inserts tags
or the background-image property.

You generally don’t have to worry about cross-domain resource
sharing (CORS) when using a CDN. External resources loaded in
HTML aren’t subject to CORS policy: you have to enable CORS
only for resources that are loaded via Ajax (see Chapter 15).

Content Delivery Networks | 217

http://bit.ly/34TXhxR

Designing for CDNs
The architecture of your site will influence how you use a CDN. Most CDNs let you
configure routing rules to determine where to send incoming requests. While you
can get arbitrarily sophisticated with those routing rules, it usually boils down to
sending requests for static assets to one location (usually provided by your CDN) and
requests for dynamic endpoints (like dynamic pages or API endpoints) to another.

Choosing and configuring a CDN is a big topic, which I won’t get into here, but I will
arm you with background knowledge that will help you configure your CDN of
choice.

The easiest approach to structuring your application is to make it easy to distinguish
dynamic from static assets to make the CDN routing rules as simple as possible.
While it’s possible to do this using subdomains (dynamic assets are served from mead
owlark.com, and static assets are served from static.meadowlark.com, for example),
this approach has extra complications and makes local development more difficult.
The easier approach is to use the request paths: everything that starts with /public/
is a static asset, and everything else is dynamic, for example. The approach may be
different if you’re generating your content with Express or using Express to provide
an API for a single-page application.

Server-Rendered Website
If you’re using Express to render your dynamic HTML, it’s easier to say, “Everything
that starts with /static/ is a static asset, and everything else is dynamic.” With this
approach, all of your (dynamically generated) URLs would be whatever you want
them to be (as long as they don’t start with /static/, of course!), and all of your static
assets will be prefixed with /static/:

 Welcome to Meadowlark Travel.

So far in this book, we’ve been using the Express static middleware as if it were
hosting all of the static assets at the root. That is, if we put a static asset foo.png in the
public directory, we reference it with the URL path /foo.png, not /static/foo.png. We
could, of course, create a subdirectory static inside our existing public directory, so /
public/static/foo.png would have the URL /static/foo.png but that seems a little silly.
Fortunately, the static middleware saves us from that silliness. All we have to do is
specify a different path when we call app.use:

app.use('/static', express.static('public'))

Now we can use the same URL structure in our development environment that we
will in production. If we’re careful about keeping our public directory in sync with

218 | Chapter 17: Static Content

what’s in our CDN, we can reference the same static assets in both places, and move
seamlessly between development and production.

When we configure routing for our CDN (you’ll have to consult your CDN’s docu‐
mentation for this), your routing will look like this:

URL path Routing destination / origin
/static/* Static CDN file store

/* (everything else) Your Node/Express server, proxy, or load balancer

Single-Page Applications
Single-page applications will typically be the opposite of a server-rendered website:
only the API will be routed to your server (for example, any request prefixed with /
api), and everything else will be rerouted to your static file store.

As we saw in Chapter 16, you will have some way to create a production bundle for
your application, which will include all of the static resources, which you’ll upload to
your CDN. Then all you have to do is make sure routing to your API is configured
correctly. So your routing will look like this:

URL path Routing destination / origin
/api/* Your Node/Express server, proxy, or load balancer

/* (everything else) Static CDN file store

Now that we’ve seen how we might structure an application so we can seamlessly
move from development to production, let’s turn our attention to what’s actually hap‐
pening with caching and how it improves performance.

Caching Static Assets
Whether you’re using Express to serve static assets or using a CDN, it’s helpful to
understand the HTTP response headers your browser uses to determine when and
how to cache static assets:

Expires/Cache-Control
These two headers tell your browser the maximum amount of time a resource
can be cached. They are taken seriously by the browser: if they inform the
browser to cache something for a month, it simply won’t re-download it for a
month, as long as it stays in the cache. It’s important to understand that a browser
may remove the image from the cache prematurely, for reasons you have no con‐
trol over. For example, the user could clear the cache manually, or the browser
could clear your resource to make room for other resources the user is visiting

Caching Static Assets | 219

more frequently. You need one only of these headers, and Expires is more
broadly supported, so it’s preferable to use that one. If the resource is in the
cache, and it has not expired yet, the browser will not issue a GET request at all,
which improves performance, especially on mobile.

Last-Modified/ETag
These two tags provide a versioning of sorts: if the browser needs to fetch the
resource, it will examine these tags before downloading the content. A GET
request is still issued to the server, but if the values returned by these headers sat‐
isfy the browser that the resource hasn’t changed, it will not proceed to download
the file. As the name indicates, Last-Modified allows you to specify the date the
resource was last modified. ETag allows you to use an arbitrary string, which is
usually a version string or a content hash.

When serving static resources, you should use the Expires header and either Last-
Modified or ETag. The Express built-in static middleware sets Cache-Control, but
doesn’t handle either Last-Modified or ETag. So, while it’s suitable for development,
it’s not a great solution for deployment.

If you choose to host your static resources on a CDN, such as Amazon CloudFront,
Microsoft Azure, Fastly, Cloudflare, Akamai, or StackPath, the advantage is that they
will handle most of these details for you. You will be able to fine-tune the details, but
the defaults provided by any of these services are usually good out of the box.

Changing Your Static Content
Caching significantly improves the performance of your website, but it isn’t without
its consequences. In particular, if you change any of your static resources, clients may
not see them until the cached versions expire in your browser. Google recommends
you cache for a month, preferably a year. Imagine a user who uses your website every
day on the same browser: that person might not see your updates for a whole year!

Clearly this is an undesirable situation, and you can’t just tell your users to clear their
cache. The solution is cache busting. Cache busting is a technique for giving you con‐
trol of when your user’s browser is forced to re-download an asset. Usually this
amounts to versioning the asset (main.2.css or main.css?version=2) or adding some
kind of hash (main.e16b7e149dccfcc399e025e0c454bf77.css). Whatever technique you
use, when you update the asset, the resource name changes, and the browser knows it
needs to download it.

We can do the same thing with our multimedia assets. Let’s take our logo, for example
(/static/img/meadowlark_logo.png). If we host it on a CDN for maximum perfor‐
mance, specifying an expiration of one year, and then change the logo, your users
may not see the updated logo for up to a year. However, if you rename your logo /

220 | Chapter 17: Static Content

static/img/meadowlark_logo-1.png (and reflect that name change in your HTML), the
browser will be forced to download it, because it looks like a new resource.

If you’re using a single-page application framework, such as create-react-app or
similar, they will provide a build step that will create production-ready resource bun‐
dles that have hashes appended.

If you’re starting from scratch, you’ll probably want to look into a bundler (which is
what the SPA frameworks use under the hood). Bundlers combine your JavaScript,
CSS, and some other types of static assets into as few as possible, and minify the result
(making it as small as possible). Bundler configuration is a big topic, but fortunately
there is a lot of good documentation out there. The most popular bundlers available
right now are as follows:

Webpack
Webpack was one of the first bundlers to really take off, and it still maintains a
huge following. It’s very sophisticated, but that sophistication comes at a cost: the
learning curve is steep. However, it’s good to at least know the basics.

Parcel
Parcel is the newcomer, and it has made a big splash. It’s extremely well-
documented, extremely fast, and, best of all, has the shortest learning curve. If
you’re looking to get the job done quickly, without a lot of fuss, start here.

Rollup
Rollup sits somewhere between Webpack and Parcel. Like Webpack, it’s very
robust and has a lot of features. However, it is easier to get started with than
Webpack, and not as simple as Parcel.

Conclusion
For what seems like such a simple thing, static resources can be a lot of trouble. How‐
ever, they probably represent the bulk of the data actually being transferred to your
visitors, so spending some time optimizing them will yield substantial payoff.

A viable solution to static assets not previously mentioned is to simply host your
static resources on a CDN from the start, and always use the full URL to the resource
in your views and CSS. This has the advantage of simplicity, but if you ever want to
spend a weekend hackathon at that cabin in the woods without internet access, you’d
be in trouble!

Elaborate bundling and minification is another area in which you can save time if the
payoff isn’t worth it for your application. In particular, if your site includes only one
or two JavaScript files, and all of your CSS lives in a single file, you could probably
skip bundling altogether, but real-world applications have a tendency to grow over
time.

Conclusion | 221

https://webpack.js.org
https://parceljs.org
https://rollupjs.org

Whatever technique you choose to use to serve your static resources, I highly recom‐
mend hosting them separately, preferably on a CDN. If it sounds like a hassle to you,
let me assure that it’s not nearly as difficult as it sounds, especially if you spend a little
time on your deployment system, so deploying static resources to one location and
your application to another is automatic.

If you’re concerned about the hosting costs of CDNs, I encourage you to take a look
at what you’re paying now for hosting. Most hosting providers essentially charge for
bandwidth, even if you don’t know it. However, if all of a sudden your site is men‐
tioned on Slashdot, and you get “Slashdotted,” you may find yourself with a hosting
bill you didn’t expect. CDN hosting is usually set up so that you pay for what you use.
To give you an example, a website that I once managed for a medium-sized regional
company, which used about 20 GB a month of bandwidth, paid only a few dollars per
month to host static resources (and it was a very media-heavy site).

The performance gains you realize by hosting your static resources on a CDN are sig‐
nificant, and the cost and inconvenience of doing so is minimal, so I highly recom‐
mend going this route.

222 | Chapter 17: Static Content

CHAPTER 18

Security

Most websites and applications these days have some kind of security requirement. If
you are allowing people to log in, or if you’re storing personally identifiable informa‐
tion (PII), you’ll want to implement security for your site. In this chapter, we’ll be dis‐
cussing HTTP Secure (HTTPS), which establishes a foundation on which you can
build a secure website, and authentication mechanisms, with a focus on third-party
authentication.

Security is a big topic that could fill up an entire book. For that reason, our focus is
going to be on leveraging existing authentication modules. Writing your own authen‐
tication system is certainly possible, but is a large and complicated undertaking. Fur‐
thermore, there are good reasons to prefer a third-party login approach, which we
will discuss later in this chapter.

HTTPS
The first step in providing secure services is using HTTPS. The nature of the internet
makes it possible for a third party to intercept packets being transmitted between cli‐
ents and servers. HTTPS encrypts those packets, making it extremely difficult for an
attacker to get access to the information being transmitted. (I say “very difficult,” not
“impossible,” because there’s no such thing as perfect security. However, HTTPS is
considered sufficiently secure for banking, corporate security, and healthcare.)

You can think of HTTPS as sort of a foundation for securing your website. It does not
provide authentication, but it lays the groundwork for authentication. For example,
your authentication system probably involves transmitting a password; if that pass‐
word is transmitted unencrypted, no amount of authentication sophistication will
secure your system. Security is as strong as the weakest link, and the first link in that
chain is the network protocol.

223

The HTTPS protocol is based on the server having a public-key certificate, sometimes
called an SSL certificate. The current standard format for SSL certificates is called X.
509. The idea behind certificates is that there are certificate authorities (CAs) that
issue certificates. A certificate authority makes trusted root certificates available to
browser vendors. Browsers include these trusted root certificates when you install a
browser, and that’s what establishes the chain of trust between the CA and the
browser. For this chain to work, your server must use a certificate issued by a CA.

The upshot of this is that to provide HTTPS, you need a certificate from a CA, so
how does one go about acquiring such a thing? Broadly speaking, you can generate
your own, get one from a free CA, or purchase one from a commercial CA.

Generating Your Own Certificate
Generating your own certificate is easy, but generally suitable only for development
and testing purposes (and possibly for intranet deployment). Because of the hierarch‐
ical nature established by certificate authorities, browsers will trust only certificates
generated by a known CA (and that’s probably not you). If your website uses a certifi‐
cate from a CA that’s not known to the browser, the browser will warn you in very
alarming language that you’re establishing a secure connection with an unknown
(and therefore untrusted) entity. In development and testing, this is fine: you and
your team know that you generated your own certificate, and you expect this behav‐
ior from browsers. If you were to deploy such a website to production for consump‐
tion by the public, they would turn away in droves.

If you control the distribution and installation of browsers, you can
automatically install your own root certificate when you install the
browser. This will prevent people using that browser from being
warned when they connect to your website. This is not trivial to set
up, however, and applies only to environments in which you con‐
trol the browser(s) being used. Unless you have a very solid reason
to take this approach, it’s generally more trouble than it’s worth.

To generate your own certificate, you’ll need an OpenSSL implementation. Table 18-1
shows how to acquire an implementation.

Table 18-1. Acquiring an implementation for different platforms

Platform Instructions
macOS brew install openssl

Ubuntu, Debian sudo apt-get install openssl

Other Linux Download from http //www.openssl.org/source/; extract tarball and follow instructions

Windows Download from http://gnuwin32.sourceforge.net/packages/openssl htm

224 | Chapter 18: Security

http://www.openssl.org/source/;
http://gnuwin32.sourceforge.net/packages/openssl.htm

If you are a Windows user, you may need to specify the location of
the OpenSSL configuration file, which can be tricky due to Win‐
dows pathnames. The surefire way is to locate the openssl.cnf file
(usually in the share directory of the installation), and before you
run the openssl command, set the OPENSSL_CNF environment vari‐
able: SET OPENSSL_CONF=openssl.cnf.

Once you’ve installed OpenSSL, you can generate a private key and a public certifi‐
cate:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout meadowlark.pem
 -out meadowlark.crt

You will be asked for some details, such as your country code, city, and state, fully
qualified domain name (FQDN, also called common name or fully qualified host‐
name), and email address. Since this certificate is for development/testing purposes,
the values you provide are not particularly important (in fact, they’re all optional, but
leaving them out will result in a certificate that will be regarded with even more suspi‐
cion by a browser). The common name (FQDN) is what the browser uses to identify
the domain. So if you’re using localhost, you can use that for your FQDN, or you can
use the IP address of the server, or the server name, if available. The encryption will
still work if the common name and domain you use in the URL don’t match, but your
browser will give you an additional warning about the discrepancy.

If you’re curious about the details of this command, you can read about them on the
OpenSSL documentation page. It is worth pointing out that the -nodes option doesn’t
have anything to do with Node, or even the plural word “nodes”: it actually means
“no DES,” meaning the private key is not DES-encrypted.

The result of this command is two files, meadowlark.pem and meadowlark.crt. The
Privacy-Enhanced Electronic Mail (PEM) file is your private key, and should not be
made available to the client. The CRT file is the self-signed certificate that will be sent
to the browser to establish a secure connection.

Alternatively, there are websites that will provide free self-signed certificates, such as
this one.

Using a Free Certificate Authority
HTTPS is based on trust, and it’s an unfortunate reality that one of the easiest ways to
gain trust on the internet is to buy it. And it’s not all snake oil, either: establishing the
security infrastructure, insuring certificates, and maintaining relationships with
browser vendors is expensive.

Buying a certificate is not your only legitimate option for production-ready certifi‐
cates: Let’s Encrypt, a free, automated CA based on open source, has become a great

HTTPS | 225

http://bit.ly/2q64psm
http://bit.ly/354ClEL
https://letsencrypt.org

option. As a matter of fact, unless you’re already invested in an infrastructure that
offers free or inexpensive certificates as its part of your hosting (AWS, for example),
Let’s Encrypt is a great option. The only downside to Let’s Encrypt is that the maxi‐
mum lifetime for their certificates is 90 days. This downside is offset by the fact that
Let’s Encrypt makes it very easy to automatically renew the certificates, and recom‐
mends setting up an automated process to do so every 60 days to ensure the certifi‐
cates don’t expire.

All of the major certificate vendors (such as Comodo and Symantec) offer free trial
certificates that last anywhere from 30 to 90 days. This is a valid option if you want to
test a commercial certificate, but you will need to purchase a certificate before the
trial period is up if you want to ensure continuity of service.

Purchasing a Certificate
Currently, 90% of the approximately 50 root certificates distributed with every major
browser are owned by four companies: Symantec (which purchased VeriSign),
Comodo Group, Go Daddy, and GlobalSign. Purchasing directly from a CA can be
quite expensive: it usually starts around $300 per year (though some offer certificates
for less than $100 per year). A less expensive option is going through a reseller, from
whom you can get an SSL certificate for as little as $10 per year or less.

It’s important to understand exactly what it is you’re paying for, and why you would
pay $10, $150, or $300 (or more) for a certificate. The first important point to under‐
stand is that there is no difference whatsoever in the level of encryption offered
between a $10 certificate and a $1,500 certificate. This is something that expensive
certificate authorities would rather you not know: their marketing tries hard to
obscure this fact.

If you choose to go with a commercial certificate vendor, I recommend the following
three considerations in making your choice:

Customer support
If you ever have problems with your certificate, whether it be browser support
(customers will let you know if your certificate is flagged by their browser as not
trustworthy), installation issues, or renewal hassles, you will appreciate good
customer support. This is one reason you might purchase a more expensive cer‐
tificate. Often, your hosting provider will resell certificates, and in my experience,
they provide a higher level of customer support, because they want to keep you as
a hosting client as well.

Single-domain, multisubdomain, wildcard, and multidomain certificates
The most inexpensive certificates are usually single domain. That may not sound
so bad, but remember that it means that if you purchase a certificate for meadow‐
larktravel.com, then the certificate will not work for www.meadowlarktravel.com,

226 | Chapter 18: Security

or vice versa. For this reason, I tend to avoid single-domain certificates, though it
can be a good option for the extremely budget conscious (you can always set up
redirects to funnel requests to the proper domain). Multisubdomain certificates
are good in that you can purchase a single certificate that covers meadowlarktra‐
vel.com, www.meadowlark.com, blog.meadowlarktravel.com, shop.meadowlarktra‐
vel.com, etc. The downside is that you have to know in advance what subdomains
you want to use.

If you see yourself adding or using different subdomains over the course of a year
(that need to support HTTPS), you might be better off going with a wildcard cer‐
tificate, which are generally more expensive. But they will work for any subdo‐
main, and you never have to specify what the subdomains are.

Lastly, there are multidomain certificates, which, like wildcard certificates, tend to
be more expensive. These certificates support whole multiple domains so, for
example, you could have meadowlarktravel.com, meadowlarktravel.us, meadow‐
larktravel.com, and the www variants.

Domain, organization, and extended validation certificates
There are three kinds of certificates: domain, organization, and extended valida‐
tion. Domain certificates, as the name indicates, simply provide confidence that
you’re doing business with the domain that you think you are. Organization cer‐
tificates, on the other hand, provide some assurance about the actual organiza‐
tion you’re dealing with. They’re more difficult to get: there’s usually paperwork
involved, and you must provide things like state and/or federal business name
records, physical addresses, etc. Different certificate vendors will require different
documentation, so make sure to ask your certificate vendor what’s required to get
one of these certificates. Lastly are extended validation certificates, which are the
Rolls Royce of SLL certificates. They are like organization certificates in that they
verify the existence of the organization, but they require a higher standard of
proof, and can even require expensive audits to establish your data security prac‐
tices (though this seems to be increasingly rare). They can be had for as little as
$150 for a single domain.

I recommend either the less expensive domain certificates or the extended vali‐
dation certificates. Organization certificates, while they verify the existence of
your organization, are not displayed any differently than browsers, so in my
experience, unless the user actually examines the certificate (which is rare), there
will be no apparent difference between this and a domain certificate. Extended
validation certificates, on the other hand, usually display some clues to users that
they are dealing with a legitimate business (such as the URL bar being displayed
in green, and the organization name being displayed next to the SSL icon).

If you’ve dealt with SSL certificates before, you might be wondering why I didn’t men‐
tion certificate insurance. I’ve omitted that price differentiator because essentially it’s

HTTPS | 227

insurance against something that’s almost impossible. The idea is that if someone suf‐
fers financial loss due to a transaction on your website, and they can prove it was due
to inadequate encryption, the insurance is there to cover your damages. While it is
certainly possible that, if your application involves financial transactions, someone
may attempt to take legal action against you for financial loss, the likelihood of it
being due to inadequate encryption is essentially zero. If I were to attempt to seek
damages from a company due to financial loss linked to their online services, the
absolute last approach I would take is to attempt to prove that the SSL encryption was
broken. If you’re faced with two certificates that differ only in price and insurance
coverage, buy the cheaper certificate.

The process of purchasing a certificate starts with the creation of a private key (as we
did previously for the self-signed certificate). You will then generate a certificate sign‐
ing request (CSR) that will be uploaded during the certificate purchase process (the
certificate issuer will provide instructions for doing this). Note that the certificate
issuer never has access to your private key, nor is your private key transmitted over
the internet, which protects the security of the private key. The issuer will then send
you the certificate, which will have an extension of .crt, .cer, or .der (the certificate will
be in a format called Distinguished Encoding Rules or DER, hence the less com‐
mon .der extension). You will also receive any certificates in the certificate chain. It is
safe to email this certificate because it won’t work without the private key you gener‐
ated.

Enabling HTTPS for Your Express App
You can modify your Express app to serve your website over HTTPS. In practice and
in production, this is extremely uncommon, which we’ll learn about in the next sec‐
tion. However, for advanced applications, testing, and your own understanding of
HTTPS, it’s useful to know how to serve HTTPS.

Once you have your private key and certificate, using them in your app is easy. Let’s
revisit how we’ve been creating our server:

app.listen(app.get('port'), () => {
 console.log(`Express started in ${app.get('env')} mode ` +
 `on port + ${app.get('port')}.`)
})

Switching over to HTTPS is simple. I recommend that you put your private key and
SSL cert in a subdirectory called ssl (though it’s quite common to keep it in your
project root). Then you just use the https module instead of http, and pass an
options object along to the createServer method:

const https = require('https')
const fs = require('fs') // usually at top of file

// ...the rest of your application configuration

228 | Chapter 18: Security

const options = {
 key: fs.readFileSync(__dirname + '/ssl/meadowlark.pem'),
 cert: fs.readFileSync(__dirname + '/ssl/meadowlark.crt'),
}

const port = process.env.PORT || 3000
https.createServer(options, app).listen(port, () => {
 console.log(`Express started in ${app.get('env')} mode ` +
 `on port + ${port}.`)
})

That’s all there is to it. Assuming you’re still running your server on port 3000, you
can now connect to https://localhost:3000. If you try to connect to http://localhost:
3000, it will simply time out.

A Note on Ports
Whether you know it or not, when you visit a website, you’re always connecting to a
specific port, even though it’s not specified in the URL. If you don’t specify a port,
port 80 is assumed for HTTP. As a matter of fact, most browsers will simply not dis‐
play the port number if you explicitly specify port 80. For example, navigate to http://
www.apple.com:80; chances are, when the page loads, the browser will simply strip off
the :80. It’s still connecting on port 80; it’s just implicit.

Similarly, there’s a standard port for HTTPS, 443. Browser behavior is similar: if you
connect to https://www.google.com:443, most browsers will simply not display the :
443, but that’s the port they’re connecting over.

If you’re not using port 80 for HTTP or port 443 for HTTPS, you’ll have to explicitly
specify the port and the protocol to connect correctly. There’s no way to run HTTP
and HTTPS on the same port (technically, it’s possible, but there’s no good reason to
do it, and the implementation would be very complicated).

If you want to run your HTTP app on port 80, or your HTTPS app on port 443 so
you don’t have to specify the port explicitly, you have two things to consider. First is
that many systems already have a default web server running on port 80.

The other thing to know is that on most operating systems, ports 1–1023 require ele‐
vated privileges to open. For example, on a Linux or macOS machine, if you attempt
to start your app on port 80, it will probably fail with an EACCES error. To run on port
80 or 443 (or any port under 1024), you’ll need to elevate your privileges by using the
sudo command. If you don’t have administrator rights, you will be unable to start the
server directly on port 80 or 443.

Unless you’re managing your own servers, you probably don’t have root access to
your hosted account: so what happens when you want to run on port 80 or 443? Gen‐
erally, hosting providers have some kind of proxy service that runs with elevated priv‐

HTTPS | 229

https://localhost:3000
http://localhost:3000
http://localhost:3000
http://www.apple.com:80
http://www.apple.com:80
https://www.google.com:443

ileges that will pass requests through to your app, which is running on a
nonprivileged port. We’ll learn more about this in the next section.

HTTPS and Proxies
As we’ve seen, it’s very easy to use HTTPS with Express, and for development, it will
work fine. However, when you want to scale your site out to handle more traffic, you
will want to use a proxy server such as NGINX (see Chapter 12). If your site is run‐
ning in a shared hosting environment, it is almost certain that there will be a proxy
server that will route requests to your application.

If you’re using a proxy server, then the client (the user’s browser) will communicate
with the proxy server, not your server. The proxy server, in turn, will most likely com‐
municate with your app over regular HTTP (since your app and the proxy server will
be running together on a trusted network). You will often hear people say that the
HTTPS terminates at the proxy server, or that the proxy is performing “SSL termina‐
tion.”

For the most part, once you or your hosting provider has correctly configured the
proxy server to handle HTTPS requests, you won’t need to do any additional work.
The exception to that rule is if your application needs to handle both secure and inse‐
cure requests.

There are three solutions to this problem. The first is simply to configure your proxy
to redirect all HTTP traffic to HTTPS, in essence forcing all communication with
your application to be over HTTPS. This approach is becoming much more common,
and it’s certainly an easy solution to the problem.

The second approach is to somehow communicate the protocol used in the client-
proxy communication to the server. The usual way to communicate this is through
the X-Forwarded-Proto header. For example, to set this header in NGINX:

proxy_set_header X-Forwarded-Proto $scheme;

Then, in your app, you could test to see if the protocol was HTTPS:

app.get('/', (req, res) => {
 // the following is essentially
 // equivalent to: if(req.secure)
 if(req.headers['x-forwarded-proto'] === 'https') {
 res.send('line is secure')
 } else {
 res.send('you are insecure!')
 }
})

230 | Chapter 18: Security

In NGINX, there is a separate server configuration block for
HTTP and HTTPS. If you fail to set the X-Forwarded-Protocol in
the configuration block corresponding to HTTP, you open yourself
up to the possibility of a client spoofing the header and thereby
fooling your application into thinking that the connection is secure
even though it isn’t. If you take this approach, make sure you
always set the X-Forwarded-Protocol header.

When you’re using a proxy, Express provides some convenience properties that make
the proxy more “transparent” (as if you weren’t using one, without sacrificing the
benefits). To take advantage of that, tell Express to trust the proxy by using
app.enable('trust proxy'). Once you do, req.protocol, req.secure, and req.ip
will refer to the client’s connection to the proxy, not to your app.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) attacks exploit the fact that users generally trust their
browser and visit multiple sites in the same session. In a CSRF attack, script on a
malicious site makes requests of another site: if you are logged in on the other site,
the malicious site can successfully access secure data from another site.

To prevent CSRF attacks, you must have a way to make sure a request legitimately
came from your website. The way we do this is to pass a unique token to the browser.
When the browser then submits a form, the server checks to make sure the token
matches. The csurf middleware will handle the token creation and verification for
you; all you’ll have to do is make sure the token is included in requests to the server.
Install the csurf middleware (npm install csurf); then link it in and add a token to
res.locals. Make sure you link in the csurf middleware after you link in body-
parser, cookie-parser, and express-session:

// this must come after we link in body-parser,
// cookie-parser, and express-session
const csrf = require('csurf')

app.use(csrf({ cookie: true }))
app.use((req, res, next) => {
 res.locals._csrfToken = req.csrfToken()
 next()
})

The csurf middleware adds the csrfToken method to the request object. We don’t
have to assign it to res.locals; we could just pass req.csrfToken() explicitly to
every view that needs it, but this is generally less work.

Cross-Site Request Forgery | 231

Note that the package itself is called csurf, but most of the vari‐
ables and methods are csrf, without the “u.” It’s easy to get tripped
up here, so mind your vowels!

Now on all of your forms (and AJAX calls), you’ll have to provide a field called _csrf,
which must match the generated token. Let’s see how we would add this to one of our
forms:

<form action="/newsletter" method="POST">
 <input type="hidden" name="_csrf" value="{{_csrfToken}}">
 Name: <input type="text" name="name">

 Email: <input type="email" name="email">

 <button type="submit">Submit</button>
</form>

The csurf middleware will handle the rest: if the body contains fields, but no valid
_csrf field, it will raise an error (make sure you have an error route in your middle‐
ware!). Go ahead and remove the hidden field and see what happens.

If you have an API, you probably don’t want the csurf middleware
interfering with it. If you want to restrict access to your API from
other websites, you should look into the “API key” functionality of
an API library like connect-rest. To prevent csurf from interfer‐
ing with your middleware, link it in before you link in csurf.

Authentication
Authentication is a big, complicated topic. Unfortunately, it’s also a vital part of most
nontrivial web applications. The most important piece of wisdom I can impart to you
is don’t try to do it yourself. If you look at your business card and it doesn’t say “Secu‐
rity Expert,” you probably aren’t prepared for the complex considerations involved in
designing a secure authentication system.

I’m not saying that you shouldn’t try to understand the security systems in your appli‐
cation. I’m just recommending that you don’t try to build it yourself. Feel free to
study the open source code of the authentication techniques I’m going to recom‐
mend. It will certainly give you some insight as to why you might not want to take on
this task unaided!

Authentication Versus Authorization
While the two terms are often used interchangeably, there is a difference. Authentica‐
tion refers to verifying users’ identities. That is, they are who they say they are.
Authorization refers to determining what a user is authorized to access, modify, or

232 | Chapter 18: Security

view. For example, customers might be authorized to access their account informa‐
tion, whereas a Meadowlark Travel employee would be authorized to access another
person’s account information or sales notes.

Authentication is often abbreviated as authN and “authorization” as
authZ.

Usually (but not always), authentication comes first, and then authorization is deter‐
mined. Authorization can be very simple (authorized/not authorized), broad (user/
administrator), or very fine-grained, specifying read, write, delete, and update privi‐
leges against different account types. The complexity of your authorization system is
dependent on the type of application you’re writing.

Because authorization is so dependent on the details of your application, I’ll be giving
only a rough outline in this book, using a very broad authentication scheme (cus‐
tomer/employee). I will often use the abbreviation “auth,” but only when it is clear
from the context whether it means “authentication” or “authorization,” or when it
doesn’t matter.

The Problem with Passwords
The problem with passwords is that every security system is only as strong as its
weakest link. And passwords require the user to invent a password—and there’s your
weakest link. Humans are notoriously bad at coming up with secure passwords. In an
analysis of security breaches in 2018, the most popular password is “123456.” “pass‐
word” is second. Even in the security conscious year of 2018, people are still choosing
abysmally bad passwords. Having password policies requiring, for example, a capital
letter, a number, and a punctuation mark is just going to result in a password of
“Password1!”.

Even analyzing passwords against a list of common passwords doesn’t do much to
stop the problem. Then people start writing down their higher-quality passwords on
notepads, leaving them in unencrypted files on their computers, or emailing them to
themselves.

At the end of the day, it’s a problem that you, the app designer, cannot do much to fix.
However, there are things you can do that promote more secure passwords. One is to
pass the buck and rely on a third party for authentication. The other is to make your
login system friendly to password management services, like 1Password, Bitwarden,
and LastPass.

Authentication | 233

Third-Party Authentication
Third-party authentication takes advantage of the fact that pretty much everyone on
the internet has an account on at least one major service, such as Google, Facebook,
Twitter, or LinkedIn. All of these services provide a mechanism to authenticate and
identify your users through their service.

Third-party authentication is often referred to as federated authen‐
tication or delegated authentication. The terms are largely inter‐
changeable, though federated authentication is usually associated
with Security Assertion Markup Language (SAML) and OpenID,
and delegated authentication is often associated with OAuth.

Third-party authentication has three major advantages. First, your authentication
burden is lowered. You do not have to worry about authenticating individual users,
only interacting with a trusted third party. The second advantage is that it reduces
password fatigue: the stress associated with having too many accounts. I use LastPass,
and I just checked my password vault: I have almost 400 passwords. As a technology
professional, I may have more than your average internet user, but it’s not uncommon
for even a casual internet user to have dozens or even hundreds of accounts. Lastly,
third-party authentication is frictionless: it allows your users to start using your site
more quickly, with credentials they already have. Often, if users see that they have to
create yet another username and password, they will simply move on.

If you don’t use a password manager, the chances are, you’re using the same password
for most of those sites (most people have a “secure” password they use for banking
and the like, and an “insecure” password they use for everything else). The problem
with this approach is that if even one of the sites you use that password for is
breached, and your password becomes known, then hackers will try using that same
password with other services. It’s like putting all of your eggs in one basket.

Third-party authentication has its downsides. Hard as it is to believe, there are folks
out there who don’t have an account on Google, Facebook, Twitter, or LinkedIn.
Then, among the people who do have such accounts, suspicion (or a desire for pri‐
vacy) may make them unwilling to use those credentials to log onto your website.
Many websites solve this particular problem by encouraging users to use an existing
account, but those who don’t have them (or are unwilling to use them to access your
service) can create a new login for your service.

Storing Users in Your Database
Whether or not you rely on a third party to authenticate your users, you will want to
store a record of users in your own database. For example, if you’re using Facebook
for authentication, that only verifies a user’s identity. If you need to save settings spe‐

234 | Chapter 18: Security

http://lastpass.com

cific to that user, you can’t reasonably use Facebook for that: you have to store infor‐
mation about that user in your own database. Also, you probably want to associate an
email address with your users, and they may not wish to use the same email address
they use for Facebook (or whatever third-party authentication service you use).
Lastly, storing user information in your database allows you to perform authentica‐
tion yourself, should you wish to provide that option.

So let’s create a model for our users, models/user.js:
const mongoose = require('mongoose')

const userSchema = mongoose.Schema({
 authId: String,
 name: String,
 email: String,
 role: String,
 created: Date,
})

const User = mongoose.model('User', userSchema)
module.exports = User

And modify db.js with the appropriate abstractions (if you’re using PostgreSQL, I’ll
leave it as an exercise to hook up this abstraction):

const User = require('./models/user')

module.exports = {
 //...
 getUserById: async id => User.findById(id),
 getUserByAuthId: async authId => User.findOne({ authId }),
 addUser: async data => new User(data).save(),
}

Recall that every object in a MongoDB database has its own unique ID, stored in its
_id property. However, that ID is controlled by MongoDB, and we need some way to
map a user record to a third-party ID, so we have our own ID property, called authId.
Since we’ll be using multiple authentication strategies, that ID will be a combination
of a strategy type and a third-party ID, to prevent collisions. For example, a Facebook
user might have an authId of facebook:525764102, whereas a Twitter user would
have an authId of twitter:376841763.

We will be using two roles in our example: “customer” and “employee.”

Authentication | 235

Authentication Versus Registration and the User Experience
Authentication refers to verifying a user’s identity, either with a trusted third party, or
through credentials you’ve provided the user (such as a username and password).
Registration is the process by which a user gets an account on your site (from our
perspective, registration is when we create a user record in the database).

When users join your site for the first time, it should be clear to them that they’re
registering. Using a third-party authentication system, we could register them
without their knowledge if they successfully authenticate through the third party.
This is not generally considered a good practice, and it should be clear to users that
they’re registering for your site (whether they’re authenticating through a third party
or not), and provide a clear mechanism for canceling their membership.

One user experience situation to consider is “third-party confusion.” If a user regis‐
ters in January for your service using Facebook, then returns in July, and is confron‐
ted with a screen offering the choices of logging in with Facebook, Twitter, Google, or
LinkedIn, the user may very well have forgotten what registration service was origi‐
nally used. This is one of the pitfalls of third-party authentication, and there is pre‐
cious little you can do about it. It’s another good reason to ask the user to provide an
email address: this way, you can give the user an option to look up their account by
email, and send an email to that address specifying what service was used for authen‐
tication.

If you feel that you have a firm grasp on the social networks your users use, you can
ease this problem by having a primary authentication service. For example, if you feel
pretty confident that the majority of your users have a Facebook account, you could
have a big button that says, “Log in with Facebook.” Then, using smaller buttons or
even just text links, say, “or log in with Google, Twitter, or LinkedIn.” This approach
can cut down on the instance of third-party confusion.

Passport
Passport is a very popular and robust authentication module for Node/Express. It is
not tied to any one authentication mechanism; rather, it is based on the idea of plug‐
gable authentication strategies (including a local strategy if you don’t want to use
third-party authentication). Understanding the flow of authentication information
can be overwhelming, so we’ll start with just one authentication mechanism and add
more later.

The detail that’s important to understand is that, with third-party authentication,
your app never receives a password. That is handled entirely by the third party. This is

236 | Chapter 18: Security

1 It is unlikely that the third party is storing passwords either. A password can be verified by storing something
called a salted hash, which is a one-way transformation of the password. That is, once you generate a hash
from a password, you can’t recover the password. Salting the hash provides additional protection against cer‐
tain kinds of attacks.

a good thing: it’s putting the burden of secure handling and storage of passwords on
the third party.1

The whole process, then, relies on redirects (it must, if your application is never to
receive the user’s third-party password). At first, you might be confused about why
you can pass localhost URLs to the third party and still successfully authenticate (after
all, the third-party server handling your request doesn’t know about your localhost). It
works because the third party simply instructs your browser to redirect, and your
browser is inside your network, and can therefore redirect to local addresses.

The basic flow is shown in Figure 18-1. This diagram shows the important flow of
functionality, making it clear that the authentication actually occurs on the third-
party website. Enjoy the simplicity of the diagram—things are about to get a lot more
complicated.

When you use Passport, there are four steps that your app will be responsible for.
Consider a more detailed view of the third-party authentication flow, as shown in
Figure 18-2.

Figure 18-1. Third-party authentication flow

For simplicity, we are using Meadowlark Travel to represent your app, and Facebook
for the third-party authentication mechanism. Figure 18-2 illustrates how the user
goes from the login page to the secure Account Info page (the Account Info page is
just used for illustration purposes: this could be any page on your website that
requires authentication).

Authentication | 237

This diagram shows detail you don’t normally think about, but is important to under‐
stand in this context. In particular, when you visit a URL, you aren’t making the
request of the server: the browser is actually doing that. That said, the browser can do
three things: make an HTTP request, display the response, and perform a redirect
(which is essentially making another request and displaying another response…
which in turn could be another redirect).

In the Meadowlark column, you can see the four steps your application is actually
responsible for. Fortunately, we’ll be leveraging Passport (and pluggable strategies) to
perform the details of those steps; otherwise, this book would be much, much longer.

Figure 18-2. Detailed view of third-party authentication flow

Before we get into implementation details, let’s consider each of the steps in a little
more detail:

238 | Chapter 18: Security

Login page
The login page is where the user can choose the login method. If you’re using a
third-party authentication, it’s usually just a button or a link. If you’re using local
authentication, it will include username and password fields. If the user attempts
to access a URL requiring authentication (such as /account in our example)
without being logged in, this is probably the page you will want to redirect to
(alternatively, you could redirect to a Not Authorized page with a link to the
login page).

Construct authentication request
In this step, you’ll be constructing a request to be sent to a third party (via a redi‐
rect). The details of this request are complicated and specific to the authentica‐
tion strategy. Passport (and the strategy plugin) will be doing all the heavy lifting
here. The auth request includes protection against man-in-the-middle attacks, as
well as other vectors an attacker might exploit. Usually the auth request is short-
lived, so you can’t store it and expect to use it later: this helps prevent attacks by
limiting the window in which an attacker has time to act. This is where you can
request additional information from the third-party authorization mechanism.
For example, it’s common to request the user’s name, and possibly email address.
Keep in mind that the more information you request from users, the less likely
they are to authorize your application.

Verify authentication response
Assuming the user authorized your application, you’ll get back a valid auth
response from the third party, which is proof of the user’s identity. Once again,
the details of this validation are complicated and will be handled by Passport
(and the strategy plugin). If the auth response indicates that the user is not
authorized (if invalid credentials were entered, or your application wasn’t author‐
ized by the user), you would then redirect to an appropriate page (either back to
the login page, or to a Not Authorized or Unable to Authorize page). Included in
the auth response will be an ID for the user that is unique to that specific third
party, as well as any additional details you requested in step 2. To enable step 4,
we must “remember” that the user is authorized. The usual way to do this is to set
a session variable containing the user’s ID, indicating that this session has been
authorized (cookies can also be used, though I recommend using sessions).

Verify authorization
In step 3, we stored a user ID in the session. The presence of that user ID allows
us to retrieve a user object from the database that contains information about
what the user is authorized to do. In this manner, we don’t have to authenticate
with the third party for every request (which would result in a slow and painful
user experience). This task is simple, and we no longer need Passport for this: we
have our own user object that contains our own authentication rules. (If that

Authentication | 239

object isn’t available, it indicates the request isn’t authorized, and we can redirect
to the login or Not Authorized page.)

Using Passport for authentication is a fair amount of work, as you’ll
see in this chapter. However, authentication is an important part of
your application, and I feel that it is wise to invest some time in get‐
ting it right. There are projects such as LockIt that try to provide a
more “off the shelf ” solution. Another increasingly popular option
is Auth0, which is very robust but isn’t as easy to set up as LockIt.
To make the most effective use of LockIt or Auth0 (or similar solu‐
tions), however, it behooves you to understand the details of
authentication and authorization, which is what this chapter is
designed to do. Also, if you ever need to customize an authentica‐
tion solution, Passport is a great place to start.

Setting up Passport
To keep things simple, we’ll start with a single authentication provider. Arbitrarily,
we’ll choose Facebook. Before we can set up Passport and the Facebook strategy, we’ll
need to do a little configuration in Facebook. For Facebook authentication, you’ll
need a Facebook app. If you already have a suitable Facebook app, you can use that, or
you can create a new one specifically for authentication. If possible, you should use
your organization’s official Facebook account to create the app. That is, if you worked
for Meadowlark Travel, you would use the Meadowlark Travel Facebook account to
create the app (you can always add your personal Facebook account as an administra‐
tor of the app for ease of administration). For testing purposes, it’s fine to use your
own Facebook account, but using a personal account for production will appear
unprofessional and suspicious to your users.

The details of Facebook app administration seem to change fairly frequently, so I am
not going to explain the details here. Consult the Facebook developer documentation
if you need details on creating and administering your app.

For development and testing purposes, you will need to associate the development/
testing domain name with the app. Facebook allows you to use localhost (and port
numbers), which is great for testing purposes. Alternatively, you can specify a local IP
address, which can be helpful if you’re using a virtualized server, or another server on
your network for testing. The important thing is that the URL you enter into your
browser to test the app (for example, http://localhost:3000) is associated with the Face‐
book app. Currently, you can associate only one domain with your app: if you need to
be able to use multiple domains, you will have to create multiple apps (for example,
you could have Meadowlark Dev, Meadowlark Test, and Meadowlark Staging; your
production app can simply be called Meadowlark Travel).

240 | Chapter 18: Security

http://bit.ly/lock_it
https://auth0.com
http://bit.ly/372bc7c

Once you’ve configured your app, you will need its unique app ID, and its app secret,
both of which can be found on the Facebook app management page for that app.

One of the biggest frustrations you’ll probably face is receiving a
message from Facebook such as “Given URL is not allowed by the
Application configuration.” This indicates that the hostname and
port in the callback URL do not match what you’ve configured in
your app. If you look at the URL in your browser, you will see the
encoded URL, which should give you a clue. For example, if I’m
using 192.168.0.103:3443, and I get that message, I look at the URL.
If I see redirect_uri=https%3A%2F%2F192.68.0.103%3A3443%2F
auth%2Ffacebook%2Fcallback in the querystring, I can quickly spot
the mistake: I used 68 instead of 168 in my hostname.

Now let’s install Passport and the Facebook authentication strategy:

npm install passport passport-facebook

Before we’re done, there’s going to be a lot of authentication code (especially if we’re
supporting multiple strategies), and we don’t want to clutter up meadowlark.js with all
that code. Instead, we’ll create a module called lib/auth.js. This is going to be a large
file, so we’re going to take it piece by piece (see ch18 in the companion repo for the
finished example). We’ll start with the imports and two methods that Passport
requires, serializeUser and deserializeUser:

const passport = require('passport')
const FacebookStrategy = require('passport-facebook').Strategy

const db = require('../db')

passport.serializeUser((user, done) => done(null, user._id))

passport.deserializeUser((id, done) => {
 db.getUserById(id)
 .then(user => done(null, user))
 .catch(err => done(err, null))
})

Passport uses serializeUser and deserializeUser to map requests to the authenti‐
cated user, allowing you to use whatever storage method you want. In our case, we are
only going to store our database ID (the _id property) in the session. The way we’re
using the ID here makes “serialize” and “deserialize” soft of into misnomers: we’re
actually just storing a user ID in the session. Then, when needed, we can get a user
object by finding that ID in the database.

Once these two methods are implemented, as long as there is an active session, and
the user has successfully authenticated, req.session.passport.user will be the cor‐
responding user object as retrieved from the database.

Authentication | 241

Next, we’re going to choose what to export. To enable Passport’s functionality, we’ll
need to do two distinct activities: initialize Passport, and register routes that will han‐
dle authentication and the redirected callbacks from our third-party authentication
services. We don’t want to combine these two in one function because in our main
application file, we may want to choose when Passport is linked into the middleware
chain (remember that order is significant when adding middleware). So, instead of
having our module export function that does either of these things, we’re going to
have it return a function that returns an object that has the methods we need. Why
not just return an object to start with? Because we need to bake in some configuration
values. Also, since we need to link the Passport middleware into our application, a
function is an easy way to pass in the Express application object:

module.exports = (app, options) => {
 // if success and failure redirects aren't specified,
 // set some reasonable defaults
 if(!options.successRedirect) options.successRedirect = '/account'
 if(!options.failureRedirect) options.failureRedirect = '/login'
 return {
 init: function() { /* TODO */ },
 registerRoutes: function() { /* TODO */ },
 }
}

Before we get into the details of the init and registerRoutes methods, let’s look at
how we’ll use this module (hopefully that will make this business of returning a func‐
tion that returns an object a little more clear):

const createAuth = require('./lib/auth')

// ...other app configuration

const auth = createAuth(app, {
 // baseUrl is optional; it will default to localhost if you omit it;
 // it can be helpful to set this if you're not working on
 // your local machine. For example, if you were using a staging server,
 // you might set the BASE_URL environment variable to
 // https://staging.meadowlark.com
 baseUrl: process.env.BASE_URL,
 providers: credentials.authProviders,
 successRedirect: '/account',
 failureRedirect: '/unauthorized',
})

// auth.init() links in Passport middleware:
auth.init()

// now we can specify our auth routes:
auth.registerRoutes()

242 | Chapter 18: Security

Notice that, in addition to specifying the success and failure redirect paths, we also
specify a property called providers, which we’ve externalized in the credentials file
(see Chapter 13). We’ll need to add the authProviders property to .credentials.devel‐
opment.json:

"authProviders": {
 "facebook": {
 "appId": "your_app_id",
 "appSecret": "your_app_secret"
 }
}

Another reason to bundle our authentication code in a module like
this is that we can reuse it for other projects; as a matter of fact,
there are already some authentication packages that do essentially
what we’re doing here. However, it’s important to understand the
details of what’s going on, so even if you end up using a module
someone else wrote, this will help you understand everything that’s
going on in your authentication flow.

Now let’s take care of our init method (previously a “TODO” in auth.js):

init: function() {
 var config = options.providers

 // configure Facebook strategy
 passport.use(new FacebookStrategy({
 clientID: config.facebook.appId,
 clientSecret: config.facebook.appSecret,
 callbackURL: (options.baseUrl || '') + '/auth/facebook/callback',
 }, (accessToken, refreshToken, profile, done) => {
 const authId = 'facebook:' + profile.id
 db.getUserByAuthId(authId)
 .then(user => {
 if(user) return done(null, user)
 db.addUser({
 authId: authId,
 name: profile.displayName,
 created: new Date(),
 role: 'customer',
 })
 .then(user => done(null, user))
 .catch(err => done(err, null))
 })
 .catch(err => {
 if(err) return done(err, null);
 })
 }))

 app.use(passport.initialize())

Authentication | 243

 app.use(passport.sessionp))
},

This is a pretty dense bit of code, but most of it is actually just Passport boilerplate.
The important bit is inside the function that gets passed to the FacebookStrategy
instance. When this function gets called (after the user has successfully authentica‐
ted), the profile parameter contains information about the Facebook user. Most
important, it includes a Facebook ID: that’s what we’ll use to associate a Facebook
account to our own user object. Note that we namespace our authId property by pre‐
fixing facebook:. Slight as the chance may be, this prevents the possibility of a Face‐
book ID colliding with a Twitter or Google ID (it also allows us to examine user
models to see what authentication method a user is using, which could be useful). If
the database already contains an entry for this namespaced ID, we simply return it
(this is when serializeUser gets called, which will put our own user ID into the ses‐
sion). If no user record is returned, we create a new user object and save it to the
database.

The last thing we have to do is create our registerRoutes method (don’t worry, this
one is much shorter):

 registerRoutes: () => {
 app.get('/auth/facebook', (req, res, next) => {
 if(req.query.redirect) req.session.authRedirect = req.query.redirect
 passport.authenticate('facebook')(req, res, next)
 })
 app.get('/auth/facebook/callback', passport.authenticate('facebook',
 { failureRedirect: options.failureRedirect }),
 (req, res) => {
 // we only get here on successful authentication
 const redirect = req.session.authRedirect
 if(redirect) delete req.session.authRedirect
 res.redirect(303, redirect || options.successRedirect)
 }
)
 },

Now we have the path /auth/facebook; visiting this path will automatically redirect the
visitor to Facebook’s authentication screen (this is done by passport.authenti
cate('facebook’)), step 2 in Figure 18-1. Note that we check to see if there’s a query‐
string parameter redirect; if there is, we save it in the session. This is so we can
automatically redirect to the intended destination after completing authentication.
Once the user authorizes with Twitter, the browser will be redirected back to your site
—specifically, to the /auth/facebook/callback path (with the optional redirect query‐
string indicating where the user was originally).

Also on the querystring are authentication tokens that Passport will verify. If the veri‐
fication fails, Passport will redirect the browser to options.failureRedirect. If the
verification is successful, Passport will call next, which is where your application

244 | Chapter 18: Security

comes back in. Note how the middleware is chained in the handler for /auth/face‐
book/callback: passport.authenticate is called first. If it calls next, control passes
over to your function, which then redirects to either the original location or
options.successRedirect, if the redirect querystring parameter wasn’t specified.

Omitting the redirect querystring parameter can simplify your
authentication routes, which may be tempting if you have only one
URL that requires authentication. However, having this functional‐
ity available will eventually come in handy and provide a better
user experience. No doubt you’ve experienced this yourself before:
you’ve found the page you want, and you’re instructed to log in.
You do, and you’re redirected to a default page, and you have to
navigate back to the original page. It’s not a very satisfying user
experience.

The “magic” that Passport is doing during this process is saving the user (in our case,
just a database user ID) to the session. This is a good thing, because the browser is
redirecting, which is a different HTTP request: without having that information in the
session, we wouldn’t have any way to know that the user had been authenticated!
Once a user has been successfully authenticated, req.session.passport.user will be
set, and that’s how future requests will know that the user has been authenticated.

Let’s look at our /account handler to see how it checks to make sure the user is
authenticated (this route handler will be in our main application file, or in a separate
routing module, not in /lib/auth.js):

app.get('/account', (req, res) => {
 if(!req.user)
 return res.redirect(303, '/unauthorized')
 res.render('account', { username: req.user.name })
})
// we also need an 'unauthorized' page
app.get('/unauthorized', (req, res) => {
 res.status(403).render('unauthorized')
})
// and a way to logout
app.get('/logout', (req, res) => {
 req.logout()
 res.redirect('/')
})

Now only authenticated users will see the account page; everyone else will be redi‐
rected to a Not Authorized page.

Authentication | 245

Role-Based Authorization
So far, we’re not technically doing any authorization (we’re only differentiating
between authorized and unauthorized users). However, let’s say we want only cus‐
tomers to see their account views (employees might have an entirely different view
where they can see user account information).

Remember that in a single route, you can have multiple functions, which get called in
order. Let’s create a function called customerOnly that will allow only customers:

const customerOnly = (req, res, next) => {
 if(req.user && req.user.role === 'customer') return next()
 // we want customer-only pages to know they need to logon
 res.redirect(303, '/unauthorized')
}

Let’s also create am employeeOnly function that will operate a little differently. Let’s
say we have a path /sales that we want to be available only to employees. Furthermore,
we don’t want nonemployees to even be aware of its existence, even if they stumble on
it by accident. If a potential attacker went to the /sales path, and saw a Not Authorized
page, that is a little information that might make an attack easier (simply by knowing
that the page is there). So, for a little added security, we want nonemployees to see a
regular 404 page when they visit the /sales page, giving potential attackers nothing to
work with:

const employeeOnly = (req, res, next) => {
 if(req.user && req.user.role === 'employee') return next()
 // we want employee-only authorization failures to be "hidden", to
 // prevent potential hackers from even knowing that such a page exists
 next('route')
}

Calling next('route’) will not simply execute the next handler in the route: it will
skip this route altogether. Assuming there’s not a route further on down the line that
will handle /account, this will eventually pass to the 404 handler, giving us the
desired result.

Here’s how easy it is to put these functions to use:

// customer routes

app.get('/account', customerOnly, (req, res) => {
 res.render('account', { username: req.user.name })
})
app.get('/account/order-history', customerOnly, (req, res) => {
 res.render('account/order-history')
})
app.get('/account/email-prefs', customerOnly, (req, res) => {
 res.render('account/email-prefs')
})

246 | Chapter 18: Security

// employer routes

app.get('/sales', employeeOnly, (req, res) => {
 res.render('sales')
})

It should be clear that role-based authorization can be as simple or as complicated as
you wish. For example, what if you want to allow multiple roles? You could use the
following function and route:

const allow = roles => (req, res, next) => {
 if(req.user && roles.split(',').includes(req.user.role)) return next()
 res.redirect(303, '/unauthorized')
}

Hopefully that example gives you an idea of how creative you can be with role-based
authorization. You could even authorize on other properties, such as the length of
time a user has been a member or how many vacations that user has booked with
you.

Adding Authentication Providers
Now that our framework is in place, adding more authentication providers is easy.
Let’s say we want to authenticate with Google. Before we start adding code, you’ll
have to set up a project on your Google account.

Go to your Google Developers Console and choose a project from the navigation bar
(if you don’t already have a project, click New Project and follow the instructions.
Once you’ve selected a project, click “Enable APIs and Services” and enable Cloud
Identity API. Click Credentials, and then Create Credentials, and choose “OAuth cli‐
ent ID,” and then “Web application.” Enter the appropriate URLs for your app: for
testing you can use http://localhost:3000 for the authorized origins, and http://local‐
host:3000/auth/google/callback for authorized redirect URIs.

Once you have got everything set up on the Google side, run npm install

passport-google-oauth20, and add the following code to lib/auth.js:
// configure Google strategy
passport.use(new GoogleStrategy({
 clientID: config.google.clientID,
 clientSecret: config.google.clientSecret,
 callbackURL: (options.baseUrl || '') + '/auth/google/callback',
}, (token, tokenSecret, profile, done) => {
 const authId = 'google:' + profile.id
 db.getUserByAuthId(authId)
 .then(user => {
 if(user) return done(null, user)
 db.addUser({
 authId: authId,

Authentication | 247

http://bit.ly/2KcY1X0

 name: profile.displayName,
 created: new Date(),
 role: 'customer',
 })
 .then(user => done(null, user))
 .catch(err => done(err, null))
 })
 .catch(err => {
 console.log('whoops, there was an error: ', err.message)
 if(err) return done(err, null);
 })
}))

And the following to the registerRoutes method:

app.get('/auth/google', (req, res, next) => {
 if(req.query.redirect) req.session.authRedirect = req.query.redirect
 passport.authenticate('google', { scope: ['profile'] })(req, res, next)
})
app.get('/auth/google/callback', passport.authenticate('google',
 { failureRedirect: options.failureRedirect }),
 (req, res) => {
 // we only get here on successful authentication
 const redirect = req.session.authRedirect
 if(redirect) delete req.session.authRedirect
 res.redirect(303, req.query.redirect || options.successRedirect)
 }
)

Conclusion
Congratulations on making it through the most intricate chapter! It’s unfortunate that
such an important feature (authentication and authorization) is so complicated, but
in a world rife with security threats, it’s an unavoidable complexity. Fortunately,
projects like Passport (and the excellent authentication schemes based on it) lessen
our burden somewhat. Still, I encourage you not to give short shrift to this area of
your application: exercising diligence in the area of security will make you a good
internet citizen. Your users may never thank you for it, but woe be to the owners of
an application who allow user data to be compromised because of poor security.

248 | Chapter 18: Security

CHAPTER 19

Integrating with Third-Party APIs

Increasingly, successful websites are not completely standalone. To engage existing
users and find new users, integration with social networking is a must. To provide
store locators or other location-aware services, using geolocation and mapping serv‐
ices is essential. It doesn’t stop there: more and more organizations are realizing that
providing an API helps expand their service and makes it more useful.

In this chapter, we’ll be discussing the two most common integration needs: social
media and geolocation.

Social Media
Social media is a great way to promote your product or service: if that’s your goal, the
ability for your users to easily share your content on social media sites is essential. As
I write this, the dominant social networking services are Facebook, Twitter, Insta‐
gram, and YouTube. Sites like Pinterest and Flickr have their place, but they are usu‐
ally a little more audience specific (for example, if your website is about DIY crafting,
you would absolutely want to support Pinterest). Laugh if you will, but I predict that
MySpace will make a comeback. Its site redesign is inspired, and it’s worth noting that
MySpace is built on Node.

Social Media Plugins and Site Performance
Most social media integration is a frontend affair. You reference the appropriate Java‐
Script files in your page, and it enables both incoming content (the top three stories
from your Facebook page, for example) and outgoing content (the ability to tweet
about the page you’re on, for example). While this often represents the easiest path to
social media integration, it comes at a cost: I’ve seen page load times double or even
triple thanks to the additional HTTP requests. If page performance is important to

249

you (and it should be, especially for mobile users), you should carefully consider how
you integrate social media.

That said, the code that enables a Facebook Like button or a Tweet button leverages
in-browser cookies to post on the user’s behalf. Moving this functionality to the back‐
end would be difficult (and, in some instances, impossible). So if that is functionality
you need, linking in the appropriate third-party library is your best option, even
though it can affect your page performance.

Searching for Tweets
Let’s say that we want to mention the top 10 most recent tweets that contain the hash‐
tags #Oregon #travel. We could use a frontend component to do this, but it will
involve additional HTTP requests. Furthermore, if we do it on the backend, we have
the option of caching the tweets for performance. Also, if we do the searching on the
backend, we can “blacklist” uncharitable tweets, which would be more difficult on the
frontend.

Twitter, like Facebook, allows you to create apps. It’s something of a misnomer: a
Twitter app doesn’t do anything (in the traditional sense). It’s more like a set of cre‐
dentials that you can use to create the actual app on your site. The easiest and most
portable way to access the Twitter API is to create an app and use it to get access
tokens.

Create a Twitter app by going to http://dev.twitter.com. Make sure you’re logged on,
and click your username in the navigation bar, and then Apps. Click “Create an app,”
and follow the instructions. Once you have an application, you’ll see that you now
have a consumer API key and an API secret key. The API secret key, as the name indi‐
cates, should be kept secret: do not ever include this in responses sent to the client. If
a third party were to get access to this secret, they could make requests on behalf of
your application, which could have unfortunate consequences for you if the use is
malicious.

Now that we have a consumer API key and secret key, we can communicate with the
Twitter REST API.

To keep our code tidy, we’ll put our Twitter code in a module called lib/twitter.js:
const https = require('https')

module.exports = twitterOptions => {

 return {

 search: async (query, count) => {
 // TODO
 }
 }

250 | Chapter 19: Integrating with Third-Party APIs

http://dev.twitter.com

}

This pattern should be starting to become familiar to you. Our module exports a
function into which the caller passes a configuration object. What’s returned is an
object containing methods. In this way, we can add functionality to our module. Cur‐
rently, we’re only providing a search method. Here’s how we will be using the library:

const twitter = require('./lib/twitter')({
 consumerApiKey: credentials.twitter.consumerApiKey,
 apiSecretKey: credentials.twitter.apiSecretKey,
})

const tweets = await twitter.search('#Oregon #travel', 10)
// tweets will be in result.statuses

(Don’t forget to put a twitter property with consumerApiKey and apiSecretKey in
your .credentials.development.json file.)

Before we implement the search method, we must provide some functionality to
authenticate ourselves to Twitter. The process is simple: we use HTTPS to request an
access token based on our consumer key and consumer secret. We only have to do
this once: currently, Twitter does not expire access tokens (though you can invalidate
them manually). Since we don’t want to request an access token every time, we’ll
cache the access token so we can reuse it.

The way we’ve constructed our module allows us to create private functionality that’s
not available to the caller. Specifically, the only thing that’s available to the caller is
module.exports. Since we’re returning a function, only that function is available to
the caller. Calling that function results in an object, and only the properties of that
object are available to the caller. So we’re going to create a variable accessToken,
which we’ll use to cache our access token, and a getAccessToken function that will
get the access token. The first time it’s called, it will make a Twitter API request to get
the access token. Subsequent calls will simply return the value of accessToken:

const https = require('https')

module.exports = function(twitterOptions) {

 // this variable will be invisible outside of this module
 let accessToken = null

 // this function will be invisible outside of this module
 const getAccessToken = async () => {
 if(accessToken) return accessToken
 // TODO: get access token
 }

 return {
 search: async (query, count) => {

Social Media | 251

 // TODO
 }
 }

}

We mark getAccessToken as async because we may have to make an HTTP request
to the Twitter API (if there isn’t a cached token). Now that we’ve established the basic
structure, let’s implement getAccessToken:

const getAccessToken = async () => {
 if(accessToken) return accessToken

 const bearerToken = Buffer(
 encodeURIComponent(twitterOptions.consumerApiKey) + ':' +
 encodeURIComponent(twitterOptions.apiSecretKey)
).toString('base64')

 const options = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'POST',
 path: '/oauth2/token?grant_type=client_credentials',
 headers: {
 'Authorization': 'Basic ' + bearerToken,
 },
 }

 return new Promise((resolve, reject) =>
 https.request(options, res => {
 let data = ''
 res.on('data', chunk => data += chunk)
 res.on('end', () => {
 const auth = JSON.parse(data)
 if(auth.token_type !== 'bearer')
 return reject(new Error('Twitter auth failed.'))
 accessToken = auth.access_token
 return resolve(accessToken)
 })
 }).end()
)
}

The details of constructing this call are available on Twitter’s developer documenta‐
tion page for application-only authentication. Basically, we have to construct a bearer
token that’s a base64-encoded combination of the consumer key and consumer
secret. Once we’ve constructed that token, we can call the /oauth2/token API with
the Authorization header containing the bearer token to request an access token.
Note that we must use HTTPS: if you attempt to make this call over HTTP, you are
transmitting your secret key unencrypted, and the API will simply hang up on you.

252 | Chapter 19: Integrating with Third-Party APIs

http://bit.ly/2KcJ4EA
http://bit.ly/2KcJ4EA

Once we receive the full response from the API (we listen for the end event of the
response stream), we can parse the JSON, make sure the token type is bearer, and be
on our merry way. We cache the access token, and then invoke the callback.

Now that we have a mechanism for obtaining an access token, we can make API calls.
So let’s implement our search method:

search: async (query, count) => {
 const accessToken = await getAccessToken()
 const options = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'GET',
 path: '/1.1/search/tweets.json?q=' +
 encodeURIComponent(query) +
 '&count=' + (count || 10),
 headers: {
 'Authorization': 'Bearer ' + accessToken,
 },
 }
 return new Promise((resolve, reject) =>
 https.request(options, res => {
 let data = ''
 res.on('data', chunk => data += chunk)
 res.on('end', () => resolve(JSON.parse(data)))
 }).end()
)
},

Rendering Tweets
Now we have the ability to search tweets…so how do we display them on our site?
Largely, it’s up to you, but there are some things to consider. Twitter has an interest in
making sure its data is used in a manner consistent with the brand. To that end, it
does have display requirements, which employ functional elements you must include
to display a tweet.

There is some wiggle room in the requirements (for example, if you’re displaying on a
device that doesn’t support images, you don’t have to include the avatar image), but
for the most part, you’ll end up with something that looks very much like an embed‐
ded tweet. It’s a lot of work, and there is a way around it…but it involves linking to
Twitter’s widget library, which is the very HTTP request we’re trying to avoid.

If you need to display tweets, your best bet is to use the Twitter widget library, even
though it incurs an extra HTTP request. For more complicated use of the API, you’ll
still have to access the REST API from the backend, so you will probably end up
using the REST API in concert with frontend scripts.

Social Media | 253

http://bit.ly/32ET4N2

Let’s continue with our example: we want to display the top 10 tweets that mention
the hashtags #Oregon #travel. We’ll use the REST API to search for the tweets and the
Twitter widget library to display them. Since we don’t want to run up against usage
limits (or slow down our server), we’ll cache the tweets and the HTML to display
them for 15 minutes.

We’ll start by modifying our Twitter library to include a method embed, which gets
the HTML to display a tweet. Note we’re using an npm library querystringify to
construct a querystring from an object, so don’t forget to npm install querystrin
gify and import it (const qs = require(‘querystringify ’)), and then add the
following function to the export of lib/twitter.js:

embed: async (url, options = {}) => {
 options.url = url
 const accessToken = await getAccessToken()
 const requestOptions = {
 hostname: 'api.twitter.com',
 port: 443,
 method: 'GET',
 path: '/1.1/statuses/oembed.json?' + qs.stringify(options),
 headers: {
 'Authorization': 'Bearer ' + accessToken,
 },
 }
 return new Promise((resolve, reject) =>
 https.request(requestOptions, res => {
 let data = ''
 res.on('data', chunk => data += chunk)
 res.on('end', () => resolve(JSON.parse(data)))
 }).end()
)
},

Now we’re ready to search for, and cache, tweets. In our main application file, create
the following function getTopTweets:

const twitterClient = createTwitterClient(credentials.twitter)

const getTopTweets = ((twitterClient, search) => {
 const topTweets = {
 count: 10,
 lastRefreshed: 0,
 refreshInterval: 15 * 60 * 1000,
 tweets: [],
 }
 return async () => {
 if(Date.now() > topTweets.lastRefreshed + topTweets.refreshInterval) {
 const tweets =
 await twitterClient.search('#Oregon #travel', topTweets.count)
 const formattedTweets = await Promise.all(
 tweets.statuses.map(async ({ id_str, user }) => {

254 | Chapter 19: Integrating with Third-Party APIs

 const url = `https://twitter.com/${user.id_str}/statuses/${id_str}`
 const embeddedTweet =
 await twitterClient.embed(url, { omit_script: 1 })
 return embeddedTweet.html
 })
)
 topTweets.lastRefreshed = Date.now()
 topTweets.tweets = formattedTweets
 }
 return topTweets.tweets
 }
})(twitterClient, '#Oregon #travel')

The essence of the getTopTweets function is to not just search for tweets with a speci‐
fied hashtag, but to cache those tweets for some reasonable period of time. Note that
we created an immediately invoked function expression, or IIFE: that’s because we
want the topTweets cache safely inside a closure so it can’t be messed with. The asyn‐
chronous function that’s returned from the IIFE refreshes the cache if necessary, and
then returns the contents of the cache.

Lastly, let’s create a view, views/social.handlebars as a home for our social media
presence (which right now, includes only our selected tweets):

<h2>Oregon Travel in Social Media</h2>

<script id="twitter-wjs" type="text/javascript"
 async defer src="//platform.twitter.com/widgets.js"></script>

{{{tweets}}}

And a route to handle it:

app.get('/social', async (req, res) => {
 res.render('social', { tweets: await getTopTweets() })
})

Note that we reference an external script, Twitter’s widgets.js. This is the script that
will format and give functionality to the embedded tweets on your page. By default,
the oembed API will include a reference to this script in the HTML, but since we’re
displaying 10 tweets, that would reference that script nine more times than necessary!
So recall that, when we called the oembed API, we passed in the option
{ omit_script: 1 }. Since we did that, we have to provide it somewhere, which we
did in the view. Go ahead and try removing the script from the view. You’ll still see
the tweets, but they won’t have any formatting or functionality.

Now we have a nice social media feed! Let’s turn our attention to another important
application: displaying maps in our application.

Social Media | 255

Geocoding
Geocoding refers to the process of taking a street address or place name (Bletchley
Park, Sherwood Drive, Bletchley, Milton Keynes MK3 6EB, UK) and converting it to
geographic coordinates (latitude 51.9976597, longitude –0.7406863). If your applica‐
tion is going to be doing any kind of geographic calculation—distances or directions
—or displaying a map, then you’ll need geographic coordinates.

You may be used to seeing geographic coordinates specified in
degrees, minutes, and seconds (DMS). Geocoding APIs and map‐
ping services use a single floating-point number for latitude and
longitude. If you need to display DMS coordinates, see this wikipe‐
dia article.

Geocoding with Google
Both Google and Bing offer excellent REST services for geocoding. We’ll be using
Google for our example, but the Bing service is very similar.

Without attaching a billing account to your Google account, your geocoding requests
will be limited to one a day, which will make for a very slow testing cycle indeed!
Whenever possible in this book, I’ve tried to avoid recommending services you
couldn’t at least use in a development capacity for free, and I did try some free geo‐
coding services, and found a significant enough gulf in usability that I continue to
recommend Google geocoding. However, as I write this, the cost of development-
volume geocoding with Google is free: you receive a $200 monthly credit with your
account, and you would have to make 40,000 requests to exhaust that! If you want to
follow along with this chapter, go to your Google console, choose Billing from the
main menu, and enter your billing information.

Once you’ve set up billing, you’ll need an API key for Google’s geocoding API. Go to
the console, select your project from the navigation bar, and then click on APIs. If the
geocoding API isn’t in your list of enabled APIs, locate it in the list of additional APIs
and add it. Most of the Google APIs share the same API credentials, so click on the
navigation menu in the upper left, and go back to your dashboard. Click on Creden‐
tials, and create a new API key if you don’t have an appropriate one already. Note that
API keys can be restricted to prevent abuse, so make sure your API key can be used
from your application. If you need one for developing, you can restrict the key by IP
address, and choose your IP address (if you don’t know what it is, you can just ask
Google, “What’s my IP address?”).

Once you have an API key, add it to .credentials.development.json:

256 | Chapter 19: Integrating with Third-Party APIs

http://bit.ly/2Xc5IlM
http://bit.ly/2Xc5IlM
http://bit.ly/2KcY1X0
http://bit.ly/2KcY1X0

"google": {
 "apiKey": "<YOUR API KEY>"
}

Then create a module lib/geocode.js:
const https = require('https')
const { credentials } = require('../config')

module.exports = async query => {

 const options = {
 hostname: 'maps.googleapis.com',
 path: '/maps/api/geocode/json?address=' +
 encodeURIComponent(query) + '&key=' +
 credentials.google.apiKey,
 }

 return new Promise((resolve, reject) =>
 https.request(options, res => {
 let data = ''
 res.on('data', chunk => data += chunk)
 res.on('end', () => {
 data = JSON.parse(data)
 if(!data.results.length)
 return reject(new Error(`no results for "${query}"`))
 resolve(data.results[0].geometry.location)
 })
 }).end()
)

}

Now we have a function that will contact the Google API to geocode an address. If it
can’t find an address (or fails for any other reason), an error will be returned. The API
can return multiple addresses. For example, if you search for “10 Main Street”
without specifying a city, state, or postal code, it will return dozens of results. Our
implementation simply picks the first one. The API returns a lot of information, but
all we’re currently interested in are the coordinates. You could easily modify this
interface to return more information. See the Google geocoding API documentation
for more information about the data the API returns.

Usage restrictions
The Google geocoding API currently has a monthly usage limit, but you pay $0.005
per geocoding request. So if you made a million requests in any given month, you’d
have a $5,000 bill from Google…so there is a probably practical limit for you!

Geocoding | 257

http://bit.ly/2O4EE3t

If you’re worried about runaway charges—which could happen if
you accidentally leave a service running, or if a bad actor gets
access to your credentials—you can add a budget and configure
alerts to notify you as you approach them. Go to your Google
developer console, and choose “Budgets & alerts” from the Billing
menu.

At the time of writing, Google limits you to 5,000 requests per 100 seconds to prevent
abuse, which would be difficult to exceed. Google’s API also requires that if you use a
map on your website, you use Google Maps. That is, if you’re using Google’s service to
geocode your data, you can’t turn around and display that information on a Bing map
without violating the terms of service. Generally, this is not an onerous restriction, as
you probably wouldn’t be doing geocoding unless you intended to display locations
on a map. However, if you like Bing’s maps better than Google’s, or vice versa, you
should be mindful of the terms of service and use the appropriate API.

Geocoding Your Data
We have a nice database of vacation packages around Oregon, and we might decide
we want to display a map with pins showing where the various vacations are, and this
is where geocoding comes in.

We already have vacation data in the database, and each vacation has a location
search string that will work with geocoding, but we don’t yet have coordinates.

The question now is when and how do we do the geocoding? Broadly speaking, we
have three options:

• Geocode when we add new vacations to the database. This is probably a great
option when we add an admin interface to the system that allows vendors to
dynamically add vacations to the database. Since we’re stopping short of this
functionality, however, we’ll discard this option.

• Geocode as necessary when retrieving vacations from the database. This
approach would do a check every time we get vacations from the database: if any
of them have missing coordinates, we would geocode them. This option sounds
appealing, and is probably the easiest of the three, but it has some big disadvan‐
tages that make it unsuitable. The first is performance: if you add a thousand new
vacations to the database, the first person to look at the vacations list is going to
have to wait for all of those geocoding requests to succeed and get written to the
database. Furthermore, one can imagine a situation where a load testing suite
adds a thousand vacations to the database and then performs a thousand
requests. Since they all run concurrently, each of those thousand requests results
in a thousand geocoding requests because the data hasn’t been written to the

258 | Chapter 19: Integrating with Third-Party APIs

database yet…resulting in a million geocoding requests and a $5,000 bill from
Google! So let’s cross this one off the list.

• Have a script to find vacations with missing coordinate date, and geocode those.
This approach offers the best solution for our current situation. For development
purposes, we’re populating the vacation database once, and we don’t yet have an
admin interface for adding new vacations. Furthermore, if we do decide to add
an admin interface later, this approach isn’t incompatible with that: as a matter of
fact, we could just run this process after adding a new vacation, and it would
work.

First, we need to add a way to update an existing vacation in db.js (we’ll also add a
method to close the database connection, which will come in handy in scripts):

module.exports = {
 //...
 updateVacationBySku: async (sku, data) => Vacation.updateOne({ sku }, data),
 close: () => mongoose.connection.close(),
}

Then we can write a script db-geocode.js:
const db = require('./db')
const geocode = require('./lib/geocode')

const geocodeVacations = async () => {
 const vacations = await db.getVacations()
 const vacationsWithoutCoordinates = vacations.filter(({ location }) =>
 !location.coordinates || typeof location.coordinates.lat !== 'number')
 console.log(`geocoding ${vacationsWithoutCoordinates.length} ` +
 `of ${vacations.length} vacations:`)
 return Promise.all(vacationsWithoutCoordinates.map(async ({ sku, location }) => {
 const { search } = location
 if(typeof search !== 'string' || !/\w/.test(search))
 return console.log(` SKU ${sku} FAILED: does not have location.search`)
 try {
 const coordinates = await geocode(search)
 await db.updateVacationBySku(sku, { location: { search, coordinates } })
 console.log(` SKU ${sku} SUCCEEDED: ${coordinates.lat}, ${coordinates.lng}`)
 } catch(err) {
 return console.log(` SKU {sku} FAILED: ${err.message}`)
 }
 }))
}

geocodeVacations()
 .then(() => {
 console.log('DONE')
 db.close()
 })
 .catch(err => {

Geocoding | 259

 console.error('ERROR: ' + err.message)
 db.close()
 })

When you run the script (node db-geocode.js), you should see that all of your vaca‐
tions have been successfully geocoded! Now that we have that information, let’s learn
how to display it on a map….

Displaying a Map
While displaying vacations on a map really falls under “frontend” work, it would be
very disappointing to get this far and not see the fruits of our labor. So we’re going to
take a slight departure from the backend focus of this book, and see how to display
our newly geocoded dealers on a map.

We already created a Google API key to do our geocoding, but we still need to enable
the maps API. Go to your Google console, click on APIs, and find Maps JavaScript
API and enable it if it isn’t already.

Now we can create a view to display our vacations map, views/vacations-
map.handlebars. We’ll start with just displaying the map, and work on adding vaca‐
tions next:

<div id="map" style="width: 100%; height: 60vh;"></div>
<script>
 let map = undefined
 async function initMap() {
 map = new google.maps.Map(document.getElementById('map'), {
 // approximate geographic center of oregon
 center: { lat: 44.0978126, lng: -120.0963654 },
 // this zoom level covers most of the state
 zoom: 7,
 })
 }
</script>
<script src="https://maps.googleapis.com/maps/api/js?key={{googleApiKey}}&callback=initMap"
 async defer></script>

Now it’s time to put some pins on the map corresponding with our vacations. In
Chapter 15, we created an API endpoint /api/vacations, which will now include
geocoded data. We’ll use that endpoint to get our vacations, and put pins on the map.
Modify the initMap function in views/vacations-map.handlebars.js:

async function initMap() {
 map = new google.maps.Map(document.getElementById('map'), {
 // approximate geographic center of oregon
 center: { lat: 44.0978126, lng: -120.0963654 },
 // this zoom level covers most of the state
 zoom: 7,
 })

260 | Chapter 19: Integrating with Third-Party APIs

http://bit.ly/2KcY1X0

 const vacations = await fetch('/api/vacations').then(res => res.json())
 vacations.forEach(({ name, location }) => {
 const marker = new google.maps.Marker({
 position: location.coordinates,
 map,
 title: name,
 })
 })
}

Now we have a map showing where all our vacations are! There are a lot of ways we
could improve this page: probably the best place to start would be to linking the
markers with the vacation detail page, so you could click on a marker and it would
take you to the vacation info page. We could also implement custom markers or tool‐
tips: the Google Maps API has a lot of features, and you can learn about them from
the official Google documentation.

Weather Data
Remember our “current weather” widget from Chapter 7? Let’s get that hooked up
with some live data! We’ll be using the US National Weather Service (NWS) API to
get forecast information. As with our Twitter integration, and our use of geocoding,
we’ll be caching the forecast to prevent passing every hit to our website on to NWS
(which might get us blacklisted if our website gets popular). Create a file called lib/
weather.js:

const https = require('https')
const { URL } = require('url')

const _fetch = url => new Promise((resolve, reject) => {
 const { hostname, pathname, search } = new URL(url)
 const options = {
 hostname,
 path: pathname + search,
 headers: {
 'User-Agent': 'Meadowlark Travel'
 },
 }
 https.get(options, res => {
 let data = ''
 res.on('data', chunk => data += chunk)
 res.on('end', () => resolve(JSON.parse(data)))
 }).end()
})

module.exports = locations => {

 const cache = {
 refreshFrequency: 15 * 60 * 1000,
 lastRefreshed: 0,

Weather Data | 261

https://developers.google.com/maps/documentation/javascript/tutorial

 refreshing: false,
 forecasts: locations.map(location => ({ location })),
 }

 const updateForecast = async forecast => {
 if(!forecast.url) {
 const { lat, lng } = forecast.location.coordinates
 const path = `/points/${lat.toFixed(4)},${lng.toFixed(4)}`
 const points = await _fetch('https://api.weather.gov' + path)
 forecast.url = points.properties.forecast
 }
 const { properties: { periods } } = await _fetch(forecast.url)
 const currentPeriod = periods[0]
 Object.assign(forecast, {
 iconUrl: currentPeriod.icon,
 weather: currentPeriod.shortForecast,
 temp: currentPeriod.temperature + ' ' + currentPeriod.temperatureUnit,
 })
 return forecast
 }

 const getForecasts = async () => {
 if(Date.now() > cache.lastRefreshed + cache.refreshFrequency) {
 console.log('updating cache')
 cache.refreshing = true
 cache.forecasts = await Promise.all(cache.forecasts.map(updateForecast))
 cache.refreshing = false
 }
 return cache.forecasts
 }

 return getForecasts

}

You’ll notice that we got tired of using Node’s built-in https library directly, and
instead created a utility function _fetch to make our weather functionality a little
more readable. One thing that might jump out at you is that we’re setting the User-
Agent header to Meadowlark Travel. This is a quirk of the NWS weather API: it
requires a string for the User-Agent. They state that they will eventually replace this
with an API key, but for now we just need to provide a value here.

Getting weather data from the NWS API is a two-part affair here. There’s an API end‐
point called points that takes a latitude and longitude (with exactly four decimal dig‐
its) and returns information about that location…including the appropriate URL
from which to get a forecast. Once we have that URL for any given set of coordinates,
we don’t need to fetch it again. All we need to do is call that URL to get the updated
forecast.

262 | Chapter 19: Integrating with Third-Party APIs

Note that a lot more data is returned from the forecast than we’re using; we could get
a lot more sophisticated with this feature. In particular, the forecast URL returns an
array of periods, with the first element being the current period (for example, “after‐
noon” or “evening”). It follows up with periods stretching into the next week. Feel free
to look at the data in the periods array to see the kind of data that’s available to you.

One detail worth pointing out is that we have a boolean property in our cache called
refreshing. This is necessary since updating the cache takes a finite amount of time,
and is done asynchronously. If multiple requests come in before the first cache
refresh completes, they will all kick off the work of refreshing the cache. It won’t hurt
anything, exactly, but you will be making more API calls than are strictly necessary.
This boolean variable is just a flag to any additional requests to say, “We’re working
on it.”

We’ve designed this to be a drop-in replacement for the dummy function we created
back in Chapter 7. All we have to do is open lib/middleware/weather.js and replace the
getWeatherData function:

const weatherData = require('../weather')

const getWeatherData = weatherData([
 {
 name: 'Portland',
 coordinates: { lat: 45.5154586, lng: -122.6793461 },
 },
 {
 name: 'Bend',
 coordinates: { lat: 44.0581728, lng: -121.3153096 },
 },
 {
 name: 'Manzanita',
 coordinates: { lat: 45.7184398, lng: -123.9351354 },
 },
])

Now we have live weather data in our widget!

Conclusion
We’ve really only scratched the surface of what can be done with third-party API inte‐
gration. Everywhere you look, new APIs are popping up, offering every kind of data
imaginable (even the City of Portland is now making a lot of public data available
through REST APIs). While it would be impossible to cover even a small percentage
of the APIs available to you, this chapter has covered the fundamentals you’ll need to
know to use these APIs: http.request, https.request, and parsing JSON.

Conclusion | 263

We now have a lot of knowledge under our belt. We’ve covered a lot of ground! What
happens when things go wrong, though? In the next chapter, we’ll be discussing
debugging techniques to help us when things don’t work out as we expect.

264 | Chapter 19: Integrating with Third-Party APIs

CHAPTER 20

Debugging

“Debugging” is perhaps an unfortunate term, what with its association with defects.
The fact is, what we refer to as “debugging” is an activity you will find yourself doing
all the time, whether you’re implementing a new feature, learning how something
works, or actually fixing a bug. A better term might be “exploring,” but we’ll stick with
“debugging,” since the activity it refers to is unambiguous, regardless of the motiva‐
tion.

Debugging is an oft-neglected skill: it seems that most programmers are expected to
be born knowing how to do it. Perhaps computer science professors and book
authors see debugging as such an obvious skill that they overlook it.

The fact is, debugging is a skill that can be taught, and it is an important way by
which programmers come to understand not just the framework they are working in,
but also their own code and that of their team. In this chapter, we’ll discuss some of
the tools and techniques you can use for debugging Node and Express applications
effectively.

The First Principle of Debugging
As the name implies, “debugging” often refers to the process of finding and eliminat‐
ing defects. Before we talk about tools, let’s consider some general debugging princi‐
ples.

How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth?

—Sir Arthur Conan Doyle

The first and most important principle of debugging is the process of elimination.
Modern computer systems are incredibly complicated, and if you had to hold the

265

whole system in your head, and pluck the source of a single problem out of that vast
space, you probably wouldn’t even know where to start. Whenever you’re confronted
with a problem that isn’t immediately obvious, your very first thought should be,
“What can I eliminate as the source of the problem?” The more you can eliminate, the
fewer places you have to look.

Elimination can take many forms. Here are some common examples:

• Systematically commenting out or disabling blocks of code.
• Writing code that can be covered by unit tests; the unit tests themselves provide a

framework for elimination.
• Analyzing network traffic to determine if the problem is on the client or server

side.
• Testing a different part of the system that has similarities to the first.
• Using input that has worked before, and changing that input one piece at a time

until the problem exhibits.
• Using version control to go back and forth in time until the problem disappears,

and you can isolate it to a particular change (see git bisect for more informa‐
tion about this).

• “Mocking” functionality to eliminate complex subsystems.

Elimination is not a silver bullet, though. Often, problems are due to complex
interactions between two or more components: eliminate (or mock) any one of the
components, and the problem could go away, but the problem can’t be isolated to any
single component. Even in this situation, though, elimination can help narrow down
the problem, even if it doesn’t light up a neon sign over the exact location.

Elimination is most successful when it’s careful and methodical. It’s very easy to miss
things when you just wantonly eliminate components without considering how those
components affect the whole. Play a game with yourself: when you consider a compo‐
nent to eliminate, walk through how the removal of that component will affect the
system. This will inform you about what to expect and whether or not removing the
component tells you anything useful.

Take Advantage of REPL and the Console
Both Node and your browser offer you a read-eval-print loop (REPL); this is basically
just a way to write JavaScript interactively. You type in some JavaScript, press Enter,
and immediately see the output. It’s a great way to play around, and is often the
quickest and most intuitive way to locate an error in small bits of code.

266 | Chapter 20: Debugging

http://bit.ly/34TOufp

In a browser, all you have to do is pull up your JavaScript console, and you have a
REPL. In Node, all you have to do is type node without any arguments, and you enter
REPL mode; you can require packages, create variables and functions, or do anything
else you could normally do in your code (except create packages: there’s no meaning‐
ful way to do that in the REPL).

Console logging is also your friend. It’s a crude debugging technique, perhaps, but an
easy one (both easy to understand and easy to implement). Calling console.log in
Node will output the contents of an object in an easy-to-read format, so you can
easily spot problems. Keep in mind that some objects are so large that logging them
to the console will produce so much output that you’ll have a hard time finding any
useful information. For example, try console.log(req) in one of your path handlers.

Using Node’s Built-in Debugger
Node has a built-in debugger that allows you to step through your application, as if
you were going on a ride-along with the JavaScript interpreter. All you have to do to
start debugging your app is use the inspect argument:

node inspect meadowlark.js

When you do, you’ll immediately notice a couple of things. First, on your console you
will see a URL; this is because the Node debugger works by creating its own web
server, which allows you to control the execution of the application being debugged.
This may not be impressive right now, but the usefulness of this approach will be
clear when we discuss inspector clients.

When you’re in the console debugger, you can type help to get a list of commands.
The commands you will use most often are n (next), s (step in), and o (step out). n
will step “over” the current line: it will execute it, but if that instruction calls other
functions, they will be executed before control is returned to you. s, in contrast, will
step into the current line: if that line invokes other functions, you will be able to step
through them. o allows you to step out of the currently executing function. (Note that
“stepping in” and “stepping out” refer only to functions; they do not step into or out of
if or for blocks or other flow-control statements.)

The command-line debugger has more functionality, but chances are, you won’t want
to use it that often. The command line is great for many things, but debugging isn’t
one of them. It’s good that it’s available in a pinch (for example, if all you have is SSH
access to the server, or if your server doesn’t even have a GUI installed). More often,
you’ll want to use a graphical inspector client.

Using Node’s Built-in Debugger | 267

Node Inspector Clients
While you probably won’t want to use the command-line debugger except in a pinch,
the fact that Node exposes its debugging controls through a web service gives you
other options.

The most straightforward debugger is to use Chrome, which uses the same debugging
interface as it does for debugging frontend code. So if you’ve ever used that interface,
you should feel right at home. Getting started is easy. Start your application with the
--inspect option (which is distinct from the inspect argument mentioned previ‐
ously):

node --inspect meadowlark.js

Now the fun begins: in your browser’s URL bar, enter chrome://inspect. You’ll see a
DevTools page, and in the Devices section, click “Open dedicated DevTools for
Node.” This will open a new window, which is your debugger:

Click the Sources tab, and then, in the leftmost pane, click Node.js to expand it, and
then click “file://”. You’ll see the folder that your application is in; expand that, and
you’ll see all of your JavaScript source (you’ll only see JavaScript and sometimes JSON
files if you’ve required them somewhere). From here, you can click any file to see its
source, and set breakpoints:

268 | Chapter 20: Debugging

Unlike our previous experience with the command-line debugger, your application is
already running: all of the middleware has been linked in, and the app is listening. So
how do we step through our code? The easiest way (and the method you’ll probably
use the most often) is to set a breakpoint. This just tells the debugger to stop execu‐
tion on a specific line so you can step through the code.

All you have to do to set a breakpoint is to open a source file from the “file://”
browser in the debugger, and click the line number (in the left column); a little blue
arrow will appear, indicating there’s a breakpoint on that line (click again to turn it
off). Go ahead and set a breakpoint inside one of your route handlers. Then, in
another browser window, visit that route. If you’re using Chrome, the browser will
automatically switch to the debugger window, while the original browser just spins
(because the server has been paused and isn’t responding to the request).

In the debugger window, you can step through the program in a much more visual
manner than we did with the command-line debugger. You’ll see that the line you set
a breakpoint on is highlighted in blue. That means that’s the current execution line
(which is actually the next line that will execute). From here, you have access to the
same commands as we did in the command-line debugger. Similar to the command-
line debugger, we have the following actions available to us:

Node Inspector Clients | 269

Resume script execution (F8)
This will simply “let it fly”; you will no longer be stepping through the code,
unless you stop on another breakpoint. You usually use this when you’ve seen
what you need to see, or you want to skip ahead to another breakpoint.

Step over next function call (F10)
If the current line invokes a function, the debugger will not descend into that
function. That is, the function will be executed, and the debugger will advance to
the next line after the function invocation. You’ll use this when you’re on a func‐
tion call that you’re not interested in the details of.

Step into next function call (F11)
This will descend into the function call, hiding nothing from you. If this is the
only action you ever used, you would eventually see everything that gets executed
—which sounds fun at first, but after you’ve been at it for an hour, you’ll have a
newfound respect for what Node and Express are doing for you!

Step out of current function (Shift-F11)
Will execute the rest of the function you’re currently in and resume debugging on
the next line of the caller of this function. Most commonly, you’ll use this when
you either accidentally step into a function or have seen as much as you need of
the function.

In addition to all of the control actions, you have access to a console: that console is
executing in the current context of your application. So you can inspect variables and
even change them, or invoke functions. This can be incredibly handy for trying out
really simple things, but it can quickly get confusing, so I don’t encourage you to
dynamically modify your running application too much in this manner; it’s too easy
to get lost.

On the right, you have some useful data. Starting at the top are watch expressions;
these are JavaScript expressions you can define that will be updated in real time as
you step through the application. For example, if there was a specific variable you
wanted to keep track of, you could enter it here.

Below watch expressions is the call stack; this shows you how you got where you are.
That is, the function you’re in was called by some function, and that function was
called by some function; the call stack lists all of those functions. In the highly asyn‐
chronous world of Node, the call stack can be very difficult to unravel and under‐
stand, especially when anonymous functions are involved. The topmost entry in that
list is where you are now. The one right below it is the function that called the func‐
tion that you’re in now, and so on. If you click any entry in this list, you will be magi‐
cally transported to that context: all of your watches and your console context will
now be in that context.

270 | Chapter 20: Debugging

Below the call stack are the scope variables. As the name implies, these are the vari‐
ables that are currently in scope (which includes variables in the parent scope that are
visible to us). This section can often provide you a lot of information about the key
variables you’re interested in at a glance. If you have a lot of variables, this list will
become unwieldy, and you might be better off defining just the variables you’re inter‐
ested in as watch expressions.

Next, there is a list of all breakpoints, which is really just bookkeeping: it’s handy to
have if you’re debugging a hairy problem and you have a lot of breakpoints set. Click‐
ing one will take you directly there (but it won’t change the context, like clicking
something in the call stack; this makes sense because not every breakpoint will repre‐
sent an active context, whereas everything in the call stack does).

Sometimes, what you need to debug is your application setup (when you’re linking
middleware into Express, for example). Running the debugger as we have been, that
will all happen in the blink of an eye before we can even set a breakpoint. Fortunately,
there’s a way around that. All we have to do is specify --inspect-brk instead of sim‐
ply --inspect:

node --inspect-brk meadowlark.js

The debugger will break on the very first line of your application, and then you can
step through or set breakpoints as you see fit.

Chrome isn’t your only option for an inspect client. In particular, if you use Visual
Studio Code, its built-in debugger works very well. Instead of starting your applica‐
tion with the --inspect or --inspect-brk options, click the Debug icon in the Vis‐
ual Studio Code side menu (a bug with a line through it). At the top of the sidebar,
you’ll see a little gear icon; click that, and that will open some debugging configura‐
tion settings. The only setting you need to worry about is “program”; make sure it’s
pointing to your entry point (meadowlark.js, for example).

You may have to also set the current working directory, or "cwd".
For example, if you’ve opened Visual Studio Code in a parent
directory of where meadowlark.js lives, you may need to set "cwd"
(which is the same as having to cd into the right directory before
running node meadowlark.js.

Once you’re all set up, just click the green Play arrow in the debug bar, and your
debugger is running. The interface is slightly different from Chrome’s, but if you’re
using Visual Studio Code, you will probably feel right at home. For more informa‐
tion, see Debugging in Visual Studio Code.

Node Inspector Clients | 271

http://bit.ly/2pb7JBV

Debugging Asynchronous Functions
One of the most common frustrations people have when being exposed to asynchro‐
nous programming for the first time is in debugging. Consider the following code,
for example:

1 console.log('Baa, baa, black sheep,');
2 fs.readFile('yes_sir_yes_sir.txt', (err, data) => {
3 console.log('Have you any wool?');
4 console.log(data);
5 })
6 console.log('Three bags full.')

If you’re new to asynchronous programming, you might expect to see the following:

Baa, baa, black sheep,
Have you any wool?
Yes, sir, yes, sir,
Three bags full.

But you won’t; instead you’ll see this:

Baa, baa, black sheep,
Three bags full.
Have you any wool?
Yes, sir, yes, sir,

If you’re confused about this, debugging probably won’t help. You’ll start on line 1,
then step over it, which puts you on line 2. You then step in, expecting to enter the
function, ending up on line 3, but you actually end up on line 5! That’s because
fs.readFile executes the function only when it’s done reading the file, which won’t
happen until your application is idle. So you step over line 5, and you land on line 6…
you then keep trying to step, but never get to line 3 (you eventually will, but it could
take a while).

If you want to debug lines 3 or 4, all you have to do is set a breakpoint on line 3, and
then let the debugger run. When the file is read and the function is invoked, you’ll
break on that line, and hopefully all will be clear.

Debugging Express
If, like me, you’ve seen a lot of overengineered frameworks in your career, the idea of
stepping through the framework source code might sound like madness (or torture)
to you. And exploring the Express source code is not child’s play, but it is well within
the grasp of anyone with a good understanding of JavaScript and Node. And some‐
times, when you are having problems with your code, debugging those problems can
best be solved by stepping through the Express source code itself (or third-party mid‐
dleware).

272 | Chapter 20: Debugging

This section will be a brief tour of the Express source code so that you can be more
effective in debugging your Express applications. For each part of the tour, I will give
you the filename with respect to the Express root (which you can find in your
node_modules/express directory), and the name of the function. I’m not using line
numbers, because of course they may differ depending on what exact version of
Express you’re using:

Express app creation (lib/express.js, function createApplication)
This is where your Express app begins its life. This is the function that’s being
invoked when you call const app = express() in your code.

Express app initialization (lib/application.js, app.defaultConfiguration)
This is where Express gets initialized: it’s a good place to see all the defaults
Express starts out with. It’s rarely necessary to set a breakpoint here, but it is use‐
ful to step through it at least once to get a feel for the default Express settings.

Add middleware (lib/application.js, app.use)
Every time Express links middleware in (whether you do it explicitly, or it’s
explicitly done by Express or any third parties), this function gets called. It’s
deceptively simple, but really understanding it takes some effort. It’s sometimes
useful to put a breakpoint in here (you’ll want to use --debug-brk when you run
your app; otherwise, all the middleware will be added before you can set a break‐
point), but it can be overwhelming: you’ll be surprised at how much middleware
is linked in in a typical application.

Render view (lib/application.js, app.render)
This is another pretty meaty function, but a useful one if you need to debug
tricky view-related issues. If you step through this function, you’ll see how the
view engine is selected and invoked.

Request extensions (lib/request.js)
You will probably be surprised at how sparse and easy to understand this file is.
Most of the methods Express adds to the request objects are very simple conve‐
nience functions. It’s rarely necessary to step through this code or set breakpoints
because of the simplicity of the code. It is, however, often helpful to look at this
code to understand how some of the Express convenience methods work.

Send response (lib/response.js, res.send)
It almost doesn’t matter how you construct a response—.send, .render, .json,
or .jsonp—it will eventually get to this function (the exception is .sendFile). So
this is a handy place to set a breakpoint, because it should be called for every
response. You can then use the call stack to see how you got there, which can be
helpful in figuring out where there might be a problem.

Debugging Express | 273

Response extensions (lib/response.js)
While there is some meat in res.send, most of the other methods in the
response object are pretty straightforward. It’s occasionally useful to put break‐
points in these functions to see exactly how your app is responding to the
request.

Static middleware (node_modules/serve-static/index.js, function staticMiddleware)
Generally, if static files aren’t being served as you expect, the problem is with
your routing, not with the static middleware: routing takes precedence over the
static middleware. So if you have a file public/test.jpg, and a route /test.jpg, the
static middleware will never even get called in deference to the route. However, if
you need specifics about how headers are set differently for static files, it can be
useful to step through the static middleware.

If you’re scratching your head wondering where all the middleware is, that’s because
there is very little middleware in Express (the static middleware and the router being
the notable exceptions).

Just as it’s helpful to dive into the Express source code when you’re trying to unravel a
difficult problem, you may have to look into the source code of your middleware.
There’s really too much to go through, but there are three I want to mention as being
pretty fundamental to understanding what’s going on in an Express application:

Session middleware (node_modules/express-session/index.js, function session)
A lot goes into making sessions work, but the code is pretty straightforward. You
may want to set a breakpoint in this function if you’re having issues that are
related to sessions. Keep in mind that it is up to you to provide the storage engine
for the session middleware.

Logger middleware (node_modules/morgan/index.js, function logger)
The logger middleware is really there for you as a debugging aid, not to be
debugged itself. However, there’s some subtlety to the way logging works that
you’ll get only by stepping through the logger middleware once or twice. The
first time I did it, I had a lot of “aha” moments, and found myself using logging
more effectively in my applications, so I recommend taking a tour of this middle‐
ware at least once.

URL-encoded body parsing (node_modules/body-parser/lib/types/urlencoded.js, func
tion urlencoded)

The manner in which request bodies are parsed is often a mystery to people. It’s
not really that complicated, and stepping through this middleware will help you
understand the way HTTP requests work. Aside from a learning experience, you
won’t find that you need to step into this middleware for debugging very often.

274 | Chapter 20: Debugging

Conclusion
We’ve discussed a lot of middleware in this book. I can’t reasonably list every land‐
mark you might want to look at on your tour of Express internals, but hopefully these
highlights take away some of the mystery of Express, and embolden you to explore
the framework source code whenever needed. Middleware varies greatly not just in
quality but in accessibility: some middleware is wickedly difficult to understand,
while some is as clear as a pool of water. Whatever the case, don’t be afraid to look: if
it’s too complicated, you can move on (unless you really need to understand it, of
course), and if not, you might learn something.

Conclusion | 275

CHAPTER 21

Going Live

The big day is here: you’ve spent weeks or months toiling over your labor of love, and
now your website or service is ready to launch. It’s not as easy as just “flipping a
switch” and then your website is live…or is it?

In this chapter (which you should really read weeks before launch, not the day of!),
you’ll learn about some of the domain registration and hosting services available to
you, techniques for moving from a staging environment to production, deployment
techniques, and things to consider when picking production services.

Domain Registration and Hosting
People are often confused about the difference between domain registration and host‐
ing. If you’re reading this book, you probably aren’t, but I bet you know people who
are, like your clients or your manager.

Every website and service on the internet can be identified by an Internet Protocol (IP)
address (or more than one). These numbers are not particularly friendly to humans
(and that situation will only get worse as IPv6 adoption improves), but your com‐
puter ultimately needs these numbers to show you a web page. That’s where domain
names come in. They map a human-friendly name (like google.com) with an IP
address (74.125.239.13 or 2601:1c2:1902:5b38:c256:27ff:fe70:47d1).

A real-world analogy would be the difference between a business name and a physical
address. A domain name is like your business name (Apple), and an IP address is like
your physical address (One Apple Park Way, Cupertino, CA 95014). If you need to
actually get in your car and visit Apple’s headquarters, you’ll need to know the physi‐
cal address. Fortunately, if you know the business name, you can probably get the
physical address. The other reason this abstraction is helpful is that an organization
can move (getting a new physical address), and people can still find it even though it’s

277

moved (as a matter of fact, Apple did move its physical headquarters between the first
and second editions of this book).

Hosting, on the other hand, describes the computers that run your website. To con‐
tinue the physical analogy, hosting could be compared to the buildings you see once
you reach the physical address. What is often confusing to people is that domain reg‐
istration has very little to do with hosting, and you do not always purchase your
domain from the same entity that you pay for hosting (in the same way that you usu‐
ally buy land from one person and pay another person to build and maintain build‐
ings for you).

While it’s certainly possible to host your website without a domain name, it’s quite
unfriendly: IP addresses aren’t very marketable! Usually, when you purchase hosting,
you’re automatically assigned a subdomain (which we’ll cover in a moment), which
can be thought of as something between a marketing-friendly domain name and an
IP address (for example, ec2-54-201-235-192.us-west-2.compute.amazonaws.com).

Once you have a domain, and you go live, you could reach your website with multiple
URLs. For example:

• http://meadowlarktravel.com/
• http://www.meadowlarktravel.com/
• http://ec2-54-201-235-192.us-west-2.compute.amazonaws.com/
• http://54.201.235.192/

Thanks to domain mapping, all of these addresses point to the same website. Once
the requests reach your website, it is possible to take action based on the URL that
was used. For example, if someone gets to your website from the IP address, you
could automatically redirect to the domain name, though that is not very common as
there is little point to it (it is more common to redirect from http://meadowlarktra‐
vel.com/ to http://www.meadowlarktravel.com/).

Most domain registrars offer hosting services (or partner with companies that do).
Aside from AWS, I’ve never found registrar hosting options to be particularly attrac‐
tive, and it’s okay to separate domain registration and hosting.

Domain Name System
The Domain Name System (DNS) is what’s responsible for mapping domain names to
IP addresses. The system is fairly intricate, but there are some things about DNS that
you should know as a website owner.

278 | Chapter 21: Going Live

Security
You should always keep in mind that domain names are valuable. If a hacker were to
completely compromise your hosting service and take control of your hosting, but
you retained control of your domain, you could get new hosting and redirect the
domain. If, on the other hand, your domain were compromised, you could be in real
trouble. Your reputation is tied to your domain, and good domain names are care‐
fully guarded. People who have lost control of domains have found that it can be dev‐
astating, and there are those in the world who will actively try to compromise your
domain (especially if it’s a particularly short or memorable one) so they can sell it off,
ruin your reputation, or blackmail you. The upshot is that you should take domain
security very seriously, perhaps even more seriously than your data (depending on
how valuable your data is). I’ve seen people spend inordinate amounts of time and
money on hosting security while getting the cheapest, sketchiest domain registration
they can find. Don’t make that mistake. (Fortunately, quality domain registration is
not particularly expensive.)

Given the importance of protecting ownership of your domain, you should employ
good security practices with respect to your domain registration. At the very least,
you should use strong, unique passwords, and employ proper password hygiene (no
keeping it on a sticky note attached to your monitor). Preferably, you should use a
registrar that offers two-factor authentication. Don’t be afraid to ask your registrar
pointed questions about what is required to authorize changes to your account. The
registrars I recommend are AWS Route 53, Name.com and Namecheap.com. All
three offer two-factor authentication, and I have found their support to be good and
their online control panels to be easy and robust.

When you register a domain, you must provide a third-party email address that’s
associated with that domain (i.e., if you’re registering meadowlarktravel.com, you
shouldn’t use admin@meadowlarktravel.com as your registrant email). Since any secu‐
rity system is as strong as its weakest link, you should use an email address with good
security. It’s quite common to use a Gmail or Outlook account, and if you do, you
should employ the same security standards as you do with your domain registrar
account (good password hygiene and two-factor authentication).

Top-Level Domains
What your domain ends with (such as .com or .net) is called a top-level-domain
(TLD). Generally speaking, there are two types of TLD: country code TLDs and gen‐
eral TLDs. Country code TLDs (such as .us, .es, and .uk) are designed to provide a
geographic categorization. However, there are few restrictions on who can acquire
these TLDs (the internet is truly a global network, after all), so they are often used for
“clever” domains, such as placehold.it and goo.gl.

Domain Registration and Hosting | 279

General TLDs (gTLDs) include the familiar .com, .net, .gov, .fed, .mil, and .edu. While
anyone can acquire an available .com or .net domain, there are restrictions in place
for the others mentioned. For more information, see Table 21-1.

Table 21-1. Restricted gTLDs

TLD More information
.gov, .fed https://www.dotgov.gov

.edu https://net.educause.edu/

.mil Military personnel and contractors should contact their IT department, or the Department of Defense Unified
Registration System

The Internet Corporation for Assigned Names and Numbers (ICANN) is ultimately
responsible for management of TLDs, though it delegates much of the actual admin‐
istration to other organizations. Recently, the ICANN has authorized many new
gTLDs, such as .agency, .florist, .recipes, and even .ninja. For the foreseeable
future, .com will probably remain the “premium” TLD, and the hardest one to get real
estate in. People who were lucky (or shrewd) enough to purchase .com domains in the
internet’s formative years received massive payouts for prime domains (for example,
Facebook purchased fb.com in 2010 for a whopping $8.5 million dollars).

Given the scarcity of .com domains, people are turning to alternative TLDs, or
using .com.us to try to get a domain that accurately reflects their organization. When
picking a domain, you should consider how it’s going to be used. If you plan on mar‐
keting primarily electronically (where people are more likely to click a link than type
in a domain), then you should probably focus more on getting a catchy or meaningful
domain than a short one. If you’re focusing on print advertising, or you have reason
to believe people will be entering your URL manually into their devices, you might
consider alternative TLDs so you can get a shorter domain name. It’s also common
practice to have two domains: a short, easy-to-type one, and a longer one more suit‐
able for marketing.

Subdomains
Whereas a TLD goes after your domain, a subdomain goes before it. By far, the most
common subdomain is www. I’ve never particularly cared for this subdomain. After
all, you’re at a computer, using the World Wide Web; I’m pretty sure you’re not going
to be confused if there isn’t a www to remind you of what you’re doing. For this rea‐
son, I recommend using no subdomain for your primary domain: http://meadowlark‐
travel.com/ instead of http://www.meadowlarktravel.com/. It’s shorter and less busy,
and thanks to redirects, there’s no danger of losing visits from people who automati‐
cally start everything with www.

280 | Chapter 21: Going Live

https://www.dotgov.gov
https://net.educause.edu/
http://bit.ly/354JvZF
http://bit.ly/354JvZF

Subdomains are used for other purposes too. I commonly see things like blogs.mead‐
owlarktravel.com, api.meadowlarktravel.com, and m.meadowlarktravel.com (for a
mobile site). Often this is done for technical reasons: it can be easier to use a subdo‐
main if, for example, your blog uses a completely different server than the rest of your
site. A good proxy, though, can redirect traffic appropriately based on either subdo‐
main or path, so the choice of whether to use a subdomain or a path should be more
content-focused than technology-focused (remember what Tim Berners-Lee said
about URLs expressing your information architecture, not your technical architec‐
ture).

I recommend that subdomains be used to compartmentalize significantly different
parts of your website or service. For example, I think it’s a good use of subdomains to
make your API available at api.meadowlarktravel.com. Microsites (sites that have a
different appearance than the rest of your site, usually highlighting a single product
or subject) are also good candidates for subdomains. Another sensible use for subdo‐
mains is to separate admin interfaces from public interfaces (admin.meadowlarktra‐
vel.com, for employees only).

Your domain registrar, unless you specify otherwise, will redirect all traffic to your
server regardless of subdomain. It is up to your server (or proxy), then, to take appro‐
priate action based on the subdomain.

Nameservers
The “glue” that makes domains work are nameservers, and this is what you’ll be asked
to provide when you establish hosting for your website. Usually, this is pretty
straightforward, as your hosting service will do most of the work for you. For exam‐
ple, let’s say we choose to host meadowlarktravel.com at DigitalOcean. When you set
up your hosting account with DigitalOcean, you’ll be given the names of the Digital‐
Ocean nameservers (there are multiple ones for redundancy). DigitalOcean, like most
hosting providers, calls their nameservers ns1.digitalocean.com, ns1.digitalocean.com,
and so on. Go to your domain registrar and set the nameservers for the domain you
want to host, and you’re all set.

The way the mapping works in this case is as follows:

1. Website visitor navigates to http://meadowlarktravel.com/.
2. The browser sends the request to the computer’s network system.
3. The computer’s network system, which has been given an internet IP address and

a DNS server by the internet provider, asks the DNS resolver to resolve meadow‐
larktravel.com.

Domain Registration and Hosting | 281

https://www.digitalocean.com

4. The DNS resolver is aware that meadowlarktravel.com is handled by ns1.digitalo‐
cean.com, so it asks ns1.digitalocean.com to give it an IP address for meadowlark‐
travel.com.

5. The server at ns1.digitalocean.com receives the request and recognizes that mead‐
owlarktravel.com is indeed an active account, and returns the associated IP
address.

While this is the most common case, it’s not the only way to configure your domain
mapping. Since the server (or proxy) that actually serves your website has an IP
address, we can cut out the middleman by registering that IP address with the DNS
resolvers (this effectively cuts out the middleman of the nameserver ns1.digitalo‐
cean.com in the previous example). For this approach to work, your hosting service
must assign you a static IP address. Commonly, hosting providers will give your
server(s) a dynamic IP address, which means it may change without notice, which
would render this scheme ineffective. It can sometimes cost extra to get a static IP
address instead of a dynamic one: check with your hosting provider.

If you want to map your domain to your website directly (skipping your host’s name‐
servers), you will either be adding an A record or a CNAME record. An A record
maps a domain name directly to an IP address, whereas a CNAME maps one domain
name to another. CNAME records are usually a little less flexible, so A records are
generally preferred.

If you’re using AWS for your nameservers, in addition to A and
CNAME records, it also has a record called an alias that offers a lot
of advantages if you’re pointing it to a service hosted on AWS. For
more information, see the AWS documentation.

Whatever technique you use, domain mapping is usually aggressively cached, mean‐
ing that when you change your domain records, it can take up to 48 hours for your
domain to be attached to the new server. Keep in mind that this is also subject to
geography: if you see your domain working in Los Angeles, your client in New York
may see the domain attached to the previous server. In my experience, 24 hours is
usually sufficient for domains to resolve correctly in the continental US, with interna‐
tional resolution taking up to 48 hours.

If you need something to go live precisely at a certain time, you should not rely on
DNS changes. Rather, modify your server to redirect to the “coming soon” site or
page, and make the DNS changes in advance of the actual switchover. At the appoin‐
ted moment, then, you can have your server switch over to the live site, and your visi‐
tors will see the change immediately, regardless of where they are in the world.

282 | Chapter 21: Going Live

https://amzn.to/2pUuDhv

Hosting
Choosing a hosting service can seem overwhelming at first. Node has taken off in a
big way, and everyone’s clamoring to offer Node hosting to meet the demand. How
you select a hosting provider depends very much on your needs. If you have reason to
believe your site will be the next Amazon or Twitter, you’ll have a very different set of
concerns than you would if you were building a website for your local stamp collec‐
tor’s club.

Traditional hosting or cloud hosting?
The term “cloud” is one of the most nebulous tech terms to crop up in recent years.
Really, it’s just a fancy way to say “the internet,” or “part of the internet.” The term is
not entirely useless, though. While not part of the technical definition of the term,
hosting in the cloud usually implies a certain commoditizing of computing resources.
That is to say, we no longer think about a “server” as a distinct, physical entity: it’s
simply a homogeneous resource somewhere in the cloud, and one is as good as
another. I’m oversimplifying, of course: computing resources are distinguished (and
priced) according to their memory, number of CPUs, etc. The difference is between
knowing (and caring) what actual server your app is hosted on, and knowing it’s hos‐
ted on some server in the cloud, and it could just as easily be moved over to a differ‐
ent one without you knowing (or caring).

Cloud hosting is also highly virtualized. That is, the server(s) your app is running on
are not usually physical machines, but virtual machines running on physical servers.
This idea was not introduced by cloud hosting, but it has become synonymous with
it.

While cloud hosting had humble origins, it means a lot more than “homogenous
servers” now. The major cloud providers offer many infrastructure services that (in
theory) reduce your maintenance burden and offer a high degree of scalability. These
services include database storage, file storage, networking queues, authentication,
video processing, telecommunications services, artificial intelligence engines, and
much more.

Cloud hosting can be a little disconcerting at first, not knowing anything about the
actual physical machine your server is running on, trusting that your servers aren’t
going to be affected by the other servers running on the same computer. Really,
though, nothing has changed: when your hosting bill comes, you’re still paying for
essentially the same thing: someone taking care of the physical hardware and net‐
working that enables your web applications. All that’s changed is that you’re more
removed from the hardware.

Domain Registration and Hosting | 283

I believe that “traditional” hosting (for lack of a better term) will eventually disappear
altogether. That’s not to say hosting companies will go out of business (though some
inevitably will); they will just start to offer cloud hosting themselves.

XaaS
When considering cloud hosting, you will come across the acronyms SaaS, PaaS, IaaS,
and FaaS:

Software as a Service (SaaS)
SaaS generally describes software (websites, apps) that are provided to you: you
just use them. An example would be Google Documents or Dropbox.

Platform as a Service (PaaS)
PaaS provides all of the infrastructure for you (operating systems, networking—
all of that is handled). All you have to do is write your applications. While there is
often a blurry line between PaaS and IaaS (and you will often find yourself strad‐
dling that line as a developer), this is generally the service model we’re discussing
in this book. If you’re running a website or web service, PaaS is probably what
you’re looking for.

Infrastructure as a Service (IaaS)
IaaS gives you the most flexibility, but at cost. All you get are virtual machines
and a basic network connecting them. You are then responsible for installing and
maintaining operating systems, databases, and network policies. Unless you need
this level of control over your environment, you will generally want to stick with
PaaS. (Note that PaaS does allow you to have control over the choice of operating
systems and network configuration: you just don’t have to do it yourself.)

Functions as a Service (FaaS)
FaaS describes offerings such as AWS Lambda, Google Functions, and Azure
Functions, which provide a way to run individual functions in the cloud without
having to configure the runtime environment yourself. It’s at the core of what is
commonly being called “serverless” architecture.

The behemoths
The companies that essentially run the internet (or, at least, are heavily invested in the
running of the internet) have realized that with the commoditization of computing
resources, they have another viable product to sell. Amazon, Microsoft, and Google
all offer cloud computing services, and their services are quite good.

All of these services are priced similarly: if your hosting needs are modest, there will
be minimal price difference among the three. If you have very high bandwidth or
storage needs, you will have to evaluate the services more carefully, as the cost differ‐
ence could be greater, depending on your needs.

284 | Chapter 21: Going Live

While Microsoft does not normally leap to mind when we consider open source plat‐
forms, I would not overlook Azure. Not only is the platform established and robust,
but Microsoft has bent over backward to make it friendly to not just Node, but the
open source community. Microsoft offers a one-month Azure trial, which is a great
way to determine if the service meets your needs; if you’re considering one of the big
three, I definitely recommend the free trial to evaluate Azure. Microsoft offers Node
APIs for all of its major services, including its cloud storage service. In addition to
excellent Node hosting, Azure offers an excellent cloud storage system (with a Java‐
Script API), as well as good support for MongoDB.

Amazon offers the most comprehensive set of resources, including SMS (text mes‐
sage), cloud storage, email services, payment services (ecommerce), DNS, and more.
In addition, Amazon offers a free usage tier, making it very easy to evaluate.

Google’s cloud platform has come a long way and now offers robust Node hosting
and, as you might expect, excellent integration with its own services (mapping,
authentication, and search being particularly attractive).

In addition to the “big three,” it is worth considering Heroku, which has been catering
to people wanting to host fast and nimble Node applications for some time now. I’ve
also had great luck with DigitalOcean, which focuses more on providing containers
and a limited number of services in a very user-friendly manner.

Boutique hosting
Smaller hosting services, which I’m going to call “boutique” hosting services (for lack
of a better word), may not have the infrastructure or resources of Microsoft, Amazon,
or Google, but that doesn’t mean they don’t offer something valuable.

Because boutique hosting services can’t compete in terms of infrastructure, they usu‐
ally focus on customer service and support. If you need a lot of support, you might
want to consider a boutique hosting service. If you have a hosting provider you’ve
been happy with, don’t hesitate to ask if it offers (or plans on offering) Node hosting.

Deployment
It still surprises me that, in 2019, people are still using FTP to deploy their applica‐
tions. If you are, please stop. FTP is in no way secure. Not only are all your files trans‐
mitted unencrypted, but your username and password are also. If your hosting
provider doesn’t give you an option, find a new hosting provider. If you really have no
choice, make sure you use a unique password that you’re not using for anything else.

At minimum, you should be using SFTP or FTPS (not to be confused), but you
should really be considering a continuous delivery (CD) service.

Domain Registration and Hosting | 285

https://www.heroku.com
https://www.digitalocean.com

The idea behind CD is that you’re never very far away from a version that can be
released (weeks or even days). CD is usually used in the same breath as continuous
integration (CI), which refers to automated processes for integrating the work of
developers and testing them.

In general, the more you can automate your processes, the easier your development
will be. Imagine merging in changes, and automatically getting notified that unit tests
pass, then integration tests pass, and then seeing your changes online…in a matter of
minutes! It’s a great goal, but you have to invest some work up front to get it set up,
and there will be some maintenance over time.

Although the steps themselves are similar (run unit tests, run integration tests, deploy
to staging servers, deploy to production servers), the process of setting up CI/CD
pipelines (a word you’ll hear a lot when discussing CI/CD) varies substantially.

You should look at some of the options available for CI/CD and choose one that
meets your needs:

AWS CodePipeline
If you’re hosting on AWS, CodePipeline should be first on your list, as it will be
the easiest path to CI/CD for you. It’s very robust, but I’ve found it to be a little
less user-friendly than some of the other options.

Microsoft Azure Web Apps
If you’re hosting on Azure, Web Apps is your best bet (are you noticing a trend
here?). I haven’t had much experience with this service, but it seems to be well
loved in the community.

Travis CI
Travis CI has been around for a long time now, and has a large, loyal user base
and good documentation.

Semaphore
Semaphore is easy to set up and configure, but it doesn’t offer many features, and
its basic (low-cost) plans are slow.

Google Cloud Build
I haven’t tried Google Cloud Build yet, but it looks robust and, like CodePipeline
and Azure Web Apps, it’s likely that is the best choice if you’re hosting on Google
Cloud.]

CircleCI
CircleCI is another CI that’s been around for some time, and is well loved.

286 | Chapter 21: Going Live

https://amzn.to/2CzTQAo
http://bit.ly/2CEsSI0
https://travis-ci.org/
https://semaphoreci.com/
http://bit.ly/2NGuIys
https://circleci.com/

Jenkins
Jenkins is another incumbent with a large community. My experience is that it
hasn’t kept up with modern deployment practices as well as some of the other
options here, but it did just release a new version that looks promising.

At the end of the day, CI/CD services are automating the activities that you create.
You still have to write the code, determine your versioning scheme, write high-quality
unit and integration tests and a way to run them, and understand your deployment
infrastructure. The examples in this book could be automated simply enough: most
everything could be deployed to a single server running a Node instance. However, as
you start to grow your infrastructure, so too will your CI/CD pipeline grow in com‐
plexity.

Git’s role in deployment
Git’s greatest strength (and greatest weakness) is its flexibility. It can be adapted to
almost any workflow imaginable. For the sake of deployment, I recommend creating
one or more branches specifically for deployment. For example, you might have a pro
duction branch and a staging branch. How you use those branches is very much up
to your individual workflow.

One popular approach is to flow from master to staging to production. So once
some changes on master are ready to go live, you could merge them into staging.
Once they have been approved on the staging server, you could then merge staging
into production. While this makes logical sense, I dislike the clutter it creates
(merges, merges everywhere). Also, if you have lots of features that need to be staged
and pushed to production in different orders, this can get messy quickly.

I feel a better approach is to merge master into staging and, when you’re ready to go
live with changes, then merge master into production. In this way, staging and pro
duction become less associated: you can even have multiple staging branches to
experiment with different features before going live (and you can merge things other
than master into them). Only when something has been approved for production do
you merge it into production.

What happens when you need to roll back changes? This is where things can get
complicated. There are multiple techniques for undoing changes, such as applying
the inverse of a commit to undo prior commits (git revert), these techniques not
only are complicated, but also can can cause problems down the line. The typical way
of handling this is to create tags (for example, git tag v1.2.0 on your production
branch) every time you make a deployment. If you need to roll back to a specific ver‐
sion, you always have that tag available.

Domain Registration and Hosting | 287

https://jenkins.io/

In the end, it is up to you and your team to decide on a Git workflow. More impor‐
tant than the workflow you pick is the consistency with which you use it, and the
training and communication surrounding it.

We’ve already discussed the value of keeping your binary assets
(multimedia and documents) separate from your code repository.
Git-based deployment offers another incentive for this approach. If
you have 4 GB of multimedia data in your repository, they’re going
to take forever to clone, and you have an unnecessary copy of all of
your data for every production server.

Manual Git-based deployment
If you’re not ready yet to take the step of setting up CI/CD, you could start with a
manual Git-based deployment. The advantage of this approach is that you’ll get com‐
fortable with the steps and challenges involved in deployment, which will serve you
well when you take the step of automation.

For each server you want to deploy to, you will have to clone the repository, check out
the production branch, and then set up the infrastructure necessary to start/restart
your app (which will be dependent on your choice of platform). When you update
the production branch, you will have to go to each server, run git pull --ff-only,
run npm install --production, and then restart the app. If your deployments aren’t
often, and you don’t have very many servers, this may not represent a terrible hard‐
ship, but if you’re updating more often, this will get old fast, and you’ll want to find
some way to automate the system.

The --ff-only argument to git pull allows only fast-forward
pulls, preventing automatic merging or rebasing. If you know the
pull is fast-forward only, you may safely omit it, but if you get in
the habit of doing it, you will never accidentally invoke a merge or
rebase!

In essence, what you are doing here is replicating the way you work in development,
except you’re doing it on a remote server. Manual processes always run the risk of
human error, and I recommend this approach only as a stepping stone toward more
automated development.

Conclusion
Deploying your website (especially for the first time) should be an exciting occasion.
There should be champagne and cheering, but all too often, there is sweating, curs‐
ing, and late nights. I’ve seen far too many websites launched at three in the morning

288 | Chapter 21: Going Live

by an irritable, exhausted team. Fortunately, that’s changing, partly thanks to cloud
deployment.

No matter what deployment strategy you choose, the most important thing you can
do is to start production deployments early, before the site is ready to go live. You
don’t have to hook up the domain, so the public doesn’t need to know. If you’ve
already deployed the site to production servers half a dozen times before the day of
launch, your chances of a successful launch will be much higher. Ideally, your func‐
tioning website will already be running on the production server long before launch:
all you have to do is flip the switch from the old site to the new site.

Conclusion | 289

1 As it happened, the term postpartum was a little too visceral. We now call them retrospectives.

CHAPTER 22

Maintenance

You launched the site! Congratulations, now you never have to think about it again.
What’s that? You do have to keep thinking about it? Well, in that case, keep reading.

Although it has happened a couple of times in my career, it has been the exception to
the rule that you finish a site and then never have to touch it again (and when it does
happen, it’s usually because someone else is doing the work, not that work doesn’t
need to be done). I distinctly remember one website launch “postmortem.” I piped up
and said, “Shouldn’t we really call it a postpartum?”1 Launching a website really is
more of a birth than a death. Once it launches, you’re glued to the analytics, anxiously
awaiting the client’s reaction, waking up at three in the morning to check to see if the
site is still up. It’s your baby.

Scoping a website, designing a website, building a website: these are all activities that
can be planned to death. But what usually receives short shrift is planning the mainte‐
nance of a website. This chapter will give you some advice on navigating those waters.

The Principles of Maintenance
Have a Longevity Plan
It always surprises me when a client agrees on a price to build a website, but it’s never
discussed how long the site is expected to last. My experience is that if you do good
work, clients are happy to pay for it. What clients do not appreciate is the unexpected:
being told after three years that their site has to be rebuilt when they had an unspo‐
ken expectation that it would last five.

291

The internet moves fast. If you built a website with the absolute best and newest tech‐
nology you could find, it might feel like a creaky relic in two short years. Or it could
truck along for seven, aging, but doing so gracefully (this is a lot less common!).

Setting expectations about website longevity is part art, part salesmanship, and part
science. The science of it involves something that all scientists, but very few web
developers, do: keep records. Imagine if you had a record of every website your team
had ever launched, the history of maintenance requests and failures, the technologies
used, and how long before each site was rebuilt. There are many variables, obviously,
from the team members involved, to the economy, to the shifting winds of technol‐
ogy, but that doesn’t mean that meaningful trends can’t be discovered in the data. You
may find that certain development approaches work better for your team, or certain
platforms or technologies. What I almost guarantee you will find is a correlation
between “procrastination” and defects: the longer you put off an infrastructure update
or platform upgrade that’s causing pain, the worse it will be. Having a good issue-
tracking system and keeping meticulous records will allow you to give your client a
much better (and more realistic) picture of what the life cycle of their project is going
to be.

The salesmanship of it boils down to money, of course. If a client can afford to have
their website completely rebuilt every three years, then they won’t be very likely to
suffer from aging infrastructure (they will have other problems, though). On the flip
side, there will be clients who need their dollar to stretch as far as possible, wanting a
website that will last for five or even seven years. (I’ve known websites that have drag‐
ged on for even longer than that, but I feel that seven years is the maximum realistic
life expectancy for websites that have any hope of continuing to be useful.) You have a
responsibility to both of these clients, and both come with their own challenges. With
the clients who have a lot of money, don’t just take their money because they have it:
use that extra money to give them something extraordinary. With the clients on a
tight budget, you will have to find creative ways to design their website for greater
longevity in the face of constantly changing technology. Both of these extremes have
their own challenges, but ones that can be solved. What’s important, though is that
you know what the expectations are.

Lastly, there’s the art of the matter. This is what ties it all together: understanding
what the client can afford, and where you can honestly convince the client to spend
more money so they get value where they need it. It is also the art of understanding
technology futures, and being able to predict what technologies will be painfully
obsolete in five years and which will be going strong.

There’s no way to predict anything with absolute certainty, of course. You could bet
wrong on technologies, personnel shifts can completely change the technical culture
of your organization, and technology vendors can go out of business (though this is
usually less of a problem in the open source world). The technology that you thought

292 | Chapter 22: Maintenance

would be solid for the lifetime of your product may turn out to be a fad, and you’ll
find yourself facing the decision to rebuild sooner than you expected. On the flip
side, sometimes the exactly right team comes together at the exact right time with the
exact right technology, and something is created that far outlives any reasonable
expectations. None of this uncertainty should deter you from having a plan, however:
better to have a plan that goes awry than to always be rudderless.

It should be clear to you by now that I feel that JavaScript and Node are technologies
that are going to be around for a while. The Node community is vibrant and enthusi‐
astic, and wisely based on a language that has clearly won. Most important, perhaps, is
that JavaScript is a multiparadigm language: object-oriented, functional, procedural,
synchronous, asynchronous—it’s all there. This makes JavaScript an inviting platform
for developers from many different backgrounds, and is in large part responsible for
the pace of innovation in the JavaScript ecosystem.

Use Source Control
This probably seems obvious to you, but it’s not just about using source control, it’s
about using it well. Why are you using source control? Understand the reasons, and
make sure the tools are supporting those reasons. There are many reasons to use
source control, but the one that always seems to me to have the biggest payoff is attri‐
bution: knowing exactly what change was made when and who did it, so I can ask for
more information if necessary. Version control is one of our greatest tools for under‐
standing the history of our projects and how we work together as a team.

Use an Issue Tracker
Issue trackers go back to the science of development. Without a systematic way to
record the history of a project, no insight is possible. You’ve probably heard it said
that the definition of insanity is “doing the same thing over and over again and
expecting different results” (often dubiously attributed to Albert Einstein). It does
seem crazy to repeat your mistakes over and over again, but how can you avoid it if
you don’t know what mistakes you’re making?

Record everything: every defect the client reports; every defect you find before the
client sees it; every complaint, every question, every bit of praise. Record how long it
took, who fixed it, what Git commits were involved, and who approved the fix. The
art here is finding tools that don’t make this overly time-consuming or onerous. A
bad issue-tracking system will languish, unused, and it will be worse than useless. A
good issue-tracking system will yield vital insights into your business, your team, and
your clients.

The Principles of Maintenance | 293

2 Mike Wilson of Fuel has this rule of thumb: “The third time you do something, take the time to automate it.”

Exercise Good Hygiene
I’m not talking about brushing your teeth—though you should do that too—I’m talk‐
ing about version control, testing, code reviews, and issue tracking. The tools you use
are useful only if you use them, and use them correctly. Code reviews are a great way
to encourage hygiene because everything can be touched on, from discussing the use
of the issue-tracking system in which the request originated to the tests that had to be
added to verify the fix to the version control commit comments.

The data you collect from your issue-tracking system should be reviewed on a peri‐
odic basis and discussed with the team. From this data, you can gain insights about
what’s working and what’s not. You might be surprised by what you find.

Don’t Procrastinate
Institutional procrastination can be one of the hardest things to combat. Usually it’s
something that doesn’t seem so bad: you notice that your team is routinely eating up a
lot of hours on a weekly update that could be drastically improved by a little refactor‐
ing. Every week that you delay refactoring is another week you’re paying the ineffi‐
ciency cost.2 Worse, some costs may increase over time.

A great example of this is failing to update software dependencies. As the software
ages, and team members change, it’s harder to find people who remember (or ever
understood) the creaky old software. The support community starts to evaporate, and
before long, the technology is deprecated and you can’t get any kind of support for it.
You often hear this described as technical debt, and it’s a very real thing. While you
should avoid procrastinating, understanding the website longevity can factor into
these decisions: if you’re just about to redesign the whole website, there’s little value in
eliminating technical debt that’s been building up.

Do Routine QA Checks
For each of your websites, you should have a documented routine QA check. That
check should include a link checker, HTML and CSS validation, and running your
tests. The key here is documented: if the items that compose the QA check aren’t doc‐
umented, you will inevitably miss things. A documented QA checklist for each site
not only helps prevent overlooked checks, but also allows new team members to be
effective immediately. Ideally, the QA checklist can be executed by a nontechnical
team member. This will give your (possibly) nontechnical manager confidence in
your team and will allow you to spread QA responsibilities around if you don’t have a
dedicated QA department. Depending on your relationship with your client, you may

294 | Chapter 22: Maintenance

http://www.fuelyouth.com

also want to share your QA checklist (or part of it) with the client; it’s a good way to
remind them what they’re paying for, and that you are looking out for their best inter‐
ests.

As part of your routine QA check, I recommend using Google Webmaster Tools and
Bing Webmaster Tools. They are easy to set up, and they give you a very important
view of your site: how the major search engines see it. It will alert you to any prob‐
lems with your robots.txt file, HTML issues that are interfering with good search
results, security issues, and more.

Monitor Analytics
If you’re not running analytics on your website, you need to start now: it provides
vital insight into not just the popularity of your website, but also how your users are
using it. Google Analytics (GA) is excellent (and free!), and even if you supplement it
with additional analytics services, there’s little reason not to include GA on your site.

Often, you will be able to spot subtle UX issues by keeping an eye on your analytics.
Are there certain pages that are not getting the traffic that you expect? That could
indicate a problem with your navigation or promotions, or an SEO issue. Are your
bounce rates high? That could indicate the content on your pages needs some tailor‐
ing (people are getting to your site by searching, but when they arrive on your site,
they realize it’s not what they’re looking for). You should have an analytics checklist to
go along with your QA checklist (it could even be part of your QA checklist). That
checklist should be a “living document,” because over the lifetime of your website,
you or your client may have shifting priorities about what content is most important.

Optimize Performance
Study after study has shown the dramatic effect of performance on website traffic. It’s
a fast-paced world, and people expect their content delivered quickly, especially on
mobile platforms. The number one principle in performance tuning is to profile first,
then optimize. “Profiling” means finding out what actually is slowing your site down.
If you spend days speeding up your content rendering when the problem is your
social media plugins, you’re wasting precious time and money.

Google PageSpeed Insights is a great way to measure the performance of your website
(and now PageSpeed data is recorded in Google Analytics so you can monitor perfor‐
mance trends). I will not only give you an overall score for mobile and desktop per‐
formance, but also make prioritized suggestions about how to improve performance.

Unless you currently have performance issues, it’s probably not necessary to do peri‐
odic performance checks (monitoring Google Analytics for significant changes in
performance scores should be sufficient). However, it is gratifying to watch your
boost in traffic when you improve performance.

The Principles of Maintenance | 295

http://bit.ly/2qH3Y7L
https://binged.it/2qPwF2c
http://bit.ly/2Qa3l15

Prioritize Lead Tracking
In the internet world, the strongest signal your visitors can give you to indicate inter‐
est in your product or service is contact information. You should treat this informa‐
tion with the utmost care. Any form that collects an email or phone number should
be tested routinely as part of your QA checklist, and there should always be redun‐
dancy when you collect that information. The worst thing you can do to a potential
customer is collect contact information and then lose it.

Because lead tracking is so critical to the success of your website, I recommend these
five principles for collecting information:

Have a fallback in case JavaScript fails
Collecting customer information via Ajax is fine—it often results in a better user
experience. However, if JavaScript should fail for any reason (the user could dis‐
able it, or a script on your website could have an error, preventing your Ajax
from functioning correctly), the form submission should work anyway. A great
way to test this is to disable JavaScript and use your form. It’s okay if the user
experience is not ideal: the point is that user data is not lost. To implement this,
always have a valid and working action parameter in your <form> tag, even if
you normally use Ajax.

If you use Ajax, get the URL from the form’s action parameter
While not strictly necessary, this helps prevent you from accidentally forgetting
the action parameter on your <form> tags. If you tie your Ajax to successful no-
JavaScript submission, it’s much harder to lose customer data. For example, your
form tag could be <form action="/submit/email" method="POST">; then in
your Ajax code, you would get the action for the form from the DOM, and use
that in your Ajax submission code.

Provide at least one level of redundancy
You’ll probably want to save leads to a database or an external service such as
Campaign Monitor. But what if your database fails, or Campaign Monitor goes
down, or there’s a network issue? You still don’t want to lose that lead. A common
way to provide redundancy is to send an email in addition to storing the lead. If
you take this approach, you should not use a person’s email address, but a shared
email address (such as dev@meadowlarktravel.com): the redundancy does no
good if you send it to a person and that person leaves the organization. You could
also store the lead in a backup database, or even a CSV file. However, whenever
your primary storage fails, there should be some mechanism to alert you of the
failure. Collecting a redundant backup is the first half of the battle; being aware
of failures and taking appropriate action is the second half.

296 | Chapter 22: Maintenance

In case of total storage failure, inform the user
Let’s say you have three levels of redundancy: your primary storage is Campaign
Monitor, and if that fails, you back up to a CSV file and send an email to
dev@meadowlarktravel.com. If all of these channels fail, the user should receive a
message that says something like, “We’re sorry, we’re experiencing technical diffi‐
culties. Please try again later, or contact support@meadowlarktravel.com.”

Check for positive confirmation, not absence of an error
It’s quite common to have your Ajax handler return an object with an err prop‐
erty in the case of failure; the client code then has something that looks like this:
if(data.err){ /* inform user of failure */ } else { /* thank user

for successful submission */ }. Avoid this approach. There’s nothing wrong
with setting an err property, but if there’s an error in your Ajax handler, leading
the server to respond with a 500 response code or a response that isn’t valid
JSON, this approach could fail silently. The user’s lead will disappear into the void,
and they will be none the wiser. Instead, provide a success property for success‐
ful submission (even if the primary storage failed: if the user’s information was
recorded by something, you may return success). Then your client-side code
becomes if(data.success){ /* thank user for successful submission

/ } else { / inform user of failure */ }.

Prevent “Invisible” Failures
I see it all the time: because developers are in a hurry, they record errors in ways that
never get checked. Whether it is a logfile, a table in a database, a client-side console
log, or an email that goes to a dead address, the end result is the same: your website
has quality problems that are going unnoticed.

The number one defense you can have against this problem is to provide an easy,
standard method for logging errors. Document it. Don’t make it difficult. Don’t make it
obscure. Make sure every developer that touches your project is aware of it. It can be
as simple as exposing a meadowlarkLog function (log is often used by other pack‐
ages). It doesn’t matter if the function is recording to a database, flat file, email, or
some combination thereof: the important thing is that it is standard. It also allows
you to improve your logging mechanism (for example, flat files are less useful when
you scale out your server, so you would modify your meadowlarkLog function to
record to a database instead). Once you have the logging mechanism in place, docu‐
mented, and everyone on your team knows about it, add “check logs” to your QA
checklist, and have instructions on how to do that.

The Principles of Maintenance | 297

Code Reuse and Refactoring
One tragedy I see all the time is the reinvention of the wheel, over and over and over
again. Usually it’s just small things: tidbits that feel easier to just rewrite than to dig up
in some project that you did months ago. All of those little rewritten snippets add up.
Worse, it flies in the face of good QA: you’re probably not going to go to the trouble
to write tests for all these little snippets (and if you do, you’re doubling the time that
you’re wasting by not reusing existing code). Each snippet—doing the same thing—
can have different bugs. It’s a bad habit.

Development in Node and Express offers some great ways to combat this problem.
Node brought namespacing (via modules) and packages (via npm), and Express
brings the concept of middleware. With these tools at your disposal, developing reus‐
able code is a lot easier.

Private npm Registry
npm registries are a great place to store shared code; it’s what npm was designed for,
after all. In addition to simple storage, you get versioning, and a convenient way to
include those packages in other projects.

There’s a fly in the ointment, though: unless you’re working in a completely open
source organization, you may not want to create npm packages for all of your reusa‐
ble code. (There can be other reasons than intellectual property protection, too: your
packages could be so organization- or project-specific that it doesn’t make sense to
make them available on a public registry.)

One way to handle this is private npm registries. npm now offers Orgs, which allows
you to publish private packages and give your developers paid logins, allowing them
to access those private packages. See npm for more information about npm Orgs and
private packages.

Middleware
As we’ve seen throughout this book, writing middleware is not some big, scary, com‐
plicated thing: we’ve done it a dozen times in this book and, after a while, you will do
it without even thinking about it. The next step, then, is to put reusable middleware
in a package and put it in an npm registry.

If you find that your middleware is too project-specific to put in a reusable package,
you should consider refactoring the middleware to be configured for more general
use. Remember that you can pass configuration objects into middleware to make
them useful in a whole range of situations. Here is an overview of the most common
ways to expose middleware in a Node module. All of the following assume that you’re
using these modules as a package, and that package is called meadowlark-stuff.

298 | Chapter 22: Maintenance

https://www.npmjs.com/products

Module exposes middleware function directly
Use this method if your middleware doesn’t need a configuration object:

module.exports = (req, res, next) => {
 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected
 // to be an endpoint
 next()
}

To use this middleware:

const stuff = require('meadowlark-stuff')

app.use(stuff)

Module exposes a function that returns middleware
Use this method if your middleware needs a configuration object or other informa‐
tion:

module.exports = config => {
 // it's common to create the config object
 // if it wasn't passed in:
 if(!config) config = {}

 return (req, res, next) => {
 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected
 // to be an endpoint
 next()
 }
}

To use this middleware:

const stuff = require('meadowlark-stuff')({ option: 'my choice' })

app.use(stuff)

Module exposes an object that contains middleware
Use this option if you want to expose multiple related middleware:

module.exports = config => {
 // it's common to create the config object
 // if it wasn't passed in:
 if(!config) config = {}

 return {
 m1: (req, res, next) => {
 // your middleware goes here...remember to call next()
 // or next('route') unless this middleware is expected

Code Reuse and Refactoring | 299

 // to be an endpoint
 next()
 },
 m2: (req, res, next) => {
 next()
 },
 }
}

To use this middleware:

const stuff = require('meadowlark-stuff')({ option: 'my choice' })

app.use(stuff.m1)
app.use(stuff.m2)

Conclusion
When you’re building a website, the focus is often on the launch, and for good rea‐
son: a lot of excitement surrounds a launch. However, a client that is delighted by a
newly launched website will quickly become a dissatisfied customer if care isn’t taken
in maintaining the website. Approaching your maintenance plan with the same care
with which you launch websites will provide the kind of experience that keeps clients
coming back.

300 | Chapter 22: Maintenance

CHAPTER 23

Additional Resources

In this book, I have given you a comprehensive overview of building websites with
Express. And we have covered a remarkable amount of ground, but we’ve still only
scratched the surface of the packages, techniques, and frameworks that are available
to you. In this chapter, we’ll discuss where you can go for additional resources.

Online Documentation
For JavaScript, CSS, and HTML documentation, the Mozilla Developer Network
(MDN) is without equal. If I need JavaScript documentation, I either search directly
on MDN or append “mdn” to my search query. Otherwise, inevitably, w3schools
appears in the search. Whoever is managing SEO for w3schools is a genius, but I rec‐
ommend avoiding this site: I find the documentation is often severely lacking.

Where MDN is a great HTML reference, if you’re new to HTML5 (or even if you’re
not), you should read Mark Pilgrim’s Dive Into HTML5. WHATWG maintains an
excellent “living standard” HTML5 specification; it is usually where I turn to first for
really hard-to-answer HTML questions. Finally, the official specifications for HTML
and CSS are located on the W3C website; they are dry, difficult-to-read documents,
but sometimes it’s your only recourse for the very hardest problems.

JavaScript adheres to the ECMA-262 ECMAScript language specification. To track
the availability of JavaScript features in Node (and various browsers), see the excellent
guide maintained by @kangax.

The Node documentation is very good, and comprehensive, and it should be your
first choice for authoritative documentation about Node modules (such as http,
https, and fs). The Express documentation is quite good, but not as comprehensive
as one might like. The npm documentation is comprehensive and useful.

301

https://developer.mozilla.org
https://developer.mozilla.org
http://diveintohtml5.info
http://developers.whatwg.org
http://www.w3.org
http://bit.ly/ECMA-262_specs
http://bit.ly/36SoK53
https://nodejs.org/en/docs
https://expressjs.com
https://docs.npmjs.com/

Periodicals
There are three free periodicals you should absolutely subscribe to and read dutifully
every week:

• JavaScript Weekly
• Node Weekly
• HTML5 Weekly

These three periodicals will keep you informed of the latest news, services, blogs, and
tutorials as they become available.

Stack Overflow
Chances are good that you’ve already used Stack Overflow (SO): since its inception in
2008, it has become the dominant online Q&A site, and is your best resource to get
your JavaScript, Node, and Express questions answered (and any other technology
covered in this book). Stack Overflow is a community-maintained, reputation-based
Q&A site. The reputation model is what’s responsible for the quality of the site and its
continued success. Users can gain reputation by having their questions or answers
“upvoted” or having an accepted answer. You don’t have to have any reputation to ask
a question, and registration is free. However, there are things you can do to increase
the chances of getting your question answered in a useful manner, which we’ll discuss
in this section.

Reputation is the currency of Stack Overflow, and while there are people out there
who genuinely want to help you, it’s the chance to gain reputation that’s the icing on
the cake that motivates good answers. There are a lot of really smart people on SO,
and they’re all competing to provide the first and/or best correct answer to your ques‐
tion (there’s a strong disincentive to provide a quick but bad answer, thankfully). Here
are things you can do to increase the chances of getting a good answer for your ques‐
tion:

Be an informed SO user
Take the SO tour, and then read “How do I ask a good question?” If you’re so
inclined, you can go on to read all of the help documentation—you’ll earn a
badge if you read it all!

Don’t ask questions that have already been answered
Do your due diligence, and try to find out if someone has already asked your
question. If you ask a question that has an easily found answer already on SO,
your question will quickly be closed as a duplicate, and people will often down‐
vote you for this, negatively affecting your reputation.

302 | Chapter 23: Additional Resources

http://javascriptweekly.com
http://nodeweekly.com
http://html5weekly.com
http://bit.ly/2rFhSbb
http://bit.ly/2p7Qnpw
http://bit.ly/36UnyOp

Don’t ask people to write your code for you
You will quickly find your question downvoted and closed if you simply ask,
“How do I do X?” The SO community expects you to make an effort to solve
your own problem before resorting to SO. Describe in your question what you’ve
tried and why it isn’t working.

Ask one question at a time
Questions that are asking five things—“How do I do this, then that, then the
other things, and what’s the best way to do this?”—are difficult to answer and are
discouraged.

Craft a minimal example of your issue
I answer a lot of SO questions, and the ones I almost automatically skip over are
those where I see three pages of code (or more!). Just taking your 5,000-line file
and pasting into an SO question is not a great way to get your question answered
(but people do it all the time). It’s a lazy approach that isn’t often rewarded. Not
only are you less likely to get a useful answer, but the very process of eliminating
things that aren’t causing the problem can lead you to solving the problem your‐
self (then you don’t even need to ask a question on SO). Crafting a minimal
example is good for your debugging skills and for your critical thinking ability,
and makes you a good SO citizen.

Learn Markdown
Stack Overflow uses Markdown for formatting questions and answers. A well-
formatted question has a better chance of being answered, so you should invest
the time to learn this useful and increasingly ubiquitous markup language.

Accept and upvote answers
If someone answers your question satisfactorily, you should upvote and accept it;
it boosts the reputation of the answerer, and reputation is what drives SO. If mul‐
tiple people provide acceptable answers, you should pick the one you think is
best and accept that, and upvote anyone else you feel offered a useful answer.

If you figure out your own problem before someone else does, answer your own question
SO is a community resource: if you have a problem, chances are, someone else
has it too. If you’ve figured it out, go ahead and answer your own question for the
benefit of others.

If you enjoy helping the community, consider answering questions yourself: it’s fun
and rewarding, and it can lead to benefits that are more tangible than an arbitrary
reputation score. If you have a question for which you’ve received no useful answers
for two days, you can start a bounty on the question, using your own reputation. The
reputation is withdrawn from your account immediately, and it is nonrefundable. If
someone answers the question to your satisfaction, and you accept their answer, they
will receive the bounty. The catch is, of course, you have to have reputation to start a

Stack Overflow | 303

http://bit.ly/2CB1L0a

bounty: the minimum bounty is 50 reputation points. While you can get reputation
from asking quality questions, it’s usually quicker to get reputation by providing qual‐
ity answers.

Answering people’s questions also has the benefit of being a great way to learn. I gen‐
erally feel that I learn more from answering other people’s questions than I do from
having my questions answered. If you want to really thoroughly learn a technology,
learn the basics and then start trying to tackle people’s questions on SO. At first you
might be consistently beat out by people who are already experts, but before long,
you’ll find that you are one of the experts.

Lastly, you shouldn’t hesitate to use your reputation to further your career. A good
reputation is absolutely worth putting on a résumé. It’s worked for me and, now that
I’m in the position of interviewing developers myself, I’m always impressed to see a
good SO reputation (I consider a “good” SO reputation anything over 3,000; five-digit
reputations are great). A good SO reputation tells me that someone is not just compe‐
tent in their field, but they are clear communicators and generally helpful.

Contributing to Express
Express and Connect are open source projects, so anyone can submit pull requests
(GitHub lingo for changes you’ve made that you would like included in the project).
This is not easy to do: the developers working on these projects are pros and the ulti‐
mate authority on their own projects. I’m not discouraging you from contributing,
but I am saying you have to dedicate some significant effort to be a successful con‐
tributor, and you cannot take submissions lightly.

The actual process of contributing is well-documented on the Express home page.
The mechanics involve forking the project in your own GitHub account, cloning that
fork, making your changes, pushing them back to GitHub, and creating a pull request
(PR), which will be reviewed by one or more people on the project. If your submis‐
sions are small or are bug fixes, you may have luck simply submitting the pull
request. If you’re trying to do something major, you should communicate with one of
the main developers and discuss your contribution. You don’t want to waste hours or
days on a complicated feature only to find that it doesn’t fit with the maintainer’s
vision, or it’s already being worked on by someone else.

The other way to contribute (indirectly) to the development of Express and Connect
is to publish npm packages—specifically, middleware. Publishing your own middle‐
ware requires approval from no one, but that doesn’t mean you should carelessly clut‐
ter the npm registry with low-quality middleware. Plan, test, implement, and
document, and your middleware will enjoy more success.

If you do publish your own packages, here are the minimum things you should have:

304 | Chapter 23: Additional Resources

http://bit.ly/2q7WD0X

Package name
While package naming is up to you, you obviously have to pick something that
isn’t already taken, which can sometimes be a challenge. npm packages now sup‐
port namespacing by account, so you’re not competing globally for names. If
you’re writing middleware, it’s customary to prefix your package name with
connect- or express-. Catchy package names that don’t have any particular rela‐
tion to what it does are fine, but even better is a package name that hints at what
it does (a great example of a catchy but appropriate package name is zombie, for
headless browser emulation).

Package description
Your package description should be short, concise, and descriptive. This is one of
the primary fields that is indexed when people search for packages, so it’s best to
be descriptive, not clever (there’s room for some cleverness and humor in your
documentation, don’t worry).

Author/contributors
Take some credit. Go on.

License(s)
This is often neglected, and there is nothing more frustrating than encountering
a package without a license (leaving you unsure of whether you can use it in your
project). Don’t be that person. The MIT license is an easy choice if you don’t want
any restrictions on how your code is used. If you want it to be open source (and
stay open source), another popular choice is the GPL license. It’s also wise to
include license files in the root directory of your project (they should start with
LICENSE). For maximum coverage, dual-license with MIT and GPL. For an
example of this in package.json and in LICENSE files, see my connect-bundle
package.

Version
For the versioning system to work, you need to version your packages. Note that
npm versioning is separate from commit numbers in your repository: you can
update your repository all you like, but it won’t change what people get when
they use npm to install your package. You need to increment your version num‐
ber and republish for changes to be reflected in the npm registry.

Dependencies
You should make an effort to be conservative about dependencies in your pack‐
ages. I’m not suggesting constantly reinventing the wheel, but dependencies
increase the size and licensing complexity of your package. At a minimum, you
should make sure you aren’t listing dependencies that you don’t need.

Contributing to Express | 305

http://bit.ly/mit_license
http://bit.ly/gpl_license
http://bit.ly/connect-bundle
http://bit.ly/connect-bundle

Keywords
Along with description, keywords are the other major metadata used for people
trying to find your package, so choose appropriate keywords.

Repository
You should have one. GitHub is the most common, but others are welcome.

README.md
The standard documentation format for both GitHub and npm is Markdown. It’s
an easy, wiki-like syntax that you can quickly learn. Quality documentation is
vitally important if you want your package to be used. If I land on an npm page
and there’s no documentation, I usually just skip it without further investigation.
At a minimum, you should describe basic usage (with examples). Even better is
to have all options documented. Describing how to run tests goes the extra mile.

When you’re ready to publish your own package, the process is quite easy. Register
for a free npm account and then follow these steps:

1. Type npm adduser, and log in with your npm credentials.
2. Type npm publish to publish your package.

That’s it! You’ll probably want to create a project from scratch, and test your package
by using npm install.

Conclusion
It is my sincere hope that this book has given you all the tools you need to get started
with this exciting technology stack. At no time in my career have I felt so invigorated
by a new technology (despite the odd main character that is JavaScript), and I hope I
have managed to convey some of the elegance and promise of this stack. Though I
have been building websites professionally for many years, I feel that, thanks to Node
and Express, I understand the way the internet works at a deeper level than I ever
have before. I believe that it’s a technology that truly enhances understanding, instead
of trying to hide the details from you, all while still providing a framework for quickly
and efficiently building websites.

Whether you are a newcomer to web development, or just to Node and Express, I
welcome you to the ranks of JavaScript developers. I look forward to seeing you at
user groups and conferences, and most important, seeing what you will build.

306 | Chapter 23: Additional Resources

http://bit.ly/33IxnwS
https://npmjs.org/signup

About the Author
Ethan Brown is director of technology at VMS, where he’s responsible for the archi‐
tecture and implementation of VMSPro, cloud-based software for decision support,
risk analysis, and creative ideation for large projects. With over 20 years of program‐
ming experience, from embedded to the web, Ethan has embraced the JavaScript
stack as the web platform of the future.

Colophon
The animals on the cover of Web Development with Node and Express are a black lark
(Melanocorypha yeltoniensis) and a white-winged lark (Melanocorypha leucopter).
Both birds are partially migratory and have been known to range far afield of their
most suitable habitat in the steppes of Kazakhstan and central Russia. In addition to
breeding there, male black larks will also winter in the Kazakh steppes, while females
migrate southward. White-winged larks, on the other hand, fly farther west and north
beyond the Black Sea during the winter months. The global range of these birds
extends still farther: Europe constitutes a quarter to one-half of the global range of
the white-winged lark and only five percent to a quarter of the global range of the
black lark.

Black larks are so named for the black coloring that covers nearly the entire body of
males of the species. Females, by contrast, resemble the coloring of the male in only
their black legs and the black feathers of their underwings. A combination of dark
and pale grays covers the rest of the female.

White-winged larks possess a distinctive pattern of black, white, and chestnut wing
feathers. Gray streaks down the white-winged lark’s back complement a pale white
lower body. Males differ in appearance from females of the species only in the males’
chestnut crowns.

Both black and white-winged larks evince the distinctively melodious call that has
endeared larks of all variations to the imaginations of writers and musicians for cen‐
turies. Both birds eat insects and seeds as adults, and both birds make nests on the
ground. Black larks have been observed carrying dung to their nests to build walls or
lay a kind of pavement, though the cause for this behavior has not been identified.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery based on a black and white engraving
from Lydekker’s The Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://oreilly.com/online-learning

	Cover
	Web Development with Node and Express
	Table of Contents
	Preface
	1Introducing Express
	The JavaScript Revolution
	Introducing Express
	Server-Side and Client-Side Applications
	A Brief History of Express
	Node: A New Kind of Web Server
	The Node Ecosystem
	Licensing
	Conclusion

	2Getting Started with Node
	Getting Node
	Using the Terminal
	Editors
	npm
	A Simple Web Server with Node
	Hello World
	Event-Driven Programming
	Routing
	Serving Static Resources

	Onward to Express

	3Saving Time with Express
	Scaffolding
	The Meadowlark Travel Website
	Initial Steps
	Views and Layouts
	Static Files and Views
	Dynamic Content in Views
	Conclusion

	4Tidying Up
	File and Directory Structure
	Best Practices
	Version Control
	How to Use Git with This Book
	If You’re Following Along by Doing It Yourself
	If You’re Following Along by Using the Official Repository

	npm Packages
	Project Metadata
	Node Modules
	Conclusion

	5Quality Assurance
	The QA Plan
	QA: Is It Worth It?
	Logic Versus Presentation
	The Types of Tests
	Overview of QA Techniques
	Installing and Configuring Jest
	Unit Testing
	Mocking
	Refactoring the Application for Testability
	Writing Our First Test
	Test Maintenance
	Code Coverage

	Integration Testing
	Linting
	Continuous Integration
	Conclusion

	6The Request and Response Objects
	The Parts of a URL
	HTTP Request Methods
	Request Headers
	Response Headers
	Internet Media Types
	Request Body
	The Request Object
	The Response Object
	Getting More Information
	Boiling It Down
	Rendering Content
	Processing Forms
	Providing an API

	Conclusion

	7Templating with Handlebars
	There Are No Absolute Rules Except This One
	Choosing a Template Engine
	Pug: A Different Approach
	Handlebars Basics
	Comments
	Blocks
	Server-Side Templates
	Views and Layouts
	Using Layouts (or Not) in Express
	Sections
	Partials
	Perfecting Your Templates

	Conclusion

	8Form Handling
	Sending Client Data to the Server
	HTML Forms
	Encoding
	Different Approaches to Form Handling
	Form Handling with Express
	Using Fetch to Send Form Data
	File Uploads
	File Uploads with Fetch

	Improving File Upload UI
	Conclusion

	9Cookies and Sessions
	Externalizing Credentials
	Cookies in Express
	Examining Cookies
	Sessions
	Memory Stores
	Using Sessions

	Using Sessions to Implement Flash Messages
	What to Use Sessions For
	Conclusion

	10Middleware
	Middleware Principles
	Middleware Examples
	Common Middleware
	Third-Party Middleware
	Conclusion

	11Sending Email
	SMTP, MSAs, and MTAs
	Receiving Email
	Email Headers
	Email Formats
	HTML Email
	Nodemailer
	Sending Mail
	Sending Mail to Multiple Recipients

	Better Options for Bulk Email
	Sending HTML Email
	Images in HTML Email
	Using Views to Send HTML Email
	Encapsulating Email Functionality

	Conclusion

	12Production Concerns
	Execution Environments
	Environment-Specific Configuration
	Running Your Node Process
	Scaling Your Website
	Scaling Out with App Clusters
	Handling Uncaught Exceptions
	Scaling Out with Multiple Servers

	Monitoring Your Website
	Third-Party Uptime Monitors

	Stress Testing
	Conclusion

	13Persistence
	Filesystem Persistence
	Cloud Persistence
	Database Persistence
	A Note on Performance
	Abstracting the Database Layer
	Setting Up MongoDBThe difficulty involved
	Mongoose
	Database Connections with Mongoose
	Creating Schemas and Models
	Seeding Initial Data
	Retrieving Data
	Adding Data
	PostgreSQL
	Adding Data

	Using a Database for Session Storage
	Conclusion

	14Routing
	Routes and SEO
	Subdomains
	Route Handlers Are Middleware
	Route Paths and Regular Expressions
	Route Parameters
	Organizing Routes
	Declaring Routes in a Module
	Grouping Handlers Logically
	Automatically Rendering Views
	Conclusion

	15REST APIs and JSON
	JSON and XML
	Our API
	API Error Reporting
	Cross-Origin Resource Sharing
	Our Tests
	Using Express to Provide an API
	Conclusion

	16Single-Page Applications
	A Short History of Web Application Development
	SPA Technologies
	Creating a React App
	React Basics
	The Home Page
	Routing
	Vacations Page—Visual Design
	Sending Information to the Server
	State Management
	Deployment Options

	Conclusion

	17Static Content
	Performance Considerations
	Content Delivery Networks
	Designing for CDNs
	Server-Rendered Website
	Single-Page Applications

	Caching Static Assets
	Changing Your Static Content
	Conclusion

	18Security
	HTTPS
	Generating Your Own Certificate
	Using a Free Certificate Authority
	Purchasing a Certificate
	Enabling HTTPS for Your Express App
	A Note on Ports
	HTTPS and Proxies

	Cross-Site Request Forgery
	Authentication
	Authentication Versus Authorization
	The Problem with Passwords
	Third-Party Authentication
	Storing Users in Your Database
	Authentication Versus Registration and the User Experience
	Passport
	Role-Based Authorization
	Adding Authentication Providers

	Conclusion

	19Integrating with Third-Party APIs
	Social Media
	Social Media Plugins and Site Performance
	Searching for Tweets
	Rendering Tweets

	Geocoding
	Geocoding with Google
	Geocoding Your Data
	Displaying a Map

	Weather Data
	Conclusion

	20Debugging
	The First Principle of Debugging
	Take Advantage of REPL and the Console
	Using Node’s Built-in Debugger
	Node Inspector Clients
	Debugging Asynchronous Functions
	Debugging Express
	Conclusion

	21Going Live
	Domain Registration and Hosting
	Domain Name System
	Security
	Top-Level Domains
	Subdomains
	Nameservers
	Hosting
	Deployment

	Conclusion

	22Maintenance
	The Principles of Maintenance
	Have a Longevity Plan
	Use Source Control
	Use an Issue Tracker
	Exercise Good Hygiene
	Don’t Procrastinate
	Do Routine QA Checks
	Monitor Analytics
	Optimize Performance
	Prioritize Lead Tracking
	Prevent “Invisible” Failures

	Code Reuse and Refactoring
	Private npm Registry
	Middleware

	Conclusion

	23Additional Resources
	Online Documentation
	Periodicals
	Stack Overflow
	Contributing to Express
	Conclusion

	Index

