

Practical Data Analysis

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

Hector Cuesta

BIRMINGHAM - MUMBAI

Practical Data Analysis

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1151013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-099-5

www.packtpub.com

Cover Image by Hector Cuesta (hmcuesta.data@gmail.com)

Credits

Author
Hector Cuesta

Reviewers
Dr. Sampath Kumar Kanthala

Mark Kerzner

Ricky J. Sethi, PhD

Dr. Suchita Tripathi

Dr. Jarrell Waggoner

Acquisition Editors
Edward Gordon

Erol Staveley

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Pragnesh Bilimoria

Arwa Manasawala

Manal Pednekar

Project Coordinator
Anugya Khurana

Proofreaders
Jenny Blake

Bridget Braund

Indexer
Hemangini Bari

Graphics
Rounak Dhruv

Abhinash Sahu

Sheetal Aute

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

The phrase: From Data to Information, and from Information to Knowledge, has
become a cliché but it has never been as fitting as today. With the emergence of Big
Data and the need to make sense of the massive amounts of disparate collection of
individual datasets, there is a requirement for practitioners of data-driven domains
to employ a rich set of analytic methods. Whether during data preparation and
cleaning, or data exploration, the use of computational tools has become imperative.
However, the complexity of underlying theories represent a challenge for users who
wish to apply these methods to exploit the potentially rich contents of available data
in their domain. In some domains, text-based data may hold the secret of running a
successful business. For others, the analysis of social networks and the classification
of sentiments may reveal new strategies for the dissemination of information or the
formulation of policy.

My own research and that of my students falls in the domain of computational
epidemiology. Designing and implementing tools that facilitate the study of the
progression of diseases in a large population is the main focus in this domain.
Complex simulation models are expected to predict, or at least suggest, the most
likely trajectory of an epidemic. The development of such models depends on the
availability or data from which population and disease specific parameters can be
extracted. Whether census data, which holds information about the makeup of the
population, of medical texts, which describe the progression of disease in individuals,
the data exploration represents a challenging task. As many areas that employ data
analytics, computational epidemiology is intrinsically multi-disciplinary. While the
analysis of some data sources may reveal the number of eggs deposited by a mosquito,
other sources may indicate the rate at which mosquitoes are likely to interact with
the human population to cause a Dengue and West-Nile Virus epidemic. To convert
information to knowledge, computational scientists, biologists, biostatisticians, and
public health practitioners must collaborate. It is the availability of sophisticated
visualization tools that allows these diverse groups of scientists and practitioners to
explore the data and share their insight.

I first met Hector Cuesta during the Fall Semester of 2011, when he joined my
Computational Epidemiology Research Laboratory as a visiting scientist. I soon
realized that Hector is not just an outstanding programmer, but also a practitioner
who can readily apply computational paradigms to problems from different contexts.
His expertise in a multitude of computational languages and tools, including Python,
CUDA, Hadoop, SQL, and MPI allows him to construct solutions to complex problems
from different domains. In this book, Hector Cuesta is demonstrating the application
of a variety of data analysis tools on a diverse set of problem domains. Different
types of datasets are used to motivate and explore the use of powerful computational
methods that are readily applicable to other problem domains. This book serves both
as a reference and as tutorial for practitioners to conduct data analysis and move From
Data to Information, and from Information to Knowledge.

Armin R. Mikler
Professor of Computer Science and Engineering
Director of the Center for Computational Epidemiology and Response Analysis
University of North Texas

About the Author

Hector Cuesta holds a B.A in Informatics and M.Sc. in Computer Science. He
provides consulting services for software engineering and data analysis with
experience in a variety of industries including financial services, social networking,
e-learning, and human resources.

He is a lecturer in the Department of Computer Science at the Autonomous
University of Mexico State (UAEM). His main research interests lie in computational
epidemiology, machine learning, computer vision, high-performance computing, big
data, simulation, and data visualization.

He helped in the technical review of the books, Raspberry Pi Networking Cookbook by
Rick Golden and Hadoop Operations and Cluster Management Cookbook by Shumin Guo
for Packt Publishing. He is also a columnist at Software Guru magazine and he has
published several scientific papers in international journals and conferences. He is
an enthusiast of Lego Robotics and Raspberry Pi in his spare time.

You can follow him on Twitter at https://twitter.com/hmCuesta.

Acknowledgments

I would like to dedicate this book to my wife Yolanda, my wonderful children
Damian and Isaac for all the joy they bring into my life, and to my parents Elena
and Miguel for their constant support and love.

I would like to thank my great team at Packt Publishing, particular thanks goes
to, Anurag Banerjee, Erol Staveley, Edward Gordon, Anugya Khurana, Neeshma
Ramakrishnan, Arwa Manasawala, Manal Pednekar, Pragnesh Bilimoria, and
Unnati Shah.

Thanks to my friends, Abel Valle, Oscar Manso, Ivan Cervantes, Agustin Ramos,
Dr. Rene Cruz, Dr. Adrian Trueba, and Sergio Ruiz for their helpful suggestions
and improvements to my drafts. I would also like to thank the technical reviewers
for taking the time to send detailed feedback for the drafts.

I would also like to thank Dr. Armin Mikler for his encouragement and for agreeing
to write the foreword of this book. Finally, as an important source of inspiration I
would like to mention my mentor and former advisor Dr. Jesus Figueroa-Nazuno.

About the Reviewers

Mark Kerzner holds degrees in Law, Math, and Computer Science. He has been
designing software for many years, and Hadoop-based systems since 2008. He is
the President of SHMsoft, a provider of Hadoop applications for various verticals,
and a co-author of the Hadoop Illuminated book/project. He has authored and
co-authored books and patents.

I would like to acknowledge the help of my colleagues, in particular
Sujee Maniyam, and last but not least I would acknowledge the help
of my multi-talented family.

Dr. Sampath Kumar works as an assistant professor and head of the Department
of Applied Statistics at Telangana University. He has completed M.Sc, M.Phl,
and Ph.D. in Statistics. He has five years of teaching experience for PG course. He
has more than four years of experience in the corporate sector. His expertise is in
statistical data analysis using SPSS, SAS, R, Minitab, MATLAB, and so on. He is an
advanced programmer in SAS and matlab software. He has teaching experience in
different, applied and pure statistics subjects such as forecasting models, applied
regression analysis, multivariate data analysis, operations research, and so on for
M.Sc students. He is currently supervising Ph.D. scholars.

Ricky J. Sethi is currently the Director of Research for The Madsci Network
and a research scientist at University of Massachusetts Medical Center and UMass
Amherst. Dr. Sethi's research tends to be interdisciplinary in nature, relying on
machine-learning methods and physics-based models to examine issues in computer
vision, social computing, and science learning. He received his B.A. in Molecular and
Cellular Biology (Neurobiology)/Physics from the University of California, Berkeley,
M.S. in Physics/Business (Information Systems) from the University of Southern
California, and Ph.D. in Computer Science (Artificial Intelligence/Computer Vision)
from the University of California, Riverside. He has authored or co-authored over
30 peer-reviewed papers or book chapters and was also chosen as an NSF Computing
Innovation Fellow at both UCLA and USC's Information Sciences Institute.

Dr. Suchita Tripathi did her Ph.D. and M.Sc. at Allahabad University in
Anthropology. She also has skills in computer applications and SPSS data analysis
software. She has language proficiency in Hindi, English, and Japanese. She learned
primary and intermediate level Japanese language from ICAS Japanese language
training school, Sendai, Japan and received various certificates. She is the author
of six articles and one book. She had two years of teaching experience in the
Department of Anthropology and Tribal Development, GGV Central University,
Bilaspur (C.G.). Her major areas of research are Urban Anthropology, Anthropology
of Disasters, Linguistic and Archeological Anthropology.

I would like to acknowledge my parents and my lovely family for
their moral support, and well wishes.

Dr. Jarrell Waggoner is a software engineer at Groupon, working on internal
tools to perform sales analytics and demand forecasting. He completed his Ph.D. in
Computer Science and Engineering from the University of South Carolina and has
worked on numerous projects in the areas of computer vision and image processing,
including an NEH-funded document image processing project, a DARPA competition
to build an event recognition system, and an interdisciplinary AFOSR-funded materials
science image processing project. He is an ardent supporter of free software, having
used a variety of open source languages, operating systems, and frameworks in his
research. His open source projects and contributions, along with his research work,
can be found on GitHub (https://github.com/malloc47) and on his website
(http://www.malloc47.com).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Computer science 7
Artificial intelligence (AI) 8
Machine Learning (ML) 8
Statistics 8
Mathematics 9
Knowledge domain 9
Data, information, and knowledge 9
The nature of data 10
The data analysis process 11

The problem 12
Data preparation 12
Data exploration 13
Predictive modeling 13
Visualization of results 14

Quantitative versus qualitative data analysis 14
Importance of data visualization 15
What about big data? 17

Sensors and cameras 18
Social networks analysis 19
Tools and toys for this book 20
Why Python? 20
Why mlpy? 21
Why D3.js? 22
Why MongoDB? 22

Summary 23

Table of Contents

[ii]

Chapter 2: Working with Data 25
Datasource 26

Open data 27
Text files 28
Excel files 28
SQL databases 29
NoSQL databases 30
Multimedia 30
Web scraping 31

Data scrubbing 34
Statistical methods 34
Text parsing 35
Data transformation 36

Data formats 37
CSV 37

Parsing a CSV file with the csv module 38
Parsing a CSV file using NumPy 39

JSON 39
Parsing a JSON file using json module 39

XML 41
Parsing an XML file in Python using xml module 41

YAML 42
Getting started with OpenRefine 43

Text facet 44
Clustering 44
Text filters 46
Numeric facets 46
Transforming data 47
Exporting data 48
Operation history 49

Summary 50
Chapter 3: Data Visualization 51

Data-Driven Documents (D3) 52
HTML 53
DOM 53
CSS 53
JavaScript 53
SVG 54

Getting started with D3.js 54
Bar chart 55
Pie chart 61

Table of Contents

[iii]

Scatter plot 64
Single line chart 67
Multi-line chart 70

Interaction and animation 74
Summary 77

Chapter 4: Text Classification 79
Learning and classification 79
Bayesian classification 81

Naïve Bayes algorithm 81
E-mail subject line tester 82
The algorithm 86
Classifier accuracy 90
Summary 92

Chapter 5: Similarity-based Image Retrieval 93
Image similarity search 93
Dynamic time warping (DTW) 94
Processing the image dataset 97
Implementing DTW 97
Analyzing the results 101
Summary 103

Chapter 6: Simulation of Stock Prices 105
Financial time series 105
Random walk simulation 106
Monte Carlo methods 108
Generating random numbers 109
Implementation in D3.js 110
Summary 118

Chapter 7: Predicting Gold Prices 119
Working with the time series data 119

Components of a time series 121
Smoothing the time series 123
The data – historical gold prices 126
Nonlinear regression 126

Kernel ridge regression 126
Smoothing the gold prices time series 129
Predicting in the smoothed time series 130
Contrasting the predicted value 132

Summary 133

Table of Contents

[iv]

Chapter 8: Working with Support Vector Machines 135
Understanding the multivariate dataset 136
Dimensionality reduction 140

Linear Discriminant Analysis 140
Principal Component Analysis 141

Getting started with support vector machine 144
Kernel functions 145
Double spiral problem 145
SVM implemented on mlpy 146

Summary 151
Chapter 9: Modeling Infectious Disease with Cellular Automata 153

Introduction to epidemiology 154
The epidemiology triangle 155

The epidemic models 156
The SIR model 156
Solving ordinary differential equation for the SIR model with SciPy 157
The SIRS model 159

Modeling with cellular automata 161
Cell, state, grid, and neighborhood 161
Global stochastic contact model 162

Simulation of the SIRS model in CA with D3.js 163
Summary 173

Chapter 10: Working with Social Graphs 175
Structure of a graph 175

Undirected graph 176
Directed graph 176

Social Networks Analysis 177
Acquiring my Facebook graph 177

Using Netvizz 178
Representing graphs with Gephi 181
Statistical analysis 183

Male to female ratio 184
Degree distribution 186

Histogram of a graph 187
Centrality 188

Transforming GDF to JSON 190
Graph visualization with D3.js 192
Summary 197

Table of Contents

[v]

Chapter 11: Sentiment Analysis of Twitter Data 199
The anatomy of Twitter data 200

Tweet 200
Followers 201
Trending topics 201

Using OAuth to access Twitter API 202
Getting started with Twython 204

Simple search 204
Working with timelines 209
Working with followers 211
Working with places and trends 214

Sentiment classification 216
Affective Norms for English Words 217
Text corpus 217

Getting started with Natural Language Toolkit (NLTK) 218
Bag of words 219
Naive Bayes 219
Sentiment analysis of tweets 221

Summary 223
Chapter 12: Data Processing and Aggregation with MongoDB 225

Getting started with MongoDB 226
Database 227
Collection 228
Document 228
Mongo shell 229
Insert/Update/Delete 229
Queries 230

Data preparation 232
Data transformation with OpenRefine 233
Inserting documents with PyMongo 235

Group 238
The aggregation framework 241

Pipelines 242
Expressions 244

Summary 245
Chapter 13: Working with MapReduce 247

MapReduce overview 248
Programming model 249

Table of Contents

[vi]

Using MapReduce with MongoDB 250
The map function 251
The reduce function 251
Using mongo shell 251
Using UMongo 254
Using PyMongo 256

Filtering the input collection 258
Grouping and aggregation 259
Word cloud visualization of the most common positive
words in tweets 262
Summary 267

Chapter 14: Online Data Analysis with IPython and Wakari 269
Getting started with Wakari 270

Creating an account in Wakari 270
Getting started with IPython Notebook 273

Data visualization 275
Introduction to image processing with PIL 276

Opening an image 277
Image histogram 277
Filtering 279
Operations 281
Transformations 282

Getting started with Pandas 283
Working with time series 283
Working with multivariate dataset with DataFrame 288
Grouping, aggregation, and correlation 292

Multiprocessing with IPython 295
Pool 295

Sharing your Notebook 296
The data 296

Summary 299
Appendix: Setting Up the Infrastructure 301

Installing and running Python 3 301
Installing and running Python 3.2 on Ubuntu 302
Installing and running IDLE on Ubuntu 302
Installing and running Python 3.2 on Windows 303
Installing and running IDLE on Windows 304

Installing and running NumPy 305
Installing and running NumPy on Ubuntu 305
Installing and running NumPy on Windows 306

Table of Contents

[vii]

Installing and running SciPy 308
Installing and running SciPy on Ubuntu 308
Installing and running SciPy on Windows 309

Installing and running mlpy 310
Installing and running mlpy on Ubuntu 310
Installing and running mlpy on Windows 311

Installing and running OpenRefine 311
Installing and running OpenRefine on Linux 312
Installing and running OpenRefine on Windows 312

Installing and running MongoDB 313
Installing and running MongoDB on Ubuntu 314
Installing and running MongoDB on Windows 315
Connecting Python with MongoDB 318

Installing and running UMongo 319
Installing and running Umongo on Ubuntu 320
Installing and running Umongo on Windows 321

Installing and running Gephi 323
Installing and running Gephi on Linux 323
Installing and running Gephi on Windows 324

Index 325

Preface
Practical Data Analysis provides a series of practical projects in order to turn data into
insight. It covers a wide range of data analysis tools and algorithms for classification,
clustering, visualization, simulation, and forecasting. The goal of this book is to help
you understand your data to find patterns, trends, relationships, and insight.

This book contains practical projects that take advantage of the MongoDB, D3.js, and
Python language and its ecosystem to present the concepts using code snippets and
detailed descriptions.

What this book covers
Chapter 1, Getting Started, discusses the principles of data analysis and the data
analysis process.

Chapter 2, Working with Data, explains how to scrub and prepare your data for the
analysis and also introduces the use of OpenRefine which is a data cleansing tool.

Chapter 3, Data Visualization, shows how to visualize different kinds of data using
D3.js, which is a JavaScript Visualization Framework.

Chapter 4, Text Classification, introduces the binary classification using a Naïve Bayes
algorithm to classify spam.

Chapter 5, Similarity-based Image Retrieval, presents a project to find the similarity
between images using a dynamic time warping approach.

Chapter 6, Simulation of Stock Prices, explains how to simulate stock prices using
Random Walk algorithm, visualized with a D3.js animation.

Chapter 7, Predicting Gold Prices, introduces how Kernel Ridge Regression works and
how to use it to predict the gold price using time series.

Preface

[2]

Chapter 8, Working with Support Vector Machines, describes how to use support vector
machines as a classification method.

Chapter 9, Modeling Infectious Disease with Cellular Automata, introduces the basic
concepts of computational epidemiology simulation and explains how to implement
a cellular automaton to simulate an epidemic outbreak using D3.js and JavaScript.

Chapter 10, Working with Social Graphs, explains how to obtain and visualize your
social media graph from Facebook using Gephi.

Chapter 11, Sentiment Analysis of Twitter Data, explains how to use the Twitter API
to retrieve data from Twitter. We also see how to improve the text classification to
perform a sentiment analysis using the Naïve Bayes algorithm implemented in the
Natural Language Toolkit (NLTK).

Chapter 12, Data Processing and Aggregation with MongoDB, introduces the basic
operations in MongoDB as well as methods for grouping, filtering, and aggregation.

Chapter 13, Working with MapReduce, illustrates how to use the MapReduce
programming model implemented in MongoDB.

Chapter 14, Online Data Analysis with IPython and Wakari, explains how to use the
Wakari platform and introduces the basic use of Pandas and PIL with IPython.

Appendix, Setting Up the Infrastructure, provides detailed information on installation
of the software tools used in this book.

What you need for this book
The basic requirements for this book are as follows:

• Python
• OpenRefine
• D3.js
• mlpy
• Natural Language Toolkit (NLTK)
• Gephi
• MongoDB

Preface

[3]

Who this book is for
This book is for software developers, analysts, and computer scientists who want
to implement data analysis and visualization in a practical way. The book is also
intended to provide a self-contained set of practical projects in order to get insight
about different kinds of data such as, time series, numerical, multidimensional,
social media graphs, and texts. You are not required to have previous knowledge
about data analysis, but some basic knowledge about statistics and a general
understanding of Python programming is essential.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In
this case, we will use the integrate method of the SciPy module to solve the ODE."

A block of code is set as follows:

beta = 0.003
gamma = 0.1
sigma = 0.1

def SIRS_model(X, t=0):

 r = scipy.array([- beta*X[0]*X[1] + sigma*X[2]
 , beta*X[0]*X[1] - gamma*X[1]
 , gamma*X[1]] –sigma*X[2])
 return r

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted as follows:

[[215 10 0]
 [153 72 0]
 [54 171 0]
 [2 223 0]
 [0 225 0]
 [0 178 47]

Preface

[4]

 [0 72 153]
 [0 6 219]
 [0 0 225]
 [47 0 178]
 [153 0 72]
 [219 0 6]
 [225 0 0]]

Any command-line input or output is written as follows:

db.runCommand({ count: TweetWords })

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Next, as
we can see in the following screenshot, we will click on the Map Reduce option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
Data analysis is the process in which raw data is ordered and organized, to be used
in methods that help to explain the past and predict the future. Data analysis is not
about the numbers, it is about making/asking questions, developing explanations,
and testing hypotheses. Data Analysis is a multidisciplinary field, which combines
Computer Science, Artificial Intelligence & Machine Learning, Statistics &
Mathematics, and Knowledge Domain as shown in the following figure:

Computer
Science

Knowledge
Domain

Statistics
& Mathematics

Artificial Intelligence &
Machine Learning

Data
Analysis

Computer science
Computer science creates the tools for data analysis. The vast amount of data
generated has made computational analysis critical and has increased the demand
for skills such as programming, database administration, network administration,
and high-performance computing. Some programming experience in Python (or any
high-level programming language) is needed to understand the chapters.

Getting Started

[8]

Artificial intelligence (AI)
According to Stuart Russell and Peter Norvig:

"[AI] has to do with smart programs, so let's get on and write some."

In other words, AI studies the algorithms that can simulate an intelligent behavior. In
data analysis, we use AI to perform those activities that require intelligence such as
inference, similarity search, or unsupervised classification.

Machine Learning (ML)
Machine learning is the study of computer algorithms to learn how to react in a
certain situation or recognize patterns. According to Arthur Samuel (1959),

"Machine Learning is a field of study that gives computers the ability to learn
without being explicitly programmed."

ML has a large amount of algorithms generally split in to three groups; given how
the algorithm is training:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

Relevant numbers of algorithms are used throughout the book and are combined
with practical examples, leading the reader through the process from the data
problem to its programming solution.

Statistics
In January 2009, Google's Chief Economist, Hal Varian said,

"I keep saying the sexy job in the next ten years will be statisticians. People think
I'm joking, but who would've guessed that computer engineers would've been the
sexy job of the 1990s?"

Statistics is the development and application of methods to collect, analyze, and
interpret data.

Data analysis encompasses a variety of statistical techniques such as simulation,
Bayesian methods, forecasting, regression, time-series analysis, and clustering.

Chapter 1

[9]

Mathematics
Data analysis makes use of a lot of mathematical techniques such as linear algebra
(vector and matrix, factorization, and eigenvalue), numerical methods, and conditional
probability in the algorithms. In this book, all the chapters are self-contained and
include the necessary math involved.

Knowledge domain
One of the most important activities in data analysis is asking questions, and a good
understanding of the knowledge domain can give you the expertise and intuition
needed to ask good questions. Data analysis is used in almost all the domains such as
finance, administration, business, social media, government, and science.

Data, information, and knowledge
Data are facts of the world. For example, financial transactions, age, temperature,
number of steps from my house to my office, are simply numbers. The information
appears when we work with those numbers and we can find value and meaning.
The information can help us to make informed decisions.

We can talk about knowledge when the data and the information turn into a
set of rules to assist the decisions. In fact, we can't store knowledge because
it implies theoretical or practical understanding of a subject. However, using
predictive analytics, we can simulate an intelligent behavior and provide a good
approximation. An example of how to turn data into knowledge is shown in the
following figure:

Data

Information

Knowledge

The temperature
outside is 2 C

It is cold
outside.

It is cold outside then
put on a warm coat

Getting Started

[10]

The nature of data
Data is the plural of datum, so it is always treated as plural. We can find data in all the
situations of the world around us, in all the structured or unstructured, in continuous
or discrete conditions, in weather records, stock market logs, in photo albums, music
playlists, or in our Twitter accounts. In fact, data can be seen as the essential raw
material of any kind of human activity. According to the Oxford English Dictionary:

Data are known facts or things used as basis for inference or reckoning.

As shown in the following figure, we can see Data in two distinct ways: Categorical
and Numerical:

Data

Nominal

Ordinal

Discrete

Continuous

Categorical

Numerical

Categorical data are values or observations that can be sorted into groups or categories.
There are two types of categorical values, nominal and ordinal. A nominal variable has
no intrinsic ordering to its categories. For example, housing is a categorical variable
having two categories (own and rent). An ordinal variable has an established ordering.
For example, age as a variable with three orderly categories (young, adult, and elder).

Numerical data are values or observations that can be measured. There are two
kinds of numerical values, discrete and continuous. Discrete data are values or
observations that can be counted and are distinct and separate. For example,
number of lines in a code. Continuous data are values or observations that may
take on any value within a finite or infinite interval. For example, an economic
time series such as historic gold prices.

The kinds of datasets used in this book are as follows:

• E-mails (unstructured, discrete)
• Digital images (unstructured, discrete)
• Stock market logs (structured, continuous)
• Historic gold prices (structured, continuous)

Chapter 1

[11]

• Credit approval records (structured, discrete)
• Social media friends and relationships (unstructured, discrete)
• Tweets and trending topics (unstructured, continuous)
• Sales records (structured, continuous)

For each of the projects in this book, we try to use a different kind of data. This book
is trying to give the reader the ability to address different kinds of data problems.

The data analysis process
When you have a good understanding of a phenomenon, it is possible to
make predictions about it. Data analysis helps us to make this possible
through exploring the past and creating predictive models.

The data analysis process is composed of the following steps:

• The statement of problem
• Obtain your data
• Clean the data
• Normalize the data
• Transform the data
• Exploratory statistics
• Exploratory visualization
• Predictive modeling
• Validate your model
• Visualize and interpret your results
• Deploy your solution

All these activities can be grouped as shown in the following figure:

The Problem
Data

Preparation
Data

Exploration
Predictive
Modeling

Visualization
of Results

Getting Started

[12]

The problem
The problem definition starts with high-level questions such as how to track
differences in behavior between groups of customers, or what's going to be the
gold price in the next month. Understanding the objectives and requirements
from a domain perspective is the key to a successful data analysis project.

Types of data analysis questions are listed as follows:

• Inferential
• Predictive
• Descriptive
• Exploratory
• Causal
• Correlational

Data preparation
Data preparation is about how to obtain, clean, normalize, and transform the data
into an optimal dataset, trying to avoid any possible data quality issues such as
invalid, ambiguous, out-of-range, or missing values. This process can take a lot of
your time. In Chapter 2, Working with Data, we go into more detail about working
with data, using OpenRefine to address the complicated tasks. Analyzing data that
has not been carefully prepared can lead you to highly misleading results.

The characteristics of good data are listed as follows:

• Complete
• Coherent
• Unambiguous
• Countable
• Correct
• Standardized
• Non-redundant

Chapter 1

[13]

Data exploration
Data exploration is essentially looking at the data in a graphical or statistical form
trying to find patterns, connections, and relations in the data. Visualization is used
to provide overviews in which meaningful patterns may be found.

In Chapter 3, Data Visualization, we present a visualization framework (D3.js) and we
implement some examples on how to use visualization as a data exploration tool.

Predictive modeling
Predictive modeling is a process used in data analysis to create or choose a statistical
model trying to best predict the probability of an outcome. In this book, we use a variety
of those models and we can group them in three categories based on its outcome:

Chapter Algorithm
Categorical outcome
(Classification)

4 Naïve Bayes Classifier
11 Natural Language Toolkit + Naïve Bayes Classifier

Numerical outcome
(Regression)

6 Random Walk
8 Support Vector Machines
9 Cellular Automata
8 Distance Based Approach + k-nearest neighbor

Descriptive modeling
(Clustering)

5 Fast Dynamic Time Warping (FDTW) + Distance
Metrics

10 Force Layout and Fruchterman-Reingold layout

Another important task we need to accomplish in this step is evaluating the model
we chose to be optimal for the particular problem.

The No Free Lunch Theorem proposed by Wolpert in 1996 stated:

"No Free Lunch theorems have shown that learning algorithms cannot be
universally good."

Getting Started

[14]

The model evaluation helps us to ensure that our analysis is not over-optimistic
or over-fitted. In this book, we are going to present two different ways to validate
the model:

• Cross-validation: We divide the data into subsets of equal size and test the
predictive model in order to estimate how it is going to perform in practice.
We will implement cross-validation in order to validate the robustness of our
model as well as evaluate multiple models to identify the best model based
on their performance.

• Hold-Out: Mostly, large dataset is randomly divided in to three subsets:
training set, validation set, and test set.

Visualization of results
This is the final step in our analysis process and we need to answer the
following questions:

How is it going to present the results?

For example, in tabular reports, 2D plots, dashboards, or infographics.

Where is it going to be deployed?

For example, in hard copy printed, poster, mobile devices, desktop interface, or web.

Each choice will depend on the kind of analysis and a particular data. In the
following chapters, we will learn how to use standalone plotting in Python with
matplotlib and web visualization with D3.js.

Quantitative versus qualitative data
analysis
Quantitative and qualitative analysis can be defined as follows:

• Quantitative data: It is numerical measurements expressed in terms
of numbers

• Qualitative data: It is categorical measurements expressed in terms of
natural language descriptions

Chapter 1

[15]

As shown in the following figure, we can observe the differences between
quantitative and qualitative analysis:

Quantitative

Structured Data
Statistical analysis

Objective conclusions

Unstructured data
Summary

Subjective conclusions

Qualitative

Vs.

Quantitative analytics involves analysis of numerical data. The type of the analysis
will depend on the level of measurement. There are four kinds of measurements:

• Nominal: Data has no logical order and is used as classification data
• Ordinal: Data has a logical order and differences between values are

not constant
• Interval: Data is continuous and depends on logical order. The data has

standardized differences between values, but does not include zero
• Ratio: Data is continuous with logical order as well as regular interval

differences between values and may include zero

Qualitative analysis can explore the complexity and meaning of social phenomena.
Data for qualitative study may include written texts (for example, documents or
email) and/or audible and visual data (for example, digital images or sounds). In
Chapter 11, Sentiment Analysis of Twitter Data, we present a sentiment analysis from
Twitter data as an example of qualitative analysis.

Importance of data visualization
The goal of the data visualization is to expose something new about the underlying
patterns and relationships contained within the data. The visualization not only
needs to look good but also meaningful in order to help organizations make better
decisions. Visualization is an easy way to jump into a complex dataset (small or big)
to describe and explore the data efficiently.

Getting Started

[16]

Many kinds of data visualizations are available such as bar chart, histogram, line
chart, pie chart, heat maps, frequency Wordle (as shown in the following figure)
and so on, for one variable, two variables, and many variables in one, two, or
three dimensions.

Data visualization is an important part of our data analysis process because it is a
fast and easy way to do an exploratory data analysis through summarizing their
main characteristics with a visual graph.

The goals of exploratory data analysis are listed as follows:

• Detection of data errors
• Checking of assumptions
• Finding hidden patterns (such as tendency)
• Preliminary selection of appropriate models
• Determining relationships between the variables

We will get into more detail about data visualization and exploratory data analysis
in Chapter 3, Data Visualization.

Chapter 1

[17]

What about big data?
Big data is a term used when the data exceeds the processing capacity of typical
database. We need a big data analytics when the data grows quickly and we need
to uncover hidden patterns, unknown correlations, and other useful information.

There are three main features in big data:

• Volume: Large amounts of data
• Variety: Different types of structured, unstructured, and multi-structured data
• Velocity: Needs to be analyzed quickly

As shown in the following figure, we can see the interaction between the three Vs:

database, photo,
web, video,
mobile, social,
unstructured

GB
TB
PB

periodic
near real time
real time

Variety

Velocity

Volume

Big data is the opportunity for any company to gain advantages from data
aggregation, data exhaust, and metadata. This makes big data a useful business
analytic tool, but there is a common misunderstanding about what big data is.

The most common architecture for big data processing is through MapReduce,
which is a programming model for processing large datasets in parallel using a
distributed cluster.

Getting Started

[18]

Apache Hadoop is the most popular implementation of MapReduce to solve
large-scale distributed data storage, analysis, and retrieval tasks. However,
MapReduce is just one of the three classes of technologies for storing and managing
big data. The other two classes are NoSQL and massively parallel processing (MPP)
data stores. In this book, we implement MapReduce functions and NoSQL storage
through MongoDB, see Chapter 12, Data Processing and Aggregation with MongoDB
and Chapter 13, Working with MapReduce.

MongoDB provides us with document-oriented storage, high availability, and
map/reduce flexible aggregation for data processing.

A paper published by the IEEE in 2009, The Unreasonable Effectiveness of Data states:

But invariably, simple models and a lot of data trump over more elaborate models
based on less data.

This is a fundamental idea in big data (you can find the full paper at http://bit.
ly/1dvHCom). The trouble with real world data is that the probability of finding false
correlations is high and gets higher as the datasets grow. That's why, in this book, we
focus on meaningful data instead of big data.

One of the main challenges for big data is how to store, protect, backup, organize,
and catalog the data in a petabyte scale. Another main challenge of big data is the
concept of data ubiquity. With the proliferation of smart devices with several sensors
and cameras the amount of data available for each person increases every minute.
Big data must process all this data in real time.

Better
Algorithms More Data Better DataVs.Vs.

Sensors and cameras
Interaction with the outside world is highly important in data analysis. Using sensors
such as RFID (Radio-frequency identification) or a smartphone to scan a QR code
(Quick Response Code) is an easy way to interact directly with the customer, make
recommendations, and analyze consumer trends.

On the other hand, people are using their smartphones all the time, using their cameras
as a tool. In Chapter 5, Similarity-based Image Retrieval, we will use these digital images
to perform search by image. This can be used, for example, in face recognition or to
find reviews of a restaurant just by taking a picture of the front door.

Chapter 1

[19]

The interaction with the real world can give you a competitive advantage and a
real-time data source directly from the customer.

Social networks analysis
Formally, the SNA (social network analysis) performs the analysis of social
relationships in terms of network theory, with nodes representing individuals
and ties representing relationships between the individuals, as we can see in
the following figure. The social network creates groups of related individuals
(friendship) based on different aspects of their interaction. We can find important
information such as hobbies (for product recommendation) or who has the most
influential opinion in the group (centrality). We will present in Chapter 10, Working
with Social Graphs, a project; who is your closest friend and we'll show a solution for
Twitter clustering.

Getting Started

[20]

Social networks are strongly connected and these connections are often not symmetric.
This makes the SNA computationally expensive, and needs to be addressed with
high-performance solutions that are less statistical and more algorithmic.

The visualization of a social network can help us to get a good insight into how
people are connected. The exploration of the graph is done through displaying nodes
and ties in various colors, sizes, and distributions. The D3.js library has animation
capabilities that enable us to visualize the social graph with an interactive animation.
These help us to simulate behaviors such as information diffusion or distance
between nodes.

Facebook processes more than 500 TB data daily (images, text, video, likes, and
relationships), this amount of data needs non-conventional treatment such as NoSQL
databases and MapReduce frameworks, in this book, we work with MongoDB—a
document-based NoSQL database, which also has great functions for aggregations
and MapReduce processing.

Tools and toys for this book
The main goal of this book is to provide the reader with self-contained projects
ready to deploy, in order to do this, as you go through the book you will use and
implement tools such as Python, D3, and MongoDB. These tools will help you to
program and deploy the projects. You also can download all the code from the
author's GitHub repository https://github.com/hmcuesta.

You can see a detailed installation and setup process of all the tools in Appendix,
Setting Up the Infrastructure.

Why Python?
Python is a scripting language—an interpreted language with its own built-in
memory management and good facilities for calling and cooperating with other
programs. There are two popular Versions, 2.7 or 3.x, in this book, we will focused
on the 3.x Version because it is under active development and has already seen over
two years of stable releases.

Python is multi-platform, which runs on Windows, Linux/Unix, and Mac OS X,
and has been ported to the Java and .NET virtual machines. Python has powerful
standard libraries and a wealth of third-party packages for numerical computation
and machine learning such as NumPy, SciPy, pandas, SciKit, mlpy, and so on.

Chapter 1

[21]

Python is excellent for beginners, yet great for experts and is highly scalable—
suitable for large projects as well as small ones. Also it is easily extensible and
object-oriented.

Python is widely used by organizations such as Google, Yahoo Maps, NASA,
RedHat, Raspberry Pi, IBM, and so on.

A list of organizations using Python is available at http://wiki.python.org/moin/
OrganizationsUsingPython.

Python has excellent documentation and examples at http://docs.python.org/3/.

Python is free to use, even for commercial products, download is available for free
from http://python.org/.

Why mlpy?
mlpy (Machine Learning Python) is a Python module built on top of NumPy, SciPy,
and the GNU Scientific Libraries. It is open source and supports Python 3.x. The mlpy
module has a large amount of machine learning algorithms for supervised and
unsupervised problems.

Some of the features of mlpy that will be used in this book are as follows:

• We will perform a numeric regression with kernel ridge regression (KRR)
• We will explore the dimensionality reduction through principal component

analysis (PCA)
• We will work with support vector machines (SVM) for classification
• We will perform text classification with Naive Bayes
• We will see how different two time series are with dynamic time warping

(DTW) distance metric

We can download the latest Version of mlpy from http://mlpy.sourceforge.net/.

For reference you can refer to the paper mply: Machine Learning Python
(http://arxiv.org/abs/1202.6548) submitted in 2012 by D. Albanese,
R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, and C. Furlanello.

Getting Started

[22]

Why D3.js?
D3.js (Data-Driven Documents) was developed by Mike Bostock. D3 is a JavaScript
library for visualizing data and manipulating the document object model that runs
in a browser without a plugin. In D3.js you can manipulate all the elements of the
DOM (Document Object Model); it is as flexible as the client-side web technology
stack (HTML, CSS, and SVG).

D3.js supports large datasets and includes animation capabilities that make it a
really good choice for web visualization.

D3 has an excellent documentation, examples, and community at https://github.
com/mbostock/d3/wiki/Gallery and https://github.com/mbostock/d3/wiki.

You can download the latest Version of D3.js from http://d3js.org/d3.v3.zip.

Why MongoDB?
NoSQL (Not only SQL) is a term that covers different types of data storage
technologies, used when you can't fit your business model into a classical relational
data model. NoSQL is mainly used in Web 2.0 and in social media applications.

MongoDB is a document-based database. This means that MongoDB stores and
organizes the data as a collection of documents that gives you the possibility to store
the view models almost exactly like you model them in the application. Also, you can
perform complex searches for data and elementary data mining with MapReduce.

MongoDB is highly scalable, robust, and perfect to work with JavaScript-based
web applications because you can store your data in a JSON (JavaScript Object
Notation) document and implement a flexible schema which makes it perfect for no
structured data.

MongoDB is used by highly recognized corporations such as Foursquare, Craigslist,
Firebase, SAP, and Forbes. We can see a detailed list at http://www.mongodb.org/
about/production-deployments/.

MongoDB has a big and active community and well-written documentation at
http://docs.mongodb.org/manual/.

MongoDB is easy to learn and it's free, we can download MongoDB from
http://www.mongodb.org/downloads.

Chapter 1

[23]

Summary
In this chapter, we presented an overview of the data analysis ecosystem, explaining
basic concepts of the data analysis process, tools, and some insight into the practical
applications of the data analysis. We have also provided an overview of the different
kinds of data; numerical and categorical. We got into the nature of data, structured
(databases, logs, and reports) and unstructured (image collections, social networks,
and text mining). Then, we introduced the importance of data visualization and how
a fine visualization can help us in the exploratory data analysis. Finally we explored
some of the concepts of big data and social networks analysis.

In the next chapter, we will work with data, cleaning, processing, and transforming,
using Python and OpenRefine.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Working with Data
Building real world's data analytics requires accurate data. In this chapter we
discuss how to obtain, clean, normalize, and transform raw data into a standard
format such as Comma-Separated Values (CSV) or JavaScript Object Notation
(JSON) using OpenRefine.

In this chapter we will cover:

• Datasource
 ° Open data
 ° Text files
 ° Excel files
 ° SQL databases
 ° NoSQL databases
 ° Multimedia
 ° Web scraping

• Data scrubbing
 ° Statistical methods
 ° Text parsing
 ° Data transformation

• Data formats
 ° CSV
 ° JSON
 ° XML
 ° YAML

• Getting started with OpenRefine

Working with Data

[26]

Datasource
Datasource is a term used for all the technology related to the extraction and storage
of data. A datasource can be anything from a simple text file to a big database. The
raw data can come from observation logs, sensors, transactions, or user's behavior.

In this section we will take a look into the most common forms for datasource
and datasets.

A dataset is a collection of data, usually presented in tabular form. Each column
represents a particular variable, and each row corresponds to a given member of
the data, as is shown in the following figure:

A dataset represents a physical implementation of a datasource; the common
features of a dataset are as follows:

• Dataset characteristics (such as multivariate or univariate)
• Number of instances
• Area (for example life, business, and so on)
• Attribute characteristics (namely, real, categorical, and nominal)

Chapter 2

[27]

• Number of attributes
• Associated tasks (such as classification or clustering)
• Missing Values

Open data
Open data is data that can be used, re-use, and redistributed freely by anyone for any
purpose. Following is a short list of repositories and databases for open data:

• Datahub is available at http://datahub.io/
• Book-Crossing Dataset is available at http://www.informatik.uni-

freiburg.de/~cziegler/BX/

• World Health Organization is available at
http://www.who.int/research/en/

• The World Bank is available at http://data.worldbank.org/
• NASA is available at http://data.nasa.gov/
• United States Government is available at http://www.data.gov/
• Machine Learning Datasets is available at

http://bitly.com/bundles/bigmlcom/2

• Scientific Data from University of Muenster is available at
http://data.uni-muenster.de/

• Hilary Mason research-quality datasets is available at
https://bitly.com/bundles/hmason/1

Other interesting sources of data come from the data mining and
knowledge discovery competitions such as ACM-KDD Cup or Kaggle
platform, in most cases the datasets are still available, even after the
competition is closed.
Check out the ACM-KDD Cup at the link http://www.sigkdd.
org/kddcup/index.php.
And Kaggle available at http://www.kaggle.com/competitions.

Working with Data

[28]

Text files
The text files are commonly used for storage of data, because it is easy to transform
into different formats, and it is often easier to recover and continue processing the
remaining contents than with other formats. Large amounts of data come in text
format from logs, sensors, e-mails, and transactions. There are several formats for
text files such as CSV (comma delimited), TSV (tab delimited), Extensible Markup
Language (XML) and (JSON) (see the Data formats section).

Excel files
MS-Excel is probably the most used and also the most underrated data analysis tool.
In fact Excel has some good points such as filtering, aggregation functions, and using
Visual Basis for Application you can make Structured Query Language (SQL)—such
as queries with the sheets or with an external database.

Excel provides us with some visualization tools and we can extend the analysis
capabilities of Excel (Version 2010) by installing the Analysis ToolPak that includes
functions for Regression, Correlation, Covariance, Fourier Analysis, and so on. For
more information about the Analysis ToolPak check the link http://bit.ly/ZQKwSa.

Some Excel disadvantages are that missing values are handled inconsistently and
there is no record of how an analysis was accomplished. In the case of the Analysis
ToolPak, it can only work with one sheet at a time. That's why Excel is a poor choice
for statistical analysis beyond the basic examples.

We can easily transform Excel files (.xls) into another text file format such as CSV,
TSV, or even XML. To export the Excel sheet just go to File menu, select the option
Save & Send, and in Change File Type select your preferred format such as CSV
(Comma delimited).

Chapter 2

[29]

SQL databases
A database is an organized collection of data. SQL is a database language for
managing and manipulating data in Relational Database Management Systems
(RDBMS). The Database Management Systems (DBMS) are responsible for
maintaining the integrity and security of stored data, and for recovering information
if the system fails. SQL Language is split into two subsets of instructions, the Data
Definition Language (DDL) and Data Manipulation Language (DML).

The data is organized in schemas (database) and divided into tables related by
logical relationships, where we can retrieve the data by making queries to the
main schema, as is shown in the following screenshot:

DDL allows us to create, delete, and alter database tables. We can also define
keys to specify relationships between tables, and implement constraints between
database tables.

• CREATE TABLE: This command creates a new table
• ALTER TABLE: This command alters a table
• DROP TABLE: This command deletes a table

DML is a language which enables users to access and manipulate data.

• SELECT: This command retrieves data from the database
• INSERT INTO: This command inserts new data into the database
• UPDATE: This command modifies data in the database
• DELETE: This command deletes data in the database

Working with Data

[30]

NoSQL databases
Not only SQL (NoSQL) is a term used in several technologies where the nature of
the data does not require a relational model. NoSQL technologies allow working
with a huge quantity of data, higher availability, scalability, and performance.

See Chapter 12, Data Processing and Aggregation with MongoDB and Chapter 13, Working
with MapReduce, for extended examples of document store database MongoDB.

The most common types of NoSQL data stores are:

• Document store: Data is stored and organized as a collection of documents.
The model schema is flexible and each collection can handle any number of
fields. For example, MongoDB uses a document of type BSON (binary format
of JSON) and CouchDB uses a JSON document.

• Key-value store: Data is stored as key-value pairs without a predefined
schema. Values are retrieved from their keys. For example, Apache
Cassandra, Dynamo, HBase, and Amazon SimpleDB.

• Graph-based store: Data is stored in graph structures with nodes, edges, and
properties using the computer science graph theory for storing and retrieving
data. These kinds of databases are excellent to represent social network
relationships. For example, Neo4js, InfoGrid, and Horton.

For more information about NoSQL see the following link:

http://nosql-database.org/

Multimedia
The increasing number of mobile devices makes it a priority of data analysis to
acquire the ability to extract semantic information from multimedia datasources.
Datasources include directly perceivable media such as audio, image, and video.
Some of the applications for these kinds of datasources are as follows:

• Content-based image retrieval
• Content-based video retrieval
• Movie and video classification
• Face recognition
• Speech recognition
• Audio and music classification

In Chapter 5, Similarity-based Image Retrieval, we present a similarity-based image
search engine using Caltech256 that is an image dataset with over 30,600 images.

Chapter 2

[31]

Web scraping
When we want to obtain data, a good place to start is in the web. Web scraping
refers to an application that processes the HTML of a web page to extract data for
manipulation. Web scraping applications will simulate a person viewing a website
with a browser. In the following example, we assume we want to get the current
gold price from the website www.gold.org, as is shown in the following screenshot:

Then we need to inspect the Gold Spot Price element in the website, where we will
find the following HTML tag:

<td class="value" id="spotpriceCellAsk">1,573.85</td>

We can observe an id, spotpriceCellAsk in the td tag; this is the element we will
get with the next Python code.

For this example, we will use the library BeautifulSoup Version 4, in
Linux we can install it from the system package manager, we need to
open a Terminal and execute the next command:
$ apt-get install python-bs4

For windows we need to download the library from the following link:
http://crummy.com/software/BeautifulSoup/bs4/download/

To install it, just execute in the command line:
$ python setup.py install

1. First we need to import the libraries BeautifulSoup and urllib.request
from bs4 import BeautifulSoup
import urllib.request
from time import sleep
from datetime import datetime

Working with Data

[32]

2. Then we use the function getGoldPrice to retrieve the current price from
the website, in order to do this we need to provide the URL to make the
request and read the entire page.
req = urllib.request.urlopen(url)
page = req.read()

3. Next, we use BeautifulSoup to parse the page (creating a list of all
the elements of the page) and ask for the element td with the id,
spotpriceCellAsk:
scraping = BeautifulSoup(page)
price= scraping.findAll("td",attrs={"id":"spotpriceCellAsk"})[0].
text

4. Now we return the variable price with the current gold price, this value
changes every minute on the website, in this case, we want all the values in
an hour, so we call the function getGoldPrice in a for loop 60 times, making
the script wait 59 seconds between each call.
for x in range(0,60):
...
 sleep(59)

5. Finally, we save the result in a file goldPrice.out and include the current
date time in the format HH:MM:SS (A.M. or P.M.), for example, 11:35:42PM,
separated by a comma.
with open("goldPrice.out","w") as f:
...
 sNow = datetime.now().strftime("%I:%M:%S%p")
 f.write("{0}, {1} \n ".format(sNow, getGoldPrice()))

The function datetime.now().strftime creates a string representing the time
under the control of an explicit format string "%I:%M:%S%p", where %I represents
hour as decimal number from 0 to 12, %M represents minute as a decimal number
from 00 to 59, %S represents second as a decimal number from 00 to 61, and %p
represent either A.M. or P.M.

A list of complete format directives can be found on the following link:

http://docs.python.org/3.2/library/datetime.html

Chapter 2

[33]

The following is the full script:

from bs4 import BeautifulSoup
import urllib.request
from time import sleep
from datetime import datetime
def getGoldPrice():
 url = "http://gold.org"
 req = urllib.request.urlopen(url)
 page = req.read()
 scraping = BeautifulSoup(page)
 price= scraping.findAll("td",attrs={"id":"spotpriceCellAsk"})[0]
 .text
 return price

with open("goldPrice.out","w") as f:
 for x in range(0,60):
 sNow = datetime.now().strftime("%I:%M:%S%p")
 f.write("{0}, {1} \n ".format(sNow, getGoldPrice()))
 sleep(59)

You can download the full script (WebScraping.py) from the
author's GitHub repository, which is available at https://
github.com/hmcuesta/PDA_Book/tree/master/Chapter2

The output file, goldPrice.out, will look as follows:

11:35:02AM, 1481.25

11:36:03AM, 1481.26

11:37:02AM, 1481.28

11:38:04AM, 1481.25

11:39:03AM, 1481.22

…

Working with Data

[34]

Data scrubbing
Data scrubbing, also called data cleansing, is the process of correcting or removing
data in a dataset that is incorrect, inaccurate, incomplete, improperly formatted,
or duplicated.

The result of the data analysis process not only depends on the algorithms, it also
depends on the quality of the data. That's why the next step after obtaining the
data, is data scrubbing. In order to avoid dirty data our dataset should possess the
following characteristics:

• Correct
• Completeness
• Accuracy
• Consistency
• Uniformity

The dirty data can be detected by applying some simple statistical data validation
also by parsing the texts or deleting duplicate values. Missing or sparse data can
lead you to highly misleading results.

Statistical methods
In this method we need some context about the problem (knowledge domain) to find
values that are unexpected and thus erroneous, even if the data type match but the
values are out of the range, it can be resolved by setting the values to an average or
mean value. Statistical validations can be used to handle missing values which can
be replaced by one or more probable values using Interpolation or by reducing the
dataset using Decimation.

• Mean: This is the value calculated by summing up all values and then
dividing by the number of values.

• Median: The median is the middle value in a sorted list of values.
• Range Constraints: The numbers or dates should fall within a certain range.

That is, they have minimum and/or maximum possible values.
• Clustering: Usually, when we obtain data directly from the user some values

include ambiguity or refer to the same value with a typo. For example,
Buchanan Deluxe 750ml 12 x 01 and Buchanan Deluxe 750ml 12 x 01., which
are different only by a dot, or in the case of Microsoft or MS instead of
Microsoft Corporation which refer to the same company and all values are
valid. In those cases, grouping can help us to get accurate data and eliminate
the duplicated ones, enabling a faster identification of unique values.

Chapter 2

[35]

Text parsing
We perform parsing to help us to validate if a string of data is well formatted and
avoid syntax errors.

Regular expression patterns, usually text fields, would have to be validated in this
way. For example, dates, e-mails, phone numbers, and IP addresses. Regex is a
common abbreviation for regular expression.

In Python we will use the re module to implement regular expressions. We can
perform text search and pattern validations.

Firstly, we need to import the re module.

import re

In the following examples, we will implement three of the most common validations
(e-mail, IP address, and date format):

• E-mail validation:
myString = 'From: readers@packt.com (readers email)'
result = re.search('([\w.-]+)@([\w.-]+)', myString)
if result:
 print (result.group(0))
 print (result.group(1))
 print (result.group(2))
Output:
>>> readers@packt.com
>>> readers
>>> packt.com

The function search() scans through a string, searching for any location
where the regex might match. The function group() helps us to return the
string matched by the regex. The pattern \w matches any alphanumeric
character and is equivalent to the class (a-z, A-Z, 0-9_).

• IP address validation:
isIP = re.compile('\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}')
myString = " Your IP is: 192.168.1.254 "
result = re.findall(isIP,myString)
print(result)
Output:
>>> 192.168.1.254

Working with Data

[36]

The function findall() finds all the substrings where the regex matches,
and returns them as a list. The pattern \d matches any decimal digit, is
equivalent to the class [0-9].

• Date format:
myString = "01/04/2001"
isDate = re.match('[0-1][0-9]\/[0-3][0-9]\/[1-2][0-9]{3}',
 myString)
if isDate:
 print("valid")
else:
 print("invalid")
Output:
>>> 'valid'

The function match() finds if the regex matches with the string. The pattern
implements the class [0-9] in order to parse the date format.

For more information about regular expressions, visit the link
http://docs.python.org/3.2/howto/regex.html#regex-howto.

Data transformation
Data transformation is usually related to databases and data warehouses,
where values from a source format are extracted, transformed, and loaded
in a destination format.

Extract, Transform, and Load (ETL) obtains data from datasources, performs
some transformation function depending on our data model and loads the result
data into destination.

• Data extraction allows us to obtain data from multiple datasources, such
as relational databases, data streaming, text files (JSON, CSV, XML), and
NoSQL databases.

• Data transformation allows us to cleanse, convert, aggregate, merge, replace,
validate, format, and split data.

Chapter 2

[37]

• Data loading allows us to load data into destination format, such as relational
databases, text files (JSON, CSV, XML), and NoSQL databases.

In statistics, data transformation refers to the application of a
mathematical function to the dataset or time series points.

Data formats
When we are working with data for human consumption the easiest way to store
it is through text files. In this section, we will present parsing examples of the most
common formats such as CSV, JSON, and XML. These examples will be very helpful
in the next chapters.

The dataset used for these examples is a list of Pokémon characters by
National Pokedex number, obtained at the URL http://bulbapedia.
bulbagarden.net/.
All the scripts and dataset files can be found in the author's GitHub
repository available at the URL https://github.com/hmcuesta/
PDA_Book/tree/master/Chapter3/.

CSV
CSV is a very simple and common open format for table, such as data, which can
be exported and imported by most of the data analysis tools. CSV is a plain text
format this means that the file is a sequence of characters, with no data that has to
be interpreted instead, for example, binary numbers.

Working with Data

[38]

There are many ways to parse a CSV file from Python, and in a moment we will
discuss two of them:

The first eight records of the CSV file (pokemon.csv) look as follows:

 id, typeTwo, name, type
 001, Poison, Bulbasaur, Grass
 002, Poison, Ivysaur, Grass
 003, Poison, Venusaur, Grass
 006, Flying, Charizard, Fire
 012, Flying, Butterfree, Bug
 013, Poison, Weedle, Bug
 014, Poison, Kakuna, Bug
 015, Poison, Beedrill, Bug
. . .

Parsing a CSV file with the csv module
Firstly, we need to import the csv module:

import csv

Then we open the file .csv and with the function csv.reader(f) we parse the file:

with open("pokemon.csv") as f:
 data = csv.reader(f)
 #Now we just iterate over the reader

 for line in data:
 print(" id: {0} , typeTwo: {1}, name: {2}, type: {3}"
 .format(line[0],line[1],line[2],line[3]))

Output:
[(1, b' Poison', b' Bulbasaur', b' Grass')
 (2, b' Poison', b' Ivysaur', b' Grass')
 (3, b' Poison', b' Venusaur', b' Grass')
 (6, b' Flying', b' Charizard', b' Fire')
 (12, b' Flying', b' Butterfree', b' Bug')
 . . .]

Chapter 2

[39]

Parsing a CSV file using NumPy
Perform the following steps for parsing a CSV file:

1. Firstly, we need to import the numpy library:
import numpy as np

2. NumPy provides us with the genfromtxt function, which receives four
parameters. First, we need to provide the name of the file pokemon.csv.
Then we skip first line as a header (skip_header). Next we need to specify
the data type (dtype). Finally, we will define the comma as the delimiter.
data = np.genfromtxt("pokemon.csv"
 ,skip_header=1
 ,dtype=None
 ,delimiter=',')

3. Then just print the result.
print(data)

Output:
id: id , typeTwo: typeTwo, name: name, type: type
id: 001 , typeTwo: Poison, name: Bulbasaur, type: Grass
id: 002 , typeTwo: Poison, name: Ivysaur, type: Grass
id: 003 , typeTwo: Poison, name: Venusaur, type: Grass
id: 006 , typeTwo: Flying, name: Charizard, type: Fire
. . .

JSON
JSON is a common format to exchange data. Although it is derived from JavaScript,
Python provides us with a library to parse JSON.

Parsing a JSON file using json module
The first three records of the JSON file (pokemon.json) look as follows:

 [
 {
 "id": " 001",
 "typeTwo": " Poison",
 "name": " Bulbasaur",
 "type": " Grass"
 },
 {

Working with Data

[40]

 "id": " 002",
 "typeTwo": " Poison",
 "name": " Ivysaur",
 "type": " Grass"
 },
 {
 "id": " 003",
 "typeTwo": " Poison",
 "name": " Venusaur",
 "type": " Grass"
 },
. . .]

Firstly, we need to import the json module and pprint (pretty-print) module.

import json
from pprint import pprint

Then we open the file pokemon.json and with the function json.loads we parse
the file.

with open("pokemon.json") as f:
 data = json.loads(f.read())

Finally, just print the result with the function pprint.

pprint(data)

Output:

[{'id': ' 001', 'name': ' Bulbasaur', 'type': ' Grass', 'typeTwo': '
Poison'},
 {'id': ' 002', 'name': ' Ivysaur', 'type': ' Grass', 'typeTwo': '
Poison'},
 {'id': ' 003', 'name': ' Venusaur', 'type': ' Grass', 'typeTwo': '
Poison'},
 {'id': ' 006', 'name': ' Charizard', 'type': ' Fire', 'typeTwo': '
Flying'},
 {'id': ' 012', 'name': ' Butterfree', 'type': ' Bug', 'typeTwo': '
Flying'}, . . .]

Chapter 2

[41]

XML
According with to World Wide Web Consortium (W3C) available at
http://www.w3.org/XML/

Extensible Markup Language (XML) is a simple, very flexible text format derived
from SGML (ISO 8879). Originally designed to meet the challenges of large-scale
electronic publishing, XML is also playing an increasingly important role in the
exchange of a wide variety of data on the Web and elsewhere.

The first three records of the XML file (pokemon.xml) look as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<pokemon>
 <row>
 <id> 001</id>
 <typeTwo> Poison</typeTwo>
 <name> Bulbasaur</name>
 <type> Grass</type>
 </row>
 <row>
 <id> 002</id>
 <typeTwo> Poison</typeTwo>
 <name> Ivysaur</name>
 <type> Grass</type>
 </row>
 <row>
 <id> 003</id>
 <typeTwo> Poison</typeTwo>
 <name> Venusaur</name>
 <type> Grass</type>
 </row>
. . .
</pokemon>

Parsing an XML file in Python using xml module
Firstly, we need to import the ElementTree object from xml module.

from xml.etree import ElementTree

Then we open the file "pokemon.xml" and with the function ElementTree.parse we
parse the file.

with open("pokemon.xml") as f:
 doc = ElementTree.parse(f)

Working with Data

[42]

Finally, just print each 'row' element with the findall function:

 for node in doc.findall('row'):
 print("")
 print("id: {0}".format(node.find('id').text))
 print("typeTwo: {0}".format(node.find('typeTwo').text))
 print("name: {0}".format(node.find('name').text))
 print("type: {0}".format(node.find('type').text))

Output:

id: 001
typeTwo: Poison
name: Bulbasaur
type: Grass

id: 002
typeTwo: Poison
name: Ivysaur
type: Grass

id: 003
typeTwo: Poison
name: Venusaur
type: Grass

. . .

YAML
YAML Ain't Markup Language (YAML) is a human-friendly data serialization
format. It's not as popular as JSON or XML but it was designed to be easily mapped
to data types common to most high-level languages. A Python parser implementation
called PyYAML is available in PyPI repository and its implementation is very similar
to the JSON module.

The first three records of the YAML file (pokemon.yaml) look as follows:

Pokemon:
 -id : 001
typeTwo : Poison
name : Bulbasaur
type : Grass
 -id : 002
typeTwo : Poison

Chapter 2

[43]

name : Ivysaur
type : Grass
 -id : 003
typeTwo : Poison
name : Venusaur
type : Grass
. . .

Getting started with OpenRefine
OpenRefine (formerly known as Google Refine) is a formatting tool very useful
in data cleansing, data exploration, and data transformation. It is an open source
web application which runs directly in your computer, skipping the problem of
uploading your delicate information to an external server.

To start working with OpenRefine just run the application and open a browser in the
URL available at http://127.0.0.1:3333/.

Refer to Appendix, Setting Up the Infrastructure.

Firstly, we need to upload our data and click on Create Project. In the following
screenshot, we can observe our dataset, in this case, we will use monthly sales of an
alcoholic beverages company. The dataset format is an MS Excel (.xlsx) worksheet
with 160 rows.

We can download the original MS Excel file and the OpenRefine project from the
author's GitHub repository available at the following URL:

https://github.com/hmcuesta/PDA_Book/tree/master/Chapter2

Working with Data

[44]

Text facet
Text facet is a very useful tool, similar to filter in a spreadsheet. Text facet groups
unique text values into groups. This can help us to merge information and we can
see values, which could be spelled in a lot of different ways.

Now we will create a text facet on the name column by clicking on that column's
drop-down menu and select Facet | Text Facet. In the following screenshot we can
see the column name grouped by its content. This is helpful to see the distribution of
elements in the dataset. We will observe the number of choices (43 in this example)
and we can sort the information by name or by count.

Clustering
We can cluster all the similar values by clicking on our text facet (refer to the
previous screenshot), in this case we find: Guinness Lata DR 440ml 24x01 and
Guinness Lata DR 440ml 24x01., obviously the dot in the second value is a typo.
The option Cluster allows us to find this kind of dirty data easily. Now we just select
the option Merge? and define New Cell Value, then we click on Merge Selected &
Close as seen in the following screenshot:

Chapter 2

[45]

We can play with the parameters of the Cluster option, such as changing the
Method option from Key collision to nearest neighbor, selecting Rows in Cluster
or the length variance of choices. Playing with the parameters we can find duplicate
items in a data column and more complex misspells, as we can see in the following
screenshot, where the values JW Black Label 750ml 12x01 and JW Bck Label 750ml
12x01 refer to the same product with a typo in the color.

Working with Data

[46]

Text filters
We may filter a column by using a specific text string or using a regular expression
(Java's regular expressions). We will click on the option Find of the column we
want to filter and then type our search string in the textbox in the left. For more
information about Java's regular expressions visit the following URL:

http://docs.oracle.com/javase/tutorial/essential/regex/

Numeric facets
Numeric facet groups numbers into numeric range bins. You can customize
numeric facets much the way you can customize text facets. For example, if the
numeric values in a column are drawn from a power law distribution (refer to the
first row in the following screenshot), then it's better to group them by their logs
(refer to the second row in the following screenshot) using the following expression:

value.log()

Otherwise, if our values are periodic we could take the modulus by the period, to
find a pattern, using the following expression:

mod(value, 6)

We can create a numeric facet from a text by taking the length of the string, using
this expression.

value.length()

Chapter 2

[47]

Transforming data
In our example, the column date uses a special date format 01.04.2013 and we
want to replace . by /. Fixing this is pretty easy using a transform. We need to
go to Column date | Edit Cells | Transform.

We will write a replace() expression as follows:

replace(value,".","/")

Now just click on the button OK to apply the transformation.

Google Refine Expression Language (GREL) allows us to create complex
validations. For example, in simple business logic when the column value
reaches 10 units we make a discount of 5 percent, we do this with an if()
statement and some algebra:

if(value>10,value*.95,value)

Working with Data

[48]

Visit the link for a complete list of functions supported by
the GREL available at https://code.google.com/p/
google-refine/wiki/GRELFunctions.

Exporting data
We can export data from an existing OpenRefine project in several formats
as follows:

• TSV
• CSV
• Excel
• HTML table

To export the file as a JSON, we need to select the option Export and Templating
Export, where we can specify a JSON template as shown in the following screenshot:

Chapter 2

[49]

Operation history
We can save all the transformations applied to our dataset just by clicking on the tab
Undo/Redo and then select Extract this will show all the transformations applied to
the current dataset (as shown in the following screenshot). Finally, we will copy the
generated JSON and we will paste it in a text file.

To apply the transformations to another dataset we just need to open the dataset in
OpenRefine, and then go to the tab Undo/Redo click on the button Apply and copy
the JSON from the first project.

Working with Data

[50]

Summary
In this chapter we explored the common datasources and implemented a web
scraping example. Next, we introduced the basic concepts of data scrubbing such as
statistical methods and text parsing. Then we learned about how to parse the most
used text formats with Python. Finally, we presented an introduction to OpenRefine
which is an excellent tool for data cleansing and data formatting. Working with data
is not just code or clicks, we also need to play with the data and follow our intuition
to get our data in great shape. We need to get involved in the knowledge domain of
our data to find inconsistencies. Global vision of data helps us to discover what we
need to know about our data.

In the next chapter, we will explore our data through some visualization techniques
and we will present a fast introduction to D3js.

Data Visualization
Sometimes, we don't know how valuable data is until we look at it. In this chapter,
we get into a Web Visualization Framework called D3 (Data-Driven Documents)
to create visualizations that make complex information easier to understand.

In this chapter we will cover:

• Data-Driven Documents (D3)
• Getting started with D3.js

 ° Bar chart
 ° Pie chart
 ° Scatter plot
 ° Line chart
 ° Multi-line chart

• Interaction and animation

Exploratory data analysis (EDA) as mentioned in Chapter 1, Getting Started, is a
critical part of the data analysis process because it helps us to detect mistakes,
determine relationships and tendencies, or check assumptions. In this chapter,
we present some examples of visualization methods for EDA with discrete and
continuous data.

The four types of EDA are univariate non-graphical, multivariate non-graphical,
univariate graphical, and multivariate graphical. The non-graphical methods refer
to the calculation of summary statistics or the outlier detection. In this book, we
will focus on the univariate and multivariate graphical models. Using a variety
of visualization tools such as bar chars, pie charts, scatter plots, line charts, and
multi-line charts, all implemented in D3.js.

Data Visualization

[52]

In this chapter, we will work with two types of data: discrete data with a list
of summarized pokemon types (see Chapter 2, Working with Data), and hand
with continuous data using the historical exchange rates from March 2008 to
March 2013. We also explore the creation of a random dataset.

Data-Driven Documents (D3)
D3 is a project featured by the Stanford Visualization Group developed by
Mike Bostock.

D3 provides us with web-based visualization, which is an excellent way to deploy
information and help us to see things such as proportions, relationships, correlations,
and patterns, and discover things previously unknown. Since web browsers provide
us with a very flexible and interactive interface in practically any device such as PC,
tablet, and smart phone, D3 is an amazing tool for visualization based on data using
HTML, JavaScript, SVG, and CSS.

In Chapter 1, Getting Started, we saw the importance of data visualization and in this
chapter, we will present examples in order to understand the use of D3.js. In the
following screenshot, we can see the basic structure of an HTML document. D3 is
going to be included in a basic script tag or into a JavaScript file (.js):

Chapter 3

[53]

HTML
HyperText Markup Language (HTML) provides the basic skeleton for our
visualization. An HTML document will define the structure of our web page,
based on a series of tags, which are labels inside angle brackets (
) commonly
coming in pairs (<p>...</p>). D3 will take advantage of the structure of HTML
by creating new elements in the document structure, such as adding new div tags
(which defines a section in a document). We can see the basic structure of an HTML
document in the previous screenshot.

For a complete reference about HTML, please refer to
the link http://www.w3schools.com/html/.

DOM
Document Object Model (DOM) helps in representing and interacting with objects
in HTML documents. Objects in the DOM tree can be addressed and manipulated by
programming languages such as Python or JavaScript through the elements (tags) of
the web page. D3 will change the structure of the HTML document by accessing the
DOM tree either by the element ID or its type.

CSS
Cascading Style Sheets (CSS) can help us to style the web page. A CSS style
is based on rules and selectors. We can apply styles to a specific element (tag)
through selectors. An example of CSS is shown as follows:

<style>
body {
 font: 10px arial;
}
</style>

JavaScript
JavaScript is a dynamic scripting programming language typically implemented
in the client (web browser). All the code in D3.js is developed with JavaScript.
JavaScript will help us to create great visualizations, with full interactivity which
can be updated in real time. In D3.js we can link to the library directly (stored in a
separate file) with the snippet listed as follows:

<script src="http://d3js.org/d3.v3.min.js"></script>

Data Visualization

[54]

SVG
Scalable Vector Graphics (SVG) is an XML-based vector image format for
two-dimensional graphics. SVG can be directly included in your web page.
SVG provides basic shape elements such as rectangle, line, circle, and text to
build complicated lines and shapes inside a canvas. Much of the success of D3 is
because it implements a wrapper for SVG. With D3 we will not have to modify the
XML directly, instead D3 provides an API to help us place our elements (rectangle,
circle, line, and so on) in the correct location on the canvas.

Getting started with D3.js
First, download the latest version of D3 from the official website http://d3js.org/.

Or, to link directly to the latest release, copy this snippet:

<script src="http://d3js.org/d3.v3.min.js"></script>

In the basic examples, we can just open our HTML document in a web browser to
view it. But when we need to load external data sources, we need to publish the
folder on a web server such as Apache, nginx, or IIS. Python provides us with an
easy way to run a web server with http.server; we just need to open the folder
where our D3 files are present and execute the following command in the terminal.

$ python3 –m http.server 8000

In Windows, you can use the same command by removing the number 3 from python.

> python –m http.server 8000

Chapter 3

[55]

The following examples are based on Mike Bostock's reference gallery, which can be
found at https://github.com/mbostock/d3/wiki/Gallery.

All the codes and datasets of this chapter can be found in the author's GitHub
repository at https://github.com/hmcuesta/PDA_Book/tree/master/Chapter3.

Bar chart
Probably, the most common visualization tool is the bar chart. As we can see in the
following figure, the horizontal axis (X) represents the category data and the vertical
axis (Y) represents a discrete value. We can see the count of pokemon by type with a
random sort.

Va
lu

e
Ax

is

Category Axis

45

Dark Bug Dragon Electric Fighting Fire Ghost Grass Ground Ice Normal Poison Psychic Rock Steel Water

40

35

30

25

20

15

10

5

0

Am
ou

nt

Discrete data are values that can only take certain values;
in this case it is the number of pokemon by type.

In the following example, we process the pokemon list in JSON format (see Chapter 2,
Working with Data) and we get the sum of pokemon by type, sorted by number in
ascending order and then save the result in a CSV format. After the data processing,
we visualize the result in a bar chart.

Data Visualization

[56]

The first three records of the JSON file (pokemon.json) look like the following records:

[
 {
 "id": " 001",
 "typeTwo": " Poison",
 "name": " Bulbasaur",
 "type": " Grass"
 },
 {
 "id": " 002",
 "typeTwo": " Poison",
 "name": " Ivysaur",
 "type": " Grass"
 },
 {
 "id": " 003",
 "typeTwo": " Poison",
 "name": " Venusaur",
 "type": " Grass"
 },
. . .]

In this preprocessing stage, we will use Python to turn the JSON file into a CSV format.
We will perform an aggregation to get the number of each category of pokemon
sorted in ascending order. After we get the resultant CSV file, we will start with the
visualization in D3.js. The code for the preprocessing is shown as follows:

We need to import the necessary modules.
import json
import csv
from pprint import pprint
#Now, we define a dictionary to store the result
typePokemon = {}
#Open and load the JSON file.
with open("pokemon.json") as f:
 data = json.loads(f.read())

#Fill the typePokemon dictionary with sum of pokemon by type
 for line in data:
 if line["type"] not in typePokemon:
 typePokemon[line["type"]] = 1
 else:

Chapter 3

[57]

 typePokemon[line["type"]]=typePokemon.get(line["type"])+1

#Open in a write mode the sumPokemon.csv file
with open("sumPokemon.csv", "w") as a:
 w = csv.writer(a)

#Sort the dictionary by number of pokemon
#writes the result (type and amount) into the csv file
 for key, value in sorted(typePokemon.items(),
 key=lambda x: x[1]):
 w.writerow([key,str(value)])

 #finally, we use "pretty print" to print the dictionary
 pprint(typePokemon)

The result of the preprocessing can be seen in the following table. Each row has two
values, the type and the amount of pokemon of a particular type.

Type Amount
Fighting 3
Electric 7
Psychic 9
Ghost 10
Poison 11
Ice 11
Dragon 12
Steel 13
Fire 14
Dark 16
Ground 17
Rock 24
Normal 29
Grass 31
Water 45
Bug 45

To start working on D3, we need to create a new HTML file with the basic structure
(head, style, and body). Next, we will include the styles and the script section as
shown in the following steps:

Data Visualization

[58]

In the CSS, we specified the style for the axis line, the font family, and size for the
body and the bar color.

<style>
body {
 font: 14px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
.x.axis path {
 display: none;
}
.bar {
 fill: #0489B1;
}
</style>

We can define the colors in CSS using a hexadecimal code such as
#0489B1 instead of the literal name "blue"; in the following link,
we can find a color selector http://www.w3schools.com/
tags/ref_colorpicker.asp.

Inside the body tag, we need to refer to the library,

<body>
<script src="http://d3js.org/d3.v3.min.js"></script>

The first thing we need to do is define a new SVG canvas (<svg>) with a width and
height of 1000 x 500 pixels, inside the body section of our HTML document.

var svg = d3.select("body").append("svg")
 .attr("width", 1000)
 .attr("height", 500)
 .append("g")
 .attr("transform", "translate(50,20)");

The transform attribute will help us to translate, rotate, and scale a group of
elements (g). In this case we want to translate (move) the position of the margins
(left and top) on the canvas with translate("left", "top"). We need to do this
because we will need space for the labels in the axis X and Y of our visualization.

Chapter 3

[59]

Now, we need to open the file sumPokemon.csv and read the values from it. Then,
we will create the variable data with two attributes type and amount according to
the structure of the CSV file.

The d3.csv method will perform an asynchronous request. When the data is
available, a callback function will be invoked. In this case we will iterate the list
data and we will convert the amount column to number (d.amount = +d.amount).

d3.csv("sumPokemon.csv", function(error, data) {
 data.forEach(function(d) {
 d.amount = +d.amount;
 });

Now, we will set a labeled X axis (x.domain) using the map function to get all the
type names of the pokemons. Next, we will use the d3.max function to return the
maximum value of each type of pokemon for the Y axis (y.domain).

x.domain(data.map(function(d) { return d.type; }));
y.domain([0, d3.max(data, function(d) { return d.amount; })]);

Now, we will create an SVG Group Element which is used to group SVG elements
together with the tag <g>. Then we use the transform function to define a new
coordinate system for a set of SVG elements by applying a transformation to each
coordinate specified in this set of SVG elements.

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0,550)")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)
 .append("text")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Amount");

Data Visualization

[60]

Finally, we need to generate .bar elements and add them to svg, then with the
data(data) function, for each value in data, we will call the .enter() function
and add a rect element. D3 allows selecting groups of elements for manipulation
through the selectAll function.

In the following link, we can find more information about selections
https://github.com/mbostock/d3/wiki/Selections.

 svg.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .attr("class", "bar")
 .attr("x", function(d) { return x(d.type); })
 .attr("width", x.rangeBand())
 .attr("y", function(d) { return y(d.amount); })
 .attr("height", function(d) { return height - y(d.amount); });

}); // close the block d3.csv

In order to see the result of our visualization, we need to visit the URL
http://localhost:8000/bar-char.html, the result is shown in the
following screenshot:

Chapter 3

[61]

Pie chart
The purpose of the pie chart is to communicate proportions. The sum of all
wedges represents a whole (100 percent). Pie charts help us to understand the
distribution of proportions in an easy way. In this example, we will use the
unordered list of pokemons by type sumPokemon.csv, which can be found at
https://github.com/hmcuesta/PDA_Book/tree/master/Chapter3.

We need to define the font family and size for the labels.

<style>
body {
 font: 16px arial;
}
</style>

Inside the body tag we need to refer to the library,

<body>
<script src="http://d3js.org/d3.v3.min.js"></script>

First, we define the size (width, height, and radius) of the work area.

var w = 1160,
 h = 700,
 radius = Math.min(w, h) / 2;

Now, we will set a range of color that will be used in the chart.

var color = d3.scale.ordinal()
 .range(["#04B486", "#F2F2F2", "#F5F6CE", "#00BFFF"]);

The function d3.svg.arc() creates a circle with an outer radius and an inner radius.
See pie charts given later.

var arc = d3.svg.arc()
 .outerRadius(radius - 10)
 .innerRadius(0);

The function d3.layout.pie() specifies how to extract a value from the
associated data.

var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.amount; });

Data Visualization

[62]

Now, we select the element body and create a new element <svg>.

var svg = d3.select("body").append("svg")
 .attr("width", w)
 .attr("height", h)
 .append("g")
 .attr("transform", "translate(" + w / 2 + "," + h / 2 + ")");

Next, we need to open the file sumPokemon.csv and read the values from the file and
create the variable data with two attributes type and amount.

d3.csv("sumPokemon.csv", function(error, data) {
 data.forEach(function(d) {
 d.amount = +d.amount;
 });

Finally, we need to generate the .arc elements and add them to svg, then with the
data(pie(data)) function, for each value in data we will call the .enter() function
and add a g element.

var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc");

Now, we need to apply the style, color, and labels to the group g.

 g.append("path")
 .attr("d", arc)
 .style("fill", function(d) { return color(d.data.type); });
 g.append("text")
 .attr("transform", function(d) { return "translate(" + arc.
centroid(d) + ")"; })
 .attr("dy", ".60em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.type; });
}); // close the block d3.csv

Chapter 3

[63]

In order to see the result of our visualization we need to visit the URL
http://localhost:8000/pie-char.html. The result is shown in the
following screenshot:

Data Visualization

[64]

In the following figure, we can see the pie chart with variation in the attribute inner
Radius of 200 pixels in the function arc.

var arc = d3.svg.arc()
 .outerRadius(radius - 10)
 .innerRadius(200);

Scatter plot
Scatter plot is a visualization tool based in cartesian space with coordinates of axis
X, Y between two different variables, in this case it can be value, categorical, or time
represented in data points. Scatter plot allows us to see relationships between the
two variables.

Chapter 3

[65]

In the following figure, we can see a scatter plot, where each data point has two
coordinates X and Y. The horizontal axis can take category or time values and
in the vertical axis we represent a value.

435,89

433,157

410,224

500,130

576,54

561,92

629,165

486,324

560,470

581,408

621,323

Y coordinate
X

co
or

di
na

te

Time or Category Axis

Va
lu

e
Ax

is

In this example, we generate 20 random points (constrained in a range of 700 x 500)
in a bi-dimensional array in JavaScript using the function Math.random() and store
the result in the variable data.

var data = [];
for(var i=0; i < 20; i++){
 var axisX = Math.round(Math.random() * 700);
 var axisY = Math.round(Math.random() * 500);
 data.push([axisX,axisY]);
}

Now, we select the element body and create a new element <svg> and define its size.

var svg = d3.select("body")
 .append("svg")
 .attr("width", 700)
 .attr("height", 500);

Data Visualization

[66]

We use the selector to create a circle for each data point in the variable data, defining
the coordinate X as cx and the coordinate Y as cy, define the radius r to 10 pixels
and pick a color fill.

svg.selectAll("circle")
 .data(data)
 .enter()
 .append("circle")
 .attr("cx", function(d) { return d[0]; })
 .attr("cy", function(d) { return d[1]; })
 .attr("r", function(d) { return 10; })
 .attr("fill", "#0489B1");

Finally, we create the label of each point including the value of a coordinate X, Y in
text format. We select a font family, color, and size.

svg.selectAll("text")
 .data(data)
 .enter()
 .append("text")
 .text(function(d) {return d[0] + "," + d[1]; })
 .attr("x", function(d) {return d[0]; })
 .attr("y", function(d) {return d[1]; })
 .attr("font-family", "arial")
 .attr("font-size", "11px")
 .attr("fill", "#000000");

In the following screenshot, we see the scatter plot that will be seen in our web browser.

Chapter 3

[67]

Single line chart
A line chart is a visualization tool that displays continuous data as a series of points
connected by a straight line. It is similar to a scatter plot but in this case the points
have a logical order and the points are connected—often used for time series'
visualization. A time series is a sequence of observations of the physical world in a
regular time span. Time series help us to understand trends and correlations. As we
can see in the following figure, the vertical axis represents the value data and the
horizontal axis represents the time.

For this example we will use the log of USA/CAD historical exchange rates from
March 2008 to March 2013 with 260 records.

In the following link we can find the Historical Exchange
Rates log to download http://www.oanda.com/
currency/historical-rates/.

The first seven records of the CSV file (line.csv) look like the following records:

date,usd
3/10/2013,1.0284
3/3/2013,1.0254
2/24/2013,1.014
2/17/2013,1.0035
2/10/2013,0.9979
2/3/2013,1.0023
1/27/2013,0.9973
. . .

Data Visualization

[68]

We need to define the font family and size for the labels and the style for the axis line.

<style>
body {
 font: 14px sans-serif;
}

.axis path,

.axis line {
 fill: gray;
 stroke: #000;
}
.line {
 fill: none;
 stroke: red;
 stroke-width: 3px;
}
</style>

Inside the body tag we need to refer to the library,

<body>
<script src="http://d3js.org/d3.v3.js"></script>

We will define a format parser for the date value with d3.time.format. In
this example, we have the data as: Month/Day/Year—%m/%d/%Y (for example,
1/27/2013). Where, %m represents the month as a decimal number from 01 to 12,
%d represents the day of the month as a decimal number from 01 to 31, and %Y
represents the year with century as a decimal number.

var formatDate = d3.time.format("%m/%d/%Y").parse;

To find out more about time formatting, please refer to the link
https://github.com/mbostock/d3/wiki/Time-Formatting/.

Now, we define the X and Y axis with a width of 1000 pixels and height 550 pixels.

var x = d3.time.scale()
 .range([0, 1000]);
var y = d3.scale.linear()
 .range([550, 0]);

var xAxis = d3.svg.axis()
 .scale(x)

Chapter 3

[69]

 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

The line element defines a line segment that starts at one point and ends at another.

In the following link we can find the reference of SVG shapes
https://github.com/mbostock/d3/wiki/SVG-Shapes/.

var line = d3.svg.line()
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.usd); });

Now, we select the element body and create a new element <svg> and define its size.

var svg = d3.select("body")
 .append("svg")
 .attr("width", 1000)
 .attr("height", 550)
 .append("g")
 .attr("transform", "translate("50,20")");

Then, we need to open the file line.csv and read the values from the file and create
the variable data with two attributes date and usd.

d3.csv("line.csv", function(error, data) {
data.forEach(function(d) {
 d.date = formatDate(d.date);
 d.usd = +d.usd;
 });

We define the date in horizontal axis (x.domain) and in the vertical axis (y.domain)
and set our value axis with the exchange rates value usd.

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain(d3.extent(data, function(d) { return d.usd; }));

Finally, we add the groups of points and the labels in the axis.

svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0,550)")
 .call(xAxis);
svg.append("g")

Data Visualization

[70]

 .attr("class", "y axis")
 .call(yAxis)
svg.append("path")
 .datum(data)
 .attr("class", "line")
 .attr("d", line);
}); // close the block d3.csv

In the following screenshot we can see the result of the visualization.

Multi-line chart
In a single variable we can see trends but often we need to compare multiple
variables and even find correlations or cluster trends. In this example, we will
evolve the last example to work with multi-line chart. In this case we will use
data from historical exchange rates from USA, EUR, and GBP.

In the following link we can find the Historical Exchange Rates
log to download http://www.oanda.com/currency/
historical-rates/.

Chapter 3

[71]

The first five records of the CSV file (multiline.csv) look like the following records:

date,USD/CAD,USD/EUR,USD/GBP
03/10/2013,1.0284,0.7675,0.6651
03/03/2013,1.0254,0.763,0.6609
2/24/2013,1.014,0.7521,0.6512
2/17/2013,1.0035,0.7468,0.6402
02/10/2013,0.9979,0.7402,0.6361
. . .

We need to define the font family and size for the labels and the style for the axis line.

<style>
body {
 font: 18px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
}
.line {
 fill: none;
 stroke-width: 3.5px;
}
</style>

Inside the body tag we need to refer to the library,

<body>
<script src="http://d3js.org/d3.v3.js"></script>

We will define a format parser for the date value with d3.time.format.
In this example we have the data as follows Month/Day/Year—%m/%d/%Y
(for example, 1/27/2013).

var formatDate = d3.time.format("%m/%d/%Y").parse;

Now, we define the X and Y axis with a width of 1000 pixels and height 550 pixels.

var x = d3.time.scale()
 .range([0, 1000]);
var y = d3.scale.linear()
 .range([550, 0]);

Data Visualization

[72]

We define an array of color for each line.

var color = d3.scale.ordinal()
 .range(["#04B486", "#0033CC", "#CC3300"]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left");

var line = d3.svg.line()
 .interpolate("basis")
 .x(function(d) { return x(d.date); })
 .y(function(d) { return y(d.currency); });

Now, we select the element body and create a new element <svg> and define its size.

var svg = d3.select("body")
 .append("svg")
 .attr("width", 1100)
 .attr("height", 550)
 .append("g")
 .attr("transform", "translate("50,20)");

Then, we need to open the file multiLine.csv and read the values from the file and
create the variable data with two attributes date and color.domain.

d3.csv("multiLine.csv", function(error, data) {
 color.domain(d3.keys(data[0]).filter(function(key)
{return key !== "date"; }));

Now, we apply the format function to all the column date.

 data.forEach(function(d) {
 d.date = formatDate(d.date);
 });

Then, we define currencies as separated array for each color line.

 var currencies = color.domain().map(function(name) {
 return {
 name: name,
 values: data.map(function(d) {
 return {date: d.date, currency: +d[name]};

Chapter 3

[73]

 })
 };
 });

 x.domain(d3.extent(data, function(d) { return d.date; }));
 y.domain
([d3.min(currencies, function(c) { return d3.min(c.values,
function(v) { return v.currency; }); }),
 d3.max(currencies, function(c) { return d3.max(c.values, function(v)
{ return v.currency; }); })
]);

Now, we add the groups of points as well as the color and labels for each line.

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0,550)")
 .call(xAxis);
 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)
 var country = svg.selectAll(".country")
 .data(currencies)
 .enter().append("g")
 .style("fill", function(d) { return color(d.name); })
 .attr("class", "country");

Finally, we add legend to multi-line series chart.

country.append("path")
 .attr("class", "line")
 .attr("d", function(d) { return line(d.values); })
 .style("stroke", function(d) { return color(d.name); });
country.append("text").datum(function(d)
{ return {name: d.name, value: d.values[d.values.length - 1]}; })
 .attr("transform", function(d) {
return "translate("+ x(d.value.date)+","+ y(d.value.currency)+")";
 })
 .attr("x", 10)
 .attr("y", 20)
 .attr("dy", ".50em")
 .text(function(d) { return d.name; });
}); // close the block d3.csv

Data Visualization

[74]

In the following screenshot we can see the result of the visualization.

Interaction and animation
D3 provides a good support for interactions, transitions, and animations. In this
example, we will focus on the basic way to add transitions and interactions to our
visualization. This time we will use a very similar code to that of the bar chart
example, in order to demonstrate how easy it is to add interactivity in visualization.

We need to define the font family and size for the labels and the style for the axis line.

<style>
body {
 font: 14px arial;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
}
.bar {
 fill: gray;
}
</style>

Chapter 3

[75]

Inside the body tag we need to refer to the library,

<body>
<script src="http://d3js.org/d3.v3.min.js"></script>
var formato = d3.format("0.0");

Now, we define the X and Y axis with a width of 1200 pixels and height 550 pixels.

var x = d3.scale.ordinal()
 .rangeRoundBands([0, 1200], .1);

var y = d3.scale.linear()
 .range([550, 0]);

var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom");

var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickFormat(formato);

Now, we select the element body and create a new element <svg> and define its size.

var svg = d3.select("body").append("svg")
 .attr("width", 1200)
 .attr("height", 550)
 .append("g")
 .attr("transform", "translate(20,50)");

Then, we need to open the TSV file sumPokemons.tsv and read the values from the
file and create the variable data with two attributes type and amount.

d3.tsv("sumPokemons.tsv", function(error, data) {
 data.forEach(function(d) {
 d.amount = +d.amount;
 });

With the function map we get our categorical values (type of pokemon) for the
horizontal axis (x.domain) and in the vertical axis (y.domain) set our value axis with
the maximum value by type (in case there is a duplicate value).

x.domain(data.map(function(d) { return d.type; }));
y.domain([0, d3.max(data, function(d) { return d.amount; })]);

Data Visualization

[76]

Now, we will create an SVG Group Element which is used to group SVG elements
together with the tag <g>. Then we use the transform function to define a new
coordinate system for a set of SVG elements by applying a transformation to each
coordinate specified in this set of SVG elements.

 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)

Now, we need to generate .bar elements and add them to svg; then with the
data(data) function, for each value in data we will call the .enter() function
and add a rect element. D3 allows selecting groups of elements for manipulation
through the selectAll function.

We want to highlight any bar just by clicking on it. First, we need to define a click
event with .on('click',function). Next we will define the change of style for
the bar highlighted with .style('fill','red');. In the following figure we can
see the highlighted bars Bug, Fire, Ghost, and Grass. Finally, we are going to set a
simple animation using a transition transition().delay with a delay between the
appearing of each bar. (See the next bar chart).

For a complete reference about Selections follow the link
https://github.com/mbostock/d3/wiki/Selections/.

svg.selectAll(".bar")
 .data(data)
 .enter().append("rect")
 .on('click', function(d,i) {
 d3.select(this).style('fill','red');
})
 .attr("class", "bar")
 .attr("x", function(d) { return x(d.type); })

For a complete reference about Transitions follow the link
https://github.com/mbostock/d3/wiki/Transitions/.

 .attr("width", x.rangeBand())
 .transition().delay(function (d,i){ return i * 300;})

Chapter 3

[77]

 .duration(300)
 .attr("y", function(d) { return y(d.amount); })
 .attr("height", function(d) { return 550 - y(d.amount);})
 ;
}); // close the block d3.tsv

All the codes and datasets of this chapter can be found in the
author GitHub repository at the link https://github.
com/hmcuesta/PDA_Book/tree/master/Chapter3.

In the following figure we can see the result of the visualization.

Summary
The visualization is an efficient way to find frequent patterns or relationships
in a dataset. In this chapter, we were introduced to a number of basic graphs
implemented with D3.js. We discussed the most popular visualization techniques
for discrete and continuous data. We explored the relation between variables and
how variables work over time.

Finally, we presented how to integrate basic user interaction and simple animation,
which will be used widely in the following chapters.

In the next chapter, we will introduce a variety of data analysis projects using
machine learning algorithms as well as visualization tools.

Text Classification
This chapter provides a brief introduction to text classification and also provides you
with an example of the Naïve Bayes algorithm, developed from scratch, in order to
explain how to turn an equation into a code.

In this chapter we will cover:

• Learning and classification
• Bayesian classification
• Naïve Bayes algorithm
• E-mail subject line tester
• The data
• The algorithm
• Classifier accuracy

Learning and classification
When we want to automatically identify to which category a specific value
(categorical value) belongs, we need to implement an algorithm that can predict
the most likely category for the value, based on the previous data. This is called
Classification. In the words of Tom Mitchell:

"How can we build computer systems that automatically improve with experience,
and what are the fundamental laws that govern all learning processes?"

Text Classification

[80]

The keyword here is learning (supervised learning in this case), and also how to
train an algorithm to identify categorical elements. The common examples are spam
classification, speech recognition, search engines, computer vision, and language
detection; but there are a large number of applications for a classifier. We can find
two kinds of problems in classification. The binary classification is where we have
only two categories (spam or not spam) and multiclass classification is where many
categories are involved (for example, opinions can be positive, neutral, negative, and
so on). We can find several algorithms for classification, the most frequently used are
support vector machines, neural networks, decision trees, Naïve Bayes, and hidden
Markov models. In this chapter, we will implement a probabilistic classification
using Naïve Bayes algorithm, but in the following chapters we will implement
several other classification algorithms for a variety of problems.

The general steps involved in supervised classification are shown in the following
figure. First we will collect training data (previously classified), then we will perform
feature extraction (relevant features for the categorization). Next, we will train
the algorithm with the features vector. Once we get our trained classifier, we may
insert new strings, extract their features, and send them to the classifier. Finally, the
classifier will give us the most likely class (category) for the new string.

Training Data SpamFeature
Extraction

New Text Feature
Extraction

Trained
Classifier

Not
Spam

Classes

Chapter 4

[81]

Additionally we will test the classifier accuracy by using a hand-classified test set.
Due to this, we will split the data into two sets, the training data and the test data.

Bayesian classification
Probabilistic classification is a practical way to draw inferences based on data, using
statistical inference to find the best class for a given value. Given the probability
distribution, we can select the best option with the highest probability. The Bayes
theorem is the basic rule to draw inferences. The Bayes theorem allows us to update
the likelihood of an event, given the new data or observations. In other words, it
allows us to update the prior probability P (A) to the posterior probability P (A|B).
The prior probability is given by the likelihood before the data is evaluated and the
posterior probability is assigned after the data is taken into account. The following
expression represents the Bayes theorem:

P A B(|) = The conditional probability of A given B

P A B(|) =
P B A P A(|) ()

P B()

Naïve Bayes algorithm
Naïve Bayes is the simplest classification algorithm among Bayesian classification
methods. In this algorithm, we simply need to learn the probabilities by making
the assumption that the attributes A and B are independent, that's why this model
is defined as an independent feature model. Naïve Bayes is widely used in text
classification because the algorithm can be trained easily and efficiently. In Naïve
Bayes we can calculate the probability of a condition A given B (described as
P(A|B)), if we already know the probability of B given A (described as P(B|A)),
and additionally the probability of A (described as (P(A)) and the probability of B
(described as P(B)) individually, as is shown in the preceding Bayes Theorem.

Text Classification

[82]

E-mail subject line tester
An e-mail subject line tester is a simple program, which will define if a certain
subject line in an e-mail is spam or not. In this chapter, we will program a Naïve
Bayes classifier from scratch. The example will classify if a subject line is spam or
not using a very simple code. This will be done by breaking the subject lines into a
list of relevant words, which will be used as the features vectors in the algorithm. In
order to do this, we will use the SpamAssassin public dataset. SpamAssasin includes
three categories; spam, easy ham, and hard ham. In this case, we will create a binary
classifier with two classes spam and not spam (easy ham).

There are several features that we can use for our classifier such as the precedence,
the language, and the use of upper case. We will keep things simple and use the
frequency of only those words which consist of more than three characters, avoiding
words such as The or RT, when training the algorithm.

We will implement the Bayes rule, using the words and categories, as shown in the
following equation:

P word category(|) =
P category | word P word() ()

P category()

For more information about probability distributions, please refer to
http://en.wikipedia.org/wiki/Probability_distribution.

Here, we have two classes in the categories which represents if a subject line is spam
or not. We need to split the texts into a list of words in order to get the likelihood
of each word. Once we know the probability of each word, we need to multiply the
probabilities for each category as shown in the following equation:

P category|word ,word ,...,word()1 2 n = P category x() P word | category()i

Chapter 4

[83]

In other words, we multiply the likelihood of each word P(word|category) of the
subject line and the probability of the category P(category).

For training the algorithm, we need to provide with some prior examples. In this
case, we will use the training() function that needs a dictionary of subject line
and category, as we can see in the following table:

Subject line Category
Re: Tiny DNS Swap nospam
Save up to 70% on international calls! nospam
[Ximian Updates] Hyperlink handling in Gaim allows
arbitrary code to be executed

nospam

Promises. nospam
Life Insurance - Why Pay More? spam
[ILUG] Guaranteed to lose 10-12 lbs in 30 days 10.206 spam

The data
We can find the spam dataset at http://spamassassin.apache.org/.

In the following screenshot, we can see the easy ham (not spam) folder with
2551 files:

Text Classification

[84]

The spam text looks very much similar to the following screenshot, and may include
HTML tags and plain text. In this case, we are only interested in the subject line so
we need to write a code to obtain the subject from all the files.

This example will show how to preprocess the SpamAssassin data, using Python, in
order to collect all the subject lines from the e-mails.

First, we need to import the os module, in order to get the list of filenames using the
listdir function from the \spam and \easy_ham folders:

import os
files = os.listdir(r" \spam")

Chapter 4

[85]

We will need a new file to store the subject lines and category (spam or not spam),
but this time we will use a comma as a separator:

with open("SubjectsSpam.out","a") as out:
 category = "spam"

Now, we will parse each file and get the subject. Finally, we write the subject and
the category in a new file, and delete all the commas from the subject lines (line.
replace(",", "")) to skip future troubles with the CSV format:

 for fname in files:
 with open("\\spam\\" + fname) as f:
 data = f.readlines()
 for line in data:
 if line.startswith("Subject:"):
 line.replace(",", "")
 print(line)
 out.write("{0}, {1} \n".format(line[8:-1], category))

We use line[8:-1] to skip the word Subject: (8-characters long) and the enter at
the end of the line (-1):

Output:

>>>Hosting from ?6.50 per month

>>>Want to go on a date?

>>>[ILUG] ilug,Bigger, Fuller Breasts Naturally In Just Weeks

>>> zzzz Increase your breast size. 100% safe!

We will keep the spam and not spam in different files, to play with the size of
the training sets and test sets. Usually, more data in the training set means better
performance of the algorithm but in this case we will try to find an optimal threshold
of the training set size.

All the codes and datasets of this chapter can be found
in the author's GitHub repository at https://github.
com/hmcuesta/PDA_Book/tree/master/Chapter4.

Text Classification

[86]

The algorithm
We use the list_words() function to get a list of unique words which are more than
three-characters long and in lower case:

def list_words(text):
 words = []
 words_tmp = text.lower().split()
 for w in words_tmp:
 if w not in words and len(w) > 3:
 words.append(w)
 return words

For a more advanced term-document matrix, we can use Python's
textmining package from https://pypi.python.org/
pypi/textmining/1.0.

The training() function creates variables to store the data needed for the
classification. The c_words variable is a dictionary with the unique words and
its number of occurrences in the text (frequency) by category. The c_categories
variable stores a dictionary of each category and its number of texts. Finally, c_text
and c_total_words store the total count of texts and words respectively:

def training(texts):
 c_words ={}
 c_categories ={}
 c_texts = 0
 c_total_words =0
 #add the classes to the categories
 for t in texts:
 c_texts = c_texts + 1
 if t[1] not in c_categories:
 c_categories[t[1]] = 1
 else:
 c_categories[t[1]]= c_categories[t[1]] + 1

 #add the words with list_words() function
 for t in texts:
 words = list_words(t[0])

 for p in words:
 if p not in c_words:
 c_total_words = c_total_words +1
 c_words[p] = {}

Chapter 4

[87]

 for c in c_categories:
 c_words[p][c] = 0
 c_words[p][t[1]] = c_words[p][t[1]] + 1

 return (c_words, c_categories, c_texts, c_total_words)

The classifier() function applies the Bayes rule and classifies the subject into one
of the two categories, that is, either spam or not spam. The function also needs the
four variables from the training() function:

def classifier(subject_line, c_words, c_categories, c_texts, c_tot_
words):
 category =""
 category_prob = 0

 for c in c_categories:
 #category probability
 prob_c = float(c_categories[c])/float(c_texts)
 words = list_words(subject_line)
 prob_total_c = prob_c
 for p in words:
 #word probability
 if p in c_words:
 prob_p= float(c_words[p][c])/float(c_tot_words)
 #probability P(category|word)
 prob_cond = prob_p/prob_c
 #probability P(word|category)
 prob =(prob_cond * prob_p)/ prob_c
 prob_total_c = prob_total_c * prob

 if category_prob < prob_total_c:
 category = c
 category_prob = prob_total_c
 return (category, category_prob)

Finally, we will read the training.csv file, which contains the training dataset, in
this case, 100 spam and 100 not spam subject lines:

if __name__ == "__main__":
 with open('training.csv') as f:
 subjects = dict(csv.reader(f, delimiter=','))
 words,categories,texts,total_words = training(subjects)

Text Classification

[88]

Now, to check if everything is working correctly, we test the classifier with one
subject line:

 clase = classifier("Low Cost Easy to Use Conferencing"
 , words,categories,texts,total_words)

 print("Result: {0} ".format(clase))

We can see the result in the python console, and from the result we can see the
classifier is working correctly so far:

>>> Result: ('spam', 0.18518518518518517)

We can see the complete code of the Naïve Bayes classifier listed as follows:

import csv
def list_words(text):
 words = []
 words_tmp = text.lower().split()
 for p in words_tmp:
 if p not in words and len(p) > 3:
 words.append(p)
 return words

def training(texts):
 c_words ={}
 c_categories ={}
 c_texts = 0
 c_tot_words =0

 for t in texts:
 c_texts = c_texts + 1
 if t[1] not in c_categories:
 c_categories[t[1]] = 1
 else:
 c_categories[t[1]]= c_categories[t[1]] + 1

 for t in texts:
 words = list_words(t[0])

 for p in words:
 if p not in c_words:
 c_tot_words = c_tot_words +1
 c_words[p] = {}
 for c in c_categories:
 c_words[p][c] = 0

Chapter 4

[89]

 c_words[p][t[1]] = c_words[p][t[1]] + 1

 return (c_words, c_categories, c_texts, c_tot_words)

def classifier(subject_line, c_words, c_categories, c_texts,
 c_tot_words):
 category =""
 category_prob = 0

 for c in c_categories:

 prob_c = float(c_categories[c])/float(c_texts)
 words = list_words(subject_line)
 prob_total_c = prob_c
 for p in c_words:

 if p in words:
 prob_p= float(c_words[p][c])/float(c_tot_words)
 prob_cond = prob_p/prob_c
 prob =(prob_cond * prob_p)/ prob_c
 prob_total_c = prob_total_c * prob

 if category_prob < prob_total_c:
 category = c
 category_prob = prob_total_c
 return (category, category_prob)

if __name__ == "__main__":

 with open('training.csv') as f:
 subjects = dict(csv.reader(f, delimiter=','))

 w,c,t,tw = training(subjects)
 clase = classifier("Low Cost Easy to Use Conferencing"
 ,w,c,t,tw)
 print("Result: {0} ".format(clase))

 with open("test.csv") as f:
 correct = 0
 tests = csv.reader(f)
 for subject in test:
 clase = classifier(subject[0],w,c,t,tw)
 if clase[1] =subject[1]:
 correct += 1
 print("Efficiency : {0} of 100".format(correct))

Text Classification

[90]

Classifier accuracy
Now we need to test our classifier with a bigger test set. In this case, we will
randomly select 100 subjects; 50 spam and 50 not spam. Finally, we will count
how many times the classifier chose the correct category:

with open("test.csv") as f:
 correct = 0
 tests = csv.reader(f)
 for subject in test:
 clase = classifier(subject[0],w,c,t,tw)
 if clase[1] =subject[1]:
 correct += 1
 print("Efficiency : {0} of 100".format(correct))

In this case, the efficiency is 82 percent:

>>> Efficiency: 82 of 100

We can find out of the box implementations of Naïve Bayes classifier
such as the NaiveBayesClassifier function in the NLTK package
for Python. NLTK provides a very powerful natural language toolkit
and we can download it from http://nltk.org/.

In Chapter 11, Sentiment Analysis of Twitter Data, we present a more sophisticated
version of Naïve Bayes classifier to perform a sentiment analysis.

In this case, we will find an optimal-size threshold for the training set. We try a
different number of random subject lines. In the following figure, we can see four of
the seven tests and the classification rate (accuracy) of the algorithm. In all cases, we
use the same test set of 100 elements and we are using the same number of e-mail
subject lines of each category.

Chapter 4

[91]

The results of four tests are as follows:

• Test 1: 82 percent with a training set of 200 elements
• Test 2: 85 percent with a training set of 300 elements
• Test 5: 87 percent with a training set of 500 elements
• Test 7: 92 percent with a training set of 800 elements

Text Classification

[92]

As we can see in the following figure, for this specific example, the maximum accuracy
is 92 percent and the optimal number of texts in the training set is 700. After 700 texts
in the training set, the accuracy of the classifier doesn't see significant improvement.

Summary
In this chapter, we created a basic but useful e-mail subject line tester. This chapter
provided a guide to code a basic Naïve Bayes classifier from scratch without any
external library, in order to demonstrate how easy it is to program a machine-learning
algorithm. We also defined the maximum size threshold for the training set and got an
accuracy of 92 percent, which, for this basic example, is quite good.

In the following chapters, we will introduce more complex machine learning
algorithms, using the mlpy library, and we will also present how to extract
more sophisticated features.

Similarity-based
Image Retrieval

A big part of the data that we work with is presented as an image, drawing, or photo.
In this chapter, we will implement a similarity-based image retrieval without the
use of any metadata or concept-based image indexing. We will work with distance
metric and dynamic warping to retrieve the most similar images.

In this chapter we will cover:

• Image similarity search
• Dynamic time warping
• Processing the image dataset
• Implementing DTW
• Analyzing the results

Image similarity search
While comparing two or more images, the first question that comes to our mind
is what makes an image similar to another? We can say that one image is equal to
another if all their pixels match. However, a small change in the light, angle, or
rotation of the camera represents a big change in the numerical values of the pixels.
Finding ways to define if two images are similar is the main concern of services such
as Google Search by Image or TinEye, where the user uploads an image instead of
providing keywords or descriptions as search criteria.

Similarity-based Image Retrieval

[94]

Humans have natural mechanisms to detect patterns and similarity. Comparing
images at content or semantic level is a difficult problem and an active research field
in computer vision, image processing, and pattern recognition. We can represent
an image as a matrix (two-dimensional array), in which each position of the matrix
represents the intensity or the color of the image. However, any change in the
lighting, camera angle, or rotation means a large numerical shift in the matrix. The
question that comes to our mind is how can we measure similarity between matrices?
To address these problems the data analysis implements several content-based image
retrieval (CBIR) tools such as comparison of wavelets, Fourier analysis, or pattern
recognition with neural networks. However, these methods cause a loss of a lot of
the image information, or need an extensive training similar to the neural networks.
The most used method is the description-based image retrieval using metadata
associated with the images, but in an unknown dataset, this method is not effective.

In this chapter, we used a different approach, taking advantage of the elastic
matching of a time series, which is a method widely used in voice recognition and
time series comparison. For the purposes of this chapter, we understand the time
series as a sequence of pixels. The trick is to turn the pixels of the image into a
numerical sequence, as is shown in the following figure:

Dynamic time warping (DTW)
Dynamic time warping (DTW) is an elastic matching algorithm used in pattern
recognition. DTW finds the optimal warp path between two time series. DTW is used
as a distance metric, often implemented in speech recognition, data mining, robotics,
and in this case image similarity.

The distance metric measures how far are two points A and B from each other in
a geometric space. We commonly use the Euclidian distance which draws a direct
line between the pair of points. In the following figure, we can see different kinds of
paths between the points A and B such as the Euclidian distance (with the arrow)
but also we see the Manhattan (or taxicab) distance (with the dotted lines), which
simulate the way a New York taxi moves through the buildings.

Chapter 5

[95]

Euclidean Distance
Manhattan Distance

A

B

DTW is used to define similarity between time series for classification, in this
example, we will implement the same metric with sequences of pixels. We can say
that if the distance between the sequence A and B is small, these images are similar.
We will use Manhattan distance between the two series to sum of the squared
distances. However, we can use other distances metrics such as Minkowski or
Euclidean, depending on the problem at hand.

In the following figure we can observe warping between two time series:

Distance metrics are formulated in the Taxicab geometry proposed
by Hermann Minkowski, for more information about it visit
http://taxicabgeometry.net/.

Similarity-based Image Retrieval

[96]

The example of this chapter will use mlpy, which is a Python module for Machine
Learning, built on top of numPy and sciPy. The mlpy library implements a version of
DTW that can be found at http://mlpy.sourceforge.net/docs/3.4/dtw.html.

See Appendix, Setting Up the Infrastructure, for complete instructions on how to
install mlpy library.

In the paper Direct Image Matching by Dynamic Warping, Hansheng Lei and
Venu Govindaraju implement a DTW for image matching, finding an optimal
pixel-to-pixel alignment, and prove that DTW is very successful in the task.

In the following figure we can observe a cost matrix with the minimum distance
warp path traced through it to indicate the optimal alignment:

Chapter 5

[97]

Processing the image dataset
The image set used in this chapter is the Caltech-256, obtained from the
Computational Vision Lab at CALTECH. We can download the collection of all
30607 images and 256 categories from http://www.vision.caltech.edu/Image_
Datasets/Caltech256/.

In order to implement the DTW, first we need to extract a time series (pixel sequences)
from each image. The time series will have a length of 768 values adding the 256 values
of each color in the RGB (Red, Green, and Blue) color model of each image. The
following code implements the Image.open("Image.jpg") function and cast into an
array, then simply add the three vectors of color in the list:

from PIL import Image
img = Image.open("Image.jpg")
arr = array(img)
list = []
for n in arr: list.append(n[0][0]) #R
for n in arr: list.append(n[0][1]) #G
for n in arr: list.append(n[0][2]) #B

Pillow is a PIL fork by Alex Clark, compatible with Python 2.x and 3.x.
PIL is the Python Imaging Library by Fredrik Lundh. In this chapter,
we will use Pillow due to its compatibility with Python 3.2 and can be
downloaded from https://github.com/python-imaging/Pillow.

Implementing DTW
In this example, we will look for similarity in 684 images from 8 categories. We will
use four imports of PIL, numpy, mlpy, and collections:

from PIL import Image
from numpy import array
import mlpy
from collections import OrderedDict

Similarity-based Image Retrieval

[98]

First, we need to obtain the time series representation of the images and store
it in a dictionary (data) with the number of the image and its time series as
data[fn] = list.

The performance of this process will lie in the number of images
processed, so beware of the use of memory with large datasets.

data = {}

for fn in range(1,685):
 img = Image.open("ImgFolder\\{0}.jpg".format(fn))
 arr = array(img)
 list = []
 for n in arr: list.append(n[0][0])
 for n in arr: list.append(n[0][1])
 for n in arr: list.append(n[0][2])
 data[fn] = list

Then, we need to select an image for the reference, which will be compared with all
the other images in the data dictionary:

reference = data[31]

Now, we need to apply the mlpy.dtw_std function to all the elements and store the
distance in the result dictionary:

result ={}
for x, y in data.items():
 #print("{0} --------------- {1}".format(x,y))
 dist = mlpy.dtw_std(reference, y, dist_only=True)
 result[x] = dist

Finally, we need to sort the result in order to find the closest elements with the
OrderedDict function and print the ordered result:

sortedRes = OrderedDict(sorted(result.items(), key=lambda x:
 x[1]))
for a,b in sortedRes.items():
 print("{0}-{1}".format(a,b))

Chapter 5

[99]

In the following screenshot, we can see the result and we can observe that the result
is accurate with the first element (reference time series). The first result presents a
distance of 0.0 because it's exactly similar to the image we used as a reference.

Similarity-based Image Retrieval

[100]

All the codes and datasets of this chapter may be found in
the author's GitHub repository at https://github.com/
hmcuesta/PDA_Book/tree/master/Chapter5.

We can see the complete code as follows:

from PIL import Image
from numpy import array
import mlpy
from collections import OrderedDict

data = {}

for fn in range(1,685):
 img = Image.open("ImgFolder\\{0}.jpg".format(fn))
 arr = array(img)
 list = []
 for n in arr: list.append(n[0][0])
 for n in arr: list.append(n[0][1])
 for n in arr: list.append(n[0][2])
 data[fn] = list
reference = data[31]

result ={}

for x, y in data.items():
 #print("{0} --------------- {1}".format(x,y))
 dist = mlpy.dtw_std(reference, y, dist_only=True)
 result[x] = dist

sortedRes = OrderedDict(sorted(result.items(), key=lambda x:
 x[1]))
for a,b in sortedRes.items():
 print("{0}-{1}".format(a,b))

Chapter 5

[101]

Analyzing the results
This example presents a basic implementation that can be adapted in several cases
such as 3D object recognition, face recognition, or image clustering. The goal of this
chapter is to present how we can easily compare time series without any previous
training, in order to find the similarity between images. In this section we present
seven cases and will analyze the results.

In the following figure, we can see the first three searches and can observe a good
accuracy in the result, even in case of the bus the result displays the result elements
in different angles, rotation, and colors:

Similarity-based Image Retrieval

[102]

In the following figure, we see the fourth, fifth, and sixth search, and we can observe
that the algorithm performs well with an image that has a good contrast in colors.

In case of the seventh search the result is poor, and in similar cases when the
references time series is a landscape or a building, the result are images that are not
related to the search criteria. This is because the RGB color model of the time series is
very similar to other categories. In the following figure, we can see that the reference
image and the first result share a big saturation of the color blue. Due to this, their
time series (sequences of pixels) are very similar. We may overcome this problem
by using a filter such as Find Edges on the images before the search. In Chapter 14,
Online Data Analysis with IPython and Wakari, we present the use of filters, operations,
and transformations for image processing using PIL.

Chapter 5

[103]

In the following table we can see the result of the complete set of tests:

Categories Number of
Images

% First Result
Right

% Second Result
Right

Dinosaurs 102 99 99
African people 85 98 95
Bus 56 98 90
Horse 122 92 88
Roses 95 96 92
Elephants 36 98 87
Landscape 116 60 52
Buildings 72 50 45

Summary
In this chapter, we introduced the dynamic time warping (DTW) algorithm, which is
an excellent tool to find similarity between time series without any previous training.
We presented an implementation of DTW to find similarity between a set of images,
which worked very well in most cases. This method can be used for several other
problems in a variety of areas such as robotics, computer vision, speech recognition,
and time series analysis. We also saw how to turn an image into a time series with
the PIL library. Finally we learned how to implement DTW with the mlpy library. In
the next chapter, we will present how simulation can help us in the data analysis and
how to model pseudo-random events.

Simulation of Stock Prices
The simulation of discrete events can help us in understanding of the data. In this
chapter, we implement a simulation of the stock market by applying the random
walk algorithm and present it with D3.js animation.

In this chapter we will cover:

• Financial time series
• Random walk simulation
• Monte Carlo methods
• Generating random numbers
• Implementation in D3.js

Financial time series
Financial time series analysis (FTSA) involves working with asset valuation over
time, such as currency exchange or stock market prices. FTSA addresses a particular
feature, the uncertainty in words of the famous American financier J. P. Morgan,
when asked what the stock market will do, he replied:

"It will fluctuate."

The uncertainty of financial time series states that the volatility of a stock price
cannot be directly observable. In fact, Louis Bachelier's Theory of Speculation (1900)
postulated that prices fluctuate randomly.

Simulation of Stock Prices

[106]

In the following screenshot, we can see the time series of Apple Inc. Historical stock
prices for the last 3 months. In fact, simple random processes can create a time
series, which will closely resemble this real-time series. The random walk model is
considered in FTSA as a statistical model for the movement of logged stock prices:

We can download the Apple Inc. Historical Stock Prices
from the Nasdaq website, http://www.nasdaq.com/
symbol/aapl/historical#.UT1jrRypw0J.

For a complete and broad reference, refer to the Analysis of Financial Time Series book,
by Ruey S. Tsay. In this chapter, we will implement a random walk simulation in D3.js
and in the following section, we will discuss random walk and Monte Carlo models.

Random walk simulation
Random walk is a simulation where a succession of random steps is used to
represent an apparently random event. The interesting thing is that we can use this
kind of simulation to see different outputs from a certain event by controlling the
start point of the simulation and the probability distribution of the random steps.
Similar to all the simulations, this simulation is just a simplified model of the original
phenomena. However, a simulation may be useful and is a powerful visualization
tool. There are different motions of random walks using different implementations.
The most common are Brownian motion and binomial model.

Chapter 6

[107]

In the following figure, we can see the simulated data from random walk model for
logged stock prices:

Brownian motion is a random walk model named after the physicist Robert Brown,
who observed molecules moving and colliding with one another in random fashion.
Brownian motion is usually used to model stock prices. According to the work of
Robert C. Merton (Nobel laureate in Economics), the Brownian model of financial
markets define that the stock prices evolve continuously in time and are driven by
the Brownian motion processes. In this model we assumed a normal distribution of a
returns period, this means that the probability of the random step does not vary over
time and is independent of past steps.

Binomial model is a simple price model that is based on discrete steps, where
the price of an asset can go up or down. If a price goes up then it is multiplied
by an up-factor and on the other hand if the asset goes down then it is multiplied
by a down-factor.

Simulation of Stock Prices

[108]

For more information about the Brownian model of financial
markets, please refer to the link http://bit.ly/17WeyH7.

Monte Carlo methods
Random walk is a member of a family of random sampling algorithms, proposed
by Stanislaw Ulam in 1940. Monte Carlo methods are mainly used when the event
has uncertainty and deterministic boundaries (previous estimate of a range of
limit values). These methods are especially good for optimization and numerical
integration in biology, business, physics, and statistics.

Monte Carlo methods depend on the probability distribution of the random
number generator to see different behaviors in the simulations. The most common
distribution is the Gauss or normal distribution (see the following figure) but there
are other distributions such as geometric or Poisson.

Chapter 6

[109]

Generating random numbers
While getting truly random numbers is a difficult task, most of the Monte Carlo
methods perform well with pseudo-random numbers and this makes it easier to
re-run simulations based on a seed. Practically, all the modern programming
languages include basic random sequences, at least good enough to make
good simulations.

Python includes the random library. In the following code we can see the basic usage
of the library:

• Importing the random library as rnd:
import random as rnd

• Getting a random float between 0 and 1:
>>>rnd.random()
0.254587458742659

• Getting a random number between 1 and 100:
>>>rnd.randint(1,100)
56

• Getting a random float between 10 and 100 using a uniform distribution:
>>>rnd.uniform(10,100)
15.2542689537156

For a detailed list of methods of the random library, follow the link
http://docs.python.org/3.2/library/random.html.

In the case of JavaScript, a more basic random function is included with the
Math.random() function, however, for the purpose of this chapter, the random
library will be enough.

In the following script, we can see a basic JavaScript code printing a random number
between 0 and 100 in an HTML element with the ID label:

<script>
function randFunction()
{
var x=document.getElementById("label")
x.innerHTML=Math.floor((Math.random()*100)+1);
}
</script>

Simulation of Stock Prices

[110]

Implementation in D3.js
In this chapter, we will create an animation in D3.js of a Brownian motion random
walk simulation. In the simulation, we will control the delay of the animation, the
starting point of the random walk, and the tendency of the up-down factor.

First, we need to create an HTML file named Simulation.html and we will run it
from Python http.server. In order to run the animation, we just need to open a
command terminal and run the following command:

>>python –m http.server 8000

Then, we just need to open a web browser and type http://localhost:8000 and
select our HTML file, after that we can see the animation running.

Then, we need to import the D3 library either directly from the website or with a
local copy of the d3.v3.min.js file.

<script type="text/javascript" src="http://d3js.org/d3.v3.min.js"></
script>

In the CSS, we specified the style for the axis line, the font family, size for the text,
and the background color.

<style type="text/css">
body {
 background: #fff;
}
.axis text {
 font: 10px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
}
</style>

We can define the colors in CSS using a hexadecimal code such as
#fff instead of the literal name white. We can find a color selector at
http://www.w3schools.com/tags/ref_colorpicker.asp.

Chapter 6

[111]

We need to define some variables that we will need in the animation such as the
delay, the first line color, height, and width of the work area. The color variable will
be randomly reassigned every time the time series reaches the edge of the canvas to
start with a new color for the next time series.

var color = "rgb(0,76,153)";
var GRID = 6,
HEIGHT = 600,
WIDTH = 600,
delay = 50;

Now, we need to define the size of the new SVG's width and height (630 x 650 pixels,
including extra space for the axis labels), which inserts a new <svg> element inside
the <body> tag:

var svg = d3.select("body").append("svg:svg")
 .attr("width", WIDTH + 50)
 .attr("height", HEIGHT + 30)
 .append("g")
 .attr("transform", "translate(30,0)");

Now, we need to set the associated scale for the X axis and the Y axis, as well as the
label's orientation:

var x = d3.scale.identity()
 .domain([0, WIDTH]);
var y = d3.scale.linear()
 .domain([0, HEIGHT])
 .range([HEIGHT, 0]);
var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")
 .tickSize(2, -HEIGHT);
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickSize(6, -WIDTH);

Append the axis to an SVG selection with the <g> element:

svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0,600)")
 .call(xAxis);
 svg.append("g")
 .attr("class", "y axis")
 .attr("transform", "translate(0,0)")
 .call(yAxis);

Simulation of Stock Prices

[112]

We can define the D3 reference API documentation of SVG Axes at
https://github.com/mbostock/d3/wiki/SVG-Axes.

Then, we will include a text label in the X axis (position 270, 50):

svg.append("text")
 .attr("x", 270)
 .attr("y", 50)
 .style("text-anchor", "middle")
 .text("Random Walk Simulation");

We will create a function called randomWalk to perform each step of the simulation.
This will be a recursive function that includes the drawing of the line segments for
each step of the random walk. And using the Math.random() function, we will
decide if the walker goes up or down:

 function randomWalk(x, y) {
 var x_end, y_end = y + GRID;
 if (Math.random() < 0.5) {
 x_end = x + GRID;
 } else {
 x_end = x - GRID;
 }
 line = svg.select('line[x1="' + x + '"][x2="' + x_end + '"]'+
 '[y1="' + y + '"][y2="' + y_end + '"]');

Now, we need to add the new line segment to the svg element svg:line with a
random color and 3 points of stroke width:

 svg.append("svg:line")
 .attr("x1", y)
 .attr("y1", x)
 .attr("x2", y_end)
 .attr("y2", x_end)
 .style("stroke", color)
 .style("stroke-width", 3)
 .datum(0);

When the walker (y_end) reaches the end of the workspace, we need to pick a new
color randomly, with the Math.floor(Math.random()*254) function in each of the
RGB code and reset the control variables (y_end and x_end):

 if (y_end >= HEIGHT) {
 color = "rgb("+Math.floor(Math.random()*254)+",
 "+Math.floor(Math.random()*254)+",

Chapter 6

[113]

 "+Math.floor(Math.random()*254)+")"
 x_end = WIDTH / 2;
 y_end = 0;
 }

With the window.setTimeout function, we will wait for 50 milliseconds to get the
progressive effect of the animation and call the randomWalk function again.

 window.setTimeout(function() {
 randomWalk(x_end, y_end);
 }, delay);
}

Finally, we need to call the randomWalk() function to pass the starting point as a
parameter in the Y axis of the animation.

randomWalk(WIDTH / 2, 0);

All the code of this chapter can be found in the author's GitHub
repository at https://github.com/hmcuesta/PDA_Book/
tree/master/Chapter6.

In the following screenshot, we can see the result of the animation after 12 iterations
in the screenshot labeled 1 and more iterations in the screenshot labeled 2:

Simulation of Stock Prices

[114]

One interesting thing that we can observe is the normal distribution presented in
the visualization. In the following figure, we can see the normal distribution of the
random walk in a shaded area:

Chapter 6

[115]

We can also try different start parameters to get different outputs such as changing
the start point of the lines and the distribution of the random walk as we can see in
the following screenshot:

Simulation of Stock Prices

[116]

The complete code of the random walk simulator is listed as follows:

<html>
 <head>
 <meta content="text/html;charset=utf-8">
 <title>Random walk</title>
 <script type="text/javascript" src="http://d3js.org/d3.v3.min.
js">
</script>
 <style type="text/css">
 body {
 background: #fff;
}
.axis text {
 font: 10px sans-serif;
}
.axis path,
.axis line {
 fill: none;
 stroke: #000;
}
 </style>
</head>
<body>
<script>
var color = "rgb(0,76,153)";
var GRID = 6,
HEIGHT = 600,
WIDTH = 600,
delay = 50,
svg = d3.select("body").append("svg:svg")
 .attr("width", WIDTH + 50)
 .attr("height", HEIGHT + 30)
 .append("g")
 .attr("transform", "translate(30,0)");

var x = d3.scale.identity()
 .domain([0, WIDTH]);
var y = d3.scale.linear()
 .domain([0, HEIGHT])
 .range([HEIGHT, 0]);
var xAxis = d3.svg.axis()
 .scale(x)
 .orient("bottom")

Chapter 6

[117]

 .tickSize(2, -HEIGHT);
var yAxis = d3.svg.axis()
 .scale(y)
 .orient("left")
 .tickSize(6, -WIDTH);

svg.append("g")
 .attr("class", "y axis")
 .attr("transform", "translate(0,0)")
 .call(yAxis);
svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0,600)")
 .call(xAxis);
svg.append("text")
 .attr("x", 270)
 .attr("y", 50)
 .style("text-anchor", "middle")
 .text("Random Walk Simulation");
 randomWalk(WIDTH / 2, 0);
 function randomWalk (x, y) {
 var x_end, y_end = y + GRID;
 if (Math.random() < 0.5) {
 x_end = x + GRID;
 } else {
 x_end = x - GRID;
 } line = svg.select('line[x1="' + x + '"][x2="' + x_end + '"]'+
 '[y1="' + y + '"][y2="' + y_end + '"]');
 svg.append("svg:line")
 .attr("x1", y)
 .attr("y1", x)
 .attr("x2", y_end)
 .attr("y2", x_end)
 .style("stroke", color)
 .style("stroke-width", 3)
 .datum(0);
 if (y_end >= HEIGHT) {
 color = "rgb("+Math.floor(Math.random()*254)+",
 "+Math.floor(Math.random()*254)+",
 "+Math.floor(Math.random()*254)+")"
 x_end = WIDTH / 2;
 y_end = 0;
 }
 window.setTimeout(function() {

Simulation of Stock Prices

[118]

 randomWalk(x_end, y_end);
 }, delay);
}
</script>
</body>
</html>

Summary
In this chapter, we explored the random walk simulation and how to communicate
through animated visualizations. Simulation is an excellent way to see certain
behavior of a phenomenon such as stock prices. The Monte Carlo methods are
widely used to simulate phenomena when we don't have the means to reproduce
an event because it is either dangerous or expensive such as epidemic outbreaks or
stock prices. However, a simulation is always a simplified model of the real world.
The goal of the simulation presented in this chapter is to show how we can get a
basic but attractive web-based visualization with D3.

In the next chapter, we will learn the basic concepts of time series. Then,
we will present a numeric prediction of gold prices using regression and
classification techniques.

Predicting Gold Prices
In this chapter, you will be introduced to the basic concepts of time series data
and regression. First, we distinguish some of the basic concepts such as trend,
seasonality, and noise. Then we introduce the historic gold prices time series and
also get an overview on how to perform a forecast using kernel ridge regression.
Later, we present a regression using the smoothed time series as an input.

This chapter will cover:

• Working with the time series data
• The data – historical gold prices
• Nonlinear regression
• Kernel ridge regression
• Smoothing the gold prices time series
• Predicting in the smoothed time series
• Contrasting the predicted value

Working with the time series data
Time series is one of the most common ways to find data in the real world. A time
series is defined as the changes of a variable through the time. Time series analysis
(TSA) is widely used in economics, weather, and epidemiology. Working with time
series needs to define some basic concepts of trend, seasonality, and noise.

In the following figure, found at http://www.gold.org/investment/statistics/
gold_price_chart/, we can see the time series for gold price in US since July 2010.

Predicting Gold Prices

[120]

Typically the easiest way to explore a time series is with a line chart. With the help
of direct appreciation of the time series visualization, we can find anomalies and
complex behavior in the data.

We have two kinds of time series; linear and nonlinear. In the following figure, we
can see an example of each one. Plotting time series data is very similar to scatterplot
or line chart, but the data points in X axis are times or dates:

Chapter 7

[121]

Components of a time series
In many cases, a time series is the sum of multiple components:

X = T +S + Vt t t t

Observation = Trend + Seasonality + Variability

• Trend (T): The behavior or slow motion in the time series through a
large timeframe

• Seasonality (S): The oscillatory motion in a year, for example, the flu season
• Variability (V): The random variations around the previous components

In the following figure, we can see a time series with an evolutionary trend which
doesn't follow a linear pattern and slowly evolves through the time:

In this book, the visualization is driven with D3.js (web-based). However, it is
important to have a fast visualization tool directly from the Python language. In this
chapter, we will use matplotlib as a standalone visualization tool. In the following
code, we can see an example of how to use matplotlib to visualize a line chart.

First, we need to import the library and assign an alias plt:

import matplotlib.pyplot as plt

Predicting Gold Prices

[122]

Then, using the numpy library, we will create a synthetic data with the linspace and
cos methods for the x and y data respectively:

import numpy as np
x = np.linspace(10, 100, 500)
y = np.cos(x)/x

Now, we prepare the visualization with the step function and present the
visualization in a new window using the show function:

plt.step(x, y)
plt.show()

You can find more information about matplotlib at
http://matplotlib.org/.

Finally, the following screenshot displays the visualization window with the result.

Chapter 7

[123]

As we can see in the preceding screenshot, the visualization window provides us
with some tools such as pan axes, zoom, and save, that help us to prepare and export
the visualization in a .png image format. We can also navigate through the changes
or go back to the original view.

Smoothing the time series
When we work with real-world data, we may often find noise, which is defined as
pseudo-random fluctuations in values that don't belong to the observation data.
In order to avoid or reduce this noise, we can use different approaches such as
increasing the amount of data by the interpolation of new values where the series is
sparse. However, in many cases this is not an option. Another approach is smoothing
the series, typically using the average or exponential methods. The average method
helps us to smooth the series by replacing each element in the series with either
simple or weighted average of the data around it. We will define a Smoothing
Window to the interval of possible values which control the smoothness of the result.
The main disadvantage of using the moving averages approach is, if we have outliers
or abrupt jumps in the original time series, the result may be inaccurate and can
produce jagged curves.

In this chapter, we will implement a different approach using convolution (moving
averages filter) of a scaled window with the signal. This approach is taken from Digital
Signal Processing (DSP). In this case, we use a time series (signal) and we will apply
a filter, getting a new time series as a result. In the following code, we can see an
example of how to smooth a time series. For this example, we will use the log of
USA/CAD historical exchange rates from March 2008 to March 2013 with 260 records.

The historical exchange rates can be downloaded from
http://www.oanda.com/currency/historical-rates/.

The first seven records of the CSV file (ExchangeRate.csv) look as follows:

date,usd
3/10/2013,1.028
3/3/2013,1.0254
2/24/2013,1.014
2/17/2013,1.0035
2/10/2013,0.9979
2/3/2013,1.0023
1/27/2013,0.9973
...

Predicting Gold Prices

[124]

First, we need to import all the required libraries, see Appendix, Setting Up the
Infrastructure, for complete installation instructions for numpy and scipy libraries:

import dateutil.parser as dparser
import matplotlib.pyplot as plt
import numpy as np
from pylab import *

Now, we will create the smooth function, setting the original time series and
the windows length as parameters. In this implementation, we use the numpy
implementation of the Hamming window (np.hamming); however, we can use
other kinds of window such as Flat, Hanning, Bartlett, and Blackman.

For complete reference of the window functions supported
by numpy, please refer to http://docs.scipy.org/doc/
numpy/reference/routines.window.html.

def smooth(x,window_len):
 s=np.r_[2*x[0]-x[window_len-1::-1],
 x,2*x[-1]-x[-1:-window_len:-1]]
 w = np.hamming(window_len)
 y=np.convolve(w/w.sum(),s,mode='same')
 return y[window_len:-window_len+1].

The method presented in this chapter is based on the signal
smoothing from scipy reference documentation and can be found
at http://wiki.scipy.org/Cookbook/SignalSmooth.

Then, we need to obtain the labels for the X axis, using the numpy genfromtxt
function to get the first column in the CSV file and applying a converter function
dparser.parse to parse the date data:

x = np.genfromtxt("ExchangeRate.csv",
 dtype='object',
 delimiter=',',
 skip_header=1,
 usecols=(0),
 converters = {0: dparser.parse})

Chapter 7

[125]

Now, we need to obtain the original time series from the ExchangeRate.csv file:

originalTS = np.genfromtxt("ExchangeRate.csv",
 skip_header=1,
 dtype=None,
 delimiter=',',
 usecols=(1))

Then, we apply the smooth method and store the result in the smoothedTS list:

smoothedTS = smooth(originalTS, len(originalTS))

Finally, we plot the two series using pyplot:

plt.step(x, originalTS, 'co')
plt.step(x, smoothedTS)
plt.show()

In the following image, we can see the original (dotted line) and the smoothed (line)
series. We can observe that in the visualization that in the smoothed series we cut out
the irregular roughness to see a clearer signal. Smoothing doesn't provide us with a
model per se. However, it can be the first step to describe multiple components of
the time series. When we work with epidemiological data, we can smooth out the
seasonality so that we can identify the trend (See Chapter 10, Working with Social Graphs).

Predicting Gold Prices

[126]

The data – historical gold prices
Regression analysis is a statistical tool for understanding the relationship between
variables. In this chapter, we will implement a nonlinear regression to predict
the gold price based on the historic gold prices. For this example, we will use the
historical gold prices from January 2003 to May 2013 in a monthly range, obtained
from www.gold.org. Finally, we will forecast the gold price for June 2013 and will
contrast it with the real price from an independent source. The complete datasets
(since December 1978) can be found at http://gold.org/download/value/stats/
statistics/xls/gold_prices.xls.

The first seven records of the CSV file (gold.csv) look as follows:

date,price
1/31/2003,367.5
2/28/2003,347.5
3/31/2003,334.9
4/30/2003,336.8
5/30/2003,361.4
6/30/2003,346.0
7/31/2003,354.8

In this example, we will implement a Kernel ridge regression with the original time
series and the smoothed time series, to compare the differences in the output.

Nonlinear regression
Statistically speaking the nonlinear regression is a kind of regression analysis
for estimating the relationships between one or more independent variables in a
nonlinear combination.

In this chapter, we will use the Python library mlpy and its Kernel ridge regression
implementation. We can find more information about nonlinear regression methods
at http://mlpy.sourceforge.net/docs/3.3/nonlin_regr.html.

Kernel ridge regression
The most basic algorithm that can be kernelized is Kernel ridge regression (KRR). It
is similar to an SVM (Support Vector Machines) (see Chapter 8, Working with Support
Vector Machines) but the solution depends on all the training samples and not on the
subset of support vectors. KRR works well with few training sets for classification
and regression. In this chapter, we will focus on its implementation using mlpy
rather than all the linear algebra involved. See Appendix, Setting Up the Infrastructure,
for complete installation instructions for mlpy library.

Chapter 7

[127]

First, we need to import the numpy, mlpy, and matplotlib libraries:

import numpy as np
import mlpy
from mlpy import KernelRidge
import matplotlib.pyplot as plt

Now, we define the seed for the random number generation:

np.random.seed(10)

Then we need to load the historical gold prices from the Gold.csv file and store
them in targetValues:

targetValues = np.genfromtxt("Gold.csv",
 skip_header=1,
 dtype=None,
 delimiter=',',
 usecols=(1))

Next we will create a new array with 125 training points, one for each record of the
targetValues representing the monthly gold price from Jan 2003 to May 2013:

trainingPoints = np.arange(125).reshape(-1, 1)

Then, we will create other array with 126 test points representing the original
125 points in targetValues and including an extra point for our predicted
value for Jun 2013:

testPoints = np.arange(126).reshape(-1, 1)

Now, we create the training kernel matrix (knl) and testing kernel matrix (knlTest).
Kernel ridge regression (KRR) will randomly split the data into subsets of same size,
then process an independent KRR estimator for each subset. Finally, we average the
local solutions into a global predictor:

knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints,
 sigma=1)
knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints,
 sigma=1)

Then, we instance the mlpy.KernelRidge class in the knlRidge object:

knlRidge = KernelRidge(lmb=0.01, kernel=None)

The learn method will compute the regression coefficients, using the training kernel
matrix and the target values as a parameters:

knlRidge.learn(knl, targetValues)

Predicting Gold Prices

[128]

The pred method computes the predicted response, using the testing kernel matrix
as an input:

resultPoints = knlRidge.pred(knlTest)

Finally, we plot the two time series of target values and result points:

fig = plt.figure(1)
plot1 = plt.plot(trainingPoints, targetValues, 'o')
plot2 = plt.plot(testPoints, resultPoints)
plt.show()

In the following figure, we can observe the points which represents the target values
(the known values) and the line that represent the result points (result from the pred
method). We may observe the last segment of the line which is the predicted value
for June 2013:

Chapter 7

[129]

In the following screenshot, we can observe the resulted points from the knlRidge.
pred() method and the last value (1186.16129538) is the predicted value for June 2013:

All the codes and datasets of this chapter may be found
in the author's GitHub repository at https://github.
com/hmcuesta/PDA_Book/tree/master/Chapter7.

Smoothing the gold prices time series
As we can see the gold prices time series is noisy and it's hard to spot a trend or
patterns with a direct appreciation. So to make it easier, we may smooth the time
series. In the following code, we smooth the gold prices time series (see Smoothing
time series section in this chapter for a detailed explanation):

import matplotlib.pyplot as plt
import numpy as np
import dateutil.parser as dparser
from pylab import *
def smooth(x,window_len):
 s=np.r_[2*x[0]-x[window_len-1::-1],x,2*x[-1]-x[-1:-window_len:-1]]
 w = np.hamming(window_len)
 y=np.convolve(w/w.sum(),s,mode='same')
 return y[window_len:-window_len+1]
x = np.genfromtxt("Gold.csv",
 dtype='object',
 delimiter=',',
 skip_header=1,
 usecols=(0),
 converters = {0: dparser.parse})
y = np.genfromtxt("Gold.csv",
 skip_header=1,

Predicting Gold Prices

[130]

 dtype=None,
 delimiter=',',
 usecols=(1))
y2 = smooth(y, len(y))
plt.step(x, y2)
plt.step(x, y, 'co')
plt.show()

In the following figure, we can observe the time series of the historical gold
prices (the dotted line) and we can see the smoothed time series (the line)
using the hamming window:

Predicting in the smoothed time series
Finally, we put everything together and implement the Kernel ridge Regression to
the smoothed gold prices time series. We can find the complete code of the KRR
as follows:

import matplotlib.pyplot as plt
import numpy as np
import dateutil.parser as dparser
from pylab import *
import mlpy
def smooth(x,window_len):
 s=np.r_[2*x[0]-x[window_len-1::-1],
 x,2*x[-1]-x[-1:-window_len:-1]]
 w = np.hamming(window_len)

Chapter 7

[131]

 y=np.convolve(w/w.sum(),s,mode='same')
 return y[window_len:-window_len+1]
y = np.genfromtxt("Gold.csv",
 skip_header=1,
 dtype=None,
 delimiter=',',
 usecols=(1))
targetValues = smooth(y, len(y))
np.random.seed(10)
trainingPoints = np.arange(125).reshape(-1, 1)
testPoints = np.arange(126).reshape(-1, 1)
knl = mlpy.kernel_gaussian(trainingPoints,
 trainingPoints, sigma=1)
knlTest = mlpy.kernel_gaussian(testPoints,
 trainingPoints, sigma=1)
knlRidge = mlpy.KernelRidge(lmb=0.01, kernel=None)
knlRidge.learn(knl, targetValues)
resultPoints = knlRidge.pred(knlTest)

plt.step(trainingPoints, targetValues, 'o')
plt.step(testPoints, resultPoints)
plt.show()

In the following figure, we can observe the dotted line which represents the
smoothed time series of the historical gold prices, and the line that represents
the prediction for the gold price in June 2013:

Predicting Gold Prices

[132]

In the following screenshot, we can see the predicted values for the smoothed
time series. This time we can observe that the values are much lower than the
original predictions:

Contrasting the predicted value
Finally, we will look for an external source to see if our prediction is realistic. In
the following figure, we may observe a graph from The Guardian/Thomson Reuters
for June 2013. The gold price fluctuated between 1180.0 and 1210.0 with an official
average of 192.0 for the month. Our prediction for the Kernel ridge regression with
complete data is 1186.0, which is not bad at all. We can see the complete numbers in
the following table:

Source June 2013
The Guardian/Thomson Reuters (external Source) 1192.0
Kernel ridge regression with complete data (predictive model) 1186.161295
Kernel ridge regression with smoothed data (predictive model) 1159.23545044

A good practice when we want to build a predictive model is to try different
approaches for the same problem. If we develop more than one model, we may
compare testing results against each other and select the best model. For this
particular example, the value predicted using the complete data is more accurate
than the value predicted using the smoothed data.

Chapter 7

[133]

In words of the mathematician named George E. P. Box:

 "All models are wrong, but some are useful"

For the complete information about the article Stock markets and gold
suffer a June to forget, please refer to http://www.theguardian.com/
business/2013/jun/28/stock-markets-gold-june.

Summary
In this chapter, we explored the nature of time series, describing their components
and implementing signal processing to smooth the time series. Then, we introduced
the Kernel ridge regression (KRR) implemented in the mlpy library. Finally we
presented two implementations of the KRR; one with the complete data and the
other with the smoothed data, to predict the monthly gold price in June 2013 and we
found that for this case the prediction with the complete data was more accurate.

In the next chapter, we will learn how to perform a dimensionality reduction and
how to implement a support vector machine (SVM) with a multivariate dataset.

Working with Support
Vector Machines

The support vector machine (SVM) is a powerful classification technique. In this
chapter, we will provide the reader with an easy way to get acceptable results using
SVM. We will perform dimensionality reduction of the dataset and we will produce
a model for classification.

The theoretical foundation of SVM lies in the work of Vladimir Vapnik and the
theory of statistical learning developed in the 1970s. The SVMs are highly used in
pattern recognition of Time Series, Bioinformatics, Natural Language Processing,
and Computer Vision.

In this chapter, we will use the mlpy implementation of LIBSVM, which is a widely
used library for SVM with several interfaces and extensions for languages such
as Java, Python, MATLAB, R, CUDA, C#, and Weka. For more information about
LIBSVM visit the following link:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

In this chapter we will cover:

• Understanding the multivariate dataset
• Dimensionality Reduction

 ° Linear Discriminant Analysis (LDA)
 ° Principal Component Analysis (PCA)

Working with Support Vector Machines

[136]

• Getting started with support vector machines
 ° Kernel functions
 ° Double spiral problem
 ° SVM implementation using mlpy

Understanding the multivariate dataset
A multivariate dataset is defined as a set of multiple observations (attributes)
associated with different aspects of a phenomenon. In this chapter, we will use a
multivariate dataset result of a chemical analysis of wines that grew in three different
cultivars from the same area in Italy. The Wine dataset is available in the UC Irvine
Machine Learning Repository and can be freely downloaded from the following link:

http://archive.ics.uci.edu/ml/datasets/Wine

The dataset includes 13 features with no missing data and all the features are
numerical or real values.

The complete list of features is listed as follows:

• Alcohol
• Malic acid
• Ash
• Alkalinity of ash
• Magnesium
• Total phenols
• Flavonoids
• Nonflavonoid phenols
• Proanthocyanins
• Color intensity
• Hue
• OD280/OD315 of diluted wines
• Proline

Chapter 8

[137]

The dataset has 178 records from three different classes. The distribution is seen in
the following figure corresponding to 59 for class 1, 71 for class 2, and 48 for class 3:

The first five records of the dataset will look as follows:

1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065

1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050

1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185

1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480

1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735

In the following code snippet, we will plot two of the features from the dataset at
a time. In this example we will plot Alcohol and Malic acid attributes. However,
to visualize all the possible features' combination we will need the binomial
coefficient of the number of features. In this case, 13 features are equal to 78 different
combinations. Due to this, it is mandatory to perform dimensionality reduction.
Perform the following steps:

import matplotlib
import matplotlib.pyplot as plt

1. Firstly, we will obtain the data from the dataset into a matrix of the features and
a list of the categories associated with each record with the getData function.
def getData():
 lists = [line.strip().split(",") for line in open
 ('wine.data', 'r').readlines()]
 return [list(l[1:14]) for l in lists], [l[0] for l in lists]

matrix, labels = getData()

Working with Support Vector Machines

[138]

xaxis1 = []; yaxis1 = []
xaxis2 = []; yaxis2 = []
xaxis3 = []; yaxis3 = []

2. Then, we will select the two features to visualize in the variables x and y.
x = 0 #Alcohol
y = 1 #Malic Acid

3. Next, we will generate the sets of coordinates for the two attributes (x,y) of
the three categories (classes) of the dataset.
for n, elem in enumerate(matrix):
 if int(labels[n]) == 1:
 xaxis1.append(matrix[n][x])
 yaxis1.append(matrix[n][y])
 elif int(labels[n]) == 2:
 xaxis2.append(matrix[n][x])
 yaxis2.append(matrix[n][y])
 elif int(labels[n]) == 3:
 xaxis3.append(matrix[n][x])
 yaxis3.append(matrix[n][y])

4. Finally, we will plot the three categories (classes) into a scatter plot.
fig = plt.figure()
ax = fig.add_subplot(111)
type1 = ax.scatter(xaxis1, yaxis1, s=50, c='white')
type2 = ax.scatter(xaxis2, yaxis2, s=50, c='red')
type3 = ax.scatter(xaxis3, yaxis3, s=50, c='darkred')

ax.set_title('Wine Features', fontsize=14)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.legend([type1, type2, type3], ["Class 1", "Class 2", "Class
3"], loc=1)
ax.grid(True,linestyle='-',color='0.80')

plt.show()

Chapter 8

[139]

In the following screenshot, we can observe the plot result of the features, such as
Alcohol and Malic acid, for the three classes:

We may also use a scatter plot matrix to visualize all the features
in the dataset. However, this is computationally expensive and
the number of subplots will depend on the binomial coefficient of
the number of features. Refer to Chapter 14, Online Data Analysis
with IPython and Wakari, to see how to plot the multidimensional
datasets with scatterplot matrix and RadViz.

Working with Support Vector Machines

[140]

Dimensionality reduction
The dimensionality of a model is the number of independent attributes in the dataset.
In order to reduce the complexity of the model we need to reduce the dimensionality
without sacrificing accuracy. When we work in complex multidimensional data, we
need to select the features that can improve the accuracy of the technique that we are
using. Sometimes, we don't know if the variables are independent or if they share some
kind of relationship. We need some criteria to find the best features and reduce the
number of variables under consideration. In order to address these problems, we will
perform three techniques: feature selection, feature extraction, and dimension reduction.

• Feature selection: We will select a subset of features in order to get better
training times or improve the model accuracy. In data analysis, finding the
best features for our problem is often guided by intuition and we don't know
the real value of a variable until we test it. However, we may use metrics,
such as correlation and mutual information that help by providing us with
distance between features. The correlation coefficient is a measure of how
strong is the relationship between two variables, and mutual information
refers to a measure of how much one variable tells about another.

• Feature extraction: It is a special form of dimensionality reduction technique,
performed by a transform in a high-dimensional space (multivariate dataset)
to get a space of a fewer dimensions (the ones more informative). Two of
the classical algorithms in the field are PCA or multidimensional scaling
(MDS). Feature extraction is widely used in image processing, computer
vision, and data mining.

• Dimension reduction: When we work with high-dimensional data there
are various phenomena that may affect the result of our analysis and this is
known as a "curse of dimensionality". In order to avoid these problems we
will apply a preprocessing step using PCA or LDA.

We may find more information about "curse of
dimensionality" at the link http://bit.ly/7xJNzm.

Linear Discriminant Analysis
The LDA is a statistical method used to find linear combination of features, which
can be used as a linear classifier. LDA is often used as a dimensionality reduction
step before a complex classification. The main difference between LDA and PCA
is that PCA does feature extraction and LDA performs classification. The mlpy
implementation of LDA may be found at the following link:

http://bit.ly/19xyq3H

Chapter 8

[141]

Principal Component Analysis
The PCA is the most used dimensionality reduction algorithm. PCA is an
algorithm used to find a subset of features lineally uncorrelated known as principal
components. PCA may be used in exploratory data analysis (EDA) through visual
methods to find the most important characteristics in a dataset. This time we will
implement a feature, selection, and PCA to the Wine dataset. In the following code
snippet, we present the basic implementation of PCA in mlpy.

1. Firstly, we need to import the numpy, mlpy, and matplotlib modules.
Refer to Appendix, Setting Up the Infrastructure, for installation instructions
of Python Modules.
import numpy as np
import mlpy
import matplotlib.pyplot as plt
import matplotlib.cm as cm

2. Next, we will open the wine.data file using the numpy function loadtxt.
wine = np.loadtxt('wine.data', delimiter=',')

3. Then, we will define the features in this case we will select the features
2 (malic acid), 3 (ash), and 4 (alkalinity of ash) for axis X and the class
(which is the feature 0) for axis Y.
x, y = wine[:, 2:5], wine[:, 0].astype(np.int)
print(x.shape)
print(y.shape)

In this case the x.shape and y.shape will look as follows:
>>> (178,3)
>>> (178,)

4. Now, we will create a new instance of PCA and we need to train the
algorithm with selected features in x using the function learn.
pca = mlpy.PCA()
pca.learn(x)

5. Then, we will apply the dimensionality reduction to the features in the variable
x and turn it into two-dimensional subspace with the parameter k = 2.
z = pca.transform(x, k=2)

6. The result of the transformation will be stored in the variable z and its shape
will look as follows:
print(z.shape)
>>> (178,2)

Working with Support Vector Machines

[142]

7. Finally, we will use matplotlib to visualize the scatter plot of the new
two-dimensional subspace of the PCA store in z.
fig1 = plt.figure(1)
title = plt.title("PCA on wine dataset")
plot = plt.scatter(z[:, 0], z[:, 1], c=y, s=90, cmap=cm.Reds)
labx = plt.xlabel("First component")
laby = plt.ylabel("Second component")
plt.show()

In the following screenshot, we can observe the scatter plot of the PCA result using
green, blue, and red to highlight each class.

Chapter 8

[143]

We can try different selections of the features and see what the result is. When the
distribution of the data is highly dense, we will prefer to select options less attributes
or mix some of them using proportions, or means. In the following screenshot, we
can see the same implementation using more attributes Alcohol, Malic acid, Ash,
Alkalinity of ash, Magnesium, and Total phenols. Due to this, we can see a different
distribution of the points in the scatter plot.

Working with Support Vector Machines

[144]

Getting started with support vector
machine
The SVM is a supervised classification method based in a kernel geometrical
construction as is shown in the following figure. SVM can be applied either for
classification or regression. SVM will look for the best decision boundary that split the
points into the class that they belong. To accomplish this SVM, we will look for the
largest margin (space that is free of training samples parallel to the decision boundary).
In the following figure, we can see the margin as the space between the dividing line
and dotted lines. SVM will always look for a global solution due to the algorithm only
care about the vectors close to the decision boundary. Those points in the edge of the
margin are the support vectors. However, this is only for two-dimensional spaces,
when we have high-dimensional spaces the decision boundaries turn into hyperplane
(maximum decision margin) and the SVMs will look for the maximum-margin
hyperplanes. In this chapter we will only work with two dimensional spaces.

We may find more information, and reference of support
vector machines and other kernel based techniques, at
http://www.support-vector-machines.org/.

Chapter 8

[145]

Kernel functions
The linear SVM has two main restrictions. First the resulted classifier will be linear,
and second we need a dataset that can be split linearly. However, in the real world
many data problems are not linear models. Due to this, we may want to try different
kinds of kernels. SVMs support many different kinds of kernels but the most
common are as follows:

• Polynomial: in mlpy defined as
kernel_type = "poly".

• Gaussian: in mlpy defined as kernel_type = "rbf".

• Sigmoidal: in mlpy defined as kernel_type =
"sigmoid".

• Inverse multi-quadratic: not supported in mlpy.

Double spiral problem
The double spiral problem is a complex artificial problem that tries to distinguish
between two classes with spiral shape. This problem is particularly hard for the
classic classifiers due to its hard mix of values. The dataset are two classes in a
spiral with 3 turns and 194 points. In the following screenshot we use SVMs with
a Gaussian kernel, and we test the algorithm with different values for gamma. The
gamma attribute defines the distance of a single training sample. If the gamma value
is low, the attribute is farther and if the value is high, the attribute is nearer. The
algorithm gives better solutions, as we increment gamma up to the value 100.

Working with Support Vector Machines

[146]

For the following screenshot, we use the code and dataset from
the mlpy reference documentation and we can find it from the
link http://bit.ly/18SjaiC.

SVM implemented on mlpy
In the following code, we provide a simple implementation of the SVM algorithm
with mlpy, which implements the LIBSVM library. In this case we will use a
linear kernel, assuming that z is the two-dimensional space result of the PCA
dimensionality reduction.

1. Firstly, we need to create a new instance of svm and define the kernel type
as linear.
svm = mlpy.LibSvm(kernel_type='linear')

Chapter 8

[147]

2. Then, we will train the algorithm with the function learn using as
parameters the two dimensional space in the variable z and the class
that belongs stored in the variable y.
svm.learn(z, y)

3. Now, we need to create a grid, where SVM will perform the predictions
in order to visualize the result. We will use the numpy functions (such as
meshgrid and arange) to create the matrix and then with revel function
turn the matrices in a list of values for the predictor.
xmin, xmax = z[:,0].min()-0.1, z[:,0].max()+0.1
ymin, ymax = z[:,1].min()-0.1, z[:,1].max()+0.1
xx, yy = np.meshgrid(np.arange(xmin, xmax, 0.01),
 np.arange(ymin, ymax, 0.01))
grid = np.c_[xx.ravel(), yy.ravel()]

4. Next, with the pred function, we will return the prediction for each point
in grid.
result = svm.pred(grid)

5. Finally, we will visualize the predictions in a scatter plot.
fig2 = plt.figure(2)
title = plt.title("SVM (linear kernel) on PCA")
plot1 = plt.pcolormesh(xx, yy, result.reshape(xx.shape), cmap=cm.
Greys_r)
plot2 = plt.scatter(z[:, 0], z[:, 1], c=y, s=90, cmap=cm.Reds)
labx = plt.xlabel("First component")
laby = plt.ylabel("Second component")
limx = plt.xlim(xmin, xmax)
limy = plt.ylim(ymin, ymax)
plt.show()

In the following screenshot, we can see the result of the plot for the SVM using a
linear kernel.

Working with Support Vector Machines

[148]

We can observe a clear separation of the three classes. We may also see that the
solution does not depend on all points; instead the separation will depend only
on those points that are close to the decision boundary.

We execute SVM using more attributes such as Alcohol, Malic acid, Ash, Alkalinity
of ash, Magnesium, and Total phenols in the following screenshot. Due to this the
plot has different decision boundaries. However, if the SVM can't find a linear
separation, the code will get into an infinite loop.

Chapter 8

[149]

In the following screenshot we can see the result of the SVM implementing a
Gaussian kernel and we can observe non-linear boundaries. The instruction
that we need to update to get this result is given as follows:

svm = mlpy.LibSvm(kernel_type='rbf' gamma = 20)

Working with Support Vector Machines

[150]

The complete code for the Wine classifier using PCA and SVM is listed as follows:

import numpy as np
import mlpy
import matplotlib.pyplot as plt
import matplotlib.cm as cm

wine = np.loadtxt('wine.data', delimiter=',')
x, y = wine[:, 2:5], wine[:, 0].astype(np.int)

pca = mlpy.PCA()
pca.learn(x)
z = pca.transform(x, k=2)

fig1 = plt.figure(1)
title = plt.title("PCA on wine dataset")
plot = plt.scatter(z[:, 0], z[:, 1], c=y, s=90, cmap=cm.Reds)
labx = plt.xlabel("First component")
laby = plt.ylabel("Second component")
plt.show()

svm = mlpy.LibSvm(kernel_type='linear')
svm.learn(z, y)

xmin, xmax = z[:,0].min()-0.1, z[:,0].max()+0.1
ymin, ymax = z[:,1].min()-0.1, z[:,1].max()+0.1
xx, yy = np.meshgrid(np.arange(xmin, xmax, 0.01),
 np.arange(ymin, ymax, 0.01))
grid = np.c_[xx.ravel(), yy.ravel()]

result = svm.pred(grid)

fig2 = plt.figure(2)
plot1 = plt.pcolormesh(xx, yy, result.reshape(xx.shape), cmap=cm.
Greys_r)
plot2 = plt.scatter(z[:, 0], z[:, 1], c=y, s=90, cmap=cm.Reds)
labx = plt.xlabel("First component")
laby = plt.ylabel("Second component")
limx = plt.xlim(xmin, xmax)
limy = plt.ylim(ymin, ymax)
plt.show()

Chapter 8

[151]

All the codes and datasets of this chapter can be found in the
author's GitHub repository at the link https://github.com/
hmcuesta/PDA_Book/tree/master/Chapter8.

Summary
In this chapter, we get into dimensionality reduction and linear classification using
SVM. In our example, we create a simple but powerful SVM classifier and we learn
how to perform dimensionality reduction using PCA implemented in Python
with mlpy. Finally, we present how to use non-linear kernels, such as Gaussian or
Polynomial. The work in this chapter is just an introduction to the SVM algorithm with
only two dimensions, the results can be improved with a multidimensional approach.

In the next chapter, we will learn how to model an epidemiological event (an
infectious disease), and how to simulate an outbreak with cellular automation
implemented in D3.js.

Modeling Infectious Disease
with Cellular Automata

One of the goals of data analysis is to understand the system we are studying and
modeling is the natural way to understand a real-world phenomenon. A model
is always a simplified version of the real thing. However, through modeling and
simulation we can try scenarios that are hard to reproduce, or are expensive, or
dangerous. We can then perform analysis, define thresholds, and provide the
information needed to make decisions. In this chapter, we will model an infectious
disease outbreak through cellular automaton simulation implemented in JavaScript
using D3.js. Finally, we will contrast the results of the simulation with the classical
ordinary differential equations.

In this chapter, we will cover:

• Introduction to epidemiology
 ° The epidemiology triangle

• The epidemic models:
 ° The SIR model
 ° Solving ordinary differential equation for the SIR model with SciPy
 ° The SIRS model

• Modeling with cellular automata:
 ° Cell, state, grid, and neighborhood
 ° Global stochastic contact model

• Simulation of the SIRS model in CA with D3.js

Modeling Infectious Disease with Cellular Automata

[154]

Introduction to epidemiology
We can define epidemiology as the study of the determinants and distribution of
health-related states. We will study how a pathogen is spread into a population
such as common flu or influenza AH1N1. This is particularly important because an
outbreak can cause severe human and economic loss. In the following screenshot we
can see the interface of Google Flu Trends (GFT), which uses an aggregated Google
search data to estimate flu activity:

Chapter 9

[155]

We can find the GFT data freely available from its website. With this time series we
can implement statistical methods for descriptive epidemiology or causal inference.
The GFT has been extensively compared with the seasonal influenza data of the
Center for Disease Control (CDC), which is obtained with typical surveys and
medical reports, providing similar results.

We can find the Google Flu Trends data freely available at
http://www.google.org/flutrends/us/#US.

And the seasonal influenza (Flu) data can be found at http://www.cdc.gov/flu/.

The epidemiology triangle
In the following screenshot we can see the epidemiologic triangle, which presents all
the elements involved in an epidemic outbreak. We can see the Agent, which is the
infectious pathogen. The Host—who is the human susceptible to catch the disease—
will be highly related with its behavior in the environment. The Environment
includes the external conditions that allow the spread of the disease, such as
geography, demography, weather, or social habits. All these elements merge in a
Time span and we can see an emerging disease or a seasonal disease.

Environment

Host Agent

be
ha

vio
r

Time

One of the most important concepts to take into account in epidemiology is the basic
reproduction ratio (R-0). It is a metric of the number of cases that one infected host
can generate in its infectious period. When R-0 is less than 1, the infection will vanish
in the long run. However, if R-0 is greater than 1, the infection will be able to spread
in the host population. We can keep an endemic balance if R-0 in the susceptible
population is equal to one.

Modeling Infectious Disease with Cellular Automata

[156]

The endemic, epidemic, and pandemic diseases can be explained
as follows:

• Endemic: It is a disease that exists permanently in a
particular population or geographic region

• Epidemic: It is a disease outbreak that infects many
individuals in a population at the same time

• Pandemic: It occurs when an epidemic spreads at the
worldwide level

For a complete reference to epidemiology concepts refer
to Introduction to Epidemiology 6th Edition by Ray M. Merrill,
Jones & Bartlett Learning (2012).

The epidemic models
When we want to describe how a pathogen or a disease is spread into a population,
we need to create a model using mathematical, statistical, or computational tools.
The most common model used in the epidemiology is SIR (susceptible, infected,
and recovered) model, which was formulated in the paper A Contribution to the
Mathematical Theory of Epidemics by McKendrick and Kermack published in 1927.

In the models presented in this chapter, we assume a closed population (without
births or deaths) and that the demographics and socio-economic variables do not
affect the spread of the disease.

The SIR model
The SIR epidemiological model describes the course of an infectious disease, as we can
see in the following figure. Starting with a susceptible population (S), which comes
into contact with an infected population (I), where the individual remains infected and
once the infection period has passed, the individual is then in the recovered state (R):

S I R

Chapter 9

[157]

In this chapter we will use two different ways of solving the SIR model, a
mathematical model with an ordinary differential equations (ODE) system and then
with a computational model using a cellular automaton (CA). The two models should
show a similar morphology (similar shape of the time series) in the three populations
(susceptible, infected, and recovered) within the timeframe of the outbreak.

In the following figure we can see the ordinary differential equation system that
represents the SIR model.

dS
dt

= β* S* I-

dI

dR

dt

dt

=

=

β γ* S* I - * I

γ* I

(a)

(b)

(c)

Solving ordinary differential equation for the
SIR model with SciPy
In order to observe the morphology of an infectious disease outbreak, we need to
solve the SIR model. In this case, we will use the integrate method of the SciPy
module to solve the ODE. In Appendix, Setting Up the Infrastructure, we can find the
installation instructions for SciPy.

First, we need to import the required libraries scipy and pylab.

import scipy
import scipy.integrate
import pylab as plt

Then, we will define the SIR_model function, which will contain the ODE,
with beta representing the transmission probability, gamma as the infected
period, X[0] representing the susceptible population, and X[1] representing
the infected population:

beta = 0.003
gamma = 0.1

def SIR_model(X, t=0):

 r = scipy.array([- beta*X[0]*X[1]

Modeling Infectious Disease with Cellular Automata

[158]

 , beta*X[0]*X[1] - gamma*X[1]
 , gamma*X[1]])
 return r

Next, we will define the initial parameters ([susceptible, infected, and
recovered]) and the time (number of days), then with the scipy.integrate.
odeint function, we will solve the differential equations system:

if __name__ == "__main__":

 time = scipy.linspace(0, 60, num = 100)
 parameters = scipy.array([225, 1,0])
 X = scipy.integrate.odeint(SIR_model, parameters,time)

The result of SIR_model will look similar to the following list and will contain the
status of the three populations (susceptible, infected, and recovered) for each step
(days) during the outbreak:

[[2.25000000e+02 1.00000000e+00 0.00000000e+00]
 [2.24511177e+02 1.41632577e+00 7.24969630e-02]
 [2.23821028e+02 2.00385053e+00 1.75121774e-01]
 [2.22848937e+02 2.83085357e+00 3.20209039e-01]
 [2.21484283e+02 3.99075767e+00 5.24959040e-01]
. . .]

All the codes and datasets of this chapter can be found
in the author's GitHub repository at https://github.
com/hmcuesta/PDA_Book/tree/master/Chapter9.

Finally, we will plot the three populations using pylab:

 plt.plot(range(0, 100), X[:,0], 'o', color ="green")
 plt.plot(range(0, 100), X[:,1], 'x', color ="red")
 plt.plot(range(0, 100), X[:,2], '*', color ="blue")
 plt.show()

Chapter 9

[159]

In the following screenshot we can see the transition rates for the SIR model:

The SIRS model
The SIRS (susceptible, infected, recovered, and susceptible) model is an extension of
the SIR model. In this case, the immunity acquired in the recovered status is eventually
lost and the individual eventually comes back to the susceptible population. As we
can see in the following screenshot, the SIRS model is cyclic. The SIRS model brings
the opportunity to study other kinds of phenomenon a such as endemic diseases and
seasonality effects. Some common examples of SIRS diseases are seasonal flu, measles,
diphtheria, and chickenpox.

S I R

Modeling Infectious Disease with Cellular Automata

[160]

In the following figure we can see the ordinary differential equation system that
represents the SIRS model:

dS
dt

= β σ* S* I + *R-

dI

dR

dt

dt

=

=

β γ* S* I - * I

γ σ* I - *R

(a)

(b)

(c)

In order to solve the ODE (refer to the section Solving ordinary differential equation for
the SIR model with SciPy), we need to create the SIRS_model function as shown in the
following code, where the sigma variable represents the recovered period as shown
in the ODE of the SIRS. We use the beta variable to represent the transmission
probability, and gamma represents the infected period. Finally, we will use X[0] to
represent the susceptible population, X[1]as the infected population, and X[2] as the
recovered population.

beta = 0.003
gamma = 0.1
sigma = 0.1

def SIRS_model(X, t=0):

 r = scipy.array([- beta*X[0]*X[1] + sigma*X[2]
 , beta*X[0]*X[1] - gamma*X[1]
 , gamma*X[1]] –sigma*X[2])
 return r

Chapter 9

[161]

Modeling with cellular automata
Cellular automaton are mathematical and computational discrete models created by
John von Neumann and Stanislaw Ulam. CA is represented as a grid where in each
cell a small computation is performed. In CA we will share the process through all
the small cells in the grid. CA shows behavior similar to biological reproduction and
evolution. In this case, we can say that each cell is an individual in our population
(grid) that will switch between states depending on its social interaction (contact
rate). (Refer to SIR and SIRS models).

Seen as discrete simulations of dynamical systems, CA has been used for modeling
in different areas such as traffic flow, encryption, growth of crystals, bird migration,
and epidemic outbreaks. Stephen Wolfram, one of the most influential researchers in
CA describes CA as follows:

"Cellular automata are sufficiently simple to allow detailed mathematical analysis,
yet sufficiently complex to exhibit a wide variety of complicated phenomena."

Cell, state, grid, and neighborhood
The basic element in a CA is the cell and it corresponds to a specific coordinate in a
grid (or lattice). Each cell has a finite number of possible states and the current state
will depend on a set of rules and the status of the surrounding cells (neighborhood).
All the cells follow the same set of rules and when the rules are applied to the entire
grid, we can say that a new generation is created.

The different kinds of neighborhoods are as follows:

• Von Neumann: It encompass the four cells orthogonally surrounding a
central cell on a two-dimensional square grid

• Moore: It is the most common neighborhood and it encompasses the eight
cells that surround the central cell in a two-dimensional grid

• Moore Extended: It has the same behavior as that of the Moore but in this
case, we can extend the reach to different distances

• Global: In this case, the geometric distance is not considered and all the cells
have the same probability to be reached by another cell. (Refer to the Global
stochastic contact model section)

Modeling Infectious Disease with Cellular Automata

[162]

One of the most famous examples of CA is Conway's Game of Life.
Where, in a two-dimensional lattice all the cells can be either dead or
alive. In the following link we can see a D3.js visualization of the
Game of Life http://bl.ocks.org/sylvaingi/2369589.

(a) Von Neumann (b) Moore

(c) Moore Extended (d) Global

Global stochastic contact model
For this model we will define the interaction between individuals in a homogeneous
population. The contact is global and stochastic, this means that each cell has the
same likelihood to be contacted by the other. In this model we do not consider the
geographic distance, demographic, or the migratory pattern as constraints.

We can find more information about the stochastic process at
http://en.wikipedia.org/wiki/Stochastic_process.

Chapter 9

[163]

Simulation of the SIRS model in CA with
D3.js
In Chapter 7, Predicting Gold Prices, we already studied the basics of a random walk
simulation. In this chapter, we will implement a CA in JavaScript using D3.js to
simulate the SIRS model.

In the following screenshot we can see the interface of our simulator. It's a simple
interface with a grid of 15 x 15 cells (225 total cells). An Update button that applies
the rules to all the cells on the grid (step). A paragraph area that will show the status
of different populations in the current step, for example, Susceptible: 35 Infected:
153 Recovered: 37 Step: 4. Finally, a Statistics button that writes a list with all the
statistics of each step (susceptible, infected, recovered, and so on) into a text area for
plotting purpose:

Modeling Infectious Disease with Cellular Automata

[164]

Inside the head tag we need to refer to the library:

 <html>
 <head>
 <script src="http://d3js.org/d3.v3.min.js"></script>
 </head>

The code is mostly in JavaScript. First, we need to define the variables such as the
grid, the list of colors, the number of rows and columns. Also, the SIRS model
parameters such as the average number of contacts (avgContact), transmission
probability (tProb), the initial number of infected (initialInfected), the infected
period (timeInfection), and the recover period (timeRecover).

 <body>
 <script type="text/javascript">

 var w = 600;
 var h = 600;

 var grid = [];
 var record = [];

 var colors = ["", "#F8F8F8", "#FF6633","000066"];
 var index = 0;
 var cols = 15;
 var rows =15;
 var nTimes = 0;
 var gridSize = (cols * rows);

 var avgContact = 4;
 var timeInfection = 2;
 var timeRecover = 4;
 var initialInfected = 10;
 var tProb = 0.2;

Now, we will fill the grid with susceptible cells using the push function. Each of
the cells will contain an array with the coordinates, a unique index, the start status 1
(susceptible), and the period of time (in the initial state there is no period hence we
assign 0).

 for(var i=0; i <rows; i++){
 for(var j=0;j<cols;j++){
 grid.push([i*40,
 j*40,
 "circle-"+index++,

Chapter 9

[165]

 1,
 0]);
 }
 }

Then, we need to define the size of the new SVG width and height (600 x 600 pixels),
which inserts a new <svg> element before the closing </body> tag:

 var svg = d3.select("body")
 .append("svg")
 .attr("width", w)
 .attr("height", h)
 .append("g")
 .attr("transform","translate(20,20)");

Next, we need to generate the circle elements and add them to svg, then with the
data(grid) function, for each value in data we will call the .enter() function and
add a circle element. D3 allows selecting groups of elements for manipulation
through the selectAll function. We will use each cell array inside the grid list to
define coordinates (cx, cy), color, and id:

 svg.selectAll("circle")
 .data(grid)
 .enter()
 .append("circle")
 .attr("id", function(d) {
 return d[2];
 })
 .attr("cx", function(d) {
 return d[0];
 })
 .attr("cy", function(d) {
 return d[1];
 })
 .attr("r", function(d) {
 return 15;
 })
 .attr("fill", colors[1])
 .attr("stroke", "#666");

Next, we will create the init function. It will be called only when we refresh the web
page. The init function will randomly insert the initial number of infected cells in
the CA:

function init(){
 for(var x = 0; x < initialInfected; x++){

Modeling Infectious Disease with Cellular Automata

[166]

 var i = Math.round(Math.random() * (gridSize-1));
 var cell = grid[i];
 if(cell[3]==1){
 cell[3] = 2;
 cell[4] = timeInfection;
 }
 grid[i] = cell;
 }
 prepareStep();
 }

init();

In the prepareStep function we will refill all the circles with their new status color
(colors[cell[3]]). We will use the function svg.select to select one element by
its id (cell[2]) and apply the new style. The prepareStep function also counts
the number of individuals in each of the three populations and shows them in the
paragraph tag (status). Finally, the function stores the statistic of the current step
into the record list:

function prepareStep(){
noSus = 0;
 noInfected = 0;
 noRecover = 0;
 nTimes++;

 for(var i = 0; i < gridSize; i++){
 var cell = grid[i];
 svg.select("#"+cell[2]).style("fill", colors[cell[3]]);

 if(cell[3] == 1){
 noSus++;
 }else if(cell[3] == 2){
 noInfected++;
 }else if(cell[3] == 3){
 noRecover++;
 }
 }
 record.push([noSus,noInfected,noRecover]);
 document.getElementById("status").innerHTML =
 " Suseptibles: "+ noSus+
 " Infected: "+noInfected+
 " Recovered: "+noRecover+
 " Times: "+ nTimes;
}

Chapter 9

[167]

The nextStep function will apply the rules defined in the SIRS model to each cell
to define their new status. We will use the relative ID of the cells instead of their
coordinates as it would be easier to reach the cell by its position in the list (0 to 224).

function nextStep(){

 for(var i=0; i < gridSize; i++){

We will take each cell one by one and apply their average number of contacts with
the other cells:

 var cell = grid[i];

We will check if the cell has a recovered status (3) and if the cell still has a time
period in this status, then we just decrement the recovered period by one. However,
if the recovered period is zero, we will perform the transition to the susceptible
status (1):

 if(cell[3]==3){

 if(cell[4] > 0){
 cell[4] = cell[4] - 1;
 }else{
 cell[3] = 1;
 cell[4] = 0;
 }

 }else{

Now, if the status is 1 or 2 (susceptible or infected), we need to make random
contacts and we compare the status of the first cell with the status of the second cell
(sCell). If they have the same status, then we continue with the next contact. If either
of the cells are infected, the other cell is exposed to the transmission probability
(tProb) and if it's infected, then the cell is updated in the grid:

 for(var j=0;j < avgContact ;j++){

 var sId = Math.round(Math.random() *
 (gridSize-1));
 var sCell = grid[sId];

 if(cell[3] == sCell[3]){
 continue;

Modeling Infectious Disease with Cellular Automata

[168]

 }else if (cell[3] == 2 && sCell[3] == 1){

 if(Math.random() <= tProb){

 sCell[3] = 2;
 sCell[4] = timeInfection;

 }

 }else if (cell[3] == 1 && sCell[3] == 2){
 if(Math.random() <= tProb){

 cell[3] = 2;
 cell[4] = timeInfection;

 }
 }
 grid[sId] = sCell;
 }
 }

Next, if the cell is in the infected (2) status, then we will check if the period is over.
In this case, we perform the transition to the recovered status. Otherwise, we just
decrease the timer of the infectious period (cell[4]).

 if(cell[3] == 2 && cell[4] == 0){

 cell[3] = 3;
 cell[4] = timeRecover;

 }else if(cell[3] == 2 && cell[4] > 0){

 cell[4] = cell[4] - 1;

 }

 grid[i] = cell;
 }
}

Chapter 9

[169]

The update function triggers the new step for the CA by calling the nextStep
function and the prepareStep function:

function update(){
 nextStep();
 prepareStep();
}

The statistics function writes the record list with the statistics of the simulation
into the text area tag (txArea):

function statistics(){

 document.getElementById("txArea").value = ""+record;

}
</script>

Finally, we create the entire HTML code needed by the interface, the Update button,
paragraph area (status), the Statistics button, and the text area (txArea).

<div id="option">
<input name="updateButton"
 type="button"
 value="Update"
 onclick="update()" />
</div>
<p id="status">Current Statistics</p>

<input name="updateButton"
 type="button"
 value="Statistics"
 onclick="statistics()" />
</br>
<textarea id=txArea
 cols = "70">
</textarea>
</body>
</html>

Modeling Infectious Disease with Cellular Automata

[170]

In the following screenshot we can observe the progression of the outbreak in
the steps 1, 3, 6, 9, 11, and 14. We can appreciate how the SIRS model is applied
to the grid:

Now, we will copy the record list from the text area and we will visualize them in
python with the small script shown as follows:

First, we will import the pylab and numpy modules:

import pylab as plt
import numpy as np

Chapter 9

[171]

Then, we will create a numpy array with the record list:

data = np.array([215,10,. . .])

Next, in order to plot each population, we will reshape the array with numpy using
the reshape method. The first parameter is -1 because we don't know in advance
how many steps are present and the second parameter defines the length of the array
as 3 (susceptible, infected, and recovered).

result = data.reshape(-1,3)

The resultant array will look similar to the following array:

[[215 10 0]
[153 72 0]
[54 171 0]
[2 223 0]
[0 225 0]
[0 178 47]
[0 72 153]
[0 6 219]
[0 0 225]
[47 0 178]
[153 0 72]
[219 0 6]
[225 0 0]]

Finally, we use the plot method to display the visualization:

length = len(result)
plt.plot(range(0,length), result[:,0], marker = 'o', lw = 3,
color="green")
plt.plot(range(0,length), result[:,1], marker = 'x', linestyle = '--',
lw = 3, color="red")
plt.plot(range(0,length), result[:,2], marker = '*', linestyle =
':',lw = 3, color="blue")
plt.show()

Modeling Infectious Disease with Cellular Automata

[172]

In the following screenshot we can see the three populations throughout the time
until all the cells come back to susceptible:

We can also play with the parameters such as the infectious period, the initial
number of infected individuals, the transmission probability, or the recovered
period. In the following screenshot we simulate the SIR model by increasing the
recovered period into a large number and as we can observe, the result is highly
similar to the result given by the mathematical model (ODE). Refer to the Solving
ordinary differential equation for the SIR model with SciPy section:

Chapter 9

[173]

All the codes and datasets of this chapter can be found in
the author's GitHub repository at https://github.com/
hmcuesta/PDA_Book/tree/master/Chapter9.

Summary
In this chapter, we introduced the basic concepts of epidemiology and two basic
epidemic models (SIR and SIRS). Then, we learned how to model and solve an
ordinary differential equations system for epidemic models. Finally, we developed
a basic simulator implementing a cellular automaton of the SIRS model. We tried
different parameters and got interesting results. Of course, these examples are only
for educational purpose and if we need to model a real disease, we will need an
epidemiologist to provide the accurate and real parameters.

In the next chapter, we will learn how to visualize and work with graphs from social
networking sites.

Working with Social Graphs
In this chapter we introduce the most basic features of graph analytics. Initially, we
distinguish the structure of a graph and a social graph, and how to obtain our friends'
graph from Facebook. Then, we present some of the basic operations with graph—
such as Degree and Centrality. Finally, we work in a graph representation using
Gephi and we will create our own visualization in D3.js for our friends' graph.

In this chapter we will cover:

• Social Networks Analysis
• Acquiring my Friends list from Facebook
• Representing graphs with Gephi
• Statistical analysis of my graph (Degree and Centrality)
• Graph visualization with D3.js

Structure of a graph
A graph is a set of nodes (or vertices) and links (or edges). Each link is a pair of
node references (such as source or target). Links may be considered as directed
or undirected, depending if the relationship is mutual or not. The most common
way to computationally represent a graph is by using an adjacency matrix. We
use the index of the matrix as a node identifier and the value of the coordinates to
represent whether there exists a link (the value is 1) or not (the value is 0). The links
between nodes may have a scalar value (weight) to define a distance between the
nodes. Graphs are widely used in Sociology, Epidemiology, Internet, Government,
Commerce, and Social networks to find groups and information diffusion.

Working with Social Graphs

[176]

Graph analytics can be split into three categories:

• Structural algorithms
• Traversal algorithms
• Pattern-matching algorithms

Undirected graph
In the undirected graph, there is no distinction between the nodes source and target.
As we can observe in the following figure the adjacency matrix is symmetric, which
means that the relationship between nodes is mutual. This is the kind of graph used
in Facebook, where we are friends with other nodes (symmetric relationship).

Directed graph
In the directed graph we find direction between the source node and the target
node represented by an arrow, this creates an asymmetric (one-way) relationship.
In this case we will have two different kinds of degree, In and Out. This can be
observed in the adjacency matrix, which is not symmetric. This is particularly useful
in networks such as Twitter, where we have followers, and not friends. It means
that the relationship is not mutual by default and we will have two degrees, In
(Followers) and Out (Following).

Chapter 10

[177]

Social Networks Analysis
The Social Networks Analysis (SNA) is not a new technique; sociologists have been
using it for a long time to study human relationships (sociometry), find communities,
and to simulate how information or a disease is spread in a population.

With the rise of social networking sites such as Facebook, Twitter, LinkedIn, and so
on, the acquisition of large amounts of social network data has become easier. We
can use SNA to get an insight about customer behavior or unknown communities.
It is important to say that this is not a trivial task and we will face problems with
sparse data and a lot of noise (meaningless data). We need to understand, how to
distinguish between false correlation and causation. A good start is by knowing our
graph through visualization and statistical analysis.

The social networking sites bring us the opportunities to ask questions
that otherwise are too hard to approach, because polling enough people
is time-consuming and expensive.

In this chapter we will obtain our social network's graph from the Facebook (FB)
website, in order to visualize the relationships between our friends. Then we will
learn how to get an insight about the proportions of the nongraph data provided
by FB such as gender or likes. Next, we will explore the distribution and centrality
of our friends' relationships in our graph. Finally, we will create an interactive
visualization of our graph using D3.js.

Acquiring my Facebook graph
In Facebook the friends represent nodes and the relationship between two friends
represents links but we can get a lot more information from it, such as gender, age,
post list, likes, political affiliation, religion, and so on. And Facebook provides us
with a complete Application Programming Interface (API) to work with its data.
You may visit the following link for more information:

https://developers.facebook.com/

Another interesting option is the Stanford Large Network Dataset Collection,
where we can find social networks' datasets well formatted and anonymized
for educational proposes. Visit the following link for more information:

http://snap.stanford.edu/data/

Working with Social Graphs

[178]

Using the anonymized data, it is possible to determine whether
two users have the same affiliations, but not what their
individual affiliations represent.

Using Netvizz
In this chapter we don't get into the use of the Facebook API. The easiest method to
get our Friends list is by using a third-party application. Netvizz is a Facebook app
developed by Bernhard Rieder, which allows exporting social graph data to GDF
and tab formats. Netvizz may export information about our friends such as gender,
age, locale, posts, and likes.

In order to get your social graph from Netvizz, you need to access the following link
and give access to your Facebook profile:

https://apps.facebook.com/netvizz/

As shown in the following screenshot, we will create a GDF file from our personal
friend network by clicking on the link here in Step 2.

Chapter 10

[179]

Then we will download the GDF (Graph Modeling Language) file which is a
simple text format for a graph representation and is easy to use in Gephi (see the
next section). Netvizz will give us the number of nodes and edges (links); finally
we will click on the gdf file link, as we can see in the following screenshot:

The output file myFacebookNet.gdf will look as follows:

nodedef>name VARCHAR,label VARCHAR,gender VARCHAR,locale VARCHAR,agerank
INT

23917067,Jorge,male,en_US,106

23931909,Haruna,female,en_US,105

35702006,Joseph,male,en_US,104

503839109,Damian,male,en_US,103

532735006,Isaac,male,es_LA,102

. . .

edgedef>node1 VARCHAR,node2 VARCHAR

23917067,35702006

23917067,629395837

23917067,747343482

23917067,755605075

23917067,1186286815

. . .

Working with Social Graphs

[180]

In the following figure we can see the visualization of the graph (106 nodes and
279 links). The nodes represent my friends and the links represent how my friends
are connected between them. The graph is visualized with Gephi and the Force Atlas
layout (refer to the section Representing graphs with Gephi).

Netvizz can also obtain other kind of graphs such as your like network:, in this
option Netvizz creates a graph of your friends and their likes (both friends and liked
object(s) are nodes). If we scroll down the Netvizz interface we can find a section
shown in the following screenshot. To create your like network, we just need to click
on the here link:

Chapter 10

[181]

In this case Netvizz will create a graph with 106 friends, 6,388 different liked objects
(6,494 nodes), and 7,965 links. Then to download the graph we just need to click on
the gdf file link. As we can observe in the following figure the graph generated, in
this case, is much denser than the friend graph. The graph is visualized with Gephi
and the Force Atlas layout (refer to the section Representing graphs with Gephi).

Representing graphs with Gephi
Gephi is an open source software for visualizing and analyzing large networks
graphs which runs on Windows, Linux, and Mac OS X. We can freely download
Gephi from its website listed as follows. For installation instructions please refer to
the Appendix, Setting up the Infrastructure.

https://gephi.org/users/download/

Working with Social Graphs

[182]

To visualize your social network graph, you just need to open Gephi, click on
the File menu and select Open then we just need to look up and select our file
myFacebookNet.gdf and click on the Open button. Then, we can see our graph
as shown in the following screenshot:

For complete reference documentation about Gephi, please
refer to the link https://gephi.org/users/.

In the interface we can see the Context tab, which shows us the number of Nodes
and Edges. We can show Node labels by clicking on the T icon in the bottom of
the window. Finally, we can apply different layout algorithms by selecting in the
---Choose a layout dropdown in the Layout tab. Once the visualization is ready,
we can click on the Preview button to get a better look at it and we can export the
visualization to PDF, SVG, or PNG formats.

Chapter 10

[183]

In the following screenshot we see the preview visualization of the graph using the
Fruchterman-Reingold algorithm, which is a force-directed layout algorithm. The
force-directed layouts are a family of algorithms for drawing graphs in dimensional
spaces (2D or 3D), in order to represent the nodes and links of the graph in an
aesthetical way.

For more information about, Fruchterman-Reingold layout
algorithm you can visit the link http://wiki.gephi.org/
index.php/Fruchterman-Reingold.

Statistical analysis
We can easily find some information from our Facebook graph, such as the number
of friends and individual data of each one. However, there are many questions that
we can't get directly from the site, such as male to female ratio, how many of my
friends are Republicans, or who is my best friend? These questions can be easily
answered with a few lines of code and some basic statistical analysis. In this chapter
we will start with male to female ratio, because we already have the gender value in
the GDF file obtained from Netvizz.

Working with Social Graphs

[184]

For simplicity in the code examples, we will split the
myFacebookNet.gdf file into two CSV files, one for the
nodes (nodes.csv) and one for the links (links.csv).

Male to female ratio
In this example, we will use the gender value of the nodes.csv file and get the male
to female ratio in a pie chart visualization.

The file nodes.csv will look as follows:

nodedef>name VARCHAR,label VARCHAR,gender VARCHAR,locale VARCHAR,agerank
INT

23917067,Jorge,male,en_US,106

23931909,Haruna,female,en_US,105

35702006,Joseph,male,en_US,104

503839109,Damian,male,en_US,103

532735006,Isaac,male,es_LA,102

. . .

1. Firstly, we need to import the required libraries. See Appendix, Setting Up the
Infrastructure, for installation instructions of numpy and pylab.
import numpy as np
import operator
from pylab import *

2. The numpy function, genfromtxt, will obtain only the gender column from
the nodes.csv file, using the usecols attribute in the str format.
nodes = np.genfromtxt("nodes.csv",
 dtype=str,
 delimiter=',',
 skip_header=1,
 usecols=(2))

3. Then we will use the function countOf from the operator module and ask for
how many 'male' are in the list nodes.
counter = operator.countOf(nodes, 'male')

4. Now, we just get the proportions between male and female in percentage.
male = (counter *100) / len(nodes)
female = 100 - male

Chapter 10

[185]

5. Now, we make square figure and axes.
figure(1, figsize=(6,6))
ax = axes([0.1, 0.1, 0.8, 0.8])

6. Then, the slices will be ordered and plotted counter-clockwise.
labels = 'Male', 'Female'
ratio = [male,female]
explode=(0, 0.05)

7. Using the function pie we define the parameters of the chart such as
explode, labels, and title.
pie(ratio,
 explode=explode,
 labels=labels,
 title('Male to Female Ratio',
 bbox={'facecolor':'0.8', 'pad':5})

8. Finally, with the function show, we execute the visualization.
show()

In the following figure we can see the pie chart. In this case we observe 54.7 percent
male and 45.3 percent female:

Working with Social Graphs

[186]

Degree distribution
The degree of a node is the number of connections (links) with other nodes. In the
case of directed graphs, each node has two degrees: the out degree and the in degree.
In the undirected graph, the relationship is mutual, so we just have a single degree
for each node. In the following code snippet we get the source node and target node
references from the file links.csv. Then we create a single list to merge the two lists
(target and source). Finally, we get a dictionary (dic) of how many times each node
appears in the list and we plot the result in a bar chart using matplotlib.

The file links.csv will look as follows:

edgedef>node1 VARCHAR,node2 VARCHAR
23917067,35702006
23917067,629395837
23917067,747343482
23917067,755605075
23917067,1186286815
. . .

The complete code snippet looks as follows:

import numpy as np
import matplotlib.pyplot as plt

links = np.genfromtxt("links.csv",
 dtype=str,
 delimiter=',',
 skip_header=1,
 usecols=(0,1))
dic = {}
for n in sorted(np.reshape(links,558)):
 if n not in dic:
 dic[n] = 1
 else:
 dic[n] += 1
plt.bar(range(95),list(sort.values()))
plt.xticks(range(95), list(sort.keys()), rotation=90)
plt.show()

Chapter 10

[187]

In the following figure, we can observe the degree of each node in the graph and there
are 11 nodes that do not present any connection. In this example, from 106 total nodes
in the graph we only consider the 95 nodes, which at least a have degree of one.

Histogram of a graph
Now, we will explore the structural task of the graph through its histogram.
We will create a dictionary (histogram) that will contain, how many nodes
have degree of one, two to 26 that is the maximum degree that can be reached
by a node in this graph. Then, we will visualize the histogram using a scatter plot.

histogram = {}

for n in range(26):
 histogram[n] = operator.countOf(list(dic.values()), n)

plt.bar(list(histogram.keys())),list(histogram.values()))
plt.show()

In the following figure, we can see the histogram of our graph. The logical question
here is "What does the histogram tell us about the graph?" The answer is that we
can see a pattern in the histogram, and that many nodes in the graph have small
degree and decreases. As we move along the X-axis, we can observe that most nodes
have a degree of 3. In the pattern we can appreciate that it becomes less likely that a
new node comes with a high degree, this is congruent with the Zipfian distribution.
Most human-generated data presents this kind of distribution, such as words in
vocabulary, letters in alphabet, and so on.

Working with Social Graphs

[188]

For more information about, Zipfian distribution you can visit
the link http://en.wikipedia.org/wiki/Zipf's_law.

Other common pattern in graphs is exponential distribution and is frequently
presented in random graphs.

Centrality
If we want to understand the importance of an individual node in the graph we
need to define its centrality which is a relative measure of how important a node is
within a graph. There are several ways to find centrality, such as closeness (average
length of all its shortest paths) or betweenness (the fraction of all shortest paths that
pass through a certain node). In this case, we will define centrality as the strongest
connected node and we will prove this hypothesis through a direct data exploration.

In the following code snippet, we sort the dictionary by its value using a lambda
function then we reverse the order to get the biggest degree, in the beginning.

sort = sorted(dic.items(), key=lambda x: x[1], reverse=True)

The result list, sort, will look as follows:

[('100001448673085', 26),

 ('100001452692990', 18),

 ('100001324112124', 18),

Chapter 10

[189]

 ('100002339024698', 15),

 ('100000902412307', 14),

. . .]

In the following screenshot, we can see the graph visualized in Gephi with Yifan
Hu Layout algorithm. With a direct data exploration we can color the node with the
apparent highest degree and we can say that it is the central node. Now, perform the
following steps:

1. In Gephi interface click on the Ranking tab.
2. Select the Degree option.
3. In the combobox, pick a Color and select the highest Range (26/27).
4. Click on the Apply button (refer the underlined options in the

following screenshot).

We can also color the first degree contacts of the central node and see that it is
strongly connected between groups. We can do this by selecting the Painter tool
in Gephi and clicking on all the nodes related with the central node. In fact, we
find that is the same node with the highest degree obtained by the sorted process
(ID 100001448673085).

Working with Social Graphs

[190]

We can create our own centrality algorithm, based not just in the degree (number
of connections of the node). For example, we can find centrality in the number of
shares and likes of certain nodes' posts. This means that a node with a lower degree
may have a bigger impact in the information diffusion process or a particular node is
strongly connected in between different groups; that's the beauty of social networks.

Transforming GDF to JSON
Gephi is an excellent tool to get easy and fast results. However, if we want to
present the graph interactively on a website, we need to implement a different
kind of visualization. In order to work with the graph in the web, we need to
transform our GDF file to JSON format.

1. Firstly, we need to import the libraries numpy and json. For more
information about JSON format, refer to Chapter 2, Working with Data.
import numpy as np
import json

2. The numpy function, genfromtxt, will obtain only the ID and name from the
nodes.csv file using the usecols attribute in the 'object' format.
nodes = np.genfromtxt("nodes.csv",
 dtype='object',
 delimiter=',',
 skip_header=1,
 usecols=(0,1))

3. Then, the numpy function, genfromtxt, will obtain links with the source node
and target node from the links.csv file using the usecols attribute in the
'object' format.
links = np.genfromtxt("links.csv",
 dtype='object',
 delimiter=',',
 skip_header=1,
 usecols=(0,1))

The JSON format used in the D3.js Force Layout graph
implemented in this chapter requires transforming the ID
(for example, 100001448673085) into a numerical position
in the list of nodes.

Chapter 10

[191]

4. Then, we need to look for each appearance of the ID in the links and replace
them by their position in the list of nodes.
for n in range(len(nodes)):
 for ls in range(len(links)):
 if nodes[n][0] == links[ls][0]:
 links[ls][0] = n

 if nodes[n][0] == links[ls][1]:
 links[ls][1] = n

5. Now, we need to create a dictionary "data" to store the JSON file.
data ={}

6. Next, we need to create a list of nodes with the names of the friends in the
format as follows:
"nodes": [{"name": "X"},{"name": "Y"},. . .] and add it to the
data dictionary.
 lst = []
 for x in nodes:
 d = {}
 d["name"] = str(x[1]).replace("b'","").replace("'","")
 lst.append(d)

 data["nodes"] = lst

7. Now, we need to create a list of links with the source and target in the format
as follows:
"links": [{"source": 0, "target": 2},{"source": 1, "target":
2},. . .] and add it to the data dictionary.

 lnks = []

 for ls in links:
 d = {}
 d["source"] = ls[0]
 d["target"] = ls[1]
 lnks.append(d)

 data["links"] = lnks

8. Finally, we need to create the file, newJson.json, and write the data
dictionary in the file with the function dumps of the json library.
with open("newJson.json","w") as f:
 f.write(json.dumps(data))

Working with Social Graphs

[192]

Neo4j is a robust (fully ACID) transactional property graph
database. For more information you can visit the link about
Neo4j at http://www.neo4j.org/.

The file newJson.json will look as follows:

{"nodes": [{"name": "Jorge"},

 {"name": "Haruna"},

 {"name": "Joseph"},

 {"name": "Damian"},

 {"name": "Isaac"},

 . . .],

 "links": [{"source": 0, "target": 2},

 {"source": 0, "target": 12},

 {"source": 0, "target": 20},

 {"source": 0, "target": 23},

 {"source": 0, "target": 31},

 . . .]}

Graph visualization with D3.js
D3.js provides us with the d3.layout.force() function that use the Force Atlas
layout algorithm and help us to visualize our graph. Refer to Chapter 3, Data
Visualization, for instructions on how to create D3.js visualizations.

1. Firstly, we need to define the CSS style for the nodes, links, and node labels.
<style>

.link {
 fill: none;
 stroke: #666;
 stroke-width: 1.5px;
}

.node circle
{
 fill: steelblue;
 stroke: #fff;
 stroke-width: 1.5px;

Chapter 10

[193]

}

.node text
{
 pointer-events: none;
 font: 10px sans-serif;
}
</style>

2. Then, we need to refer the d3js library.
<script src="http://d3js.org/d3.v3.min.js"></script>

3. Then, we need to define the width and height parameters for the svg
container and include into the body tag.
var width = 1100,
 height = 800

var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height);

4. Now, we define the properties of the force layout such as gravity,
distance, and size.
var force = d3.layout.force()
 .gravity(.05)
 .distance(150)
 .charge(-100)
 .size([width, height]);

5. Then, we need to acquire the data of the graph using the JSON format. We
will configure the parameters for nodes and links.
d3.json("newJson.json", function(error, json) {
 force
 .nodes(json.nodes)
 .links(json.links)
 .start();

For a complete reference about the d3js Force Layout
implementation, visit the link https://github.com/
mbostock/d3/wiki/Force-Layout.

Working with Social Graphs

[194]

6. Then, we define the links as lines from the json data.
 var link = svg.selectAll(".link")
 .data(json.links)
 .enter().append("line")
 .attr("class", "link");

 var node = svg.selectAll(".node")
 .data(json.nodes)
 .enter().append("g")
 .attr("class", "node")
 .call(force.drag);

7. Now, we define the node as circles of size 6 and include the labels of
each node.
 node.append("circle")
 .attr("r", 6);

 node.append("text")
 .attr("dx", 12)
 .attr("dy", ".35em")
 .text(function(d) { return d.name });

8. Finally, with the function, tick, run step-by-step the force layout simulation.
 force.on("tick", function()
{
 link.attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

 node.attr("transform", function(d)
 {
 return "translate(" + d.x + "," + d.y + ")";
 })
 });
});
</script>

In the following screenshot we can see the result of the visualization. In order
to run the visualization we just need to open a command terminal and run the
following command:

>>python –m http.server 8000

Chapter 10

[195]

After that we just need to open a web browser and type the direction
http://localhost:8000/ForceGraph.html. In the HTML page, we can see our
Facebook graph with a gravity effect and we can interactively drag-and-drop the nodes.

All the code and datasets of this chapter may be found in the
author's GitHub repository at the link https://github.
com/hmcuesta/PDA_Book/Chapter10.

The complete code of the visualization is listed as follows:

<meta charset="utf-8">
<style>

.link
{
 fill: none;
 stroke: #666;
 stroke-width: 1.5px;
}
.node circle
{
 fill: steelblue;
 stroke: #fff;
 stroke-width: 1.5px;

Working with Social Graphs

[196]

}

.node text
{
 pointer-events: none;
 font: 10px sans-serif;
}
</style>
<body>
<script src="http://d3js.org/d3.v3.min.js"></script>
<script>

var width = 1100,
 height = 800

var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height);

var force = d3.layout.force()
 .gravity(.05)
 .distance(150)
 .charge(-100)
 .size([width, height]);

d3.json("newJson.json", function(error, json) {
 force
 .nodes(json.nodes)
 .links(json.links)
 .start();

 var link = svg.selectAll(".link")
 .data(json.links)
 .enter().append("line")
 .attr("class", "link");

 var node = svg.selectAll(".node")
 .data(json.nodes)
 .enter().append("g")
 .attr("class", "node")
 .call(force.drag);

 node.append("circle")

Chapter 10

[197]

 .attr("r", 6);

 node.append("text")
 .attr("dx", 12)
 .attr("dy", ".35em")
 .text(function(d) { return d.name });

 force.on("tick", function()
{
 link.attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

 node.attr("transform", function(d)
 { return "translate(" + d.x + "," + d.y + ")"; });
 });
});
</script>
</body>

Summary
In this chapter we worked on how to obtain and visualize our Facebook graph,
applying some layouts with Gephi such as Force Atlas and Fruchterman-Reingold.
Then we introduced some of the statistical methods to get aggregate information
such as degree, centrality, distribution, and ratio. Finally, we developed our own
visualization tool with D3.js, transforming the data from GDF into JSON.

In the next chapter, we will present a short introduction to the Twitter API
to retrieve, visualize, and analyze tweets. Then, we will proceed to perform
a sentiment analysis.

Sentiment Analysis
of Twitter Data

In this chapter we will see how to perform sentiment analysis over Twitter data.
Initially, we introduce the Twitter API with Python. Then, we distinguish the basic
elements of a sentiment classification. Finally, we present the Natural Language
Toolkit (NLTK) to implement the tweets' sentiment analyzer.

In this chapter we will cover:

• The anatomy of Twitter data
• Using OAuth to access Twitter API
• Getting started with Twython:

 ° Simple search/query
 ° Working with timelines
 ° Working with followers
 ° Working with places and trends

• Sentiment classification:
 ° Effective norms for English words
 ° Text corpus

• Get started with Natural Language Toolkit (NLTK)
 ° Bag of words
 ° Naïve Bayes
 ° Sentiment analysis of tweets

Sentiment Analysis of Twitter Data

[200]

In Chapter 4, Text Classification, we presented a basic introduction to text classification.
In this chapter, we will perform a sentiment analysis of tweets to rate the emotional
value (positive or negative) using classification with Naive Bayes method.

Sentiment analysis can be used to find patterns in the opinion of the population
such as where people are happier or what is the public perception about a brand
new product.

With the proliferation of social networking websites, we can see what people are
talking about in real-time and on a large scale. However, we need to be cautious
because the social networks tend to be noisy, that is why in this case, we will need as
much data as we can get in order to obtain a true representation of what people think.

The anatomy of Twitter data
Twitter is a social networking website, which provides a micro-blogging service
for sharing text messages up to 140 characters (or tweets). We can retrieve a variety
of data from Twitter such as tweets, followers, favorites, direct messages, and
trending topics.

We can create a new Twitter account using the following link:

http://twitter.com

Tweet
Tweet is the name of the 140-character long text message. However, we can get
more information than the text message itself such as date and time, links, user
mentions (@), hash tags (#), retweets count, locale language, favorites count, and
geocode. In the following screenshot, we can observe a tweet retweeted 1001 times,
marked as favorite 336 times with a hashtag (#NBAFinals) and user mentions
(@Spurs and @MiamiHEAT):

Chapter 11

[201]

Followers
The users on Twitter can follow other users creating a directed graph (See Chapter 10,
Working with Social Graphs) with a lot of possibilities for analysis such as centrality
and community clustering. In this case, the relationship is not mutual by default, so
on Twitter we have two kinds of degrees; in and out. This can be very useful when
we want to find the most influent individual in a group or which individual is in
between different groups.

We can follow the Twitter's engineering team's blog at
https://engineering.twitter.com/.

Trending topics
Twitter trends are words or hashtags with a high popularity among Twitter users
at a specific moment and/or place. Trending topics is a big area for data analysis
such as how to detect trends and predict future trends. These are main topics in
information diffusion theory. In the following screenshot, we can see the dialog box
used to change tailored trends (trends based on your location and who you follow on
Twitter) simply by changing your location:

Sentiment Analysis of Twitter Data

[202]

Using OAuth to access Twitter API
In order to have access to the Twitter API, we will use a token-based authentication
system. Twitter applications are required to use OAuth, which is an open standard for
authorization. OAuth allow the Twitter users to enter their username and password
in order to obtain four strings (token). The token allows the users to connect with the
Twitter API without using their username and password. In this chapter, we will use the
current version of Twitter REST API 1.1, released on June 11, 2013, which established
the use of OAuth authentication as mandatory, for retrieving data from Twitter.

For more information about token-based authentication
systems, please refer to http://bit.ly/bgbmnK.

First, we need to visit https://dev.twitter.com/apps and sign in with our Twitter
username and password as is shown in the following screenshot:

Then, we click on the Create a new application button (see the following screenshot)
and enter the application details:

• Name: PracticalDataAnalysisBook (can be anything you like; however,
you cannot use the word Twitter in the name)

• Description: Practical Data Analysis Book Examples (can be anything
you like)

Chapter 11

[203]

• Website: Can be your personal blog or website
• Callback URL: Can be left blank

Next, we need to enter the CAPCHA and click on the Create button.

Finally, on the next details screen, we will click on Create my access token
(sometimes you need to manually refresh the page after a few seconds). In the
following screenshot, we can see our four strings for authentication; Consumer
key, Consumer secret, Access token, and Access token secret.

Sentiment Analysis of Twitter Data

[204]

Now, we may use this access token with multiple user timelines on multiple websites
using the Twitter Search API. However, this is restricted to 180 requests/queries per
15 minutes.

We can find more information about the Twitter Search
API, limitations, best practices, and rate limits at
https://dev.twitter.com/docs/using-search.

Getting started with Twython
In this chapter, we will use Twython 3, which is a Python wrapper of the Twitter
API 1.1. We can download the latest version of twython from pypi Python website,
https://pypi.python.org/pypi/twython.

Then, we need to unzip and open the twython folder. Finally we install the twython
module using the following command:

>>> python3 setup.py install

Or, we can also install Twython through easy_install using the following command.

>>> easy_install twython

We can find complete reference documentation of Twython at https://twython.
readthedocs.org/en/latest/index.html.

You can find a complete list of Twitter libraries for several
programming languages such as Java, C#, Python, and so on at
https://dev.twitter.com/docs/twitter-libraries.

Simple search
In this example, we will perform a search of the word python and we will print the
complete list of statuses in order to understand the format of the retrieved tweets.

First, we need to import the Twython object from the twython library:

from twython import Twython

Chapter 11

[205]

Then, we need to define the four strings created using OAuth (see section Using
OAuth to Access Twitter API):

ConsumerKey = "..."
ConsumerSecret = "..."
AccessToken = "..."
AccessTokenSecret = "..."

Now, we need to instantiate the Twython object giving the access token string as
the parameters:

twitter = Twython(ConsumerKey,
 ConsumerSecret,
 AccessToken,
 AccessTokenSecret)

Next, we will perform the search, using the search method, specifying the search
query text in the keyword argument q:

result = twitter.search(q="python")

Twython converts the JSON sent to us from Twitter to a naïve python
object. However, if the authentication fails, the search will retrieve an
error message as follows:

{"errors":[{"message":"Bad Authentication data",

 "code":215}]}

Finally, we will iterate in the result["statuses"] list and print each status (tweet):

for status in result["statuses"]:
 print(status)

The output of each status is retrieved in a JSON-like structure and will look
as follows:

{'contributors': None,

 'truncated': False,

 'text': 'La théorie du gender.... Genre Monty python ! http://t.
co/3nTUhVR9Xm',

 'in_reply_to_status_id': None,

 'id': 355755364802764801,

 'favorite_count': 0,

 'source': '<a href="http://twitter.com/download/iphone"
rel="nofollow">Twitter for iPhone',

 'retweeted': False,

Sentiment Analysis of Twitter Data

[206]

 'coordinates': None,

 'entities': {'symbols': [],

 'user_mentions': [],

 'hashtags': [],

 'urls': [{'url': 'http://t.co/3nTUhVR9Xm',

 'indices': [46, 68],

 'expanded_url': 'http://m.youtube.com/watch?feature=youtube_
gdata_player&v=ePCSA_N5QY0&desktop_uri=%2Fwatch%3Fv%3DePCSA_
N5QY0%26feature%3Dyoutube_gdata_player',

 'display_url': 'm.youtube.com/watch?feature=…'}]},

 'in_reply_to_screen_name': None,

 'in_reply_to_user_id': None,

 'retweet_count': 0,

 'id_str': '355755364802764801',

 'favorited': False,

 'user': {'follow_request_sent': False,

 'profile_use_background_image': True,

 'default_profile_image': False,

 'id': 1139268894,

 'verified': False,

 'profile_text_color': '333333',

 'profile_image_url_https': 'https://si0.twimg.com/profile_
images/3777617741/d839f0d515c0997d8d18f55693a4522c_normal.jpeg',

 'profile_sidebar_fill_color': 'DDEEF6',

 'entities': {'url': {'urls': [{'url':

 'http://t.co/7ChRUG0D2Y',

 'indices': [0, 22],

 'expanded_url': 'http://www.manifpourtouslorraine.fr',

 'display_url': 'manifpourtouslorraine.fr'}]},

 'description': {'urls': []}},

 'followers_count': 512,

 'profile_sidebar_border_color': 'C0DEED',

 'id_str': '1139268894',

Chapter 11

[207]

 'profile_background_color': 'C0DEED',

 'listed_count': 9,

 'profile_background_image_url_https':

 'https://si0.twimg.com/images/themes/theme1/bg.png',

 'utc_offset': None,

 'statuses_count': 249,

 'description': "ON NE LACHERA JAMAIS, RESISTANCE !!\r\nTous

 nés d'un homme et d'une femme\r\nRetrait de la loi Taubira

 !\r\nRestons mobilisés !",

 'friends_count': 152,

 'location': 'moselle',

 'profile_link_color': '0084B4',

 'profile_image_url':

'http://a0.twimg.com/profile_images/3777617741/d839f0d515c099

 7d8d18f55693a4522c_normal.jpeg',

 'following': False,

 'geo_enabled': False,

 'profile_banner_url':

'https://pbs.twimg.com/profile_banners/1139268894/1361219172',

 'profile_background_image_url':

 'http://a0.twimg.com/images/themes/theme1/bg.png',

 'screen_name': 'manifpourtous57',

 'lang': 'fr',

 'profile_background_tile': False,

 'favourites_count': 3,

 'name': 'ManifPourTous57',

 'notifications': False,

 'url': 'http://t.co/7ChRUG0D2Y',

 'created_at': 'Fri Feb 01 10:20:23 +0000 2013',

 'contributors_enabled': False,

 'time_zone': None,

 'protected': False,

 'default_profile': True,

 'is_translator': False},

 'geo': None,

 'in_reply_to_user_id_str': None,

Sentiment Analysis of Twitter Data

[208]

 'possibly_sensitive': False,

 'lang': 'fr',

 'created_at': 'Fri Jul 12 18:27:43 +0000 2013',

 'in_reply_to_status_id_str': None,

 'place': None,

 'metadata': {'iso_language_code': 'fr', 'result_type':

 'recent'}}

We can also restrict the result by navigating through the structure of the JSON result.
For example, to get only user and text of the status, we can modify the print
command as follows:

for status in result["statuses"]:
 print("user: {0} text: {1}".format(status["user"]["name"],
 status["text"]))

The output of the first five statuses will look as follows:

user: RaspberryPi-Spy text: RT @RasPiTV: RPi.GPIO Basics Part 2, day 2 -
Rev checking (Python & Shell) http://t.co/We8PyOirqV

user: Ryle Ploegs text: I really want the whole world to watch Monty
Python and the Holy Grail at least once. It's so freaking funny.

user: Matt Stewart text: Casual Friday night at work... #snakes #scared
#python http://t.co/WVld2tVV8X

user: Flannery O'Brien text: Kahn the Albino Burmese Python enjoying the
beautiful weather :) http://t.co/qvp6zXrG60

user: Cian Clarke text: Estonia E-Voting Source Code Made Public
http://t.co/5wCulH4sht - open source, kind of! Python & C http://t.
co/bo3CtukYoU

. . .

Navigating through the JSON structure helps us to get only the information that
we need for our applications. We may pass multiple keyword arguments and also
specify the result type with the result_type="popular" parameter.

We can find a complete reference of GET search/tweets at https://dev.
twitter.com/docs/api/1.1/get/search/tweets.

Chapter 11

[209]

Working with timelines
In this example, we will show how to retrieve our own timeline and a different
user's timeline.

First, we need to import and instantiate the Twython object from the twython library:

from twython import Twython
ConsumerKey = "..."
ConsumerSecret = "..."
AccessToken = "..."
AccessTokenSecret = "..."
twitter = Twython(ConsumerKey,
 ConsumerSecret,
 AccessToken,
 AccessTokenSecret)

Now, to get our own timeline we will use the get_home_timeline method.

timeline = twitter.get_home_timeline()

Finally, we will iterate the timeline and print the user name, created at, and text.

for tweet in timeline:
 print(" User: {0} \n Created: {1} \n Text: {2} "
 .format(tweet["user"]["name"],
 tweet["created_at"],
 tweet["text"]))

The first five results of the code will look as follows:

User: Ashley Mayer

Created: Fri Jul 12 19:42:46 +0000 2013

Text: Is it too late to become an astronaut?

User: Yves Mulkers

Created: Fri Jul 12 19:42:11 +0000 2013

Text: The State of Pharma Market Intelligence http://t.co/v0f1DH7KZB

User: Olivier Grisel

Created: Fri Jul 12 19:41:53 +0000 2013

Text: RT @stanfordnlp: Deep Learning Inside: Stanford parser quality
improved with new CVG model. Try the englishRNN.ser.gz model. http://t.
co/jE…

user: Stanford Engineering

Created: Fri Jul 12 19:41:49 +0000 2013

Sentiment Analysis of Twitter Data

[210]

Text: Ralph Merkle (U.C. Berkeley), Martin Hellman (#Stanford Electrical
#Engineering) and Whitfield Diffie… http://t.co/4y7Gluxu8E

User: Emily C Griffiths

Created: Fri Jul 12 19:40:45 +0000 2013

Text: What role for equipoise in global health? Interesting Lancet blog:
http://t.co/2FA6ICfyZX

. . .

On the other hand, if we want to retrieve a specific user's timeline such as
stanfordeng, we will use the get_user_timeline method with the screen_name
parameter to define the user selected, and we can also restrict the number of results
to five, using the count parameter:

tl = twitter.get_user_timeline(screen_name = "stanfordeng",
 count = 5)
for tweet in tl:
 print(" User: {0} \n Created: {1} \n Text: {2} "
 .format(tweet["user"]["name"],
 tweet["created_at"],
 tweet["text"]))

The first five statuses of Stanford Engineering (@stanfordeng) timeline will look
as follows:

Created: Fri Jul 12 19:41:49 +0000 2013

Text: Ralph Merkle (U.C. Berkeley), Martin Hellman (#Stanford Electrical
#Engineering) and Whitfield Diffie… http://t.co/4y7Gluxu8E

User: Stanford Engineering

Created: Fri Jul 12 15:49:25 +0000 2013

Text: @nitrogram W00t!! ;-)

User: Stanford Engineering

Created: Fri Jul 12 15:13:00 +0000 2013

Text: Stanford team (@SUSolarCar) to send newest creation, solar
car #luminos for race in Australia: http://t.co/H5bTSEZcYS. via @
paloaltoweekly

User: Stanford Engineering

Created: Fri Jul 12 02:50:00 +0000 2013

Text: Congrats! MT @coursera: Coursera closes w 43M in Series B. Doubling
in size to focus on mobile, apps platform & more! http://t.co/
WTqZ7lbBhd

User: Stanford Engineering

Chapter 11

[211]

Created: Fri Jul 12 00:57:00 +0000 2013

Text: Engineers can really benefit from people who can make intuitive or
creative leaps. ~Stanford Electrical Engineering Prof. My Le #quote

We can find the complete reference of the home_timeline and
user_timeline methods at the following links:

• http://bit.ly/nEpIW9
• http://bit.ly/QpgvRQ

Working with followers
In this example, we will show how to retrieve the list of followers of specific
Twitter users.

First, we need to import and instantiate the Twython object from the twython library:

from twython import Twython
ConsumerKey = "..."
ConsumerSecret = "..."
AccessToken = "..."
AccessTokenSecret = "..."
twitter = Twython(ConsumerKey,
 ConsumerSecret,
 AccessToken,
 AccessTokenSecret)

Next, we will return the list of followers with the get_followers_list method
using screen_name (username) or user_id (Twitter user ID):

followers = twitter.get_followers_list(screen_name="hmcuesta")

Next, we iterate over the followers["users"] list and print all the followers:

for follower in followers["users"]:
 print(" {0} \n ".format(follower))

Each user will look as follows:

{'follow_request_sent': False,

 'profile_use_background_image': True,

 'default_profile_image': False,

 'id': 67729744,

 'verified': False,

 'profile_text_color': '333333',

Sentiment Analysis of Twitter Data

[212]

 'profile_image_url_https':

 'https://si0.twimg.com/profile_images/374723524/iconD_normal.gif',

 'profile_sidebar_fill_color': 'DDEEF6',

 'entities': {'description': {'urls': []}},

 'followers_count': 7,

 'profile_sidebar_border_color': 'C0DEED',

 'id_str': '67729744',

 'profile_background_color': 'C0DEED',

 'listed_count': 0,

 'profile_background_image_url_https':

 'https://si0.twimg.com/images/themes/theme1/bg.png',

 'utc_offset': -21600,

 'statuses_count': 140,

 'description': '',

 'friends_count': 12,

 'location': '',

 'profile_link_color': '0084B4',

 'profile_image_url':

 'http://a0.twimg.com/profile_images/374723524/iconD_normal.gif',

 'following': False,

 'geo_enabled': False,

 'profile_background_image_url':

 'http://a0.twimg.com/images/themes/theme1/bg.png',

 'screen_name': 'jacobcastelao',

 'lang': 'en',

 'profile_background_tile': False,

 'favourites_count': 1,

 'name': 'Jacob Castelao',

 'notifications': False,

 'url': None,

 'created_at': 'Fri Aug 21 21:53:01 +0000 2009',

 'contributors_enabled': False,

 'time_zone': 'Central Time (US & Canada)',

 'protected': True,

 'default_profile': True,

 'is_translator': False}

Chapter 11

[213]

Finally, we will print only the user (screen_name), name, and the number of tweets
(statuses_count).

for follower in followers["users"]:
 print(" user: {0} \n name: {1} \n Number of tweets: {2} \n"
 .format(follower["screen_name"],
 follower["name"],
 follower["statuses_count"]))

The first five followers result of the preceding code will look as follows:

 user: katychuang

 name: Kat Chuang, PhD

 number of tweets: 1991

 user: fractalLabs

 name: Fractal Labs

 number of tweets: 105

 user: roger_yau

 name: roger yau

 number of tweets: 70

 user: DataWL

 name: Data Without Limits

 number of tweets: 1168

 user: abhi9u

 name: Abhinav Upadhyay

 number of tweets: 5407

We can find the complete reference of the get_followers_
list method at https://dev.twitter.com/docs/
api/1.1/get/followers/list.

Sentiment Analysis of Twitter Data

[214]

Working with places and trends
In this example, we will retrieve the trending topics closest to a specific location.
In order to specify the location, Twitter API uses the WOEID (Yahoo! Where On
Earth ID).

First, we need to import and instantiate the Twython object from the twython library:

from twython import Twython
ConsumerKey = "..."
ConsumerSecret = "..."
AccessToken = "..."
AccessTokenSecret = "..."
twitter = Twython(ConsumerKey,
 ConsumerSecret,
 AccessToken,
 AccessTokenSecret)

Next, we will use get_place_trends and we define the place with the
id = (WOEID) parameter:

result = twitter.get_place_trends(id = 23424977)

We can find the complete reference of the get_place_trends
method at https://dev.twitter.com/docs/api/1.1/
get/trends/closest.

The easiest way to get the WOEID is through the console of Yahoo! Query Language
(YQL), which uses a SQL-like syntax; so if we want to find the WOEID of Denton
Texas, the string query will look as follows:

select * from geo.places where text="Denton, TX"

We can find the console at the following link and we can test the string query by
clicking on the Test button:

http://developer.yahoo.com/yql/console/

Chapter 11

[215]

In the following screenshot, we can see the result of the query in a JSON format and
pointed the woeid attribute with an arrow:

Finally, we will iterate the result list and print name of each trend:

if result:
 for trend in result[0].get("trends", []):
 print("{0} \n".format(trend["name"]))

The trending topics in Denton, TX will look as follows:

#20FactsAboutMyBrother

#ImTeamTwist

Ho Lee Fuk

#FamousTamponQuotes

#TopTenHoeQuotes

#BaeLiterature

Cosart

KTVU

NTSB

Pacific Rim

Sentiment Analysis of Twitter Data

[216]

Sentiment classification
In sentiment classification, one message can be classified as either positive or
negative. This is excellent to get insight about how the public think about a
person, products, or services.

In this chapter, we will classify the tweets to get a personal positive or negative
feeling. It is important to clarify that tweets are limited to 140-characters length
with a very casual language and in many cases the message may be very noisy with
usernames, links, repeated letters, and emoticons. However, Twitter provides a way
to get feedback about large amount of topics in real-time. We can see sample tweets
as follows:

"Photoshop, I hate it when you crash " - Negative

"@Ms_HipHop im glad ur doing weeeell " - Positive

The general process of the sentiment classification is presented in the following
screenshot. We start extracting the features (words) from the training data (Text
Corpus). Then, we need to train the classifier with a bag of words, which is a list of
words and its frequency in the text. For example, the word great appears 32 times in the
positive texts (tweets). Next, we will perform a query using the Twitter API, and extract
the features of the resulted statuses to classify them as either positive or negative.

In the following sections, we will describe each part of the sentiment classification
process and will use the Naive Bayes classifier implemented in the NLTK (Natural
Language Toolkit) library, in order to classify if a tweet is either positive or negative.

Training
Data

Feature
Extraction

Bag of
Words

Twitter
Query

Feature
Extraction

Positive

Negative

Trained
Classifier

Classes

Chapter 11

[217]

Affective Norms for English Words
Affective Norms for English Words (ANEW) has been developed for the
Center of the Study of Emotion and Attention of the University of Florida. The
ANEW provides a set of normative emotional ratings as a text corpus for a large
number of words in the English language. These sets of verbal materials have been
rated in terms of pleasure, arousal, and dominance, in order to create a standard
for use in studies of emotion and attention. Even if the terms of use of ANEW are
for nonprofit education proposes only and cannot be used for commercial purpose,
it is an interesting option. We can get more information about ANEW from
http://csea.phhp.ufl.edu/media/anewmessage.html.

Text corpus
Text corpus is a set of processed and labeled texts of a single or multiple languages,
used in linguistics for statistical analysis. A corpus may contain text messages or
paragraphs and we will split these into either unigrams (words individually) or
bigrams (two words attached with only one meaning). We will use only English
unigrams in this chapter.

When we want to create a corpus, we will get as much data as we can. Sometimes
performing a feature reduction may help to increase the accuracy by avoiding
usernames, links, repeated letters emoticons (for example, :D) from the text. The
website Sentiment140 provides us with a human-labeled corpus with over 1,600,000
tweets; with three polarities labeled with a 0 for negative, 2 for neutral, and 4 for
positive. The corpus also provides the tweet id, date, user that tweeted, and the text.
We can download the corpus from http://help.sentiment140.com/for-students.

We will use only polarities 0 and 4 (negative and positive) and the Sentiment140
corpus cvs file will look as follows:

"0","1824518676","Sun May 17 01:43:54 PDT 2009","NO_
QUERY","marielmilo","my tummy hurts "

"0","1824519186","Sun May 17 01:44:02 PDT 2009","NO_
QUERY","jtetsuya","Watching Himitsu no Hanazono again... I wish stories
like this never had endings Amuro Namie's - Baby Don't Cry http://
tinyurl.com/qr4ros"

"0","1824519390","Sun May 17 01:44:06 PDT 2009","NO_
QUERY","jackspencer","I hate getting up late... and to find that I have a
day of solid german revision to do "

"0","1824519463","Sun May 17 01:44:07 PDT 2009","NO_
QUERY","SummerSlacking","I missed my friend's birthday party. I feel bad
and douchey. I haven't seen her in over a year. "

Sentiment Analysis of Twitter Data

[218]

"0","1824519867","Sun May 17 01:44:14 PDT 2009","NO_
QUERY","Beggeesgirl","just got home in bed, but no phonecall from begee.
uh oh, im kinda worried! "

. . .

"4","2193577828","Tue Jun 16 08:38:52 PDT 2009","NO_
QUERY","ogreenthumb","@crgrs359 Skip the aquarium and check out these
fish A lot cheaper lol http://bit.ly/2lQbBv"

"4","2193577852","Tue Jun 16 08:38:52 PDT 2009","NO_QUERY","dacyj","@
GroleauNET Yeah I'm being an ass today "

"4","2193577870","Tue Jun 16 08:38:52 PDT 2009","NO_
QUERY","stephmartinez","@OHTristaN it's sunoudy "

"4","2193577904","Tue Jun 16 08:38:53 PDT 2009","NO_
QUERY","heartcures","@kbonded Newsflash: It worked "

Getting started with Natural Language
Toolkit (NLTK)
NLTK is a powerful Python library for computational linguistics and text
classification. NLTK include about 50 corpora and lexical resources such as Wordnet.
NLTK is the most used tool for natural language processing in Python. It includes
powerful algorithms for text tokenization, parsing, semantic reasoning, and text
classification. We can find a complete guide of NLTK from http://nltk.org/.

To install NLTK, we just need to download the executable file from the website for
windows and use easy_install in Linux distributions.

We may need to install PyYaml in order to use NLTK. We can
download PyYaml from http://pyyaml.org/wiki/PyYAML.

NLTK defines four basic classifiers:

• Naive Bayes
• Maximum entropy (or Logistic regression)
• Decision tree
• Conditional exponential

In this chapter, we will use NLTK 3.0, which supports
Python 3. However, it's still in alpha release (Sept 2013) and
is likely to contain bugs. We can download the NLTK 3 from
http://nltk.org/nltk3-alpha/.

Chapter 11

[219]

Bag of words
Bag of words model is used to turn a document into an unsorted list of words,
commonly used for classifying texts by getting the frequency of a word in a
document. We will use the frequency as a feature for the training of the classifier.
In NLTK, we have methods such as nltk.word_tokenize and nltk.FreqDist
that make easier it to get the words and their frequency in a text.

In the following code, we can see how to import NLTK and the use of the nltk.
word_tokenize method:

>>> import nltk
>>> nltk.word_tokenize("Busy day ahead of me. Also just remembered
that I left peah slices in the fridge at work on Friday. ")

['Busy', 'day', 'ahead', 'of', 'me.', 'Also', 'just', 'remembered',
'that', 'I', 'left', 'peah', 'slices', 'in', 'the', 'fridge', 'at',
'work', 'on', 'Friday', '.']

Naive Bayes
Naive Bayes is a simple model which works well to perform text classification. In
the Chapter 4, Text Classification, we introduced the basic concepts of Naive Bayes
algorithm. NLTK includes an implementation of Naive Bayes algorithm. In the
following code, we will implement a Naive Bayes algorithm and we will use it to
classify the tweets from a simple query using Twitter API.

First, we need to import the nltk library:

import nltk

Now, we will define three functions to get the bag of words (bagOfWords) and
extract the frequency of each word in the tweets (wordFeatures and getFeatures):

def bagOfWords(tweets):
 wordsList = []
 for (words, sentiment) in tweets:
 wordsList.extend(words)
 return wordsList

def wordFeatures(wordList):
 wordList = nltk.FreqDist(wordList)
 wordFeatures = wordList.keys()
 return wordFeatures

def getFeatures(doc):

Sentiment Analysis of Twitter Data

[220]

 docWords = set(doc)
 feat = {}
 for word in wordFeatures:
 feat['contains(%s)' % word] = (word in docWords)
 return feat

Next, we will define the corpus with two lists of positive and negative tweets. We
will use 200 positive and 200 negative tweets extracted from the Sentiment140
human-labeled corpus. If we want to improve the accuracy of the algorithm, we can
use a bigger corpus similar to the one that we mentioned in the section Text Corpus.
However, in order to work with big amounts of data we should see Chapter 12, Data
Processing and Aggregation with MongoDB.

positiveTweets = [('...', 'positive'),
 ('...', 'positive'), . . .]

negativeTweets = [('. . .', 'negative'),
 ('...', 'negative'), . . .]

Then, we will create the corpus, merge the positive and the negative tweets, and
extract the list of words using the nltk.word_tokenize method just excluding
the words with less than three characters:

corpusOfTweets = []
for (words, sentiment) in positiveTweets + negativeTweets:
 wordsFiltered = [e.lower() for e in nltk.word_tokenize(words) if
len(e) >= 3]
 tweets.append((wordsFiltered, sentiment))

NLTK already include several corpora, toy grammars, and trained
models for deferent contexts such as movie reviews or people names.
We can install NLTK data from http://nltk.org/data.html.

Now, we will get the features of all words:

wordFeatures = wordFeatures(bagOfWords(corpusOfTweets))

Next, we will get the training set using the nltk.classify.apply_features method:

training = nltk.classify.apply_features(getFeatures,
 corpusOfTweets)

Finally, we will train the Naïve Bayes algorithm as shown in the following code:

classifier = nltk.NaiveBayesClassifier.train(training)

Chapter 11

[221]

We can get the most informative features of our classifier using the show_most_
informative_features method. We can see the result in the following screenshot.
This list shows the most frequent or informative words used by this classifier:

print(classifier.show_most_informative_features(32))

Sentiment analysis of tweets
Now we will perform a twitter search of the word Python and we will classify each
tweet as positive or negative using the classifier.classify method (see section
Getting started with Twython).

First, we need to import the Twython object from the twython library, and define the
four strings created using OAuth:

from twython import Twython
ConsumerKey = "..."
ConsumerSecret = "..."
AccessToken = "..."
AccessTokenSecret = "..."

Sentiment Analysis of Twitter Data

[222]

Now, we need to instantiate the Twython object giving the access token string as
the parameter:

twitter = Twython(ConsumerKey,
 ConsumerSecret,
 AccessToken,
 AccessTokenSecret)

Next, we will perform the search using the search method, specifying the search
query text in the keyword argument q:

result = twitter.search(q="python")

Finally, we will iterate over the result["statuses"] list and will use the method to
get the sentiment of each tweet:

for status in result["statuses"]:
 print("Tweet: {0} \n Sentiment: {1}"
 .format(status["text"],
 classifier.classify(extract_features
 (status["text"].split()))))

The output of the first five tweets and its sentiment classification will look as follows:

Tweet: RT @RasPiTV: RPi.GPIO Basics Part 2, day 2 - Rev checking (Python
& Shell) http://t.co/We8PyOirqV

Sentiment: positive

Tweet: I really want the whole world to watch Monty Python and the Holy
Grail at least once. It's so freaking funny.

Sentiment: positive

Tweet: Casual Friday night at work... #snakes #scared #python http://t.
co/WVld2tVV8X

Sentiment: positive

Tweet: Kahn the Albino Burmese Python enjoying the beautiful weather :)
http://t.co/qvp6zXrG60

Sentiment: positive

Tweet: Estonia E-Voting Source Code Made Public http://t.co/5wCulH4sht -
open source, kind of! Python & C http://t.co/bo3CtukYoU

Sentiment: positive

. . .

Chapter 11

[223]

In this case, all the results from the search were classified as positive. Although
we will need more tests and a larger training set, we can use the classifier.
accuracy method to see the quality of our classifier. For this example, the
accuracy is 73 percent, which is good for a short corpus.

Summary
In this chapter, we covered the basic functions of Twitter API from signing in with
OAuth to location trends and how to perform simple queries. Then, we introduced
the concepts of sentiment classification and developed a basic sentiment-analysis tool
for tweets. There are a lot of ways to improve the classifier such as getting a bigger
corpus and performing more complex queries. However, the accuracy of the example
is good for educational propose.

In the next chapter, we will present the basic concepts of MongoDB and how we can
perform aggregation queries with large amount of data.

Data Processing and
Aggregation with MongoDB

Aggregation queries are a very common way to get summarized data by counting or
adding features to our dataset. MongoDB provides us with different ways to get the
aggregated data quickly and easily. In this chapter, we will explore the basic features
of MongoDB as well as two ways to get summarized data using the group function
and the aggregation framework.

In this chapter we will cover:

• Getting started with MongoDB:
 ° Database
 ° Collections
 ° Documents
 ° Mongo shell
 ° Insert/Update/Delete operations
 ° Queries

• Data Processing:
 ° Data transformation with OpenRefine
 ° Inserting documents with PyMongo

• Group
• The aggregation framework:

 ° Pipeline
 ° Expressions

Data Processing and Aggregation with MongoDB

[226]

In Chapter 2, Working with Data, we introduced the NoSQL (Not Only SQL) databases
and their types (document-based, graph-based, and key-value stores). The NoSQL
databases provide key advantages to the user such as scalability, high availability,
and processing speed. Due to the distributed nature of the NoSQL technology, if we
want to scale a NoSQL database we just need to add machines to the cluster to meet
demand (horizontal scaling). Most of the NoSQL databases are open-source (such
as MongoDB); which means that we can download, implement, and scale them for a
very low cost.

Getting started with MongoDB
MongoDB is a very popular document-oriented NoSQL database. MongoDB provides
a high-performance engine for storage and query retrieval. In a document-oriented
database, we store the data into collections of documents, in this case JSON-like
documents called BSON (Binary JSON), which provide us with a dynamic-schema
data structure. MongoDB implements functionalities such as ad hoc queries,
replication, load balancing, aggregation, and Map-Reduce. MongoDB is perfect for
an operational database. However, its capabilities as a transactional datasource are
limited. We can see the similarities between the structures of a relational database
(RDBMS) and MongoDB in the following diagram. You can find more information
about MongoDB from its official website, http://www.mongodb.org/.

RDBMS

Database

Table

Row

Column

MongoDB

Database

Collection

Document

Field

For complete reference about SQL databases, please refer to
http://www.w3schools.com/sql/sql_quickref.asp/.

Chapter 12

[227]

From the preceding figure, we can see that the internal structure of MongoDB is very
similar to a relational database. However, in this case, we have a set of collections
with BSON documents in it, without any previous schema defined and not all
documents in a collection must have the same schema. For complete MongoDB
installation instructions, we can see the Installing and running MongoDB section of
Appendix, Setting Up the infrastructure.

Database
In MongoDB, a database is a physical container for our collections. Each database
will create a set of files on the file system. In MongoDB, a database is created
automatically on the fly when we save a document into a collection for first time.
However, administration tools such UMongo allow us to create databases as is
shown in the following screenshot:

You may find the complete UMongo installation instructions in
the Appendix, Setting Up the Infrastructure, and we can find more
information at http://edgytech.com/umongo/.

Additionally, we can see the available databases with the show dbs command and
the result can be seen in the following screenshot:

Data Processing and Aggregation with MongoDB

[228]

Collection
A collection is a group of documents. MongoDB will create the collection implicitly
as is done with the database. As MongoDB uses a schema-less model, we must
specify the database and the collection where it will be stored. MongoDB provides a
JavaScript function db.createCollection() to create a collection manually and we
may also create collections from the UMongo interface.

We can specify the database with the use <database name> command in the
Mongo shell and we can see the available collections in the database with the
show collections command as shown in the following screenshot:

Collections can be split to distribute the collections documents across the MongoDB
instances (shards). This process is called Sharding and allows a horizontal scaling.

You may find considerations about data modeling in MongoDB at
http://docs.mongodb.org/manual/core/data-modeling/.

Document
A document is a record in MongoDB and implements a schema-less model. This
means that the documents are not enforced to have the same set of fields or structure.
However, in practice the documents share a basic structure in order to perform
queries and complex searches.

MongoDB use a document format similar to JSON (JavaScript Object Notation),
stored in a binary representation called BSON. For Python programmers, we
will use the same dictionary structure to represent the JSON format as seen in
Chapter 2, Working with Data. We may find the complete BSON specification at
http://bsonspec.org/.

MongoDB uses a dot notation (.) to navigate through the JSON structure, to access a
field in the document or subdocument. For example, <subdocument>.<field>.

Chapter 12

[229]

Mongo shell
Mongo shell is an interactive JavaScript console for MongoDB. Mongo shell comes as
a standard feature in the MongoDB. We also have the option to try a small version of
mongo shell from the official website (see the following figure), good enough to start
with MongoDB.

You can find the FAQs about mongo shell at
http://docs.mongodb.org/manual/faq/mongo/.

Insert/Update/Delete
Now, we will explore the basic operations with MongoDB and will compare
them with the analogous instructions in SQL just as references. If you already
have some experience with relational database SQL language, this is going to
be a natural transition.

Data Processing and Aggregation with MongoDB

[230]

Insert method in SQL:

INSERT INTO Collection (First_Name, Last_Name)
 Values ('Jan', 'Smith');

Insert method in MongoDB:

db.collection.insert({ name: { first: 'Jan', last: 'Smith' })

Update method in SQL:

UPDATE Collection
SET First_Name = 'Joan'
WHERE First_Name = 'Jan';

Update method in MongoDB:

db.collection.update(
 { 'name.first': 'Jan' },
 { $set: { 'name.first': 'Joan' } }
)

Delete method in SQL:

DELETE FROM Collection
WHERE First_Name = 'Jan';

Delete method in MongoDB:

db.collection.remove({ 'name.first' : 'Jan' }, safe=True)

You may find documentation for the Core MongoDB operations
at http://docs.mongodb.org/manual/crud/.

Queries
In MongoDB, we can perform searches and retrieve data with two methods; find
and findOne, both are listed as follows:

Selecting all elements from the Collection table in SQL:

SELECT * FROM Collection

Selecting all elements from the collection in MongoDB:

db.collection.find()

Chapter 12

[231]

In the following screenshot, we can see the result of the find method in the
mongo shell:

Getting the number of documents retrieved by a query with SQL:

SELECT count(*) FROM Collection

Getting the number of documents retrieved by a query with MongoDB:

db.collection.find().count()

Query with a specific criteria with SQL:

SELECT * FROM Collection
WHERE Last_Name = "Cuesta"

Query with a specific criteria with MongoDB:

db.collection.find({"name.last":"Cuesta"})

In the following screenshot, we can see the result of the find method using specific
criteria in the mongo shell:

The findOne method retrieves a single document from the collection and does not
return a list of documents (cursor). In the following screenshot, we can see the result
of the findOne method in the mongo shell:

Data Processing and Aggregation with MongoDB

[232]

You can find documentation for read operations at
http://docs.mongodb.org/manual/core/read-operations/.

When we want to test the query operation and the timing of the query, we will
use the explain method. In the following screenshot, we can see the result of the
explain method to find the efficiency of the queries and index used.

In the following code we can see the use of the explain method in the find method:

db.collection.find({"name.last":"Cuesta"}).explain()

Data preparation
In Chapter 11, Sentiment Analysis of Twitter Data, we explored how to create a bag of
words from the Tweets Sentiment140 dataset. In this chapter, we will complement
the example by using MongoDB. First we will prepare and transform the dataset
from CSV to a JSON format in order to add it into a MongoDB collection.

We can download the Sentiment140 training and test data from
http://help.sentiment140.com/for-students.

Chapter 12

[233]

We will download and open the test data, the columns represent sentiment, id, date,
via, user, and text. The first five records will look like this:

4,1,Mon May 11 03:21:41 UTC 2009,kindle2,yamarama,@mikefish Fair enough.
But i have the Kindle2 and I think it's perfect :)

4,2,Mon May 11 03:26:10 UTC 2009, jquery,dcostalis,Jquery is my new best
friend.

4,3,Mon May 11 03:27:15 UTC 2009,twitter,PJ_King,Loves twitter

4,4,Mon May 11 03:29:20 UTC 2009,obama,mandanicole,how can you not love
Obama? he makes jokes about himself.

4,5,Mon May 11 05:22:12 UTC 2009,lebron,peterlikewhat,lebron and zydrunas
are such an awesome duo

The first problem that we can see is that the text field includes the comma (,)
character in it. This will be a problem if we want to read the file from Python.
In order to solve this problem we will perform a data preparation in OpenRefine
before we start working with the file. See Chapter 2, Working with Data, for an
introduction to OpenRefine.

Data transformation with OpenRefine
First we need to run OpenRefine (see Appendix, Setting Up the Infrastructure, for
installation instructions) and import the testdata manual 2009 06 14.csv file.
Then we will select the number of columns (separated by commas) and click on the
Create the project button. In the following screenshot, we can see the interface of
OpenRefine with six columns and we can rename the columns by clicking on each
column, and then navigating to Edit column | Rename this column:

Data Processing and Aggregation with MongoDB

[234]

In order to delete the comma character from the text field, we need to click on the
test column, and then navigate to Edit Cells | Transform.... Now, in the Custom text
transform on column text window, we will use the replace function to eliminate all
the commas from text, as is shown in the following screenshot.

In the following command, we can see the replace function from the OpenRefine
Expression Language (GREL):

value.replace(",", "")

GREL implements a large selection of functions for strings, arrays, math, dates, and
boolean. We can find more information at https://github.com/OpenRefine/
OpenRefine/wiki/GREL-Functions:

Chapter 12

[235]

Finally to export the dataset into a JSON format, we will select the Export select box
and then select Templating. Then we can see the Templating Export window (see
following screenshot) where we can define the final structure and the row template
in JSON format. Finally, we need to click on the Export button to download the
test.json file into a file system location:

Inserting documents with PyMongo
With the dataset in JSON format it will be much easier to insert the records into
the MongoDB collection. In this chapter, we will use UMongo as a GUI (Graphic
User Interface) tool, the Python module pymongo (see the Appendix, Setting Up the
Infrastructure, for installation instructions of UMongo and PyMongo), and the
json module:

import json
from pymongo import MongoClient

You can find complete documentation about PyMongo at
http://api.mongodb.org/python/current/.

Data Processing and Aggregation with MongoDB

[236]

We will establish connection in UMongo and we will create a new database by
clicking on localhost and selecting Create DB, as shown in the following screenshot:

Next, we need to establish connection with pymongo using the connection function:

con = MongoClient()

Then, we will select the Corpus database:

db = con.Corpus

Now, we will select the tweets collection where all the documents will be stored:

tweets = db.tweets

Finally, we will open the test.txt file as structure of dictionaries with the
json.load function:

with open("test.txt") as f:
 data = json.loads(f.read())

Then we will iterate all the rows and insert into the tweets collection:

 for tweet in data["rows"]:
 tweets.insert(tweet)

Chapter 12

[237]

The result can be seen in UMongo by navigating through the Corpus database and
the tweets collection. Then we use the left-click and select the find option to retrieve
all the documents in the collection as shown in the following screenshot:

All the codes and datasets of this chapter may be found
in the author's GitHub repository at https://github.
com/hmcuesta/PDA_Book/tree/master/Chapter12.

Data Processing and Aggregation with MongoDB

[238]

The complete code is as follows:

import json
from pymongo import MongoClient
con = MongoClient()
db = con.Corpus
tweets = db.tweets

with open("test.txt") as f:
 data = json.loads(f.read())
 for tweet in data["rows"]:
 tweets.insert(tweet)

Group
An aggregation function is a type of function used in data processing by grouping
values into categories, in order to find a significant meaning. The common aggregate
functions include count, average, maximum, minimum, and sum. However, we may
perform more complicated statistical functions such as mode or standard deviation.
Typically the grouping is performed with the SQL GROUP BY statement, as shown in
the following code, additionally we may use aggregation functions such as COUNT,
MAX, MIN, SUM in order to retrieve summarized information:

SELECT sentiment, COUNT(*)
FROM Tweets
GROUP BY sentiment

In MongoDB, we may use the group function, which is similar to SQL Group By
statement. However, the group function doesn't work in shared systems and the
result size is limited to 10,000 documents (20,000 in the version 2.2 or newer). Due
to this, the group function is not highly used. Nevertheless, it is an easy way to find
aggregate information when we have only one MongoDB instance.

In the following code, we may see the group function applied to the collection. The
group command needs a key which is a field or fields to be grouped. Then, we will
define a reduce function which will implement the aggregation function, in this case,
the count of documents grouped by the sentiment field. Finally we define the initial
value for the aggregation result document:

db.collection.group({
 key:{sentiment:true},
 reduce: function(obj,prev{prev. sentimentsum += obj.c}),
 initial: {sentimentsum: 0}
});

Chapter 12

[239]

In the following screenshot, we can see the group function to find the number of
tweets by sentiment (polarity) using UMongo. First we need to left-click on the
Tweets collection and select Group.

Data Processing and Aggregation with MongoDB

[240]

Then, we add {"sentiment" :""} in Keys and click on the OK button. The result
can be seen in the following screenshot, bringing three categories with corresponding
values for sentiments and count as 4.0 (or positive) and 181.0, 0.0 (or neutral) and
177.0, and 2.0 (or negative) and 139.0:

You can find the documentation of the group
function at http://bit.ly/15iICc5.

In the following code, we can see how to perform a grouping in PyMongo using the
group function of the tweets collection:

from pymongo import MongoClient
con = MongoClient()
db = con.Corpus

Chapter 12

[241]

tweets = db.tweets

categories = tweets.group(key={"sentiment":1},
 condition={},
 initial={"count": 0},
 reduce="function(obj, prev)
 {prev.count++;}")
for doc in categories:
 print(doc)

The result of the previous code will look as follows:

>>>
{'count': 181.0, 'sentiment': 4.0}
{'count': 177.0, 'sentiment': 0.0}
{'count': 139.0, 'sentiment': 2.0}
>>>

We may filter the result before the grouping with the cond attribute in mongo shell
or conition in PyMongo. This is analogous to the WHERE statement in SQL:

cond: { via: "kindle2" },

The group function in PyMongo will look like as follows:

tweets.group(key={"sentiment":1},
 condition={"via": "kindle2" },
 initial={"count": 0},
 reduce="function(obj, prev)
 {prev.count++;}")

The aggregation framework
The MongoDB aggregation framework is an easy way to get aggregated values
and works well with sharding without having to use MapReduce (see Chapter 13,
Working with MapReduce). The aggregation framework is flexible, functional, and
simple to implement operational pipelines and computational expressions. The
aggregation framework uses a declarative JSON format implemented in C++ instead
of JavaScript, which improve the performance. The aggregate method prototype is
shown as follows:

db.collection.aggregate([<pipeline>])

Data Processing and Aggregation with MongoDB

[242]

In the following code, we can see a simple counting by grouping the sentiment
field with the aggregate method. In this case, the pipeline is only using the
$group operator:

from pymongo import MongoClientcon = MongoClient()
db = con.Corpus
tweets = db.tweets

results = tweets.aggregate([
 {"$group": {"_id": "$sentiment", "count": {"$sum": 1}}}
])

for doc in results["result"]:
 print(doc)

In the following screenshot, we can see the result of the aggregation by grouping:

You can find the documentation of the aggregation framework at
http://docs.mongodb.org/manual/reference/aggregation/.

Pipelines
In a pipeline we will process a stream of documents where the original input is a
collection and the final output is a result document. The pipeline has a series of
operators that filter or transform data, and generate a new document or filter out
a document.

The following are the main pipeline operators:

• $match: It filters documents, uses existing query syntax and no geospatial
operations or $where

• $group: It groups documents by an id and can use all the computational
expressions such as $max, $min, and so on

Chapter 12

[243]

• $unwind: It operates on an array field, yield documents for each array value,
and also complements $match and $group

• $sort: It sorts documents by one or more fields
• $skip: It skips over documents in the pipeline
• $limit: It restricts the number of documents in an aggregation pipeline

In the following code we can see the aggregation with a pipeline using the $group,
$sort, and $limit operators:

from pymongo import MongoClientcon = MongoClient()
db = con.Corpus
tweets = db.tweets

results = tweets.aggregate([
 {"$group": {"_id": "$via",
 "count": {"$sum": 1}}},
 {"$sort": {"via":1}},
 {"$limit":10},
])

for doc in results["result"]:
 print(doc)

In the following screenshot we can see the result of the aggregation using a pipeline
with multiple operators:

Data Processing and Aggregation with MongoDB

[244]

Expressions
The expressions produce output documents based on calculations performed
on input documents. The expressions are stateless and are only used in the
aggregation process.

The $group aggregation operations are:

• $max: It return the highest value in the group
• $min: It return the lowest value in the group
• $avg: It return the average of all the group values
• $sum: It return the sum of all values in the group
• $addToSet: It returns an array of all the distinct values for a certain field in

each document in that group

We can also find other kinds of operators depending on its data type as follows:

• Boolean: $and, $or, and $not
• Arithmetic: $add, $divide, $mod, $multiply, and $substract
• String: $concat, $substr, $toUpper, $toLower, and $strcasecmp
• Conditional: $cond and $ifNull

In the following code, we will use the aggregate method with the $group operator
and in this case we will use multiple operations such as $avg, $max, and $min:

from pymongo import MongoClient
con = MongoClient()
db = con.Corpus
tweets = db.tweets

results = tweets.aggregate([
 {"$group": {"_id": "$via",
 "avgId": {"$avg": "$id"} ,
 "maxId": {"$max": "$id"} ,
 "minId": {"$min": "$id"} ,
 "count": {"$sum": 1}}}
])
for doc in results["result"]:
 print(doc)

Chapter 12

[245]

In the following screenshot, we can see the result of $group using multiple operators:

The aggregation framework has some limitations such as the document size
limit is 16MB and there are some field types unsupported (Binary, Code, MinKey
and MaxKey).

In terms of sharding support sharding support, MongoDB analyses pipeline and
forwards operations up to $group or $sort to shards, then combines shard server
result and returns them. Due to this, it is recommended to use $match and $sort as
early as possible into the pipeline.

Summary
In this chapter, we explored the basic operations and functions of MongoDB. We also
performed a data preparation of a CSV dataset with OpenRefine and turned it into
a well-formatted JSON dataset. Finally, we present a data processing introduction
with the aggregation framework, which is a faster alternative to MapReduce for
common aggregations. We introduced the basic operators used in the pipelines and
the expressions supported by the aggregation framework.

In the next chapter, we will explore the MapReduce functionality of MongoDB and
we will create a word-cloud in D3 with the most frequent words in positive tweets.

Working with MapReduce
MongoDB is a document-based database used to tackle large amounts of data and
is used by companies such as Forbes, Bitly, Foursquare, Craigslist, and so on.
In Chapter 12, Data Processing and Aggregation with MongoDB, we learned how to
perform the basic operations and aggregations with MongoDB. In this chapter,
we will learn how MongoDB implements a MapReduce programming model.

In this chapter we will cover:

• MapReduce overview
• Programming model
• Using MapReduce with MongoDB

 ° The map function
 ° The reduce function
 ° Using mongo shell
 ° Using UMongo
 ° Using PyMongo

• Filtering the input collection
• Grouping and aggregation
• The most common words in tweets in a word-cloud visualization

You can find a list of production deployments of MongoDB at
http://www.mongodb.org/about/production-deployments/.

Working with MapReduce

[248]

MapReduce overview
MapReduce is a programming model for large-scale distributed data processing. It is
inspired by the map function and the reduce function of the functional programming
languages such as Lisp, Haskell, or Python. One of the most important features
of MapReduce is that it allows us to hide the low-level implementation such as
message passing or synchronization from users and allows to split a problem into
many partitions. This is a great way to make trivial parallelization of data processing
without any need for communication between the partitions.

Google's original paper: MapReduce: Simplified Data Processing on
Large Clusters, can be found at http://research.google.
com/archive/mapreduce.html.

MapReduce became main stream because of Apache Hadoop, which is an open
source framework that was derived from Google's MapReduce paper. MapReduce
allows us to process massive amounts of data in a distributed cluster. In fact, there
are many implementations of the MapReduce programming model. Some of them
are shown in the following list. It is important to say that MapReduce is not an
algorithm; it is just a part of a high-performance infrastructure that provides a
lightweight way to run a program in a lot of parallel machines.

Some of the most popular implementations of MapReduce are listed as follows:

• Apache Hadoop: It is probably the most famous implementation
of Google's MapReduce model, based on Java with an excellent
community and vast ecosystem. We can find more information
about it at http://hadoop.apache.org/.

• MongoDB: It is a document-oriented database which provides
MapReduce operations. We can find more information about it
at http://docs.mongodb.org/manual/core/map-reduce/.

• Phoenix system: It is a Google's MapReduce implementation that can
be used in multi-core and shared-memory multiprocessors, originally
created as a class project at Stanford. We can find more information
about it at http://mapreduce.stanford.edu/.

• MapReduce-MPI library: It is a MapReduce implementation which runs
on top of MPI (Message Passing Interface) standard. You can find more
information about it at http://mapreduce.sandia.gov/.

Chapter 13

[249]

Message passing is a technique used in concurrent programming to
provide synchronization among processes, similar to a traffic light
control system. MPI is a standard for message passing implementation.
We can find more information about MPI at http://en.wikipedia.
org/wiki/Message_Passing_Interface.

Programming model
MapReduce provides an easy way to create parallel programs without the concern for
message passing or synchronization. This can help us to perform complex aggregation
tasks or searches. As we can observe in the following figure, MapReduce can work
with less organized data (such as noise, text, or schemaless documents) than the
traditional relational databases. However, the programming model is more procedural
which means that the user must have some programming skills such as Java, Python,
JavaScript, or C. MapReduce requires two functions, the map function which is going
to create a list of key-value pairs and the reduce function, which will iterate over each
value and then apply a process (merge or summarization) to get an output.

In MapReduce, the data could be split into several nodes (sharding) in that case
we will need a partition function. The partition function will be in charge
of sort and load balancing. In MongoDB we can work over sharded collections
automatically without any configuration.

Declarative

Procedural

Flat raw files Data Organization Structured

MapReduce

RDBMS
SQL

MPI

Pr
og

ra
m

m
in

g
M

od
el

Working with MapReduce

[250]

Using MapReduce with MongoDB
MongoDB provides us with a mapReduce command and in the following figure, we
can observe the life circle of the MapReduce process in MongoDB. We start with a
Collection or a query and each document in the collection will call the map function.
Then, using the emit function we will create an intermediate hash map (See the
following figure) with a list of pairs (key-value). Next, the reduce function will
iterate the intermediate hash map and it will apply some operation to all values of
each key. Finally, the process will create a brand new collection with the output. The
map/reduce functions in MongoDB will be programmed with JavaScript.

You can find the reference documentation of MapReduce with MongoDB
at http://docs.mongodb.org/manual/core/map-reduce/.

Chapter 13

[251]

The map function
The map function will call the emit function one or more times (See the next
figure). We can access all the attributes of each document in the collection with
the this keyword. The intermediate hash map contains only unique keys, so if
the emit function sends a key that is already in the hash map, that value is going
to be inserted in a list of values. Each record in the hash map will look similar to:
key:One, value:[1,2,3,…].

The following code is a sample code of the map function:

function(){
 emit(this._id, {count: 1});
}

The reduce function
The reduce function will receive two arguments, key and values (one value or a list
of values). This function is going to be called for each record in the hash map.

In the following code we can see a sample reduce function. In this case the function
is going to return the total count for each key.

function(key, values) {
 total = 0;
 for (var i = 0; i < values.length; ++i) {
 total += values[i].count;
 };
 return {count: total};
}

Refer the next section to see the reduce function's working.

Using mongo shell
Mongo shell provides a wrapper method for the mapReduce command. The
db.collection.mapReduce() method must receive three parameters, the map
function, the reduce function, and the name of the collection where the output is
going to be stored, as is shown in the following command. Refer to the Installing and
running MongoDB section in Appendix, Setting Up the Infrastructure, to find complete
instructions on how to install and run MongoDB and mongo shell.

db.collection.mapReduce(map,reduce,{out:"OutCollection"})

Working with MapReduce

[252]

In this example we will use the tweets collection that we already created in
the Inserting Documents with PyMongo section of Chapter 12, Data Processing and
Aggregation with MongoDB, with the attributes id, via, sentiment, text, user,
and date. This example will count how many times each unique element of the
via attribute appears in the collection.

First, we need to define the map function in the mapTest variable:

mapTest = function(){
 emit(this.via, 1);
 }

Then, we need to define the reduce function in the reduceTest variable:

reduceTest = function(key, values) {
 var res = 0;
 values.forEach(function(v){ res += 1})
 return {count: res};
 }

The mongo shell will look similar to the following screenshot:

Now, we need to define Corpus as the default database:

use Corpus

Next, we will use the mapReduce method to send the mapTest function and the
reduceTest function, and for defining a new collection results to store the output:

db.tweets.mapReduce(mapTest,reduceTest,{out:"results"})

Chapter 13

[253]

Finally, we will retrieve all the documents of the results collection with the
find method:

db.results.find()

In the following screenshot we can see the result of the mapReduce command in the
mongo shell and the retrieved collection (results) with the aggregated data (count)
of the via attribute.

For complete reference of the mapReduce command
we can follow the link http://bit.ly/13Yh5Kg.

Working with MapReduce

[254]

Using UMongo
In Chapter 12, Data Processing and Aggregation with MongoDB, we have learned
how to use UMongo to perform queries and grouping. In this section, we will use
UMongo to execute a mapReduce command from a user interface. First, we will open
and connect UMongo with the local MongoDB. Refer to the Installing and running
UMongo section in Appendix, SettingUp the Infrastructure, for complete instructions on
how to install and run UMongo.

Now, we will select the Corpus database and the tweets collection, then, right-click
on tweets to display the options.

Next, as we can see in the following screenshot, we will click on the Map
Reduce option:

Chapter 13

[255]

Then, we will see the Map Reduce window, where we can insert the Map JS
Function and the Reduce JS Function text areas and also define the Input filtering
and the Output collection. In the following screenshot, we can see the functions to
count the number of occurrences of each unique element of the via attribute in the
collection. However, this time we are filtering the input and only the positive tweets
are considered. While inserting {sentiment: 4} in the query text area, we will
consider only the documents where the attribute sentiment is equal to 4 (2 = negatives
and 4 = positives). Refer to the Filtering the input collection section, to find about the
details of the query and its operators. Finally, in the Output Collection field, we write
via_count, which is the collection where the output is going be stored.

Working with MapReduce

[256]

Finally, to check the result, we will select the collection via_count and left-click on
the Find method to see all the documents created by the mapReduce command. In
the following screenshot we can see the result. Each document in the via_count
collection will look similar to the following code snippet:

{"id":"google", "values":{"count":3}}

Using PyMongo
With mongo shell or UMongo we can run MapReduce process in an easy way.
However, we will normally need to use the MapReduce process as a part of a
bigger transaction. Then, we need to implement a MapReduce wrapper in an
external programming language. In this case, we will use PyMongo to call the
mapReduce command from Python.

Chapter 13

[257]

In this example, we will use the tweets collection and we will count how many
times the via attribute appears. Refer to the Inserting Documents with PyMongo
section in Chapter 12, Data Processing and Aggregation with MongoDB, for details
about the creation of the tweets collection.

First, we will import the pymongo and bson.code modules. Refer to the Installing and
running MongoDB section in Appendix, SettingUp the Infrastructure, to find instructions
on how to install PyMongo:

from pymongo import MongoClientfrom bson.code import Code

Then, we will establish connection with the MongoDB service to the default localhost
and port 27017.

con = MongoClient()

Next, we will define Corpus as the default database and tweets as a shortcut object
of db.tweets:

db = con.Corpus
tweets = db.tweets

Now, we will use the object constructor Code for representing JavaScript functions,
map and reduce in BSON, since the MongoDB API methods use JavaScript.

map = Code("function(){ emit(this.via, 1); }")

reduce = Code("""function(key, values) {
 var res = 0;
 values.forEach(function(v){ res += 1})
 return {count: res};
 }""")

Then, we will use the map_reduce function providing three parameters, the map
function, the reduce function, and define via_count as the output collection.

result = tweets.map_reduce(map,reduce,"via_count")
print(result)

Finally, we retrieve all the documents in the via_count collection with the
find function.

for doc in db.via_count.find():
 print(doc)

Working with MapReduce

[258]

In the following screenshot, we can observe the result of this code in the IDLE:

Filtering the input collection
Sometimes, we don't need the entire collection for our MapReduce process.
Hence, the mapReduce command provides us with optional parameters to
filter the input collection.

The parameter query allows us to apply criteria using the query operators to filter
the document's input to the map function. In the following code, we will filter the
documents in the collection, and only include the documents where the attribute
number is greater than 10 ("$gt":10):

collection.map_reduce(map_function,
 reduce_function,
 "output_collection",
 query={"number":{"$gt":10}})

Chapter 13

[259]

The query operators used in the MapReduce query parameter are the same query
selectors seen in the Getting started with MongoDB section in Chapter 12, Data Processing
and Aggregation with MongoDB, used to perform simple queries. In the following table
we present the most common operators and their equivalent in SQL language:

Mongo operators SQL operators
$gt >

$gte >=

$in IN

$lt <

$lte <=

$and AND

$or OR

The limit parameter is an optional parameter of the mapReduce command, which
helps us to define the maximum number of documents retrieved by the query. In the
following code we define the limit of documents retrieved to a maximum of 10:

collection.map_reduce(map_function,
 reduce_function,
 "output_collection",
 limit = 10)

You can find a complete list of MongoDB operators at
http://docs.mongodb.org/manual/reference/operator/.

Grouping and aggregation
In the following example we will perform grouping and aggregation in order to get
statistics (sum, max, min, and avg) about NBA players and their number of points
scored. First, the map function will send the name of the player and the number of
points scored for each game. The map function will look similar to the following code:

function(){emit(this.player, this.points); }

Then, we can perform all the aggregation functions simultaneously using the method
sum from the JavaScript Array object and the max/min functions of the JavaScript
Math object. The reduce function will look similar to the following code:

function(key, values) {
 var explain = {total:Array.sum(values),
 max:Math.max.apply(Math, values),

Working with MapReduce

[260]

 min:Math.min.apply(Math, values),
 avg:Array.sum(values)/values.length}
 return explain
}

For this example we will create synthetic data, randomly mixing the name of the
10 players and we will assign a random score between 0 and 100. Then, we will
insert the data into a MongoDB collection called Games. The complete code is
listed as follows:

import random as ran
import pymongo
con = pymongo.Connection()
db = con.basketball
games = db.games

players = ["LeBron James",
 "Allen Iverson",
 "Kobe Bryant",
 "Rick Barry",
 "Dominique Wilkins",
 "George Gervin",
 "Dwyane Wade",
 "Jerry West",
 "Pete Maravich",
 "Carmelo Anthony"]
for x in range(100):
 games.insert({ "player" : players[ran.randint(0,9)],
 "points" : ran.randint(0,100)})

The collection Games will look similar to the following screenshot. We can observe
that a player can appear several times with different point scores:

Chapter 13

[261]

Finally, we will perform the MapReduce process using the map/reduce functions
seen at the beginning of this section and implement it in pymongo. We will store the
output in the _result collection. We can see the complete code as follows:

from pymongo import MongoClient from bson.code import Code
con = MongoClient()db = con.basketball
games = db.games

map = Code("""function(){
 emit(this.player, this.points);
 }""")

reduce = Code("""function(key, values) {
 var explain = {total:Array.sum(values),
 max:Math.max.apply(Math, values),
 min:Math.min.apply(Math, values),
 avg:Array.sum(values)/values.length}
 return explain;
 }""")

result = games.map_reduce(map,reduce,"_result")
print(result)

The result of the grouping and aggregation will look similar to the following screenshot:

All the codes and datasets of this chapter can be found in
the author's GitHub repository at https://github.com/
hmcuesta/PDA_Book/tree/master/Chapter13.

Working with MapReduce

[262]

Word cloud visualization of the most
common positive words in tweets
In this example, we will develop a simple application that counts the number of
occurrences of each word in the positive tweets. First, we will split each tweet into
words. Then, we remove all the URLs (http://...) and twitter users (@...). Next, we
will remove all the words with three or less characters (such as the, why, she, him,
and so on). Finally, the counted word frequencies will be visualized into a word
cloud. In the code listed as follows, we implement the JavaScript map function to
split words from tweets:

function(){
 this.text.split(' ').forEach(
 function(word){
 var txt = word.toLowerCase();
 if(!(/^@/).test(txt) &&
 txt.length >= 3 &&
 !(/^http/).test(txt)){
 emit(txt,1)
 }
 }
}

The input will look similar to the following code snippet:

'text': '@SomeUsr After using LaTeX a lot any other typeset
mathematics just looks greate. http://www.latex.org',

The output will look similar to the following code snippet. For each word, the emit
function will be called:

["after", "using", "latex", "other", "typeset", "mathematics", "
just", "looks", "great"]

In the code listed as follows, we implement the JavaScript reduce function to get the
frequency of occurrence of each word:

function(key, values) {
 var res = 0;
 values.forEach(function(v){ res += 1})
 return {count: res};
}

In Chapter 11, Sentiment Analysis of Twitter Data, we already
discussed how a bag-of-words model is a common method for
document classification by using the frequency of occurrences of
each word as a feature for the classifier.

Chapter 13

[263]

For this example we will use the database Corpus and the tweets collection created
in the Inserting Documents with PyMongo section in Chapter 12, Data Processing and
Aggregation with MongoDB. Each document in the tweets collection will look similar
to the following format:

{'via': 'latex',
 'sentiment': 4,
 'text': '@SomeUsr After using LaTeX a lot any other typeset
mathematics just looks greate. http://www.latex.org',
 'user': 'yomcat',
 'date': 'Sun Jun 14 04:31:28 UTC 2009',
 '_id': ObjectId('51ed71359dd27c0b94666696'),
 'id': 14071}

In the following code, we will implement a map_reduce method for querying only
the positive tweets (sentiment = 4) as an input collection:

from pymongo import MongoClientfrom bson.code import Code
import csv

con = MongoClient()db = con.Corpus
tweets = db.tweets
map = Code("""function(){
 this.text.split(' ').forEach(
 function(word){
 var txt = word.toLowerCase();
 if(!(/^@/).test(txt) &&
 txt.length > 3 &&
 !(/^http/).test(txt)){
 emit(txt,1)
 }
 }
)
}""")

reduce = Code("""function(key, values) {
 var res = 0;
 values.forEach(function(v){ res += 1})
 return {count: res};
 }""")

result = tweets.map_reduce(map,reduce,"TweetWords",
query={"sentiment":4})

Working with MapReduce

[264]

The output collection will be stored in TweetWords. We can check the number of
resulted words (2173) with the following command:

db.runCommand({ count: TweetWords })

In the following screenshot, we can see the count and content of the collection
TweetWords:

Now, for our visualization we need a csv file with the 50 most frequent words. In
the following code we will perform a query on the TweetWords collection by sorting
the result in descending order and limiting the output to only the first 50 documents.
Finally, we will store the output in the file data.csv:

with open("data.csv", "w") as f:
 f_csv = csv.writer(f, delimiter=',')
 f_csv.writerow(["text","size"])

 for doc in db.TweetWords.find()
 .sort("value", direction = -1)
 .limit(50):
 f_csv.writerow([doc["_id"],doc["value"]["count"]+30])
 print(doc)

Chapter 13

[265]

We can see the output of the query in the following screenshot:

In this example we will use the word-cloud layout written in D3.js by Jason Davies.
We will obtain data.csv created in the earlier python code using the d3.csv function.

You can download the d3-cloud layout from the Jason Davies GitHub
repository at https://github.com/jasondavies/d3-cloud/.

In the following code we can see the implementation of the d3.layout.cloud.js
file using the data obtained from MongoDB:

<!DOCTYPE html>
<meta charset="utf-8">
<body>
<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="d3.layout.cloud.js"></script>
<script>
 var fill = d3.scale.category20();
 var data = [];

 d3.csv("data.csv", function(w) {
 w.forEach(function (d) {
 data.push({text: d.text, size: d.size});
 });

The data.csv file will look similar to the following file:

text,size
love,58.0
good,48.0
just,48.0

Working with MapReduce

[266]

with,48.0
have,47.0
night,45.0
from,43.0
nike,43.0
. . .

 d3.layout.cloud().size([800, 400])
 .words(data)
 .padding(5)
 .rotate(function() { return ~~(Math.random() * 2) * 90; })
 .font("Impact")
 .fontSize(function(d) { return d.size; })
 .on("end", draw)
 .start();
});

 function draw(words) {
 d3.select("body").append("svg")
 .attr("width", 800)
 .attr("height", 400)
 .append("g")
 .attr("transform", "translate(350,250)")
 .selectAll("text")
 .data(words)
 .enter().append("text")
 .style("font-size", function(d) { return d.size + "px"; })
 .style("font-family", "Impact")
 .style("fill", function(d, i) { return fill(i); })
 .attr("text-anchor", "middle")
 .attr("transform", function(d) {
 return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate +
")";
 })
 .text(function(d) { return d.text; });
 }
</script>

Chapter 13

[267]

In the following screenshot we can see the result in the word cloud of the most
frequent words in the positive tweets:

Summary
In this chapter, we explored the basic concepts of the MapReduce programming
model and how to implement common activities such as grouping, aggregation,
counting, and summing in MongoDB.

MapReduce is a powerful tool for log analysis and data processing. In this chapter,
we learned how to get easy but powerful aggregation capabilities implemented in
Python using PyMongo.

In the next chapter, we will explore an online Python tool for data analysis and
development called Wakari.

Online Data Analysis with
IPython and Wakari

In this chapter, we will introduce an online tool for data analysis called Wakari, in
which we will set up a complete Python environment within a few seconds. Then,
we will present some of the capabilities of Wakari through IPython Notebook, by
using the PIL and Pandas libraries.

In this chapter, we will cover:

• Getting started with Wakari
• Getting started with IPython Notebook:

 ° Data Visualization

• Introduction to image processing with PIL:
 ° Image object
 ° Image histogram
 ° Image filtering, operations, and transformations

• Introduction to data analysis with Pandas:
 ° Working with time series
 ° Working with multivariate dataset with the DataFrame object
 ° Grouping, aggregation, and correlation

• Multiprocessing with IPython
• Sharing your notebook

Online Data Analysis with IPython and Wakari

[270]

Getting started with Wakari
Wakari is a cloud service for collaborative Python data-analysis environments,
created by Continuum Analytics. Wakari provides a powerful set of preconfigured
Python environments built over Anaconda, which is a free Python distribution
for large-scale data processing and scientific computing. Wakari uses an IPython
GUI, which is a Python shell improved for writing, debugging, and testing Python
code for scientific computing. IPython provides a terminal-based interface and an
HTML notebook similar to Wolfram-Mathematica. In Wakari, we can either use the
terminal console or the IPython Notebook.

Wakari helps us to set up a complete scientific Python environment without any
local installation. This can be very convenient for learning purposes, because we may
start coding right away and the Anaconda distribution includes several of the most
used libraries such, as NumPy, SciPy, Matplotlib, PIL, Pandas, Numba, and so on.

In Wakari, we may use different kinds of terminals such as Python, Shell, IPython, or
SSH. However, in this chapter we will focus on the use of IPython Notebook.

IPython Notebook is a rich web interface for coding. The notebook is a great tool for
teaching and presenting Python code in an interactive interface. In this chapter, we
will use the IPython Notebook included in Wakari, and we will test some of their
capabilities by implementing examples in PIL (Python Image Library) and Pandas.

For more information about IPython, visit
http://ipython.org/.

Creating an account in Wakari
To start working with Wakari, we need to create an account, or log in if we already
have an account. We can create a new account using the following link:

https://www.wakari.io/

Chapter 14

[271]

In the following screenshot, we can see the web form to register a new free account.
In this chapter, we will work with the free account, which has some restrictions.
However, we may find plans from 10 dollars, which can give us access via SSH
and the capability to execute long-run jobs.

Online Data Analysis with IPython and Wakari

[272]

Once we log in to Wakari, the interface will look similar to the following screenshot,
with tabs on the right side of the window for the terminals, IPython Notebooks and a
New Notebook button. On the left side of the window, we may see the account path
with the resources (files and folders uploaded by the user):

If we click on the Terminals tab, we may add a new Python shell, Linux shell, or
IPython shell. In the following screenshot, we observe a new Python shell:

Chapter 14

[273]

If we click on Tools and then select Anaconda Environments, we can see a complete
list of the installed packages and modules as shown in the following screenshot:

Getting started with IPython Notebook
The IPython Notebook (NB) is a web interface for our python code. NB is based in a
JSON format, sharable and portable in .pynb file format.

To start with a blank notebook, we will click on the New Notebook button. In
the following screenshot, we can see how to change the name by clicking on the
Untitled0 label, and then we will rename the notebook:

Online Data Analysis with IPython and Wakari

[274]

The NB will have access to all resources (text files, images, and so on) in the path.
We can upload the text files, images, and other content to the Wakari platform by
clicking on the Upload icon (see the arrow in the following screenshot), then we will
select the files, and finally we will click on the Upload Files button as shown in the
following screenshot:

Finally, we will click on the play icon (see the arrow in the following screenshot) to
run the code of our NB. We will get a numbered output for each of our input codes
as visible in the following screenshot. We may code several lines in the same input
(In [1]) which we call cells, and as a result we can see the plot in the output (Out
[1]). We also have access to all the modules included in the Anaconda distribution
and all the resources in the path:

Chapter 14

[275]

When we need to save the progress of our NB, we will click on the File menu and
then select Save. If we need to create a local copy of our NB, we can click on the
File menu and then click on Download as. Next, we can choose either the NB file
(.ipynb) or the raw Python code (.py).

You can find more information about IPython Notebook
from http://ipython.org/notebook.html.

Data visualization
Wakari supports two methods of plotting. The first method is by using matplotlib
and all its capabilities. PyLab is just a wrapper for modules such as matplotlib,
numpy, and scipy, for numerical analysis and computation. In the following
screenshot, we can see plot_surface implementing an Axes3D object:

Online Data Analysis with IPython and Wakari

[276]

You can find more information about matplotlib
from http://matplotlib.org/.

The second method for plotting in Wakari is through their custom plotting
library webplot (still in development), which creates SVG graphics, currently
just supporting line plots and scatter plots. In the following screenshot, we can
observe an example of a scatter plot of random points using webplot:

Introduction to image processing with
PIL
The goal of this chapter is to present some of the preinstalled capabilities of Wakari.
In this section, we will explore some of the basic functions of the PIL (Python Image
Library) such as histogram, filters, operations, and transformations. We have already
installed and used PIL in Chapter 5, Similarity-based Image Retrieval.

Chapter 14

[277]

First, we will upload the images 412.jpg (Dinosaur) and 826.jpg (Land) to the path
(see the arrow in the following screenshot). The images came from the Caltech-256
images-dataset used in the Chapter 5, Similarity-based Image Retrieval.

Opening an image
The first thing we need to start working on is importing the PIL and pylab modules.
Next, we will use the open method of the Image object. Finally, we will visualize the
image with the imshow method of pylab. In the following screenshot, we may see the
output of the code:

You can find more information about PIL from
http://www.pythonware.com/products/pil/.

Image histogram
A histogram is the distribution of the frequency of the intensity of each pixel. PIL
provide us with a histogram method, which will get the frequency of each tone
of color. As our images are in RGB (Red, Green, Blue), we will get an array of
768 values (256 tones x 3 colors).

Often, we will need the histogram of a grayscale image because it will be easier to
work with only 256 values of gray intensity instead of the full RGB color model. In
PIL we just add the L parameter to the histogram method and the image will be
treated as a grayscale image:

hist = land.histogram("L")

Online Data Analysis with IPython and Wakari

[278]

In the following screenshot, we will get the RGB histogram of the image (826.jpg)
and we will plot the histogram using the hist method of pylab:

Chapter 14

[279]

Filtering
The filter method will return a copy of the image filtered by the given filter. We
will use the ImageFilter object, which currently supports the BLUR, CONTOUR,
DETAIL, EDGE_ENHANCE, EDGE_ENHANCE_MORE, EMBOSS, FIND_EDGES, SMOOTH, SMOOTH_
MORE, and SHARPEN filters. In this section, we will test some of the common filters and
plot them with the imshow method of pylab. In the following screenshot, we observe
the BLUR filter applied to the image of the dinosaur:

In the following screenshot, we observe the FIND_EDGES filter applied to the image of
the dinosaur:

Online Data Analysis with IPython and Wakari

[280]

In the following screenshot, we observe the EDGES_ENHANCE_MORE filter applied to
the image of the land:

In the following screenshot, we observe the COUNTOUR filter applied to the image of
the land:

For reference documentation of ImageFilter object,
visit http://bit.ly/1fenKFq.

Chapter 14

[281]

Operations
PIL include some of the most common image processing operations ready to be used
with the ImageOps object.

In the following screenshot, we can see the dinosaur image using the invert
operation, which inverts each pixel value (photographic negative). We will
use the invert method from the ImageOps object included in the PIL library:

In the following screenshot, we can see the dinosaur image converted to grayscale:

Online Data Analysis with IPython and Wakari

[282]

In the following screenshot, we can see the dinosaur image using a solarize
method, which inverts all the pixel values above a given threshold:

For more information about the ImageOps object,
visit http://bit.ly/1741meW.

Transformations
PIL provide us with several methods for image transformations such as transform,
transpose, crop, and so on.

In the following screenshot, we see a rotated copy of the land image using the
transpose method and we may use any of the options such as FLIP_LEFT_RIGHT,
FLIP_TOP_BOTTOM, ROTATE_90, ROTATE_180, or ROTATE_270.

Chapter 14

[283]

In the following screenshot, we may see a rectangular region of the land image
using the crop method, which receives a list with the pixel coordinates (left, upper,
right, and lower). The crop method returns a copy of the rectangular region from
the image:

Getting started with Pandas
Pandas is a great library for data manipulation and analysis, written by Wes
McKinney. Pandas provide us with optimized data structures such as Series
and DataFrame, which are well suited for descriptive statistics, indexing, and
aggregation. Pandas is already installed in the Anaconda distribution used in
Wakari. In this section, we will present the basic operations with Pandas for time
series and multivariate data. We may find more information about Pandas at
http://pandas.pydata.org/.

Working with time series
Time series helps us to understand the change in a variable through time. Pandas
include specific functionality in order to work with time series transparently. For this
section, we need to upload the Gold.csv file used in Chapter 7, Predicting Gold Prices.
The first five rows in the file will look as follows:

date,price

1/31/2003,367.5

2/28/2003,347.5

3/31/2003,334.9

4/30/2003,336.8

5/30/2003,361.4

. . .

Online Data Analysis with IPython and Wakari

[284]

We will load the Gold.csv file with the read_csv method (previously uploaded to
the path of your account) and we will parse the dates just by activating the parse_
date parameter (parse_dates=True). In the following screenshot, we can see that
the result of the loading is a DataFrame object with a DatetimeIndex and a data
column with the price:

Next, we will plot the time series simply by calling the plot method of our
DataFrame. In the following screenshot, we may see the gold prices from 2003
to 2013. The plot method of the DataFrame is a wrapper of plt.plot method
of the malplotlib library:

Chapter 14

[285]

We can slice the time series simply by specifying a range. In case of the following
screenshot, we just plot the records between 2006 and 2007 (["2006":"2007"]):

We may also define a specific date ts["2003/05/30"] or a specific month
ts["2003/05"]. Time series can be also sliced between two dates using the
truncate method:

ts.truncate(after = "05/30/2003")

Online Data Analysis with IPython and Wakari

[286]

Pandas provide us with flexible resampling operations to perform frequency
(monthly, yearly, weekly, daily, and so on) conversion. In the following screenshot,
we will convert monthly data into annual data using the resample method. We will
see a much smoother series in the plot:

The how parameter of the resample method could be a custom function name or
a NumPy array function that takes an array and produces aggregated data. For
example, if we want only the max values, we will set the parameter as follows:

ts.resample("A", how=[np.max])

Chapter 14

[287]

In the following screenshot, we will get three series; mean, max, and min. We will plot
them in two different ways, the first one is with the subplots=True option, which
will display three different figures, and the second one is the direct plot in which we
will see three lines in the same figure:

Online Data Analysis with IPython and Wakari

[288]

For more on Pandas time series documentation visit http://
pandas.pydata.org/pandas-docs/dev/timeseries.html.

Working with multivariate dataset with
DataFrame
In this section, we will perform some descriptive statistics with a multivariate dataset
using a Pandas DataFrame object. In this section, we will use the iris.csv dataset;
due to this we need to upload the file into the Wakari path before we start working
on our IPython Notebook. The iris flower dataset is probably the most used dataset
for classification with three categories (setosa, versicolour, virginica), four
attributes (SepalLength, SepalWidth, PetalLength, PetalWidth), and 150 rows.
We can download the iris dataset from UC Irvine Machine Learning Repository,
available at http://archive.ics.uci.edu/ml/datasets/Iris.

The first five records in the iris.csv file will look as follows:

name,SepalLength,SepalWidth,PetalLength,PetalWidth

setosa,5.1,3.5,1.4,0.2

setosa,4.9,3,1.4,0.2

setosa,4.7,3.2,1.3,0.2

setosa,4.6,3.1,1.5,0.2

setosa,5,3.6,1.4,0.2

. . .

Chapter 14

[289]

First, we need to load the iris.csv file into a DataFrame object using the read_csv
method. Then, we will plot the dataset using RadViz, which is a radial visualization
that can help us to visualize a multivariate data. The visualized attributes are
presented as anchor points, equally split around the perimeter of the circle, and in
the following screenshot we may see the SepalLength, SepalWidth, PetalLength,
PetalWidth anchors. The dataset instances (rows) are shown as points inside the
circle and this visualization can be used as a classification technique. In the following
screenshot, we can see the plot of the iris dataset using radviz method:

Online Data Analysis with IPython and Wakari

[290]

Pandas provide us with the head method (see the following screenshot), which will
get the first five records of our DataFrame and the tail method, which will get the
last five records:

We can get basic statistics from the DataFrame object with the max, min, and mean
methods individually. But we can also get a summary of the DataFrame object using
the describe method as shown in the following screenshot:

Chapter 14

[291]

With a scatterplot, we see the correlation between two variables. However, when
we have a multivariate dataset, the number of scatter plots increase. In these cases,
we can use a scatterplot matrix in order to make easier to plot the correlations of
a dataset.Pandas provide us with scatter_matrix method in pandas.tools.
plotting (see the following screenshot):

You can find Pandas DataFrame documentation at
http://pandas.pydata.org/pandas-docs/dev/dsintro.html.

Online Data Analysis with IPython and Wakari

[292]

Grouping, aggregation, and correlation
Pandas provide us with syntactic sugar for grouping and aggregation of a
DataFrame object simply by applying the groupby method and selecting a column
for the grouping:

g = iris.groupby("name")
for name, group in g: print name

>>>setosa

>>>versicolor

>>>virginica

In the following screenshot, we can see the aggregated data using the sum, max and
min methods for the dataset grouped by name.

Chapter 14

[293]

We may also call the describe method for the grouped data as shown in the
following screenshot. In this case, we will get the aggregated data for each group:

We can also group by multiple attributes, as shown in the following code:

for name, group in iris.groupby(["name", "SepalLength"]):
 print name
 print group

Online Data Analysis with IPython and Wakari

[294]

The result groups will look as follows:

('setosa', 4.3)

 name SepalLength SepalWidth PetalLength PetalWidth

13 setosa 4.3 3 1.1 0.1

('setosa', 4.4)

 name SepalLength SepalWidth PetalLength PetalWidth

8 setosa 4.4 2.9 1.4 0.2

38 setosa 4.4 3.0 1.3 0.2

42 setosa 4.4 3.2 1.3 0.2

. . .

You find the Pandas groupby method documentation at
http://pandas.pydata.org/pandas-docs/dev/groupby.html.

Pandas DataFrame provides us with a correlation function (corr) and implements
three different correlation coefficient methods; pearson (default), kendall, and
spearman using the method parameter:

iris.corr(method='spearman')

In this case, we will get the correlation between two attributes (see In[15] in the
following screenshot) and the correlation of all the attributes (see In[16] in the
following screenshot):

Chapter 14

[295]

Multiprocessing with IPython
In data analysis, we often perform processing tasks which are computationally
expensive. In these cases we will need multiprocessing tools that enable us to
improve the performance. Multiprocessing in IPython is a big enough topic to
have its own chapter. In this section, we only show how we can run a map
function into parallel processes with the Pool object in Wakari.

Pool
The Pool class is the easiest way to run a parallel process into a Wakari IPython
Notebook. In this case, we will create a function that will be applied to each element
on a numpy array by using the map_async method, which is a variant of the map
method that delivers the result asynchronously.

In the following screenshot, we can see the result of the map_async function of the
Pool object. With the get method, we will get the result when it arrives:

You can find the multiprocessing module documentation at
http://docs.python.org/2/library/multiprocessing.html.

Online Data Analysis with IPython and Wakari

[296]

Sharing your Notebook
One of the most amazing features of Wakari is that we can share our notebooks with
other Wakari users and they can import it into their accounts. This feature makes
Wakari an excellent choice for teaching a workshop or for a presentation.

The data
When our IPython Notebook is ready, we can share it with other Wakari users
just by clicking on the Share button, next to the name of our notebook in the
resources tab.

In the following screenshot we can see the Sharing window, where we may change
the name and add a description to our notebook. For paid accounts, we can also
include a password to keep our notebook private.

Chapter 14

[297]

Once we are ready, we will click on the Submit button. We will see in the Sharing
Status window that the process is complete and we can click on Link to the bundle
to see our notebook shared (see the following screenshot):

After clicking on Link to the bundle, we will see our IPython Notebook Intro to
Pandas as a read-only file. If we click on the Run/Edit this Notebook button, we will
create a copy of the notebook in our Wakari environment that we can upload freely:

Online Data Analysis with IPython and Wakari

[298]

In the following screenshot, we can see our Shared Bundles by navigating to
Account name | Settings | Sharing, there we can get the link or delete our
shared notebook:

Wakari also provides us with a gallery in which we can find good tutorials
as notebooks that we can copy and modify. You can find the gallery at
https://www.wakari.io/gallery.

All the codes and notebooks of this chapter may be found in
the author's GitHub repository at https://github.com/
hmcuesta/PDA_Book/tree/master/Chapter14.

Chapter 14

[299]

Summary
In this chapter, we have explored an interesting tool for online data analysis with
Python. Wakari provided us with a scientific environments ready to use, which
is a great tool for teaching and sharing code. In this chapter, we provided a small
introduction to image processing and to the Pandas library. In Pandas we learned
how to work with time series and multivariate dataset. Finally, we learned how to
share our IPython Notebooks with others Wakari users.

Wakari is highly recommended for all the Python community because it
provides a robust Anaconda environment out of the box and supports all
the major Python libraries.

Setting Up the Infrastructure
This chapter includes instructions for installing and configuring software packages
that support all the projects in this book.

In this chapter, we will cover the installations of:

• Python 3
• IDLE
• Numpy
• SciPy
• mlpy
• OpenRefine
• MongoDB
• UMongo
• Gephi

Installing and running Python 3
Python is a general-purpose programming language whose design philosophy
emphasizes batteries included, which provides clear and logical programs on
small and large scale.

The latest versions of Ubuntu and Fedora come with Python 2.7 out of the box. In
this book, we will use Python 3.2 for the code examples and projects. Python comes
with a large set of standard libraries that support many common programming
tasks such as collections, connecting to web servers, high-performance scientific
computing, searching text with regular expressions, reading and modifying files.

Setting Up the Infrastructure

[302]

We will make use of several Python libraries such as numpy, scipy, mlpy, nose,
pymongo. In this chapter, we will see how to install and set up all these libraries. We
can find more information on the Python's official website, http://python.org/.

Installing and running Python 3.2 on Ubuntu
To install python, simply open a command prompt and run the following command:

$ sudo apt-get install python3

To check whether everything is installed correctly, just execute the following command:

$ python3

Installing and running IDLE on Ubuntu
To install IDLE, just open a command prompt and run the following command:

$ sudo apt-get install idle3

To check whether everything is installed correctly, just execute the following command:

$ idle3

Appendix

[303]

Installing and running Python 3.2 on Windows
First, download Python 3.2 from the official website, http://www.python.org/
download/releases/3.2.3/.

The Windows version is provided as an MSI package. To install it manually, just
double click the /python-3.2.3.msi file:

By design, Python installs to a directory with the version number embedded. In this
case, Python version is 3.2 and will install at C:\Python32\, so that you can have
multiple versions of Python on the same system without any conflicts.

Python does not automatically modify the PATH environment
variable, so you will need to do it manually. Right-click on My
Computer, select Properties, Advance System Settings, and click
on the Environment Variables button.
Now edit the PATH system-variable and add ;C:\Python32\;C:\
Python32\Scripts\ to its end.

Setting Up the Infrastructure

[304]

To check whether everything is installed correctly, just execute the following
command in the Windows terminal:

>> python

Installing and running IDLE on Windows
IDLE is already installed with Python MSI installation, to run it just navigate to
Start | All Programs | Python 3.2 | IDLE (Python GUI):

Appendix

[305]

The easy_install command makes it easy to fetch and install
Python libraries and their dependencies. The most crucial third-party
Python software of all is Distribute, which extends the packaging and
installation facilities provided by distutils in the standard library.
To obtain the latest version of Distribute for Windows, run the
Python script available at http://www.lfd.uci.edu/~gohlke/
pythonlibs/#distribute. Download and execute
distribute-0.6.35.win32-py3.2.exe. Now easy_install gets
installed into c:\Python32\Scripts.

Installing and running NumPy
According to the official website http://www.numpy.org/, NumPy is the
fundamental package for scientific computing with Python. It contains
amongst other things:

• A powerful N-dimensional array object
• Sophisticated (broadcasting) functions
• Tools for integrating C/C++ and Fortran code
• Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of the generic data. Arbitrary datatypes can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of datasets.

Installing and running NumPy on Ubuntu
To install numpy, simply open a command prompt and run.

$ sudo apt-get install python3-numpy

To check whether everything is installed correctly, just execute the Python Shell
shown as follows:

$ idle3

Setting Up the Infrastructure

[306]

Then execute the following commands:

>>> import numpy
>>> numpy.test()

We need to use the nose library (that extends the test loading and
running features of unit test) when using numpy.test().
In order to install it, we just need to open a command line and run the
following command:
$ sudo apt-get install python3-nose

Or you can also execute:
$ pip install nose

For more information about the nose library, visit https://pypi.
python.org/pypi/nose/1.1.2.

Installing and running NumPy on Windows
First, download the NumPy 1.7 from the official website http://sourceforge.net/
projects/numpy/files/NumPy/1.7.0/.

Appendix

[307]

The Windows version is provided as an .exe package. To install it manually, just
double click on the /numpy-1.7.0-win32-superpack-python3.2.exe file.

To check whether everything is installed correctly, just navigate to Start | All
Programs | Python 3.2 | IDLE (Python GUI).

Then execute the following commands:

>>> import numpy
>>> numpy.test()

We need to use the nose library (that extends the test loading and
running features of unit test) when using numpy.test().
In order to install it, you just need to open a Windows command line
(CMD) and run the following command:
C:\> pip install nose

For more information about nose, visit https://pypi.python.
org/pypi/nose/1.1.2.

Setting Up the Infrastructure

[308]

Installing and running SciPy
According to the official website http://www.scipy.org/, SciPy (pronounced as
Sigh Pie) is an open-source software for mathematics, science, and engineering.
It is also the name of a very popular conference on scientific programming with
Python. The SciPy library depends on NumPy, which provides convenient and
fast N-dimensional array manipulation. The SciPy library is built to work with
NumPy arrays, and provides many user-friendly and efficient numerical routines
such as routines for numerical integration and optimization. Together, they run on
all popular operating systems, are quick to install, and are free of charge. NumPy
and SciPy are easy to use, and powerful enough to be used by some of the world's
leading scientists and engineers. If you need to manipulate numbers on a computer,
and display or publish the results, give SciPy a try!

Installing and running SciPy on Ubuntu
To install SciPy, simply open a command prompt and run the following command:

$ sudo apt-get install python3-scipy

To check whether everything is installed correctly, just execute the Python Shell
as follows:

$ idle3

Then execute the following commands:

>>> import scipy
>>> scipy.test()

Appendix

[309]

Installing and running SciPy on Windows
First, download the SciPy 0.12 from the official website, http://sourceforge.net/
projects/scipy/files/scipy/0.12.0b1/.

The Windows version is provided as an .exe package. To install it manually, just
double click the /scipy-0.12.0b1-win32-superpack-python3.2.exe/ file.

To check whether everything is installed correctly, just navigate to Start | All
Programs | Python 3.2 | IDLE (Python GUI).

Then execute the following commands:

>>> import scipy
>>> scipy.test()

Setting Up the Infrastructure

[310]

Installing and running mlpy
According with the official website http://mlpy.sourceforge.net/, mlpy
provides a wide range of state-of-the-art machine learning methods for supervised
and unsupervised problems. It is aimed at finding a reasonable compromise
among modularity, maintainability, reproducibility, usability, and efficiency. Mlpy
is multiplatform, it works with Python 2 and 3, and it is open source. Mlpy is
distributed under the GNU General Public License Version 3.

We need the following requirements:

• GCC
• Numpy 1.7
• SciPy 0.12
• GSL 1.11

Installing and running mlpy on Ubuntu
First, we need to download the latest version for Linux from http://sourceforge.
net/projects/mlpy/files/mlpy%203.5.0/.

Unzip and run the following command from the terminal:

$ sudo python3 setup.py install

The installation requires GSL 1.11 or greater. We can install the
library from Ubuntu Software Center. We just need to look and
install the GNU Scientific Library (GSL) development package.

To check whether everything is installed correctly, just open a Python shell
and execute:

>>> import mlpy

Appendix

[311]

Installing and running mlpy on Windows
First, we need to download the latest version for Windows from http://
sourceforge.net/projects/mlpy/files/mlpy%203.5.0/.

Then execute the mlpy-3.5.0.win32-py3.2.exe file and follow the wizard as
shown in the following screenshot:

The GSL library is precompiled (by Visual Studio
Express 2008) and included in mlpy.

To check whether everything is installed correctly, just open a Python shell and
execute the following command:

>>> import mlpy

Installing and running OpenRefine
According to the official website http://openrefine.org/, OpenRefine (ex-Google
Refine) is a powerful tool for working with messy data, cleaning it, transforming
it from one format into another, extending it with web services, and linking it to
databases such as Freebase.

See Chapter 3, Data Visualization, for detailed instructions about how to clean,
normalize, and export data using OpenRefine.

Setting Up the Infrastructure

[312]

In order to run OpenRefine on Windows or Linux, you need to have
installed either Java Standard Edition or OpenJDK on the computer.
You can download the latest version of JSE from the official website,
http://www.oracle.com/technetwork/java/javase/
downloads/.

Installing and running OpenRefine on Linux
First, download the OpenRefine 2.5 from the official website, http://google-
refine.googlecode.com/files/google-refine-2.5-r2407.tar.gz.

Extract, open a terminal in the directory, then type ./refine to start.

Installing and running OpenRefine on
Windows
First, download the OpenRefine 2.5 from the official website, http://google-
refine.googlecode.com/files/google-refine-2.5-r2407.zip.

Appendix

[313]

Unzip, and double-click on google-refine.exe.

Installing and running MongoDB
According to the official website http://www.mongodb.org/, MongoDB (from
humongous) is an open source document database, and the leading NoSQL database.
Written in C++, MongoDB features:

• Document-oriented storage: JSON-style documents with dynamic schemas
that offer simplicity and power

• Full index support: Index on any attribute, just like you're used to
• Replication and high availability: Mirror across LANs and WANs for scale

and peace of mind
• Auto-sharding: Scale horizontally without compromising functionality
• Querying: Rich document-based queries
• Fast in-place updates: Atomic modifiers for contention-free performance
• Map/Reduce: Flexible aggregation and data processing
• GridFS: Store files of any size without complicating your stack
• Commercial support: Enterprise class support, training, and

consulting available

Setting Up the Infrastructure

[314]

Installing and running MongoDB on Ubuntu
The easiest way to install MongoDB is through Ubuntu Software Center, as showed
in the following screenshot:

Appendix

[315]

Finally, just open a terminal and execute mongo, as shown in the following screenshot:

$ mongo

To check whether everything is installed correctly, just execute the Mongo shell as
shown in the following screenshot. Insert a record in the test collection and retrieve
that record:

> db.test.save({ a: 1 })

> db.test.save({ a: 100 })

> db.test.find()

Installing and running MongoDB on Windows
Download the latest production release of MongoDB from the official website,
http://www.mongodb.org/downloads.

There are two builds of MongoDB for Windows:

• MongoDB for Windows 64-bit runs on any 64-bit version of Windows
newer than Windows XP, including Windows Server 2008 R2 and
Windows 7 64-bit.

• MongoDB for Windows 32-bit runs on any 32-bit version of Windows newer
than Windows XP. 32-bit versions of MongoDB are only used in testing and
development systems (is limited to less of 2GB for storage capacity).

Setting Up the Infrastructure

[316]

Unzip in a folder such as c:\mongodb\.

MongoDB requires a data folder to store its files:

C:\data\db

Then to start MongoDB, we need to execute mongod.exe from the command prompt
(c:\mongodb\bin\mongod.exe) as shown in the following screenshot:

You can specify an alternate path for c:\data\db, with the dbpath
setting for mongod.exe, as in the following example:

C:\mongodb\bin\mongod.exe --dbpath c:\mongodb\data\

You can get the full list of command-line options by running mongod
with the --help option:

C:\mongodb\bin\mongod.exe --help

Appendix

[317]

Finally, just execute mongo.exe and the Mongo browser shell is ready to use, as
shown in the following screenshot:

C:\mongodb\bin\mongo.exe

MongoDB is running on the localhost interface and port 27017
by default. If you want to change the port, you need to use the
–port option of the mongod command.

To check whether everything is installed correctly, just run the Mongo shell as
shown in the following screenshot. Insert a record in the test collection and
retrieve that record:

> db.test.save({ a: 1 })

> db.test.save({ a: 100 })

> db.test.find()

Setting Up the Infrastructure

[318]

Connecting Python with MongoDB
The most popular module for working with MongoDB from Python is pymongo, it
can be easily installed in Linux using pip, as shown in the following command:

$ pip install pymongo

You may have installed multiple versions of Python. In that case, you
may want to use virtualenv of Python3, and then install packages
after activating virtualenv.
Installing python-virtualenv:
$ sudo apt-get install python-virtualenv

Setting up the virtualenv:
$ virtualenv -p /usr/bin/python3 py3env
$ source py3env/bin/activate

Installing packages for Python 3
$ pip install "package-name"

In Windows, we can install pymongo using easy_install, opening a command
prompt, and executing the following command:

C:/> easy-install pymongo

To check whether everything is installed correctly, just execute the Python shell as
shown in the following code. Insert a record in the test_rows collection and retrieve
that record:

>>> from pymongo import MongoClient

>>> con = MongoClient()

>>> db = con.test

>>> test_row = {'a':'200'}

>>> test_rows = db.rows

>>> test_rows.insert(test_row)

>>> result = test_rows.find()

>>> for x in result: print(x)

...

{'a':'200', 'id': ObjectId('5150c46b042a1824a78468b5')}

Appendix

[319]

Installing and running UMongo
According to the official website http://httpd.apache.org/, UMongo is a GUI
app that can browse and administer a MongoDB cluster. It is available for Linux,
Windows, and Mac OSX.

Features of UMongo include:

• Connecting to a single server, a replica set, or a MongoS instance
• DB ops: create, drop, and authenticate, command, eval
• Collection ops: create, rename, drop, find, insert, save
• Document ops: update, duplicate, remove
• Index ops: create, drop
• Shard ops: enable sharding, add shard, shard collection
• GUI Document builder
• Import/export data from the database to local files in JSON, BSON,

CSV format
• Support for query options and write concerns (getLastError)
• Display of numerous stats (server status, db stats, replication info, and so on)
• Mongo tree refreshes to have a real-time view of cluster (servers up/down,

durability, and so on)
• All operations are executed in background to keep UI responsive
• Background threads can repeat commands automatically
• GUI is identical on all OS
• A login Screen
• User control management
• MySQL tables management (for categories, and combo-box values)
• Content management control
• Client e-mail module

In order to run UMongo on Windows or Linux, you need to have Java
Standard Edition installed on the computer.
You can download the latest version of JSE from the official website,
http://www.oracle.com/technetwork/java/javase/
downloads/.

Setting Up the Infrastructure

[320]

See Chapter 13, Working with MapReduce, and Chapter 14, Online Data Analysis with
IPython and Wakari, for detailed examples of Umongo.

Installing and running Umongo on Ubuntu
First, download the latest version of Umongo from the official website,
http://edgytech.com/wp-content/uploads/umongo-linux-all_1-2-1.zip.

Extract the files, open the extracted folder, and double-click on launch-umongo.sh.

To check whether everything is installed correctly, we need to connect Umongo
(File/Connect) with our mongo service, as shown in the following screenshot:

Appendix

[321]

We need to input the server, port and database name. In the following screenshot, in
the left we can find our databases and collections. With left-click over any collection,
we can use the find command and the result will be set in the right tab:

Installing and running Umongo on Windows
First, download the latest version of Umongo from the official website,
http://edgytech.com/wp-content/uploads/umongo-windows-all_1-2-1.zip.

Extract the files, open the extracted folder, and double-click on umongo.exe.

Setting Up the Infrastructure

[322]

To check that everything is installed correctly, we need to connect Umongo
(File/Connect) with our mongo service, as shown in the following screenshot:

Appendix

[323]

We need to provide with the server, port, and database name. In the following
screenshot, in the left we can find our databases and collections. With left-click over
any collection we can use the find command and the result will be set in the right tab:

Installing and running Gephi
According to the official website https://gephi.org/, Gephi is an interactive
visualization and exploration platform for all kinds of networks and complex
systems, dynamic and hierarchical graphs.

See Chapter 10, Working with Social Graph, for detailed instructions about how to use
Gephi to visualize graphs.

Installing and running Gephi on Linux
First, download the Gephi 0.8.2 from the official website, https://launchpad.net/
gephi/0.8/0.8.2beta/+download/gephi-0.8.2-beta.tar.gz.

Extract, open a terminal in the directory, and then type ./bin/gephi script file
to start.

Setting Up the Infrastructure

[324]

Installing and running Gephi on Windows
First, download the Gephi 0.8.2 from the official website, https://launchpad.net/
gephi/0.8/0.8.2beta/+download/gephi-0.8.2-beta.setup.exe.

Next, we need to execute the setup.exe file (see the following screenshot) and
follow the wizard.

To check that everything is installed correctly, just navigate to Start | All Programs
| Gephi | Gephi 0.8.2.

Index
Symbols
$group aggregation operations

$addToSet 244
$avg 244
$max 244
$min 244
$sum 244

.arc elements 62

.enter() function 60, 62

A
account, Wakari

creating 270-273
ACM-KDD Cup

URL 27
Affective Norms for English Words. See

ANEW
aggregate functions

average 238
count 238
maximum 238
minimum 238
sum 238

aggregation framework, MongoDB
about 241, 242
expressions 244, 245
limitations 245
pipelines 242, 243

aggregation, MapReduce
performing 259-261

aggregation, Pandas 292
algorithms, for classification

decision trees 80
hidden Markov models 80

Naïve Bayes 80
neural networks 80
support vector machines 80

Analysis ToolPak
about 28
URL 28

ANEW 217
animation 75, 76
Apache Hadoop

about 18, 248
URL 248

Application Programming
Interface (API) 177

Artificial Intelligence (AI) 8

B
bag of words model 219
bar chart

about 55-60
d3.csv method 59
data(data) function 60
.enter() function 60
JSON file (json), records 56
selectAll function 60
transform attribute 58

Bartlett window 124
basic reproduction ratio 155
Bayesian classification 81
Bayes theorem 81
big data

about 17
challenges 18
features 17
fundamental idea 18

bigrams 217

[326]

binary classification 80
Binomial model 107
Blackman window 124
Book-Crossing Dataset

URL 27
Brownian motion 107
BSON (Binary JSON) 226, 228
BSON specification

URL 228

C
Cascading Style Sheets. See CSS
categorical data 10
CBIR tools

Fourier analysis 94
wavelets 94

c_categories variable 86
cellular automata

about 161
cell 161
global stochastic contact model 162
grid 161
neighborhood 161
SIRS model simulation, with D3.js 163-172
state 161

cellular automaton (CA) 157
Center for Disease Control (CDC) 155
classification

about 79
binary classification 80
multiclass classification 80

classifier accuracy 90, 92
classifier() function 87
clustering 44, 45
collection, MongoDB 228
computer science 7
computer vision 80
content-based image retrieval tools. See

CBIR tools
Continuum Analytics 270
correlation, Pandas 294
crop method 283
CSS 53
CSV 37
CSV file

parsing, csv module used 38

parsing, NumPy used 39
c_words variable 86

D
d3.csv method 59
D3.js

about 22, 52, 54
animations 74-76
bar chart 55-57
Cascading Style Sheets (CSS) 53
Document Object Model (DOM) 53
features 22
HyperText Markup Language (HTML) 53
implementing 110-115
interactions 74- 76
JavaScript 53
multi-line chart 70-73
pie chart 61-64
reference links 22
Scalable Vector Graphics (SVG) 54
scatter plot 64-66
single line chart 67-70
URL, for downloading 54

d3.layout.force() function 192
d3.layout.pie() function 61
d3.svg.arc() function 61
data

about 10
categorical 10
numerical 10

Data Analysis
about 7
AI 8
data 9
information 9
knowledge 9
knowledge domain 9
mathematics 9
ML 8
statistics 8

data analysis process
about 11
data exploration 13
data preparation 12
predictive modeling 13
problem definition 12

[327]

results visualization 14
Database Management Systems. See DBMS
database, MongoDB 227
data cleansing 34
data(data) function 60, 76
Data Definition Language. See DDL
Data-Driven Documents. See D3.js
data formats

about 37
CSV 37
JSON 39
XML 41
YAML 42

DataFrame
about 283
documentation, URL 291
used, for working with multivariate

dataset 288
Datahub

URL 27
Data Manipulation Language. See DML
data(pie(data)) function 62
data preparation, MongoDB

about 232, 233
data transformation, OpenRefine

used 233-235
documents, inserting with

PyMongo 235-238
data scrubbing

about 34
data transformation 36
statistical methods 34
text parsing 35, 36

dataset
about 10, 26
features 26, 27

data sharing
with IPython Notebook (NB) 296

data sources
about 26
dataset 26
Excel files 28
multimedia 30
NoSQL databases 30
open data 27
SQL databases 29

text files 28
web scraping 31

data transformation
about 36
applying 47

data visualization
features 15

data visualization, IPython
Notebook (NB) 275, 276

date format validation 36
db.collection.mapReduce() method 251
DBMS 29
DDL 29
degree distribution, graph

about 186
centrality, defining 188-190
graph histogram, exploring 187, 188

delete method, MongoDB 230
description-based image retrieval 94
Digital Signal Processing (DSP) 123
dimensionality reduction

dimension reduction 140
feature extraction 140
feature selection 140
performing 140

directed graph 176
Distribute 305
DML 29
document, MongoDB 228
Document Object Model (DOM) 53
double spiral problem, SVM 145
Dynamic Time Warping (DTW)

about 21, 94, 95
implementing 97, 98

E
EDA, types

multivariate graphical 51
multivariate non-graphical 51
univariate graphical 51
univariate non-graphical 51

elastic matching 94
e-mail subject line tester

about 82, 83
categories 82

[328]

e-mail validation 35
epidemic models

about 156
SIR model 156, 157
SIRS model 159, 160

epidemiology 154
epidemiology triangle

about 155
Agent 155
Environment 155
Host 155
Time 155

ETL 36
Euclidian distance 94
Excel files 28
explain method 232
Exploratory data analysis. See EDA
exploratory data analysis (EDA) 51, 141

F
Facebook graph

acquiring 177
acquiring, Netvizz used 178

Financial time series analysis. See FTSA
findall() function 36
find method 230
findOne method 230, 231
Flat window 124
followers, Twitter 201
followers, Twython

working with 211
format function 72
formats, text files

CSV 28
JSON 28
TSV 28
XML 28

FTSA 105, 106
functionalities, MongoDB

ad hoc queries 226
aggregation 226
load balancing 226
Map-Reduce 226
replication 226

G
GDF file

transforming, to JSON format 190, 191
g element 62
genfromtxt function 39, 124
Gephi

about 181, 323
installing, on Linux 323
installing, on Windows 324
running, on Linux 323
running, on Windows 324
URL 181, 323
used, for representing graphs 181, 182

GitHub repository
URL 55

Global stochastic contact model 162
gold prices time series

smoothing 129
Google Flu Trends data

URL 155
Google Flu Trends (GFT) 154
Google Refine Expression Language. See

GREL
graph

about 175
D3.js visualizations, creating 192-195
directed graph 176
representing, Gephi used 181, 182
structure 175
undirected graph 176
uses 175

graph analytics
about 175
categories 176
pattern-matching algorithms 176
structural algorithms 176
traversal algorithms 176

graph visualization
D3.js used 192

GREL 47
groupby method 292
group() function 35
group function, MongoDB

about 238
using 238-241

[329]

grouping, MapReduce
performing 259-261

grouping, Pandas 292-294

H
Hamming window 124
Hanning window 124
Hilary Mason. research-quality datasets

URL 27
histogram 277
Historical Exchange Rates log

URL 70
historical gold prices

using 126
HTML

about 53
URL 53

HyperText Markup Language. See HTML

I
IDLE

installing, on Ubuntu 302
installing, on Windows 304
running, on Ubuntu 302
running, on Windows 304

image dataset
processing 97

image filtering
BLUR filter 279
COUNTOUR filter 280
EDGES_ENHANCE_MORE filter 280
filter method, used 279, 280
FIND_EDGES filter 279

ImageFilter object
reference documentation 280
using 279

ImageOps object
URL 282

image processing operations
invert operation 281, 282

image processing, with PIL
filtering 279, 280
histogram 277
image, opening 277
image transformations 282, 283

operations 281
image similarity search 93, 94
image transformations 282, 283
input collection, MapReduce

filtering 258, 259
insert method, MongoDB 229
integrate method 157
interaction 74
IP address validation 36
IPython

about 295
multiprocessing 295
URL 270

IPython Notebook (NB)
about 273-275
blank notebook, starting 273, 274
data, sharing 296-298
data visualization 275
sharing 296

J
JavaScript 53
JavaScript file (.js) 52
JSON

about 39
GDF, transforming to 190

JSON file
parsing, json module used 39, 40

JSON (JavaScript Object Notation) 22, 228

K
Kaggle

URL 27
kernel functions, SVM 145
Kernel Ridge Regression (KRR) 21, 126-128
knlRidge.pred() method 129
knowledge domain 9

L
language detection 80
LDA 140
learning 80
learn method 127
Linear Discriminant Analysis. See LDA

[330]

line element 69
Linux

Gephi, installing 323
Gephi, running 323
OpenRefine, installing 312
OpenRefine, running 312

listdir function 84
list_words() function 86
location, Twython

working with 214

M
Machine Learning Datasets

URL 27
Machine Learning(ML) 8
Machine Learning Python. See mlpy
Manhattan distance 94
map function 251
MapReduce

about 17, 248
aggregation, performing 259-261
grouping, performing 259-261
implementations 248
input collection, filtering 258, 259
programming model 249
using, with MongoDB 250
word cloud visualization, in positive

tweets 262
mapReduce command 251
mapReduce method 252
MapReduce-MPI library 248
MapReduce, using with MongoDB

map function 251
Mongo shell, using 251-253
PyMongo, using 256, 257
reduce function 251
UMongo, using 254-256

mapTest function 252
massively parallel processing (MPP) data

store 18
mathematics 9
Math.random() function 65, 109
matplotlib 275
Mike Bostock's reference gallery

URL 55
Minkowski distance 95

mlpy
about 21, 310
downloading 21
features 21
installing, on Ubuntu 310
installing, on Windows 311
running, on Ubuntu 310
running, on Windows 311
URL 310

mlpy.dtw_std function 98
MongoDB

about 18, 22, 225-227, 248, 313
aggregation framework 241
collection 228
database 227
data preparation 232
delete method 230
document 228
features 313
functionalities 226
group 238
insert method 229
installing, on Ubuntu 314, 315
installing, on Windows 315
Mongo shell 229
Python, connecting with 318
queries 230, 231
reference link, for production

deployments 247
reference links 22
running, on Ubuntu 315
running, on Windows 317
update method 230
URL 226, 248, 313

Mongo shell
about 229
using 251

Monte Carlo methods 108
multiclass classification 80
multi-line chart

about 70-72
format function 72
legend, adding 73
point groups, adding 73

multimedia
about 30
applications 30

[331]

multiprocessing, IPython
about 295
Pool class 295

multivariate dataset
about 136-138
distribution 137
features 136

multivariate dataset, Pandas
working with, DataFrame used 288, 290

multivariate graphical 51
multivariate non-graphical 51

N
Naïve Bayes algorithm 81
Naive Bayes model 219, 220
NASA

URL 27
Natural Language Toolkit. See NLTK
neighborhoods, cellular automata

Global 161
Moore 161
Moore Extended 161
Von Neumann 161

Netvizz
using 178-180

nextStep function 167
NLTK

about 218
bag of words model 219
classifiers 218
installing 218
Naive Bayes model 219, 220
URL 218

nltk.word_tokenize method 219
nonlinear regression methods

reference link 126
NoSQL data stores

document store 30
graph-based store 30
key-value store 30

NoSQL (Not only SQL)
about 18, 22, 30
data stores 30
URL 30

numerical data 10
numeric facets 46

NumPy 20
about 305
installing, on Ubuntu 305
installing, on Windows 306
running, on Ubuntu 305
running, on Windows 307
URL 305
used, for parsing CSV file 39

O
OAuth

used, for accessing Twitter API 202, 204
open data

about 27
databases 27
repositories 27

OpenRefine 12
about 43, 311
clustering 44, 45
data, exporting 48
data, transforming 47
installing, on Linux 312
installing, on Windows 312
numeric facets 46
operation history 49
running, on Linux 312
running, on Windows 313
starting 43
text facet 44
text filters 46
URL 311

OrderedDict function 98
ordinary differential equations (ODE) 157

P
Pandas

about 20, 283
aggregation 292
correlation 294
DataFrame 283
grouping 292
multivariate dataset, DataFrame object

used 288
Series 283
time series 283
URL 283

[332]

PCA
about 21, 141
implementing 141-143

Phoenix system 248
pie chart

.arc elements 62

.enter() function 62
about 61
d3.layout.pie() function 61
d3.svg.arc() function 61
data(pie(data)) function 62
g element 62

Pillow 97
PIL (Python Image Library)

about 270
URL 277

pipeline operators
$group 242
$limit 243
$match 242
$skip 243
$sort 243
$unwind 243

Pool class
about 295
map_async function 295

predicted value
contrasting 132

pred method 128
prepareStep function 166
Principal Component Analysis. See PCA
Principal Component Analysis (PCA) 21
probabilistic classification 81
programming model, MapReduce 249
PyLab 275
PyMongo

used, for inserting documents 235-237
using 256, 257

Python
about 20, 301
features 20
reference link 21
reference link, for documentation and

examples 21
URL 21, 302

Python 3
libraries 302

Python 3.2
downloading 303
installing, on Ubuntu 302
installing, on Windows 303
running, on Ubuntu 302
running, on Windows 304

Q
QR code (Quick Response Code) 18
qualitative data analysis 15
quantitative data analysis

about 15
measurement levels 15

queries, MongoDB 230-232

R
RadViz 289
radviz method 289
random numbers

generating 109
randomWalk() function 113
random walk simulation 106, 107
RDBMS 29
read_csv method 284
reduce function 251
reduceTest function 252
regression analysis

about 126
gold prices time series, smoothing 129
Kernel ridge regression 126, 127
nonlinear regression 126
predicted value, contrasting 132
smoothed time series, predicting 130, 131

Relational Database Management Systems.
See RDBMS

resample method 286
reshape method 171
results, similarity-based image retrieval

analyzing 101-103
RFID (Radio-frequency identification) 18
RGB color model 97
RGB histogram

plotting, hist method used 278

[333]

S
Scalable Vector Graphics. See SVG
scatter_matrix method 291
scatter plots

about 64, 65
Math.random() function 65

Scientific Data from University of Muenster
URL 27

SciKit 20
SciPy

about 20, 308
installing, on Ubuntu 308
installing, on Windows 309
running, on Ubuntu 308
running, on Windows 309
URL 308

search engines 80
search() function 35
search, Twython

performing 204, 205
seasonal influenza (Flu) data

URL 155
selectAll function 60
sensors

QR code (Quick Response Code) 18
RFID (Radio-frequency identification) 18
using 18

Sentiment140
about 217
URL 217

sentiment analysis
about 200
performing, for tweets 221, 222

sentiment classification
about 216
ANEW 217
general process 216
text corpus 217

Series 283
Sharding 228
similarity-based image retrieval

DTW 94
DTW, implementing 97
image dataset, processing 97
image similarity search 93
implementing 93

results, analyzing 101-103
single line chart

about 67, 68
line element 69

SIR model
about 156, 157
ordinary differential equation, solving with

SciPy 157, 159
SIR_model function 157
SIRS model 159, 160
SIRS model simulation

performing in CA, with D3.js 163-172
smoothed time series

predicting 130, 131
Smoothing Window 123
Social Networks Analysis (SNA) 19, 20, 177
SpamAssassin 82
spam classification 80
spam dataset

URL 83
spam text 84
speech recognition 80
SQL 28, 29
SQL databases 29
statistical analysis

about 183
male to female ratio 184, 185

statistical methods, data scrubbing
about 34
values 34

statistics 8
statistics function 169
Structured Query Language. See SQL
support vector machine. See SVM
SVG 54
SVM

about 21, 126, 135, 144
double spiral problem 145
implementing 144
implementing, on mlpy 146-150
kernel functions 145

T
text classification

about 79
algorithm 86-88

[334]

classifier accuracy 90
data 83-85

text corpus
about 217
bigrams 217
unigrams 217

text facet 44
text files

about 28
formats 28

text filters 46
text parsing, data scrubbing

performing 35
timelines, Twython

working with 209
time series

about 119
components 121
linear time series 120
nonlinear time series 120
smoothing 123, 124, 125

Time series analysis. See TSA
time series components

Seasonality (S) 121
Trend (T) 121
Variability (V) 121

time series, Pandas
plotting 284, 286
working with 283

token-based authentication system 202
training() function 86
transform attribute 58
transform function 76
TSA 119
tweet

about 200
sentiment analysis 221, 222

Twitter
URL 200

Twitter API
about 199
accessing, OAuth used 202-204

Twitter data anatomy
about 200
followers 201
trends 201
tweet 200

Twitter trends 201
Twython

about 204
followers, working with 211, 213
location, working with 214
search, performing 204, 205, 208
timelines, working with 209
using 204

U
Ubuntu

IDLE, installing 302
IDLE, running 302
mlpy, installing 310
mlpy, running 310
MongoDB, installing 314
MongoDB, running 315
NumPy, installing 305
NumPy, running 305
Python 3.2, installing 302
Python 3.2, running 302
SciPy, installing 308
SciPy, running 308
Umongo, installing 320
Umongo, running 320

UMongo
about 227, 319
features 319
installing, on Ubuntu 320
installing, on Windows 321
running, on Ubuntu 320, 321
running, on Windows 322, 323
URL 319
using 254

undirected graph 176
unigrams 217
United States Government

URL 27
univariate graphical 51
univariate non-graphical 51
update function 169
update method, MongoDB 230

W
Wakari

about 269

[335]

account, creating 270-273
features 270
gallery, URL 298
notebooks, sharing 296
URL 270

web scraping
about 31
example 31, 32

Windows
IDLE, installing 304
IDLE, running 305
mlpy, installing 311
mlpy, running 311
MongoDB, installing 315
MongoDB, running 317
NumPy, installing 307
NumPy, running 307
OpenRefine, installing 312
OpenRefine, running 313
Python 3.2, installing 303
Python 3.2, running 304
SciPy, installing 309
SciPy, running 309
Umongo, installing 321
Umongo, running 322, 323

Wine dataset
URL 136

WOEID (Yahoo! Where On Earth ID) 214
Wolfram-Mathematica 270
word cloud visualization, in positive tweets

developing 262-265
World Bank

URL 27
World Health Organization

URL 27
World Wide Web Consortium (W3C)

URL 41

X
XML 41
XML file

parsing, xml module used 41

Y
Yahoo! Query Language (YQL) 214
YAML 42

Z
Zipfian distribution

URL 188

Thank you for buying
Practical Data Analysis

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples

3. A scenario-based tutorial to get into the
right mind-set of a machine learner (data
exploration) and successfully implement this in
your new or existing projects

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1. Get a handle on the torrent of data the modern
Internet has created

2. Recipes for every stage from collection to
analysis

3. A practical approach to analyzing data to help
you make informed decisions

Please check www.PacktPub.com for information on our titles

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-78216-516-3 Paperback: 368 pages

Over 60 recipes showing you how to design,
configure, manage, monitor, and tune a Hadoop
cluster

1. Hands-on recipes to configure a Hadoop cluster
from bare metal hardware nodes

2. Practical and in depth explanation of cluster
management commands

3. Easy-to-understand recipes for securing and
monitoring a Hadoop cluster, and design
considerations

4. Recipes showing you how to tune the
performance of a Hadoop cluster

KNIME Essentials
ISBN: 978-1-84969-921-1 Paperback: 130 pages

Perform accurate data analysis using the power of
KNIME

1. Learn the essentials of KNIME, from importing
data to data visualization and reporting

2. Utilize a wide range of data processing
solutions

3. Visualize your final datasets using KNIME's
powerful data visualization options

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started
	Computer science
	Artificial intelligence (AI)
	Machine Learning (ML)
	Statistics
	Mathematics
	Knowledge domain
	Data, information, and knowledge
	The nature of data
	The data analysis process
	The problem
	Data preparation
	Data exploration
	Predictive modeling
	Visualization of results

	Quantitative versus qualitative data analysis
	Importance of data visualization
	What about big data?
	Sensors and cameras
	Social networks analysis
	Tools and toys for this book
	Why Python?
	Why mlpy?
	Why D3.js?
	Why MongoDB?

	Summary

	Chapter 2:Working with Data
	Data sources
	Open data
	Text files
	Excel files
	SQL databases
	NoSQL databases
	Multimedia
	Web scraping

	Data scrubbing
	Statistical methods
	Text parsing
	Data transformation

	Data formats
	CSV
	Parsing a CSV file with the csv module
	Parsing a CSV file using NumPy

	JSON
	Parsing a JSON file using json module

	XML
	Parsing an XML file in Python using xml module

	YAML

	Getting started with OpenRefine
	Text facet
	Clustering
	Text filters
	Numeric facets
	Transforming data
	Exporting data
	Operation history

	Summary

	Chapter 3:Data Visualization
	Data-Driven Documents (D3)
	HTML
	DOM
	CSS
	JavaScript
	SVG

	Getting started with D3.js
	Bar chart
	Pie chart
	Scatter plot
	Single line chart
	Multi-line chart

	Interaction and animation
	Summary

	Chapter 4:Text Classification
	Learning and classification
	Bayesian classification
	Naïve Bayes algorithm

	E-mail subject line tester
	The algorithm
	Classifier accuracy
	Summary

	Chapter 5:Similarity-based Image Retrieval
	Image similarity search
	Dynamic time warping (DTW)
	Processing the image dataset
	Implementing DTW
	Analyzing the results
	Summary

	Chapter 6:Simulation of Stock Prices
	Financial time series
	Random walk simulation
	Monte Carlo methods
	Generating random numbers
	Implementation in D3.js
	Summary

	Chapter 7:Predicting Gold Prices
	Working with the time series data
	Components of a time series

	Smoothing the time series
	The data – historical gold prices
	Nonlinear regression
	Kernel ridge regression
	Smoothing the gold prices time series
	Predicting in the smoothed time series
	Contrasting the predicted value

	Summary

	Chapter 8:Working with Support Vector Machines
	Understanding the multivariate dataset
	Dimensionality reduction
	Linear Discriminant Analysis
	Principal Component Analysis

	Getting started with support vector machine
	Kernel functions
	Double spiral problem
	SVM implemented on mlpy

	Summary

	Chapter 9:Modeling Infectious Disease with Cellular Automata
	Introduction to epidemiology
	The epidemiology triangle

	The epidemic models
	The SIR model
	Solving ordinary differential equation for the SIR model with SciPy
	The SIRS model

	Modelling with cellular automata
	Cell, state, grid, and neighborhood
	Global stochastic contact model

	Simulation of the SIRS model in CA with D3.js
	Summary

	Chapter 10:Working with Social Graphs
	Structure of a graph
	Undirected graph
	Directed graph

	Social Networks Analysis
	Acquiring my Facebook graph
	Using Netvizz

	Representing graphs with Gephi
	Statistical analysis
	Male to female ratio

	Degree distribution
	Histogram of a graph
	Centrality

	Transforming GDF to JSON
	Graph visualization with D3.js
	Summary

	Chapter 11:Sentiment Analysis of Twitter Data
	The anatomy of Twitter data
	Tweet
	Followers
	Trending topics

	Using OAuth to access Twitter API
	Getting started with Twython
	Simple search
	Working with timelines
	Working with followers
	Working with places and trends

	Sentiment classification
	Affective Norms for English Words
	Text corpus

	Getting started with Natural Language Toolkit (NLTK)
	Bag of words
	Naive Bayes
	Sentiment analysis of Tweets

	Summary

	Chapter 12:Data Processing and Aggregation with MongoDB
	Getting started with MongoDB
	Database
	Collection
	Document
	Mongo shell
	Insert/Update/Delete
	Queries

	Data preparation
	Data transformation with OpenRefine
	Inserting documents with PyMongo

	Group
	The aggregation framework
	Pipelines
	Expressions

	Summary

	Chapter 13:Working with MapReduce
	MapReduce overview
	Programming model
	Using MapReduce with MongoDB
	The map function
	The reduce function
	Using mongo shell
	Using UMongo
	Using PyMongo

	Filtering the input collection
	Grouping and aggregation
	Word cloud visualization of the most common positive words in tweets
	Summary

	Chapter 14:Online Data Analysis with IPython and Wakari
	Getting started with Wakari
	Creating an account in Wakari

	Getting started with IPython Notebook
	Data visualization

	Introduction to image processing with PIL
	Opening an image
	Image histogram
	Filtering
	Operations
	Transformations

	Getting started with Pandas
	Working with time series
	Working with multivariate dataset with DataFrame
	Grouping, aggregation, and correlation

	Multiprocessing with IPython
	Pool

	Sharing your Notebook
	The data

	Summary

	Appendix:Setting Up the Infrastructure
	Installing and running Python 3
	Installing and running Python 3.2 on Ubuntu
	Installing and running IDLE on Ubuntu
	Installing and running Python 3.2 on Windows
	Installing and running IDLE on Windows

	Installing and running NumPy
	Installing and running NumPy on Ubuntu
	Installing and running NumPy on Windows

	Installing and running SciPy
	Installing and running SciPy on Ubuntu
	Installing and running SciPy on Windows

	Installing and running mlpy
	Installing and running mlpy on Ubuntu
	Installing and running mlpy on Windows

	Installing and running OpenRefine
	Installing and running OpenRefine on Linux
	Installing and running OpenRefine on Windows

	Installing and running MongoDB
	Installing and running MongoDB on Ubuntu
	Installing and running MongoDB on Windows
	Connecting Python with MongoDB

	Installing and running UMongo
	Installing and running Umongo on Ubuntu
	Installing and running Umongo on Windows

	Installing and running Gephi
	Installing and running Gephi on Linux
	Installing and running Gephi on Windows

	Index

