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Tis seventh edition of ELECTRIC MACHINERY was developed recognizing that 
the strength of this classic textbook since the first edition has been its emphasis on build-
ing an understanding of the fundamental physical principles underlying the performance 
of electric machines.  Much has changed over the years since the publication of the first 
edition due to the development of new grades of electrical steel, new insulation materi-
als, superior permanent-magnet materials, the introduction of power-electronic drives 
and controls, and the widespread availability of computers and numerical sofware which 
greatly increases the capability to apply analytical techniques to the analysis of electric 
machines. Yet the basic physical principles remain the same and this seventh edition is 
intended to retain the focus on these principles in the context of today’s technology.

KEY fEATuREs of THIs REvIsIoN ARE:

•   Te presentation of all material in the book has been carefully reviewed and revised and/
or expanded as needed for additional clarity. One such example is the expanded treatment 
of permanent-magnet ac machines in Chapter 5. Similarly, the dc-machine presentation of 
Chapter 7 has been reorganized for added clarity.

•   Numerous new examples have been added to this edition, bringing the total number of 
examples in the book to over 110.  In addition some of the examples from the previous 
edition have been revised.

•    Tis edition includes many new end-of-chapter problems.  

•    Although not a requirement for adoption of this edition, the use of MATLAB has been 
considerably expanded in examples, in practice problems, and in end-of-chapter problems.

•    New to this edition is a list of variables and their definitions which have been included at 
the end of each chapter.

•    Te seventh edition introduces some simple examples of electric-machinery dynamics 
and includes several MATLAB/Simulink examples and problems.

•   New and updated photos are included throughout the book.  

Instructor and student resources are posted on the website.  Check it out!   
Visit www.mhhe.com/umans7e.
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This edition of Electric Machinery is dedicated to
Professor Gerald Wilson, my teacher, mentor and dear friend.
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PREFACE

Since Professors Fitzgerald & Kingsley first published the first edition in 1952,
a consistent theme of ELECTRIC MACHINERY has been an emphasis on
the development of both physical insight into the characteristics of electric

machinery as well as facility with the analytical techniques used to describe their per-
formance. Much has changed since the publication of the first edition; the development
of lower-loss electrical steels, rare-earth permanent-magnet materials, improvements
in manufacturing techniques, and the advent of power-electronic control and drive
systems. The net result is that modern electric machines achieve higher efficiency and
are found in an ever-increasing number of applications.

However, the basic principles which govern the performance of electric machin-
ery remain unchanged. The long-standing reputation of ELECTRIC MACHINERY
stems in great part from the emphasis on these fundamentals principles. The chal-
lenge in producing each new edition is to appropriately “modernize” the treatment
while retaining this basic focus. Modernization in previous editions has included an
introduction of rare-earth permanent-magnet materials, the inclusion of permanent-
magnet ac machines, variable-reluctance machines, and stepping motors as well as a
discussion of field-oriented control algorithms.

A significant addition to the sixth edition was the introduction of MATLAB®

for use in examples and practice problems as well as in end-of-chapter problems.
MATLAB1 is widely used in many universities and is available in a student version2.
Although very little in the way of sophisticated mathematics is required of the reader
of ELECTRIC MACHINERY, the mathematics can get somewhat messy and tedious.
This is especially true in the analysis of ac machines in which there is a significant
amount of algebra involving complex numbers. Analytic tools such as MATLAB can
relieve the student of having to perform lengthy calculations which in themselves do
little to enhance understanding.

Consider: At the time of the publication of the first edition, the chief computa-
tional tool available to students was the slide rule. Using only a slide rule, calculating
the performance of an induction motor at a single load point, which involves solv-
ing equations with complex arguments, is a significant task which can be quite time
consuming and which leaves many opportunities for calculation error.

Fast forward to 2013. A MATLAB script to solve the same problem can be
easily written and debugged in a matter of minutes, with the solution then obtained
essentially instantaneously. With only a slight modification, the same script can be

1 MATLAB and Simulink are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760 (http://www.mathworks.com).
2 The MATLAB Student Version is published and distributed by The MathWorks, Inc.
(http://www.mathworks.com).

ix
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used to calculate, plot and investigate the performance of the motor over its complete
operating range as well as to study the effects of parameter changes, etc.; a task which,
if performed with a slide rule (or even a calculator), would require the repeated
calculation of many operating points, with each calculation as time consuming as
the first.

It should be emphasized that although MATLAB has been chosen for ELECTRIC
MACHINERY, equivalent alternative numerical-analysis programs, of which there
are many, can be used with equal effectiveness. The key point is that the use of
such programs immensely reduces the computational burden on the student and thus
significantly increases his/her ability to focus on the principles under consideration.

Note that, even in cases where it is not specifically suggested, most of the end-of-
chapter problems in the book can be worked using MATLAB or an equivalent program.
Thus, students who are comfortable using such tools should be encouraged to do so to
save themselves the need to grind through messy calculations by hand. When solving
homework problems, students should still of course be required to show on paper
how they formulated their solution, since it is the formulation of the solution that is
key to understanding the material. However, once a problem is properly formulated,
there is typically little additional to be learned from the number crunching itself. The
value of working examples and end-of-chapter problems is derived primarily from
the process of formulating the solution and from examining the results.

In addition, at the time the revision of the sixth edition was underway, topics
related to energy conversion were being re-introduced into a number of engineering
curricula. Feedback from faculty involved in these programs led to the inclusion of a
chapter which covered the basic principles of power electronics with an emphasis on
their application to electric machines. The power-electronics chapter was of course
not intended to be a substitute for a full-fledged course in power electronics. At this
time, such courses exist in many engineering programs. Faculty members surveyed
in advance of this seventh edition indicated that there is no longer a need for the
power-electronics chapter. As a result, it has been removed from the seventh edition
and moved to the seventh-edition website.

In considering this revision, there was no question of any change in the focus
on fundamental physical principles underlying the performance of electric machines
which has been the strength of ELECTRIC MACHINERY since the first edition. In
addition, a survey of current adopters of the sixth edition indicated that, with the
exception of elimination of the chapter on power electronics, there was no need to
revise the range of topics covered. On the other hand, elimination of the power-
electronics chapter resulted in space for expansion. Thus, the key features of this
revision are:

■ The presentation of all material in the book has been carefully reviewed,
revised and/or expanded as needed for additional clarity. One such example is
the expanded treatment of permanent-magnet ac machines in Chapter 5.
Similarly, the dc-machine presentation of Chapter 7 has been reorganized for
added clarity.
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■ 15 new examples have been added to this edition, bringing the total number of
examples in the book to 111, and in addition, some of the examples from the
previous edition have been revised.

■ Of the total of 371 end-of-chapter problems in this edition, 96 are new
problems. Almost all of the remaining problems, although retained in form
from the previous edition, have been altered either in substance or numerically
such that previous solutions are no longer valid.

■ The use of MATLAB has been considerably expanded in the seventh edition, in
examples, in practice problems and in end-of-chapter problems.

■ New to this edition is a list of variables and their definitions included at the end
of each chapter.

■ The seventh edition introduces some simple examples of electric-machinery
dynamics and includes a few MATLAB/Simulink® examples and problems.

■ The majority of photographs from the previous edition have been updated.

As has been the case with past editions, it is highly likely that there is simply too
much material in this edition of ELECTRIC MACHINERY for a single introductory
course. The material has been organized so that instructors can pick and choose mate-
rial appropriate to the topics which they wish to cover. The first two chapters introduce
basic concepts of magnetic circuits, magnetic materials and transformers. The third
chapter introduces the basic concept of electromechanical energy conversion. The
fourth chapter then provides an overview of, and introduction to, the various machine
types. Some instructors may choose to omit all or most of the material in Chapter 3
from an introductory course. This can be done without significantly impacting the
presentation of the material in the remainder of the book.

The next five chapters provide a more in-depth discussion of the various machine
types: synchronous machines in Chapter 5, induction machines in Chapter 6, dc
machines in Chapter 7, variable-reluctance machines in Chapter 8 and single/two-
phase machines in Chapter 9. Since the chapters are relatively independent (with the
exception of the material in Chapter 9 which builds upon the polyphase-induction-
motor discussion of Chapter 6), the order of these chapters can be changed and/or an
instructor can choose to focus on only one or two machine types and not to cover the
material in all five of these chapters.

Finally, instructors may wish to select topics from the control material of Chapter
10 rather than include it all. The material on speed control is a relatively straightfor-
ward extension of the material found in earlier chapters on the individual machine
types. The material on field-oriented control requires a somewhat more sophisticated
understanding and builds upon the dq0 transformation found in Appendix C. It would
certainly be reasonable to omit this material in an introductory course and to delay it
for a more advanced course where sufficient time is available to devote to it.

I would like to specifically acknowledge Prof. Charles Brice of the University
of South Carolina and Prof. Gerald Brown of Cedarville University who carefully
reviewed various sections of the draft and caught a number of typos and numerical
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errors. I also wish to thank the many other reviewers who provided feedback during
the planning process of this revision.

Mukhtar Ahmad – Aligarh Muslim University
Said Ahmed-Zaid – Boise State University
Steven Barrett – University of Wyoming
Tapas Kumar Bhattacharya – Indian Institute of Technology Kharagpur
Kalpana Chaudhary – Indian Institute of Technology, Banaras Hindu University,
Varanasi
Nagamani Chilakapati – National Institute of Technology Tiruchirapalli
S. Arul Daniel – National Institute of Technology Tiruchirapalli
Jora M. Gonda – National Institute of Technology Surathkal
N. Ammasai Gounden – National Institute of Technology Tiruchirapalli
Alan Harris – University of North Florida
R.K. Jarial – National Institute of Technology Hamirpur
Urmila Kar – National Institute of Technical Teachers’ Training and Research, Kolkata
M. Rizwan Khan – Aligarh Muslim University
Jonathan Kimball – Missouri University of Science and Technology
Dave Krispinsky – Rochester Institute of Technology
Prabhat Kumar – Aligarh Muslim University
Praveen Kumar – Indian Institute of Technology Guwahati
N. Kumaresan – National Institute of Technology Tiruchirapalli
Eng Gee Lim – Xi’an Jiaotong-Liverpool University
Timothy Little – Dalhousie University
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Visit the textbook website at www.mhhe.com/umans7e. The sixth edition Power
Electronics chapter has been posted to the website. For instructors, a downloadable
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version of the solutions manual, PowerPoint slides of figures from the book, and Pow-
erPoint lecture outlines are posted to the Instructor Edition. Copies of the MATLAB
and Simulink files for the various examples used in the book are available for students
and instructors.

My mother, Nettie Umans, passed away during the time of this revision. I had
looked forward to sharing the seventh edition with her; she would have been excited
to see it. She is deeply missed.

Stephen D. Umans
Belmont, MA
2013
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mart is an online resource where students can purchase the complete text online at
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To learn more about CourseSmart options, contact your sales representative or visit
www.CourseSmart.com.
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C H A P T E R 1
Magnetic Circuits and
Magnetic Materials

T he objective of this book is to study the devices used in the interconversion
of electric and mechanical energy. Emphasis is placed on electromagnetic ro-
tating machinery, by means of which the bulk of this energy conversion takes

place. However, the techniques developed are generally applicable to a wide range of
additional devices including linear machines, actuators, and sensors.

Although not an electromechanical-energy-conversion device, the transformer is
an important component of the overall energy-conversion process and is discussed
in Chapter 2. As with the majority of electromechanical-energy-conversion devices
discussed in this book, magnetically coupled windings are at the heart of transformer
performance. Hence, the techniques developed for transformer analysis form the basis
for the ensuing discussion of electric machinery.

Practically all transformers and electric machinery use ferro-magnetic material
for shaping and directing the magnetic fields which act as the medium for trans-
ferring and converting energy. Permanent-magnet materials are also widely used in
electric machinery. Without these materials, practical implementations of most famil-
iar electromechanical-energy-conversion devices would not be possible. The ability
to analyze and describe systems containing these materials is essential for designing
and understanding these devices.

This chapter will develop some basic tools for the analysis of magnetic field
systems and will provide a brief introduction to the properties of practical magnetic
materials. In Chapter 2, these techniques will be applied to the analysis of transform-
ers. In later chapters they will be used in the analysis of rotating machinery.

In this book it is assumed that the reader has basic knowledge of magnetic
and electric field theory such as is found in a basic physics course for engineering
students. Some readers may have had a course on electromagnetic field theory based
on Maxwell’s equations, but an in-depth understanding of Maxwell’s equations is not
a prerequisite for mastery of the material of this book. The techniques of magnetic-
circuit analysis which provide algebraic approximations to exact field-theory solutions

1
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2 CHAPTER 1 Magnetic Circuits and Magnetic Materials

are widely used in the study of electromechanical-energy-conversion devices and form
the basis for most of the analyses presented here.

1.1 INTRODUCTION TO MAGNETIC CIRCUITS

The complete, detailed solution for magnetic fields in most situations of practical
engineering interest involves the solution of Maxwell’s equations and requires a set
of constitutive relationships to describe material properties. Although in practice
exact solutions are often unattainable, various simplifying assumptions permit the
attainment of useful engineering solutions.1

We begin with the assumption that, for the systems treated in this book, the fre-
quencies and sizes involved are such that the displacement-current term in Maxwell’s
equations can be neglected. This term accounts for magnetic fields being produced
in space by time-varying electric fields and is associated with electromagnetic radi-
ation. Neglecting this term results in the magneto-quasi-static form of the relevant
Maxwell’s equations which relate magnetic fields to the currents which produce
them. ∮

C
Hdl =

∫
S

J · da (1.1)

∮
S

B · da = 0 (1.2)

Equation 1.1, frequently referred to as Ampere’s Law, states that the line integral
of the tangential component of the magnetic field intensity H around a closed contour C
is equal to the total current passing through any surface S linking that contour. From
Eq. 1.1 we see that the source of H is the current density J. Eq. 1.2, frequently referred
to as Gauss’ Law for magnetic fields, states that magnetic flux density B is conserved,
i.e., that no net flux enters or leaves a closed surface (this is equivalent to saying that
there exist no monopolar sources of magnetic fields). From these equations we see
that the magnetic field quantities can be determined solely from the instantaneous
values of the source currents and hence that time variations of the magnetic fields
follow directly from time variations of the sources.

A second simplifying assumption involves the concept of a magnetic circuit. It is
extremely difficult to obtain the general solution for the magnetic field intensity H and
the magnetic flux density B in a structure of complex geometry. However, in many
practical applications, including the analysis of many types of electric machines, a
three-dimensional field problem can often be approximated by what is essentially

1 Computer-based numerical solutions based upon the finite-element method form the basis for a number
of commercial programs and have become indispensable tools for analysis and design. Such tools are
typically best used to refine initial analyses based upon analytical techniques such as are found in this
book. Because such techniques contribute little to a fundamental understanding of the principles and
basic performance of electric machines, they are not discussed in this book.
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1.1 Introduction to Magnetic Circuits 3

Winding,

N turns

Magnetic

flux lines
Mean core

length lc

Cross-sectional

area Ac

i

Magnetic core

permeability μ

�
λ

+

Figure 1.1 Simple magnetic circuit. λ is the winding flux
linkage as defined in Section 1.2.

a one-dimensional circuit equivalent, yielding solutions of acceptable engineering
accuracy.

A magnetic circuit consists of a structure composed for the most part of high-
permeability magnetic material.2 The presence of high-permeability material tends
to cause magnetic flux to be confined to the paths defined by the structure, much as
currents are confined to the conductors of an electric circuit. Use of this concept of
the magnetic circuit is illustrated in this section and will be seen to apply quite well
to many situations in this book.3

A simple example of a magnetic circuit is shown in Fig. 1.1. The core is assumed
to be composed of magnetic material whose magnetic permeability μ is much greater
than that of the surrounding air (μ � μ0) where μ0 = 4π ×10−7 H/m is the magnetic
permeability of free space. The core is of uniform cross section and is excited by a
winding of N turns carrying a current of i amperes. This winding produces a magnetic
field in the core, as shown in the figure.

Because of the high permeability of the magnetic core, an exact solution would
show that the magnetic flux is confined almost entirely to the core, with the field lines
following the path defined by the core, and that the flux density is essentially uniform
over a cross section because the cross-sectional area is uniform. The magnetic field
can be visualized in terms of flux lines which form closed loops interlinked with the
winding.

As applied to the magnetic circuit of Fig. 1.1, the source of the magnetic field
in the core is the ampere-turn product Ni . In magnetic circuit terminology Ni is the
magnetomotive force (mmf)F acting on the magnetic circuit. Although Fig. 1.1 shows
only a single winding, transformers and most rotating machines typically have at least
two windings, and Ni must be replaced by the algebraic sum of the ampere-turns of
all the windings.

2 In its simplest definition, magnetic permeability can be thought of as the ratio of the magnitude of the
magnetic flux density B to the magnetic field intensity H .
3 For a more extensive treatment of magnetic circuits see A.E. Fitzgerald, D.E. Higgenbotham, and A.
Grabel, Basic Electrical Engineering, 5th ed., McGraw-Hill, 1981, chap. 13; also E.E. Staff, M.I.T.,
Magnetic Circuits and Transformers, M.I.T. Press, 1965, chaps. 1 to 3.
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The net magnetic flux φ crossing a surface S is the surface integral of the normal
component of B; thus

φ =
∫

S
B · da (1.3)

In SI units, the unit of φ is the weber (Wb).
Equation 1.2 states that the net magnetic flux entering or leaving a closed surface

(equal to the surface integral of B over that closed surface) is zero. This is equivalent
to saying that all the flux which enters the surface enclosing a volume must leave
that volume over some other portion of that surface because magnetic flux lines form
closed loops. Because little flux “leaks” out the sides of the magnetic circuit of Fig. 1.1,
this result shows that the net flux is the same through each cross section of the core.

For a magnetic circuit of this type, it is common to assume that the magnetic
flux density (and correspondingly the magnetic field intensity) is uniform across the
cross section and throughout the core. In this case Eq. 1.3 reduces to the simple scalar
equation

φc = Bc Ac (1.4)

where

φc = core flux

Bc = core flux density

Ac = core cross-sectional area

From Eq. 1.1, the relationship between the mmf acting on a magnetic circuit and
the magnetic field intensity in that circuit is.4

F = Ni =
∮

Hdl (1.5)

The core dimensions are such that the path length of any flux line is close to
the mean core length lc. As a result, the line integral of Eq. 1.5 becomes simply the
scalar product Hclc of the magnitude of H and the mean flux path length lc. Thus,
the relationship between the mmf and the magnetic field intensity can be written in
magnetic circuit terminology as

F = Ni = Hclc (1.6)

where Hc is average magnitude of H in the core.
The direction of Hc in the core can be found from the right-hand rule, which can

be stated in two equivalent ways. (1) Imagine a current-carrying conductor held in the
right hand with the thumb pointing in the direction of current flow; the fingers then
point in the direction of the magnetic field created by that current. (2) Equivalently, if
the coil in Fig. 1.1 is grasped in the right hand (figuratively speaking) with the fingers

4 In general, the mmf drop across any segment of a magnetic circuit can be calculated as
∫

Hdl over that
portion of the magnetic circuit.
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pointing in the direction of the current, the thumb will point in the direction of the
magnetic fields.

The relationship between the magnetic field intensity H and the magnetic flux
density B is a property of the material in which the field exists. It is common to assume
a linear relationship; thus

B = μH (1.7)

where μ is the material’s magnetic permeability. In SI units, H is measured in units of
amperes per meter, B is in webers per square meter, also known as teslas (T), and μ

is in webers per ampere-turn-meter, or equivalently henrys per meter. In SI units the
permeability of free space is μ0 = 4π × 10−7 henrys per meter. The permeability of
linear magnetic material can be expressed in terms of its relative permeability μr, its
value relative to that of free space; μ = μrμ0. Typical values of μr range from 2,000 to
80,000 for materials used in transformers and rotating machines. The characteristics
of ferromagnetic materials are described in Sections 1.3 and 1.4. For the present we
assume that μr is a known constant, although it actually varies appreciably with the
magnitude of the magnetic flux density.

Transformers are wound on closed cores like that of Fig. 1.1. However, energy
conversion devices which incorporate a moving element must have air gaps in their
magnetic circuits. A magnetic circuit with an air gap is shown in Fig. 1.2. When
the air-gap length g is much smaller than the dimensions of the adjacent core faces,
the core flux φc will follow the path defined by the core and the air gap and the
techniques of magnetic-circuit analysis can be used. If the air-gap length becomes
excessively large, the flux will be observed to “leak out” of the sides of the air gap
and the techniques of magnetic-circuit analysis will no longer be strictly applicable.

Thus, provided the air-gap length g is sufficiently small, the configuration of
Fig. 1.2 can be analyzed as a magnetic circuit with two series components both
carrying the same flux φ: a magnetic core of permeability μ, cross-sectional area Ac

and mean length lc, and an air gap of permeability μ0, cross-sectional area Ag and
length g. In the core

Bc = φ

Ac
(1.8)

Magnetic core

permeability μ,

Area Ac

Air gap, 

permeability μ0,

Area Ag

Air gap

length g�

Winding,

N turns

λ

Magnetic

flux lines

+
i

Mean core

length lc

Figure 1.2 Magnetic circuit with air gap.
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and in the air gap

Bg = φ

Ac
(1.9)

Application of Eq. 1.5 to this magnetic circuit yields

F = Hclc + Hgg (1.10)

and using the linear B-H relationship of Eq. 1.7 gives

F = Bc

μ
lc + Bg

μ0
g (1.11)

Here the F = Ni is the mmf applied to the magnetic circuit. From Eq. 1.10 we
see that a portion of the mmf, Fc = Hclc, is required to produce magnetic field in the
core while the remainder, Fg = Hgg produces magnetic field in the air gap.

For practical magnetic materials (as is discussed in Sections 1.3 and 1.4), Bc

and Hc are not simply related by a known constant permeability μ as described by
Eq. 1.7. In fact, Bc is often a nonlinear, multi-valued function of Hc. Thus, although
Eq. 1.10 continues to hold, it does not lead directly to a simple expression relating
the mmf and the flux densities, such as that of Eq. 1.11. Instead the specifics of the
nonlinear Bc-Hc relation must be used, either graphically or analytically. However, in
many cases, the concept of constant material permeability gives results of acceptable
engineering accuracy and is frequently used.

From Eqs. 1.8 and 1.9, Eq. 1.11 can be rewritten in terms of the flux φc as

F = φ

(
lc

μAc
+ g

μ0 Ag

)
(1.12)

The terms that multiply the flux in this equation are known as the reluctance (R)
of the core and air gap, respectively,

Rc = lc

μAc
(1.13)

Rg = g

μ0 Ag
(1.14)

and thus

F = φ(Rc + Rg) (1.15)

Finally, Eq. 1.15 can be inverted to solve for the flux

φ = F
Rc + Rg

(1.16)

or

φ = F
lc

μAc
+ g

μ0 Ag

(1.17)
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(R1 + R2)
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φ
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I

+

�

+

�

Figure 1.3 Analogy between electric and magnetic circuits.
(a) Electric circuit. (b) Magnetic circuit.

In general, for any magnetic circuit of total reluctance Rtot, the flux can be found as

φ = F
Rtot

(1.18)

The term which multiplies the mmf is known as the permeanceP and is the inverse
of the reluctance; thus, for example, the total permeance of a magnetic circuit is

Ptot = 1

Rtot
(1.19)

Note that Eqs. 1.15 and 1.16 are analogous to the relationships between the cur-
rent and voltage in an electric circuit. This analogy is illustrated in Fig. 1.3. Figure 1.3a
shows an electric circuit in which a voltage V drives a current I through resistors R1

and R2. Figure 1.3b shows the schematic equivalent representation of the magnetic
circuit of Fig. 1.2 . Here we see that the mmf F (analogous to voltage in the electric
circuit) drives a flux φ (analogous to the current in the electric circuit) through the
combination of the reluctances of the core Rc and the air gap Rg. This analogy be-
tween the solution of electric and magnetic circuits can often be exploited to produce
simple solutions for the fluxes in magnetic circuits of considerable complexity.

The fraction of the mmf required to drive flux through each portion of the magnetic
circuit, commonly referred to as the mmf drop across that portion of the magnetic
circuit, varies in proportion to its reluctance (directly analogous to the voltage drop
across a resistive element in an electric circuit). Consider the magnetic circuit of
Fig. 1.2. From Eq. 1.13 we see that high material permeability can result in low core
reluctance, which can often be made much smaller than that of the air gap; i.e., for
(μAc/ lc) � (μ0 Ag/g), Rc � Rg and thus Rtot ≈ Rg. In this case, the reluctance
of the core can be neglected and the flux can be found from Eq. 1.16 in terms of F
and the air-gap properties alone:

φ ≈ F
Rg

= Fμ0 Ag

g
= Ni

μ0 Ag

g
(1.20)
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Air gap

Flux lines

Fringing

fields

Figure 1.4 Air-gap fringing fields.

As will be seen in Section 1.3, practical magnetic materials have permeabilities which
are not constant but vary with the flux level. From Eqs. 1.13 to 1.16 we see that as
long as this permeability remains sufficiently large, its variation will not significantly
affect the performance of a magnetic circuit in which the dominant reluctance is that
of an air gap.

In practical systems, the magnetic field lines “fringe” outward somewhat as they
cross the air gap, as illustrated in Fig. 1.4. Provided this fringing effect is not excessive,
the magnetic-circuit concept remains applicable. The effect of these fringing fields is to
increase the effective cross-sectional area Ag of the air gap. Various empirical methods
have been developed to account for this effect. A correction for such fringing fields
in short air gaps can be made by adding the gap length to each of the two dimensions
making up its cross-sectional area. In this book the effect of fringing fields is usually
ignored. If fringing is neglected, Ag = Ac.

In general, magnetic circuits can consist of multiple elements in series and
parallel. To complete the analogy between electric and magnetic circuits, we can
generalize Eq. 1.5 as

F =
∮

Hdl =
∑

k

Fk =
∑

k

Hklk (1.21)

whereF is the mmf (total ampere-turns) acting to drive flux through a closed loop of a
magnetic circuit, and Fk = Hklk is the mmf drop across the k’th element of that loop.
This is directly analogous to Kirchoff’s voltage law for electric circuits consisting of
voltage sources and resistors

V =
∑

k

Rkik (1.22)

where V is the source voltage driving current around a loop and Rkik is the voltage
drop across the k’th resistive element of that loop.
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Similarly, the analogy to Kirchoff’s current law∑
n

in = 0 (1.23)

which says that the net current, i.e. the sum of the currents, into a node in an electric
circuit equals zero is ∑

n

φn = 0 (1.24)

which states that the net flux into a node in a magnetic circuit is zero.
We have now described the basic principles for reducing a magneto-quasi-static

field problem with simple geometry to a magnetic circuit model. Our limited purpose
in this section is to introduce some of the concepts and terminology used by engineers
in solving practical design problems. We must emphasize that this type of thinking
depends quite heavily on engineering judgment and intuition. For example, we have
tacitly assumed that the permeability of the “iron” parts of the magnetic circuit is a
constant known quantity, although this is not true in general (see Section 1.3), and
that the magnetic field is confined solely to the core and its air gaps. Although this is a
good assumption in many situations, it is also true that the winding currents produce
magnetic fields outside the core. As we shall see, when two or more windings are
placed on a magnetic circuit, as happens in the case of both transformers and rotating
machines, these fields outside the core, referred to as leakage fields, cannot be ignored
and may significantly affect the performance of the device.

EXAMPLE 1.1

The magnetic circuit shown in Fig. 1.2 has dimensions Ac = Ag = 9 cm2, g = 0.050 cm,
lc = 30 cm, and N = 500 turns. Assume the value μr = 70,000 for core material. (a) Find the
reluctances Rc and Rg. For the condition that the magnetic circuit is operating with Bc = 1.0 T,
find (b) the flux φ and (c) the current i .

■ Solution

a. The reluctances can be found from Eqs. 1.13 and 1.14:

Rc = lc

μrμ0 Ac

= 0.3

70, 000 (4π × 10−7)(9 × 10−4)
= 3.79 × 103 A · turns

Wb

Rg = g

μ0 Ag

= 5 × 10−4

(4π × 10−7)(9 × 10−4)
= 4.42 × 105 A · turns

Wb

b. From Eq. 1.4,

φ = Bc Ac = 1.0(9 × 10−4) = 9 × 10−4 Wb

c. From Eqs. 1.6 and 1.15,

i = F
N

= φ(Rc + Rg)

N
= 9 × 10−4(4.46 × 105)

500
= 0.80 A
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Practice Problem 1.1

Find the flux φ and current for Example 1.1 if (a) the number of turns is doubled to N = 1000
turns while the circuit dimensions remain the same and (b) if the number of turns is equal to
N = 500 and the gap is reduced to 0.040 cm.

Solution

a. φ = 9 × 10−4 Wb and i = 0.40 A
b. φ = 9 × 10−4 Wb and i = 0.64 A

EXAMPLE 1.2

The magnetic structure of a synchronous machine is shown schematically in Fig. 1.5. Assuming
that rotor and stator iron have infinite permeability (μ → ∞), find the air-gap flux φ and flux
density Bg. For this example I = 10 A, N = 1,000 turns, g = 1 cm, and Ag = 200 cm2.

■ Solution
Notice that there are two air gaps in series, of total length 2g, and that by symmetry the flux
density in each is equal. Since the iron permeability is assumed to be infinite, its reluctance is
negligible and Eq. 1.20 (with g replaced by the total gap length 2g) can be used to find the flux

φ = N Iμ0 Ag

2g
= 1000(10)(4π × 10−7)(0.02)

0.02
= 12.6 m Wb

and

Bg = φ

Ag

= 0.0126

0.02
= 0.630 T

Rotor
μ → ∞

Stator
μ → ∞ Air gap length g

Pole face,
area Ag

Air gap
permeability

μ0

Magnetic flux
lines

I

N turns

Figure 1.5 Simple synchronous machine.
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Practice Problem 1.2

For the magnetic structure of Fig. 1.5 with the dimensions as given in Example 1.2, the air-gap
flux density is observed to be Bg = 0.9 T. Find the air-gap flux φ and, for a coil of N = 500
turns, the current required to produce this level of air-gap flux.

Solution

φ = 0.018 Wb and i = 28.6 A.

1.2 FLUX LINKAGE, INDUCTANCE,
AND ENERGY

When a magnetic field varies with time, an electric field is produced in space as
determined by another of Maxwell’s equations referred to as Faraday’s law:∮

C
E · ds = − d

dt

∫
S

B · da (1.25)

Equation 1.25 states that the line integral of the electric field intensity E around a
closed contour C is equal to the time rate of change of the magnetic flux linking
(i.e., passing through) that contour. In magnetic structures with windings of high
electrical conductivity, such as in Fig. 1.2, it can be shown that the E field in the wire
is extremely small and can be neglected, so that the left-hand side of Eq. 1.25 reduces
to the negative of the induced voltage5 e at the winding terminals. In addition, the flux
on the right-hand side of Eq. 1.25 is dominated by the core flux φ. Since the winding
(and hence the contour C) links the core flux N times, Eq. 1.25 reduces to

e = N
dϕ

dt
= dλ

dt
(1.26)

where λ is the flux linkage of the winding and is defined as

λ = Nϕ (1.27)

Flux linkage is measured in units of webers (or equivalently weber-turns). Note that
we have chosen the symbol ϕ to indicate the instantaneous value of a time-varying
flux.

In general the flux linkage of a coil is equal to the surface integral of the normal
component of the magnetic flux density integrated over any surface spanned by that
coil. Note that the direction of the induced voltage e is defined by Eq. 1.25 so that if
the winding terminals were short-circuited, a current would flow in such a direction
as to oppose the change of flux linkage.

For a magnetic circuit composed of magnetic material of constant magnetic
permeability or which includes a dominating air gap, the relationship between λ

5 The term electromotive force (emf) is often used instead of induced voltage to represent that component
of voltage due to a time-varying flux linkage.
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and i will be linear and we can define the inductance L as

L = λ

i
(1.28)

Substitution of Eqs. 1.5, 1.18 and 1.27 into Eq. 1.28 gives

L = N 2

Rtot
(1.29)

from which we see that the inductance of a winding in a magnetic circuit is proportional
to the square of the turns and inversely proportional to the reluctance of the magnetic
circuit associated with that winding.

For example, from Eq. 1.20, under the assumption that the reluctance of the core
is negligible as compared to that of the air gap, the inductance of the winding in
Fig. 1.2 is equal to

L = N 2(
g/μ0 Ag

) = N 2μ0 Ag

g
(1.30)

Inductance is measured in henrys (H) or weber-turns per ampere. Equation 1.30
shows the dimensional form of expressions for inductance; inductance is proportional
to the square of the number of turns, to a magnetic permeability and to a cross-
sectional area and is inversely proportional to a length. It must be emphasized that
strictly speaking, the concept of inductance requires a linear relationship between
flux and mmf. Thus, it cannot be rigorously applied in situations where the non-
linear characteristics of magnetic materials, as is discussed in Sections 1.3 and 1.4,
dominate the performance of the magnetic system. However, in many situations of
practical interest, the reluctance of the system is dominated by that of an air gap
(which is of course linear) and the non-linear effects of the magnetic material can be
ignored. In other cases it may be perfectly acceptable to assume an average value of
magnetic permeability for the core material and to calculate a corresponding average
inductance which can be used for calculations of reasonable engineering accuracy.
Example 1.3 illustrates the former situation and Example 1.4 the latter.

EXAMPLE 1.3

The magnetic circuit of Fig. 1.6a consists of an N -turn winding on a magnetic core of infinite
permeability with two parallel air gaps of lengths g1 and g2 and areas A1 and A2, respectively.

Find (a) the inductance of the winding and (b) the flux density B1 in gap 1 when the
winding is carrying a current i . Neglect fringing effects at the air gap.

■ Solution

a. The equivalent circuit of Fig. 1.6b shows that the total reluctance is equal to the parallel
combination of the two gap reluctances. Thus

φ = Ni
R1R2
R1+R2
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(a) (b)

Ni R2R1

Area
A1

Gap 1

Gap 2

N turns

Area A2

g1 g2

μ → ∞
φ

φ1

λ

i

+

�

+

�

φ2

Figure 1.6 (a) Magnetic circuit and (b) equivalent circuit for Example 1.3.

where

R1 = g1

μ0 A1

R2 = g2

μ0 A2

From Eq. 1.28,

L = λ

i
= Nφ

i
= N 2(R1 + R2)

R1R2

= μ0 N 2

(
A1

g1

+ A2

g2

)

b. From the equivalent circuit, one can see that

φ1 = Ni

R1

= μ0 A1 Ni

g1

and thus

B1 = φ1

A1

= μ0 Ni

g1

EXAMPLE 1.4

In Example 1.1, the relative permeability of the core material for the magnetic circuit of Fig. 1.2
is assumed to be μr = 70, 000 at a flux density of 1.0 T.

a. In a practical device, the core would be constructed from electrical steel such as M-5
electrical steel which is discussed in Section 1.3. This material is highly nonlinear and its
relative permeability (defined for the purposes of this example as the ratio B/H ) varies
from a value of approximately μr = 72,300 at a flux density of B = 1.0 T to a value of on
the order of μr = 2,900 as the flux density is raised to 1.8 T. Calculate the inductance
under the assumption that the relative permeability of the core steel is 72,300.

b. Calculate the inductance under the assumption that the relative permeability is equal to
2,900.
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■ Solution

a. From Eqs. 1.13 and 1.14 and based upon the dimensions given in Example 1.1,

Rc = lc

μrμ0 Ac

= 0.3

72,300 (4π × 10−7)(9 × 10−4)
= 3.67 × 103 A · turns

Wb

while Rg remains unchanged from the value calculated in Example 1.1 as
Rg = 4.42 × 105 A·turns/Wb.

Thus the total reluctance of the core and gap is

Rtot = Rc + Rg = 4.46 × 105 A · turns

Wb

and hence from Eq. 1.29

L = N 2

Rtot

= 5002

4.46 × 105
= 0.561 H

b. For μr = 2,900, the reluctance of the core increases from a value of 3.79 × 103 A · turns /
Wb to a value of

Rc = lc

μrμ0 Ac

= 0.3

2,900 (4π × 10−7)(9 × 10−4)
= 9.15 × 104 A · turns

Wb

and hence the total reluctance increases from 4.46 × 105 A · turns / Wb to 5.34 × 105 A ·
turns / Wb. Thus from Eq. 1.29 the inductance decreases from 0.561 H to

L = N 2

Rtot

= 5002

5.34 × 105
= 0.468 H

This example illustrates the linearizing effect of a dominating air gap in a magnetic
circuit. In spite of a reduction in the permeablity of the iron by a factor of 72,300/2,900 =
25, the inductance decreases only by a factor of 0.468/0.561 = 0.83 simply because the
reluctance of the air gap is significantly larger than that of the core. In many situations, it
is common to assume the inductance to be constant at a value corresponding to a finite,
constant value of core permeability (or in many cases it is assumed simply that μr → ∞).
Analyses based upon such a representation for the inductor will often lead to results which
are well within the range of acceptable engineering accuracy and which avoid the
immense complication associated with modeling the non-linearity of the core material.

Practice Problem 1.3

Repeat the inductance calculation of Example 1.4 for a relative permeability μr = 30,000.

Solution
L = 0.554 H

EXAMPLE 1.5

Using MATLAB,6 plot the inductance of the magnetic circuit of Example 1.1 and Fig. 1.2 as
a function of core permeability over the range 100 ≤ μr ≤ 100,000.

6 “MATLAB” ia a registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760, http://www.mathworks.com. A student edition of Matlab is available.
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■ Solution
Here is the MATLAB script:

clc

clear

% Permeability of free space

mu0 = pi*4.e-7;

%All dimensions expressed in meters

Ac = 9e-4; Ag = 9e-4; g = 5e-4; lc = 0.3;

N = 500;

%Reluctance of air gap

Rg = g/(mu0*Ag);

mur = 1:100:100000;

Rc = lc./(mur*mu0*Ac);

Rtot = Rg+Rc;

L = N^2./Rtot;

plot(mur,L)

xlabel(’Core relative permeability’)

ylabel(’Inductance [H]’)

The resultant plot is shown in Fig. 1.7. Note that the figure clearly confirms that, for the
magnetic circuit of this example, the inductance is quite insensitive to relative permeability
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Figure 1.7 MATLAB plot of inductance vs. relative permeability for
Example 1.5.
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until the relative permeability drops to on the order of 1,000. Thus, as long as the effective
relative permeability of the core is “large” (in this case greater than 1,000), any non-linearities
in the properties of the core material will have little effect on the terminal properties of the
inductor.

Practice Problem 1.4

Write a MATLAB script to plot the inductance of the magnetic circuit of Example 1.1 with
μr = 70,000 as a function of air-gap length as the the air gap is varied from 0.01 cm to 0.10 cm.

Figure 1.8 shows a magnetic circuit with an air gap and two windings. In this case
note that the mmf acting on the magnetic circuit is given by the total ampere-turns
acting on the magnetic circuit (i.e., the net ampere-turns of both windings) and that
the reference directions for the currents have been chosen to produce flux in the same
direction. The total mmf is therefore

F = N1i1 + N2i2 (1.31)

and from Eq. 1.20, with the reluctance of the core neglected and assuming that Ac =
Ag, the core flux φ is

φ = (N1i1 + N2i2)
μ0 Ac

g
(1.32)

In Eq. 1.32, φ is the resultant core flux produced by the total mmf of the two windings.
It is this resultant φ which determines the operating point of the core material.

If Eq. 1.32 is broken up into terms attributable to the individual currents, the
resultant flux linkages of coil 1 can be expressed as

λ1 = N1φ = N1
2

(
μ0 Ac

g

)
i1 + N1 N2

(
μ0 Ac

g

)
i2 (1.33)

which can be written
λ1 = L11i1 + L12i2 (1.34)

N1
turns

λ1
N2

turns

i1 i2

Air gap

Magnetic core
permeability μ,
mean core length lc,
cross-sectional area Ac

φ

+

λ2

�

+

�

g

Figure 1.8 Magnetic circuit with two windings.
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where

L11 = N1
2 μ0 Ac

g
(1.35)

is the self-inductance of coil 1 and L11i1 is the flux linkage of coil 1 due to its own
current il . The mutual inductance between coils 1 and 2 is

L12 = N1 N2
μ0 Ac

g
(1.36)

and L12i2 is the flux linkage of coil 1 due to current i2 in the other coil. Similarly, the
flux linkage of coil 2 is

λ2 = N2φ = N1 N2

(
μ0 Ac

g

)
i1 + N2

2

(
μ0 Ac

g

)
i2 (1.37)

or

λ2 = L21i1 + L22i2 (1.38)

where L21 = L12 is the mutual inductance and

L22 = N2
2 μ0 Ac

g
(1.39)

is the self-inductance of coil 2.
It is important to note that the resolution of the resultant flux linkages into the

components produced by il and i2 is based on superposition of the individual effects
and therefore implies a linear flux-mmf relationship (characteristic of materials of
constant permeability).

Substitution of Eq. 1.28 in Eq. 1.26 yields

e = d

dt
(Li) (1.40)

for a magnetic circuit with a single winding. For a static magnetic circuit, the induc-
tance is fixed (assuming that material nonlinearities do not cause the inductance to
vary), and this equation reduces to the familiar circuit-theory form

e = L
di

dt
(1.41)

However, in electromechanical energy conversion devices, inductances are often time-
varying, and Eq. 1.40 must be written as

e = L
di

dt
+ i

d L

dt
(1.42)

Note that in situations with multiple windings, the total flux linkage of each
winding must be used in Eq. 1.26 to find the winding-terminal voltage.

The power at the terminals of a winding on a magnetic circuit is a measure of the
rate of energy flow into the circuit through that particular winding. The power, p, is
determined from the product of the voltage and the current

p = ie = i
dλ

dt
(1.43)
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and its unit is watts (W), or joules per second. Thus the change in magnetic stored
energy �W in the magnetic circuit in the time interval t1 to t2 is

�W =
∫

t1

t2

p dt =
∫

λ1

λ2

i dλ (1.44)

In SI units, the magnetic stored energy W is measured in joules (J).
For a single-winding system of constant inductance, the change in magnetic

stored energy as the flux level is changed from λ1 to λ2 can be written as

�W =
∫

λ1

λ2

i dλ =
∫

λ1

λ2 λ

L
dλ = 1

2L
(λ2

2 − λ2
1) (1.45)

The total magnetic stored energy at any given value of λ can be found from
setting λ1 equal to zero:

W = 1

2L
λ2 = L

2
i2 (1.46)

EXAMPLE 1.6

For the magnetic circuit of Example 1.1 (Fig. 1.2), find (a) the inductance L , (b) the magnetic
stored energy W for Bc = 1.0 T, and (c) the induced voltage e for a 60-Hz time-varying core
flux of the form Bc = 1.0 sin ωt T where ω = (2π)(60) = 377.

■ Solution

a. From Eqs. 1.16 and 1.28 and Example 1.1,

L = λ

i
= Nφ

i
= N 2

Rc + Rg

= 5002

4.46 × 105
= 0.56 H

Note that the core reluctance is much smaller than that of the gap (Rc � Rg). Thus
to a good approximation the inductance is dominated by the gap reluctance, i.e.,

L ≈ N 2

Rg

= 0.57 H

b. In Example 1.1 we found that when Bc = 1.0 T, i = 0.80 A. Thus from Eq. 1.46,

W = 1

2
Li 2 = 1

2
(0.56)(0.80)2 = 0.18 J

c. From Eq. 1.26 and Example 1.1,

e = dλ

dt
= N

dϕ

dt
= N Ac

d Bc

dt

= 500 × (9 × 10−4) × (377 × 1.0 cos (377t))

= 170 cos (377t) V
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Practice Problem 1.5

Repeat Example 1.6 for Bc = 0.8 T and assuming the core flux varies at 50 Hz instead of 60 Hz.

Solution

a. The inductance L is unchanged.
b. W = 0.115 J
c. e = 113 cos (314t) V

1.3 PROPERTIES OF MAGNETIC MATERIALS
In the context of electromechanical-energy-conversion devices, the importance of
magnetic materials is twofold. Through their use it is possible to obtain large magnetic
flux densities with relatively low levels of magnetizing force. Since magnetic forces
and energy density increase with increasing flux density, this effect plays a large role
in the performance of energy-conversion devices.

In addition, magnetic materials can be used to constrain and direct magnetic
fields in well-defined paths. In a transformer they are used to maximize the cou-
pling between the windings as well as to lower the excitation current required for
transformer operation. In electric machinery magnetic materials are used to shape the
fields to obtain desired torque-production and electrical terminal characteristics. Thus
a knowledgeable designer can use magnetic materials to achieve specific desirable
device characteristics.

Ferromagnetic materials, typically composed of iron and alloys of iron with
cobalt, tungsten, nickel, aluminum, and other metals, are by far the most common mag-
netic materials. Although these materials are characterized by a wide range of prop-
erties, the basic phenomena responsible for their properties are common to them all.

Ferromagnetic materials are found to be composed of a large number of domains,
i.e., regions in which the magnetic moments of all the atoms are parallel, giving rise
to a net magnetic moment for that domain. In an unmagnetized sample of material,
the domain magnetic moments are randomly oriented, and the net resulting magnetic
flux in the material is zero.

When an external magnetizing force is applied to this material, the domain mag-
netic moments tend to align with the applied magnetic field. As a result, the do-
main magnetic moments add to the applied field, producing a much larger value of
flux density than would exist due to the magnetizing force alone. Thus the effective
permeability μ, equal to the ratio of the total magnetic flux density to the applied
magnetic-field intensity, is large compared with the permeability of free space μ0.
As the magnetizing force is increased, this behavior continues until all the magnetic
moments are aligned with the applied field; at this point they can no longer contribute
to increasing the magnetic flux density, and the material is said to be fully saturated.

In the absence of an externally applied magnetizing force, the domain magnetic
moments naturally align along certain directions associated with the crystal structure
of the domain, known as axes of easy magnetization. Thus if the applied magnetizing
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Figure 1.9 B-H loops for M-5 grain-oriented electrical steel 0.012 in thick. Only the
top halves of the loops are shown here. (Armco Inc)

force is reduced, the domain magnetic moments relax to the direction of easy mag-
netism nearest to that of the applied field. As a result, when the applied field is reduced
to zero, although they will tend to relax towards their initial orientation, the magnetic
dipole moments will no longer be totally random in their orientation; they will retain
a net magnetization component along the applied field direction. It is this effect which
is responsible for the phenomenon known as magnetic hysteresis.

Due to this hysteresis effect, the relationship between B and H for a ferromagnetic
material is both nonlinear and multivalued. In general, the characteristics of the mate-
rial cannot be described analytically. They are commonly presented in graphical form
as a set of empirically determined curves based on test samples of the material using
methods prescribed by the American Society for Testing and Materials (ASTM).7

The most common curve used to describe a magnetic material is the B-H curve
or hysteresis loop. The first and second quadrants (corresponding to B ≥ 0) of a
set of hysteresis loops are shown in Fig. 1.9 for M-5 steel, a typical grain-oriented

7 Numerical data on a wide variety of magnetic materials are available from material manufacturers. One
problem in using such data arises from the various systems of units employed. For example,
magnetization may be given in oersteds or in ampere-turns per meter and the magnetic flux density in
gauss, kilogauss, or teslas. A few useful conversion factors are given in Appendix D. The reader is
reminded that the equations in this book are based upon SI units.
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Figure 1.10 Dc magnetization curve for M-5 grain-oriented electrical steel 0.012 in. thick.
(Armco Inc.)

electrical steel used in electric equipment. These loops show the relationship between
the magnetic flux density B and the magnetizing force H . Each curve is obtained
while cyclically varying the applied magnetizing force between equal positive and
negative values of fixed magnitude. Hysteresis causes these curves to be multivalued.
After several cycles the B-H curves form closed loops as shown. The arrows show the
paths followed by B with increasing and decreasing H . Notice that with increasing
magnitude of H the curves begin to flatten out as the material tends toward saturation.
At a flux density of about 1.7 T this material can be seen to be heavily saturated.

Notice also that as H is decreased from its maximum value to zero, the flux
density decreases but not to zero. This is the result of the relaxation of the orientation
of the magnetic moments of the domains as described above. The result is that there
remains a remanent magnetization when H is zero.

Fortunately, for many engineering applications, it is sufficient to describe the
material by a single-valued curve obtained by plotting the locus of the maximum
values of B and H at the tips of the hysteresis loops; this is known as a dc or normal
magnetization curve. A dc magnetization curve for M-5 grain-oriented electrical steel
is shown in Fig. 1.10. The dc magnetization curve neglects the hysteretic nature of
the material but clearly displays its nonlinear characteristics.

EXAMPLE 1.7

Assume that the core material in Example 1.1 is M-5 electrical steel, which has the dc magne-
tization curve of Fig. 1.10. Find the current i required to produce Bc = 1 T.
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■ Solution
The value of Hc for Bc = 1 T is read from Fig. 1.10 as

Hc = 11 A · turns/m

The mmf drop for the core path is

Fc = Hclc = 11(0.3) = 3.3 A · turns

Neglecting fringing, Bg = Bc and the mmf drop across the air gap is

Fg = Hgg = Bgg

μ0

= 1(5 × 10−4)

4π × 10−7
= 396 A · turns

The required current is

i = Fc + Fg

N
= 399

500
= 0.80 A

Practice Problem 1.6

Repeat Example 1.7 but find the current i for Bc = 1.6 T. By what factor does the current have
to be increased to result in this factor of 1.6 increase in flux density?

Solution
The current i can be shown to be 1.302 A. Thus, the current must be increased by a factor of
1.302/0.8 = 1.63. Because of the dominance of the air-gap reluctance, this is just slightly in
excess of the fractional increase in flux density in spite of the fact that the core is beginning to
significantly saturate at a flux density of 1.6 T.

1.4 AC EXCITATION
In ac power systems, the waveforms of voltage and flux closely approximate sinusoidal
functions of time. This section describes the excitation characteristics and losses
associated with steady-state ac operation of magnetic materials under such operating
conditions. We use as our model a closed-core magnetic circuit, i.e., with no air gap,
such as that shown in Fig. 1.1. The magnetic path length is lc, and the cross-sectional
area is Ac throughout the length of the core. We further assume a sinusoidal variation
of the core flux ϕ(t); thus

ϕ(t) = φmax sin ωt = Ac Bmax sin ωt (1.47)

where

φmax = amplitude of core flux ϕ in webers

Bmax = amplitude of flux density Bc in teslas

ω = angular frequency = 2π f

f = frequency in Hz
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From Eq. 1.26, the voltage induced in the N-turn winding is

e(t) = ωNφmax cos (ωt) = Emax cos ωt (1.48)

where

Emax = ωNφmax = 2π f N Ac Bmax (1.49)

In steady-state ac operation, we are usually more interested in the root-mean-
square or rms values of voltages and currents than in instantaneous or maximum
values. In general, the rms value of a periodic function of time, f (t), of period T is
defined as

Frms =
√(

1

T

∫ T

0
f 2(t) dt

)
(1.50)

From Eq. 1.50, the rms value of a sine wave can be shown to be 1/
√

2 times its peak
value. Thus the rms value of the induced voltage is

Erms = 2π√
2

f N Ac Bmax =
√

2 π f N Ac Bmax (1.51)

An excitation current iϕ , corresponding to an excitation mmf Niϕ(t), is required
to produce the flux ϕ(t) in the core.8 Because of the nonlinear magnetic properties
of the core, the excitation current corresponding to a sinusoidal core flux will be
non sinusoidal. A curve of the exciting current as a function of time can be found
graphically from the magnetic characteristics of the core material, as illustrated in
Fig. 1.11a. Since Bc and Hc are related to ϕ and iϕ by known geometric constants,
the ac hysteresis loop of Fig. 1.11b has been drawn in terms of ϕ = Bc Ac and is
iϕ = Hclc/N . Sine waves of induced voltage, e, and flux, ϕ, in accordance with
Eqs. 1.47 and 1.48, are shown in Fig. 1.11a.

At any given time, the value of iϕ corresponding to the given value of flux can
be found directly from the hysteresis loop. For example, at time t ′ the flux is ϕ′ and
the current is i ′

ϕ ; at time t ′′ the corresponding values are ϕ′′ and i ′′
ϕ . Notice that since

the hysteresis loop is multivalued, it is necessary to be careful to pick the rising-flux
values (ϕ′ in the figure) from the rising-flux portion of the hysteresis loop; similarly
the falling-flux portion of the hysteresis loop must be selected for the falling-flux
values (ϕ′′ in the figure).

Notice that, because the hysteresis loop “flattens out” due to saturation effects,
the waveform of the exciting current is sharply peaked. Its rms value Iϕ,rms is defined
by Eq. 1.50, where T is the period of a cycle. It is related to the corresponding rms
value Hrms of Hc by the relationship

Iϕ,rms = lc Hrms

N
(1.52)

The ac excitation characteristics of core materials are often described in terms
of rms voltamperes rather than a magnetization curve relating B and H . The theory

8 More generally, for a system with multiple windings, the exciting mmf is the net ampere-turns acting to
produce flux in the magnetic circuit.
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Figure 1.11 Excitation phenomena. (a) Voltage, flux, and exciting current;
(b) corresponding hysteresis loop.

behind this representation can be explained by combining Eqs. 1.51 and 1.52. From
Eqs. 1.51 and 1.52, the rms voltamperes required to excite the core of Fig. 1.1 to a
specified flux density is equal to

Erms Iϕ,rms =
√

2 π f N Ac Bmax
lc Hrms

N

=
√

2 π f Bmax Hrms(Aclc) (1.53)

In Eq. 1.53, the product Aclc can be seen to be equal to the volume of the core and
hence the rms exciting voltamperes required to excite the core with sinusoidal can be
seen to be proportional to the frequency of excitation, the core volume and the product
of the peak flux density, and the rms magnetic field intensity. For a magnetic material
of mass density ρc, the mass of the core is Aclcρc and the exciting rms voltamperes
per unit mass, Sa, can be expressed as

Sa = Erms Iϕ,rms

mass
=

√
2 π f

(
Bmax Hrms

ρc

)
(1.54)

Note that, normalized in this fashion, the rms exciting voltamperes depends only
on the frequency and Bmax because Hrms is a unique function of Bmax as determined by
the shape of the material hysteresis loop at any given frequency f . As a result, the ac
excitation requirements for a magnetic material are often supplied by manufacturers
in terms of rms voltamperes per unit mass as determined by laboratory tests on
closed-core samples of the material. These results are illustrated in Fig. 1.12 for M-5
grain-oriented electrical steel.

The exciting current supplies the mmf required to produce the core flux and the
power input associated with the energy in the magnetic field in the core. Part of this
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Figure 1.12 Exciting rms voltamperes per kilogram at 60 Hz for M-5 grain-oriented electrical
steel 0.012 in. thick. (Armco Inc.)

energy is dissipated as losses and results in heating of the core. The rest appears as
reactive power associated with energy storage in the magnetic field. This reactive
power is not dissipated in the core; it is cyclically supplied and absorbed by the
excitation source.

Two loss mechanisms are associated with time-varying fluxes in magnetic ma-
terials. The first is due to the hysteretic nature of magnetic material. As has been
discussed, in a magnetic circuit like that of Fig. 1.1, a time-varying excitation will
cause the magnetic material to undergo a cyclic variation described by a hysteresis
loop such as that shown in Fig. 1.13.

Equation 1.44 can be used to calculate the energy input W to the magnetic core
of Fig. 1.1 as the material undergoes a single cycle

W =
∮

iϕ dλ =
∮ (

Hclc

N

)
(Ac N d Bc) = Aclc

∮
Hc d Bc (1.55)

Recognizing that Aclc is the volume of the core and that the integral is the area of the
ac hysteresis loop, we see that each time the magnetic material undergoes a cycle,
there is a net energy input into the material. This energy is required to move around
the magnetic dipoles in the material and is dissipated as heat in the material. Thus
for a given flux level, the corresponding hysteresis losses are proportional to the area
of the hysteresis loop and to the total volume of material. Since there is an energy
loss per cycle, hysteresis power loss is proportional to the frequency of the applied
excitation.

The second loss mechanism is ohmic heating, associated with induced currents in
the core material. From Faraday’s law (Eq. 1.25) we see that time-varying magnetic
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fields give rise to electric fields. In magnetic materials these electric fields result
in induced currents, commonly referred to as eddy currents, which circulate in the
core material and oppose changes in flux density in the material. To counteract the
corresponding demagnetizing effect, the current in the exciting winding must increase.
Thus the resultant “dynamic” B-H loop under ac operation is somewhat “fatter”
than the hysteresis loop for slowly varying conditions and this effect increases as
the excitation frequency is increased. It is for this reason that the charactersitics
of electrical steels vary with frequency and hence manufacturers typically supply
characteristics over the expected operating frequency range of a particular electrical
steel. Note for example that the exciting rms voltamperes of Fig. 1.12 are specified at
a frequency of 60 Hz.

To reduce the effects of eddy currents, magnetic structures are usually built
with thin sheets or laminations of magnetic material. These laminations, which are
aligned in the direction of the field lines, are insulated from each other by an oxide
layer on their surfaces or by a thin coat of insulating enamel or varnish. This greatly
reduces the magnitude of the eddy currents since the layers of insulation interrupt the
current paths; the thinner the laminations, the lower the losses. In general, as a first
approximation, eddy-current loss can be considered to increase as the square of the
excitation frequency and also as the square of the peak flux density.

In general, core losses depend on the metallurgy of the material as well as the flux
density and frequency. Information on core loss is typically presented in graphical
form. It is plotted in terms of watts per unit mass as a function of flux density; often
a family of curves for different frequencies is given. Figure 1.14 shows the core loss
density Pc for M-5 grain-oriented electrical steel at 60 Hz.



Umans-3930269 book December 14, 2012 11:51

1.4 AC Excitation 27

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0.0001 0.001 0.01 0.1 1 10

Pc, W/kg

B
m

ax
, W

b
/m

2

Figure 1.14 Core loss density at 60 Hz in watts per kilogram for M-5 grain-oriented
electrical steel 0.012 in. thick. (Armco Inc.)

Nearly all transformers and certain components of electric machines use sheet-
steel material that has highly favorable directions of magnetization along which the
core loss is low and the permeability is high. This material is termed grain-oriented
steel. The reason for this property lies in the atomic structure of a crystal of the silicon-
iron alloy, which is a body-centered cube; each cube has an atom at each corner as
well as one in the center of the cube. In the cube, the easiest axis of magnetization
is the cube edge; the diagonal across the cube face is more difficult, and the diagonal
through the cube is the most difficult. By suitable manufacturing techniques most of
the crystalline cube edges are aligned in the rolling direction to make it the favorable
direction of magnetization. The behavior in this direction is superior in core loss
and permeability to nonoriented steels in which the crystals are randomly oriented to
produce a material with characteristics which are uniform in all directions. As a result,
oriented steels can be operated at higher flux densities than the nonoriented grades.

Nonoriented electrical steels are used in applications where the flux does not
follow a path which can be oriented with the rolling direction or where low cost is
of importance. In these steels the losses are somewhat higher and the permeability is
very much lower than in grain-oriented steels.

EXAMPLE 1.8

The magnetic core in Fig. 1.15 is made from laminations of M-5 grain-oriented electrical
steel. The winding is excited with a 60-Hz voltage to produce a flux density in the steel of
B = 1.5 sin ωt T, where ω = 2π60 ≈ 377 rad/sec. The steel occupies 0.94 of the core cross-
sectional area. The mass-density of the steel is 7.65 g/cm3. Find (a) the applied voltage, (b) the
peak current, (c) the rms exciting current, and (d) the core loss.



Umans-3930269 book December 14, 2012 11:51

28 CHAPTER 1 Magnetic Circuits and Magnetic Materials

25 cm

20 cm

5 cm

5 cm

5 cm

N    200 turns

e

i

Figure 1.15 Laminated steel core with winding for
Example 1.8.

■ Solution

a. From Eq. 1.26 the voltage is

e = N
dϕ

dt
= N Ac

d B

dt

= 200 × 25 cm2 × 0.94 × 1.5 × 377 cos (377t)

= 266 cos (377t) V

b. The magnetic field intensity corresponding to Bmax = 1.5 T is given in Fig. 1.10 as
Hmax = 36 A turns/m. Notice that, as expected, the relative permeability
μr = Bmax/(μ0 Hmax) = 33,000 at the flux level of 1.5 T is lower than the value of μr =
72,300 found in Example 1.4 corresponding to a flux level of 1.0 T, yet significantly larger
than the value of 2,900 corresponding to a flux level of 1.8 T.

lc = (15 + 15 + 20 + 20) cm = 0.70 m

The peak current is

I = Hmaxlc

N
= 36 × 0.70

200
= 0.13 A

c. The rms current is obtained from the value of Sa of Fig. 1.12 for Bmax = 1.5 T.

Sa = 1.5 VA/kg

The core volume and mass are

Volc = 25 cm2 × 0.94 × 70 cm = 1645 cm3

Mc = 1645 cm3 ×
(

7.65 g

1.0 cm3

)
= 12.6 kg
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The total rms voltamperes and current are

S = 1.5 VA/kg × 12.6 kg = 18.9 VA

Iϕ,rms = S

Erms

= 18.9

266/
√

2
= 0.10 A

d. The core-loss density is obtained from Fig. 1.14 as Pc = 1.2 W/kg. The total core loss is

Pcore = 1.2 W/kg × 12.6 kg = 15.1 W

Practice Problem 1.7

Repeat Example 1.8 for a 60-Hz voltage of B = 1.0 sin ωt T.

Solution

a. V = 177 cos 377t V
b. I = 0.042 A
c. Iϕ = 0.041 A
d. P = 6.5 W

1.5 PERMANENT MAGNETS
Figure 1.16a shows the second quadrant of a hysteresis loop for Alnico 5, a typical
permanent-magnet material, while Fig. 1.16b shows the second quadrant of a hys-
teresis loop for M-5 steel.9 Notice that the curves are similar in nature. However, the
hysteresis loop of Alnico 5 is characterized by a large value of residual or remanent
magnetization, Br, (approximately 1.22 T) as well as a large value of coercivity, Hc,
(approximately −49 kA/m).

The residual magnetization, Br, corresponds to the flux density which would
remain in a section of the material if the applied mmf (and hence the magnetic field
intensity H ) were reduced to zero. However, although the M-5 electrical steel also has
a large value of residual magnetization (approximately 1.4 T), it has a much smaller
value of coercivity (approximately -6 A/m, smaller by a factor of over 7500). The
coercivity Hc is the value of magnetic field intensity (which is proportional to the
mmf) required to reduce the material flux density to zero. As we will see, the lower
the coercivity of a given magnetic material, the easier it is to demagnetize it.

The significance of residual magnetization is that it can produce magnetic flux
in a magnetic circuit in the absence of external excitation such as is produced by
winding currents. This is a familiar phenomenon to anyone who has afixed notes to
a refrigerator with small magnets and is widely used in devices such as loudspeakers
and permanent-magnet motors.

9 To obtain the largest value of residual magnetization, the hysteresis loops of Fig. 1.16 are those which
would be obtained if the materials were excited by sufficient mmf to ensure that they were driven heavily
into saturation. This is discussed further in Section 1.6.
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Figure 1.16 (a) Second quadrant of hysteresis loop for Alnico 5; (b) second
quadrant of hysteresis loop for M-5 electrical steel; (c) hysteresis loop for M-5
electrical steel expanded for small B. (Armco Inc.)
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From Fig. 1.16, it would appear that both Alnico 5 and M-5 electrical steel would
be useful in producing flux in unexcited magnetic circuits since they both have large
values of residual magnetization. That this is not the case can be best illustrated by
an example.

EXAMPLE 1.9

As shown in Fig. 1.17, a magnetic circuit consists of a core of high permeability (μ → ∞),
an air gap of length g = 0.2 cm, and a section of magnetic material of length lm = 1.0 cm.
The cross-sectional area of the core and gap is equal to Am = Ag = 4 cm2. Calculate the flux
density Bg in the air gap if the magnetic material is (a) Alnico 5 and (b) M-5 electrical steel.

■ Solution

a. Since the core permeability is assumed infinite, H in the core is negligible (otherwise a
finite H would produce an infinite B). Recognizing that there is zero mmf acting on the
magnetic circuit of Fig. 1.17, we can write

F = 0 = Hgg + Hmlm

or

Hg = −
(

lm

g

)
Hm

where Hg and Hm are the magnetic field intensities in the air gap and the magnetic
material, respectively.

Since the flux must be continuous through the magnetic circuit,

φ = Ag Bg = Am Bm

or

Bg =
(

Am

Ag

)
Bm

where Bg and Bm are the magnetic flux densities in the air gap and the magnetic material,
respectively.

Air gap,

permeability

µ0, Area Ag

Magnetic

material

glm

µ → ∞

µ → ∞

Area
Am

Figure 1.17 Magnetic circuit
for Example 1.9.
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These equations can be solved to yield a linear relationship for Bm in terms of Hm

Bm = −μ0

(
Ag

Am

)(
lm

g

)
Hm = −5 μ0 Hm = −6.28 × 10−6 Hm

To solve for Bm we recognize that for Alnico 5, Bm and Hm are also related by the
curve of Fig. 1.16a. Thus this linear relationship, commonly referred to as a load line, can
be plotted on Fig. 1.16a and the solution obtained graphically, resulting in

Bg = Bm = 0.30 T = 3,000 gauss

b. The solution for M-5 electrical steel proceeds exactly as in part (a). The load line is the
same as that of part (a) because it is determined only by the permeability of the air gap and
the geometries of the magnet and the air gap. Hence from Fig. 1.16c

Bg = 3.8 × 10−5 T = 0.38 gauss

which is much less than the value obtained with Alnico 5 and is essentially negligible.

Example 1.9 shows that there is an immense difference between permanent-
magnet materials (often referred to as hard magnetic materials) such as Alnico 5 and
soft magnetic materials such as M-5 electrical steel. This difference is characterized
in large part by the immense difference in their coercivities Hc. The coercivity is a
measure of the magnitude of the mmf required to reduce the material flux density to
zero. As seen from Example 1.9, it is also a measure of the capability of the material
to produce flux in a magnetic circuit which includes an air gap. Thus we see that
materials which make good permanent magnets are characterized by large values of
coercivity Hc (considerably in excess of 1 kA/m).

A useful measure of the capability of permanent-magnet material is known as
its maximum energy product. This corresponds to the largest magnitude of the B-H
product (B · H)max found in the second quadrant of that material’s hysteresis loop.
As can be seen from Eq. 1.55, the product of B and H has the dimensions of energy
density (joules per cubic meter). We now show that operation of a given permanent-
magnet material in a magnetic circuit at this point will result in the smallest volume
of that material required to produce a given flux density in an air gap.

In Example 1.9, we found an expression for the flux density in the air gap of the
magnetic circuit of Fig. 1.17:

Bg = Am

Ag
Bm (1.56)

We also found that

Hg = −
(

lm

g

)
Hm (1.57)
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Equation 1.57 can be multiplied by μ0 to obtain Bg = μ0 Hg. Multiplying by
Eq. 1.56 yields

B2
g = μ0

(
lm Am

g Ag

)
(−Hm Bm)

= μ0

(
Volmag

Volair gap

)
(−Hm Bm) (1.58)

where Volmag is the volume of the magnet, Volair gap is the air-gap volume, and the
minus sign arises because, at the operating point of the magnetic circuit, H in the
magnet (Hm) is negative.

Solving Eq. 1.58 gives

Volmag = Volair gap B2
g

μ0(−Hm Bm)
(1.59)

which is the desired result. It indicates that to achieve a desired flux density in the air
gap, the required volume of the magnet can be minimized by operating the magnet
at the point of the largest possible value of the B-H product Hm Bm, i.e., at the point
of maximum energy product. Furthermore, the larger the value of this product, the
smaller the size of the magnet required to produce the desired flux density. Hence the
maximum energy product is a useful performance measure for a magnetic material and
it is often found as a tabulated “figure of merit” on data sheets for permanent-magnet
materials. As a practical matter, this result applies to many practical engineering
applications where the use of a permanent-magnet material with the largest available
maximum energy product will result in the smallest required magnet volume.

Equation 1.58 appears to indicate that one can achieve an arbitrarily large air-
gap flux density simply by reducing the air-gap volume. This is not true in practice
because a reduction in air-gap length will increase the flux density in the magnetic
circuit and as the flux density in the magnetic circuit increases, a point will be reached
at which the magnetic core material will begin to saturate and the assumption of
infinite permeability will no longer be valid, thus invalidating the derivation leading
to Eq. 1.58.

EXAMPLE 1.10

The magnetic circuit of Fig. 1.17 is modified so that the air-gap area is reduced to Ag = 2.0 cm2,
as shown in Fig. 1.18. Find the minimum magnet volume required to achieve an air-gap flux
density of 0.8 T.

■ Solution
Note that a curve of constant B-H product is a hyperbola. A set of such hyperbolas for different
values of the B-H product is plotted in Fig. 1.16a. From these curves, we see that the maximum
energy product for Alnico 5 is 40 kJ/m3 and that this occurs at the point B = 1.0 T and
H = −40 kA/m. The smallest magnet volume will be achieved with the magnet operating at
this point.
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Alnico 5

Air gap, permeability µo,
Area Ag = 2 cm2

g = 0.2 cmlm

µ → ∞

µ → ∞

Area
Am

Figure 1.18 Magnetic circuit for Example 1.10.

Thus from Eq. 1.56,

Am = Ag

(
Bg

Bm

)

= 2 cm2

(
0.8

1.0

)
= 1.6 cm2

and from Eq. 1.57

lm = −g

(
Hg

Hm

)
= −g

(
Bg

μ0 Hm

)

= −0.2 cm

(
0.8

(4π × 10−7)(−40 × 103)

)
= 3.18 cm

Thus the minimum magnet volume is equal to 1.6 cm2 × 3.18 cm = 5.09 cm3.

Practice Problem 1.8

Repeat Example 1.10 assuming the air-gap area is further reduced to Ag = 1.8 cm2 and that the
desired air-gap flux density is 0.6 T.

Solution
Minimum magnet volume = 2.58 cm3.

1.6 APPLICATION OF PERMANENT-MAGNET
MATERIALS

Examples 1.9 and 1.10 consider the operation of permanent-magnetic materials under
the assumption that the operating point can be determined simply from a knowledge
of the geometry of the magnetic circuit and the properties of the various magnetic
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Figure 1.19 Magnetization curves for common permanent-magnet materials.

materials involved. In fact, in practical engineering devices, the situation is often more
complex.10 This section will expand upon these issues.

Figure 1.19 shows the magnetization characteristics for a few common permanent-
magnet materials. These curves are simply the second-quadrant characteristics of the
hysteresis loops for each material obtained when the material is driven heavily into
saturation. Alnico 5 is a widely-used alloy of iron, nickel, aluminum, and cobalt orig-
inally discovered in 1931. It has a relatively large residual flux density. Alnico 8 has
a lower residual flux density and a higher coercivity than Alnico 5. It is hence less
subject to demagnetization than Alnico 5. Disadvantages of the Alnico materials are
their relatively low coercivity and their mechanical brittleness.

Ceramic permanent-magnet materials (also known as ferrite magnets) are made
from iron-oxide and barium- or strontium-carbonate powders and have lower residual
flux densities than Alnico materials but significantly higher coercivities. As a result,
they are much less prone to demagnetization. One such material, Ceramic 7, is shown
in Fig. 1.19, where its magnetization characteristic is almost a straight line. Ceramic
magnets have good mechanical characteristics and are inexpensive to manufacture.

10For a further discussion of permanent magnets and their application, see P. Campbell, Permanent
Magnet Materials and Their Application, Cambridge University Press, 1994; R.J. Parker, Advances in
Permanent Magnetism, John Wiley & Sons, 1990; R.C. O’Handley, Modern Magnetic Materials:
Principles and Applications, John Wiley & Sons, 2000; and E.P. Ferlani, Permanent Magnet and
Electromechanical Devices, Academic Press, 2001.
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Samarium-cobalt represents a significant advance in permanent-magnet technology
which began in the 1960s with the discovery of rare-earth permanent-magnet materi-
als. From Fig. 1.19 it can be seen to have a high residual flux density such as is found
with the Alnico materials, while at the same time having a much higher coercivity
and maximum energy product.

The newest of the rare-earth magnetic materials is the family of neodymium-iron-
boron materials. They feature even larger residual flux density, coercivity, and max-
imum energy product than does samarium-cobalt. The development of neodymium-
iron-boron magnets has had a tremendous impact in the area of rotating machines
and as a result permanent-magnet motors with increasingly large ratings are being
developed by manufacturers around the world.

Note that in Fig. 1.19 the hysteretic nature of the magnetization characteristics
of Alnico 5 and Alnico 8 is readily apparent while the magnetization characteristics
of the remaining materials appear to be essentially straight lines. This straight-line
characteristic is deceiving; in each case the material characteristic bends sharply
downward just as does that of the Alnico materials. However, unlike the Alnico
materials, this bend, commonly referred to as the knee of the magnetization curve,
occurs in the third quadrant and hence does not appear in Fig. 1.19.

Consider the magnetic circuit of Fig. 1.20. This includes a section of hard mag-
netic material in a core of highly permeable soft magnetic material as well as an
N -turn excitation winding. With reference to Fig. 1.21, we assume that the hard mag-
netic material is initially unmagnetized (corresponding to point (a) of the figure) and
consider what happens as current is applied to the excitation winding. Because the
core is assumed to be of infinite permeability, the horizontal axis of Fig. 1.21 can
be considered to be both a measure of the applied current i = Hlm/N as well as a
measure of H in the magnetic material.

As the current i is increased to its maximum value, the B-H trajectory rises from
point (a) in Fig. 1.21 toward its maximum value at point (b). To fully magnetize the
material, we assume that the current has been increased to a value imax sufficiently large

Permanent

magnetic

material

lm

Core, µ → ∞

N turns

i

Figure 1.20 Magnetic circuit
including both a permanent magnet
and an excitation winding.
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Figure 1.21 Portion of a B-H characteristic showing a minor loop and a
recoil line.

that the material has been driven well into saturation at point (b). When the current
is then decreased to zero, the B-H characteristic will begin to form a hysteresis loop,
arriving at point (c) at zero current. At point (c), notice that H in the material is zero
but B is at its remanent value Br.

As the current then goes negative, the B-H characteristic continues to trace out a
hysteresis loop. In Fig. 1.21, this is seen as the trajectory between points (c) and (d). If
the current is then maintained at the value i (d), the operating point of the magnet will
be that of point (d). Note that, as in Example 1.9, this same operating point would be
reached if the material were to start at point (c) and, with the excitation held at zero,
an air gap of length g = lm(Ag/Am)(−μ0 H (d)/B(d)) were then inserted in the core.

Should the current then be made more negative, the trajectory would continue
tracing out the hysteresis loop toward point (e). However, if instead the current is
returned to zero, the trajectory does not in general retrace the hysteresis loop toward
point (c). Rather it begins to trace out a minor hysteresis loop, reaching point (f) when
the current reaches zero. If the current is then varied between zero and i (d), the B-H
characteristic will trace out the minor loop as shown.

As can be seen from Fig. 1.21, the B-H trajectory between points (d) and (f) can be
represented by a straight line, known as the recoil line. The slope of this line is called
the recoil permeability μR. We see that once this material has been demagnetized to
point (d), the effective residual magnetization of the magnetic material is that of point
(f) which is less than the residual magnetization Br which would be expected based
on the hysteresis loop. Note that should the demagnetization be decreased past point
(d), for example, to point (e) of Fig. 1.21, a new minor loop will be created, with a
new recoil line and recoil permeability.

The demagnetization effects of negative excitation which have just been discussed
are equivalent to those of an air gap in the magnetic circuit. For example, clearly the
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magnetic circuit of Fig. 1.20 could be used as a system to magnetize hard magnetic
materials. The process would simply require that a large excitation be applied to the
winding and then reduced to zero, leaving the material at a residual magnetization Br

(point (c) in Fig. 1.21).
Following this magnetization process, if the material were removed from the

core, this would be equivalent to opening a large air gap in the magnetic circuit,
demagnetizing the material in a fashion similar to that seen in Example 1.9. At this
point, the magnet has been effectively weakened, since if it were again inserted in
the magnetic core, it would follow a recoil line and return to a residual magnetization
somewhat less than Br. As a result, hard magnetic materials, such as the Alnico
materials of Fig. 1.19, often do not operate stably in situations with varying mmf
and geometry, and there is often the risk that improper operation can significantly
demagnetize them.

At the expense of a reduction in value of the residual magnetization, hard magnetic
materials such as Alnico 5 can be stabilized to operate over a specified region. This
procedure, based on the recoil trajectory shown in Fig. 1.21, can best be illustrated
by an example.

EXAMPLE 1.11

Figure 1.22 shows a magnetic circuit containing hard magnetic material, a core and plunger of
high (assumed infinite) permeability, and a 100-turn winding which will be used to magnetize
the hard magnetic material. The winding will be removed after the system is magnetized. The
plunger moves in the x direction as indicated, with the result that the air-gap area varies over
the range 2 cm2 ≤ Ag ≤ 4 cm2. Assuming that the hard magnetic material is Alnico 5 and
that the system is initially magnetized with Ag = 2 cm, (a) find the magnet length lm such that
the system will operate on a recoil line which intersects the maximum B-H product point on
the magnetization curve for Alnico 5, (b) devise a procedure for magnetizing the magnet, and
(c) calculate the flux density Bg in the air gap as the plunger moves back and forth and the air
gap varies between these two limits.

100-turn

magnetizing

coil

Hard magnetic

material, area 

Am = 2 cm2

Movable

plunger

Air gap, g = 0.2 cm

2 cm2 ≤ Ag ≤ 4 cm2

g/2

g/2

x
lm

µ → ∞

µ → ∞

Core

i

Figure 1.22 Magnetic circuit for Example 1.11.
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■ Solution

a. Figure 1.23a shows the magnetization curve for Alnico 5 and two load lines
corresponding to the two extremes of the air gap, Ag = 2 cm2 and Ag = 4 cm2. We see
that the system will operate on the desired recoil line if the load line for Ag = 2 cm2

intersects the B-H characteristic at the maximum energy product point (labeled point (a)
in Fig. 1.23a), B(a)

m = 1.0 T and H (a)
m = −40 kA/m.

From Eqs. 1.56 and 1.57, we see that the slope of the required load line is given by

B(a)
m

−H (a)
m

= Bg

Hg

Ag

Am

lm

g

and thus

lm = g

(
Am

Ag

)(
B(a)

m

−μ0 H (a)
m

)

= 0.2 cm

(
2

2

) (
1.0

4π × 10−7 × 4 × 104

)
= 3.98 cm

b. Figure 1.23b shows a series of load lines for the system with Ag = 2 cm2 and with current
i applied to the excitation winding. The general equation for these load lines can be
readily derived since from Eq. 1.5

Ni = Hmlm + Hgg

and from Eqs. 1.3 and 1.7

Bm Am = Bg Ag = μ0 Hg Ag

Thus

Bm = −μ0

(
Ag

Am

)(
lm

g

)
Hm + μ0 N

g

(
Ag

Am

)
i

= μ0

[
−

(
2

2

)(
3.98

0.2

)
Hm + 100

2 × 10−3

(
2

2

)
i

]
= −2.50 × 10−5 Hm + 6.28 × 10−2i

From this equation and Fig. 1.23b, we see that to drive the magnetic material into
saturation to the point (Hmax, Bmax), the current in the magnetizing winding must be
increased to the value imax where

imax = Bmax + 2.50 × 10−5 Hmax

6.28 × 10−2
A

In this case, we do not have a complete hysteresis loop for Alnico 5, and hence we
will have to estimate Bmax and Hmax. Linearly extrapolating the B-H curve at H = 0 back
to 4 times the coercivity, that is, Hmax = 4 × 50 = 200 kA/m, yields Bmax = 2.1 T. This
value is undoubtedly extreme and will overestimate the required current somewhat.
However, using Bmax = 2.1 T and Hmax = 200 kA/m yields imax = 113 A.

Thus with the air-gap area set to 2 cm2, increasing the current to 113 A and then
reducing it to zero will achieve the desired magnetization.
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Figure 1.23 (a) Magnetization curve for Alnico 5 for Example 1.11; (b) series of load
lines for Ag = 2 cm2 and varying values of i showing the magnetization procedure for
Example 1.11.

c. Because we do not have specific information about the slope of the recoil line, we shall
assume that its slope is the same as that of the B-H characteristic at the point H = 0,
B = Br. From Fig. 1.23a, with the recoil line drawn with this slope, we see that as the
air-gap area varies between 2 and 4 cm2, the magnet flux density Bm varies between 1.00
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and 1.08 T. Since the air-gap flux density equals Am/Ag times this value, the air-gap flux
density will equal (2/2)1.00 = 1.0 T when Ag = 2.0cm2 and (2/4)1.08 = 0.54 T when
Ag = 4.0 cm2. Note from Fig. 1.23a that, when operated with these air-gap variations, the
magnet appears to have an effective residual flux density of 1.17 T instead of the initial
value of 1.24 T. As long as the air-gap variations limited to the range considered here, the
system will continue to operate on the line labeled “Recoil line” in Fig. 1.23a and the
magnet can be said to be stabilized.

As has been discussed, hard magnetic materials such as Alnico 5 can be subject
to demagnetization, should their operating point be varied excessively. As shown in
Example 1.11, these materials can be stabilized with some loss in effective residual
magnetization. However, this procedure does not guarantee absolute stability of op-
eration. For example, if the material in Example 1.11 were subjected to an air-gap
area smaller than 2 cm2 or to excessive demagnetizing current, the effect of the stabi-
lization would be erased and the material would be found to operate on a new recoil
line with further reduced magnetization.

However, many materials, such as samarium-cobalt, Ceramic 7, and neodymium-
iron-boron (see Fig. 1.19), which have large values of coercivity, tend to have very
low values of recoil permeability, and the recoil line is essentially tangent to the B-H
characteristic for a large portion of the useful operating region. For example, this can
be seen in Fig. 1.19, which shows the dc magnetization curve for neodymium-iron-
boron, from which we see that this material has a residual magnetization of 1.25 T
and a coercivity of −940 kA/m. The portion of the curve between these points is a
straight line with a slope equal to 1.06μ0, which is the same as the slope of its recoil
line. As long as these materials are operated on this low-incremental-permeability
portion of their B-H characteristic, they do not require stabilization, provided they are
not excessively demagnetized.

For these materials, it is often convenient to assume that their dc magnetization
curve is linear over their useful operating range with a slope equal to the recoil per-
meability μR. Under this assumption, the dc magnetization curve for these materials
can be written in the form

B = μR(H − H ′
c) = Br + μR H (1.60)

Here, H ′
c is the apparent coercivity associated with this linear representation. As

can be seen from Fig. 1.19, the apparent coercivity is typically somewhat larger in
magnitude (i.e. a larger negative value) than the material coercivity Hc because the dc
magnetization characteristic tends to bend downward for low values of flux density.

A significant (and somewhat unfortunate) characteristic of permanent-magnet
materials is that their properties are temperature dependent. For example, the residual
magnetization and coercivity of neodymium-iron-boron and samarium-cobalt mag-
nets decrease as the temperature increases, although samarium-cobalt is much less
temperature sensitive than neodymium-iron-boron.

Figure 1.24 shows magnetization curves for a high-temperature grade of
neodymium-boron-iron at various temperatures. We see that the residual magnetism
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Figure 1.24 Second-quadrant magnetization curves for neodymium-iron-
boron material showing their temperature dependence.

drops from around 1.14 T at a temperature of 20 C to around 0.85 T at a temperature of
180 C. Table 1.1 gives a more complete listing of the residual flux density as a function
of temperature for this material, which has a recoil permeability μR = 1.04μ0.

Interestingly, unlike rare-earth magnets, although ceramic magnets exhibit a de-
crease in residual magnetism with temperature, they exhibit a corresponding increase
in coercivity. Figure 1.25 shows the general nature of the temperature dependence of
the magnetization characteristic of a typical ceramic magnet material.

Although these permanent magnet materials display a reduction in magnetiza-
tion with increasing temperature, this decrease in magnetization is often reversible.
Provided the operating point of the magnet material, which will vary as the magnet
temperature changes, remains in the linear portion of the magnetization characteristic,

Table 1.1 Residual flux density as a function of
temperature for the magnetization curves of Fig. 1.24.

Temperature Br [T] Temperature Br [T]

20 C 1.15 150 C 0.99
80 C 1.08 180 C 0.94

120 C 1.03 210 C 0.89
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Figure 1.25 General form of the temperature
dependence of the magnetization characteristics
of a typical ceramic magnetic material.

it will fully recover its magnetization with a decrease in temperature. However, if the
temperature is increased to a value known as the Curie Temperature, the material
will become fully demagnetized and magnetism will not be restored by a reduction
in temperature.11

Consider a magnetic circuit containing a permanent magnet and a winding such
as that which is shown in Fig. 1.26. Fig. 1.24 includes a zero-excitation load line,
corresponding to zero-winding-current operation of this magnetic circuit. As the
temperature varies between 20 C and 120 C, the operating point varies between
points (a) and (c). Each operating point over this temperature range lies on a portion
on the material hysteresis loop which is linear in the second quadrant. As we have
seen, operation on this linear portion of the magnetization characteristic is stabilized
and as the winding current is varied, the magnetic will continue to operate on the
linear portion of its magnetization characteristic as long as the operation remains
in the second quadrant.12 The material will not be permanently demagnetized and
it will recover any temperature-induced loss of magnetization as the temperature
is reduced.

As the temperature is further increased, a temperature will be reached for which
the downward bend appears in the second quadrant of the magnetization characteristic.

11The Curie temperature of neodymium-boron-iron is on the order of 350 C and that of samarium-cobalt
and Alnico is on the order of 700 C.
12Note that the magnet will be permanently demagnetized if its operating point is driven into the third
quadrant past the point at which the magnetization characteristic ceases to be linear and begins to bend
downward.
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Figure 1.26 Magnetic circuit
with a permanent magnet, an air
gap and an excitation winding.

This can be seen in the curves for 180 C and 210 C in Fig. 1.24. In the case of the
180 C characteristic, the winding current can be varied without demagnetizing the
magnet as long as the magnet flux density does not drop below the point where
the magnetization characteristic becomes non linear. Operation below this point is
analogous to the operation of Alnico 5 as discussed with reference to the minor
loop and recoil line of Fig. 1.21. Thus, if sufficient winding current is applied to
drive the magnet below this point and the current is then reduced, a minor loop will
be created and the magnet will be somewhat demagnetized. If the magnet temperature
is reduced, the magnet will be found to be partially demagnetized. In the case of the
210 C characteristic, we see that the zero-excitation operating point falls in the non-
linear portion of the magnetization current. As a result, any winding current which
causes an increase in magnet flux density will demagnetize the magnet.

EXAMPLE 1.12

A magnetic circuit similar to that of Fig. 1.26 has a 200-turn winding (N = 200) and
includes a neodymium-boron-iron magnet of length lm = 3 cm and cross-sectional area
Am = 2.5 cm2. The airgap has an effective area of Ag = 0.259 cm2 and an effective length of
g = 0.9 cm.

a. Derive an expression for the load-line of this magnetic circuit as a function of winding
current i and show that it coincides with the zero-excitation load line of Fig. 1.24 when
the winding current is equal to zero.

b. The magnetic circuit is excited by a sinusoidal winding current of peak amplitude Ipeak. In
order to avoid the possibility of demagnetizing the magnet, it is desirable to limit Ipeak to a
value such that the magnet flux density Bm remains positive. Calculate the maximum
amplitude of Ipeak for magnet operating temperatures of 20 C and 120 C.
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■ Solution

a. This magnetic circuit is essentially identical to that of Example 1.11 and Fig. 1.22. Hence
the equation for the load line is identical to that derived in that example. Specifically,

Bm = −μ0

(
Ag

Am

)(
lm

g

)
Hm + μ0 N

g

(
Ag

Am

)
i

= μ0

[
−

(
0.259

2.5

)(
3

0.9

)
Hm + 200

9 × 10−3

(
0.259

2.5

)
i

]

= −4.34 × 10−7 Hm + 2.89 × 10−3i

With i = 0, when Hm = −600 kA/m, this equation gives Bm = 0.26 T which closely
coincides with the zero-excitation load line of Fig 1.24.

b. From Eq.1.60, over the linear operating region the relationship between BM and Hm in the
magnet is given by

Bm = Br + μR Hm

Combining this expression with the equation for the load-line of part (a) gives

Bm = μR Ni + lm Br

lm + g
(

μR
μ0

)(
Am
Ag

) = 2.17 × 10−3i + 0.249Br

For a sinusoidal current of peak amplitude Ipeak, Bm will remain positive as long as

Ipeak = lm Br

μR N
= 114.8Br

For a temperature of 80 C, from Table 1.1 Br = 1.15 T and thus the maximum value of
Ipeak is 132 A. Similarly, for a temperature of 120 C, Br = 1.03 and the maximum value of Ipeak

is 118 A.

1.7 SUMMARY
Electromechanical devices which employ magnetic fields often use ferromagnetic
materials for guiding and concentrating these fields. Because the magnetic perme-
ability of ferromagnetic materials can be large (up to tens of thousands times that of
the surrounding space), most of the magnetic flux is confined to fairly well-defined
paths determined by the geometry of the magnetic material. In addition, often the
frequencies of interest are low enough to permit the magnetic fields to be considered
quasi-static, and hence they can be determined simply from a knowledge of the net
mmf acting on the magnetic structure.

As a result, the solution for the magnetic fields in these structures can be obtained
in a straightforward fashion by using the techniques of magnetic-circuit analysis.
These techniques can be used to reduce a complex three-dimensional magnetic field
solution to what is essentially a one-dimensional problem. As in all engineering
solutions, a certain amount of experience and judgment is required, but the technique
gives useful results in many situations of practical engineering interest.



Umans-3930269 book December 14, 2012 11:51

46 CHAPTER 1 Magnetic Circuits and Magnetic Materials

Ferromagnetic materials are available with a wide variety of characteristics. In
general, their behavior is nonlinear, and their B-H characteristics are often represented
in the form of a family of hysteresis (B-H) loops. Losses, both hysteretic and eddy-
current, are functions of the flux level and frequency of operation as well as the
material composition and the manufacturing process used. A basic understanding of
the nature of these phenomena is extremely useful in the application of these materials
in practical devices. Typically, important properties are available in the form of curves
supplied by the material manufacturers.

Certain magnetic materials, commonly known as hard or permanent-magnet ma-
terials, are characterized by large values of residual magnetization and coercivity.
These materials produce significant magnetic flux even in magnetic circuits with air
gaps. With proper design they can be made to operate stably in situations which sub-
ject them to a wide range of mmfs and temperature variations. Permanent magnets
find application in many small devices, including loudspeakers, ac and dc motors,
microphones, and analog electric meters.

1.8 CHAPTER 1 VARIABLES
μ Magnetic permeability [H/m]
μ0 Permeability of free space = 4π × 10−7 [H/m]
μr Relative permeability
μR Recoil permeability [H/m]
φ, ϕ, φmax Magnetic flux [Wb]
ω Angular frequency [rad/sec]
ρ Mass density [kg/m3]
A Cross-sectional area [m2]
B, B Magnetic flux density [T]
Br Residual/remanent magnetization [T]
e Electromotive force [V]
e, E Voltage [V]
E Electric field intensity [V/m]
f Frequency [Hz]
F Magnetomotive force [A]
g Gap length [m]
H, H , Hrms Magnetic field intensity [A/m]
Hc Coercivity [A/m]
i , I Current [A]
iϕ , Iφ,rms Exciting current [A]
J Current density [A/m2]
l Linear dimension [m]
L Inductance [H]
N Number of turns
P Power [W]
Pcore Core loss [W]
Pa Exciting rms voltamperes per unit mass [W/kg]
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Pc Core loss density [W/kg]
P Permeance [H]
R Resistance [	]
R Reluctance [H−1]
S Exciting rms voltamperes [VA]
Sa Exciting rms voltamperes per mass [VA/kg]
t Time [sec]
T Period [sec]
T Temperature [C]
V Voltage [V]
Vol Volume [m3]
W Energy [J]

Subscripts:

c Core
g Gap
m, mag Magnet
max Maximum
rms Root mean square
tot Total

1.9 PROBLEMS
1.1 A magnetic circuit with a single air gap is shown in Fig. 1.27. The core

dimensions are

Cross-sectional Area Ac = 3.5 cm2

Mean core length lc = 25 cm
Gap length g = 2.4 mm
N = 95 turns

Assume that the core is of infinite permeability (μ → ∞) and neglect the
effects of fringing fields at the air gap and leakage flux. (a) Calculate the
reluctance of the core Rc and that of the gap Rg. For a current of i = 1.4 A,
calculate (b) the total flux φ, (c) the flux linkages λ of the coil, and (d) the coil
inductance L .

Air gap

Core:

Coil:

N turns

g

mean length  lc,
area Ac,

permeability μ

λ

i

Figure 1.27 Magnetic circuit for Problem 1.1.



Umans-3930269 book December 14, 2012 11:51

48 CHAPTER 1 Magnetic Circuits and Magnetic Materials

1.2 Repeat Problem 1.1 for a finite core permeability of μ = 2350 μ0.
1.3 Consider the magnetic circuit of Fig. 1.27 with the dimensions of

Problem 1.1. Assuming infinite core permeability, calculate (a) the number of
turns required to achieve an inductance of 15 mH and (b) the inductor current
which will result in a core flux density of 1.15 T.

1.4 Repeat Problem 1.3 for a core permeability of μ = 1700 μ0.
1.5 The magnetic circuit of Problem 1.1 has a non-linear core material whose

permeability as a function of Bm is given by

μ = μ0

(
1 + 2153√

1 + 0.43(Bm)12.1

)

where Bm is the material flux density.

a. Using MATLAB, plot a dc magnetization curve for this material (Bm vs.
Hm) over the range 0 ≤ Bm ≤ 2.1 T.

b. Find the current required to achieve a flux density of 2.1 T in the air gap.

c. Again using MATLAB, plot the coil flux linkages as a function of coil
current as the current is varied from 0 to the value found in part (b).

1.6 The magnetic circuit of Fig. 1.28 consists of a core and a moveable plunger of
width lp, each of permeability μ. The core has cross sectional area Ac and
mean length lc. The overlap area of the two air gaps Ag is a function of the
plunger position x and can be assumed to vary as

Ag = Ac

(
1 − x

X0

)

You may neglect any fringing fields at the air gap and use approximations
consistent with magnetic-circuit analysis.

a. Assuming that μ → ∞, derive an expression for the magnetic flux
density in the air gap Bg as a function of the winding current i and the
plunger position x (assume x is limited to the range 0 ≤ x ≤ 0.5 X0).
Write an expression for the corresponding flux density in the core?

b. Repeat part (a) for a finite permeability μ.

x

Plunger

i

g

X0

lp

g

µ

µ
Coil:

N turns

Core:

mean length  lc,
area Ac,

Figure 1.28 Magnetic circuit for Problem 1.6.
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1.7 The magnetic circuit of Fig. 1.28 has 125 turns and the following dimension:

lc = 50 cm lp = 4 cm
g = 0.25 cm Ac = 100 cm2

X0 = 10 cm

With x = 0.5 X0, the measured inductance is 52 mH. Using reasonable
approximations, calculate the relative permeability μr of the core and plunger
material.

1.8 Figure 1.29 shows an inductor made up of two C-cores. Each core as area Ac

and mean length lc. There are two air gaps, each of length g and effective area
Ag. Finally, there are two N-turn coils, one on each of the C-cores. Assuming
infinite core permeability and for cores of dimensions

Cross-sectional area: Ac = Ag = 38.7 cm2

Core-length: lc = 45 cm
Gap length: g = 0.12 cm

a. Calculate the number of turns required to achieve an inductance of
12.2 mH, assuming infinite core permeability and that the coils are
connected in series. Since the number of turns must be an integer, your
answer must be rounded to the nearest integer. Calculated the actual
inductance value based upon the resultant number of turns.

b. The inductance can be fine-tuned by adjusting the air-gap length to
achieve the desired inductance. Based upon the number of turns found in
part (a), calculate the air-gap length required to achieve the desired
inductance of 12.2 mH.

c. Based upon this final inductor design, calculate the inductor current which
will produce a core flux density of 1.5 T.

Coil 1
N-turn

Coil 2
N-turn

C-core:
 Area Ac
 mean length  lc
 permeability μ

Air gap:
 Area Ag
 length g

Figure 1.29 C-core inductor for problem 1.8.
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1.9 Assuming that the coils are connected in parallel, repeat Problem 1.8.
1.10 Repeat Problem 1.8 assuming that the core has a permeability of 1800 μ0.
1.11 The magnetic circuit of Fig. 1.28 and Problem 1.6 has the following

dimensions:

Ac = 9.3 cm2 lc = 27 cm
lp = 2.7 cm g = 0.6 mm
X0 = 2.3 cm N = 480 turns

a. Assuming a constant permeability of μ = 3150 μ0, calculate the current
required to achieve a flux density of 1.25 T in the air gap when the
plunger is fully retracted (x = 0).

b. Repeat the calculation of part (a) for the case in which the core and
plunger are composed of a a non-linear material whose permeability is
given by

μ = μ0

(
1 + 1065√

1 + 0.038|Bm|9

)

where Bm is the magnetic flux density in the material.

c. For the non-linear material of part (b), use MATLAB to plot the air-gap
flux density as a function of winding current for x = 0 and x = 0.5X0.

1.12 An inductor of the form of Fig. 1.27 has dimensions

Cross-sectional area Ac = 3.8 cm2

Mean core length lc = 19 cm
N = 122 turns

Assuming a core permeability of μ = 3240 μ0 and neglecting the effects of
leakage flux and fringing fields, calculate the air-gap length required to
achieve an inductance of 6.0 mH.

1.13 The magnetic circuit of Fig. 1.30 consists of rings of magnetic material in a
stack of height h. The rings have inner radius Ri and outer radius Ro. Assume
that the iron is of infinite permeability (μ → ∞) and neglect the effects of

N turns
Ri

g

Ro

i

Figure 1.30 Magnetic circuit for
Problem 1.13.



Umans-3930269 book December 14, 2012 11:51

1.9 Problems 51

magnetic leakage and fringing. For

Ri = 3.2 cm
Ro = 4.1 cm
h = 1.8 cm
g = 0.15 cm

calculate:

a. The mean core length lc and the core cross-sectional area Ac

b. The reluctance of the core Rc and that of the gap Rg

For N = 72 turns, calculate

c. The inductance L

d. Current i required to operate at an air-gap flux density of Bg = 1.25T

e. The corresponding flux linkages λ of the coil

1.14 Repeat Problem 1.13 for a core permeability of μ = 750 μ0.
1.15 Using MATLAB, plot the inductance of the inductor of Problem 1.13 as a

function of relative core permeability as the core permeability varies from
μr = 100 to μr = 10,000. (Hint: Plot the inductance versus the log of the
relative permeability.) What is the minimum relative core permeability
required to insure that the inductance is within 5 percent of the value
calculated assuming that the core permeability is infinite?

1.16 The inductor of Fig. 1.31 has a core of uniform circular cross-section of area
Ac, mean length lc and relative permeability μr, and an N -turn winding. Write
an expression for the inductance L .

1.17 The inductor of Fig. 1.31 has the following dimensions.

Ac = 1.1cm2

lc = 12 cm
g = 0.9 mm
N = 520 turns

a. Neglecting leakage and fringing and assuming μr = 1,000, calculate the
inductance.

b. Calculate the core flux density and the inductor flux linkages for a
winding current of 1.2 A.

N-turn

coil

g

Core:

mean length  lc,
area Ac,

relative permeability μr

Figure 1.31 Inductor for Problem 1.16.
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1.18 The inductor of Problem 1.17 is to be operated from a 60-Hz voltage source.
(a) Assuming negligible coil resistance, calculate the rms inductor voltage
corresponding to a peak core flux density of 1.5 T. (b) Under this operating
condition, calculate the rms current and the peak stored energy.

1.19 Assume the core material of the inductor of Problem 1.17 has the permeability
given in Problem 1.5. Write a MATLAB script to calculate the core flux
density and the inductor flux linkages at a current of 1.2 A.

1.20 Consider the cylindrical magnetic circuit of Fig. 1.32. This structure, known
as a pot-core, is typically made in two halves. The N -turn coil is wound on a
cylindrical bobbin and can be easily inserted over the central post of the core
as the two halves are assembled. Because the air gap is internal to the core,
provided the core is not driven excessively into saturation, relatively little
magnetic flux will “leak” from the core, making this a particularly attractive
configuration for a wide variety of applications, both for inductors such as that
of Fig. 1.31 and transformers.
Assume the core permeability to be μ = 2,300 μ0 and N = 180 turns. The
following dimensions are specified:

R1 = 1.6 cm R2 = 4.2 cm l = 2.8 cm

h = 0.78 cm g = 0.45 mm

a. Although the flux density in the radial sections of the core (the sections of
thickness h) actually decreases with radius, assume that the flux density
remains uniform. Find the value of the radius R3 such that the average
flux density in the outer wall of the core is equal to that within the central
cylinder.

b. Write an expression for the coil inductance and evaluate it for the given
dimensions.

g

l

h

h
l

i

R3

R2

R1

μ 

ν

C/L

N-turn

winding

+ �

Figure 1.32 Pot-core inductor for
Problem 1.20.
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c. The core is to be operated at a peak flux density of 0.6 T at a frequency of
60 Hz. Find (i) the corresponding rms value of the voltage induced in the
winding, (ii) the rms coil current, and (iii) the peak stored energy.

d. Repeat part (c) for a frequency of 50 Hz.

1.21 A square voltage wave having a fundamental frequency of 60 Hz and equal
positive and negative half cycles of amplitude E is applied to a 575-turn
winding surrounding a closed iron core of cross sectional area Ac = 9 cm2

and of length lc = 35 cm. Neglect both the winding resistance and any effects
of leakage flux.

a. Sketch the voltage, the winding flux linkage, and the core flux as a
function of time.

b. Find the maximum permissible value of E if the maximum flux density is
not to exceed 0.95 T.

c. Calculate the peak winding current if the core has a magnetic permeability
of 1,000 μ0.

1.22 Assume that iron core of Problem 1.21 can be described by a magnetic
permeability given by

μ = μ0

(
1 + 1210√

1 + 0.04 |B|8.5

)

where B is the core flux density.

a. Plot the core-material B-H curve for flux densities in the range
−1.8 T ≤ B ≤ 1.8 T.

b. A 110 V rms, 60-Hz sinusoidal voltage is applied to the winding. Using
MATLAB, plot one cycle of the resultant winding current as a function of
time. What is the peak current?

c. The voltage of part (b) is doubled to 220 V rms. Add a plot of the resultant
current as a function of time to the plot of part (b). What is the peak
current for this case?

1.23 Repeat parts (b) and (c) of Problem 1.22 if a 10 mm air gap is inserted in the
magnetic core.

1.24 An inductor is to be designed using a magnetic core of the form of that of
Fig. 1.31. The core is of uniform cross-sectional area Ac = 6.0 cm2 and of
mean length lc = 28 cm.

a. Calculate the air-gap length g and the number of turns N such that the
inductance is 23 mH and so that the inductor can operate at peak currents
of 10 A without saturating. Assume that saturation occurs when the peak
flux density in the core exceeds 1.7 T and that, below saturation, the core
has permeability μ = 2700 μ0.

b. For an inductor current of 10 A, use Eq. 3.21 to calculate (i) the magnetic
stored energy in the air gap and (ii) the magnetic stored energy in the core.
Show that the total magnetic stored energy is given by Eq. 1.46.
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1.25 Write a MATLAB script to design inductors based upon the magnetic core of
Fig. 1.31. Assume the core has a cross-sectional area of 10.0 cm2, a length of
35 cm and a relative magnetic permeability of 1,700. The inductor is to be
operated with a sinusoidal current at 50-Hz and it must be designed such that
the peak core flux density will be equal to 1.4 T when the peak inductor
current is equal to 7.5 A.

Write a simple design program in the form of a MATLAB script to
calculate the number of turns and air-gap length as a function of the desired
inductance. The script should be written to request a value of inductance (in
mH) from the user, with the output being the air-gap length in mm and the
number of turns. Write your script to reject as unacceptable any designs for
which the gap length is out of the range of 0.05 mm to 6.0 mm or for which
the number of turns drops below 10.

Using your program, find (a) the minimum and (b) the maximum
inductances (to the nearest mH) which will satisfy the the given constraints.
For each of these values, find the required air-gap length and the number of
turns as well as the rms voltage corresponding to the peak core flux.

1.26 Consider an inductor composed of two C-cores as shown in Fig. 1.29. Each
C-core has cross-sectional area Ac = 105 cm2 and a mean length lc = 48 cm.

a. Assuming the coils are connected in parallel, calculate the number of turns
N per coil and the air-gap length g such that the inductance is 350 mH and
such that the inductor current can be increased to 6.0 A without exceeding
a core flux density of 1.2 T, thus avoiding saturation of the core. You may
neglect the reluctance of the core and the effects of fringing at the air gap.

b. Repeat part a) assuming the coils are connected in series.

1.27 Assuming the C-cores of Problem 1.26 have a magnetic permeability of
μ = 3,500 μ0, repeat Problem 1.26.

1.28 Write a MATLAB script to automate the calculations of Problem 1.26 and
1.27. The inputs to your script should be the core area, mean core length, the
core permeability and the winding connection (parallel or series) as well as
the desired inductance and maximum core flux density and current. Exercise
your script to design an inductor of 220 mH with cores of cross-sectional area
of 40 cm2 and mean length 35 cm. The inductor should be able to carry a
current of up to 9.0 A at a flux density not to exceed 1.1 T.

1.29 A proposed energy storage mechanism consists of an N -turn coil wound
around a large non-magnetic (μ = μ0) toroidal form as shown in Fig. 1.33.
As can be seen from the figure, the toroidal form has a circular cross section
of radius a and toroidal radius r , measured to the center of the cross section.
The geometry of this device is such that the magnetic field can be considered
to be zero everywhere outside the toroid. Under the assumption that a � r ,
the H field inside the toroid can be considered to be directed around the toroid
and of uniform magnitude

H = Ni

2πr
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+

λ

�

2a

r

i

Figure 1.33 Toroidal winding for Problem 1.29.

For a coil with N = 12,000 turns, r = 9 m and a = 0.55 m:

a. Calculate the coil inductance L .

b. The coil is to be charged to a magnetic flux density of 1.80 T. Calculate
the total stored magnetic energy in the torus when this flux density is
achieved.

c. If the coil is to be charged at a uniform rate (i.e. di/dt = constant),
calculate the terminal voltage required to achieve the required flux density
in 40 s. Assume the coil resistance to be negligible.

1.30 Figure 1.34 shows an inductor wound on a laminated iron core of rectangular
cross section. Assume that the permeability of the iron is infinite. Neglect
magnetic leakage and fringing in the two air gaps (total gap length = g). The
N-turn winding is insulated copper wire whose resistivity is ρ	·m. Assume
that the fraction fw of the winding space is available for copper; the rest of the
space being used for insulation.

a. Calculate the cross-sectional area and volume of the copper in the
winding space.

b. Write an expression for the flux density B in the inductor in terms of the
current density Jcu in the copper winding.

c. Write an expression for the copper current density Jcu in terms of the coil
current I , the number of turns N and the coil geometry.

d. Derive an expression for the electric power dissipation in the coil in terms
of the current density Jcu.

g/2g/2

Core:

a

a

w

w

w

b

depth h into

the page

i

Figure 1.34 Iron-core inductor for
Problem 1.30.
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e. Derive an expression for the magnetic stored energy in the inductor in
terms of the applied current density Jcu.

f. From parts (d) and (e) derive an expression for the L/R time constant of
the inductor. Note that this expression is independent of the number of
turns in the coil and hence does not change as the inductance and coil
resistance are changed by varying the number of turns.

1.31 The inductor of Fig. 1.34 has the following dimensions:

a = h = w = 1.8 cm b = 2.2 cm g = 0.18 cm

The winding factor (i.e. the fraction of the total winding area occupied by
conductor) is fw = 0.55. The resistivity of copper is 1.73 × 10−8	·m. When
the coil is operated with a constant dc applied voltage of 40 V, the air-gap flux
density is measured to be 1.3 T. Find the power dissipated in the coil, coil
current, number of turns, coil resistance, inductance, time constant, and wire
size to the nearest standard size. (Hint: Wire size can be found from the
expression

AWG = 36 − 4.312 ln

(
Awire

1.267 × 10−8

)
where AWG is the wire size, expressed in terms of the American Wire Gage,
and Awire is the conductor cross-sectional area measured in m2.)

1.32 The magnetic circuit of Fig. 1.35 has two windings and two air gaps. The core
can be assumed to be of infinite permeability. The core dimensions are
indicated in the figure.

a. Assuming coil 1 to be carrying a current I1 and the current in coil 2 to be
zero, calculate (i) the magnetic flux density in each of the air gaps, (ii) the
flux linkage of winding 1, and (iii) the flux linkage of winding 2.

b. Repeat part (a), assuming zero current in winding 1 and a current I2 in
winding 2.

c. Repeat part (a), assuming the current in winding 1 to be I1 and the current
in winding 2 to be I2.

i2

i1

g1

g2

N1 turns

N2 turns

Area A1

Area A2Core, μ → ∞

Figure 1.35 Magnetic circuit for Problem 1.32.
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iB

g

N turns

N1 turns

iA

i1

N turns

l1

l2

lA

Core:

Area Ac

Permeability μ 

Figure 1.36 Symmetric magnetic circuit for Problem 1.33.

d. Find the self-inductances of windings 1 and 2 and the mutual inductance
between the windings.

1.33 The symmetric magnetic circuit of Fig. 1.36 has three windings. Windings A
and B each have N turns and are wound on the two bottom legs of the core.
The core dimensions are indicated in the figure.

a. Find the self-inductances of each of the windings.

b. Find the mutual inductances between the three pairs of windings.

c. Find the voltage induced in winding 1 by time-varying currents iA(t) and
iB(t) in windings A and B. Show that this voltage can be used to measure
the imbalance between two sinusoidal currents of the same frequency.

1.34 The reciprocating generator of Fig. 1.37 has a movable plunger (position x)
which is supported so that it can slide in and out of the magnetic yoke while
maintaining a constant air gap of length g on each side adjacent to the yoke.
Both the yoke and the plunger can be considered to be of infinite permeability.
The motion of the plunger is constrained such that its position is limited to
0 ≤ x ≤ w.

There are two windings on this magnetic circuit. The first has N1 turns and
carries a constant dc current I0. The second, which has N2 turns, is
open-circuited and can be connected to a load.

a. Neglecting any fringing effects, find the mutual inductance between
windings 1 and 2 as a function of the plunger position x .

b. The plunger is driven by an external source so that its motion is given by

x(t) = w(1 + ε sin ωt)

2

where ε ≤ 1. Find an expression for the sinusoidal voltage which is
generated as a result of this motion.
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x

Plunger

N1 turns

N2 turns

ν2

I0

g

g

w

μ → ∞

μ → ∞

h  >> g

x(t) =      (1 + ε sin ωt)w
2

Yoke
Depth D

+ �

Figure 1.37 Reciprocating generator for
Problem 1.34.

1.35 Figure 1.38 shows a configuration that can be used to measure the magnetic
characteristics of electrical steel. The material to be tested is cut or punched
into circular laminations which are then stacked (with interspersed insulation
to avoid eddy-current formation). Two windings are wound over this stack of
laminations: the first, with Nl turns, is used to excite a magnetic field in the
lamination stack; the second, with N2 turns, is used to sense the resultant
magnetic flux.

The accuracy of the results requires that the magnetic flux density be
uniform within the laminations. This can be accomplished if the lamination
width w = Ro − Ri is much smaller than the lamination radius and if the
excitation winding is wound uniformly around the lamination stack. For the

i2 = 0

+
v2

v0 = G∫v2 dt
∫dt

�

i1

Winding 2,

N2 turns

Stack of

n laminations,

each of thickness �

Winding 1,

N1 turns

t << Ri

Ri

Ro

Figure 1.38 Configuration for measurement of magnetic properties of
electrical steel.
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purposes of this analysis, assume there are n laminations, each of thickness �.
Also assume that winding 1 is excited by a current i1 = I0 sin ωt .

a. Find the relationship between the magnetic field intensity H in the
laminations and current i1 in winding 1.

b. Find the relationship between the voltage v2 and the time rate of change of
the flux density B in the laminations.

c. Find the relationship between the voltage v0 = G
∫

v2dt and the flux
density.

In this problem, we have shown that the magnetic field intensity H and the
magnetic flux density B in the laminations are proportional to the current i1

and the voltage v0 by known constants. Thus, B and H in the magnetic steel
can be measured directly, and the B-H characteristics as discussed in
Arts. 1.3 and 1.4 can be determined.

1.36 From the dc magnetization curve of Fig. 1.10 it is possible to calculate the
relative permeability μr = Bc/(μ0 Hc) for M-5 electrical steel as a function of
the flux level Bc. Assuming the core of Fig. 1.2 to be made of M-5 electrical
steel with the dimensions given in Example 1.1, calculate the range of flux
densities for which the reluctance of the core never exceeds 5 percent of the
reluctance of the total magnetic circuit.

1.37 In order to test the properties of a sample of electrical steel, a set of
laminations of the form of Fig. 1.38 have been stamped out of a sheet of the
electrical steel of thickness 3.0 mm. The radii of the laminations are Ri = 80
mm and Ro = 90 mm. They have been assembled in a stack of 15 laminations
(separated by appropriate insulation to eliminate eddy currents) for the
purposes of testing the magnetic properties at a frequency of 50 Hz.

a. The flux in the lamination stack will be excited from a variable-amplitude,
50-Hz voltage source whose peak amplitude is 20 V. Ignoring any voltage
drop across the winding resistance, calculate the number of turns N1 for
the excitation winding required to insure that the lamination stack can be
excited up to a peak flux density of 1.8 T.

b. With a secondary winding of N2 = 10 turns and an integrator gain
G = 1,000, the output of the integrator is observed to be 7.5 V peak.
Calculate (i) the corresponding peak flux in the lamination stack and (ii)
the corresponding amplitude of the voltage applied to the excitation
winding.

1.38 The coils of the magnetic circuit shown in Fig. 1.39 are connected in series so
that the mmfs of paths A and B both tend to set up flux in the center leg C in
the same direction. The coils are wound with equal turns, N1 = N2 = 120.
The dimensions are:

Cross-section area of A and B legs = 8 cm2

Cross-section area of C leg = 16 cm2

Length of A path = 17 cm
Length of B path = 17 cm
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A B

C
N1 N2

I1 I2

Figure 1.39 Magnetic circuit for
Problem 1.38.

Length of C path = 5.5 cm
Air gap length = 0.35 cm

The material is M-5 grade, 0.012-in steel. Neglect fringing and leakage.

a. How many amperes are required to produce a flux density of 1.3 T in the
air gap?

b. Under the condition of part (a), how many joules of energy are stored in
the magnetic field in the air gap and in the core? Based upon this stored
energy, calculate the inductance of this series-connected winding.

c. Calculate the inductance of this system assuming the core to be of infinite
permeability. Compare your inductance with the value calculated in
part (b).

1.39 The following table includes data for the top half of a symmetric 60-Hz
hysteresis loop for a specimen of magnetic steel:

B, T 0 0.2 0.4 0.6 0.7 0.8 0.9 1.0 0.95 0.9 0.8 0.7 0.6 0.4 0.2 0

H , A·turns/m 48 52 58 73 85 103 135 193 80 42 2 −18 −29 −40 −45 −48

Using MATLAB, (a) plot this data, (b) calculate the area of the hysterises loop
in joules, and (c) calculate the corresponding 60-Hz core loss density in
Watts/kg. Assume the density of the steel is 7.65 g/cm3.

1.40 A magnetic circuit of the form of Fig. 1.27 has dimension

Cross-sectional Area Ac = 27 cm2

Mean core length lc = 70 cm
Gap length g = 2.4 mm
N = 95 turns

and is made up of M-5 electrical steel with the properties described in
Figs. 1.10, 1.12, and 1.14. Assume the core to be operating with a 60-Hz
sinusoidal flux density of the rms flux density of 1.1 T. Neglect the winding
resistance and leakage inductance. Find the winding voltage, rms winding
current, and core loss for this operating condition. The density of M-5 steel is
7.65 g/cm3.

1.41 Repeat Example 1.8 under the assumption that all the core dimensions are
doubled.
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Magnet
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piece

μ → ∞

μ → ∞

R g Yoke

Air gap

h

hm

Rm

C/L

Figure 1.40 Magnetic circuit for the loudspeaker
of Problem 1.44 (voice coil not shown).

1.42 Using the magnetization characteristics for samarium cobalt given in
Fig. 1.19, find the point of maximum-energy product and the corresponding
flux density and magnetic field intensity. Using these values, repeat
Example 1.10 with the Alnico 5 magnet replaced by a samarium-cobalt
magnet. By what factor does this reduce the magnet volume required to
achieve the desired air-gap flux density?

1.43 Using the magnetization characteristics for neodymium-iron-boron given in
Fig. 1.19, find the point of maximum energy product and the corresponding
flux density and magnetic field intensity. Using these values, repeat
Example 1.10 with the Alnico 5 magnet replaced by a neodymium-iron-boron
magnet. By what factor does this reduce the magnet volume required to
achieve the desired air-gap flux density?

1.44 Figure 1.40 shows the magnetic circuit for a permanent-magnet loudspeaker.
The voice coil (not shown) is in the form of a circular cylindrical coil which
fits in the air gap. A samarium-cobalt magnet is used to create the air-gap dc
magnetic field which interacts with the voice coil currents to produce the
motion of the voice coil. The designer has determined that the air gap must
have radius R = 2.2 cm, length g = 0.1 cm, and height h = 1.1 cm.

Assuming that the yoke and pole piece are of infinite magnetic
permeability (μ → ∞), find the magnet height hm and the magnet radius Rm

that will result in an air-gap magnetic flux density of 1.3 T and require the
smallest magnet volume.

(Hint: Refer to Example 1.10 and to Fig. 1.19 to find the point of
maximum energy product for samarium cobalt.)

1.45 Repeat Problem 1.44 replacing the samarium-cobalt magnet with a
neodymium-iron-boron magnet assuming the magnetization characteristics of
Fig. 1.19.

1.46 Based upon the characteristics of the neodymium-iron-boron material of
Fig. 1.24 and Table 1.1, calculate the maximum-energy product of this grade
of neodymium-iron-boron magnet material at each of the temperatures of
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N turns

Magnet Air gap:

Area  Amd

g

μ → ∞ μ → ∞

i(t)

area  Ag

Figure 1.41 Magnetic circuit for
Prob 1.47.

Table 1.1 and the corresponding values of H and B. (Hint: Write an analytic
expression for the maximum energy product in terms of H using the fact that
the recoil permeability is 1.04 μ0.)

1.47 It is desired to achieve a time-varying magnetic flux density in the air gap of
the magnetic circuit of Fig. 1.41 of the form

Bg = B0 + B1 sin ωt

where B0 = 0.6 T and B1 = 0.20 T. The dc field B0 is to be created by a
neodymium-iron-boron magnet with magnetization characteristic of Fig. 1.19,
whereas the time-varying field is to be created by a time-varying current.
For Ag = 7 cm2, g = 0.35 cm, and N = 175 turns, and based upon the
neodymium-iron-boron characteristics of Fig. 1.19, find:

a. the magnet length d and the magnet area Am that will achieve the desired
dc air-gap flux density and minimize the magnet volume and

b. the amplitude of the time-varying current required to achieve the desired
time-variation of the air-gap flux density.

1.48 A magnetic circuit of the form of Fig. 1.41 is to be designed using
neodymium-iron-boron material with the characteristics of Fig. 1.24 and
Table 1.1.

The magnetic circuit core will have cross-sectional area Ag = 9 cm2 and
the air-gap length will be g = 0.32 cm. The circuit is designed to be operated
at temperatures up to 180 C.

a. Find the magnet length d and the magnet area Am corresponding to the
minimum magnet volume that will produce a magnetic flux density of
0.8 T with the system operating at a temperature of 180 C.

b. For the magnet of part (a), find the flux density in the air-gap when the
operating temperature is 60 C.
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Transformers

Before we proceed with a study of electric machinery, it is desirable to discuss
certain aspects of the theory of magnetically coupled circuits, with emphasis on
transformer action. Although the static transformer is not an energy conversion

device, it is an indispensable component in many energy conversion systems. A signif-
icant component of ac power systems, it makes possible electric generation at the most
economical generator voltage, power transfer at the most economical transmission
voltage, and power utilization at the most suitable voltage for the particular utiliza-
tion device. The transformer is also widely used in low-power, low-current electronic
and control circuits for performing such functions as matching the impedances of a
source and its load for maximum power transfer, isolating one circuit from another,
or isolating direct current while maintaining ac continuity between two circuits.

The transformer is one of the simpler devices comprising two or more electric
circuits coupled by a common magnetic circuit. Its analysis involves many of the
principles essential to the study of electric machinery. Thus, our study of the trans-
former will serve as a bridge between the introduction to magnetic-circuit analysis of
Chapter 1 and the more detailed study of electric machinery to follow.

2.1 INTRODUCTION TO TRANSFORMERS
Essentially, a transformer consists of two or more windings coupled by mutual mag-
netic flux. If one of these windings, the primary, is connected to an alternating-voltage
source, an alternating flux will be produced whose amplitude will depend on the pri-
mary voltage, the frequency of the applied voltage, and the number of turns. A portion
of this flux, referred to as mutual flux, will link a second winding, the secondary,1 and

1 It is conventional to think of the “input” to the transformer as the primary and the “output” as the
secondary. However, in many applications, power can flow either way and the concept of primary and
secondary windings can become confusing. An alternate terminology, which refers to the windings as
“high-voltage” and “low-voltage,” is often used and eliminates this confusion.

63
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will induce a voltage in it whose value will depend on the number of secondary turns
as well as the magnitude of the mutual flux and the frequency. The voltage ratio, or
ratio of transformation, between the two windings can be varied by proportioning the
number of primary and secondary turns.

The essence of transformer action requires only the existence of time-varying
mutual flux linking two windings. Such action can occur for two windings coupled
through air. However, coupling between the windings can be made much more effec-
tive through the use of a core of iron or other ferromagnetic material because most of
the flux will be confined to a definite, high-permeability path linking the windings.
Such a transformer is commonly called an iron-core transformer. Most transformers
are of this type. The following discussion is concerned almost wholly with iron-core
transformers.

As discussed in Section 1.4, to reduce the losses caused by eddy currents in the
core, the magnetic circuit in a transformer usually consists of a stack of thin lami-
nations. Two common types of construction are shown schematically in Fig. 2.1. In
the core type (Fig. 2.1a) the windings are wound around two legs of a rectangular
magnetic core; in the shell type (Fig. 2.1b) the windings are wound around the center
leg of a three-legged core. Silicon-steel laminations of thickness 0.014 in (0.55 mm)
are commonly used for transformers operating at frequencies below a few hundred
hertz. Silicon steel has the desirable properties of low cost, low core loss, and high
permeability at high flux density. The cores of small transformers used in commu-
nication circuits at high frequencies and low energy levels are sometimes made of
compressed powdered ferromagnetic alloys known as ferrites.

In each of these configurations, most of the flux is confined to the core and
therefore links both windings. The windings also produce additional flux, known as

Windings

(a)

Core

ϕ

(b)

ϕ

2

ϕ

2

Windings

Core

Figure 2.1 Schematic views of (a) core-type and (b) shell-type
transformers.
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Figure 2.2 A self-protected distribution transformer typical of
sizes 2 to 25 kVA, 7200:240/120 V. Only one high-voltage
insulator and lightning arrester are needed because one side of
the 7200-V line and one side of the primary are grounded.

leakage flux, which links one winding without linking the other. Although leakage
flux is a small fraction of the total flux, it plays an important role in determining
the behavior of the transformer. In practical transformers, leakage is reduced by
subdividing the windings into sections placed as close together as possible. In the
core-type construction, each winding consists of two sections, one section on each of
the two legs of the core, the primary and secondary windings being concentric coils.
In the shell-type construction, variations of the concentric-winding arrangement may
be used or the windings may consist of a number of thin “pancake” coils assembled
in a stack with primary and secondary coils interleaved.

Figure 2.2 shows the internal construction of a distribution transformer such as is
used in public utility systems to provide the appropriate voltage for use by residential
consumers. A large power transformer is shown in Fig. 2.3.

2.2 NO-LOAD CONDITIONS
Figure 2.4 shows in schematic form a transformer with its secondary circuit open and
an alternating voltage v1 applied to its primary terminals. To simplify the drawings, it is
common on schematic diagrams of transformers to show the primary and secondary
windings as if they were on separate legs of the core, as in Fig. 2.4, even though
the windings are actually interleaved in practice. As discussed in Section 1.4, a small
steady-state current iϕ , called the exciting current, flows in the primary and establishes
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Figure 2.3 A 230 kV Y - 115 kV Y, 100/133/167 MVA
Autotransformer. (Photo courtesy of SPX Transformer
Solutions, Inc.)

iφ
φ

�

+
e1

Primary winding,
N turns

+

�
ν1

R1

Figure 2.4 Transformer with open secondary.

an alternating flux in the magnetic circuit.2 This flux induces an emf3 e1 in the primary
equal to

e1 = dλ1

dt
= N1

dϕ

dt
(2.1)

2 In general, the exciting current corresponds to the net ampere-turns (mmf) acting to produce the flux in
the magnetic circuit and it is not possible to distinguish whether it flows in the primary or secondary
winding or partially in each winding.
3 As discussed in Chapter 1, the term emf (electromotive force) is often used instead of induced voltage
to represent that component of voltage due to a time-varying flux linkage.
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where

λ1 = flux linkage of the primary winding

ϕ = flux in the core linking both windings

N1 = number of turns in the primary winding

The voltage e1 is in volts when ϕ is in webers. This emf, together with the voltage drop
in the primary resistance R1 (shown schematically as a series resistance in Fig. 2.4),
must balance the applied voltage v1; thus

v1 = R1iϕ + e1 (2.2)

Note that for the purposes of the current discussion, we are neglecting the effects of
primary leakage flux, which will add an additional induced-emf term in Eq. 2.2. In
typical transformers, this flux is a small percentage of the core flux, and it is quite
justifiable to neglect it for our current purposes. It does, however, play an important
role in the behavior of transformers and is discussed in some detail in Section 2.4.

In most large transformers, the no-load resistance drop is very small indeed,
and the induced emf e1 very nearly equals the applied voltage v1. Furthermore, the
waveforms of voltage and flux are very nearly sinusoidal. The analysis can then be
greatly simplified, as we have shown in Section 1.4. Thus, if the instantaneous flux
ϕ is

ϕ = φmax sin ωt (2.3)

the induced voltage e1 is

e1 = N1
dϕ

dt
= ωN1φmax cos ωt (2.4)

where φmax is the maximum value of the flux and ω = 2π f , the frequency being
f Hz. For the current and voltage reference directions shown in Fig. 2.4, the induced
emf leads the flux by 90◦. The rms value of the induced emf e1 is

E1 = 2π√
2

f N1φmax =
√

2 π f N1φmax (2.5)

As can be seen from Eq. 2.2, if the resistive voltage drop is negligible, the counter
emf equals the applied voltage. Under these conditions, if a sinusoidal voltage is
applied to a winding, a sinusoidally varying core flux must be established whose
maximum value φmax satisfies the requirement that E1 in Eq. 2.5 equal the rms value
V1 of the applied voltage; thus

φmax = V1√
2π f N1

(2.6)

Under these conditions, the core flux is determined solely by the applied voltage,
its frequency, and the number of turns in the winding. This important relation applies
not only to transformers but also to any device operated with a sinusoidally-alternating
impressed voltage, as long as the resistance and leakage-inductance voltage drops are
negligible. The core flux is fixed by the applied voltage, and the required exciting
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current is determined by the magnetic properties of the core; the exciting current
must adjust itself so as to produce the mmf required to create the flux demanded
by Eq. 2.6.

The importance and utility of this concept cannot be over-emphasized. It is often
extremely useful in the analysis of electric machines which are supplied from single or
poly-phase voltage sources. To a first approximation, the winding resistance can often
be neglected and, in spite of additional windings (for example the shorted windings on
the rotor of induction machines as will be seen in Chapter 6), the flux in the machine
will be determined by the applied voltage and the winding currents must adjust to
produce the corresponding mmf.

Because of the nonlinear magnetic properties of iron, the waveform of the exciting
current differs from the waveform of the flux; the exciting current for a sinusoidal
flux waveform will not be sinusoidal. This effect is especially pronounced in closed
magnetic circuits such as are found in transformers. In magnetic circuits where the
reluctance is dominated by an air gap with its linear magnetic characteristic, such
as is the case in many electric machines, the relationship between the net flux and
the applied mmf is relatively linear and the exciting current will be much more
sinusoidal.

In the case of a closed magnetic circuit, a curve of the exciting current as a func-
tion of time can be found graphically from the ac hysteresis loop, as is discussed in
Section 1.4 and shown in Fig. 1.11. If the exciting current is analyzed by Fourier-
series methods, it is found to consist of a fundamental component and a series of odd
harmonics. The fundamental component can, in turn, be resolved into two compo-
nents, one in phase with the counter emf and the other lagging the counter emf by 90◦.
The in-phase component supplies the power absorbed by hysteresis and eddy-current
losses in the core. It is referred to as core-loss component of the exciting current. When
the core-loss component is subtracted from the total exciting current, the remainder
is called the magnetizing current. It comprises a fundamental component lagging the
counter emf by 90◦, together with all the harmonics. The principal harmonic is the
third. For typical power transformers, the third harmonic is usually about 40 percent
of the exciting current.

Except in problems concerned directly with the effects of harmonic currents,
the peculiarities of the exciting-current waveform usually need not be taken into
account, because the exciting current itself is small, especially in large transformers.
For example, the exciting current of a typical power transformer is about 1 to 2 percent
of full-load current. Consequently the effects of harmonics are usually swamped out
by the sinusoidal-currents supplied to other linear elements in the circuit. The exciting
current can then be represented by an equivalent sinusoidal current which has the same
rms value and frequency and produces the same average power as the actual exciting
current.

Such a representation is essential to the construction of a phasor diagram, which
represents the phase relationship between the various voltages and currents in a system
in vector form. Each signal is represented by a phasor whose length is proportional to
the amplitude of the signal and whose angle is equal to the phase angle of that signal
as measured with respect to a chosen reference signal. In Fig. 2.5, the phasors Ê1
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θc

Î c

Îϕ

Î m

�̂

Ê1

Figure 2.5 No-load phasor
diagram.

and �̂ respectively, represent the complex amplitudes of the rms-induced emf and the
flux. The phasor Î ϕ represents the complex amplitude of the rms equivalent sinusoidal
exciting current. It lags the induced emf Ê1 by a phase angle θc. Also shown in the
figure is the phasor Î c, in phase with Ê1, which is the core-loss component of the
exciting current, The component Î m, in phase with the flux, represents an equivalent
sine wave current having the same rms value as the magnetizing current.

The core loss Pcore, equal to the product of the in-phase components of Ê1 and
Î ϕ , is given by

Pcore = E1 Iϕ cos θc = E1 Ic (2.7)

Typical exciting volt-ampere and core-loss characteristics of high-quality silicon
steel used for power and distribution transformer laminations are shown in Figs. 1.12
and 1.14.

EXAMPLE 2.1

In Example 1.8 the core loss and exciting voltamperes for the core of Fig. 1.15 at Bmax = 1.5 T
and 60 Hz were found to be

Pcore = 16 W (V I )rms = 20 VA

and the induced voltage was V = 274/
√

2 = 194 V rms when the winding had 200 turns.
Find the power factor, the core-loss current Ic, and the magnetizing current Im.

■ Solution
Power factor: cos θc = 16

20
= 0.80 (lag) thus θc = −36.9◦

Note that we know that the power factor is lagging because the system is inductive.

Exciting current: Iϕ = (V I )rms
V

= 0.10 A rms
Core-loss component: Ic = Pcore

V
= 0.082 A rms

Magnetizing component: Im = Iϕ × sin θc = 0.060 A rms
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2.3 EFFECT OF SECONDARY CURRENT;
IDEAL TRANSFORMER

As a first approximation to a quantitative theory, consider a transformer with a primary
winding of N1 turns and a secondary winding of N2 turns, as shown schematically in
Fig. 2.6. Notice that the secondary current is defined as positive out of the winding;
thus positive secondary current produces an mmf in the opposite direction from that
created by positive primary current. Let the properties of this transformer be ideal-
ized under the assumption that winding resistances are negligible, that all the flux is
confined to the core and fully links both windings (i.e., leakage flux is assumed neg-
ligible), that there are no losses in the core, and that the permeability of the core is so
high that only a negligible exciting mmf is required to establish the flux. These prop-
erties are closely approached but never actually attained in practical transformers. A
hypothetical transformer having these properties is often called an ideal transformer.

Under the above assumptions, when a time-varying voltage v1 is impressed on
the primary terminals, a core flux ϕ must be established such that the counter emf e1

equals the impressed voltage v1. Thus

v1 = e1 = N1
dϕ

dt
(2.8)

The core flux also links the secondary and produces an induced emf e2, and an equal
secondary terminal voltage v2, given by

v2 = e2 = N2
dϕ

dt
(2.9)

From the ratio of Eqs. 2.8 and 2.9,

v1

v2
= N1

N2
(2.10)

Thus an ideal transformer transforms voltages in the direct ratio of the turns in its
windings.

Now let a load which draws a current i2 be connected to the secondary. The load
current thus produces an mmf N2i2 in the secondary. Since the impressed primary
voltage sets the core flux as specified by Eq. 2.8, the core flux is unchanged by the
presence of a load on the secondary. Furthermore, since the net exciting mmf acting

N1

N2

i1

�

+
v1

i2

v2

�

+
Load

ϕ

Figure 2.6 Ideal transformer and load.
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on the core (equal to N1i1 − N2i2) must remain negligible, the primary and secondary
currents must satisfy the relationship

N1i1 − N2i2 = 0 (2.11)

From Eq. 2.11 we see that a compensating primary mmf must result to cancel that of
the secondary. Hence

N1i1 = N2i2 (2.12)

From this discussion, we see that the requirement that the core flux and hence
the corresponding net mmf remain unchanged is the means by which the primary
“knows” of the presence of load current in the secondary; any change in mmf flowing
in the secondary as the result of a load must be accompanied by a corresponding
change in the primary mmf. Note that for the reference directions shown in Fig. 2.6
the mmfs of i1 and i2 are in opposite directions and therefore compensate.

From Eq. 2.12

i1

i2
= N2

N1
(2.13)

Thus an ideal transformer transforms currents in the inverse ratio of the turns in its
windings.

Also notice from Eqs. 2.10 and 2.13 that

v1i1 = v2i2 (2.14)

i.e., the instantaneous power input to the primary equals the instantaneous power
output from the secondary, a necessary condition because all dissipative and energy
storage mechanisms in the transformer have been neglected.

An additional property of the ideal transformer can be seen by considering the
case of a sinusoidal applied voltage and an impedance load. The circuit is shown in
simplified form in Fig. 2.7a, in which the dot-marked terminals of the transformer
correspond to the similarly marked terminals in Fig. 2.6. Because all the voltages and
currents are sinusoidal, the voltages and currents are represented by their complex
amplitudes. The dot markings indicate terminals of corresponding polarity; i.e., if

a

b

N1

V̂1
Z2

N2

V̂2

(a)

Î 1 Î 2

a

b
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N1

(c)

Î 1

a
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N1 N2

Z2 
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N2

N1
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Î 1
Î 2

�

+

V̂1

�

+

V̂1

�

+

�

+

Figure 2.7 Three circuits which are identical at the terminal a-b when the transformer is ideal.
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one follows through the primary and secondary windings of Fig. 2.6, beginning at
their dot-marked terminals, one will find that both windings encircle the core in the
same direction with respect to the flux. Therefore, if one compares the voltages of the
two windings, the voltages from a dot-marked to an unmarked terminal will be of the
same instantaneous polarity for primary and secondary. In other words, the voltages
V̂1 and V̂2 in Fig. 2.7a are in phase. Also currents Î 1 and Î 2 are in phase as seen from
Eq. 2.12. Note again that the polarity of Î 1 is defined as into the dotted terminal and
the polarity of Î 2 is defined as out of the dotted terminal.

The circuits of Fig. 2.7 let us investigate the impedance transformation properties
of the ideal transformer. In phasor form, Eqs. 2.10 and 2.13 can be expressed as

V̂1 = N1

N2
V̂2 and V̂2 = N2

N1
V̂1 (2.15)

Î 1 = N2

N1
Î 2 and Î 2 = N1

N2
Î 1 (2.16)

From these equations

V̂1

Î 1
=

(
N1

N2

)2 V̂2

Î 2
(2.17)

We note that the load impedance Z2 is related to the secondary voltages and
currents as

Z2 = V̂2

Î 2
(2.18)

where Z2 is the complex impedance of the load. Thus, from Eqs. 2.17 and 2.18, we
see that the impedance Z1 seen at the terminals a-b is equal to

Z1 = V̂1

Î 1
=

(
N1

N2

)2

Z2 (2.19)

and consequently we see that from the primary terminals a-b, an impedance Z2 in
the secondary circuit can be replaced by an equivalent impedance Z1 in the primary
circuit satisfying the relationship

Z1 =
(

N1

N2

)2

Z2 (2.20)

The three circuits of Fig. 2.7 are indistinguishable as far as their performance
viewed from terminals a-b is concerned. Transferring an impedance from one side
of a transformer to the other in this fashion is called referring the impedance to the
other side; impedances transform as the square of the turns ratio. In a similar manner,
voltages and currents can be referred to one side or the other by using Eqs. 2.15 and
2.16 to evaluate the equivalent voltage and current on that side.

To summarize, in an ideal transformer, voltages are transformed by the direct
ratio of turns, currents by the inverse ratio, impedances by square of the turns-ratio
and power and voltamperes are unchanged.
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Figure 2.8 Equivalent circuits for Example 2.2. (a) Impedance in series with the secondary.
(b) Impedance referred to the primary.

EXAMPLE 2.2

The equivalent circuit of Fig. 2.8a shows an ideal transformer with an impedance R2 + j X2 =
1 + j4 	 connected in series with the secondary. The turns ratio N1/N2 = 5:1. (a) Draw an
equivalent circuit with the series impedance referred to the primary side. (b) For a primary
voltage of 120 V rms and a short connected across the secondary terminals (V2 = 0), calculate
the primary current and the current flowing in the short.

■ Solution

a. The new equivalent is shown in Fig. 2.8b. The secondary impedance is referred to the
primary by the turns ratio squared. Thus

R′
2 + j X ′

2 =
(

N1

N2

)2

(R2 + j X2)

= 25 + j100 	

b. From Eq. 2.20, a short at terminals A-B will appear as a short at the primary of the ideal
transformer in Fig. 2.8b since the zero voltage of the short is reflected by the turns ratio
N1/N2 to the primary. Hence the primary current will be given by

Î 1 = V̂1

R′
2 + j X ′

2

= 120

25 + j100
= 0.28 − j1.13 A rms

corresponding to a magnitude of 1.16 A rms. From Eq. 2.13, the secondary current will
equal N1/N2 = 5 times that of the current in the primary. Thus the current in the short
will have a magnitude of 5(1.16) = 5.8 A rms.

Practice Problem 2.1

Repeat part (b) of Example 2.2 for a series impedance R2 + j X2 = 0.05+ j0.97 	 and a turns
ratio of 14:1.

Solution
The primary current is 0.03 − j0.63 A rms, corresponding to a magnitude of 0.63 A rms. The
current in the short will be 14 times larger and thus will be of magnitude 8.82 A rms.
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2.4 TRANSFORMER REACTANCES
AND EQUIVALENT CIRCUITS

The departures of an actual transformer from those of an ideal transformer must be
included to a greater or lesser degree in most analyses of transformer performance.
A more complete model must take into account the effects of winding resistances,
leakage fluxes, and finite exciting current due to the finite (and indeed nonlinear)
permeability of the core. In some cases, the capacitances of the windings also have
important effects, notably in problems involving transformer behavior at frequencies
above the audio range or during rapidly changing transient conditions such as those
encountered in power system transformers as a result of voltage surges caused by
lightning or switching transients. The analysis of these high-frequency problems is
beyond the scope of the present treatment however, and accordingly capacitances of
the windings will be neglected.

Two methods of analysis by which departures from the ideal can be taken into
account are (1) an equivalent-circuit technique based on physical reasoning and (2) a
mathematical approach based on the classical theory of magnetically coupled circuits.
Both methods are in everyday use, and both have very close parallels in the theories
of rotating machines. Because it offers an excellent example of the thought process
involved in translating physical concepts to a quantitative theory, the equivalent-circuit
technique is presented here.

To begin the development of a transformer equivalent circuit, we first consider
the primary winding. The total flux linking the primary winding can be divided into
two components: the resultant mutual flux, confined essentially to the iron core and
produced by the combined mmfs of the primary and secondary currents, and the
primary leakage flux, which links only the primary. These components are identified
in the schematic transformer shown in Fig. 2.9, where for simplicity the primary and

1

×

21

×

2

Resultant mutual flux, ϕ

Secondary

leakage flux

Primary

leakage flux

Figure 2.9 Schematic view of mutual and leakage fluxes in a
transformer. The “X” and the dot indicate current directions in the
various coils.
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secondary windings are shown on opposite legs of the core. In an actual transformer
with interleaved windings, the details of the flux distribution are more complicated,
but the essential features remain the same.

The leakage flux induces voltage in the primary winding which adds to that
produced by the mutual flux. Because the leakage path is largely in air, this flux and
the voltage induced by it vary linearly with primary current Î 1. It can therefore be
represented by a primary leakage inductance Ll1 (equal to the leakage-flux linkages
with the primary per unit of primary current). The corresponding primary leakage
reactance Xl1 is found as

Xl1 = 2π f Ll1 (2.21)

In addition, there will be a voltage drop in the primary resistance R1 (not shown in
Fig. 2.9).

We now see that the primary terminal voltage V̂1 consists of three components:
the Î 1 R1 drop in the primary resistance, the j Î 1 Xl1 drop arising from primary leakage
flux, and the emf Ê1 induced in the primary by the resultant mutual flux. Fig. 2.10a
shows an equivalent circuit for the primary winding which includes each of these
voltages.

Î ′
2

(a)

R1
Xl1
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Î 1
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Î ′
2
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Figure 2.10 Steps in the development of the transformer equivalent circuit.
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The resultant mutual flux links both the primary and secondary windings and is
created by their combined mmfs. It is convenient to treat these mmfs by considering
that the primary current must meet two requirements of the magnetic circuit: It must
not only produce the mmf required to produce the resultant mutual flux, but it must
also counteract the effect of the secondary mmf which acts to demagnetize the core.
An alternative viewpoint is that the primary current must not only magnetize the
core, it must also supply current to the load connected to the secondary. According
to this picture, it is convenient to resolve the primary current into two components:
an exciting component and a load component. The exciting component Î ϕ is defined
as the additional primary current required to produce the resultant mutual flux. It is a
nonsinusoidal current of the nature described in Section 2.2.4 The load component Î ′

2
is defined as the component current in the primary which would exactly counteract
the mmf of secondary current Î 2.

Since it is the exciting component which produces the core flux, the net mmf
must equal N1 Î ϕ and thus we see that

N1 Î ϕ = N1 Î 1 − N2 Î 2

= N1( Î ϕ + Î ′
2) − N2 Î 2 (2.22)

and from Eq. 2.22 we see that

Î ′
2 = N2

N1
Î 2 (2.23)

From Eq. 2.23, we see that the load component of the primary current equals the
secondary current referred to the primary as in an ideal transformer.

The exciting current can be treated as an equivalent sinusoidal current Î ϕ , in the
manner described in Section 2.2, and can be resolved into a core-loss component
Î c in phase with the emf Ê1 and a magnetizing component Î m lagging Ê1 by 90◦.
In the equivalent circuit of Fig. 2.10b the equivalent sinusoidal exciting current is
accounted for by means of a shunt branch connected across Ê1, comprising a core-
loss resistance Rc in parallel with a magnetizing inductance Lm whose reactance,
known as the magnetizing reactance, is given by

Xm = 2π f Lm (2.24)

In the equivalent circuit of Fig. 2.10b the power E2
1/Rc accounts for the core loss

due to the resultant mutual flux. Rc, also referred to as the magnetizing resistance,
together with Xm forms the excitation branch of the equivalent circuit, and we will
refer to the parallel combination of Rc and Xm as the magnetizing impedance Zϕ .
When Rc is assumed constant, the core loss is thereby assumed to vary as E2

1 . Strictly
speaking, the magnetizing reactance Xm varies with the saturation of the iron. How-
ever, Xm is often assumed constant and the magnetizing current is thereby assumed
to be independent of frequency and directly proportional to the resultant mutual flux.

4 In fact, the exciting current corresponds to the net mmf acting on the transformer core and cannot, in
general, be considered to flow in the primary alone. However, for the purposes of this discussion, this
distinction is not significant.
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Both Rc and Xm are usually determined at rated voltage and frequency; they are then
assumed to remain constant for the small departures from rated values associated with
normal operation.

We will next add to our equivalent circuit a representation of the secondary
winding. We begin by recognizing that the resultant mutual flux �̂ induces an emf
Ê2 in the secondary, and since this flux links both windings, the induced-emf ratio
must equal the winding turns ratio, i.e.,

Ê1

Ê2
= N1

N2
(2.25)

just as in an ideal transformer. This voltage transformation and the current transfor-
mation of Eq. 2.23 can be accounted for by introducing an ideal transformer in the
equivalent circuit, as in Fig. 2.10c. Just as is the case for the primary winding, the
emf Ê2 is not the secondary terminal voltage because of the secondary resistance R2

and because the secondary current Î 2 creates secondary leakage flux (see Fig. 2.9).
The secondary terminal voltage V̂2 differs from the induced voltage Ê2 by the voltage
drops due to secondary resistance R2 and secondary leakage reactance Xl2 (corre-
sponding to the secondary leakage inductance Ll2) as in the portion of the complete
transformer equivalent circuit (Fig. 2.10c) to the right of Ê2.

From the equivalent circuit of Fig. 2.10, the actual transformer therefore can be
seen to be equivalent to an ideal transformer plus external impedances. By referring
all quantities to the primary or secondary, the ideal transformer in Fig. 2.10c can be
moved out to the right or left, respectively, of the equivalent circuit. This is almost
invariably done, and the equivalent circuit is usually drawn as in Fig. 2.10d, with the
ideal transformer not shown and all voltages, currents, and impedances referred to
either the primary or secondary winding. Specifically, for Fig. 2.10d,

X ′
l2

=
(

N1

N2

)2

Xl2 (2.26)

R′
2 =

(
N1

N2

)2

R2 (2.27)

and

V ′
2 = N1

N2
V2 (2.28)

The circuit of Fig. 2.10d is called the equivalent-T circuit for a transformer.
In Fig. 2.10d, in which the secondary quantities are referred to the primary, the

referred secondary values are indicated with primes, for example, X ′
l2 and R′

2, to dis-
tinguish them from the actual values of Fig. 2.10c. In the discussion that follows we
almost always deal with referred values, and the primes will be omitted. One must sim-
ply keep in mind the side of the transformers to which all quantities have been referred.

EXAMPLE 2.3

A 50-kVA 2400:240-V 60-Hz distribution transformer has a leakage impedance of 0.72 +
j0.92 	 in the high-voltage winding and 0.0070 + j0.0090 	 in the low-voltage winding. At
rated voltage and frequency, the impedance Zϕ of the shunt branch (equal to the impedance of
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a

Zl1 
= 0.72 + j0.92

Zϕ = 632 + j4370

Zl2 
= 0.70 + j0.90
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c′

d′
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(a)
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= 0.0072 + j0.0092

Zϕ = 6.32 + j43.7

Zl2 
= 0.0070 + j0.0090

d

a′

b′

a

b

(b)

Figure 2.11 Equivalent circuits for transformer of Example 2.3 referred to (a) the high-voltage side and (b) the
low-voltage side.

Rc and j Xm in parallel) accounting for the exciting current is 6.32 + j43.7 	 when viewed
from the low-voltage side. Draw the equivalent circuit referred to (a) the high-voltage side and
(b) the low-voltage side, and label the impedances numerically.

■ Solution
The circuits are given in Fig. 2.11a and b, respectively, with the high-voltage side numbered 1
and the low-voltage side numbered 2. The voltages given on the nameplate of a power system
transformer are based on the turns ratio and neglect the small leakage-impedance voltage drops
under load. Since this is a 10-to-1 transformer, impedances are referred by multiplying or
dividing by 100; for example, the value of an impedance referred to the high-voltage side is
greater by a factor of 100 than its value referred to the low-voltage side.

The ideal transformer may be explicitly drawn, as shown dotted in Fig. 2.11, or it may be
omitted in the diagram and remembered mentally, making the unprimed letters the terminals.
If this is done, one must of course remember to refer all connected impedances and sources to
be consistent with the omission of the ideal transformer.

Practice Problem 2.2

If 2,400 V rms is applied to the high-voltage side of the transformer of Example 2.3, calculate the
magnitude of the current into the magnetizing impedance Zϕ in Figs. 2.11a and b respectively.

Solution
The current through Zϕ is 0.543 A rms when it is referred to the high-voltage side as in Fig. 2.11a
and 5.43 A rms when it is referred to the low-voltage side.

2.5 ENGINEERING ASPECTS OF
TRANSFORMER ANALYSIS

In engineering analyses involving the transformer as a circuit element, it is customary
to adopt one of several approximate forms of the equivalent circuit of Fig. 2.10 rather
than the full circuit. The approximations chosen in a particular case depend largely
on physical reasoning based on orders of magnitude of the neglected quantities. The
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Figure 2.12 Approximate transformer equivalent circuits.

more common approximations are presented in this section. In addition, test methods
are given for determining the transformer constants.

The approximate equivalent circuits commonly used for constant-frequency
power transformer analyses are summarized for comparison in Fig. 2.12. All quanti-
ties in these circuits are referred to either the primary or the secondary, and the ideal
transformer is not shown.

Computations can often be greatly simplified by moving the shunt branch repre-
senting the exciting current out from the middle of the T circuit to either the primary or
the secondary terminals, as in Fig. 2.12a and b. These forms of the equivalent circuit
are referred to as cantilever circuits. The series branch is the combined resistance
and leakage reactance of the primary and secondary, referred to the same side. This
impedance is sometimes called the equivalent series impedance and its components
the equivalent series resistance Req and equivalent series reactance Xeq, as shown in
Fig. 2.12a and b.

As compared to the equivalent-T circuit of Fig. 2.10d, the cantilever circuit is
in error in that it neglects the voltage drop in the primary or secondary leakage
impedance caused by the exciting current. Because the impedance of the exciting
branch is typically quite large in large power transformers, the corresponding exciting
current is quite small. This error is insignificant in most situations involving large
transformers.

EXAMPLE 2.4

Consider the equivalent-T circuit of Fig. 2.11a of the 50-kVA 2400:240 V distribution trans-
former of Example 2.3 in which the impedances are referred to the high-voltage side. (a) Draw
the cantilever equivalent circuit with the shunt branch at the high-voltage terminal. Calculate
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Req =
1.42 �

Xeq = 

1.82 �

Zϕ = 632 + j4370 �

a

b

c

d

Figure 2.13 Cantilever equivalent
circuit for Example 2.4.

and label Req and Xeq. (b) With the low-voltage terminal open-circuit and 2400 V applied to the
high-voltage terminal, calculate the voltage at the low-voltage terminal as predicted by each
equivalent circuit.

■ Solution

a. The cantilever equivalent circuit is shown in Fig. 2.13. Req and Xeq are found simply as
the sum of the high- and low-voltage winding series impedances of Fig. 2.11a

Req = 0.72 + 0.70 = 1.42 	

Xeq = 0.92 + 0.90 = 1.82 	

b. For the equivalent-T circuit of Fig. 2.11a, the voltage at the terminal labeled c′-d′ will be
given by

V̂c′-d′ = 2400

(
Zϕ

Zϕ + Z l1

)
= 2399 + j0.3 V

with an rms magnitude of 2399 V. Reflected to the low-voltage terminals by the low- to
high-voltage turns ratio, this in turn corresponds to a voltage of 239.9 V.

Because the magnetizing impedance is connected directly across the high-voltage ter-
minals in the cantilever equivalent circuit of Fig. 2.13, there will be no voltage drop across
any series leakage impedance and the predicted secondary voltage will be 240 V. These two
solutions differ by 0.025 percent, well within reasonable engineering accuracy and clearly
justifying the use of the cantilever equivalent circuit for analysis of this transformer.

Further analytical simplification results from neglecting the exciting current en-
tirely, as in Fig. 2.12c, in which the transformer is represented as an equivalent series
impedance. If the transformer is large (several hundred kilovoltamperes or more),
the equivalent resistance Req is small compared with the equivalent reactance Xeq

and can frequently be neglected, giving the equivalent circuit of Fig. 2.12d. The cir-
cuits of Fig. 2.12c and d are sufficiently accurate for most ordinary power-system
problems and are used in all but the most detailed analyses. Finally, in situations
where the currents and voltages are determined almost wholly by components exter-
nal to the transformer or when a high degree of accuracy is not required, the entire
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transformer impedance can be neglected and the transformer considered to be ideal,
as in Section 2.3.

The circuits of Fig. 2.12 have the additional advantage that the total equivalent
resistance Req and equivalent reactance Xeq can be found from a very simple test in
which one terminal is short-circuited. On the other hand, the process of determining
the individual leakage reactances X l1 and X l2 and a complete set of parameters for the
equivalent-T circuit of Fig. 2.10c is more difficult. Example 2.4 illustrates that, due
to the voltage drop across leakage impedances, the ratio of the measured voltages of
a transformer will not be identically equal to the idealized voltage ratio which would
be measured if the transformer were ideal. In fact, without some apriori knowledge
of the turns ratio (based for example upon knowledge of the internal construction of
the transformer), it is not possible to make a set of measurements which uniquely
determine the turns ratio, the magnetizing inductance, and the individual leakage
impedances.

It can be shown that, with respect to terminal measurements, neither the turns
ratio, the magnetizing reactance, or the leakage reactances are unique characteristics
of a transformer equivalent circuit. For example, the turns ratio can be chosen arbi-
trarily and for each choice of turns ratio, there will be a corresponding set of values
for the leakage and magnetizing reactances which matches the measured character-
istic. Each of the resultant equivalent circuits will have the same electrical terminal
characteristics, a fact which has the fortunate consequence that any self-consistent
set of empirically determined parameters will adequately represent the transformer.

EXAMPLE 2.5

The 50-kVA 2400:240-V transformer whose parameters are given in Example 2.3 is used to
step down the voltage at the load end of a feeder whose impedance is 0.30 + j1.60 	. The
voltage Vs at the sending (primary) end of the feeder is 2400 V.

Find the voltage at the secondary terminals of the transformer when the load connected
to its secondary draws rated current from the transformer and the power factor of the load is
0.80 lagging. Neglect the voltage drops in the transformer and feeder caused by the exciting
current.

■ Solution
The equivalent circuit with all quantities referred to the high-voltage (primary) side of the
transformer is shown in Fig. 2.14a, where the transformer is represented by its equivalent
impedance, as in Fig. 2.12c. From Fig. 2.11a, the value of the equivalent impedance is Zeq =
1.42 + j1.82 	 and the combined impedance of the feeder and transformer in series is Z =
1.72 + j3.42 	. From the transformer rating, the load current referred to the high-voltage side
is I = 50,000/2400 = 20.8 A.

Note that the power factor is defined at the load side of the transformer and hence defines
the phase angle θ between the load current Î and the voltage V̂ 2 where

θ = − cos−1 (0.80) = −36.87◦

Thus

Î = 20.8 e− j36.87◦
A
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Figure 2.14 (a) Equivalent circuit and (b) phasor diagram for Example 2.5.

From the equivalent-circuit of Fig. 2.11 we see that

V̂ 2 = V̂s − Z Î = 2400 − (1.72 + j3.42) × 20.8 e− j36.87◦

= 2329 e− j0.87◦
V

Although an algebraic solution of the complex equation is often the simplest and most
direct way to obtain a solution, it is sometimes useful to solve these type of problems with the aid
of a phasor diagram. We will illustrate this with a phasor diagram referred to the high-voltage
side as shown in Fig. 2.14b. From the phasor diagram

Ob =
√

V 2
s − (bc)2 and V2 = Ob − ab

Note that

bc = I X cos θ − I R sin θ ab = I R cos θ + I X sin θ

where R and X are the combined transformer and feeder resistance and reactance, respectively.
Thus

bc = 20.8(3.42)(0.80) − 20.8(1.72)(0.60) = 35.5 V

ab = 20.8(1.72)(0.80) + 20.8(3.42)(0.60) = 71.4 V

Substitution of numerical values shows that V2 = 2329 V, referred to the high-voltage
side. The actual voltage at the secondary terminals is 2329/10, or

V2 = 233 V

Practice Problem 2.3

Repeat Example 2.5 for a load which draws rated current from the transformer with a power
factor of 0.8 leading.

Solution

V2 = 239 V

Two very simple tests serve to determine the parameters of the equivalent circuits
of Fig. 2.10 and 2.12. These consist of measuring the input voltage, current, and power
at one side of the transformer, first with the second side short-circuited and then with
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Figure 2.15 Equivalent circuit with short-circuited secondary. (a) Complete equivalent circuit.
(b) Cantilever equivalent circuit with the exciting branch at the transformer secondary.

the second side open-circuited. Note that, following common practice, the transformer
voltage ratio is used as the turns ratio when referring parameters from side to side for
the purposes of parameter determination.

Short-Circuit Test The short-circuit test can be used to find the equivalent series
impedance Req + j Xeq. Although the choice of winding to short-circuit is arbitrary,
for the sake of this discussion we will consider the short circuit to be applied to the
transformer secondary and voltage applied to primary. For convenience, the high-
voltage side is usually taken as the primary in this test. Because the equivalent series
impedance in a typical transformer is relatively small, typically an applied primary
voltage on the order of 10 to 15 percent or less of the rated value will result in rated
current.

Figure 2.15a shows the equivalent circuit with transformer secondary impedance
referred to the primary side and a short circuit applied to the secondary. The short-
circuit impedance Zsc looking into the primary under these conditions is

Zsc = R1 + j Xl1 + Zϕ(R2 + j Xl2)

Zϕ + R2 + j Xl2

(2.29)

Because the impedance Zϕ of the exciting branch is much larger than that of the
secondary leakage impedance (which will be true unless the core is heavily saturated
by excessive voltage applied to the primary; certainly not the case here), the short-
circuit impedance can be approximated as

Zsc ≈ R1 + j Xl1 + R2 + j Xl2 = Req + j Xeq (2.30)

Note that the approximation made here is equivalent to the approximation made
in reducing the equivalent-T circuit to the cantilever equivalent. This can be seen
from Fig. 2.15b; the impedance seen at the input of this equivalent circuit is clearly
Zsc = Zeq = Req + j Xeq since the exciting branch is directly shorted out by the short
on the secondary.

Typically the instrumentation used for this test will measure the rms magnitude
of the applied voltage Vsc, the short-circuit current Isc, and the power Psc. Based upon
these three measurements, the equivalent resistance and reactance (referred to the
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primary) can be found from

|Zeq| = |Zsc| = Vsc

Isc
(2.31)

Req = Rsc = Psc

I 2
sc

(2.32)

Xeq = Xsc = √|Zsc|2 − R2
sc (2.33)

where the notation | | indicates the magnitude of the enclosed complex quantity. The
equivalent impedance can, of course, be referred from one side to the other in the
usual manner.

Note that the short-circuit test does not provide sufficient information to deter-
mine the individual leakages impedances of the primary and secondary windings. On
the occasions when the equivalent-T circuit in Fig. 2.10d must be used, approximate
values of the individual primary and secondary resistances and leakage reactances
can be obtained by assuming that R1 = R2 = 0.5Req and X l1 = X l2 = 0.5Xeq when
all impedances are referred to the same side. Strictly speaking, of course, it is possible
to measure R1 and R2 directly by a dc resistance measurement on each winding (and
then referring one or the other to the other side of the ideal transformer). However, as
has been discussed, no such simple test exists for the leakage reactances Xl1 and Xl2 .

Open-Circuit Test The open-circuit test is performed with the secondary open-
circuited and a voltage impressed on the primary. Under this condition an exciting
current of a few percent of full-load current (less on large transformers and more on
smaller ones) is obtained. Typically, the test is conducted at rated voltage to insure
that the core, and hence the magnetizing reactance, will be operating at a flux level
close to that which will exist under normal operating conditions. If the transformer is
to be used at other than its rated voltage, the test should be done at that voltage. For
convenience, the low-voltage side is usually taken as the primary in this test. If the
primary is chosen to be the opposite winding from that of the short-circuit test, one
must of course be careful to refer the various measured impedances to the same side
of the transformer in order to obtain a self-consistent set of parameter values.

Figure 2.16a shows the equivalent circuit with the transformer secondary
impedance referred to the primary side and with the secondary open-circuited. The
open-circuit impedance Zoc looking into the primary under these conditions is

Zoc = R1 + j Xl1 + Zϕ = R1 + j Xl1 + Rc ( j Xm)

Rc + j Xm
(2.34)

Because the impedance of the exciting branch is quite large, the voltage drop in the
primary leakage impedance caused by the exciting current is typically negligible, and
the primary impressed voltage V̂oc very nearly equals the emf Êoc induced by the
resultant core flux. Similarly, the primary I 2

oc R1 loss caused by the exciting current is
negligible, so that the power input Poc very nearly equals the core loss E2

oc/Rc. As a
result, it is common to ignore the primary leakage impedance and to approximate the
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Figure 2.16 Equivalent circuit with open-circuited secondary. (a) Complete equivalent
circuit. (b) Cantilever equivalent circuit with the exciting branch at the transformer primary.

open-circuit impedance as being equal to the magnetizing impedance

Zoc ≈ Zϕ = Rc( j Xm)

Rc + j Xm
(2.35)

Note that the approximation made here is equivalent to the approximation made in
reducing the equivalent-T circuit to the cantilever equivalent circuit of Fig. 2.16b; the
impedance seen at the input of this equivalent circuit is clearly Zϕ since no current
will flow in the open-circuited secondary.

As with the short-circuit test, typically the instrumentation used for this test
will measure the rms magnitude of the applied voltage, Voc, the open-circuit current
Ioc, and the power Poc. Neglecting the primarily leakage impedance and based upon
these three measurements, the magnetizing resistance and reactance (referred to the
primary) can be found from

Rc = V 2
oc

Poc
(2.36)

|Zϕ| = Voc

Ioc
(2.37)

Xm = 1√
(1/|Zϕ|)2 − (1/Rc)

2
(2.38)

The values obtained are, of course, referred to the side used as the primary in this
test.

The open-circuit test can be used to obtain the core loss for efficiency computa-
tions and to check the magnitude of the exciting current. Sometimes the voltage at the
terminals of the open-circuited secondary is measured as a check on the turns ratio.

Note that, if desired, a slightly more accurate calculation of Xm and Rc can be
found by retaining the measurements of R1 and Xl1 obtained from the short-circuit test
(referred to the proper side of the transformer) and basing the derivation on Eq. 2.34.
However, such additional effort is rarely necessary for the purposes of engineering
accuracy.
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EXAMPLE 2.6

With the instruments located on the high-voltage side and with the low-voltage side short-
circuited, the short-circuit test readings for the 50-kVA 2400:240-V transformer of Example 2.3
are 48 V, 20.8 A, and 617 W. An open-circuit test with the low-voltage side energized gives
instrument readings on that side of 240 V, 5.41 A, and 186 W. Determine the efficiency and
the voltage regulation of the transformer operating at full load, 0.80 power factor lagging.

■ Solution
From the short-circuit test, the magnitude of the equivalent impedance, the equivalent resistance,
and the equivalent reactance of the transformer (referred to the high-voltage side as denoted
by the subscript H) are

|Zeq,H| = 48

20.8
= 2.31 	 Req,H = 617

20.82
= 1.42 	

Xeq,H = √
2.312 − 1.422 = 1.82 	

Operation at full-load, 0.80 power factor lagging corresponds to a current of

IH = 50000

2400
= 20.8 A

and an output power

Poutput = Pload = (0.8)50000 = 40000 W

Note that the short-circuit test was conducted at rated current and hence the full-load I 2 R
loss will equal that of the short-circuit test. Similarly, the open-circuit test was conducted at
rated voltage and hence the full-load core loss is equal to that of the open-circuit test. As a
result, the total loss under this operating condition is equal to the sum of the winding loss

Pwinding = I 2
H Req,H = 20.82(1.42) = 617 W

and the open-circuit core loss

Pcore = 186 W

Thus

Ploss = Pwinding + Pcore = 803 W

and the power input to the transformer is

Pinput = Poutput + Ploss = 40803 W

The efficiency of a power conversion device is defined as

efficiency = Poutput

Pinput

= Pinput − Ploss

Pinput

= 1 − Ploss

Pinput

which can be expressed in percent by multiplying by 100 percent. Hence, for this operating
condition

efficiency = 100%

(
Poutput

Pinput

)
= 100%

(
40000

40000 + 803

)
= 98.0%

The voltage regulation of a transformer is defined as the change in secondary terminal
voltage from no load to full load and is usually expressed as a percentage of the full-load value.
In power systems applications, regulation is one figure of merit for a transformer; a low value
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indicates that load variations on the secondary of that transformer will not significantly affect
the magnitude of the voltage being supplied to the load. It is calculated under the assumption that
the primary voltage remains constant as the load is removed from the transformer secondary.

The equivalent circuit of Fig. 2.12c will be used with all quantities referred to the high-
voltage side. The primary voltage is assumed to be adjusted so that the secondary terminal
voltage has its rated value at full load, or V2H = 2400 V. For a load of rated value and 0.8 power
factor lagging (corresponding to a power-factor angle θ = −cos−1 (0.8) = −36.9◦), the load
current will be

Î H =
(

50 × 103

2400

)
e− j36.9◦ = 20.8 e− j36.9◦ = 16.6 − j12.5 A

The required value of the primary voltage V1H can be calculated as

V̂1H = V̂2H + Î H(Req,H + j Xeq,H)

= 2400 + (16.6 − j12.5) (1.42 + j1.82)

= 2446 e j0.29◦
V

The magnitude of V̂1H is 2446 V. If this voltage were held constant and the load removed,
the secondary voltage on open circuit would rise to 2446 V referred to the high-voltage side.
Then

Regulation =
(

2446 − 2400

2400

)
× 100% = 1.92%

Practice Problem 2.4

Repeat the voltage-regulation calculation of Example 2.6 for a load of 50 kW (rated load, unity
power factor).

Solution

Regulation = 1.24%

2.6 AUTOTRANSFORMERS; MULTIWINDING
TRANSFORMERS

The principles discussed in previous sections have been developed with specific ref-
erence to two-winding transformers. They are also applicable to transformers with
other winding configurations. Aspects relating to autotransformers and multiwinding
transformers are considered in this section.

2.6.1 Autotransformers

In Fig. 2.17a, a two-winding transformer is shown with N1 and N2 turns on the
primary and secondary windings respectively. Substantially the same transformation
effect on voltages, currents, and impedances can be obtained when these windings
are connected as shown in Fig. 2.17b. However, note that in Fig. 2.17b, winding bc is
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N1 + N2
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c

N1 N2

(a) (b)

Figure 2.17 (a) Two-winding transformer.
(b) Connection as an autotransformer.

common to both the primary and secondary circuits. This type of transformer is called
an autotransformer. It is similar to a normal transformer connected in a special way,
with the exception that the windings must be appropriately insulated for the operating
operating voltage.

One important difference between the two-winding transformer and the auto-
transformer is that the windings of the two-winding transformer are electrically iso-
lated whereas those of the autotransformer are connected directly together. Also, in
the autotransformer connection, winding ab must be provided with extra insulation
since it must be insulated against the full maximum voltage of the autotransformer.
Autotransformers have lower leakage reactances, lower losses, and smaller exciting
current and cost less than two-winding transformers when the voltage ratio does not
differ too greatly from 1:1.

The following example illustrates the benefits of an autotransformer for those
situations where electrical isolation between the primary and secondary windings is
not an important consideration.

EXAMPLE 2.7

The 2400:240-V 50-kVA transformer of Example 2.6 is connected as an autotransformer, as
shown in Fig. 2.18a, in which ab is the 240-V winding and bc is the 2400-V winding. (It is
assumed that the 240-V winding has enough insulation to withstand a voltage of 2640 V to
ground.)

a. Compute the voltage ratings VH and VX of the high- and low-voltage sides, respectively,
for this autotransformer connection.

b. Compute the kVA rating as an autotransformer.
c. Data with respect to the losses are given in Example 2.6. Compute the full-load efficiency

as an autotransformer operating with a rated load of 0.80 power factor lagging.

■ Solution

a. Since the 2400-V winding bc is connected to the low-voltage circuit, VL = 2400 V. When
Vbc = 2400 V, a voltage Vab = 240 V in phase with Vbc will be induced in winding ab
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Figure 2.18 (a) Autotransformer connection for
Example 2.7. (b) Currents under rated load.

(leakage-impedance voltage drops being neglected). The voltage of the high-voltage side
therefore is

VH = Vab + Vbc = 2640 V

b. From the rating of 50 kVA as a normal two-winding transformer, the rated current of
the 240-V winding is 50,000/240 = 208 A. Since the high-voltage lead of the
autotransformer is connected to the 240-V winding, the rated current IH at the
high-voltage side of the autotransformer is equal to the rated current of the 240-V winding
or 208 A. The kVA rating as an autotransformer therefore is

VH IH

1000
= 2640 × 208

1000
= 550 kVA

Note that, in this connection, the autotransformer has an equivalent turns ratio of
2640/2400. Thus the rated current at the low-voltage winding (the 2400-V winding in this
connection) must be

IL =
(

2640

2400

)
208 A = 229 A

At first, this seems rather unsettling since the 2400-V winding of the transformer has a
rated current of 50 kVA/2400 V = 20.8 A. Further puzzling is that fact that this
transformer, whose rating as a normal two-winding transformer is 50 kVA, is capable of
handling 550 kVA as an autotransformer.

The higher rating as an autotransformer is a consequence of the fact that not all the
550 kVA has to be transformed by electromagnetic induction. In fact, all that the
transformer has to do is to boost a current of 208 A through a potential rise of 240 V,
corresponding to a power transformation capacity of 50 kVA. This fact is perhaps best
illustrated by Fig. 2.18b which shows the currents in the autotransformer under rated
conditions. Note that the windings carry only their rated currents in spite of higher rating
of the transformer.
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c. When it is connected as an autotransformer with the currents and voltages shown in
Fig. 2.18, the losses are the same as in Example 2.6, namely 803 W. But the output as an
autotransformer at full load, 0.80 power factor is 0.80 × 550,000 = 440,000 W. The
efficiency therefore is (

1 − 803

440,803

)
100% = 99.82%

The efficiency is so high because the losses are those corresponding to transforming only
50 kVA.

Practice Problem 2.5

A 450-kVA, 460-V:7.97-kV transformer has an efficiency of 97.8 percent when supplying a
rated load of unity power factor. If it is connected as a 7.97:8.43-kV autotransformer, calculate
its rated terminal currents, rated kVA, and efficiency when supplying a unity-power-factor load.

Solution
The rated current at the 8.43-kV terminal is 978 A, at the 7.97-kV terminal is 1034 A and the
transformer rating is 8.25 MVA. Its efficiency supplying a rated, unity-power-factor load is
99.88 percent.

From Example 2.7, we see that when a transformer is connected as an auto-
transformer as shown in Fig. 2.17, the rated voltages of the autotransformer can be
expressed in terms of those of the two-winding transformer as

Low-voltage:

VLrated = V1rated (2.39)

High-voltage:

VHrated = V1rated + V2rated =
(

N1 + N2

N1

)
VLrated (2.40)

The effective turns ratio of the autotransformer is thus (N1 + N2)/N1. In addition,
the power rating of the autotransformer is equal to (N1 + N2)/N2 times that of the
two-winding transformer, although the actual power processed by the transformer
will not increase over that of the standard two-winding connection.

2.6.2 Multiwinding Transformers

Transformers having three or more windings, known as multiwinding or multicircuit
transformers, are often used to interconnect three or more circuits which may have
different voltages. For these purposes a multiwinding transformer costs less and is
more efficient than an equivalent number of two-winding transformers. Transformers
having a primary and multiple secondaries are frequently found in multiple-output dc
power supplies for electronic applications. Distribution transformers used to supply
power for domestic purposes usually have two 120-V secondaries connected in series.
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Circuits for lighting and low-power applications are connected across each of the
120-V windings, while electric ranges, domestic hot-water heaters, clothes-dryers,
and other high-power loads are supplied with 240-V power from the series-connected
secondaries.

Similarly, a large distribution system may be supplied through a three-phase
bank of multiwinding transformers from two or more transmission systems having
different voltages. In addition, the three-phase transformer banks used to interconnect
two transmission systems of different voltages often have a third, or tertiary, set of
windings to provide voltage for auxiliary power purposes in substations or to sup-
ply a local distribution system. Static capacitors or synchronous condensers may be
connected to the tertiary windings for power factor correction or voltage regulation.
Sometimes 
-connected tertiary windings are put on three-phase banks to provide a
low-impedance path for third harmonic components of the exciting current to reduce
third-harmonic components of the neutral voltage.

Some of the issues arising in the use of multiwinding transformers are associated
with the effects of leakage impedances on voltage regulation, short-circuit currents,
and division of load among circuits. These problems can be solved by an equivalent-
circuit technique similar to that used in dealing with two-circuit transformers.

The equivalent circuits of multiwinding transformers are more complicated than
in the two-winding case because they must take into account the leakage impedances
associated with each pair of windings. Typically, in these equivalent circuits, all
quantities are referred to a common base, either by use of the appropriate turns ratios
as referring factors or by expressing all quantities in per unit. The exciting current
usually is neglected.

2.7 TRANSFORMERS IN THREE-PHASE
CIRCUITS

Three single-phase transformers can be connected to form a three-phase transformer
bank in any of the four ways shown in Fig. 2.19. In all four parts of this figure, the wind-
ings at the left are the primaries, those at the right are the secondaries, and each primary
winding in one transformer corresponds to the secondary winding drawn parallel to it.
Also shown are the voltages and currents resulting from balanced impressed primary
line-to-line voltages V and line currents I when the ratio of primary-to-secondary
turns N1/N2 = a and ideal transformers are assumed.5 Note that the rated voltage
and current at the primary and secondary of the three-phase transformer bank depend
upon the connection used but that the rated kVA of the three-phase bank is three times
that of the individual single-phase transformers, regardless of the connection.

The Y-
 connection is commonly used in stepping down from a high voltage
to a medium or low voltage. One reason is that a neutral is thereby provided for
grounding on the high-voltage side, a procedure which can be shown to be desirable
in many cases. Conversely, the 
-Y connection is commonly used for stepping up to

5 The relationship between three-phase and single-phase quantities is discussed in Appendix A.
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Figure 2.19 Common three-phase transformer connections; the transformer windings
are indicated by the heavy lines.

a high voltage. The 
-
 connection has the advantage that one transformer can be
removed for repair or maintenance while the remaining two continue to function as
a three-phase bank with the rating reduced to 58 percent of that of the original bank;
this is known as the open-delta, or V , connection. The Y-Y connection is seldom used
because of difficulties with exciting-current phenomena.6

Instead of three single-phase transformers, a three-phase bank may consist of one
three-phase transformer having all six windings on a common multi-legged core and
contained in a single tank. Advantages of three-phase transformers over connections
of three single-phase transformers are that they cost less, weigh less, require less floor
space, and have somewhat higher efficiency. A photograph of the internal parts of a
three-phase transformer is shown in Fig. 2.20.

Circuit computations involving three-phase transformer banks under balanced
conditions can be made by dealing with only one of the transformers or phases and
recognizing that conditions are the same in the other two phases except for the phase
displacements associated with a three-phase system. It is usually convenient to carry
out the computations on a single-phase (per-phase-Y, line-to-neutral) basis, since
transformer impedances can then be added directly in series with transmission line
impedances. The impedances of transmission lines can be referred from one side of
the transformer bank to the other by use of the square of the ideal line-to-line voltage
ratio of the bank. In dealing with Y-
 or 
-Y banks, all quantities can be referred to
the Y-connected side. In dealing with 
-
 banks in series with transmission lines, it is
convenient to replace the 
-connected impedances of the transformers by equivalent
Y-connected impedances. It can be shown that a balanced 
-connected circuit of

6 Because there is no neutral connection to carry harmonics of the exciting current, harmonic voltages are
produced which significantly distort the transformer voltages.



Umans-3930269 book December 14, 2012 11:56

2.7 Transformers in Three-Phase Circuits 93

Figure 2.20 Internal view of a three-phase, 480V-Y/208V-
,
112-kVA transformer.

Z
 	/phase is equivalent to a balanced Y-connected circuit of ZY 	/phase if

ZY = 1

3
Z
 (2.41)

EXAMPLE 2.8

Three single-phase, 50-kVA 2400:240-V transformers, each identical with that of Example 2.6,
are connected Y-
 in a three-phase 150-kVA bank to step down the voltage at the load end
of a feeder whose impedance is 0.15 + j1.00 	/phase. The voltage at the sending end of the
feeder is 4160 V line-to-line. On their secondary sides, the transformers supply a balanced
three-phase load through a feeder whose impedance is 0.0005 + j0.0020 	/phase. Find the
line-to-line voltage at the load when the load draws rated current from the transformers at a
power factor of 0.80 lagging.

■ Solution
For the given connection, the rated line-line voltage at the high-voltage terminals of the three-
phase transformer bank will

√
3 2400 ≈ 4160 V. Thus, the transformer bank will have an rated

turns ratio of 4160/240. The computations can be made on a single-phase basis by referring
everything to the high-voltage, Y-connected side of the transformer bank. The voltage at the
sending end of the feeder is equivalent to a source voltage Vs of

Vs = 4160√
3

≈ 2400 V line-to-neutral

From the transformer rating, the rated current on the high-voltage side is 20.8 A/phase Y.
The low-voltage feeder impedance referred to the high voltage side by means of the square of
the rated turns ratio

Z lv,H =
(

4160

240

)2

(0.0005 + j0.0020) = 0.15 + j0.60 	
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and the combined series impedance of the high- and low-voltage feeders referred to the high-
voltage side is thus

Z feeder,H = 0.30 + j1.60 	/phase Y

Because the transformer bank is Y-connected on its high-voltage side, its equivalent single-
phase series impedance is equal to the single-phase series impedance of each single-phase
transformer as referred to its high-voltage side. This impedance was originally calculated in
Example 2.4 as

Zeq,H = 1.42 + j1.82 	/phase Y

Due to the choice of values selected for this example, the single-phase equivalent circuit
for the complete system is identical to that of Example 2.5, as can been seen with specific
reference to Fig. 2.14a. In fact, the solution on a per-phase basis is exactly the same as the
solution to Example 2.5, whence the load voltage referred to the high-voltage side is 2329 V
to neutral. The actual line-neutral load voltage can then be calculated by referring this value to
the low-voltage side of the transformer bank as

Vload = 2329

(
240

4160

)
= 134 V line-to-neutral

which can be expressed as a line-to-line voltage by multiplying by
√

3

Vload = 134
√

3 = 233 V line-to-line

Note that this line-line voltage is equal to the line-neutral load voltage calculated in
Example 2.5 because in this case the transformers are delta connected on their low-voltage side
and hence the line-line voltage on the low-voltage side is equal to the low-voltage terminal
voltage of the transformers.

Practice Problem 2.6

Repeat Example 2.8 with the transformers connected Y-Y and all other aspects of the problem
statement remaining unchanged.

Solution
405 V line-line

EXAMPLE 2.9

The three transformers of Example 2.8 are reconnected 
-
 and supplied with power through a
2400-V (line-to-line) three-phase feeder whose reactance is 0.80 	/phase as shown in Fig. 2.21.
At its sending end, the feeder is connected to the secondary terminals of a three-phase Y-
-
connected transformer whose rating is 500 kVA, 24 kV:2400 V (line-to-line). The equivalent
series impedance of the sending-end transformer is 0.17+ j0.92 	/phase referred to the 2400-V
side. The voltage applied to the primary terminals of the sending-end transformer is 24.0 kV
line-to-line.

A three-phase short circuit occurs at the 240-V terminals of the receiving-end transformers.
Compute the steady-state short-circuit current in the 2400-V feeder phase wires, in the primary
and secondary windings of the receiving-end transformers, and at the 240-V terminals.
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24 kV : 2.4 kV 2.4 kV : 240 V

Sending
end

Receiving
end

Feeder
Y

Figure 2.21 One-line diagram for Example 2.9 .

■ Solution
The computations will be made on an equivalent line-to-neutral basis with all quantities referred
to the 2400-V feeder. The source voltage then is

2400√
3

= 1385 V line-to-neutral

From Eq. 2.41, the single-phase-equivalent series impedance of the 
-
 transformer seen
at its 2400-V side is

Zeq = Req + j Xeq = 1.42 + j1.82

3
= 0.47 + j0.61 	/phase

The total series impedance to the short circuit is then the sum of this impedance, that of
sending-end transformer and the reactance of the feeder

Z tot = (0.47 + j0.61) + (0.17 + j0.92) + j0.80 = 0.64 + j2.33 	/phase

which has a magnitude of

|Z tot| = 2.42 	/phase

The magnitude of the phase current in the 2400-V feeder can now simply be calculated
as the line-neutral voltage divided by the magnitude of the series impedance

Current in 2400-V feeder = 1385

2.42
= 572 A

and, as is shown in Fig. 2.19c, the winding current in the 2400-V winding of the receiving-end
transformer is equal to the phase current divided by

√
3 or

Current in 2400-V windings = 572√
3

= 330 A

while the current in the 240-V windings is 10 times this value

Current in 240-V windings = 10 × 330 = 3300 A

Finally, again with reference to Fig. 2.19c, the phase current at the 240-V terminals into
the short circuit is given by

Current at the 240-V terminals = 3300
√

3 = 5720 A

Note of course that this same result could have been computed simply by recognizing that the
turns ratio of the 
-
 transformer bank is equal to 10:1 and hence, under balanced-three-phase
conditions, the phase current on the low voltage side will be 10 times that on the high-voltage
side.
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Practice Problem 2.7

Repeat Example 2.9 under the condition that the three transformers are connected 
-Y instead
of 
-
 such that the short low-voltage side of the three-phase transformer is rated 416 V
line-to-line.

Solution

Current in 2400-V feeder = 572 A

Current in 2400-V windings = 330 A

Current in 416-V windings = 3300 A

Current at the 416-V terminals = 3300A

2.8 VOLTAGE AND CURRENT
TRANSFORMERS

Transformers are often used in instrumentation applications to match the magnitude
of a voltage or current to the range of a meter or other instrumentation. For example,
most 60-Hz power-systems’ instrumentation is based upon voltages in the range of
0-120 V rms and currents in the range of 0–5 A rms. Since power system voltages
range up to 765-kV line-to-line and currents can be 10s of kA, some method of
supplying an accurate, low-level representation of these signals to the instrumentation
is required.

One common technique is through the use of specialized transformers known as
potential transformers or PTs and current transformers or CTs. If constructed with
a turns ratio of N1:N2, an ideal potential transformer would have a secondary volt-
age equal in magnitude to N2/N1 times that of the primary and identical in phase.
Similarly, an ideal current transformer would have a secondary output current equal
to N1/N2 times the current input to the primary, again identical in phase. In other
words, potential and current transformers (also referred to as instrumentation trans-
formers) are designed to approximate ideal transformers as closely as is practically
possible.

The equivalent circuit of Fig. 2.22 shows a transformer loaded with an impedance
Zb = Rb+ j Xb at its secondary. For the sake of this discussion, the core-loss resistance
Rc has been neglected; if desired, the analysis presented here can be easily expanded to
include its effect. Following conventional terminology, the load on an instrumentation
transformer is frequently referred to as the burden on that transformer, hence the
subscript ′b′. To simplify our discussion, we have chosen to refer all the secondary
quantities to the primary side of the ideal transformer.

Consider first a potential transformer. Ideally it should accurately measure voltage
while appearing as an open circuit to the system under measurement, i.e., drawing
negligible current and power. Thus, its load impedance should be “large” in a sense
we will now quantify.
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Figure 2.22 Equivalent circuit for an instrumentation
transformer.

First, let us assume that the transformer secondary is open-circuited (i.e.,
|Zb| = ∞). In this case we can write that

V̂2

V̂1
=

(
N2

N1

)
j Xm

R1 + j (X1 + Xm)
(2.42)

From this equation, we see that a potential transformer with an open-circuited sec-
ondary has an inherent error (in both magnitude and phase) due to the voltage drop of
the magnetizing current through the primary resistance and leakage reactance. To the
extent that the primary resistance and leakage reactance can be made small compared
to the magnetizing reactance, this inherent error can be made quite small.

The situation is worsened by the presence of a finite burden. Including the effect
of the burden impedance, Eq. 2.42 becomes

V̂2

V̂1
=

(
N2

N1

)
Zeq Z ′

b

(R1 + j X1)(Zeq + Z ′
b + R′

2 + j X ′
2)

(2.43)

where

Zeq = j Xm(R1 + j X1)

R1 + j (Xm + X1)
(2.44)

and

Z ′
b =

(
N1

N2

)2

Zb (2.45)

is the burden impedance referred to the transformer primary.
From these equations, it can be seen that the characteristics of an accurate poten-

tial transformer include a large magnetizing reactance (more accurately, a large mag-
netizing impedance since the effects of core loss, although neglected in the analysis
presented here, must also be minimized) and relatively small winding resistances and
leakage reactances. Finally, as will be seen in Example 2.10, the burden impedance
must be kept above a minimum value to avoid introducing excessive errors in the
magnitude and phase angle of the measured voltage.

EXAMPLE 2.10

A 2400:120-V, 60-Hz potential transformer has the following parameter values (referred to the
2400-V winding):

X1 = 143 	 X ′
2 = 164 	 Xm = 163 k	

R1 = 128 	 R′
2 = 141 	
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(a) Assuming a 2400-V input, which ideally should produce a voltage of 120 V at the
low-voltage winding, calculate the magnitude and relative phase-angle errors of the secondary
voltage if the secondary winding is open-circuited. (b) Assuming the burden impedance to be
purely resistive (Zb = Rb), calculate the minimum resistance (maximum burden) that can be
applied to the secondary such that the magnitude error is less than 0.5 percent. (c) Repeat part
(b) but find the minimum resistance such that the phase-angle error is less than 1.0 degree.

■ Solution

a. This problem is most easily solved using MATLAB.† From Eq. 2.42 with V̂1 = 2400 V,
the following MATLAB script gives

V̂2 = 119.90 � 0.045◦ V

which corresponds to a magnitude error of less than 0.1% and a phase angle error of
0.045◦.

Here is the MATLAB script:

clc

clear

%PT parameters

R1 = 128;

X1 = 143;

Xm = 163e3;

N1 = 2400;

N2 = 120;

N = N1/N2;

%Primary voltage

V1 = 2400;

%Secondary voltage

V2 = V1*(N2/N1)*(j*Xm/(R1+ j*(X1+Xm)));

magV2 = abs(V2);

phaseV2 = 180*angle(V2)/pi;

fprintf(’\nMagnitude of V2 = %g [V]’,magV2)

fprintf(’\n and angle = %g [degrees]\n\n’,phaseV2)

b. Here, again, it is relatively straight forward to write a MATLAB script to implement
Eq. 2.43 and to calculate the percentage error in the magnitude of voltage V̂2 as compared
to the 120 Volts that would be measured if the PT were ideal. The resistive burden Rb

can be initialized to a large value and then reduced until the magnitude error reaches

† MATLAB is a registered trademark of The MathWorks, Inc.
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0.5 percent. The result of such an analysis would show that the minimum resistance is
162.5 	, corresponding to a magnitude error of 0.50 percent and a phase angle of 0.22◦.
(Note that this appears as a resistance of 65 k	 when referred to the primary.)

c. The MATLAB script of part (b) can be modified to search for the minimum resistive
burden that will keep the phase angle error less than 1.0 degrees. The result would show
that the minimum resistance is 41.4 	, corresponding to a phase angle of 1.00◦ and a
magnitude error of 1.70 percent.

Practice Problem 2.8

Using MATLAB, repeat parts (b) and (c) of Example 2.10 assuming the burden impedance is
purely reactive (Zb = j Xb) and finding the corresponding minimum impedance Xb in each
case.

Solution
The minimum burden reactance which results in a secondary voltage magnitude within 0.5 per-
cent of the expected 120 V is Xb = 185.4 	, for which the phase angle is 0.25◦. The minimum
burden reactance which results in a secondary voltage phase-angle of within 1.0◦ of that of the
primary voltage is Xb = 39.5 	, for which the voltage-magnitude error is 2.0 percent.

Consider next a current transformer. An ideal current transformer would accu-
rately measure current while appearing as a short circuit to the system under measure-
ment, i.e., developing negligible voltage drop and drawing negligible power. Thus,
its load impedance should be “small” in a sense we will now quantify.

Let us begin with the assumption that the transformer secondary is short-circuited
(i.e., |Zb| = 0). In this case we can write that

Î 2

Î 1
=

(
N1

N2

)
j Xm

R′
2 + j (X ′

2 + Xm)
(2.46)

Based upon an argument similar to that used in the discussion of a potential
transformer, Eq. 2.46 shows that a current transformer with a shorted secondary has
an inherent error (in both magnitude and phase) due to the fact that some of the primary
current is shunted through the magnetizing reactance and does not reach the secondary.
To the extent that the magnetizing reactance can be made large in comparison to the
secondary resistance and leakage reactance, this error can be made quite small.

A finite burden appears in series with the secondary impedance and increases the
error. Including the effect of the burden impedance, Eq. 2.46 becomes

Î 2

Î 1
=

(
N1

N2

)
j Xm

Z ′
b + R′

2 + j (X ′
2 + Xm)

(2.47)

From these equations, it can be seen that an accurate current transformer should
have a large magnetizing impedance and relatively small winding resistances and
leakage reactances. In addition, as is seen in Example 2.11, the burden impedance
on a current transformer must be kept below a maximum value to avoid introducing
excessive additional magnitude and phase errors in the measured current.
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EXAMPLE 2.11

A 800:5-A, 60-Hz current transformer has the following parameter values (referred to the
800-A winding):

X1 = 44.8 μ	 X ′
2 = 54.3 μ	 Xm = 17.7 m	

R1 = 10.3 μ	 R′
2 = 9.6 μ	

Assuming that the high-current winding is carrying a current of 800 amperes, calculate the
magnitude and relative phase of the current in the low-current winding if the load impedance
is purely resistive with Rb = 2.5 	.

■ Solution
The secondary current can be found from Eq. 2.47 by setting Î 1 = 800 A and R′

b = (N1/N2)
2 Rb=

0.097 m	. The following MATLAB script gives

Î 2 = 4.98 � 0.346◦ A

Here is the MATLAB script:

clc

clear

%CT parameters

R_2p = 9.6e-6;

X_2p = 54.3e-6;

X_m = 17.7e-3;

N_1 = 5;

N_2 = 800;

N = N_1/N_2;

%Load impedance

R_b = 2.5;

X_b = 0;

Z_bp = N\^{}2*(R_b + j * X_b);

% Primary current

I1 = 800;

%Secondary current

I2 = I1*N*j*X_m/(Z_bp + R_2p + j*(X_2p + X_m));

magI2 = abs(I2);

phaseI2 = 180*angle(I2)/pi;

fprintf(’\nSecondary current magnitude = %g [A]’,magI2)

fprintf(’\n and phase angle = \%g [degrees]\n$\n’,phaseI2)
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Practice Problem 2.9

For the current transformer of Example 2.11, find the maximum purely reactive burden Zb =
j Xb such that, for 800 A flowing in the transformer primary, the secondary current will be
greater than 4.95 A (i.e., there will be at most a 1.0 percent error in current magnitude).

Solution
Xb must be less than 3.19 	

2.9 THE PER-UNIT SYSTEM
Electric power systems typically consist of the interconnection of a large number
of generators, transformers, transmission lines and loads (a large fraction of which
include electric motors). The characteristics of these components vary over a large
range; with voltages ranging from hundreds of volts to hundreds of kilovolts and power
ratings ranging from kilowatts to hundreds of megawatts. Power-system analyses,
and indeed analyses of individual power-system components are often carried out
in per-unit form, i.e., with all pertinent quantities expressed as decimal fractions of
appropriately chosen base values. All the usual computations are then carried out in
these per-unit values instead of the familiar volts, amperes, ohms, and so on.

There are a number of advantages to the use of the per-unit system. One is that,
when expressed in per-unit based upon their rating, the parameter values of machines
and transformers typically fall in a reasonably narrow numerical range. This both
permits a quick “sanity check” of parameter values as well enables “back-of-the en-
velope” estimates of parameter values which are otherwise not available. A second
advantage is that when transformer equivalent-circuit parameters are converted to their
per-unit values, the ideal transformer turns ratio becomes 1:1 and hence the ideal trans-
former can be eliminated from the equivalent circuit. This greatly simplifies analyses
since it eliminates the need to refer impedances to one side or the other of transformers.

Quantities such as voltage V , current I , power P , reactive power Q, voltamperes
VA, resistance R, reactance X , impedance Z , conductance G, susceptance B, and
admittance Y can be translated to and from per-unit form as follows:

Quantity in per unit = Actual quantity

Base value of quantity
(2.48)

where “Actual quantity” refers to the value in volts, amperes, ohms, and so on. To
a certain extent, base values can be chosen arbitrarily, but certain relations between
them must be observed for the normal electrical laws to hold in the per-unit system.
Thus, for a single-phase system, the power base (total, real and reactive power) is
related to the base voltage and base current as

VAbase (Pbase, Qbase) = Vbase × Ibase (2.49)

and the impedance base (complex, real and reactive) is related to the base voltage and
base current as

Zbase (Rbase, Xbase) = Vbase

Ibase
(2.50)
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The net result is that only two independent base quantities can be chosen arbitrarily;
the remaining quantities are determined by the relationships of Eqs. 2.49 and 2.50. In
typical usage, values of VAbase and Vbase are chosen first; values of Ibase and all other
quantities in Eqs. 2.49 and 2.50 are then uniquely established.

The value of VAbase must be the same over the entire system under analysis.
As can be seen with reference to the equivalent circuit of Fig. 2.10c, if the base
voltages of the primary and secondary are chosen to be in the ratio of the turns of
the ideal transformer, the per-unit ideal transformer will have a unity turns ratio and
hence can be eliminated. Usually the rated or nominal voltages of the respective sides
are chosen as the base values. Although, as we have seen, transformer equivalent-
circuit parameters values vary by the square of the turns ratio as they are reflected
from one side of the transformer to the other, the per-unit impedances will be the same
independent of the side of the transformer from which they are initially calculated. This
is consistent with the unity-turns-ratio per-unit ideal transformer and is automatically
accounted for by using Eqs. 2.49 and 2.50 to determine the per-unit values.

If these rules are followed, the procedure for performing system analyses in
per-unit can be summarized as follows:

1. Select a VA base and a base voltage at some point in the system.

2. Convert all quantities to per unit on the chosen VA base and with a voltage
base that transforms as the turns ratio of any transformer which is encountered
as one moves through the system.

3. Perform a standard electrical analysis on the resultant electric circuit with all
quantities in per unit.

4. When the analysis is completed, all quantities can be converted back to real
units (e.g., volts, amperes, watts, etc.) by multiplying their per-unit values by
their corresponding base values.

When only one electric device, such as a transformer, is involved, the device’s own
rating is generally used for the volt-ampere base. When their parameters are expressed
in per-unit on their rating as a base, the characteristics of power and distribution
transformers do not vary much over a wide range of ratings. For example, the exciting
current is often between 0.02 and 0.06 per unit (2 percent to 6 percent of rated current)
or less on the largest transformers, the equivalent resistance is usually between 0.005
and 0.02 per unit (the smaller values applying to large transformers), and the equivalent
reactance is usually between 0.05 and 0.10 per unit ( with the larger values applying to
large high-voltage transformers as required to limit short-circuit currents). Similarly,
the per-unit values of synchronous- and induction-machine parameters fall within a
relatively narrow range. The reason for this is that the physics behind each type of
device is the same and, in a crude sense, they can each be considered to be simply
scaled versions of the same basic device. As a result, when normalized to their own
rating, the effect of the scaling is eliminated and the result is a set of per-unit parameter
values which is quite similar over the whole size range of that device.

Often, manufacturers supply device parameters in per unit on the device base.
When several devices are involved, however, an arbitrary choice of volt-ampere base
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must usually be made, and that value must then be used for the overall system. As a
result, when performing a system analysis, it may be necessary to convert the supplied
per-unit parameter values to per-unit values on the base chosen for the analysis. The
following relations can be used to convert per-unit (pu) values from one base to
another:

(P, Q, VA)pu on base 2 = (P, Q, VA)pu on base 1

[
VAbase 1

VAbase 2

]
(2.51)

(R, X, Z)pu on base 2 = (R, X, Z)pu on base 1

[
(Vbase 1)

2VAbase 2

(Vbase 2)2VAbase 1

]
(2.52)

Vpu on base 2 = Vpu on base 1

[
Vbase 1

Vbase 2

]
(2.53)

Ipu on base 2 = Ipu on base 1

[
Vbase 2VAbase 1

Vbase 1VAbase 2

]
(2.54)

EXAMPLE 2.12

The equivalent circuit for a 100-MVA, 7.97-kV:79.7-kV transformer is shown in Fig. 2.23a.
The equivalent-circuit parameters are:

XL = 0.040 	 XH = 3.75 	 Xm = 114 	

RL = 0.76 m	 RH = 0.085 	

Note that the magnetizing inductance has been referred to the low-voltage side of the equivalent
circuit. Convert the equivalent circuit parameters to per unit using the transformer rating as
base.

■ Solution
The base quantities for the transformer are:

Low-voltage side:

VAbase = 100 MVA Vbase = 7.97 kV

and from Eqs. 2.49 and 2.50

Rbase = Xbase = V 2
base

VAbase

= 0.635 	

High-voltage side:

VAbase = 100 MVA Vbase = 79.7 kV

and from Eqs. 2.49 and 2.50

Rbase = Xbase = V 2
base

VAbase

= 63.5 	
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RL

(0.76 m�)

XL

(0.040 �)

RH

(0.085 �)

XH

(3.75 �)Xm

(114 �)

7.99 kV : 79.7 kV

(a)

RL

(0.0012 pu)

XL

(0.0630 pu)

RH

(0.0013 pu)

XH

(0.0591 pu)Xm

(180 pu)

1 : 1

(b)

(c)

RL

(0.0012 pu)

XL

(0.0630 pu)

Xm

(180 pu)

XH

(0.0591 pu)

RH

(0.0013 pu)

Figure 2.23 Transformer equivalent circuits for Example 2.12.
(a) Equivalent circuit in actual units. (b) Per-unit equivalent circuit with
1:1 ideal transformer. (c) Per-unit equivalent circuit following
elimination of the ideal transformer.

The per-unit values of the transformer parameters can now be calculated by division by
their corresponding base quantities.

XL = 0.040

0.635
= 0.0630 per unit

XH = 3.75

63.5
= 0.0591 per unit

Xm = 114

0.635
= 180 per unit

RL = 7.6 × 10−4

0.635
= 0.0012 per unit

RH = 0.085

63.5
= 0.0013 per unit

Finally, the voltages representing the turns ratio of the ideal transformer must each be di-
vided by the base voltage on that side of the transformer. Thus the turns ratio of 7.97-kV:79.7-kV
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becomes in per unit

Per-unit turns ratio =
(

7.97 kV

7.97 kV

)
:

(
79.7 kV

79.7 kV

)
= 1 : 1

The resultant per-unit equivalent circuit is shown in Fig. 2.23b. Because it has unity turns ratio,
there is no need to keep the ideal transformer and hence this equivalent circuit can be reduced
to the form of Fig. 2.23c.

EXAMPLE 2.13

The exciting current measured on the low-voltage side of a 50-kVA, 2400:240-V transformer
is 5.41 A. Its equivalent impedance referred to the high-voltage side is 1.42 + j1.82 	. Using
the transformer rating as the base, express in per unit on the low- and high-voltage sides (a) the
exciting current and (b) the equivalent impedance.

■ Solution
The base values of voltages and currents are

Vbase,H = 2400 V Vbase,L = 240 V Ibase,H = 20.8 A Ibase,L = 208 A

where subscripts H and L indicate the high- and low-voltage sides, respectively.
From Eq. 2.50

Zbase,H = 2400

20.8
= 115.2 	 Zbase,L = 240

208
= 1.152 	

a. From Eq. 2.48, the exciting current in per unit referred to the low-voltage side can be
calculated as:

Iϕ,L = 5.41

208
= 0.0260 per unit

The exciting current referred to the high-voltage side is 0.541 A. Its per-unit value is

Iϕ,H = 0.541

20.8
= 0.0260 per unit

Note that, as expected, the per-unit values are the same referred to either side,
corresponding to a unity turns ratio for the ideal transformer in the per-unit transformer.
This is a direct consequence of the choice of base voltages in the ratio of the transformer
turns ratio and the choice of a constant volt-ampere base.

b. From Eq. 2.48 and the value for Zbase

Zeq,H = 1.42 + j1.82

115.2
= 0.0123 + j0.0158 per unit

The equivalent impedance referred to the low-voltage side is 0.0142 + j0.0182	. Its
per-unit value is

Zeq,L = 0.142 + 0.0182

1.152
= 0.0123 + j0.0158 per unit

The per-unit values referred to the high- and low-voltage sides are the same, the
transformer turns ratio being accounted for in per unit by the base values. Note again that
this is consistent with a unity turns ratio of the ideal transformer in the per-unit
transformer equivalent circuit.
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Practice Problem 2.10

A 15-kVA 120:460-V transformer has an equivalent series impedance of 0.018 + j0.042 per
unit. Calculate the equivalent series impedance in ohms (a) referred to the low-voltage side and
(b) referred to the high-voltage side.

Solution

Zeq,L = 0.017 + j0.040 	 and Zeq,H = 0.25 + j0.60 	

When they are applied to the analysis of three-phase systems, the base values for
the per-unit system are chosen so that the relations for a balanced three-phase system
hold between them:

(Pbase, Qbase, VAbase)3−phase = 3VAbase, per phase (2.55)

In dealing with three-phase systems, VAbase, 3−phase, the three-phase volt-ampere base,
and Vbase, 3−phase = Vbase, l−l, the line-to-line voltage base are usually chosen first. The
base values for the phase (line-to-neutral) voltage then follows as

Vbase, l−n = 1√
3

Vbase, l−l (2.56)

Note that the base current for three-phase systems is equal to the phase current,
which is the same as the base current for a single-phase (per-phase) analysis. Hence

Ibase, 3−phase = Ibase, per phase = VAbase, 3−phase√
3 Vbase, 3−phase

(2.57)

Finally, the three-phase base impedance is chosen to the be the single-phase base
impedance. Thus

Zbase, 3−phase = Zbase, per phase

= Vbase, l−n

Ibase, per phase

= Vbase, 3−phase√
3Ibase, 3−phase

= (Vbase, 3−phase)
2

VAbase, 3−phase
(2.58)

The equations for conversion from base to base, Eqs. 2.51 through 2.54, apply
equally to three-phase base conversion. Note that the factors of

√
3 and 3 relating


 to Y quantities of volts, amperes, and ohms in a balanced three-phase system are
automatically taken care of in per unit by the base values. Three-phase problems can
thus be solved in per unit as if they were single-phase problems and the details of
transformer (Y vs 
 on the primary and secondary of the transformer) and impedance
(Y vs 
) connections disappear, except in translating volt, ampere, and ohm values
into and out of the per-unit system.
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EXAMPLE 2.14

Rework Example 2.9 in per unit, specifically calculating the short-circuit phase currents which
will flow in the feeder and at the 240-V terminals of the receiving-end transformer bank.
Perform the calculations in per unit on the three-phase, 150-kVA, rated-voltage base of the
receiving-end transformer.

■ Solution
We start by converting all the impedances to per unit. The impedance of the 500-kVA,
24 kV:2400 V sending end transformer is 0.17 + j0.92 	/phase as referred to the 2400-V
side. From Eq. 2.58, the base impedance corresponding to a 2400-V, 150-kVA base is

Zbase = 24002

150 × 103
= 38.4 	

From Example 2.9, the total series impedance is equal to Z tot = 0.64 + j2.33 	/phase and
thus in per unit it is equal to

Z tot = 0.64 + j2.33

38.4
= 0.0167 + j0.0607 per unit

which is of magnitude

|Z tot| = 0.0629 per unit

The voltage applied to the high-voltage side of the sending-end transformer is Vs =
24.0 kV = 1.0 per unit on a rated-voltage base and hence the short-circuit current will equal

Isc = Vs

|Z tot| = 1.0

0.0629
= 15.9 per unit

To calculate the phase currents in amperes, it is simply necessary to multiply the per-unit
short-circuit current by the appropriate base current. Thus, at the 2400-V feeder the base current
is

Ibase, 2400−V = 150 × 103

√
3 2400

= 36.1 A

and hence the feeder current will be

Ifeeder = 15.9 × 36.1 = 574 A

The base current at the 240-V secondary of the receiving-end transformers is

Ibase, 240−V = 150 × 103

√
3 240

= 361 A

and hence the short-circuit current is

I240−V secondary = 15.9 × 361 = 5.74 kA

As expected, these values are equivalent within numerical accuracy to those calculated in
Example 2.9.
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Practice Problem 2.11

Calculate the magnitude of the short-circuit current in the feeder of Example 2.9 if the 2400-
V feeder is replaced by a feeder with an impedance of 0.07 + j0.68 	/phase. Perform this
calculation on the 500-kVA, rated-voltage base of the sending-end transformer and express
your solution both in per unit and in amperes per phase.

Solution
Short-circuit current = 5.20 per unit = 636 A

EXAMPLE 2.15

A three-phase load is supplied from a 2.4-kV:460-V, 250-kVA transformer whose equivalent
series impedance is 0.026 + j0.12 per unit on its own base. The load voltage is observed to
be 438 V line-line, and it is drawing 95 kW at unity power factor. Calculate the voltage at the
high-voltage side of the transformer. Perform the calculations on a 460-V, 100-kVA base.

■ Solution
The 460-V side base impedance for the transformer is

Zbase, transformer = 4602

250 × 103
= 0.846 	

while that based upon a 100-kVA base is

Zbase, 100−kVA = 4602

100 × 103
= 2.12 	

Thus, from Eq. 2.52 the per-unit transformer impedance on a 100-kVA base is

Z transformer = (0.026 + j0.12)

(
0.864

2.12

)
= 0.0106 + j.0489 per unit

The per-unit load voltage is

V̂load = 438

460
= 0.952 � 0◦ per unit

where the load voltage has been chosen as the reference for phase-angle calculations.
The per-unit load power is

Pload = 95

100
= 0.95 per unit

and hence the per-unit load current, which is in phase with the load voltage because the load is
operating at unity power factor, is

Î load = Pload

Vload

= 0.95

0.952
= 0.998 � 0◦ per unit

Thus we can now calculate the high-side voltage of the transformer

V̂H = V̂load + Î load Z transformer

= 0.952 + 0.998 × (0.0106 + j0.0489)

= 0.963 + j0.0488 = 0.964 � 29.0◦ per unit

Thus the high-side voltage is equal to 0.964 × 2400 V = 2313 V (line-line).
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Practice Problem 2.12

Repeat Example 2.15 if the 250-kV three-phase transformer is replaced by a 150-kV transformer
also rated at 2.4-kV:460-V and whose equivalent series impedance is 0.038 + j0.135 per unit
on its own base. Perform the calculations on a 460-V, 100-kVA base.

Solution

High-side voltage = 0.982 per unit = 2357 V (line-line)

2.10 SUMMARY
Although not an electromechanical device, the transformer is a common and in-
dispensable component of ac systems where it is used to transform voltages, cur-
rents, and impedances to appropriate levels for optimal use. For the purposes of
our study of electromechanical systems, transformers serve as valuable examples
of the analysis techniques which will be employed. They offer us opportunities to
investigate the properties of magnetic circuits, including the concepts of mmf, mag-
netizing current, and magnetizing, mutual, and leakage fluxes and their associated
inductances.

In both transformers and rotating machines, a magnetic field is created by the
combined action of the currents in the windings. In an iron-core transformer, most
of this flux is confined to the core and links all the windings. This resultant mutual
flux induces voltages in the windings proportional to their number of turns and is
responsible for the voltage-changing property of a transformer. In rotating machines,
the situation is similar, although there is an air gap which separates the rotating and
stationary components of the machine. Directly analogous to the manner in which
transformer core flux links the various windings on a transformer core, the mutual flux
in rotating machines crosses the air gap, linking the windings on the rotor and stator.
As in a transformer, the mutual flux induces voltages in these windings proportional
to the number of turns and the time rate of change of the flux.

A significant difference between transformers and rotating machines is that in ro-
tating machines there is relative motion between the windings on the rotor and stator.
This relative motion produces an additional component of the time rate of change of the
various winding flux linkages. As will be discussed in Chapter 3, the resultant voltage
component, known as the speed voltage, is characteristic of the process of electrome-
chanical energy conversion. In a static transformer, however, the time variation of flux
linkages is caused simply by the time variation of winding currents; no mechanical
motion is involved, and no electromechanical energy conversion takes place.

The resultant core flux in a transformer induces a counter emf in the primary
which, together with the primary resistance and leakage-reactance voltage drops,
must balance the applied voltage. Since the resistance and leakage-reactance voltage
drops usually are small, the counter emf must approximately equal the applied voltage
and the core flux must adjust itself accordingly. Exactly similar phenomena must take
place in the armature windings of an ac motor; the resultant air-gap flux wave must
adjust itself to generate a counter emf approximately equal to the applied voltage. In
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both transformers and rotating machines, the net mmf produced by all of the currents
must accordingly adjust itself to create the resultant flux required by this voltage
balance.

In a transformer, the secondary current is determined by the voltage induced in
the secondary, the secondary leakage impedance, and the electric load. As we will
see, in an induction motor, the secondary (rotor) current is determined by the voltage
induced in the secondary, the secondary leakage impedance, and the mechanical load
on its shaft. Essentially the same phenomena take place in the primary winding of
the transformer and in the armature (stator) windings of induction and synchronous
motors. In all three the story remains the same; the primary, or armature, current
must adjust itself so that the combined mmf of all currents creates the flux required
by the applied voltage and as a result, a change in the load current will result in a
corresponding change in the primary current.

In addition to the useful mutual fluxes, in both transformers and rotating ma-
chines there are leakage fluxes which link individual windings without linking oth-
ers. Although the detailed picture of the leakage fluxes in rotating machines is more
complicated than that in transformers, their effects are essentially the same. In both,
leakage fluxes produce leakage-reactance voltage drops in the windings and typi-
cally reduce the mutual flux below the level which would otherwise be produced
by the applied voltage. In both, the reluctances of the leakage-flux paths are domi-
nated by that of a path through air, and hence the leakage fluxes are nearly linearly
proportional to the currents producing them. Leakage reactances therefore are often
assumed to be constant, independent of the degree of saturation of the main magnetic
circuit.

Further examples of the basic similarities between transformers and rotating
machines can be cited. Except for friction and windage, the losses in transformers
and rotating machines are essentially the same. Tests for determining the losses and
equivalent circuit parameters are similar: an open-circuit, or no-load, test gives in-
formation regarding the excitation requirements and core losses (along with friction
and windage losses in rotating machines), while a short-circuit test together with dc
resistance measurements gives information regarding leakage reactances and wind-
ing resistances. Modeling of the effects of magnetic saturation is another example:
In both transformers and ac rotating machines, the leakage reactances are usually as-
sumed to be unaffected by saturation, and the saturation of the main magnetic circuit
is assumed to be determined by the resultant mutual or air-gap flux.

2.11 CHAPTER 2 VARIABLES
λ Flux linkages [Wb]
ω Angular frequency [rad/sec]
ϕ, φmax Magnetic flux [Wb]
�̂ Magnetic flux, complex amplitude [Wb]
θ Phase angle [rad]
Bmax Peak flux density [T]
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e Electromotive force (emf), induced voltage [V]
E Voltage [V]
Ê EMF, voltage, complex amplitude [V]
f Frequency [Hz]
i , I Current [A]
iϕ Exciting current [A]
Î Current, complex amplitude [A]
Î c Core-loss component of exciting current, complex amplitude [A]
Î m Magnetizing current, complex amplitude [A]
Î ϕ Exciting current, complex amplitude [A]
L Inductance [H]
N Number of turns
Q Reactive power [VAR]
R Resistance [	]
Rbase Base resistance [	]
t Time [sec]
v, V Voltage [V]
Vbase Base voltage [V]
V̂ Voltage, complex amplitude [V]
V A = Voltamperes [VA]
X Reactance [	]
Z Impedance [	]
Z
 Delta-equivalent line-neutral impedance [	/phase]
Zϕ Exciting impedance [	]
ZY Y-equivalent line-neutral impedance [	/phase]

Subscripts:

φ Exciting
b Burden
base Base quantity
c Core
eq Equivalent
H High-voltage side
l Leakage
l-n Line-to-neutral
L Low-voltage side
m Magnetizing
max Maximum
oc Open circuit
pu Per unit
rms Root mean square
s Sending
sc Short circuit
tot Total
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2.12 PROBLEMS
2.1 A transformer is made up of a 1150-turn primary coil and an open-circuited

80-turn secondary coil wound around a closed core of cross-sectional area
56 cm2. The core material can be considered to saturate when the rms applied
flux density reaches 1.45 T. What maximum 60-Hz rms primary voltage is
possible without reaching this saturation level? What is the corresponding
secondary voltage? How are these values modified if the applied frequency is
lowered to 50 Hz?

2.2 A magnetic circuit with a cross-sectional area of 20 cm2 is to be operated at
60 Hz from a 115-V rms supply. Calculate the number of turns such that the
peak core magnetic flux density is 1.6 T.

2.3 A transformer is to be used to transform the impedance of a 75-	 resistor to
an impedance of 300 	. Calculate the required turns ratio, assuming the
transformer to be ideal.

2.4 A 150 	 resistor is connected to the secondary of a transformer with a turns
ratio of 1:4 (primary to secondary). A 12 V rms, 1 kHz voltage source is
connected to the primary. (a) Assuming the transformer to be ideal, calculate
the primary current and the resistor voltage and power. (b) Repeat this
calculation assuming that the transformer has a leakage inductance of 340 μH
as referred to the primary.

2.5 A load consisting of a 5 	 resistor in series with a 2.5 mH inductor is
connected to the low-voltage winding of a 20:120 V transformer. A 110 V
rms, 50-Hz supply is connected to the high-voltage winding. Assuming the
transformer to be ideal, calculate the rms load current and the rms current
which will be drawn from the supply.

2.6 A source which can be represented by a 12 V rms voltage source in series
with a resistance of 1.5 k	 is connected to a 75-	 load resistance through an
ideal transformer. Calculate the value of turns ratio for which maximum
power is supplied to the load and the corresponding load power? Using
MATLAB, plot the the power in milliwatts supplied to the load as a function
of the transformer ratio, covering ratios from 1.0 to 10.0.

2.7 Repeat the calculations of Problem 2.6 with the source resistance replaced by
a 1.5 k	 inductive reactance.

2.8 A single-phase 60-Hz transformer has a nameplate voltage rating of 7.97
kV:120 V based on its known winding turns ratio. The manufacturer
calculates that the primary (7.97-kV) leakage inductance is 193 mH and the
primary magnetizing inductance is 167 H. For an applied primary voltage of
7970 V at 60 Hz, calculate the resultant open-circuit secondary voltage.

2.9 The manufacturer calculates that the transformer of Problem 2.8 has a
secondary leakage inductance of 44 μH.

a. Calculate the magnetizing inductance as referred to the secondary side.

b. A voltage of 120 V, 60 Hz is applied to the secondary. Calculate (i) the
resultant open-circuit primary voltage and (ii) the secondary current
which would result if the primary were short-circuited.
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2.10 A 230-V:6.6-kV, 50-Hz, 45 kVA transformer has a magnetizing reactance (as
measured from the 230-V terminals) of 46.2 	. The 230-V winding has a
leakage reactance of 27.8 m	 and the 6.6-kV winding has a leakage reactance
of 25.3 	.

a. With the secondary open-circuited and 230 V applied to the primary
(230-V) winding, calculate the primary current and the secondary voltage.

b. With the secondary short-circuited, calculate the primary voltage which
will result in rated current in the primary winding. Calculate the
corresponding current in the secondary winding.

2.11 The transformer of Problem 2.10 is to be used on a 60-Hz system.

a. Calculate the magnetizing reactance referred to the low-voltage winding
and the leakage reactance of each winding.

b. With 240 V applied to the low-voltage (primary) winding and with the
secondary winding open-circuited, calculate the primary-winding current
and the secondary voltage.

2.12 A 460-V:2400-V transformer has a series leakage reactance of 39.3 	 as
referred to the high-voltage side. A load connected to the low voltage side is
observed to draw 42 kW at unity power factor and the voltage is measured to
be 447 V. Calculate the corresponding voltage and power factor as measured
at the high-voltage terminals.

2.13 The 460-V:2400-V transformer of Problem 2.12 is to be operated from a
50-Hz source. A unity-power-factor load connected to the low-voltage side is
observed to draw 34.5 kW, unity-power-factor load at a voltage of 362 V.
Calculate the voltage applied to the transformer high-voltage winding.

2.14 The resistances and leakage reactances of a 40-kVA 60-Hz 7.97-kV-V:240-V
single-phase distribution transformer are

R1 = 41.6 	 R2 = 37.2 m	

X l1 = 42.1 	 X l2 = 39.8 m	

where subscript 1 denotes the 7.97-kV winding and subscript 2 denotes the
240-V winding. Each quantity is referred to its own side of the transformer.

a. Draw the equivalent circuit referred to (i) the high- and (ii) the
low-voltage sides. Label the impedances numerically.

b. Consider the transformer to deliver its rated kVA to a load on the
low-voltage side with 240 V across the load. (i) Find the high-side
terminal voltage for a load power factor of 0.87 power factor lagging.
(ii) Find the high-side terminal voltage for a load power factor of 0.87
power factor leading.

c. Consider a rated-kVA load connected at the low-voltage terminals.
Assuming the load voltage to remain constant at 240 V, use MATLAB to
plot the high-side terminal voltage as a function of the power-factor angle
as the load power factor varies from 0.6 leading through unity power
factor to 0.6 lagging.
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2.15 Repeat the calculations of Problem 2.14 for a 75-kVA, 50-Hz, 3.81-kV:230-V
single-phase distribution transformer whose resistances and leakage
reactances are

R1 = 4.85 	 R2 = 16.2 m	

X l1 = 4.13 	 X l2 = 16.9 m	

where subscript 1 denotes the 3.81-kV winding and subscript 2 denotes the
230-V winding. Each quantity is referred to its own side of the transformer.
The load in parts (b) and (c) should be assumed to be operating at a voltage of
230 V.

2.16 A single-phase load is supplied through a 35-kV feeder whose impedance is
90 + j320 	 and a 35-kV: 2400-V transformer whose equivalent series
impedance is 0.21 + j1.33 	 referred to its low-voltage side. The load is
135 kW at 0.78 leading power factor and 2385 V.

a. Compute the voltage at the high-voltage terminals of the transformer.

b. Compute the voltage at the sending end of the feeder.

c. Compute the power and reactive power input at the sending end of the
feeder.

2.17 Write a MATLAB script to (a) repeat the calculations of Problem 2.16 for
power factors of 0.78 leading, unity and 0.78 lagging assuming the load power
remains constant at 135 kW and the load voltage remains constant at 2385 V.
(b) Use your MATLAB script to plot (versus power factor angle) the
sending-end voltage required to maintain a load voltage of 2385 V as the
power factor varies from 0.7 leading through unity to 0.7 lagging.

2.18 Repeat Example 2.6 with the transformer operating at full load and unity
power factor.

2.19 A 450-kVA 50-Hz single-phase transformer with a 11-kV primary winding
draws 0.33 A and 2700 W at no load, rated voltage and frequency. Another
transformer has a core with all its linear dimensions

√
2 times as large as the

corresponding dimensions of the first transformer. The core material and
lamination thickness are the same in both transformers. (a) If the primary
windings of both transformers have the same number of turns, what impressed
primary voltage will result in the same flux density in the core. (b) With the
primary excited by the voltage found in part (a), calculate the primary current
and power.

2.20 The nameplate on a 25-MVA, 60-Hz single-phase transformer indicates that it
has a voltage rating of 8.0-kV:78-kV. A short-circuit test from the high-voltage
side (low-voltage winding short circuited) gives readings of 4.53 kV, 321 A,
and 77.5 kW. An open-circuit test is conducted from the low-voltage side and
the corresponding instrument readings are 8.0 kV, 39.6 A, and 86.2 kW.

a. Calculate the equivalent series impedance of the transformer as referred to
the high-voltage terminals.

b. Calculate the equivalent series impedance of the transformer as referred to
the low-voltage terminals.
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c. Making appropriate approximations, draw a T equivalent circuit for the
transformer.

2.21 Perform the calculations of Problem 2.20 for a 175-kVA, 50-Hz single-phase
transformer with a voltage rating of 3.8-kV:6.4-kV. An open-circuit test is
conducted from the low-voltage side and the corresponding instrument
readings are 3.8 kV, 0.58 A, and 603 W. Similarly, a short-circuit test from the
high-voltage side (low-voltage winding short-circuited) gives readings of
372 V, 27.3 A, and 543 W.

2.22 A voltage of 7.96 kV is applied to the low-voltage winding of a
7.96 kV:39.8 kV, 60 Hz, 10 MVA single-phase transformer with the
high-voltage winding open-circuited and the resultant current is 17.3 A and
power is 48.0 kW. The low-voltage winding is then short-circuited and a
voltage of 1.92 kV applied to the high-voltage winding results in a current of
current of 252 A and a power of 60.3 kW.

a. Calculate the parameters of the cantilever equivalent circuits of
Figs. 2.12a and b as referred to the transformer high-voltage winding.

b. Calculate the cantilever equivalent-circuit parameters as referred to the
transformer low-voltage winding.

c. With the transformer carrying rated load and rated voltage at its
low-voltage terminal, calculate the power dissipated in the transformer.

2.23 The following data were obtained on a 2.5 MVA, 50-Hz, 19.1-kV:3.81-kV
single-phase transformer tested at 50 Hz:

Voltage, Current, Power,
V A kW

LV winding with HV terminals open-circuited 3810 9.86 8.14
HV winding with LV terminals short-circuited 920 141 10.3

a. Calculate the parameters of the cantilever equivalent circuits of
Figs. 2.12a and b as referred to the transformer high-voltage winding.

b. Calculate the cantilever equivalent-circuit parameters as referred to the
transformer low-voltage winding.

c. With the transformer carrying rated load and rated voltage at its
low-voltage terminal, calculate the power dissipated in the transformer.

2.24 Write a MATLAB script to calculate the parameters for the cantilever
transformer equivalent circuits of Figs. 2.12a and b with the parameters
referred to the high-voltage winding based upon the following test data:

■ Voltage, current and power from an open-circuit test conducted from the
low-voltage winding (high-voltage winding open-circuited).

■ Voltage, current and power from a short-circuit test conducted from the
low-voltage winding (high-voltage winding short-circuited).

Test your script on the measurements made on the transformer of
Problem 2.22.
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2.25 The high-voltage winding of the transformer of Problem 2.22 is replaced by
an otherwise identical winding of twice the number of turns with wire of half
the cross-sectional area.

a. Calculate the rated voltage and power of this modified transformer.

b. With the high-voltage winding open-circuited and with rated voltage
applied to the low-voltage winding, calculate the current and power
supplied to the low-voltage winding.

c. With the low-voltage winding short-circuited, calculate the voltage
applied to the high-voltage winding that will result in a short-circuit
power dissipation of 60.3 kW.

d. Calculate the cantilever-equivalent-circuit parameters of this transformer
referred to (i) the low-voltage side and (ii) the high-voltage side.

2.26 (a) Determine the efficiency and voltage regulation of the transformer of
Problem 2.20 if it is supplying rated load (unity power factor) at rated voltage
at its low-voltage terminals. (b) Repeat part (a), assuming the load to be at 0.9
power factor leading.

2.27 Assume the transformer of Problem 2.23 to be operating at rated voltage and
with a load that draws rated current at its low-voltage terminals. Write a
MATLAB script to plot (a) the efficiency and (b) the voltage regulation of the
transformer as the as a function of the load power-factor as the power factor
varies from 0.75 lagging through unity through 0.75 leading.

2.28 The following data were obtained for a 25-kVA, 60-Hz, 2400:240-V
distribution transformer tested at 60 Hz:

Voltage, Current, Power,
V A W

LV winding with HV terminals open-circuited 240 1.37 139
HV winding with LV terminals short-circuited 67.8 10.1 174

a. Compute the transformer efficiency when the tranformer is operating at
rated terminal voltage with an 0.85 power-factor (lagging) load at its
secondary terminal that draws full-load current.

b. The transformer is observed to be operating with rated voltage at both its
primary and secondary terminals and supplying a load at its secondary
terminals which draws rated current. Calculate the power factor of the
load. (HINT: Use MATLAB to search for the solution).

2.29 A 150-kVA, 240-V:7970-V, 60-Hz single-phase distribution transformer has
the following parameters referred to the high-voltage side:

R1 = 2.81 	 X1 = 21.8 	

R2 = 2.24 	 X2 = 20.3 	

Rc = 127 k	 Xm = 58.3 k	
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Assume that the transformer is supplying its rated kVA at its low-voltage
terminals. Write a MATLAB script to determine the efficiency and regulation
of the transformer for any specified load power-factor (leading or lagging).
You may use reasonable engineering approximations to simplify your
analysis. Use your MATLAB script to determine the efficiency and regulation
for a load power-factor of 0.92 leading.

2.30 A 45-kVA, 120-V:280-V single-phase transformer is to be connected as a
280-V:400-V autotransformer. Determine the voltage ratings of the high- and
low-voltage windings for this connection and the kVA rating of the
autotransformer connection.

2.31 A 120:480-V, 10-kVA single-phase transformer is to be used as an
autotransformer to supply a 480-V circuit from a 600-V source. When it is
tested as a two-winding transformer at rated load, unity power factor, its
efficiency is 0.982.

a. Make a diagram of connections as an autotransformer.

b. Determine its kVA rating as an autotransformer.

c. Find its efficiency as an autotransformer when operating with a load of
rated kVA and 0.93 power factor leading and 480 V connected to the
low-voltage winding.

2.32 Consider the 8-kV:78-kV, 25-MVA transformer of Problem 2.20 connected as
a 78-kV:86-kV autotransformer.

a. Determine the voltage ratings of the high-and low-voltage windings for
this connection and the MVA rating of the autotransformer connection.

b. Calculate the efficiency of the transformer in this connection when it is
supplying its rated load at unity power factor.

2.33 Write a MATLAB script whose inputs are the rating (voltage and kVA) and
rated-load, unity-power-factor efficiency of a single-phase transformer and
whose output is the transformer rating and rated-load, unity-power-factor
efficiency when connected as an autotransformer. Exercise your program on
the autotransformer of Problem 2.32.

2.34 The high-voltage terminals of a three-phase transformer bank of three single-
phase transformers are supplied from a three-wire, three-phase 13.8-kV (line-
to-line) system. The low-voltage terminals are to be connected to a three-wire,
three-phase substation load drawing up to 4500 kVA at 2300 V line to line.
Specify the required voltage, current, and kVA ratings of each transformer
(both high- and low-voltage windings) for the following connections:

High-voltage Low-voltage
Windings Windings

a. Y 

b. 
 Y
c. Y Y
d. 
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2.35 Three 75-MVA single-phase transformers, rated at 39.8-kV:133-kV, are to be
connected in a three-phase bank. Each transformer has a series impedance of
0.97 + j11.3	 referred to its 133-kV winding.

a. If the transformers are connected Y-Y, calculate (i) the voltage and power
rating of the three-phase connection, (ii) the equivalent impedance as
referred to its low-voltage terminals, and (iii) the equivalent impedance as
referred to its high-voltage terminals.

b. Repeat part (a) if the transformer is connected Y on its low-voltage side
and 
 on its high-voltage side.

2.36 Repeat the calculations of Problem 2.35 for three 225-kVA, 277-V:7.97-kV
transformers whose series impedances is 3.1 + j21.5 m	 referred to its
low-voltage winding.

2.37 Repeat Example 2.8 for a load drawing rated current from the transformers at
unity power factor.

2.38 A three-phase Y-Y transformer is rated at 25 MVA, 13.8-kV:69-kV and has a
single-phase equivalent series impedance 62 + j388 m	 referred to the
low-voltage winding.

a. A three-phase short circuit is applied to the low-voltage winding.
Calculate the voltage applied to the high-voltage winding which will
result in rated current into the short circuit.

b. The short circuit is removed and a three-phase load is connected to the
low-voltage winding. With rated voltage applied to the high-voltage
winding, the input power to the transformer is observed to be 18 MW at
0.75 power-factor lagging. Calculate the line-line terminal voltage at the
load.

2.39 A three-phase Y-
 transformer is rated 225-kV:24-kV, 400 MVA and has a
single-phase equivalent series reactance of 6.08 	 as referred to its
high-voltage terminals. The transformer is supplying a load of 375 MVA at
0.89 power factor leading at a voltage of 24 kV (line to line) on its
low-voltage side. It is supplied from a feeder whose impedance is
0.17 + j2.2 	 connected to its high-voltage terminals. For these conditions,
calculate (a) the line-to-line voltage at the high-voltage terminals of the
transformer and (b) the line-to-line voltage at the sending end of the
feeder.

2.40 Assume the apparent power of the load in the system of Problem 2.39 to
remain constant at 375 MVA. Write a MATLAB script to calculate the
line-to-line voltage which must be applied to the sending end of the feeder to
maintain the load voltage at 24 kV line-to-line as a function of the load power
factor. Plot the sending-end voltage as a function of power factor angle for
power factors in range from 0.3 lagging to unity to 0.3 leading.

2.41 A 
-Y connected bank of three identical 150-kVA, 2400-V:120-V, 60-Hz
transformers is supplied at its high-voltage terminals through a feeder whose
impedance is 6.4 + j154 m	 per phase. The voltage at the sending end of the
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feeder is held constant at 2400 V line to line. The results of a single-phase
short-circuit test on one of the transformers with its low-voltage terminals
short-circuited are

VH = 131 V IH = 62.5 A P = 1335 W

a. Calculate the series impedance of this three-phase transformer bank as
referred to its high-voltage terminal.

b. Determine the line-to-line voltage supplied to the feeder when the
transformer bank delivers rated current at rated voltage to a balanced
three-phase unity power factor load at its low-voltage terminal.

2.42 A 13.8-kV:120-V 60-Hz potential transformer has the following parameters as
seen from the high-voltage (primary) winding:

X1 = 6.88 k	 X ′
2 = 7.59 k	 Xm = 6.13 M	

R1 = 5.51 k	 R′
2 = 6.41 k	

a. Assuming that the secondary is open-circuited and that the primary is
connected to a 13.8-kV source, calculate the magnitude and phase angle
(with respect to the high-voltage source) of the voltage at the secondary
terminals.

b. Calculate the magnitude and phase angle of the secondary voltage if a 750
	 resistive load is connected to the secondary terminals.

c. Repeat part (b) if the burden is changed to a 750 	 reactance.

2.43 For the potential transformer of Problem 2.42, find the maximum reactive
burden (minimum reactance) which can be applied at the secondary
terminals such that the voltage magnitude error does not exceed
0.75 percent.

2.44 Consider the potential transformer of Problem 2.42 with connected to a
13.8 kV source.

a. Use MATLAB to plot the percentage error in voltage magnitude as a
function of the magnitude of the burden impedance (i) for a resistive
burden of 100 	 ≤ Rb ≤ 2000 	 and (ii) for a reactive burden of
100 	 ≤ Xb ≤ 2000 	. Plot these curves on the same axis.

b. Next plot the phase error in degrees as a function of the magnitude of the
burden impedance (i) for a resistive burden of 100 	 ≤ Rb ≤ 2000 	 and
(ii) for a reactive burden of 100 	 ≤ Xb ≤ 2000 	. Again, plot these
curves on the same axis.

2.45 A 150-A:5-A, 60-Hz current transformer has the following parameters as seen
from the 150-A (primary) winding:

X1 = 1.70 m	 X ′
2 = 1.84 m	 Xm = 1728 m	

R1 = 306 μ	 R′
2 = 291 μ	
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a. Assuming a current of 150 A in the primary and that the secondary is
short-circuited, find the magnitude and phase angle of the secondary
current.

b. Repeat the calculation of part (a) if the CT is shorted through a 0.1-m	

burden.

2.46 Consider the current transformer of Problem 2.45.

a. Use MATLAB to plot the percentage error in current magnitude as a
function of the magnitude of the burden impedance (i) for a resistive
burden of 50 μ	 ≤ Rb ≤ 200 μ	 and (ii) for a reactive burden of
50 μ	 ≤ Xb ≤ 200 μ	. Plot these curves on the same axis.

b. Next plot the phase error in degrees as a function of the magnitude of the
burden impedance (i) for a resistive burden of 50 μ	 ≤ Rb ≤ 200 μ	 and
(ii) for a reactive burden of burden of 50 μ	 ≤ Xb ≤ 200 μ	. Again, plot
these curves on the same axis.

2.47 A 15-kV:175-kV, 225-MVA, 60-Hz single-phase transformer has primary and
secondary impedances of 0.0029 + j0.023 per unit each. The magnetizing
impedance is j172 per unit. All quantities are in per unit on the transformer
base. Calculate the primary and secondary resistances and reactances and the
magnetizing reactance in ohms (referred to the low-voltage side).

2.48 Calculate the per-unit parameters for a cantilever equivalent circuit for the
transformer of Problem 2.20.

2.49 Calculate the per-unit parameters for a cantilever equivalent circuit for the
transformer of Problem 2.23.

2.50 The nameplate on a 7.97-kV:266-V, 25-kVA single-phase transformer
indicates that it has a series reactance of 7.5 percent (0.075 per unit).

a. Calculate the series reactance in ohms as referred to (i) the low-voltage
terminal and (ii) the high-voltage terminal.

b. If three of these transformers are connected in a three-phase Y-Y
connection, calculate (i) the three-phase voltage and power rating, (ii) the
per unit impedance of the transformer bank, (iii) the series reactance in
ohms as referred to the high-voltage terminal and (iv) the series reactance
in ohms as referred to the low-voltage terminal.

c. Repeat part (b) if the three transformers are connected in Y on their HV
side and 
 on their low-voltage side.

2.51 a. Consider the Y-Y transformer connection of Problem 2.50, part (b). If a
line-line voltage of 500 V is applied to the high-voltage terminals and the
three low-voltage terminals are short-circuited, calculate the magnitude of
the phase current in per unit and in amperes on (i) the high-voltage side
and (ii) the low-voltage side.

b. Repeat this calculation for the Y-
 connection of Problem 2.50, part (c).
2.52 A three-phase generator step-up transformer is rated 26-kV:345-kV, 850 MVA

and has a series impedance of 0.0025 + j0.057 per unit on this base. It is
connected to a 26-kV 800-MVA generator, which can be represented as a
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voltage source in series with a reactance of j1.28 per unit on the generator
base.

a. Convert the per unit generator reactance to the step-up transformer base.

b. The system is supplying 750 MW at 345 kV and 0.90 power factor leading
to the system at the transformer terminals. Draw a phasor diagram for this
condition, using the transformer high-side voltage as the reference phasor.

c. Calculate the generator terminal voltage and internal voltage behind its
reactance in kV for the conditions of part (b). Find the generator output
power in MW and the power factor.
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3 C H A P T E R

Electromechanical-
Energy-Conversion
Principles

I n this chapter we discuss the electromechanical-energy-conversion process which
takes place through the medium of the electric or magnetic field of the conver-
sion device. Although the various conversion devices operate on similar principles,

their structures depend on their function. Devices for measurement and control are fre-
quently referred to as transducers; they generally operate under linear input-output
conditions and with relatively small signals. The many examples include micro-
phones, pickups, sensors, and loudspeakers. A second category of devices encom-
passes force-producing devices and includes solenoids, relays, and electromagnets. A
third category includes continuous energy-conversion equipment such as motors and
generators.

This chapter is devoted to the basic principles of electromechanical energy con-
version and the analysis of the devices which accomplish this function. Emphasis
is placed on the analysis of systems which use magnetic fields as the conversion
medium since the remaining chapters of the book deal with such devices. However,
the analytical techniques for electric field systems are quite similar.

The purpose of such analysis is threefold: (1) to aid in understanding how energy
conversion takes place, (2) to provide techniques for designing and optimizing the
devices for specific requirements, and (3) to develop models of electromechanical-
energy-conversion devices that can be used in analyzing their performance as com-
ponents in engineering systems. Transducers and force-producing devices are treated
in this chapter; continuous energy-conversion devices in the form of rotating electric
machinery are treated in the rest of the book.

The concepts and techniques presented in this chapter are quite powerful and
can be applied to a wide range of engineering situations involving electromechanical
energy conversion. Sections 3.1 and 3.2 present a quantitative discussion of the forces
in electromechanical systems and an overview of the energy method which forms the

122
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basis for the derivations presented here. Based upon the energy method, the remainder
of the chapter develops expressions for forces and torques in magnetic-field-based
electromechanical systems.

3.1 FORCES AND TORQUES IN
MAGNETIC-FIELD SYSTEMS

The Lorentz Force Law

F = q(E + v × B) (3.1)

gives the force F on a particle of charge q in the presence of electric and magnetic
fields. In SI units, F is in newtons and q is in coulombs. The electric-field intensity
E is in volts per meter, the magnetic flux density B is in teslas and v, which is the
velocity of the particle relative to the magnetic field, is in meters per second.

Thus, in a pure electric-field system (B = 0), the force is determined simply by
the charge on the particle and the electric field

F = qE (3.2)

The force acts in the direction of the electric field and is independent of any particle
motion.

In pure magnetic-field systems (E = 0), the situation is somewhat more complex.
Here the force

F = q(v × B) (3.3)

is determined by the magnitude of the charge on the particle and the magnitude of
the B field as well as the velocity of the particle. In fact, the direction of the force
is always perpendicular to the direction of both the particle motion and that of the
magnetic field. Mathematically, this is indicated by the vector cross product v × B in
Eq. 3.3. The magnitude of this cross product is equal to the product of the magnitudes
of v and B and the sine of the angle between them; its direction can be found from
the right-hand rule, which states that when the thumb of the right hand points in the
direction of v and the index finger points in the direction of B, the force, which is
perpendicular to the directions of both B and v, points in the direction normal to the
palm of the hand, as shown in Fig. 3.1.

For situations where large numbers of charged particles are in motion, it is con-
venient to rewrite Eq. 3.1 in terms of the charge density ρ (measured in units of
coulombs per cubic meter) as

Fv = ρ(E + v × B) (3.4)

where the subscript v indicates that Fv is a force density (force per unit volume) which
in SI units is measured in newtons per cubic meter.

The product ρv is known as the current density

J = ρv (3.5)



Umans-3930269 book December 17, 2012 14:10

124 CHAPTER 3 Electromechanical-Energy-Conversion Principles

v

B

F

B

F

v

Figure 3.1 Right-hand rule for determining the
direction magnetic-field component of the Lorentz
force F = q(v × B).

which has the units of amperes per square meter. The magnetic-system force density
corresponding to Eq. 3.3 can then be written as

Fv = J × B (3.6)

For currents flowing in conducting media, Eq. 3.6 can be used to find the force
density acting on the material itself. Note that a considerable amount of physics is
hidden in this seemingly simple statement, since the mechanism by which the force
is transferred from the moving charges to the conducting medium is a complex one.

EXAMPLE 3.1

A non-magnetic cylindrical rotor (mounted on a shaft at its center) containing a single-turn coil
is placed in a uniform magnetic field of magnitude B0, as shown in Fig. 3.2. The coil sides are

θ̂ r̂

x̂

Wire 1, current I
into paper

Uniform magnetic field, B0ŷ

Wire 2, current I
out of paper

α

R

Figure 3.2 Single-coil rotor for Example 3.1.
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at radius R and the wire carries current I as indicated. Find the θ -directed torque as a function
of rotor position α when I = 10 A, B0 = 0.02 T and R = 0.05 m. Assume that the rotor is of
length l = 0.3 m.

■ Solution
The net current I in a wire is equal to the integral of the current density J over the cross-sectional
area of the wire.

I =
∫

wire

J · dA

Similarly, the net force per unit length on a wire in a uniform magnetic field B can be
found from integrating Eq. 3.6 over the cross sectional area of the wire. Hence

F =
(∫

wire

J · dA

)
× B = I × B

Thus, for wire 1 carrying current I into the paper, the θ -directed force is given by

F1θ
= −I B0l sin α

and for wire 2 (which carries current in the opposite direction and is located 180◦ away from
wire 1)

F2θ
= −I B0l sin α

where l is the length of the rotor. The torque T acting on the rotor is given by the sum of the
force-moment-arm products for each wire

T = −2I B0 Rl sin α = −2(10)(0.02)(0.05)(0.3) sin α = −0.006 sin α N · m

Practice Problem 3.1

Repeat Example 3.1 for the situation in which the uniform magnetic field points to the right
instead of vertically upward as in Fig. 3.2.

Solution
T = −0.006 cos α N · m

For situations in which the forces act only on current-carrying elements and
which are of simple geometry (such as that of Example 3.1), Eq. 3.6 is generally the
simplest and easiest way to calculate the forces acting on the system. Unfortunately,
very few practical situations fall into this class. In fact, as discussed in Chapter 1, most
electromechanical-energy-conversion devices contain magnetic material; in these sys-
tems, forces act directly on the magnetic material and clearly cannot be calculated
from Eq. 3.6. Techniques for calculating forces and torques in these systems are
discussed in the next section.
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3.2 ENERGY BALANCE AND THE ENERGY
METHOD

Techniques for calculating the detailed, localized forces acting in sytems with mag-
netic materials are extremely complex and require detailed knowledge of the field
distribution throughout the structure. Fortunately, most electromechanical-energy-
conversion devices are constructed of rigid, non-deforming structures. The perfor-
mance of these devices is typically determined by the net force, or torque, acting
on the moving component and it is rarely necessary to calculate the details of the
internal force distribution. For example, in a properly designed motor, the motor
characteristics are determined by the net accelerating torque acting on the rotor; ac-
companying forces, which act to squash or deform the rotor, play no significant role
in the performance of the motor and generally are not calculated.

Thus, to understand the behavior of rotating machinery, a simple physical picture
is quite useful. Associated with the rotor structure is a magnetic field (produced in
many machines by currents in windings on the rotor) and similarly with the stator;
one can picture them as a set of north and south magnetic poles associated with each
structure. Just as a compass needle tries to align with the earth’s magnetic field, these
two sets of fields attempt to align, and torque is associated with their displacement
from alignment. In a motor, the stator magnetic field rotates ahead of that of the rotor,
pulling on it and performing work. The opposite is true for a generator, in which the
rotor does work on the stator.

We begin with the principle of conservation of energy which states that energy
is neither created nor destroyed; it is merely changed in form. For example, a golf
ball leaves the tee with a certain amount of kinetic energy; this energy is eventually
dissipated as heat due to air friction or rolling friction by the time the ball comes to
rest on the fairway. Similarly, the kinetic energy of a hammer is eventually dissipated
as heat as a nail is driven into a piece of wood. For isolated systems with clearly
identifiable boundaries, this fact permits us to keep track of energy in a simple fashion:
the net flow of energy into the system across its boundary is equal to the sum of the
time rate of change of energy stored in the system.

The technique for calculating forces and torques in the electromechanical-energy-
conversion process developed in this chapter and used throughout the book is known
as the energy method and is based on the principle of conservation of energy. This
result, which is a statement of the first law of thermodynamics, is quite general. We
apply it in this chapter to electromechanical systems whose predominant energy-
storage mechanism is in magnetic fields. In such systems, one can account for energy
transfer as(

Energy input
from electric
sources

)
=

(Mechanical
energy
output

)
+

(
Increase in energy
stored in magnetic
field

)
+

(
Energy
converted
into heat

)

(3.7)

Equation 3.7 is written so that, in the case of a motor, both the electric and
mechanical energy terms have positive values; i.e. electric input power is converted
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Figure 3.3 (a) Schematic magnetic-field electromechanical-energy-conversion device; (b) simple
force-producing device.

into mechanical output power. In the case of a generator, in which mechanical input
power is converted to electrical output power, both of these terms are negative. In
either case, the sign of the heat generation term is such that heat generation within
the system results in a flow of thermal energy out of the system.

In the systems which we consider here, the conversion of energy into heat occurs
by mechanisms such as ohmic heating due to current flow in the windings of the
electric terminals and mechanical friction due to the motion of the system compo-
nents forming the mechanical terminals. In these systems, it is generally possible to
mathematically separate these loss mechanisms from the energy-storage mechanism.
In such cases, the interaction between the electric and mechanical terminals, i.e., the
electromechanical energy conversion, occurs through the medium of the magnetic
stored energy and the device can be represented as a lossless energy-storage system
with electric and mechanical terminals as shown in Fig. 3.3a. In systems which can
be modeled in this fashion, loss mechanisms can be represented by external elements
connected to these terminals: resistances to the electric terminals, and mechanical
dampers to the mechanical terminals, and the losses do not need to be considered in
calculations involving the electromechanical-energy-conversion process. Figure 3.3b
shows an example of such a system; a simple force-producing device with a single
coil forming the electric terminal, and a movable plunger serving as the mechanical
terminal.

Figure 3.3a can be readily generalized to situations with any number of electric or
mechanical terminals. Note that Fig. 3.3a represents a system in which there is stored
magnetic energy and the magnetic field serves as the coupling medium between the
electric and mechanical terminals. This discussion can be applied equally well to a
system with stored electric energy.

The ability to identify a lossless-energy-storage system is the essence of the
energy method. It is important to recognize that this is done mathematically as part
of the modeling process. It is not possible, of course, to take the resistance out of
windings or the friction out of bearings. Instead we are making use of the fact that a
model in which this is done is a valid representation of the physical system.
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For a lossless energy-storage system, Eq. 3.7 can be written as

Pelec = Pmech + dWfld

dt
(3.8)

where

Pelec = Electric input power

Pmech = Mechanical output power

dWfld

dt
= Time rate-of-change of the magnetic stored energy

In Fig. 3.3a, the electric terminal has two terminal variables, a voltage e and a
current i , and the mechanical terminal also has two terminal variables, a force ffld and
a position x . The electrical input power can be written as the product of the voltage
e and the current i

dWelec

dt
= ei (3.9)

and the mechanical output power can be written as the product of the force ffld and
the velocity (the time derivative of the position x) as

Pmech = ffld
dx

dt
(3.10)

Re-arranging Eq. 3.8 and substituting Eqs. 3.9 and 3.10 gives

dWfld

dt
= ei − ffld

dx

dt
(3.11)

For a magnetic-energy-storage system, the electrical terminal typically represents
a winding such as that shown in Fig. 3.3b. Recognizing that, from Eq. 1.26, the voltage
at the terminals of a lossless winding is given by the time-derivative of the winding
flux linkages

e = dλ

dt
(3.12)

Substitution into Eq. 3.11 and multiplying by dt gives

dWfld = i dλ − ffld dx (3.13)

As shown in Section 3.4, Eq. 3.13 permits us to solve for the force simply as
a function of the flux linkage λ and the mechanical terminal position x . Note again
that this result comes about as a consequence of our assumption that it is possible to
separate the losses out of the physical problem, resulting in a lossless energy-storage
system, as in Fig. 3.3a.

Equations 3.11 and 3.13 form the basis for the energy method. This technique
is quite powerful in its ability to calculate forces and torques in complex
electromechanical-energy-conversion systems. The reader should recognize that this
power comes at the expense of a detailed picture of the force-producing mechanism.
The forces themselves are produced by such well-known physical phenomena as the
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Lorentz force on current carrying elements, described by Eq. 3.6, and the interaction
of the magnetic fields with the dipoles in the magnetic material.

3.3 ENERGY IN SINGLY EXCITED
MAGNETIC-FIELD SYSTEMS

In Chapters 1 and 2 we were concerned primarily with fixed-geometry magnetic
circuits such as those used for transformers and inductors. Energy in those devices is
stored in the leakage fields and to some extent in the core itself. However, the stored
energy does not enter directly into the transformation process. In this chapter we are
dealing with energy-conversion systems; the magnetic circuits have air gaps between
the stationary and moving members in which considerable energy is stored in the
magnetic field. This field acts as the energy-conversion medium, and its energy is the
reservoir between the electric and mechanical systems.

Consider the electromagnetic relay shown schematically in Fig. 3.4. The resis-
tance of the excitation coil is shown as an external resistance R and the mechanical
terminal variables are shown as a force ffld produced by the magnetic field directed
from the relay to the external mechanical system and a displacement x ; mechanical
losses can be included as external elements connected to the mechanical terminal.
Similarly, the moving armature is shown as being massless; its mass represents me-
chanical energy storage and can be included as an external mass connected to the
mechanical terminal. As a result, the magnetic core and armature constitute a lossless
magnetic-energy-storage system as is represented schematically in Fig. 3.3a.

This relay structure is essentially the same as the magnetic structures analyzed
in Chapter 1 in which we saw that the magnetic circuit of Fig. 3.4 can be described
by an inductance L which is a function of the geometry of the magnetic structure and
the magnetic permeabilities of the various system components. Electromechanical-
energy-conversion devices contain air gaps in their magnetic circuits to separate the
moving parts and, as discussed in Section 1.1, in most such cases the reluctance of
the air gap is much larger than that of the magnetic material. Thus the predominant

λ, e
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source

Flux
ϕ

v

R i

Magnetic core

Electrical
source

ffld

Massless
magnetic
armature

+

�

+

�

Lossless

coil

x

Figure 3.4 Schematic of an electromagnetic relay.
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energy storage occurs in the air gap, and the properties of the magnetic circuit are
determined by the dimensions of the air gap.

Because of the simplicity of the resulting relations, magnetic nonlinearity and
core losses are often neglected in the analysis of practical devices. The final results
of such approximate analyses can, if necessary, be corrected for the effects of these
neglected factors by semi-empirical methods. Consequently, analyses are carried out
under the assumption that the mmf and flux are directly proportional for the entire
magnetic circuit. Thus the flux linkages λ and current i are considered to be linearly
related by an inductance which depends solely on the geometry and hence on the
armature position x .

λ = L(x)i (3.14)

where the explicit dependence of L on x has been indicated.
Since the magnetic energy storage system is lossless, it is a conservative system

and the value of Wfld is uniquely specified by the values of λ and x ; λ and x are thus
referred to as state variables since their values uniquely determine the state of the
system. Since the magnetic force ffld has been defined as acting from the relay upon
the external mechanical system, Pmech is defined as the mechanical energy output of
the relay, consistent with the derivations of Section 3.2 and Eq. 3.13, which is repeated
here showing explicitly the dependence of Wfld on λ and x .

dWfld(λ, x) = i dλ − ffld dx (3.15)

From this discussion we see that the stored energy Wfld, being uniquely deter-
mined by the values of λ and x , is the same regardless of how λ and x are brought to
their final values. Consider Fig. 3.5, in which two separate paths are shown over which
Eq. 3.15 can be integrated to find Wfld at the point (λ0, x0). Path 1 is the general case
and is difficult to integrate unless both i and ffld are known explicitly as a function
of λ and x . However, because the integration of Eq. 3.15 is path independent, path 2

λ

λ0

2b

2a x0

Wfld (λ0, x0)

x

1

Figure 3.5 Integration
paths for Wfld.
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gives the same result and is much easier to integrate. From Eq. 3.15

Wfld(λ0, x0) =
∫

path 2a

dWfld +
∫

path 2b

dWfld (3.16)

Notice that on path 2a, dλ = 0 and ffld = 0 (since λ = 0 and there can be no magnetic
force in the absence of magnetic fields). Thus from Eq. 3.15, dWfld = 0 on path 2a.
On path 2b, dx = 0, and, thus, from Eq. 3.15, Eq. 3.16 reduces to the integral of i dλ

over path 2b (for which x = x0).

Wfld(λ0, x0) =
∫ λ0

0
i(λ, x0) dλ (3.17)

For a linear system in which λ is proportional to i , as in Eq. 3.14, Eq. 3.17 gives

Wfld(λ0, x0) =
∫ λ0

0
i(λ, x0) dλ =

∫ λ0

0

λ

L(x0)
dλ = 1

2

λ2
0

L(x0)
(3.18)

Note that the point (λ0, x0) is arbitrary; the expression for Wfld of Eq. 3.18 is valid for
all points (λ, x). To emphasize this point, Eq. 3.18 can be re-written as

Wfld(λ, x) = 1

2

λ2

L(x)
(3.19)

It can be shown that the magnetic stored energy can also be expressed in terms of
the energy density of the magnetic field integrated over the volume V of the magnetic
field. In this case

Wfld =
∫

V

(∫ B

0
H · dB′

)
dV (3.20)

For soft magnetic material of constant permeability (B = μH), this reduces to

Wfld =
∫

V

(
B2

2μ

)
dV (3.21)

EXAMPLE 3.2

The relay shown in Fig. 3.6a is made from infinitely-permeable magnetic material with a
movable plunger, also of infinitely-permeable material. The height of the plunger is much
greater than the air-gap length (h � g). Calculate the magnetic stored energy Wfld as a function
of plunger position (0 < x < d) for N = 1000 turns, g = 2.0 mm, d = 0.15 m, l = 0.1 m,
and i = 10 A.

■ Solution
Equation 3.19 can be used to solve for Wfld when λ is known. For this situation, i is held
constant, and thus it would be useful to have an expression for Wfld as a function of i and x .
This can be obtained quite simply by substituting Eq. 3.14 into Eq. 3.19, with the result

Wfld = 1

2
L(x)i 2
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Figure 3.6 (a) Relay with movable plunger for Example 3.2. (b) Detail showing
air-gap configuration with the plunger partially removed.

The inductance is given by

L(x) = μ0 N 2 Agap

2g

where Agap is the gap cross-sectional area. From Fig. 3.6b, Agap can be seen to be

Agap = l(d − x) = ld
(

1 − x

d

)
Thus

L(x) = μ0 N 2ld(1 − x/d)

2g

and

Wfld = 1

2

N 2μ0ld(1 − x/d)

2g
i 2

= 1

2

(10002)(4π × 10−7)(0.1)(0.15)

2(0.002)
× 102

(
1 − x

d

)
= 236

(
1 − x

d

)
J

Practice Problem 3.2

The relay of Fig. 3.6 is modified in such a fashion that the air gaps surrounding the plunger are
no longer uniform. The top air-gap length is increased to gtop = 3.5 mm and that of the bottom
gap is increased to gbot = 2.5 mm. The number of turns is increased to N = 1500. Calculate
the stored energy as a function of plunger position (0 < x < d) for a current of i = 5 A.

Solution

Wfld = 88.5
(

1 − x

d

)
J
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In this section we have seen the relationship between the magnetic stored energy
and the electric and mechanical terminal variables for a system which can be repre-
sented in terms of a lossless-magnetic-energy-storage element. If we had chosen for
our example a device with a rotating mechanical terminal instead of a linearly dis-
placing one, the results would have been identical except that force would be replaced
by torque and linear displacement by angular displacement. In Section 3.4 we see
how knowledge of the magnetic stored energy permits us to solve for the mechanical
force and torque.

3.4 DETERMINATION OF MAGNETIC FORCE
AND TORQUE FROM ENERGY

As discussed in Section 3.3, for a lossless magnetic-energy-storage system, the mag-
netic stored energy Wfld is a state function, determined uniquely by the values of the
independent state variables λ and x . This is shown explicitly by Eq. 3.15, repeated
here

dWfld(λ, x) = i dλ − ffld dx (3.22)

For any state function of two independent variables, e.g., F(x1, x2), the total
differential of F with respect to the two state variables x1 and x2 can be written

d F(x1, x2) = ∂ F

∂x1

∣∣∣∣
x2

dx1 + ∂ F

∂x2

∣∣∣∣
x1

dx2 (3.23)

It is extremely important to recognize that the partial derivatives in Eq. 3.23 are each
taken by holding the opposite state variable constant.

Equation 3.23 is valid for any state function F and hence it is certainly valid for
Wfld; thus

dWfld(λ, x) = ∂Wfld

∂λ

∣∣∣∣
x

dλ + ∂Wfld

dx

∣∣∣∣
λ

dx (3.24)

Since λ and x are independent variables, Eqs. 3.22 and 3.24 must be equal for all
values of dλ and dx , and so, equating terms, we see that

i = ∂Wfld(λ, x)

∂λ

∣∣∣∣
x

(3.25)

where the partial derivative is taken while holding x constant and

ffld = −∂Wfld(λ, x)

∂x

∣∣∣∣
λ

(3.26)

in this case holding λ constant while taking the partial derivative.
This is the result we have been seeking. Once we know Wfld as a function of λ and

x , Eq. 3.25 can be used to solve for i(λ, x). More importantly, Eq. 3.26 can be used
to solve for the mechanical force ffld(λ, x). It cannot be over-emphasized that the
partial derivative of Eq. 3.26 is taken while holding the flux linkages λ constant. This
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is easily done provided Wfld is a known function of λ and x . Note that this is purely
a mathematical requirement and has nothing to do with whether λ is held constant
when operating the actual device.

The force ffld is determined from Eq. 3.26 directly in terms of the electrical state
variable λ. If we then want to express the force as a function of i , we can do so by
substituting the appropriate expression for λ as a function of i into the expression for
ffld that is obtained by using Eq. 3.26. Note that this substitution must be done only
after the partial derivative is taken.

For linear magnetic systems for which λ = L(x)i , the energy is expressed by
Eq. 3.19 and the force can be found by direct substitution in Eq. 3.26

ffld = − ∂

∂x

(
1

2

λ2

L(x)

)∣∣∣∣
λ

= λ2

2L(x)2

d L(x)

dx
(3.27)

At this point, the force can be expressed in terms of the current i simply by substitution
of λ = L(x)i

ffld = i2

2

d L(x)

dx
(3.28)

EXAMPLE 3.3

Table 3.1 contains data from an experiment in which the inductance of a solenoid was measured
as a function of position x , where x = 0 corresponds to the solenoid being fully retracted.

Table 3.1 Data for Example 3.3.

x [cm] 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

L [mH] 2.8 2.26 1.78 1.52 1.34 1.26 1.20 1.16 1.13 1.11 1.10

Plot the solenoid force as a function of position for a current of 0.75 A over the range 0.2 ≤
x ≤ 1.8 cm.

■ Solution
The solution is most easily obtained using MATLAB. First, a fourth-order polynomial fit of
the inductance as a function of x is obtained using the MATLAB function polyfit. The result is
of the form

L(x) = a(1) x4 + a(2) x3 + a(3) x2 + a(4) x + a(5)

Figure 3.7a shows a plot of the data points along with the results of the polynomial fit.
Once this fit has been obtained, it is a straightforward matter to calculate the force from

Eq. 3.28.

ffld = i 2

2

d L(x)

dx
= i 2

2
(4a(1) x3 + 3a(2) x2 + 2a(3) x + a(4))

This force is plotted in Figure 3.7b. Note that the force is negative, which means that it is acting
in such a direction as to pull the solenoid inwards towards x = 0.
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Figure 3.7 Example 3.3. (a) Polynomial curve fit of inductance. (b) Force as a
function of position x for i = 0.75 A.
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Here is the MATLAB script:
clc

clear

% Here is the data: x in cm, L in mH

xdata = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0];

Ldata = [2.8 2.26 1.78 1.52 1.34 1.26 1.20 1.16 1.13 1.11 1.10];

%Convert to SI units

x = xdata*1.e-2;

L = Ldata*1.e-3;

len = length(x);

xmax = x(len);

% Use polyfit to perform a 4’rd order fit of L to x. Store

% the polynomial coefficients in vector a. The fit will be

% of the form:

%

% Lfit = a(1)*x^4 + a(2)*x^3 + a(3)*x^2 + a(4)*x + a(5);

%

a = polyfit(x,L,4);

% Let’s check the fit

n = 1:101;

xfit = xmax*(n-1)/100;

Lfit = a(1)*xfit.^4 + a(2)*xfit.^3 + a(3)*xfit.^2 ...

+ a(4)*xfit + a(5);

% Plot the data and then the fit to compare (convert xfit to cm and

% Lfit to mH)

plot(xdata,Ldata,’*’)

hold

plot(xfit*100,Lfit*1000)

hold

xlabel(’x [cm]’)

ylabel(’L [mH]’)

fprintf(’\n Paused. Hit any key to plot the force.\n’)

pause;

% Now plot the force. The force will be given by

%
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% i^2 dL i^2

% --- * ---- = --- ( 4*a(1)*x^3 + 3*a(2)*x^2+ 2*a(3)*x + a(4))

% 2 dx 2

%Set current to 0.75 A

I = 0.75;

n = 1:101;

xfit = 0.002+ .016*(n-1)/100;

F = 4*a(1)*xfit.^3 + 3* a(2)*xfit.^2 + 2*a(3)*xfit + a(4);

F = (I^2/2)*F;

plot(xfit*100,F)

xlabel(’x [cm]’)

ylabel(’Force [N]’)

Practice Problem 3.3

An external controller is connected to the solenoid of Example 3.3 which maintains the coil
flux linkages constant at λ = 1.5 mWb. Plot the resultant solenoid force over the range
0.2 ≤ x ≤ 1.8 cm.

Solution
The resultant force is plotted in Fig. 3.8.

0

�0.01

�0.02

�0.03

�0.04

�0.06

�0.05

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x [cm]

Fo
rc

e 
[N

]

Figure 3.8 Practice problem 3.3. Plot of force vs. x for λ = 1.5 mWb.
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For a system with a rotating mechanical terminal, the mechanical terminal vari-
ables become the angular displacement θ and the torque Tfld. In this case, Eq. 3.22
becomes

dWfld(λ, θ) = i dλ − Tfld dθ (3.29)

where the explicit dependence of Wfld on state variables λ and θ has been indicated.
By analogy to the development that led to Eq. 3.26, the torque can be found from

the negative of the partial derivative of the energy with respect to θ taken holding λ

constant

Tfld = −∂Wfld(λ, θ)

∂θ

∣∣∣∣
λ

(3.30)

For linear magnetic systems for which λ = L(θ)i , by analogy to Eq. 3.19 the
energy is given by

Wfld(λ, θ) = 1

2

λ2

L(θ)
(3.31)

The torque is therefore given by

Tfld = − ∂

∂θ

(
1

2

λ2

L(θ)

)∣∣∣∣
λ

= 1

2

λ2

L(θ)2

d L(θ)

dθ
(3.32)

which can be expressed indirectly in terms of the current i as

Tfld = i2

2

d L(θ)

dθ
(3.33)

EXAMPLE 3.4

The magnetic circuit of Fig. 3.9 consists of a single-coil stator and an oval rotor. Because the
air-gap is nonuniform, the coil inductance varies with rotor angular position, measured between
the magnetic axis of the stator coil and the major axis of the rotor, as

L(θ) = L0 + L2 cos (2θ)

where L0 = 10.6 mH and L2 = 2.7 mH. Note the second-harmonic variation of inductance
with rotor angle θ . This is consistent with the fact that the inductance is unchanged if the rotor
is rotated through an angle of 180◦.

λ

θ

Rotor

Sta
to

r 

i

Rotor axis

Stator axis

Air gap

+

�

Figure 3.9 Magnetic circuit for
Example 3.4.
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Find the torque as a function of θ for a coil current of 2 A.

■ Solution
From Eq. 3.33

Tfld(θ) = i 2

2

d L(θ)

dθ
= i 2

2
(−2L2 sin (2θ))

Numerical substitution gives

Tfld(θ) = −(1.08 × 10−2) sin (2θ) N · m

Note that in this case the torque acts in such a direction as to pull the rotor axis in alignment
with the coil axis and hence to maximize the coil inductance.

Practice Problem 3.4

The inductance of a coil on a magnetic circuit similar to that of Fig. 3.9 is found to vary with
rotor position as

L(θ) = L0 + L2 cos (2θ) + L4 sin (4θ)

where L0 = 25.4 mH, L2 = 8.3 mH and L4 = 1.8 mH. (a) Find the torque as a function of θ

for a winding current of 3.5 A. (b) Find a rotor position θmax that produces the largest negative
torque.

Solution

a. Tfld(θ) = −0.1017 sin (2θ) + 0.044 cos (4θ) N · m
b. The largest negative torque occurs when θ = 45◦ and θ = 225◦. This can be

determined analytically, but it is helpful to plot the torque using MATLAB.

3.5 DETERMINATION OF MAGNETIC FORCE
AND TORQUE FROM COENERGY

A mathematical manipulation of Eq. 3.22 can be used to define a new state function,
known as the coenergy, from which the force can be obtained directly as a function
of the current. The selection of energy or coenergy as the state function is purely a
matter of convenience; they both give the same result, but one or the other may be
simpler analytically, depending on the desired result and the characteristics of the
system being analyzed.

The coenergy W ′
fld is defined as a function of i and x such that

W ′
fld(i, x) = iλ − Wfld(λ, x) (3.34)

The desired derivation is carried out by using the differential of iλ

d(iλ) = i dλ + λ di (3.35)

and the differential of dWfld(λ, x) from Eq. 3.22. From Eq. 3.34

dW ′
fld(i, x) = d(iλ) − dWfld(λ, x) (3.36)
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Substitution of Eqs. 3.22 and 3.35 into Eq. 3.36 results in

dW ′
fld(i, x) = λ di + ffld dx (3.37)

From Eq. 3.37, the coenergy W ′
fld(i, x) can be seen to be a state function of the

two independent variables i and x . Thus, its differential can be expressed as

dW ′
fld(i, x) = ∂W ′

fld

∂i

∣∣∣∣
x

di + ∂W ′
fld

∂x

∣∣∣∣
i

dx (3.38)

Equations 3.37 and 3.38 must be equal for all values of di and dx ; thus

λ = ∂W ′
fld(i, x)

∂i

∣∣∣∣
x

(3.39)

ffld = ∂W ′
fld(i, x)

∂x

∣∣∣∣
i

(3.40)

Equation 3.40 gives the mechanical force directly in terms of i and x . Note that
the partial derivative in Eq. 3.40 is taken while holding i constant; thus W ′

fld must be
a known function of i and x . For any given system, Eqs. 3.26 and 3.40 will give the
same result; the choice as to which to use to calculate the force is dictated by user
preference and convenience.

By analogy to the derivation of Eq. 3.17, the coenergy can be found from the
integral of λ di

W ′
fld(i, x) =

∫ i

0
λ(i ′, x) di ′ (3.41)

For linear magnetic systems for which λ = L(x)i , the coenergy is therefore
given by

W ′
fld(i, x) = 1

2
L(x)i2 (3.42)

and the force can be found from Eq. 3.40

ffld = i2

2

d L(x)

dx
(3.43)

which, as expected, is identical to the expression given by Eq. 3.28.
Note that for linear systems, substitution of L(x)i for λ in Eq. 3.19 shows that

numerically, W ′
fld = Wfld. This fact is in fact used to solve for Wfld in Example 3.2.

However, it is important to recognize that when calculating force from energy using
Eq. 3.26, the energy must be expressed explicitly in terms of λ in the form of Eq. 3.19.
Similarly, when calculating force from coenergy using Eq. 3.40, the energy must be
expressed explicitly in terms of i in the form of Eq. 3.42.

For a system with a rotating mechanical displacement, the coenergy can be
expressed in terms of the current and the angular displacement θ

W ′
fld(i, θ) =

∫ i

0
λ(i ′, θ) di ′ (3.44)



Umans-3930269 book December 17, 2012 14:10

3.5 Determination of Magnetic Force and Torque from Coenergy 141

and the torque is given by

Tfld = ∂W ′
fld(i, θ)

∂θ

∣∣∣∣
i

(3.45)

If the system is magnetically linear,

W ′
fld(i, θ) = 1

2
L(θ)i2 (3.46)

and

Tfld = i2

2

d L(θ)

dθ
(3.47)

which is identical to Eq. 3.33.
In field-theory terms, for soft magnetic materials (for which B = 0 when H = 0),

it can be shown that

W ′
fld =

∫
V

(∫ H0

0
B · dH

)
dV (3.48)

For soft magnetic material with constant permeability (B = μH), this reduces to

W ′
fld =

∫
V

μH 2

2
dV (3.49)

For permanent-magnet (hard) materials such as those which are discussed in
Chapter 1 (for which B = 0 when H = Hc), the energy and coenergy are equal to
zero when B = 0 and hence when H = Hc. Thus, although Eq. 3.20 still applies for
calculating the energy, Eq. 3.48 must be modified to the form

W ′
fld =

∫
V

(∫ H0

Hc

B · dH
)

dV (3.50)

Note that Eq. 3.50 can be considered to apply in general since soft magnetic materials
can be considered to be simply hard magnetic materials with Hc = 0, in which case
Eq. 3.50 reduces to Eq. 3.48.

In some cases, magnetic circuit representations may be difficult to realize or may
not yield solutions of the desired accuracy. Often such situations are characterized
by complex geometries and/or magnetic materials driven deeply into saturation. In
such situations, numerical techniques can be used to evaluate the system energy using
Eq. 3.20 or the coenergy using either Eqs. 3.48 or 3.50.

One such technique, known as the finite-element method,1 has become widely
used. For example, such programs, which are available commercially from a number
of vendors, can be used to calculate the system coenergy for various values of the
displacement x of a linear-displacement actuator (making sure to hold the current
constant as x is varied). The force can then be obtained from Eq. 3.40, with the
derivative of coenergy with respect to x being calculated numerically from the results
of the finite-element analysis.

1 See, for example, P. P. Sylvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge
University Press, New York, 1983.
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EXAMPLE 3.5

For the relay of Example 3.2, find the force on the plunger as a function of x when the coil is
driven by a controller which produces a current as a function of x of the form

i(x) = I0

( x

d

)
A

■ Solution
From Example 3.2

L(x) = μ0 N 2ld(1 − x/d)

2g

This is a magnetically-linear system for which the force can be calculated from Eq. 3.43 as

ffld = i 2

2

d L(x)

dx
= − i 2

2

(
μ0 N 2l

2g

)

Substituting for i(x), the expression for the force as a function of x can be determined as

ffld = − I 2
0 μ0 N 2l

4g

( x

d

)2

Note that from Eq. 3.42, the coenergy for this system is equal to

W ′
fld(i, x) = i 2

2
L(x) = i 2

2

N 2μ0ld(1 − x/d)

2g

and the derivative of this expression with respect to x gives the expected expression for the
force in terms of the current i .

In this example, one might be tempted to introduce the expression for i(x) directly into
the coenergy expression, in which case the coenergy would be given by

W ′
fld(i, x) = I 2

0 N 2μ0ld(1 − x/d)

4g

( x

d

)2

Although this is a perfectly correct expression for the coenergy as a function of x under the
specified operating conditions, if one were to attempt to calculate the force from taking the
partial derivative of this expression for W ′

fld with respect to x , the resultant expression would
not give the correct expression for the force. The reason for this is quite simple: As seen from
Eq. 3.40, the partial derivative must be taken holding the current constant. Having substituted
the expression for i(x) to obtain this equation for the coenergy, the current is no longer a
constant and this requirement cannot be met. This illustrates the problems that can arise if the
various force and torque expressions developed here are misapplied.

Practice Problem 3.5

Consider a plunger whose inductance varies as

L(x) = L0(1 − (x/d)2)
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Find the force on the plunger as a function of x when the coil is driven by a controller
which produces a current as a function of x of the form

i(x) = I0

( x

d

)2

A

Solution

ffld = −
(

L0 I 2
0

d

)( x

d

)5

For a magnetically linear system, the energy and coenergy are numerically equal:
1
2λ2/L = 1

2 Li2. The same is true for the energy and coenergy densities: 1
2 B2/μ =

1
2μH 2. For a nonlinear system in which λ and i or B and H are not linearly propor-
tional, the two functions are not even numerically equal. A graphical interpretation
of the energy and coenergy for a nonlinear system is shown in Fig. 3.10. The area
between the λ − i curve and the vertical axis, equal to the integral of i dλ, is the
energy. The area to the horizontal axis given by the integral of λ di is the coenergy.
For this singly-excited system, the sum of the energy and coenergy is, by definition
(see Eq. 3.34),

Wfld + W ′
fld = λi (3.51)

The force produced by the magnetic field in a device such as that of Fig. 3.4 for
some particular value of x and i or λ cannot, of course, depend upon whether it is
calculated from the energy or coenergy. A graphical illustration will demonstrate that
both methods must give the same result.

Assume that the relay armature of Fig. 3.4 is at position x so that the device is
operating at point a in Fig. 3.11a. The partial derivative of Eq. 3.26 can be interpreted
as the limit of −�Wfld/�x with λ constant as �x → 0. If we allow a change �x , the
change −�Wfld is shown by the shaded area in Fig. 3.11a. Hence, the force ffld =
(shaded area)/�x as �x → 0. On the other hand, the partial derivative of Eq. 3.40 can

Energy

Wfld

λ � i relationship

i0 i0

λ

λ0

Coenergy

W'fld

Figure 3.10 Graphical interpretation
of energy and coenergy in a singly
excited system.
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Figure 3.11 Effect of �x on the energy and coenergy of a singly-excited
device: (a) change of energy with λ held constant; (b) change of coenergy with i
held constant.

be interpreted as the limit of �W ′
fld/�x with i constant as �x → 0. This perturbation

of the device is shown in Fig. 3.11b; the force ffld = (shaded area)/�x as �x → 0.
The shaded areas differ only by the small triangle abc of sides �i and �λ, so that
in the limit the shaded areas resulting from �x at constant λ or at constant i are
equal. Thus the force produced by the magnetic field is independent of whether the
determination is made with energy or coenergy.

Equations 3.26 and 3.40 express the mechanical force of electrical origin in terms
of partial derivatives of the energy and coenergy functions Wfld(λ, x) and W ′

fld(i, x). It
is important to note two things about them: the variables in terms of which they must
be expressed and their algebraic signs. Physically, of course, the force depends on
the dimension x and the magnetic field. The field (and hence the energy or coenergy)
can be specified in terms of flux linkage λ, or current i , or related variables. We again
emphasize that the selection of the energy or coenergy function as a basis for analysis
is a matter of convenience.

The algebraic signs in Eqs. 3.26 and 3.40 show that the force acts in a direction to
decrease the magnetic field stored energy at constant flux or to increase the coenergy
at constant current. In a singly-excited device, the force acts to increase the inductance
by pulling on members so as to reduce the reluctance of the magnetic path linking
the winding.

EXAMPLE 3.6

The magnetic circuit shown in Fig. 3.12 is made of high-permeability electrical steel. The rotor
is free to turn about a vertical axis. The dimensions are shown in the figure.

a. Derive an expression for the torque acting on the rotor in terms of the dimensions and the
magnetic field in the two air gaps. Assume the reluctance of the steel to be negligible
(i.e., μ → ∞) and neglect the effects of fringing.
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Figure 3.12 Magnetic system of
Example 3.6.

b. The maximum flux density in the overlapping portions of the air gaps is to be limited to
1.65 T to avoid excessive saturation of the steel. Compute the maximum torque for
r1 = 2.5 cm, h = 1.8 cm, and g = 3 mm.

■ Solution

a. There are two air gaps in series, each of length g, and hence because the permeability of
the steel is assumed infinite, the air-gap field intensity Hag is equal to

Hag = Ni

2g

Bsteel must remain finite and because μ → ∞, Hsteel = Bsteel/μ and and the coenergy
density (Eq. 3.49) in the steel are zero (μH 2

steel/2 = B2
steel/2μ = 0). Hence the system

coenergy is equal to that of the air gaps. The air-gap coenergy density in the is μ0 H 2
ag/2

and the volume of the two overlapping air gaps is 2gh(r1 + 0.5g)θ . Thus, the coenergy is
equal to the product of the air-gap coenergy density and the air-gap volume

W ′
ag =

(
μ0 H 2

ag

2

)(
2gh(r1 + 0.5g)θ

)
= μ0(Ni)2h(r1 + 0.5g)θ

4g

and thus, from Eq. 3.40

Tfld = ∂W ′
ag(i, θ)

∂θ

∣∣∣∣
i

= μ0(Ni)2h(r1 + 0.5g)

4g

The sign of the torque is positive, hence acting in the direction to increase the
overlap angle θ and thus to align the rotor with the stator pole faces.

b. For Bag = 1.65 T,

Hag = Bag

μ0

= 1.65

4π × 10−7
= 1.31 × 106 A/m
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and thus

Ni = 2gHag = 2(3 × 10−3)(1.31 × 106) = 7860 A-turns

Tfld can now be calculated as

Tfld = 4π × 10−7(7860)2(1.8 × 10−2)(2.5 × 10−2 + 0.5(3 × 10−3))

4(3 × 10−3)

= 3.09 N · m

Practice Problem 3.6

a. Write an expression for the inductance of the magnetic circuit of Fig. 3.12 as a
function of θ .

b. Using this expression, derive an expression for the torque acting on the rotor as a
function of the winding current i and the rotor angle θ .

Solution
a.

L(θ) = μ0 N 2h(r1 + 0.5g)θ

2g

b.

Tfld = i 2

2

d L(θ)

dθ
= i 2

2

(
μ0 N 2h(r1 + 0.5g)

2g

)

3.6 MULTIPLY EXCITED MAGNETIC-FIELD
SYSTEMS

Many electromechanical devices have multiple electrical terminals. In measurement
systems it is often desirable to obtain torques proportional to two electric signals; a
meter which determines power as the product of voltage and current is one exam-
ple. Similarly, most electromechanical-energy-conversion devices consist of multiply
excited magnetic-field systems.

Analysis of these systems follows directly from the techniques discussed in
previous sections. This section illustrates these techniques based on a system with two
electric terminals. A schematic representation of a simple system with two electrical
terminals and one mechanical terminal is shown in Fig. 3.13. In this case it represents
a system with rotary motion, and the mechanical terminal variables are torque Tfld and
angular displacement θ . Since there are three terminals, the system must be described
in terms of three independent variables; these can be the mechanical angle θ along
with the flux linkages λ1 and λ2, currents i1 and i2, or a hybrid set including one
current and one flux.2

2 See, for example, H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Wiley, New York,
1968, Pt. I, Chap. 3.
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Figure 3.13 Multiply excited magnetic energy
storage system.

When the fluxes are used, the differential energy function dWfld(λ1, λ2, θ) cor-
responding to Eq. 3.29 is

dWfld(λ1, λ2, θ) = i1 dλ1 + i2 dλ2 − Tfld dθ (3.52)

and in direct analogy to the previous development for a singly-excited system

i1 = ∂Wfld(λ1, λ2, θ)

∂λ1

∣∣∣∣
λ2,θ

(3.53)

i2 = ∂Wfld(λ1, λ2, θ)

∂λ2

∣∣∣∣
λ1,θ

(3.54)

and

Tfld = −∂Wfld(λ1, λ2, θ)

∂θ

∣∣∣∣
λ1,λ2

(3.55)

Note that in each of these equations, the partial derivative with respect to each inde-
pendent variable must be taken holding the other two independent variables constant.

The energy Wfld can be found by integrating Eq. 3.52. As in the singly-excited
case, although the energy at any given point is independent of the integration path,
this integration is most conveniently done by holding λ1 and λ2 fixed at zero and
integrating first over θ ; under these conditions, Tfld is zero, and thus this integral is
zero. One can then integrate over λ2 (while holding λ1 zero) and finally over λ1. Thus

Wfld(λ10 , λ20 , θ0) =
∫ λ20

0
i2(λ1 = 0, λ2, θ = θ0) dλ2

+
∫ λ10

0
i1(λ1, λ2 = λ20 , θ = θ0) dλ1 (3.56)

This path of integration is illustrated in Fig. 3.14 and is directly analogous to that of
Fig. 3.5. One could, of course, interchange the order of integration for λ2 and λ1. It
is extremely important to recognize however that, for the expression of Eq. 3.56, the
state variables are integrated over a specific path over which only one state variable
is varied at a time; for example, λ1 is maintained initially at zero while integrating
over λ2. This is explicitly indicated in Eq. 3.56 and can also be seen from Fig. 3.14.
Failure to observe the constraints imposed by a chosen integration path is one of the
most common errors made in analyzing such systems.
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λ10
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Figure 3.14 Integration path to
obtain Wfld(λ10 , λ20 , θ0).

In a magnetically-linear system, the relationships between λ and i can be specified
in terms of inductances as is discussed in Section 1.2

λ1 = L11i1 + L12i2 (3.57)

λ2 = L21i1 + L22i2 (3.58)

where

L12 = L21 (3.59)

Here the inductances are, in general, functions of angular position θ .
These equations can be inverted to obtain expressions for the is as a function of

the θs

i1 = L22λ1 − L12λ2

D
(3.60)

i2 = −L21λ1 + L11λ2

D
(3.61)

where

D = L11L22 − L12L21 (3.62)

The energy for this linear system can be found from Eq. 3.56

Wfld(λ10 , λ20 , θ0) =
∫ λ20

0

L11(θ0)λ2

D(θ0)
dλ2

+
∫ λ10

0

(L22(θ0)λ1 − L12(θ0)λ20)

D(θ0)
dλ1

= 1

2D(θ0)
L11(θ0)λ

2
20

+ 1

2D(θ0)
L22(θ0)λ

2
10

− L12(θ0)

D(θ0)
λ10λ20 (3.63)
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where the dependence of the inductances and the determinant D(θ) on the angular
displacement θ has been explicitly indicated.

In Section 3.5, the coenergy function was defined to permit determination of
force and torque directly in terms of the current for a single-winding system. A
similar coenergy function can be defined in the case of systems with two windings as

W ′
fld(i1, i2, θ) = λ1i1 + λ2i2 − Wfld (3.64)

It is a state function of the two terminal currents and the mechanical displacement.
Its differential, following substitution of Eq. 3.52, is given by

dW ′
fld(i1, i2, θ) = λ1 di1 + λ2 di2 + Tfld dθ (3.65)

From Eq. 3.65 we see that

λ1 = ∂W ′
fld(i1, i2, θ)

∂i1

∣∣∣∣
i2,θ

(3.66)

λ2 = ∂W ′
fld(i1, i2, θ)

∂i2

∣∣∣∣
i1,θ

(3.67)

Most significantly, the torque can now be determined directly in terms of the
currents as

Tfld = ∂W ′
fld(i1, i2, θ)

∂θ

∣∣∣∣
i1,i2

(3.68)

Analogous to Eq. 3.56, the coenergy can be found as

W ′
fld(i10 , i20 , θ0) =

∫ i20

0
λ2(i1 = 0, i2, θ = θ0) di2

+
∫ i10

0
λ1(i1, i2 = i20 , θ = θ0) di1 (3.69)

For the linear system of Eqs. 3.57 to 3.59

W ′
fld(i1, i2, θ) = 1

2
L11(θ)i2

1 + 1

2
L22(θ)i2

2 + L12(θ)i1i2 (3.70)

For such a linear system, the torque can be found either from the energy of Eq. 3.63
using Eq. 3.55 or from the coenergy of Eq. 3.70 using Eq. 3.68. It is at this point
that the utility of the coenergy function becomes apparent. The energy expression of
Eq. 3.63 is a complex function of displacement, and its derivative is even more so.
Alternatively, the coenergy function is a relatively simple function of displacement,
and from its derivative a straightforward expression for torque can be determined as
a function of the winding currents i1 and i2 as

Tfld = ∂W ′
fld(i1, i2, θ)

∂θ

∣∣∣∣
i1,i2

= i2
1

2

(
d L11(θ)

dθ

)
+ i2

2

2

(
d L22(θ)

dθ

)
+ i1i2

(
d L12(θ)

dθ

)
(3.71)
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Systems with more than two electrical terminals are handled in analogous fashion.
As with the two-terminal-pair system above, the use of a coenergy function of the
terminal currents greatly simplifies the determination of torque or force.

EXAMPLE 3.7

In the system shown in Fig. 3.15, the inductances in henrys are given as L11 = (3 + cos 2θ) ×
10−3; L12 = 0.3 cos θ; L22 = 30 + 10 cos 2θ . Find and plot the torque Tfld(θ) for current i1 =
0.8 A and i2 = 0.01 A.

■ Solution
The torque can be determined from Eq. 3.71.

Tfld = i 2
1

2

(
d L11(θ)

dθ

)
+ i 2

2

2

(
d L22(θ)

dθ

)
+ i1i2

(
d L12(θ)

dθ

)

= i 2
1

2
(−2 × 10−3) sin 2θ + i 2

2

2
(−20 sin 2θ) − i1i2(0.3) sin θ

For i1 = 0.8 A and i2 = 0.01 A, the torque is

Tfld = −1.64 × 10−3 sin 2θ − 2.4 × 10−3 sin θ

Notice that the torque expression consists of terms of two types. One term, proportional
to i1i2 sin θ , is due to the mutual interaction between the rotor and stator currents; it acts in a
direction to align the rotor and stator so as to maximize their mutual inductance. Alternately,
it can be thought of as being due to the tendency of two magnetic fields (in this case those of
the rotor and stator) to align.

The torque expression also has terms proportional to sin 2θ and to the square of the
individual coil currents. These terms are due to the action of the individual winding currents
alone and correspond to the torques one sees in singly-excited systems. Here each torque

Spring

λ1, e1

θ

Electrical

source 1

Electrical

source 2

+

�

i1

i2

λ2, e2

Stator

Tfld

Tmech

Rotor +

�

Figure 3.15 Multiply excited magnetic system for Example 3.7.
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Figure 3.16 Plot of torque components for the multiply excited system of Example 3.7.

component acts in a direction to maximize its corresponding inductance so as to maximize the
coenergy. The 2θ torque variation is due to the 2θ variation in the self inductances (exactly
as was seen previously in Example 3.4), which in turn is due to the variation of the air-gap
reluctance; notice that rotating the rotor by 180◦ from any given position gives the same air-gap
reluctance (hence the twice-angle variation). This torque component is known as the reluctance
torque. The two torque components (mutual and reluctance), along with the total torque, are
plotted with MATLAB in Fig. 3.16.

Practice Problem 3.7

Find an expression for the torque of a symmetrical two-winding system whose inductances
vary as

L11 = L22 = 0.8 + 0.27 cos 4θ

L12 = 0.65 cos 2θ

for the condition that i1 = −i2 = 0.37 A.

Solution

Tfld = −0.148 sin (4θ) + 0.178 sin (2θ)
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The derivation presented above for angular displacement can be repeated in
an analogous fashion for the systems with linear displacement. If this is done, the
expressions for energy and coenergy will be found to be

Wfld(λ10 , λ20 , x0) =
∫ λ20

0
i2(λ1 = 0, λ2, x = x0) dλ2

+
∫ λ10

0
i1(λ1, λ2 = λ20 , x = x0) dλ1 (3.72)

W ′
fld(i10 , i20 , x0) =

∫ i20

0
λ2(i1 = 0, i2, x = x0) di2

+
∫ i10

0
λ1(i1, i2 = i20 , x = x0) di1 (3.73)

Similarly the force can be found from

ffld = − ∂Wfld(λ1, λ2, x)

∂x

∣∣∣∣
λ1,λ2

(3.74)

or

ffld = ∂W ′
fld(i1, i2, x)

∂x

∣∣∣∣
i1,i2

(3.75)

For a magnetically linear system, the coenergy expression of Eq. 3.70 becomes

W ′
fld(i1, i2, x) = 1

2
L11(x)i2

1 + 1

2
L22(x)i2

2 + L12(x)i1i2 (3.76)

and the force is thus given by

ffld = i2
1

2

(
d L11(x)

dx

)
+ i2

2

2

(
d L22(x)

dx

)
+ i1i2

(
d L12(x)

dx

)
(3.77)

3.7 FORCES AND TORQUES IN SYSTEMS
WITH PERMANENT MAGNETS

The derivations of the force and torque expressions of Sections 3.4 through 3.6 focus
on systems in which the magnetic fields are produced by the electrical excitation of
specific windings in the system. However, in Section 3.5, it is seen that special care
must be taken when considering systems which contain permanent magnets (also
referred to as hard magnetic materials). Specifically, the discussion associated with
the derivation of the coenergy expression of Eq. 3.50 points out that in such systems
the magnetic flux density is zero when H = Hc, not when H = 0.

For this reason, the derivation of the expressions for force and torque in Sec-
tions 3.4 through 3.6 must be modified for systems which contain permanent mag-
nets. Consider for example that the derivation of Eq. 3.17 depends on the fact that in
Eq. 3.16 the force can be assumed zero when integrating over path 2a because there
is no electrical excitation in the system. A similar argument applies in the derivation
of the coenergy expressions of Eqs. 3.41 and 3.69.
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In systems with permanent magnets, these derivations must be carefully revisited.
In some cases, such systems have no windings at all; their magnetic fields are due
solely to the presence of permanent-magnet material, and it is not possible to base a
derivation purely upon winding fluxes and currents. In other cases, magnetic fields
may be produced by a combination of permanent magnets and windings.

A modification of the techniques presented in the previous sections can be used
in systems which contain permanent magnets. Although the derivation presented
here applies specifically to systems in which the magnet appears as an element of a
magnetic circuit with a uniform internal field, it can be generalized to more complex
situations; in the most general case, the field theory expressions for energy (Eq. 3.20)
and coenergy (Eq. 3.50) can be used.

The essence of this technique is to consider the system as having an additional
fictitious winding acting upon the same portion of the magnetic circuit as does the
permanent magnet. Under normal operating conditions, the fictitious winding carries
zero current. Its function is simply that of a mathematical crutch which can be used
to accomplish the required analysis. The current in this winding can be adjusted to
cancel the magnetic fields produced by the permanent magnet in order to achieve
the “zero-force” starting point for the analyses such as that leading from Eq. 3.16 to
Eq. 3.17.

For the purpose of calculating the energy and coenergy of the system, this winding
is treated as any other winding, with its own set of current and flux linkages. As a result,
energy and coenergy expressions can be obtained as a function of all the winding flux
linkages or currents, including those of the fictitious winding. Since under normal
operating conditions the current in this winding will be set equal to zero, it is useful
to derive the expression for the force from the system coenergy since the winding
currents are explicitly expressed in this representation.

Figure 3.17a shows a magnetic circuit with a permanent magnet and a movable
plunger. To find the force on the plunger as a function of the plunger position, we
assume that there is a fictitious winding of Nf turns carrying a current if wound so as
to produce flux through the permanent magnet, as shown in Fig. 3.17b.

Plunger

Fictitious winding,

Nf turns

(a) (b)

λf

if

μ → ∞

Plunger

Permanent

magnet

�

+

μ → ∞

μ → ∞ μ → ∞x x

Figure 3.17 (a) Magnetic circuit with permanent magnet and movable
plunger; (b) fictitious winding added.
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For this single-winding system we can write the expression for the differential
in coenergy from Eq. 3.37 as

dW ′
fld(if, x) = λf dif + ffld dx (3.78)

where the subscript ‘f’ indicates the fictitious winding. Corresponding to Eq. 3.40,
the force in this system can be written as

ffld = ∂W ′
fld(if = 0, x)

∂x

∣∣∣∣
if

(3.79)

where the partial derivative is taken while holding if constant at if = 0 as is explicitly
indicated in Eq 3.79. As we have seen, holding if constant for the derivative in Eq. 3.79
is a requirement of the energy method. In this case it must be set equal to zero to
properly calculate the force due to the magnet alone so as not to include a force
component from current in the fictitious winding.

To calculate the coenergy W ′
fld(if = 0, x) in this system, it is necessary to integrate

Eq. 3.78. Since W ′
fld is a state function of if and x , we are free to choose any integration

path we wish. Figure 3.18 illustrates a path over which this integration is particularly
simple. For this path we can write the expression for coenergy in this system as

W ′
fld(if = 0, x) =

∫
path 1a

dW ′
fld +

∫
path 1b

dW ′
fld

=
∫ x

0
ffld(if = If0, x ′) dx ′ +

∫ 0

If0

λf(if, x) dif (3.80)

which corresponds directly to the analogous expression for energy found in Eq. 3.16.
Note that the integration is initially over x with the current if held fixed at if = If0.

This is a very specific current, equal to that fictitious-winding current which reduces
the magnetic flux in the system to zero. In other words, the current If0 is that current
in the fictitious winding which totally counteracts the magnetic field produced by the
permanent magnet. Thus, the force ffld is zero at point A in Fig. 3.18 and remains so

0

Path 1a

Path 1b

x x'

W'fld(if = 0, x)

A
If0

if
′

Figure 3.18 Integration path for
calculating Wfld(i f = 0, x) in the permanent
magnet system of Fig. 3.17.



Umans-3930269 book December 17, 2012 14:10

3.7 Forces and Torques in Systems with Permanent Magnets 155

for the integral over x of path 1a. Hence the integral over path 1a in Eq. 3.80 is zero,
and Eq. 3.80 reduces to

W ′
fld(if = 0, x) =

∫ 0

If0

λf(if, x) dif (3.81)

It should be emphasized that Eq. 3.81 is perfectly general and does not require
either the permanent magnet or the magnetic material in the magnetic circuit to be
linear. Once Eq. 3.81 has been evaluated, the force at a given plunger position x can
be readily found from Eq. 3.79.

EXAMPLE 3.8

The magnetic circuit of Fig. 3.19 is excited by a samarium-cobalt permanent magnet and
includes a movable plunger. Also shown is the fictitious winding of Nf turns carrying a current
if which is included here for the sake of the analysis. The dimensions are:

Wm = 2.0 cm Wg = 3.0 cm W0 = 2.0 cm

d = 2.0 cm g = 0.2 cm D = 3.0 cm

Find (a) an expression for the coenergy of the system as a function of plunger position x
and (b) an expression for the force on the plunger as a function of x . Finally, (c) calculate the
force at x = 0 and x = 0.5 cm. Neglect any effects of fringing fluxes in this calculation.

■ Solution

a. Because it is quite linear over most of its useful operating range, the dc magnetization
curve for samarium-cobalt can be represented as a straight line of the form of Eq. 1.60

Bm = μR(Hm − H ′
c) = μR Hm + Br

Movable

plunger

Fictitious

winding

Depth D
if

x

μ → ∞

μ → ∞

Nf

Wm

Wg

W0 g0

d
samarium-cobalt

permanent magnet

μ → ∞

Figure 3.19 Magnetic circuit for
Example 3.8.
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where the subscript “m” is used here to refer specifically to the fields within the
samarium-cobalt magnet and

μR = 1.05μ0

H ′
c = −712 kA/m

Br = 0.94 T

Note from Fig. 1.19 that the DC magnetization curve for samarium-cobalt is not
completely linear; it bends slightly downward for low flux densities. Hence, in the
linearized B-H characteristic given above, the apparent coercivity H ′

c is somewhat larger
than the actual coercivity of samarium-cobalt.

From Eq. 1.5 we can write

Nfif = Hmd + Hgx + H0g0

where the subscript “g” refers to the variable gap of length x and the subscript “0” refers
to the fixed gap of length g0. Similarly from the continuity of flux condition, Eq. 1.3, we
can write

BmWm D = BgWg D = B0W0 D

Recognizing that in the air gaps Bg = μ0 Hg and B0 = μ0 H0, we can solve the above
equations for Bm:

Bm = μR(Nfif − H ′
cd)

d + Wm

(
μR

μ0

)(
x

Wg

+ g0

W0

)
Finally we can solve for the flux linkages λf of the fictitious winding as

λf = NfWm DBm = NfWm DμR(Nfif − H ′
cd)

d + Wm

(
μR

μ0

)(
x

Wg

+ g0

W0

)
Thus we see that the flux linkages λf will be zero when if = If0 where

If0 = H ′
cd

Nf

= −Brd

μR Nf

and from Eq. 3.81 we can find the coenergy as

W ′
fld(x) =

∫ 0

H ′
cd/Nf

⎡
⎢⎢⎣ NfWm DμR(Nfif − H ′

cd)

d + Wm

(
μR

μ0

)(
x

Wg

+ g0

W0

)
⎤
⎥⎥⎦ dif

= Wm D(Brd)2

2μR

[
d + Wm

(
μR

μ0

)(
x

Wg

+ g0

W0

)]
Note that the answer does not depend upon Nf or if, which is as we would expect

since the fictitious winding does not actually exist in this system.
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b. Once the coenergy has been found, the force can be found from Eq. 3.79 as

ffld = − W 2
m D(Brd)2

2μ0Wg

[
d + Wm

(
μR

μ0

)(
x

Wg

+ g0

W0

)]2

Notice that the force is negative, indicating that the force is acting in the direction to
decrease x , that is to pull the plunger in the direction which decreases the gap.

c. Finally, substitution into the force expression yields

ffld =
{

−115 N at x = 0 cm

−85.8 N at x = 0.5 cm

Practice Problem 3.8

a. Derive an expression for the coenergy in the magnetic circuit of Fig. 3.20 as a
function of the plunger position x .

b. Derive an expression for the x-directed force on the plunger and evaluate it at
x = Wg/2. Neglect any effects of fringing fluxes.

The dimensions are:

Wm = 2.0 cm Wg = 2.5 cm D = 3.0 cm

d = 1.0 cm g = 0.2 cm

g

samarium-cobalt

magnet

Depth D
Wm

Wg

d

g

μ → ∞

μ → ∞

μ→∞x

Figure 3.20 Magnetic circuit for
Practice Problem 3.8.

Solution

a.
W ′

fld = Wm D(Brd)2

2μR

[
d +

(
μR

μ0

)(
2gWm

(Wg − x)

)]
b.

ffld = − μ0gD(Wm Brd)2

(2μRgWm + μ0d(Wg − x))2

At x = Wg/2, ffld = −38.6 N.

Consider the schematic magnetic circuit of Fig. 3.21a. It consists of a section of
linear, hard magnetic material (Bm = μR(Hm − H ′

c)) of area A and length d. It is
connected in series with an external magnetic circuit of mmf F e.
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(b)

External

magnetic

circuit

(Ni)equiv

Linear magnetic
material B = μRH

d

�

FeFe

(a)

External

magnetic

circuit
Hm

Area A Area A

Linear, hard
magnetic material

Bm = μR(Hm − Hc')

d

�

+

�

+
�

Figure 3.21 (a) Generic magnetic circuit containing a section of linear,
permanent-magnet material. (b) Generic magnetic circuit in which the
permanent-magnet material has been replaced by a section of linear
magnetic material and a fictitious winding.

From Eq. 1.21, since there are no additional ampere-turns acting on this magnetic
circuit,

Hmd + Fe = 0 (3.82)

The flux produced in the external magnetic circuit by the permanent magnet is given by

	 = ABm = μR A(Hm − H ′
c) (3.83)

Substitution for Hm from Eq. 3.82 in Eq. 3.83 gives

	 = μR A

(
−H ′

c − Fe

d

)
(3.84)

Now consider the schematic magnetic circuit of Fig. 3.21b in which the linear,
hard magnetic material of Fig. 3.21a has been replaced by soft, linear magnetic
material of the same permeability (B = μR H ) and of the same dimensions, length d
and area A. In addition, a winding carrying (Ni)equiv ampere-turns has been included.

For this magnetic circuit, the flux can be shown to be given by

	 = μR A

(
(Ni)equiv

d
− Fe

d

)
(3.85)

Comparing Eqs. 3.84 and 3.85, we see that the same flux is produced in the external
magnetic circuit if the ampere-turns, (Ni)equiv, in the winding of Fig. 3.21b is equal
to −H ′

cd .
This is a useful result for analyzing magnetic-circuit structures which contain

linear, permanent-magnet materials whose B-H characteristic can be represented in
the form of Eq. 1.60. In such cases, replacing the permanent-magnet section with a
section of linear-magnetic material of the same permeability μR and geometry and
an equivalent winding of ampere-turns

(Ni)equiv = −H ′
cd (3.86)

results in the same flux in the external magnetic circuit. As a result, both the lin-
ear permanent magnet and the combination of the linear magnetic material and the
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winding are indistinguishable with regard to the production of magnetic fields in the
external magnetic circuit, and hence they produce identical forces. Thus, the analysis
of such systems may be simplified by this substitution, as is shown in Example 3.9.
This technique is especially useful in the analysis of magnetic circuits containing both
a permanent magnetic and one or more windings.

EXAMPLE 3.9

Figure 3.22a shows an actuator consisting of an infinitely-permeable yoke and plunger, excited
by a section of neodymium-iron-boron magnet and an excitation winding of N1 = 1500 turns.
The dimensions are:

W = 4.0 cm W1 = 4.5 cm D = 3.5 cm

d = 8 mm g0 = 1 mm

Find (a) the x-directed force on the plunger when the current in the excitation winding is
zero and x = 3 mm. (b) Calculate the current in the excitation winding required to reduce the
plunger force to zero.

■ Solution

a. As discussed in Section 1.6, the dc-magnetization characteristic of neodymium-iron-
boron can be represented by a linear relationship of the form

B = μR(H − H ′
c) = Br + μR H

where μR = 1.06μ0, H ′
c = −940 kA/m and Br = 1.25 T. As discussed in this section, we

can replace the magnet by a section of linear material of permeability μR and an
equivalent winding of ampere-turns

(Ni)equiv = −H ′
cd = −(−9.4 × 105)(8 × 10−3) = 7520 ampere-turns

Plunger

Depth D

neodymium-iron-boron

magnet

il
x

μ → ∞

Nl turns

W
Yoke

Wl

W g0

d

(a)

Rx

(Ni)equiv

N1i1

Rg0

Rm

�

(b)

μ → ∞
μ → ∞

+

�
+

�

Figure 3.22 (a) Actuator for Example 3.9. (b) Equivalent circuit for the actuator
with the permanent magnet replaced by linear material and an equivalent
winding carrying (Ni )equiv ampere-turns.
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Based upon this substitution, the equivalent circuit for the system becomes that of
Fig. 3.22b. There are two sources of mmf in series with three reluctances: the variable
gap Rx, the fixed gap R0, and the magnet Rm.

Rx = x

μ0W1 D

R0 = g0

μ0W D

Rm = d

μRW D

With i1 = 0, the actuator is equivalent to a single-winding system whose coenergy is
given by

W ′
fld = 1

2
Li 2

1 = 1

2

(
(Ni)2

equiv

Rx + R0 + Rm

)

The force on the plunger can then be found from

ffld = ∂W ′
fld

∂x

∣∣∣∣
iequiv

= − (Ni)2
equiv

(Rx + R0 + Rm)2

(
dRx

dx

)

= − (Ni)2
equiv

μ0W1 D(Rx + R0 + Rm)2

Substituting the given values gives ffld = −703 N, where the minus sign indicates that the
force acts in the direction to reduce x (i.e., to close the gap).

b. The flux in the actuator is proportional to the total effective ampere-turns (Ni)equiv + N1i1

acting on the magnetic circuit. Thus, the force will be zero when the net ampere-turns is
equal to zero or when

i1 = (Ni)equiv

N1

= 7520

1500
= 5.01 A

Note however that the sign of the current (i.e., in which direction it should be applied to
the excitation winding) cannot be determined from the information given here since we do
not know the direction of magnetization of the magnet. Since the force depends upon the
square of the magnetic flux density, the magnet can be oriented to produce flux either
upward or downward in the left-hand leg of the magnetic circuit, and the force calculated
in part (a) will be the same. To reduce the force to zero, the excitation winding current of
5.01 amperes must be applied in such a direction as to reduce the flux to zero; if the
opposite current is applied, the flux density will increase, as will the force.

Practice Problem 3.9

Practice Problem 3.8 is to be reworked replacing the samarium-cobalt magnet by a section of
linear material and an equivalent winding. Write (a) expressions for Rm, the reluctance of the
section of linear material; Rg, the reluctance of the air gap; and (Ni)equiv, the ampere-turns of
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the equivalent winding; and (b) an expression for the inductance of the equivalent winding and
the coenergy.

Wm = 2.0 cm Wg = 2.5 cm D = 3.0 cm

d = 1.0 cm g0 = 0.2 cm

Solution

a. Rm = d

μRWm D

Rg = 2g

μ0(Wg − x)D

(Ni)equiv = −H ′
cd = (Brd)

μR

b. L = N 2
equiv

(Rm + Rg)

W ′
fld = Li 2

equiv

2
= (Brd)2

2μ2
R(Rm + Rg)

= Wm D(Brd)2

2μR

[
d +

(
μR

μ0

)(
2gWm

(Wg − x)

)]

Clearly the methods described in this chapter can be extended to handle situations
in which there are permanent magnets and multiple current-carrying windings. In
many devices of practical interest, the geometry is sufficiently complex, independent
of the number of windings and/or permanent magnets, that magnetic-circuit analysis is
not necessarily applicable, and analytical solutions can be expected to be inaccurate, if
they can be found at all. In these cases, numerical techniques, such as the finite-element
method discussed previously, can be employed. Using this method, the coenergy of
Eq. 3.48, or Eq. 3.50 if permanent magnets are involved, can be evaluated numerically
at constant winding currents and for varying values of displacement.

3.8 DYNAMIC EQUATIONS
We have derived expressions for the forces and torques produced in electro-
mechanical-energy-conversion devices as functions of electrical terminal variables
and mechanical displacement. These expressions were derived for conservative
energy-conversion systems for which it can be assumed that losses can be assigned
to external electrical and mechanical elements connected to the terminals of the
energy-conversion system. Such energy-conversion devices are intended to operate
as a coupling means between electric and mechanical systems. Hence, we are ulti-
mately interested in the operation of the complete electromechanical system and not
just of the electromechanical-energy-conversion system around which it is built.

The model of a simple electromechanical system shown in Fig. 3.23 shows
the basic system components, the details of which may vary from system to sys-
tem. The system shown consists of three parts: an external electric system, the
electromechanical-energy-conversion system, and an external mechanical system.
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Figure 3.23 Model of a singly excited electromechanical system.

The electric system is represented by a voltage source v0 and resistance R; the source
could alternatively be represented by a current source and a parallel conductance G.

Note that all the electrical losses in the system, including those which are inherent
to the electromechanical-energy-conversion system are assigned to the resistance R
in this model. For example, if the voltage source has an equivalent resistance Rs and
the winding resistance of the electromechanical-energy-conversion system is Rw, the
resistance R would equal the sum of these two resistances; R = Rs + Rw.

The electric equation for this model is

v0 = i R + e = i R + dλ

dt
(3.87)

If the flux linkage λ can be expressed as λ = L(x)i , the external equation becomes

v0 = i R + L(x)
di

dt
+ i

d L(x)

dx

dx

dt
(3.88)

The second term on the right, L(di/dt), is the self-inductance voltage term.
The third term i(d L/dx)(dx/dt) includes the multiplier dx/dt . This is the speed
of the mechanical terminal and thus the third term is often called simply the speed
voltage. A speed-voltage term is common to all electromechanical-energy-conversion
systems and represents the mechanism by which energy is transferred to and from
the mechanical system by the electrical system.

For a multiply-excited system, electric equations corresponding to Eq. 3.87 are
written for each input pair. If the expressions for the λ’s are to be expanded in terms of
inductances, as in Eq. 3.88, both self- and mutual-inductance terms will be required.

The mechanical system of Fig. 3.23 includes the representation for a spring
(spring constant K ), a damper (damping constant B), a mass M , and an external me-
chanical excitation force f0. Here, as for the electrical system, the damper represents
the losses both of the external mechanical system as well as any mechanical losses
of the electromechanical-energy-conversion system.

The x-directed forces and displacement x are related as follows:

Spring:

fK = −K (x − x0) (3.89)
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Damper:

fD = −B
dx

dt
(3.90)

Mass:

fM = −M
d2x

dt2
(3.91)

where x0 is the value of x with the spring normally unstretched. Force equilibrium
thus requires that

ffld + fK + fD + fM − f0 = ffld − K (x − x0) − B
dx

dt
− M

d2x

dt2
− f0 = 0 (3.92)

Combining Eqs. 3.88 and 3.92, the differential equations for the overall system
of Fig. 3.23 for arbitrary inputs v0(t) and f0(t) are thus

v0(t) = i R + L(x)
di

dt
+ i

d L(x)

dx
(3.93)

f0(t) = −M
d2x

dt2
− B

dx

dt
− K (x − x0) + ffld(x, i) (3.94)

The functions L(x) and ffld(x, i) depend on the properties of the electromechanical-
energy-conversion system and are calculated as previously discussed.

EXAMPLE 3.10

Figure 3.24 shows in cross section a cylindrical solenoid magnet in which the cylindrical
plunger of mass M moves vertically in brass guide rings of thickness g and mean diameter d.
The permeability of brass is the same as that of free space and is μ0 = 4π × 10−7 H/m in SI
units. The plunger is supported by a spring whose spring constant is K . Its unstretched length is
l0. A mechanical load force ft is applied to the plunger from the mechanical system connected
to it, as shown in Fig. 3.24. Assume that frictional force is linearly proportional to the velocity
and that the coefficient of friction is B. The coil has N turns and resistance R. Its terminal
voltage is vt and its current is i . The effects of magnetic leakage and reluctance of the steel are
negligible.

Derive the dynamic equations of motion of the electromechanical system, i.e., the dif-
ferential equations relating the dependent variables i and x in terms of vt, ft, and the given
constants and dimensions.

■ Solution
We begin by expressing the inductance as functions of x . The coupling terms, i.e., the magnetic
force ffld and induced emf e, can then be expressed in terms of x and i and these relations
substituted in the equations for the mechanical and electric systems.

The reluctance of the magnetic circuit is that of the two guide rings in series, with the
flux directed radially through them, as shown by the dashed flux lines ϕ in Fig. 3.24. Because
g � d , the flux density in the guide rings is very nearly constant with respect to the radial
distance. In a region where the flux density is constant, the reluctance is

Length of flux path in direction of field

μ (area of flux path perpendicular to field)
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Figure 3.24 Solenoid magnet for
Example 3.10.

The reluctance of the upper gap is

R1 = g

μ0πxd

in which it is assumed that the field is concentrated in the area between the upper end of the
plunger and the lower end of the upper guide ring. Similarly, the reluctance of the lower gap is

R2 = g

μ0πad

The total reluctance is

R = R1 + R2 = g

μ0πd

(
1

x
+ 1

a

)
= g

μ0πad

(a + x

x

)
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Hence, the inductance is

L(x) = N 2

R = μ0πad N 2

g

( x

a + x

)
= L ′

( x

a + x

)
where

L ′ = μ0πad N 2

g

The magnetic force acting upward on the plunger in the positive x direction is

ffld = ∂W ′
fld(i, x)

∂x

∣∣∣∣
i

= i 2

2

d L

dx
= i 2

2

aL ′

(a + x)2

The induced emf in the coil is

e = d

dt
(Li) = L

di

dt
+ i

d L

dx

dx

dt
or

e = L ′
( x

a + x

) di

dt
+ L ′

(
ai

(a + x)2

)
dx

dt

Substitution of the magnetic force in the differential equation of motion of the mechanical
system (Eq. 3.94) gives

ft = −M
d2x

dt2
− B

dx

dt
− K (x − l0) + 1

2
L ′ ai 2

(a + x)2

The voltage equation for the electric system is (from Eq. 3.93)

vt = i R + L ′
( x

a + x

) di

dt
+ i L ′

(
a

(a + x)2

)
dx

dt

These last two equations are the desired results. They are valid only as long as the upper
end of the plunger is well within the upper guide ring, say, between the limits 0.1a < x < 0.9a.
This is the normal working range of the solenoid.

3.9 ANALYTICAL TECHNIQUES
We have described relatively simple devices in this chapter. These devices have one
or two electrical terminals and one mechanical terminal, which is usually constrained
to incremental motion. More complicated devices capable of continuous energy con-
version are treated in the following chapters. We have discussed analytic techniques
in the context of simple devices, but the principles are equally applicable to more
complex devices.

Devices such as those described in this chapter are often used to produce gross
motion, such as in the case of relays and solenoids, where the devices operate under
essentially “on” and “off” conditions. Techniques described in this chapter can be
used to determine force as a function of displacement and reaction on the electric
source. If the details of the motion, such as the displacement as a function of time
after the device is energized, are required, often non-linear differential equations of
the form of Eqs. 3.93 and 3.94 must be solved.
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In contrast to gross-motion devices, other devices such as loudspeakers, pickups,
and transducers of various kinds are intended to operate with relatively small displace-
ments and to produce a linear relationship between electrical signals and mechanical
motion, and vice versa. The relationship between the electrical and mechanical vari-
ables is made linear either by the design of the device or by restricting the excursion
of the signals to a linear range. In either case the differential equations are linear and
can be solved using standard techniques for transient response, frequency response,
and so forth, as required.

3.9.1 Gross Motion

The differential equations for a singly excited device as derived in Example 3.10 are
of the form

1

2
L ′

(
ai2

(a + x)2

)
= M

d2x

dt2
+ B

dx

dt
+ K (x − l0) + ft (3.95)

vt = i R + L ′
(

x

a + x

)
di

dt
+ L ′

(
ai

(a + x)2

)
dx

dt
(3.96)

A typical problem using these differential equations is to find the excursion x(t)
when a prescribed voltage vt = V0 is applied at t = 0. There is no general analytical
solution for these differential equations; they are non-linear, involving products and
powers of the variables x and i and their derivatives. Typically, a solution is most
easily obtained through the use of computer-based numerical-integration techniques.

A number of commercial packages are available to expedite the analysis of these
systems. One such package is the MATLAB/Simulink package.3 Using Simulink,
equations such as Eq. 3.95 and 3.96 can be readily solved by reformulating them
as integral equations which are then numerically integrated. Specifically, Simulink
solves such problems in the form of a set of first-order, non-linear integral equations.

Eqs. 3.95 and 3.96 can be formulated in the required form by defining a third
variable x1 such

x1 = dx

dt
(3.97)

which, when combined with Eqs. 3.95 and 3.96 results in a set of three first-order,
non-linear differential equations.

dx

dt
= x1 (3.98)

dx1

dt
= 1

M

[
1

2
L ′

(
ai2

(a + x)2

)
− Bx1 − K (x − l0) − ft

]
(3.99)

di

dt
=

(
a + x

x

)[
vt − i R − L ′

(
ai

(a + x)2

)
x1

]
(3.100)

3 “MATLAB” and “Simulink” are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760, http://www.mathworks.com. Both Matlab and Simulink are avalailable in a Student
Edition.
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In integral form these become

x =
∫ t

0

{
x1

}
dt (3.101)

x1 =
∫ t

0

{
1

M

[
1

2
L ′

(
ai2

(a + x)2

)
− Bx1 − K (x − l0) − ft

]}
dt (3.102)

i =
∫ t

0

{(
a + x

x

)[
vt − i R − L ′

(
ai

(a + x)2

)
x1

]}
dt (3.103)

EXAMPLE 3.11

The plunger system of Ex. 3.10 has the following characteristics:

M = 0.5 kg K = 60 N/m
B = 1 kg/sec lo = 5 cm
a = 2.5 cm L ′ = 46.8 mH
R = 5 �

The system is initial at rest with vt = 0 and ft = 0. Use Simulink to calculate and plot
the plunger position x and current i if the voltage vt is switched to 10 V at time t = 0.5 sec.

■ Solution
Figure 3.25 shows the Simulink model. As can be seen, there are three integrators, corre-
sponding to each of the three integral equations, Eqs. 3.101 - 3.103. The model includes two
subsystems which implement Eqs. 3.102 and 3.103. The details of these implementations are
shown in Fig. 3.26.

Figure 3.27 shows the results of the simulation. Note that the current settles out to a steady
value in approximately 0.5 sec to the expected value of Vt/R = 2 A with a response which
appears to be essentially first order. On the other hand, the transient in x is essentially second
order and which damps out in approximately 4.5 seconds. Not surprisingly, increasing the value
of the damping constant B and re-running the simulation will result in a response which damps
out more rapidly.

Frequently, a gross-motion problem can be simplified. Some cases permit so-
lution by analytic methods, thus eliminating the necessity of a setting up and solv-
ing a numerical simulation. In many cases, such simplification provides important
insight into the behavior of the system and the physical mechanisms which deter-
mine this behavior. For example, when the winding of the system of Example 3.10
has a relatively large resistance, the i R term may dominate the right-hand side of
Eq. 3.96 as compared with the di/dt self-inductance voltage term and the dx/dt
speed-voltage term. The current i can then be assumed equal to vt/R and inserted
directly into Eq. 3.95. Similarly, in cases where the current is supplied directly
from electronic circuitry, the supplied current waveform can also be inserted directly
into Eq. 3.95.
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Figure 3.25 Simulink model for Example 3.11.

3.9.2 Linearization

Often times, although the behavior of electro-mechanical devices is inherently non-
linear, the devices are intended to provide linear response to input signals. In other
cases, these devices are designed to operate at fixed operating points and their stability
at these operating points can be investigated by examining their behavior for small
deviations for these operating points. For example, when used as transducers, devices
characterized by non-linear differential equations such as Eqs. 3.95 and 3.96 will in
general yield non-linear responses to arbitrary input signals. To obtain linear behavior,
such devices must be restricted to small excursions of displacement and electrical
signals about their equilibrium values. For example, the equilibrium point in a given
system might be determined by a bias mmf produced by a dc winding (or equivalently
a permanent magnet) acting against a spring. In another system, it might be determined
by a pair of windings producing mmfs whose forces cancel at the equilibrium point.
In either case, the equilibrium point must be stable; the transducer should return to
the equilibrium position following a small disturbance.
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Figure 3.26 Simulink subsystems which implement (a) Eq. 3.102 and (b) Eq. 3.103.

(b)

Consider the system of Example 3.10. With the voltage and applied force set equal
to their equilibrium values, Vt0 and Ft0 respectively, equations for the equilibrium
displacement X0 and current I0 can be determined for the system described from
Eqs. 3.95 and 3.96 by setting the time derivatives equal to zero. Thus

1

2
L ′

(
aI 2

0

(a + X0)2

)
= K (X0 − l0) + Ft0 (3.104)

Vt0 = I0 R (3.105)
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Figure 3.27 Plots of (a) x and (b) i for Example 3.11.

The incremental operation can be described by expressing each variable as the
sum of its equilibrium and incremental values; thus i = I0+i ′, ft = Ft0 + f ′, vt = Vt0 +
v′, and x = X0 + x ′. Equations 3.95 and 3.96 are then linearized by canceling any
products of increments as being of second order. Thus

L ′a(I0 + i ′)2

2(a + X0 + x ′)2
= M

d2x ′

dt2
+ B

dx ′

dt
+ K (X0 + x ′ − l0) + Ft0 + f ′ (3.106)

and

V0 + v′ = (I0 + i ′)R +
(

L ′(X0 + x ′)
a + X0 + x ′

)
di ′

dt
+

(
L ′a(I0 + i ′)

(a + X0 + x ′)2

)
dx ′

dt
(3.107)
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The equilibrium terms cancel, and retaining only first-order incremental terms
yields a set of linear differential equations.

L ′aI0

(a + X0)2
i ′ = M

d2x ′

dt2
+ B

dx ′

dt
+

[
K + L ′aI 2

0

(a + X0)3

]
x ′ + f ′ (3.108)

v′ = i ′ R +
(

L ′ X0

a + X0

)
di ′

dt
+

(
L ′aI0

(a + X0)2

)
dx ′

dt
(3.109)

Standard techniques, including numerical integration, can be used to solve for the
time response of this set of linear differential equations. Alternatively, as is frequently
done when designing control systems and/or investigating system stability, sinusoidal-
steady-state operation can be assumed, and Eqs. 3.108 and 3.109 can be converted to
a set of linear, complex algebraic equations and solved in the frequency domain.

3.10 SUMMARY
In electromechanical systems, energy is stored in magnetic and electric fields. When
the energy in the field is influenced by the configuration of the mechanical parts
constituting the boundaries of the field, mechanical forces are created which tend
to move the mechanical elements so that energy is transferred from the field to the
mechanical system.

Singly-excited magnetic systems are considered first in Section 3.3. By removing
electric and mechanical loss elements from the electromechanical-energy-conversion
system (and incorporating them as loss elements in the external electrical and me-
chanical systems), the energy conversion device can be modeled as a conservative
system. Its energy then becomes a state function, determined by the state variables
λ and x . Section 3.4 derives expressions for determining the force and torque as the
negative of partial derivative of the energy with respect to the displacement, taken
while holding the flux-linkage λ constant.

In Section 3.5 the state function coenergy, with state variables i and x or θ , is
introduced. The force and torque are then shown to be given by the partial derivative of
the coenergy with respect to displacement, taken while holding the current i constant.

These concepts are extended in Section 3.6 to include systems with multiple
windings. Section 3.7 further extends the development to include systems in which
permanent magnets are included among the sources of the magnetic energy storage.

Energy conversion devices operate between electric and mechanical systems.
Their behavior is described by differential equations which include the coupling
terms between the systems, as discussed in Section 3.8. These equations are usually
non-linear and can be solved by numerical methods if necessary. As discussed in
Section 3.9, in some cases approximations can be made to simplify the equations.
For example, in many cases, linearized analyses can provide useful insight, both with
respect to device design and performance.

This chapter has been concerned with basic principles applying broadly to the
electromechanical-energy-conversion process, with emphasis on magnetic-field sys-
tems. Basically, rotating machines and linear-motion transducers work in the same
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way. The remainder of this text is devoted almost entirely to rotating machines.
Rotating machines typically include multiple windings and may include permanent
magnets. Their performance can be analyzed by using the techniques and principles
developed in this chapter.

3.11 CHAPTER 3 VARIABLES

α, θ Angular position [rad]
λ Flux linkages [Wb]
ρ Charge density [Coulomb/m3]
μ Magnetic permeability [H/m]
μ0 Permeability of free space = 4π × 10−7 [H/m]
μR Recoil permeability [H/m]
	 Magnetic flux [Wb]
a, h, l, d , D, W Linear dimension [m]
A Area [m2]
B, B Flux density [T]
B Damping coefficient [N/(m/sec)]
Br Residual/remanent magnetization [T]
e, v Voltage [V]
E Electric field intensity [V/m]
f , ffld, F , F Force [N]
Fv Force density [N/m3]
F Magnetomotive force [A]
g Gap length [m]
H Magnetic field intensity [A/m]
Hc Coercivity [A/m]
i , I , I Current [A]
J Current density [A/m2]
K Spring constant [N/m]
L Inductance [H]
M Mass [kg]
N Number of turns
Niequiv Equivalent ampere-turns [A]
Pelec Electrical input power [W]
Pmech Mechanical output power [W]
q Electric charge [Coulomb]
r Radius [m]
R Resistance [�]
R Reluctance [H−1]
t Time [sec]
T , Tfld Torque [N· m]
v Velocity [m/sec]
Wfld Magnetic stored [J]
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W ′
fld Coenergy [J]

x , X Position [m]

Subscripts:

e External
equiv Equivalent
f Field
gap, ag Air gap
m Magnet

3.12 PROBLEMS
3.1 The rotor of Fig. 3.28 is similar to that of Fig. 3.2 (Example 3.1) except that

it has two coils instead of one. The rotor is nonmagnetic and is placed in a
uniform magnetic field of magnitude B0. The coil sides are of radius R and
are uniformly spaced around the rotor surface. The first coil is carrying a
current I1 and the second coil is carrying a current I2.
Assuming that the rotor is 0.32 m long, R = 0.13 m, and B0 = 0.87 T, find
the θ -directed torque as a function of rotor position α for (a) I1 = 0 A and
I2 = 5 A, (b) I1 = 5 A and I2 = 0 A, and (c) I1 = 8 A and I2 = 8 A.

3.2 The winding currents of the rotor of Problem 3.1 are controlled as a function
of rotor angle α such that

I1 = 8 sin α A and I2 = 8 cos α A

Write an expression for the rotor torque as a function of the rotor position α.

Current I1

into paper

Current I2

out of paper

Current I2

into paper

Current I1

out of paper

ix

θ̂
r̂

Uniform magnetic field, B0ŷ

R

α

Figure 3.28 Two-coil rotor for Problem 3.1.
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3.3 Consider the magnetic circuit of Example 1.2. For the stated operating
condition (a) find the magnetic stored energy from Eq. 3.21 and (b) Find
(i) the inductance of the N-turn winding, (ii) the winding flux linkages and
(iii) the magnetic stored energy from Eq. 3.19.

3.4 An inductor has an inductance which is found experimentally to be of the form

L = 2L0

1 + x
x0

where L0 = 70 mH, x0 = 1.20 mm, and x is the displacement of a movable
element. Its winding resistance is measured and found to equal 135 m�.

a. The displacement x is held constant at 1.30 mm, and the current is
increased from 0 to 7.0 A. Find the resultant magnetic stored energy in the
inductor.

b. The current is then held constant at 7.0 A, and the displacement is
increased to 2.5 mm. Find the corresponding change in magnetic stored
energy.

3.5 The inductor of Problem 3.4 is driven by a sinusoidal current source of the
form

i(t) = I0 sin ωt

where I0 = 7.0 A and ω = 120π (60 Hz). With the displacement held fixed at
x = x0, calculate (a) the time-averaged magnetic stored energy (Wfld) in the
inductor and (b) the time-averaged power dissipated in the winding
resistance.

3.6 An actuator with a rotating vane is shown in Fig. 3.29. You may assume that
the permeability of both the core and the vane are infinite (μ → ∞). The total

Pivot

λ+
�

i

N-turn coil

Core

Pivot

Air gap Vane
μ

λ+
�

Vane

Coil

Core

θ

(a) (b)

i

g g

μ

Figure 3.29 Actuator with rotating vane for
Problem 3.6. (a) Side view. (b) End view.
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Figure 3.30 An RC circuit for Problem 3.8.

air-gap length is 2g and shape of the vane is such that the effective area of the
air gap can be assumed to be of the form

Ag = A0

(
1 −

(
4θ

π

)2
)

(valid only in the range |θ | ≤ π/6).

a. Find the inductance L(θ).

b. For g = 0.9 mm, A0 = 5.0 mm2, and N = 450 turns, and i = 5 A, use
MATLAB to plot the magnetic stored energy in the actuator as a function
of angle θ for |θ | ≤ π/6.

3.7 The inductor of Problem 3.6 is connected to a controller which maintains
constant winding flux linkage. The winding current is observed to be 5 A
when θ = 0. Using MATLAB, plot the magnetic stored energy in the actuator
as a function of angle θ for |θ | ≤ π/6.

3.8 An RC circuit is connected to a battery, as shown in Fig. 3.30. Switch S is
initially closed and is opened at time t = 0.

a. Find the capacitor voltage vC(t) for t ≥ 0

b. What are the initial and final (t = ∞) values of the stored energy in the
capacitor? (Hint: Wfld = 1

2 q2/C , where q = Cvc.) What is the energy
stored in the capacitor as a function of time?

c. What is the power dissipated in the resistor as a function of time? What is
the total energy dissipated in the resistor?

3.9 An RL circuit is connected to a battery, as shown in Fig. 3.31. Switch S is
initially closed and is opened at time t = 0.

a. Find the inductor current iL(t) for t ≥ 0. (Hint: Note that while the switch
is closed, the diode is reverse-biased and can be assumed to be an open
circuit. Immediately after the switch is opened, the diode becomes
forward-biased and can be assumed to be a short circuit.)

b. What are the initial and final (t = ∞) values of the stored energy in the
inductor? What is the energy stored in the inductor as a function of time?

c. What is the power dissipated in the resistor as a function of time? What is
the total energy dissipated in the resistor?
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Figure 3.31 An RL circuit for Problem 3.9.

3.10 The L/R time constant of the field winding of a 500-MVA synchronous
generator is 4.8 s. At normal operating conditions, the field winding is known
to be dissipating 1.3 MW. (a) Calculate the magnetic stored energy under this
condition. (b) If the field-winding terminal voltage is suddenly reduced to
70 percent of the value of part (a), calculate the magnetic stored energy as a
function of time.

3.11 Over its normal operating range, the inductance of an actuator which operates
an electric bell is measured to be of the form

L(x) = L0

(x/X0)2

over the operating range 0.5X0 ≤ x ≤ 2X0.

a. Find the magnetic stored energy Wfld(λ, x).

b. Find an expression for the force on the actuator as a function of λ and x .

c. Find an expression for the force as a function of x assuming the actuator
current is held constant at i = I0. Does the force act to increase or
decrease x?

3.12 The inductance of a phase winding of a three-phase salient-pole motor is
measured to be of the form

L(θm) = L0 + L2 cos 2θm

where θm is the angular position of the rotor.

a. How many poles are on the rotor of this motor?

b. Assuming that all other winding currents are zero and that this phase is
excited by a constant current I0, find the torque Tfld(θ) acting on the rotor.

3.13 A magnetic field system includes a single coil and a rotor such that the coil
inductance varies with rotor angle θm as

L(θm) = L0 + L6 sin 6θm

The coil is supplied by a power supply which uses feedback to maintain a
constant current I0.

a. Find an expression for the magnetic torque Tfld acting on the rotor as a
function of its position θm.
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Figure 3.32 Electromagnet lifting an iron slab
(Problem 3.14).

b. If the rotor is driven at a constant angular velocity such that θm = ωmt ,
find an expression the instantaneous power p(t) which must be supplied
to the coil by the power supply.

3.14 As shown in Fig. 3.32, an N -turn electromagnet is to be used to lift a slab
of iron of mass M . The surface roughness of the iron is such that when the
iron and the electromagnet are in contact, there is an effective air gap of
gmin = 0.31 mm in each leg. The electromagnet cross-sectional area
Ac = 32 cm2 and the 475-turn coil has a resistance of 2.3 �. Calculate the
minimum coil voltage which must be used to lift a slab of mass 12 kg against
the force of gravity. Neglect the reluctance of the flux path through the
iron.

3.15 Cylindrical iron-clad solenoid actuators of the form shown in Fig. 3.33 are
used for tripping circuit breakers, for operating valves, and in other
applications in which a relatively large force is applied to a member which
moves a relatively short distance. When the coil current is zero, the plunger
drops against a stop such that the gap g is at a maximum value gmax. When the
coil is energized by a direct current of sufficient magnitude, the plunger is
raised until it hits another stop set so that g is equal to gmin. The plunger is
supported so that it can move freely in the vertical direction.

For the purposes of this problem, you may neglect magnetic fringing in the
air gaps and assume that the mmf drop in the iron can be neglected.

a. Derive an expression for the flux density Bg in the variable air gap as a
function of the gap length g and the coil current i .

b. Derive an expression for the coil flux linkage λ and inductance L as a
function of the current gap length g and the coil current i .

c. Derive an expression for the magnetic coenergy W ′
fld in the actuator as a

function of the current gap length g and the coil current i .

d. Derive an expression for the force on the plunger as a function of the gap
length g and the coil current i . If i is held constant, does the force act to
increase or decrease g?
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Figure 3.33 Cylindrical plunger actuator
for Problem 3.15.

3.16 Consider the plunger actuator of Problem 3.15 and Fig. 3.33 with the
following characteristics

R = 6 cm h1 = 3 cm
gmin = 0.15 cm gmax = 2.2 cm
g1 = 0.6 mm N = 2500 turns
Coil resistance = 2.9 �

a. The actuator gap g is set equal to its minimum value gmin and a current
source is used to adjust the coil current such that the flux density in the
variable gap is equal to 0.8 T. Calculate the coil current I0.

b. With the coil current held constant at I0, an external force is applied to the
plunger and it is pulled open to its maximum position gmax. Use
MATLAB to plot the external force fext required to move the plunger as
the gap varies from gmin to gmax.

c. As the variable gap varies from from gmin to gmax in part (b), calculate

i. the change in magnetic stored energy �Wfld,

ii. the total energy supplied to the actuator by the external system Eext

and

iii. the total energy Egen supplied to the current source. Hint: Use
conservation of energy. Since the coil current is constant, the power
dissipated in the coil resistance is also constant and does not need to
be considered in this calculation.

3.17 Figure 3.34 shows a schematic view of a cylindrically symmetric shaker
system which can be used to excite low-frequency oscillations in a system
under test. There is an N -turn coil of resistance Rc. The plunger is of radius R
and separated from the core by a small fixed air gap of length g � R on its
sides and by a variable gap of length δ on the bottom. Both the core and
plunger can be assumed to be of infinite permeability.
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Figure 3.34 Low-frequency shaker system for
Problem 3.17.

The plunger is supported by a set of springs with combined spring constant K
which produces a net force on the plunger of

fK = K (δ0 − δ)

Mechanical stops on the plunger limit the minimum value of δ to 1 mm. For
the purposes of this problem, you may neglect any effects of fringing fields.

R = 4 cm h = 3 cm
g = 0.5 mm K = 4.5 N/mm
N = 1000 turns δ0 = 5 mm
Rc = 35 m�

a. Write an expression for the inductance of the coil as a function of δ.

b. Find an expression for the magnetic force on the plunger as a function of
the plunger position δ and (i) the coil flux linkages λ and (ii) the coil
current i . In each case, indicate whether the force act in a direction to
increase or decrease δ.

c. Using MATLAB, plot the net force on the plunger over the range
1 mm ≤ δ ≤ δ0 for a current of 150 mA. Find the corresponding
equilibrium position for the plunger.

3.18 The inductor of Fig. 3.35 is made up of two C-cores, each of cross-sectional
area Ac and mean length lc. There are two air gaps, each of length g and two
series-connected coils, each of N turns. Assume the core to be of infinite
permeability and neglect any fringing at the air gaps.

Ac = 9.7 cm2 lc = 15 cm
g = 5 mm N = 450 turns
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Figure 3.35 C-core inductor for Problem 3.18.

a. Calculate the inductance.

b. The air gaps are each held open by 5 mm spacers. Calculate the magnetic
flux density in the air gap and the force in N and pressure in N/cm2 acting
to crush each spacer if the coils are carrying a current of 15 A.

3.19 The results of a set of measurements of the dc magnetization characteristics of
an electrical steel are presented in the following table:

H [A/m] B[T] H [A/m] B[T]
0 0 1100 1.689

68 0.733 1500 1.703
135 1.205 2500 1.724
203 1.424 4000 1.731
271 1.517 5000 1.738
338 1.560 9000 1.761
406 1.588 12000 1.770
474 1.617 20000 1.80
542 1.631 25000 1.816
609 1.646

Electrical-steel B-H data for Problem 3.19.

a. Use MATLAB to plot the B-H curve for this material.
Consider the inductor of Problem 3.18 and Fig. 3.35 with C-cores made
up of this material.

b. For a range of gap and core flux densities up to 1.8 T, plot the flux density
as a function of the required coil current. (Hint: Use the MATLAB
“spline” function to solve for the value of H for a given value of B. This
can then be used to solve for the mmf drop at that value of B.) Over the
same range of current, plot the core flux density that would result if the
C-core were of infinite permeability. Up to what flux density and coil
current can the core be approximated as being of infinite magnetic
permeability?

c. Calculate the force and pressure acting to crush each spacer if the coil is
carrying a current of 10 A.
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Figure 3.36 Conductor in a slot
(Problem 3.21).

d. Calculate the force and pressure acting to crush each spacer if the coil is
carrying a current of 20 A. (Hint: Use MATLAB to calculate the co-energy
W ′

fld for a coil current of 20 A and gap lengths of 5 mm and 5.01 mm.)

3.20 An inductor is made up of a 480-turn coil on a core of 15-cm2 cross-sectional
area and gap length 0.14 mm. The coil is connected directly to a 120-V rms,
60-Hz voltage source. Neglect the coil resistance and leakage inductance.
Assuming the core reluctance to be negligible, calculate the time-averaged
force acting on the core tending to close the air gap. How would this force
vary if the air-gap length were doubled?

3.21 Figure 3.36 shows the general nature of the slot leakage flux produced by
current i in a rectangular conductor seated in a rectangular slot in iron.
Assume that the iron reluctance is negligible and that the slot leakage flux
goes straight across the slot in the region between the top of the conductor and
the top of the slot.

a. Derive an expression for the flux density Bs in the region between the top
of the conductor and the top of the slot.

b. Find an expression for the coenergy stored in the region of the slot above
the conductor per meter of slot length as a function of the net current i and
the dimensions s amd x .

c. Find an expression for the force x-directed force per meter, fx , on the
conductor from the coenergy of part (b) using Eq. 3.40. Note that although
there is additional coenergy associated with flux within the conductor, this
coenergy remains constant independent of the position of the conductor in
the slot and hence its derivative with respect to x is zero and it does not
play a role in the force calculation. In what direction does the force act?

d. When the conductor current is 900 A, compute the force per meter on a
conductor in a slot 5.0 cm wide.
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(Problem 3.22).

3.22 A long, thin solenoid of radius r0 and height h is shown in Fig. 3.37. The
magnetic field inside such a solenoid is axially directed, essentially uniform
and equal to H = Ni/h. The magnetic field outside the solenoid can be
shown to be negligible. Derive an expression for the radial pressure in
newtons per square meter acting on the sides of the solenoid for constant coil
current i = I0.

3.23 An electromechanical system in which electric energy storage is in electric
fields that can be analyzed by techniques directly analogous to those derived
in this chapter for magnetic field systems. Consider such a system in which it
is possible to separate the loss mechanism mathematically from those of
energy storage in electric fields. Then the system can be represented as in
Fig. 3.38. For a single electric terminal, Eq. 3.8 applies, where

dWelec = vi dt = v dq

where v is the electric terminal voltage and q is the net charge associated with
electric energy storage. Thus, by analogy to Eq. 3.15,

dWfld = v dq − ffld dx

a. Derive an expression for the electric stored energy Wfld(q, x) analogous
to that for the magnetic stored energy in Eq. 3.17.

+

�

+

�

i, q ffld

Lossless electric
energy storage

system
v x

Electric
terminal

Mechanical
terminal

Figure 3.38 Lossless electric energy
storage system.
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Figure 3.39 Capacitor plates (Problem 3.24).

b. Derive an expression for the force of electric origin ffld analogous to that
of Eq. 3.26. State clearly which variable must be held constant when
the derivative is taken.

c. By analogy to the derivation of Eqs. 3.34 to 3.41, derive an expression for
the coenergy W ′

fld(v, x) and the corresponding force of electric origin.

3.24 A capacitor (Fig. 3.39) is made of two conducting plates of area A separated
in air by a spacing x . The terminal voltage is v, and the charge on the plates
is q . The capacitance C , defined as the ratio of charge to voltage, is

C = q

v
= ε0 A

x
where ε0 is the dielectric constant of free space (in SI units ε0 =
8.85 × 10−12 F/m).

a. Using the results of Problem 3.23, derive expressions for the energy
Wfld(q, x) and the coenergy W ′

fld(v, x).

b. The terminals of the capacitor are connected to a source of constant
voltage V0. Derive an expression for the force required to maintain the
plates separated by a constant spacing x = δ.

3.25 Figure 3.40 shows in schematic form an electrostatic voltmeter, a capacitive
system consisting of a fixed electrode and a moveable electrode. The
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g
Vdc

α/2

θ
+

�

Figure 3.40 Schematic electrostatic
voltmeter (Problem 3.25).
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moveable electrode is connected to a vane which rotates on a pivot such that
the air gap between the two electrodes remains fixed as the vane rotates. The
capacitance of this system is given by

C(θ) = ε0 Rd(α − |θ |)
g

(|θ | ≤ α)

A torsional spring is connected to the moveable vane, producing a torque

Tspring = −K (θ − θ0)

a. For 0 ≤ θ ≤ α, using the results of Problem 3.23, derive an expression
for the electromagnetic torque Tfld in terms of the applied voltage Vdc.

b. Find an expression for the angular position of the moveable vane as a
function of the applied voltage Vdc.

c. For a system with

R = 13 cm, d = 3.8 cm, g = 0.2 mm

α = π/3 rad, θ0 = 0 rad, K = 4.15 N · m/rad

Plot the vane position in degrees as a function of applied voltage for
0 ≤ Vdc ≤ 1800 V.

3.26 The two-winding magnetic circuit of Fig. 3.41 has a winding on a fixed
yoke and a second winding on a moveable element. The moveable element
is constrained to motion such that the lengths g of both air gaps remain equal.

a. Find the self-inductances of windings 1 and 2 in terms of the core
dimensions and the number of turns.

b. Find the mutual inductance between the two windings.

c. Find the coenergy W ′
fld(i1, i2).

d. Find an expression for the force acting on the moveable element as a
function of the winding currents.

�+
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Figure 3.41 Two-winding magnetic
circuit for Problem 3.26.
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3.27 Two coils, one mounted on a stator and the other on a rotor, have self- and
mutual inductances of

L11 = 5.3 mH L22 = 2.7 mH L12 = 3.1 cos θ mH

where θ , the angle between the axes of the coils, is constrained to the range
0 ≤ θ ≤ 90o. The coils are connected in series and carry a current

i =
√

2I sin ωt

a. Derive an expression for the instantaneous torque T on the rotor as a
function of the angular position θ .

b. Find an expression for the time-averaged torque Tavg as a function of θ .

c. Compute the numerical value of Tavg for I = 10 A and θ = 90◦.

d. Sketch curves of Tavg versus θ for currents I = 5, 7.07, and 10 A.

e. A helical restraining spring which tends to hold the rotor at θ = 90◦ is
now attached to the rotor. The restraining torque of the spring is
proportional to the angular deflection from θ = 90◦ and is −0.1 N · m
when the rotor is turned to θ = 0◦. Show on the curves of part (d) how
you could find the angular position of the rotor-plus-spring combination
for coil currents I = 5, 7.07, and 10 A. From your curves, estimate the
rotor angle for each of these currents.

f. Write a MATLAB script to plot the angular position of the rotor as a
function of rms current for 0 ≤ I ≤ 10 A.

(Note that this problem illustrates the principles of the dynamometer-type ac
ammeter.)

3.28 Two windings, one mounted on a stator and the other on a rotor, have self- and
mutual inductances of

L11 = 7.3 H L22 = 4.7 H L12 = 5.6 cos θ H

where θ is the angle between the axes of the windings. The resistances of the
windings may be neglected. Winding 2 is short-circuited, and the current in
winding 1 as a function of time is i1 = √

2 I0 sin ωt A. Plot the time-averaged
torque versus θ for I0 = 10 A for 0 ≤ θ ≤ 180o.

3.29 A loudspeaker is made of a magnetic core of infinite permeability and circular
symmetry, as shown in Figs. 3.42a and b. The air-gap length g is much less
than the radius r0 of the central core. The voice coil is constrained to move
only in the x direction and is attached to the speaker cone, which is not shown
in the figure. A constant radial magnetic field is produced in the air gap by a
direct current in coil 1, i1 = I1. An audio-frequency signal i2(t) is then applied
to the voice coil. Assume the voice coil to be of negligible thickness and
composed of N2 turns uniformly distributed over its height h. Also assume
that its displacement x is such that it remains in the air gap (0 ≤ x ≤ l − h).

a. Derive an expression for the force on the voice coil, using the Lorentz
Force Law (Eq. 3.1) in terms of the voice-coil displacement x and
current i2.
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Figure 3.42 Loudspeaker for Problem 3.29.

b. Derive expressions for the self-inductance of each coil.

c. Derive an expression for the mutual inductance between the coils. (Hint:
Assume that current is applied to the voice coil, and calculate the flux
linkages of coil 1. Note that these flux linkages vary with the
displacement x .)

d. Derive an expression for the system coenergy W ′
fld and the force on the

voice coil as a function of the voice-coil displacement and current i2.

3.30 Repeat Example 3.8 with the samarium-cobalt magnet replaced by a
neodymium-iron-boron magnet.

3.31 The magnetic structure of Fig. 3.43 is a schematic view of a system designed
to support a block of magnetic material (μ → ∞) of mass M against the force
of gravity. The system includes a permanent magnet and a winding. Under
normal conditions, the force is supplied by the permanent magnet alone. The
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Figure 3.43 Magnetic support system for
Problem 3.31.



Umans-3930269 book December 17, 2012 14:10

3.12 Problems 187

function of the winding is to counteract the field produced by the magnet so
that the mass can be removed from the device. The system is designed such
that the air gaps at each side of the mass remain constant at length g0/2.

Assume that the permanent magnet can be represented by a linear
characteristic of the form

Bm = μR(Hm − Hc)

and that the winding direction is such that positive winding current reduces
the air-gap flux produced by the permanent magnet. Neglect the effects of
magnetic fringing.

a. Assume the winding current to be zero.

i. Find the force ffld(x) acting on the mass due to the permanent magnet
alone ((0 ≤ x ≤ h)).

ii. Find the maximum mass Mmax that can be supported against gravity.

b. For M = Mmax/2, find the minimum current Imin required to cause the
mass to fall out of the system when the current is applied.

3.32 Winding 1 in the loudspeaker of Problem 3.29 (Fig. 3.42) is replaced by a
permanent magnet as shown in Fig. 3.44. The magnet can be represented by
the linear characteristic Bm = μR(Hm − Hc).

a. Assuming the voice coil current to be zero, (i2 = 0), derive and
expression for the magnetic flux density in the air gap.

b. Derive an expression for the flux linkage of the voice coil due to the
permanent magnet as a function of the displacement x .

c. Derive an expression for the system coenergy W ′
fld(i2, x) assuming that

the voice coil current is sufficiently small so that the component of W ′
fld

due to the voice coil self inductance can be ignored.

d. Based upon the coenergy expression of part (c), derive an expression for
the force on the voice coil.
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Figure 3.44 Core of loudspeaker of
Fig. 3.42 with winding 1 replaced by a
permanent magnet (Problem 3.32).
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Figure 3.45 Permanent-magnet system for Problem 3.33.

3.33 Figure 3.45 shows a circularly symmetric system in which a moveable
plunger (constrained to move only in the vertical direction) is supported by a
spring of spring constant K . The system is excited by a samarium-cobalt
permanent-magnet in the shape of a washer of outer radius R3, inner radius
R2, and thickness tm. The system dimensions are:

R1 = 2.1 cm, R2 = 4 cm, R3 = 4.5 cm

h = 1 cm, g = 1 mm, tm = 3 mm

The equilibrium position of the plunger is observed to be X0 = 0.5 mm.

a. Find the magnetic flux density Bg in the fixed gap and Bx in the
variable gap.

b. Calculate the x-directed magnetic force pulling down on the plunger.

c. Plot the magnetic force on the plunger over the range 0 ≤ x ≤ X0.

d. Find the minimum value of the spring constant K in N/cm that will
guarantee that the plunger will return to this stable equilibrium point if
the plunger is depressed so that x = 0 and then released.

3.34 The plunger of a solenoid is connected to a spring. The inductance of the
solenoid is of the form L = L0(1 − x/X0), and its winding resistance is Rc.
The spring force is given by fspring = K0 (0.5 X0 − x), where x is the air-gap
length. The plunger is initially stationary at position x = 0.5X0 when a dc
voltage of magnitude V0 is applied to the solenoid.

a. Find an expression for the force as a function of time required to hold the
plunger at position X0/2.
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b. If the plunger is then released and allowed to come to equilibrium, find
the equilibrium position x0. You may assume that K0 is sufficiently large
that x0 falls in the range 0 ≤ x0 ≤ X0.

3.35 Consider the single-coil rotor of Example 3.1. Assume the rotor winding to be
carrying a constant current of I = 8 A and the rotor to have a moment of
inertia J = 0.0175 kg · m2.

a. Find the equilibrium position of the rotor. Is it stable?

b. Write the dynamic equations for the system.

c. Find the natural frequency in hertz for incremental rotor motion around
this equilibrium position.

3.36 Consider a solenoid magnet similar to that of Example 3.10 (Fig. 3.24) except
that the length of the cylindrical plunger is reduced to a + h. The plunger is
initially set to position x = X0 = a/2 and the coil is then connected to a
supply which maintains constant flux linkages, λ = λ0. Calculate the force on
the plunger as a function of x . You may assume that the plunger remains well
within the core, e.g. a/4 ≤ x ≤ 3a/4.

3.37 Consider the solenoid system of Problem 3.34. Assume the following
parameter values:

L0 = 6.2 mH X0 = 2.4 cm Rc = 1.6 � K0 = 4.1 N/cm

Assume the coil to be connected to a dc voltage source of magnitude 4.0 V.

a. Find the equilibrium displacement x0.

b. The plunger has mass M . Write the dynamic equations of motion for the
system.

c. For M = 0.2 kg, assuming that the current remains constant at its
steady-state value, calculate the frequency of oscillation of the plunger
should it be perturbed from its equilibrium position x0.

d. Simulate the system response using Simulink. Assume that the system is
initially at rest with zero applied voltage and that the 4.0 V dc source is
suddenly applied at time t = 1.0 sec. Plot

i. the resultant motion of the plunger as a function of time, and

ii. the corresponding time-varying component of the coil current.

3.38 Consider the shaker system of Problem 3.17. Assuming the plunger is initially
at rest with zero coil current, use Simulink to solve for the motion of the
plunger δ(t) if a dc voltage of 0.1 V is suddenly applied to the coil.
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4 C H A P T E R

Introduction to Rotating
Machines

T he object of this chapter is to introduce and discuss some of the principles under-
lying the performance of electric machinery. As will be seen, these principles
are common to both ac and dc machines. Various techniques and approxi-

mations involved in reducing a physical machine to simple mathematical models,
sufficient to illustrate the basic principles, will be developed.

4.1 ELEMENTARY CONCEPTS
Equation 1.26, e = dλ/dt , can be used to determine the voltages induced by time-
varying magnetic fields. Electromagnetic energy conversion occurs when changes in
the flux linkage λ result from mechanical motion. In rotating machines, voltages are
generated in windings or groups of coils by rotating these windings mechanically
through a magnetic field, by mechanically rotating a magnetic field past the winding,
or by designing the magnetic circuit so that the reluctance varies with rotation of the
rotor. By any of these methods, the flux linking a specific coil is changed cyclically,
and a time-varying voltage is generated.

A set of such coils connected together is typically referred to as an armature
winding. In general, the term armature winding is used to refer to a winding or a set
of windings on a rotating machine which carry ac currents. In ac machines such as
synchronous or induction machines, the armature winding is typically on the station-
ary portion of the motor referred to as the stator, in which case these windings may
also be referred to as stator windings. Figure 4.1 shows the stator winding of a large,
three-phase synchronous generator under construction.

In a dc machine, the armature winding is found on the rotating member, referred
to as the rotor. Figure 4.2 shows a dc-machine rotor. As we will see, the armature
winding of a dc machine consists of many coils connected together to form a closed
loop. A rotating mechanical contact is used to supply current to the armature winding
as the rotor rotates.

190
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Figure 4.1 Stator of a 100-MVA three-phase air-cooled
synchronous generator under construction.(Photo courtesy of
General Electric Company.)

Figure 4.2 Armature of a dc motor. (Photo courtesy of Baldor
Electric/ABB)

Synchronous and dc machines typically include a second winding (or set of
windings) which carry dc current and which are used to produce the main operating
flux in the machine. Such a winding is typically referred to as field winding. The field
winding on a dc machine is found on the stator, while that on a synchronous machine
is found on the rotor, in which case current is typically supplied to the field winding
via a rotating mechanical contact, with the exception being machines for which a
rotating excitation system supplies the field current. As we have seen, permanent
magnets also produce dc magnetic flux and are used in the place of field windings in
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Figure 4.3 Field winding installation on the rotor of a 200-MW, 2-pole
synchronous generator. (Photo courtesy of General Electric Company.)

some machines. Figure 4.3 shows the field winding being installed on the rotor of a
large, 200-MW, 4-pole synchronous generator.

In most rotating machines, the stator and rotor are made of electrical steel, and
the windings are inserted in slots on these structures. As is discussed in Chapter 1,
the use of such high-permeability material maximizes the coupling between the coils
and increases the magnetic energy density associated with the electromechanical
interaction. It also enables the machine designer to shape and distribute the magnetic
fields according to the requirements of each particular machine design. The time-
varying flux present in the armature structures of these machines tends to induce
currents, known as eddy currents, in the electrical steel. Eddy currents can be a large
source of loss in such machines and can significantly reduce machine performance.
In order to minimize the effects of eddy currents, the armature structure is typically
built from thin laminations of electrical steel which are insulated from each other.

In some machines, such as variable reluctance machines and stepper motors,
there are no windings on the rotor. Operation of these machines depends on the
non-uniformity of air-gap reluctance associated with variations in rotor position in
conjunction with time-varying currents applied to their stator windings. In such ma-
chines, both the stator and rotor structures are subjected to time-varying magnetic
flux and, as a result, both may require lamination to reduce eddy-current losses.

Rotating electric machines take many forms and are known by many names: dc,
synchronous, permanent-magnet, induction, variable reluctance, hysteresis, brush-
less, and so on. Although these machines appear to be quite dissimilar, the physical
principles governing their behavior are quite similar, and it is often helpful to think
of them in terms of the same physical picture. For example, analysis of a dc machine
shows that associated with both the rotor and the stator are magnetic flux distributions
which are fixed in space and that the torque-producing characteristic of the dc machine
stems from the tendency of these flux distributions to align. An induction machine, in
spite of many fundamental differences, works on exactly the same principle; one can
identify flux distributions associated with the rotor and stator. Although they are not
stationary but rather rotate in synchronism, just as in a dc motor they are displaced by
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a constant angular separation, and torque is produced by the tendency of these flux
distribution to align.

Analytically-based models are essential to the analysis and design of electric
machines, and such models will be derived throughout this book. However, it is also
important to recognize that physical insight into the performance of these devices is
equally useful. One objective of this and subsequent chapters is to guide the reader
in the development of such insight.

4.2 INTRODUCTION TO AC
AND DC MACHINES

4.2.1 AC machines

Traditional ac machines fall into one of two categories: synchronous and induction.
In synchronous machines, rotor-winding currents are supplied directly from the sta-
tionary frame through a rotating contact. In induction machines, rotor currents are
induced in the rotor windings by a combination of the time-variation of the stator
currents and the motion of the rotor relative to the stator.

Synchronous Machines A preliminary picture of synchronous-machine perfor-
mance can be gained by discussing the voltage induced in the armature of the
very much simplified salient-pole ac synchronous generator shown schematically
in Fig. 4.4. The field-winding of this machine produces a single pair of magnetic
poles (similar to that of a bar magnet), and hence this machine is referred to as a
two-pole machine.

Stator

Rotor

�a

a

Flux
paths

Field
winding

Armature-winding
magnetic axis

θa

N-turn
armature
winding

×

×

Figure 4.4 Schematic view of a simple,
two-pole, single-phase synchronous
generator.
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With rare exceptions, the armature winding of a synchronous machine is on the
stator, and the field winding is on the rotor, as is true for the simplified machine
of Fig. 4.4. The field winding is excited by direct current, typically conducted to it
by means of stationary carbon brushes which contact rotating slip rings or collector
rings although in some cases the field winding may be supplied from a rotating
excitation system, typically referred to as a brushless excitation system. Practical
factors usually dictate this orientation of the two windings: It is advantageous to
have the single, low-power field winding on the rotor while having the high-power,
typically multiple-phase, armature winding on the stator.

The armature winding, consisting here of only a single coil of N turns, is indicated
in cross section by the two coil sides a and −a placed in diametrically opposite narrow
slots on the inner periphery of the stator of Fig. 4.4. The conductors forming these
coil sides are parallel to the shaft of the machine and are connected in series by
end connections (not shown in the figure). The rotor is turned at a constant speed
by a source of mechanical power connected to its shaft. The armature winding is
assumed to be open-circuited and hence the flux in this machine is produced by the
field winding alone. Flux paths are shown schematically by dashed lines in Fig. 4.4.

A highly idealized analysis of this machine would assume a sinusoidal distribu-
tion of magnetic flux in the air gap. The resultant idealized radial distribution of air-gap
flux density B is shown in Fig. 4.5a as a function of the spatial angle θa (measured
with respect to the magnetic axis of the armature winding) around the rotor periphery.
In practice, the air-gap flux-density of practical salient-pole machines can be made
to approximate a sinusoidal distribution by properly shaping the pole faces.

As the rotor rotates, the flux-linkages of the armature winding change with time.
Under the assumption of a sinusoidal flux distribution and constant rotor speed, the
resulting coil voltage will be sinusoidal in time as shown in Fig. 4.5b. The coil
voltage passes through a complete cycle for each revolution of the two-pole machine
of Fig. 4.4. Its frequency in cycles per second (Hz) is the same as the speed of the
rotor in revolutions per second: the electric frequency of the generated voltage is
synchronized with the mechanical speed, and this is the reason for the designation
“synchronous” machine. Thus a two-pole synchronous machine must revolve at 3600
revolutions per minute to produce a 60-Hz voltage.

B e

0

(a) (b)

π 2π θa
t0

Figure 4.5 (a) Idealized sinusoidal space distribution of the
air-gap radial flux density and (b) corresponding waveform of
the generated voltage for the single-phase generator of
Fig. 4.4.
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Figure 4.6 Schematic view of a
simple, four-pole, single-phase
synchronous generator.

A great many synchronous machines have more than two poles. As a specific
example, Fig. 4.6 shows in schematic form a four-pole single-phase generator. The
field coils are connected so that the poles are of alternate polarity. There are two
complete wavelengths, or cycles, in the flux distribution around the periphery, as
shown in Fig. 4.7. The armature winding now consists of two coils a1, −a1 and a2,
−a2 which can be connected either in series or parallel. The span of each coil is one
wavelength of flux. The generated voltage now goes through two complete cycles
per revolution of the rotor. The frequency in hertz will thus be twice the speed in
revolutions per second.

When a machine has more than two poles, it is convenient to concentrate on
a single pair of poles and to recognize that the electric, magnetic, and mechanical
conditions associated with every other pole pair are repetitions of those for the pair
under consideration. For this reason it is convenient to express angles in electrical
degrees or electrical radians rather than in physical units. One pair of poles in a multi-
pole machine or one cycle of flux distribution corresponds to 360 electrical degrees

a1 �a1 a2 �a2

π

2π0

2ππ/2 3π/2
θa, mechanical
radians

θae, electrical
radians

4ππ 3π

B

Figure 4.7 Space distribution of the air-gap flux density in an
idealized, four-pole synchronous generator.
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or 2π electrical radians. Since there are poles/2 complete wavelengths, or cycles, in
one complete revolution, it follows, for example, that

θae =
(

poles

2

)
θa (4.1)

where θae is the angle in electrical units, θa is the spatial angle. This same relationship
applies to all angular measurements in a multi-pole machine; their values in electrical
units will be equal to (poles/2) times their actual spatial values.

The coil voltage of a multi-pole machine passes through a complete cycle every
time a pair of poles sweeps by, or (poles/2) times each revolution. The electrical
frequency fe of the voltage generated in a synchronous machine is therefore

fe =
(

poles

2

)
n

60
Hz (4.2)

where n is the mechanical speed in revolutions per minute, and hence n/60 is the
speed in revolutions per second. The electrical frequency of the generated voltage in
radians per second is

ωe =
(

poles

2

)
ωm (4.3)

where ωm is the mechanical speed in radians per second.
The rotors shown in Figs. 4.4 and 4.6 have salient, or projecting, poles with con-

centrated windings. Figure 4.8 shows diagrammatically a nonsalient-pole, or cylin-
drical, rotor. The field winding on the rotor is a two-pole distributed winding; the
coil sides are distributed in multiple slots around the rotor periphery and arranged to
produce an approximately sinusoidal distribution of radial air-gap flux.

The relationship between electrical frequency and rotor speed of Eq. 4.2 can
serve as a basis for understanding why some synchronous generators have salient-
pole rotor structures while others have cylindrical rotors. Most power systems in the

N

S

Figure 4.8 Elementary two-pole
cylindrical-rotor field winding.
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Figure 4.9 Rotor of a 100-MW turbine generator. A brushless excitation system, used to
supply dc field current, is seen on the near end of the rotor. (Photo courtesy of General
Electric Company.)

world operate at frequencies of either 50 or 60 Hz. A salient-pole construction is
characteristic of hydroelectric generators because hydraulic turbines operate at rela-
tively low speeds, and hence a relatively large number of poles is required to produce
the desired frequency; a salient-pole construction is better adapted mechanically to
this situation. Steam turbines and gas turbines operate best at relatively high speeds,
and turbine-driven alternators or turbine generators are commonly two- or four-pole
cylindrical-rotor machines. These cylindrical rotors are made from a single steel
forging or from several forgings, as shown in Fig. 4.9.

Most of the world’s power systems are three-phase systems and, as a result,
with very few exceptions, synchronous generators are three-phase machines. For the
production of a set of three voltages phase-displaced by 120 electrical degrees in
time, a minimum of three coils phase-displaced 120 electrical degrees in space must
be used. A simplified schematic view of a three-phase, two-pole machine with one
coil per phase is shown in Fig. 4.10a. The three phases are designated by the letters
a, b, and c. In an elementary four-pole machine, a minimum of two such sets of coils
must be used, as illustrated in Fig. 4.10b; in an elementary multi-pole machine, the
minimum number of coil sets is given by one half the number of poles.

The two coils in each phase of Fig. 4.10b are connected in series so that their
voltages add, and the three phases may then be either Y - or �-connected. Figure 4.10c
shows how the coils may be interconnected to form a Y connection. Note however,
since the voltages in the coils of each phase are identical, a parallel connection is also
possible, e.g., coil (a, −a) in parallel with coil (a′, −a′), and so on.

When a synchronous generator supplies electric power to a load, the armature
current creates a magnetic flux wave in the air gap which rotates at synchronous speed,
as shown in Section 4.5. This flux reacts with the flux created by the field current,
and electromechanical torque results from the tendency of these two magnetic fields
to align. In a generator this torque opposes rotation, and mechanical torque must be
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Figure 4.10 Schematic views of three-phase generators: (a) two-pole, (b) four-pole, and
(c) Y connection of the windings.

applied from the prime mover to sustain rotation. This electromechanical torque is the
mechanism through which the synchronous generator converts mechanical to electric
energy.

The counterpart of the synchronous generator is the synchronous motor. Alter-
nating current is supplied to the armature winding on the stator, and dc excitation is
supplied to the field winding on the rotor. The magnetic field produced by the armature
currents rotates at synchronous speed (equal to 2/poles times the electrical frequency
of the armature currents). A steady electromechanical torque is produced when the ro-
tor rotates in synchronism with the magnetic field produced by the armature currents.
Hence the steady-state speed of a synchronous motor is determined by the number of
poles and the frequency of the armature current and a synchronous motor operated
from a constant-frequency ac source will operate at a constant steady-state speed.

In a motor the electromechanical torque is in the direction of rotation and balances
the opposing torque required to drive the mechanical load. The flux produced by
currents in the armature of a synchronous motor rotates ahead of that produced by
the rotor field winding, thus pulling on the field winding (and hence on the rotor)
and doing work. This is the opposite of the situation in a synchronous generator,
where the field does work as its flux pulls on that of the armature. In both generators
and motors, in addition to an electromechanical torque, a speed voltage (emf) is
induced in the armature by the rotating field winding. As is discussed in Chapter 3, the
production of both force or torque and a speed voltage are both essential components
of electromechanical energy conversion.

Induction machines A second type of ac machine is the induction machine. In
an induction machine, the stator windings are essentially the same as those of a
synchronous machine. However, the rotor windings are electrically short-circuited
and frequently have no external connections; currents are induced by transformer
action from the stator winding. A cutaway view of a squirrel-cage induction motor is
shown in Fig. 4.11. Here the rotor “windings” are actually solid aluminum bars which
are cast into the slots in the rotor and which are shorted together by cast aluminum
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Figure 4.11 Cutaway view of a 460-V, 7.5-hp squirrel-cage
induction motor.

rings at each end of the rotor. This type of rotor construction results in induction
motors which are relatively inexpensive and highly reliable, factors contributing to
their immense popularity and widespread application.

In contrast to a synchronous machine in which a field winding on the rotor
is excited with dc current and the rotor rotates in synchronism with the flux wave
produced by ac armature currents, the rotor windings of an induction machine are
not excited by an external source. Rather, currents are induced in the shorted rotor
windings as the rotor slips past the synchronously-rotating armature flux wave. Thus,
induction machines are asynchronous machines and produce torque only when the
rotor speed differs from synchronous speed.

Interestingly, although the rotor operates asynchronously, the flux wave produced
by the induced rotor currents rotates in synchronism with the stator flux wave. This
in fact is a requirement for, and consistent with, the ability of an induction machine
to produce net torque. Induction motors operate at speeds less than the synchronous
mechanical speed, in which case the armature flux in the induction motor leads that
of the rotor and produces an electromechanical torque which pulls on the rotor just
as is the case in a synchronous motor, A typical speed-torque characteristic for an
induction motor is shown in Fig. 4.12.

Because rotor currents are by produced by induction, an induction machine may
be regarded as a generalized transformer in which electric power is transformed
between rotor and stator together with a change of frequency and a flow of mechan-
ical power. Although induction machines are primarily used as motors, in recent
years induction generators have been found to be well suited for some wind-power
applications.
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Figure 4.12 Typical induction-motor speed-torque
characteristic.

4.2.2 DC machines

As has been discussed, the armature winding of a dc machine is on the rotor with
current conducted to it by means of carbon brushes. The field winding is on the stator
and is excited by direct current. A cutaway view of a dc motor is shown in Fig. 4.13.

Consider a very elementary two-pole dc generator as is shown in Fig. 4.14. The
armature winding, consisting of a single coil of N turns, is indicated by the two coil
sides a and −a placed at diametrically opposite points on the rotor with the conductors
parallel to the shaft. The rotor is normally turned at a constant speed by a source
of mechanical power connected to the shaft. The air-gap flux distribution usually

Figure 4.13 Cutaway view of a 25-hp, 1750-rpm,
500-V dc motor. (Photo courtesy of Baldor Electric/ABB.)
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Figure 4.14 Elementary dc machine with
commutator. The rotor, armature coil, and
commutator rotate while the brushes remain
stationary.

approximates a flat-topped wave, rather than the sine wave found in ac machines,
and is shown in Fig. 4.15a. Rotation of the coil, shown schematically in Fig. 4.15a,
generates a coil voltage which is a time function having the same waveform as the
spatial flux-density distribution.

The function of a dc generator is the production of dc voltage and current. Thus
the ac voltages and currents induced in the armature winding must be rectified. In a
dc machine, rectification is produced mechanically by means of a commutator which
is a cylinder formed of copper segments to which the armature coils are connected.
These segments are otherwise insulated from each other by mica or some other highly
insulating material and mounted on, but insulated from, the rotor shaft. Stationary car-
bon brushes held against the commutator surface connect the winding to the external
armature terminals. The commutator and brushes can readily be seen in Fig. 4.13 and
a simple two-segment commutator is shown in Fig. 4.14. The need for commutation
is the reason why the armature windings of dc machines are found on the rotor.

For the elementary dc generator, the commutator takes the form shown in Fig. 4.14.
To understand its function as a rectifier, note that the commutator at all times connects
the coil side which is closest to the south pole to the positive brush and the coil side
closest to the north pole is connected to the negative brush. Thus, each half rotation
of the rotor, the brushes switch their polarity with respect to the coil polarity. As a
result, although the coil voltage is an alternating voltage similar in form to the air-gap
flux distribution shown in Fig. 4.15a, the commutator provides full-wave rectification,
transforming the coil voltage to the voltage between brushes of Fig. 4.15b and making
available a unidirectional voltage to the external circuit. The dc machine of Fig. 4.14
is, of course, simplified to the point of being unrealistic in the practical sense, and
later it will be essential to examine the action of more realistic commutators.
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Figure 4.15 (a) Space distribution of air-gap flux
density in an elementary dc machine. (b) Waveform of
voltage between brushes.

The direct current in the field winding of a dc machine creates a magnetic flux
distribution which is stationary with respect to the stator. Similarly, the effect of the
commutator is such that when direct current flows through the brushes, the armature
creates a magnetic flux distribution which is also fixed in space and whose axis,
determined by the design of the machine and the position of the brushes, is typically
perpendicular to the axis of the field flux.

Thus, just as in the ac machines discussed previously, it is the interaction of these
two flux distributions that creates the torque of the dc machine. If the machine is
acting as a generator, the electromechanical torque opposes rotation; if it is acting as
a motor, the torque acts in the direction of rotation. Remarks similar to those already
made concerning the roles played by the generated voltage and electromechanical
torque in the energy conversion process in synchronous machines apply equally well
to dc machines.

4.3 MMF OF DISTRIBUTED WINDINGS
Most armatures have distributed windings, i.e., windings which are spread over a
number of slots around the air-gap periphery, as in Figs. 4.1 and 4.2. The individual
coils are interconnected so that the result is a magnetic field having the same number
of poles as the field winding.
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Figure 4.16 (a) Flux produced by a concentrated, full-pitch winding
in a machine with a uniform air gap. (b) The air-gap mmf produced by
current in this winding.

The study of the magnetic fields of distributed windings can be approached by
examining the magnetic field produced by a winding consisting of a single N -turn
coil which spans 180 electrical degrees, as shown in Fig. 4.16a. A coil which spans
180 electrical degrees is known as a full-pitch coil. The dot and cross indicate current
flow toward and away from the reader, respectively. For simplicity, a concentric
cylindrical rotor is shown. The dipole nature of the magnetic field produced by the
current in the coil is shown by the flux lines in Fig. 4.16a. Since the permeability of
the armature and field iron is much greater than that of air, it is sufficiently accurate
for our present purposes to assume that all the reluctance of the magnetic circuit is
in the air gap. From symmetry of the structure it is evident that the magnetic field
intensity Hag in the air gap at angle θa under one pole is the same in magnitude as that
at angle θa + π under the opposite pole, but the fields are in the opposite direction.

Around any of the closed paths shown by the flux lines in Fig. 4.16a the mmf is Ni .
Because we have assumed that the reluctance of the magnetic circuit is predominantly
that of the air gap, the mmf drop in the iron can be neglected and all of the mmf drop
will appear across the air gap. By symmetry we argued that the air-gap fields Hag on
opposite sides of the rotor are equal in magnitude but opposite in direction. It follows
that the air-gap mmf should be similarly distributed; since each flux line crosses the
air gap twice, the mmf drop across the air gap must be equal to half of the total or
Ni/2.
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Figure 4.16b shows the air gap and winding in developed form, i.e., laid out
flat. The air-gap mmf distribution is shown by the step-like distribution of amplitude
Ni/2. On the assumption of narrow slot openings, the mmf jumps abruptly by Ni in
crossing from one side to the other of a coil. This mmf distribution is discussed again
in Section 4.4, where the resultant magnetic fields are evaluated.

4.3.1 AC machines

Fourier analysis can be used to show that the air-gap mmf produced by a single coil
such as the full-pitch coil of Fig. 4.16 consists of a fundamental space-harmonic
component as well as a series of higher-order harmonic components. In the design of
ac machines, serious efforts are made to distribute the coils making up the windings so
as to minimize the higher-order harmonic components and to produce an air-gap mmf
wave which consists predominantly of the space-fundamental sinusoidal component.
It is thus appropriate here to assume that this has been done and to focus our attention
on the fundamental component.

The rectangular air-gap mmf wave of the concentrated two-pole, full-pitch coil of
Fig. 4.16b can be resolved into a Fourier series comprising a fundamental component
and a series of odd harmonics. The fundamental component F ag1 is

Fag1 = 4

π

(
Ni

2

)
cos θa (4.4)

where θa is measured from the magnetic axis of the stator coil, as shown by the dashed
sinusoid in Fig. 4.16b. It is a sinusoidal space wave of amplitude

(Fag1)peak = 4

π

(
Ni

2

)
(4.5)

with its peak aligned with the magnetic axis of the coil.
Now consider a distributed winding, consisting of coils distributed in several

slots. For example, Fig. 4.17a shows phase a of the armature winding of a somewhat
simplified two-pole, three-phase ac machine. Phases b and c occupy the empty slots.
The windings of the three phases are identical and are located with their magnetic
axes 120 degrees apart. We direct our attention to the air-gap mmf of phase a alone,
postponing the discussion of the effects of all three phases until Section 4.5. The
winding is arranged in two layers, each full-pitch coil of Nc turns having one side
in the top of a slot and the other coil side in the bottom of a slot a pole pitch away.
In a practical machine, this two-layer arrangement simplifies the geometric problem
of getting the end turns of the individual coils past each other when the winding is
inserted in the stator.

Figure 4.17b shows one pole of this winding laid out flat. With the coils connected
in series and hence carrying the same current, the mmf wave is a series of steps each
of height 2Ncia (equal to the ampere-turns in the slot), where ia is the winding current.
Its space-fundamental component is shown by the sinusoid. It can be seen that the
distributed winding produces an mmf wave which is a closer approximation to a
sinusoidal mmf wave than that of the concentrated coil of Fig. 4.16.
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Figure 4.17 The mmf of one phase of a distributed two-pole,
three-phase winding with full-pitch coils.

The modified form of Eq. 4.4 for a distributed multi-pole winding having Nph

series turns per phase is

Fag1 = 4

π

(
kw Nph

poles

)
ia cos

(
poles

2
θa

)

= 4

π

(
kw Nph

poles

)
ia cos (θae) (4.6)

in which the factor 4/π arises from the Fourier-series analysis of the rectangular
mmf wave of a concentrated full-pitch coil, as in Eq. 4.4, and the winding factor kw

takes into account the distribution of the winding. This factor is required because
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the mmfs produced by the individual coils of any one phase group have different
magnetic axes and hence don’t sum directly. When they are connected in series to
form the phase winding, their phasor sum is then less than their numerical sum. (See
Appendix B for details.) For most three-phase windings, kw typically falls in the range
of 0.85 to 0.95.

The factor kw Nph is the effective series turns per phase for the fundamental mmf.
The peak amplitude of the mmf wave of Eq. 4.6 is

(Fag1)peak = 4

π

(
kw Nph

poles

)
ia (4.7)

EXAMPLE 4.1

The two-pole phase-a armature winding of Fig. 4.17a can be considered to consist of eight
Nc-turn, full-pitch coils connected in series, with each slot containing two coils. There are a
total of 24 armature slots, and thus each slot is separated by 360◦/24 = 15◦. Define the angle
θa as being measured from the magnetic axis of phase a such that the four slots containing the
coil sides labeled a are at θa = 67.5◦, 82.5◦, 97.5◦, and 112.5◦. The opposite sides of each coil
are thus found in the slots found at −112.5◦, −97.5◦, −82.5◦ and −67.5◦, respectively. Assume
this winding to be carrying current ia.

(a) Write an expression for the space-fundamental mmf produced by the two coils whose
sides are in the slots at θa = 112.5◦ and −67.5◦. (b) Write an expression for the space-
fundamental mmf produced by the two coils whose sides are in the slots at θa = 67.5◦ and
−112.5◦. (c) Write an expression for the space-fundamental mmf of the complete armature
winding. (d) Determine the winding factor kw for this distributed winding.

■ Solution

a. Noting that the magnetic axis of this pair of coils is at θa = (112.5◦ − 67.5◦)/2 = 22.5◦

and that the total ampere-turns in each slot is equal to 2Ncia, the mmf produced by this
pair of coils can be found from analogy with Eq. 4.4 to be

(Fag1)22.5◦ = 4

π

(
2Ncia

2

)
cos (θa − 22.5◦)

b. This pair of coils produces the same space-fundamental mmf as the pair of part (a) with
the exception that this mmf is centered at θa = −22.5◦. Thus

(Fag1)−22.5◦ = 4

π

(
2Ncia

2

)
cos (θa + 22.5◦)

c. By analogy with parts (a) and (b), the total space-fundamental mmf can be written as

(Fag1)total = (Fag1)−22.5◦ + (Fag1)−7.5◦ + (Fag1)7.5◦ + (Fag1)22.5◦

= 4

π

(
2Nc

2

)
ia

[
cos (θa + 22.5◦) + cos (θa + 7.5◦)

+ cos(θa − 7.5◦) + cos (θa − 22.5◦)

]
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= 4

π

(
7.66Nc

2

)
ia cos θa

= 4.88Ncia cos θa

d. Recognizing that, for this winding Nph = 8Nc, the total mmf of part (c) can be rewritten as

(Fag1)total = 4

π

(
0.958Nph

2

)
ia cos θa

Comparison with Eq. 4.6 shows that for this winding, the winding factor is kw = 0.958.

Practice Problem 4.1

Calculate the winding factor of the phase-a winding of Fig. 4.17 if the number of turns in the
four coils in the two outer pairs of slots is reduced to six while the number of turns in the four
coils in the inner slots remains at eight.

Solution

kw = 0.962

Equation 4.6 describes the space-fundamental component of the mmf wave pro-
duced by current in phase a of a distributed winding. If the phase-a current is sinusoidal
in time, e.g., ia = Imax cos ωt , the result will be an mmf wave which is stationary in
space and varies sinusoidally both with respect to θa and in time. In Section 4.5 we
will study the effect of currents in all three phases and will see that the application of
three-phase currents will produce a rotating mmf wave.

In a directly analogous fashion, rotor windings are often distributed in slots to
reduce the effects of space harmonics. Figure 4.18a shows the rotor of a typical two-
pole round-rotor generator. Although the winding is symmetric with respect to the
rotor axis, the number of turns per slot can be varied to control the various harmonics.
In Fig. 4.18b it can be seen that there are fewer turns in the slots nearest the pole
face (rotor axis). In addition, the designer can vary the spacing of the slots. As for
distributed armature windings, the fundamental air-gap mmf wave of a multi-pole
rotor winding can be expressed in the form of Eq. 4.6 in terms of the total number of
series turns Nr, the winding current Ir, and a winding factor kr as

Fag1 = 4

π

(
kr Nr

poles

)
Ir cos

(
poles

2
θr

)
(4.8)

where θr is the spatial angle measured with respect to the rotor magnetic axis, as
shown in Fig. 4.18b. Its peak amplitude is

(Fag1)peak = 4

π

(
kr Nr

poles

)
Ir (4.9)
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Figure 4.18 The air-gap mmf of a distributed winding on the rotor of a round-rotor
generator.

4.3.2 DC Machines

Because of the restrictions imposed on the winding arrangement by the commuta-
tor, the mmf wave of a dc machine armature approximates a sawtooth waveform
more nearly than the sine wave of ac machines. For example, Fig. 4.19 shows
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Figure 4.19 Cross section of a two-pole dc
machine.

diagrammatically in cross section the armature of a two-pole dc machine. (In practice,
in all but the smallest of dc machines, a larger number of coils and slots would prob-
ably be used.) The current directions are shown by dots and crosses. The armature
winding coil connections are such that the armature winding produces a magnetic
field whose axis is vertical and thus is perpendicular to the axis of the field winding.
As the armature rotates, the coil connections to the external circuit are changed by
the commutator such that the magnetic field of the armature remains vertical. Thus,
the armature flux is always perpendicular to that produced by the field winding and
a continuous unidirectional torque results. Commutator action is discussed in some
detail in Section 7.2.

Figure 4.20a shows this winding laid out flat. The mmf wave is shown in
Fig. 4.20b. On the assumption of narrow slots, it consists of a series of steps. The height
of each step equals the number of ampere-turns 2Ncic in a slot, where Nc is the number
of turns in each coil and ic is the coil current, with a two-layer winding and full-pitch
coils being assumed. The peak value of the mmf wave is along the magnetic axis of
the armature, midway between the field poles. This winding is equivalent to a coil of
12Ncic A·turns distributed around the armature. On the assumption of symmetry at
each pole, the peak value of the mmf wave at each armature pole is 6Ncic A·turns.

This mmf wave can be represented approximately by the sawtooth wave drawn in
Fig. 4.20b and repeated in Fig. 4.20c. For a more realistic winding with a larger number
of armature slots per pole, the triangular distribution becomes a close approximation.
This mmf wave would be produced by a rectangular distribution of current density at
the armature surface, as shown in Fig. 4.20c.

For our preliminary study, it is convenient to resolve the mmf waves of dis-
tributed windings into their Fourier series components. The fundamental component
of the sawtooth mmf wave of Fig. 4.20c is shown by the sine wave. Its peak value is
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Figure 4.20 (a) Developed sketch of the dc machine of Fig. 4.19; (b) mmf wave;
(c) equivalent sawtooth mmf wave, its fundamental component, and equivalent
rectangular current sheet.

8/π2 = 0.81 times the height of the sawtooth wave. This fundamental mmf wave is
that which would be produced by the fundamental space-harmonic component of the
rectangular current-density distribution of Fig. 4.20c.

Note that the air-gap mmf distribution depends only on the winding arrangement
and symmetry of the magnetic structure at each pole. The air-gap flux density, however,
depends not only on the mmf but also on the magnetic boundary conditions, primarily
the length of the air gap, the effect of the slot openings, and the shape of the pole
face. The designer takes these effects into account by means of detailed analyses, but
these details need not concern us here.
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Figure 4.21 (a) Cross section of a four-pole dc machine; (b) development of
current sheet and mmf wave.

DC machines often have a magnetic structure with more than two poles. For
example, Fig. 4.21a shows schematically a four-pole dc machine. The field winding
produces alternate north-south-north-south polarity, and the armature conductors are
distributed in four belts of slots carrying currents alternately toward and away from the
reader, as symbolized by the cross-hatched areas. This machine is shown in laid-out
form in Fig. 4.21b. The corresponding sawtooth armature-mmf wave is also shown.
On the assumption of symmetry of the winding and field poles, each successive pair
of poles is like every other pair of poles. Magnetic conditions in the air gap can then
be determined by examining any pair of adjacent poles (i.e. 360 electrical degrees).

The peak value of the sawtooth armature mmf wave can be written in terms of
the total number of conductors in the armature slots as

(Fag)peak =
(

Ca

2m × poles

)
ia A · turns/pole (4.10)

where

Ca = total number of conductors in armature winding

m = number of parallel paths through armature winding

ia = armature current, A

This equation takes into account the fact that in some cases the armature may be
wound with multiple current paths in parallel. It is for this reason that it is often
more convenient to think of the armature in terms of the number of conductors (each
conductor corresponding to a single current-carrying path within a slot). Thus ia/m
is the current in each conductor. This equation comes directly from the line integral
around the dotted closed path in Fig. 4.21b which crosses the air gap twice and
encloses Ca/poles conductors, each carrying current ia/m in the same direction. In
more compact form,

(Fag)peak =
(

Na

poles

)
ia (4.11)

where Na = Ca/(2m) is the number of series armature turns. From the Fourier
series for the sawtooth mmf wave of Fig. 4.21b, the peak value of the corresponding
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space-fundamental mmf wave is given by

(Fag1)peak = 8

π2

(
Na

poles

)
ia (4.12)

4.4 MAGNETIC FIELDS IN ROTATING
MACHINERY

We base our preliminary investigations of both ac and dc machines on the assumption
of sinusoidal spatial distributions of mmf. This assumption will be found to give very
satisfactory results for most problems involving ac machines because their windings
are commonly distributed so as to minimize the effects of space harmonics. Because of
the restrictions placed on the winding arrangement by the commutator, the mmf waves
of dc machines inherently approach more nearly a sawtooth waveform. Nevertheless,
an analysis based on a sinusoidal model brings out the essential features of dc machine
performance. The results can readily be modified whenever necessary to account for
any significant discrepancies.

It is often easiest to begin by examination of a two-pole machine, in which the
electrical and mechanical angles and velocities are equal. The results can immediately
be extrapolated to a multi-pole machine when it is recalled that electrical angles and
angular velocities are related to mechanical angles and angular velocities by a factor
of poles/2 (see, for example, Eq. 4.1).

The behavior of electric machinery is determined by the magnetic fields created
by currents in the various windings of the machine. This section discusses how these
magnetic fields and currents are related.

4.4.1 Machines with uniform air gaps

Figure 4.22a shows a single full-pitch, N -turn coil in a high-permeability magnetic
structure (μ → ∞), with a concentric, cylindrical rotor. The air-gap mmf Fag of this
configuration is shown plotted versus angle θa in Fig. 4.22b. For such a structure, with
a uniform air gap of length g at radius rr (very much larger than g), it is quite accurate
to assume that the magnetic field H in the air gap is predominantly radially directed
and that it is constant in magnitude across the air gap.

The air-gap mmf distribution of Fig. 4.22b is equal to the line integral of Hag

across the air gap. For this case of constant radial Hag, this integral is simply equal
to the product of the air-gap radial magnetic field Hag times the air-gap length g, and
thus Hag can be found simply by dividing the air-gap mmf by the air-gap length:

Hag = Fag

g
(4.13)

Thus, in Fig. 4.22c, the radial field Hag and the mmf can be seen to be identical in
form, simply related by a factor of 1/g.

The fundamental space-harmonic component of Hag can be found directly from
the fundamental component Fag1, given by Eq. 4.4.

Hag1 = Fag1

g
= 4

π

(
Ni

2g

)
cos θa (4.14)
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Figure 4.22 The air-gap mmf and radial component of Hag for
a concentrated full-pitch winding.

It is a sinusoidal space wave of amplitude

(Hag1)peak = 4

π

(
Ni

2g

)
(4.15)

For a distributed winding such as that of Fig. 4.17 with winding factor kw, the
air-gap magnetic field intensity is easily found once the air-gap mmf is known. Thus,
generalizing for the case of a multi-pole machine with Nph series turns per pole, the
fundamental component of Hag can be found by dividing the fundamental component
of the air-gap mmf (Eq. 4.6) by the air-gap length g.

Hag1 = 4

π

(
kw Nph

g × poles

)
ia cos (θae) (4.16)
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Note that the space-fundamental air-gap mmf Fag1 and air-gap magnetic field
Hag1 produced by a distributed winding of winding factor kw and Nph/poles series
turns per pole is equal to that produced by a concentrated, full-pitch winding of
(kw Nph)/poles turns per pole. In the analysis of machines with distributed windings,
this result is useful since in considering space-fundamental quantities it permits the
distributed solution to be obtained from the single N -turn-per-pole, full-pitch coil
solution simply by replacing N by the effective number of turns per pole, kw Nph/poles,
of the distributed winding.

EXAMPLE 4.2

A four-pole synchronous ac generator with a smooth air gap has a distributed rotor winding
with 264 series turns, a winding factor of 0.935, and an air gap of length 0.7 mm. Assuming
the mmf drop in the electrical steel to be negligible, find the rotor-winding current required to
produce a peak, space-fundamental magnetic flux density of 1.6 T in the machine air gap.

■ Solution
The space-fundamental air-gap magnetic field can be found from the space-fundamental com-
ponent of the air-gap mmf by dividing by the air-gap length g. Multiplying by the permeability
of free space μ0 then gives the space-fundamental air-gap magnetic flux density. Thus, from
Eq. 4.9

(Bag1)peak = μ0(Fag1)peak

g
= 4μ0

πg

(
kr Nr

poles

)
Ir

Solving for Ir gives

Ir =
(

πg × poles

4μ0kr Nr

)
(Bag1)peak

=
(

π × 0.0007 × 4

4 × 4π × 10−7 × 0.935 × 264

)
1.6

= 11.4 A

Practice Problem 4.2

A 2-pole synchronous machine has an air-gap length of 2.2 cm and a field winding with a
total of 830 series turns. When excited by a field current of 47 A, the peak, space-fundamental
magnetic flux density in the machine air-gap is measured to be 1.35 T.

Based upon the measured flux density, calculate the field-winding winding factor kr.

Solution
kr = 0.952

4.4.2 Machines with Nonuniform Air Gaps

Figure 4.23a shows the structure of a typical dc machine, and Fig. 4.23b shows the
structure of a typical salient-pole synchronous machine. Both machines consist of
magnetic structures with extremely nonuniform air gaps. In such cases the air-gap
magnetic-field distribution is more complex than that of uniform-air-gap machines.
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Figure 4.23 Structure of typical salient-pole machines: (a) dc machine and
(b) salient-pole synchronous machine.
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Figure 4.24 Finite-element solution showing the magnetic-field
distribution in a salient-pole dc machine with the field coils excited
(no current in armature coils).

Detailed analysis of the magnetic field distribution in such machines requires
complete solutions of the field problem. For example, Fig. 4.24 shows the magnetic
field distribution in a salient-pole dc generator as obtained by a finite-element pro-
gram. However, experience has shown that through various simplifying assumptions,
analytical techniques which yield reasonably accurate results can be developed. These
techniques are illustrated in later chapters, where the effects of saliency on both dc
and ac machines are discussed.
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4.5 ROTATING MMF WAVES IN AC MACHINES
To understand the theory and operation of polyphase ac machines, it is necessary to
study the nature of the mmf wave produced by a polyphase winding. Attention will be
focused on a two-pole machine (or equivalently one pole pair of a multi-pole winding;
−π ≤ θae ≤ π ). We will begin with an analysis of a single-phase winding. This will
help us to develop insight into the nature of a polyphase winding.

4.5.1 MMF Wave of a Single-Phase Winding

Figure 4.25a shows the space-fundamental mmf distribution of a single-phase wind-
ing. From Eq. 4.6,

Fag1 = 4

π

(
kw Nph

poles

)
ia cos (θae) (4.17)

where θae is given by Eq. 4.1. When this winding is excited by a current varying
sinusoidally in time at electrical frequency ωe

ia = Ia cos ωet (4.18)

the mmf distribution is given by

Fag1 = Fmax cos (θae) cos ωet (4.19)

Equation 4.19 has been written in a form to emphasize the fact that the result is
an mmf distribution of maximum amplitude.

Fmax = 4

π

(
kw Nph

poles

)
Ia (4.20)

This mmf distribution remains fixed in space with an amplitude that varies sinusoidally
in time at frequency ωe, as shown in Fig. 4.25a. Note that, to simplify the notation,
Eq. 4.1 has been used to express the mmf distribution of Eq. 4.19 in terms of the
electrical angle θae.

Use of a common trigonometric identity1 permits Eq. 4.19 to be rewritten in the
form

Fag1 = Fmax

[
1

2
cos (θae − ωet) + 1

2
cos (θae + ωet)

]
(4.21)

which shows that the mmf of a single-phase winding can be resolved into two rotating
mmf waves, each of amplitude equal to one-half the maximum amplitude of Fag1

with one, F+
ag1, rotating in the +θae direction and the other, F−

ag1, rotating in the −θae

direction

F+
ag1 = 1

2
Fmax cos (θae − ωet) (4.22)

F−
ag1 = 1

2
Fmax cos (θae + ωet) (4.23)

1 cos α cos β = 1
2 cos (α − β) + 1

2 cos (α + β)
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Figure 4.25 Single-phase-winding space-fundamental air-gap mmf: (a) mmf
distribution of a single-phase winding at various times; (b) total mmf Fag1 decomposed
into two traveling waves F− and F+; (c) phasor decomposition of Fag1.

Both flux waves rotate in their respective directions with electrical angular ve-
locity ωe, corresponding to a mechanical angular velocity ωm where

ωm =
(

2

poles

)
ωe =

(
π

30

)
n (4.24)

where n is the rotational speed in r/min. This decomposition is shown graphically in
Fig. 4.25b and in a phasor representation in Fig. 4.25c.

The fact that the air-gap mmf of a single-phase winding excited by a source
of alternating current can be resolved into rotating traveling waves is an important
conceptual step in understanding ac machinery. In single-phase ac machinery, the
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positive-traveling flux wave produces useful torque while the negative-traveling flux
wave produces both negative and pulsating torque as well as losses. Although single-
phase machines are designed so as to minimize the effects of the negative-traveling flux
wave, they cannot be totally eliminated. On the other hand, as shown in Section 4.5.2,
in polyphase ac machinery the windings are equally displaced in space phase, and
the winding currents are similarly displaced in time phase, with the result that the
negative-traveling flux waves of the various windings sum to zero while the positive-
traveling flux waves reinforce, giving a single positive-traveling flux wave.

4.5.2 MMF Wave of a Polyphase Winding

In this section we study the mmf distributions of three-phase windings such as those
found on the stator of three-phase induction and synchronous machines. The analyses
presented can be readily extended to a polyphase winding with any number of phases.
Once again attention is focused on a two-pole machine or one pair of poles of a multi-
pole winding.

In a three-phase machine, the windings of the individual phases are displaced
from each other by 120 electrical degrees in space around the air-gap circumfer-
ence, as shown by coils (a, −a), (b, −b), and (c, −c) in Fig. 4.26. The concentrated
full-pitch coils shown here may be considered to represent distributed windings pro-
ducing sinusoidal mmf waves centered on the magnetic axes of the respective phases.
The space-fundamental sinusoidal mmf waves of the three phases are accordingly
displaced 120 electrical degrees in space. Each phase is excited by an alternating cur-
rent which varies in magnitude sinusoidally with time. Under balanced three-phase
conditions, the instantaneous currents are

ia = Imax cos ωet (4.25)

ib = Imax cos (ωet − 120◦) (4.26)

ic = Imax cos (ωet + 120◦) (4.27)

a

�a

�b�c

cb

Axis of
phase b

Axis of
phase a

Axis of
phase c

θa

Figure 4.26 Simplified two-pole
three-phase stator winding.
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Figure 4.27 Instantaneous phase currents
under balanced three-phase conditions.

where Imax is the maximum value of the current and the time origin is arbitrarily
taken as the instant when the phase-a current is at its positive maximum. The phase
sequence is assumed to be abc. The instantaneous currents are shown in Fig. 4.27.
The dots and crosses in the coil sides (Fig. 4.26) indicate the reference directions for
positive phase currents.

The mmf of phase a has been shown to be

Fa1 = F+
a1 + F−

a1 (4.28)

where

F+
a1 = 1

2
Fmax cos (θae − ωet) (4.29)

F−
a1 = 1

2
Fmax cos (θae + ωet) (4.30)

and

Fmax = 4

π

(
kw Nph

poles

)
Imax (4.31)

Note that to avoid excessive notational complexity, the subscript ag has been dropped;
here the subscript “a1” indicates the space-fundamental component of the phase-a
air-gap mmf.

Similarly, for phases b and c, whose axes are at θae = 120◦ and θae = −120◦

respectively, their air-gap mmfs can be shown to be

Fb1 = F+
b1 + F−

b1 (4.32)

F+
b1 = 1

2
Fmax cos (θae − ωet) (4.33)

F−
b1 = 1

2
Fmax cos (θae + ωet + 120◦) (4.34)

and
Fc1 = F+

c1 + F−
c1 (4.35)

F+
c1 = 1

2
Fmax cos (θae − ωet) (4.36)

F−
c1 = 1

2
Fmax cos (θae + ωet − 120◦) (4.37)
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The total mmf is the sum of the contributions from each of the three phases

F(θae, t) = Fa1 + Fb1 + Fc1 (4.38)

This summation can be performed quite easily in terms of the positive- and negative-
traveling waves. The negative-traveling waves sum to zero

F−(θae, t) = F−
a1 + F−

b1 + F−
c1

= 1

2
Fmax [cos (θae + ωet) + cos (θae + ωet − 120◦)

+ cos (θae + ωet + 120◦)]

= 0 (4.39)

while the positive-traveling waves reinforce

F+(θae, t) = F+
a1 + F+

b1 + F+
c1

= 3

2
Fmax cos (θae − ωet) (4.40)

Thus, the result of displacing the three windings by 120◦ in space phase and
displacing the winding currents by 120◦ in time phase is a single positive-traveling
mmf wave

F(θae, t) = 3

2
Fmax cos (θae − ωet) (4.41)

The air-gap mmf wave described by Eq. 4.41 is a space-fundamental sinu-
soidal function of the electrical space angle θae (and hence of the space angle θa =
2 θae/poles). It has a constant amplitude of (3/2) Fmax, i.e., 1.5 times the peak ampli-
tude of the air-gap mmf wave produced by the individual phases alone. It has a positive
peak at angle θa = (2 ωe t/poles). Thus, under balanced three-phase conditions, the
three-phase winding produces an air-gap mmf wave which rotates at synchronous
angular velocity ωs

ωs =
(

2

poles

)
ωe (4.42)

where

ωe = angular frequency of the applied electrical excitation [rad/sec]

ωs = synchronous spatial angular velocity of the air-gap mmf wave [rad/sec]

The corresponding synchronous speed ns in r/min can be expressed in terms of
the applied electrical frequency

fe = ωe

2π
Hz (4.43)

as

ns =
(

120

poles

)
fe r/min (4.44)
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In general, a rotating field of constant amplitude will be produced by a q-phase
winding (q ≥ 3) excited by balanced q-phase currents of frequency fe when the
respective phase axes are located 2π/q electrical radians apart in space. The amplitude
of this flux wave will be q/2 times the maximum contribution of any one phase, and
the synchronous angular velocity will remain ωs = (2 ωe/poles) radians per second.
For a two phase machine, the phase axes are located π/2 electrical radians apart in
space and the amplitude of the rotating flux wave will be equal to that of the individual
phases.

In this section, we have seen that a polyphase winding excited by balanced
polyphase currents produces a rotating mmf wave. Production of a rotating mmf
wave and the corresponding rotating magnetic flux wave is key to the operation of
polyphase rotating electrical machinery. It is the interaction of this magnetic flux
wave with that of the rotor which produces torque. Constant torque is produced when
rotor-produced magnetic flux wave rotates in synchronism with that of the stator.

4.5.3 Graphical Analysis of Polyphase MMF

For balanced three-phase currents as given by Eqs. 4.25 to 4.27, the production of
a rotating mmf can also be shown graphically. Consider the state of affairs at t = 0
(Fig. 4.27), the moment when the phase-a current is at its maximum value Imax. The
mmf of phase a then has its maximum value Fmax, as shown by the vector Fa drawn
along the magnetic axis of phase a in the two-pole machine shown schematically in
Fig. 4.28a. At this moment, currents ib and ic are both Imax/2 in the negative direction,
as shown by the dots and crosses in Fig. 4.28a indicating the actual instantaneous di-
rections. The corresponding mmfs of phases b and c are shown by the vectors Fb and
Fc, both of magnitude Fmax/2 drawn in the negative direction along the magnetic axes
of phases b and c, respectively. The resultant, obtained by adding the individual con-
tributions of the three phases, is a vector of magnitude F = 3

2 Fmax centered on the axis
of phase a. It represents a sinusoidal space wave with its positive peak centered on the
axis of phase a and having an amplitude 3

2 times that of the phase-a contribution alone.

(a)

a

�a

�b�c

c
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Fb

Fc

F 
b

b
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c
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b

60◦

a

c c

F

Fc

(c)

Fa

Fc

a

�a

�b�c

cb

a
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Figure 4.28 The production of a rotating magnetic field by means of three-phase currents.
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At a later time ωet = π/3 (Fig. 4.27), the currents in phases a and b are a
positive half maximum, and that in phase c is a negative maximum. The individual
mmf components and their resultant are now shown in Fig. 4.28b. The resultant has
the same amplitude as at t = 0, but it has now rotated counter-clockwise 60 electrical
degrees in space. Similarly, at ωet = 2π/3 (when the phase-b current is a positive
maximum and the phase-a and phase-c currents are a negative half maximum) the same
resultant mmf distribution is again obtained, but it has rotated counter-clockwise 60
electrical degrees still farther and is now aligned with the magnetic axis of phase b
(see Fig. 4.28c). As time passes, the resultant mmf wave retains its sinusoidal form
and amplitude but rotates progressively around the air gap; the net result can be seen
to be an mmf wave of constant amplitude rotating at a uniform angular velocity.

In one cycle the resultant mmf must be back in the position of Fig. 4.28a. The
mmf wave therefore makes one revolution per electrical cycle in a two-pole machine.
In a multi-pole machine the mmf wave travels one pole-pair per electrical cycle and
hence one revolution in (poles/2) electrical cycles.

EXAMPLE 4.3

Consider a three-phase stator excited with balanced, 60-Hz currents. Find the synchronous
angular velocity in rad/sec and speed in r/min for stators with two, four, and six poles.

■ Solution
For a frequency of fe = 60 Hz, the electrical angular frequency is equal to

ωe = 2π fe = 120π rad/sec

Using Eqs. 4.42 and 4.44, the following table can be constructed:

Poles ns (r/min) ωs (rad/sec)

2 3600 120π
4 1800 60π
6 1200 40π

Practice Problem 4.3

Repeat Example 4.3 for a three-phase stator excited by balanced 50-Hz currents.

Solution

Poles ns (r/min) ωs (rad/sec)

2 3000 100π
4 1500 50π
6 1000 100π/3
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4.6 GENERATED VOLTAGE
The general nature of the induced voltage has been discussed in Section 4.2. Quanti-
tative expressions for the induced voltage will now be determined.

4.6.1 AC machines

An elementary ac machine is shown in cross section in Fig. 4.29. The coils on both
the rotor and the stator have been shown as concentrated, multiple-turn, full-pitch
coils. As we have seen, the performance of a machine with distributed windings can
be determined from that of a machine with concentrated windings by multiplying the
number of series turns in the winding by a winding factor. Under the assumption of a
small air gap, the field winding on the rotor can be assumed to produce an essentially
radial-directed space-fundamental sinusoidal air-gap flux of peak flux density Bpeak.

As is derived in Example 4.2, if the air gap is uniform, Bpeak can be found from

Bpeak = 4μ0

πg

(
kf Nf

poles

)
If (4.45)

where
g = air-gap length

Nf = total series turns in the field winding

kf = field-winding winding factor

If = field current

When the rotor poles are in line with the magnetic axis of a stator phase winding,
the flux linkage with that winding (of Nph series turns per phase and winding factor

a

−a

N-turn coil

Nf -turn
field coil

e

Phase b
magnetic axis

Phase c
magnetic axis

�

+

Phase a
magnetic axis

Rotor-winding
magnetic axis

ωmt

−b−c

c

θr

b

Figure 4.29 Cross-sectional view of an
elementary three-phase ac machine.
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kw) is kw Nph	p, where 	p is the air-gap flux per pole. For the assumed sinusoidal
air-gap flux-density of form

B = Bpeak cos

(
poles

2
θr

)
(4.46)

	p can be found as the integral of the flux density over the pole area

	p = l
∫ +π/poles

−π/poles
Bpeak cos

(
poles

2
θr

)
r dθr

=
(

2

poles

)
2 l r Bpeak (4.47)

Here,

θr = angle measured from the rotor magnetic axis

r = radius to air gap

l = axial length of the stator/rotor iron

Note that although Fig. 4.29 shows a two-pole machine, the analysis presented here
is for the general case of a multi-pole machine.

As the rotor turns, the flux linkage of each stator phase varies cosinusoidally
with the angle between the magnetic axes of that phase and that of the rotor field
winding. With the rotor spinning at constant angular velocity ωm, θr = ωmt , and the
flux linkage with the phase-a stator winding is thus

λa = kw Nph	p cos

((
poles

2

)
ωmt

)
= kw Nph	p cos ωet (4.48)

where time t is arbitrarily chosen as zero when the field winding magnetic axis
coincides with that of phase a and ωe is the electrical frequency in rad/sec given by
Eq. 4.3.

By Faraday’s law, the voltage induced in phase a is found from Eq. 4.48 as

ea = dλa

dt
= kw Nph

d	p

dt
cos (ωet) − ωekw Nph	p sin (ωet) (4.49)

The polarity of this induced voltage is such that if the stator coil were short-
circuited, the induced voltage would cause a current to flow in the direction that
would oppose any change in the flux linkage of the stator coil. Although Eq. 4.49 is
derived on the assumption that only the field winding is producing air-gap flux, the
equation applies equally well to the general situation where 	p is the net air-gap flux
per pole produced by currents on both the rotor and the stator.

The first term on the right-hand side of Eq. 4.49 is a transformer voltage and
is present only when the amplitude of the air-gap flux wave changes with time. The
second term is the speed voltage generated by the relative motion of the air-gap
flux wave and the stator coil. In the normal steady-state operation of most rotating
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machines, the amplitude of the air-gap flux wave is constant; under these conditions
the first term is zero and the generated voltage is simply the speed voltage. The term
electromotive force (abbreviated emf) is often used for the speed voltage. Thus, for
constant air-gap flux,

ea = −ωekw Nph	p sin (ωet) (4.50)

EXAMPLE 4.4

The so-called cutting-of-flux equation states that the voltage v induced in a wire of length l (in
the frame of the wire) moving with respect to a constant magnetic field with flux density of
magnitude B is given by

v = lv⊥ B

where v⊥ is the component of the wire velocity perpendicular to the direction of the magnetic
flux density.

Consider the two-pole elementary three-phase machine of Fig. 4.29. Assume the rotor-
produced air-gap flux density to be of the form

Bag(θr) = Bpeak sin θr

and the rotor to rotate at constant angular velocity ωm. (Note that since this is a two-pole
machine, ωe = ωm). Show that if one assumes that the armature-winding coil sides are in the
air gap and not in the slots, the voltage induced in a full-pitch, N -turn concentrated armature
phase coil can be calculated from the cutting-of-flux equation and that it is identical to that
calculated using Eq. 4.50. Let the average air-gap radius be r and the air-gap length be g
(g 	 r ).

■ Solution
We begin by noting that the cutting-of-flux equation requires that the conductor be moving
and the magnetic field be constant in time. Thus in order to apply it to calculating the stator
magnetic field, we must translate our reference frame to the rotor.

In the rotor frame, the magnetic field is constant and the stator coil sides, when moved to the
center of the air gap at radius r , appear to be moving with velocity ωmr which is perpendicular
to the radially-directed air-gap flux. If the rotor and phase-coil magnetic axes are assumed to
be aligned at time t = 0, the location of a coil side as a function of time will be given by
θr = −ωmt . The voltage induced in one side of one turn can therefore be calculated as

e1 = lv⊥ Bag(θr) = lωmr Bpeak sin (−ωmt)

There are N turns per coil and two sides per turn. Thus the total coil voltage is given by

e = 2Ne1 = −2Nlωer Bpeak sin ωet

where ωe has been substituted for ωm.
From Eq. 4.50, the voltage induced in the full-pitched, 2-pole stator coil is given by

e = −ωe N	p sin ωet
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Substituting 	p = 2Bpeaklr from Eq. 4.47 gives

e = −ωe N (2Bpeaklr) sin ωet

which is identical to the voltage determined using the cutting-of-flux equation.

In the normal steady-state operation of ac machines, we are usually interested in
the rms values of voltages and currents rather than their instantaneous values. From
Eq. 4.50 the maximum value of the induced voltage is

Emax = ωekw Nph	p = 2π fekw Nph	p (4.51)

where fe is the electrical frequency of the generated voltage in Hz. Its rms value is

Erms = 2π fekw Nph	p√
2

=
√

2 π fekw Nph	p (4.52)

Note that these equations are identical in form to the corresponding emf equations
for a transformer. Relative motion of a coil and a constant-amplitude spatial flux-
density wave in a rotating machine produces voltage in the same fashion as does a
time-varying flux linking the stationary coils of a transformer. Rotation introduces
the element of time variation and transforms a space distribution of flux density into
a time variation of flux linkage and voltage.

The voltage induced in a single winding is a single-phase voltage. For the pro-
duction of a set of balanced, three-phase voltages, it follows that three windings
displaced 120 electrical degrees in space must be used, as shown in elementary form
in Fig. 4.10. The machine of Fig. 4.10 is shown to be Y -connected and hence each
winding voltage is a phase-neutral voltage. Thus, Eq. 4.52 gives the rms line-neutral
voltage produced in this machine when Nph is the total series turns per phase. For a
�-connected machine, the voltage winding voltage calculated from Eq. 4.52 would
be the machine line-line voltage.

EXAMPLE 4.5

A two-pole, three-phase, Y-connected, 60-Hz, round-rotor synchronous generator has a dis-
tributed field winding with Nf series turns and winding factor kf. The armature winding has
Nph turns per phase and winding factor kw. The air-gap length is g, and the mean air-gap radius
is r . The armature-winding active length is l. The dimensions and winding data are

Nf = 68 series turns kf = 0.945

Nph = 18 series turns/phase kw = 0.933

r = 0.53 m g = 4.5 cm

l = 3.8 m

The rotor is driven by a steam turbine at a speed of 3600 r/min. For a field current
of If = 720 A dc, compute (a) the peak fundamental mmf (Fag1)peak produced by the field
winding, (b) the peak fundamental flux density (Bag1)peak in the air gap, (c) the fundamental
flux per pole 	p, and (d) the rms value of the open-circuit voltage generated in the armature.
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■ Solution

a. From Eq. 4.9

(Fag1)peak = 4

π

(
kf Nf

poles

)
If = 4

π

(
0.945 × 68

2

)
720

= 4

π
(32.1)720 = 2.94 × 104 A · turns/pole

b. Using Eq. 4.13, we get

(Bag1)peak = μ0(Fag1)peak

g
= 4π × 10−7 × 2.94 × 104

4.5 × 10−2
= 0.821 T

Because of the effect of the slots containing the armature winding, most of the air-gap flux
is confined to the stator teeth. The flux density in the teeth at a pole center is higher than
the value calculated in part (b), probably by a factor of about 2. In a detailed design this
flux density must be calculated to determine whether the teeth are excessively saturated.

c. From Eq. 4.47

	p = 2(Bag1)peaklr = 2(0.821)(3.8)(0.53) = 3.31 Wb

d. From Eq. 4.52 with fme = 60 Hz

Erms,line−neutral =
√

2 π fmekw Nph	p =
√

2 π(60)(0.933)(18)(3.31)

= 14.8 kV rms

The line-line voltage is thus

Erms,line−line =
√

3 (14.8 kV) = 25.7 kV rms

Practice Problem 4.4

The rotor of the machine of Example 4.5 is to be rewound. The new field winding will have a
total of 76 series turns and a winding factor of 0.925. (a) Calculate the field current which will
result in a peak air-gap flux density of 0.83 T. (b) Calculate the corresponding rms line-line
open-circuit voltage which will result if this modified machine is operated at this value of field
current and 3600 r/min.

Solution

a. If = 664 A
b. Erms,line−line = 26.0 kV rms

4.6.2 DC Machines

In a dc machine, although the ultimate objective is the generation of dc voltage, ac
voltages are produced in the armature-winding coils as these coils rotate through the
dc flux distribution of the stationary field winding. The armature-winding alternat-
ing voltage must therefore be rectified. Mechanical rectification is provided by the
commutator as has been discussed in Section 4.2.2.
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0 π 2π ωt

e

Figure 4.30 Sinusoidal
approximation of the voltage between
the brushes in the elementary dc
machine of Fig. 4.14.

Consider the single N -turn armature coil of the elementary, two-pole dc machine
of Fig. 4.14. The simple two-segment commutator provides full-wave rectification of
the coil voltage. Although the spatial distribution of the air-gap flux in dc machines
is typically far from sinusoidal, we can approximate the magnitude of the generated
voltage by assuming a sinusoidal distribution. As we have seen, such a flux distribution
will produce a sinusoidal ac voltage in the armature coil. The rectification action of
the commutator will produce a dc voltage across the brushes as in Fig. 4.30. The
average, or dc, value of this voltage can be found from taking the average of Eq. 4.50
(with kw = 1.0)

Ea = 1

π

∫ π

0
ωe N	p sin (ωet) d(ωet) = 2

π
ωe N	p (4.53)

For dc machines it is usually more convenient to express the voltage Ea in terms
of the mechanical speed ωm (rad/sec) or n (r/min). Substitution of Eq. 4.24 in Eq. 4.53
for a multi-pole machine then yields

Ea =
(

poles

π

)
N	pωm = poles N	p

( n

30

)
(4.54)

The single-coil armature winding implied here is, of course, unrealistic in the
practical sense, and it will be essential later to examine the action of commutators
more carefully. Actually, Eq. 4.54 gives correct results for the more practical case of
distributed armature windings as well, provided N is taken as the total number of turns
in series between armature terminals. Usually the voltage is expressed in terms of the
total number of active conductors Ca and the number m of parallel paths through the
armature winding. Because it takes two coil sides to make a turn and 1/m of these
are connected in series, the number of series turns is Na = Ca/(2m). Substitution in
Eq. 4.54 then gives

Ea =
(

poles

2π

) (
Ca

m

)
	pωm =

(
poles

60

) (
Ca

m

)
	p n (4.55)
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4.7 TORQUE IN NON-SALIENT-POLE
MACHINES

The behavior of any electromagnetic device as a component in an electromechanical
system can be described in terms of its electrical-terminal equations and its displace-
ment and electromechanical force or torque. The purpose of this section is to derive
the terminal relationships and torque equations for an idealized elementary rotating
machine, results which can be readily extended later to more complex machines. We
derive these equations from two viewpoints and show that basically they stem from
the same ideas.

The first viewpoint is essentially the same as that of Section 3.6. The machine will
be regarded as a circuit element whose inductances depend on the angular position of
the rotor. The flux linkages λ and magnetic field coenergy will be expressed in terms of
the currents and inductances. The torque can then be found from the partial derivative
of the coenergy with respect to the rotor position and the terminal voltages from the
sum of the resistance drops Ri and the Faraday-law voltages dλ/dt . The result will
be a set of nonlinear differential equations describing the dynamic performance of
the machine.

The second viewpoint regards the machine as two groups of windings producing
magnetic flux in the air gap, one group on the stator, and the other on the rotor. By
making suitable assumptions regarding these fields (similar to those used to derive an-
alytic expressions for the inductances), simple expressions can be derived for the flux
linkages and the coenergy in the air gap in terms of the field quantities. The torque and
generated voltage can then be found from these expressions. In this fashion, torque
can be expressed explicitly as the tendency of two magnetic fields to align, in the same
way that permanent magnets tend to align, and generated voltage can be expressed in
terms of the relative motion between a field and a winding. These expressions lead to
a simple physical picture of the normal steady-state behavior of rotating machines.

4.7.1 Coupled-Circuit Viewpoint

Consider the elementary smooth-air-gap machine of Fig. 4.31 with one winding on
the stator and one on the rotor and with θm being the mechanical angle between the
axes of the two windings. These windings are distributed over a number of slots so that
their mmf waves can be approximated by space sinusoids. In Fig. 4.31a the coil sides
s, −s and r, −r mark the positions of the centers of the conductor belts comprising
the distributed windings. An alternative way of drawing these windings is shown in
Fig. 4.31b, which also shows reference directions for voltages and currents. Here it
is assumed that current in the arrow direction produces a magnetic field in the air
gap in the arrow direction, so that a single arrow defines reference directions for both
current and flux.

The stator and rotor are concentric cylinders and slot openings are neglected.
Consequently, our elementary model does not include the effects of salient poles,
which are investigated in later chapters. We also assume that the reluctances of the
stator and rotor iron are negligible. Finally, although Fig. 4.31 shows a two-pole
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Figure 4.31 Elementary two-pole machine with smooth air gap: (a) winding
distribution and (b) schematic representation.

machine, we will write the derivations that follow for the general case of a multi-pole
machine, replacing θm by the electrical rotor angle

θme =
(

poles

2

)
θm (4.56)

Based upon these assumptions, the stator and rotor self-inductances Lss and L rr

can be seen to be constant, but the stator-to-rotor mutual inductance depends on the
electrical angle θme between the magnetic axes of the stator and rotor windings. The
mutual inductance is at its positive maximum when θme = 0 or 2π , is zero when
θme = ±π/2, and is at its negative maximum when θme = ±π . On the assumption of
sinusoidal mmf waves and a uniform air gap, the space distribution of the air-gap flux
wave is sinusoidal, and the mutual inductance will be of the form

Lsr(θme) = Lsr cos (θme) (4.57)

where the script letter L denotes an inductance which is a function of the electrical
angle θme; the italic capital letter L denotes a constant value. Thus Lsr is the magnitude
of the mutual inductance; its value when the magnetic axes of the stator and rotor are
aligned (θme = 0). In terms of the inductances, the stator and rotor flux linkages λs

and λr are

λs = Lssis + Lsr(θme)ir = Lssis + Lsr cos (θme)ir (4.58)

λr = Lsr(θme)is + L rrir = Lsr cos (θme)is + L rrir (4.59)

where the inductances can be calculated as discussed in Appendix B. In matrix
notation [

λs

λr

]
=

[
Lss Lsr(θme)

Lsr(θme) L rr

][
is

ir

]
(4.60)
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The terminal voltages vs and vr are

vs = Rsis + dλs

dt
(4.61)

vr = Rrir + dλr

dt
(4.62)

where Rs and Rr are the resistances of the stator and rotor windings respectively.
When the rotor is revolving, θme varies with time. Differentiation of Eqs. 4.58

and 4.59 and substitution of the results in Eqs. 4.61 and 4.62 then give

vs = Rsis + Lss
dis

dt
+ Lsr cos (θme)

dir

dt
− Lsrir sin (θme)

dθme

dt
(4.63)

vr = Rrir + L rr
dir

dt
+ Lsr cos (θme)

dir

dt
− Lsris sin (θme)

dθme

dt
(4.64)

where

dθme

dt
=

(
poles

2

)
ωm = ωe (4.65)

is the instantaneous speed in electrical radians per second. In a two-pole machine
(such as that of Fig. 4.31), θme and ωe are equal to the instantaneous shaft angle
θm and the shaft speed ωm respectively. In a multi-pole machine, they are related by
Eqs. 4.56 and 4.3. The second and third terms on the right-hand sides of Eqs. 4.63 and
4.64 are L(di/dt) induced voltages like those induced in stationary coupled circuits
such as the windings of transformers. The fourth terms are caused by mechanical
motion and are proportional to the instantaneous speed. These are the speed voltage
terms which are associated with the interchange of power between the electric and
mechanical systems.

The electromechanical torque can be found from the coenergy. From Eq. 3.70

W ′
fld = 1

2
Lssi

2
s + 1

2
L rri

2
r + Lsrisir cos θme

= 1

2
Lssi

2
s + 1

2
L rri

2
r + Lsrisir cos

((
poles

2

)
θm

)
(4.66)

Note that the coenergy of Eq. 4.66 has been expressed specifically in terms of the
shaft angle θm because the torque expression of Eq. 3.68 requires that the torque be
obtained from the derivative of the coenergy with respect to the spatial angle θm and
not with respect to the electrical angle θme. Thus, from Eq. 3.68

T = ∂W ′
fld(is, ir, θm)

∂θm

∣∣∣∣
is,ir

= −
(

poles

2

)
Lsrisir sin

(
poles

2
θm

)

= −
(

poles

2

)
Lsrisir sin θme (4.67)

where T is the electromechanical torque acting to accelerate the rotor (i.e., a pos-
itive torque acts to increase θm). The negative sign in Eq. 4.67 means that the
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electromechanical torque acts in the direction to bring the magnetic fields of the
stator and rotor into alignment.

Equations 4.63, 4.64, and 4.67 are a set of three equations relating the electrical
variables vs, is, vr, ir and the mechanical variables T and θm. These equations, together
with the constraints imposed on the electrical variables by the networks connected to
the terminals (sources or loads and external impedances) and the constraints imposed
on the rotor (applied torques and inertial, frictional, and spring torques), determine
the performance of the device and its characteristics as an energy-conversion device
between the external electrical and mechanical systems. These are nonlinear differ-
ential equations and are difficult to solve except under special circumstances. We are
not specifically concerned with their solution here; rather we are using them merely
as steps in the development of the theory of rotating machines.

EXAMPLE 4.6

Consider the elementary two-pole, two-winding machine of Fig. 4.31. Its shaft is coupled to a
mechanical device which can be made to absorb or deliver mechanical torque over a wide range
of speeds. This machine can be connected and operated in several ways. For this example, let
us consider the situation in which the rotor winding is excited with direct current Ir and the
stator winding is connected to an ac source which can either absorb or deliver electric power.
Let the stator current be

is = Is cos ωet

where t = 0 is arbitrarily chosen as the moment when the stator current has its peak value.

a. Derive an expression for the magnetic torque developed by the machine as the speed is
varied by controlling the mechanical device connected to its shaft.

b. Find the speed at which non-zero average torque will be produced if the stator frequency
is 60 Hz.

c. With the assumed current-source excitations, what voltages are induced in the stator and
rotor windings at synchronous speed (ωm = ωe)?

■ Solution

a. From Eq. 4.67 for a two-pole machine

T = −L srisir sin θm

For the conditions of this problem, with θm = ωmt + δ

T = −L sr Is Ir cos ωet sin (ωmt + δ)

where ωm is the clockwise angular velocity impressed on the rotor by the mechanical
drive and δ is the angular position of the rotor at t = 0. Using a trigonometric identity,2 we
have

T = −1

2
L sr Is Ir{sin [(ωm + ωe)t + δ] + sin [(ωm − ωe)t + δ]}

2 sin α cos β = 1
2 [sin (α + β) + sin (α − β)]
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The torque consists of two sinusoidally time-varying terms of frequencies ωm + ωe

and ωm − ωe. As shown in Section 4.5, ac current applied to the two-pole, single-phase
stator winding in the machine of Fig. 4.31 creates two flux waves, one traveling in the
positive θm direction with angular velocity ωe and the second traveling in the negative θm

direction also with angular velocity ωe. It is the interaction of the rotor with these two
flux waves which results in the two components of the torque expression.

b. Except when ωm = ±ωe, the torque averaged over a sufficiently long time is zero. But if
ωm = ωe, the rotor is traveling in synchronism with the positive-traveling stator flux wave,
and the torque becomes

T = −1

2
L sr Is Ir[sin (2ωet + δ) + sin δ]

The first sine term is a double-frequency component whose average value is zero. The
second term is the average torque

Tavg = −1

2
L sr Is Ir sin δ

A nonzero average torque will also be produced when ωm = −ωe which merely means
rotation in the counter-clockwise direction; the rotor is now traveling in synchronism with
the negative-traveling stator flux wave.

This machine is an idealized single-phase synchronous machine. With a stator
frequency of 60 Hz, it will produce nonzero average torque for speeds of
ωm = ±ωe = ±2π60 rad/sec, corresponding to speeds of ±3600 r/min as can be seen
from Eq. 4.44.

c. From the second and fourth terms of Eq. 4.63 (with θe = θm = ωmt + δ), the voltage
induced in the stator when ωm = ωe is

es = −ωe L ss Is sin ωet − ωe L sr Ir sin (ωet + δ)

From the third and fourth terms of Eq. 4.64, the voltage induced in the rotor is

er = −ωe L sr Is[sin ωet cos (ωet + δ) + cos ωet sin (ωet + δ)]

= −ωe L sr Is sin (2ωet + δ)

The backwards-rotating component of the stator flux induces a double-frequency voltage
in the rotor, while the forward-rotating component, which is rotating in synchronism with
the rotor, appears as a dc flux to the rotor, and hence induces no voltage in the rotor
winding.

Now consider a uniform-air-gap machine with several stator and rotor windings.
The same general principles that apply to the elementary model of Fig. 4.31 also
apply to the multi-winding machine. Each winding has its own self inductance as
well as mutual inductances with other windings. The self inductances and mutual
inductances between pairs of windings on the same side of the air gap are constant
on the assumption of a uniform gap and negligible magnetic saturation. However,
the mutual inductances between pairs of stator and rotor windings vary as the cosine
of the angle between their magnetic axes. Torque results from the tendency of the
magnetic field of the rotor windings to line up with that of the stator windings. It can
be expressed as the sum of terms like that of Eq. 4.67.
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EXAMPLE 4.7

Consider a 4-pole, three-phase synchronous machine with a uniform air gap. Assume the
armature-winding self and mutual inductances to be constant

Laa = Lbb = Lcc

Lab = Lbc = Lca

Similarly, assume the field-winding self inductance L f to be constant while the mutual
inductances between the field winding and the three armature phase windings will vary with
the angle θm between the magnetic axis of the field winding and that of phase a

Laf = Laf cos 2θm

Lbf = Laf cos (2θm − 120◦)

Lcf = Laf cos (2θm + 120◦)

Show that when the field is excited with constant current If and the armature is excited by
balanced-three-phase currents of the form

ia = Ia cos (ωet + δ)

ib = Ia cos (ωet − 120◦ + δ)

ic = Ia cos (ωet + 120◦ + δ)

the torque will be constant when the rotor travels at synchronous speed ωs as given by Eq. 4.42.

■ Solution
The torque can be calculated from the coenergy as described in Section 3.6. This particular
machine is a four-winding system and the coenergy will consist of four terms involving 1/2
the self-inductance multiplied by the square of the corresponding winding current as well as
product-terms consisting of the mutual inductances between pairs of windings multiplied by the
corresponding winding currents. Noting that only the terms involving the mutual inductances
between the field winding and the three armature phase windings will contain terms that vary
with θm, we can write the coenergy in the form

W ′
fld(ia, ib, ic, if, θm) = (constant terms) + Lafiaif + Lbfibif + Lcficif

= (constant terms) + Laf Ia If [cos 2θm cos (ωet + δ)

+ cos (2θm − 120◦) cos (ωet − 120◦ + δ)

+ cos (2θm + 120◦) cos (ωet + 120◦ + δ)]

= (constant terms) + 3

2
Laf Ia If cos (2θm − ωet − δ)

The torque can now be found from the partial derivative of W ′
fld with respect to θm

T = ∂W ′
fld

∂θm

∣∣∣∣
ia,ib,ic,if

= −3Laf Ia If sin (2θm − ωet − δ)
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From this expression, we see that the torque will be constant when the rotor rotates at syn-
chronous velocity ωs such that

θm = ωst =
(

2

poles

)
ωet =

(
ωe

2

)
t

in which case the torque will be equal to

T = 3Laf Ia If sin δ

Note that unlike the case of the single-phase machine of Example 4.6, the torque for this
three-phase machine operating at synchronous velocity under balanced-three-phase conditions
is constant. As we have seen, this is due to the fact that the stator mmf wave consists of a
single rotating flux wave, as opposed to the single-phase case in which the stator phase current
produces both a forward- and a backward-rotating flux wave. This backwards flux wave is not
in synchronism with the rotor and hence is responsible for the double-frequency time-varying
torque component seen in Example 4.6.

Practice Problem 4.5

For the four-pole machine of Example 4.7, find the synchronous speed at which a constant
torque will be produced if the rotor currents are of the form

ia = Ia cos (ωet + δ)

ib = Ia cos (ωet + 120◦ + δ)

ic = Ia cos (ωet − 120◦ + δ)

Solution
ωs = −(ωe/2)

In Example 4.7 we found that, under balanced conditions, a four-pole syn-
chronous machine will produce constant torque at a rotational angular velocity equal
to half of the electrical excitation frequency. This result can be generalized to show
that, under balanced operating conditions, a multiphase, multi-pole synchronous ma-
chine will produce constant torque at a rotor speed, at which the rotor rotates in
synchronism with the rotating flux wave produced by the stator currents. Hence, this
is known as the synchronous speed of the machine. From Eqs. 4.42 and 4.44, the
synchronous speed is equal to ωs = (2/poles)ωe in rad/sec or ns = (120/poles) fe in
r/min.

4.7.2 Magnetic Field Viewpoint

In the discussion of Section 4.7.1 the characteristics of a rotating machine as viewed
from its electric and mechanical terminals have been expressed in terms of its winding
inductances. This viewpoint gives little insight into the physical phenomena which
occur within the machine. In this section, we will explore an alternative formulation
in terms of the interacting magnetic fields.
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Fs Fs

Fsr

δsr

δsr
δs

δr

Stator

Rotor

Fr sin δsr
= Fsr sin δs

Fs sin δsr
= Fsr sin δr

(b)(a)

Figure 4.32 Simplified two-pole machine: (a) elementary model and (b) vector
diagram of mmf waves. Torque is produced by the tendency of the rotor and stator
magnetic fields to align. Note that these figures are drawn with δsr positive, i.e., with the
rotor mmf wave Fr leading that of the stator Fs.

As we have seen, currents in the rotor and stator windings each produce mmf
distributions which in turn produce magnetic fields in the machine. The rotor and
stator mmf waves are shown schematically in Fig. 4.32a for a two-pole machine with
a smooth air gap. Torque is produced by the tendency of the corresponding rotor and
stator magnetic fields to align their magnetic axes. A useful physical picture is that
this situation is quite similar to that of two bar magnets pivoted at their centers on
the same shaft; there will be a torque, proportional to the angular displacement of the
bar magnets, which will act to align them. In the machine of Fig. 4.32a, the torque is
proportional to the product of the amplitudes of the stator and rotor mmf waves and
is also a function of the angle δsr measured from the axis of the stator mmf wave to
that of the rotor. In fact, we will show that, for a smooth-air-gap machine, the torque
is proportional to sin δsr.

In a typical machine, most of the flux produced by the stator and rotor windings
crosses the air gap and links both windings; this is termed the mutual flux, directly
analogous to the mutual or magnetizing flux in a transformer. However, some of the
flux produced by the rotor and stator windings does not cross the air gap; this is
analogous to the leakage flux in a transformer. These flux components are referred
to as the rotor leakage flux and the stator leakage flux. Components of this leakage
flux include slot and tooth-tip leakage, end-turn leakage, and space harmonics in the
air-gap field.

Only the mutual flux is of direct concern in torque production. The leakage
fluxes do affect machine performance however, by virtue of the voltages they induce
in their respective windings. Their effect on the electrical characteristics is accounted
for by means of leakage inductances, analogous to the use of inclusion of leakage
inductances in the transformer models of Chapter 2.

When expressing torque in terms of the winding currents or their resultant mmfs,
the resulting expressions do not include terms containing the leakage inductances.
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Our analysis here, then, will be in terms of the resultant mutual flux. We shall derive
an expression for the magnetic coenergy stored in the air gap in terms of the stator
and rotor mmfs and the angle δsr between their magnetic axes. The torque can then
be found from the partial derivative of the coenergy with respect to angle δsr.

For analytical simplicity, we will assume that the radial length g of the air gap
(the radial clearance between the rotor and stator) is small compared with the radius
of the rotor or stator. For a smooth-air-gap machine constructed from electrical steel
with high magnetic permeability, it is possible to show that this will result in air-gap
flux which is primarily radially directed and that there is relatively little difference
between the flux density at the rotor surface, at the stator surface, or at any intermediate
radial distance in the air gap. The air-gap field then can be represented as a radial
field Hag or Bag whose intensity varies with the angle around the periphery. The line
integral of Hag across the gap then is simply Hagg and equals the resultant air-gap
mmf Fsr produced by the stator and rotor windings; thus

Hagg = Fsr (4.68)

where the script F denotes the mmf wave as a function of the angle around the
periphery.

The mmf waves of the stator and rotor are spatial sine waves with δsr being the
phase angle between their magnetic axes in electrical degrees. They can be represented
by the space vectors Fs and Fr drawn along the magnetic axes of the stator- and rotor-
mmf waves respectively, as in Fig. 4.32b. The resultant mmf acting to produce flux
across the air gap is their vector sum and is represented by the space vector Fsr. From
the trigonometric formula for the diagonal of a parallelogram, its peak value is found
from

F2
sr = F2

s + F2
r + 2Fs Fr cos δsr (4.69)

in which the Fs are the peak values of the mmf waves. The resultant radial Hag field
is a sinusoidal space wave whose peak value Hag,peak is, from Eq. 4.68,

(Hag)peak = Fsr

g
(4.70)

Now consider the magnetic field coenergy stored in the air gap. From Eq. 3.49,
the coenergy density at a point where the magnetic field intensity is H is calculated
as (μ0/2)H 2 in SI units. Thus, the coenergy density averaged over the volume of the
air gap is μ0/2 times the average value of H 2

ag. The average value of the square of a
sine wave is half its peak value. Hence,

Average coenergy density = μ0

2

(
(Hag)

2
peak

2

)
= μ0

4

(
Fsr

g

)2

(4.71)

Based upon the small-gap approximation, the volume of the air gap is given by π Dlg
where l is the axial length of the air gap and D is its average diameter. The total
coenergy can be found by multiplying the average coenergy density by the air-gap
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volume

W ′
fld = μ0

4

(
Fsr

g

)2

π Dlg = μ0π Dl

4g
F2

sr (4.72)

From Eq. 4.69 the coenergy stored in the air gap can now be expressed in terms
of the peak amplitudes of the stator- and rotor-mmf waves and the space-phase angle
between them; thus

W ′
fld = μ0π Dl

4g

(
F2

s + F2
r + 2Fs Fr cos δsr

)
(4.73)

Recognizing that holding mmf constant is equivalent to holding current constant,
an expression for the electromechanical torque T can now be obtained in terms of the
interacting magnetic fields by taking the partial derivative of the field coenergy with
respect to angle. For a two-pole machine

T = ∂W ′
fld

∂δsr

∣∣∣∣
Fs,Fr

= −
(

μ0π Dl

2g

)
Fs Fr sin δsr (4.74)

The general expression for the torque for a multi-pole machine is

T = −
(

poles

2

) (
μ0π Dl

2g

)
Fs Fr sin δsr (4.75)

In this equation, δsr is the electrical space-phase angle between the rotor and stator
mmf waves and the torque T acts in the direction to accelerate the rotor. Thus when
δsr is negative, the torque is positive (acting in a direction to accelerate the rotor) and
the machine is operating as a motor. Similarly, a positive value of δsr corresponds to
negative torque tending to de-accelerate the rotor as is the case when the machine is
operating as a generator.

This important equation states that the torque is proportional to the peak values of
the stator- and rotor-mmf waves Fs and Fr and to the sine of the electrical space-phase
angle δsr between them. Equal and opposite torques are exerted on the stator and rotor.
The minus sign means that the fields tend to align themselves.

One can now compare the results of Eq. 4.75 with that of Eq. 4.67. Recognizing
that Fs is proportional to is and Fr is proportional to ir, one sees that they are similar in
form. In fact, they must be equal, as can be verified by substitution of the appropriate
expressions for Fs, Fr (Section 4.3.1), and Lsr (Appendix B). Note that these results
have been derived with the assumption that the iron reluctance is negligible. However,
the two techniques are equally valid for finite iron permeability.

On referring to Fig. 4.32b, it can be seen that Fr sin δsr is the component of the Fr

wave in electrical space quadrature with the Fs wave. Similarly Fs sin δsr is the com-
ponent of the Fs wave in quadrature with the Fr wave. Thus, the torque is proportional
to the product of one magnetic field and the component of the other in quadrature
with it, much like the cross product of vector analysis. Also note that in Fig. 4.32b

Fs sin δsr = Fsr sin δr (4.76)
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and

Fr sin δsr = Fsr sin δs (4.77)

where, as seen in Fig. 4.32, δr is the angle measured from the axis of the resultant
mmf wave to the axis of the rotor mmf wave. Similarly, δs is the angle measured from
the axis of the stator mmf wave to the axis of the resultant mmf wave.

The torque, acting to accelerate the rotor, can then be expressed in terms of the
resultant mmf wave Fsr by substitution of either Eq. 4.76 or Eq. 4.77 in Eq. 4.75; thus

T = −
(

poles

2

) (
μ0π Dl

2g

)
Fs Fsr sin δs (4.78)

T = −
(

poles

2

) (
μ0π Dl

2g

)
Fr Fsr sin δr (4.79)

Comparison of Eqs. 4.75, 4.78, and 4.79 shows that the torque can be expressed in
terms of the component magnetic fields due to each current acting alone, as in Eq. 4.75,
or in terms of the resultant field and either of the components, as in Eqs. 4.78 and
4.79, provided that we use the corresponding angle between the axes of the fields.
Ability to reason in any of these terms is a convenience in machine analysis.

In Eqs. 4.75, 4.78, and 4.79, the fields have been expressed in terms of the peak
values of their mmf waves. When magnetic saturation is neglected, the fields can,
of course, be expressed in terms of the peak values of their flux-density waves or in
terms of total flux per pole. Thus the peak value Bag of the field due to a sinusoidally
distributed mmf wave in a uniform-air-gap machine is μ0 Fag,peak/g, where Fag,peak

is the peak value of the mmf wave. For example, the resultant mmf Fsr produces a
resultant flux-density wave whose peak value is Bsr = μ0 Fsr/g. Thus, Fsr = gBsr/μ0

and substitution in Eq. 4.79 gives

T = −
(

poles

2

) (
π Dl

2

)
Bsr Fr sin δr (4.80)

One of the inherent limitations in the design of electromagnetic apparatus is the
saturation flux density of magnetic materials. Because of saturation in the armature
teeth the peak value Bsr of the resultant flux-density wave in the air gap is limited
to about 1.5 to 2.0 T. The maximum permissible value of the winding current, and
hence the corresponding mmf wave, is limited by the temperature rise of the winding
and other design requirements. Because the resultant flux density and mmf appear
explicitly in Eq. 4.80, this equation is in a convenient form for design purposes and
can be used to estimate the maximum torque which can be obtained from a machine
of a given size.

EXAMPLE 4.8

An 1800-r/min, four-pole, 60-Hz synchronous motor has an air-gap length of 1.2 mm. The
average diameter of the air-gap is 27 cm, and its axial length is 32 cm. The rotor winding has
786 turns and a winding factor of 0.976. Assuming that thermal considerations limit the rotor
current to 18 A, estimate the maximum torque and power output one can expect to obtain from
this machine.
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■ Solution
First, we can determine the maximum rotor mmf from Eq. 4.9

(Fr)max = 4

π

(
kr Nr

poles

)
(Ir)max = 4

π

(
0.976 × 786

4

)
18 = 4395 A

Assuming that the peak value of the resultant air-gap flux is limited to 1.5 T, we can estimate
the maximum torque from Eq. 4.80 by setting δr equal to −π/2 (recognizing that negative
values of δr, with the rotor mmf lagging the resultant mmf, correspond to positive, motoring
torque)

Tmax =
(

poles

2

)(
π Dl

2

)
Bsr(Fr)max

=
(

4

2

)(
π × 0.27 × 0.32

2

)
1.5 × 4395 = 1789 N · m

For a synchronous speed of 1800 r/min, ωm = ns (π/30) = 1800 (π/30) = 60π rad/sec,
and thus the corresponding power can be calculated as Pmax = ωmTmax = 337 kW.

Practice Problem 4.6

Repeat Example 4.8 for a two-pole, 60-Hz synchronous motor with an air-gap length of 1.3 mm,
an average air-gap diameter of 22 cm and an axial length of 41 cm. The rotor winding has a
900 turns and a winding factor of 0.965. The maximum rotor current is 22 A.

Solution
Tmax = 2585 N · m and Pmax = 975 kW

Alternative forms of the torque equation arise when it is recognized that the
resultant flux per pole is

	p = (average value of B over a pole)(pole area) (4.81)

and that the average value of a sinusoid over one-half wavelength is 2/π times its
peak value. Thus

	p = 2

π
Bpeak

(
π Dl

poles

)
=

(
2Dl

poles

)
Bpeak (4.82)

where Bpeak is the peak value of the corresponding flux-density wave. For example,
using the peak value of the resultant flux Bsr and substitution of Eq. 4.82 into Eq. 4.80
gives

T = −π

2

(
poles

2

)2

	sr Fr sin δr (4.83)

where 	sr is the resultant flux per pole produced by the combined effect of the stator
and rotor mmfs.

To recapitulate, we now have several forms in which the torque of a uniform-
air-gap machine can be expressed in terms of its magnetic fields. All are merely
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statements that the torque is proportional to the product of the magnitudes of the
interacting fields and to the sine of the electrical space angle between their magnetic
axes. The negative sign indicates that the electromechanical torque acts in a direction
to decrease the displacement angle between the fields. In our preliminary discussion
of machine types, Eq. 4.83 will be the preferred form.

One further remark can be made concerning the torque equations and the thought
process leading to them. There was no restriction in the derivation that the mmf wave
or flux-density wave remain stationary in space. They may remain stationary, or they
may be traveling waves, as discussed in Section 4.5. As we have seen, if the magnetic
fields of the stator and rotor are constant in amplitude and travel around the air gap
at the same speed, a steady torque will be produced by the tendency of the stator and
rotor fields to align themselves in accordance with the torque equations.

4.8 LINEAR MACHINES
In general, each of the machine types discussed in this book can be produced in linear
versions in addition to the rotary versions which are commonly found and which are
discussed extensively in the following chapters. In fact, for clarity of discussion, many
of the machine types discussed in this book are drawn in their developed (Cartesian
coordinate) form, such as in Fig. 4.16b.

Linear motors can be found in some transportation systems, typically with the ac
“stator” on the moving vehicle and with a conducting stationary “rotor” constituting
the rails. In these systems, in addition to providing propulsion, the induced currents in
the rail may be used to provide levitation, thus offering a mechanism for high-speed
transportation without the difficulties associated with wheel-rail interactions on more
conventional rail transport. Linear motors have also found application in the machine
tool industry and in robotics where linear motion (required for positioning and in the
operation of manipulators) is a common requirement. In addition, reciprocating linear
machines are being constructed for driving reciprocating compressors and alternators.

The analysis of linear machines is quite similar to that of rotary machines. In
general, linear dimensions and displacements replace angular ones, and forces replace
torques. With these exceptions, the expressions for machine parameters are derived
in an analogous fashion to those presented here for rotary machines, and the results
are similar in form.

Consider the linear winding shown in Fig. 4.33. This winding, consisting of N
turns per slot and carrying a current i , is directly analogous to the rotary winding shown
in developed form in Fig. 4.22. In fact, the only difference is that the dependence on
the angular position θa is replaced by a dependence on the linear position z.

The fundamental component of the mmf wave of Fig. 4.33 can be found directly
from Eq. 4.14 simply by recognizing that this winding has a wavelength equal to β

and that the fundamental component of this mmf wave varies as cos (2π z/β). Thus
replacing the angle θa in Eq. 4.14 by 2π z/β, we can find the fundamental component
of the mmf wave directly as

Hag1 = 4

π

(
Ni

2g

)
cos

(
2π z

β

)
(4.84)
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Figure 4.33 The mmf and H field of a concentrated full-pitch
linear winding.

If an actual machine has a distributed winding (similar to its rotary counterpart
as shown in Fig. 4.17) consisting of a total of Nph turns distributed over (poles/2)
periods in z (i.e., over a length of β × poles/2), the fundamental component of Hag

can be found by analogy with Eq. 4.16

Hag1 = 4

π

(
kw Nphi

g × poles

)
cos

(
2π z

β

)
(4.85)

where kw is the winding factor.
In a fashion analogous to the discussion of Section 4.5.2, a three-phase linear

winding can be made from three windings such as those of Fig. 4.28, with each phase
displaced in position by a distance β/3 and with each phase excited by balanced
three-phase currents of angular frequency ωe

ia = Ipeak cos ωet (4.86)

ib = Ipeak cos (ωet − 120◦) (4.87)

ic = Ipeak cos (ωet + 120◦) (4.88)

Following the development of Eqs. 4.28 through 4.40, we can see that there will
be a single positive-traveling mmf which can be written directly from Eq. 4.40 simply
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by replacing θa by 2π z/β as

F+(z, t) = 3

2
Fmax cos

(
2π z

β
− ωet

)
(4.89)

where Fmax is given by

Fmax = 4

π

(
kw Nph

poles

)
Ipeak (4.90)

From Eq. 4.89 we see that the result is an mmf which travels in the z direction
with a linear velocity

v = ωeβ

2π
= feβ (4.91)

where fe is the exciting frequency in hertz.
From Eq. 4.89 and using Eq. 4.13, we can find the fundamental air-gap flux density

Bag1 =
(

μ0

g

)
F+(z, t) = 3

2
Bmax cos

(
2π z

β
− ωet

)
(4.92)

where

Bmax = 4 μ0

πg

(
kw Nph

poles

)
Ipeak (4.93)

EXAMPLE 4.9

A three-phase linear ac motor has a winding with a wavelength of β = 0.5 m and an air gap
of 1.0 cm in length. A total of 48 turns, with a winding factor kw = 0.92, is distributed over
a total winding length of 3β = 1.5 m (poles = 6). Assume the windings to be excited with
balanced three-phase currents of peak amplitude 700 A and frequency 25 Hz. Calculate (a) the
amplitude of the fundamental component of the resultant mmf wave, (b) the amplitude of the
corresponding air-gap flux density, and (c) the velocity of the traveling mmf wave.

■ Solution

a. From Eqs. 4.89 and 4.90, the amplitude of the fundamental component of the resultant
mmf wave is

Fpeak = 3

2

4

π

(
kw Nph

poles

)
Ipeak

= 3

2

4

π

(
0.92 × 48

6

)
700

= 9840 A/m

b. The amplitude of the corresponding flux-density wave is

Bpeak =
(

μ0

g

)
Fpeak

=
(

4 π × 10−7

0.01

)
9840

= 1.24 T
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c. Finally, the velocity of the traveling wave can be determined from Eq. 4.91:

v = feβ = 25 × 0.5 = 12.5 m/s

Practice Problem 4.7

A three-phase linear synchronous motor has a wavelength of 0.93 m. It is observed to be
traveling at speed of 83 km/hr. Calculate the frequency of the electrical excitation required
under this operating condition.

Solution

f = 24.8 Hz

Linear machines are not discussed specifically in this book. Rather, the reader is
urged to recognize that the fundamentals of their performance and analysis correspond
directly to those of their rotary counterparts. One major difference between these two
machine types is that linear machines have end effects, corresponding to the magnetic
fields which “leak” out of the air gap ahead of and behind the machine. These effects
are beyond the scope of this book and have been treated in detail in the published
literature.3

4.9 MAGNETIC SATURATION
The characteristics of electric machines depend heavily upon the use of magnetic
materials. These materials are required to form the magnetic circuit and are used by
the machine designer to obtain specific machine characteristics. As we have seen in
Chapter 1, magnetic materials are less than ideal. As the magnetic flux they carry
increases, they begin to saturate, with the result that their magnetic permeabilities
begin to decrease, along with their effectiveness in contributing to the overall flux
density in the machine.

Both electromechanical torque and generated voltage in all machines depend on
the winding flux linkages. For specific mmfs in the windings, the fluxes depend on the
reluctances of the iron portions of the magnetic circuits and on those of the air gaps.
Saturation may therefore appreciably influence the characteristics of the machines.

Another aspect of saturation, more subtle and more difficult to evaluate without
experimental and theoretical comparisons, concerns its influence on the basic premises
from which the analytic approach to machinery is developed. Specifically, relations
for the air-gap mmf are typically based on the assumption of negligible reluctance in
the iron. When these relations are applied to practical machines with varying degrees
of saturation in the iron, significant errors in the analytical results can be expected.

3 See, for example, S. Yamamura, Theory of Linear Induction Motors, 2d ed., Halsted Press, 1978. Also,
S. Nasar and I. Boldea, Linear Electric Motors: Theory, Design and Practical Applications,
Prentice-Hall, 1987.
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To improve these analytical relationships, in one approach the actual machine is
replaced by an equivalent machine whose iron has negligible reluctance but whose
air-gap length is increased by an amount sufficient to absorb the mmf drop in the iron
of the actual machine.

Similarly, the effects of air-gap non-uniformities such as slots and ventilating
ducts are also incorporated by increasing the effective air-gap length. Ultimately,
these various approximate techniques must be verified and confirmed experimentally.
In cases where such simple techniques are found to be inadequate, detailed analyses,
such as those employing finite-element or other numerical techniques, can be used.
Typically the use of these techniques represents a significant increase in modeling
complexity.

Saturation characteristics of rotating machines are often presented in the form of
an open-circuit characteristic, also called a magnetization curve or saturation curve.
For a synchronous machine, the open-circuit saturation curve is obtained by operating
the machine at constant speed and measuring the open-circuit armature voltage as a
function of the field current. A typical open-circuit saturation curve for a synchronous
machine takes the form shown in Fig. 4.34. This nature of this curve is determined
both by the geometry of the machine under consideration as well as by the magnetiza-
tion characteristics of the electrical steel used in the machine. The straight line tangent
to the lower portion of the curve is the air-gap line, corresponding to low levels of
flux density within the machine. Under these conditions the reluctance of the machine
iron is typically negligible, and the mmf required to excite the machine is simply that
required to overcome the reluctance of the air gap. If it were not for the effects of
saturation, the air-gap line and open-circuit characteristic would coincide. Thus, the
departure of the curve from the air-gap line as the field current is increased is an indi-
cation of the degree of saturation in the machine. In typical machines the ratio at rated
voltage of the total mmf to that required by the air gap alone is between 1.1 and 1.25.

Air-gap line

Open-circuit
characteristic

Field excitation in ampere-turns
or in field amperes
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Figure 4.34 Typical open-circuit
characteristic and air-gap line.
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Figure 4.35 Finite-element solution for the flux distribution around a
salient pole.

At the design stage, the open-circuit characteristic can be calculated using tech-
niques such as finite-element analyses. A typical finite-element solution for the flux
distribution around the pole of a salient-pole machine is shown in Fig. 4.35. The dis-
tribution of the air-gap flux found from this solution, together with the fundamental
and third-harmonic components, is shown in Fig. 4.36.

In addition to saturation effects, Fig. 4.36 clearly illustrates the effect of a nonuni-
form air gap. As expected, the flux density over the pole face, where the air gap is
small, is much higher than that away from the pole. This type of detailed analysis is
of great use to a designer in obtaining specific machine characteristics.

As we have seen, the magnetization curve for an existing synchronous machine
can be determined by operating the machine as an unloaded generator and measuring
the values of terminal voltage corresponding to a series of values of field current.
For an induction motor, the machine is operated at or close to synchronous speed (in
which case very little current will be induced in the rotor windings), and the stator
current is measured as a function of stator terminal voltage. The magnetization curve
is produced by plotting the stator voltage as a function of stator current.

It should be emphasized that saturation in a fully loaded machine occurs as a result
of the total mmf acting on the magnetic circuit. Since the flux distribution under load
generally differs from that of no-load conditions, the details of the machine saturation
characteristics may vary from the open-circuit curve of Fig. 4.34.
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Flux-density
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Fundamental
component

Third harmonic
component

Center line of pole

Figure 4.36 Flux-density wave corresponding to
Fig. 4.38 with its fundamental and third-harmonic
components.

4.10 LEAKAGE FLUX
In Section 2.4 we showed that in a two-winding transformer the flux created by
each winding can be separated into two components. One component consists of flux
which links both windings, and the other consists of flux which links only the winding
creating the flux. The first component, called mutual flux, is responsible for coupling
between the two coils. The second, known as leakage flux, contributes only to the
self-inductance of each coil.

Note that the concept of mutual and leakage flux is meaningful only in the context
of a multi-winding system. For systems of three or more windings, the bookkeeping
must be done very carefully. Consider, for example, the three-winding system of
Fig. 4.37. Shown schematically are the various components of flux created by a
current in winding 1. Here ϕ123 is clearly mutual flux that links all three windings,
and ϕ1l is clearly leakage flux since it links only winding 1. However, ϕ12 is mutual
flux with respect to winding 2 yet is leakage flux with respect to winding 3, while ϕ13

mutual flux with respect to winding 3 and leakage flux with respect to winding 2.
Electric machinery often contains systems of multiple windings, requiring careful

bookkeeping to account for the flux contributions of the various windings. Although
the details of such analysis are beyond the scope of this book, it is useful to discuss
these effects in a qualitative fashion and to describe how they affect the basic machine
inductances.

Air-Gap Space-Harmonic Fluxes In this chapter we have seen that although sin-
gle distributed coils create air-gap flux with a significant amount of space-harmonic
content, it is possible to distribute these windings so that the space-fundamental com-
ponent is emphasized while the harmonic effects are greatly reduced. As a result, we
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Figure 4.37 Three-coil system showing
components of mutual and leakage flux produced by
current in coil 1.

can neglect harmonic effects and consider only space-fundamental fluxes in calculat-
ing the self and mutual-inductance expressions of Eqs. B.24 and B.25.

Though often small, the space-harmonic components of air-gap flux do exist. In
dc machines they are useful torque-producing fluxes and therefore can be counted as
mutual flux between the rotor and stator windings. In ac machines, however, they may
generate time-harmonic voltages or asynchronously rotating flux waves. These effects
generally cannot be rigorously accounted for in most standard analyses. Nevertheless,
it is consistent with the assumptions basic to these analyses to recognize that these
fluxes form a part of the leakage flux of the individual windings which produce them.

Slot-Leakage Flux Figure 4.38 shows the flux created by a single coil side in a slot.
Notice that in addition to flux which crosses the air gap, contributing to the air-gap
flux, there are flux components which cross the slot. In a slot with coils from a single
phase, this flux links only the coil that is producing it; it also forms a component of

Air gap

Coil side carrying

current into paper

Figure 4.38 Flux created by a single
coil side in a slot.
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Figure 4.39 End view of the stator of a 16.5-kV 275-MVA
3600 r/min turbine generator. (Photo courtesy of Siemens)

the leakage inductance of the winding producing it. In other cases, coils of two phases
share a single slot and some of the slot flux is mutual between the phases. However,
since this flux does not cross the air gap, it remains leakage flux with respect to any
windings on the rotor.

End-Turn Fluxes Figure 4.39 shows the stator end windings of an ac machine.
The magnetic field distribution created by end turns is extremely complex. In general
these fluxes do not contribute to useful rotor-to-stator mutual flux, and thus they, too,
contribute to leakage inductance.

From this discussion we see that the self-inductance expression of Eq. B.24
must, in general, be modified by an additional term Ll , which represents the winding
leakage inductance. This leakage inductance corresponds directly to the leakage in-
ductance of a transformer winding as discussed in Chapter 1. Although the leakage
inductance is usually difficult to calculate analytically and must be determined by ap-
proximate or empirical techniques, it plays an important role in machine performance.

4.11 SUMMARY
This chapter presents a brief and elementary description of three basic types of rotating
machines: synchronous, induction, and dc machines. In all of them the basic principles
are essentially the same. Voltages are generated by the relative motion of a magnetic
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field with respect to a winding, and torques are produced by the interaction of the
magnetic fields of the stator and rotor windings. The characteristics of the various
machine types are determined by the methods of connection and excitation of the
windings, but the basic principles are essentially similar.

The basic analytical tools for studying rotating machines are expressions for the
generated voltages and for the electromechanical torque. Taken together, they express
the coupling between the electric and mechanical systems. To develop a reasonably
quantitative theory without the confusion arising from too much detail, we have made
several simplifying approximations. In the study of ac machines we have assumed
sinusoidal time variations of voltages and currents and sinusoidal space distributions
of air-gap flux density and mmf. On examination of the mmf produced by distributed ac
windings we found that the space-fundamental component is the most important. On
the other hand, in dc machines the armature-winding mmf is more nearly a sawtooth
wave. For our preliminary study in this chapter, however, we have assumed sinusoidal
mmf distributions for both ac and dc machines. We examine this assumption more
thoroughly for dc machines in Chapter 7. Faraday’s law results in Eq. 4.52 for the
rms voltage generated in an ac machine winding or Eq. 4.55 for the average voltage
generated between brushes in a dc machine.

On examination of the mmf wave of a three-phase winding, we found that bal-
anced three-phase currents produce a constant-amplitude air-gap magnetic field rotat-
ing at synchronous speed, as shown in Fig. 4.28 and Eq. 4.41. The importance of this
fact cannot be overstated, for it means that it is possible to operate such machines, ei-
ther as motors or generators, under conditions of constant torque (and hence constant
electrical power as is discussed in Appendix A), eliminating the double-frequency,
time-varying torque inherently associated with single-phase machines. For example,
imagine a multi-megawatt single-phase 60-Hz generator subjected to multi-megawatt
instantaneous torque and power pulsation at 120 Hz! The discovery that poly-phase
windings can produce rotating fields led to the invention of the simple, rugged, re-
liable, self-starting polyphase induction motor, which is analyzed in Chapter 6. (A
single-phase induction motor will not start; it needs an auxiliary starting winding, as
shown in Chapter 9.)

In single-phase machines, or in polyphase machines operating under unbalanced
conditions, the backward-rotating component of the armature mmf wave induces
currents and losses in the rotor structure. Thus, the operation of polyphase machines
under balanced conditions not only eliminates the second-harmonic component of
generated torque, it also eliminates a significant source of rotor loss and rotor heating.
It was the invention of polyphase machines operating under balanced conditions that
made possible the design and construction of large synchronous generators with
ratings as large as 1000 MW.

Having assumed sinusoidally-distributed magnetic fields in the air gap, we then
derived expressions for the magnetic torque. The simple physical picture for torque
production is that of two magnets, one on the stator and one on the rotor, as shown
schematically in Fig. 4.32a. The torque acts in the direction to align the magnets.
To get a reasonably close quantitative analysis without being hindered by details, we
assumed a smooth air gap and neglected the reluctance of the magnetic paths in the
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iron parts, with a mental note that this assumption may not be valid in all situations
and a more detailed model may be required.

In Section 4.7 we derived expressions for the magnetic torque from two view-
points, both based on the fundamental principles of Chapter 3. The first viewpoint
regards the machine as a set of magnetically-coupled circuits with inductances which
depend on the angular position of the rotor, as in Section 4.7.1. The second regards the
machine from the viewpoint of the magnetic fields in the air gap, as in Section 4.7.2.
It is shown that the torque can be expressed as the product of the stator field, the rotor
field, and the sine of the angle between their magnetic axes, as in Eq. 4.75 or any of
the forms derived from Eq. 4.75. The two viewpoints are complementary, and ability
to reason in terms of both is helpful in reaching an understanding of how machines
work.

This chapter has been concerned with basic principles underlying rotating-
machine theory. By itself it is obviously incomplete. Many questions remain unan-
swered. How do we apply these principles to the determination of the characteristics
of synchronous, induction, and dc machines? What are some of the practical problems
that arise from the use of iron, copper, and insulation in physical machines? What
are some of the economic and engineering considerations affecting rotating-machine
applications? What are the physical factors limiting the conditions under which a
machine can operate successfully? Appendix D discusses some of these problems.
Taken together, Chapter 4 along with Appendix D serve as an introduction to the more
detailed treatments of rotating machines in the following chapters.

4.12 CHAPTER 4 VARIABLES
β Linear wavelength [m]
δ Phase angle [rad]
λ Flux linkages [Wb]
	p Air gap flux per pole [Wb]
θa Stator spatial angle [rad]
θae Stator spatial angle in electrical units [rad]
θm Rotor angular position [rad]
θme Rotor angular position in electrical units [rad]
θr Rotor spatial angle [rad]
L , L Inductance [H]
μ Magnetic permeability [H/m]
μ0 Permeability of free space = 4π × 10−7 [H/m]
ωe Electrical frequency [rad/sec]
ωm Mechanical angular velocity [rad/sec]
ωs Synchronous mechanical angular velocity [rad/sec]
B Magnetic flux density [T]
Ca Total number of turns in dc-machine armature winding
e, E , v Voltage [V]
fe Electrical frequency [Hz]
F , F Magnetomotive force [A]
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g Air-gap length [m]
H , H Magnetic field intensity [A/m]
i , I Current [A]
kf, kr, kw Winding factor
l, r , D Linear dimensions [m]
m Number of parallel paths in dc-machine armature winding
n Angular velocity [r/min]
ns Synchronous angular velocity [r/min]
N Number of turns
Nc Number of turns per coil
Nf Number of field-winding series turns
Nph Number of turns per phase
poles Number of poles
q Number of phases
t Time [sec]
T Torque [N·m]
v Velocity [m/sec]
W ′ Coenergy [J]
z Linear position [m]

Subscripts:

a Armature
a,b,c Phase designations
ag Air gap
c Coil
f Field
max Maximum
r Rotor
rms Root mean square
s Stator

4.13 PROBLEMS
4.1 The rotor of a six-pole synchronous generator is rotating at a mechanical

speed of 1200 r/min.

a. Express this mechanical speed in radians per second.

b. What is the frequency of the generated voltage in hertz and in radians per
second?

c. What mechanical speed in revolutions per minute would be required to
generate voltage at a frequency of 50 Hz?

4.2 The voltage generated in phase a of an unloaded three-phase synchronous
generator is of the form va(t) = √

2 Va cos (ωt). (i) Write expressions for the
voltage in the remaining two phases a and b. (ii) Write an expression for the
line-line voltage vab(t).
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4.3 A wind turbine is connected to an 8-pole permanent-magnet generator through
a gear with a speed-increase ratio of 1:10. The generator, whose output will be
rectified, produces a voltage of 480 V rms, line-line at a speed of 900 r/min.
Depending upon the speed of the wind, the wind-turbine will rotate at speeds
in the range of 0.5 to 1.75 r/sec. Calculate the generator output frequency and
voltage at wind-turbine speeds of (i) 0.5 r/sec and (ii) 1.75 r/sec.

4.4 A three-phase motor is used to drive a pump. When connected to a 50-Hz
power system, it is observed (by the use of a stroboscope) that the motor
speed decreases from 998 r/min when the pump is unloaded to 945 r/min as
the pump is loaded.

a. Is this a synchronous or an induction motor?

b. How many poles does this motor have?

4.5 A three-phase, variable-frequency drive system is used to power a 4-pole
synchronous motor. Calculate the speed of the motor in r/min if the drive
frequency is 200 Hz.

4.6 The object of this problem is to illustrate how the armature windings of
certain machines, i.e., dc machines, can be approximately represented by
uniform current sheets, the degree of correspondence growing better as the
winding is distributed in a greater number of slots around the armature
periphery. For this purpose, consider an armature with eight slots uniformly
distributed over 360 electrical degrees (corresponding to a span of one pole
pair). The air gap is of uniform length, the slot openings are very small, and
the reluctance of the iron is negligible.

Lay out 360 electrical degrees of the armature with its slots in developed
form in the manner of Fig. 4.20a and number the slots 1 to 8 from left to
right. The winding consists of eight single-turn coils, each carrying a direct
current of I0. Coil sides placed in any of the slots 1 to 4 carry current directed
into the paper; those placed in any of the slots 5 to 8 carry current out of the
paper.

a. Consider that all eight coils are placed with one side in slot 1 and the other
in slot 5. The remaining slots are empty. Draw the rectangular mmf wave
produced by these slots.

b. Next consider that four coils have one side in slot 1 and the other in slot 5,
while the remaining four coils have one side in slot 3 and the other in
slot 7. Draw the component rectangular mmf waves produced by each
group of coils, and superimpose the components to give the resultant
mmf wave.

c. Now consider that two coils are placed in slots 1 and 5, two in slots 2 and
6, two in 3 and 7, and two in 4 and 8. Again superimpose the component
rectangular waves to produce the resultant wave. Note that the task can be
systematized and simplified by recognizing that the mmf wave is
symmetric about its axis and takes a step at each slot which is directly
proportional to the number of ampere-conductors in that slot.
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d. Let the armature now consist of 16 slots per 360 electrical degrees with
one coil side per slot. Draw the resultant mmf wave.

4.7 A three-phase Y-connected ac machine is initially supplying a balanced
three-phase load when one of the phase windings becomes open-circuited.
Because there is no neutral connection on the winding, this requires that the
currents in the remaining two windings become equal and opposite. Under
this condition, calculate the relative magnitudes of the resultant positive- and
negative-traveling mmf waves.

4.8 What is the effect on the rotating mmf and flux waves of a three-phase
winding produced by balanced-three-phase currents if two of the phase
connections are interchanges?

4.9 In a balanced two-phase machine, the two windings are displaced 90 electrical
degrees in space, and the currents in the two windings are phase-displaced 90
electrical degrees in time. For such a machine, carry out the process leading
to an equation for the rotating mmf wave corresponding to Eq. 4.41 (which is
derived for a three-phase machine).

4.10 This problem investigates the advantages of short-pitching the stator coils of
an ac machine. Figure 4.40a shows a single full-pitch coil in a two-pole
machine. Figure 4.40b shows a fractional-pitch coil for which the coil sides
are β radians apart, rather than π radians (180◦) as is the case for the
full-pitch coil.

For an air-gap radial flux distribution of the form

Br =
∑
n odd

Bn cos nθ

where n = 1 corresponds to the fundamental space harmonic, n = 3 to the
third space harmonic, and so on, the flux linkage of each coil is the integral
of Br over the surface spanned by that coil. Thus for the nth space harmonic,
the ratio of the maximum fractional-pitch coil flux linkage to that of the

π

Rotor

Stator

β

Rotor

Stator

(a) (b)

N-turn coil

Figure 4.40 Problem 4.10: (a) full-pitch coil and
(b) fractional-pitch coil.
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full-pitch coil is∫ β/2
−β/2 Bn cos nθ dθ∫ π/2
−π/2 Bn cos nθ dθ

=
∫ β/2

−β/2 cos nθ dθ∫ π/2
−π/2 cos nθ dθ

= |sin (nβ/2)|

It is common, for example, to fractional-pitch the coils of an ac machine by 30
electrical degrees (β = 5π/6 = 150◦). For n = 1, 3, 5 calculate the fractional
reduction in flux linkage due to short pitching.

4.11 An eight-pole, 60-Hz synchronous machine has a rotor winding with a total of
608 series turns and a winding factor kr = 0.921. The rotor length is 1.78 m,
the rotor radius is 56 cm, and the air-gap length = 2.85 cm.

a. What is the rated operating speed in r/min?

b. Calculate the rotor-winding current required to achieve a peak
fundamental air-gap flux density of 1.43 T.

c. Calculate the corresponding fundamental flux per pole.

4.12 Assume that a phase winding of the synchronous machine of Problem 4.11
consists of one 5-turn, full-pitch coil per pole pair, with the coils connected in
series to form the phase winding. If the machine is operating at rated speed
and under the operating conditions of Problem 4.11, calculate the rms
generated voltage per phase.

4.13 The synchronous machine of Problem 4.11 has a three-phase winding with 45
series turns per phase and a winding factor kw = 0.935. For the flux condition
and rated speed of Problem 4.11, calculate the rms-generated voltage per
phase.

4.14 A four-pole, three-phase synchronous generator has a field winding with a
total of 148 series turns and a winding factor kr = 0.939. The rotor length
is 72 cm, and its radius is 19 cm. The air-gap length 0.8 cm. The �-connected
stator winding has 12 series turns per phase and a winding factor kw = 0.943.

a. The rated rms open-circuit line-line voltage of this motor is 575 V.
Calculate the corresponding flux per pole and the peak of the fundamental
component of the corresponding air-gap flux density.

b. Calculate the field-current required to achieve rated open-circuit
voltage.

c. The stator winding is to be rewound so that the motor can be moved to an
application for which it will be operated at 50-Hz at a terminal voltage
690 V. Assuming the stator-winding remains � connected, (i) calculate
the minimal number of series turns per phase required to insure that the
re-wound motor achieves rated open-circuit voltage at a field current
which does not exceed that of part (b). (ii) Calculate the required field
current.

4.15 Consider a two-pole machine with a smooth air gap. Assume that the rotor
includes a single, 400-turn full-pitched field winding. The stator has an inside
diameter of 15 cm and an axial length is 27 cm and the air gap length is
1.0 cm.
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a. The field-winding is excited with a current of 4.6 A. Sketch a plot of the
air-gap flux density as a function of angle (assume the field-coil sides to
be located at ±90◦). Calculate the peak fundamental amplitude of the
air-gap flux wave.

Assume that each phase of the stator winding consists of a 30-turn
full-pitched winding.

b. If the rotor is driven at a speed of 60 r/sec, plot the resultant voltage
generated in the stator coil as a function of time. You may take zero time
as the instant when the stator-winding flux linkage is at its maximum.
Calculate the rms value of the fundamental component of this generated
voltage.

4.16 A three-phase two-pole winding is excited by balanced three-phase 60-Hz
currents as described by Eqs. 4.25 to 4.27. Although the winding distribution
has been designed to minimize harmonics, there remains some third and fifth
spatial harmonics. Thus the phase-a mmf can be written as

Fa = ia(A1 cos θa + A3 cos 3θa + A5 cos 5θa)

Similar expressions can be written for phases b (replace θa by θa − 120◦)
and c (replace θa by θa + 120◦). Calculate the total three-phase mmf. What
is the angular velocity and rotational direction of each component of
the mmf?

4.17 The nameplate of a dc generator indicates that it will produce an output
voltage of 24 V dc when operated at a speed of 1800 r/min. By what factor
must the number of armature turns be changed such that, for the same
field-flux per pole, the generator will produce an output voltage of 48 V dc at
a speed of 1400 r/min?

4.18 The armature of a four-pole dc generator has a total of 270 series turns. When
operated at a speed of 1200 r/min, the open-circuit generated voltage is 240 V.
Calculate 	p, the air-gap flux per pole.

4.19 The design of a four-pole, three-phase, 415-V, 50-Hz induction motor is to
be based on a stator core of length 21 cm and inner diameter 17 cm. The
stator winding distribution which has been selected has a winding factor
kw = 0.936.

The designer must pick the number of armature turns so that the flux
density in the machine is large enough to make efficient use of the magnetic
material without being so large as to result in excessive saturation. To
achieve this objective, the machine is to be designed with a peak fundamental
air-gap flux density close to 1.45 T. Calculate the required number of series
turns per phase if the armature winding is to be (a) Y-connected and
(b) �-connected.

4.20 For an air-gap length of 0.35 mm, calculate the self-inductance of an armature
phase of the Y-connected induction motor of Problem 4.19 using the
inductance formulas of Appendix B.
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4.21 A two-pole, 60-Hz, three-phase, laboratory-size synchronous generator has a
rotor radius of 5.71 cm, a rotor length of 18.0 cm, and an air-gap length of
0.25 mm. The rotor field winding consists of 264 turns with a winding factor
of kr = 0.95. The Y-connected armature winding consists of 45 turns per
phase with a winding factor kw = 0.93.

a. Calculate the flux per pole and peak fundamental air-gap flux density
which will result in an open-circuit, 60-Hz armature voltage of
120 V rms/phase (line-to-neutral).

b. Calculate the dc field current required to achieve the operating condition
of part (a).

c. Calculate the peak value of the field-winding to armature-phase-winding
mutual inductance.

4.22 A four-pole, 60-Hz, three-phase synchronous generator has a rotor radius of
55 cm, a rotor length of 3.23 m, and an air-gap length of 6.2 cm. The rotor
field winding consists of 148 turns with a winding factor of kr = 0.962. The
�-connected armature winding consists of 24 series turns per phase with a
winding factor kw = 0.935.

a. The generator is designed to achieve rated 60-Hz open-circuit voltage at a
peak air-gap flux density of 1.30 T. Calculate the rated rms, line-line
terminal voltage.

b. Calculate the dc field current required to achieve the operating condition
of part (a).

4.23 The generator of Problem 4.22 is to be re-wound to operate on a 50-Hz power
system with a terminal voltage of 22 kV. The stator winding will be
Y-connected.

a. Calculate the number of turns per phase in the re-wound stator such that
rated open-circuit terminal voltage will be achieved at field current as
close as possible to that of the original generator.

b. Calculate the dc field current required to achieve rated open-circuit
voltage for the new generator.

4.24 Write a MATLAB script which calculates the required total series field turns
and armature-winding series turns per phase for a three-phase, Y-connected
synchronous motor given the following information:

Rotor radius, R (meters) Rotor length, l (meters)
Air-gap length, g (meters) Number of poles
Electrical frequency, fe (Hz) Peak fundamental air-gap flux

density, Bpeak (T)
Field-winding factor, kf Armature-winding factor, kw

Rated rms open-circuit line-to-line terminal voltage, Vrated (V)
Field-current at rated-open-circuit terminal voltage, If (A)
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Exercise your program on a generator with the following parameters:

R = 8.4 cm l = 32 cm g = 0.65 mm
poles = 4 fe = 50 Hz Bpeak = 0.94 T
kf = 0.955 kw = 0.935 Vrated = 415 V
If = 8.0 A

4.25 A four-pole, 60-Hz synchronous generator has a rotor length of 4.8 m,
diameter of 1.13 m, and air-gap length of 5.9 cm. The field winding consists
of a series connection of 244 turns with a winding factor of kr = 0.925. The
peak value of the fundamental air-gap flux density is limited to 1.15 T and the
rotor winding current to 2800 A. Calculate the maximum torque (N·m) and
power output (MW) which can be supplied by this machine.

4.26 Thermal considerations limit the field-current of the laboratory-size
synchronous generator of Problem 4.21 to a maximum value of 2.6 A. If the
peak fundamental air-gap flux density is limited to a maximum of 1.35 T,
calculate the maximum torque (N·m) and power (kW) which can be produced
by this generator.

4.27 Write a MATLAB script to solve for the maximum torque and power for a
generator given the following information:

Rotor radius, R (meters) Rotor length, l (meters)
Air-gap length, g (meters) Number of poles
Electrical frequency, fe Peak fundamental air-gap flux

density, Bpeak (T)
Field-winding factor, kf Number of field-winding turns, Nf

Maximum field-current, If,max (A)

Exercise your program on the laboratory generator of Problems 4.21 and 4.26.
4.28 Figure 4.41 shows in cross section a machine having a rotor winding f and

two identical stator windings a and b whose axes are in quadrature. The
self-inductance of each stator winding is Laa and of the rotor is L ff. The air
gap is uniform. The mutual inductance between a stator winding depends on
the angular position of the rotor and may be assumed to be of the form

Maf = M cos θ0 Mbf = M sin θ0

where M is the maximum value of the mutual inductance. The resistance of
each stator winding is Ra.

a. Derive a general expression for the torque T in terms of the angle θ0, the
inductance parameters, and the instantaneous currents ia, ib, and if. Does
this expression apply at standstill? When the rotor is revolving?

b. Suppose the rotor is stationary and constant direct currents ia = I0,
ib = I0, and if = 2I0 are supplied to the windings in the directions
indicated by the dots and crosses in Fig. 4.41. If the rotor is allowed to
move, will it rotate continuously or will it tend to come to rest? If the
latter, at what value of θ0?
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Figure 4.41 Elementary cylindrical-rotor, two-
phase synchronous machine for Problem 4.28.

c. The rotor winding is now excited by a constant direct current If while the
stator windings carry balanced two-phase currents

ia =
√

2Ia cos ωt ib =
√

2Ia sin ωt

The rotor is revolving at synchronous speed so that its instantaneous
angular position is given by θ0 = ωt − δ, where δ is a phase angle
describing the position of the rotor at t = 0. The machine is an elementary
two-phase synchronous machine. Derive an expression for the torque
under these conditions.

d. Under the conditions of part (c), derive an expression for the
instantaneous terminal voltages of stator phases a and b.

4.29 Consider the two-phase synchronous machine of Problem 4.28. Derive an
expression for the torque acting on the rotor if the rotor is rotating at constant
angular velocity, such that θ0 = ωt + δ, and the phase currents become
unbalanced such that

ia =
√

2Ia cos ωt ib =
√

2(Ia + I ′) sin ωt

What are the instantaneous and time-averaged torque under this condition?
4.30 Figure 4.42 shows in schematic cross section a salient-pole synchronous

machine having two identical stator windings a and b on a laminated steel
core. The salient-pole rotor is made of steel and carries a field winding f
connected to slip rings.

Because of the nonuniform air gap, the self- and mutual inductances are
functions of the angular position θ0 of the rotor. Their variation with θ0 can be
approximated as:

Laa = L0 + L2 cos 2θ0 Lbb = L0 − L2 cos 2θ0 Mab = L2 sin 2θ0
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Figure 4.42 Schematic two-phase, salient-
pole synchronous machine for Problem 4.30.

where L0 and L2 are positive constants. The mutual inductance between the
rotor and the stator windings are functions of θ0

Maf = M cos θ0 Mbf = M sin θ0

where M is also a positive constant. The self-inductance of the field winding,
L ff, is constant, independent of θ0.

Consider the operating condition in which the field winding is excited by a
direct current If and the stator windings are connected to a balanced
two-phase voltage source of frequency ω. With the rotor revolving at
synchronous speed, its angular position will be given by θ0 = ωt .
Under this operating condition, the stator currents will be of the form

ia =
√

2Ia cos (ωt + δ) ib =
√

2Ia sin (ωt + δ)

a. Derive an expression for the electromagnetic torque acting on the rotor.

b. Can the machine be operated as a motor and/or a generator? Explain.

c. Will the machine continue to supply torque if the field current If is
reduced to zero? Support you answer with an expression for the torque
and an explanation as to why such operation is or is not possible.

4.31 A three-phase linear ac motor has an armature winding of wavelength 35 cm.
A three-phase balanced set of currents at a frequency of 120 Hz is applied to
the armature.

a. Calculate the linear velocity of the armature mmf wave.

b. For the case of a synchronous rotor, calculate the linear velocity of the
rotor.

c. For the case of an induction motor operating at a slip of 0.055, calculate
the linear velocity of the rotor.
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4.32 The linear-motor armature of Problem 4.31 has a total active length of
7 wavelengths, with a total of 322 turns per phase with a winding factor
kw = 0.93. For an air-gap length of 1.03 cm, calculate the rms magnitude of
the balanced three-phase currents which must be supplied to the armature to
achieve a peak space-fundamental air-gap flux density of 1.4 T.

4.33 A two-phase linear permanent-magnet synchronous motor has an air-gap of
length 1.2 mm, a wavelength of 17 cm, and a pole width of 4.5 cm. The rotor
is 6 wavelengths in length. The permanent magnets on the rotor are arranged
to produce an air-gap magnetic flux distribution that is uniform over the width
of a pole but which varies sinusoidally in space in the direction of rotor travel.
The peak density of this air-gap flux is 0.87 T.

a. Calculate the net flux per pole.

b. Each armature phase consists of 12 turns per pole, with all the poles
connected in series. Assuming that the armature winding extends many
wavelengths past either end of the rotor, calculate the peak flux linkages
of the armature winding.

c. If the rotor is traveling at a speed of 6.3 m/sec, calculate the rms voltage
induced in the armature winding.
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Synchronous Machines

A s we have seen in Section 4.2.1, in a synchronous machine under steady-state
conditions, the rotor, along with the magnetic field created by a dc field current
or permanent magnet, rotates at the same speed as, or in synchronism with,

the rotating magnetic field produced by the armature currents and a steady torque
results. Thus, the steady-state speed of a synchronous machine is proportional to the
frequency of the armature currents. An elementary picture of how a synchronous
machine works is given in Section 4.2.1 with emphasis on torque production in terms
of the interactions between the machine’s magnetic fields.

Analytical methods of examining the steady-state performance of polyphase
synchronous machines will be developed in this chapter. Initial consideration will
be given to cylindrical-rotor machines; the effects of salient poles are taken up in
Sections 5.6 and 5.7.

5.1 INTRODUCTION TO POLYPHASE
SYNCHRONOUS MACHINES

As indicated in Section 4.2.1, a synchronous machine is one in which alternating
current flows in the armature winding and dc rotor flux is produced by dc excitation
to a field winding or by permanent magnets. The armature winding is almost invariably
on the stator and is frequently a three-phase winding, as discussed in Chapter 4. The
cylindrical-rotor construction shown in Figs. 4.10 and 4.11 is used for two- and four-
pole turbine generators. The salient-pole construction shown in Fig. 4.9 is best adapted
to multi-polar, slow-speed hydroelectric generators and to many synchronous motors.

The dc power required for excitation of a synchronous-machine field winding –
approximately one to a few percent of the rating of the synchronous machine – is
supplied by the excitation system. In the case of a permanent magnet synchronous
machine, no power is required to excite the dc rotor flux and hence there is the potential
for higher machine efficiency. There is a tradeoff however because with permanent-
magnet excitation it is not possible to adjust the magnitude of the dc rotor flux in
response to machine operating conditions.

262
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In older machines, the field excitation current was typically supplied through
slip rings from a dc machine, referred to as the exciter, which was often mounted on
the same shaft as the synchronous machine. In more modern systems, the excitation
is supplied from ac exciters and solid-state rectifiers (either simple diode bridges or
phase-controlled rectifiers). In some cases, the rectification occurs in the stationary
frame, and the rectified excitation current is fed to the rotor via slip rings. In other
systems, referred to as brushless excitation systems, the alternator of the ac exciter
is on the rotor, as is the rectification system, and the current is supplied directly to
the field-winding without the need for slip rings. One such system is described in
Appendix D.

As is discussed in Chapter 4, a single synchronous generator acts as a voltage
source whose frequency is determined by the speed of its mechanical drive (or prime
mover), as can be seen from Eq. 4.2. From Eqs. 4.44–4.47, 4.50 and 4.52, we see
that the amplitude of the generated voltage is proportional to the rotor speed and
the field current. As we will see, the generator terminal current and power factor are
determined by the generator field excitation and the impedance of the generator and
load.

Synchronous generators can be readily operated in parallel, and, in fact, the
electricity supply systems of industrialized countries typically have scores or even
hundreds of them operating in parallel, interconnected by thousands of miles of
transmission lines, and supplying electric energy to loads scattered over areas of many
thousands of square miles. These huge systems have grown in spite of the necessity for
designing the system so that synchronism between generators is maintained following
disturbances and the problems, both technical and administrative, which must be
solved to coordinate the operation of such a complex system.

When a synchronous generator is connected to a large interconnected system con-
taining many other synchronous generators, the voltage and frequency at its armature
terminals are substantially fixed by the system. The magnetic flux corresponding to
this applied voltage thus rotates at the synchronous speed (Eq. 4.44) as determined
by the system electrical frequency fe. As is discussed in Chapter 4, for the pro-
duction of a steady, unidirectional electromechanical torque, the fields of the stator
and rotor must rotate at the same speed, and therefore the rotor must turn at pre-
cisely the system-imposed synchronous speed. Because any individual generator is
a small fraction of the total system generation, it cannot significantly affect the sys-
tem voltage or frequency. It is thus often useful, when studying the behavior of an
individual generator or group of generators, to represent the remainder of the sys-
tem as a constant-frequency, constant-voltage source, commonly referred to as an
infinite bus.

Many important features of synchronous-machine behavior can be understood
from the analysis of a single machine connected to an infinite bus. The steady-state
behavior of a synchronous machine can be visualized in terms of the torque equation.
From Eq. 4.83, with changes in notation appropriate to synchronous-machine theory,

T = π

2

(
poles

2

)2

�R Ff sin δRF (5.1)
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where

�R = resultant air-gap flux per pole

Ff = mmf of the dc field winding

δRF = electrical phase angle between magnetic axes of �R and Ff

The minus sign of Eq. 4.83 has been omitted with the understanding that the
electromechanical torque acts in the direction to bring the interacting fields into
alignment. In normal steady-state operation, the electromechanical torque balances
the mechanical torque applied to the shaft. In a generator, the prime-mover torque
acts in the direction of rotation of the rotor, pushing the rotor mmf wave ahead of
the resultant air-gap flux. The electromechanical torque then opposes rotation. The
opposite situation exists in a synchronous motor, where the electromechanical torque
is in the direction of rotation, in opposition to the retarding torque of the mechanical
load on the shaft.

Variations in the electromechanical torque result in corresponding variations in
the torque angle, δRF, as seen from Eq. 5.1. The relationship is shown in the form of a
torque-angle curve in Fig. 5.1, where the field current (rotor mmf) and resultant air-
gap flux are assumed constant. Positive values of torque represent generator action,
corresponding to positive values of δRF for which the the rotor mmf wave leads the
resultant air-gap flux.

As the prime-mover torque is increased, the magnitude of δRF must increase until
the electromechanical torque balances the shaft torque. The readjustment process is
actually a dynamic one, requiring a change in the mechanical speed of the rotor,
typically accompanied by a damped mechanical oscillation of the rotor about its new
steady-state torque angle. This oscillation is referred to as a hunting transient. In a
practical machine undergoing such a transient, some changes in the amplitudes of the
resultant flux-density and field-winding mmf wave may also occur because of various
factors such as saturation effects, the effect of the machine leakage impedances, the
response of the machine’s excitation system, and so on. To emphasize the fundamental
principles of synchronous-machine operation, such effects will be neglected in the
present discussion.

m

g

T

Motor

Generator

�180� �90�

0 90� 180� δRF

Figure 5.1 Torque-angle characteristic.
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The adjustment of the rotor to its new angular position following a load change
can be observed experimentally in the laboratory by viewing the machine rotor with
stroboscopic light triggered from the applied armature voltage (thus having a flashing
frequency which causes the rotor to appear stationary when it is turning at its normal
synchronous speed). Alternatively, electronic sensors can be used to determine the
shaft position relative to the synchronous reference frame associated with the stator
voltage. The resultant signal can be displayed on an oscilloscope or recorded with a
data-acquisition system.

As can be seen from Fig. 5.1, an increase in prime-mover torque will result
in a corresponding increase in the torque angle. When δRF becomes 90◦, the elec-
tromechanical torque reaches its maximum value, known as the pull-out torque. Any
further increase in prime-mover torque cannot be balanced by a corresponding in-
crease in synchronous electromechanical torque, with the result that synchronism will
no longer be maintained and the rotor will speed up. This phenomenon is known as
loss of synchronism or pulling out of step. Under these conditions, the generator is
usually disconnected from the external electrical system by the automatic operation
of circuit breakers, and the prime mover is quickly shut down to prevent dangerous
overspeed. Note from Eq. 5.1 that the value of the pull-out torque can be increased by
increasing either the field current or the resultant air-gap flux. However, this cannot be
done without limit; the field current is limited by the ability to cool the field winding
and the air-gap flux is limited by saturation of the machine iron. Also as seen from
Fig. 5.1, a similar situation occurs in a synchronous motor for which an increase in the
shaft load-torque beyond the pull-out torque will cause the rotor to lose synchronism
and thus to slow down.

Since a synchronous motor develops torque only at synchronous speed, it can-
not be started simply by the application of armature voltages of rated frequency. In
some cases, a squirrel-cage structure is included in the rotor in which case the motor
can be started as an induction motor and it will synchronize when it is close to syn-
chronous speed. Alternatively, synchronous motors are often operated from variable-
frequency/variable-voltage electronic drives which are controlled in such a fashion
as to insure synchronous operation as the motor is brought up to its operating speed.

5.2 SYNCHRONOUS-MACHINE
INDUCTANCES; EQUIVALENT CIRCUITS

In Section 5.1, synchronous-machine torque-angle characteristics are described in
terms of the interacting air-gap flux and mmf waves. Our purpose now is to de-
rive an equivalent circuit which represents the steady-state terminal volt-ampere
characteristics.

A cross-sectional sketch of a three-phase cylindrical-rotor synchronous machine
is shown schematically in Fig. 5.2. The figure shows a two-pole machine; alternatively,
this can be considered as two poles of a multi-pole machine. The three-phase armature
winding on the stator is of the same type used in the discussion of rotating magnetic
fields in Section 4.5. Coils aa’, bb’, and cc’ represent distributed windings producing
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Figure 5.2 Schematic diagram of
a two-pole, three-phase cylindrical-
rotor synchronous machine.

sinusoidal mmf and flux-density waves in the air gap. The reference directions for
the currents are shown by dots and crosses. The field winding ff’ on the rotor also
represents a distributed winding which produces a sinusoidal mmf and flux-density
wave centered on its magnetic axis and rotating with the rotor.

When the flux linkages with armature phases a, b, c and field winding f are
expressed in terms of the inductances and currents as follows,

λa = Laaia + Labib + Lacic + Lafif (5.2)

λb = Lbaia + Lbbib + Lbcic + Lbfif (5.3)

λc = Lcaia + Lcbib + Lccic + Lcfif (5.4)

λf = L f aia + L f bib + L f cic + L f f if (5.5)

the induced voltages can be found from Faraday’s law. Here, two like subscripts denote
a self inductance and two unlike subscripts denote a mutual inductance between the
two windings. The script L is used to indicate that in general, both the self and mutual
inductances of a three-phase machine may vary with rotor angle, as is seen for example
in Section C.2, where the effects of salient poles are analyzed.

Before we proceed, it is useful to investigate the nature of the various induc-
tances. Based upon the cylindrical-rotor, sinusoidal-mmf assumptions, each of these
inductances can be expressed in terms of constant coefficients.

5.2.1 Rotor Self-Inductance

With a cylindrical stator, the self-inductance of the field winding is independent of
the rotor position θm when the harmonic effects of stator slot openings are neglected.
Hence

Lff = L ff = L ff0 + Lfl (5.6)
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where the italic L is used for an inductance which is independent of θm. The component
L ff0 corresponds to that portion ofLff due to the space-fundamental component of air-
gap flux. This component can be computed from air-gap dimensions and winding data,
as shown in Appendix B. The additional component Lfl accounts for field-winding
leakage flux.

Under transient or unbalanced conditions, the flux linkages with the field winding,
Eq. 5.5, vary with time, and the voltages induced in the rotor circuits have an important
effect on machine performance. However, with the rotor rotating at synchronous speed
and with balanced three-phase armature currents, the constant-amplitude magnetic
flux produced by the armature currents rotates in synchronism with the rotor. Thus the
field-winding flux linkage produced by this flux does not vary with time and hence
does not induce voltage in the field winding. As a result, with constant dc voltage Vf

applied to the field-winding terminals, the field direct current If can be determined
by Ohm’s law, If = Vf/Rf.

5.2.2 Stator-to-Rotor Mutual Inductances

The stator-to-rotor mutual inductances vary periodically with θme, the electrical angle
between the magnetic axes of the field winding and the armature phase a as shown in
Fig. 5.2 and as defined by Eq. 4.56. With the space-mmf and air-gap flux distribution
assumed sinusoidal, the mutual inductance between the field winding f and phase a
varies as cos θme; thus

Laf = Lfa = Laf cos θme (5.7)

Similar expressions apply to phases b and c, with θme replaced by θme − 120◦ and
θme + 120◦, respectively. Attention will be focused on phase a. The inductance Laf

can be calculated as discussed in Appendix B.
With the rotor rotating at synchronous speed ωs (Eq. 4.42), the rotor angle will

vary as

θm = ωst + δ0 (5.8)

where δ0 is the angle of the rotor at time t = 0. From Eq. 4.56

θme =
(

poles

2

)
θm = ωet + δe0 (5.9)

Here, ωe = (poles/2) ωs is the electrical frequency and δe0 is the electrical angle of
the rotor at time t = 0.

Thus, substituting into Eq. 5.7 gives

Laf = Lfa = Laf cos (ωet + δe0) (5.10)

5.2.3 Stator Inductances; Synchronous Inductance

With a cylindrical rotor, the air gap geometry is independent of θm if the effects of
rotor slots are neglected. The stator self-inductances then are constant; thus

Laa = Lbb = Lcc = Laa = Laa0 + Lal (5.11)
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where Laa0 is the component of self-inductance due to space-fundamental air-gap flux
(Appendix B) and Lal is the additional component due to armature-winding leakage
flux (see Section 4.10).

The armature phase-to-phase mutual inductances can be found on the assumption
that the mutual inductance is due solely to space-fundamental air-gap flux.1 From
Eq. B.26 of Appendix B, we see that the air-gap mutual inductance of two identical
windings displaced by α electrical degrees is equal to the air-gap component of their
self inductance multiplied by cos α. Thus, because the armature phases are displaced
by 120◦ electrical degrees and cos (±120◦) = − 1

2 , the mutual inductances between
the armature phases are equal and given by

Lab = Lba = Lac = Lca = Lbc = Lcb = −1

2
Laa0 (5.12)

Substituting Eqs. 5.11 and 5.12 for the self and mutual inductances into the
expression for the phase-a flux linkages (Eq. 5.2) gives

λa = (Laa0 + Lal)ia − 1

2
Laa0(ib + ic) + Lafif (5.13)

Under balanced three-phase armature currents (see Fig. 4.27 and Eqs. 4.25 to
4.27)

ia + ib + ic = 0 (5.14)

ib + ic = −ia (5.15)

Substitution of Eq. 5.15 into Eq. 5.13 gives

λa = (Laa0 + Lal)ia + 1

2
Laa0ia + Lafif

=
(

3

2
Laa0 + Lal

)
ia + Lafif (5.16)

It is useful to define the synchronous inductance Ls as

Ls = 3

2
Laa0 + Lal (5.17)

and thus

λa = Lsia + Lafif (5.18)

Note that the synchronous inductance Ls is the effective inductance seen by
phase a under steady-state, balanced three-phase machine operating conditions. It
is made up of three components. The first, Laa0, is due to the space-fundamental
air-gap component of the phase-a flux linkages due to phase-a currents alone. The
second, Lal, known as the armature-winding leakage inductance, is due to the leak-
age component of phase-a flux linkages. The third component, 1

2 Laa0, is due to the

1 Since the armature windings in practical machines are generally wound with overlapping phase
windings (i.e. portions of adjacent windings share the same slots), there is an additional component of the
phase-to-phase mutual inductance which is due to slot leakage flux.
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phase-a flux linkages due to the space-fundamental component of air-gap flux pro-
duced by currents in phases b and c. Under balanced three-phase conditions, the
phase-b and -c currents are related to the current in phase a by Eq. 5.15. Thus the
synchronous inductance is an apparent inductance in that it accounts for the flux
linkages of phase a in terms of the current in phase a even though some of this flux
linkage is due to currents in phases b and c. Hence, it should be remembered that,
although Ls appears from Eq. 5.18 to be the self-inductance of phase a, that is not
actually the case and that it is defined under the assumption of balanced 3-phase
armature currents.

The significance of the synchronous inductance can be further appreciated with
reference to the discussion of rotating magnetic fields in Section 4.5.2, where it
was shown that under balanced three-phase conditions, the armature currents create a
rotating magnetic flux wave in the air gap of magnitude equal to 3

2 times the magnitude
of that due to phase a alone, the additional component being due to the phase-b and
-c currents. This corresponds directly to the 3

2 Laa0 component of the synchronous
inductance in Eq. 5.17; this component of the synchronous inductance accounts for
the total space-fundamental air-gap component of phase-a flux linkages produced by
the three armature currents under balanced three-phase conditions.

5.2.4 Equivalent Circuit

The phase-a terminal voltage is the sum of the armature-resistance voltage drop Raia

and the induced voltage. The voltage eaf induced by the field winding flux (often
referred to as the generated voltage or internal voltage) can be found from the time
derivative of Eq. 5.18 with the armature current ia set equal to zero. With dc excitation
If in the field winding, substitution of Eq. 5.10 gives

eaf = d

dt
(Lafif) = −ωeLaf If sin (ωet + δe0) (5.19)

Using Eq. 5.18, the terminal voltage can then be expressed as

va = Raia + dλa

dt

= Raia + Ls
dia

dt
+ eaf (5.20)

The generated voltage eaf of Eq. 5.19 is at frequency ωe, equal to the electrical
frequency of the generator terminal voltage. Its rms amplitude is given by

Eaf = ωeLaf If√
2

(5.21)

Under this synchronous operating condition, all machine armature quantities
(current and flux linkage) will also vary sinusoidally in time at this frequency. Thus,
we can write the terminal-voltage equation, Eq. 5.20, in terms of rms complex am-
plitudes as

V̂ a = Ra Î a + j Xs Î a + Êaf (5.22)

where Xs = ωeLs is known as the synchronous reactance.
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Figure 5.3 Synchronous-machine equivalent circuits:
(a) motor reference direction and (b) generator reference
direction.

The rms complex amplitude of the generated voltage Êaf can be found by recog-
nizing that

eaf = Re[
√

2 Êaf e jωet ] (5.23)

where the notation Re[ ] indicates the real part of a complex quantity. Thus from
Eq. 5.19 we see that

Êaf = j

(
ωeLaf If√

2

)
e jδe0 (5.24)

An equivalent circuit in complex form is shown in Fig. 5.3a. The reader should
note that Eq. 5.22 and Fig. 5.3a are written with the reference direction for Î a defined
as positive into the machine terminals. This is known as the motor reference direction
for the current.

Alternatively, the generator reference direction is defined with the reference
direction for Î a chosen as positive out of the machine terminals, as shown in Fig. 5.3b.
Under these choice of current reference direction, Eq. 5.22 becomes

V̂ a = −Ra Î a − j Xs Î a + Êaf (5.25)

Note that these two representations are equivalent; when analyzing a particular
synchronous-machine operating condition the actual current will be the same. The
sign of Î a will simply be determined by the choice of reference direction. Either choice
is acceptable, independent of whether the synchronous machine under investigation
is operating as a motor or a generator. However, since power tends to flow into a
motor, it is perhaps intuitively more satisfying to choose a reference direction with
current flowing into the machine for the analysis of motor operation. The opposite is
true for generator operation, for which power tends to flow out of the machine. Most
of the synchronous-machine analysis techniques presented here were first developed
to analyze the performance of synchronous generators in electric power systems. As
a result, the generator reference direction is more common and is generally used from
this point on in the text.
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Figure 5.4 Synchronous-machine
equivalent circuit showing air-gap and
leakage components of synchronous
reactance and air-gap voltage.

Figure 5.4 shows an alternative form of the equivalent circuit in which the syn-
chronous reactance is shown in terms of its components. From Eq. 5.17

Xs = ωeLs = ωeLal + ωe

(
3

2
Laa0

)

= Xal + Xϕ (5.26)

where Xal = ωeLal is the armature leakage reactance and Xϕ = ωe
(

3
2 Laa0

)
is the

reactance corresponding to the rotating space-fundamental air-gap flux produced by
the three armature currents. The reactance Xϕ is the effective magnetizing reactance
of the armature winding under balanced three-phase conditions. The rms voltage ÊR

is the internal voltage generated by the resultant air-gap flux and is usually referred
to as the air-gap voltage or the voltage “behind” leakage reactance.

It is important to recognize that the equivalent circuits of Figs. 5.3 and 5.4 are
single-phase, line-to-neutral equivalent circuits for a three-phase machine operating
under balanced, three-phase conditions. Thus, once the phase-a voltages and currents
are found, either from the equivalent circuit or directly from the voltage equations
(Eqs. 5.22 and 5.25), the currents and voltages for phases b and c can be found simply
by phase-shifting those of phase a by −120◦ and 120◦ respectively. Similarly, the
total three-phase power of the machine can be found simply by multiplying that of
phase a by three, unless the analysis is being performed in per unit (see Section 2.9),
in which case the three-phase, per-unit power is equal to that found from solving for
phase a alone and the factor of three is not needed.

EXAMPLE 5.1

A 60-Hz, three-phase synchronous motor is observed to have a terminal voltage of 460 V
(line-line) and a terminal current of 120 A at a power factor of 0.95 lagging. The field-current
under this operating condition is 47 A. The machine synchronous reactance is equal to 1.68 


(0.794 per unit on a 460-V, 100-kVA, three-phase base). Assume the armature resistance to be
negligible.

Calculate (a) the generated voltage Eaf in volts, (b) the magnitude of the field-to-armature
mutual inductance Laf, and (c) the electrical power input to the motor in kW and in horsepower.
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■ Solution

a. Using the motor reference direction for the current and neglecting the armature resistance,
the generated voltage can be found from the equivalent circuit of Fig. 5.3a or Eq. 5.22 as

Ê af = V̂ a − j X s Î a

We will choose the terminal voltage as our phase reference. Because this is a line-to-
neutral equivalent, the terminal voltage Va must be expressed as a line-to-neutral voltage

V̂ a = 460√
3

= 265.6 V, line-to-neutral

A lagging power factor of 0.95 corresponds to a power factor angle φ = − cos−1

(0.95) = −18.2◦. Thus, the phase-a current is

Î a = 120 e− j18.2◦
A

Thus

Ê af = 265.6 − j1.68(120 e− j18.2◦
)

= 278.8 e− j43.4◦
V, line-to-neutral

and hence, the generated voltage Eaf is equal to 278.8 V rms, line-to-neutral.
b. The field-to-armature mutual inductance can be found from Eq. 5.21. With ωe = 120π ,

Laf =
√

2 Eaf

ωe If

=
√

2 × 279

120π × 47
= 22.3 mH

c. The three-phase power input to the motor Pin can be found as three times the power input
to phase a. Hence,

Pin = 3Va Ia × (power factor) = 3 × 265.6 × 120 × 0.95

= 90.8 kW = 122 hp

EXAMPLE 5.2

Assuming the input power and terminal voltage for the motor of Example 5.1 remain constant,
calculate (a) the phase angle δ of the generated voltage and (b) the field current required to
achieve unity power factor at the motor terminals.

■ Solution

a. For unity power factor at the motor terminals, the phase-a terminal current will be in
phase with the phase-a line-to-neutral voltage V̂ a. Thus

Î a = Pin

3Va

= 90.6 kW

3 × 265.6 V
= 114 A

From Eq. 5.22,

Ê af = V̂ a − j X s Î a

= 265.6 − j1.68 × 114 = 328 e− j35.8◦
V, line-to-neutral

Thus, Eaf = 328 V line-to-neutral and δ = −35.8◦.
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b. Having found Laf in Example 5.1, we can find the required field current from Eq. 5.21.

If =
√

2 Eaf

ωe Laf

=
√

2 × 328

377 × 0.0223
= 55.2 A

Practice Problem 5.1

The synchronous machine of Examples 5.1 and 5.2 is to be operated as a synchronous generator.
For operation at 60 Hz with a terminal voltage of 460 V line-to-line, calculate the field current
required to supply a load of 85 kW, 0.95 power-factor leading.

Solution
46.3 A

Practice Problem 5.2

Consider the synchronous motor of Example 5.1 operating at a terminal voltage of 460-V (line-
line). Write a MATLAB script to plot the field current required to maintain unity-power-factor
as the motor power is varied from 50 to 100 kW.

Solution

Power [kW]

I f
 [

A
]
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Figure 5.5 Plot of field current vs. motor power for Practice Problem 5.2.

It is helpful to have a rough idea of the order of magnitude of the impedance
components of typical synchronous machines. For machines with ratings above a
few hundred kVA, the armature-resistance voltage drop at rated current usually is
less than 0.01 times rated voltage; i.e., the armature resistance usually is less than
0.01 per unit on the machine rating as a base. (The per-unit system is described in
Section 2.9.) The armature leakage reactance usually is in the range of 0.1 to 0.2 per
unit, and the synchronous reactance is typically in the range of 1.0 to 2.0 per unit.
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In general, the per-unit armature resistance increases and the per-unit synchronous
reactance decreases with decreasing size of the machine. In small machines, such as
those in educational laboratories, the armature resistance may be in the vicinity of
0.05 per unit and the synchronous reactance in the vicinity of 0.5 per unit. In all but
small machines, the armature resistance can usually be neglected in most analyses,
except insofar as its effect on losses and heating is concerned.

5.3 OPEN- AND SHORT-CIRCUIT
CHARACTERISTICS

The fundamental characteristics of a synchronous machine can be determined by a
pair of tests, one made with the armature terminals open-circuited and the second
with the armature terminals short-circuited. These tests are discussed here. Except
for a few remarks on the degree of validity of certain assumptions, the discussions
apply to both cylindrical-rotor and salient-pole machines.

5.3.1 Open-Circuit Saturation Characteristic
and No-Load Rotational Losses

The open-circuit characteristic (also referred to as the open-circuit saturation curve)
of a synchronous machine is a curve of open-circuit armature terminal voltage Va,oc

(either in volts or in per unit) as a function of field current If when the machine is run-
ning at synchronous speed, as shown by curve labeled occ in Fig. 5.6. The open-circuit
characteristic represents the relation between the space-fundamental component of
the air-gap flux and the mmf acting on the magnetic circuit when the field winding
constitutes the only mmf source. The effects of magnetic saturation can be clearly
seen in Fig. 5.6; the characteristic bends downward with increasing field current as
saturation of the magnetic material increases the reluctance of the flux paths in the
machine and reduces the effectiveness of the field current in producing magnetic flux.

occ

Air-gap line

0

Air-gap line

IfIf,s

Va,oc′Eaf

Va

If,u

Figure 5.6 Open-circuit characteristic
of a synchronous machine.



Umans-3930269 book December 14, 2012 12:12

5.3 Open- and Short-Circuit Characteristics 275

Note that with the machine armature winding open-circuited, the terminal voltage
is equal to the generated voltage Eaf. Thus the open-circuit characteristic is also a
measurement of the relationship between the field current If and Eaf and can therefore
provide a direct measurement of the field-to-armature mutual inductance Laf. These
two voltages will be used interchangeably in the discussion that follows.

As can be seen from Fig. 5.6, the open-circuit characteristic is initially linear as the
field current is increased from zero. This portion of the curve (and its linear extension
for higher values of field current) is known as the air-gap line. It represents the
machine open-circuit voltage characteristic corresponding to unsaturated operating
conditions, in which case the air-gap is the dominant reluctance in the flux path
of the machine. Consider the field excitation required to achieve the open-circuit
armature voltage Va in Fig. 5.6. If there were no saturation, the machine open-circuit
voltage characteristic would correspond to the air-gap line and this voltage would be
produced by field current If,u. However, due to the effects of saturation, a field current
of magnitude If,s is required to produce the same voltage. The difference between If,s

and If,u is a measure of the degree of saturation in the machine at that level of voltage.

EXAMPLE 5.3

An open-circuit test performed on a three-phase, 60-Hz synchronous generator shows that the
rated open-circuit voltage of 13.8 kV is produced by a field current of 318 A. Extrapolation
of the air-gap line from a complete set of measurements on the machine shows that the field-
current corresponding to 13.8 kV on the air-gap line is 263 A. Calculate the saturated and
unsaturated values of Laf.

■ Solution
From Eq. 5.21, Laf is found from

Laf =
√

2 Eaf

ωe If

Here, Eaf = 13.8 kV/
√

3 = 7.97 kV. Hence the saturated value of Laf is given by

(Laf)sat =
√

2 (7.97 × 103)

120 π × 318
= 94 mH

and the unsaturated value is

(Laf)unsat =
√

2 (7.97 × 103)

120 π × 263
= 114 mH

In this case, we see that saturation reduces the mutual inductance between the field and
armature windings by approximately 18 percent.

Practice Problem 5.3

If the synchronous generator of Example 5.3 is operated at a speed corresponding to a generated
voltage of 50 Hz, calculate (a) the open-circuit line-to-line terminal voltage corresponding to
a field current of 318 A and (b) the field-current corresponding to that same voltage on the
50-Hz air-gap line.
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Figure 5.7 Typical form of an
open-circuit core-loss curve.

Solution
a. 11.5 kV
b. 263 A

When the machine is an existing one, the open-circuit characteristic is usually
determined experimentally by driving the machine mechanically at synchronous speed
with its armature terminals open-circuited and by measuring the terminal voltage as
a function of field current. If the mechanical power required to drive the synchronous
machine during the open-circuit test is measured, the no-load rotational losses can be
obtained. These losses consist of friction and windage losses associated with rotation
as well as the core loss corresponding to the flux in the machine at no load. The
friction and windage losses at synchronous speed are constant, while the open-circuit
core loss is a function of the flux, which in turn is proportional to the open-circuit
voltage.

The mechanical power required to drive the machine at synchronous speed and
unexcited is its friction and windage loss. When the field is excited, the mechanical
power equals the sum of the friction, windage, and open-circuit core loss. The open-
circuit core loss therefore can be found from the difference between these two values
of mechanical power. A typical curve of open-circuit core loss as a function of open-
circuit voltage takes the form of that found in Fig. 5.7. It is common to assume
that the core loss under loaded conditions at a given terminal voltage is equal to the
open-circuit core loss at the corresponding voltage.

5.3.2 Short-Circuit Characteristic and Load Loss

The short-circuit characteristic of a synchronous machine is a curve of short-circuit
terminal current Ia,sc (either in amperes or in per unit) as a function of field current.
The short-circuit characteristic can be obtained by applying a three-phase short circuit
through suitable current sensors to the armature terminals of a synchronous machine.
With the machine driven at synchronous speed, the field current can be increased and
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occ

Air-gap line

scc

If0 IfO

Ia0

Ia,sc
Va,oc ′Eaf

Va0′Eaf 0

Figure 5.8 Open- and short-circuit
characteristics of a synchronous machine.

a curve of armature current versus field current can be obtained.2 An open-circuit
characteristic occ and a short-circuit characteristic scc are shown in Fig. 5.8.

With the armature short-circuited, Va = 0 and, from Eq. 5.25 (using the generator
reference direction for current)

Êaf = Î a(Ra + j Xs) (5.27)

The corresponding phasor diagram is shown in Fig. 5.9. Because the resistance is
much smaller than the synchronous reactance, the armature current lags the excitation
voltage by very nearly 90◦. Consequently the armature mmf wave is very nearly in
line with the axis of the field poles and in opposition to the field mmf, as shown by
phasors Â and F̂ representing the armature and field mmf waves, respectively.

The resultant mmf creates the resultant air-gap flux wave which generates the air-
gap voltage ÊR (see Fig. 5.4) equal to the voltage drop across the armature resistance
Ra and leakage reactance Xal; as an equation,

ÊR = Î a(Ra + j Xal) (5.28)

In many synchronous machines the armature resistance is negligible, and the
leakage reactance is between 0.10 and 0.20 per unit; a representative value is about
0.15 per unit. That is, at rated armature current the leakage reactance voltage drop
is about 0.15 per unit (or 15 percent of the machine rated voltage). From Eq. 5.28,
therefore, the air-gap voltage at rated armature current on short circuit is about 0.15
per unit; i.e., the resultant air-gap flux is only about 0.15 times its rated-voltage value.
Consequently, the machine is operating in an unsaturated condition. The short-circuit
armature current, therefore, is directly proportional to the field current over the range

2 In reality, this test does not have to be conducted at synchronous speed. The short-circuit armature
current will remain essentially constant with speed as long as the corresponding electrical frequency is
sufficiently large that the synchronous reactance at that frequency is much larger than the armature
resistance.
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Figure 5.9 Phasor diagram for short-circuit
conditions.

from zero to well above rated armature current; when plotted versus field current, it
is thus a straight line as can be seen in Fig. 5.8.

The unsaturated synchronous reactance Xs,u (corresponding to unsaturated op-
erating conditions within the machine) can be found from the open- and short-circuit
characteristics. At any convenient field excitation, such as If0 in Fig. 5.8, the armature
current on short circuit is Ia0, and the unsaturated generated voltage for the same field
is equal to Eaf0, as read from the air-gap line. Note that the voltage on the air-gap
line should be used because the machine is assumed to be operating in an unsaturated
condition.

If Eaf0 and Ia0 are expressed in real units with Eaf0 being the rms line-to-neutral
generated voltage, then from Eq. 5.27, with armature resistance Ra neglected, the
unsaturated synchronous reactance Xs,u in ohms per phase is calculated as

Xs,u = Eaf0

Ia0
(5.29)

Because the air-gap line and the short-circuit characteristic are both linear, the value
of synchronous reactance as calculated by Eq. 5.29 is independent of the specific
value of field current If0. Note that the synchronous reactance in ohms per phase
is calculated by using the phase or line-to-neutral voltage. Often the open-circuit
saturation curve is given in terms of the line-to-line voltage, in which case the voltage
must be converted to the line-to-neutral value by dividing by

√
3. If, on the other

hand, Va,oc and Ia,sc are expressed in per unit, the synchronous reactance as calculated
by Eq. 5.29 will be in per unit.
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Figure 5.10 Open- and short-circuit
characteristics showing equivalent magnetization
line for saturated operating conditions.

For operation at or near rated terminal voltage, it is common to assume that the
machine is equivalent to an unsaturated one with a linear magnetizing characteristic
which starts at the origin and which passes through the rated-voltage point on the
open-circuit characteristic, as shown by the dashed line Op in Fig. 5.10. Under this
approximation, the machine can be represented by an equivalent circuit of the form
of Fig. 5.3 with the generated voltage Eaf linearly proportional to field current such
that it is equal to rated voltage Va,rated (or one per unit) when If is equal to that value of
field current, referred to as AFNL (Amperes Field No Load), which produces rated
open-circuit voltage Va,rated on the open-circuit characteristic as shown in Fig. 5.10.

Correspondingly, Xs is assumed equal to the rated-voltage saturated synchronous
reactance given by

Xs = Va,rated

I ′
a

(5.30)

where I ′
a is the armature current read from the short-circuit characteristic at the

If = AFNL. As with the unsaturated synchronous reactance, if Va,rated and I ′
a are

expressed in per unit, the synchronous reactance will be in per unit. If Va,rated and I ′
a

are expressed in rms line-to-neutral volts and rms amperes per phase, respectively,
the synchronous reactance will be in ohms per phase.

This method of handling the effects of saturation can be justified by recogniz-
ing that synchronous machines, for example synchronous generators with terminal-
voltage regulation and connected to power systems, operate at a relatively constant
terminal voltage. To a good approximation, ignoring the voltage drop across the
armature-winding resistance and leakage reactance, this implies that the net air-gap
flux in the machine, and hence the degree of saturation in the machine, remains rela-
tively constant, independent of load. A fixed degree of saturation in-turn corresponds
to a magnetic circuit with constant reluctances, which in turn implies a linear rela-
tionship between the field current If and the field-produced magnetic flux/terminal
voltage Va as shown in Fig. 5.10.
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Although not commonly done, this same argument could be applied to deter-
mine the synchronous-machine equivalent-circuit parameters, Eaf as a function of
field current and Xs, for operation at terminal voltages other than rated value. For
example, if the machine were operating at very low terminal voltages, the generated
voltage would be calculated from the air-gap line and the corresponding unsaturated
synchronous reactance would be given by

Xs,u = Va,rated

I ′′
a

(5.31)

Comparing Figs 5.8 and 5.10, we see that Eqns. 5.30 and 5.31 are equivalent.
Note that, with the short-circuit terminal current expressed in per unit, the short-

circuit current characteristic scc can be expressed as

Ia,sc = If

AFSC
per unit (5.32)

where AFSC (Amperes Field Short Circuit) is the value of field current which pro-
duces rated (1.0 per unit) short-circuit current. Thus, with If = AFNL, Eaf = Va,rated =
1.0 per unit and

I ′
a = AFNL

AFSC
per unit (5.33)

Thus, the per-unit saturated synchronous reactance can be calculated from
Eq. 5.30 as

Xs = Va,rated

I ′
a

= AFSC

AFNL
per unit (5.34)

By a similar argument, the per-unit unsaturated synchronous reactance can be
calculated as

Xs,u = Va,rated

I ′
a

= AFSC

AFNL ag
per unit (5.35)

where AFNLag is the field current corresponding to rated open-circuit voltage on the
air-gap line.

The short-circuit ratio (SCR) is defined as the ratio of AFNL to AFSC and thus
it is equal to the inverse of the per-unit saturated synchronous reactance Xs

SCR = AFNL

AFSC
(5.36)

Note that as we have discussed, when the machine is operating at rated voltage,
it is assumed that the generated voltage is linearly proportional to the field current
with a slope such that the generated voltage is equal to the machine rated value (1.0
per unit) when the field current If is equal to AFNL, as represented by the dashed line
Op in Fig. 5.10. Thus, for any given value of generated voltage, the field current can
be found from the per-unit value of Eaf as

If = Eaf × AFNL [A] (5.37)
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EXAMPLE 5.4

The following data are taken from the open- and short-circuit characteristics of a 45-kVA,
three-phase, Y-connected, 220-V (line-to-line), six-pole, 60-Hz synchronous machine. From the
open-circuit characteristic:

Field current = 2.84 A Line-to-line voltage = 220 V

and from the air-gap line:

Field current = 2.20 A Line-to-line voltage = 202 V

From the short-circuit characteristic:

Field current, A 2.20 2.84

Armature current, A 118 152

Compute the unsaturated value of the synchronous reactance and its saturated value at
rated voltage, both in ohms per phase and in per unit on the machine rating as a base.

■ Solution
To aid in visualizing the solution, the given voltages and currents are shown on the open- and
short-circuit characteristics of Fig. 5.11. At a field current of 2.20 A the line-to-neutral voltage
on the air-gap line is

Va,ag = 202√
3

= 116.7 V

and for the same field current the armature current on short circuit is 118 A.
Thus, from Eq. 5.29

X s,u = 116.7

118
= 0.987 
/phase

Similarly, rated open-circuit terminal voltage of 220 V, corresponding to a line-to-neutral
voltage of 220/

√
3 = 127.0 V is produced by a field current of 2.84 A. The corresponding

occ

Air-gap line

scc

If

Ia,sc

O

118 A

152 A

116.7 V

127.0 V

2.20 A 2.84 A

Va,oc′Eaf

Figure 5.11 Plot of motor characteristics
for Example 5.4.
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short-circuit current is 152 A and thus from Eq. 5.30

X s = 127

152
= 0.836 
/phase

Noting that rated armature current is

Ia,rated = 45,000√
3 × 220

= 118 A

we see from the given data that AFSC = 2.20 A and that AFNL = 2.84 A. Thus, from Eq. 5.34

X s = AFSC

AFNL
= 2.20

2.84
= 0.775 per unit

Extrapolating the given air-gap line data to rated voltage, we can find

AFNLag = 220

(
2.20

220

)
= 2.40 A

and thus, from Eq. 5.35

X s,u = AFSC

AFNLag

= 2.20

2.40
= 0.917 per unit

Note of course that the per-unit reactances can also be calculated by dividing their values
in 
/phase by the base impedance

Zbase = 2202

45 × 103
= 1.076 


Equivalently, the reactances in 
/phase can be calculated from their per-unit values by multi-
plying by Zbase.

Practice Problem 5.4

Calculate the saturated synchronous reactance (in 
/phase and per unit) of an 85-kVA syn-
chronous machine which achieves its rated open-circuit voltage of 460 V at a field current 8.7 A
and which achieves rated short-circuit current at a field current of 11.2 A.

Solution

X s = 3.21 
/phase = 1.29 per unit

Because the machine flux level is low under short-circuit conditions, the core
loss under this condition is typically considered to be negligible. Thus the mechanical
power required to drive the synchronous machine during a short-circuit test equals the
sum of friction and windage loss (determined from the open-circuit test at zero field
current) plus losses caused by the armature current. The losses caused by the armature
current can then be found by subtracting friction and windage from the driving power.
The losses caused by the short-circuit armature current are known collectively as the
short-circuit load loss. A curve showing the typical form of short-circuit load loss
plotted against armature current is shown in Fig. 5.12. Often this loss is assumed to
vary parabolically with armature current.
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Figure 5.12 Typical form of short-circuit
load loss and stray load loss curves.

The short-circuit load loss consists of I 2 R loss in the armature winding, local
core losses caused by the armature leakage flux, and the small core loss component
caused by the net resultant flux. For a q-phase machine, the short-circuit resistance
dc loss Parm,dc, calculated as

Parm,dc = q I 2
a,sc Rdc (5.38)

can be computed if the dc winding resistance Rdc is measured and corrected, when
necessary, for the temperature of the windings during the short-circuit test. For copper
conductors

Rdc(T )

Rdc(t)
= 234.5 + T

234.5 + t
(5.39)

where RT and Rt are the resistances at Celsius temperatures T and t , respectively.
If this dc resistance loss is subtracted from the short-circuit load loss, the difference
will be the loss due to skin effect and eddy currents in the armature conductors plus
the local core losses caused by the armature leakage flux. This difference between the
short-circuit load loss and the dc resistance loss is the additional loss caused by the
alternating current in the armature. It is the stray-load loss described in Appendix D,
commonly considered to have the same value under normal load conditions as on short
circuit. It is a function of the armature current, as shown by the curve in Fig. 5.12.

As with any ac device, the effective resistance of the armature, Ra,eff, can be
computed as the power loss attributable to the armature current divided by the square of
the current. On the assumption that the stray load loss is a function of only the armature
current, the effective resistance of the armature can be determined from the short-
circuit load loss:

Ra,eff = short-circuit load loss

(short-circuit armature current)2 (5.40)

If the short-circuit load loss and armature current are expressed in per unit, the effective
resistance will be in per unit. If they are expressed in watts per phase and amperes
per phase, respectively, the effective resistance will be in ohms per phase. Often, it is
sufficiently accurate to find the value of Ra,eff at rated current and then to assume it
to be constant.
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EXAMPLE 5.5

For the 45-kVA, three-phase, Y-connected synchronous machine of Example 5.4, at rated
armature current (118 A) the short-circuit load loss (total for three phases) is 1.80 kW at a
temperature of 25◦C. The dc resistance of the armature at this temperature is 0.0335 
/phase.
Compute the effective armature resistance in per unit and in ohms per phase at 25◦C.

■ Solution
The short-circuit load loss is 1.80/45 = 0.040 per unit at Ia = 1.00 per unit. Therefore,

Ra,eff = 0.040

(1.00)2
= 0.040 per unit

On a per-phase basis the short-circuit load loss is 1800/3 = 600 W/phase and consequently
the effective resistance is

Ra,eff = 600

(118)2
= 0.043 
/phase

The ratio of ac-to-dc resistance is

Ra,eff

Ra,dc

= 0.043

0.0335
= 1.28

Because this is a small machine, its per-unit resistance is relatively high. The effective
armature resistance of machines with ratings above a few hundred kVA usually is less than
0.01 per unit.

Practice Problem 5.5

Consider a three-phase 13.8 kV 25-MVA synchronous generator whose three-phase short-
circuit loss is 52.8 kW at rated armature current. Calculate (a) its rated armature current and
(b) its effective armature resistance in 
/phase and in per unit.

Solution
a. 1046 A
b. Ra,eff = 0.0161 
/phase = 0.0021 per unit

5.4 STEADY-STATE POWER-ANGLE
CHARACTERISTICS

The maximum power a synchronous machine can deliver is determined by the max-
imum torque which can be applied without loss of synchronism with the external
system to which it is connected.3 The purpose of this section is to derive expressions

3 In the context of this discussion, the term “maximum power” refers to the maximum power which can
theoretically be delivered without loss of synchronism. In practice, this value may be significantly higher
than the machine’s rated power which is the practical operating power limit of the machine and which is
determined by thermal limitations.
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Figure 5.13 (a) Impedance interconnecting two voltages;
(b) phasor diagram.

for the steady-state power limits of synchronous machines in simple situations for
which the external system can be represented as an impedance in series with a voltage
source.

Since both the external system and the machine itself can be represented as an
impedance in series with a voltage source, the study of power limits becomes merely
a special case of the more general problem of the limitations on power flow through
a series impedance. The impedance will include the synchronous impedance of the
synchronous machine as well as an equivalent impedance of the external system
(which may consist of transmission lines and transformer banks as well as additional
synchronous machines).

Consider the simple circuit of Fig. 5.13a, consisting of two ac voltages, Ê1 and
Ê2, connected by an impedance Z = R + j X through which the current is Î . The
phasor diagram is shown in Fig. 5.13b. Note that in this phasor diagram, the voltage
Ê2 is chosen as the reference phasor and the reference direction for positive angles is
counter-clockwise. Thus, in Fig. 5.13b, the phase angle δ of Ê1 is positive while the
phase angle φ of the current can be seen to be negative.

The phasor current is

Î = Ê1 − Ê2

Z
= E1 e jδ − E2

R + j X
(5.41)

The power P2 delivered through the impedance to voltage source Ê2 is

P2 = Re[Ê2 Î ∗] (5.42)

where the notation Re[ ] indicates the real part of a complex number and the superscript
∗ indicates the complex conjugate.

If, as is frequently the case in the analysis of large power systems, the resistance
R is negligible, then there is no power dissipated in the series impedance and the
power P1 supplied by the source Ê1 is equal to P2. Under this assumption, Eq. 5.42
reduces to the simple form

P1 = P2 = E1 E2

X
sin δ (5.43)
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When the power-angle expression of Eq. 5.43 is compared with the expression
of Eq. 5.1 for torque in terms of interacting flux and mmf waves, they are seen to
be of the same form. This is no coincidence. Remember that torque and power are
proportional when, as is the case here, speed is constant. What we are really saying
is that Eq. 5.1, applied specifically to an idealized cylindrical-rotor synchronous
machine and translated to circuit terms, becomes Eq. 5.43. A quick mental review of
the background of each relation should show that they stem from the same fundamental
considerations.

Equation 5.43 is a very important equation in the study of synchronous machines
and indeed in the study of ac power systems in general. Eq. 5.43 is commonly referred
to as the power-angle characteristic, and the angle δ is known as the power angle.
Note that if δ is positive, Ê1 leads Ê2 and power flows from source Ê1 to Ê2. Similarly,
when δ is negative, Ê1 lags Ê2 and power flows from source Ê2 to Ê1. From Eq. 5.43
the maximum power which can be transferred between sources 1 and 2 is

P1,max = P2,max = ± E1 E2

X
(5.44)

which occurs when δ = ±90◦.
It should be emphasized that the derivation of Eqs. 5.41 to 5.43 is based on a

single-phase, line-to-neutral ac circuit. When considering a three-phase system, if E1

and E2 are expressed in per unit or in terms of line-to-line voltages, Eq. 5.43 gives
three-phase power directly. Alternatively, if E1 and E2 are the line-neutral voltages,
the power must be multiplied by three to get the total three-phase power and Eq. 5.43
becomes

P1 = P2 = 3E1 E2

X
sin δ (5.45)

Equations 5.43 and 5.45 are valid for any voltage sources Ê1 and Ê2 separated by
a reactive impedance j X . Thus for a three-phase synchronous machine with generated
voltage Êaf and synchronous reactance Xs connected to a system whose Thevenin
equivalent is a voltage source V̂ eq in series with a reactive impedance j Xeq, as shown
in Fig. 5.14, the power-angle characteristic can be written

P = EafVeq

Xs + Xeq
sin δ (5.46)

if Eaf and Veq are expressed in terms of line-to-line voltages or in per unit (in which
case P , Xs and Xeq must also be expressed in per unit) and

P = 3EafVeq

Xs + Xeq
sin δ (5.47)

if Eaf and Veq are expressed in terms of line-to-neutral voltages. Here P is the power
transferred from the synchronous machine to the system and δ is the phase angle of
Êaf with respect to V̂ eq.

In a similar fashion, it is possible to write a power-angle characteristic in terms of
Xs, Eaf, the terminal voltage Va, and the relative angle between them, or alternatively
Xeq, Va and Veq and their relative angle. Although these various expressions are equally
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Figure 5.14 Equivalent-circuit representation
of a synchronous machine connected to an
external system.

valid, they are not equally useful. For example, if the machine is operated with constant
field current, both Eaf and Veq will remain constant as P is varied while the terminal
voltage Va will not. Thus, while Eqs. 5.46 and 5.47 give an easily solved relation
between P and δ, a power-angle characteristic based upon Va, Veq and Xeq cannot be
solved without an additional expression relating Va to P .

Note that Eqs. 5.43, 5.45, 5.46 and 5.47 are derived based upon the choice of
the generator reference direction for the current. If the motor reference direction is
chosen, the sign of the current is reversed in Eq. 5.41 a minus sign must be included
in these equations to account for the fact that with the choice of motor reference
direction, P represents the power into the machine and positive input power will
correspond to negative values of power angle δ.

From Eqs. 5.46 and 5.47 we see that the peak of the power-angle characteristic
associated with synchronous-machine operation is proportional to the magnitude
of the system voltage Veq as well as to that of the generator internal voltage Eaf.
Thus, for constant system voltage, the maximum power which can be supplied by
a synchronous generator or supplied to a synchronous motor can be increased by
increasing the synchronous-machine field current and thus the internal voltage. Of
course, this cannot be done without limit; neither the field current nor the machine
fluxes can be raised past the point where losses become excessive and the machine
cannot be adequately cooled.

In general, stability considerations dictate that a synchronous machine achieve
steady-state operation for a power angle considerably less than 90◦. Thus, the peak
of the power-angle characteristic of a synchronous machine under normal operating
conditions is considerably larger than the mechanical power supplied to it in the case
of generator operation or the load power in the case of a synchronous motor.

EXAMPLE 5.6

A three-phase, 75-MVA, 13.8-KV synchronous generator with saturated synchronous reactance
X s = 1.35 per unit and unsaturated synchronous reactance X s,u = 1.56 per unit is connected
to an external system with equivalent reactance Xeq = 0.23 per unit and voltage Veq = 1.0 per
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unit, both on the generator base. It achieves rated open-circuit voltage at a field current of 297
amperes.

a. Find the maximum power Pmax (in MW and per unit) that can be supplied to the external
system if the internal voltage of the generator is held equal to 1.0 per unit.

b. Using MATLAB, plot the per-unit terminal voltage of the generator as the generator
output is varied from zero to Pmax under the conditions of part (a).

■ Solution

a. From Eq. 5.46

Pmax = EafVeq

X s + Xeq

Note that although this is a three-phase generator, no factor of 3 is required because we are
working in per unit.

Because the machine is operating with a terminal voltage near its rated value, we
should express Pmax in terms of the saturated synchronous reactance. Thus

Pmax = 1

1.35 + 0.23
= 0.633 per unit = 47.5 MW

b. From the equivalent circuit of Fig 5.14, we see that the generator terminal current can be
expressed as a function of the power angle δ is given by

Î a = Ê af − V̂ eq

j (X s + Xeq)
= Eaf e jδ − Veq

j (X s + Xeq)

The generator terminal voltage is then given by

V̂ a = V̂ eq + j Xeq Î a

and the generator power can be expressed as

P = Re[V̂ a Î ∗
a ]

Thus the terminal voltage can be plotted as a function of the generator power by varying
the power angle over the range 0 to 90◦. Figure 5.15 is the desired MATLAB plot. The
terminal voltage can be seen to vary from 1.0 to approximately 0.87 as the generator is
loaded to its maximum value of 0.633 per unit.

Here is the MATLAB script:

clc

clear

% Solution for part (b)

%System parameters

Veq = 1.0;

Eaf = 1.0;

Xeq = .23;

Xs = 1.35;
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Figure 5.15 MATLAB plot of terminal voltage vs. per-unit generator
power for Example 5.6(b).

n = 1:101;

delta = (pi/2)*(n-1)/100;

Iahat = (Eaf *exp(j*delta) - Veq)/(j*(Xs + Xeq));

Vahat = (Veq + j*Xeq*Iahat);

Vamag = abs(Vahat);

P = real(Vahat.*conj(Iahat));

%Now plot the results

plot(P,Vamag)

xlabel(’Generator power [per unit]’)

ylabel(’Terminal voltage [per unit]’)

Practice Problem 5.6

Consider the 75-MVA, 13.8 kV machine of Example 5.6. It is observed to be operating at
terminal voltage of 13.7 kV and an output power of 53 MW at 0.87 pf lagging. Find (a) the
phase current in kA, (b) the internal voltage in per unit and (c) the corresponding field current
in amperes.

Solution
a. Ia = 2.57 kA
b. Eaf = 1.81 per unit
c. If = 538 amperes

As is demonstrated in Example 5.6, most large synchronous generators connected
to a power system cannot be loaded to rated power with their internal voltage equal
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to rated voltage; the peak of the per-unit power-angle characteristic Pmax is less than
the generator rating. Thus, in order to properly load the generator, the field current
must be increased, increasing the internal voltage, as the load is increased.

Although this can be done manually, it is typically done automatically through
the action of an automatic voltage regulator (AVR). An automatic voltage regulator
measures a system voltage (e.g., the generator terminal voltage) and controls the
generator field current to maintain that voltage at a pre-specified value. As can be
seen from Example 5.6, loading the machine with constant field current results in
a reduction in terminal voltage. Thus, as will be demonstrated in Example 5.7, an
AVR set to maintain terminal voltage will automatically respond to an increase in
generator load by increasing the field current and hence the peak of the power angle
characteristic, permitting the generator to be fully loaded.

EXAMPLE 5.7

Assume that the generator of Example 5.6 is equipped with an automatic voltage regulator set
to maintain the generator terminal voltage at its rated value.

a. If the generator is loaded to its rated value, calculate the corresponding power angle,
per-unit internal voltage, and field current.

b. Using MATLAB, plot the field current in amperes as a function of the generator per-unit
power up to full load.

■ Solution

a. With the terminal voltage held constant at Va = 1.0 per unit, the power can be expressed as

P = VaVeq

Xeq

sin δt = 1

0.23
sin δt = 4.35 sin δt

where δt is the angle of the terminal voltage with respect to V̂ eq. For P = 1.0 per unit,
δt = 13.3◦ and hence Î is equal to

Î a = Va e jδt − Veq

j Xeq

= 1.007 e j6.65◦

and

Ê af = V̂ eq + j (Xeq + X s)Î a = 1.78 e j62.7◦

or Eaf = 1.78 per unit, corresponding to a field current (from Eq. 5.37) of

If = 1.78 × 297 = 529 [A]

The corresponding power angle is 62.7◦.
b. Figure 5.16 is the desired MATLAB plot. If can be seen to vary from 1.0 at P = 0 to 1.78

at P = 1.0.
Here is the MATLAB script:

clc

clear

%System parameters
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Figure 5.16 MATLAB plot of field current vs. per-unit power for
Example 5.7.

Veq = 1.0;

Xeq = .23;

Xs = 1.35;

AFNL = 297;

%Set terminal voltage to unity

Vterm = 1.0;

n = 1:101;

P = (n-1)/100;

deltat = asin(P*Xeq/(Vterm*Veq));

Ia = (Vterm *exp(j*deltat) - Veq)/(j*Xeq);

Eaf = abs(Vterm + j*(Xs+Xeq)*Ia);

If = AFNL*Eaf;

%Now plot the results

plot(P,If)

xlabel(’Power [per unit]’)

ylabel(’Field current [A]’)

EXAMPLE 5.8

A 2000-hp, 2300-V, three-phase, Y-connected, 30-pole, 60-Hz synchronous motor has a syn-
chronous reactance of 1.95 
/phase and AFNL = 370 A. The motor is connected to a 60-Hz,
2300-V constant voltage source through a feeder of reactance 0.32 
/phase. For the purposes
of this example, all losses may be neglected.
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Figure 5.17 Equivalent circuit and phasor
diagram for Example 5.8.

The motor has an automatic voltage regulator which is adjusted to maintain its terminal
voltage at 2300 V. If the motor is operating at its rated power, calculate its terminal current,
the reactive power supplied to the motor at its terminals, and the corresponding motor field
current.

■ Solution
Although this machine is undoubtedly of the salient-pole type, we will solve the problem by
simple cylindrical-rotor theory. The solution accordingly neglects reluctance torque and hence,
as is discussed in Section 5.7, somewhat under-estimates the maximum power capability of the
machine.

As shown in the equivalent circuit of Fig. 5.17(a), for the purpose of this example, we
will use the motor reference direction for current. From Eq. 5.45 and the phasor diagram
of Fig. 5.17(b), Va = Vs = 2300/

√
3 V = 1328 V, line-to-neutral and with P = 2000 hp =

1492 kW,

δt = − sin−1

(
P X f

3VaVs

)

= − sin−1

(
1492 × 103 × 0.32

3 × 13282

)

= −5.18◦
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where the minus sign is due to the fact that power flows from the source to the motor and hence
V̂ a lags V̂ s.

V̂ a = Vae
jδt = 1328 e− j5.18◦

Thus

Î a = Vs − V̂ a

j X f

= 1328 − 1328e− j5.18◦

j0.32
= 375 e− j2.59◦

[A]

and the reactive power Q supplied to the motor is equal to

Q = Im[3 V̂ a Î ∗
a ] = −67.5 [kVAR]

where the notation Im[ ] indicates the imaginary part of a complex number and the superscript
∗ indicates the complex conjugate. The fact that the reactive power into the motor is negative
means that the motor is actually supply reactive power to the system under this operating
condition.

From the single-phase, line-neutral equivalent circuit of Fig. 5.17(a) we see that

Ê af = V̂ s − j (X s + X f) Îa = 1328 + j (1.95 + 0.32) × 375 e− j2.59◦

= 1544 e− j33.40◦
[V]

Note that line-to-neutral voltages must be used and thus Eaf = 1544 V, line-to-neutral =
2674 V, line-to-line. Here we see that Eaf is equal to 1.16 times the machine rated voltage
(1.16 per unit) and thus we can calculate the field current from Eq. 5.37 as

If = 1.16 × AFNL = 430 [A]

Practice Problem 5.7

Repeat Example 5.8 for source voltage of 2315 V.

Solution
Ia = 375 A
Q = 23.5 kVA
If = 417 A

5.5 STEADY-STATE OPERATING
CHARACTERISTICS

The principal steady-state operating characteristics of a synchronous machine are de-
scribed by the interrelations between terminal voltage, field current, armature current,
power factor, and efficiency. A selection of performance characteristics of importance
in practical application of synchronous machines are presented in this section.

Synchronous generators are usually rated in terms of a maximum apparent power
(kVA or MVA) load at a specific voltage and power factor (often 80, 85, or 90 percent
lagging) which they can carry continuously without overheating. Because they are
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typically operated with terminal voltage regulation, synchronous generators normally
operate at a terminal voltage whose value is within ±5 percent of rated voltage. When
the real-power loading and voltage are fixed, the allowable reactive-power loading is
limited by either armature- or field-winding heating. The allowable operating region
for a synchronous generator is frequently presented in the form of a capability curve
which gives the maximum reactive-power loadings corresponding to various real
power loadings with operation at rated terminal voltage.

A typical set of capability curves for a large, hydrogen-cooled turbine generator
is shown in Fig. 5.18. Note that the three-curves seen in the figure correspond to
differing pressure of the hydrogen cooling gas. Increasing the hydrogen pressure
improves cooling and, as can be seen from Fig. 5.18, permits a larger overall loading
of the machine.

Armature-winding heating is the limiting factor in the region from unity to rated
power factor (0.85 lagging power factor in Fig. 5.18). For example, for a given real-
power loading, increasing the reactive power past a point on the armature-heating
limited portion of the capability curve will result in an armature current in excess of
that which can be successfully cooled, resulting in armature-winding temperatures
which will damage the armature-winding insulation and degrade its life. Similarly,
for lower power factors, field-winding heating is the limiting factor.
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Figure 5.18 Capability curves of an 0.85 power factor, 0.80 short-circuit
ratio, hydrogen-cooled turbine generator. Base MVA is rated MVA at 0.5 psig
hydrogen.
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Capability curves provide a valuable guide both to power system planners and to
operators. As system planners consider modifications and additions to power systems,
they can readily see whether the various existing or proposed generators can safely
supply their required loadings. Similarly, power system operators can quickly see
whether individual generators can safely respond to changes in system loadings which
occur during the normal course of system operation.

The derivation of capability curves such as those in Fig. 5.18 can be seen as
follows. Operation under conditions of constant terminal voltage and armature current
(at the maximum value permitted by heating limitations) corresponds to a constant
value of apparent output power determined by the product of terminal voltage and
current. Since the per-unit apparent power S is given by

S = Va Ia =
√

P2 + Q2 (5.48)

where P represents the per-unit real power and Q represents the per-unit reactive
power, we see that a constant apparent power corresponds to a circle centered on
the origin on a plot of reactive power versus real power. Note also from Eq. 5.48,
that, for constant terminal voltage, constant apparent power corresponds to constant
armature-winding current and hence constant armature-winding heating. Such a cir-
cle, corresponding to the maximum acceptable level of armature heating, is shown in
Fig. 5.19.
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Figure 5.19 Construction used for the
derivation of a synchronous generator
capability curve.
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Similarly, consider operation when terminal voltage is constant and field current
(and hence generated voltage Eaf) is limited to a maximum value, also determined by
heating limitations. In per unit,

P − j Q = V̂ aÎ a (5.49)

From Eq. 5.25 (with Ra = 0)

Êaf = V̂ a + j XsÎ a (5.50)

Equations 5.49 and 5.50 can be solved to yield

P2 +
(

Q + V 2
a

Xs

)2

=
(

Va Eaf

Xs

)2

(5.51)

This equation corresponds to a circle centered at Q = −(V 2
a /Xs) as shown in

Fig. 5.19 and determines the field-heating limitation on machine operation shown in
Fig. 5.18. It is common to specify the rating (apparent power and power factor) of
the machine as the point of intersection of the armature- and field-heating limitation
curves as shown in Fig. 5.19.

As can be seen from the capability curves of Fig. 5.18, there are additional
limitations imposed on operation of a generator when operating under-excited and
absorbing reactive power (Q < 0). These limitations, not shown in Fig. 5.19, are
associated with heating in the end regions of the stator core of a generator under
under-excited operating conditions as well as stability limits imposed by the system
to which a specific generator is connected.

EXAMPLE 5.9

Consider a synchronous generator rated at 13.8 kV, 150 MVA, 0.9 pf with a synchronous
reactance of 1.18 pu and AFNL = 680 A. Recognizing that the rated power factor of the
generator is determined by the intersection of the armature- and field-heating limitation curves,
calculate the maximum field current which can be supplied to the generator without exceeding
the field-heating limit.

■ Solution
Based upon the assumption that the rated power factor of this generator is determined by the
intersection of the armature- and field-heating limitation curves as shown in Fig. 5.19, we see
that at this operating point, Va = 1.0 per unit and

Ia = 1.0 e jφ

where φ = − cos−1 (0.9) = −25.84◦. Note that φ is negative because the reactive power
Q = Im[V̂ a Î a]∗ is positive. From Eq. 5.50

Ê af = V̂ a + j X s Î a = 1.0 + j1.18 × 1.0 e− j25.84◦ = 1.850 e j35.04◦

Thus we see that the field-heating limits the maximum value of generated voltage to 1.85 per
and thus limits the field current to a maximum value of 1.85×AFNL = 1258 A.
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Figure 5.20 Typical form of synchronous-generator
V curves.

For a given real-power loading and terminal voltage, the power factor at which a
synchronous machine operates, and hence its armature current, can be controlled by
adjusting its field excitation. A plot of armature current as a function of field current
at constant real power and terminal voltage is known as a V curve because of its
characteristic shape. A family of V curves for a synchronous generator corresponding
to various real-power loadings takes the form of those shown in Fig. 5.20.

The dashed lines are loci of constant power factor; they are referred to as com-
pounding curves, showing how the field current must be varied as the load is changed
to maintain constant power factor. Points to the right of the unity-power-factor com-
pounding curve correspond to over-excitation and lagging power factor; points to the
left correspond to under-excitation and leading power factor. Synchronous-motor V
curves and compounding curves are very similar to those of synchronous generators.
In fact, if it were not for the small effects of armature resistance, motor and generator
compounding curves would be identical except that the lagging- and leading-power-
factor curves would be interchanged.

The nature of a V curve is best understood with the aid of a phasor diagram.
Consider the phasor diagram of Fig. 5.21, representing Eq. 5.50 for a synchronous
generator operating at constant terminal voltage Va, constant real power P and three
different values of field current. To simplify this discussion, we will assume that all
quantities are expressed in per unit and thus the real power is given by

P = Re[V̂ a Î ∗
a ] = Va Ia cos φ (5.52)

where φ is the angle of Î a with respect to V̂ a. Because Va and P are constant, we see
from Eq. 5.52 that

Ia cos φ = constant (5.53)



Umans-3930269 book December 14, 2012 12:12

298 CHAPTER 5 Synchronous Machines

Locus of Êaf

Locus of Îa

δ1

θ1

Êaf1 Êaf2 Êaf3

jXsÎa3

jXsÎa2

Îa2

Îa3

Îa1
jXsÎa1

Va

Figure 5.21 Phasor diagram for
constant-power operation at constant
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and thus the projection of Î a onto V̂ a is constant. As a result, the tips of all the phasors
Î a must lie along the vertical dotted line labeled “Locus of Î a” in Fig. 5.21. Similarly,
because Êaf is obtained by adding the phasor j Xs Î a, which is perpendicular to the
phasor Î a, to V̂ a, it can be shown that the tips of all the phasors Êaf must lie along
the horizontal dotted line labeled “Locus of Êaf” in Fig. 5.21.

Consider operation at current Î a1 in Fig. 5.21, in which case the generator is
operating at a leading power factor (φ1 is positive) and hence its reactive power
output, given by

Q = Im[V̂ a Î ∗
a ] = −Va Ia sin φ (5.54)

is negative, i.e. the generator is absorbing reactive power from the external system.
Notice that under this operating condition, the corresponding generated voltage Êaf

has the smallest magnitude of the three operating points, corresponding to the smallest
value of field current as can be seen from Eq. 5.37. When a synchronous generator is
absorbing reactive power, it is said to be under-excited.

Next consider unity-power-factor operation, corresponding to the terminal cur-
rent Î a2 in the phasor diagram. We see that the magnitude of the corresponding gener-
ated voltage Êaf2 is larger than that of the first operating condition. Thus we see that
if the generator is operating under-excited, an increase in field current will reduce the
armature current and improve the power factor, reducing the reactive power absorbed
by the generator. A minimum of armature current will occur when the generator is
operating at unity power factor (zero reactive power).

As can be seen from the phasor diagram, a further increase in field current
(and a corresponding increase in Eaf) will result in an increase in armature current
from its minimum value; for example, consider the operating point corresponding to
terminal current Î a3 and generated voltage Êaf3. Under these conditions the generator
is operating at lagging power factor (φ3 is negative) and hence the terminal reactive
power is positive and the generator is supplying reactive power to the external system.
When a synchronous generator is supplying reactive power, it is said to be over-excited.
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EXAMPLE 5.10

Calculate the field current in amperes for the generator of Example 5.9 if it is operating at its
rated terminal voltage and unity-power-factor with real-power loadings of 0.5, 0.75 and 1.0 per
unit.

■ Solution
At unity power factor, the per-unit terminal current is

Ia = P

Va

= 0.5

1.0
= 0.5

As can be seen from the phasor diagram of Fig. 5.21, the phasor j X s Î a is perpendicular
to V̂ a and thus

Eaf =
√

V 2
a + (X s Ia)2 =

√
(1.0)2 + (1.18 × 0.5)2 = 1.161

and from Eq. 5.37

If = Eaf × AFNL = 1.161 × 680 = 789 [A]

Similarly, for P = 0.75 per unit, If = 908 A and for P = 1.0 per unit, If = 1,052 A.

EXAMPLE 5.11

Using MATLAB, plot the per-unit terminal current vs. field current in amperes for the generator
of Example 5.9 operating at rated terminal voltage and real power of 0.7 per unit as the generator
power factor is varied from 0.8 leading to 0.8 lagging.

■ Solution
For the stated range of power factors, the power factor angle varies over the range φ0 ≥ φ ≥ −φ0

where φ0 = cos−1 (0.8) = 36.87◦. From Eq. 5.52, we see that for a given value of φ, the per-unit
terminal current can be found as

Ia = P

Va cos φ

and thus

Î a =
(

P

Va cos φ

)
e jφ

The per-unit generated voltage can then be found from Eq. 5.50 and the field current from
Eq. 5.37. The resultant plot is shown in Fig. 5.22.

Here is the MATLAB script:

clc

clear

% Generator parameters

Va = 1.0;

Xs = 1.18;

AFNL = 680;

P = 0.7;
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Figure 5.22 MATLAB plot of per-unit terminal current vs. field
current for Example 5.11.

theta = acos(0.8)*(1:-.01:-1);

Ia = P./(Va*cos(theta));

Iahat = Ia.*exp(j*theta);

Eafhat = Va+j*Xs*Iahat;

Eaf = abs(Eafhat);

If = Eaf*AFNL;

plot(If,Ia,’LineWidth’,2)

xlabel(’I_f [A]’,’FontSize’,20)

ylabel(’I_a [per unit]’,’FontSize’,20)

set(gca,’FontSize’,20)

set(gca,’xlim’,[600 1200])

grid on

As we have seen, synchronous generators can supply both real and reactive
power. A special type of synchronous generator, designed to supply only reactive
power, is referred to as a synchronous condenser. Synchronous condensers operate
without prime movers4 and their function is to supply or absorb reactive power to
a power system, thereby controlling the system voltage at the point to which there
are connected. To a simple approximation, they can be thought of as an adjustable
ac voltage source controlled by their field current. Note that this type of operating
corresponds to operating along the zero-real-power axis of the capability curves of
Figs. 5.18 and 5.19.

4 A relatively small motor sufficient to supply rotational losses can be used to bring them up to operating
speed in order to parallel them to the power system.
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EXAMPLE 5.12

Consider a synchronous condenser connected to a power system bus which can be represented
by a Thevenin-equivalent voltage Veq and series reactance Xeq as shown in Fig. 5.14. The
synchronous condenser is rated at 75 MVA, 13.8 kV with a synchronous reactance of 0.95 per
unit and AFNL = 830 A. If the equivalent system voltage is 13.75 kV and Xeq = 0.02 per
unit on the generator base, calculate the generator field current required to raise the generator
terminal voltage, and thus the local system voltage, to 13.8 kV and the reactive power supplied
under that operating condition.

■ Solution
Under this operating condition, Veq = 13.75/13.80 = 0.9964 per unit and the generator
terminal voltage is Va = 1.0 per unit. Because there is no real-power flow, we know that these
voltages are in phase and thus the generator terminal current is

Î a = (Va − Veq)

j Xeq

= (1.0 − 0.9964)

j 0.02
= − j 0.181 per unit

The per-unit generated voltage can then be found from Eq. 5.50 as

Ê af = Va + j X s Î a = 1.172 perunit

Thus from Eq. 5.37 the field current is equal to If = 830 × 1.172 = 973 A.
Finally, the generator reactive power output is

Q = Im[V̂ a Î ∗
a ] = 0.181 per unit = 13.6 MVAR

Practice Problem 5.8

Repeat Example 5.12 if the equivalent system voltage is 13.88 kV.

Solution
If = 601 A
Q = −0.290 per unit = −21.7 MVA

As in all electromechanical machines, the efficiency of a synchronous machine
at any particular operating point is determined by losses; I 2 R losses in the wind-
ings, core losses, stray-load losses, and mechanical losses. Because these losses
change with operating condition and are somewhat difficult to measure accurately,
various standard procedures have been developed to calculate the efficiency of syn-
chronous machines.5 The general principles for these calculations are described in
Appendix D.

5 See, for example, IEEE Std. 115-2009, “IEEE Guide: Test Procedures for Synchronous Machines,”
Institute of Electrical and Electronic Engineers, Inc., www.ieee.org and NEMA Standards Publication No.
MG 1-2009, “Motors and Generators,” National Electrical Manufacturers Association, www.nema.org
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EXAMPLE 5.13

Data are given in Fig. 5.23 with respect to the losses of the 45-kVA, 220-V, 6-pole, 60-Hz,
three-phase synchronous machine of Examples 5.4 and 5.5. Compute its efficiency when it is
running as a synchronous motor at a terminal voltage of 220 V and with a power input to its
armature of 45 kVA at 0.80 leading power factor. Assume the armature and field windings to
be at a temperature of 75◦C.

■ Solution
The I 2 R losses must be computed on the basis of the dc resistances of the windings at 75◦C.
Correcting the winding resistances by means of Eq. 5.39 gives

a. Field-winding resistance Rf at 75◦C = 35.5 


b. Armature dc resistance Ra at 75◦C = 0.0399 
/phase

Note that, because the stray-load loss is accounted for separately in Fig. 5.23, in this case we
are calculating the armature loss using the dc resistance instead of the effective resistance of
Eq. 5.40.
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Figure 5.23 Losses in a three-phase, 45-kVA, Y-connected, 220-V,
60-Hz, six-pole synchronous machine (Example 5.13).
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For the specified operating conditions, the motor is operating at its rated voltage and kVA
and thus at rated armature current magnitude (1.0 per unit = 118 A). The per-unit armature
current is thus

Î a = 1.0e jφ

where φ = cos−1 (0.8) = 36.9◦.
The per-unit generated voltage can be found as

Ê af = Va − (Ra + j X s) Î a

Here Va = 1.0 per unit and X s = 0.775 as calculated in Example 5.4. Ra in per unit is calculated
using the base impedance Zbase = (220 V)2/45 kVA = 1.076 
 as

Ra = 0.0399

1.076
= 0.0371 per unit

Thus

Ê af = 1.572e− j24.1◦
per unit

From Example 5.4, AFNL = 2.84 A and If can be found from Eq. 5.37 as If = Eaf ×
AFNL = 4.47 A. The field I 2 R loss is therefore

I 2
f Rf = 4.472 × 35.5 = 708 W

The per-unit armature I 2 R loss is

I 2
a Ra = 3 × 1.02 × 0.0371 = 0.0371 per unit

and thus I 2
a Ra = 0.0371 × (45 × 103) = 1670 W.

From Fig. 5.23 at Ia = 118 A the stray-load loss = 0.36 kW. The stray-load loss is
considered to account for the losses caused by the armature leakage flux. Core loss under load
is primarily a function of the main core flux in the motor. As is discussed in Chapter 2, the
voltage across the magnetizing branch in a transformer (corresponding to the transformer core
flux) is calculated by subtracting the leakage impedance drop from the terminal voltage. In a
directly analogous fashion, the main core flux in a synchronous machine (i.e., the air-gap flux)
can be calculated as the voltage (often referred to as the air-gap voltage) behind the leakage
impedance of the machine. Typically the armature resistance is small, and hence it is common
to ignore the resistance and to calculate the voltage behind the leakage reactance. The core
loss can then be estimated from the open-circuit core-loss curve at the voltage behind leakage
reactance.

In this case, we do not know the machine leakage reactance. Thus, one approach would be
simply to assume that the air-gap voltage is equal to the terminal voltage and to determine the
core-loss under load from the core-loss curve at the value equal to the terminal voltage.6 In this
case, the motor terminal voltage is 220 V line-to-line and thus from Fig. 5.23, the open-circuit
core loss is 1.20 kW.

6 Although not rigorously correct, it has become common practice to ignore the leakage impedance drop
when determining the under-load core loss.
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To estimate the effect of ignoring the leakage reactance drop, let us assume that the
leakage reactance of this motor is Xal = 0.15 per unit. Under this assumption, the per-unit
air-gap voltage is equal to

V̂ a − j XalÎ a = 1.10e− j6.28◦

which corresponds to a line-to-line voltage magnitude of 242 V. From Fig. 5.23, the corre-
sponding core-loss is 1.42 kW, 220 W higher than the value determined using the terminal
voltage. We will use 1.42 kW for the purposes of this example.

Including the friction and windage loss of 0.91 kW, all losses have now been found:

Total losses = .708 + 1.67 + 0.36 + 1.42 + 0.91 = 5.07 kW

The total motor input power is the input power to the armature plus the power dissipated
in the field winding

Input power = 0.8 × 45 + 0.708 = 36.7 kW

and the output power is equal to the total input power minus the total losses

Output power = 36.7 − 5.07 = 31.6 kW

Therefore

Efficiency = Output power

Input power
= 31.6

36.7
= 0.862 = 86.2%

Practice Problem 5.9

Repeat Example 5.13 for the case that the motor is operating at a power input of 45 kW, unity
power factor.

Solution

Efficiency = 89.9%

EXAMPLE 5.14

Experimental results are often presented either in tabular form or the form of plots, such as the
loss data presented in Fig. 5.23. Frequently is is helpful to express this data in a functional form
so that it can be easily incorporated into design and analysis programs. MATLAB includes a
number of functions which can be used to accomplish this task. Based upon the following data
points read from the curve of open-circuit core loss vs open-circuit voltage, use the MATLAB
spline function to plot a curve of open-circuit core loss vs. open-circuit voltage.

Open-circuit Open-circuit
voltage [V] core loss [W]

0 0
50 200
80 600

110 1200
140 2000
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Figure 5.24 MATLAB plot of open-circuit core loss vs. open-circuit
voltage Example 5.14.

■ Solution
The plot of open-circuit core loss vs. open-circuit voltage is given in Fig. 5.24.
Here is the MATLAB script:

clc

clear

% Open-circuit voltage [V]

Voc(1) = 0;

Voc(2) = 50;

Voc(3) = 80;

Voc(4) = 110;

Voc(5) = 140;

%Core loss [W]

Pcore(1) = 0;

Pcore(2) = 200;

Pcore(3) = 600;

Pcore(4) = 1200;

Pcore(5) = 2000;

% Select a range of open-circuit voltages for plotting

VOC = 0:150;

% Use a the ’spline’ function to calculate the

% corresponding core loss



Umans-3930269 book December 14, 2012 12:12

306 CHAPTER 5 Synchronous Machines

PCORE = spline(Voc,Pcore,VOC);

% Plot the results

plot(VOC,PCORE/1000)

xlabel(’Open-circuit voltage’)

ylabel(’Open-circuit core-loss [kW]’)

5.6 EFFECTS OF SALIENT POLES;
INTRODUCTION TO DIRECT-
AND QUADRATURE-AXIS THEORY

The essential features of salient-pole machines are developed in this section based on
physical reasoning. A mathematical treatment, based on an inductance formulation
like that presented in Section 5.2, is given in Appendix C, where the dq0 transformation
is developed.

5.6.1 Flux and MMF Waves

Because the air gap is uniform, the flux produced by an mmf wave in a uniform-air-
gap machine is independent of the spatial alignment of the wave with respect to the
field poles. However, in salient-pole machines, such as those shown schematically
in Figs. 4.4 and 4.6, the preferred direction of magnetization is determined by the
protruding field poles. The permeance along the polar axis, commonly referred to
as the rotor direct axis, is appreciably greater than that along the interpolar axis,
commonly referred to as the rotor quadrature axis.

The field winding produces flux which is aligned with the field pole and hence
along the rotor direct axis. Thus, when phasor diagrams are drawn, the field-winding
mmf and its corresponding flux �̂f are found along the rotor direct axis. The generated
internal voltage is proportional to the time derivative of the field-winding flux, and thus
its phasor Êaf leads the flux �̂f by 90◦. Following the convention that the quadrature
axis leads the direct axis by 90◦,7 we see that the generated-voltage phasor Êaf lies
along the quadrature axis. Thus a key point in the analysis of synchronous-machine
phasor diagrams is that, by locating the phasor Êaf, the location of both the quadrature
axis and the direct axes is immediately determined. This forms the basis of the direct-
and quadrature-axis formulation for the analysis of salient-pole machines in which all
machine voltages and currents can be resolved into their direct- and quadrature-axis
components.

7 Alternatively, although less common, some authors choose to define the direct-axis as leading the
quadrature-axis by 90◦.
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In a non-salient, cylindrical-rotor machine, a sinusoidally distributed mmf wave
will produce a sinusoidal space-harmonic air-gap flux distribution. Such is not the
case in a salient-pole machine in which the same sinusoidally distributed mmf wave
will produce space-harmonic components of the air-gap flux in addition to the fun-
damental component. Fortunately, experience has shown that in many cases these
space-harmonic flux components can be ignored and salient-pole machines are typ-
ically analyzed simply based upon the fundamental space-harmonic components of
the air-gap flux and a recognition that the amplitudes of these flux components are
determined both by the magnitude of their associated mmfs and the orientation of
the mmfs with respect to the rotor direct axis. In the discussion which follows, a
direct-axis quantity is one whose magnetic effect is aligned with the axes of the field
poles; direct-axis mmfs produce flux along these axes. A quadrature-axis quantity is
one whose magnetic effect is centered on the interpolar space.

Focusing our attention on the space-fundamental components of the air-gap flux
and mmf, the effects of salient poles can be taken into account by resolving the
armature current Î a into two components, one along the direct axis and the other
along the quadrature axis as shown in the phasor diagram of Fig. 5.25. Thus

Î a = Î d + Î q (5.55)

Using generator notation for the armature current, with the armature current
reference direction defined as being out of the armature terminals, positive armature
current produces demagnetizing flux. Hence the positive direct-axis component Î d

of the armature current shown in Fig. 5.25 produces a negative component of the
space-fundamental armature flux �̂ad along the negative direct axis .

The quadrature-axis component of the armature current Î q, in phase with the
generated voltage, produces a component of the space-fundamental armature-reaction

�̂ar �̂ad

�̂aq

Î q Êaf Quadrature
axis

Î a

�̂R

�̂f

Î d

Direct axis

Figure 5.25 Phasor diagram of a salient-pole
synchronous generator.
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flux �̂aq. The net space-fundamental armature-reaction flux �̂ar produced by the
armature current is the phasor sum of the direct- and quadrature-axis components
�̂ad and �̂aq as shown in the figure. The resultant flux �̂R, which is the net air-gap
component of the flux which links the armature-winding, is the sum of �̂ar and the
field flux �̂f.

5.6.2 Phasor Diagrams for Salient-Pole Machines

The inductive effects of the direct- and quadrature-axis armature flux waves can be
accounted for by direct- and quadrature-axis magnetizing reactances, Xϕd and Xϕq re-
spectively, similar to the magnetizing reactance Xϕ of cylindrical-rotor theory. These
reactances account for the inductive effects of the space-fundamental air-gap fluxes
created by the armature currents along the direct and quadrature axes, �̂ad and �̂aq

respectively. Because of the longer air gap between the poles and the correspondingly
larger reluctance, the space-fundamental armature flux when the armature mmf is
aligned with the quadrature axis is less than the space fundamental armature flux
which would be created by the same armature current if the armature mmf wave were
aligned with the direct axis. Hence, the quadrature-axis magnetizing reactance is less
than that of the direct axis.

With each of the component currents Î d and Î q there is associated a component
synchronous-reactance voltage drop, j Î d Xd and j Î q Xq respectively. The reactances
Xd and Xq are, respectively, the direct- and quadrature-axis synchronous reactances
and are equal to the sum of the direct- and quadrature-magnetizing reactances and the
armature-winding leakage reactance. The direct- and quadrature-axis synchronous
reactances are then given by

Xd = Xϕd + Xal (5.56)

Xq = Xϕq + Xal (5.57)

where Xal is the armature leakage reactance, assumed to be the same for direct-
and quadrature-axis currents. Compare Eqs. 5.56 and 5.57 with Eq. 5.26 for the non
salient-pole case. As we have discussed, the quadrature-axis synchronous reactance
Xq is less than that of the direct axis Xd because of the greater reluctance of the longer
air gap in the quadrature axis. Note that a small salient-pole effect is present even
in cylindrical-rotor turbo-alternators because of the effect of the slots for the field
winding on the rotor quadrature-axis.

As shown in the generator phasor diagram of Fig. 5.26, the generated voltage Êaf

equals the phasor sum of the terminal voltage V̂ a plus the armature-resistance drop
Î a Ra and the component synchronous-reactance drops j Î d Xd + j Î q Xq.

Êaf = V̂ a + Ra Î a + j Xd Î d + j Xq Î q (5.58)

From this phasor diagram we also see that, given the power-factor angle φ and
the power angle δ, the magnitude of the component currents can be found as

Id = Ia sin (δ − φ) (5.59)

Iq = Ia cos (δ − φ) (5.60)
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Î q

jXdÎ d

Êaf

V̂a

RaÎa
Î d

Î a

δ

φ

Direct axis

Quadrature
axis

Figure 5.26 Phasor diagram for a synchronous generator
showing the relationship between the voltages and the currents.

Note that it might appear from Fig. 5.26 that the appropriate angle is δ +φ. However,
this is not correct because the phasor diagram of Fig. 5.26 is drawn for the case of a
lagging power factor and hence the angle φ as drawn has a negative value.

Just as for the synchronous reactance Xs of a cylindrical-rotor machine, the
reactances Xd and Xq are not constant with flux density but rather saturate as the
machine flux density increases. It is common to find both unsaturated and saturated
values specified for each of these parameters.8 The saturated values apply to typical
machine operating conditions for which the terminal voltage is near its rated value.
For our purposes in this chapter and elsewhere in this book, we will not focus attention
on this issue and, unless specifically stated, the reader may assume that the values of
Xd and Xq given are the saturated values.

In drawing a phasor diagram such as that of Fig. 5.26, the armature current must be
resolved into its direct- and quadrature-axis components. This resolution assumes that
the phase angle δ − φ of the armature current with respect to the generated voltage
is known. Typically, however, although the power-factor angle φ at the machine
terminals is known, the angle δ between the terminal voltage and the generated voltage
is not known. It is thus necessary to locate the quadrature axis and to compute δ.

A portion of the phasor diagram of Fig. 5.26 is repeated in Fig. 5.27. Note that in
this case, instead of adding the phasors j Î d Xd and j Î q Xq to the tip of the phasor Î a Ra,
the figure shows the addition of the phasors j Î d Xq and j Î q Xq. Although the phasor
j Î d Xq is somewhat shorter than the phasor j Î d Xd of Fig. 5.26, both are parallel to
the quadrature axis and hence in each case, the addition of the phasor j Î q Xq results
in a phasor which terminates on the quadrature axis.

The key point of the phasor diagram of Fig. 5.27 is that, from Eq. 5.55,
j ( Î d + Î q)Xq = j Î a Xq and thus the quadrature axis can be located by adding the
phasor j Î a Xq to the phasor V̂ a + Î a Ra. Once the quadrature axis (and hence δ) is
known, Î d and Î q can be determined and the generated voltage Êaf can be found from
Eq. 5.58.

8 See, for example, IEEE Std. 115-2009, “IEEE Guide: Test Procedures for Synchronous Machines,”
Institute of Electrical and Electronic Engineers, Inc., www.ieee.org.
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V̂a
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Î q
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φ

δ

Îd

jXqÎq

jXqÎa

jXqÎd

RaÎa

Direct axis

Quadrature
axis

Figure 5.27 Phasor diagram illustrating the
technique for locating the quadrature axis.

EXAMPLE 5.15

The reactances Xd and Xq of a salient-pole synchronous generator are 1.00 and 0.60 per unit
respectively. The armature resistance may be considered to be negligible. Compute the per-unit
generated voltage when the generator delivers its rated kVA at 0.80 lagging power factor and
rated terminal voltage.

■ Solution
The phasor diagram is shown in Fig. 5.28. As is commonly done for such problems, the
terminal voltage V̂ a will be used as the reference phasor, i.e., V̂ a = Va e j0◦ = Va. In this case,
the machine is operating at rated terminal voltage and thus Va = 1.0 per unit. In addition,
because the machine is operating at its rated kVA, the magnitude of the armature current is
Ia = 1.0 per unit.

V̂a

Êaf

Î q

Î a

φ

δ

Îd

jXqÎq

jXqÎa

jXdÎd

Direct axis

Quadrature
axis

Figure 5.28 Generator phasor diagram for Example 5.15.
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For a power factor of 0.8 lagging, the phase angle φ of the armature current is

φ = − cos−1 (0.8) = −36.9◦

and thus

Î a = Ia e jφ = 1.0 e− j36.9◦

The quadrature axis is located by the phasor

Ê ′ = V̂ a + j Xq Î a = 1.0 + j0.60 × 1.0 e− j36.9◦ = 1.44 e j19.4◦

Thus, δ = 19.4◦, and the phase angle between Ê af and Î a is δ−φ = 19.4◦ − (−36.9◦) = 56.3◦.
The armature current can now be resolved into its direct- and quadrature-axis components.

From Eqs. 5.59 and Eqs. 5.60

Id = Ia sin (δ − φ) = 1.00 sin (56.3◦) = 0.832

and

Iq = Ia cos (δ − φ) = 1.00 cos (56.3◦) = 0.555

and thus, as phasors,

Î d = 0.832 e j (19.4◦−90◦) = 0.832 e− j70.6◦

and

Î q = 0.555 e j19.4◦

We can now find Ê af from Eq. 5.58

Ê af = V̂ a + j Xd Î d + j Xq Î q

= 1.0 + j1.0 × 0.832 e− j70.6◦ + j0.6 × 0.555 e j19.4◦

= 1.78 e j19.4◦

and we see that Eaf = 1.78 per unit. Note that, as expected, � Ê af = 19.4◦ = δ, thus confirming
that Ê af lies along the quadrature axis.

Practice Problem 5.10

Repeat Example 5.15 for a power factors of (a) 0.95 leading and (b) 0.95 lagging.

Solution
a. Ê af = 1.11 e j35.1◦

per unit
b. Ê af = 1.59 e j25.6◦

per unit

EXAMPLE 5.16

In the simplified theory of Section 5.2, the synchronous machine is assumed to be representable
by a single reactance, the synchronous reactance X s of Eq. 5.26. The question naturally arises:
How serious an approximation is involved if a salient-pole machine is treated in this simple
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fashion? Suppose that a salient-pole machine were treated by cylindrical-rotor theory as if it had
a single synchronous reactance equal to its direct-axis value Xd? To investigate this question,
we will repeat Example 5.15 under this assumption.

■ Solution
In this case, under the assumption that

Xq = Xd = X s = 1.0 per unit

the generated voltage can be found simply as

Ê af = Va + j X s Î a = 1.0 + j1.0 × 1.0 e− j36.9◦

= 1.79 e j26.6◦
per unit

Comparing this result with that of Example 5.15 (in which we found that Ê af = 1.78e j19.4◦
),

we see that the magnitude of the predicted generated voltage is relatively close to the correct
value. As a result, we see that the calculation of the field current required for this operating
condition will be relatively accurate under the simplifying assumption that the effects of saliency
can be neglected.

However, the calculation of the power angle δ (19.4◦ versus a value of 26.6◦ if saliency
is neglected) shows a considerably larger error. In general, such errors in the calculation of
generator steady-state power angles may be of significance when studying the transient behavior
of a system including a number of synchronous machines. Thus, although saliency can perhaps
be ignored when doing “back-of-the-envelope” system calculations, it is rarely ignored in
large-scale, computer-based system studies.

5.7 POWER-ANGLE CHARACTERISTICS
OF SALIENT-POLE MACHINES

For the purposes of this section, we will consider a synchronous machine acting as a
generator and will neglect the armature resistance Ra because it is usually small. With
Ra neglected, Eq. 5.58 can be re-written in terms of the direct- and quadrature-axis
voltage and current components as

Êaf = (V̂ d + V̂ q) + j Xd Î d + j Xq Î q (5.61)

Recognizing that the phasors Êaf and j Xd Id lies along the quadrature axis and j Xq Iq

lies along the negative direct axis, we can re-write Eq. 5.61 in terms of the magnitudes
of its direct- and quadrature-axis components as

Direct axis:

0 = Vd − Xq Iq (5.62)

Quadrature axis:

Eaf = Vq + Xd Id (5.63)

These relationships are illustrated in the phasor diagram of Fig. 5.29. Note that
Eqs. 5.61 through 5.63 are based upon the generator reference for current. For an
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Figure 5.29 Phasor diagram illustrating the direct-
and quadrature-axis components of Eq. 5.61.

analysis based upon the motor reference direction, the sign of each term involving
current must be reversed, i.e. replace Î d by − Î d and Î q by − Î q.

The generator output power (per-phase or in per unit) can be calculated as

P = Re[V̂ a Î ∗
a ] (5.64)

From the phasor diagram of Fig. 5.29, V̂ a and Î a can be written in terms of their
axis-component magnitudes and the power-angle δ as

V̂ a = V̂ d + V̂ q = − j Vd e jδ + Vq e jδ (5.65)

Î a = Î d + Î q = − j Id e jδ + Iq e jδ (5.66)

Substitution into Eq. 5.64 then gives

P = Re[(− j Vd e jδ + Vq e jδ)( j Id e− jδ + Iq e− jδ)]

= Vd Id + Vq Iq (5.67)

From the phasor diagram of Fig. 5.29, we see that

Vd = Va sin δ (5.68)

Vq = Va cos δ (5.69)

and from Eqs. 5.62 and 5.63

Id = Eaf − Vq

Xd
(5.70)

Iq = Vd

Xq
(5.71)
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Figure 5.30 Power-angle characteristic of a salient-pole synchronous
machine showing the fundamental component due to field excitation and
the second-harmonic component due to reluctance torque.

Substitution of Eqs. 5.68 to 5.71 in Eq. 5.67 with appropriate trigonometric
manipulation then gives the desired result

P = EafVa

Xd
sin δ + V 2

a (Xd − Xq)

2Xd Xq
sin 2δ (5.72)

Equation 5.72 is directly analogous to Eq. 5.46 which applies to the case of a non-
salient machine. It gives the power per phase when Eaf and Veq are expressed as line-
neutral voltages and the reactances are in 
/phase and the result must be multiplied
by 3 to get the total three-phase power (analogous to Eq. 5.47). Alternatively, it gives
the per-unit power if all the quantities are expressed in per unit and the total power
when Eaf and Veq are expressed as line-line voltages.

The general form of this power-angle characteristic is shown in Fig. 5.30. The first
term is the same as the expression obtained for a cylindrical-rotor machine (Eq. 5.46).
The second term includes the effect of salient poles. It represents the fact that the air-
gap flux wave creates torque, tending to align the field poles in the position of minimum
reluctance. This term is the power corresponding to the reluctance torque and is of
the same general nature as the reluctance torque discussed in Section 3.5. Note that
the reluctance torque is independent of field excitation. Also note that, if Xd = Xq

as in a uniform-air-gap machine, there is no preferential direction of magnetization,
the reluctance torque is zero, and Eq. 5.72 reduces to the power-angle equation for a
cylindrical-rotor machine (Eq. 5.46).

Notice that the characteristic for negative values of δ is the same except for a
reversal in the sign of P . That is, the generator and motor regions are identical if the
effects of resistance (not included in the derivation of Eq. 5.72) are negligible. For
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Figure 5.31 Single-line
diagram of a salient-pole
synchronous machine (SM)
connected to an infinite bus
through a series impedance.

generator action Êaf leads V̂ a and δ and P are positive; for motor action Êaf lags V̂ a

and δ and P are negative. Steady-state operation is stable over the range where the
slope of the power-angle characteristic is positive. Because of the reluctance torque,
a salient-pole machine is “stiffer” than one with a cylindrical rotor; i.e., for equal
voltages and equal values of Xd, a salient-pole machine develops a given torque at
a smaller value of δ, and the maximum torque which can be developed is somewhat
greater.

For a derivation based upon motor reference currents, the signs of Id and Iq in
Eqs. 5.62 and 5.63 are reversed and equation 5.72 becomes

P = −
(

EafVa

Xd
sin δ + V 2

a (Xd − Xq)

2Xd Xq
sin 2δ

)
(5.73)

In this case, P is equal to the terminal power into the motor and, as expected, a
negative value of δ corresponds to motoring operation gives a positive value of P .

Synchronous generators are commonly connected to an external system which
can be represented by an infinite bus of voltage Veq in series with an equivalent
impedance of reactance Xeq as is shown in Fig. 5.31. The analysis leading to Eq. 5.72
can be directly applied to this configuration simply by replacing Xd with Xd + Xeq.
Xq with Xq + Xeq and Va with Veq.

EXAMPLE 5.17

The 2000-hp, 2300-V synchronous motor of Example 5.8 is assumed to have a synchronous
reactance X s = 1.95 
/phase. In actual fact, it is a salient-pole machine with reactances Xd =
1.95 
/phase and Xq = 1.40 
/phase. Neglecting all losses, compute the maximum mechanical
power in kilowatts which this motor can deliver if it is supplied with electric power directly
from an infinite bus (Fig. 5.32a) at rated voltage and frequency and if its field excitation is held
constant at that value which would result in unity-power-factor operation at rated load. The
shaft load is assumed to be increased gradually so that transient swings are negligible and the
steady-state power limit applies. Also, compute the value of δ corresponding to this maximum
power operation.

■ Solution
To simplify our calculations, we will work this example in per unit. Based upon a rated
voltage of 2300 V and rated power of 2000 hp = 1492 kW, the motor base impedance is
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Figure 5.32 (a) Single-line diagram and (b) phasor diagram for motor
of Example 5.17.

23002/1492 × 103 = 3.54 
. Thus the per-unit reactances are Xd = 1.95/3.55 = 0.550 and
Xq = 1.40/3.54 = 0.395.

Because we are considering motor operation, we will choose the motor reference for
direction for current as shown in Fig. 5.32a. The analysis developed in this and previous
sections based upon the generator reference direction for current can be readily applied to an
analysis based upon the choice of motor reference direction simply by changing the sign of
each term involving the current Î a or its direct- or quadrature-axis components.

As a result, as shown in the phasor diagram of Fig. 5.32b, drawn in this case for unity-
power-factor operation, the quadrature-axis can be located by adding the phasor − j Xq Î a to the
terminal voltage V̂ a. Thus working in per unit with rated terminal voltage and kVA, Va = 1.0
and Ia = 1.0 and for the phasor diagram of Fig. 5.32b we see that

δ = − tan−1

(
Ia Xq

Va

)
= − tan−1 (0.394) = −21.6◦

We can now find Id and Vq

Id = Ia sin δ = −0.367

Vq = Va cos δ = 0.930

and from Eq. 5.63, modified as indicated for motor reference current

Eaf = Vq − Id Xd = 0.930 − (−0.367) × 0.550 = 1.132

From Eq. 5.73 the power-angle characteristic for this motor is

P = −
(

EafVa

Xd

sin δ + V 2
a

Xd − Xq

2Xd Xq

sin (2δ)

)
= −2.058 sin δ − 0.357 sin (2δ)

The maximum motor input power occurs when d P/dδ = 0

d P

dδ
= −2.058 cos δ − 0.714 cos 2δ
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Setting this equal to zero and using the trigonometric identity

cos 2α = 2 cos2 α − 1

permit us to solve for the angle δ at which the maximum power occurs:

δ = −73.2◦

Therefore the maximum power output is

Pmax = 2.17 per unit = 3240kW = 4340 hp

Practice Problem 5.11

A 325-MVA, 26-kV, 60-Hz, three-phase, salient-pole synchronous generator is observed to be
operating at a power output of 250-MW and a lagging power factor of 0.89 at a terminal voltage
of 26 kV. The generator synchronous reactances are Xd = 1.95 and Xq = 1.18, both in per
unit. The generator achieves rated-open-circuit voltage at a field current AFNL = 342 A.

Calculate (a) the angle δ between the generator terminal voltage and the generated voltage,
(b) the magnitude of the generated voltage Eaf in per unit, and (c) the required field current in
amperes.

Solution
a. 31.8◦

b. Eaf = 2.29 per unit
c. If = 783 A

EXAMPLE 5.18

Write a MATLAB script to plot the per-unit power-angle characteristics of the synchronous
machine of Example 5.17 for Va = 1.0 per unit and Eaf = 1.5 per unit over the range −90◦ ≤
δ ≤ 90◦. Assume the generator reference direction such that positive power corresponds
to electrical power out of the machine terminals. Also plot the power-angle characteristic
neglecting the effects of saliency, i.e. assuming Xq = Xd = 1.95 
/phase.

■ Solution
The power-angle characteristics are plotted in Fig. 5.33. Here is the MATLAB script:

clc

clear

%System parameters

Vbase = 2300;

Pbase = 2000*746;

Zbase = Vbase^2/Pbase;

%Calculate per-unit reactances

Xd = 1.95/Zbase;

Xq = 1.40/Zbase;
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Figure 5.33 MATLAB plot of per-unit power vs. power angle for Example 5.18.

% Set Va and Eaf

Va = 1.0;

Eaf = 1.5;

% Range of delta in degrees

delta = -90:90;

% Power with saliency

Psalient = (Eaf*Va/Xd)*sind(delta) + (Va^2/2)*(1/Xq-1/Xd)*sind(2*delta);

% Power neglecting saliency

Pnonsalient = (Eaf*Va/Xd)*sind(delta);

%Plot the results

hold off

plot(delta,Psalient,’b’,’LineWidth’,2)

hold on

plot(delta,Pnonsalient,’--r’,’LineWidth’,2)

hold off

xlabel(’\delta [degrees]’)

ylabel(’Power [per unit]’)
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5.8 PERMANENT-MAGNET AC MACHINES
Permanent-magnet ac machines are polyphase synchronous machines with permanent-
magnet rotors. Thus they are similar to the synchronous machines discussed up to this
point in this chapter with the exception that field windings are replaced by permanent
magnets as a source of rotor excitation.

Figure 5.34 is a schematic diagram of a three-phase permanent-magnet ac ma-
chine. Comparison of this figure with Fig. 5.2 emphasizes the similarities between
a permanent-magnet ac machine and a conventional wound-rotor synchronous ma-
chine. In fact, a permanent-magnet ac machine can be analyzed using the techniques
of this chapter simply by assuming that the machine is excited by a field current of
constant value, making sure to calculate the various machine inductances based on
the effective permeability of the permanent-magnet rotor.

Small permanent-magnet motors are found in many applications, especially in
the electronics industry, e.g., disk drives and fans, and in the automotive industry
where they are used in fuel pumps, wipers, and power windows, doors and seats,
etc. A growing application of larger permanent-magnet machines is in hybrid-electric
vehicles and in even larger sizes in generators for large wind turbines. Although
space- and time-harmonic fluxes produced by the stator may induce losses in the
rotor structure of permanent-magnet machines, these rotors are relatively loss free
because the magnets produce rotor flux without dissipation. As a result, with the
increased emphasis on energy efficiency, permanent-magnet machines will be found
in an increasing number of applications of continually increasing ratings.

The advantages of permanent magnets do not however come without a price.
In addition to the actual cost of the permanent-magnetic materials themselves, there
are technical challenges which must be taken into account, both at the design and
application stage:

■ As discussed in Section 1.6, the characteristics of permanent-magnets are
temperature dependent. The residual flux-density of rare-earth permanent

a

a′

c′ b′
ωm

cb S

N

Magnetic axis
of phase a

Permanent-magnet rotor

Magnetic axis
of rotor

θm = ωmt + θ0

Figure 5.34 Schematic diagram of a three-
phase permanent-magnet ac machine. The arrow
indicates the direction of rotor magnetization.
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magnets such as neodymium-iron-boron decreases as the magnet temperature
increases. Since the machine will heat up under operating conditions, it is
necessary to account for the corresponding reduction in generated voltage and
torque-production.

■ Unlike a wound-rotor synchronous machine, the rotor excitation in a
permanent-magnet machine is fixed. This poses challenges both with respect to
control as well as for protection. For example:

Permanent-magnet motors are often designed such that the generated
voltage is equal to rated terminal voltage at a speed (typically referred to as
the motor’s “base speed”) significantly less than their maximum operating
speed. Under these conditions, the drive supplying the motor must be
capable of supplying the current required to limit the terminal voltage to its
rated value.
In addition, problems can arise should the drive trip at high speed; although
saturation will somewhat limit the motor terminal voltage, it may still be
high enough to damage insulation. Similarly, problems can arise should a
fault occurs, either externally to the motor or within the motor windings,
since there is no way to to de-energize the rotor excitation. Unless there is a
circuit-breaker or a fuse which can isolate the fault, fault current will
continue to flow until the motor comes to a stop.

Because they are synchronous machines, permanent-magnet ac motors must be
operated from variable-frequency motor drives. Figure 5.35 shows a cutaway view
of a typical surface-permanent-magnet ac motor. This figure also shows a speed

Figure 5.35 Cutaway view of a surface-permanent-magnet ac motor. Also
shown is the shaft speed and position sensor used to control the motor.
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Figure 5.36 (a) Cross section of the rotor of a typical
surface-permanent-magnet ac machine. (b) Open-circuit flux
distribution.

and position sensor mounted on the rotor shaft. This sensor is used for control of
the motor, as is discussed in Section 10.2.2. A number of techniques may be used
for shaft-position sensing, including Hall-effect devices, light-emitting diodes and
phototransistors in combination with a pulsed wheel, and inductance pickups.

The great majority of radial-air-gap permanent-magnet synchronous motors and
generators tend to fall into two general classes; surface- and interior-permanent-
magnet. Figure 5.36(a) shows a cross section of the rotor of a typical surface-
permanent-magnet ac machine. These machines are characterized by a non-salient
rotor of uniform cross section with magnets producing radial magnetic flux mounted
on the surface of the rotor. As can be seen, Fig. 5.36(a) shows a four-pole rotor with
radially-magnetized magnets of alternate polarity mounted on the rotor surface. Fig-
ure 5.36(b) shows a two-dimensional finite-element solution for the open-circuit flux
distribution produced by this rotor in a typical stator.

In a surface-permanent-magnet machine, a non-magnetic retaining ring is fre-
quently employed to support the magnets on the rotor against the centrifugal forces
of rotation. The retaining ring increases the length of the magnetic gap between the
rotor and the stator which in-turn reduces somewhat the torque-producing capability
of the motor. The design of a retaining ring is thus a compromise; a thicker retaining
ring increases the mechanical integrity of the rotor while a thinner ring increases the
effectiveness of the magnetic circuit.

EXAMPLE 5.19

A four-pole, three-phase, surface-permanent-magnet motor has a synchronous inductance of
0.50 mH, an armature resistance of 11 m
, and a line-line generated voltage of 0.110 V/r/min
(3.31 V/Hz). It is designed for nominal 1800 r/min operation but with over-speed capability
to 2400 r/min at reduced power output. The motor can be operated up to a maximum terminal
voltage of 208 V, line-line and a maximum terminal current of 185 A. For the purposes of this
example, the armature resistance will be neglected.
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The motor is supplied by a current-source drive which provides variable-frequency, bal-
anced three-phase currents of adjustable magnitude and with a phase angle that can be varied
with respect to the timing of a marker pulse obtained from a position sensor installed on the
motor shaft. This phase adjustment can be used to align the flux wave produced by the stator
currents arbitrarily with respect to the rotor direct axis. In order to insure that the flux density
in the motor remains within acceptable limits, the drive has a V/Hz limit whose function is
to insure that the motor terminal voltage does not exceed the rated V/Hz of the motor (in this
case, the rated V/Hz is equal to 208 V/60 Hz = 3.47 V line-line per Hz).

a. With the drive supplying a terminal current of 185 A, calculate the maximum power and
torque which the motor can supply at a speed of 1800 r/min. Calculate the d- and q-axis
currents under this operating condition. Verify that under this operating condition, the
motor terminal voltage will not exceed 208 V, line-line.

b. If the motor is operated at speed of 2400 r/min, calculate the maximum output power and
torque which can be supplied by the motor assuming that the drive control limits the
motor terminal voltage to its maximum value of 208 V line-line and its terminal current to
185 A. Also calculate the d- and q-axis components of the armature current under this
operating condition.

■ Solution

a. At a speed of 1800 r/min, the electrical frequency is found from Eq. 4.2 to be 60 Hz.
Using the notation Eam for the magnet-produced generated voltage, the corresponding
generated voltage is thus

Eam = (3.31 V/Hz) × (60 Hz)

= 198.6 [V, line-line] = 114.7 [V, line-neutral]

and the synchronous reactance is

X s = ωe L s = (2π60)(5.0 × 10−4) = 0.188 


Figure 5.37(a) is the line-neutral equivalent circuit from which we see that, because
Ê am is of fixed magnitude, for a fixed armature-current magnitude, the motor power will
be maximum when Î a and Ê am are in phase (and thus Î a lies along the quadrature axis).
Note that this is a single-phase equivalent circuit and thus Eam is equal to its line-neutral
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jXsÎ a
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Figure 5.37 Example 5.19, part (a): (a) Line-neutral equivalent
circuit. (b) Phasor diagram.



Umans-3930269 book December 14, 2012 12:12

5.8 Permanent-Magnet AC Machines 323

value of 114.7 V. Thus, the power output is equal to

P = 3Eam Ia = 3 × 114.7 × 185 = 63.6 kW

and the torque is

T = P

ωm

= 338 N·m

where

ωm =
(

π

30

)
× rpm = 60 π

Fig. 5.37(b) is the corresponding phasor diagram. Since the phasor Ê am defines the
location of the quadrature axis, under this operating condition the q-axis current is

Iq = Ia = 185 A

and the d-axis current is Id = 0. This result illustrates that, for given terminal-current
magnitude, the torque in a non-salient permanent-magnet motor is maximized when the
drive current is aligned with the rotor quadrature axis.

From the phasor diagram, we see that in this case the motor terminal voltage is

Va =
√

E2
am + (X s Ia)2 = 119.8 V, line-neutral = 207.6 V, line-line

and hence that the drive V/Hz limit will not be activated.
b. From Eq. 4.2, the electrical frequency corresponding to 2400 r/min operation is 80.0 Hz

and thus the generated voltage is Eam = 153 V, line-neutral (265 V, line-line) and the
synchronous reactance is X s = 0.251 
. A terminal voltage of 208 V, line-line
corresponds to a line-neutral voltage of Va = 120 V. Figure 5.38(a) is the line-neutral
equivalent circuit and Fig. 5.38(b) is the corresponding phasor diagram.

Because the magnitude of all of the legs of the phasor diagram of Fig. 5.38(b) are
known, we can use the law of cosines to solve for the angle δ

δ = − cos−1

(
V 2

a + E2
am − (X s Ia)

2

2Va Eam

)
= −14.0◦
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Î q
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Figure 5.38 Example 5.19, part (b): (a) Line-neutral equivalent circuit.
(b) Phasor diagram.
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where the minus sign is included in recognition of the fact that δ is negative for motor
operation. Thus

Vd = Va sin δ = −29.0 V

Vq = Va cos δ = 117 V

We can solve for Î a as

Î a = Va − Ê am

j X s

= Va − Eame jδ

j X s

= 185 e j37.5◦

from which we see that φ = 37.5◦. Thus

Id = Ia sin (φ − δ) = −145 V

Iq = Ia cos (φ − δ) = 115 V

From Eq. 5.67, multiplying by three to account for the fact that in this case we are
calculating in real units with line-neutral voltages, the motor power output can be
calculated as

P = 3(Vd Id + Vq Iq) = 52.9 kW

and the corresponding torque is

T = P

ωm

= 211 N·m

where ωm = rpm × (π/30) = 80π .
At first thought, one might expect that the maximum output power of the motor

would be simply determined by its rated current and voltage as P = 3Va Ia = 3 × 120.1 ×
185 = 66.7 kW. The difficulty in this case is that the magnet flux alone produces a
generated voltage which is larger than the desired terminal voltage. As a result, the
armature current must serve two functions; it must interact with the magnet flux to
produce torque and it must provide an air-gap flux component which reduces the net-air
gap flux to the value corresponding to a terminal voltage of 208 V, line-line. Specifically,
the q-axis current (115 A) produces torque while the d-axis current (−145 A) reduces the
net stator-winding flux as required to maintain the terminal voltage at 208 V. As will be
discussed in Section 10.2.2, when a permanent-magnet motor is operated under vector or
field-oriented control, this use of d-axis current to control terminal voltage is referred to as
field-weakening or flux-weakening.

Practice Problem 5.12

Repeat part (b) of Example 5.19 assuming the motor is operating at 2200 r/min.

Solution
P = 62.9 kW T = 273 N·m
Id = −109 A Iq = 150 A
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Figure 5.39 Cross section of the rotor
of a typical interior-permanent-magnet ac
machine.

Figure 5.39 shows a cross section of the rotor of a typical interior-permanent-
magnet ac machine. In such machines, the magnets are placed in slots in the interior
of the rotor. The rotor of Fig. 5.39 is a 4-pole rotor with pairs of magnets of alternating
polarity. Figure 5.40(a) shows a two-dimensional finite-element solution for the open-
circuit flux distribution produced by this rotor in a typical stator. Because of the
presence of these slots, and the fact that the effective permeability of the magnets is
close to that of free space, interior-permanent-magnet rotors exhibit saliency. As a
result, they are similar to wound-rotor salient-pole synchronous machines and produce
both reluctance and magnet torque.

There is, however, one significant difference between wound-rotor salient-pole
synchronous machines and their interior-permanent-magnet machine counterparts. In
wound-rotor salient-pole synchronous machines, the direct-axis inductance is larger
than that of the quadrature axis. As can be seen from Fig. 5.40(a), direct-axis flux in
the machine, in this case produced by the magnets alone, passes through the magnets.
On the other hand, Fig. 5.40(b) shows that quadrature-axis flux passes around the
magnets and remains in the rotor steel. The net result is that the rotor presents a larger
reluctance to direct-axis flux than to quadrature-axis flux and hence, the quadrature-
axis inductance is larger than that of the direct axis.

A careful examination of Fig. 5.40(a) also shows a concentration of magnet flux
around the ends of each of the magnets. This flux concentration is critical to the
performance of the rotor. From the rotor cross-section of Fig. 5.39, we see that there
is magnetic material which surrounds each magnet. If the magnet material in these
“flux bridges” were linear and of a reasonable permeability, they would simply shunt
the majority of the magnet flux around the magnets and very little magnet flux, if any,
would cross the airgap to interact with the stator.
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(a) (b)

Figure 5.40 Flux distributions of the interior-permanent-magnet
machine of Fig. 5.39. (a) Open-circuit flux distribution.
(b) Quadrature-axis flux distribution.

In reality, the electrical steel is non-linear and saturation of the magnetic material
in these flux bridges plays a key role in determining the performance of an interior-
permanent-magnet machine. Because they are thin, they can carry only a small amount
of flux before they saturate, in-turn forcing the majority of the magnet flux to cross
the airgap. Notice however that the bridges also serve a second function of structural
support; they hold the magnets and keep the rotor from flying apart. As with the
retaining ring in a surface-permanent-magnet machine, the design of the bridges
involves a compromise between structural integrity and magnetic performance; thin
bridges are desirable to make most effective use of the flux produced by the rotor
magnets while thick bridges are desirable to insure that the motor remains intact at
its maximum operating speed.

The “V”-magnet arrangement of Fig. 5.39 is one of many which can be found in
interior-permanent-magnet machines. For example, magnets may be oriented parallel
or perpendicular radial lines, there may be multiple magnets in parallel slots, etc.9 For
each topology, saturating flux bridges or flux barriers (non-magnetic slots in the rotor
steel) are required to guide the magnet flux across the air gap. Although the details of
the various topologies vary, typically the rotor saliency will result in a quadrature-axis
inductance which is larger than that of the direct axis.

Saturation also plays a role in determining the flux paths through the rotor
when interior-permanent-magnet machines are loaded. As a result, although interior-
permanent-magnet motors are frequently analyzed using the direct- and quadrature-
axis theory of Sections 5.6 and 5.7, their direct- and quadrature-axis inductances may
vary significantly with load.

9 For an extensive discussion of permanent-magnet ac machines and their various topologies, see J.R.
Hendershot & T.J.E. Miller, “Design of Brushless Permanent-Magnet Machines”, Motor Design Books
LLC, http://www.motordesignbooks.com.
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EXAMPLE 5.20

In this example, we will consider a four-pole, three-phase, interior-permanent-magnet motor
which is similar to that of Example 5.19 and is supplied by the same drive. Specifically, con-
sider a motor with a direct-axis synchronous inductance of 0.50 mH and a quadrature-axis
synchronous inductance of 2.30 mH, both of which will be considered to be constant and
independent of the motor loading. As with the surface-permanent-magnet motor of Exam-
ple 5.19, this motor has a line-line generated voltage of 3.31 V/Hz and it can be operated up to
a maximum terminal voltage of 208 V, line-line and a maximum terminal current of 185 A.

Find the maximum output power and torque which the motor can achieve at a speed of
1800 r/min with the terminal voltage and current limited of their maximum values. Also find
the corresponding direct- and quadrature-axis currents.

Solution
Because this is a salient pole machine, there will be both a magnet and reluctance torque and
the power-angle capability of this machine can be expressed in terms of line-neutral voltages
from Eq. 5.72 as

P = −3

(
EamVa

Xd

sin δ + V 2
a (Xd − Xq)

2Xd Xq

sin 2δ

)
With the terminal voltage fixed at Va = 120.1 V, line-neutral (208 V, line-line) and the

generated voltage at 1800 r/min (60 Hz) equal to Eam = 114.7 V, line-neutral (198.6 V, line-
line), one might be tempted to find the maximum power directly from the peak power of the
power-angle characteristic. However, in this case, the terminal current cannot exceed the 185 A
and hence the maximum power will be significantly less than that corresponding to the peak
of the power-angle characteristic.

As a result, the desired solution is most easily found by a MATLAB search. Specifically,
consider the phasor diagram of Fig. 5.41. Assuming Ia to be fixed at 185 A, for any given value
of the angle γ one can write

Id = Ia sin γ

Iq = Ia cos γ

Quadrature
axis

Direct axis

Îa

−jXdÎd

−jXqÎq

Îq

V̂a

V̂d

V̂q

Îd

Êam

δ
γ

Figure 5.41 Phasor diagram for Example 5.20.
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which then enables us to find the d- and q-axis components of the terminal voltage from
Eqs. 5.62 and 5.63 (with the appropriate sign change for motor-reference current direction) as

Vd = −Xq Iq

Vq = Eam + Xd Id

and thus we can find

Va =
√

V 2
d + V 2

q

By searching over γ for the value which corresponds to a terminal voltage of 208 V,
line-line, the desired solution

P = 64.9 kW T = 344 N·m
Id = −157 A Iq = 98 A

was obtained using the following MATLAB script:

clc

clear

% Machine parameters

VpHz = 3.31; % V [line-line]

Ld = 0.5e-3; % [H]

Lq = 2.3e-3; % [H]

Vrated = 208;

Irated = 185;

rpm = 1800;

fe = rpm/30;

omegae = 2*pi*fe;

omegam = omegae/2;

% Line-neutral Eam

Eam = fe*VpHz/sqrt(3);

% Synchronous reactances

Xd = omegae*Ld;

Xq = omegae*Lq;

%%%%%%%%%%%%%%%%%

% Set Ia = Irated and search over gamma

%%%%%%%%%%%%%%%%%

Ia = Irated;

N = 10000;

gamma = linspace(-pi/2,0,N);
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% d- and q-axis currents

Iq = Ia*cos(gamma);

Id = Ia*sin(gamma);

% d- and q-axis voltages from Eqs.

% 5-60 and 5-61 (with a change to

% motor notation).

Vq = Eam+Xd.*Id;

Vd = -Xq.*Iq;

% Power

P = 3*(Vd.*Id+Vq.*Iq);

% Magnitude of Va

Va = sqrt(Vd.*Vd+Vq.*Vq);

% Find maximum power subject to not

% exceeding Vrated

PMAX = 0;

for n = 1:N

if (sqrt(3)*Va(n) <= Vrated) && (P(n) > PMAX)

PMAX = P(n);

m = n;

end

end

TMAX = PMAX/omegam;

ID = Id(m);

IQ = Iq(m);

fprintf(’ P = %2.1f [kW]\n’,PMAX/1000)

fprintf(’ T = %2.1f [N-m]\n’,TMAX)

fprintf(’ Id = %3.1f [A], Iq = %3.1f [A]\n’,ID,IQ)

Permanent-magnet ac motors are frequently referred to as brushless motors or
brushless dc motors. This terminology comes about both because of the similarity,
when combined with a variable-frequency, variable-voltage drive system, of their
speed-torque characteristics to those of dc motors and because of the fact that one
can view these motors as inside-out dc motors, with their field winding on the rotor
and with their armature electronically commutated by the shaft-position sensor and
by switches connected to the armature windings.
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5.9 SUMMARY
Under steady-state operating conditions, the operation of a polyphase synchronous
machine can be described in terms of the interaction of two magnetic fields as dis-
cussed in Section 4.7.2. Polyphase currents on the stator produce a rotating magnetic
flux wave while dc currents (or a permanent magnet) on the rotor produce a flux
wave which is stationary with respect to the rotor. Constant torque is produced only
when the rotor rotates in synchronism with the stator flux wave. Under these condi-
tions, there is a constant angular displacement between the rotor and stator flux waves
and the result is a torque which is proportional to the sine of the displacement angle.

We have seen that a simple set of tests can be used to determine the significant
parameters of a synchronous machine such as the synchronous reactance. Two such
tests are an open-circuit test, in which the machine terminal voltage is measured as
a function of field current, and a short-circuit test, in which the armature is short-
circuited and the short-circuit armature current is measured as a function of field
current. These test methods are a variation of a testing technique applicable not only
to synchronous machines but also to any electrical system whose behavior can be
approximated by a linear equivalent circuit to which Thevenin’s theorem applies. From
a Thevenin-theorem viewpoint, an open-circuit test gives the Thevenin-equivalent
voltage, and a short-circuit test gives information regarding the Thevenin-equivalent
impedance. From the more specific viewpoint of electromechanical machinery, an
open-circuit test gives information regarding excitation requirements, core losses,
and (for rotating machines) friction and windage losses; a short-circuit test gives
information regarding the magnetic reactions of the load current, leakage impedances,
and losses associated with the load current such as I 2 R and stray load losses. The only
real complication arises from the effects of magnetic nonlinearity, effects which can
be taken into account approximately by considering the machine to be equivalent to
an unsaturated one whose magnetization curve is the straight line Op of Fig. 5.10 and
whose synchronous reactance is empirically adjusted for saturation as in Eq. 5.30.

In many cases, synchronous machines are operated in conjunction with an ex-
ternal system which can be represented as a constant-frequency, constant-voltage
source known as an infinite bus. Under these conditions, the synchronous speed is
determined by the frequency of the infinite bus, and the machine output power is
proportional to the product of the bus voltage, the machine internal voltage (which
is, in turn, proportional to the field excitation), and the sine of the phase angle be-
tween them (the power angle), and it is inversely proportional to the net reactance
between them.

While the real power at the machine terminals is determined by the shaft power
input to the machine (if it is acting as a generator) or the shaft load (if it is a motor),
varying the field excitation varies the reactive power. For low values of field current,
the machine will absorb reactive power from the system and the power angle will
be large. Increasing the field current will reduce the reactive power absorbed by the
machine as well as the power angle. At some value of field current, the machine power
factor will be unity and any further increase in field current will cause the machine
to supply reactive power to the system.



Umans-3930269 book December 14, 2012 12:12

5.10 Chapter 5 Variables 331

Once brought up to synchronous speed, synchronous motors can be operated quite
efficiently when connected to a constant-frequency source. However, as we have seen,
a synchronous motor develops torque only at synchronous speed and hence has no
starting torque. To make a synchronous motor self-starting, a squirrel-cage winding,
called an amortisseur or damper winding, can be inserted in the rotor pole faces. The
rotor then comes up almost to synchronous speed by induction-motor action with the
field winding unexcited. If the load and inertia are not too great, the motor will pull
into synchronism when the field winding is energized from a dc source.

Increasingly frequently, synchronous motors are operated from polyphase
variable-frequency drive systems. In this case they can be easily started and oper-
ated quite flexibly. Small permanent-magnet synchronous machines operated under
such conditions are frequently referred to as brushless motors or brushless-dc motors,
both because of the similarity of their speed-torque characteristics to those of dc mo-
tors and because of the fact that one can view these motors as inside-out dc motors,
with the commutation of the stator windings produced electronically by the drive
electronics.

5.10 CHAPTER 5 VARIABLES
δ Electrical phase angle, torque angle [rad]
δRF Electrical phase angle between magnetic axis of �R and Ff [rad]
λ Flux linkage [Wb]
φ Phase angle [rad]
� Flux [Wb]
�R Resultant air-gap flux per pole [Wb]
θm Rotor position [Wb]
θme Rotor position in electrical units [rad]
ωe Electrical frequency [rad/sec]
ωm Mechanical angular velocity [rad/sec]
ωs Synchronous angular velocity [rad/sec]
Â Stator mmf phasor [A]
AFNL Amperes Field No Load [A]
AFSC Amperes Field Short Circuit [A]
e, v Voltage [V]
E , V Voltage [V, per unit]
Ê Voltage, complex amplitude [V, per unit]
eaf, Eaf, Eam Generated voltage [V]
Êaf, Êam Generated voltage, complex amplitude [V]
ÊR Air-gap voltage, complex amplitude [V, per unit]
F̂ Field mmf phasor [A]
Ff mmf of the dc field winding [A]
poles Number of poles
i , I Current [A, per unit]
Î Current, complex amplitude [A]
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L , L Inductance [H]
Lal Armature leakage inductance [H]
Lfl Field-winding leakage inductance [H]
P Power [W, per unit]
q Number of phases
Q Reactive power [VAR, per unit]
R Resistance [
]
SCR Short-circuit ratio
t Time [sec], Temperature [C]
T Torque [N·m], Temperature [C]
X Reactance [
]
Xϕ Space-fundamental air-gap flux reactance [
]
Xal Armature leakage reactance [
]
Xs Synchronous reactance [
, per unit]
Xs,u Unsaturated synchronous reactance [
, per unit]
Z Impedance [
]

Subscripts:

a Armature
a, b, c Phase designations
ag Air gap
arm Armature
base Base quantity
d Direct axis
dc Direct current
eff Effective
eq Equivalent
f Field, feeder
in Input
l Leakage
m Magnet
max Maximum
oc Open circuit
q Quadrature axis
s Synchronous, source
sat Saturated
sc Short circuit
t Terminal
u Unsaturated

5.11 PROBLEMS
5.1 The full-load torque angle of a synchronous motor at rated voltage and

frequency is 33 electrical degrees. Neglect the effects of armature resistance
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and leakage reactance. If the field current is held constant, calculate the
full-load torque angle following the following changes in operating condition?

a. Frequency reduced 8 percent, load torque and applied voltage constant.

b. Frequency reduced 8 percent, load power and applied voltage constant.

c. Both frequency and applied voltage reduced 8 percent, load torque
constant.

d. Both frequency and applied voltage reduced 8 percent, load power
constant.

5.2 The armature phase windings of a two-phase synchronous machine are
displaced by 90 electrical degrees in space.

a. What is the mutual inductance between these two windings?

b. Repeat the derivation leading to Eq. 5.17 and show that the synchronous
inductance is simply equal to the armature phase inductance; that is,
Ls = Laa0 + Lal, where Laa0 is the component of the armature phase
inductance due to space-fundamental air-gap flux and Lal is the armature
leakage inductance.

5.3 Design calculations show the following parameters for a three-phase,
cylindrical-rotor synchronous generator:

Phase-a self-inductance Laa = 5.32 mH

Armature leakage inductance Lal = 0.38 mH

Calculate the air-gap component of the generator phase inductance Laa0, the
phase-phase mutual inductance Lab and the synchronous inductances Ls.

5.4 Measurements show that a three-phase 50 MVA, 50 Hz synchronous
generator has a synchronous inductance of 34.4 mH and a phase-phase mutual
inductance of −10.1 mH. Calculate the fundamental component of the air-gap
component of the phase inductance Laa0 and the leakage inductance Lal.

5.5 The open-circuit terminal voltage of a Y-connected, three-phase, 60-Hz
synchronous generator is found to be 13.8 kV rms line-to-line when the field
current is 515 A.

a. Calculate the stator-to-rotor mutual inductance Laf.

b. Calculate the rms line-line open-circuit terminal voltage for a field current
of 345 A and with the generator speed reduced to produce a voltage of
frequency 50 Hz.

5.6 The stator winding of the synchronous generator of Problem 5.5 is
reconnected in Delta.

a. With the generator operating at 60 Hz with a field current of 515 A,
calculate the line-line and line-neutral open-circuit voltages.

b. Calculate the stator-to-rotor mutual inductance Laf.

5.7 A 575-V, 50-kW, 60-Hz, three-phase synchronous motor has a synchronous
reactance of Xs = 4.65 
 and an armature-to-field mutual inductance,
Laf = 105 mH. The motor is operating at rated speed and terminal voltage and
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at an output power of 40 kW. Ignoring losses in the motor, calculate the
magnitude and phase angle of the line-to-neutral generated voltage Êaf and
the field current If if the motor is operating at (a) 0.9 power factor lagging,
(b) unity power factor, and (c) 0.9 power factor leading.

5.8 Repeat Problem 5.7 assuming the synchronous motor is operating as a
generator with an electrical output power of 40 kW.

5.9 The synchronous motor of Problem 5.7 is supplied from a 575-V source
through a feeder with a reactive impedance of X f = 0.95 
. The motor is
operating at rated speed and source voltage and at an output power of 40 kW.
Ignoring losses in the motor, calculate the magnitude and phase angle of the
line-to-neutral generated voltage Êaf, the field current If and the line-to-line
motor terminal voltage Va if the motor is operating at (a) 0.9 power factor
lagging, (b) unity power factor, and (c) 0.9 power factor leading as measured
at the 575-V source.

5.10 Repeat Problem 5.9 assuming the synchronous motor is operating as a
generator with an electrical output power of 40 kW.

5.11 A 50-Hz, two-pole, 825 kVA, 2300 V, three-phase synchronous machine has a
synchronous reactance of 7.47 
 and achieves rated open-circuit terminal
voltage at a field current of 147 A.

a. Calculate the armature-to-field mutual inductance.

b. The machine is to be operated as a motor supplying a 700 kW load at
its rated terminal voltage. Calculate the internal voltage Eaf and the
corresponding field current if the motor is operating at unity power factor.

c. For a constant load power of 700 kW, write a MATLAB script to plot the
terminal current as a function of field current. For your plot, let the field
current vary between a minimum value corresponding to a machine
loading of 825 kVA, leading power factor, and a maximum value
corresponding to a machine loading of 825 kVA, lagging power factor.
What value of field current produces the minimum terminal current?

5.12 The manufacturer’s data sheet for a 26-kV, 910-MVA, 60-Hz, three-phase
synchronous generator indicates that it has a synchronous reactance Xs = 1.95
and a leakage reactance Xal = 0.17, both in per unit on the generator base. It
achieves rated open-circuit voltage at a field current of 1775 A.
Calculate (a) the synchronous inductance in mH, (b) the armature leakage
inductance in mH, (c) the armature phase inductance Laa in mH, and (d) the
armature-to-field mutual inductance, Laf.

5.13 A 350 MVA, 11 kV, 50 Hz, three-phase generator has a saturated synchronous
of 1.18 per unit and an unsaturated synchronous reactance of 1.33 per unit.
It achieves rated open-circuit at a field current of 427 A. Calculate (a) the
saturated and unsaturated synchronous reactances in ohms/phase, (b) the
field current required to achieve rated short-circuit current (AFSC).

5.14 The following readings are taken from the results of an open- and a short-
circuit test on an 850-MVA, three-phase, Y-connected, 26-kV, two-pole,
60-Hz turbine generator driven at synchronous speed:
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Field current, A 1690 3260

Armature current, short-circuit test, kA 9.82 18.9
Line voltage, open-circuit characteristic, kV 26.0 (31.8)
Line voltage, air-gap line, kV (29.6) (56.9)

The numbers in parentheses are extrapolations based upon the measured data.
Find (a) the short-circuit ratio, (b) the unsaturated value of the synchronous
reactance in ohms per phase and per unit, and (c) the saturated synchronous
reactance in per unit and in ohms per phase.

5.15 Manufacturer supplied data for the open- and short-circuit characteristics for a
4.5-MW, 4160-V, three-phase, four-pole, 1800-r/min synchronous motor
driven at rated speed are summarized in the following table.

Field current, A 203 218

Armature current, short-circuit test, A 625 672
Line voltage, open-circuit characteristic, V 3949 4160
Line voltage, air-gap line, V 4279 4601

Find:

a. the short-circuit ratio,

b. the unsaturated value of the synchronous reactance in ohms per phase and
per unit,

c. the saturated synchronous reactance in ohms per phase and in per unit.

d. The armature leakage reactance is estimated to be 0.14 per unit on the
motor rating as base. Calculate the air-gap component of the phase-a self
inductance in Henries .

5.16 Write a MATLAB script which automates the calculations of Problems 5.14
and 5.15. The following minimum set of data is required:

■ AFNL: The field current required to achieve rated open-circuit terminal
voltage.

■ The corresponding terminal voltage on the air-gap line.

■ AFSC: The field current required to achieve rated short-circuit current on
the short-circuit characteristic.

Your script should calculate (a) the short-circuit ratio, (b) the unsaturated
value of the synchronous reactance in ohms per phase and per unit, and
(c) the saturated synchronous reactance in per unit and in ohms per phase.

5.17 The following data are obtained from tests on a 175-MVA, 13.8-kV, three-
phase, 60-Hz, 64-pole hydroelectric generator.
Open-circuit characteristic:

If, A 150 300 400 500 600 700 800 900 1000
Voltage, kV 2.7 5.5 7.1 8.7 10.1 11.3 12.5 13.7 14.5
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Short-circuit test: If = 925 A, Ia = 7320 A

a. Find AFNL, AFNLag and AFSC. Hint: Use the MATLAB ’spline’
function to find AFNL.

b. Find (i) the short-circuit ratio, (ii) the unsaturated value of the
synchronous reactance in ohms per phase and per unit and (iii) the
saturated synchronous reactance in per unit and in ohms per phase.

5.18 Using MATLAB, plot the field current required to achieve unity-power-factor
operation for a motor operating at rated terminal voltage as the motor load
varies from zero to full load. Exercise your program on the motor of
Problem 5.15.

5.19 The motor of Problem 5.15 has a phase resistance of 42 m
 and a
field-winding resistance at 25◦C = 0.218 
, both at 25◦C.
Loss data for the motor of Problem 5.15 are as follows:

Open-circuit core loss at 4160 V = 47 kW
Friction and windage loss = 23 kW

a. Compute the input power and efficiency when the motor is operating at
rated output power, unity power factor, and rated terminal voltage.
Assume the field-winding to be operating at a temperature of 125◦C and
the stator winding to be operating at 140◦C.

b. Repeat the calculation of part (a) assuming the motor to be operating at a
load of 3.5 MW and a leading power factor of 0.8.

5.20 A 125-MVA, 11-kV, three-phase, 50-Hz synchronous generator has a
synchronous reactance of 1.33 per unit. The generator achieves rated
open-circuit voltage at a field current of 325 A. The generator is operating on
a system with an equivalent line-line voltage of 11 kV and an equivalent
impedance of 0.17 per unit on the generator base. The generator is loaded to a
real power of 110 MW.

a. (i) Calculate the generated voltage Eaf in per unit and in kV (line-line)
such that the system is operating at unity power factor at the
external-system equivalent voltage. Calculate (ii) the corresponding field
current, (iii) the corresponding generator terminal voltage in per unit and
in kV (line-line) and (iv) the generator terminal power factor.

b. (i) Calculate the generated voltage Eaf in per unit and in kV (line-line)
such that the generator is operating its rated terminal voltage. Calculate
(ii) the corresponding field current, and (iii) the generator terminal current
in per unit and kA and (iv) the generator terminal power factor.

5.21 A 1000-kVA, 4160-V, three-phase, 60-Hz synchronous motor has a
synchronous reactance of 19.4 
 and achieves rated open-circuit voltage at a
field current of 142 A. It is operated from a stiff power system which
maintains the motor terminal voltage at its rated value.

a. The motor is initially operating at a load of 500 kW with the field current
adjusted to achieve unity-power factor operation. Calculate the
corresponding field current.
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b. The load is suddenly increased to 800 kW. Calculate the resultant terminal
power factor.

c. Calculate the field current required to return the motor to unity terminal
power factor.

5.22 Consider the motor of Problem 5.15.

a. Compute the field current required when the motor is operating at rated
voltage, 3.6 MW input power at 0.87 power factor leading. Account for
saturation under load by the method described in the paragraph leading up
to Eq. 5.30.

b. In addition to the data given in Problem 5.15 additional points on the
open-circuit characteristic are given below:

Field current, A 200 225 250 275 300 325 350
Line-line voltage, V 3906 4247 4556 4846 5098 5325 5539

If the circuit breaker supplying the motor of part (a) is tripped, leaving
the motor suddenly open-circuited, estimate the value of the motor
terminal voltage following the trip (before the motor begins to slow down
and before any protection circuitry reduces the field current). Hint: Use
MATLAB and a spline fit to the open-circuit characteristic.

5.23 Consider the synchronous generator of Problem 5.12.

a. Find the minimum field current such that the generator, operating at its
rated terminal voltage, can successfully supply per-unit output powers of
0.2, 0.4 and 0.6.

b. For each of the per-unit output powers of part (a), write a MATLAB
script plot the per-unit armature current as a function of field current as
the field current is varied from the minimum value to a maximum value of
5000 A.

5.24 Consider a synchronous generator operating at its rated terminal voltage
whose synchronous reactance is 2.0 per unit, whose terminal current cannot
exceed its rated value and whose maximum field current is limited to 1.75
times that required to achieve rated terminal voltage under open-circuit
conditions.

a. What is the maximum per-unit real power which can be supplied by the
machine such that the machine can continue to operate at its rated
armature current? What is the corresponding per-unit reactive power and
power factor?

b. What is the maximum per-unit reactive power that can be supplied by this
machine?

5.25 A 45-MVA, 13.8 kV synchronous machine is operating as a synchronous
condenser, as discussed in Appendix D (section D.4.1). It’s short-circuit ratio
is 1.68 and the field current at rated voltage, no load is 490 A. Assume the
generator to be connected directly to an 13.8 kV source.
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a. What is the saturated synchronous reactance of the generator in per unit
and in ohms per phase?

The generator field current is adjusted to 260 A.

b. Draw a phasor diagram, indicating the terminal voltage, internal voltage,
and armature current.

c. Calculate the armature current magnitude (per unit and amperes) and its
relative phase angle with respect to the terminal voltage.

d. Under these conditions, does the synchronous condenser appear inductive
or capacitive to the 11.5 kV system?

e. Repeat parts (b) through (d) for a field current of 740 A.

5.26 The synchronous condenser of Problem 5.25 is connected to a 13.8 kV system
through a feeder whose series reactance is 0.09 per unit on the machine base.
Using MATLAB, plot the line-line voltage (kV) at the synchronous-condenser
terminals as the synchronous-condenser field current is varied between 260 A
and 740 A.

5.27 A synchronous machine with a synchronous reactance of 1.13 per unit is
operating as a generator at a real power loading of 0.75 per unit connected to a
system with a series reactance of 0.06 per unit. An increase in its field current
is observed to cause a decrease in armature current.

a. Before the increase, was the generator supplying or absorbing reactive
power from the power system?

b. As a result of this increase in excitation, did the generator terminal
voltage increase or decrease?

c. Repeat parts (a) and (b) if the synchronous machine is operating as a
motor.

5.28 Various manufacturers have proposed building superconducting synchronous
machines are designed with superconducting fields windings which can
support large current densities and create large flux densities. Since in some
configurations, the operating magnetic flux densities exceed the saturation
flux densities of iron, these machines are typically designed without iron in
the magnetic circuit; as a result, these machines exhibit no saturation effects
and have low synchronous reactances.
Consider a two-pole, 60-Hz, 13.8-kV, 50-MVA superconducting generator
which achieves rated open-circuit armature voltage at a field current of
1520 A. It achieves rated armature current into a three-phase terminal short
circuit for a field current of 413 A.

a. Calculate the per-unit synchronous reactance.

Consider the situation in which this generator is connected to a 13.8 kV
distribution feeder of negligible impedance and operating at an output power
of 43 MW at 0.9 pf lagging. Calculate:

b. the field current in amperes, the reactive-power output in MVA, and the
rotor angle for this operating condition.
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c. the resultant rotor angle and reactive-power output in MVA if the field
current is reduced to 1520 A while the shaft-power supplied by the prime
mover to the generator remains constant.

5.29 A four-pole, 60-Hz, 26-kV, 550-MVA synchronous generator with a
synchronous reactance of 1.67 per unit is operating on a power system which
can be represented by a 26-kV infinite bus in series with a reactive impedance
of j0.43 
. The generator is equipped with a voltage regulator that adjusts the
field excitation such that the generator terminal voltage remains at 26.3 kV
independent of the generator loading.

a. The generator output power is adjusted to 375 MW.

i. Using the infinite bus as a reference, draw a phasor diagram for this
operating condition. Label the infinite bus voltage, the generator
terminal voltage and the excitation voltage as well as the voltage
drops across the system impedance and the synchronous reactance.

ii. Calculate the phase angle δt of the generator terminal voltage with
respect to the infinite bus.

iii. Find the magnitude (in kA) of the generator terminal current.

iv. Find the generator terminal power factor.

v. Find the per-unit magnitude of the generator excitation voltage Eaf

and its phase angle δ with respect to the infinite bus.

b. Repeat part (a), (ii) - (v) for a generator output power of 500 MW.

5.30 The generator of Problem 5.29 achieves rated open-circuit armature voltage at
a field current of 1170 A. Thermal limitations limit the maximum field current
to 2350 A. The generator is operating on the system of Problem 5.29 with its
voltage regulator set to maintain the terminal voltage at 1.01 per unit
(26.3 kV).

a. The mechanical power supplied to the generator is increased until the
generator terminal current or the field current reaches its maximum value,
which ever comes first. Using MATLAB:

i. Find the maximum generator output power in MW.

ii. Plot the generator field current [A] as a function of the generator
output power [MW].

iii. Plot the generator output reactive power [MVAR] as a function of the
generator output power [MW].

b. Repeat part (a) if the voltage regulator is set to regulate the terminal
voltage to 0.99 per unit (25.7 kV).

5.31 A 450 MVA, 26-kV generator is connected to a 345-kV power system through
a 500-MVA, 26-kV:345-kV transformer which can be represented by a series
reactance of 95 m
 when referred to its low-voltage terminals. The generator
has a saturated synchronous reactance of 1.73 per unit and a rated-open-
circuit-voltage field current of 2140 A.
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Under normal operating procedures, the generator is operated under automatic
voltage regulation set to maintain its terminal voltage at 26 kV. In this
problem you will investigate the possible consequences should the operators
forget to switch over to the automatic voltage regulator and instead leave the
field excitation constant at 2140 A.

a. (i) If the power system is represented simply by a 345-kV infinite
(ignoring the effects of any equivalent impedance), can the generator be
loaded to full load? If so, what is the power angle δ corresponding to full
load? If not, what is the maximum load in MW that can be achieved?
(ii) Find the value of field current which would be required to achieve
rated load in MW at rated terminal voltage. Calculate the generator
reactive power output under this operating condition.

b. Repeat part (a) with the power system now represented by a 345 kV
infinite bus in series with a reactive impedance of 12.4 
.

c. Using MATLAB, plot the field-current as a function of generator load in
MW for the system of part (b) assuming the generator is brought to full
load with the automatic voltage regulator in operation maintaining the
generator terminal voltage at its rated value.

5.32 Repeat Example 5.15 assuming the generator is operating at one-half of its
rated kVA at a lagging power factor of 0.8 and rated terminal voltage.

5.33 Repeat the calculations of Problem 5.31 for a 450-MVA, 26-kV generator
which has a direct-axis saturated inductance of 1.73 per unit and a
quadrature-axis saturated inductance of 1.34 per unit but is otherwise identical
to the generator of Problem 5.31.

5.34 Consider a salient-pole synchronous generator connected to an external
system which can be represented by a 1.0 per-unit voltage source in series
with a reactance of 0.12 per unit. The generator reactances are Xd = 1.38 per
unit and Xq = 0.92 per unit. Assuming the generator is operated with a
voltage regulator that maintains 1.0 per-unit terminal voltage, using
MATLAB, plot the generated voltage Eaf as a function of per-unit generator
output power P over the range 0 ≤ P ≤ 1.0.

5.35 Draw the steady-state, direct- and quadrature-axis phasor diagram for a
salient-pole synchronous motor with reactances Xd and Xq and armature
resistance Ra. From this phasor diagram, show that the torque angle δ between
the generated voltage Êaf (which lies along the quadrature axis) and the
terminal voltage V̂ t is given by

tan δ = Ia Xq cos φ + Ia Ra sin φ

Vt + Ia Xq sin φ − Ia Ra cos φ

Here φ is the phase angle of the armature current Î a with respect to V̂ t,
considered to be negative when Î a lags V̂ t.

5.36 Repeat Problem 5.35 for synchronous generator operation, in which case the
equation for δ becomes

tan δ = Ia Xq cos φ + Ia Ra sin φ

Vt − Ia Xq sin φ + Ia Ra cos φ
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5.37 What maximum percentage of its rated output power will a salient-pole
motor deliver without loss of synchronism when operating at its rated terminal
voltage with zero field excitation (Eaf = 0) if Xd = 1.15 per unit and
Xq = 0.75 per unit? Compute the per-unit armature current and reactive
power for this operating condition.

5.38 The motor of prob 5.37 is operating at rated terminal voltage, rated power and
at unity power factor.

a. Calculate the per-unit field excitation (where 1.0 per unit excitation
corresponds to a field current of AFNL). (b) Repeat the calculation of part
(a) assuming the motor is non-salient, i.e. assume that Xq = Xd = 1.15 per
unit.

5.39 Consider a salient-pole motor with Xd = 0.93 per unit and Xq = 0.77 per unit.

a. The motor is operating at its rated terminal voltage and supplying rated
shaft output power, unit power factor. Calculate its per-unit field
excitation (where 1.0 per unit excitation corresponds to a field current of
AFNL).

b. The load on the motor suddenly drops to 0.5 per unit. Assuming that the
field excitation does not change from that of part (a), calculate (i) the
per-unit current and (ii) per-unit reactive power at the motor terminals.
Hint: A MATLAB search may be simpler than attempting a direct
analytical solution.

5.40 A salient-pole synchronous generator with saturated synchronous reactances
Xd = 1.72 per unit and Xq = 1.47 per unit is connected to an infinite bus of
through an external impedance X∞ = 0.09 per unit on the generator base. The
generator is operating at rated voltage and rated MVA at 0.95 power factor
lagging, as measured at the generator terminals.

a. Draw a phasor diagram, indicating the infinite-bus voltage, the armature
current, the generator terminal voltage, the excitation voltage and the rotor
angle (measured with respect to the infinite bus).

b. Calculate the per-unit terminal, infinite bus and generated voltages, and
the rotor angle in degrees as measured with respect to the infinite bus.

5.41 A salient-pole synchronous generator with saturated synchronous reactances
Xd = 0.87 per unit and Xq = 0.71 per unit is connected to a rated-voltage
infinite bus through an external impedance X∞ = 0.075 per unit.

a. i. Assuming the generator to be supplying only reactive power. Find
minimum and maximum per-unit field excitation (where 1.0 per
unit is the field current required to achieve rated open-circuit
voltage) such that the generator does not exceed its rated terminal
current.

ii. Using MATLAB, plot the armature current as a function of field
excitation as the per-unit field excitation is varied between the limits
determined in part (i).

b. Now assuming the generator to be supplying 0.40 per unit rated real
power, on the same axes add a plot of the per-unit armature current as a
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function of field excitation as the field current is varied in the range for
which the armature current is less than 1.0 per unit.

c. Repeat part (b) for generator output powers of 0.6 and 0.8 per unit.
The final result will be a plot of V-curves for this generator in this
configuration.

5.42 A 150-MVA, 13.8-kV synchronous condenser is connected to a 138 kV power
system through a 150-MVA 13.8 kV:138 kV transformer. The synchronous
condenser generates rated open-circuit voltage at a field current of 2480 A and
has a direct-axis synchronous inductance of 1.31 per unit and a
quadrature-axis synchronous inductance of 0.98 per unit. The transformer can
be represented by an 0.065 per-unit series reactance. For the purposes of this
problem, you may represent the external system as a fixed 138 kV voltage
source.

a. The synchronous condenser terminal voltage is observed to be 13.95 kV.
Calculate its terminal current in kA, reactive power output in VVAR and
field current in A.

b. The synchronous condenser is observed to be absorbing 85 MVAR of
reactive power. Calculate its terminal voltage in kV, terminal current in
kA and field current in A.

5.43 A three-phase, four-pole permanent-magnet ac motor is rated at 208 V
line-line and an output 10 kW when operated at a speed of 2000 r/min. The
motor is to be operated from a variable-speed drive at speeds up to
2500 r/min. The motor has a synchronous inductance of 5.6 mH and produces
an open-circuit voltage of 185 V line-line at a speed of 2000 r/min.
For the purposes of this problem, you may consider the motor operating flux
density to be proportional to the ratio of the motor terminal voltage divided by
the operating electrical frequency and you may neglect any losses within the
motor. The motor drive control algorithm insures that:

1. The motor operating flux density does not exceed the value corresponding
to its rated voltage at 2000 r/min.

2. The motor terminal voltage does not exceed 208 V.

3. The motor terminal current does not exceed its rated value.

a. Calculate the motor electrical frequency at a speed of 2000 r/min.

b. Calculate the motor rated terminal current and power factor when the
motor is operating at 2000 r/min and at its rated terminal voltage and
output power.

c. Plot the maximum motor voltage as a function of speed over the range
0 to 2500 r/min.

d. Calculate the maximum motor output power when operated at a speed
of 1500 r/min.

e. Calculate the maximum motor output power when operated at a speed
of 2500 r/min.
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Hint: Parts (d) and (e) may be most easily solved using MATLAB to search
for the loading corresponding to rated terminal voltage.

5.44 A 7.5-kW, three-phase, permanent-magnet synchronous generator produces
an open-circuit voltage of 208 V line-to-line, 60-Hz, when driven at a speed of
1800 r/min. When operating at rated speed and supplying a three-phase
Y-connected resistive load, its terminal voltage is observed to be 189 V
line-to-line for a power output of 6.8 kW.

a. Calculate the generator phase current under this operating condition.

b. Assuming the generator armature resistance to be negligible, calculate the
generator 60-Hz synchronous reactance.

c. Calculate the generator terminal voltage which will result if the resistance
is lowered such that the motor generator load is increased to 7.5 kW
(again purely resistive) while the speed is maintained at 1800 r/min.

5.45 Small single-phase permanent-magnet ac generators are frequently used to
generate the power for lights on bicycles. For this application, these
generators are typically designed with a significant amount of leakage
inductance in their armature winding. A simple model for these generators is
an ac voltage source ea(t) = ωKa cos ωt in series with the armature leakage
inductance La and the armature resistance Ra. Here ω is the electrical
frequency of the generated voltage which is determined by the speed of the
generator as it rubs against the bicycle wheel.
Assuming that the generator is running a light bulb which can be modeled as a
resistance Rb, write an expression for the minimum frequency ωmin which
must be achieved in order to insure that the light operates at constant
brightness, independent of the speed of the bicycle.

5.46 An interior-permanent-magnet motor, rated at 25 kW, 460 V, 3600 r/min
generates a 3600-r/min open-circuit voltage of 425 V line-line. Because of the
magnets in the interior of the motor, oriented by definition along the rotor
direct axis, the motor exhibits saliency and can be modeled by a direct-axis
synchronous inductance of 2.20 
 which is smaller than the quadrature-axis
synchronous inductance of 3.98 
.
The motor is operating at a load of 18 kW at a terminal voltage of 460 V
line-line. Calculate the motor terminal current and power factor. Hint: This
may be most easily solved using to MATLAB search for the solution rather
than by a closed-form solution .
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6 C H A P T E R

Polyphase Induction
Machines

T he objective of this chapter is to study the behavior of polyphase induction
machines. Our analysis will begin with the development of single-phase equiv-
alent circuits, the general form of which is suggested by the similarity of an

induction machine to a transformer. These equivalent circuits can be used to study
the electromechanical characteristics of an induction machine as well as the loading
presented by the machine on its supply source, whether it is a fixed-frequency source
such as a power system or a variable-frequency, variable-voltage motor drive.

6.1 INTRODUCTION TO POLYPHASE
INDUCTION MACHINES

As indicated in Section 4.2.1, an induction motor is one in which alternating current
is supplied to the stator directly and to the rotor by induction or transformer action
from the stator. As in the synchronous machine, the stator winding is of the type
discussed in Section 4.5. When excited from a balanced polyphase source, it will
produce a magnetic field in the air gap rotating at synchronous speed as determined
by the number of stator poles and the applied stator frequency fe (Eq. 4.44).

The rotor of a polyphase induction machine may be one of two types. A wound
rotor is built with a polyphase winding similar to, and wound with the same number of
poles as, the stator. The terminals of the rotor winding are connected to insulated slip
rings mounted on the shaft. Carbon brushes bearing on these rings make the rotor ter-
minals available external to the motor. Wound-rotor induction machines are relatively
uncommon, being found only in a limited number of specialized applications.

On the other hand, the polyphase induction motor shown in cutaway in Fig. 6.1
has a squirrel-cage rotor with a winding consisting of conducting bars embedded in
slots in the rotor iron and short-circuited at each end by conducting end rings. The
extreme simplicity and ruggedness of the squirrel-cage construction are outstanding
advantages of this type of induction motor and make it by far the most commonly

344
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Figure 6.1 Cutaway view of a three-phase squirrel-cage
motor. The rotor cutaway shows the squirrel-cage laminations.
(Photo courtesy of Baldor Electric/ABB.)

used type of motor in sizes ranging from fractional horsepower on up. Figure 6.2a
shows the rotor of a small squirrel-cage motor while Fig. 6.2b shows the squirrel cage
itself after the rotor laminations have been chemically etched away.

Let us assume that the rotor is turning at the steady speed of n r/min in the same
direction as the rotating stator field. Let the synchronous speed of the stator field be
ns r/min as given by Eq. 4.44. The difference between synchronous speed and the

(a) (b)

Figure 6.2 (a) The rotor of a small squirrel-cage motor. (b) The squirrel-cage structure
after the rotor laminations have been chemically etched away.



Umans-3930269 book December 14, 2012 12:17

346 CHAPTER 6 Polyphase Induction Machines

rotor speed is commonly referred to as the slip of the rotor; in this case the rotor
slip is ns − n, as measured in r/min. Slip is most commonly defined as a fraction of
synchronous speed as

s = ns − n

ns
(6.1)

It is this definition of slip which is used in the equations which characterize the
performance of induction machines as developed in this chapter. Finally, slip is often
expressed in percent, simply equal to 100 percent times the fractional slip of Eq. 6.1;
e.g. a motor operating with a slip of s = 0.025 would be said to be operating at a slip
of 2.5 percent.

The rotor speed in r/min can be expressed in terms of the slip s and the syn-
chronous speed as

n = (1 − s) ns (6.2)

Similarly, the mechanical angular velocity ωm can be expressed in terms of the syn-
chronous angular velocity ωs and the slip as

ωm = (1 − s) ωs (6.3)

The relative motion of the stator flux and the rotor conductors induces voltages
of frequency fr

fr = s fe (6.4)

referred to as the slip frequency, in the rotor. Thus, the electrical behavior of an in-
duction machine is similar to that of a transformer but with the additional feature
of frequency transformation produced by the relative motion of the stator and ro-
tor windings. In fact, a wound-rotor induction machine can be used as a frequency
changer.

The rotor terminals of an induction motor are short circuited; by construction in
the case of a squirrel-cage motor and externally in the case of a wound-rotor motor.
Slip-frequency voltages are induced in the rotor windings by the rotating air-gap flux.
The rotor currents are then determined by the magnitudes of the induced voltages
and the slip-frequency rotor impedance. At starting, the rotor is stationary (n = 0),
the slip is unity (s = 1), and the rotor frequency equals the stator frequency fe. The
field produced by the rotor currents therefore revolves at the same speed as the stator
field, and a starting torque results, tending to turn the rotor in the direction of rotation
of the stator-inducing field. If this torque is sufficient to overcome the opposition
to rotation created by the shaft load, the motor will come up to its operating speed.
The operating speed can never equal the synchronous speed however, since the rotor
conductors would then be stationary with respect to the stator field; no current would
be induced in them, and hence no torque would be produced.

With the rotor revolving in the same direction of rotation as the stator field, the
frequency of the rotor currents will be s fe and they will produce a rotating flux wave
which will rotate at sns r/min with respect to the rotor in the forward direction. But
superimposed on this rotation is the mechanical rotation of the rotor at n r/min. Thus,
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with respect to the stator, the speed of the flux wave produced by the rotor currents is
the sum of these two speeds and equals

sns + n = sns + ns(1 − s) = ns (6.5)

From Eq. 6.5 we see that the rotor currents produce an air-gap flux wave which
rotates at synchronous speed and hence in synchronism with that produced by the
stator currents. Because the stator and rotor fields each rotate synchronously, they are
stationary with respect to each other and produce a steady torque, thus maintaining
rotation of the rotor. Such torque, which exists for any mechanical rotor speed n other
than synchronous speed, is called an asynchronous torque.

Figure 6.3 shows the form of a typical polyphase squirrel-cage induction motor
torque-speed curve. The factors influencing the shape of this curve can be appreciated
in terms of the torque equation, Eq. 4.83. Note that the resultant air-gap flux �sr in
this equation is approximately constant when the stator-applied voltage and frequency
are constant. Also, recall that the rotor mmf Fr is proportional to the rotor current Ir.
Equation 4.83 can then be expressed in the form

T = −K Ir sin δr (6.6)

where K is a constant and δr is the angle by which the rotor mmf wave leads the
resultant air-gap mmf wave. The minus sign is included in Eq. 6.6 because the induced
rotor current is in the direction to demagnetize the air-gap flux, whereas the rotor
current is defined in Chapter 4 as being in the direction to magnetize the air-gap flux.
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Figure 6.3 Typical induction-motor torque-speed
curve for constant-voltage, constant-frequency operation.
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Under normal running conditions the slip is small: 2 to 10 percent at full load
in most squirrel-cage motors. The rotor frequency ( fr = s fe) therefore is very low:
correspondingly on the order of 1 to 6 Hz in 60-Hz motors. For these frequencies, the
rotor impedance is largely resistive and hence independent of slip. The rotor-induced
voltage, on the other hand, is proportional to slip and leads the resultant air-gap flux
by 90◦. Since the rotor windings are short-circuited, the rotor current must be equal to
the negative of the voltage induced by the air-gap flux divided by the rotor impedance.
Thus it is very nearly proportional to the slip, and proportional to and 180◦ out of
phase with the rotor voltage. As a result, the rotor-mmf wave lags the resultant air-gap
flux by approximately 90 electrical degrees, and therefore sin δr ≈ −1.

Approximate proportionality of rotor current and hence torque with slip is there-
fore to be expected in the range where the slip is small. As slip increases, the rotor
impedance increases because of the increasing contribution of the rotor leakage induc-
tance and the increase of current and torque with slip becomes less than proportional.
Also the rotor current lags farther behind the induced voltage, and the magnitude
of sin δr decreases, further decreasing the resultant torque. A more detailed analysis
will show that the torque increases with increasing slip up to a maximum value and
then decreases, as shown in Fig. 6.3. The maximum torque, or breakdown torque,
which is typically a factor of two or more larger than the rated motor torque, limits
the short-time overload capability of the motor.

We will see that the slip at which the peak torque occurs is proportional to the rotor
resistance. For squirrel-cage motors this peak-torque slip is relatively small, much as
is shown in Fig. 6.3. Thus, the squirrel-cage motor is substantially a constant-speed
motor having a few percent drop in speed from no load to full load. In the case
of a wound-rotor motor, the rotor resistance can be increased by inserting external
resistance, hence increasing the slip at peak-torque, and thus decreasing the motor
speed for a specified value of torque. Since wound-rotor induction machines are
larger, more expensive, and require significantly more maintenance than squirrel-
cage machines, this method of speed control is rarely used, and induction machines
driven from constant-frequency sources tend to be limited to essentially constant-
speed applications. In recent years, the use of solid-state, variable-voltage, variable-
frequency drive systems makes it possible to readily control the speed of squirrel-cage
induction machines and, as a result, they are now widely used in a wide-range of
variable-speed applications.

6.2 CURRENTS AND FLUXES IN POLYPHASE
INDUCTION MACHINES

For a coil-wound rotor, the flux-mmf situation can be seen with the aid of Fig. 6.4.
This sketch shows the development of a simple two-pole, three-phase rotor winding
in a two-pole field. It therefore conforms with the restriction that a wound rotor must
have the same number of poles as the stator (although the number of phases need not
be the same). The rotor flux-density wave is moving to the right at angular velocity ωs

and at slip angular velocity sωs with respect to the rotor winding, which in turn is
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Figure 6.4 Developed rotor winding of an induction motor with its flux-density and mmf waves
in their relative positions for (a) zero and (b) nonzero rotor leakage reactance.

rotating to the right at angular velocity (1−s)ωs. It is shown in Fig. 6.4 in the position
of maximum instantaneous voltage in phase a.

If the rotor leakage reactance, equal to sωs times the rotor leakage inductance,
is very small compared with the rotor resistance (which is typically the case at the
small slips corresponding to normal operation), the phase-a current will also be a
maximum. As shown in Section 4.5, the rotor-mmf wave will then be centered on
phase a; it is so shown in Fig. 6.4a. The displacement angle, or torque angle, δr, under
these conditions is at its optimum value of −90◦.

If the rotor leakage reactance is appreciable however, the phase-a current lags
the induced voltage by the power-factor angle φ2 of the rotor leakage impedance. The
phase-a current will not be at maximum until a correspondingly later time. The rotor-
mmf wave will then not be centered on phase a until the flux wave has traveled φ2

degrees farther down the gap, as shown in Fig. 6.4b. The angle δr is now −(90◦ +φ2).
In general, therefore, the torque angle of an induction motor is

δr = −(90◦ + φ2) (6.7)

It departs from the optimum value of −90◦ by the power-factor angle of the rotor
leakage impedance at slip frequency. The electromechanical rotor torque is directed
toward the right in Fig. 6.4, or in the direction of the rotating flux wave.

The comparable picture for a squirrel-cage rotor is given in Fig. 6.5. A 16-bar
rotor placed in a two-pole field is shown in developed form. To simplify the drawing,
only a relatively small number of rotor bars has been chosen and the number is an
integral multiple of the number of poles, a choice normally avoided in practice in
order to prevent harmful harmonic effects. In Fig. 6.5a the sinusoidal flux-density
wave induces a voltage in each bar which has an instantaneous value indicated by the
solid vertical lines.

At a somewhat later instant of time, the bar currents assume the instantaneous
values indicated by the solid vertical lines in Fig. 6.5b, the time lag corresponding
to the rotor power-factor angle φ2. In this time interval, the flux-density wave has
traveled in its direction of rotation with respect to the rotor through a space angle φ2

and is then in the position shown in Fig. 6.5b. The corresponding rotor-mmf wave
is shown by the step wave of Fig. 6.5c. The fundamental component is shown by



Umans-3930269 book December 14, 2012 12:17

350 CHAPTER 6 Polyphase Induction Machines

(a)

1161514131211109Rotor

87654321

Flux-density wave

Rotation

Instantaneous

bar-voltage

magnitudes

Rotation ωs

(1 � s) ωs

φ2

(b)

1161514131211

987654321

(1 � s) ωs

Instantaneous

bar-current

magnitudes

ωs

11

(c)

116151412

4321

(1 � s) ωs

Rotor-mmf

wave
ωs

90�

Fundamental

component of

rotor-mmf wave

φ2

δ

Figure 6.5 Reactions of a squirrel-cage rotor in a two-pole field.

the dashed sinusoid and the flux-density wave by the solid sinusoid. Study of these
figures confirms the general principle that the number of rotor poles in a squirrel-cage
rotor is determined by the inducing flux wave.
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6.3 INDUCTION-MOTOR
EQUIVALENT CIRCUIT

The foregoing considerations of flux and mmf waves can readily be translated to a
steady-state equivalent circuit for a polyphase induction machine. In this derivation,
only machines with symmetric polyphase windings excited by balanced polyphase
voltages are considered. As in many other discussions of polyphase devices, it is
helpful to think of three-phase machines as being Y-connected, so that currents are
always line values and voltages always line-to-neutral values. In this case, we can
derive the equivalent circuit for one phase, with the understanding that the voltages
and currents in the remaining phases can be found simply by an appropriate phase
shift of those of the phase under study (±120◦ in the case of a three-phase machine).

First, consider conditions in the stator. The synchronously-rotating air-gap flux
wave generates balanced polyphase counter emfs in the phases of the stator. The stator
terminal voltage differs from the counter emf by the voltage drop in the stator leakage
impedance Z1 = R1 + j X1. Thus

V̂ 1 = Ê2 + Î 1(R1 + j X1) (6.8)

where

V̂ 1 = Stator line-to-neutral terminal voltage

Ê2 = Counter emf (line-to-neutral) generated by the resultant air-gap flux

Î 1 = Stator current

R1 = Stator effective resistance

X1 = Stator leakage reactance

The polarity of the voltages and currents are shown in the equivalent circuit of
Fig. 6.6.

The resultant air-gap flux is created by the combined mmfs of the stator and rotor
currents. Just as in the case of a transformer, the stator current can be resolved into two
components: a load component and an exciting (magnetizing) component. The load
component Î 2 produces an mmf that corresponds to the mmf of the rotor current. The
exciting component Î ϕ is the additional stator current required to create the resultant
air-gap flux and is a function of the emf Ê2. The exciting current can be resolved

Rl Xl

Rc Xm
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Î1

Îc
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Îm

Figure 6.6 Stator equivalent circuit
for a polyphase induction motor.
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into a core-loss component Î c in phase with Ê2 and a magnetizing component Î m

lagging Ê2 by 90◦. In the equivalent circuit, the exciting current can be accounted for
by means of a shunt branch, formed by a core-loss resistance Rc and a magnetizing
reactance Xm in parallel, connected across Ê2, as in Fig. 6.6. Both Rc and Xm are
usually determined at rated stator frequency and for a value of E2 close to the expected
operating value; they are then assumed to remain constant for the small departures of
E2 associated with normal operation of the motor.

The equivalent circuit representing stator phenomena of Fig. 6.6 is exactly like
that used to represent the primary of a transformer. To complete our model, the effects
of the rotor must be incorporated. From the point of view of the stator equivalent circuit
of Fig. 6.6, the rotor can be represented by an equivalent impedance Z2

Z2 = Ê2

Î 2
(6.9)

corresponding to the leakage impedance of an equivalent stationary secondary. To
complete the equivalent circuit, we must determine Z2 by representing the stator and
rotor voltages and currents in terms of rotor quantities as referred to the stator.

As we saw in Section 2.3, from the point of view of the primary, the secondary
winding of a transformer can be replaced by an equivalent secondary winding having
the same number of turns as the primary winding. In a transformer where the turns ratio
and the secondary parameters are known, this can be done by referring the secondary
impedance to the primary by multiplying it by the square of the primary-to-secondary
turns ratio. The resultant equivalent circuit is perfectly general from the point of view
of primary quantities.

Similarly, in the case of a polyphase induction motor, if the rotor were to be
replaced by an equivalent rotor with a polyphase winding with the same number of
phases and turns as the stator but producing the same mmf and air-gap flux as the
actual rotor, the performance as seen from the stator terminals would be unchanged.
This concept, which we will adopt here, is especially useful in modeling squirrel-cage
rotors for which the identity of the rotor “phase windings” is in no way obvious.

The rotor of an induction machine is short-circuited, and hence the impedance
seen by induced voltage is simply the rotor short-circuit impedance. Consequently
the relation between the slip-frequency leakage impedance Z2s of the equivalent rotor
and the slip-frequency leakage impedance Zrotor of the actual rotor must be

Z2s = Ê2s

Î 2s
= N 2

eff

(
Ê rotor

Î rotor

)
= N 2

eff Zrotor (6.10)

where Neff is the effective turns ratio between the stator winding and that of the actual
rotor winding. Here the subscript 2s refers to quantities associated with the referred
rotor. Thus Ê2s is the voltage induced in the equivalent rotor by the resultant air-gap
flux, and Î 2s is the corresponding induced current.

When one is concerned with the actual rotor currents and voltages, the turns
ratio Neff must be known in order to convert back from equivalent-rotor quantities
to those of the actual rotor. However, for the purposes of studying induction-motor
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performance as seen from the stator terminals, there is no need for this conversion
and a representation in terms of equivalent-rotor quantities is fully adequate. Thus
an equivalent circuit based upon equivalent-rotor quantities can be used to represent
both coil-wound and squirrel-cage rotors.

Having taken care of the effects of the stator-to-rotor turns ratio, we next must take
into account the relative motion between the stator and the rotor with the objective
of replacing the actual rotor and its slip-frequency voltages and currents with an
equivalent stationary rotor with stator-frequency voltages and currents. Consider first
the slip-frequency leakage impedance of the referred rotor.

Z2s = Ê2s

Î 2s
= R2 + js X2 (6.11)

where

R2 = Referred rotor resistance

s X2 = Referred rotor leakage reactance at slip frequency

Note that here X2 has been defined as the referred rotor leakage reactance at stator
frequency fe. Since the actual rotor frequency is fr = s fe, X2 has been converted to
the slip-frequency reactance simply by multiplying by the slip s. The slip-frequency
equivalent circuit of one phase of the referred rotor is shown in Fig. 6.7. This is the
equivalent circuit of the rotor as seen in the slip-frequency rotor reference frame.

We next observe that the resultant air-gap mmf wave is produced by the combined
effects of the stator current Î 1 and the equivalent load current Î 2. Similarly, it can be
expressed in terms of the stator current and the equivalent rotor current Î 2s. These two
currents are equal in magnitude since Î 2s is defined as the current in an equivalent
rotor with the same number of turns per phase as the stator. Because the resultant
air-gap mmf wave is determined by the phasor sum of the stator current and the rotor
current of either the actual or equivalent rotor, Î 2 and Î 2s must also be equal in phase
(at their respective electrical frequencies) and hence we can write

Î 2s = Î 2 (6.12)

Finally, consider that the resultant flux wave induces both the slip-frequency emf
induced in the referred rotor Ê2s and the stator counter emf Ê2. If it were not for the
effect of speed, these voltages would be equal in magnitude since the referred rotor

sX2

R2Ê2s

Î2s

�

+

Figure 6.7 Rotor equivalent circuit for a
polyphase induction motor at slip frequency.
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winding has the same number of turns per phase as the stator winding. However,
because the relative speed of the flux wave with respect to the rotor is s times its
speed with respect to the stator, the relation between the magnitudes of these emfs is

E2s = s E2 (6.13)

We can furthermore argue that since the phase angle between each of these
voltages and the resultant flux wave is 90◦, then these two voltages must also be equal
in a phasor sense at their respective electrical frequencies. Hence

Ê2s = s Ê2 (6.14)

Division of Eq. 6.14 by Eq. 6.12 and use of Eq. 6.11 then gives

Ê2s

Î 2s
= s Ê2

Î 2
= Z2s = R2 + js X2 (6.15)

Division by the slip s then gives

Z2 = Ê2

Î 2
= R2

s
+ j X2 (6.16)

We have achieved our objective. Z2 is the impedance of the equivalent stationary
rotor which appears across the load terminals of the stator equivalent circuit of Fig. 6.6.
The final result is shown in the single-phase equivalent circuit of Fig. 6.8. The com-
bined effect of shaft load and rotor resistance appears as a reflected resistance R2/s,
a function of slip and therefore of the mechanical load. The current in the reflected
rotor impedance equals the load component Î 2 of stator current; the voltage across this
impedance equals the stator voltage Ê2. Note that when rotor currents and voltages
are reflected into the stator, their frequency is also changed to stator frequency. All
rotor electrical phenomena, when viewed from the stator, become stator-frequency
phenomena, because the stator winding simply sees mmf and flux waves traveling at
synchronous speed.

Rl Xl

R2
s

X2

Rc Xm
Ê2V̂1

Î1 Î2+

�

+

�

a

b

Îϕ

Figure 6.8 Single-phase equivalent circuit for
a polyphase induction motor.
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6.4 ANALYSIS OF THE EQUIVALENT CIRCUIT
The single-phase equivalent circuit of Fig. 6.8 can be used to determine a wide va-
riety of steady-state performance characteristics of polyphase induction machines.
These include variations of current, speed, and losses as the load-torque requirements
change, as well as the starting torque, and the maximum torque. Note however that, in
practice, the equivalent-circuit parameters may be a function of operating conditions.
Specifically, temperature will affect the values of the resistances and the rotor param-
eters of a squirrel-cage motor may change with slip as discussed in Section 6.7.2.

The equivalent circuit shows that the total power Pgap transferred across the air
gap from the stator is

Pgap = q I 2
2

(
R2

s

)
(6.17)

where q is the number of stator phases.
The total rotor I 2 R loss, Protor, can be calculated from the I 2 R loss in the equiv-

alent rotor as

Protor = q I 2
2s R2 (6.18)

Since I2s = I2, we can write Eq. 6.18 as

Protor = q I 2
2 R2 (6.19)

The electromechanical power Pmech developed by the motor can now be deter-
mined by subtracting the rotor power dissipation of Eq. 6.19 from the air-gap power
of Eq. 6.17.

Pmech = Pgap − Protor = q I 2
2

(
R2

s

)
− q I 2

2 R2 (6.20)

or equivalently

Pmech = q I 2
2 R2

(
1 − s

s

)
(6.21)

Comparing Eq. 6.17 with Eq. 6.21 gives

Pmech = (1 − s)Pgap (6.22)

and

Protor = s Pgap (6.23)

We see then that, of the total power delivered across the air gap to the rotor, the fraction
1 − s is converted to mechanical power and the fraction s is dissipated as I 2 R loss in
the rotor conductors. Similarly, the power dissipated in the rotor can be expressed in
terms of the electromechanical power as

Protor =
(

s

1 − s

)
Pmech (6.24)
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Rl Xl R2X2

Rc Xm
V̂1

Î1

Îϕ
Î2+

�

R2
1�s

s

Figure 6.9 Alternative form of the polyphase
induction motor equivalent circuit.

From Eqs. 6.23 and 6.24, it is evident that an induction motor operating at high slip
is an inefficient device. The equivalent of Fig. 6.9 emphasizes the relationship between
rotor loss and electromechanical power. The rotor power dissipation per stator phase
corresponds to the power dissipated in the resistance R2 while the electromechanical
power per stator phase is equal to the power delivered to the resistance R2(1 − s)/s.

EXAMPLE 6.1

A three-phase, two-pole, 60-Hz induction motor is observed to be operating at a speed of
3502 r/min with an input power of 15.7 kW and a terminal current of 22.6 A. The stator-
winding resistance is 0.20 �/phase. Calculate the I 2 R power dissipated in rotor.

■ Solution
The power dissipated in the stator winding is given by

Pstator = 3I 2
1 R1 = 3(22.6)2 × 0.2 = 306 W

Hence the air-gap power is

Pgap = Pinput − Pstator = 15.7 − 0.3 = 15.4 kW

The synchronous speed of this machine can be found from Eq. 4.44

ns =
(

120

poles

)
fe =

(
120

2

)
60 = 3600 r/min

and hence from Eq. 6.1, the slip is s = (3600 − 3502)/3600 = 0.0272. Thus, from Eq. 6.23,

Protor = s Pgap = 0.0272 × 15.4 kW = 419 W

Practice Problem 6.1

Calculate the rotor power dissipation for a three-phase, 460-V, 60-Hz, four-pole motor with an
armature resistance of 0.056 � operating at a speed of 1738 r/min and with an input power of
47.4 kW and a terminal current of 76.2 A.

Solution
1.6 kW
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The electromechanical torque Tmech corresponding to the power Pmech can be
obtained by recalling that mechanical power equals torque times angular velocity.
Thus,

Pmech = ωm Tmech = (1 − s) ωs Tmech (6.25)

For Pmech in watts and ωs in rad/sec, Tmech will be in newton-meters.
Use of Eqs. 6.21 and 6.22 leads to

Tmech = Pmech

ωm
= Pgap

ωs
= q I 2

2 (R2/s)

ωs
(6.26)

With the synchronous mechanical angular velocity ωs being given by

ωs =
(

2

poles

)
ωe (6.27)

where ωe is the electrical frequency fe expressed in rad/sec as

ωe = 2π fe (6.28)

Eq. 6.26 can be written in terms of the electrical frequency ωe as

Tmech =
(

poles

2 ωe

)
q I 2

2 (R2/s) (6.29)

The mechanical torque Tmech and power Pmech are not the output values available
at the shaft because friction, windage, and stray-load losses remain to be accounted
for. It is obviously correct to subtract friction, windage, and other rotational losses
from Tmech or Pmech and it is generally assumed that stray load effects can be subtracted
in the same manner. The remainder is available as output power from the shaft for
useful work. Thus

Pshaft = Pmech − Prot (6.30)

and

Tshaft = Pshaft

ωm
= Tmech − Trot (6.31)

where Prot and Trot are the power and torque associated with the friction, windage,
and remaining rotational losses.

Analysis of the transformer equivalent circuit is often simplified by either ne-
glecting the magnetizing branch entirely or adopting the approximation of moving it
out directly to the primary terminals. Such approximations are not used in the case
of induction machines under normal running conditions because the presence of the
air gap results in a relatively lower magnetizing impedance and correspondingly a
relatively higher exciting current—30 to 50 percent of full-load current—and because
the leakage reactances are also higher. Some simplification of the induction-machine
equivalent circuit results if the core-loss resistance Rc is omitted and the associ-
ated core-loss effect is deducted from Tmech or Pmech at the same time that rotational
losses and stray load effects are subtracted. The equivalent circuit then becomes that
of Fig. 6.10a or b, and the error introduced is often relatively insignificant. Such
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Î2 Î2

R2
1�s

s
R2
s

Rl Xl R2X2

XmV̂1

Î1
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Figure 6.10 Equivalent circuits with the core-loss resistance Rc neglected corresponding
to (a) Fig. 6.8 and (b) Fig. 6.9.

a procedure also has an advantage during motor testing, for then the no-load core
loss need not be separated from friction and windage. These last circuits are used in
subsequent discussions.

EXAMPLE 6.2

A three-phase Y-connected 460-V (line-to-line) 20-kW 60-Hz six-pole induction motor has
the following parameter values in �/phase referred to the stator:

R1 = 0.271 R2 = 0.188

X1 = 1.12 X2 = 1.91 Xm = 23.10

The total friction, windage, and core losses may be assumed to be constant at 320 W, independent
of load.

For a slip of 1.6 percent, compute the speed, output torque and power, stator current,
power factor, and efficiency when the motor is operated at rated voltage and frequency.

■ Solution
Let the impedance Zgap (Fig. 6.10a) represent the per phase impedance presented to the stator
by the magnetizing reactance and the rotor. Thus, from Fig. 6.10a

Zgap = Rgap + j Xgap =
(

R2

s
+ j X2

)
in parallel with j Xm

Substitution of numerical values gives, for s = 0.016,

Rgap + j Xgap = 8.48 + j6.74 �

The stator input impedance can now be calculated as

Z in = R1 + j X1 + Zgap = 10.84 + j6.75 = 10.9 � 38.5◦ �

The line-to-neutral terminal voltage is equal to

V1 = 460√
3

= 266 V
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and hence the stator current can be calculated as

Î 1 = V1

Z in

= 266

10.9 � 38.5◦ = 24.5 � −38.5◦ A

The stator current is thus 18.8 A and the power factor is equal to cos (−38.5◦) = 0.783 lagging.
The synchronous speed can be found from Eq. 4.44

ns =
(

120

poles

)
fe =

(
120

6

)
60 = 1200 r/min

or from Eq. 6.27

ωs = 4π fe

poles
= 4π × 60

6
= 40 π rad/sec

The rotor speed is

n = (1 − s)ns = (1 − 0.016) × 1200 = 1181 r/min

or

ωm = (1 − s)ωs = (1 − 0.016) × 40π = 123.7 rad/sec

From Eq. 6.17,

Pgap = q I 2
2

(
R2

s

)
Note however that because the only resistance included in Zgap is R2/s, the power dissipated
in Zgap is equal to the power dissipated in R2/s and hence we can write

Pgap = q I 2
1 Rgap = 3(24.5)2(8.21) = 14.80 kW

We can now calculate Pmech from Eq. 6.21 and the shaft output power from Eq. 6.30. Thus

Pshaft = Pmech − Prot = (1 − s)Pgap − Prot

= (1 − 0.016) × 14, 800 − 320 = 14.24 kW

and the shaft output torque can be found from Eq. 6.31 as

Tshaft = Pshaft

ωm

= 14, 240

123.7
= 115.2 N · m

The efficiency is calculated as the ratio of shaft output power to stator input power. The
input power is given by

Pin = qRe[V̂ 1 Î ∗
1] = 3 Re[266 × (24.5 � 38.5◦)] = 15.29 kW

Thus the efficiency η is equal to

η = Pshaft

Pin

= 14.24 kW

15.29 kW
= 0.932 = 93.2%

The complete performance characteristics of the motor can be determined by repeating
these calculations for other assumed values of slip.



Umans-3930269 book December 14, 2012 12:17

360 CHAPTER 6 Polyphase Induction Machines

Practice Problem 6.2

Find the speed, output power, and efficiency of the motor of Example 6.2 operating at rated
voltage and frequency for a slip of 1.2 percent.

Solution

Speed = 1186 r/min

Pshaft = 11.05 kW

Efficiency = 93.4%

6.5 TORQUE AND POWER BY USE OF
THEVENIN’S THEOREM

When torque and power relations are to be emphasized, considerable simplification
results from application of Thevenin’s theorem to the induction-motor equivalent
circuit. In its general form, Thevenin’s theorem permits the replacement of any net-
work of linear circuit elements and complex voltage sources, such as viewed from
two terminals a and b (Fig. 6.11a), by a single complex voltage source V̂ eq in series
with a single impedance Zeq (Fig. 6.11b). The Thevenin-equivalent voltage V̂ eq is
that appearing across terminals a and b of the original network when these terminals
are open-circuited; the Thevenin-equivalent impedance Zeq is that viewed from the
same terminals when all voltage sources within the network are set equal to zero.
For application to the induction-motor equivalent circuit, points a and b are taken as
those so designated in Fig. 6.10a and b. The equivalent circuit then assumes the forms
given in Fig. 6.12 where Thevenin’s theorem has been used to transform the network
to the left of points a and b into an equivalent voltage source V̂ 1,eq in series with an
equivalent impedance Z1,eq = R1,eq + j X1,eq.

According to Thevenin’s theorem, the equivalent source voltage V̂ 1,eq is the
voltage that would appear across terminals a and b of Fig. 6.10 with the rotor circuits

Electrical network

of linear circuit

elements and constant

phasor-voltage sources

Single voltage

source

Constant

impedance

May be connected to

any other network

May be connected to

any other network

a

b

a

b

Zeq

V̂eq

(b)(a)

Figure 6.11 (a) General linear network and (b) its equivalent at terminals a-b
by Thevenin’s theorem.
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Figure 6.12 Induction-motor equivalent circuits simplified
by Thevenin’s theorem.

removed. The result is a simple voltage divider and thus

V̂ 1,eq = V̂ 1

(
j Xm

R1 + j (X1 + Xm)

)
(6.32)

For most induction motors, negligible error results from neglecting the stator re-
sistance in Eq. 6.32. The Thevenin-equivalent stator impedance Z1,eq is the impedance
between terminals a and b of Fig. 6.10 viewed toward the source with the source volt-
age set equal to zero (or equivalently replaced by a short circuit) and therefore is

Z1,eq = R1,eq + j X1,eq = (R1 + j X1) in parallel with j Xm (6.33)

or

Z1,eq = j Xm(R1 + j X1)

R1 + j (X1 + Xm)
(6.34)

Note that the core-loss resistance Rc has been neglected in the derivation of
Eqs. 6.32 through 6.34. Although this is a very commonly used approximation, its
effect can be readily incorporated in the derivations presented here by replacing the
magnetizing reactance j Xm by the magnetizing impedance Zm, equal to the parallel
combination of the core-loss resistance Rc and the magnetizing reactance j Xm.

From the Thevenin-equivalent circuit (Fig. 6.12)

Î 2 = V̂ 1,eq

Z1,eq + j X2 + R2/s
(6.35)

and thus from the torque expression (Eq. 6.29)

Tmech =
(

poles

2 ωe

)
q| Î 2|2(R2/s)

=
(

poles

2 ωe

) [
qV 2

1,eq(R2/s)

(R1,eq + (R2/s))2 + (X1,eq + X2)2

]
(6.36)

Eq. 6.36 expresses the electromechanical torque as a function of slip. The general
shape of a typical torque-speed or torque-slip curve of an induction machine connected
to a constant-voltage, constant-frequency source is shown in Figs. 6.13 and 6.14.
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Figure 6.13 Induction-machine torque-slip curve showing braking, motor, and
generator regions.

In normal motor operation, the rotor revolves in the direction of rotation of
the magnetic field produced by the stator currents, the speed is between zero and
synchronous speed, and the corresponding slip is between 1.0 and 0 (labeled “Motor
region” in Fig. 6.13). Motor starting conditions are those of s = 1.0.

To obtain operation in the region of s greater than 1 (corresponding to a negative
motor speed), the motor must be driven backward, against the direction of rotation
of its magnetic field, by a source of mechanical power capable of counteracting the
electromechanical torque Tmech. The chief practical usefulness of this region is in
bringing motors to a quick stop by a method called plugging. By interchanging two
stator leads in a three-phase motor, the phase sequence, and hence the direction of
rotation of the magnetic field, is reversed suddenly and what was a small slip before the
phase reversal becomes a slip close to 2.0 following the reversal. The motor speed thus
becomes negative with respect to the synchronous stator flux wave and the resultant
positive torque causes the motor slip to decrease. If the motor remains connected to
the line, the motor will eventually accelerate towards a slip of 0. However, the motor
can easily be stopped if it is disconnected from the line at zero speed (s = 1) before
the motor can start in the other direction. Accordingly, the region from s = 1.0 to
s = 2.0 is labeled “Braking region” in Fig. 6.13.

An induction machine will operate as a generator if its stator terminals are con-
nected to a polyphase voltage source and its rotor is driven above synchronous speed
(resulting in a negative slip) by a prime mover, as shown in Fig. 6.13. The source
fixes the synchronous speed and supplies the reactive power input required to excite
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Figure 6.14 Typical motor-region torque (solid line) and power (dashed line) curves.

the air-gap magnetic field. One such application is that of an induction generator
connected to a power system and driven by a wind turbine.

Figure 6.14 shows typical torque and power characteristics for an induction motor
operating in the motor region (0 ≤ s ≤ 1.0). In the figure, the full-load operating
conditions are indicated by slip sfl, torque Tfl, and power Pfl. We see that the maximum
torque (and power) capability is typically a few times that of its full-load value and
that they occur at a significantly higher slip. The maximum electromechanical torque,
or breakdown torque, Tmax occurs at slip smaxT while the maximum power Pmax occurs
at a somewhat smaller slip smaxP.

An expression for Tmax can be obtained readily from circuit considerations. As
can be seen from Eq. 6.26, the electromechanical torque is a maximum when the
power delivered to R2/s in Fig. 6.12a is a maximum. It can be shown that this power
will be greatest when the impedance of R2/s equals the magnitude of the impedance
R1,eq + j (X1,eq + X2) between it and the constant equivalent voltage V̂ 1,eq. Thus,
maximum electromechanical torque will occur at a value of slip smaxT for which

R2

smaxT
=

√
R2

1,eq + (X1,eq + X2)2 (6.37)

The slip smaxT at maximum torque is therefore

smaxT = R2√
R2

1,eq + (X1,eq + X2)2
(6.38)

and the corresponding torque is, from Eq. 6.36,

Tmax =
(

poles

2 ωe

) ⎡
⎣ 0.5qV 2

1,eq

R1,eq +
√

R2
1,eq + (X1,eq + X2)2

⎤
⎦ (6.39)
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EXAMPLE 6.3

For the motor of Example 6.2, determine (a) the load component I2 of the stator current, the
electromechanical torque Tmech, and the electromechanical power Pmech for a slip s = 0.02; (b) the
maximum electromechanical torque and the corresponding speed; and (c) the electromechanical
starting torque Tstart and the corresponding stator load current I2,start. Neglect rotational loss.

■ Solution

a. First reduce the circuit to its Thevenin-equivalent form. From Eq. 6.32

V1,eq = |V̂ 1,eq| = 253.3 V

and from Eq. 6.34,

R1,eq + j X1,eq = 0.246 + j1.071 �

At s = 0.02, R2/s = 9.40 and from Fig. 6.12a,

I2 = V1,eq√
(R1,eq + R2/s)2 + (X1,eq + X2)2

= 25.1 A

From Eq. 6.29

Tmech =
(

poles

2 ωe

)
q I 2

2 (R2/s) = 141.2 N · m

and from Eq. 6.21

Pmech = q I 2
2 (R2/s)(1 − s) = 17.4 kW

b. At the maximum-torque point, from Eq. 6.38,

smaxT = R2√
R2

1,eq + (X1,eq + X2)2
= 0.063 = 6.3%

and thus the speed at Tmax is equal to (1 − smaxT)ns = (1 − 0.063) × 1200 = 1125 r/min.
From Eq. 6.39

Tmax =
(

poles

2 ωe

)[
0.5qV 2

1,eq

R1,eq +
√

R2
1,eq + (X1,eq + X2)2

]
= 237 N · m

c. At starting, s = 1. Therefore

I2,start = V1,eq√
(R1,eq + R2)2 + (X1,eq + X2)2

= 84.1 A

From Eq. 6.29

Tstart =
(

poles

2 ωe

)
q I 2

2 R2 = 31.7 N · m

Note that the starting torque calculated here is considerably smaller than the rated torque
of the motor which is on the order of 160 N·m. As we shall see, an increase in starting torque can
be obtained by means of an increase in rotor resistance. In squirrel-cage induction motors, this is
accomplished through the use of double-cage or deep-bar rotors, as discussed in Section 6.7.2.
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Practice Problem 6.3

The rotor of the induction motor of Example 6.2 is replaced by a rotor with twice the rotor
resistance but which is otherwise identical to the original rotor. Repeat the calculations of
Example 6.3.

Solution
a. I2 = 13.1 A, Tmech = 77.5 N · m, Pmech = 9.5 kW
b. Tmax = 237 N · m at speed = 1049 r/min
c. At starting, Tstart = 62.1 N · m, I2,start = 83.2 A

Practice Problem 6.4

For the induction motor of Example 6.2, find (a) the rotor resistance required to produce peak
electromechanical torque at zero speed (i.e., smaxT = 1.0) and (b) the corresponding torque Tmax.
(c) Using MATLAB,1 plot the resultant torque-speed curve over the range 0 ≤ s ≤ 1.0. You
may ignore friction, windage, and core loss.

Solution
a. R2 = 2.99 �

b. Tmax = 237 N · m
c. The torque-speed curve is given in Fig. 6.15.
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Figure 6.15 Plot of electromechanical torque vs. speed for Practice
Problem 6.4.

Under the conditions of constant-frequency operation, a typical conventional
induction motor with a squirrel-cage rotor is substantially a constant-speed motor

1 MATLAB is a registered trademark of The MathWorks, Inc.
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Figure 6.16 Induction-motor torque-slip curves
showing effect of changing rotor-circuit resistance.

having about 10 percent or less drop in speed from no load to full load. In the case of
a wound-rotor induction motor, speed variation can be obtained by inserting external
resistance in the rotor circuit; the influence of increased rotor resistance on the torque-
speed characteristic is shown by the dashed curves in Fig. 6.16. For such a motor,
significant speed variations can be achieved as the rotor resistance is varied. Similarly,
the zero-speed torque variations seen in Fig. 6.16 illustrate how the starting torque of
a wound-rotor induction motor can be varied by varying the rotor resistance.

Notice from Eqs. 6.38 and 6.39 that the slip at maximum torque is directly
proportional to rotor resistance R2 but the value of the maximum torque is independent
of R2. When R2 is increased by inserting external resistance in the rotor of a wound-
rotor motor, the maximum electromechanical torque is unaffected but the speed at
which it occurs can be directly controlled. This result can also be seen by observing
that the electromechanical torque expression of Eq. 6.36 is a function of the ratio
R2/s. Thus, the torque is unchanged as long as the ratio R2/s remains constant.

EXAMPLE 6.4

A three-phase, 460-V, 60-Hz, 40-kW, four-pole wound-rotor induction motor has the following
parameters expressed in �/phase.

R1 = 0.163 X1 = 0.793 X2 = 1.101 Xm = 18.9

Using MATLAB, plot the electromechanical torque Tmech as a function of rotor speed in
r/min for rotor resistances of R2 = 0.1, 0.2, 0.5, 1.0 and 1.5 �.
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Figure 6.17 Electromechanical torque vs. speed for the
wound-rotor induction motor of Example 6.4 for various
values of the rotor resistance R2.

■ Solution
The desired plot is shown in Fig. 6.17.

Here is the MATLAB script:

clc

clear

% Here are the motor parameters

V1 = 460/sqrt(3);

Nph = 3;

poles = 4;

fe = 60;

R1 = 0.163;

X1 = 0.793;

X2 = 1.101;

Xm = 18.87;

%Calculate the synchronous speed

omegas = 4*pi*fe/poles;

ns = 120*fe/poles;

%Calculate stator Thevenin equivalent
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Z1eq = j*Xm*(R1+j*X1)/(R1 + j*(X1+Xm));

R1eq = real(Z1eq);

X1eq = imag(Z1eq);

V1eq = abs(V1*j*Xm/(R1 + j*(X1+Xm)));

%Here is the loop over rotor resistance

for m = 1:5

if m == 1

R2 = 0.1;

elseif m==2

R2 = 0.2;

elseif m==3

R2 = 0.5;

elseif m==4

R2 = 1.0;

else

R2 = 1.5;

end

% Calculate the torque

s = 0:.001:1; %slip

rpm = ns*(1-s);

I2 = abs(V1eq./(Z1eq + j*X2 + R2./s)); %I2

Tmech = Nph*I2.^2*R2./(s*omegas); %Electromechanical torque

%Now plot

plot(rpm,Tmech,’LineWidth’,2)

if m ==1

hold on

end

end %End of resistance loop

hold off

xlabel(’rpm’,’FontSize’,20)

ylabel(’T_{mech} [N\cdotm]’,’FontSize’,20)

xlim([0 1800])

set(gca,’FontSize’,20);

set(gca,’xtick’,[0 500 1000 1500 1800])
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set(gca,’ytick’,[0 50 100 150 200 250 300])

grid on

Practice Problem 6.5

Using MATLAB, re-consider Example 6.4 and plot the terminal current as a function of speed
for the five values of R2.

Solution
The plot of current vs. speed is given in Fig. 6.18.
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Figure 6.18 Plot of current vs. speed for Practice Problem 6.5.

In applying the induction-motor equivalent circuit, the idealizations on which it
is based should be kept in mind. This is particularly necessary when investigations
are carried out over a wide speed range, such as is the case in investigations of motor
starting. Saturation under the heavy inrush currents associated with starting conditions
has a significant effect on the motor reactances. Moreover, the rotor currents are at
slip frequency, which varies from stator frequency at zero speed to a low value at
full-load speed. The current distribution in the rotor bars of squirrel-cage motors
may vary significantly with frequency, giving rise to significant variations in rotor
resistance. In fact, as discussed in Sections 6.7.2 and 6.7.3, motor designers can
tailor the shape of the rotor bars in squirrel-cage motors to obtain various speed-
torque characteristics. Errors from these causes can be kept to a minimum by using
equivalent-circuit parameters corresponding as closely as possible to those of the
proposed operating conditions.
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6.6 PARAMETER DETERMINATION FROM
NO-LOAD AND BLOCKED-ROTOR TESTS

The equivalent-circuit parameters needed for computing the performance of a poly-
phase induction motor under load can be obtained from the results of a no-load test,
a blocked-rotor test, and measurements of the dc resistances of the stator windings.
Stray-load losses, which must be taken into account when accurate values of efficiency
are to be calculated, can also be measured by tests which do not require loading the
motor. Stray-load-loss tests are not described here, however.2

6.6.1 No-Load Test

Like the open-circuit test on a transformer, the no-load test on an induction motor gives
information with respect to exciting current and no-load losses. This test is ordinarily
performed at rated frequency and with balanced polyphase voltages applied to the
stator terminals. Readings are taken at rated voltage, after the motor has been running
long enough for the bearings to be properly lubricated. We will assume that the no-load
test is made with the motor operating at its rated electrical frequency fre and that the
following measurements are available from the no-load test:

V1,nl = The line-to-neutral terminal voltage [V]

I1,nl = The line current [A]

Pnl = The total polyphase electrical input power [W]

In polyphase machines it is most common to measure line-to-line voltage, and thus
the line-to-neutral voltage must be then calculated (dividing by

√
3 in the case of a

three-phase machine).
At no load, the rotor current is only the very small value needed to produce

sufficient torque to overcome the friction and windage losses associated with rotation.
The no-load rotor I 2 R loss is, therefore, negligibly small. Unlike the continuous
magnetic core in a transformer, the magnetizing path in an induction motor includes
an air gap which significantly increases the required exciting current. Thus, in contrast
to the case of a transformer, whose no-load primary I 2 R loss is negligible, the no-
load stator I 2 R loss of an induction motor may be appreciable because of this larger
exciting current.

Neglecting rotor I 2 R losses and core loss, the rotational loss, Prot, for normal
running conditions can be found by subtracting the stator I 2 R losses from the no-load
input power

Prot = Pnl − q I 2
1,nl R1 (6.40)

The total rotational loss at rated voltage and frequency under load usually is considered
to be constant and equal to its no-load value. Note that the stator resistance R1 varies

2 For information concerning test methods, see IEEE Std. 112-2004, “Test Procedures for Polyphase
Induction Motors and Generators,” Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, New York, 10017.
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with stator-winding temperature. Hence, when applying Eq. 6.40, care should be
taken to use the value corresponding to the temperature of the no-load test.

Note that the derivations presented here ignore the core-loss and the associated
core-loss resistance and assign all the no-load losses to friction and windage. Various
tests can be performed to separate the friction and windage losses from the core losses.
For example, if the motor is not energized, an external drive motor can be used to
drive the rotor to the no-load speed and the rotational loss will be equal to the required
drive-motor output power.

Alternatively, if the motor is operated at no load and rated speed and if it is then
suddenly disconnected from the supply, the decay in motor speed will be determined
by the rotational loss as

J
dωm

dt
= −Trot = − Prot

ωm
(6.41)

Hence, if the rotor inertia J is known, the rotational loss at any speed ωm can be de-
termined from the resultant speed decay as

Prot(ωm) = −ωm J
dωm

dt
(6.42)

Thus, the rotational losses at rated speed can be determined by evaluating Eq. 6.42
as the motor is first shut off when it is operating at rated speed.

If the no-load rotational losses are determined in this fashion, the core loss can
be determined as

Pcore = Pnl − Prot − q I 2
1,nl R1 (6.43)

Here Pcore is the total no-load core loss corresponding to the voltage of the no-load
test (typically rated voltage).

Under no-load conditions, the stator current is relatively low and, to a first approx-
imation, one can neglect the corresponding voltage drop across the stator resistance
and leakage reactance. Under this approximation, the voltage across the core-loss re-
sistance will be equal to the no-load line-to-neutral voltage and the core-loss resistance
can be determined as

Rc = qV 2
1,nl

Pcore
(6.44)

Provided that the machine is operated close to rated speed and rated voltage, the
refinement associated with separating out the core loss and specifically incorporating
it in the form of a core-loss resistance in the equivalent circuit typically will not
make a significant difference in the results of an analysis. Hence, it is common to
ignore the core-loss resistance and to simply include the core loss with the rotational
losses. For the purposes of analytical simplicity, this approach will be followed in the
remainder of the text. However, if necessary, the reader should find it relatively straight
forward to modify the remaining derivations to appropriately include the core-loss
resistance.

Because the no-load slip, snl, is very small, the reflected rotor resistance R2/snl is
very large. The parallel combination of rotor and magnetizing branches then becomes
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Figure 6.19 Approximate
induction-motor equivalent
circuit: No-load conditions.

j Xm in parallel with the rotor leakage reactance X2 in series with a very large re-
sistance and the impedance of this parallel combination therefore very nearly equals
the magnetizing impedance j Xm. The corresponding equivalent circuit is shown in
Fig. 6.19. Consequently the apparent reactance Xnl measured at the stator terminals
at no load very nearly equals X1 + Xm, which is the self-reactance X11 of the stator;
i.e.,

Xnl ≈ X11 = X1 + Xm (6.45)

The self-reactance of the stator can therefore be determined from the no-load
measurements. The reactive power at no load Qnl can be determined as

Qnl =
√

S2
nl − P2

nl (6.46)

where

Snl = qV1,nl I1,nl (6.47)

is the total apparent power input at no load.
The no-load reactance Xnl can then be calculated from Qnl and I1,nl as

Xnl = Qnl

q I 2
1,nl

(6.48)

Noting that the no-load power factor is small (i.e., Qnl � Pnl and hence R1 	 X11),
the no-load reactance can often be approximated as

Xnl ≈ V1,nl

I1,nl
(6.49)

6.6.2 Blocked-Rotor Test

Like the short-circuit test on a transformer, the blocked-rotor test on an induction motor
gives information with respect to the leakage impedances. The rotor is blocked so that
it cannot rotate (hence the slip is equal to unity), and balanced polyphase voltages are
applied to the stator terminals. We will assume that the following measurements are
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Figure 6.20 Induction-motor equivalent
circuit: Blocked-rotor conditions.

available from the blocked-rotor test:

V1,bl = The line-to-neutral voltage [V]

I1,bl = The line current [V]

Pbl = The total polyphase electrical input power [W]

fbl = The frequency of the blocked-rotor test [Hz]

In some cases, the blocked-rotor torque also is measured.
The equivalent circuit for blocked-rotor conditions (Fig. 6.20) is identical to

that of a short-circuited transformer. An induction motor is more complicated than a
transformer, however, because its leakage impedance may be affected by magnetic
saturation of the leakage-flux paths associated with the stator slots and the rotor bars
and by the frequency of the induced rotor currents (which affects the distribution of
currents in the rotor bars as discussed in Section 6.7.2). The blocked-rotor impedance
may also be affected by rotor position and the corresponding relative orientation
of the rotor slots with the stator teeth, although this effect generally is small with
squirrel-cage rotors.

Because leakage reactances are typically significantly affected by saturation, it
is important to conduct blocked-rotor tests with current levels similar to those which
are found in the machine at the operating condition for which the performance is
later to be calculated. Similarly, for induction machines in which it is known that
the distribution of rotor currents, and hence the rotor impedance, is affected by the
rotor-current frequency, when possible the blocked-rotor test should be performed at
a frequency which is approximately the same as that which occurs in the machine at
the operating condition under consideration.

For example, if one is interested in the characteristics at slips near unity, as in
starting, the blocked-rotor test should be taken at normal frequency and with currents
near the values encountered in starting. If, however, one is interested in normal running
characteristics, the blocked-rotor test should be taken at a reduced voltage which
results in approximately rated current; the frequency should also be reduced, since
the values of the effective rotor resistance and leakage inductance at the low rotor
frequencies corresponding to small slips may differ appreciably from their values at
normal frequency, particularly with double-cage or deep-bar rotors, as discussed in
Section 6.7.2.
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In practice, it is difficult to run tests at the low frequencies corresponding to
running conditions with small slips. For example, the rotor-frequency in a 60-Hz
machine running at a slip of 3 percent is 1.8 Hz. As a result, IEEE Standard 112
suggests a maximum blocked-rotor test frequency of 25 percent of rated frequency
with the expectation that the rotor impedance at this frequency is not too different
from that at small slips. The reactance at rated frequency can be obtained from this
test value by multiplying the test reactance by the ratio of rated frequency to test
frequency. The dependence of the rotor impedance on frequency is often negligible
for many motors of less than 25-hp rating, and for these motors the rotor parameters
determined by a blocked-rotor conducted at rated frequency are equally applicable to
to starting and rated-load operating conditions.

Based upon blocked-rotor measurements, the blocked-rotor reactance can be
found from the blocked-rotor reactive power

Qbl =
√

S2
bl − P2

bl (6.50)

where

Sbl = qV1,bl I1,bl (6.51)

is the total blocked-rotor apparent power. The blocked-rotor reactance, corrected to
rated frequency, can then be calculated as

Xbl =
(

fre

fbl

) (
Qbl

q I 2
1,bl

)
(6.52)

where fbl is the frequency of the blocked-rotor test.
The blocked-rotor resistance can be calculated from the blocked-rotor input

power as

Rbl = Pbl

q I 2
1,bl

(6.53)

Once these parameters have been determined, the equivalent circuit parameters
can be determined. Under blocked-rotor conditions, an expression for the stator input
impedance can be obtained from examination of Fig. 6.20 as

Zbl = R1 + j X1 + (R2 + j X2) in parallel with j Xm

= R1 + R2 X2
m

R2
2 + (Xm + X2)2

+ j

(
X1 + Xm

(
R2

2 + X2(Xm + X2)
)

R2
2 + (Xm + X2)2

)
(6.54)

Here we have assumed that the reactances are at their rated-frequency values.
The corresponding blocked-rotor resistance is thus given by

Rbl = R1 + R2 X2
m

R2
2 + (Xm + X2)2

(6.55)
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and the corresponding blocked-rotor reactance is

Xbl = X1 + Xm
(

R2
2 + X2(Xm + X2)

)
R2

2 + (Xm + X2)2
(6.56)

Our objective at this point is to solve Eqs. 6.55 and 6.56 for R2 and X2. As can
be seen, these equations are sufficiently complex that there is no simple way to do
this. However, it is typically appropriate to apply the approximation that R2 	 Xm,
in which case Eqs. 6.55 and 6.56 can be reduced to

Rbl = R1 + R2

(
Xm

X2 + Xm

)2

(6.57)

and

Xbl = X1 + X2

(
Xm

X2 + Xm

)
(6.58)

From Eqs. 6.57 and 6.58, the rotor resistance R2 and leakage reactance X2 can
be found as

R2 = (Rbl − R1)

(
X2 + Xm

Xm

)2

(6.59)

and

X2 = (Xbl − X1)

(
Xm

Xm + X1 − Xbl

)
(6.60)

In order to achieve maximum accuracy as with the no-load test, if possible the value
of the stator resistance R1 used in Eq. 6.59 should be corrected to the value corre-
sponding to the temperature of the blocked-rotor test.

Substituting for Xm from Eq. 6.45 into Eq. 6.60 gives

X2 = (Xbl − X1)

(
Xnl − X1

Xnl − Xbl

)
(6.61)

Equation 6.61 expresses the rotor leakage reactance X2 in terms of the measured
quantities Xnl and Xbl and the unknown stator leakage reactance X1. It is not possible to
make an additional measurement from which X1 and X2 can be determined uniquely.
Fortunately, the performance of the motor is affected relatively little by the way in
which the total leakage reactance is distributed between the stator and rotor. Based
upon a given motor class, IEEE Standard 112 recommends the empirical distribution
shown in Table 6.1. The various motor classes are discussed in Section 6.7.3. If the
motor class is unknown, it is common to assume that X1 and X2 are equal.

Once the fractional relationship between X1 and X2 has been determined, it can
be substituted into Eq. 6.61 and X2 (and hence X1) can be found in terms of Xnl and
Xbl by solving the resultant quadratic equation.

The magnetizing reactance Xm can then be determined from Eq. 6.45.

Xm = Xnl − X1 (6.62)

Finally, using the known stator resistance and the values of Xm and X2 which are now
known, the rotor resistance R2 can now be determined from Eq. 6.59.
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Table 6.1 Empirical distribution of leakage reactances in induction motors.

Fraction of
(X1 + X2)

Motor class Description X1 X2

A Normal starting torque, normal starting current 0.5 0.5
B Normal starting torque, low starting current 0.4 0.6
C High starting torque, low starting current 0.3 0.7
D High starting torque, high slip 0.5 0.5
Wound rotor Performance varies with rotor resistance 0.5 0.5

Source: IEEE Standard 112.

EXAMPLE 6.5

The following test data apply to a 135 kW (100-hp), three-phase, 460-V, 60-Hz, four-pole
induction motor with a double-squirrel-cage rotor of design class B (normal-starting-torque,
low-starting-current type):

Test 1: No-load test at 60 Hz

Applied voltage V = 459 V line-to-line

Average phase current I1,nl = 34.1 A

Power Pnl = 1.25 kW

Test 2: Blocked-rotor test at 15 Hz

Applied voltage V = 42.3 V line-to-line

Average phase current I1,bl = 169 A

Power Pbl = 4.44 kW

Test 3: Average dc resistance per stator phase (measured immediately after test 2)

R1 = 30.3 m�

Test 4: Blocked-rotor test at 60 Hz

Applied voltage V = 455 V line-to-line

Average phase current I1,bl = 725 A

Power Pbl = 147 kW

Measured starting torque Tstart = 603 N · m

a. Compute the no-load rotational loss and the equivalent-circuit parameters applying to
normal running conditions. Assume the same temperature as in test 3. Neglect any effects
of core loss, assuming that core loss can be lumped in with the rotational losses.

b. Compute the electromechanical starting torque from the input measurements of test 4.
Assume the same temperature as in test 3.

c. To check the validity of the approximation leading to Eqs. 6.57 and 6.58, substitute the
parameter values found in part (a) into Eqs. 6.55 and 6.56 and compare the results with the
values of Rbl and Xbl calculated from the test results.
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■ Solution

a. From Eq. 6.40, the rotational losses can be calculated as

Prot = Pnl − q I 2
1,nl R1 = 1.14 kW

The line-to-neutral no-load voltage is equal to V1,nl = 459/
√

3 = 265 V and thus,
from Eqs. 6.46 and 6.47,

Qnl =
√

(qV1,nl I1,nl)2 − P2
nl = 27.1 kVA

and thus from Eq. 6.48

Xnl = Qnl

q I 2
1,nl

= 7.76 �

We can assume that the blocked-rotor test at a reduced frequency of 15 Hz and rated
current reproduces approximately normal running conditions in the rotor. Thus, from
test 2 and Eqs. 6.50 and 6.51 with V1,bl = 42.3/

√
3 = 24.4 V

Qbl =
√

(qV1,bl I1,bl)2 − P2
bl = 11.6 kVA

and thus from Eq. 6.52

Xbl =
(

fre

fbl

)(
Qbl

q I 2
1,bl

)
=

(
60

15

)(
11.6 × 103

3 × 1692

)
= 0.540 �

Since we are told that this is a Class B motor, we can refer to Table 6.1 and assume
that X1 = 0.4(X1 + X2) or X1 = k X2, where k = (2/3). Substituting into Eq. 6.61 results
in a quadratic in X2

k2 X 2
2 + (Xbl(1 − k) − Xnl(1 + k))X2 + Xnl Xbl = 0

or
Solving for X2 gives two roots: 0.332 � and 28.4 �. Clearly, X2 must be less than

Xnl and hence it is easy to identify the proper solution as

X2 = 0.332 �

and thus

X1 = 0.221 �

From Eq. 6.62,

Xm = Xnl − X1 = 7.54 �

Rbl can be found from Eq. 6.53 as

Rbl = Pbl

q I 2
1,bl

= 51.8 m�

and thus from Eq. 6.59

R2 = (Rbl − R1)

(
X2 + Xm

Xm

)2

= 23.5 m�
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The parameters of the equivalent circuit for small values of slip have now been
calculated.

b. Although we could calculate the electromechanical starting torque from the
equivalent-circuit parameters derived in part (a), we recognize that this is a
double-squirrel-cage motor and hence these parameters (most specifically the rotor
parameters) will differ significantly under starting conditions from their low-slip values
calculated in part (a). Hence, we will calculate the electromechanical starting torque from
the rated-frequency, blocked-rotor test measurements of test 4.

From the power input and stator I 2 R losses, the air-gap power Pgap is

Pgap = Pbl − q I 2
1,bl R1 = 115 kW

Since this is a four-pole machine, the synchronous speed can be found from Eq. 6.27 as
ωs = 60 π rad/sec. Thus, from Eq. 6.26

Tstart = Pgap

ωs

= 611 N · m

The test value, Tstart = 603 N · m is a few percent less than the calculated value because the
calculations do not account for the power absorbed in the stator core loss or in stray-load
losses.

c. Substitution of the parameter values of part (a) into Eqs. 6.55 and 6.56 gives
Rbl = 51.8 m� and Xbl = 0.540 �. These values are identical to the corresponding values
used to derive the parameters in part (a), hence confirming the validity of the
approximation. Note that the validity of the assumption can also be verified by noting that
it is based on the assumption that R2 	 Xm which is certainly the case here.

Practice Problem 6.6

Repeat the equivalent-circuit parameter calculations of Example 6.5 part (a) under the assump-
tion that the rotor and stator leakage reactances are equal (i.e., that X1 = X2).

Solution

R1 = 30.3 m� R2 = 23.1 m�

X1 = 0.275 � Xm = 7.49 � X2 = 0.275 �

Calculation of the blocked-rotor reactance can be simplified if one assumes that
Xm � X2. Under this assumption, Eq. 6.58 reduces to

Xbl = X1 + X2 (6.63)

X1 and X2 can then be found from Eq. 6.63 and an estimation of the fractional
relationship between X1 and X2 (such as from Table 6.1).

Note that one might be tempted to approximate Eq. 6.59, the expression for
R2, in the same fashion. However, because the ratio (X2 + Xm)/Xm is squared, the
approximation tends to result in unacceptably large errors and cannot be justified.
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EXAMPLE 6.6

(a) Determine the parameters of the motor of Example 6.5 solving for the leakage reactances
using Eq. 6.63. (b) Assuming the motor to be operating from a 460-V, 60-Hz source at a speed
of 1765 r/min, use MATLAB to calculate the output power for the two sets of parameters.

■ Solution

a. As found in Example 6.5,

Xnl = 7.76 � Xbl = 0.540 �

R1 = 30.3 m� Rbl = 51.8 m�

Thus, from Eq. 6.45,

X1 + Xm = Xnl = 7.76 �

and from Eq. 6.63

X1 + X2 = Xbl = 0.540 �

From Table 6.1, X1 = 0.4(X1 + X2) = 0.216 � and thus X2 = 0.324 � and
Xm = 7.54 �.

Finally, from Eq. 6.59,

R2 = (Rbl − R1)

(
X2 + Xm

Xm

)2

= 23.4 m�

Comparison with Example 6.5 shows the following

Parameter Example 6.5 Example 6.6

R1 30.3 m� 30.3 m�
R2 23.5 m� 23.4 m�
X1 0.221 � 0.216 �
X2 0.332 � 324 �
Xm 7.54 � 7.54 �

b. For the parameters of Example 6.5, Pshaft = 128.2 [kW] while for the parameters of part
(a) of this example, Pshaft = 129.7 [kW]. Thus the approximation associated with Eq. 6.63
results in an error of approximately 1.2 percent from using the more exact expression of
Eq. 6.58. This is a typical result and hence this approximation can be justified in many
cases.

Here is the MATLAB script:

clc

clear

% Here are the two sets of parameters

% Set 1 corresponds to the solution from Example 6-5

% Set 2 corresponds to the solution from Example 6-6
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R1(1) = 0.0303; R1(2) = 0.0303;

R2(1) = 0.0235; R2(2) = 0.0234;

X1(1) = 0.221; X1(2) = 0.216;

X2(1) = 0.332; X2(2) = 0.324;

Xm(1) = 7.54; Xm(2) = 7.54;

nph = 3;

poles = 4;

Prot = 1140;

%Here is the operating condition

V1 = 460/sqrt(3);

fe = 60;

rpm = 1746;

%Calculate the synchronous speed

ns = 120*fe/poles;

omegas = 4*pi*fe/poles;

slip = (ns-rpm)/ns;

omegam = omegas*(1-slip);

%Loop over the two motors

for m = 1:2

Zgap = j*Xm(m)*(j*X2(m)+R2(m)/slip)/(R2(m)/slip+j*(Xm(m)+X2(m)));

Zin = R1(m) + j*X1(m) + Zgap;

I1 = V1/Zin;

I2 = I1*(j*Xm(m))/(R2(m)/slip+j*(Xm(m)+X2(m)));

Tmech = nph*abs(I2)^2*R2(m)/(slip*omegas); %Electromechanical torque

Pmech = omegam*Tmech; %Electromechanical power

Pshaft = Pmech - Prot;

if (m == 1)

fprintf(’\nExample 6-5 solution:’)

else

fprintf(’\nExample 6-6 solution:’)

end

fprintf(’\n Pmech = %3.1f [kW], Pshaft = %3.1f [kW]\n’, ...

Pmech/1000,Pshaft/1000)

fprintf(’ I1 = %3.1f [A]\n’,abs(I1));

end % end of "for m = 1:2" loop
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6.7 EFFECTS OF ROTOR RESISTANCE;
WOUND AND DOUBLE-
SQUIRREL-CAGE ROTORS

A basic limitation of induction motors with constant rotor resistance is that the rotor
design has to be a compromise. High efficiency under normal running conditions
requires a low rotor resistance, but a low rotor resistance results in a low starting
torque and high starting current at a low starting power factor.

6.7.1 Wound-Rotor Motors

The use of a wound rotor is one effective way of avoiding the need for compromise.
In a wound-rotor motor, the rotor is constructed with a polyphase winding similar
to that of the stator. The terminals of the rotor windings are connected to slip rings.
Stationary brushes in contact with the slip rings are used to connect the windings
in series with external resistors which can be used to control the starting torque
and current. As the motor comes up to speed, the resistor values can be varied and
they can ultimately be short-circuited to achieve maximum efficiency at operating
speeds.

The general nature of the effects on the torque-speed characteristics caused by
varying rotor resistance has been shown in Fig. 6.16. By use of the appropriate value of
rotor resistance, the maximum torque can be made to occur at standstill if high starting
torque is needed. As the rotor speeds up, the external resistances can be decreased,
making maximum torque available throughout the accelerating range. Since most
of the rotor I 2 R loss is dissipated in the external resistors, the rotor temperature
rise during starting is lower than it would be if the resistance were incorporated
in the rotor winding. For normal running, the rotor winding can be short-circuited
directly at the brushes. The rotor winding itself is typically designed to have low
resistance so that running efficiency is high and full-load slip is low. Besides their use
when starting requirements are severe, wound-rotor induction motors can be used for
adjustable-speed drives. Their chief disadvantage is greater cost and complexity than
squirrel-cage motors.

The principal effects of varying rotor resistance on the starting and running
characteristics of induction motors can be shown quantitatively by the following
example.

EXAMPLE 6.7

A three-phase, 460-V, 60-Hz, four-pole, 500-hp wound-rotor induction motor, with its slip
rings short-circuited, has the following properties:

Full-load slip = 1.5%
Rotor I 2 R at full-load torque = 5.69 kW
Slip at maximum torque = 6%
Rotor current at maximum torque = 2.82 I2,fl, where I2,fl is the full-load rotor current
Torque at 20% slip = 1.20 Tfl, where Tfl is the full-load torque
Rotor current at 20% slip = 3.95 I2,fl
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If the rotor-circuit resistance is increased to 5Rrotor by connecting non-inductive resistances
in series with each rotor slip ring, determine (a) the slip at which the motor will develop the
same full-load torque, (b) total rotor-circuit I 2 R loss at full-load torque, (c) horsepower output
at full-load torque, (d) slip at maximum torque, (e) rotor current at maximum torque, (f) starting
torque, and (g) rotor current at starting. Express the torques and rotor currents in per unit based
on the full-load torque values.

■ Solution
The solution involves recognition of the fact that the effects of changes in the rotor resistance
are seen from the stator in terms of changes in the referred resistance R2/s. Examination
of the equivalent circuit shows that, for specified applied voltage and frequency, everything
concerning the stator performance is fixed by the value of R2/s, the other impedance elements
being constant. For example, if R2 is doubled and s is simultaneously doubled, there will be
no indication from the stator that anything has changed. The stator current and power factor,
the power delivered to the air gap, and the torque will be unchanged as long as the ratio R2/s
remains constant.

Added physical significance can be given to the argument by examining the effects of
simultaneously doubling R2 and s from the viewpoint of the rotor. An observer on the rotor
would see the resultant air-gap flux wave traveling past at twice the original slip speed, gener-
ating twice the original rotor voltage at twice the original slip frequency. The rotor reactance
therefore is doubled, and since the original premise is that the rotor resistance also is doubled,
the rotor impedance is doubled while the rotor power factor is unchanged. Since rotor voltage
and impedance are both doubled, the effective value of the rotor current remains the same;
only its frequency is changed. The air gap still has the same synchronously rotating flux and
mmf waves with the same torque angle. An observer on the rotor would then agree with a
counterpart on the stator that the torque is unchanged.

An observer on the rotor, however, would be aware of two changes not apparent in the
stator: (1) the rotor I 2 R loss will doubled, and (2) the rotor is turning more slowly and therefore
developing less mechanical power with the same torque. In other words, more of the power
absorbed from the stator goes into I 2 R heat in the rotor, and less is available for mechanical
power.

The preceding thought processes can be readily applied to the solution of this example.

a. If the rotor resistance is increased five times, the slip must increase five times for the same
value of R2/s and therefore for the same torque. But the original slip at full load is 0.015.
The new slip at full-load torque therefore is 5 × 0.015 = 0.075.

b. The effective value of the rotor current is the same as its full-load value before addition
of the series resistance, and therefore the rotor R2/s loss is five times the full-load value
of 5.69 kW, or

Rotor I 2 R = 5 × 5.69 = 28.4 kW

c. The increased slip has caused the per-unit speed at full-load torque to drop from 1 − s =
0.985 down to 1 − s = 0.925. Since the ratio R2/s is unchanged, the torque is the same
and hence the power output has dropped proportionally, or

Pmech =
(

0.925

0.985

)
500 = 470 hp
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Because the air-gap power is unchanged, the decrease in electromechanical shaft power
must be accompanied by a corresponding increase in rotor I 2 R loss.

d. If rotor resistance is increased five times, the slip at maximum torque simply increases
five times. But the original slip at maximum torque is 0.060. The new slip at maximum
torque with the added rotor resistance therefore is

smaxT = 5 × 0.060 = 0.30

e. The effective value of the rotor current at maximum torque is independent of rotor
resistance; only its frequency is changed when rotor resistance is varied. Therefore,

I2,maxT = 2.82 I2,fl

f. With the rotor resistance increased five times, the starting torque will be the same as the
original running torque at a slip of 0.20 and therefore equals the running torque without
the series resistors, namely,

Tstart = 1.20 Tfl

g. The rotor current at starting with the added rotor resistances will be the same as the rotor
current when running at a slip of 0.20 with the slip rings short-circuited, namely,

I2,start = 3.95 I2,fl

Practice Problem 6.7

Consider the motor of Example 6.7. An external resistor is added to the rotor circuits such that
the full-load torque is developed at a speed of 1719 r/min. Calculate (a) the added resistance
in terms of the inherent rotor resistance Rrotor, (b) the rotor power dissipation at full load, and
(c) the corresponding electromechanical power.

Solution
a. Added resistance = 2 Rrotor

b. Rotor I 2 R = 17.1 kW
c. Pmech = 485 hp

With the advent of variable-speed drives which can apply variable-frequency
voltages and currents to the stator and hence can control the slip as a function of
motor speed, it is possible to control the applied frequency, and hence the motor
slip, to achieve maximum torque at any desired rotor speed, including under starting
conditions. As a result, the use of wound-rotor motors has become less common
because similar performance can now be obtained with squirrel-cage motors.

6.7.2 Deep-Bar and Double-Squirrel-Cage Rotors

A simple and ingenious way of obtaining a rotor resistance which automatically varies
with speed makes use of the fact that, at standstill, the rotor frequency equals the stator
frequency and, as the motor accelerates, the rotor frequency decreases to a very low
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Rotor

bar

Figure 6.21 Deep rotor bar with slot-leakage flux
shown in schematic form.

value at the speed associated with normal operating conditions. With suitable shapes
and arrangements for rotor bars, squirrel-cage rotors can be designed so that their
effective resistance at 60 Hz is several times their dc resistance. The various schemes
all make use of the inductive effect of the slot-leakage flux on the current distribution
in the rotor bars. This phenomenon is similar to the skin and proximity effect in any
system of conductors carrying alternating current.

Consider first a squirrel-cage rotor having deep, narrow bars like that shown in
cross section in Fig. 6.21. The general character of the slot-leakage flux produced
by the current in the bar within this slot is shown in schematic form in the figure.
If the rotor iron had infinite permeability, all the leakage-flux lines would close in
paths below the slot, as shown. Now imagine the bar to consist of an infinite number
of layers of differential depth; one at the bottom and one at the top are indicated
crosshatched in Fig. 6.21. The leakage inductance of the bottom layer is greater than
that of the top layer because the bottom layer is linked by more leakage flux. Because
all the layers are electrically in parallel, under ac conditions the current in the low-
reactance upper layers will be greater than that in the high-reactance lower layers. As
a result, the current will be forced toward the top of the slot, and the phase of current
in the upper layers will lead that of the current in the lower ones.

This nonuniform current distribution results in an increase in the effective bar
resistance and a smaller decrease in the effective leakage inductance of the bar. Since
the distortion in current distribution depends on an inductive effect, the effective
resistance is a function of the frequency as well as the depth and shape of the bar and
the permeability and resistivity of the bar material. Figure 6.22 shows a curve of the
ratio of effective ac resistance to dc resistance as a function of frequency computed
for a rectangular copper bar 2.5 cm deep. A squirrel-cage rotor with deep bars can be
readily designed to have an effective resistance at stator frequency (corresponding to
rotor standstill conditions) several times greater than its dc resistance. As the motor
accelerates, the rotor frequency decreases and therefore the effective rotor resistance
decreases, approaching its dc value at small slips.

An alternative way of attaining similar results is the double-cage arrangement
shown in Fig. 6.23. In this case, the squirrel-cage winding consists of two layers of
bars short-circuited by end rings. The upper bars are of smaller cross-sectional area
than the lower bars and consequently have higher resistance. The general nature of the
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Figure 6.22 Skin effect in a copper
rotor bar 2.5 cm deep.

slot-leakage field is shown in Fig. 6.23, from which it can be seen that the inductance
of the lower bars is greater than that of the upper ones because of the flux crossing the
slot between the two layers. The difference in inductance can be made quite large by
properly proportioning the constriction in the slot between the two bars. At standstill,
when rotor frequency equals stator frequency, there is relatively little current in the
lower bars because of their high reactance; the effective resistance of the rotor at
standstill is then approximately equal to that of the high-resistance upper layer. At
the low rotor frequencies corresponding to small slips, however, reactance effects
become negligible, and the rotor resistance then approaches that of the two layers in
parallel.

Note that since the effective resistance and leakage inductance of double-cage
and deep-bar rotors vary with frequency, the parameters R2 and X2, representing the
referred effects of rotor resistance and leakage inductance as viewed from the stator,
vary with rotor speed and are not constant. Strictly speaking, a more complicated form
of equivalent circuit, with multiple parallel branches, is required in order to represent
these cases.

Under steady-state conditions, the simple equivalent circuit derived in Section 6.3
can still be used to represent induction machines in these cases. However R2 and X2

must be varied with slip. All the basic relations still apply to the motor if the values

Top bar

Bottom bar

Figure 6.23 Double-squirrel-cage rotor bars with
slot-leakage flux shown in schematic form.
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of R2 and X2 are properly adjusted with changes in slip. For example, in computing
the starting performance, R2 and X2 should be taken as their effective values at stator
frequency, while in computing the running performance at small slips, R2 should be
taken as its effective value at a low frequency, and X2 should be taken as the stator-
frequency value of the reactance corresponding to a low-frequency effective value
of the rotor leakage inductance. Over the normal running range of slips, the rotor
resistance and leakage inductance usually can be considered constant at substantially
their dc values.

6.7.3 Motor-Application Considerations

By use of double-cage and deep-bar rotors, squirrel-cage motors can be designed
to have the good starting characteristics resulting from high rotor resistance and,
at the same time, the good running characteristics resulting from low rotor resistance.
The design is necessarily somewhat of a compromise, however, and such motors
lack the flexibility of a wound-rotor machine with external rotor resistance. As a
result, wound-rotor motors were commonly preferred when starting requirements
were severe. However, as discussed in Section 6.7.2, when combined with power-
electronics, squirrel-cage motors can achieve all the flexibility of wound-rotor motors,
and hence wound-rotor motors are becoming increasingly less common even in cases
where starting requirements are severe.

To meet the usual needs of industry, integral-horsepower, three-phase, squirrel-
cage motors are available from manufacturers’ stock in a range of standard ratings up
to 200 hp at various standard frequencies, voltages, and speeds. (Larger motors are
generally regarded as special-purpose rather than general-purpose motors.) Several
standard designs are available to meet various starting and running requirements.
Representative torque-speed characteristics of the four most common designs are
shown in Fig. 6.24. These curves are fairly typical of 1800 r/min (synchronous-
speed) motors in ratings from 7.5 to 200 hp although it should be understood that
individual motors may differ appreciably from these average curves.

Briefly, the characteristic features of these designs are as follows.

Design Class A: Normal Starting Torque, Normal Starting Current, Low Slip
This design usually has a low-resistance, single-cage rotor. It emphasizes good run-
ning performance at the expense of starting. The full-load slip is low and the full-load
efficiency is high. The maximum torque usually is well over 200 percent of full-load
torque and occurs at a small slip (less than 20 percent). The starting torque at full
voltage varies from about 200 percent of full-load torque in small motors to about
100 percent in large motors. The high starting current (500 to 800 percent of full-load
current when started at rated voltage) is the principal disadvantage of this design.

In sizes below about 7.5 hp these starting currents usually are within the limits on
inrush current which the distribution system supplying the motor can withstand, and
across-the-line starting at full voltage then can be used. Otherwise, reduced-voltage
starting must be used. Reduced-voltage starting results in a decrease in starting torque
because the starting torque is proportional to the square of the voltage applied to
the motor terminals. The reduced voltage for starting is usually obtained from an
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Figure 6.24 Typical torque-speed curves for
1800-r/min general-purpose induction motors.

autotransformer, called a starting compensator, which may be manually operated or
automatically operated by relays which cause full voltage to be applied after the motor
is up to speed. A circuit diagram of one type of compensator is shown in Fig. 6.25.
If a smoother start is necessary, series resistance or reactance in the stator may
be used.

The class A motor is the basic standard design in sizes below about 7.5 and above
about 200 hp. It is also used in intermediate ratings where design considerations may
make it difficult to meet the starting-current limitations of the class-B design. Its field
of application is about the same as that of the class-B design described next.

Design Class B: Normal Starting Torque, Low Starting Current, Low Slip This
design has approximately the same starting torque as the class-A design but with
75 percent of the starting current. Full-voltage starting, therefore, may be used with
larger sizes than with class A. The starting current is reduced by designing for rel-
atively high leakage reactance, and the starting torque is maintained by use of a
double-cage or deep-bar rotor. The full-load slip and efficiency are good, about the
same as for the class A design. However, the use of high reactance slightly decreases
the power factor and decidedly lowers the maximum torque (usually only slightly
over 200 percent of full-load torque being obtainable).
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Figure 6.25 Connections of a one-step starting
autotransformer.

This design is the most common in the 7.5 to 200-hp range of sizes. It is used for
substantially constant-speed drives where starting-torque requirements are not severe,
such as in driving fans, blowers, pumps, and machine tools.

Design Class C: High Starting Torque, Low Starting Current This design uses
a double-cage rotor with higher rotor resistance than the class-B design. The result is
higher starting torque with low starting current but somewhat lower running efficiency
and higher slip than the class-A and class-B designs. Typical applications are in driving
compressors and conveyers.

Design Class D: High Starting Torque, High Slip This design usually has a single-
cage, high-resistance rotor (frequently brass bars). It produces very high starting
torque at low starting current, high maximum torque at 50 to 100 percent slip, but runs
at a high slip at full load (7 to 11 percent) and consequently has low running efficiency.
Its principal uses are for driving intermittent loads involving high accelerating duty
and for driving high-impact loads such as punch presses and shears. When driving
high-impact loads, the motor is generally aided by a flywheel which helps supply
the impact and reduces the pulsations in power drawn from the supply system. A
motor whose speed falls appreciably with an increase in torque is required so that the
flywheel can slow down and deliver some of its kinetic energy to the impact.

6.8 SUMMARY
In a polyphase induction motor, slip-frequency currents are induced in the rotor
windings as the rotor slips past the synchronously-rotating stator flux wave. These
rotor currents, in turn, produce a flux wave which rotates in synchronism with the stator
flux wave; torque is produced by the interaction of these two flux waves. For increased
load on the motor, the rotor speed decreases, resulting in larger slip, increased induced
rotor currents, and greater torque.



Umans-3930269 book December 14, 2012 12:17

6.9 Chapter 6 Variables 389

Examination of the flux-mmf interactions in a polyphase induction motor shows
that, electrically, the machine is a form of transformer. The synchronously-rotating
air-gap flux wave in the induction machine is the counterpart of the mutual core
flux in the transformer. The rotating field induces emfs of stator frequency in the
stator windings and of slip frequency in the rotor windings (for all rotor speeds other
than synchronous speed). Thus, the induction machine transforms voltages and at
the same time changes frequency. When viewed from the stator, all rotor electrical
and magnetic phenomena are transformed to stator frequency. The rotor mmf reacts
on the stator windings in the same manner as the mmf of the secondary current in a
transformer reacts on the primary. Pursuit of this line of reasoning leads to a single-
phase equivalent circuit for polyphase induction machines which closely resemble
that of a transformer.

For applications requiring substantially constant speed without excessively se-
vere starting conditions, the squirrel-cage motor usually is unrivaled because of its
ruggedness, simplicity, and relatively low cost. Its only disadvantage is its relatively
low power factor (about 0.85 to 0.90 at full load for four-pole, 60-Hz motors and
considerably lower at light loads and for lower-speed motors). The low power factor
is a consequence of the fact that all the excitation must be supplied by lagging reactive
power taken from the ac source.

One of the salient facts affecting induction-motor applications is that the slip at
which maximum torque occurs can be controlled by varying the rotor resistance. A
high rotor resistance gives high starting conditions but poor running performance.
A low rotor resistance, however, may result in unsatisfactory starting conditions.
As a result, the design of a squirrel-cage motor is, therefore, quite likely to be a
compromise.

Marked improvement in the starting performance with relatively little sacrifice
in running performance can be built into a squirrel-cage motor by using a deep-bar
or double-cage rotor whose effective resistance increases with slip. A wound-rotor
motor can be used for very severe starting conditions or when speed control by rotor
resistance is required. Variable-frequency solid-state motor drives lend considerable
flexibility to the application of induction motors in variable-speed applications. These
issues are discussed in Chapter 10.

6.9 CHAPTER 6 VARIABLES
δr, φ Phase angle [rad]
ωm Mechanical angular velocity [rad/sec]
ωs Synchronous angular velocity [rad/sec]
�sr Resultant air-gap flux [Wb]
Ê , V̂ Voltage, complex amplitude [V]
fe Electrical frequency [Hz]
fr Rotor electrical frequency [Hz]
Fr Rotor mmf [A]
Î Current, complex amplitude [A]
Î ϕ Exciting current, complex amplitude [A]
Î c Core-loss component of the exciting current, complex amplitude [A]
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Î m Magnetizing component of the exciting current, complex amplitude [A]
K Constant
n Angular velocity [r/min]
ns Synchronous angular velocity [r/min]
N Number of turns
poles Number of poles
q Number of phases
R Resistance [�]
s Slip
T Torque [N·m]
X Reactance [�]
Z Impedance [�]

Subscripts:

bl Blocked
c Core
eff Effective
fl Full load
gap Gap
in Input
m Magnetizing
max Maximum
maxT Maximum torque
mech Mechanical
nl No load
re Rated electric
rot Rotational
s Slip frequency
start Starting

6.10 PROBLEMS
6.1 The nameplate on a 400-V, 35-kW, 50-Hz, four-pole induction motor

indicates that its speed at rated load is 1458 r/min. Assume the motor to be
operating at rated load.

a. What is the slip of the rotor?

b. What is the frequency of the rotor currents in Hz?

c. What is the angular velocity of the stator-produced air-gap flux wave with
respect to the stator in rad/sec? With respect to the rotor?

d. What is the angular velocity of the rotor-produced air-gap flux wave with
respect to the stator in rad/sec? With respect to the rotor?

6.2 A 60-Hz, two-pole, 208-V wound-rotor induction motor has a three-phase
stator winding of 42 series turns/phase and a rotor winding of 38 series
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turns/phase. When operating at rated terminal voltage, the motor is observed
to be operating at a speed of 3517 r/min. Calculations indicate that under this
operating condition, the air-gap flux wave induces a voltage of 193 V, line-line
in the stator winding. Calculate the corresponding voltage induced in the rotor
winding.

6.3 Stray leakage fields will induce rotor-frequency voltages in a pickup coil
mounted along the shaft of an induction motor. Measurement of the frequency
of these induced voltages can be used to determine the rotor speed.

a. What is the rotor speed in r/min of a 50-Hz, six-pole induction motor if
the frequency of the induced voltage is 0.73 Hz?

b. Calculate the frequency of the induced voltage produced by a four-pole,
60-Hz induction motor operating at a speed of 1763 r/min. What is the
corresponding slip?

6.4 A three-phase induction motor runs at 1198 r/min at no load and 1119 r/min at
full load when supplied from a 60-Hz, three-phase source.

a. How many poles does this motor have?

b. What is the slip in percent at full load?

c. What is the corresponding frequency of the rotor currents?

d. What is the speed in r/min of the rotor field with respect to the rotor? With
respect to the stator?

6.5 Linear induction motors have been proposed for a variety of applications
including high-speed ground transportation. A linear motor based on the
induction-motor principle consists of a car riding on a track. The track is a
developed squirrel-cage winding, and the car, which is 6.7 m long and 1.75 m
wide, has a developed three-phase, 10-pole-pair armature winding. Power at
40 Hz is fed to the car from arms extending through slots to rails below
ground level.

a. What is the synchronous speed in km/hr?

b. Will the car reach this speed? Explain your answer.

c. What is the slip if the car is traveling 89 km/hr? What is the frequency of
the track currents under this condition?

d. If the control system controls the magnitude and frequency of the car
currents to maintain constant slip, what is the frequency of the
armature-winding currents when the car is traveling 75 km/hr? What is
the frequency of the track currents under this condition?

6.6 The stator of a 208-V, 60-Hz induction motor is wound with 10-turn coils. The
motor is to be re-wound for operation at 400-V, 50-Hz. Calculate the number
of turns per coil for the re-wound motor so that it operates at the same
flux-density as the original motor.

6.7 Describe the effect on the torque-speed characteristic of an induction motor
produced by (a) halving the applied voltage and (b) halving both the applied
voltage and the frequency. Sketch the resultant torque-speed curves relative
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Figure 6.26 Interconnected induction
and synchronous machines
(Problem 6.8).

to that of rated-voltage and rated-frequency. Neglect the effects of stator
resistance and leakage reactance.

6.8 A system such as that shown in Fig. 6.26 can be used to convert balanced
60-Hz voltages to other frequencies. The synchronous motor has six poles and
drives the interconnected shaft in the clockwise direction. The induction
machine has four poles and its stator windings are connected to the source in
such a fashion as to produce a counter-clockwise rotating field (in the
direction opposite to the rotation of the synchronous motor). The induction
machine has a wound rotor whose terminals are brought out through slip rings.

a. With the system supplied from a 50-Hz source, at what speed does the
synchronous motor run?

b. What is the frequency of the voltages produced at the slip rings of the
induction motor?

c. What will be the frequency of the voltages produced at the slip rings of
the induction motor if two leads of the induction-motor stator are
interchanged, reversing the direction of rotation of the resultant rotating
field?

6.9 A three-phase, eight-pole, 60-Hz, 4160-V, 1000-kW squirrel-cage induction
motor has the following equivalent-circuit parameters in ohms-per-phase
referred to the stator:

R1 = 0.187 R2 = 0.176 X1 = 1.66 X2 = 2.06 Xm = 38.85

Determine the changes in these constants which will result from the following
proposed design modifications. Consider each modification separately.

a. Replace the stator winding with an otherwise identical winding with a
wire size whose cross-sectional area is increased by 6 percent.
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b. Decrease the inner diameter of the stator laminations such that the air gap
is decreased by 15 percent.

c. Replace the aluminum rotor bars (conductivity 3.5 × 107 mhos/m) with
copper bars (conductivity 5.8 × 107 mhos/m).

d. Reconnect the stator winding, originally connected in Y for 4160-V
operation, in 
 for 2.4 kV operation.

6.10 The single-phase equivalent-circuit parameters for a three-phase induction
motor in ohms-per-phase are

R1 = 0.17 R2 = 0.24 X1 = 1.05 X2 = 0.87

Xm = 82.1 Rc = 435

For a slip of 3.5 percent, and a terminal voltage of 460 V, line-line, calculate:

a. Calculate the motor phase current and input real and reactive power.

b. Calculate the mechanical output power and the power dissipated in the
rotor. You may assume that the motor friction and windage losses are
270 W.

c. Calculate the motor core loss and the motor efficiency.

6.11 Write a MATLAB script which calculates the terminal current, power factor,
shaft output power, and efficiency for an induction motor given its
equivalent-circuit parameters and friction/windage loss. The input to your
program will be the motor terminal voltage and operating slip. Exercise your
program on the motor of Problem 6.10.

6.12 A three-phase, Y-connected, 460-V (line-line), 37-kW, 60-Hz, four-pole
induction motor has the following equivalent-circuit parameters in
ohms-per-phase referred to the stator:

R1 = 0.070 R2 = 0.152 X1 = 0.743 X2 = 0.764 Xm = 40.1

The total friction and windage losses may be assumed constant at 390 W, and
the core loss may be assumed to be equal to 325 W. With the motor
connected directly to a 460-V source, compute the speed, output shaft torque
and power, input power, and power factor and efficiency for slips of 1, 2, and
3 percent. You may choose either to represent the core loss by a resistance
connected directly across the motor terminals or by resistance Rc connected
in parallel with the magnetizing reactance Xm.

6.13 A 460-V, three-phase, 4-pole induction motor is known to have the following
single-phase equivalent-circuit parameters in ohms-per-phase Y

R1 = 19.7 × 10−3 X1 = 0.129 X2 = 0.187 Xm = 13.9

The motor is observed to be operating at a terminal voltage of 450 V, line-line
with an output power of 95 kW at a speed of 1780.7 r/min. Calculate the
single-phase equivalent-circuit rotor resistance R2 assuming that the motor
core loss is 1200 W and the friction and windage loss is 700 W. Hint: Most
easily solved using a MATLAB search.
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6.14 A three-phase, 4-pole, 75 kW, 460-V induction motor has the following
single-phase equivalent-circuit parameters in ohms-per-phase

R1 = 24.5 × 10−3 R2 = 55.2 × 10−3

X1 = 0.267 X2 = 0.277 Xm = 19.8

You may assume that the motor friction and windage loss of 1250 W remains
constant over the normal range of operation and the core loss at 460 V is
780 W.

a. Calculate the motor slip, speed, terminal current, power factor and
efficiency when operating at 460 V and supplying its rated output power.
Hint: It may be easiest to search for the desired operating point using
MATLAB.

b. Complete a table including the motor slip, speed, terminal current, power
factor and efficiency when operating at 460 V for full load (part (a)),
75 percent, 50 percent, and 25 percent of rated load as well as no load.

6.15 The motor of Problem 6.14 is to be operated from a variable-voltage,
variable-frequency, three-phase drive. The drive output voltage is 460 V
line-line at 60 Hz and is proportional to frequency. Assume that the motor
parameters (resistances and inductances) do not vary with applied voltage and
frequency. You may also assume that, for this operation, the friction and
windage loss varies with the cube of the motor speed (1250 W at 1800 r/min)
and the core loss with the square of the applied frequency.

a. Calculate the motor slip, speed, terminal current, power factor, and
efficiency when operating at 460 V and supplying its rated output power.
Hint: It may be easiest to search for the desired operating point using
MATLAB.

With the motor drive operating frequencies below 60 Hz, the maximum motor
output power corresponds to that power which results in motor terminal
current equal to that found in part (a).

b. Calculate the maximum load power which can be supplied by this system
at a frequency of 50 Hz. Calculate the corresponding terminal voltage,
slip, speed, power factor and efficiency.

6.16 Consider the induction motor of Problem 6.12 operating at its rated terminal
voltage.

a. Find the motor speed in r/min corresponding to the rated shaft output
power of 37 kW. (Hint: This can be easily done by writing a MATLAB
script which searches over the motor slip.)

b. Similarly, find the speed in r/min at which the motor will operate with no
external shaft load (assuming the motor load at that speed to consist only
of the friction and windage losses).

c. Plot the motor efficiency versus output power as the motor output power
varies from 5 kW to full load.
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6.17 Write a MATLAB script to analyze the performance of a three-phase
induction motor operating at its rated frequency and voltage. The inputs
should be the rated motor voltage, power and frequency, the number of poles,
the equivalent-circuit parameters, and the rotational loss. Given a specific
speed, the program should calculate the motor output power, the input power
and power factor, and the motor efficiency. Exercise your program on a
450-kW, 3.3 kV, three-phase, 50-Hz, four-pole induction motor operating at
1466 r/min whose rated speed rotational loss is 2.8 kW, whose core loss is
3.7 kW and whose equivalent-circuit parameters in ohms-per-phase are:

R1 = 0.178 R2 = 0.28 X1 = 2.28 X2 = 2.69 Xm = 215

6.18 A three-phase, 6-pole, 120 kW, 460-V aluminum-squirrel-cage induction
motor has the following single-phase equivalent-circuit parameters in
ohms-per-phase

R1 = 15.3 × 10−3 R2 = 34.5 × 10−3

X1 = 0.183 X2 = 0.219 Xm = 13.4

You may assume that the motor friction and windage loss of 1370 W remains
constant over the normal range of operation and the core loss at 460 V is
1100 W.

a. Make a table including the motor slip, speed, terminal current, power
factor, and efficiency when operating at 460 V and supplying rated power.
Hint: It may be easiest to search for the desired operating points using
MATLAB.

b. The manufacturer proposes replacing the rotor of this motor with an
otherwise identical rotor except that the squirrel cage is cast from copper
instead of aluminum. Assuming the electrical conductivity copper to be
1.5 times that of aluminum, repeat the calculation of part (a) for the motor
operating with this new rotor. Expand your table of part (a) to include the
performance of the copper-rotor motor and compare the results.

c. Compare the performance of this motor with the cast-aluminum and
cast-copper rotors operating at rated voltage and 75 percent, 50 percent
and 25 percent of rated load.

6.19 A 10-kW, 460-V, three-phase, Y-connected, 60-Hz, six-pole squirrel-cage
induction motor develops rated torque at a slip of 3.2 percent when operated
at rated voltage and frequency. For the purposes of this problem, rotational
and core losses can be neglected. The following motor parameters, in
ohms-per-phase, have been obtained:

R1 = 1.26 X1 = X2 = 1.56 Xm = 60.6

Determine (i) the motor rated torque, (ii) the maximum torque and
corresponding speed at rated voltage and frequency, and (iii) the starting
torque and current at rated voltage and frequency.



Umans-3930269 book December 14, 2012 12:17

396 CHAPTER 6 Polyphase Induction Machines

6.20 A three-phase induction motor, operating at rated voltage and frequency, has a
starting torque of 115 percent and a maximum torque of 230 percent, both
with respect to its rated-load torque. Assuming constant rotor parameters with
slip and neglecting the effects of stator resistance and rotational losses and
assuming constant rotor resistance, determine:

a. the slip at maximum torque.

b. the slip at rated load.

c. the rotor current at starting (as a percentage of rotor current at rated
load).

6.21 When operated at rated voltage and frequency, a three-phase squirrel-cage
induction motor delivers full load at a slip of 7.6 percent and develops a
maximum torque of 255 percent of full load at a slip of 62 percent. Neglect
core and rotational losses and assume that the rotor resistance and inductance
remain constant, independent of slip. Determine the torque at starting, with
rated voltage and frequency, in per unit based upon its full-load value.

6.22 A three-phase, 6-pole, 125 kW, 575-V, 60-Hz aluminum-squirrel-cage
induction motor has the following single-phase equivalent-circuit parameters
in ohms-per-phase

R1 = 19.5 × 10−3 R2 = 30.6 × 10−3

X1 = 0.249 X2 = 0.294 Xm = 23.5

This motor is to be operated as a generator connected to a 575-V system
which has a series-equivalent reactance of 0.19 �. Calculate the generator
speed in r/min and the generator terminal voltage when the generator
electrical output power is 110 kW.

6.23 A 1.5-MW, 2400-V, four-pole, 60-Hz induction machine has the following
equivalent-circuit parameters in ohms-per-phase referred to the stator:

R1 = 0.0384 R2 = 0.0845 X1 = 0.182 X2 = 0.0780 Xm = 32.7

When operated as a motor, it achieves rated shaft output at a slip of 2.35
percent with an efficiency of 95.2 percent. The machine is to be used as a
generator, driven by a wind turbine. It will be connected to a 60-Hz
distribution system which can be represented by a 2400-V infinite bus.

a. From the given data calculate the total rotational and core losses at rated
load.

b. With the wind turbine driving the induction machine at a slip of
−2.35 percent, calculate (i) the electric power output in MW, (ii) the
efficiency (electric power output per shaft input power) in percent, and
(iii) the power factor measured at the machine terminals.

c. The actual distribution system to which the generator is connected has an
effective impedance of 0.041 + j0.15 �/phase. For a slip of −2.35
percent, calculate the electric power as measured (i) at the infinite bus and
(ii) at the machine terminals.
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6.24 Write a MATLAB script to plot the efficiency as a function of electric power
output for the induction generator of Problem 6.23 as the speed varies from
1800 r/min to 1840 r/min. Assume the generator to be operating into the
system with the feeder impedance of part (c) of Problem 6.23.

6.25 For a 75-kW, 460-V, three-phase, 60-Hz squirrel-cage motor operating at
rated voltage and frequency, the rotor I 2 R loss at maximum torque is
8.5 times that at full-load torque, and the slip at full-load torque is 0.026.
Stator resistance and rotational losses may be neglected and the rotor
resistance and inductance may be assumed to be constant. Expressing torque
in per unit of the full-load torque, find (a) the slip at maximum torque, (b) the
maximum torque, and (c) the starting torque.

6.26 A squirrel-cage induction motor runs at a full-load slip of 3.5 percent.
The rotor current at starting is 4.8 times the rotor current at full load. The
rotor resistance and inductance are independent of rotor frequency and
rotational losses, stray-load losses, and stator resistance may be neglected.
Expressing torque in per unit of the full-load torque, compute (a) the starting
torque and (b) the maximum torque and the slip at which the maximum
torque occurs.

6.27 A 460-V, three-phase, four-pole, 60-Hz squirrel-cage induction motor
develops a maximum internal torque of 1160 N·m at a slip of 16 percent when
operated at rated voltage and frequency. If the effect of stator resistance is
neglected, determine the maximum internal torque that this motor would
develop if it were operated at 380 V and 50 Hz. Under these conditions, at
what speed in r/min would the maximum torque be developed?

6.28 A 
-connected, 125-kW, 460-V, three-phase, four-pole, 50-Hz squirrel-cage
induction motor has the following equivalent-circuit parameters in
ohms-per-phase:

R1 = 0.033 R2 = 0.045 X1 = 0.28 X2 = 0.31 Xm = 7.7

a. Calculate the starting current and torque for this motor connected directly
to a 460-V source.

b. To limit the starting current, it is proposed to connect the stator winding
in Y for starting and then to switch to the 
 connection for normal
operation. (i) What are the equivalent-circuit parameters in ohms-per-
phase for the Y connection? (ii) With the motor Y-connected and running
directly off of a 460-V source, calculate the starting current and torque.

6.29 A 
-connected, 25-kW, 380-V, three-phase, six-pole, 50-Hz squirrel-cage
induction motor has the following equivalent-circuit parameters in
ohms-per-phase:

R1 = 0.12 R2 = 0.15 X1 = 0.79 X2 = 0.76 Xm = 26.2

The motor is connected to a fan which presents a load proportional to the cube
of speed as

Pfan = 23

(
r/min

1000

)3

kW
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The combined inertia of the motor and fan is equal to 1.8 kg·m2.
The motor is started by applying a terminal voltage of 230 V.

a. Calculate the steady-state operating speed of the fan.

b. Calculate the rms terminal current when the motor is first started.

c. Using MATLAB, plot (i) the motor speed and (ii) the rms motor current as
a function of time. HINT: It is fairly easy to write a simple rectangular
integration routine. Alternatively, you can implement your solution using
MATLAB/Simulink.

6.30 A 
-connected, 50-kW, 380-V, three-phase, 2-pole, 50-Hz squirrel-cage
induction motor is known to have the following equivalent-circuit parameters
in ohms-per-phase:

R1 = 0.063 R2 = 0.095 X1 = 0.39 X2 = 0.32 Xm = 14.8 Rc = 113

At rated speed, the motor friction and windage loss is equal to 150 W.

a. For a no-load test conducted at rated voltage and frequency, calculate the
no-load terminal current and input power.

b. For a blocked-rotor test conducted at a frequency of 12.5 Hz and at rated
terminal current, calculate the blocked-rotor line-line voltage and input
power.

c. Using the approximations of Section 6.6, calculate the motor
equivalent-circuit parameters based upon the no-load and block-rotor
“test” results determined in parts (a) and (b). Assume that R1 is equal to
the given value and that X1 = X2. Compare the resultant parameters with
the given values.

6.31 The induction motor of Problem 6.30 is re-connected in Y to operate at a
terminal voltage of 660 V. Repeat the calculations of Problem 6.30.

6.32 The following data apply to a 250-kW, 2300-V, three-phase, six pole, 60-Hz
squirrel-cage induction motor:

■ Stator-resistance between phase terminals = 0.52 �

■ No-load test at rated frequency and voltage:

Line current = 2.1 A Three-phase power = 2405 W

The friction and windage loss at rated speed has been determined to
750 W.

■ Blocked-rotor test at 15 Hz:

Line voltage = 182 V Line current = 62.8 A

Three-phase power = 10.8 kW

a. Calculate the no-load core loss.

b. Using reasonable engineering approximations, calculate the
equivalent-circuit parameters in ohms. Assume that X1 = X2 and that the
core-loss resistance Rc is connected directly at the motor terminals.
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c. Compute the

■ stator current

■ input power

■ power factor

■ stator, core, and rotor power dissipation

■ output power

■ efficiency

when this motor is operating at rated voltage and frequency at a slip of
3.1 percent.

d. Repeat the calculation of part (c) assuming the core-loss-resistance Rc is
connected in parallel with the magnetizing reactance Xm. Compare your
results with those of part (c).

6.33 Two 150-kW, 460-V, three-phase, four-pole, 60-Hz squirrel-cage induction
motors have identical stators and rotors of the same radius but differing
rotor-bar dimensions. The dc resistance measured between any pair of stator
terminals is 33.9 m�. Blocked-rotor tests at 60-Hz produce the following
results:

Volts Three-phase
Motor (line-to-line) Amperes power [kW]

1 70.5 188.3 3.12
2 60.7 188.3 6.81

Determine the ratio of the internal starting torque developed by motor 2 to
that of motor 1 (a) for the same current and (b) for the same voltage. Make
reasonable assumptions.

6.34 Write a MATLAB script to calculate the Y-equivalent-circuit parameters of a
three-phase induction motor from open-circuit and blocked-rotor tests.
Input:

■ Rated frequency

■ Rotational loss at rated speed

■ No-load test at rated speed: Voltage, current, and power

■ Blocked-rotor test: Frequency, voltage, current, and power

■ Stator-resistance measured phase to phase

■ Assumed ratio X1/X2

Output:

■ Equivalent circuit parameters R1, R2, Rc, X1, X2, and Xm
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If a value for rotational loss is not available, you may set it equal to zero.

a. Base your MATLAB script on the approximations presented in
Section 6.6. Exercise your program on a 2300-V, three-phase, 50-Hz,
150-kW induction motor whose test results are:

Stator-resistance between phase terminals = 0.428 �

No-load test at rated frequency and voltage:

Line current = 12.8 A Three-phase power = 2.31 kW

Blocked-rotor test at 12.5 Hz:

Line-line voltage = 142 V Line current = 43.1 A

Three-phase power = 4.87 kW

You may assume that X1 = 0.45(X1 + X2).

b. Modify the parameters values found in part (a) such that when the
complete equivalent-circuit of Fig. 6.8 is used to simulate the no-load and
blocked-rotor tests, the simulated and test results match exactly. This can
be easily done by adding a section of MATLAB code which searches over
parameter values close to those found in part (a) for values which result in
a complete equivalent circuit which matches the test results. Compare
these “exact” parameter values with those found in part (a).

6.35 A 50-kW, 50-Hz, four-pole, 380-V three-phase, squirrel-cage induction motor
develops full-load torque at 1447 r/min with the rotor short-circuited. It
develops a maximum torque of 542 N·m. An external non-inductive resistance
of 0.9 � is placed in series with each phase of the rotor, and the motor is
observed to develop its rated torque at a speed of 1415 r/min. Calculate the
rotor resistance per phase of the motor itself.

6.36 A 125-kW, 380-V, three-phase, six-pole, 50-Hz, wound-rotor induction motor
develops a maximum internal torque of 225 percent at a slip of 17 percent
when operated at rated voltage and frequency with its rotor short-circuited
directly at the slip rings. Stator resistance and rotational losses may be
neglected, and the rotor resistance and inductance may be assumed to be
constant, independent of rotor frequency. Determine

a. the slip at full load in percent.

b. the rotor I 2 R loss at full load in watts.

c. the starting torque at rated voltage and frequency in per unit and in N · m.

If the rotor resistance is doubled (by inserting external series resistance at the
slip rings) and the motor load is adjusted for such that the line current is equal
to the value corresponding to rated load with no external resistance, determine

d. the corresponding slip in percent and

e. the torque in N · m.
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6.37 A three-phase, Y-connected, 460-V (line-line), 25-kW, 60-Hz, four-pole
wound rotor induction motor has the following equivalent-circuit parameters
in ohms-per-phase referred to the stator:

R1 = 0.10 R2 = 0.08 Rc = 1270 X1 = 1.12 X2 = 1.22 Xm = 253

a. Neglecting any effects of rotational and core losses, use MATLAB to plot
the internal torque versus speed curve for rated-voltage, rated-frequency
operation.

b. On the same plot, plot curves of internal torque versus speed for this
motor assuming the rotor resistance increases by a factor of 5, 10 and 30.

c. The motor is connected to a fan load whose torque requirement varies as
the square of its speed and which requires 117 N·m at 1800 r/min. Plot the
fan torque on the same plot.

d. Calculate the fan speed in r/min and power in kW for each of four values
of rotor resistance.

6.38 A 575-V, three-phase, four-pole, 60-Hz, 125-kW, wound-rotor induction
motor develops an internal torque of 195 percent with a line current of 210
percent (torque and current expressed as a percentage of their full-load values)
at a slip of 5.5 percent when running at rated voltage and frequency with its
rotor terminals short-circuited. The rotor resistance is measured to be 95 m�

between each slip ring and may be assumed to remain constant. A balanced
set of Y-connected resistors is to be connected to the slip rings in order to
limit the rated-voltage starting current to 210 percent of its rated value. What
resistance must be chosen for each leg of the Y connection? What will be the
starting torque under these conditions in percent of rated torque?

6.39 A 100-kW, three-phase, 60-Hz, 460-V, eight-pole wound-rotor induction
motor develops its rated full-load output at a speed of 869 r/min when
operated at rated voltage and frequency with its slip rings short-circuited. The
maximum torque it can develop at rated voltage and frequency is 295 percent
of full-load torque. The resistance of the rotor winding is 0.18
ohms-per-phase. Neglect any effects of rotational and stray-load loss and
stator resistance.

a. Compute the rotor I 2 R loss at full load.

b. Compute the speed at maximum torque in r/min.

c. How much resistance must be inserted in series with the rotor windings
to produce maximum starting torque?

With the rotor windings short-circuited, the motor is now run from a 50-Hz
supply with the applied voltage adjusted so that the air-gap flux wave
is essentially equal to that at rated 60-Hz operation.

d. Compute the 50-Hz applied voltage.

e. Compute the speed at which the motor will develop a torque equal to its
rated 60-Hz value with its slip-rings shorted.
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6.40 A 575-V, 175-kW, 60-Hz, 6-pole wound-rotor induction motor has the
following parameters in ohms-per-phase

R1 = 0.023 R2 = 0.081 Rc = 287 X1 = 0.25 X2 = 0.29 Xm = 57

The phase-phase resistance of the rotor as measured across the rotor slip rings
is 0.23 �. For the purposes of this problem, you may assume that this motor is
driving a constant-torque load of 950 N·m. Hint: This problem is most easily
solved by using MATLAB to search for operating points that match the stated
criterion.

a. Find the motor speed in r/min, load power, terminal current, efficiency
and the rotor power dissipation if the motor is operated at rated voltage
with the rotor slip rings shorted.

b. Calculate the external resistance in ohms-per-phase that must be added at
the slip rings to set the motor speed to 1050 r/min. Again find the motor
speed in r/min, load power, terminal current, efficiency and the rotor
power dissipation. Also calculate the power dissipation in the external
rotor resistors.
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C H A P T E R 7
DC Machines

Dc machines are characterized by their versatility. By means of various com-
binations of shunt-, series-, and separately excited field windings they can be
designed to display a wide variety of volt-ampere or speed-torque character-

istics for both dynamic and steady-state operation. Because of the ease with which
they can be controlled, systems of dc machines have been frequently used in appli-
cations requiring a wide range of motor speeds or precise control of motor output. In
recent years, solid-state ac drive system technology has developed sufficiently that
these systems are replacing dc machines in applications previously associated almost
exclusively with dc machines. However, the versatility of dc machines in combination
with the relative simplicity of their drive systems will insure their continued use in a
wide variety of applications.

7.1 INTRODUCTION
The essential features of a dc machine are shown schematically in Fig. 7.1. The stator
has salient poles and is excited by one or more field coils. The air-gap flux distribution
created by the field windings is symmetric about the center line of the field poles.
This axis is called the field axis or direct axis.

As discussed in Section 4.6.2, the ac voltage generated in each rotating arma-
ture coil is converted to dc in the external armature terminals by means of a rotating
commutator and stationary brushes to which the armature leads are connected. The
commutator-brush combination forms a mechanical rectifier, resulting in a dc arma-
ture voltage as well as an armature-mmf wave which is fixed in space. Commutator
action is discussed in detail in Section 7.2.

The brushes are located so that commutation occurs when the coil sides are in the
neutral zone, midway between the field poles. The axis of the armature-mmf wave then
is 90 electrical degrees from the axis of the field poles, i.e., in the quadrature axis. In
the schematic representation of Fig. 7.1a, the brushes are shown in the quadrature axis
because this is the position of the coils to which they are connected. The armature-mmf
wave then is along the brush axis, as shown. (The geometric position of the brushes

403
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Figure 7.1 Schematic representations of a dc machine.

in an actual machine is approximately 90 electrical degrees from their position in the
schematic diagram because of the shape of the end connections to the commutator.
For example, see Fig. 7.7.) For simplicity, the circuit representation usually will be
drawn as in Fig. 7.1b.

Although the magnetic torque and the speed voltage appearing at the brushes are
somewhat dependent on the spatial waveform of the flux distribution, for convenience
we continue to assume a sinusoidal flux-density wave in the air gap as was done
in Chapter 4. The torque can then be found from the magnetic field viewpoint of
Section 4.7.2.

By direct analogy to the derivation of of Eq. 4.83, the electromagnetic torque Tmech

can be expressed in terms of the interaction of the direct-axis air-gap flux per pole �d

and the space-fundamental component Fa1 of the armature-mmf wave. Specifically,
Eq. 4.75 can be re-written in terms of the net direct-axis (stator) mmf (Fs replaced by
Fd) and the fundamental net armature-winding (rotor) mmf (Fr replaced by Fa1).

Tmech = −
(

poles

2

) (
μ0π Dl

2g

)
Fd Fa1 sin δsr (7.1)

By analogy to Eq. 4.82 and recognizing that Bd = μ0 Fd/g we can solve for Fd

in terms of the direct-axis flux as

Fd =
(

g × poles

2μ0 Dl

)
�d (7.2)

With the brushes in the quadrature axis, the angle between these fields is 90
electrical degrees, and its sine equals unity. Substitution of Eq. 7.2 into Eq. 7.1 with
δsr = 90◦ then gives

Tmech = π

2

(
poles

2

)2

�d Fa1 (7.3)
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in which the minus sign has been dropped because the positive direction of the torque
can be determined from physical reasoning. The peak value of the sawtooth armature-
mmf wave is given by Eq. 4.10, and its space fundamental Fa1 is 8/π2 times its peak
and thus

Fa1 =
(

8

π2

) (
Ca

2m · poles

)
ia (7.4)

Substitution of Eq. 7.4 into Eq. 7.3 then gives

Tmech =
(

poles Ca

2πm

)
�dia = Ka�dia (7.5)

where

ia = Current in external armature circuit

Ca = Total number of conductors in armature winding

m = Number of parallel paths through winding

Here

Ka = poles Ca

2πm
(7.6)

is a constant determined by the design of the winding.
The rectified voltage generated in the armature has already been found in Sec-

tion 4.6.2 for an elementary single-coil armature, and its waveform is shown in
Fig. 4.30. The effect of distributing the winding in several slots is shown in Fig. 7.2, in
which each of the rectified sine waves is the voltage generated in one of the coils, with
commutation taking place at the moment when the coil sides are in the neutral zone.

The generated voltage as observed from the brushes is the sum of the rectified
voltages of all the coils in series between brushes and is shown by the rippling
waveform labeled ea in Fig. 7.2. With a dozen or so commutator segments per pole,
the ripple becomes very small and the average generated voltage observed from the
brushes equals the sum of the average values of the rectified coil voltages. From
Eq. 4.55 the rectified voltage ea between brushes, known also as the speed voltage, is

ea =
(

poles Ca

2πm

)
�dωm = Ka�dωm (7.7)
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Figure 7.2 Rectified coil voltages and resultant voltage between brushes in a dc machine.
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Figure 7.3 Typical form of magnetization curves of a
dc machine.

where Ka is the winding constant defined in Eq. 7.6. The rectified voltage of a dis-
tributed winding has the same average value as that of a concentrated coil. The
difference is that the ripple is greatly reduced.

From Eqs. 7.5 and 7.7, with all variables expressed in SI units,

eaia = Tmech ωm = Pmech (7.8)

Noting that the product of torque and mechanical speed is the mechanical power, this
equation simply says that the instantaneous electric power associated with the speed
voltage equals the instantaneous mechanical power associated with the magnetic
torque, the direction of power flow being determined by whether the machine is
acting as a motor or generator.

The direct-axis air-gap flux �d is produced by the combined mmf
∑

Nf if of the
field windings; the flux-mmf characteristic is referred to as the magnetization curve
for the machine. The form of a typical magnetization curve is shown in Fig. 7.3a,
in which it is assumed that the armature mmf has no effect on the direct-axis flux
because the axis of the armature-mmf wave, as determined by the orientation of the
brushes, is along the quadrature axis and hence perpendicular to the field axis. It will
be necessary to re-examine this assumption later in this chapter, where the effects
of saturation are investigated more thoroughly. Note that the magnetization curve of
Fig. 7.3a does not pass through the origin. This behaviour will occur in cases where
the field structure exhibits residual magnetism, i.e., where the magnetic material of
the field does not fully demagnetize when the net field mmf is reduced to zero.

Because the armature emf is proportional to flux times speed, it is usually more
convenient to express the magnetization curve in terms of the armature emf Ea0 at a
constant speed ωm0 as shown in Fig. 7.3b. The voltage Ea for a given flux at any other
speed ωm is proportional to the speed; i.e., from Eq. 7.7

ea

ωm
= Ka�d = ea0

ωm0
(7.9)

Thus

ea =
(

ωm

ωm0

)
ea0 (7.10)
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or, in terms of rotational speed in r/min

ea =
(

n

n0

)
ea0 (7.11)

where n0 is the rotational speed in r/min corresponding to the speed ωm0.
In the case where only a single field winding is excited, the magnetization curve

can be plotted most readily as a function of the field current if instead of the net
field ampere-turns

( ∑
Nfif

)
as is also shown in Figure 7.3b. This curve can easily

be obtained by test methods; since the field current can be measured directly, no
knowledge of any design details is required.

Over a fairly wide range of excitation the reluctance of the electrical steel in the
machine is negligible compared with that of the air gap. In this region the flux is
linearly proportional to the total mmf of the field windings, the constant of propor-
tionality being the direct-axis permeance Pd; thus

�d = Pd

∑
Nfif (7.12)

The dashed straight line through the origin coinciding with the straight portion of the
magnetization curves in Fig. 7.3 is called the air-gap line. This nomenclature refers
to the fact that this linear magnetizing characteristic would be found if the reluctance
of the magnetic material portion of the flux path remained negligible compared to that
of the air gap, independent of the degree of magnetic saturation of the motor steel.

The outstanding advantages of dc machines arise from the wide variety of oper-
ating characteristics which can be obtained by selection of the method of excitation of
the field windings. Various connection diagrams are shown in Fig. 7.4. The method of
excitation profoundly influences both the steady-state characteristics and the dynamic
behavior of the machine in control systems.

Series
field

Field

To dc
source

Armature

Series
field

Shunt
field

Shunt
field

Field
rheostat

Field
rheostat

(a) (b)

(c) (d)

Figure 7.4 Field-circuit connections of dc machines: (a) separate
excitation, (b) series, (c) shunt, (d) compound.
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Consider first dc generators. The connection diagram of a separately excited
generator is given in Fig. 7.4a. The required field current is a very small fraction of
the rated armature current, on the order of 1 to 3 percent in the average generator.
A small amount of power in the field circuit may control a relatively large amount
of power in the armature circuit; i.e., the generator is a power amplifier. Separately
excited generators are often used in feedback control systems when control of the
armature voltage over a wide range is required.

The field windings of self-excited generators may be supplied in three different
ways. The field may be connected in series with the armature (Fig. 7.4b), resulting in
a series generator. The field may be connected in shunt with the armature (Fig. 7.4c),
resulting in a shunt generator, or the field may be in two sections (Fig. 7.4d), one
of which is connected in series and the other in shunt with the armature, resulting
in a compound generator. With self-excited generators, residual magnetism must be
present in the machine iron to get the self-excitation process started. The effects of
residual magnetism can be clearly seen in Fig. 7.3, where the flux and voltage are
seen to have nonzero values when the field current is zero.

Typical steady-state volt-ampere characteristics of dc generators are shown in
Fig. 7.5, constant-speed operation being assumed. The relation between the steady-
state generated emf Ea and the armature terminal voltage Va is

Va = Ea − Ia Ra (7.13)

where Ia is the steady-state armature current output and Ra is the armature circuit
resistance. In a generator, Ea is larger than Va, and the electromagnetic torque Tmech

is a counter torque opposing rotation.
The terminal voltage of a separately excited generator decreases slightly with an

increase in the load current, principally because of the voltage drop in the armature
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Figure 7.5 Volt-ampere characteristics of dc generators.



Umans-3930269 book December 14, 2012 12:21

7.1 Introduction 409

resistance. The field current of a series generator is the same as the load current, so that
the air-gap flux and hence the voltage vary widely with load. As a consequence, series
generators are not often used. The voltage of shunt generators drops off somewhat
with load, but not in a manner that is objectionable for many purposes. Compound
generators are normally connected so that the mmf of the series winding aids that
of the shunt winding. The advantage is that through the action of the series winding
the flux per pole can increase with load, resulting in a voltage output which is nearly
constant or which even rises somewhat as load increases. The shunt winding usually
contains many turns of relatively small wire. The series winding, wound on the outside,
consists of a few turns of comparatively heavy conductor because it must carry the full
armature current of the machine. The voltage of both shunt and compound generators
can be controlled over reasonable limits by means of rheostats in the shunt field.

Any of the methods of excitation used for generators can also be used for motors.
Typical steady-state dc-motor speed-torque characteristics are shown in Fig. 7.6, in
which it is assumed that the motor terminals are supplied from a constant-voltage
source. In a motor the relation between the emf Ea generated in the armature and the
armature terminal voltage Va is

Va = Ea + Ia Ra (7.14)

or

Ia = Va − Ea

Ra
(7.15)

where Ia is now the armature-current input to the machine. The generated emf Ea

is now smaller than the terminal voltage Va, the armature current is in the opposite
direction to that in a generator, and the electromagnetic torque is in the direction to
sustain rotation of the armature.
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Figure 7.6 Speed-torque characteristics
of dc motors.
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In shunt- and separately excited motors, the field flux is nearly constant. Conse-
quently, increased torque must be accompanied by a very nearly proportional in-
crease in armature current and hence by a small decrease in counter emf Ea to
allow this increased current through the small armature resistance. Since counter
emf is determined by flux and speed (Eq. 7.7), the speed must drop slightly. Like
the squirrel-cage induction motor, the shunt motor is substantially a constant-speed
motor having about 6 percent drop in speed from no load to full load. A typical
speed-torque characteristic is shown by the solid curve in Fig. 7.6. Starting torque
and maximum torque are limited by the armature current that can be successfully
commutated.

An outstanding advantage of the shunt motor is ease of speed control. With a
rheostat in the shunt-field circuit, the field current and flux per pole can be varied at
will, and variation of flux causes the inverse variation of speed to maintain counter
emf approximately equal to the impressed terminal voltage. A maximum speed range
of about 4 or 6 to 1 can be obtained by this method, the limitation again being
commutating conditions. By variation of the impressed armature voltage, very wide
speed ranges can be obtained.

In the series motor, increase in load is accompanied by increases in the ar-
mature current and mmf and the stator field flux (provided the iron is not com-
pletely saturated). Because flux increases with load, speed must drop in order to
maintain the balance between impressed voltage and counter emf; moreover, the in-
crease in armature current caused by increased torque is smaller than in the shunt
motor because of the increased flux. The series motor is therefore a varying-speed
motor with a markedly drooping speed-torque characteristic of the type shown in
Fig. 7.6. For applications requiring heavy torque overloads, this characteristic is
particularly advantageous because the corresponding power overloads are held to
more reasonable values by the associated speed drops. Very favorable starting
characteristics also result from the increase in flux with increased armature
current.

In the compound motor, the series field may be connected either cumulatively,
so that its mmf adds to that of the shunt field, or differentially, so that it opposes.
The differential connection is rarely used. As shown by the broken-dash curve in
Fig. 7.6, a cumulatively compounded motor has speed-load characteristics inter-
mediate between those of a shunt and a series motor, with the drop of speed with
load depending on the relative number of ampere-turns in the shunt and series
fields. It does not have the disadvantage of very high light-load speed associated
with a series motor, but it retains to a considerable degree the advantages of series
excitation.

The application advantages of dc machines lie in the variety of performance
characteristics offered by the possibilities of shunt, series, and compound excitation.
Some of these characteristics have been touched upon briefly in this section. Still
greater possibilities exist if additional sets of brushes are added so that other voltages
can be obtained from the commutator. Thus the versatility of dc-machine systems
and their adaptability to control, both manual and automatic, are their outstanding
features.
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7.2 COMMUTATOR ACTION
The dc machine differs in several respects from the ideal model of Section 4.2.2.
Although the basic concepts of Section 4.2.2 are still valid, a reexamination of the
assumptions and a modification of the model are desirable. The crux of the matter is
the effect of the commutator shown in Figs. 4.1 and 4.13.

Figure 7.7 shows diagrammatically the armature winding of Figs. 4.19 and 4.20a
with the addition of the commutator, brushes, and connections of the coils to the
commutator segments. The commutator is represented by the ring of segments in the
center of the figure. The segments are insulated from each other and from the shaft.
Two stationary brushes are shown by the black rectangles inside the commutator
although in practical dc machines the brushes usually contact the outer surface, as
shown in Fig. 4.13. The coil sides in the slots are shown in cross section by the small
circles with dots and crosses in them, indicating currents toward and away from the
reader, respectively, as in Fig. 4.19. The connections of the coils to the commutator
segments are shown by the circular arcs. The end connections at the back of the
armature are shown dashed for the two coils in slots 1 and 7, and the connections of
these coils to adjacent commutator segments are shown by the heavy arcs. All coils
are identical. The back end connections of the other coils have been omitted to avoid
complicating the figure, but they can easily be traced by remembering that each coil
has one side in the top of a slot and the other side in the bottom of the diametrically
opposite slot.

In Fig. 7.7a the brushes are in contact with commutator segments 1 and 7. Current
entering the right-hand brush divides equally between two parallel paths through the
winding. The first path leads to the inner coil side in slot 1 and finally ends at the brush
on segment 7. The second path leads to the outer coil side in slot 6 and also finally ends
at the brush on segment 7. The current directions in Fig. 7.7a can readily be verified
by tracing these two paths. They are the same as in Fig. 4.19. The effect is identical
to that of a coil wrapped around the armature with its magnetic axis vertical, and a
clockwise magnetic torque is exerted on the armature, tending to align its magnetic
field with that of the field winding.

Now suppose the machine is acting as a generator driven in the counterclockwise
direction by an applied mechanical torque. Figure 7.7b shows the situation after the
armature has rotated through the angle subtended by half a commutator segment. The
right-hand brush is now in contact with both segments 1 and 2, and the left-hand
brush is in contact with both segments 7 and 8. The coils in slots 1 and 7 are now
short-circuited by the brushes. The currents in the other coils are shown by the dots
and crosses, and they produce a magnetic field whose axis again is vertical.

After further rotation, the brushes will be in contact with segments 2 and 8, and
slots 1 and 7 will have rotated into the positions which were previously occupied by
slots 12 and 6 in Fig. 7.7a. The current directions will be similar to those of Fig. 7.7a
except that the currents in the coils in slots 1 and 7 will have reversed. The magnetic
axis of the armature is still vertical.

During the time when the brushes are simultaneously in contact with two ad-
jacent commutator segments, the coils connected to these segments are temporarily
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(a), (b) Current directions for two positions of the armature.
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Coil current

t

Commutation

Figure 7.8 Waveform of current in an armature coil
with linear commutation.

removed from the main circuit comprising the armature winding, short-circuited by
the brushes, and the currents in them are reversed. Ideally, the current in the coils
being commutated should reverse linearly with time, a condition referred to as linear
commutation. Serious departure from linear commutation will result in sparking at
the brushes. Means for obtaining sparkless commutation are discussed in Section 7.9.
With linear commutation the waveform of the current in any coil as a function of time
is trapezoidal, as shown in Fig. 7.8.

The winding of Fig. 7.7 is simpler than that used in most dc machines. Ordinarily
more slots and commutator segments would be used, and except in small machines,
more than two poles are common. Nevertheless, the simple winding of Fig. 7.7 in-
cludes the essential features of more complicated windings.

7.3 ANALYTICAL FUNDAMENTALS:
ELECTRIC-CIRCUIT ASPECTS

From Eqs. 7.3 and 7.7, the electromagnetic torque and generated voltage of a dc
machine are, respectively,

Tmech = Ka�d Ia (7.16)

and

Ea = Ka�dωm (7.17)

where

Ka = poles Ca

2πm
(7.18)

Here the capital-letter symbols Ea for generated voltage and Ia for armature
current are used to emphasize that we are primarily concerned with steady-state
considerations. The remaining symbols are as defined in Section 7.1. Equations 7.16
through 7.18 are basic equations for analysis of the machine. The quantity Ea Ia is
frequently referred to as the electromagnetic power; from Eqs. 7.16 and 7.17 it is
related to electromagnetic torque by

Tmech = Ea Ia

ωm
(7.19)

The electromagnetic power differs from the mechanical power at the machine
shaft by the rotational losses and differs from the electric power at the machine
terminals by the shunt-field and armature I 2 R losses. Once the electromagnetic



Umans-3930269 book December 14, 2012 12:21

414 CHAPTER 7 DC Machines

Armature

Series
field

Shunt
field

Field
rheostat

Vt

�

+

�

+
Va

Ia (motor) It (motor)

It (generator)Ia (generator)

If

Figure 7.9 Motor or generator connection diagram
with current directions. Long-shunt connection.

power Ea Ia has been determined, numerical addition of the rotational losses for
generators and subtraction for motors yields the mechanical power at the shaft.

The interrelations between voltage and current are immediately evident from the
connection diagram of Fig. 7.9. Thus,

Va = Ea ± Ia Ra (7.20)

Vt = Ea ± Ia(Ra + Rs) (7.21)

and the terminal current is

It = Ia ± If (7.22)

where the plus sign is used for a motor and the minus sign for a generator and Ra and Rs

are the resistances of the armature and series field, respectively. Here, the voltage Va

refers to the terminal voltage of the armature winding and Vt refers to the terminal
voltage of the dc machine, including the voltage drop across the series-connected
field winding; they are equal if there is no series field winding.

Some of the terms in Eqs. 7.20 to 7.22 are omitted when the machine connections
are simpler than those shown in Fig. 7.9. The resistance Ra is to be interpreted as that
of the armature plus brushes unless specifically stated otherwise. Sometimes Ra is
taken as the resistance of the armature winding alone and the brush-contact voltage
drop is accounted for separately, usually assumed to be two volts.

EXAMPLE 7.1

A 25-kW 125-V separately excited dc machine is operated at a constant speed of 3000 r/min
with a constant field current such that the open-circuit armature voltage is 125 V. The armature
resistance is 0.02 �.

Compute the armature current, terminal power, and electromagnetic power and torque
when the terminal voltage is (a) 128 V and (b) 124 V.

■ Solution

a. From Eq. 7.20, with Vt = 128 V and Ea = 125 V, the armature current is

Ia = Vt − Ea

Ra

= 128 − 125

0.02
= 150 A
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in the motor direction, and the power input at the motor terminal is

Vt Ia = 128 × 150 = 19.20 kW

The electromagnetic power is given by

Ea Ia = 125 × 150 = 18.75 kW

In this case, the dc machine is operating as a motor and the electromagnetic power is
hence smaller than the motor input power by the power dissipated in the armature
resistance.

Finally, the electromagnetic torque is given by Eq. 7.19:

Tmech = Ea Ia

ωm

= 18.75 × 103

100π
= 59.7 N · m

b. In this case, Ea is larger than Vt and hence armature current will flow out of the machine,
and thus the machine is operating as a generator. Hence

Ia = Ea − Vt

Ra

= 125 − 124

0.02
= 50 A

and the terminal power is

Vt Ia = 124 × 50 = 6.20 kW

The electromagnetic power is

Ea Ia = 125 × 50 = 6.25 kW

and the electromagnetic torque is

Tmech = 6.25 × 103

100π
= 19.9 N · m

Practice Problem 7.1

The speed of the separately excited dc machine of Example 7.1 is observed to be 2950 r/min
with the field current at the same value as in Example 7.1. For a terminal voltage of 125 V,
calculate the terminal current and power and the electromagnetic power for the machine. Is it
acting as a motor or a generator?

Solution
Terminal current:Ia = 104 A

Terminal power:Vt Ia = 13.0kW

Electromechanical power:Ea Ia = 12.8kW

The machine is acting as a motor.

EXAMPLE 7.2

Consider again the separately excited dc machine of Example 7.1 with the field current main-
tained constant at the value that would produce a terminal voltage of 125 V at a speed of
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3000 r/min. The machine is observed to be operating as a motor with a terminal voltage of
123 V and with a terminal power of 21.9 kW. Calculate the speed of the motor.

■ Solution
The terminal current can be found from the terminal voltage and power as

Ia = Input power

Vt

= 21.9 × 103

123
= 178 A

Thus the generated voltage is

Ea = Vt − Ia Ra = 119.4 V

From Eq. 7.11, the rotational speed can be found as

n = n0

(
Ea

Ea0

)
= 3000

(
119.4

125

)
= 2866 r/min

Practice Problem 7.2

Repeat Example 7.2 if the machine is observed to be operating as a generator with a terminal
voltage of 124 V and a terminal power of 24 kW.

Solution
3069 r/min

For compound machines, another variation may occur. Figure 7.9 shows a long-
shunt connection in that the shunt field is connected directly across the line terminals
with the series field between it and the armature. An alternative possibility is the
short-shunt connection, illustrated in Fig. 7.10, with the shunt field directly across
the armature and the series field between it and the line terminals. The series-field
current is then It instead of Ia, and the voltage equations are modified accordingly.
There is so little practical difference between these two connections that the distinction
can usually be ignored: unless otherwise stated, compound machines will be treated
as though they were long-shunt connected.

Although the difference between terminal voltage Vt and armature generated
voltage Ea is comparatively small for normal operation, it has a definite bearing
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Figure 7.10 Short-shunt compound
dc-machine connections.
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on performance characteristics. This voltage difference divided by the armature
resistance determines the value of armature current Ia and hence the strength of
the armature flux. Complete determination of machine behavior requires a similar
investigation of factors influencing the direct-axis flux or, more particularly, the net
flux per pole �d.

7.4 EFFECT OF ARMATURE MMF
Armature mmf has definite effects on both the space distribution of the air-gap flux
and the magnitude of the net flux per pole. The effect on flux distribution is important
because the limits of successful commutation are directly influenced; the effect on
flux magnitude is important because both the generated voltage and the torque per
unit armature current are influenced thereby. These effects and the problems arising
from them are described in this section.

It was shown in Section 4.3.2 and Fig. 4.20 that the armature-mmf wave can
be closely approximated by a sawtooth, corresponding to the wave produced by a
finely distributed armature winding or current sheet. For a machine with brushes in
the neutral position, the idealized mmf wave is shown by the dashed sawtooth in
Fig. 7.11, in which a positive mmf ordinate denotes flux lines leaving the armature
surface. Current directions in all windings other than the main field are indicated by
black and cross-hatched bands. Because of the salient-pole field structure found in
almost all dc machines, the associated space distribution of flux will not be triangular.
The distribution of air-gap flux density with only the armature excited is given by the

Field pole Field pole
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conductors

on armature

Finely distributed

conductors

on armature

Brush

Generator
rotation

Motor
rotation

Armature-mmf

distribution
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distribution with

only the armature
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Figure 7.11 Armature-mmf and flux-density distribution with
brushes on neutral and only the armature excited.
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Figure 7.12 Flux with only the armature excited and brushes on neutral.

solid curve of Fig. 7.11. As can readily be seen, it is appreciably decreased by the
long air path in the interpolar space.

The axis of the armature mmf is fixed at 90 electrical degrees from the main-
field axis by the brush position. The corresponding flux follows the paths shown in
Fig. 7.12. The effect of the armature mmf is seen to be that of creating flux crossing
the pole faces; thus its path in the pole shoes crosses the path of the main-field flux.
For this reason, armature reaction of this type is called cross-magnetizing armature
reaction and it causes a decrease in the resultant air-gap flux density under one half
of the pole and an increase under the other half.

When the armature and field windings are both excited, the resultant air-gap flux-
density distribution is of the form given by the solid curve of Fig. 7.13. Superimposed
on this figure are the flux distributions with only the armature excited (long-dash curve)
and only the field excited (short-dash curve). The effect of cross-magnetizing armature
reaction in decreasing the flux under one pole tip and increasing it under the other can
be seen by comparing the solid and short-dash curves. In general, the solid curve is
not the algebraic sum of the two dashed curves because of the nonlinearity of the iron
magnetic circuit. Because of saturation of the iron, the flux density is decreased by a
greater amount under one pole tip than it is increased under the other. Accordingly, the
resultant flux per pole is lower than would be produced by the field winding alone,
a consequence known as the demagnetizing effect of cross-magnetizing armature
reaction. Since it is caused by saturation, its magnitude is a nonlinear function of
both the field current and the armature current. For normal machine operation at the
flux densities used commercially, the effect is usually significant, especially at heavy
loads, and must often be taken into account in analyses of performance.

The distortion of the flux distribution caused by cross-magnetizing armature
reaction may have a detrimental influence on the commutation of the armature current,
especially if the distortion becomes excessive. In fact, this distortion is usually an
important factor limiting the short-time overload capability of a dc machine. Tendency
toward distortion of the flux distribution is most pronounced in a machine, such as
a shunt motor, where the field excitation remains substantially constant while the
armature mmf may reach very significant proportions at heavy loads. The tendency
is least pronounced in a series-excited machine, such as the series motor, for both the
field and armature mmf increase with load.
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Figure 7.13 Armature, main-field, and resultant flux-density
distributions with brushes on neutral.

The effect of cross-magnetizing armature reaction can be limited in the design and
construction of the machine. The mmf of the main field should exert predominating
control on the air-gap flux, so that the condition of weak field mmf and strong armature
mmf should be avoided. The reluctance of the cross-flux path (essentially the armature
teeth, pole shoes, and the air gap, especially at the pole tips) can be increased by
increasing the degree of saturation in the teeth and pole faces, by avoiding too small
an air gap, and by using a chamfered or eccentric pole face, which increases the air
gap at the pole tips. These expedients affect the path of the main flux as well, but the
influence on the cross flux is much greater. The best, but also the most expensive,
curative measure is to compensate the armature mmf by means of a winding embedded
in the pole faces, a measure discussed in Section 7.9.

If the brushes are not in the neutral position, the axis of the armature mmf wave
is not 90◦ from the main-field axis. The armature mmf then produces not only cross
magnetization but also a direct-axis demagnetizing or magnetizing effect, depending
on the direction of brush shift. Shifting of the brushes from the neutral position
is usually inadvertent due to incorrect positioning of the brushes or a poor brush
fit. Before the invention of interpoles, however, shifting the brushes was a common
method of securing satisfactory commutation, the direction of the shift being such
that demagnetizing action was produced. It can be shown that brush shift in the
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direction of rotation in a generator or against rotation in a motor produces a direct-axis
demagnetizing mmf which may result in unstable operation of a motor or excessive
drop in voltage of a generator. Incorrectly placed brushes can be detected by a load
test. If the brushes are on neutral, the terminal voltage of a generator or the speed of
a motor should be the same for identical conditions of field excitation and armature
current when the direction of rotation is reversed.

7.5 ANALYTICAL FUNDAMENTALS:
MAGNETIC-CIRCUIT ASPECTS

The net flux per pole is that resulting from the combined mmfs of the field and
armature windings. Although in a idealized, shunt- or separately excited dc machine
the armature mmf produces magnetic flux only along the quadrature axis, in a practical
device the armature current produces flux along the direct axis, either directly, as
produced for example by a series field winding, or indirectly through saturation effects
as discussed in Section 7.4. The interdependence of the generated armature voltage
Ea and magnetic circuit conditions in the machine is accordingly a function of the
sum of all the mmfs on the polar- or direct-axis flux path. First we consider the mmf
intentionally placed on the stator main poles to create the working flux, i.e., the
main-field mmf, and then we include armature-reaction effects.

7.5.1 Armature Reaction Neglected

With no load on the machine or with armature-reaction effects ignored, the resultant
mmf is the algebraic sum of the mmfs acting on the main or direct axis. For the usual
compound generator or motor having Nf shunt-field turns per pole and Ns series-field
turns per pole,

Direct-axis mmf = Nf If + Ns Is (7.23)

The series field current Is is defined in Eq. 7.23 such it produces an mmf which
adds to that of the shunt field winding. Note, however, that its polarity can be re-
versed in any given configuration and its operating current can hence be positive or
negative. For a connection which produces positive series field current (Is > 0), re-
ferred to as a cummulative series-field connection, its mmf indeed adds to that of the
shunt field. For a connection which produces negative series field current (Is < 0),
referred to as a differential series-field connection, its mmf subtracts from that of the
shunt field.

Additional terms will appear in Eq. 7.23 when there are additional field windings
on the main poles and when, unlike the compensating windings of Section 7.9, they
are wound concentric with the normal field windings to permit specialized control.
When either the series or the shunt field is absent, the corresponding term in Eq. 7.23
is naturally omitted.

Equation 7.23 thus sums up in ampere-turns per pole the gross mmf of the direct-
axis field windings acting on the main magnetic circuit. The magnetization curve for
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a dc machine is generally given in terms of current in only the principal field winding,
which is almost invariably the shunt-field winding when one is present. The mmf units
of such a magnetization curve and of Eq. 7.23 can be made the same by one of two
rather obvious steps. The field current on the magnetization curve can be multiplied
by the turns per pole in that winding, giving a curve in terms of ampere-turns per pole;
or both sides of Eq. 7.23 can be divided by the turns in the shunt-field Nf, converting
the units to an equivalent current in the shunt-field winding alone which produces the
same mmf. Thus

If,eq = If +
(

Ns

Nf

)
Is (7.24)

in which case, Eq. 7.23 can be written as

Direct-axis mmf = Nf

(
If +

(
Ns

Nf

)
Is

)
= Nf If,eq (7.25)

This latter procedure is often the more convenient and the one more commonly
adopted. As discussed in conjunction with Eq. 7.23, the connection of the series field
winding will determine whether or not the series-field mmf adds to or subtracts from
that of the main field winding.

An example of a no-load magnetization characteristic is given by the curve
for Ia = 0 in Fig. 7.14, with values representative of those for a 100-kW, 250-V,
1200-r/min generator. Note that the mmf scale is given in both shunt-field current
and ampere-turns per pole, the latter being derived from the former on the basis of a
1000 turns-per-pole shunt field. The characteristic can also be presented in normalized,
or per-unit, form, as shown by the upper mmf and right-hand voltage scales. On these
scales, 1.0 per-unit field current or mmf is that required to produce rated voltage at
rated speed when the machine is unloaded; similarly, 1.0 per-unit voltage equals rated
voltage.

Use of the magnetization curve with generated voltage, rather than flux, plot-
ted on the vertical axis may be somewhat complicated by the fact that the speed
of a dc machine need not remain constant and that speed enters into the relation
between flux and generated voltage. Hence, generated voltage ordinates correspond
to a unique machine speed. The generated voltage Ea at any speed ωm is given by
Eqs. 7.10 and 7.11, repeated here in terms of the steady-state values of generated
voltage.

Ea =
(

ωm

ωm0

)
Ea0 (7.26)

or, in terms of rotational speed in r/min,

Ea =
(

n

n0

)
Ea0 (7.27)

In these equations, ωm0 and n0 are the magnetizing-curve speed in rad/sec and r/min
respectively and Ea0 is the corresponding generated voltage.



Umans-3930269 book December 14, 2012 12:21

422 CHAPTER 7 DC Machines

0
320

0.2 0.4 0.6 0.8 1.0

Mmf or shunt-field current, per unit

Shunt-field current, A

1.2 1.4 1.6 1.8

300 1.2

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0
0

1.0

0.8

0.6

G
en

er
at

ed
 v

o
lt

ag
e,

 p
er

 u
n
it

G
en

er
at

ed
 v

o
lt

ag
e,

 V

0.4

0.2

0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Mmf, A • turn/pole

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Speed for all curves = 1200 rpm

Ia = 0

Ia = 200

b
a

Scale for mmf in A • turns per

pole based on 1000 shunt-field

turns per pole

Ia = 400

Ia = 600

F
ie

ld
-r

es
is

ta
nc

e 
li

ne
 f

or
 R

f 
= 

10
0 

�

Fi
el

d-
re

si
st

an
ce

 li
ne

 fo
r R

f 
= 5

0 
�

Figure 7.14 Magnetization curves for a 250-V 1200-r/min dc machine. Also
shown are field-resistance lines for the discussion of self-excitation in
Section 7.6.1.

EXAMPLE 7.3

A 100-kW, 250-V, 400-A, long-shunt compound generator has an armature resistance (including
brushes) of 0.025 �, a series-field resistance of 0.005 �, and the magnetization curve of
Fig. 7.14. There are 1000 shunt-field turns per pole and three series-field turns per pole. The
series field is connected in such a fashion that positive armature current produces direct-axis
mmf which adds to that of the shunt field (i.e. Is = Ia).

Compute the terminal voltage at rated terminal current when the shunt-field current is
4.7 A and the speed is 1150 r/min. Neglect the effects of armature reaction.

■ Solution
As is shown in Fig. 7.9, for a long-shunt connection the armature and series field-currents are
equal. Thus

Is = Ia = It + If = 400 + 4.7 = 405 A
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From Eq. 7.24 the equivalent shunt-field winding current is

If,eq = If +
(

Ns

Nf

)
Is

= 4.7 +
(

3

1000

)
405 = 5.9 equivalent shunt-field amperes

By examining the Ia = 0 curve of Fig. 7.14 at this equivalent shunt-field current, one
reads a generated voltage of 274 V. Accordingly, the actual emf at a speed of 1150 r/min can
be found from Eq. 7.27

Ea =
( n

n0

)
Ea0 =

(
1150

1200

)
274 = 263 V

Then

Vt = Ea − Ia(Ra + Rs) = 263 − 405 × (0.025 + 0.005) = 251 V

Practice Problem 7.3

Repeat Example 7.3 for a terminal current of 375 A and a speed of 1190 r/min.

Solution
257 V

EXAMPLE 7.4

A 50-kW, 450-V, dc machine has the following characteristics:

Armature resistance: Ra = 0.242 �

Shunt field: Rf = 167 �, 1250 turns/pole
Series field: Rs = 0.032 �, 1 turn/pole

The shunt-field resistance includes that of a rheostat, adjusted so that with the dc motor
connected to a 450 V dc source, the motor operates at a speed of 1000 r/min at no load. For
the purposes of this problem, assume armature-reaction to be negligible and that the motor
terminal voltage is 450 V.

a. Consider first the motor in the shunt connection without the series field. Use MATLAB to
plot the motor speed as a function of load.

b. Now consider the motor connected in the long-shunt connection of Fig. 7.9 with the series
field connected such that the series-field mmf subtracts from that of the shunt field. Again
use MATLAB to plot the motor speed over the load range of the motor.

■ Solution

a. From Eq. 7.8

Pmech = Ea Ia
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Figure 7.15 Plot of r/min vs. motor load
for Example 7.4(a).

Substituting Eq. 7.20 gives

Pmech = Ea(Va − Ea)

Ra

which gives the following expression for Ea in terms of Pmech

Ea = Va ±
√

V 2
a − 4Ra Pmech

2

Clearly the + sign must be used since we know that Ea = Va when Pmech = 0. From the
given motor characteristics, we see that Ea0 = 450 V when n0 = 1000 r/min. Thus from
Eq. 7.11

n =
(

Ea

Ea0

)
n0 =

n0

(
Va +

√
V 2

a − 4Ra Pmech

)
2Ea0

This equation can be used to plot the rotor speed as a function of Pmech is varied from 0 to
Prated. The resultant plot is shown in Fig. 7.15.

b. Because the motor is connected in the long-shunt connection, the field current remains
constant at a value of

If0 = Va

Rf

= 450

167
= 2.70 A

Furthermore, we know that when the machine is unloaded and operating at a speed
n0 = 1000 r/min, the corresponding direct-axis mmf produces a generated voltage of
Ea0 = Vrated = 450 V. We can thus write that at speed n0

Ea0 =
(

If,eq

If0

)
Vrated

where, recognizing that in this case Is = −Ia, from Eq. 7.24

If,eq = If0 −
(

Ns

Nf

)
Ia
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Figure 7.16 Plot of r/min vs. motor load
for Example 7.4(b).

Finally, from Eq. 7.11, we can write an expression for the generated voltage as a function
of motor speed

Ea =
(

n

n0

)
Ea0 =

(
n

n0

)(
1 −

(
Ns Ia

Nf If0

))
Vrated

From Eq. 7.21, including the resistance of the series field, the armature current is given by

Ia = Vt − Ea

(Ra + Rs)

Appropriate manipulation of these equations gives an expression for the armature current
Ia as a function of the motor speed

Ia = Nf If0(n0Vt − nVrated)

n0 Nf If0(Ra + Rs) − nNsVrated

and the corresponding mechanical output power as a function of motor speed is then
given by Pmech = Ea Ia. The desired plot is shown in Fig. 7.16 which was obtained by
decrementing the motor speed from an initial value of 1100 r/min until the rated power of
50 kW was found.

Here is the MATLAB script for this example:

clc

clear

% Motor characteristics

Prated = 50e3; % Rated power

Vrated = 450; % Rated voltage

Ra = 0.242; % Armature resistance

Rf = 167; % Field resistance

Nf = 1250; % Field turns/pole

Rs = 0.032; % Series-field resistance

Ns = 1; % Series-field turns/pole

n0 = 1000; % No load speed
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Ea0 = 450; % No load voltage

% Part (a)

Va = 450; % Terminal voltage

Pmech = linspace(0,Prated,100);

n = n0*(Va+sqrt(Va^2-4*Ra*Pmech))/(2*Ea0);

plot(Pmech/1000,n,’LineWidth’,2)

xlabel(’P_{mech} [kW]’,’FontSize’,20)

ylabel(’Speed [rpm]’,’FontSize’,20)

set(gca,’FontSize’,20)

set(gca,’xlim’,[0 50])

set(gca,’xtick’,[0 10 20 30 40 50])

grid on

disp(’Hit any key for part (b)\n’)

pause

% Part (b)

clear n Pmech

Vt = 450; % Terminal voltage

If0 = Vt/Rf; % Shunt-field current

P = 0;

m=0;

while P < 50*1000

m = m+1;

n(m) = 1000-(m-1);

Ia = Nf*If0*(n0*Vt-n(m)*Vrated)/(n0*Nf*If0*(Ra+Rs)-n(m)*Ns*Vrated);

Ea = n(m)*Vrated*(If0-(Ns/Nf)*Ia)/(n0*If0);

P = Ea*Ia;

Pmech(m) = P;

end

plot(Pmech/1000,n,’LineWidth’,2)

xlabel(’P_{mech} [kW]’,’FontSize’,20)

ylabel(’Speed [rpm]’,’FontSize’,20)

set(gca,’FontSize’,20)

set(gca,’xlim’,[0 50])

set(gca,’xtick’,[0 10 20 30 40 50])

grid on
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7.5.2 Effects of Armature Reaction Included

As described in Section 7.4, current in the armature winding gives rise to a demagne-
tizing effect caused by a cross-magnetizing armature reaction. Analytical inclusion of
this effect is not straightforward because of the nonlinearities involved. One common
approach has been to base analyses on the measured performance of the machine in
question or for one of similar design and frame size. Data are taken with both the
field and armature excited, and the tests are conducted so that the effects on generated
emf of varying both the main-field excitation and the armature mmf can be noted.
Numerical analysis, based upon techniques such as finite-element method, can also
be used.

One form of summarizing and correlating the results is illustrated in Fig. 7.14.
Curves are plotted not only for the no-load characteristic (Ia = 0) but also for a range
of values of Ia. In the analysis of machine performance, the inclusion of armature
reaction then becomes simply a matter of using the magnetization curve corresponding
to the armature current involved. Note that the ordinates of all these curves give values
of armature-generated voltage Ea, not terminal voltage under load. Note also that all
the curves tend to merge with the air-gap line as the saturation of the iron decreases.

The load-saturation curves are displaced to the right of the no-load curve by an
amount which is a function of Ia. The effect of armature reaction then is approximately
the same as a demagnetizing mmf Far acting on the main-field axis. This additional
term can then be included in Eq. 7.23, with the result that the net direct-axis mmf can
be assumed to be

Net mmf = gross mmf − Far = Nf If + Ns Is − Far (7.28)

The no-load magnetization curve can then be used as the relation between gen-
erated emf and net excitation under load with the armature reaction accounted for as
a demagnetizing mmf. Over the normal operating range (about 240 to about 300 V
for the machine of Fig. 7.14), the demagnetizing effect of armature reaction may be
assumed to be approximately proportional to the armature current. The reader should
be aware that the amount of armature reaction present in Fig. 7.14 is chosen so that
some of its disadvantageous effects will appear in a pronounced form in subsequent
numerical examples and problems illustrating generator and motor performance fea-
tures. It is definitely more than one would expect to find in a normal, well-designed
machine operating at normal currents.

EXAMPLE 7.5

Consider again the long-shunt compound dc generator of Example 7.3. As in Example 7.3,
compute the terminal voltage at rated terminal current when the shunt-field current is 4.7 A
and the speed is 1150 r/min. In this case however, include the effects of armature reaction.

■ Solution
As calculated in Example 7.3, Is = Ia = 405 A and the gross mmf is equal to 5.9 equivalent
shunt-field amperes. Given the resolution of the curves of Fig. 7.14, from the curve labeled
Ia = 400, we can determine that the corresponding generated emf is 261 V (as compared to
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274 V with armature reaction neglected). Thus from Eq. 7.27, the actual generated voltage at
a speed of 1150 r/min is equal to

Ea =
( n

n0

)
Ea0 =

(
1150

1200

)
261 = 250 V

Then

Vt = Ea − Ia(Ra + Rs) = 250 − 405(0.025 + 0.005) = 238 V

EXAMPLE 7.6

To counter the effects of armature reaction, a fourth turn is added to the series-field winding
of the dc generator of Examples 7.3 and 7.5, increasing its resistance to 0.007 �. Repeat the
terminal-voltage calculation of Example 7.5.

■ Solution
As in Examples 7.3 and 7.5, Is = Ia = 405 A. The main-field mmf can then be calculated as

Gross mmf = If +
(

Ns

Nf

)
Is = 4.7 +

(
4

1000

)
405

= 6.3 equivalent shunt-field amperes

From the Ia = 400 curve of Fig. 7.14 with an equivalent shunt-field current of 6.3 A, one
reads a generated voltage 269 V which corresponds to an emf at 1150 r/min of

Ea =
(

1150

1200

)
269 = 258 V

The terminal voltage can now be calculated as

Vt = Ea − Ia(Ra + Rs) = 258 − 405(0.025 + 0.007) = 245 V

Practice Problem 7.4

Repeat Example 7.6 assuming that a fifth turn is added to the series field winding, bringing its
total resistance to 0.009 �.

Solution
250 V

7.6 STEADY-STATE DC MACHINE
PERFORMANCE

Although exactly the same principles apply to the analysis of a dc machine acting as
a generator as to one acting as a motor, the general nature of the problems ordinarily
encountered is somewhat different for the two methods of operation. For a generator,
the speed is usually fixed by the prime mover, and problems often encountered are
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to determine the terminal voltage corresponding to a specified load and excitation or
to find the excitation required for a specified load and terminal voltage. For a motor,
however, problems frequently encountered are to determine the speed corresponding
to a specific load and excitation or to find the excitation required for specified load and
speed conditions; terminal voltage is often fixed at the value of the available source.
The routine techniques of applying the common basic principles therefore differ to
the extent that the problems differ.

7.6.1 Generator Analysis

Since the main-field current is independent of the generator voltage, separately excited
generators are the simplest to analyze. For a given load, the equivalent main-field
excitation is given by Eq. 7.24 and the associated armature-generated voltage Ea

is determined by the appropriate magnetization curve. This voltage, together with
Eq. 7.20 or 7.21, fixes the terminal voltage.

Shunt-excited generators will be found to self-excite under properly chosen oper-
ating conditions. Under these conditions, the generated voltage will build up sponta-
neously (typically initiated by the presence of a small amount of residual magnetism
in the field structure) to a value ultimately limited by magnetic saturation. In self-
excited generators, the shunt-field excitation depends on the terminal voltage and the
series-field excitation depends on the armature current. Dependence of shunt-field
current on terminal voltage can be incorporated graphically in an analysis by drawing
the field-resistance line, the line 0a in Fig. 7.14, on the magnetization curve. The
field-resistance line 0a is simply a graphical representation of Ohm’s law applied
to the shunt field. It is the locus of the terminal voltage versus shunt-field-current
operating point. Thus, the line 0a is drawn for Rf = 50 � and hence passes through
the origin and the point (1.0 A, 50 V).

The tendency of a shunt-connected generator to self-excite can be seen by exam-
ining the buildup of voltage for an unloaded shunt generator. When the field circuit
is closed, the small voltage from residual magnetism (the 6-V intercept of the mag-
netization curve, Fig. 7.14) causes a small field current. If the flux produced by the
resulting ampere-turns adds to the residual flux, progressively greater voltages and
field currents are obtained. If the field ampere-turns opposes the residual magnetism,
the shunt-field terminals must be reversed to obtain buildup.

This process can be seen with the aid of Fig. 7.17. In Fig. 7.17, the generated
voltage ea is shown in series with the armature inductance La and resistance Ra. The
shunt-field winding, shown connected across the armature terminals, is represented
by its inductance L f and resistance Rf. Recognizing that since there is no load current
on the generator (it = 0), ia = if and thus the differential equation describing the
buildup of the field current if is

(La + L f)
dif

dt
= ea − (Ra + Rf)if (7.29)

From this equation it is clear that as long as the net voltage across the winding
inductances ea − if(Ra + Rf) is positive, the field current and the corresponding
generated voltage will increase. Buildup continues until the volt-ampere relations
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Figure 7.17 Equivalent circuit for
analysis of voltage buildup in a
self-excited dc generator.

represented by the magnetization curve and the field-resistance line are simultaneously
satisfied, which occurs at their intersection ea = (Ra + Rf) if; in this case at ea = 250 V
for the line 0a in Fig. 7.14. From Eq. 7.29, it is clear that the field resistance line
should also include the armature resistance. However, this resistance is in general
much less than the field and is typically neglected.

Notice that if the field resistance is too high, as shown by line 0b for Rf = 100 �

in Fig. 7.14, the intersection is at very low voltage and buildup is not obtained.
Notice also that if the field-resistance line is essentially tangent to the lower part of
the magnetization curve, corresponding to a field resistance of 57 � in Fig. 7.14,
the intersection may be anywhere from about 60 to 170 V, resulting in very unstable
conditions. The corresponding resistance is the critical field resistance, above which
buildup will not be obtained. The same buildup process and the same conclusions
apply to compound generators; in a long-shunt compound generator, the series-field
mmf created by the shunt-field current is entirely negligible.

For a shunt generator, the magnetization curve for the appropriate value of Ia is
the locus of Ea versus If. The field-resistance line is the locus Vt versus If. Under
steady-state operating conditions, at any value of If, the vertical distance between the
line and the curve must be the Ia Ra drop at the load corresponding to that condition.
Determination of the terminal voltage for a specified armature current is then simply
a matter of finding where the line and curve are separated vertically by the proper
amount; the ordinate of the field-resistance line at that field current is then the terminal
voltage. For a compound generator, however, the series-field mmf causes correspond-
ing points on the line and curve to be displaced horizontally as well as vertically. The
horizontal displacement equals the series-field mmf measured in equivalent shunt-
field amperes, and the vertical displacement is still the Ia Ra drop.

Great precision is evidently not obtained from the foregoing computational pro-
cess. The uncertainties caused by magnetic hysteresis in dc machines make high
precision unattainable in any event. In general, the magnetization curve on which the
machine operates on any given occasion may range from the rising to the falling part
of the rather fat hysteresis loop for the magnetic circuit of the machine, depending
essentially on the magnetic history of the iron. The curve used for analysis is usually
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the mean magnetization curve, and thus the results obtained are substantially correct
on the average. Significant departures from the average may be encountered in the
performance of any dc machine at a particular time, however.

EXAMPLE 7.7

A 100-kW, 250-V, 400-A, 1200-r/min dc shunt generator has the magnetization curves (includ-
ing armature-reaction effects) of Fig. 7.14. The armature-circuit resistance, including brushes,
is 0.025 �. The generator is driven at a constant speed of 1200 r/min, and the excitation is
adjusted (by varying the shunt-field rheostat) to give rated voltage at no load.

(a) Determine the terminal voltage at an armature current of 400 A. (b) A series field of
four turns per pole having a resistance of 0.005 � is to be added. There are 1000 turns per
pole in the shunt field. The generator is to be flat-compounded so that the full-load voltage
is 250 V when the shunt-field rheostat is adjusted to give a no-load voltage of 250 V. Show
how a resistance across the series field (referred to as a series-field diverter) can be adjusted to
produce the desired performance.

■ Solution

a. The 50 � field-resistance line 0a (Fig. 7.14) passes through the 250-V, 5.0-A point of the
no-load magnetization curve. At Ia = 400 A

Ia Ra = 400 × 0.025 = 10 V

Thus the operating point under this condition corresponds to a condition for which the
terminal voltage Vt (and hence the shunt-field voltage) is 10 V less than the generated
voltage Ea.

A vertical distance of 10 V exists between the magnetization curve for Ia = 400 A
and the field-resistance line at a field current of 4.1 A, corresponding to Vt = 205 V. The
associated line current is

It = Ia − If = 400 − 4 = 396 A

Note that a vertical distance of 10 V also exists at a field current of 1.2 A, corresponding
to Vt = 60 V. The voltage-load curve is accordingly double-valued in this region. It can be
shown that this operating point is unstable and that the point for which Vt = 205 V is the
normal operating point.

b. For the no-load voltage to be 250 V, the shunt-field resistance must be 50 � and the
field-resistance line is 0a (Fig. 7.14). At full load, If = 5.0 A because Vt = 250 V. Then

Ia = 400 + 5.0 = 405 A

and

Ea = Vt + Ia(Ra + Rp) = 250 + 405 × (0.025 + Rp)

where Rp is the parallel combination of the series-field resistance Rs = 0.005 � and the
diverter resistance Rd

Rp = Rs Rd

(Rs + Rd)
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The series field and the diverter resistor are in parallel, and thus the shunt-field current can
be calculated as

Is = 405

(
Rd

Rs + Rd

)
= 405

(
Rp

Rs

)

and the equivalent shunt-field amperes can be calculated from Eq. 7.24 as

Inet = If + 4

1000
Is = 5.0 + 4

1000
Is

= 5.0 + 1.62

(
Rp

Rs

)

This equation can be solved for Rp which can be, in turn, substituted (along with
Rs = 0.005 �) in the equation for Ea to yield

Ea = 253.9 + 1.25Inet

This can be plotted on Fig. 7.14 (Ea on the vertical axis and Inet on the horizontal axis). Its
intersection with the magnetization characteristic for Ia = 400 A (strictly speaking, of
course, a curve for Ia = 405 A should be used, but such a small distinction is obviously
meaningless here) gives Inet = 6.0 A. Thus

Rp = Rs(Inet − 5.0)

1.62
= 0.0031 �

and

Rd = 0.0082 �

Practice Problem 7.5

Repeat part (b) of Example 7.7, calculating the diverter resistance which would give a full-load
voltage of 240-V if the excitation is adjusted for a no-load voltage of 250-V.

Solution

Rd = 1.9 m�

EXAMPLE 7.8

Although the dynamics of self-excitation are not a focus of this discussion, as we have seen
in Section 3.9, the MATLAB/Simulink package can be used to investigate the nature of the
voltage build-up in a self-excited dc machine. In this Example, we will use MATLAB/Simulink
to plot the terminal voltage as a function of time for a somewhat idealized dc generator with
the following characteristics:

Ra = 0.02 � La = 10 mH

Rf = 100 � L f = 220 mH
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Figure 7.18 Generated voltage versus field
current for the idealized dc generator of Example 7.8.
Also shown is the field-resistance line.

and whose generated voltage as a function of field current can be expressed as

Ea =

⎧⎨
⎩

120 (If + 0.05) If ≤ 1.0 A
120 (If + 0.05 − 0.1 (If − 1.0)3) 1.0 A < If ≤ 2.7 A
120 (2.259 + 0.133 (If − 2.7) − 0.5 (If − 2.7)2) Otherwise

(7.30)

This characteristic is shown in Fig. 7.18 along with the field-resistance line.

■ Solution
Equation 7.29 describes the desired voltage transient. It can be re-written in integral form as

if =
∫ t

0

(
ea − (Ra + Rf)if

La + L f

)
dt

or in Laplace-transform form as implemented in MATLAB/Simulink

if = 1

s

(
ea − (Ra + Rf)if

La + L f

)
The MATLAB/Simulink representation of this equation is shown in Fig. 7.19. Note that in

the Simulink model, the field current if is represented by the variable “ifld” to avoid a conflict
with the MATLAB “if” function. The resultant plot of terminal voltage as a function of time
is shown in Fig. 7.20.

ifld

To Workspace

ea

Integrator

1
s

ifld eaSatCurve

1/(La+Lf)

-K-

(Ra+Rf)

-K-

Figure 7.19 MATLAB/Simulink model for Example 7.8.
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Figure 7.20 Plot of the terminal voltage versus time for
the idealized dc generator of Example 7.8.

7.6.2 Motor Analysis

The terminal voltage of a motor is usually held substantially constant or controlled
to a specific value. Hence, motor analysis most nearly resembles that for separately
excited generators, although speed is now an important variable and often the one
whose value is to be found. Analytical essentials include Eqs. 7.20 and 7.21 relating
terminal voltage and generated voltage (counter emf); Eq. 7.24 for the main-field
excitation; the magnetization curve for the appropriate armature current as the graph-
ical relation between counter emf and excitation; Eq. 7.16 showing the dependence
of electromagnetic torque on flux and armature current; and Eq. 7.17 relating counter
emf to flux and speed. The last two relations are particularly significant in motor
analysis. The former is pertinent because the interdependence of torque and the sta-
tor and rotor field strengths must often be examined. The latter is the usual medium
for determining motor speed from other specified operating conditions.

Motor speed corresponding to a given armature current Ia can be found by first
computing the actual generated voltage Ea from Eq. 7.20 or 7.21. Next the main-field
excitation can be obtained from Eq. 7.24. Since the magnetization curve will be plotted
for a constant speed ωm0, which in general will be different from the actual motor
speed ωm, the generated voltage read from the magnetization curve at the foregoing
main-field excitation will correspond to the correct flux conditions but to speed ωm0.
Substitution in Eq. 7.26 then yields the actual motor speed.

Note that knowledge of the armature current is postulated at the start of this
process. When, as is frequently the case, the speed at a stated shaft power or torque
output is to be found, an iterative procedure based on assumed values of Ia usually
forms the basis for finding the solution.

EXAMPLE 7.9

A 100-hp, 250-V dc shunt motor has the magnetization curves (including armature-reaction
effects) of Fig. 7.14. The armature circuit resistance, including brushes, is 0.025 �. No-load
rotational losses are 2000 W and the stray-load losses equal 1.0% of the output. The field
rheostat is adjusted for a no-load speed of 1100 r/min.
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a. As an example of computing points on the speed-load characteristic, determine the speed
in r/min and output in horsepower (1 hp = 746 W) corresponding to an armature current
of 400 A.

b. Because the speed-load characteristic observed to in part (a) is considered undesirable, a
stabilizing winding consisting of 1-1/2 cumulative series turns per pole is to be added.
The resistance of this winding is assumed negligible. There are 1000 turns per pole in the
shunt field. Compute the speed corresponding to an armature current of 400 A.

■ Solution

a. At no load, Ea = 250 V. The corresponding point on the 1200-r/min no-load saturation
curve is

Ea0 = 250

(
1200

1100

)
= 273 V

for which If = 5.90 A. The field current remains constant at this value.
At Ia = 400 A, the actual counter emf is

Ea = 250 − 400 × 0.025 = 240 V

From Fig. 7.14 with Ia = 400 and If = 5.90, the value of Ea would be 261 V if the speed
were 1200 r/min. The actual speed is then found from Eq. 7.27

n = 1200

(
240

261

)
= 1100 r/min

The electromagnetic power is

Ea Ia = 240 × 400 = 96 kW

Deduction of the rotational losses leaves 94 kW. With stray load losses accounted for, the
power output P0 is given by

94 kW − 0.01P0 = P0

or

P0 = 93.1 kW = 124.8 hp

Note that the speed at this load is the same as at no load, indicating that armature- reaction
effects have caused an essentially flat speed-load curve.

b. With If = 5.90 A and Is = Ia = 400 A, the equivalent shunt-field current is

5.90 +
(

1.5

1000

)
400 = 6.50 A

From Fig. 7.14 the corresponding value of Ea at 1200 r/min would be 271 V. Accordingly,
the speed is now

n = 1200

(
240

271

)
= 1063 r/min

The power output is the same as in part (a). The speed-load curve is now drooping, due to
the effect of the stabilizing winding.
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Practice Problem 7.6

Repeat Example 7.9 for an armature current of Ia = 200 A.

Solution
a. Speed = 1097 r/min and P0 = 46.5 kW = 62.4 hp
b. Speed = 1085 r/min

7.7 PERMANENT-MAGNET DC MACHINES
Permanent-magnet dc machines are widely found in a wide variety of low-power
applications. The field winding is replaced by a permanent magnet, resulting in
simpler construction. Permanent magnets offer a number of useful benefits in these
applications. Chief among these is that they do not require external excitation and its
associated power dissipation to create magnetic fields in the machine. The space re-
quired for the permanent magnets may be less than that required for the field winding,
and thus permanent-magnet machines may be smaller, and in some cases cheaper,
than their externally excited counterparts.

Alternatively, permanent-magnet dc machines are subject to limitations imposed
by the permanent magnets themselves. These include the risk of demagnetization due
to excessive currents in the motor windings or due to overheating of the magnet. In
addition, permanent magnets are somewhat limited in the magnitude of air-gap flux
density that they can produce. However, with the development of new magnetic mate-
rials such as samarium-cobalt and neodymium-iron-boron (Section 1.6), these charac-
teristics are becoming less and less restrictive for permanent-magnet machine design.

Figure 7.21 shows a cutaway view of a typical integral-horsepower permanent-
magnet dc motor. Unlike the salient-pole field structure characteristic of a dc machine
with external field excitation, permanent-magnet motors typically have a smooth stator
structure consisting of a cylindrical shell (or fraction thereof) of uniform-thickness
permanent-magnet material magnetized in the radial direction. Such a structure is
illustrated in Fig. 7.22, where the arrows indicate the direction of magnetization. The
rotor of Fig. 7.22 has winding slots and has a commutator and brushes, as in all dc
machines. Notice also that the outer shell in these motors serves a dual purpose: it is
made up of a magnetic material and thus serves as a return path for magnetic flux as
well as a support for the magnets.

EXAMPLE 7.10

Figure 7.23a defines the dimensions of a permanent-magnet dc motor similar to that of Fig. 7.22.
Assume the following values:

Rotor radius Rr = 1.2 cm
Gap length g = 0.05 cm

Magnet thickness tm = 0.35 cm

Also assume that both the rotor and outer shell are made of infinitely permeable magnetic
material (μ → ∞) and that the magnet is neodymium-iron-boron (see Fig. 1.19).
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Figure 7.21 Cutaway view of a typical integral-horsepower
permanent-magnet dc motor. (Photo courtesy of Baldor
Electric/ABB.)

Outer shell

Radially magnetized

permanent magnets

(arrows indicate direction

of magnetization)

Rotor

Figure 7.22 Cross section of a typical permanent-magnet motor. Arrows
indicate the direction of magnetization in the permanent magnets.

Ignoring the effects of rotor slots, estimate the magnetic flux density B in the air gap of
this motor.

■ Solution
Because the rotor and outer shell are assumed to be made of material with infinite magnetic
permeability, the motor can be represented by a magnetic equivalent circuit consisting of an
air gap of length 2g in series with a section of neodymium-iron-boron of length 2tm (see
Fig. 7.23b). Note that this equivalent circuit is approximate because the cross-sectional area of
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(a)

Figure 7.23 (a) Dimension definitions for the motor of Fig. 7.22, (b) approximate
magnetic equivalent circuit.

the flux path in the motor increases with increasing radius, whereas it is assumed to be constant
in the equivalent circuit.

The solution can be written down by direct analogy with Example 1.9. Replacing the
air-gap length g with 2tg and the magnet length lm with 2tm, the equation for the load line can
be written as

Bm = −μ0

(
tm

g

)
Hm = −7μ0 Hm

This relationship can be plotted on Fig. 1.19 to find the operating point from its intersection
with the dc magnetization curve for neodymium-iron-boron. Alternatively, recognizing that,
in SI units, the dc magnetization curve for neodymium-iron-boron is a straight line of the form

Bm = 1.06μ0 Hm + 1.25

we find that

Bm = Bg = 1.09 T

Practice Problem 7.7

Estimate the magnetic flux density in the motor of Example 7.10 if the rotor radius is increased
to Rr = 1.3 cm and the magnetic thickness is decreased to tm = 0.25 cm.

Solution

Bm = Bg = 1.03 T

Figure 7.24 shows an exploded view of an alternate form of permanent-magnet
dc motor. In this motor, the armature windings are made into the form of a thin disk
(with no iron in the armature). As in any dc motor, brushes are used to commutate
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Figure 7.24 Exploded view of a disk-armature permanent-
magnet servomotor. Magnets are Alnico. (Photo courtesy of
Kollmorgen Corporation.)

the armature current, contacting the commutator portion of the armature which is at
its inner radius. Currents in the disk armature flow radially, and the disk is placed
between two sets of permanent magnets which create axial flux through the armature
winding. The combination of axial magnetic flux and radial currents produces a torque
which results in rotation, as in any dc motor. This motor configuration can be shown
to produce large acceleration (due to low rotor inertia), no cogging torque (due to the
fact that the rotor is nonmagnetic), and long brush life and high-speed capability (due
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Ia Ra

Ea = Km ωm

Figure 7.25 Equivalent circuit of
a permanent-magnet dc motor.

to the fact that the armature inductance is low and thus there will be little arcing at
the commutator segments).

The principal difference between permanent-magnet dc machines and those dis-
cussed previously in this chapter is that they have a fixed source of field flux which is
supplied by a permanent magnet. As a result, the equivalent circuit for a permanent-
magnet dc motor is identical to that of the externally-excited dc motor except that
there are no field-winding connections. Figure 7.25 shows the equivalent circuit for
a permanent-magnet dc motor.

From Eq. 7.17, the speed-voltage term for a dc motor can be written in the form
Ea = Ka�dωm where �d is the net flux along the field-winding axis and Ka is a
geometric constant. In a permanent-magnet dc machine, �d is constant and thus
Eq. 7.17 can be reduced to

Ea = Kmωm (7.31)

where

Km = Ka�d (7.32)

is known as the torque constant of the motor and is a function of motor geometry and
magnet properties.

Finally the torque of the machine can be easily found from Eq. 7.19 as

Tmech = Ea Ia

ωm
= Km Ia (7.33)

In other words, the torque of a permanent-magnet motor is given by the product of
the torque constant and the armature current.

EXAMPLE 7.11

A permanent-magnet dc motor is known to have an armature resistance of 1.03 �. When
operated at no load from a dc source of 50 V, it is observed to rotate at a speed of 2100 r/min
and to draw a current of 1.25 A. Find (a) the torque constant Km (b) the no-load rotational
losses of the motor, and (c) the power output of the motor when it is operating at 1700 r/min
from a 48-V source.
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■ Solution

a. From the equivalent circuit of Fig. 7.25, the generated voltage Ea can be found as

Ea = Vt − Ia Ra

= 50 − 1.25 × 1.03 = 48.7 V

At a speed of 2100 r/min,

ωm =
(

2100 r

min

)
×

(
2π rad

r

)
×

(
1 min

60 sec

)
= 220 rad/sec

Therefore, from Eq. 7.31,

Km = Ea

ωm

= 48.7

220
= 0.22 V/(rad/sec)

b. At no load, all the power supplied to the generated voltage Ea is used to supply rotational
losses. Therefore

Rotational losses = Ea Ia = 48.7 × 1.25 = 61 W

c. At 1700 r/min,

ωm = 1700

(
2π

60

)
= 178 rad/sec

and

Ea = Kmωm = 0.22 × 178 = 39.2 V

The input current can now be found as

Ia = Vt − Ea

Ra

= 48 − 39.2

1.03
= 8.54 A

The electromagnetic power can be calculated as

Pmech = Ea Ia = 39.2 × 8.54 = 335 W

Assuming the rotational losses to be constant at their no-load value (certainly an
approximation), the output shaft power can be calculated:

Pshaft = Pmech − rotational losses = 274 W

Practice Problem 7.8

The armature resistance of a small dc motor is measured to be 178 m�. With an applied voltage
of 9 V, the motor is observed to rotate at a no-load speed of 14,600 r/min while drawing a current
of 437 mA. Calculate (a) the rotational loss and (b) the motor torque constant Km.

Solution

a. Rotational loss = 3.90 W
b. Km = 5.84 × 10−3 V/(rad/sec)
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7.8 COMMUTATION AND INTERPOLES
One of the most important limiting factors on the satisfactory operation of a dc machine
is the ability to transfer the necessary armature current through the brush contact at the
commutator without sparking and without excessive local losses and heating of the
brushes and commutator. Sparking causes destructive blackening, pitting, and wear
of both the commutator and the brushes, conditions which rapidly become worse
and burn away the copper and carbon. Sparking may be caused by faulty mechanical
conditions, such as chattering of the brushes or a rough, unevenly worn commutator,
or, as in any switching problem, by electrical conditions. The latter conditions are
significantly influenced by the armature mmf and the resultant flux wave.

As indicated in Section 7.2, a coil undergoing commutation is in transition be-
tween two groups of armature coils: at the end of the commutation period, the coil
current must be equal but opposite to that at the beginning. Figure 7.7b shows the
armature in an intermediate position during which the coils in slots 1 and 7 are being
commutated. The commutated coils are short-circuited by the brushes. During this
period the brushes must continue to conduct the armature current Ia from the armature
winding to the external circuit. The short-circuited coil constitutes an inductive circuit
with time-varying resistances at the brush contact, with rotational voltages induced in
the coil, and with both conductive and inductive coupling to the rest of the armature
winding.

The attainment of good commutation is more an empirical art than a quantitative
science. The principal obstacle to quantitative analysis lies in the electrical behavior
of the carbon-copper (brush-commutator) contact film. Its resistance is nonlinear
and is a function of current density, current direction, temperature, brush material,
moisture, and atmospheric pressure. Its behavior in some respects is like that of an
ionized gas or plasma. The most significant fact is that an unduly high current density
in a portion of the brush surface (and hence an unduly high energy density in that part
of the contact film) results in sparking and a breakdown of the film at that point. The
boundary film also plays an important part in the lubrication of the rubbing surfaces.
At high altitudes, definite steps must be taken to preserve it, or extremely rapid brush
wear takes place.

The empirical basis of securing sparkless commutation, then, is to avoid ex-
cessive current densities at any point in the copper-carbon contact. This requirement,
combined with the objective of utilizing all material to the fullest extent, leads design-
ers to seek designs for which the current density is uniform over the brush surface
during the entire commutation period. A linear change of current with time in the
commutated coil, corresponding to linear commutation as shown in Fig. 7.8, brings
about this condition and is accordingly the optimum.

The principal factor aiding linear commutation is the change in brush-contact
resistance resulting from the linear decrease in area at the trailing brush edge and
linear increase in area at the leading edge. Several electrical factors mitigate against
linearity. Resistance in the commutated coil is one example. Usually, however, the
voltage drop at the brush contacts is sufficiently large (of the order of 1.0 V) in
comparison with the resistance drop in a single armature coil to permit the latter



Umans-3930269 book December 14, 2012 12:21

7.8 Commutation and Interpoles 443

to be ignored. Coil inductance is a much more serious factor. Both the voltage of
self-induction in the commutated coil and the voltage of mutual-induction from other
coils (particularly those in the same slot) undergoing commutation at the same time
oppose changes in current in the commutated coil. The sum of these two voltages
is often referred to as the reactance voltage. Its result is that current values in the
short-circuited coil lag behind in time the values dictated by linear commutation.
This condition is known as under commutation or delayed commutation.

The effects of armature inductance thus tend to produce high losses and spark-
ing at the trailing brush tip. For best commutation, inductance must be held to a
minimum by using the fewest possible number of turns per armature coil and by
using a multipolar design with a short armature. The effect of a given reactance volt-
age in delaying commutation is minimized when the resistive brush-contact voltage
drop is significant compared with it. This fact is one of the main reasons for the use
of carbon brushes with their appreciable contact drop. When good commutation is
secured by virtue of resistance drops, the process is referred to as resistance com-
mutation. It is typically used as the exclusive means only in fractional-horsepower
machines.

Another important factor in the commutation process is the rotational voltage in-
duced in the short-circuited coil. Depending on its sign, this voltage may hinder or aid
commutation. In Fig. 7.13, for example, cross-magnetizing armature reaction creates
a definite flux in the interpolar region. The direction of the corresponding rotational
voltage in the commutated coil is the same as the current under the immediately pre-
ceding pole face. This voltage then encourages the continuance of current in the old
direction and, like the resistance voltage, opposes its reversal. To aid commutation,
the rotational voltage must oppose the reactance voltage. The general principle is
to produce in the coil undergoing commutation a rotational voltage which approxi-
mately compensates for the reactance voltage, a principle called voltage commutation.
Voltage commutation is used in almost all modern integral-horsepower commutating
machines. The appropriate flux density is introduced in the commutating zone by
means of small, narrow poles located between the main poles. These auxiliary poles
are called interpoles or commutating poles. Figure 7.26 shows the stator of a 4-pole
dc motor under construction in which the field poles and interpoles can be clearly
seen.

The general appearance of interpoles and a schematic map of the flux produced
when they alone are excited are shown in Fig. 7.27. The polarity of a commutating
pole must be that of the main pole just ahead of it, i.e., in the direction of rotation for
a generator, and just behind it for a motor. The interpole mmf must be sufficient to
neutralize the cross-magnetizing armature mmf in the interpolar region and enough
more to furnish the flux density required for the rotational voltage in the short-circuited
armature coil to cancel the reactance voltage. Since both the armature mmf and the
reactance voltage are proportional to the armature current, the commutating winding
must be connected in series with the armature. To preserve the desired linearity,
the commutating pole should operate at a relatively low flux level. By the use of
commutating fields sparkless commutation can be obtained over a wide range in
large dc machines.
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Figure 7.26 The stator of a 4-pole dc motor under
construction showing both the field poles and interpoles. (Photo
courtesy of Baldor Electric/ABB.)
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Figure 7.27 Interpoles and their associated component flux.

7.9 COMPENSATING WINDINGS
For machines subjected to heavy overloads, rapidly changing loads, or operation with
a weak main field, there is the possibility of trouble other than simply sparking at the
brushes. At the instant when an armature coil is located at the peak of a badly distorted
flux wave (caused for example by the saturating effects associated with armature
reaction), the coil voltage may be high enough to break down the air between the
adjacent segments to which the coil is connected and result in flashover, or arcing,
between segments. The breakdown voltage here is not high, because the air near the
commutator is in a condition favorable to breakdown due to the presence of the plasma
carrying the armature current between the brushes and the commutator. The maximum
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voltage between segments should be limited to a value on the order of 30 to 40 V,
a fact which limits the average voltage between segments to lower values and thus
determines the minimum number of segments which can be used in a proposed design.

Under transient conditions, high voltages between segments may result from
the induced voltages associated with growth and decay of armature flux. Inspection
of Fig. 7.12, for instance, may enable one to visualize very appreciable voltages of
this nature being induced in a coil under the pole centers by the growth or decay
of the armature flux shown in the sketch. Consideration of the sign of this induced
voltage will show that it adds to the normal rotational emf when load is dropped
from a generator or added to a motor. Flashing between segments may quickly spread
around the entire commutator and, in addition to its possibly destructive effects on
the commutator, constitutes a direct short circuit on the line. Even with interpoles
present, therefore, armature reaction under the poles definitely limits the conditions
under which a machine can operate.

These limitations can be considerably extended by compensating or neutralizing
the armature mmf under the pole faces. Such compensation can be achieved by means
of a compensating or pole-face winding, shown schematically in Fig. 7.28, embedded
in slots in the pole face and having a polarity opposite of that of the adjoining armature
winding. Since the axis of the compensating winding is the same as that of the
armature, it will almost completely neutralize the armature reaction of the armature
conductors under the pole faces when it is given the proper number of turns. It must
be connected in series with the armature in order to carry a proportional current.
The net effect of the main field, armature, commutating winding, and compensating
winding on the air-gap flux is that, except for the commutation zone, the resultant flux-
density distribution is substantially the same as that produced by the main field alone
(Fig. 7.13). Furthermore, the addition of a compensating winding improves the speed
of response of the machine because it reduces the armature-circuit time constant.

The main disadvantage of pole-face windings is their expense. They are used in
machines designed for heavy overloads or rapidly changing loads (steel-mill motors
are a good example of machines subjected to severe duty cycles) or in motors intended
to operate over wide speed ranges by shunt-field control. By way of a schematic

Interpole
Commutating field

winding

Main field
winding

Compensating
winding

Armature

Figure 7.28 Schematic section of a dc machine
showing a compensating winding.
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Figure 7.29 Schematic connection diagram
of a dc machine.

summary, Fig. 7.29 shows the circuit diagram of a compound machine with a com-
pensating winding. The relative position of the coils in this diagram indicates that the
commutating and compensating fields act along the armature axis, and the shunt and
series fields act along the axis of the main poles. Rather complete control of air-gap
flux around the entire armature periphery is thus achieved.

7.10 SERIES UNIVERSAL MOTORS
Figure 7.30 shows a dc machine connection with a series-connected field winding.
For this connection the direct-axis flux �d is proportional to the armature current.
Hence from Eq. 7.17, the generated voltage Ea is proportional to the product of the
armature current and the motor speed, and from Eq. 7.19 we see that the torque will
be proportional to the square of the armature current.

The dashed line in Fig. 7.31 shows a typical speed-torque characteristic for such
a series-connected motor under dc operating conditions. Note that because the torque
is proportional to the square of the armature current, the torque depends only upon
the magnitude of the armature voltage and not its polarity; reversing the polarity of
the applied voltage will not change the magnitude or direction of the applied torque.

If the rotor and stator structures of a series connected motor are properly laminated
to reduce ac eddy-current losses, the resultant motor is referred to as a series universal
motor. The series universal motor has the convenient ability to run on either alternating
or direct current and with similar characteristics. Such a single-phase series motor

�

+
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Figure 7.30 Series-connected
universal machine.
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Figure 7.31 Typical torque-speed
characteristics of a series universal motor.

therefore is commonly called a universal motor. The torque angle is fixed by the brush
position and is normally at its optimum value of 90◦. If alternating current is supplied
to a series universal motor, the torque will always be in the same direction, although
it will pulsate in magnitude at twice line frequency. Average torque will be produced,
and the performance of the motor will be generally similar to that with direct current.

Small universal motors are used where light weight is important, as in vac-
uum cleaners, kitchen appliances, and portable tools, and usually operate at high
speeds (1500 to 15,000 r/min). Typical characteristics are shown in Fig. 7.31. The ac
and dc characteristics differ somewhat for two reasons: (1) With alternating current,
reactance-voltage drops in the field and armature absorb part of the applied voltage;
therefore for a specified current and torque the rotational counter emf generated in
the armature is less than with direct current, and the speed tends to be lower. (2) With
alternating current, the magnetic circuit may be appreciably saturated at the peaks of
the current wave. Thus the rms value of the flux may be appreciably less with alternat-
ing current than with the same rms value of direct current. The torque therefore tends
to be less with alternating than with direct current. The universal motor provides the
highest horsepower per dollar in the fractional-horsepower range, at the expense of
noise, relatively short life, and high speed.

To obtain control of the speed and torque of a series universal motor, the applied ac
voltage may be varied by the use of a electronic switching element called a Triac. The
firing angle of the Triac can be manually adjusted, as in a trigger-controlled electric
drill, or it can be controlled by a speed control circuit, as in some portable tools and
appliances. The combination of a series motor and a solid-state device provides an
economical, controllable motor package.

7.11 SUMMARY
This chapter has discussed the significant operating characteristics of dc machines.
In general, the outstanding advantage of dc machines lies in their flexibility and
versatility. Before the widespread availability of ac motor drives, dc machines were
essentially the only choice available for many applications which required a high
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degree of control. Their principal disadvantages stem from the complexity associated
with the armature winding and the commutator/brush system. Not only does this
additional complexity increase the cost over competing ac machines, it also increases
the need for maintenance and reduces the potential reliability of these machines. Yet
the advantages of dc motors remain, and they continue to retain a competitive position
in both large sizes for industrial applications and in smaller sizes for a wide variety
of applications.

Dc generators are a simple solution to the problem of converting mechanical
energy to electric energy in dc form, although ac generators feeding rectifier sys-
tems are certainly an option which must be considered. Among dc generators them-
selves, separately excited and cumulatively compounded, self-excited machines are
the most common. Separately excited generators have the advantage of permitting
a wide range of output voltages, whereas self-excited machines may produce un-
stable voltages at lower output voltages where the field-resistance line becomes
essentially tangent to the magnetization curve. Cumulatively compounded genera-
tors may produce a substantially flat voltage characteristic or one which rises with
load, whereas shunt- or separately excited generators may produce a drooping volt-
age characteristic unless external regulating means (such as a series field winding)
are added.

Among dc motors, the outstanding characteristics of each type are as follows. The
series motor operates with a decidedly drooping speed as load is added, the no-load
speed usually being prohibitively high; the torque is proportional to almost the square
of the current at low flux levels and to some power between 1 and 2 as saturation
increases. The shunt motor at constant field current operates at a slightly drooping
but almost constant speed as load is added, the torque being almost proportional
to armature current; equally important, however, is the fact that its speed can be
controlled over wide ranges by shunt-field control, armature-voltage control, or a
combination of both. Depending on the relative strengths of the shunt and series field,
the cumulatively compounded motor is intermediate between the other two and may
be given essentially the advantages of one or the other.

In a wide variety of low-power applications in systems which are run from a
dc source (automotive applications, portable electronics, etc.), dc machines are the
most cost-effective choice. These dc machines are constructed in a wide-range of
configurations, and many of them are based upon permanent-magnet excitation. In
spite of the wide variety of dc machines which can be found in these various applica-
tions, their performance can readily be determined using the models and techniques
presented in this chapter.

7.12 CHAPTER 7 VARIABLES
δ, φ Phase angle [rad]
�d Direct-axis flux [Wb]
μ Magnetic permeability [H/m]
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μ0 Permeability of free space = 4π × 10−7 [H/m]
θa Spatial angle [rad]
ωm Mechanical angular velocity [rad/sec]
Ca Total number of turns in dc-machine armature winding
D, l Linear dimensions [m]
e, E Voltage [V]
Fa1 Net fundamental armature-winding (rotor) mmf [A]
Far Armature-reaction mmf [A]
Fd Net direct-axis (stator) mmf [A]
g Gap length [m]
i , I Current [A]
kw Winding factor
Ka Winding constant
Km Torque constant [N·m/A]
L Inductance [H]
m Number of parallel paths through the armature winding
n Angular velocity [r/min]
N Number of turns
Nc Number of turns per coil
Nph Series turns per phase
P Power [W]
P Permeance [H]
poles Number of poles
R Resistance [�]
Rr Rotor radius [m]
tm Magnet thickness [m]
T Torque [N·m]

Subscripts:

a Armature
ag Air gap
c Coil
d Direct axis, diverter
eq Equivalent
f Field
L Line
m Magnet
mech Mechanical
p Parallel
r Rotor
s Stator, series field, Laplace operator
t Terminal
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7.13 PROBLEMS
7.1 Consider a separately excited dc motor. Describe the speed variation of the

motor operating unloaded under the following conditions:

a. The armature terminal voltage is varied while the field current is held
constant.

b. The field current is varied while the armature terminal voltage is held
constant.

c. The field winding is connected in shunt directly to the armature terminals
and the armature terminal voltage is then varied.

7.2 A dc shunt motor operating unloaded at an armature terminal voltage of 125 V
is observed to be operating at a speed of 1420 r/min. When the motor is
operated unloaded at the same armature terminal voltage but with an
additional resistance of 8 � in series with the shunt field, the motor speed
is observed to be 1560 r/min.

a. Calculate the resistance of the shunt field.

b. Calculate the motor speed which will result if the series resistance is
increased from 8 � to 20 �.

c. With the field resistance at its original value, calculate the motor speed if
it is operated unloaded at a terminal voltage of 90 V.

7.3 A shunt-connected, 75-kW, 250-V dc motor has an armature resistance of
45 m� and a field resistance of 185 �. When operated at 250 V, its no-load
speed is 1850 r/min.

a. The motor is operating under load at a terminal voltage of 250 V and a
terminal current of 290 A. Calculate (i) the motor speed in r/min, (ii) the
load power in kW, and (iii) the load torque in N·m.

b. Assuming the load torque remains constant as a function of speed at the
value calculated in part (a), calculate (i) the motor speed and (ii) the
terminal current if the terminal voltage is reduced to 200 V.

c. Repeat part (b) if the load torque of part (a) varies with the square of the
speed.

7.4 For each of the following changes in operating condition for a separately
excited dc motor, describe how the armature current and speed will vary under
the following circumstances. You may assume the armature resistance is
negligible.

a. Halving the armature terminal voltage while the field flux and load torque
remain constant.

b. Halving the armature terminal voltage while the field flux and load power
remain constant.

c. Doubling the field flux while the armature terminal voltage and load
torque remain constant.
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d. Halving both the field flux and armature terminal voltage while the load
power remains constant.

e. Halving the armature terminal voltage while the field flux remains
constant and the load torque varies as the square of the speed.

Only brief quantitative statements describing the general nature of the effect
are required, e.g., “speed-doubled.”

7.5 The constant-speed magnetization curve for a 35-kW, 250-V dc machine at a
speed of 1500 r/min is shown in Fig. 7.32. This machine is separately excited
and has an armature resistance of 95 m�. This machine is to be operated as a
dc generator while driven from a synchronous motor at constant speed.

a. What is the rated armature current of this machine?

b. With the generator speed held at 1500 r/min and if the armature current is
limited to its rated value, calculate the maximum power output of the
generator and the corresponding armature voltage for constant field
currents of (i) 1.0 A, (ii) 2.0 A and (iii) 2.5 A.

c. Repeat part (b) if the speed of the synchronous generator is reduced to
1250 r/min.
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Figure 7.32 1500 r/min magnetization
curve for the dc generator of Problem 7.5.

7.6 The dc generator of Problem 7.5 is to be operated at a constant speed of
1500 r/min into a load resistance of 2.0 �.

a. Using the “spline()” function of MATLAB and the points of the
magnetization curve of Fig. 7.32 at 0, 0.5, 1.0, 1.5, 2.0, and 2.5 A, create a
MATLAB plot of the magnetization curve of Fig. 7.32.

b. Using the “spline()” function as in part (a), use MATLAB to plot (i) the
terminal voltage and (ii) the power delivered to the load as the generator
field current is varied from 0 to 2.5 A.
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7.7 The dc machine of Problem 7.5 is to be operated as a motor supplied by a
constant armature terminal voltage of 250 V. If saturation effects are ignored,
the magnetization curve of Fig. 7.32 becomes a straight line with a constant
slope of 150 volts per ampere of field current. For the purposes of this
problem, you may assume that saturation effects can be neglected.

a. Assuming that the field current is held constant at 1.67 A, plot the motor
speed as a function of motor shaft power as the shaft power varies from
0 to 35kW.

b. Now assuming that the field current can be adjusted in order to maintain
the motor speed constant at 1500 r/min, calculate the required field
current as a function of motor shaft power as the shaft power varies from
0 to 35kW.

7.8 Repeat Problem 7.7 including the saturation effects represented by the
saturation curve of Fig. 7.32. For part (a), set the field current equal to the
value required to produce an open-circuit armature terminal voltage of 250 V
at 1500 r/min. (Hint: This problem is most easily solved using MATLAB and
its “spline()” function as in Problem 7.6.)

7.9 The 1750-r/min no-load magnetization curve of a separately-excited 550-V,
100-kW dc machine is given by

Ea, V 509 531 547 560 571 581 589 596 603 609 615

If, A 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5

The field winding has 1175 turns/pole and a resistance of 163 �. The
armature resistance is 57 m�.

The machine is operated as a shunt-connected generator at speed of
1700 r/min.

a. Calculate the no-load terminal voltage.

b. When loaded to a terminal current of 180 A, the generator terminal voltage
is observed to be 527 V. Calculate the armature reaction in A-turns/pole.

c. Calculate the generator terminal voltage if the speed is increased to
1750 r/min and the terminal current is maintained at 180 A.

Hint: This problem can be solved either graphically or by use of the
MATLAB “spline()” function to represent the magnetization curve.

7.10 The dc machine of Problem 7.9 is operated as a separately excited motor at a
terminal voltage of 550 V.

a. Repeat part (b) of Problem 7.9 to calculate the armature reaction at a
terminal current of 180 A.

b. The motor is operating at a field current of 2.6 A. Plot the motor speed as
a function of the armature current as the armature current varies over the
range 0 to 180 A. You may assume that the armature reaction is linear
proportional to the terminal current.



Umans-3930269 book December 14, 2012 12:21

7.13 Problems 453

7.11 A 35-kW, 250-V shunt motor has an armature resistance of 0.13 � and a field
resistance of 117 �. At no load and rated voltage, the speed is 1975 r/min
and the armature current is 7.4 A. At full load and rated voltage, the armature
current is 152 A and, because of armature reaction, the flux is 8 percent less
than its no-load value. What is the full-load speed?

7.12 A 20-kW, 250-V, 1150 r/min shunt generator is driven by a prime mover
whose speed is 1195 r/min when the generator delivers no load. The speed
falls to 1145 r/min when the generator delivers 20 kW and may be assumed to
decrease in proportion to the generator output. The generator is to be changed
into a short-shunt compound generator by equipping it with a series field
winding which will cause its voltage to rise from 230 V at no load to 250 V
for a load of 80A. It is estimated that the series field winding will have a
resistance of 0.049 �. The armature resistance (including brushes) is 0.152 �.
The shunt field winding has 650 turns per pole.
To determine the effect of armature reaction, the machine is run as a
separately excited generator and the following load data are obtained:

Armature terminal voltage = 250 V

Armature current = 80.0 A

Field current = 1.62 A

Speed = 1145 r/min

The magnetization curve at 1195 r/min is as follows:

Ea, V 230 240 250 260 270 280

If, A 1.05 1.13 1.25 1.44 1.65 1.91

Determine

a. the armature reaction in equivalent demagnetizing ampere-turns per pole
for Ia = 80 A and

b. the necessary number of series-field turns per pole.

HINT: This problem can be solved either graphically or by use of the
MATLAB “spline()” function to represent the magnetization curve.

7.13 When operated from a 300-V dc supply, a dc series motor operates at
1225 r/min with a line current of 70 A. Its armature-circuit resistance is
0.13 � and its series-field resistance is 0.09 �. Due to saturation effects, the
flux produced by an armature current of 25 A is 54 percent of that at an
armature current of 70 A. Find the motor speed when the armature voltage is
300 V and the armature current is 25 A.

7.14 Consider the long-shunt, 250-V, 100-kW dc machine of Example 7.3.
Assuming the machine is operated as a motor at a constant supply voltage of
250-V with a constant shunt-field current of 4.8 A, use MATLAB to plot the
motor speed as a function of load. Use the MATLAB “spline()” function to
represent the magnetization curve of Fig. 7.14. Neglect armature-reaction
effects. Include two plots, one for the case where the series-field ampere-turns
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add to those of the shunt field and the second for the case where the
series-field ampere-turns oppose those of the shunt field.

7.15 A 250-V, 75-kW separately-excited dc motor is used as an adjustable-speed
drive over the range from 0 to 2400 r/min. It has an armature resistance of
42 m�. When operated at a speed of 2400 r/min, the motor achieves its
rated terminal voltage at a field current of 4.5 A. Speeds from 0 to 1450 r/min
are obtained by adjusting the armature terminal voltage (up to 250 V at
1450 r/min) with the field current kept constant. Speeds from 1450 r/min to
2400 r/min are obtained by decreasing the field current with the armature
terminal voltage remaining at 250 V. For the purposes of this problem, you
may neglect armature-reaction effects.

a. Calculate the field current, terminal current and torque corresponding to
operation at an armature terminal of 250 V and a load of 250 hp.

b. With the load torque equal to that found in part (a), calculate the field and
armature currents corresponding to operation at an armature terminal
voltage of 250 V and a speed of 1450 r/min.

c. For the motor operating at a constant torque equal to that found in part (a)
and operating with the given speed-control algorithm plot (i) the armature
current, (ii) the armature voltage, and (iii) the field current, each versus
speed over the entire range.

7.16 A separately excited 550-V, 200-kW dc motor is used to drive loads over the
speed range of 1500 to 3800 r/min. The motor has an armature resistance of
45 m� and a field winding of 1200 turns/pole. At a speed of 3500 r/min, the
motor achieves rated open-circuit armature voltage at a field current of 0.9 A.
You may assume that the open-circuit voltage varies linearly with field current
and may neglect the effects of armature reaction.

Consider a load which requires 180 kW at a speed of 3800 r/min, 125 kW
at a speed of 1500 r/min and whose torque varies linearly this speed range.

a. If the motor is operated at a constant armature terminal voltage of 550 V,
calculate the field current required to operate the load at speeds of 1500,
2500, 3000, and 3800 r/min and calculate the corresponding armature
current and armature power dissipation at each speed.

b. If the motor is initially operating at a speed of 3800 and an armature
terminal voltage of 550 V, calculate the armature terminal voltage
required to operate the load at speeds of 1500, 2500, 3000, and 3800 r/min
and the corresponding armature current and armature power dissipation if
the field current is held constant and the motor speed is varied by means
of armature-voltage control.

7.17 For the dc-motor of Problem 7.16, at an armature current of 350 A, the
demagnetizing effect of armature reaction has been determined to be
180 A-turns/pole. Repeat the calculations of Problem 7.16 including
armature-reaction effects. You may assume that the effect of
armature-reaction is linearly proportional to the armature current.
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7.18 Consider a separately excited dc motor, whose armature terminals are
connected to a constant-voltage source, driving a load requiring constant
electromagnetic torque. Show that if Ea > 0.5Vt (the normal situation),
increasing the resultant air-gap flux decreases the speed, whereas if
Ea < 0.5Vt (as might be brought about by inserting a relatively high
resistance in series with the armature), increasing the resultant air-gap flux
increases the speed.

7.19 A four-pole, 25 kW, 250 V separately excited dc motor is mechanically
coupled to a three-phase, four-pole, 25-kVA, 460-V, cylindrical-pole
synchronous generator. The dc motor is connected to a constant 250-V dc
supply, and the ac generator is connected to a 460-V, fixed-voltage,
fixed-frequency, three-phase supply. The synchronous reactance of the
synchronous generator is 0.78 per unit. The armature resistance of the dc
motor is 22 mA. All unspecified losses are to be neglected.

a. If the two machines act as a motor-generator set receiving power from the
dc source and delivering power to the ac supply, what is the generated
voltage Eaf of the ac machine in volts/phase (line-to-neutral) when it
delivers 30 kW at unity power factor? What is the internal voltage of the
dc motor?

b. Leaving the field current of the ac machine at the value corresponding to
the condition of part (a), what adjustment can be made to reduce the
power transfer between the two machines to zero? Under this condition
of zero power transfer, what is the armature current of the dc machine?
What is the armature current of the ac machine?

c. Leaving the field current of the ac machine as in parts (a) and (b), what
adjustment can be made to cause the transfer of 30 kW from the ac
source to the dc source? Under these conditions what are the armature
current and internal voltage of the dc machine? What will be the
magnitude and phase of the current of the ac machine?

7.20 A 150-kW, 600-V, 600 r/min dc series-wound railway motor has a combined
field and armature resistance (including brushes) of 0.125 �. The full-load
current at rated voltage and speed is 250 A. The magnetization curve at
400 r/min is as follows:

Generated emf, V 360 380 400 420 440 460 480

Series-field current, A 220 238 256 276 305 346 404

Determine the internal starting torque when the starting current is limited to
470 A. Assume the armature reaction to be equivalent to a demagnetizing
mmf which varies as the square of the current. (Hint: This problem can be
solved either graphically or by use of the MATLAB “spline()” function to
represent the magnetization curve.)
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7.21 A axial-flow fan has the following speed-load characteristic

Speed, r/min 770 880 990 1100 1210 1320

Power, kW 5.8 7.8 10.4 13.4 17.3 22.2

The fan is driven by a 25 kW, 230-V, four-pole dc shunt motor. The motor has
an armature winding with two parallel paths and Ca = 784 active conductors.
The armature-circuit resistance is 0.195 �. The armature flux per pole is
�d = 5.9 × 10−3 Wb and armature reaction effects can be neglected. No-load
rotational losses (to be considered constant) are estimated to be 1125 W.

a. Determine the motor terminal voltage and current and the fan power when
the the fan is operating at a speed of 1285 r/min.

b. Determine the motor terminal current and fan speed and power if the
terminal voltage is decreased to 180 V. (HINT: This problem can be easily
solved using MATLAB with the fan characteristic represented by the
MATLAB “spline()” function.)

7.22 A shunt-connected dc motor operating from a 230-V line draws a full-load
armature current of 53.7 A and runs at a speed of 1250 r/min at both no load
and full load. The following data is available on this motor:

■ Armature-circuit resistance (including brushes) = 0.15 �

■ Shunt-field turns per pole = 1650 turns

The magnetizing curve taken with the machine operating as a motor at no load
and 1250 r/min is

Ea, V 180 200 220 240 250

If, A 0.98 1.15 1.46 1.93 2.27

a. Determine the shunt-field current of this motor at no load and 1250 r/min
when connected to a 230-V line. Assume negligible armature reaction at
no load.

b. Determine the effective armature reaction at full load in ampere-turns per
pole.

c. How many series-field turns should be added to make this machine into a
long-shunt cumulatively compounded motor whose speed will be
1150 r/min when the armature current is 53.7 A and the applied voltage is
230 V? Assume that the series field has a resistance of 0.037 �.

d. If a series-field winding having 21 turns per pole and a resistance of
0.037 � is installed, determine the speed when the armature current is
53.7 A and the applied voltage is 230 V.

(HINT: This problem can be solved either graphically or by use of the
MATLAB “spline()” function to represent the magnetization curve.)



Umans-3930269 book December 14, 2012 12:21

7.13 Problems 457

7.23 A 12.5-kW, 230-V shunt motor has 2400 shunt-field turns per pole, an
armature resistance (including brushes) of 0.18 �, and a commutating-field
resistance of 0.035 �. The shunt-field resistance (exclusive of rheostat) is
375 �. When the motor is operated at no load with rated terminal voltage and
varying shunt-field resistance, the following data are obtained:

Speed, r/min 1665 1704 1743 1782 1821 1860

If, A 0.555 0.517 0.492 0.468 0.447 432

The no-load armature current is negligible. When the motor is operating at
full load and rated terminal voltage with a field current of 0.468 A, the
armature current is 58.2 A and the speed is 1770 r/min.

a. Calculate the full-load armature reaction in equivalent demagnetizing
ampere-turns per pole.

b. Calculate the electromagnetic and load torques and the rotational loss at
the given operating condition.

c. What starting torque will the motor produce with a field current of
0.555 A if the starting armature current is limited to 85 A? Assume that
the armature reaction under these conditions is equal to 175 ampere-turns
per pole.

d. Design a series field winding to give a speed of 1575 r/min when the
motor is loaded to an armature current of 58.2 A and when the shunt field
current is adjusted to give a no-load speed of 1800 r/min. Assume the
series field will have a resistance of 0.045 �.

(HINT: This problem can be solved either graphically or by use of the
MATLAB “spline()” function to represent the magnetization curve.)

7.24 When operated at rated voltage, a 230-V shunt motor runs at 1500 r/min at
full load and at no load. The full-load armature current is 125 A. The shunt
field winding has 1700 turns per pole. The resistance of the armature circuit
(including brushes and interpoles) is 0.12 �. The magnetization curve at
1500 r/min is

Ea, V 200 210 220 230 240 250

If, A 0.40 0.44 0.49 0.55 0.61 0.71

a. Compute the demagnetizing effect of the armature reaction at full load.

b. A long-shunt cumulative series field winding having three turns per pole
and a resistance of 0.038 � is added to the machine. Compute the speed at
full-load current and rated voltage. The shunt field current will remain
equal to that of part (a).

c. With the series-field winding of part (b) installed, compute the internal
starting torque in N·m if the starting armature current is limited to 190 A.
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Assume that the corresponding demagnetizing effect of armature reaction
is 270 ampere-turns per pole.

(HINT: This problem can be solved either graphically or by use of the
MATLAB “spline()” function to represent the magnetization curve.)

7.25 A 350-V dc shunt motor has an armature-circuit resistance of 0.21 �. When
operating from a 350-V supply and driving a constant-torque load, the motor
is observed to be drawing an armature current of 84 A. An external resistance
of 1.2 � is now inserted in series with the armature while the shunt field
current is unchanged. Neglecting the effects of rotational losses and armature
reaction, calculate

a. the resultant armature current and

b. the fractional speed change of the motor.

7.26 A 75-kW, 460-V shunt motor has an armature resistance of 0.082 � and a
field-circuit resistance of 237 �. The motor delivers rated output power at
rated voltage when its armature current is 171 A. When the motor is
operating at rated voltage, the speed is observed to be 1240 r/min when the
machine is loaded such that the armature current is 103.5 A.

a. Calculate the rated-load speed of this motor.

In order to protect both the motor and the dc supply under starting
conditions, an external resistance will be connected in series with the
armature winding (with the field winding remaining directly across the 460-V
supply). The resistance will then be automatically adjusted in steps so that
the armature current does not exceed 180 percent of rated current. The step
size will be determined such that, until all the external resistance is switched
out, the armature current will not be permitted to drop below rated value. In
other words, the machine is to start with 180 percent of rated armature
current and as soon as the current falls to rated value, sufficient series
resistance is to be cut out to restore the current to 180 percent. This process
will be repeated until all of the series resistance has been eliminated.

b. Find the maximum value of the series resistance.

c. How much resistance should be cut out at each step in the starting
operation and at what speed should each step change occur?

7.27 The manufacturer’s data sheet for a permanent-magnet dc motor indicates
that it has a torque constant Km = 0.28 V/(rad/sec) and an armature resistance
of 1.75 �. For a constant applied armature voltage of 100 V dc, calculate

a. the no-load speed of the motor in r/min and

b. its stall (zero-speed) current and torque (in N·m).

c. Plot the motor torque as a function of speed.

d. The motor is used to power a small pump which requires a torque of
9 N·m at a speed of 2000 r/min and which varies as the square of speed.
Find the operating speed when the pump is driven by the dc motor at a
terminal voltage of 85 V.
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e. Armature-voltage control applied to the dc motor is to be used to control
the speed of the pump of part (d). Plot the required dc-motor terminal
voltage as a function of speed.

7.28 Measurements on a small permanent-magnet dc motor indicate that it has an
armature resistance of 8.9 �. With an applied armature voltage of 9 V, the
motor is observed to achieve a no-load speed of 13,340 r/min while drawing
an armature current of 45.0 mA.

a. Calculate the motor torque constant Km in V/(rad/sec).

b. Calculate the no-load rotational losses in mW.

Assume the motor to be operating from an applied armature voltage of 9 V.

c. Find the stall current and torque of the motor.

d. At what speeds will the motor achieve an output power of 2 W? Estimate
the motor efficiency under these operating conditions. Assume that the
rotational loss varies as the cube of the speed.

7.29 Write a MATLAB script to calculate the parameters of a permanent-magnet
dc motor. The inputs will be the armature resistance and the no-load armature
voltage, speed, and armature current. The output should be the no-load
rotational loss and the torque constant Km. Exercise your script on a motor
with an armature resistance of 6 �, no-load voltage of 7.5 V, no-load armature
current of 22 mA and no-load speed of 8500 r/min.

7.30 The dc motor of Problem 7.28 will be used to drive a load which requires a
power of 1.2 W at a speed of 8750 r/min. The combined inertia of the motor
and load is 3.2 × 10−6 kg·m2. Using MATLAB or MATLAB/Simulink, plot
the motor speed and armature current as a function of time assuming the
system is initially at rest and 9 V is suddenly applied to the motor terminals at
time t = 0.

7.31 The 75-kW dc motor and current-limiting resistance system of Problem 7.26
are to be used to drive a constant-torque load of 500 N·m. The combined
inertia of the motor and load is 6.5 kg·m2. Using MATLAB or MATLAB/
Simulink, assuming the motor to be initially at rest when 460 V dc is applied
to the system, plot the motor speed and the motor current, both as a function
of time.
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8 C H A P T E R

Variable-Reluctance
Machines and Stepping
Motors

V ariable reluctance machines1 (often abbreviated as VRMs) are perhaps the sim-
plest of electrical machines. They consist of a stator with excitation windings
and a magnetic rotor with saliency. Rotor conductors are not required because

torque is produced by the tendency of the rotor to align with the stator-produced flux
wave in such a fashion as to maximize the stator flux linkages that result from a given
applied stator current. The stator-winding inductances of these machines are functions
of the rotor angular position and hence the torque produced by these machines can
be evaluated using the techniques of Chapter 3.

Although the concept of the VRM has been around for a long time, only in the
past few decades have these machines begun to see widespread use in engineering
applications. This is due in large part to the fact that, although they are simple in
construction, they are somewhat complicated to control. For example, the position
of the rotor must be known in order to properly energize the phase windings to
produce torque. It is the widespread availability and low cost of digital computation
in combination with power electronics that has made the VRM competitive with other
motor technologies in a wide range of applications.

By sequentially exciting the phases of a VRM, the rotor will rotate in a step-wise
fashion through a specific angle per step. Stepper motors are designed to take advan-
tage of this characteristic. Such motors often combine the use of a variable-reluctance
geometry with permanent magnets to produce increased torque and precision position
accuracy.

1 Variable-reluctance machines are often referred to as switched-reluctance machines (SRMs) to indicate
the combination of a VRM and the switching inverter required to drive it. This term is popular in the
technical literature.

460



Umans-3930269 book December 14, 2012 12:24

8.1 Basics of VRM Analysis 461

8.1 BASICS OF VRM ANALYSIS
Common variable-reluctance machines can be categorized into two types: singly
salient and doubly salient. In both cases, their most noticeable features are that there
are no windings or permanent magnets on their rotors and that their only source of
excitation consists of stator windings. This can be a significant feature because it
means that all the resistive winding losses in the VRM occur on the stator. Because
the stator can typically be cooled much more effectively and easily than the rotor, the
result is often a smaller motor for a given rating and frame size.

As is discussed in Chapter 3, to produce torque, VRMs must be designed such
that the stator-winding inductances vary with the position of the rotor. Figure 8.1a
shows a cross-sectional view of a singly salient VRM, which can be seen to consist of
a nonsalient stator and a two-pole salient rotor, both constructed of high-permeability
magnetic material. In the figure, a two-phase stator winding is shown although any
number of phases are possible.

Figure 8.2a shows the form of the variation of the stator inductances as a function
of rotor angle θm for a singly salient VRM of the form of Fig. 8.1a. Notice that the
inductance of each stator phase winding varies with rotor position such that the induc-
tance is maximum when the rotor axis is aligned with the magnetic axis of that phase
and minimum when the two axes are perpendicular. The figure also shows that the
mutual inductance between the phase windings is zero when the rotor is aligned with
the magnetic axis of either phase but otherwise varies periodically with rotor position.

Figure 8.1b shows the cross-sectional view of a two-phase doubly salient VRM
in which both the rotor and stator have salient poles. In this machine, the stator has
four poles, each with a winding. However, the windings on opposite poles are of the
same phase; they may be connected either in series or in parallel. Thus this machine
is quite similar to that of Fig. 8.1a in that there is a two-phase stator winding and
a two-pole salient rotor. Similarly, the phase inductance of this configuration varies
from a maximum value when the rotor axis is aligned with the axis of that phase to a
minimum when they are perpendicular.

Unlike the singly-salient machine of Fig. 8.1a, under the assumption of negligible
iron reluctance the mutual inductances between the phases of the doubly-salient VRM
of Fig. 8.1b will be zero, with the exception of a small, essentially-constant component
associated with leakage flux. In addition, the saliency of the stator enhances the dif-
ference between the maximum and minimum inductances, which in turn enhances the
torque-producing characteristics of the doubly salient machine. Figure 8.2b shows the
form of the variation of the phase inductances for the doubly salient VRM of Fig. 8.1b.

The relationship between flux linkage and current for the singly salient VRM is
of the form [

λ1

λ2

]
=

[
L11(θm) L12(θm)

L12(θm) L22(θm)

][
i1

i2

]
(8.1)

Here L11(θm) and L22(θm) are the self-inductances of phases 1 and 2, respectively,
and L12(θm) is the mutual inductances. Note that, by symmetry

L22(θm) = L11(θm − 90◦) (8.2)
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Figure 8.1 Basic two-phase VRMs: (a) singly salient
and (b) doubly salient.
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0� 90� 180��90��180� θm
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L11(θm) L22(θm)

(b)

(a)

Figure 8.2 Plots of inductance versus θm for (a) the singly salient
VRM of Fig. 8.1a and (b) the doubly salient VRM of Fig. 8.1b.

Note also that all of these inductances are periodic with a period of 180◦ because
rotation of the rotor through 180◦ from any given angular position results in no
change in the magnetic circuit of the machine.

From Eq. 3.68 the electromagnetic torque of this system can be determined from
the coenergy as

Tmech = ∂W ′
fld(i1, i2, θm)

∂θm
(8.3)

where the partial derivative is taken while holding currents i1 and i2 constant. Here,
the coenergy can be found from Eq. 3.70

W ′
fld = 1

2
L11(θm)i2

1 + L12(θm)i1i2 + 1

2
L22(θm)i2

2 (8.4)

Thus, combining Eqs. 8.3 and 8.4 gives the torque as

Tmech = 1

2
i2
1

d L11(θm)

dθm
+ i1i2

d L12(θm)

dθm
+ 1

2
i2
2

d L22(θm)

dθm
(8.5)

For the double salient VRM of Fig. 8.1b, the mutual-inductance term d L12(θm)/dθm

is zero and the torque expression of Eq. 8.5 simplifies to

Tmech = 1

2
i2
1

d L11(θm)

dθm
+ 1

2
i2
2

d L22(θm)

dθm
(8.6)
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Substitution of Eq. 8.2 then gives

Tmech = 1

2
i2
1

d L11(θm)

dθm
+ 1

2
i2
2

d L11(θm − 90◦)
dθm

(8.7)

Equations 8.6 and 8.7 illustrate an important characteristic of VRMs in which
mutual-inductance effects are negligible. In such machines the torque expression
consists of a sum of terms, each of which is proportional to the square of an individual
phase current. As a result, the torque depends only on the magnitude of the phase
currents and not on their polarity. Thus the electronics which supply the phase currents
to these machines can be unidirectional; i.e., bidirectional currents are not required.

Since the phase currents in these machines are typically switched on and off by
solid-state switches such as transistors or thyristors and since each switch need only
handle currents in a single direction, this means that the motor drive requires only
half the number of switches (as well as half the corresponding control electronics)
that would be required in a corresponding bidirectional drive. The result is a drive
system which is less complex and may be less expensive.

The assumption of negligible mutual inductance is valid for the doubly salient
VRM of Fig. 8.1b both due to symmetry of the machine geometry and due to the
assumption of negligible iron reluctance. In practice, even in situations where sym-
metry might suggest that the mutual inductances are zero or can be ignored because
they are independent of rotor position (e.g., the phases are coupled through leakage
fluxes), significant nonlinear and mutual-inductance effects can arise due to saturation
of the machine iron. In such cases, although the techniques of Chapter 3, and indeed
torque expressions of the form of Eq. 8.3, remain valid, analytical expressions are
often difficult to obtain (see Section 8.4).

At the design and analysis stage, the winding flux-current relationships and the
motor torque can be determined by using numerical-analysis packages which can
account for the nonlinearity of the machine magnetic material. Once a machine has
been constructed, measurements can be made, both to validate the various assumptions
and approximations which were made at the design stage as well as to accurately
characterize actual machine performance.

From this point on, we shall use the symbol ps to indicate the number of stator
poles and pr to indicate the number of rotor poles, and the corresponding machine
will be called a ps/pr machine. Example 8.1 examines a 4/2 VRM.

EXAMPLE 8.1

A 2-phase, 4/2 VRM is shown in Fig. 8.3. Its dimensions are

R = 3.8 cm α = β = 60◦ = π/3 rad
g = 2.54 × 10−2 cm D = 13.0 cm

and the poles of each phase winding are connected in series such that there are a total of
N = 100 turns (50 turns per pole) in each phase winding. Assume the rotor and stator to be of
infinite magnetic permeability.
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Figure 8.3 4/2 VRM for Example 8.1.

a. Neglecting leakage and fringing fluxes, plot the phase-1 inductance L(θm) as a function
of θm.

b. Plot the torque, assuming (i) i1 = I1 and i2 = 0 and (ii) i1 = 0 and i2 = I2.
c. Calculate the net torque (in N · m) acting on the rotor when both windings are excited such

that i1 = i2 = 5 A and at angles (i) θm = 0◦, (ii) θm = 45◦, (iii) θm = 75◦.

■ Solution

a. Using the magnetic circuit techniques of Chapter 1, we see that the maximum inductance
Lmax for phase 1 occurs when the rotor axis is aligned with the phase-1 magnetic axis.
From Eq. 1.30, we see that Lmax is equal to

Lmax = N 2μ0αRD

2g

where αRD is the cross-sectional area of the air gap and 2g is the total gap length in the
magnetic circuit. For the values given,

Lmax = N 2μ0αRD

2g

= (100)2(4π × 10−7)(π/3)(3.8 × 10−2)(0.13)

2 × (2.54 × 10−4)

= 0.128 H

Neglecting fringing, the inductance L(θm) will vary linearly with the air-gap
cross-sectional area as shown in Fig. 8.4a. Note that this idealization predicts that the
inductance is zero when there is no overlap when in fact there will be some small value
of inductance, as shown in Fig. 8.2.
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b. From Eq. 8.7, the torque consists of two terms

Tmech = 1

2
i 2

1

d L11(θm)

dθm

+ 1

2
i 2

2

d L11(θm − 90◦)

dθm

and d L11/dθm can be seen to be the stepped waveform of Fig. 8.4b whose maximum
values are given by ±Lmax/α (with α expressed in radians!). Thus the torque is as shown
in Fig. 8.4c.

0 30��30��60��90��120��150��180� 60� 90� 120� 150� 180� θm

Lmax � 0.128 H Lmax

L11(θm)

(a)

0 30��30��60��90�
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Lmax/α

dL11(θm)
dθm

(α � π/3)

Lmax
α�

(b)
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i1 � 0, i2 � I2

i1 � I1, i2 � 0
LmaxI2

1

2α
Tmax1 � 

LmaxI2
2

2α
Tmax2 � 

(c)

Figure 8.4 (a) L11(θm) versus θm, (b) dL11(θm)/dθm versus θm, and
(c) torque versus θm.
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c. The peak torque due to each of the windings is given by

Tmax =
(

Lmax

2α

)
i 2 =

(
0.128

2(π/3)

)
52 = 1.53 N · m

(i) From the plot in Fig. 8.4c, at θm = 0◦, the torque contribution from phase 2 is clearly
zero. Although the phase-1 contribution appears to be indeterminate, in an actual
machine the torque change from Tmax1 to −Tmax1 at θm = 0◦ would have a finite slope
and the torque would be zero at θ = 0◦. Thus the net torque from phases 1 and 2 at
this position is zero.

Notice that the torque at θm = 0 is zero independent of the current levels in phases 1
and 2. This is a problem with the 4/2 configuration of Fig. 8.3 since the rotor can get
“stuck” at this position (as well as at θm = ±90◦, 180◦) and should that happen, there is no
way that electrical torque can be produced to move it.

(ii) At θm = 45◦ both phases are providing torque. That of phase 1 is negative while that
of phase 2 is positive. Because the phase currents are equal, the torques are thus
equal and opposite and the net torque is zero. However, unlike the case of θm = 0◦,
the torque at this point can be made either positive or negative simply by appropriate
selection of the phase currents.

(iii) At θm = 75◦ phase 1 produces no torque while phase 2 produces a positive torque of
magnitude Tmax2 . Thus the net torque at this position is positive and of magnitude
1.53 N · m. Notice that there is no combination of phase currents that will produce a
negative torque at this position since the phase-1 torque is always zero while that of
phase 2 can only be positive (or zero).

Practice Problem 8.1

Repeat the calculation of Example 8.1, part (c), for the case in which α = β = 70◦.

Solution

i. T = 0 N · m
ii. T = 0 N · m

iii. T = 1.59 N · m

Example 8.1 illustrates a number of important considerations for the design of
VRMs. Clearly these machines must be designed to avoid the occurrence of rotor
positions for which none of the phases can produce torque. This is of concern in the
design of 4/2 machines which will always have such positions if they are constructed
with uniform, symmetric air gaps.

It is also clear that to operate VRMs with specified torque characteristics, the
phase currents must be applied in a fashion consistent with the rotor position. For
example, positive torque production from each phase winding in Example 8.1 can
be seen from Fig. 8.4c to occur only for specific values of θm. Thus operation of
VRMs must include some sort of rotor-position sensing as well as a controller which
determines both the sequence and the waveform of the phase currents to achieve
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the desired operation. This is typically implemented by using electronic switching
devices (transistors, thyristors, gate-turn-off devices, etc.) under the supervision of a
microprocessor-based controller.

Although a 4/2 VRM such as in Example 8.1 can be made to work, as a practical
matter it is not particularly useful because of undesirable characteristics such as its
zero-torque positions and the fact that there are angular locations at which it is not
possible to achieve a positive torque. For example, because of these limitations, this
machine cannot be made to generate a constant torque independent of rotor angle;
certainly no combination of phase currents can result in torque at the zero-torque po-
sitions or positive torque in the range of angular locations where only negative torque
can be produced. As discussed in Section 8.2, these difficulties can be eliminated
by 4/2 designs with asymmetric geometries, and so practical 4/2 machines can be
constructed.

As has been seen in this section, the analysis of VRMs is conceptually straight-
forward. In the case of linear machine iron (no magnetic saturation), determining the
torque is simply a matter of calculating the stator-phase inductances (self and mutual)
as a function of rotor position, expressing the coenergy in terms of these inductances,
and then calculating the derivative of the coenergy with respect to angular position
(holding the phase currents constant when taking the derivative). Similarly, as dis-
cussed in Section 3.8, the electric terminal voltage for each of the phases can be found
from the sum of the time derivative of the phase flux linkage and the i R drop across
the phase resistance.

In the case of nonlinear machine iron (where saturation effects are important)
as is discussed in Section 8.4, the coenergy can be found by appropriate integration
of the phase flux linkages, and the torque can again be found from the derivative
of the coenergy with respect to the angular position of the rotor. In either case,
there are no rotor windings and typically no other rotor currents in a well-designed
variable-reluctance motor; hence, unlike other ac machine types (synchronous and
induction), there are no electrical dynamics associated with the machine rotor. This
greatly simplifies their analysis.

Although VRMs are simple in concept and construction, their operation is some-
what complicated and requires sophisticated control and motor-drive electronics to
achieve useful operating characteristics. These issues and others are discussed in
Sections 8.2 to 8.5.

8.2 PRACTICAL VRM CONFIGURATIONS
Practical VRM drive systems (the motor and its inverter) are designed to meet oper-
ating criteria such as

■ Low cost.

■ Constant torque independent of rotor angular position.

■ A desired operating speed range.

■ High efficiency.

■ A large torque-to-mass ratio.
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As in any engineering situation, the final design for a specific application will involve
a compromise between the variety of options available to the designer. Because VRMs
require some sort of electronics and control to operate, often the designer is concerned
with optimizing a characteristic of the complete drive system, and this will impose
additional constraints on the motor design.

VRMs can be built in a wide variety of configurations. In Fig. 8.1, two forms of
a 4/2 machine are shown: a singly salient machine in Fig. 8.1a and a doubly salient
machine in Fig. 8.1b. Although both types of design can be made to work, a doubly
salient design is often the superior choice because it can generally produce a larger
torque for a given frame size.

This can be seen qualitatively (under the assumption of a high-permeability, non-
saturating magnetic structure) by reference to Eq. 8.7, which shows that the torque
is a function of d L11(θm)/dθm, the derivative of the phase inductance with respect
to angular position of the rotor. Clearly, all else being equal, the machine with the
largest derivative will produce the largest torque.

This derivative can be thought of as being determined by the ratio of the maximum
to minimum phase inductances Lmax/Lmin. In other words, we can write,

d L11(θm)

dθm

∼= Lmax − Lmin

�θm

= Lmax

�θm

(
1 − Lmin

Lmax

)
(8.8)

where �θm is the angular displacement of the rotor between the positions of maximum
and minimum phase inductance. From Eq. 8.8, we see that, for a given Lmax and �θm,
the largest value of Lmax/Lmin will give the largest torque. Because of its geometry,
a doubly salient structure will typically have a lower minimum inductance and thus
a larger value of Lmax/Lmin; hence it will produce a larger torque for the same rotor
structure.

For this reason doubly salient machines are the predominant type of VRM, and
hence for the remainder of this chapter we consider only doubly salient VRMs. In
general, doubly salient machines can be constructed with two or more poles on each
of the stator and rotor. It should be pointed out that once the basic structure of a VRM
is determined, Lmax is fairly well determined by such quantities as the number of
turns, air-gap length, and basic pole dimensions. The challenge to the VRM designer
is to achieve a small value of Lmin. This is a difficult task because Lmin is dominated
by leakage fluxes and other quantities which are difficult to calculate and analyze.

As shown in Example 8.1, the geometry of a symmetric 4/2 VRM with a uniform
air gap gives rise to rotor positions for which no torque can be developed for any
combination of excitation of the phase windings. These torque zeros can be seen to
occur at rotor positions where all the stator phases are simultaneously at a position of
either maximum or minimum inductance. Since the torque depends on the derivative of
inductance with respect to angular position, this simultaneous alignment of maximum
and minimum inductance points necessarily results in zero net torque.
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Figure 8.5 Cross-sectional view of a 6/4 three-phase VRM.

Figure 8.5 shows a 6/4 VRM from which we see that a fundamental feature
of the 6/4 machine is that no such simultaneous alignment of phase inductances is
possible. As a result, this machine does not have any zero-torque positions. This is a
significant point because it eliminates the possibility that the rotor might get stuck in
one of these positions at standstill, requiring that it be mechanically moved to a new
position before it can be started. In addition to the fact that there are not positions of
simultaneous alignment for the 6/4 VRM, it can be seen that there also are no rotor
positions at which only a torque of a single sign (either positive or negative) can be
produced. Hence by proper control of the phase currents, it should be possible to
achieve constant-torque, independent of rotor position.

In the case of a symmetric VRM with ps stator poles and pr rotor poles, a
simple test can be used to determine if zero-torque positions exist. If the ratio ps/pr

(or alternatively pr/ps if pr is larger than ps) is an integer, there will be zero-torque
positions. For example, for a 6/4 machine the ratio is 1.5, and there will be no zero-
torque positions. However, the ratio is 2.0 for a 6/3 machine, and there will be zero-
torque positions.

In some instances, design constraints may dictate that a machine with an integral
pole ratio is desirable. In these cases, it is possible to eliminate the zero-torque po-
sitions by constructing a machine with an asymmetric rotor. For example, the rotor
radius can be made to vary with angle as shown in grossly exaggerated fashion in
Fig. 8.6a. This design, which also requires that the width of the rotor pole be wider
than that of the stator, will not produce zero torque at positions of alignment because
d L(θm)/dθm is not zero at these points, as can be seen with reference to Fig. 8.6b.
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Figure 8.6 A 4/2 VRM with nonuniform air gap: (a) exaggerated
schematic view and (b) plots of L(θm) and dL(θm)/dθm versus θm.

An alternative procedure for constructing an integral-pole-ratio VRM without
zero-torque positions is to construct a stack of two or more VRMs in series, aligned
such that each of the VRMs is displaced in angle from the others and with all the
rotors sharing a common shaft. In this fashion, the zero-torque positions of the indi-
vidual VRMs will not align, thus eliminating zero torque positions from the complete
machine. For example, a series stack of two two-phase, 4/2 VRMs such as that of
Example 8.1 (Fig. 8.3) with a 45◦ angular displacement between the individual VRMs
will result in a four-phase VRM without zero-torque positions.

Generally VRMs are wound with a single coil on each pole. Although it is possible
to control each of these windings separately as individual phases, it is common practice
to combine them into groups of poles which are excited simultaneously. For example,
the 4/2 VRM of Fig. 8.3 is shown connected as a two-phase machine. As shown in
Fig. 8.5, a 6/4 VRM is commonly connected as a three-phase machine with opposite
poles connected to the same phase and in such a fashion that the windings drive flux
in the same direction through the rotor.
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In some cases, VRMs are wound with a parallel set of windings on each phase.
This configuration, known as a bifilar winding, in some cases can result in a simple
inverter configuration and thus a simple, inexpensive motor drive.

In general, when a given phase is excited, the torque is such that the rotor is
pulled to the nearest position of maximum flux linkage. As excitation is removed
from that phase and the next phase is excited, the rotor “follows” as it is then pulled
to a new maximum flux-linkage position. Thus, the rotor speed is determined by the
frequency of the phase currents. However, unlike the case of a synchronous machine,
the relationship between the rotor speed and the frequency and sequence of the phase-
winding excitation can be quite complex, depending on the number of rotor poles and
the number of stator poles and phases. This is illustrated in Example 8.2.

EXAMPLE 8.2

Consider a four-phase, 8/6 VRM. If the stator phases are excited sequentially, with a total time
of T0 sec required to excite the four phases (i.e., each phase is excited for a time of T0/4 sec),
find the angular velocity of the stator flux wave and the corresponding angular velocity of the
rotor. Neglect any system dynamics and assume that the rotor will instantaneously track the
stator excitation.

■ Solution
Figure 8.7 shows in schematic form an 8/6 VRM. The details of the pole shapes are not of
importance for this example and thus the rotor and stator poles are shown simply as arrows
indicating their locations. The figure shows the rotor aligned with the stator phase-1 poles.
This position corresponds to that which would occur if there were no load on the rotor and the
stator phase-1 windings were excited, since it corresponds to a position of maximum phase-1
flux linkage.

1

1

2

3

2

3

4

4

45�

60�

Rotor

Stator

Figure 8.7 Schematic view of a
four-phase 8/6 VRM. Pole locations
are indicated by arrows.
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Consider next that the excitation on phase 1 is removed and phase 2 is excited. At this
point, the stator flux wave has rotated 45◦ in the clockwise direction. Similarly, as the excitation
on phase 2 is removed and phase 3 is excited, the stator flux wave will move an additional 45◦

clockwise. Thus the angular velocity ωs of the stator flux wave can be calculated quite simply
as π/4 rad (45◦) divided by T0/4 sec, or ωs = π/T0 rad/sec.

Note, however, that this is not the angular velocity of the rotor itself. As the phase-1
excitation is removed and phase 2 is excited, the rotor will move in such a fashion as to
maximize the phase-2 flux linkages. In this case, Fig. 8.7 shows that the rotor will move 15◦

counterclockwise since the nearest rotor poles to phase 2 are actually 15◦ ahead of the phase-2
poles. Thus the angular velocity of the rotor can be calculated as −π/12 rad (15◦, with the minus
sign indicating counterclockwise rotation) divided by T0/4 sec, or ωm = −π/(3T0) rad/sec.

In this case, the rotor travels at one-third the angular velocity of the stator excitation and
in the opposite direction!

Practice Problem 8.2

Repeat the calculation of Example 8.2 for the case of a four-phase, 8/10 VRM.

Solution
ωm = π/(5T0) rad/sec

Example 8.2 illustrates the complex relationship that can exist between the exci-
tation frequency of a VRM and the “synchronous” rotor frequency. This relationship
is directly analogous to that between two mechanical gears for which the choice of
different gear shapes and configurations gives rise to a wide range of speed ratios. It
is difficult to derive a single rule which will describe this relationship for the immense
variety of VRM configurations which can be envisioned. It is, however, a fairly simple
matter to follow a procedure similar to that shown in Example 8.2 to investigate any
particular configuration of interest.

Further variations on VRM configurations are possible if the main stator and rotor
poles are subdivided by the addition of individual teeth (which can be thought of as a
set of small poles excited simultaneously by a single winding). The basic concept is
illustrated in Fig. 8.8, which shows a schematic view of three poles of a three-phase
VRM with a total of six main stator poles. Such a machine, with the stator and rotor
poles subdivided into teeth, is known as a castleated VRM, the name resulting from
the fact that the stator teeth appear much like the towers of a medieval castle.

In Fig. 8.8 each stator pole has been divided into four subpoles by the addition
of four teeth of width 6 3

7
◦

(indicated by the angle β in the figure), with a slot of the
same width between each tooth. The same tooth/slot spacing is chosen for the rotor,
resulting in a total of 28 teeth on the rotor. Notice that this number of rotor teeth and the
corresponding value of β were chosen so that when the rotor teeth are aligned with
those of the phase-1 stator pole, they are not aligned with those of phases 2 and 3. In this
fashion, successive excitation of the stator phases will result in a rotation of the rotor.

Castleation further complicates the relationship between the rotor speed and the
frequency and sequence of the stator-winding excitation. For example, from Fig. 8.8
it can be seen that for this configuration, when the excitation of phase 1 is removed
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2β/3 4β/3

Figure 8.8 Schematic view of a three-phase castleated VRM with
six stator poles and four teeth per pole and 28 rotor poles.

and phase 2 is excited (corresponding to a rotation of the stator flux wave by 60◦

in the clockwise direction), the rotor will rotate by an angle of (2β/3) = 4 2
7

◦
in the

counterclockwise direction.
From the preceding analysis, we see that the technique of castleation can be

used to create VRMs capable of operating at low speeds (and hence producing high
torque for a given stator power input) and with very precise rotor position accuracy.
For example, the machine of Fig. 8.8 can be rotated precisely by angular increments
of (2β/3). The use of more teeth can further increase the position resolution of
these machines. Such machines can be found in applications where low speed, high
torque, and precise angular resolution are required. This castleated configuration is
one example of a class of VRMs commonly referred to as stepping motors because
of their capability to produce small steps in angular resolution.

8.3 CURRENT WAVEFORMS FOR TORQUE
PRODUCTION

As is seen in Section 8.1, the torque produced by a VRM in which saturation and
mutual-inductance effects can be neglected is determined by the summation of terms
consisting of the derivatives of the phase inductances with respect to the rotor angu-
lar position, each multiplied by the square of the corresponding phase current. For
example, we see from Eqs. 8.6 and 8.7 that the torque of the two-phase, 4/2 VRM of
Fig. 8.1b is given by

Tmech = 1

2
i2
1

d L11(θm)

dθm
+ 1

2
i2
2

d L22(θm)

dθm

= 1

2
i2
1

d L11(θm)

dθm
+ 1

2
i2
2

d L11(θm − 90◦)
dθm

(8.9)
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For each phase of a VRM, the phase inductance is periodic in rotor angular
position, and thus the area under the curve of d L/dθm calculated over a complete
period of L(θm) is zero, i.e.,∫ 2π/pr

0

d L(θm)

dθm
dθm = L(2π/pr) − L(0) = 0 (8.10)

where pr is the number of rotor poles.
The average torque produced by a VRM can be found by integrating the torque

equation (Eq. 8.9) over a complete period of rotation. Clearly, if the stator currents
are held constant, Eq. 8.10 shows that the average torque will be zero. Thus, to
produce a time-averaged torque, the stator currents must vary with rotor position. The
desired average output torque for a VRM depends on the nature of the application. For
example, motor operation requires a negative time-averaged shaft torque. Similarly,
braking or generator action requires negative time-averaged torque.

Positive torque is produced when a phase is excited at angular positions with
positive d L/dθm for that phase, and negative torque is produced by excitation at
positions at which d L/dθm is negative. Consider a three-phase, 6/4 VRM (similar to
that shown in Fig. 8.5) with 40◦ rotor and stator poles. The inductance versus rotor
position for this machine will be similar to the idealized representation shown in
Fig. 8.9.

Operation of this machine as a motor requires a net positive torque. Alternatively,
it can be operated as a generator under conditions of net negative torque. Noting that
positive torque is generated when excitation is applied at rotor positions at which

�90� 90��50� 50��40� 40�0

Phase 1

�90� 90�60��70�
�80�

�30� 10� 20�0

Phase 2

�90� 90�80�70��20��60� �10� 30�0

Phase 3

θm

θm

θm

dL(θm)
dθm

L(θm)

Figure 8.9 Idealized inductance and dL/dθm curves for a three-phase 6/4 VRM with
40◦ rotor and stator poles.
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d L/dθm is positive, we see that a control system as required applies excitation to
the individual phase-winding based upon the position of the rotor. It is, in fact, the
need for this sort of control that makes VRM drive systems more complex than might
perhaps be thought, considering only the simplicity of the VRM itself.

One of the reasons that VRMs have found application in a wide variety of sit-
uations is because the widespread availability and low cost of microprocessors and
power electronics have brought the cost of the sensing and control required to suc-
cessfully operate VRM drive systems down to a level where these systems can be
competitive with competing technologies. Although the control of VRM drives is
more complex than that required for dc, induction, and permanent-magnet ac motor
systems, in many applications the overall VRM drive system turns out to be less
expensive and more flexible than the competition.

Assuming that the appropriate rotor-position sensor and control system is avail-
able, the question still remains as to how to excite the armature phases. From Fig. 8.9,
one possible excitation scheme would be to apply a constant current to each phase at
those angular positions at which d L/dθm is positive and zero current otherwise.

If this is done, the resultant torque waveform will be that of Fig. 8.10. Note that
because the torque waveforms of the individual phases overlap, the resultant torque
will not be constant but rather will have a pulsating component on top of its average
value. In general, torque profiles with significant pulsating components are typically
considered problematic both because they may produce damaging stresses in the
VRM and because they may result in the generation of excessive vibration and noise.

Consideration of Fig. 8.9 shows that there are alternative excitation strategies
which can reduce the torque pulsations of Fig. 8.10. Perhaps the simplest strategy is
to excite each phase for only 30◦ of angular position instead of the 40◦ which resulted
in Fig. 8.9. Thus, each phase would simply be turned off as the next phase is turned
on, and there would be no torque overlap between phases.

Although this strategy would be an ideal solution to the problem, as a practical
matter it is not possible to implement. The difficulty is that because each phase
winding has a self-inductance, it is not possible to instantaneously switch on or off

�90� 90�0

Torque

θm

Phase 1
Phase 2
Phase 3
Total

Figure 8.10 Individual phase torques and total torque for the motor of Fig. 8.9. Each
phase is excited with a constant current I0 only at positions where dL/dθm > 0.
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the phase currents. Specifically, for a VRM with independent (uncoupled) phases,2

the voltage-current relationship of the j th phase is given by

v j = R j i j + dλ j

dt
(8.11)

where

λ j = L j j (θm)i j (8.12)

Thus,

v j = R j i j + d

dt
[L j j (θm)i j ] (8.13)

Equation 8.13 can be rewritten as

v j =
{

R j + d

dt
[L j j (θm)]

}
i j + L j j (θm)

di j

dt
(8.14)

or

v j =
[

R j + d L j j (θm)

d(θm)

dθm

dt

]
i j + L j j (θm)

di j

dt
(8.15)

Although Eqs. 8.13 through 8.15 are mathematically complex and often require
numerical solution, they clearly indicate that some time is required to build up cur-
rents in the phase windings following application of voltage to that phase. A similar
analysis can be done for conditions associated with removal of the phase currents. The
delay time associated with current build up can limit the maximum achievable torque
while the current decay time can result in negative torque if current is still flowing
when d L(θm)/dθm reverses sign. These effects are illustrated in Example 8.3 which
also shows that in cases where winding resistance can be neglected, an approximate
solution to these equations can be found.

EXAMPLE 8.3

Consider the idealized 4/2 VRM of Example 8.1. Assume that it has a winding resistance of
R = 0.2 
/phase and a leakage inductance of Ll = 5 mH in each phase. For a constant rotor
speed of 400 r/min, calculate (a) the phase-1 current as a function of time during the interval
−60◦ ≤ θm ≤ 0◦, assuming that a constant voltage of V0 = 100 V is applied to phase 1 just
as d L11(θm)/dθm becomes positive (i.e., at θm = −60◦ = −π/3 rad), and (b) the decay of
phase-1 current if a negative voltage of −200 V is applied at θm = 0◦ and maintained until the
current reaches zero. (c) Using MATLAB†, plot these currents as well as the corresponding
torque. Also calculate the integral under the torque-versus-time plot and compare it to the
integral under the torque-versus-time curve for the time period during which the torque is
positive.

2 The reader is reminded that in some cases the assumption of independent phases is not justified, and then
a more complex analysis of the VRM is required (see the discussion following the derivation of Eq. 8.5).
† MATLAB is a registered trademark of The MathWorks, Inc.
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■ Solution

a. From Eq. 8.15, the differential equation governing the current buildup in phase 1 is given
by

v1 =
[

R + d L11(θm)

dθm

dθm

dt

]
i1 + L11(θm)

di1

dt

At 400 r/min,

ωm = dθm

dt
= 400 r/min × π

30

[
rad/sec

r/min

]
= 40 π

3
rad/sec

From Fig. 8.4 (for −60◦ ≤ θm ≤ 0◦)

L11(θm) = Ll + Lmax

π/3

(
θm + π

3

)
Thus

d L11(θm)

dθm

= 3Lmax

π

and

d L11(θm)

dθm

dθm

dt
=

(
3 Lmax

π

)
ωm = 5.12 


which is much greater than the resistance R = 0.2 


This will enable us to obtain an approximate solution for the current by neglecting
the Ri term in Eq. 8.13. We must then solve

d(L11i1)

dt
= v1

for which the solution is

i1(t) =
∫ t

0
v1dt

L11(t)
= V1t

L11(t)

where V1 = 100 V. Substituting

θm = −π

3
+ ωmt

into the expression for L11(θm) gives

L11(t) = L l +
(

3Lmax

π

)
ωm t

and thus

i1(t) = 100 t

0.005 + 5.12 t

which is valid until θm = 0◦ at t = t1 = 25 msec, at which point i1(t1) = 18.8 A.
b. During the period of current decay, the solution proceeds as in part (a). From Fig. 8.4, for

0◦ ≤ θm ≤ 60◦, d L11(θm)/dt = −5.12 
 and again the Ri term can again be ignored in
Eq. 8.15. As a result, during this period, the phase-1 current can again be solved by
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integration

i1(t) = i1(t1) +
∫ t

t1
v1dt

L11(t)
= V2 (t − t1)

L11(t)

where V2 = −200 V and

L11(t) = Ll +
(

3 Lmax

π

)
ωm(2t1 − t)

From this equation, we see that the current reaches zero at t = 33.45 msec.
c. The torque can be found from Eq. 8.9 by setting i2 = 0. Thus

Tmech = 1

2
i 2

1

d L11

dθm

Using MATLAB and the results of parts (a) and (b), the current waveform is plotted in
Fig. 8.11a and the torque in Fig. 8.11b. The integral under the torque curve is 0.228 N · m · sec
while that under the positive portion of the torque curve corresponding to positive torque is
0.030 N · m · sec. Thus we see that the negative torque produces a 16 percent reduction in
average torque from that which would otherwise be available if the current could be reduced
instantaneously to zero.

Notice first from the results of part (b) and from Fig. 8.11a that, in spite of applying a
negative voltage of twice the magnitude of the voltage used to build up the current, current
continues to flow in the winding for 8.4 ms after reversal of the applied voltage. From Fig. 8.11b,
we see that the result is a significant period of negative torque production. In practice, this may,
for example, dictate a control scheme which reverses the phase current in advance of the time
that the sign of d L(θm)/dθm reverses, achieving a larger average torque by trading off some
reduction in average positive torque against a larger decrease in average negative torque.

This example also illustrates another important aspect of VRM operation. For a system
of resistance of 0.2 
 and constant inductance, one would expect a steady-state current of
100/0.2 = 500 A. Yet in this system the steady-state current is less than 20 A. The reason
for this is evident from Eqs. 8.14 and 8.15 where we see that d L11(θm)/dt = 5.12 
 appears
as an apparent resistance in series with the winding resistance which is much larger than the
winding resistance itself. The corresponding voltage drop (the speed voltage) is of sufficient
magnitude to limit the steady-state current to a value of 100/5.12 = 19.5 A.

Here is the MATLAB script:

clc

clear

% Inductances

Ll = 0.005; % Leakage inductance

Lmax = 0.128; % Maximum value of variable inductance

% Operating parameters

rpm = 400;

omegam = rpm*pi/30;
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Figure 8.11 Example 8.3: (a) phase-1 current and
(b) corresponding torque profile.

% Voltages

V1 = 100; % Positive voltage

V2 = -200; % Negative voltage

% Step through time

delt = 1e-5;

sw = 1;

n = 0;
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% Initialize torque integrals

int1 = 0;

int2 = 0;

while sw > 0;

n = n+1;

t(n) = 2*delt*(n-1);

thetam = -pi/3+omegam*t(n);

if thetam <= 0

i1(n) = V1*t(n)/(Ll+(3*Lmax*omegam/pi)*t(n));

dL11dtheta = 3*Lmax/pi;

Torque(n) = 0.5*dL11dtheta*i1(n)^2;

int1 = int1 + Torque(n)*delt;

else

m = find(i1 == max(i1));

L11 = Ll+(3*Lmax*omegam/pi)*(2*t(m)-t(n));

i1(n) = max(i1)+V2*(t(n)-t(m))./L11;

if i1(n) < 0

sw = -1;

end

dL11dtheta = -3*Lmax/pi;

Torque(n) = 0.5*dL11dtheta*i1(n)^2;

int2 = int2 + Torque(n)*delt;

end

end

% Plot the current

plot(t*1000,i1,’LineWidth’,2)

set(gca,’ylim’,[0 21]);

set(gca,’xlim’,[0 34]);

set(gca,’FontSize’,20)

set(gca,’xtick’,[0 5 10 15 20 25 30])

xlabel(’Time [msec]’,’FontSize’,20)

ylabel(’i_1 [A]’,’FontSize’,20)

grid on

pause

% Plot the Torque

plot(t*1000,Torque,’LineWidth’,2)

ylim([-23 23]);

xlim([0 34]);

set(gca,’FontSize’,20)
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xlabel(’Time [msec]’,’FontSize’,20)

ylabel(’Torque [N\cdotm]’,’FontSize’,20)

set(gca,’xtick’,[0 5 10 15 20 25 30])

set(gca,’ytick’,[-20 -15 -10 -5 0 5 10 15 20])

grid on

fprintf(’int1 = %g N-m-s\n’,int1)

fprintf(’int2 = %g N-m-s\n’,int2)

Practice Problem 8.3

Reconsider Example 8.3 under the condition that a voltage of −250 V is applied to turn off the
phase current. Use MATLAB to calculate the integral under the torque-versus-time plot and
compare it to the integral under the torque-versus-time curve for the time period during which
the torque is positive.

Solution
The current returns to zero at t = 32.2 msec. The integral under the negative portion of the
torque curve is 0.030 N · m · s while that under the positive portion of the torque curve remains
equal to 0.228 N · m · s. In this case, the negative torque produces a 13 percent reduction in torque
from that which would otherwise be available if the current could be reduced instantaneously
to zero.

Example 8.3 illustrates important aspects of VRM performance which do not
appear in an idealized analysis such as that of Example 8.1 but which play an extremely
important role in practical applications. It is clear that it is not possible to readily
apply phase currents of arbitrary wave shapes. Winding inductances (and their time
derivatives) significantly affect the current waveforms that can be achieved for a given
applied voltage.

In general, the problem becomes more severe as the rotor speed is increased.
Consideration of Example 8.3 shows, for a given applied voltage, (1) that as the
speed is increased, the current will take a larger fraction of the available time during
which d L(θm)/dθm is positive to achieve a given level and (2) that the steady-state
current which can be achieved is progressively lowered. One common method for
maximizing the available torque is to apply the phase voltage somewhat in advance
of the time when d L(θm)/dθm begins to increase. This gives the current time to build
up to a significant level before torque production begins.

Yet a more significant difficulty (also illustrated in Example 8.3) is that just as the
currents require a significant amount of time to increase at the beginning of a turn-on
cycle, they also require time to decrease at the end. As a result, if the phase excitation
is removed at or near the end of the positive d L(θm)/dθm period, it is highly likely that
there will be phase current remaining as d L(θm)/dθm becomes negative, so there will
be a period of negative torque production, reducing the effective torque-producing
capability of the VRM.
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One way to avoid such negative torque production would be to turn off the phase
excitation sufficiently early in the cycle that the current will have decayed essentially
to zero by the time that d L(θm)/dθm becomes negative. However, there is clearly a
point of diminishing returns, because turning off the phase current while d L(θm)/dθm

is positive also reduces positive torque production. As a result, it is often necessary to
accept a certain amount of negative torque (to get the required positive torque) and to
compensate for it by the production of additional positive torque from another phase.

Another possibility is illustrated in Fig. 8.12. Figure 8.12a shows the cross-
sectional view of a 4/2 VRM similar to that of Fig. 8.3 with the exception that the
rotor pole angle has been increased from 60◦ to 75◦, with the result that the rotor
pole overhangs that of the stator by 15◦. As can be seen from Fig. 8.12b, this results
in a region of constant inductance separating the positive and negative d L(θm)/dθm

regions, which in turn provides additional time for the phase current to be turned off
before the region of negative torque production is reached.

Rotor
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60�

a a
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�b

�b

b

b
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�180�

�172.5�
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θm

dL11(θm)
dθm L11(θm)

Figure 8.12 A 4/2 VRM with 15◦ rotor overhang: (a) cross-sectional view and (b) plots of
L11(θm) and dL11(θm)/dθm versus θm.
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Although Fig. 8.12 shows an example with 15◦ of rotor overhang, in any particular
design the amount of overhang would be determined as part of the overall design
process and would depend on such issues as the amount of time required for the
phase current to decay and the operating speed of the VRM. Also included in this
design process must be recognition that the use of wider rotor poles will result in a
larger value of Lmin, which itself tends to reduce torque production (see the discussion
of Eq. 8.8) and to increase the time for current buildup.

Under conditions of constant-speed operation, it is often desirable to achieve
constant torque independent of rotor position. Such operation will minimize pulsating
torques which may cause excessive noise and vibration and perhaps ultimately lead to
component failure due to material fatigue. This means that as the torque production of
one phase begins to decrease, that of another phase must increase to compensate. As
can be seen from torque waveforms such as those found in Fig. 8.11, this represents a
complex control problem for the phase excitation, and totally ripple-free torque will
be difficult to achieve in many cases.

EXAMPLE 8.4

The analytic solutions of Example 8.3 are possible because the inductance variations of the
idealized 4/2 VRM are of a simple form and because the winding resistance is sufficiently
small that it can be ignored without significant loss of accuracy. In general, both the inclusion
of resistive effects and the fact that inductance variations in practical machines are more
complex that the idealized variation of the example make Eq. 8.13 difficult or impossible to
solve analytically.

As a result, the analysis of VRMs require numerical analysis. Although we will not
examine such analyses in any detail in this chapter, a simple example will be shown here
using the MATLAB/Simulink.3 Specifically, we will re-examine the steady-state performance
of the 4/2 VRM of Example 8.3, including the effects of winding resistance and with both
windings controlled with the same algorithm described in Ex. 8.3. (a) Using Simulink, we will
plot the phase-1 current and the torque. (b) Again using Simulink, we will examine the effects
of modifying the phase-voltage algorithm to advance the switching angle for the voltages by
5 degrees, i.e., to apply +100 V to each phase, 5 degrees before the derivative of the phase
voltage turns positive and −200 V, 5 degrees before the derivative turns negative.

■ Solution

a. Figure 8.13 shows the Simulink block diagram. The various blocks are:

■ Block “L”: This block calculates the phase inductances as a function of the rotor
angle θm (see Fig. 8.4(a)).

■ Block “dLdtheta”: This block calculates the derivatives of the phase inductances as a
function of the rotor angle θm (see Fig. 8.4(b)).

3 “MATLAB” and “Simulink” are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760, http://www.mathworks.com. Both Matlab and Simulink are avalailable in a Student
Edition.
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Figure 8.13 Simulink block diagram for Example 8.4

■ Block “V”: This block calculates the voltages applied to each phase as a function of
the angle θm and the phase currents; it turns off the applied −250 V voltage when the
phase currents reach zero or first turn negative (since, because the simulation is
solved numerically, it is unlikely that they will be identically zero at any point as they
decay).

■ Block “didt”: This block calculates the derivatives of the phase currents from Eq. 8.15

di j

dt
= 1

L j j

(
v j −

[
R j + d L j j (θm)

dt
ωm

]
i j

)
where

ωm = dθm

dt

Note that at a constant speed of 400 r/min,

ωm = 400 π

30

Because of the numerical implementation, it is possible that a slightly negative value
of phase current will appear at the input of this block and thus there is additional
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Figure 8.14 (a) Phase-1 current and
(b) the torque profile for one revolution for
part (a) of Example 8.4.

(b)

code in this block to re-set the currents to zero should a negative value of current
appear at the input.

■ Block “Torque”: This block calculates the electromechanical torque of Eq. 8.9.

Figure 8.14(a) shows a plot of the phase-1 current during one revolution of the rotor. The
maximum value of the current is 18.4 A as compared to 18.8 A calculated in Example 8.3.
The total torque produced by phases 1 and 2 is plotted in Fig. 8.14(b). It has a average
value of 10.1 N·m.

b. By advancing the switching angle by 5 degrees, the current in each phase winding is seen
to rise rapidly because the d L j j/dθm term in Eq. 8.15 is initially zero and the current build
up is thus limited only by the phase-winding leakage inductance and resistance. This can
be seen from the phase-1 current waveform plotted in Fig. 8.15a, where the peak current is
equal to 47.6 A as opposed to 18.4 A in part (a). As a result, there is significant phase
current flowing when, 5 degrees after the application of voltage, d L/dθm becomes
positive and the motor immediately begins to develop torque, as can be seen from torque
waveform plotted in Fig. 8.15(b).

Although turning off the phase current “early,” i.e., while d L/dθm is positive,
reduces the positive torque, it results in less negative torque once d L/dθm becomes
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Figure 8.15 (a) Phase-1 current and
(b) the torque profile for one revolution with
the voltage-switching angle advanced by
5 degrees for part (b) of Example 8.4.

(b)

negative. The net result is greater average torque; in this case the average torque is
19.2 N·m as compared to 10.1 N·m found in part (a) without the advancing the switching
angles

8.4 NONLINEAR ANALYSIS
Like most electric machines, VRMs employ magnetic materials both to direct and
shape the magnetic fields in the machine and to increase the magnetic flux density
that can be achieved from a given amplitude of current. To obtain the maximum
benefit from the magnetic material, practical VRMs are operated with the magnetic
flux density high enough so that the magnetic material is in saturation under normal
operating conditions.

As with the synchronous, induction, and dc machines discussed in Chapters 5–7,
the actual operating flux density is determined by trading off such quantities as
cost, efficiency, and torque-to-mass ratio. However, because the VRM and its drive
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Figure 8.16 Plots of λ versus i for a VRM with (a) linear and (b) nonlinear magnetics.

electronics are quite closely interrelated, VRM design typically involves additional
trade-offs that in turn affect the choice of operating flux density.

Figure 8.2 shows typical inductance-versus-angle curves for the VRMs of
Fig. 8.1. Such curves are characteristic of all VRMs. It must be recognized that
the use of the concept of inductance is strictly valid only under the condition that
the magnetic circuit in the machine is linear so that the flux density (and hence the
winding flux linkage) is proportional to the winding current. This linear analysis is
based on the assumption that the magnetic material in the motor has constant magnetic
permeability and was used for all the analyses earlier in this chapter.

An alternate representation of the flux-linkage versus current characteristic of a
VRM is shown in Fig. 8.16. This representation consists of a series of plots of the flux
linkage versus current at various rotor angles. In this figure, the curves correspond to
a machine with a two-pole rotor such as in Fig. 8.1, and hence a plot of curves from
0◦ to 90◦ is sufficient to completely characterize the machine.

Figure 8.16a shows set of λ-i characteristics such as which would be measured in
a machine with linear magnetics, i.e., constant magnetic permeability and no magnetic
saturation. For each rotor angle, the curve is a straight line whose slope corresponds
to the inductance L(θm) at that angular position. In fact, a plot of L(θm) versus θm

such as in Fig. 8.2 is an equivalent representation to that of Fig. 8.16a.
In practice, VRMs do operate with their magnetic material in saturation and their

λ-i characteristics take on the form of Fig. 8.16b. Notice that for low current levels, the
curves are linear, corresponding to the assumption of linear magnetics of Fig. 8.16a.
However, for higher current levels, saturation begins to occur and the curves bend
over steeply, with the result that there is significantly less flux linkage for a given
current level. Finally, note that saturation effects are maximum at θm = 0◦ (for which
the rotor and stator poles are aligned) and minimal for higher angles as the rotor
approaches the nonaligned position.

Saturation has two important, somewhat contradictory effects on VRM perfor-
mance. On the one hand, saturation limits flux densities for a given current level and
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Figure 8.17 (a) Flux-linkage-current trajectory for the (a) linear and (b) nonlinear
machines of Fig. 8.16.

thus tends to limit the amount of torque available from the VRM. On the other hand,
it can be shown that saturation tends to lower the required inverter volt-ampere rating
for a given VRM output power and thus tends to make the inverter smaller and less
costly. A well-designed VRM system will be based on a trade-off between the two
effects.4

These effects of saturation can be investigated by considering the two machines of
Figs. 8.16a and b operating at the same rotational speed and under the same operating
condition. For the sake of simplicity, we assume a somewhat idealized condition in
which the phase-1 current is instantaneously switched on to a value I0 at θm = −90◦

(the unaligned position for phase 1) and is instantaneously switched off at θm = 0◦

(the aligned position). This operation is similar to that discussed in Example 8.1 in that
we will neglect the complicating effects of the current buildup and decay transients
which are illustrated in Examples 8.3 and 8.4.

Because of rotor symmetry, the flux linkages for negative rotor angles are identical
to those for positive angles. Thus, the flux linkage-current trajectories for one current
cycle can be determined from Figs. 8.16a and b and are shown for the two machines
in Figs. 8.17a and b.

As each trajectory is traversed, the power input to the winding is given by its
volt-ampere product

pin = iv = i
dλ

dt
(8.16)

The net electric energy input to the machine (the energy that is converted to
mechanical work) in a cycle can be determined by integrating Eq. 8.16 around the

4 For a discussion of saturation effects in VRM drive systems, see T. J. E. Miller, “Converter Volt-Ampere
Requirements of the Switched Reluctance Motor,” IEEE Trans. Ind. Appl., IA-21:1136–1144 (1985).
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trajectory

Net work =
∫

pin dt =
∮

i dλ (8.17)

This can be seen graphically as the area enclosed by the trajectory, labeled Wnet in
Figs. 8.17a and b. Note that the saturated machine converts less useful work per cycle
than the unsaturated machine. As a result, to get a machine of the same power output,
the saturated machine will have to be larger than a corresponding (hypothetical)
unsaturated machine. This analysis demonstrates the effects of saturation in lowering
torque and power output.

The peak energy input to the winding from the inverter can also be calculated. It
is equal to the integral of the input power from the start of the trajectory to the point
(I0, λmax):

Peak energy =
∫ λmax

0
i dλ (8.18)

This is the total area under the λ-i curve, shown in Fig. 8.17a and b as the sum of the
areas labeled Wrec and Wnet.

Since we have seen that the energy represented by the area Wnet corresponds to
useful output energy, it is clear that the energy represented by the area Wrec corresponds
to additional energy input that is required to make the VRM operate (i.e., it goes into
creating the magnetic fields in the VRM). This energy produces no useful work; rather
it corresponds to reactive power which is recycled back in and out of the inverter during
the course of a cycle.

The inverter volt-ampere rating is determined by the average power per phase
processed by the inverter as the motor operates, equal to the peak energy input to the
VRM divided by the time T between cycles. Similarly, the average output power per
phase of the VRM is given by the net energy input per cycle divided by T . Thus the
ratio of the inverter volt-ampere rating to power output is

Inverter volt-ampere rating

Net output area
= area(Wrec + Wnet)

area(Wnet)
(8.19)

In general, the inverter volt-ampere rating determines its cost and size. Thus, for
a given power output from a VRM, a smaller ratio of inverter volt-ampere rating to
output power means that the inverter will be both smaller and cheaper. Comparison
of Figs. 8.17a and b shows that this ratio is smaller in the machine which saturates;
the effect of saturation is to lower the amount of energy which must be recycled each
cycle and hence the volt-ampere rating of the inverter required to supply the VRM.

EXAMPLE 8.5

Consider a symmetrical two-phase 4/2 VRM whose λ-i characteristic can be represented by
the following λ-i expression (for phase 1) as a function of θm over the range 0 ≤ θm ≤ 90◦

λ1 =
(

0.005 + 0.09

(
90◦ − θm

90◦

)(
8.0

8.0 + i1

))
i1
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Phase 2 of this motor is identical to that of phase 1, and there is no significant mutual inductance
between the phases. Assume that the winding resistance is negligible.

a. Using MATLAB, plot a family of λ1-i1 curves for this motor as θm varies from 0 to 90◦ in
10◦ increments and as i1 is varied from 0 to 30 A.

b. Again using MATLAB, use Eq. 8.19 and Fig. 8.17 to calculate the ratio of the inverter
volt-ampere rating to the VRM net power output for the following idealized
operating cycle:

i. The current is instantaneously raised to 25 A when θm = −90◦.
ii. The current is then held constant as the rotor rotates to θm = 0◦.

iii. At θm = 0◦, the current is reduced to zero.

c. Assuming the VRM to be operating as a motor using the cycle described in part (b) and
rotating at a constant speed of 2500 r/min, calculate the net electromechanical power
supplied to the rotor.

■ Solution

a. The λ1-i1 curves are shown in Fig. 8.18a.
b. Figure 8.18b shows the areas Wnet and Wrec. Note that, as pointed out in the text, the

λ-i curves are symmetrical around θm = 0◦ and thus the curves for negative values of θm

are identical to those for the corresponding positive values. The area Wnet is bounded by
the λ1-i1 curves corresponding to θm = 0◦ and θm = 90◦ and the line i1 = 25 A. The
area Wrec is bounded by the line λ1 = λmax and the λ1-i1 curve corresponding to θm = 0◦,
where λmax = λ1(25 A, 0◦).

Using MATLAB to integrate the areas, the desired ratio can be calculated from
Eq. 8.19 as

Inverter volt-ampere rating

Net output power
= area(Wrec + Wnet)

area(Wnet)
= 1.55

c. Energy equal to area(Wnet) is supplied by each phase to the rotor twice during each
revolution of the rotor. If area(Wnet) is measured in joules, the power in watts supplied
per phase is thus equal to

Pphase = 2

(
area(Wnet)

T

)
W

where T is the time for one revolution (in seconds).
From MATLAB, area(Wnet) = 9.91 joules and for 2500 r/min, T = 60/2500 =

0.024 sec,

Pphase = 2

(
9.91

0.024

)
= 825 W

and thus

Pmech = 2Pphase = 1650 W
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(a)

(b)

Figure 8.18 (a) λ1-i1 curves for Example 8.5. (b) Areas used in the
calculation of part (b).
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Here is the MATLAB script:

clc
clear

%(a) First plot the lambda-i characteristics

for m = 1:10
theta(m) = 10*(m-1);

for n=1:101
i(n) = 30*(n-1)/100;
Lambda(n) = i(n)*(0.005 + 0.09*((90-theta(m))/90)*(8/(i(n)+8)));

end

plot(i,Lambda)
if m==1

hold
end

end

hold
xlabel(’Current [A]’)
ylabel(’Lambda [Wb]’)
title(’Family of lambda-i curves as theta_m varies from 0 to 90 degrees’)
text(17,.7,’theta_m = 0 degrees’)
text(20,.06,’theta_m = 90 degrees’)

%(b) Now integrate to find the areas.

%Peak lambda at 0 degrees, 25 Amps
lambdamax = 25*(0.005+0.09*(8/(25+8)));

AreaWnet = 0;
AreaWrec = 0;

% 100 integration step
deli = 25/100;

for n=1:101
i(n) = 25*(n-1)/100;
AreaWnet = AreaWnet + deli*i(n)*(0.09)*(8/(i(n)+8));
AreaWrec = AreaWrec + deli*(lambdamax - i(n)*(0.005+0.09*(8/(i(n)+8))));

end
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Ratio = (AreaWrec + AreaWnet)/AreaWnet;

fprintf(’\nPart(b) Ratio = %g’,Ratio)

%(c) Calculate the power

rpm = 2500;

rps = 2500/60;

T = 1/rps;

Pphase = 2*AreaWnet/T;

Ptot = 2*Pphase;

fprintf(’\n\nPart(c) AreaWnet = %g [Joules]’,AreaWnet)

fprintf(’\n Pphase = %g [W] and Ptot = %g [W]\n’,Pphase,Ptot)

Practice Problem 8.4

Consider a two-phase VRM which is identical to that of Example 8.5 with the exception of an
additional 5 mH of leakage inductance in each phase.

a. Calculate the ratio of the inverter volt-ampere rating to the VRM net power output for
the following idealized operating cycle:

i. The current is instantaneously raised to 25 A when θm = −90◦.
ii. The current is then held constant as the rotor rotates to θm = 10◦.

iii. At θm = 10◦, the current is reduced to zero.

b. Assuming the VRM to be operating as a motor using the cycle described in part (a)
and rotating at a constant speed of 2500 r/min, calculate the net electromechanical
power supplied to the rotor.

Solution
a.

Inverter volt-ampere rating

Net output power
= 1.75

b. Pmech = 1467 W

Saturation effects clearly play a significant role in the performance of most VRMs
and must be taken into account. In addition, the idealized operating cycle illustrated
in Example 8.5 cannot, of course, be achieved in practice since some rotor motion is
likely to take place over the time scale over which current changes occur. As a result,
it is often necessary to resort to numerical-analysis packages such as finite-element
programs as part of the design process for practical VRM systems. Many of these
programs incorporate the ability to model the nonlinear effects of magnetic saturation
as well as mechanical (e.g., rotor motion) and electrical (e.g., current buildup) dynamic
effects.
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As we have seen, the design of a VRM drive system typically requires that a
trade-off be made. On the one hand, saturation tends to increase the size of the VRM
for a given power output. On the other hand, on comparing two VRM systems with
the same power output, the system with the higher level of saturation will typically
require an inverter with a lower volt-ampere rating. Thus the ultimate design will be
determined by a trade-off between the size, cost, and efficiency of the VRM and of
the inverter.

8.5 STEPPING MOTORS
As we have seen, when the phases of a VRM are energized sequentially in an appro-
priate step-wise fashion, the VRM will rotate a specific angle for each step. Motors
designed specifically to take advantage of this characteristic are referred to as stepping
motors or stepper motors. Frequently stepping motors are designed to produce a large
number of steps per revolution, for example 50, 100, or 200 steps per revolution
(corresponding to a rotation of 7.2◦, 3.6◦ and 1.8◦ per step).

An important characteristic of the stepping motor is its compatibility with digital-
electronic systems. These systems are common in a wide variety of applications and
continue to become more powerful and less expensive. For example, the stepping
motor is often used in digital control systems where the motor receives open-loop
commands in the form of a train of pulses to turn a shaft or move an object a specific
distance. Typical applications include paper-feed and print-head-positioning motors
in printers and plotters, drive and head-positioning motors in disk drives and CD
players, and worktable and tool positioning in numerically controlled machine tools.
In many applications, position information can be obtained simply by keeping count
of the pulses sent to the motor, in which case position sensors and feedback control
are not required.

The angular resolution of a VRM is determined by the number of rotor and stator
teeth and can be greatly enhanced by techniques such as castleation, as is discussed in
Section 8.2. Stepping motors come in a wide variety of designs and configurations. In
addition to variable-reluctance configurations, these include permanent-magnet and
hybrid configurations. The use of permanent magnets in combination with a variable-
reluctance geometry can significantly enhance the torque and positional accuracy of
a stepper motor.

The VRM configurations discussed in Sections 8.1 through 8.3 consist of a single
rotor and stator with multiple phases. A stepping motor of this configuration is called
a single-stack, variable-reluctance stepping motor. An alternate form of variable-
reluctance stepping motor is known as a multistack variable-reluctance stepping
motor. In this configuration, the motor can be considered to be made up of a set of
axially displaced, single-phase VRMs mounted on a single shaft.

Figure 8.19 shows a multistack variable-reluctance stepping motor. This type of
motor consists of a series of stacks, each axially displaced, of identical geometry and
each excited by a single phase winding, as shown in Fig. 8.20. The motor of Fig. 8.19
has three stacks and three phases, although motors with additional phases and stacks
are common. For an ns-stack motor, the rotor or stator (but not both) on each stack is
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Figure 8.19 Cutaway view of a three-phase, three-stack variable-reluctance
stepping motor. (Photo Courtesy of Warner Electric, an Altra Industrial Motion
Company.)

Rotor

Stator

Phase winding

i

Figure 8.20 Diagram of one stack and phase of a multiphase, multistack variable-
reluctance stepping motor, such as that in Fig. 8.19. For an ns-stack motor, the rotor
or stator (but not both) on each stack is displaced by 1/ns times the pole pitch.
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displaced by 1/ns times the pole-pitch angle. In Fig. 8.19, the rotor poles are aligned,
but the stators are offset in angular displacement by one-third of the pole pitch. By
successively exciting the individual phases, the rotor can be turned in increments of
this displacement angle.

A schematic diagram of a two-phase stepping motor with a permanent-magnet,
two-pole rotor is shown in Fig. 8.21. Note that this machine is in fact a two-phase
synchronous machine, similar for example to the three-phase permanent-magnet ac
machine of Fig. 5.34. The distinction between such a stepping motor and a syn-
chronous motor arises not from the construction of the motor but rather from how the
motor is operated. The synchronous motor is typically intended to drive a load at a
specified speed, and the stepping motor is typically intended to control the position
of a load.

The rotor of the stepping motor of Fig. 8.21 assumes the angles θm = 0, 45◦,
90◦, . . . as the windings are excited in the sequence:

1. Positive current in phase 1 alone.

2. Equal-magnitude positive currents in phase 1 and phase 2.

3. Positive current in phase 2 alone.

4. Equal-magnitude negative current in phase 1 and positive current in phase 2.

5. Negative current in phase 1 alone.

6. And so on.

Note that if a ferromagnetic rotor were substituted for the permanent-magnet rotor,
the rotor would move in a similar fashion.

N

S

θm�1

�2

1

2

Figure 8.21 Schematic diagram of a
two-phase permanent-magnet stepping motor.
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Figure 8.22 Torque-angle curves for the stepping motor of Fig. 8.21: (a) permanent-
magnet rotor and (b) variable-reluctance rotor.

The stepping motor of Fig. 8.21 can also be used for 90◦ steps by exciting the coils
singly. In the latter case, only a permanent-magnet rotor can be used. This can be seen
from the torque-angle curves for the two types of rotors shown in Fig. 8.22. Whereas
the permanent-magnet rotor produces peak torque when the excitation is shifted 90◦,
the ferromagnetic rotor produces zero torque and may move in either direction.

The rotor position in the permanent-magnet stepping motor of Fig. 8.21 is defined
by the winding currents with no ambiguity and depends on the direction of the phase
currents. Reversing the phase currents will cause the rotor to reverse its orientation.
This is in contrast to VRM configurations with a ferromagnetic rotor, in which two
rotor positions are equally stable for any particular set of phase currents, and hence
the rotor position cannot be determined uniquely. Permanent-magnet stepping motors
are also unlike their VRM counterparts in that torque tending to align the rotor with
the stator poles will be generated even when there is no excitation applied to the phase
windings. Thus the rotor will have preferred unexcited rest positions, a fact which
can be used to advantage in some applications.

EXAMPLE 8.6

Using the techniques of Chapter 3 and neglecting saturation effects, the torque of a two-phase,
permanent-magnet stepping motor of the form of Fig. 8.21 can be expressed as

Tmech = T0 (i1 cos θm + i2 sin θm)
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where T0 is a positive constant that depends upon the motor geometry and the properties of the
permanent magnet.

Calculate the rest (zero-torque) positions which will result if the motor is driven by a drive
such that each phase current can be set equal to three values −I0, 0, and I0. Using such a drive,
what is the motor step size?

■ Solution
In general, the zero-torque positions of the motor can be found by setting the torque expression
to zero and solving for the resultant rotor position. Thus setting

Tmech = T0 (i1 sin θm − i2 cos θm) = 0

gives

i1 sin θm − i2 cos θm = 0

or

θm = tan−1

(
i2

i1

)

Note that not all of these zero-torque positions correspond to stable equilibrium positions.
For example, operation with i1 = I0 and i2 = 0 gives two zero-torque positions: θm = 0◦

and θm = 180◦. Yet only the position θm = 0◦ is stable. This is directly analogous to the case
of a hanging pendulum which sees zero torque both when it is hanging downward (θ = 0◦)
and when it is sitting inverted (θ = 180◦). Yet, it is clear that the slightest perturbation of the
position of the inverted pendulum will cause it to rotate downwards and that it will eventually
come to rest in the stable hanging position.

Stable rest positions of the rotor are determined by the requirement that a restoring torque
is produced as the rotor moves from that position. Thus, a negative torque should result if
the rotor moves in the +θm direction, and a positive torque should result for motion in the −θm

direction. Mathematically, this can be expressed as an additional constraint on the torque at the
rest position

∂Tmech

∂θm

∣∣∣∣
i1,i2

< 0

where the partial derivative is evaluated at the zero-torque position and is taken with the phase
currents held constant. Thus, in this case, the rest position must satisfy the additional constraint
that

∂Tmech

∂θm

∣∣∣∣
i1,i2

= −T0 (i1 cos θm + i2 sin θm) < 0

From this equation, we see for example that with i1 = I0 and i2 = 0, at θm = 0◦, ∂Tmech/

∂θm < 0 and thus θm = 0◦ is a stable rest position. Similarly, at θm = 180◦, ∂Tmech/∂θm > 0 and
thus θm = 180◦ is not a stable rest position.

Using these relationships, Table 8.1 lists the stable rest positions of the rotor for the various
combinations of phase currents.

From this table we see that this drive results in a step size of 45◦.
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Table 8.1 Rotor rest positions for Example 8.6.

i1 i2 θm

0 0 −
0 −I0 270◦

0 I0 90◦

−I0 0 180◦

−I0 −I0 225◦

−I0 I0 135◦

I0 0 0◦

I0 −I0 315◦

I0 I0 45◦

Practice Problem 8.5

In order to achieve a step size of 22.5◦, the motor drive of Example 8.6 is modified so that each
phase can be driven by currents of magnitude 0, ±k I0, and ±I0. Find the required value of the
constant k.

Solution

k = tan−1 (22.5◦) = 0.4142

In Example 8.6 we see that stable equilibrium positions of an unloaded stepping
motor satisfy the conditions that there is zero torque, i.e.,

Tmech = 0 (8.20)

and that there is positive restoring torque, i.e.,

∂Tmech

∂θm

∣∣∣∣
i1,i2

< 0 (8.21)

In practice, there will of course be a finite load torque tending to perturb the stepping
motor from these idealized positions. For open-loop control systems (i.e., control
systems in which there is no mechanism for position feedback), a high degree of
position control can be achieved by designing the stepping motor to produce large
restoring torque (i.e., a large magnitude of ∂Tmech/∂θm). In such a stepping motor,
load torques will result in only a small movement of the rotor from the idealized
positions which satisfy Eqs. 8.20 and 8.21.

Example 8.6 also shows how carefully controlled combinations of phase cur-
rents can enhance the resolution of a stepper motor. This technique, referred to as
microstepping, can be used to achieve increased step resolution of a wide variety
of stepper motors. As the following example shows, microstepping can be used to
produce extremely fine position resolution. The increased resolution comes, however,
at the expense of an increase in complexity of the stepping-motor drive electronics
and control algorithms, which must accurately control the distribution of current to
multiple phases simultaneously.
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EXAMPLE 8.7

Consider again the two-phase, permanent-magnet stepping motor of Example 8.6. Calculate
the rotor position which will result if the phase currents are controlled to be sinusoidal functions
of a reference angle θref in the form

i1 = I0 cos θref

i2 = I0 sin θref

■ Solution
Substitution of the current expressions into the torque expression of Example 8.6 gives

Tmech = T0 (i1 cos θm + i2 sin θm) = T0 I0 (cos θref cos θm + sin θref sin θm)

Use of the trigonometric identity cos (α − β) = cos α cos β + sin α sin β gives

Tmech = T0 I0 cos (θref − θm)

From this expression and using the analysis of Example 8.6, we see that the rotor equilib-
rium position will be equal to the reference angle, i.e., θm = θref. In a practical implementation,
a digital controller is likely to be used to increment θref in finite steps, which will result in finite
steps in the position of the stepping-motor.

The hybrid stepping motor combines characteristics of the variable-reluctance
and permanent-magnet stepping motors. A photo of a hybrid stepping motor is shown
in Fig. 8.23, and a schematic view of a hybrid stepping motor is shown in Fig. 8.24.
The hybrid-stepping-motor rotor configuration appears much like that of a multistack
variable-reluctance stepping motor. In the rotor of Fig. 8.24a, two identical rotor stacks
are displaced axially along the rotor and displaced in angle by one-half the rotor pole
pitch, while the stator pole structure is continuous along the length of the rotor. Unlike
the multistack variable-reluctance stepping motor, in the hybrid stepping motor, the

Figure 8.23 Disassembled 1.8◦/step hybrid stepping motor.
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Figure 8.24 Schematic view of a hybrid stepping motor. (a) Two-stack rotor showing
the axially directed permanent magnet and the pole pieces displaced by one-half the
pole pitch. (b) End view from the rotor north poles and showing the rotor south poles at
the far end (shown crosshatched). Phase 1 of the stator is energized to align the rotor as
shown.

rotor stacks are separated by an axially directed permanent magnet. As a result, in
Fig. 8.24a one end of the rotor can be considered to have a north magnetic pole and
the other end a south magnetic pole. Figure 8.24b shows a schematic end view of a
hybrid stepping motor. The stator has four poles with the phase-1 winding wound on
the vertical poles and the phase-2 winding wound on the horizontal poles. The rotor
is shown with its north-pole end at the near end of the motor and the south-pole end
(shown crosshatched) at the far end.

In Fig. 8.24b, phase 1 is shown excited such that the top stator pole is a south
pole while the bottom pole is a north pole. This stator excitation interacts with the
permanent-magnet flux of the rotor to align the rotor with a pole on its north-pole end
vertically upward and a pole on its south-pole end vertically downward, as shown in
the figure. Note that if the stator excitation is removed, there will still be a permanent-
magnet torque tending to maintain the rotor in the position shown.

To turn the rotor, excitation is removed from phase 1, and phase 2 is excited. If
phase 2 is excited such that the right-hand stator pole is a south pole and the left-
hand one is a north pole, the rotor will rotate 30◦ counterclockwise. Similarly, if the
opposite excitation is applied to the phase-2 winding, a 30◦ rotation in the clockwise
direction will occur. Thus, by alternately applying phase-1 and phase-2 excitation
of the appropriate polarity, the rotor can be made to rotate in either direction by a
specified angular increment.

Practical hybrid stepping motors are generally built with more rotor poles than
are indicated in the schematic motor of Fig. 8.24, in order to give much better angular
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resolution. Correspondingly, the stator poles are often castleated (see Fig. 8.8) to
further increase the angular resolution. In addition, they may be built with more than
two stacks per rotor.

The hybrid stepping motor design offers advantages over the permanent-magnet
design discussed earlier. It can achieve small step sizes easily and with a simple
magnet structure while a purely permanent-magnet motor would require a multipole
permanent magnet. In comparison with the variable-reluctance stepping motor, the
hybrid design may require less excitation to achieve a given torque because some of
the excitation is supplied by the permanent magnet. In addition, the hybrid stepping
motor will tend to maintain its position when the stator excitation is removed, as does
the permanent-magnet design.

The actual choice of a stepping-motor design for a particular application is de-
termined based on the desired operating characteristics, availability, size, and cost.
In addition to the three classifications of stepping motors discussed in this chapter,
a number of other different and often quite clever designs have been developed. Al-
though these encompass a wide range of configurations and construction techniques,
the operating principles remain the same.

8.6 SUMMARY
Variable-reluctance machines are perhaps the simplest of electrical machines. They
consist of a stator with excitation windings and a magnetic rotor with saliency. Torque
is produced by the tendency of the salient-pole rotor to align with excited magnetic
poles on the stator.

VRMs are synchronous machines in that they produce net torque only when
the rotor motion is in some sense synchronous with the applied stator mmf. This
synchronous relationship may be complex, with the rotor speed being some specific
fraction of the applied electrical frequency as determined not only by the number of
stator and rotor poles but also by the number of stator and rotor teeth on these poles.
In fact, in some cases, the rotor will be found to rotate in the direction opposite to the
rotation direction of the applied stator mmf.

Successful operation of a VRM depends on exciting the stator phase windings
in a specific fashion correlated to the instantaneous position of the rotor. Thus, rotor
position must be measured, and a controller must be employed to determine the
appropriate excitation waveforms and to control the output of the inverter. Typically
chopping is required to obtain these waveforms. The net result is that although the
VRM is itself a simple device, somewhat complex electronics are typically required
to make a complete drive system.

The significance of VRMs in engineering applications stems from their low cost,
reliability, and controllability. Because their torque depends only on the square of the
applied stator currents and not on their direction, these machines can be operated from
unidirectional drive systems, reducing the cost of the power electronics. However, it is
only relatively recently, with the advent of low-cost, flexible power electronic circuitry



Umans-3930269 book December 14, 2012 12:24

504 CHAPTER 8 Variable-Reluctance Machines and Stepping Motors

and microprocessor-based control systems, that VRMs have begun to see widespread
application in systems ranging from traction drives to high-torque, precision position
control systems for robotics applications.

Practical experience with VRMs has shown that they have the potential for high
reliability. This is due in part to the simplicity of their construction and to the fact
that there are no windings on their rotors. In addition, VRM drives can be operated
successfully (at a somewhat reduced rating) following the failure of one or more
phases, either in the machine or in the inverter. VRMs typically have a large number
of stator phases (four or more), and significant output can be achieved even if some of
these phases are out of service. Because there is no rotor excitation, there will be no
voltage generated in a phase winding which fails open-circuited or current generated
in a phase winding which fails short-circuited, and thus the machine can continue to
be operated without risk of further damage or additional losses and heating.

Because VRMs can be readily manufactured with a large number of rotor and
stator teeth (resulting in large inductance changes for small changes in rotor angle),
they can be constructed to produce very large torque per unit volume. There is,
however, a trade-off between torque and velocity, and such machines will have a low
rotational velocity (consistent with the fact that only so much power can be produced
by a given machine frame size). On the opposite extreme, the simple configuration
of a VRM rotor and the fact that it contains no windings suggest that it is possible
to build extremely rugged VRM rotors. These rotors can withstand high speeds, and
motors which operate in excess of 200,000 r/min have been built.

Finally, we have seen that saturation plays a large role in VRM performance.
As recent advances in power electronic and microelectronic circuitry have brought
VRM drive systems into the realm of practicality, so have advances in computer-
based analytical techniques for magnetic-field analysis. Use of these techniques now
makes it practical to perform optimized designs of VRM drive systems which are
competitive with alternative technologies in many applications.

Stepping motors are closely related to VRMs in that excitation of each succes-
sive phase of the stator results in a specific angular rotation of the rotor. Stepping
motors come in a wide variety of designs and configurations. These include variable-
reluctance, permanent-magnet, and hybrid configurations. The rotor position of a
variable-reluctance stepper motor is not uniquely determined by the phase currents
since the phase inductances are not unique functions of the rotor angle. The addition
of a permanent magnet changes this situation and the rotor position of a permanent-
magnet stepper motor is a unique function of the phase currents.

Stepping motors are the electromechanical companions to digital electronics. By
proper application of phase currents to the stator windings, these motors can be made
to rotate in well-defined steps ranging down to a fraction of a degree per pulse. They are
thus essential components of digitally controlled electromechanical systems where a
high degree of precision is required. They are found in a wide range of applications
including numerically controlled machine tools, in printers and plotters, and in disk
drives.
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8.7 CHAPTER 8 VARIABLES
α, β Spatial angles [rad]
λ Flux linkage [Wb]
μ0 Permeability of free space = 4π × 10−7 [H/m]
θm Rotor position [rad]
ωm Mechanical angular velocity [rad/sec]
D Diameter [m]
g Gap length [m]
i Current [A]
L Inductance [H]
N Number of turns
p Power [W]
R Radius [m], resistance [
]
t Time [sec]
T Torque [N·m], time [sec]
v Voltage [V]
Wnet Energy corresponding to output power [J]
Wrec Recycled energy corresponding to reactive power power [J]
W ′

fld Coenergy [J]

Subscripts:

in Input
max Maximum
mech Mechanical
ref Reference

8.8 PROBLEMS
8.1 Repeat Example 8.1 for a machine identical to that considered in the example

except that the stator pole-face angle is β = 50◦ and the air-gap length is
2 × 10−2 cm.

8.2 In the paragraph preceding Eq. 8.1, the text states that “under the
assumption of negligible iron reluctance the mutual inductances between the
phases of the doubly salient VRM of Fig. 8.1b will be zero, with the exception
of a small, essentially constant component associated with leakage flux.”
Neglect any leakage flux effects and use magnetic circuit techniques to show
that this statement is true.

8.3 Use magnetic-circuit techniques to show that the phase-to-phase mutual
inductance in the 6/4 VRM of Fig. 8.5 is zero under the assumption of infinite
rotor- and stator-iron permeability. Neglect any contributions of leakage flux.
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8.4 A 6/4 VRM of the form of Fig. 8.5 has the following properties:

Stator pole angle β = 30◦

Rotor pole angle α = 30◦

Air-gap length g = 0.45 mm
Rotor outer radius R = 6.3 cm
Active length D = 8 cm

This machine is connected as a three-phase motor with opposite poles
connected in series to form each phase winding. There are 45 turns per pole
(90 turns per phase). The rotor and stator iron can be considered to be of
infinite permeability and hence mutual-inductance effects can be
neglected.

a. Defining the zero of rotor angle θm at the position when the phase-1
inductance is maximum, plot and label the inductance of phase 1 as a
function of rotor angle.

b. On the plot of part (a), plot the inductances of phases 2 and 3.

c. Find the phase-1 current I0 which results in a magnetic flux density of
1.1 T in the air gap under the phase-1 pole face when the rotor is in a
position of maximum phase-1 inductance.

d. Assuming that the phase-1 current is held constant at the value found in
part (c) and that there is no current in phases 2 and 3, plot the torque as a
function of rotor position.

The motor is to be driven from a three-phase current-source inverter which
can be switched on or off to supply either zero current or a constant current of
magnitude I0 independently to each of the three phases.

e. Under the idealized assumption that the currents can be instantaneously
switched, determine the sequence of phase currents (as a function of rotor
position) that will result in constant positive motor torque, independent of
rotor position.

f. If the frequency of the stator excitation is such that a time T0 = 40 msec is
required to sequence through all three phases under the excitation
conditions of part (e), find the rotor angular velocity and its direction of
rotation.

8.5 Repeat Problem 8.4 for a 6/4 VRM with rotor and stator pole angles of 35◦.
Use the same assumptions as in Problem 8.4.

8.6 In Section 8.2, when discussing Fig. 8.5, the text states: “In addition to the
fact that there are not positions of simultaneous alignment for the 6/4 VRM,
it can be seen that there also are no rotor positions at which only a torque of a
single sign (either positive or negative) can be produced.” Show that this
statement is true.

8.7 Consider a three-phase 6/8 VRM. The stator phases are excited sequentially,
requiring a total time of 10 msec. Find the angular velocity of the rotor in
r/min.
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8.8 The phase windings of the castleated machine of Fig. 8.8 are to be excited by
turning the phases on and off individually (i.e., only one phase can be on at
any given time).

a. Describe the sequence of phase excitations required to move the rotor to
the right (clockwise) by an angle of approximately 21.4◦.

b. The stator phases are to be excited as a regular sequence of pulses.
Calculate the phase order and the time between pulses required to
produce a steady-state rotor rotation of 95 r/min in the counterclockwise
direction.

8.9 Replace the 28-tooth rotor of Problem 8.8 with a rotor with 26 teeth.

a. Phase 1 is excited, and the rotor is allowed to come to rest. If the
excitation on phase 1 is removed and excitation is applied to phase 2,
calculate the resultant direction and magnitude (in degrees) of rotor
rotation.

b. The stator phases are to be excited as a regular sequence of pulses.
Calculate the phase order and the time between pulses required to
produce a steady-state rotor rotation of 50 r/min in the counterclockwise
direction.

8.10 Repeat Problem 8.8 for a castleated VRM of the form of Fig. 8.8 which has
5 teeth per stator pole, 40 rotor poles and β = 4.5◦.

8.11 Repeat Example 8.3 for a rotor speed of 380 r/min.
8.12 Repeat Example 8.3 under the condition that the rotor speed is 450 r/min

and that a negative voltage of −250 V is used to turn off the phase current.
8.13 Use MATLAB/Sumulink to reproduce the simulation of Example 8.4. Use

your simulation to calculate the average torque for the switching-angle
advanced by 2.5◦ and 7.5◦.

8.14 The three-phase 6/4 VRM of Problem 8.4 has a winding resistance of
0.17 
/phase and a leakage inductance of 4.2 mH in each phase. Assume that
the rotor is rotating at a constant angular velocity of 1675 r/min.

a. Plot the phase-1 inductance as a function of the rotor angle θm.

b. A voltage of 105 V is applied to phase 1 as the rotor reaches the position
θm = −30◦ and is maintained constant until θm = 0◦. Calculate and plot
the phase-1 current as a function of time during this period.

c. When the rotor reaches θ = 0◦, the applied voltage is reversed so that a
voltage of −105 V is applied to the winding. This voltage is maintained
until the winding current reaches zero, at which point the winding is
open-circuited. Calculate and plot the current decay during the time until
the current decays to zero.

d. Calculate and plot the torque during the time periods investigated in parts
(b) and (c).

8.15 Assume that the VRM of Examples 8.1 and 8.3 is modified by replacing its
rotor with a rotor with 75◦ pole-face angles as shown in Fig. 8.12a. All other
dimensions and parameters of the VRM are unchanged.
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a. Calculate and plot L(θm) for this machine.

b. Repeat Example 8.3 except that the constant voltage 100 V is first
applied at θm = −67.5◦ when d L(θm)/dθm becomes positive and the
constant voltage of −100 V is then applied at θm = −7.5◦ (i.e., when
d L(θm)/dθm becomes zero) and is maintained until the winding current
reaches zero.

c. Plot the corresponding torque.

8.16 Repeat Example 8.5 for a symmetrical two-phase 4/2 VRM whose λ-i
characteristic can be represented by the following expression (for phase 1) as
a function of θm over the range 0 ≤ θm ≤ 90◦:

λ1 =
(

0.01 + 0.18

(
90◦ − θm

90◦

) (
8.0

9.0 + i1

)1.25
)

i1

8.17 Consider a two-phase stepper motor with a permanent-magnet rotor such as
shown in Fig. 8.21 and whose torque-angle curve is as shown in Fig. 8.22a.
This machine is to be excited by a four-bit digital sequence corresponding to
the following winding excitation:

bit bit

1 2 i1 3 4 i2

0 0 0 0 0 0
0 1 −I0 0 1 −I0

1 0 I0 1 0 I0

1 1 0 1 1 0

a. Make a table of 4-bit patterns which will produce rotor angular positions
of 0, 45◦, . . . , 315◦.

b. By sequencing through the bit pattern found in part (a) the motor can be
made to rotate. What time interval (in milliseconds) between bit-pattern
changes will result in a rotor speed of 1400 r/min?

8.18 Consider a two-phase, permanent-magnet stepping motor with a
torque-current relationship of the form

Tmech = T0(i1 cos θm + i2 sin θm)

as in Example 8.6 with T0 = 3 N · m. The motor is driven by a two-phase
current source controlled based upon the rotor position such that

i1 = I0 cos (θm + φ) i2 = I0 sin (θm + φ)

The motor is driving a load whose power varies as the speed to the 2.5 power
and which draws 3.5 kW at a speed of 1400 r/min. The combined inertia of
the motor and load is 0.85 kg · m2.

Assuming the motor is initially at rest when the drive is turned on with
I0 = 8 A, write a MATLAB/Simulink simulation of this system and plot the
motor speed as a function of time for γ = 0 and γ = π/4.
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Figure 8.25 Castleated hybrid stepping motor for Problem 8.19.

8.19 Figure 8.25 shows a two-phase hybrid stepping motor with castleated poles
on the stator. The rotor is shown in the position it occupies when current is
flowing into the positive lead of phase 1.

a. If phase 1 is turned off and phase 2 is excited with current flowing into its
positive lead, calculate the corresponding angular rotation of the rotor. Is
it in the clockwise or counterclockwise direction?

b. Describe an excitation sequence for the phase windings which will result
in a steady rotation of the rotor in the clockwise direction.

c. Determine the frequency of the phase currents required to achieve a rotor
speed of 10 r/min.

8.20 Consider a multistack, multiphase variable-reluctance stepping motor, such
as that shown schematically in Fig. 8.20, with 16 poles on each of the rotor
and stator stacks and three stacks with one phase winding per stack. The
motor is built such that the stator poles of each stack are aligned.

a. Calculate the angular displacement between the rotor stacks.

b. Determine the frequency of phase currents required to achieve a rotor
speed of 750 r/min.
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Single- and Two-Phase
Motors

T his chapter discusses single-phase motors. While focusing on induction motors,
synchronous-reluctance, hysteresis, and shaded-pole induction motors are also
discussed. Note that another common single-phase motor, the series universal

motor, is discussed in Section 7.10. Most induction motors of fractional-kilowatt
(fractional horsepower) rating are single-phase motors. In residential and commercial
applications, they are found in a wide range of equipment including refrigerators, air
conditioners and heat pumps, fans, pumps, washers, and dryers.

In this chapter, we will describe these motors qualitatively in terms of rotating-
field theory and will begin with a rigorous analysis of a single-phase motor operating
off a single winding. However, most single-phase induction motors are actually two-
phase motors with unsymmetrical windings; the two windings are typically quite
different, with different numbers of turns and/or winding distributions. Thus this
chapter also discusses two-phase motors and includes a development of a quantitative
theory for the analysis of single-phase induction motors when operating off both their
main and auxiliary windings.

9.1 SINGLE-PHASE INDUCTION MOTORS:
QUALITATIVE EXAMINATION

Structurally, the most common types of single-phase induction motors resemble
polyphase squirrel-cage motors except for the arrangement of the stator windings.
An induction motor with a squirrel-cage rotor and a single-phase stator winding is
represented schematically in Fig. 9.1. Instead of being a concentrated coil, the actual
stator winding is distributed in slots to produce an approximately sinusoidal space
distribution of mmf. As we saw in Section 4.5.1, a single-phase winding produces
equal forward- and backward-rotating mmf waves. By symmetry, it is clear that such
a motor inherently will produce no starting torque since at standstill, it will produce
equal torque in both directions. However, we will show that if it is started by auxiliary

510
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Figure 9.1 Schematic view of a
single-phase induction motor.

means, the result will be a net torque in the direction in which it is started, and hence
the motor will continue to run.

Before we consider auxiliary starting methods, we will discuss the basic proper-
ties of the schematic motor of Fig. 9.1. If the stator current is a cosinusoidal function
of time, the resultant air-gap mmf is given by Eq. 4.19

F ag1 = Fmax cos (θae) cos ωet (9.1)

which, as shown in Section 4.5.1, can be written as the sum of positive- and negative-
traveling mmf waves of equal magnitude. The positive-traveling wave is given by

F+
ag1 = 1

2
Fmax cos (θae − ωet) (9.2)

and the negative-traveling wave is given by

F−
ag1 = 1

2
Fmax cos (θae + ωet) (9.3)

Each of these component mmf waves produces induction-motor action, but the
corresponding torques are in opposite directions. With the rotor at rest, the forward
and backward air-gap flux waves created by the combined mmfs of the stator and
rotor currents are equal, the component torques are equal, and no starting torque
is produced. If the forward and backward air-gap flux waves were to remain equal
when the rotor revolves, each of the component fields would produce a torque-speed
characteristic similar to that of a polyphase motor with negligible stator leakage
impedance, as illustrated by the dashed curves f and b in Fig. 9.2a. The resultant
torque-speed characteristic, which is the algebraic sum of the two component curves,
shows that if the motor were started by auxiliary means, it would produce torque in
whatever direction it was started.

The assumption that the air-gap flux waves remain equal when the rotor is in
motion is a rather drastic simplification of the actual state of affairs. First, the effects
of stator leakage impedance are ignored. Second, the effects of induced rotor currents
are not properly accounted for. Both these effects will ultimately be included in the
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Figure 9.2 Torque-speed characteristic of a single-phase induc-
tion motor (a) on the basis of constant forward and backward flux
waves, (b) taking into account changes in the flux waves.

detailed quantitative theory of Section 9.3. The following qualitative explanation
shows that the performance of a single-phase induction motor is considerably better
than would be predicted on the basis of equal forward and backward flux waves.

When the rotor is in motion, the component rotor currents induced by the cor-
responding backward field are greater than at standstill, and their power factor is
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lower. Their mmf, which opposes that of the stator current, results in a reduction of
the backward flux wave. Conversely, the magnetic effect of the component currents
induced by the forward field is less than at standstill because the rotor currents are
less and their power factor is higher. As speed increases, therefore, the forward flux
wave increases while the backward flux wave decreases. The sum of these flux waves
must remain roughly constant since it must induce the stator counter emf, which is
approximately constant if the stator leakage-impedance voltage drop is small.

Hence, with the rotor in motion, the torque of the forward field is greater and that
of the backward field less than in Fig. 9.2a, the true situation being about that shown
in Fig. 9.2b. In the normal running region at a few percent slip, the forward field is
several times greater than the backward field, and the flux wave does not differ greatly
from the constant-amplitude revolving field in the air gap of a balanced polyphase
motor. In the normal running region, therefore, the torque-speed characteristic of a
single-phase motor is not too greatly inferior to that of a polyphase motor having the
same rotor and operating with the same maximum air-gap flux density.

In addition to the torques shown in Fig. 9.2, double-stator-frequency torque
pulsations are produced by the interactions of the oppositely rotating flux and mmf
waves which rotate past each other at twice synchronous speed. These interactions
produce no average torque, but they tend to make the motor noisier and less efficient
than a polyphase motor. Such torque pulsations are unavoidable in a single-phase
motor because of the pulsations in instantaneous power input inherent in a single-
phase circuit. The effects of the pulsating torque can be minimized by using an elastic
mounting for the motor. The torque referred to on the torque-speed curves of a single-
phase motor is the time average of the instantaneous torque.

9.2 STARTING AND RUNNING
PERFORMANCE OF SINGLE-PHASE
INDUCTION AND SYNCHRONOUS
MOTORS

Single-phase induction motors are classified in accordance with their starting methods
and are usually referred to by names descriptive of these methods. Selection of the
appropriate motor is based on the starting- and running-torque requirements of the
load, the duty cycle of the load, and the limitations on starting and running current
from the supply line for the motor. The cost of single-phase motors increases with
their rating and with their performance characteristics such as starting-torque-to-
current ratio. Typically, in order to minimize cost, an application engineer will select
the motor with the lowest rating and performance that can meet the specifications
of the application. Where a large number of motors are to be used for a specific
purpose, a special motor may be designed in order to ensure the least cost. In the
fractional-kilowatt motor business, small differences in cost are important.

Starting methods and the resulting torque-speed characteristics are considered
qualitatively in this section. A quantitative theory for analyzing these motors is de-
veloped in Section 9.4.2.
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9.2.1 Split-Phase Motors

Split-phase motors have two stator windings, a main winding (also referred to as
the run winding) which we will refer to with the subscript “main” and an auxiliary
winding (also referred to as the start winding) which we will refer to with the subscript
“aux.” As in a two-phase motor, the axes of these windings are displaced 90 electrical
degrees in space, and they are connected as shown in Fig. 9.3a. The auxiliary winding
has a higher resistance-to-reactance ratio than the main winding, with the result that
the two currents will be out of phase, as indicated in the phasor diagram of Fig. 9.3b,
which is representative of conditions at starting. Since the auxiliary-winding current
Î aux leads the main-winding current Î main, the stator field first reaches a maximum
along the axis of the auxiliary winding and then somewhat later in time reaches a
maximum along the axis of the main winding.

The winding currents are equivalent to unbalanced two-phase currents, and the
motor is equivalent to an unbalanced two-phase motor. The result is a rotating stator
field which causes the motor to start. After the motor starts, the auxiliary winding is
disconnected, usually by means of a centrifugal switch that operates at about 75 per-
cent of synchronous speed. The simple way to obtain the high resistance-to-reactance
ratio for the auxiliary winding is to wind it with smaller wire than the main winding,
a permissible procedure because, although the losses in this winding are large, it op-
erates only during starting. Its reactance can be reduced somewhat by placing it in
the tops of the slots. A typical torque-speed characteristic for such a motor is shown
in Fig. 9.3c.

Split-phase motors have moderate starting torque with low starting current. Typ-
ical applications include fans, blowers, centrifugal pumps, and office equipment.
Typical ratings are 50 to 500 watts; in this range they are the lowest-cost motors
available.
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Figure 9.3 Split-phase motor: (a) connections, (b) phasor diagram at starting, and (c) typical torque-speed
characteristic.
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9.2.2 Capacitor-Type Motors

Capacitors can be used to improve motor starting performance, running performance,
or both, depending on the size and connection of the capacitor. The capacitor-start
motor is also a split-phase motor, but the time-phase displacement between the two
currents is obtained by means of a capacitor in series with the auxiliary winding,
as shown in Fig. 9.4a. Again the auxiliary winding is disconnected after the motor
has started, and consequently the auxiliary winding and capacitor can be designed at
minimum cost for intermittent service.

By using a starting capacitor of appropriate value, the auxiliary-winding current
Î aux at standstill can be made to lead the main-winding current Î main by 90 electrical
degrees, as it would in a balanced two-phase motor (see Fig. 9.4b). In practice, the
best compromise between starting torque, starting current, and cost typically results
with a phase angle somewhat less than 90◦. A typical torque-speed characteristic is
shown in Fig. 9.4c, high starting torque being an outstanding feature. These motors
are used for compressors, pumps, refrigeration and air-conditioning equipment, and
other hard-to-start loads.

In the permanent-split-capacitor motor, the capacitor and auxiliary winding are
not cut out after starting; the construction can be simplified by omission of the switch,
and the power factor, efficiency, and torque pulsations improved. For example, the
capacitor and auxiliary winding could be designed for perfect two-phase operation
(i.e., no backward flux wave) at any one desired load. The losses due to the backward
field at this operating point would then be eliminated, with resulting improvement
in efficiency. The double-stator-frequency torque pulsations would also be elimi-
nated, with the capacitor serving as an energy storage reservoir for smoothing out the
pulsations in power input from the single-phase line, resulting in quieter operation.
Starting torque must be sacrificed because the choice of capacitance is necessarily a
compromise between the best starting and running values. The resulting torque-speed
characteristic and a schematic diagram are given in Fig. 9.5.
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Î main
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and (c) typical torque-speed characteristic.
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If two capacitors are used, one for starting and one for running, theoretically
optimum starting and running performance can both be obtained. One way of accom-
plishing this result is shown in Fig. 9.6a. The small value of capacitance required for
optimum running conditions is permanently connected in series with the auxiliary
winding, and the much larger value required for starting is obtained by a capacitor
connected in parallel with the running capacitor via a switch which opens as the
motor comes up to speed. Such a motor is known as a capacitor-start, capacitor-run
motor.

The capacitor for a capacitor-start motor has a typical value of 300 μF for a
500-W motor. Since it must carry current for just the starting time, the capacitor is
a special compact ac electrolytic type made for motor-starting duty. The capacitor
for the same motor permanently connected has a typical rating of 40 μF, and since it
operates continuously, the capacitor is an ac paper, foil, and oil type. The cost of the
various motor types is related to performance: the capacitor-start motor has the lowest
cost, the permanent-split-capacitor motor next, and the capacitor-start, capacitor-run
motor the highest cost.
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Figure 9.6 Capacitor-start, capacitor-run motor and typical torque-speed characteristic.



Umans-3930269 book December 14, 2012 12:28

9.2 Starting and Running Performance of Single-Phase Induction and Synchronous Motors 517

EXAMPLE 9.1

A 2.5-kW 120-V 60-Hz capacitor-start motor has the following impedances for the main and
auxiliary windings (at starting):

Zmain = 4.5 + j3.7 � main winding

Zaux = 9.5 + j3.5 � auxiliary winding

Find the value of starting capacitance that will place the main and auxiliary winding
currents in quadrature at starting.

■ Solution
The currents Î main and Î aux are shown in Fig. 9.4a and b. The impedance angle of the main
winding is

φmain = tan−1

(
3.7

4.5

)
= 39.6◦

To produce currents in time quadrature with the main winding, the impedance angle of the
auxiliary winding circuit (including the starting capacitor) must be

φ = 39.6◦ − 90.0◦ = −50.4◦

The combined impedance of the auxiliary winding and starting capacitor is equal to

Z total = Zaux + j Xc = 9.5 + j (3.5 + Xc) �

where Xc = − 1
ωC

is the reactance of the capacitor and ω = 2π × 60 rad/sec. Thus

tan−1

(
3.5 + Xc

9.5

)
= −50.4◦

3.5 + Xc

9.5
= tan (−50.4◦) = −1.21

and hence

Xc = −1.21 × 9.5 − 3.5 = −15.0 �

The capacitance C is then

C = −1

ωXc

= −1

2π × 60 × (−15.0)
= 177 μF

Practice Problem 9.1

Consider the motor of Example 9.1. Find the phase angle between the main- and auxiliary-
winding currents if the 177-μF capacitor is replaced by a 200-μF capacitor.

Solution
85.2◦
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Figure 9.7 Shaded-pole induction motor and typical torque-speed characteristic.

9.2.3 Shaded-Pole Induction Motors

As illustrated schematically in Fig. 9.7a, the shaded-pole induction motor usually has
salient poles with one portion of each pole surrounded by a short-circuited turn of
copper called a shading coil. Induced currents in the shading coil cause the flux in
the shaded portion of the pole to lag the flux in the other portion. The result is similar
to a rotating field moving in the direction from the unshaded to the shaded portion of
the pole; currents are induced in the squirrel-cage rotor and a low starting torque is
produced. A typical torque-speed characteristic is shown in Fig. 9.7b. Their efficiency
is low, but shaded-pole motors are the least expensive type of subfractional-kilowatt
motor. They are found in ratings up to about 50 watts.

9.2.4 Self-Starting Synchronous-Reluctance Motors

Any one of the induction-motor types described above can be made into a self-starting
synchronous-reluctance motor. Anything which makes the reluctance of the air gap
a function of the angular position of the rotor with respect to the stator coil axis
will produce reluctance torque when the rotor is revolving at synchronous speed. For
example, suppose some of the teeth are removed from a squirrel-cage rotor, leaving the
bars and end rings intact, as in an ordinary squirrel-cage induction motor. Figure 9.8a
shows a lamination for such a rotor designed for use with a four-pole stator. The stator
may be polyphase or any one of the single-phase types described above.

The motor will start as an induction motor and at light loads will speed up to a
small value of slip. The reluctance torque arises from the tendency of the rotor to try
to align itself in the minimum-reluctance position with respect to the synchronously
revolving forward air-gap flux wave, in accordance with the principles discussed
in Chapter 3. At a small slip, this torque alternates slowly in direction; the rotor
is accelerated during a positive half cycle of the torque variation and decelerated
during the succeeding negative half cycle. If the moment of inertia of the rotor and its
mechanical load are sufficiently small, the rotor will be accelerated from slip speed
up to synchronous speed during an accelerating half cycle of the reluctance torque.
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Figure 9.8 Rotor punching for four-pole synchronous-reluctance motor and
typical torque-speed characteristic.

The rotor will then pull into synchronism and continue to run at synchronous speed.
The presence of any backward-revolving stator flux wave will produce torque ripple
and additional losses, but synchronous operation will be maintained provided the load
torque is not excessive.

A typical torque-speed characteristic for a split-phase-start synchronous-
reluctance motor is shown in Fig. 9.8b. Notice the high values of induction-motor
torque. The reason for this is that in order to obtain satisfactory synchronous-motor
characteristics, it has been found necessary to build synchronous-reluctance motors
in frames which would be suitable for induction motors of two or three times their
synchronous-motor rating. Also notice that the principal effect of the salient-pole rotor
on the induction-motor characteristic is at standstill, where considerable “cogging”
is evident; i.e., the torque varies considerably with rotor position.

9.2.5 Hysteresis Motors

The phenomenon of hysteresis can be used to produce mechanical torque. In its
simplest form, the rotor of a hysteresis motor is a smooth cylinder of magnetically
hard steel, without windings or teeth. It is placed inside a slotted stator carrying
distributed windings designed to produce as nearly as possible a sinusoidal space
distribution of flux, since undulations in the flux wave greatly increase the losses. In
single-phase motors, the stator windings usually are of the permanent-split-capacitor
type, as in Fig. 9.5. The capacitor is chosen so as to result in approximately balanced
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Figure 9.9 (a) General nature of the magnetic field in the air gap and rotor
of a hysteresis motor; (b) idealized torque-speed characteristic.

two-phase conditions within the motor windings. The stator then produces a primarily
space-fundamental air-gap field revolving at synchronous speed.

The instantaneous magnetic flux distribution in the air gap and rotor are indicated
schematically in Fig. 9.9a for a two-pole stator. The axis SS′ of the stator-mmf wave
revolves at synchronous speed. Because of hysteresis, the magnetization of the rotor
lags behind the inducing mmf wave, and therefore the axis R R′ of the rotor flux wave
lags behind the axis of the stator-mmf wave by the hysteretic lag angle δ (Fig. 9.9a).
If the rotor is stationary, starting torque is produced proportional to the product of the
fundamental components of the stator mmf and rotor flux and the sine of the torque
angle δ. The rotor then accelerates if the torque of the load is less than the developed
torque of the motor.

As long as the rotor is turning at less than synchronous speed, each region of the
rotor is subjected to a repetitive hysteresis cycle at slip frequency. While the rotor
accelerates, the lag angle δ remains constant if the flux is constant, since the angle δ

depends merely on the hysteresis loop of the rotor material and is independent of
the rate at which the loop is traversed. The motor therefore develops constant torque
right up to synchronous speed, as shown in the idealized torque-speed characteristic of
Fig. 9.9b. This feature is one of the advantages of the hysteresis motor. In contrast with
a reluctance motor, which must “snap” its load into synchronism from an induction-
motor torque-speed characteristic, a hysteresis motor can synchronize any load which
it can accelerate, no matter how great the inertia. After reaching synchronism, the
motor continues to run at synchronous speed and adjusts its torque angle so as to
develop the torque required by the load.

The hysteresis motor is inherently quiet and produces smooth rotation of its load.
Furthermore, the rotor takes on the same number of poles as the stator field. The
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motor lends itself to multi-speed synchronous operation when the stator is wound
with several sets of windings and utilizes pole-changing connections. The hysteresis
motor can accelerate and synchronize high-inertia loads because its torque is uniform
from standstill to synchronous speed.

9.3 REVOLVING-FIELD THEORY OF
SINGLE-PHASE INDUCTION MOTORS

As discussed in Section 9.1, the stator-mmf wave of a single-phase induction motor
can be shown to be equivalent to two constant-amplitude mmf waves revolving at
synchronous speed in opposite directions. Each of these component stator-mmf waves
induces its own component rotor currents and produces induction-motor action just
as in a balanced polyphase motor. This double-revolving-field concept not only is
useful for qualitative visualization but also can be developed into a quantitative theory
applicable to a wide variety of induction-motor types. We will not discuss the full
quantitative theory here.1 However, we will consider the simpler, but important case
of a single-phase induction motor running on only its main winding.

Consider conditions with the rotor stationary and only the main stator wind-
ing excited. The motor then is equivalent to a transformer with its secondary short-
circuited. The equivalent circuit is shown in Fig. 9.10a, where R1,main and X1,main are,
respectively, the resistance and leakage reactance of the main winding, Xm,main is the
magnetizing reactance, and R2,main and X2,main are the standstill values of the rotor
resistance and leakage reactance referred to the main stator winding by use of the
appropriate turns ratio. Core loss, which is omitted here, will be accounted for later
as if it were a rotational loss. The applied voltage is V̂ , and the main-winding current
is Î main. The voltage Êmain is the counter emf generated in the main winding by the
stationary pulsating air-gap flux wave produced by the combined action of the stator
and rotor currents.

In accordance with the double-revolving-field concept of Section 9.1, the stator
mmf can be resolved into half-amplitude forward and backward rotating fields. At
standstill the amplitudes of the forward and backward resultant air-gap flux waves
both equal to half the amplitude of the pulsating field. In Fig. 9.10b the portion of the
equivalent circuit representing the effects of the air-gap flux is split into two equal
portions, representing the effects of the forward and backward fields, respectively.

Next consider conditions after the motor has been brought up to speed by some
auxiliary means and is running on only its main winding in the direction of the
forward field at a per-unit slip s. The rotor currents induced by the forward field are
of slip frequency s fe, where fe is the stator applied electrical frequency. Just as in
any polyphase motor with a symmetric polyphase or squirrel-cage rotor, these rotor
currents produce an mmf wave traveling forward at slip speed with respect to the
rotor and therefore at synchronous speed with respect to the stator. The resultant of

1 For an extensive treatment of single-phase motors, see, for example, C. B. Veinott, Fractional- and
Subfractional-Horsepower Electric Motors, McGraw-Hill, New York, 1970.
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Êmain,b,

0.5 Zb
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Figure 9.10 Equivalent circuits for a single-phase induction motor: (a) rotor blocked;
(b) rotor blocked, showing effects of forward and backward fields; (c) running
conditions.

the forward waves of stator and rotor mmf creates a resultant forward wave of air-gap
flux, which generates a counter emf Êmain,f in the main winding of the stator. The
reflected effect of the rotor as viewed from the stator is like that in a polyphase motor
and can be represented by an impedance 0.5R2,main/s + j0.5X2,main in parallel with
j0.5Xm,main as in the portion of the equivalent circuit of Fig. 9.10c labeled “f.” The
factors of 0.5 come from the resolution of the pulsating stator mmf into forward and
backward components.

Now consider conditions with respect to the backward field. While the rotor
is operating at a slip s with respect to the forward field, its slip with respect to
the backward field is 2 − s. The backward field then induces rotor currents whose
frequency is (2 − s) fe. For small slips, these rotor currents are of almost twice stator
frequency.

At a small slip, the rotor currents will consist of a high-frequency component from
the backward field superposed on a low-frequency component from the forward field.
As viewed from the stator, the rotor-mmf wave of the backward-field-induced rotor
current travels at synchronous speed but in the backward direction. The equivalent-
circuit representing these internal reactions from the viewpoint of the stator is like that
of a polyphase motor whose slip is 2 − s and is shown in the portion of the equivalent
circuit (Fig. 9.10c) labeled “b.” As with the forward field, the factors of 0.5 come from
the resolution of the pulsating stator mmf into forward and backward components.
The voltage Êmain,b across the parallel combination representing the backward field is
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the counter emf generated in the main winding of the stator by the resultant backward
field.

By use of the equivalent circuit of Fig. 9.10c, the stator current, power input, and
power factor can be computed for any assumed value of slip when the applied voltage
and the motor impedances are known. To simplify the notation, let

Zf ≡ Rf + j X f ≡
(

R2,main

s
+ j X2,main

)
in parallel with j Xm,main (9.4)

and

Zb ≡ Rb + j Xb ≡
(

R2,main

2 − s
+ j X2,main

)
in parallel with j Xm,main (9.5)

The impedances representing the reactions of the forward and backward fields from the
viewpoint of the single-phase main stator winding are 0.5Zf and 0.5Zb, respectively,
in Fig. 9.10c.

Examination of the equivalent circuit (Fig. 9.10c) confirms the conclusion,
reached by qualitative reasoning in Section 9.1 (Fig. 9.2b), that the forward air-
gap flux wave increases and the backward wave decreases when the rotor is set in
motion. When the motor is running at a small slip, the reflected effect of the rotor
resistance in the forward field, 0.5R2,main/s, is much larger than its standstill value,
while the corresponding effect in the backward field, 0.5R2,main/(2 − s), is smaller.
The forward-field impedance therefore is larger than its standstill value, while that of
the backward field is smaller. The forward-field counter emf Êmain,f therefore is larger
than its standstill value, while the backward-field counter emf Êmain,b is smaller; i.e.,
the forward air-gap flux wave increases, while the backward flux wave decreases.

Mechanical power and torque can be computed by application of the torque and
power relations developed for polyphase motors in Chapter 6. The torques produced
by the forward and backward fields can each be treated in this manner. The interactions
of the oppositely rotating flux and mmf waves cause torque pulsations at twice stator
frequency but produce no average torque.

As in Eq. 6.26, the electromagnetic torque Tmain,f of the forward field in newton-
meters equals 1/ωs times the power Pgap,f in watts delivered by the stator winding to
the forward field, where ωs is the synchronous angular velocity in mechanical radians
per second; thus

Tmain,f = 1

ωs
Pgap,f (9.6)

When the magnetizing impedance is treated as purely inductive, Pgap,f is the power
absorbed by the impedance 0.5Zf; that is,

Pgap,f = I 2(0.5Rf) (9.7)

where Rf is the resistive component of the forward-field impedance defined in Eq. 9.4.
Similarly, the internal torque Tmain,b of the backward field is

Tmain,b = 1

ωs
Pgap,b (9.8)
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where Pgap,b is the power delivered by the stator winding to the backward field, or

Pgap,b = I 2(0.5Rb) (9.9)

where Rb is the resistive component of the backward-field impedance Zb defined in
Eq. 9.5.

The torque of the backward field is in the opposite direction to that of the forward
field, and therefore the net internal torque Tmech is

Tmech = Tmain,f − Tmain,b = 1

ωs
(Pgap,f − Pgap,b) (9.10)

Since the rotor currents produced by the two component air-gap fields are of
different frequencies, the total rotor I 2 R loss is the numerical sum of the losses
caused by each field. In general, as shown by comparison of Eqs. 6.17 and 6.19, the
rotor I 2 R loss caused by a rotating field equals the slip of the field times the power
absorbed from the stator. Thus

Forward-field rotor I 2 R = s Pgap,f (9.11)

Backward-field rotor I 2 R = (2 − s)Pgap,b (9.12)

Total rotor I 2 R = s Pgap,f + (2 − s)Pgap,b (9.13)

Since power is torque times angular velocity and the angular velocity of the rotor
is (1 − s)ωs, using Eq. 9.10, the internal power Pmech converted to mechanical form,
in watts, is

Pmech = (1 − s)ωsTmech = (1 − s)(Pgap,f − Pgap,b) (9.14)

As in the polyphase motor, the internal torque Tmech and internal power Pmech

are not the output values because rotational losses remain to be accounted for. It is
obviously correct to subtract friction and windage losses from Tmech or Pmech and it
is usually assumed that core losses can be treated in the same manner. For the small
changes in speed encountered in normal operation, the rotational losses are often
assumed to be constant.2

EXAMPLE 9.2

A 1
4
-hp, 110-V, 60-Hz, four-pole, capacitor-start motor has the following equivalent circuit

parameter values (in �) and losses:

R1,main = 2.02 X1,main = 2.79 R2,main = 4.12

X2,main = 2.12 Xm,main = 66.8

Core loss = 24 W Friction and windage loss = 13 W

2 For a treatment of the experimental determination of motor constants and losses, see Veinott, op. cit.,
Chapter 18.
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For a slip of 0.05, determine the stator current, power factor, power output, speed, torque, and
efficiency when this motor is running as a single-phase motor at rated voltage and frequency
with its starting winding open.

■ Solution
The first step is to determine the values of the forward- and backward-field impedances at the
assigned value of slip. The following relations, derived from Eq. 9.4, simplify the computations
of the forward-field impedance Z f:

Rf =
(

X 2
m,main

X22

)
1

s Q2,main + 1/(s Q2,main)
X f = X2,main Xm,main

X22

+ Rf

s Q2,main

where

X22 = X2,main + Xm,main and Q2,main = X22

R2,main

Substitution of numerical values gives, for s = 0.05,

Z f = Rf + j X f = 31.9 + j40.3 �

Corresponding relations for the backward-field impedance Zb are obtained by substituting
2 − s for s in these equations. When (2 − s)Q2,main is greater than 10, as is usually the case,
less than 1 percent error results from use of the following approximate forms:

Rb = R2,main

2 − s

(
Xm,main

X22

)2

Xb = X2,main Xm,main

X22

+ Rb

(2 − s)Q2,main

Substitution of numerical values gives, for s = 0.05,

Zb = Rb + j Xb = 1.98 + j2.12 �

Addition of the series elements in the equivalent circuit of Fig. 9.10c gives

R1,main + j X1,main = 2.02 + j2.79

0.5(Rf + j X f) = 15.95 + j20.15

0.5(Rb + j Xb) = 0.99 + j1.06

Total Input Z = 18.96 + j24.00 = 30.6 � 51.7◦

Stator current I = V

Z
= 110

30.6
= 3.59 A

Power factor = cos (51.7◦) = 0.620

Power input = Pin = V I × power factor = 110 × 3.59 × 0.620 = 244 W

The power absorbed by the forward field (Eq. 9.7) is

Pgap,f = I 2(0.5Rf) = 3.592 × 15.95 = 206 W

The power absorbed by the backward field (Eq. 9.9) is

Pgap,b = I 2(0.5Rb) = 3.592 × 0.99 = 12.8 W

The internal mechanical power (Eq. 9.14) is

Pmech = (1 − s)(Pgap,f − Pgap,b) = 0.95(206 − 13) = 184 W
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Assuming that the core loss can be combined with the friction and windage loss, the
rotational loss becomes 24 + 13 = 37 W and the shaft output power is the difference. Thus

Pshaft = 184 − 37 = 147 W = 0.197 hp

From Eq. 4.42, the synchronous speed in rad/sec is given by

ωs =
(

2

poles

)
ωe =

(
2

4

)
120π = 188.5 rad/sec

or in terms of r/min from Eq. 4.44

ns =
(

120

poles

)
fe =

(
120

4

)
60 = 1800 r/min

Rotor speed = (1 − s)(synchronous speed)

= 0.95 × 1800 = 1710 r/min

and

ωm = 0.95 × 188.5 = 179 rad/sec

The torque can be found from Eq. 9.14.

Tshaft = Pshaft

ωm

= 147

179
= 0.821 N · m

and the efficiency is

η = Pshaft

Pin

= 147

244
= 0.602 = 60.2%

As a check on the power bookkeeping, compute the losses:

I 2 R1,main = (3.59)2(2.02) = 26.0

Forward-field rotor I 2 R (Eq. 9.11) = 0.05 × 206 = 10.3

Backward-field rotor I 2 R (Eq. 9.12) = 1.95 × 12.8 = 25.0

Rotational losses = 37.0

98.3 W

From Pin − Pshaft, the total losses = 97 W which checks within accuracy of computations.

Practice Problem 9.2

Assume the motor of Example 9.2 to be operating at a slip of 0.065 and at rated voltage and
frequency. Determine (a) the stator current and power factor and (b) the power output.

Solution
a. 4.0 A, power factor = 0.70 lagging
b. 190 W
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Examination of the order of magnitude of the numerical values in Example 9.2
suggests approximations which usually can be made. These approximations pertain
particularly to the backward-field impedance. Note that the impedance 0.5(Rb +
j Xb) is only about 5 percent of the total motor impedance for a slip near full load.
Consequently, an approximation as large as 20 percent of this impedance would
cause only about 1 percent error in the motor current. Although, strictly speaking,
the backward-field impedance is a function of slip, very little error usually results
from computing its value at any convenient slip in the normal running region, e.g.,
5 percent, and then assuming Rb and Xb to be constants.

Corresponding to a slightly greater approximation, the shunting effect of j Xm,main

on the backward-field impedance can often be neglected, whence

Zb ≈ R2,main

2 − s
+ j X2,main (9.15)

This equation gives values of the backward-field resistance that are a few percent
high, as can be seen by comparison with the exact expression given in Example 9.2.
Neglecting s in Eq. 9.15 would tend to give values of the backward-field resistance
that would be too low, and therefore such an approximation would tend to counteract
the error in Eq. 9.15. Consequently, for small slips

Zb ≈ R2,main

2
+ j X2,main (9.16)

In a polyphase motor (Section 6.5), the maximum internal torque and the slip at
which it occurs can easily be expressed in terms of the motor parameters; the maximum
internal torque is independent of rotor resistance. No such simple expressions exist
for a single-phase motor. The single-phase problem is much more involved because
of the presence of the backward field, the effect of which is twofold: (1) it absorbs
some of the applied voltage, thus reducing the voltage available for the forward field
and decreasing the forward torque developed; and (2) the backward field produces
negative torque, reducing the effective developed torque. Both of these effects depend
on rotor resistance as well as leakage reactance. Consequently, unlike the polyphase
motor, the maximum internal torque of a single-phase motor is influenced by rotor re-
sistance; increasing the rotor resistance decreases the maximum torque and increases
the slip at which maximum torque occurs.

Principally because of the effects of the backward field, a single-phase induction
motor is somewhat inferior to a polyphase motor using the same rotor and the same
stator core. The single-phase motor has a lower maximum torque which occurs at a
lower slip. For the same torque, the single-phase motor has a higher slip and greater
losses, largely because of the backward-field rotor I 2 R loss. The volt-ampere input
to the single-phase motor is greater, principally because of the power and reactive
volt-amperes consumed by the backward field. The stator I 2 R loss also is somewhat
higher in the single-phase motor, because one phase, rather than several, must carry all
the current. Because of the greater losses, the efficiency is lower, and the temperature
rise for the same torque is higher. A larger frame size must be used for a single-phase
motor than for a polyphase motor of the same power and speed rating. Because of
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the larger frame size, the maximum torque can be made comparable with that of a
physically smaller but equally rated polyphase motor. In spite of the larger frame
size and the necessity for auxiliary starting arrangements, general-purpose single-
phase motors in the standard fractional-kilowatt ratings cost approximately the same
as correspondingly rated polyphase motors because of the much greater volume of
production of the former.

9.4 TWO-PHASE INDUCTION MOTORS
As we have seen, most single-phase induction motors are actually constructed in the
form of two-phase motors, with two stator windings in space quadrature. The main
and auxiliary windings are typically quite different, with a different number of turns,
wire size, and turns distribution. This difference, in combination with the capacitor
that is typically used in series with the auxiliary winding, guarantees that the mmfs
produced by the two winding currents will be quite unbalanced; at best they may
be balanced at one specific operating point. We will thus discuss various analytical
techniques for two-phase motors, both to expand our understanding and insight into
machine performance and also to develop techniques for the analysis of single- and
two-phase motors.

Under balanced operating conditions, a symmetrical two-phase motor can be
analyzed using techniques developed in Chapter 6 for three-phase motors, modified
only slightly to take into account the fact that there are two phases rather than three.
In this section, we will first discuss one technique that can be used to analyze a
symmetrical two-phase motor operating under unbalanced operating conditions. We
will then formally derive an analytical model for an unsymmetrical two-phase motor
that can be applied to the general case single-phase motors operating off both their
main and auxiliary windings.

9.4.1 Unbalanced Operation of Symmetrical
Two-Phase Machines; The
Symmetrical-Component Concept

When operating from the main winding alone, the single-phase motor is the extreme
case of a motor operating under unbalanced stator-current conditions. In some cases,
unbalanced voltages or currents are produced in the supply network to a motor,
e.g., when a line fuse is blown. In other cases, unbalanced voltages are produced
by the starting impedances of single-phase motors, as described in Section 9.2. The
purpose of this section is to develop the symmetrical-component theory of two-phase
induction motors from the double-revolving-field concept and to show how the theory
can be applied to a variety of problems involving induction motors having two stator
windings in space quadrature.

First consider in review what happens when balanced two-phase voltages are
applied to the stator terminals of a two-phase machine having a uniform air gap, a
symmetrical polyphase or cage rotor, and two identical stator windings α and β in
space quadrature. The stator currents are equal in magnitude and in time quadrature.
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Zb Xm

Figure 9.11 Single-phase equivalent circuits for a two-phase
motor under unbalanced conditions: (a) forward field and
(b) backward field.

When the current in winding α is at its instantaneous maximum, the current in winding
β is zero and the stator-mmf wave is centered on the axis of winding α. Similarly,
the stator-mmf wave is centered on the axis of winding β at the instant when the
current in winding β is at its instantaneous maximum. The stator-mmf wave therefore
travels 90 electrical degrees in space in a time interval corresponding to a 90◦ phase
change of the applied voltage, with the direction of its travel depending on the phase
sequence of the currents. A more complete analysis in the manner of Section 4.5
shows that the traveling wave has constant amplitude and constant angular velocity.
This fact is, of course, the basis for the theory of the balanced operation of induction
machines.

The behavior of the motor for balanced two-phase applied voltages of either
phase sequence can be readily determined. Thus, if the rotor is turning at a slip s in
the direction from winding α toward winding β, the terminal impedance per phase
is given by the equivalent circuit of Fig. 9.11a when the applied voltage V̂ β lags
the applied voltage V̂ α by 90◦. Throughout the rest of this treatment, this phase
sequence is called positive sequence and is designated by the subscript “f” since
positive-sequence currents result in a forward field. With the rotor running at the
same speed and in the same direction, the terminal impedance per phase is given by
the equivalent circuit of Fig. 9.11b when V̂ β leads V̂ α by 90◦. This phase sequence is
called negative sequence and is designated by subscript “b”, since negative-sequence
currents produce a backward field.

Suppose now that two balanced two-phase voltage sources of opposite phase
sequence are connected in series and applied simultaneously to the motor, as indicated
in Fig. 9.12a, where phasor voltages V̂ f and j V̂ f applied, respectively, to windings
α and β form a balanced system of positive sequence, and phasor voltages V̂ b and
− j V̂ b form another balanced system but of negative sequence.

The resultant voltage Vα applied to winding α is, as a phasor,

V̂ α = V̂ f + V̂ b (9.17)

and that applied to winding β is

V̂ β = j V̂ f − j V̂ b (9.18)
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Figure 9.12 Synthesis of an unbalanced two-phase system from the sum of two
balanced systems of opposite phase sequence.

Fig. 9.12b shows a generalized phasor diagram in which the forward, or positive-
sequence, system is given by the phasors V̂ f and j V̂ f and the backward, or negative-
sequence, system is given by the phasors V̂ b and − j V̂ b. The resultant voltages, given
by the phasors V̂ α and V̂ β are not, in general, either equal in magnitude or in time
quadrature. From this discussion we see that an unbalanced two-phase system of
applied voltages Vα and Vβ can be synthesized by combining two balanced voltage
sets of opposite phase sequence.

The symmetrical-component systems are, however, much easier to work with than
their unbalanced resultant system. Thus, it is easy to compute the component currents
produced by each symmetrical-component system of applied voltages because the
induction motor operates as a balanced two-phase motor for each component system.
By superposition, the actual current in a winding then is the sum of its components.
Thus, if Î f and Î b are, respectively, the positive- and negative-sequence component
phasor currents in winding α, then the corresponding positive- and negative-sequence
component phasor currents in winding β are, respectively, j Î f and − j Î b, and the
actual winding currents Î α and Î β are

Î α = Î f + Î b (9.19)

Î β = j Î f − j Î b (9.20)

The inverse operation of finding the symmetrical components of specified volt-
ages or currents must be performed often. Solution of Eqs. 9.17 and 9.18 for the
phasor components V̂ f and V̂ b in terms of known phasor voltages V̂ α and V̂ β gives

V̂ f = 1

2
(V̂ α − j V̂ β) (9.21)

V̂ b = 1

2
(V̂ α + j V̂ β) (9.22)
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Figure 9.13 Resolution of unbalanced two-phase
voltages into symmetrical components.

These operations are illustrated in the phasor diagram of Fig. 9.13. Obviously,
similar relations give the phasor symmetrical components Î f and Î b of the current in
winding α in terms of specified phasor currents Î m and Î a in the two phases; thus

Î f = 1

2
( Î α − j Î β) (9.23)

Î b = 1

2
( Î α + j Î β) (9.24)

EXAMPLE 9.3

The equivalent-circuit parameters of a 5-hp 220-V 60-Hz four-pole two-phase squirrel-cage
induction motor in ohms per phase are

R1 = 0.534 X1 = 2.45 Xm = 70.1 R2 = 0.956 X2 = 2.96

This motor is operated from an unbalanced two-phase 60-Hz source whose phase voltages
are, respectively, 230 and 210 V, the smaller voltage leading the larger by 80◦. For a slip of 0.05,
find (a) the positive- and negative-sequence components of the applied voltages, (b) the positive-
and negative-sequence components of the stator-phase currents, (c) the effective values of the
phase currents, and (d) the internal mechanical power.

■ Solution
We will solve this example using MATLAB.3

a. Let V̂ α and V̂ β denote the voltages applied to the two phases, respectively. Then

V̂ α = 230 � 0◦ = 230 + j0 V

V̂ β = 210 � 80◦ = 36.4 + j207 V

From Eqs. 9.21 and 9.22 the forward and backward components of voltages are,
respectively,

V̂ f = 218.4 − j18.2 = 219.2 � −4.8◦ V

V̂ b = 11.6 + j18.2 = 21.6 � 57.5◦ V

3 MATLAB is a registered trademark of The MathWorks, Inc.
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b. Because of the ease with which MATLAB handles complex numbers, there is no need to
use approximations such as are derived in Example 9.2. Rather, the forward- and
backward-field input impedances of the motor can be calculated from the equivalent
circuits of Figs. 9.11a and b. Dividing the forward-field voltage by the forward-field input
impedance gives

Î f = V̂ f

R1 + j X1 + Z f

= 9.3 − j6.3 = 11.2� −34.2◦ A

Similarly, dividing the backward-field voltage by the backward-field input
impedance gives

Î b = V̂ b

R1 + j X1 + Zb

= 3.7 − j1.5 = 4.0� −21.9◦ A

c. The winding currents can be calculated from Eqs. 9.19 and 9.20

Î α = Î f + Î b = 13.0 − j7.8 = 15.2� −31.0◦ A (9.25)

Î β = j Î f − j Î b = 4.8 + j5.6 = 7.4� 49.1◦ A (9.26)

Note that the winding currents are much more unbalanced than the applied voltages.
Even though the motor is not overloaded insofar as shaft load is concerned, the losses are
appreciably increased by the current unbalance, and the stator winding with the greatest
current may overheat.

d. The power delivered across the air gap by the forward field is equal to the forward-field
equivalent-circuit input power minus the corresponding stator loss

Pgap,f = 2
(

Re[V̂ f Î
∗
f ] − I 2

f R1

) = 4149 W

where the factor of 2 accounts for the fact that this is a two-phase motor. Similarly, the
power delivered to the backward field is

Pgap,b = 2
(

Re[V̂ b Î ∗
b] − I 2

b R1

) = 14.5 W

Here, the symbol Re[ ] indicates the real part of a complex number, and the superscript ∗

indicates the complex conjugate.
Finally, from Eq. 9.14, the internal mechanical power developed is equal to (1 − s)

times the total air-gap power or

Pmech = (1 − s)(Pgap,f − Pgap,b) = 3927 W

If the core losses, friction and windage, and stray load losses are known, the shaft
output can be found by subtracting them from the internal power. The friction and
windage losses depend solely on the speed and are the same as they would be for balanced
operation at the same speed. The core and stray load losses, however, are somewhat
greater than they would be for balanced operation with the same positive-sequence
voltage and current. The increase is caused principally by the (2 − s)-frequency core and
stray losses in the rotor caused by the backward field.
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Here is the MATLAB script:

clc

clear

% Useful constants

f = 60; %60 Hz system

omega = 2*pi*f;

s = 0.05; % slip

% Parameters

R1 = 0.534;

X1 = 2.45;

Xm = 70.1;

R2 = 0.956;

X2 = 2.96;

% Winding voltages

Valpha = 230;

Vbeta = 210 * exp(j*80*pi/180);

%(a) Calculate Vf and Vb from Equations and 9-21 and 9-22

Vf = 0.5*(Valpha - j*Vbeta);

Vb = 0.5*(Valpha + j*Vbeta);

magVf = abs(Vf);

angleVf = angle(Vf)*180/pi;

magVb = abs(Vb);

angleVb = angle(Vb)*180/pi;

fprintf(’\n(a)’)

fprintf(’\n Vf = %.1f + j %.1f = %.1f at angle %.1f degrees V’, ...

real(Vf),imag(Vf),magVf,angleVf);

fprintf(’\n Vb = %.1f + j %.1f = %.1f at angle %.1f degrees V\n’, ...

real(Vb),imag(Vb),magVb,angleVb);

%(b) First calculate the forward-field input impedance of the motor from

% the equivalent circuit of Fig. 9-12(a).

Zf = R1 + j*X1 + j*Xm*(R2/s+j*X2)/(R2/s+j*(X2+Xm));
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%Now calculate the forward-field current.

If = Vf/Zf;

magIf = abs(If);

angleIf = angle(If)*180/pi;

% Next calculate the backward-field input impedance of the motor from

% Fig. 9-12(b).

Zb = R1 + j*X1 + j*Xm*(R2/(2-s)+j*X2)/(R2/(2-s)+j*(X2+Xm));

%Now calculate the backward-field current.

Ib = Vb/Zb;

magIb = abs(Ib);

angleIb = angle(Ib)*180/pi;

fprintf(’\n(b)’)

fprintf(’\n If = %.1f + j %.1f = %.1f at angle %.1f degrees A’, ...

real(If),imag(If),magIf,angleIf);

fprintf(’\n Ib = %.1f + j %.1f = %.1f at angle %.1f degrees A\n’, ...

real(Ib),imag(Ib),magIb,angleIb);

%(c) Calculate the winding currents from Eqs. 9-19 and 9-20

Ialpha = If + Ib;

Ibeta = j*(If - Ib);

magIalpha = abs(Ialpha);

angleIalpha = angle(Ialpha)*180/pi;

magIbeta = abs(Ibeta);

angleIbeta = angle(Ibeta)*180/pi;

fprintf(’\n(c)’)

fprintf(’\n Ialpha = %.1f + j %.1f = %.1f at angle %.1f degrees A’, ...

real(Ialpha),imag(Ialpha),magIalpha,angleIalpha);

fprintf(’\n Ibeta = %.1f + j %.1f = %.1f at angle %.1f degrees A\n’, ...

real(Ibeta),imag(Ibeta),magIbeta,angleIbeta);

%(d) Power delivered to the forward field is equal to the

% forward-field input power less the stator-winding I^2R loss
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Pgf = 2*(real(Vf*conj(If)) - R1*magIf^2);

% Power delivered to the backward field is equal to the

% backward-field input power less the stator-winding I^2R loss

Pgb = 2*(real(Vb*conj(Ib)) - R1*magIb^2);

% The electromagnetic power is equal to (1-s) times the

% net air-gap power

Pmech = (1-s)*(Pgf - Pgb);

fprintf(’\n(d)’)

fprintf(’\n Power to forward field = %.1f W’,Pgf)

fprintf(’\n Power to backward field = %.1f W’,Pgb)

fprintf(’\n Pmech = %.1f W\n’,Pmech)

fprintf(’\n’)

Practice Problem 9.3

For the motor of Example 9.3, use MATLAB to produce a plot of the internal mechanical power
as a function of slip as the slip varies from s = 0.04 to s = 0.05 for the unbalanced voltages
assumed in the example. On the same axes (using dashed lines), plot the internal mechanical
power for balanced two-phase voltages of 220-V magnitude and 90◦ phase shift.

Solution

Figure 9.14 MATLAB plot for Practice Problem 9.3.
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9.4.2 The General Case: Unsymmetrical Two-Phase
Induction Machines

As we have discussed, a single-phase induction motor with a main and auxiliary
winding is an example of an unsymmetrical two-phase induction motor. In this section
we will develop a model for such two-phase motors, using notation appropriate to the
single-phase motor. We will assume, as is commonly the case, that the magnetic axes
of the windings are in space quadrature but that they are unsymmetrical in that they
may have a different number of turns, a different winding distribution, and so on.

Our analytical approach is to represent the rotor by an equivalent two-phase
winding as shown in schematic form in Fig. 9.15 and to start with flux-linkage/current
relationships for the rotor and stator of the form⎡
⎢⎢⎢⎣

λmain

λaux

λr1

λr2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Lmain 0 Lmain,r1(θme) Lmain,r2(θme)

0 Laux Laux,r1(θme) Laux,r2(θme)

Lmain,r1(θme) Laux,r1(θme) L r 0

Lmain,r2(θme) Laux,r2(θme) 0 L r

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

imain

iaux

ir1

ir2

⎤
⎥⎥⎥⎦

(9.27)

where θme is the rotor angle measured in electrical radians.

Lmain = Self-inductance of the main winding

Laux = Self-inductance of the auxiliary winding

L r = Self-inductance of the equivalent rotor windings

Lmain,r1(θme) = Mutual inductance between the main winding and equivalent
rotor winding 1

main

aux

r1

θme

r2

Rotor

Stator

Figure 9.15 Schematic representation of a two-phase in-
duction motor with an equivalent two-phase rotor.
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Lmain,r2(θme) = Mutual inductance between the main winding and equivalent
rotor winding 2

Laux,r1(θme) = Mutual inductance between the auxiliary winding and rotor
winding 1

Laux,r2(θme) = Mutual inductance between the auxiliary winding and rotor
winding 2

Assuming a sinusoidal distribution of air-gap flux, the mutual inductances be-
tween the main winding and the rotor will be of the form

Lmain,r1(θme) = Lmain,r cos θme (9.28)

and

Lmain,r2(θme) = −Lmain,r sin θme (9.29)

where Lmain,r is the amplitude of the mutual inductance.
The mutual inductances between the auxiliary winding will be of the same form

with the exception that the auxiliary winding is displaced by 90 electrical degrees in
space from the main winding. Hence we can write

Laux,r1(θme) = Laux,r sin θme (9.30)

and

Laux,r2(θme) = Laux,r cos θme (9.31)

Note that the auxiliary winding will typically have a different number of turns
(and perhaps a different winding distribution) from that of the main winding. Thus,
for modeling purposes, it is often convenient to write

Laux,r = a Lmain,r (9.32)

where

a = Turns ratio = Effective turns of auxiliary winding

Effective turns of main winding
(9.33)

Similarly, if we write the self-inductance of the magnetizing branch as the sum of a
leakage inductance Lmain,l and a magnetizing inductance Lm

Lmain = Lmain,l + Lm (9.34)

then the self-inductance of the auxiliary winding can be written in the form

Laux = Laux,l + a2 Lm (9.35)

The voltage equations for this machine can be written in terms of the winding
currents and flux linkages as

vmain = imain Rmain + dλmain

dt
(9.36)

vaux = iaux Raux + dλaux

dt
(9.37)

vr1 = 0 = ir1 Rr + dλr1

dt
(9.38)

vr2 = 0 = ir2 Rr + dλr2

dt
(9.39)
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where Rmain, Raux and Rr are the resistances of the main, auxiliary, and rotor windings,
respectively. Note that the rotor-winding voltages are set equal to zero because the
rotor windings of an induction motor are internally shorted.

When modeling a split-phase induction motor (Section 9.2.1) the main and aux-
iliary windings are simply connected in parallel, and thus vmain and vaux are both set
equal to the single-phase supply voltage when the motor is started. Following the
time that the auxiliary winding is disconnected, the auxiliary-winding current is zero,
and the motor is represented by a reduced-order model which includes only the main
winding and the two equivalent rotor windings.

When modeling the various capacitor motors of Section 9.2.2, the circuit equa-
tions must take into account the fact that, while the main winding is connected di-
rectly to the single-phase supply, a capacitor is connected between the supply and the
auxiliary-winding terminals. Depending upon the type of motor being modeled, the
auxiliary winding may or may not be switched out as the motor comes up to speed.

Finally, the techniques of Section 3.5 can be used to show that the electro-
magnetic torque of this motor can be written as

Tmech = imainir1

(
dLmain,r1(θme)

dθm

)
+ imainir2

(
dLmain,r2(θme)

dθm

)

+ iauxir1

(
dLaux,r1(θme)

dθm

)
+ iauxir2

(
dLaux,r2(θme)

dθm

)

=
(

poles

2

)
[−Lmain,r (imainir1 sin θme + imainir2 cos θme)

+ Laux,r (iauxir1 cos θme − iauxir2 sin θme)] (9.40)

where θm = (2/poles)θme is the rotor angle in radians.
Analogous to the development of the equivalent circuits derived in Chapter 6 for

polyphase induction machines and earlier in this chapter for single-phase machines,
the equations derived in this section can be further developed by assuming steady-state
operation, with constant mechanical speed ωme, corresponding to a slip s, and constant
electrical supply frequency ωe. Consistent with this assumption, the rotor currents
will be at frequencies ωr = ωe −ωme = s ωe (produced by the stator positive-sequence
field) and ωr = ωe + ωme = (2−s)ωe (produced by the stator negative-sequence field).
After considerable algebraic manipulation, which includes using Eqs. 9.38 and 9.39
to eliminate the rotor currents, the main- and auxiliary-winding flux-linkage/current
relationships of Eq. 9.27 can be written as phasor equations

λ̂main = [
Lmain − j L2

main,r(K̂ + + K̂ −)
]
Î main + Lmain,rLaux,r(K̂ + − K̂ −) Î aux

(9.41)

and

λ̂aux = −Lmain,rLaux,r(K̂ + − K̂ −) Î main + [
Laux − j L2

aux,r(K̂ + + K̂ −)
]
Î aux (9.42)
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where

K̂ + = sωe

2(Rr + jsωe L r)
(9.43)

and

K̂ − = (2 − s)ωe

2(Rr + j (2 − s)ωe L r)
(9.44)

Similarly, the voltage equations, Eqs. 9.36 and 9.37 become

V̂ main = Î main Rmain + jωeλ̂main (9.45)

V̂ aux = Î aux Raux + jωeλ̂aux (9.46)

The rotor currents will each consist of positive- and negative-sequence compo-
nents. The complex amplitudes of the positive sequence components (at frequency
sωe) are given by

Î +
r1 = − jsωe[Lmain,r Î main + j Laux,r Î aux]

2(Rr + jsωeL r)
(9.47)

and

Î +
r2 = − j Î +

r1 (9.48)

while the complex amplitudes of the negative sequence components (at frequency
(2 − s)ωe) are given by

Î −
r1 = − j (2 − s)ωe[Lmain,r Î main − j Laux,r Î aux]

2(Rr + j (2 − s)ωeL r)
(9.49)

and

Î −
r2 = j Î −

r1 (9.50)

Finally, again after careful algebraic manipulation, the time-averaged electro-
magnetic torque can be shown to be given by

<Tmech> =
(

poles

2

)
Re

[(
L2

main,r Î main Î ∗
main + L2

aux,r Î aux Î ∗
aux

)
(K̂ + − K̂ −)∗

+ j Lmain,rLaux,r( Î ∗
main Î aux − Î main Î ∗

aux)(K̂ + + K̂ −)∗
]

(9.51)

where the symbol Re[ ] again indicates the real part of a complex number and the
superscript ∗ indicates the complex conjugate. Note that Eq. 9.51 is derived based
upon the assumption that the various currents are expressed as rms quantities.

EXAMPLE 9.4

Consider the case of a symmetrical two-phase motor such as is discussed in Section 9.4.1. In this
case, Eqs. 9.27 through 9.39 simplify with equal self and mutual inductances and resistances
for the two windings. Using the notation of Section 9.4.1, “α” and “β” replacing “main” and
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“aux,” the flux-linkage/current relationships of Eq. 9.41 and 9.42 become

λ̂α = [
Lα − j L2

α,r(K̂ + + K̂ −)
]

Î α + L2
α,r(K̂ + − K̂ −) Î β

λ̂β = −L2
α,r(K̂ + − K̂ −) Î α + [

Lα − j L2
α,r(K̂ + + K̂ −)

]
Î β

and the voltage equations (Eqs. 9.45 and 9.46) become

V̂ α = Î α Rα + jωeλ̂α

V̂ β = Î β Rα + jωeλ̂β

Show that when operated from a positive sequence set of voltages such that V̂ β = − j Vα

the single-phase equivalent circuit for this motor is that of the forward-field (positive-sequence)
equivalent circuit of Fig. 9.11a.

■ Solution
Substitution of the positive-sequence voltages in the above equations and solution for the
impedance Zα = V̂ α/ Î α gives

Zα = Rα + jωe Lα + (ωe Lα,r)
2

(Rr/s + jωe L r)

= Rα + j Xα + X 2
α,r

(Rr/s + j X r)

This equation can be rewritten as

Zα = Rα + j (Xα − Xα,r) + j Xα,r[ j (X r − Xα,r) + Rr/s]

(Rr/s + j X r)

Setting Rα ⇒ R1, (Xα − Xα,r) ⇒ X1, Xα,r ⇒ Xm, (X r − Xα,r) ⇒ X2, and Rr ⇒ R2, we see
that this equation does indeed correspond to the input impedance of an equivalent circuit of
the form of Fig. 9.11a.

Practice Problem 9.4

Analogous to the calculation of Example 9.4, show that when operated from a negative sequence
set of voltages such that V̂ β = j Vα the single-phase equivalent circuit is that of the backward-
field (negative-sequence) equivalent circuit of Fig. 9.11b.

Solution
Under negative-sequence conditions, the impedance Zα is equal to

Zα = Rα + jωe Lα + (ωe Lα,r)
2

(Rr/(2 − s) + jωe L r)

= Rα + j Xα + X 2
α,r

(Rr/(2 − s) + j X r)

As in Example 9.4, this can be shown to correspond to an equivalent circuit of the form of
Fig. 9.11b.
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EXAMPLE 9.5

A two-pole, single-phase induction motor has the following parameters:

Lmain = 80.6 mH Rmain = 0.58 �

Laux = 196 mH Raux = 3.37 �

L r = 4.7 μH Rr = 37.6 μ�

Lmain,r = 0.588 mH Laux,r = 0.909 mH

It is operated from a single-phase, 230-V rms, 60-Hz source as a permanent-split-capacitor mo-
tor with a 35 μF capacitor connected in series with the auxiliary winding. In order to achieve the
required phase shift of the auxiliary-winding current, the windings must be connected with the
polarities shown in Fig. 9.16. The motor has a rotational losses of 40 W and 105 W of core loss.

Consider motor operation at 3500 r/min.

a. Find the main-winding, auxiliary-winding and source currents and the magnitude of the
capacitor voltage.

b. Find the time-averaged electromagnetic torque and shaft output power.
c. Calculate the motor input power and its electrical efficiency. Note that since core loss isn’t

explicitly accounted for in the model derived in this section, you may simply consider it as
an additional component of the input power.

d. Plot the motor time-averaged electromagnetic torque as a function of speed from standstill
to synchronous speed.

■ Solution
MATLAB, with its ease of handling complex numbers, is ideal for the solution of this problem.

a. The main winding of this motor is directly connected to the single-phase source. Thus we
directly set V̂ main = V̂ s. However, the auxiliary winding is connected to the single-phase
source through a capacitor and its polarity is reversed. Thus we must write

V̂ aux + V̂ C = −V̂ s

where the capacitor voltage is given by

V̂ C = j Î aux XC

Î main

Îaux

Î s

V̂s

+

�

V̂C

+

�

V̂main

+

+�
�

Main

winding

V̂aux

Auxiliary

winding

Figure 9.16 Permanent-split-capacitor induction-motor
connections for Example 9.5.
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Here the capacitor impedance XC is equal to

XC = − 1

(ωeC)
= − 1

(120π × 35 × 10−6)
= −75.8 �

Setting V̂ s = V0 = 230 V and substituting these expressions into Eqs. 9.45 and 9.46
and using Eqs. 9.41 and 9.42 then gives the following matrix equation for the main- and
auxiliary-winding currents.[

(Rmain + jωe Â1) jωe Â2

− jωe Â2 (Raux + j Xc + jωe Â3)

][
Î main

Î aux

]
=

[
V0

−V0

]

where

Â1 = Lmain − j L2
main,r(K̂ + + K̂ −)

Â2 = Lmain,r Laux,r(K̂ + − K̂ −)

and

Â3 = Laux − j L2
aux,r(K̂ + + K̂ −)

The parameters K̂ + and K̂ − can be found from Eqs. 9.43 and 9.44 once the slip is
found using Eq. 6.1

s = ns − n

ns

== 3600 − 3500

3600
= 0.278

This matrix equation can be readily solved using MATLAB with the result

Î main = 15.9� −37.6◦ A

Î aux = 5.20� −150.7◦ A

and

Î s = 18.5� −22.7◦ A

The magnitude of the capacitor voltage is

|V̂ C| = | Î aux XC| = 374 V

b. Using MATLAB the time-averaged electromagnetic torque can be found from Eq. 9.51
to be

<Tmech> = 9.74 N · m

The shaft power can then be found by subtracting the rotational losses Prot from the
air-gap power

Pshaft = ωm<Tmech> − Prot

=
(

2

poles

)
(1 − s)ωe(<Tmech>) − Prot

= 3532 W
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Figure 9.17 Time-averaged electromagnetic torque versus
speed for the single-phase induction motor of Example 9.5.

c. The power input to the main winding can be found as

Pmain = Re
[
V0 Î ∗

main

] = 2893 W

and that into the auxiliary winding, including the capacitor (which dissipates no power)

Paux = Re
[ − V0 Î ∗

aux

] = 1043 W

The total input power, including the core loss power Pcore is found as

Pin = Pmain + Paux + Pcore = 4041 W

Finally, the efficiency can be determined

η = Pshaft

Pin

== 0.874 = 87.4%

d. The plot of <Tmech> versus speed generated by MATLAB is found in Fig. 9.17.

Here is the MATLAB script:

clc

clear

% Source parameters

V0 = 230;

omegae = 120*pi;

% Motor parameters

poles = 2;
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Lmain = .0806;

Rmain = 0.58;

Laux = 0.196;

Raux = 3.37;

Lr = 4.7e-6;

Rr = 37.6e-6;

Lmainr = 5.88e-4;

Lauxr = 9.09e-4;

C = 35e-6;

Xc = -1/(omegae*C);

Prot = 40;

Pcore = 105;

% Run through program twice. If calcswitch = 1, then

% calculate at speed of 3500 r/min only. The second time

% program will produce the plot for part (d).

for calcswitch = 1:2

if calcswitch == 1

mmax = 1;

else

mmax = 101;

end

for m = 1:mmax

if calcswitch == 1

speed(m) = 3500;

else

speed(m) = 3599*(m-1)/100;

end

% Calculate the slip

ns = (2/poles)*3600;

s = (ns-speed(m))/ns;

% part (a)

% Calculate the various complex constants

Kplus = s*omegae/(2*(Rr + j*s*omegae*Lr));

Kminus = (2-s)*omegae/(2*(Rr + j*(2-s)*omegae*Lr));

A1 = Lmain - j*Lmainr^2*(Kplus+Kminus);

A2 = Lmainr*Lauxr*(Kplus-Kminus);

A3 = Laux - j*Lauxr^2*(Kplus+Kminus);
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% Set up the matrix

M(1,1) = Rmain + j*omegae*A1;

M(1,2) = j*omegae*A2;

M(2,1) = -j*omegae*A2;

M(2,2) = Raux + j*Xc+ j*omegae*A3;

% Here is the voltage vector

V = [V0 ; -V0];

% Now find the current matrix

I = M\V;

Imain = I(1);

Iaux = I(2);

Is = Imain-Iaux;

magImain = abs(Imain);

angleImain = angle(Imain)*180/pi;

magIaux = abs(Iaux);

angleIaux = angle(Iaux)*180/pi;

magIs = abs(Is);

angleIs = angle(Is)*180/pi;

%Capacitor voltage

Vcap = Iaux*Xc;

magVcap = abs(Vcap);

% part (b)

Tmech1 = conj(Kplus-Kminus);

Tmech1 = Tmech1*(Lmainr^2*Imain*conj(Imain)+Lauxr^2*Iaux*conj(Iaux));

Tmech2 = j*Lmainr*Lauxr*conj(Kplus+Kminus);

Tmech2 = Tmech2*(conj(Imain)*Iaux-Imain*conj(Iaux));

Tmech(m) = (poles/2)*real(Tmech1+Tmech2);

Pshaft = (2/poles)*(1-s)*omegae*Tmech(m)-Prot;

%part (c)

Pmain = real(V0*conj(Imain));

Paux = real(-V0*conj(Iaux));

Pin = Pmain+Paux+Pcore;

eta = Pshaft/Pin;
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if calcswitch == 1

fprintf(’part (a):’)

fprintf(’\n Imain = %g A at angle %g degrees’,magImain,angleImain)

fprintf(’\n Iaux = %g A at angle %g degrees’,magIaux,angleIaux)

fprintf(’\n Is = %g A at angle %g degrees’,magIs,angleIs)

fprintf(’\n Vcap = %g V\n’,magVcap)

fprintf(’\npart (b):’)

fprintf(’\n Tmech = %g N-m’,Tmech)

fprintf(’\n Pshaft = %g W\n’,Pshaft)

fprintf(’\npart (c):’)

fprintf(’\n Pmain = %g W’,Pmain)

fprintf(’\n Paux = %g W’,Paux)

fprintf(’\n Pin = %g W’,Pin)

fprintf(’\n eta = %g percent\n\n’,100*eta)

else

plot(speed,Tmech)

xlabel(’speed [r/min]’)

ylabel(’<Tmech> [N-m]’)

end

end %end of for m loop

end %end of for calcswitch loop

Practice Problem 9.5

a. Calculate the efficiency of the single-phase induction motor of Example 9.5 operating
at a speed of 3475 r/min.

b. Search over the range of capacitor values from 25 μF to 45 μF to find the capacitor
value which will give the maximum efficiency at this speed and the corresponding
efficiency.

Solution

a. 86.4%
b. 41.8 μF, 86.6%

9.5 SUMMARY
One theme of this chapter is a continuation of the induction-machine theory of Chap-
ter 6 and its application to the single-phase induction motor. This theory is expanded
by a step-by-step reasoning process from the simple revolving-field theory of the sym-
metrical polyphase induction motor. The basic concept is the resolution of the stator-
mmf wave into two constant-amplitude traveling waves revolving around the air gap
at synchronous speed in opposite directions. If the slip for the forward field is s,
then that for the backward field is (2 − s). Each of these component fields produces
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induction-motor action, just as in a symmetrical polyphase motor. From the view-
point of the stator, the reflected effects of the rotor can be visualized and expressed
quantitatively in terms of simple equivalent circuits. The ease with which the internal
reactions can be accounted for in this manner is the essential reason for the usefulness
of the double-revolving-field theory.

For a single-phase winding, the forward- and backward-component mmf waves
are equal, and their amplitude is half the maximum value of the peak of the stationary
pulsating mmf produced by the winding. The resolution of the stator mmf into its
forward and backward components then leads to the physical concept of the single-
phase motor described in Section 9.1 and finally to the quantitative theory developed
in Section 9.3 and to the equivalent circuits of Fig. 9.10.

In most cases, single-phase induction motors are actually two-phase motors with
unsymmetrical windings operated off a single phase source. Thus to complete our
understanding of single-phase induction motors, it is necessary to examine the per-
formance of two-phase motors. Hence, the next step is the application of the double-
revolving-field picture to a symmetrical two-phase motor with unbalanced applied
voltages, as in Section 9.4.1. This investigation leads to the symmetrical-component
concept, whereby an unbalanced two-phase system of currents or voltages can be re-
solved into the sum of two balanced two-phase component systems of opposite phase
sequence. Resolution of the currents into symmetrical-component systems is equiv-
alent to resolving the stator-mmf wave into its forward and backward components,
and therefore the internal reactions of the rotor for each symmetrical-component
system are the same as those which we have already investigated. A very sim-
ilar reasoning process, not considered here, leads to the well-known three-phase
symmetrical-component method for treating problems involving unbalanced opera-
tion of three-phase rotating machines. The ease with which the rotating machine can
be analyzed in terms of revolving-field theory is the chief reason for the usefulness
of the symmetrical-component method.

Finally, the chapter ends in Section 9.4.2 with the development of an analytical
theory for the general case of a two-phase induction motor with unsymmetrical wind-
ings. This theory permits us to analyze the operation of single-phase motors running
off both their main and auxiliary windings.

9.6 CHAPTER 9 VARIABLES
δ, φ Phase angle [rad]
θae Stator spatial angle in electrical units [rad]
θm Rotor position [rad]
θme Rotor position in electrical units [rad]
λ Flux linkage [Wb]
λ̂ Flux linkage, complex amplitude [Wb]
ωe Electrical frequency [rad/sec]
ωm Rotor angular velocity [rad/sec]
ωme Rotor angular velocity in electrical units [rad/sec]
ωr Rotor electrical frequency [rad/sec]
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ωs Synchronous angular velocity [rad/sec]
a Turns ratio
C Capacitance [F]
Ê , V̂ Voltage, complex amplitude [A]
fe Electrical frequency [Hz]
F , F Magnetomotive force [A]
i ,I Current [A]
Î Current, complex amplitude [A]
k2,main, K̂ +, K̂ −, Â1, Â2, Â3 Useful parameters
L , L Inductance [H]
n Angular velocity [r/min]
ns Synchronous angular velocity [r/min]
P Power [W]
R Resistance [�]
s Slip
t Time [sec]
T Torque [N · m]
v, V Voltage [V]
X Reactance [�]
Xc Capacitive reactance [�]
Z Impedance [�]

Subscripts:

α, β Phase designations
aux Auxiliary winding
b Backward field
C Capacitor
f Forward field
gap Air gap
m Magnetizing
main Main winding
max Maximum
r Rotor
rot Rotation
s Supply

9.7 PROBLEMS
9.1 A 750-W, 120-V, 60-Hz capacitor-start motor has the following parameters

for the main and auxiliary windings (at starting):

Zmain = 6.43 + j9.67 � main winding
Zaux = 10.6 + j12.2 � auxiliary winding

a. Find the magnitude and the phase angles of the currents in the two
windings when rated voltage is applied to the motor under starting
conditions.
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b. Find the value of starting capacitance that will place the main- and
auxiliary-winding currents in time quadrature at starting.

c. Repeat part (a) when the capacitance of part (b) is inserted in series with
the auxiliary winding. Find the magnitude and phase (with respect to the
applied voltage) of auxiliary-winding voltage.

9.2 Repeat Problem 9.1 if the motor is operated from a 120-V, 50-Hz source.
9.3 Given the applied electrical frequency and the corresponding impedances

Zmain and Zaux of the main and auxiliary windings at starting, write a
MATLAB script to calculate the value of the capacitance, which, when
connected in series with the starting winding, will produce a starting winding
current which will lag that of the main winding by 90◦. Exercise your program
on the 60-Hz motor of Problem 9.1.

9.4 A 120-V, 60-Hz, two-pole, permanent-split-capacitor, single-phase induction
motor has a rated output power of 500 W. When operated at its rated voltage
and load with an auxiliary-winding capacitance of 41.3 μF, the main-winding
current is observed to be 4.89 A at a phase angle (with respect to the applied
voltage) of −55.8◦ and the auxiliary-winding current is observed to be 3.32 A
at a phase angle of 34.2◦.

a. Calculate the motor power input, power factor, and efficiency.

b. Calculate the impedances Zmain and Zaux of the main and auxiliary
windings.

c. The main and auxiliary windings differ only in their number of turns. The
main winding has 180 turns/pole. Calculate the turns/pole of the auxiliary
winding.

d. Show that under this operating condition, the combined mmfs of the main
and auxiliary windings produce only a single rotating flux wave.

9.5 Repeat Example 9.2 for slip of 0.035;
9.6 A 600-W, 115-V, 60-Hz, six-pole, capacitor-start motor has the following

equivalent-circuit parameter values (in �) and losses:

R1,main = 1.07 R2,main = 1.47

X1,main = 1.83 Xm,main = 34.3 X2,main = 1.12

Core loss = 57 W Friction and windage loss = 17.7 W

For a slip of 0.065, determine the stator current, power factor, power output,
speed, torque, and efficiency when this motor is running as a single-phase
motor at rated voltage and frequency with its starting winding open.

9.7 A 750-W, four-pole, 120-V, 60-Hz single-phase induction motor has the
following parameters (resistances and reactances in �/phase):

R1,main = 0.55 R2,main = 1.70

X1,main = 0.83 Xm,main = 41.5 X2,main = 0.72

Core loss = 57 W Friction and windage loss = 17.7 W

Find the speed, stator current, torque, power output, and efficiency when the
motor is operating at rated voltage and a slip of 7.2 percent.
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9.8 Write a MATLAB script to produce plots of the speed and efficiency of the
single-phase motor of Problem 9.7 as a function of output power over the
range 0 ≤ Pout ≤ 750 W.

9.9 To modify the 750-W, 120-V single-phase induction motor of Problem 9.7 to
operate on a 240-V system, the main winding is to be re-wound with an
otherwise identical winding with twice the number of turns using wire of
one-half the cross sectional area.

a. Calculate the main-winding parameters of the re-wound motor.

b. With the re-wound motor operating from the 240-V source from its main
winding alone, find the slip for which the motor output is 700 W.
Calculate the corresponding main-winding current and motor
efficiency.

9.10 At standstill the currents in the main and auxiliary windings of a four-pole,
capacitor-start induction motor are Imain = 18.9 A and Iaux = 12.1 A rms
respectively. The auxiliary-winding current leads the main-winding current by
58◦. The effective turns per pole (i.e., the number of turns corrected for the
effects of winding distribution) are Nmain = 47 and Naux = 73. The windings
are in space quadrature.

a. Determine the amplitudes of the forward and backward stator-mmf waves.

b. Suppose it were possible to adjust the magnitude and phase of the
auxiliary-winding current. What magnitude and phase would produce a
purely forward mmf wave?

9.11 Derive an expression in terms of Q2,main for the nonzero speed of a
single-phase induction motor at which the internal torque is zero. (See
Example 9.2.)

9.12 The equivalent-circuit parameters of an 7.5-kW 230-V 60-Hz four-pole
two-phase squirrel-cage induction motor in ohms per phase are

R1 = 0.266 X1 = 1.27 Xm = 34.1 R2 = 0.465 X2 = 1.39

This motor is operated from an unbalanced two-phase 60-Hz source whose
phase voltages are, respectively, 232 and 198 V, the smaller voltage leading
the larger by 75◦. For a slip of 0.047, find

a. the positive and negative-sequence components of the applied voltages
and the resultant motor currents,

b. the phase currents in each of the windings, and

c. the internal mechanical power.

9.13 Consider the two-phase squirrel-cage induction motor of Problem 9.12
operating at a constant speed of 1725 rpm with the voltage of the first winding
held constant at 230 V.

a. Assume that the voltage of the second winding varies from 200 V to
240 V with a constant phase angle of 90◦ leading that of the first winding.
Plot the internal mechanical power as a function of the voltage of the
second winding.
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b. Assume that the voltage of the second winding is held constant at 230 V
while its phase angle varies from 70◦ to 110◦ leading that of the first
winding. Plot the internal mechanical power as a function of the phase
angle of the second winding.

9.14 Consider the two-phase motor of Example 9.3.

a. Find the starting torque for the conditions specified in the example.

b. Compare the result of part (a) with the starting torque which the motor
would produce if 220-V balanced two-phase voltages were applied to the
motor.

c. Show that if the stator voltages V̂ α and V̂ beta of a two-phase induction
motor are in time quadrature but unequal in magnitude, the starting torque
is the same as that developed when balanced two-phase voltages of
magnitude

√
VαVβ are applied.

9.15 The induction motor of Problem 9.12 is supplied from an unbalanced
two-phase source by a feeder having an impedance Z = 0.32 + j1.5 �/phase.
The source voltages can be expressed as

V̂ α = 237� 0◦ V̂ β = 211� 73◦

For a slip of 5.2 percent, show that the induction-motor terminal voltages
correspond more nearly to a balanced two-phase set than do those of the
source.

9.16 The equivalent-circuit parameters in ohms per phase referred to the stator for
a two-phase 1.5 kW, 220-V, four-pole, 60-Hz squirrel-cage induction motor
are given below. The no-load rotational loss is 106 W.

R1 = 0.49 R2 = 2.6 X1 = X2 = 3.7 Xm = 66

a. The voltage applied to phase α is 220 � 0◦ V and that applied to phase β is
204 � 80◦ V. Find the net air-gap torque at a slip s = 0.042.

b. What is the starting torque with the applied voltages of part (a)?

c. The applied voltages are readjusted so that V̂ α = 220� 0◦ V and
V̂ β = 220� 90◦ V. Find the slip at which the full load output power is
achieved.

d. While the motor is running as in part (c), phase β is open-circuited. What
is the power output of the machine at a slip s = 0.042?

e. What voltage appears across the open phase-β terminals under the
conditions of part (d)?

9.17 A 120-V, 60-Hz, capacitor-run, two-pole, single-phase induction motor has
the following parameters:

Lmain = 41.1 mH Rmain = 0.331 �

Laux = 89 mH Raux = 1.55 �

L r = 2.04 μH Rr = 15.0 μ�

Lmain,r = 0.30 mH Laux,r = 0.461 mH
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You may assume that the motor has 48 W of core loss and 23 W of rotational
losses. The motor windings are connected with the polarity shown in Fig. 9.16
with a 46 μF run capacitor.

a. Calculate the motor starting torque.

With the motor operating at a speed of 3475 r/min, calculate

b. the main and auxiliary-winding currents,

c. the total line current and the motor power factor,

d. the output power, and

e. the electrical input power, and the efficiency.

Note that this problem is most easily solved using MATLAB.
9.18 A 230-V, 50-Hz, capacitor-run, four-pole, single-phase induction motor has

the following parameters:

Lmain = 135 mH Rmain = 1.22 �

Laux = 363 mH Raux = 5.17 �

L r = 6.77 μH Rr = 259 μ�

Lmain,r = 1.16 mH Laux,r = 1.43 mH

You may assume that the motor has 62 W of core loss and 27 W of rotational
losses. The motor windings are connected with the polarity shown in Fig. 9.16
with an 18 μF run capacitor.

a. With the motor operating at 230 rpm, find the speed at which the motor
produces an output power of 1.5 kW.

b. Find the motor current and efficiency at the operating condition of part (a).

9.19 The single-phase induction machine of Problem 9.18 is to be operated at
230-V on a 60-Hz system. Calculate the capacitance required to maximize the
motor efficiency at a speed of 1710 rpm. You may assume that the core loss
remains equal to 62 W and the rotational loss increases to 39 W. For operation
at 230 V and 1710 rpm with this capacitance, calculate the motor power
output, efficiency, and terminal current.

9.20 Consider the single-phase motor of Problem 9.17. Write a MATLAB script to
search over the range of capacitor values from 50 μF to 100 μF to find the
value which will maximize the motor efficiency at a motor speed of 3475
r/min. What is the corresponding maximum efficiency?

9.21 In order to raise the starting torque, the single-phase induction motor of
Problem 9.17 is to be converted to a capacitor-start, capacitor-run motor.
Write a MATLAB script to find the minimum value of starting capacitance
required to raise the starting torque to 0.55 N · m.

9.22 Consider the single-phase induction motor of Example 9.5 operating over the
speed range 3350 r/min to 3580 r/min.

a. Use MATLAB to plot the output power over the given speed range.

b. Plot the efficiency of the motor over this speed range.

c. On the same plot as that of part (b), plot the motor efficiency if the run
capacitor is increased to 30 μF.
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Control

E lectric motors are employed in many applications which require control of
speed and torque. For much of the twentieth century ac machines tended to
be employed primarily as single-speed devices. Typically they were operated

from fixed-frequency sources (in most cases this was the 50- or 60-Hz power grid)
while the control of speed requires a variable-frequency source. Thus, applications
requiring variable speed and controlled torque were serviced by dc machines, which
can provide highly flexible speed control, although at some cost since they are more
complex, more expensive, and require more maintenance than their ac counterparts.

The availability of solid-state power switches and micro-processors for control
changed this picture immensely. It is now possible to build power-electronic systems
capable of supplying the variable-voltage/current, variable-frequency waveforms re-
quired to achieve variable-speed performance as well as torque control from ac ma-
chines. As a result, ac machines have now replaced dc machines in many traditional
applications, and a wide range of new applications have been developed.

The objective of this chapter is to discuss various techniques for the control of
electric machines. Since an in-depth discussion of this topic is both too extensive
for a single chapter and beyond the scope of this book, the presentation here will
necessarily be introductory in nature. We will present basic techniques for speed
and torque control and will illustrate typical configurations of drive electronics that
are used to implement the control algorithms. It should be recognized that system
dynamics can play a critical role in some applications, with concerns ranging from
speed of response to overall system stability. Although the techniques presented here
form the basis for dynamic analyses, the discussion of this chapter is focused on
steady-state operation.

In the discussion of torque control for synchronous and induction machines,
the techniques of field-oriented or vector control are introduced and the analogy is
made with torque control in dc motors. This material is somewhat more sophisticated
mathematically than the speed-control discussion and requires application of the

553
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dq0 transformations developed in Appendix C. The chapter is written such that this
material can be omitted at the discretion of the instructor without detracting from the
discussion of speed control.

10.1 CONTROL OF DC MOTORS
Before the widespread application of power-electronic drives to control ac machines,
dc motors were by far the machines of choice in applications requiring flexibility of
control. Although in recent years ac drives have become quite common, the ease of
control of dc machines insures their continued use in various applications.

10.1.1 Speed Control

The three most common speed-control methods for dc motors are adjustment of the
flux, usually by means of field-current control, adjustment of the resistance associated
with the armature circuit, and adjustment of the armature terminal voltage.

Field-Current Control In part because it involves control at a relatively low power
level (the power into the field winding is typically a small fraction of the power into
the armature of a dc machine), field-current control is frequently used to control the
speed of a dc motor with separately excited or shunt field windings. The connection
diagram for a separately excited dc machine is found in Fig. 7.4a and the corresponding
equivalent circuit is shown in Fig. 10.1. The method is, of course, also applicable to
compound motors. The shunt field current can be adjusted by means of a variable
resistance in series with the shunt field. Alternatively, for a separately excited field
winding the field current can be supplied by power-electronic circuits which can be
used to rapidly change the field current in response to a wide variety of control signals.

To examine the effect of field-current control, let us begin with the case of a dc
motor driving a load of constant torque Tload. From Eqs. 7.12 and 7.17, the generated
voltage of a dc motor can be written as

Ea = Kfifωm (10.1)

where if is the field current, ωm is the angular velocity in rad/sec, and Kf = KaPd Nf

is a geometric constant which depends upon the dimensions of the motor, and the
properties of the magnetic material used to construct the motor, as well as the number
of turns in the field winding. Note that strictly speaking, Kf is not constant since it is

+

�

+

�

va ea

Ra
+

�

vf

Rf

Lf

ia if

Armature Field

Figure 10.1 Equivalent circuit for a separately
excited dc motor.
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proportional to the direct-axis permeance, which typically varies as the flux-level in the
motor increases to the point that the effects of magnetic saturation become significant.

The electromagnetic torque is given by Eq. 7.19 as

Tmech = Ea Ia

ωm
= Kfif Ia (10.2)

and the armature current can be seen from the equivalent circuit of Fig. 10.1 to be
given by

Ia = (Va − Ea)

Ra
(10.3)

Setting the motor torque Tmech equal to the load torque Tload, Eqs. 10.1 through
10.3 can be solved for ωm

ωm = (Va − Ia Ra)

Kfif
=

(
Va − Tload Ra

Kfif

)
Kfif

(10.4)

From Eq. 10.4, recognizing that the armature resistance voltage drop Ia Ra is
generally quite small in comparison to the armature voltage Va, we see that for a given
armature voltage and load torque, the motor speed will increase with decreasing field
current and decrease as the field current is increased. The lowest speed obtainable is
that corresponding to maximum field current (the field current is limited by heating
considerations); the highest speed is limited mechanically by the mechanical integrity
of the rotor and electrically by the effects of armature reaction under weak-field
conditions giving rise to poor commutation.

Armature current is typically limited by motor cooling capability. In many dc
motors, cooling is aided by a shaft-driven fan whose cooling capacity is a function
of motor speed. To examine in an approximate fashion the limitations on the allow-
able continuous motor output as the speed is changed, we will neglect the influence
of changing ventilation and assume that the armature current Ia cannot exceed its
rated value, in order to insure that the motor will not overheat. In addition, in our
approximate argument we will neglect the effect of rotational losses (which of course
also change with motor speed). Because the voltage drop across the armature resis-
tance is relatively small, the speed voltage Ea will remain essentially constant at a
value slightly below the applied armature voltage; any change in field current will be
compensated for by a change in motor speed.

Thus under constant-terminal-voltage operation with varying field current, the
maximum Ea Ia, and hence the allowable motor output power, remain substantially
constant as the speed is varied. A dc motor controlled in this fashion is referred to as
a constant-power drive. Torque, however, varies directly with field flux and therefore
has its highest allowable value at the highest field current and hence lowest speed.
Field-current control is thus best suited to drives requiring increased torque at low
speeds. When a motor so controlled is used with a load requiring constant torque
over the speed range, the power-rating and size of the machine are determined by the
product of the torque and the highest speed. Such a drive is inherently over sized at
the lower speeds, which is the principal economic factor limiting the practical speed
range of large motors.
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EXAMPLE 10.1

A 25-kW, 3600 r/min, 240-V dc motor has an armature resistance of 47 m� and a separately
excited field winding with a resistance of 187 � and an inductance of 4.2 H. With an armature
terminal voltage of 240 V, the no-load speed is found to be 3600 r/min with a field current of
0.34 A.

Assuming the armature terminal voltage to remain constant at 240 V and the motor to be
driving a load which varies with speed as

Pload = 10.4
( n

3600

)3

kW

where n is the motor speed in r/min, calculate the required field-voltage range such that the
speed can be varied between 1800 and 3600 r/min. The effect of rotational losses can be ignored.

■ Solution
The load torque is equal to the load power divided by the motor speed ωm expressed in rad/sec.
First expressing the power in terms of ωm = nπ/30

Pload = 22.4
(

ωm

120π

)3

kW

The load torque is then given by

Tload = Pload

ωm

= 4.18 × 10−4 ω2
m N · m

Thus, at 1800 r/min, ωm = 60 π and Tload = 14.9 N · m. At 3600 r/min, ωm = 120 π and Tload =
59.4 N · m.

Before solving for if, we must find the value of Kf, which can be found from the no-load
data. Specifically, we see that with a terminal voltage of 240 V and a field current of 0.34 A,
the no-load motor speed is 3600 r/min (ωm = 120π ). Since under no-load conditions Ea ≈ Va,
we can find Kf from Eq. 10.1 as

Kf = Ea

if ωm

= 240

0.34 × 120π
= 1.87 V/(A · rad/sec)

To find the required field current for a given motor speed ωm, we can solve Eq.10.4 for If

if = Va

2Kfωm

(
1 ±

√
1 − 4ωmTload Ra

V 2
a

)

Recognizing that Ra is small and hence that if ≈ Va/(Kfωm) we see that the positive sign should
be used and thus

if = Va

2Kfωm

(
1 +

√
1 − 4ωmTload Ra

V 2
a

)

Once the field current has been found, the field voltage can be found as

Vf = Rfif
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This leads to the following table:

r/min Tload [N · m] If [A] Vf [V]

1800 14.9 0.679 127
3600 59.4 0.334 62.5

Thus, the controller must supply voltages in range from 62 to 127 V.

Armature-Circuit Resistance Control Armature-circuit resistance control pro-
vides a means of obtaining reduced speed by the insertion of external series resistance
in the armature circuit. It can be used with series, shunt, and compound motors; for the
last two types, the series resistor must be connected between the shunt field and the
armature, not between the line and the motor. It is a common method of speed control
for series motors and is generally analogous in action to wound-rotor-induction-motor
control by the addition of external series rotor resistance.

Depending upon the value of the series armature resistance, the speed may vary
significantly with load, since the speed depends on the voltage drop in this resistance
and hence on the armature current demanded by the load. For example, a 1200-r/min
shunt motor whose speed under load is reduced to 750 r/min by series armature
resistance will return to almost 1200-r/min operation if the load is removed because
the no-load current produces a voltage drop across the series resistance which is
insignificant. The disadvantage of poor speed regulation may not be important in a
series motor, which is used only where varying-speed service is required or can be
tolerated.

A significant disadvantage of this method of speed control is that the power loss
in the external resistor is large, especially when the speed is greatly reduced. In fact,
for a constant-torque load, the power input to the motor plus resistor remains constant,
while the power output to the load decreases in proportion to the speed. Operating costs
are therefore comparatively high for lengthy operation at reduced speeds. Because
of its low initial cost however, the series-resistance method (or the variation of it
discussed in the next paragraph) can be attractive economically for applications which
require only short-time or intermittent speed reduction. Unlike field-current control,
armature-resistance control results in a constant-torque drive because both the field-
flux and, to a first approximation, the allowable armature current remain constant as
speed changes.

A variation of this control scheme is given by the shunted-armature method,
which may be applied to a series motor, as in Fig. 10.2a, or a shunt motor, as in
Fig. 10.2b. In effect, resistors R1 and R2 act as a voltage divider applying a reduced
voltage to the armature. Greater flexibility is possible because two resistors can now
be adjusted to provide the desired performance. For series motors, the no-load speed
can be adjusted to a finite, reasonable value, and the scheme is therefore applicable to
the production of slow speeds at light loads. For shunt motors, the speed regulation in
the low-speed range is appreciably improved because the no-load speed is definitely
lower than the value with no controlling resistors.
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Figure 10.2 Shunted-armature method of speed control applied
to (a) a series motor and (b) a shunt motor.

Armature-Terminal Voltage Control Armature-terminal voltage control can be
readily implemented using power-electronic inverter systems. Many inverter config-
urations exist. For example, Fig. 10.3 shows the topology of a full H-bridge inverter.
With switches S1 and S3 closed, the armature voltage is equal to Vdc while with
switches S2 and S4 closed, the armature voltage is equal to −Vdc. Clearly, using
such an H-bridge configuration in combination with an appropriate choice of control
signals to the switches, rapidly switching between Vdc and −Vdc, allows this system
to achieve any desired average armature voltage in the range −Vdc ≤ Va ≤ Vdc. This
type of control is referred to pulse-width modulation (PWM).

Armature-voltage control takes advantage of the fact that, because the voltage
drop across the armature resistance is relatively small, a change in the armature
terminal voltage of a shunt motor is accompanied in the steady state by a substantially
equal change in the speed voltage. With constant shunt field current and hence constant
field flux, this change in speed voltage must be accompanied by a proportional change
in motor speed. Thus, motor speed can be controlled directly by means of the armature
terminal voltage.

S4

S3

S1

S2 va

+

�
Vdc

�+

Figure 10.3 Armature-terminal voltage
control implemented with a full H-bridge
inverter.
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EXAMPLE 10.2

A 500-V, 75-kW (100-hp), 2500 r/min, separately excited dc motor has the following
parameters:

Field resistance: Rf = 109 �

Rated field voltage: Vf0 = 300 V
Armature resistance: Ra = 0.084 �

Geometric constant: Kf = 0.694 V/(A · rad/sec)

Assuming the field voltage to be held constant at 300 V and the motor to be operating
at rated torque, calculate the variation in motor speed as a function of terminal voltage as the
armature voltage is varied from 250 V to 500 V.

■ Solution
With constant field voltage, the field current is equal to

If = Vf

Rf

= 300

109
= 2.75 A

The rated speed of this motor is ωm,rated = 2500 × (π/30) = 262 rad/sec and thus rated torque
is equal to

Trated = Prated

ωm,rated

= 75 × 103

262
= 286 N · m

From Eq. 10.2, we see that for rated-torque operation with constant field current, the
armature current will be constant

Ia = Tm,rated

Kf If

= 286

0.694 × 2.75
= 150 A

Finally, we can find the motor speed from Eq. 10.4 as

ωm = (Va − Ia Ra)

Kf If

= 0.524 × (Va − 78.5) rad/sec

and we see that the motor speed will vary linearly with terminal voltage. Specifically, at
Va = 250 V, ωm = 124.3z rad/sec (1187 r/min) and at Va = 500 V, ωm = 255.2 rad/sec
(2437 r/min).

Practice Problem 10.1

Calculate the change in armature voltage required to maintain the motor of Example 10.2 at a
speed of 2000 r/min as the load is changed from zero to full-load torque.

Solution
12.5 V

EXAMPLE 10.3

The motor of Example 10.2 is initially operating at a speed of 2150 r/min at a power of 45 kW.
The field winding is supplied from a constant-voltage dc source of 300 V.

a. Calculate (i) the load torque, (ii) the terminal current, and (iii) the terminal voltage.
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b. The motor and load have a combined inertia of J = 17.5 kg·m2. Assuming the load torque
to remain constant with speed, calculate the motor speed as a function of time if the
terminal voltage is suddenly decreased by 100 V.

■ Solution

a. (i) At 2150 r/min, ωm = 2150 × (π/30) = 225 rad/sec.

Tload = Pload

ωm

= 45 × 103

225
= 200 N · m

(ii) From Example 10.2, If = 2.75 A and thus the from Eq. 10.1, the speed voltage is

Ea = Kf Ifωm = 0.694 × 2.75 × 225 = 430 V

and hence from Eq. 10.2

Ia = Tload ωm

Ea

= 200 × 225

430
= 105 A

(iii) Under this operating condition, the terminal voltage is equal to

Va = Ea + Ra Ia = 430 + 0.084 × 105 = 440 V

b. The motor speed is governed by the differential equation

J
dωm

dt
= Tmech − Tload

where

Tmech = Kf If Ia = Kf If

(
Va − Ea

Ra

)
= Kf If

(
Va − Kf Ifωm

Ra

)
Combining these equations gives a differential equation for ωm

J
dωm

dt
+

(
(Kf If)

2

Ra

)
ωm =

(
Kf If

Ra

)
Va − Tload

Substituting Tload = 200 N · m and Va = 340 V gives

dωm

dt
+ 2.47 ωm = 430

whose solution is

ωm = ωm,∞ + (ωm0 − ωm,∞)e−t/τ

where ωm0 = 225 rad/sec (2150 r/min), ωm,∞ = 181 rad/sec (1730 r/min), and τ = 405 msec.
The motor speed is plotted as a function of time in Fig. 10.4.

Frequently the control of motor voltage is combined with field-current control
in order to achieve the widest possible speed range. With such dual control, base
speed can be defined as the speed at which the motor achieves rated voltage at its
nominal/rated armature flux. Below base speed, the maximum terminal voltage is
typically limited to the rated voltage scaled by the fraction of base speed at a given
operating point. For operation above base speed, the terminal voltage is typically
limited to its rated value, accomplished in part by a reduction in field current.
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Figure 10.4 Plot of speed versus time for Example 10.3(b) resulting
from a step in armature voltage from 440 V to 340 V.

Because both the maximum armature voltage and current are restricted to con-
stant values, the range above base speed is limited to a constant maximum power.
In contrast, the range below base speed is limited to a constant maximum torque be-
cause, as in armature-resistance control, the flux and the allowable armature current
remain approximately constant. The overall output limitations are therefore as shown
in Fig. 10.5a for approximate allowable torque and in Fig. 10.5b for approximate al-
lowable power. The constant-torque characteristic is well suited to many applications
in the machine-tool industry, where many loads consist largely of overcoming the
friction of moving parts and hence have essentially constant torque requirements.

The speed regulation and the limitations on the speed range above base speed are
those already presented with reference to field-current control; the maximum speed
thus does not ordinarily exceed four times base speed and preferably not twice base
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Figure 10.5 (a) Torque and (b) power limitations of combined armature-voltage and
field-current methods of speed control.
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ωref

va

if ωm
Dc

motor

Speed

controller

Figure 10.6 Block diagram for a
speed-control system for a separately
excited or shunt-connected dc motor.

speed. For conventional machines, the lower limit for reliable and stable operation is
about one-tenth of base speed, corresponding to a total maximum-to-minimum range
not exceeding 40:1.

With armature reaction ignored, the decrease in speed from no-load to full-load
torque is caused entirely by the full-load armature-resistance voltage drop. This full-
load armature-resistance voltage drop is constant over the voltage-control range, since
full-load torque and hence full-load current are usually regarded as constant in that
range. When measured in r/min, therefore, the speed decrease from no-load to full-
load torque is a constant, independent of the no-load speed. The torque-speed curves
accordingly are closely approximated by a series of parallel straight lines for the
various motor-field adjustments. Note that a speed decrease of, say, 40 r/min from a
no-load speed of 1200 r/min is often of little importance; a decrease of 40 r/min from
a no-load speed of 120 r/min, however, may at times be of critical importance and
require corrective steps in the layout of the system.

Figure 10.6 shows a block diagram of a feedback-control system that can be used
to regulate the speed of a separately excited or shunt-connected dc motor. The inputs
to the dc-motor block include the armature voltage and the field current as well as
the load torque Tload. The resultant motor speed ωm is fed back to a controller block
which represents both the control logic and power electronics and which controls the
armature voltage and field current applied to the dc motor, based upon a reference
speed signal ωref. Depending upon the design of the controller, with such a scheme
it is possible to control the steady-state motor speed to a high degree of accuracy
independent of the variations in the load torque.

EXAMPLE 10.4

Figure 10.7 shows the block diagram for a simple speed control system to be applied to the dc
motor of Example 10.2. In this controller, the field voltage (not shown) is held constant at its
rated value of 300 V. Thus, the control is applied only to the armature voltage and takes the
form

Va = Va0 + G (ωref − ωm)

where Va0 is the armature voltage when ωm = ωref and G is a multiplicative constant.
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Figure 10.7 Simple dc-motor speed
controller for Example 10.4.

With the reference speed set to 2000 r/min (ωref = 2000 × π/30), calculate Va0 and G so
that the motor speed is 2000 r/min at no load and drops only by 25 r/min when the torque is
increased to its rated full-load value.

■ Solution
As was found in Example 10.2, the field current under this condition will be 2.75 A. At no
load, 2000 r/min,

Va ≈ Ea = Kf Ifωm = 0.694 × 2.75 × 2000
(

π

30

)
= 400 V

and thus Va0 = 400 V.
The full-load torque was found in Example 10.3 to be Trated = 286 N · m and thus the

armature current required to achieve rated full-load torque can be found from Eq. 10.2

Ia = Trated

Kf If

= 286

0.694 × 2.75
= 150 A

At a speed of 1975 r/min, Ea will be given by

Ea = Kf Ifωm = 0.694 × 2.75 × 1975
(

π

30

)
= 395 V

and thus

Va = Ea + Ia Ra = 395 + 150 × 0.084 = 408 V

Solving for G gives

G = Va − Va0

ωref − ωm

= 408 − 400

(2000 − 1975)
(

π

30

) = 3.06 V · sec/rad

Practice Problem 10.2

Consider again the motor and controller of Example 10.4. If the load is reduced to half of
the rated full-load torque, calculate (a) the speed of the motor and (b) the corresponding load
power.

Solution

a. 1988 r/min
b. 29.6 kW
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EXAMPLE 10.5

The dc-motor of Example 10.2 is to be used in an industrial process which requires that the
motor speed be maintained in the range of 2200 r/min (at no load) and 2185 r/min (at a full
load torque of 200 N · m). The dc-motor field current will be held constant at its rated value
and the motor speed will be controlled by varying the armature terminal voltage.

a. The motor is initially operated unloaded and the armature voltage is adjusted to set the
speed to 2200 r/min (ωm = 2200 × (π/30) = 230.4 rad/sec). Calculate the required
armature voltage.

b. With the voltage held constant at the value Va0 found in part (a), calculate the steady-state
terminal current and motor speed if the motor is loaded to the full-load torque of 200 N · m.

c. In order to meet the speed-range specification, a speed controller of the form shown in
Fig. 10.7 will be used. Calculate the value of the gain G such that the motor speed is
2185 r/min when it is loaded to a torque of 200 N · m and with ωref = 230.4 rad/sec.

d. Assuming the combined inertia of the motor and load is J = 22.4 kg·m2 and that a
constant-torque load of 200 N · m is applied suddenly at time t = 0.1 sec, use
MATLAB/Simulink to plot the motor speed, armature current, and terminal voltage as a
function of time with the motor operating both with and without the speed controller.

■ Solution

a. At no load, Ia ≈ 0 and thus Va ≈ Ea. Rated field current for this motor is
If = 300 V/109 � = 2.75 A and at 2200 r/min, ωm = 230.4 rad/sec. Thus from Eq. 10.1

Va0 ≈ Ea = Kf If ωm = 440 V

b. From Eq. 10.2

Ia = Tload

Kf If

= 105 A

and from Eq. 10.4

ωm = (Va − Ia Ra)

Kf If

= 225.8 rad/sec

corresponding to a speed of 2156 r/min.
c. At a speed of 2185 r/min, ωm = 2185 × (30/π) = 228.8 rad/sec and thus

Ea = Kf Ifωm = 437 V

The armature current required to produce a steady-state load torque of 200 N · m is equal
to 105 A independent of motor speed and thus we can find the required terminal voltage as

Va = Ea + Ia Ra = 437 + 105 × 0.084 = 445.8 V

Solving for G from the block diagram of Fig. 10.7 gives

G = Va − Va0

ωref − ωm

= 445.8 − 400.1

230.4 − 228.8
= 3.7 V/(rad/sec)
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d. MATLAB/Simulink requires that dynamic equations be formulated in terms of integral
equations. The motor speed is determined by the differential equation

J
dωm

dt
= Tmech − Tload

or in integral form

ωm = ωm0 + 1

J

∫ t

0

(Tmech − Tload)dt

where ω0 = 230.4 rad/sec is the initial motor speed (2200 r/min) and from Eq. 10.2

Tmech = Ea Ia

ωm

where from Eq. 10.3

Ia = Va − Ea

Ra

and from Eq. 10.1

Ea = Kf Ifωm

With the controller

Va = Va0 + G(ωm − ωref)

where ωref is set equal to ωm0 so that the controller attempts to maintain the motor speed at
2200 r/min. Without the controller, Va = Va0.

Figure 10.8 is the resultant Simulink model. The block labeled “Initialization” calls a
MATLAB script which pre-loads the model parameters and initial conditions for the
simulation. The speed controller block includes a switch which can be used prior to
simulation to turn the speed controller on and off. The load switch operates automatically
at 0.1 seconds to apply the 200 N · m load.

Figure 10.8 Simulink model for Example 10.5.
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Plots of motor speed, armature current and terminal voltage are found in Fig. 10.9.
Notice that not only does the controller result in the desired speed regulation but it also
produces a faster response time.
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Figure 10.9 Example 10.5: Plot of (a) motor speed,
(b) Ia, and (c) terminal voltage Va versus time for Example 10.5.
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In the case of permanent-magnet dc motors, the field flux is, of course, fixed
by the permanent magnet (with the possible exception of any effects of temperature
changes on the magnet properties as the motor heats up). From Eqs. 10.1 and 10.2,
we see that the speed voltage can be written in the form

Ea = Kmωm (10.5)

and that the electromagnetic torque can be written as

Tmech = Km Ia (10.6)

Comparison of Eqs. 10.5 and 10.6 with Eqs. 10.1 and 10.2 show that the analysis
of a permanent-magnet dc motor is identical to that of a shunt or separately excited
dc motor with the exception that the torque-constant Km must be substituted for the
term Kf If.

EXAMPLE 10.6

The permanent-magnet dc motor of Example 7.11 has an armature resistance of 1.03 � and a
torque constant Km = 0.22 V/(rad/sec). Assume the motor to be driving a constant-power load
of 800 W (including rotational losses), and calculate the motor speed as the armature voltage
is varied from 40 to 50 V.

■ Solution
The motor power output (including rotational losses) is given by the product Ea Ia and thus we
can write

Pload = Ea Ia = Kmωm Ia

Solving for ωm gives

ωm = Pload

Km Ia

The armature current can be written as

Ia = (Va − Ea)

Ra

= (Va − Kmωm)

Ra

These two equations can be combined to give an equation for ωm of the form

ω2
m −

(
Va

Km

)
ωm + Pload Ra

K 2
m

= 0

from which we can find

ωm = Va

2Km

[
1 ±

√
1 − 4Pload Ra

V 2
a

]
Recognizing that, if the voltage drop across the armature resistance is small, Va ≈ Ea =

Kmωm, we pick the positive sign and thus

ωm = Va

2Km

[
1 +

√
1 − 4Pload Ra

V 2
a

]
Substituting values, we find that for Va = 40 V, ωm = 169.2 rad/sec (1616 r/min) and for
Va = 50 V, ωm = 217.5 rad/sec (2077 r/min).
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Practice Problem 10.3

Calculate the speed variation (in r/min) of the permanent-magnet dc motor of Example 10.6 if
the armature voltage is held constant at 50 V and the load power varies from 100 W to 500 W.

Solution
2077 r/min to 1540 r/min

10.1.2 Torque Control

As we have seen, the electromagnetic torque of a dc motor is proportional to the
armature current Ia and is given by

Tmech = Kf If Ia (10.7)

in the case of a separately excited or shunt motor and

Tmech = Km Ia (10.8)

in the case of a permanent-magnet motor.
From these equations we see that torque can be controlled directly by control-

ling the armature current. Current control can be readily implemented with power-
electronics. Fig. 10.10 shows in schematic terms three possible configurations for
switching a dc-current (typically supplied from a so-called dc-link inductor) to create
a variable dc which can be applied directly to the armature terminals of a dc motor.

In Fig. 10.10a, a phase-controlled rectifier, in combination with a dc-link filter
inductor, can be used to create a variable dc-link current which can be applied directly
to the armature terminals of a dc motor. In Fig. 10.10b, a constant dc-link current is
produced by a diode rectifier. The armature terminal voltage is then varied by a pulse-
width modulation scheme in which switch S is alternately opened and closed. When
switch S is opened, the current Idc flows into the dc-motor armature while when
switch S is closed, the armature is shorted and Ia decays. Thus, the duty cycle of
switch S will control the average current into the armature. Finally, Fig 10.10c shows
an H-bridge configuration. Appropriate control of the four switches S1 through S4

Idc

Ia

(a)

Idc

Ia

(b)

Idc

S4

S3

S1

S2

Ia

(c)

S

Figure 10.10 Three typical configurations for armature-current control. (a) Variable dc-link current
(produced by a phase-controlled rectifier) applied directly to the dc-motor armature terminals. (b) Constant
dc-link current with single-polarity pulse-width modulation. (c) Constant dc-link current with a full H-bridge.
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Tload

ωref

ωm
Dc

motor

Speed

controller

Torque

controller

Ia

If

Figure 10.11 Block diagram of a dc-motor
speed-control system using direct-control
of motor torque.

allows this PWM system to achieve any desired armature average current in the range
−Idc ≤ Ia ≤ Idc.

Note that in each of the PWM configurations of Fig. 10.10b and c, rapid changes
in instantaneous current through the dc machine armature can give rise to large voltage
spikes, which can damage the machine insulation as well as give rise to flashover and
voltage breakdown of the commutator. In order to eliminate these effects, a practical
system must include some sort of filter across the armature terminals (such as a
large capacitor) to limit the voltage rise and to provide a low-impedance path for the
high-frequency components of the drive current.

Figure 10.11 shows a typical controller in which torque control is surrounded
by a speed-feedback loop. This looks similar to the speed control of Fig. 10.6. How-
ever, instead of controlling the armature voltage, in this case the output of the speed
controller is a torque reference signal Tref which in turn serves as the input to the
torque controller. In addition to providing potentially faster control response because
of the direct control of torque, another advantage of such a system is that it automat-
ically limits the dc-motor armature current to acceptable levels under all operating
conditions, as is shown in Example 10.7.

EXAMPLE 10.7

Consider the 100-hp dc motor of Example 10.2 to be driving a load whose torque varies linearly
with speed such that it equals rated full-load torque (286 N · m) at a speed of 2500 r/min. We
will assume the combined moment of inertia of the motor and load to equal to 15 kg·m2. The
field voltage is to be held constant at 300 V.

a. Calculate the armature voltage and current required to achieve speeds of 2000 and
2500 r/min and the corresponding speed voltages.

b. Assume that the motor is operated from an armature-voltage controller and that the
armature voltage is suddenly switched from its 2000 r/min to its 2500 r/min value.
Calculate the resultant motor speed and armature current as a function of time.

c. Assume that the motor is operated from an armature-current controller and that the
armature current is suddenly switched from its 2000 r/min to its 2500 r/min value.
Calculate the resultant motor speed as a function of time.



Umans-3930269 book December 14, 2012 12:32

570 CHAPTER 10 Speed and Torque Control

■ Solution

a. Neglecting any rotational losses, the armature current can be found from Eq. 10.2 by
setting Tmech = Tload

Ia = Tload

Kf If

Tload =
(

ωm

ωf

)
Tf l

where n is the motor speed in rad/sec, ωf = 2500 × (π/30) = 261.8 rad/sec (2500 r/min),
and Tf l = 286 N · m gives

Ia = ωmTf l

ωf Kf If

Solving for Va = Ea + Ia Ra then allows us to complete the following table:

[r/min] ωm [rad/sec] Ea [V] Va [V] Ia [A] Tload [N · m]

2000 209.4 400 410 120 229
2500 261.8 500 513 150 286

b. The dynamic equation governing the speed of the motor is

J
dωm

dt
= Tmech − Tload

Under armature-voltage control,

Tmech = Kf If Ia = Kf If

(
Va − Ea

Ra

)

= Kf If

(
Va − Kf Ifωm

Ra

)
and thus the governing differential equation is

J
dωm

dt
= Kf If

(
Va − Kf Ifωm

Ra

)
−

(
Tf l

ωf

)
ωm

or

dωm

dt
+ 1

J

(
Tf l

ωf

+ (Kf If)
2

Ra

)
ωm − Kf IfVa

J Ra

= dωm

dt
+ 2.97 ωm − 1.52Va = 0

From this differential equation, we see that with the motor initially at ωm = ωi =
209 rad/sec, if the armature voltage Va is suddenly switched from Vi = 410 V to
Vf = 513 V, the speed will rise exponentially to ωm = ωf = 261.8 rad/sec as

ωm = ωf + (ωi − ωf)e
−t/τ

= 261.8 − 52.4e−t/τ rad/sec
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where τ = 1/2.97 = 340 msec. Expressed in terms of r/min

n = 2500 − 500e−t/τ r/min

At the instant the voltage is first switched to to 513 V, the speed voltage will be equal
to its 2000 r/min value of Ei = 400 V. Thus the initial value armature current will be

Ia,i = (Vf − Ei)

Ra

= 513 − 400

0.084
= 1345 A

The armature current will decrease exponentially with the same 340 msec time
constant from this initial value to its final value of 150 A. Thus,

Ia = 150 + 1195e−t/τ A

Notice that it is unlikely that the supply to the dc motor can supply this large initial
current (roughly nine times the rated full-load armature current) and, in addition, the high
current and corresponding high torque could potentially cause damage to the dc motor
commutator, brushes, and armature winding. Hence, as a practical matter, a practical
controller would undoubtedly limit the rate of change of the armature voltage to avoid
such sudden steps in voltage, with the result that the speed change would not occur as
rapidly as calculated here.

c. The dynamic equation governing the speed of the motor remains the same as that in
part (b) as does the equation for the load torque. However, in this case, because the motor
is being operated from a current controller, the electromagnetic torque will remain
constant at Tmech = Tfl = 286 N · m after the current is switched from its initial value of
120 A to its final value of 150 A.

Thus

J
dωm

dt
= Tmech − Tload = Tf −

(
Tfl

ωf

)
ωm

or

dωm

dt
+

(
Tfl

Jωf

)
ωm − Tfl

J

= dωm

dt
+ 7.28 × 10−2 ωm − 19.1 = 0

In this case, the speed will rise exponentially to ωm = ωf = 261.8 rad/sec as

ωm = ωf + (ωi − ωf)e
−t/τ

= 261.8 − 52.4 e−t/τ rad/sec

where now the time constant τ = 1/0.0728 = 13.7 sec.
Clearly, the change in motor speed under the current controller is much slower.

However, at no point during this transient do either the motor current or the motor torque
exceed their rated value. In addition, should faster response be desired, the armature
current (and hence motor torque) could be set temporarily to a fixed value higher than the
rated value (e.g., two or three times rated as compared to the factor of 9 found in part (b)),
thus limiting the potential for damage to the motor.
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Practice Problem 10.4

Consider the dc motor/load combination of Example 10.7 operating under current (torque)
control to be operating in the steady-state at a speed of 2000 r/min at an armature current of
119 A. If the armature current is suddenly switched to 250 A, calculate the time required for
the motor to reach a speed of 2500 r/min.

Solution
3.6 sec

10.2 CONTROL OF SYNCHRONOUS MOTORS
10.2.1 Speed Control

As discussed in Chapters 4 and 5, synchronous motors are essentially constant-speed
machines, with their speed being determined by the frequency of the armature currents
as described by Eqs. 4.42 and 4.44. Specifically, Eq. 4.42 shows that the synchronous
angular velocity is proportional to the electrical frequency of the applied armature
voltage and inversely proportional to the number of poles in the machine

ωs =
(

2

poles

)
ωe (10.9)

where

ωs = synchronous spatial angular velocity of the air-gap mmf wave [rad/sec]

ωe = 2π fe = angular frequency of the applied electrical excitation [rad/sec]

fe = applied electrical frequency [Hz]

Clearly, the simplest means of synchronous motor control is speed control via
control of the frequency of the applied armature voltage, driving the motor by a
polyphase voltage-source inverter such as the three-phase inverter shown in Fig. 10.12.
The rectifier section produces dc-voltage Vdc on the “dc-link” capacitor and controlling
the switches in the Inverter section can be used to produce pulse-width-modulated
(PWM) ac voltage waveforms of variable amplitude. The dc-link voltage Vdc can itself
be varied, for example, through the use of a phase control in the rectifier section.

The frequency of the inverter output waveforms can of course be varied by con-
trolling the switching frequency of the inverter switches. For ac-machine applications,
coupled with this frequency control must be control of the amplitude of the applied
voltage, as we will now see.

From Faraday’s Law, we know that the air-gap component of the armature voltage
in an ac machine is proportional to the peak flux density in the machine and the
electrical frequency. Thus, if we neglect the voltage drop across the armature resistance
and leakage reactance, we can write

Va =
(

fe

frated

) (
Bpeak

Brated

)
Vrated (10.10)
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Figure 10.12 Three-phase voltage-source inverter.

where Va is the amplitude of the armature voltage, fe is the operating frequency, and
Bpeak is the peak air-gap flux density. Vrated, frated, and Brated are the corresponding
rated-operating-point values.

Consider a situation in which the frequency of the armature voltage is varied while
its amplitude is maintained at its rated value (Va = Vrated). Under these conditions,
from Eq. 10.10 we see that

Bpeak =
(

frated

fe

)
Brated (10.11)

Equation 10.11 clearly demonstrates the problem with constant-voltage, variable-
frequency operation. Specifically, for a given armature voltage, the machine flux
density is inversely proportional to frequency and thus as the frequency is reduced,
the flux density will increase. Thus for a typical machine which operates in saturation
at rated voltage and frequency, any reduction in frequency will further increase the
flux density in the machine. In fact, a significant drop in frequency will increase
the flux density to the point of potential machine damage due both to increased
core loss and to the increased machine currents required to support the higher flux
density.

As a result, for frequencies less than or equal to rated frequency, it is typical to
operate a machine at constant flux density. From Eq. 10.10, with Bpeak = Brated

Va =
(

fe

frated

)
Vrated (10.12)

which can be rewritten as

Va

fe
= Vrated

frated
(10.13)



Umans-3930269 book December 14, 2012 12:32

574 CHAPTER 10 Speed and Torque Control

From Eq. 10.13, we see that constant-flux operation can be achieved by maintain-
ing a constant ratio of armature voltage to frequency. This is referred to as constant-
volts-per-hertz (constant V/Hz) operation. It is typically maintained from rated fre-
quency down to the low frequency at which the armature resistance voltage drop
becomes a significant component of the applied voltage.

The machine terminal current is typically limited by thermal constraints. Thus,
provided the machine cooling is not affected by rotor speed, the maximum permissible
terminal current will remain constant at its rated value Irated, independent of the applied
frequency. As a result, for frequencies below rated frequency, with Va proportional to
fe, the maximum machine power will be proportional to feVrated Irated. The maximum
torque under these conditions can be found by dividing the power by the rotor speed ωs,
which is also proportional to fe as can be seen from Eq. 10.9. Thus, we see that the
maximum torque is proportional to Vrated Irated, and hence it is constant at its rated-
operating-point value.

Similarly, we see from Eq. 10.10 that if the machine is operated at frequencies in
excess of rated frequency with the voltage at its rated value, the air-gap flux density
will drop below its rated value. Thus, in order to maintain the flux density at its rated
value, it would be necessary to increase the terminal voltage for frequencies in excess
of rated frequency. However, in order to avoid insulation damage, it is common to
maintain the machine terminal voltage at its rated value for frequencies in excess of
rated frequency. Under this condition, with both terminal current and voltage limited
to their rated values, the maximum power will be constant and equal to Vrated Irated,
the rated power. The corresponding maximum torque will then vary inversely with
machine speed as Vrated Irated/ωs. The maximum operating speed for this operating
regime will be determined either by the maximum frequency which can be supplied
by the drive electronics or by the maximum speed at which the rotor can be operated
without risk of damage due to mechanical concerns such as excessive centrifugal
force or to the presence of a resonance in the shaft system.

Figure 10.13 shows a plot of maximum power and maximum torque versus speed
for a synchronous motor under variable-frequency operation. The operating regime
below rated frequency and speed is referred to as the constant-torque regime and that
above rated speed is referred to as the constant-power regime.

Rated

speed
Speed0

Constant-torque

regime

Constant-power

regime

Rated

value

Power Torque

Figure 10.13 Variable-speed operating regimes for a synchronous motor.
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EXAMPLE 10.8

The 45-kVA, 220-V, 60-Hz, six-pole, three-phase synchronous machine of Example 5.4 is
to be operated as a motor and driven from a variable-frequency, three-phase voltage-source
inverter which provides 220 V at 60 Hz and which maintains constant V/Hz as the frequency
is reduced. The machine has a saturated synchronous reactance of 0.836 per unit and achieves
rated open-circuit voltage at a field current of 2.84 A. For the purposes of this example, assume
that the motor losses are negligible.

a. With the motor operating at 60 Hz, 220 V and at rated power, unity power factor, calculate
(i) the motor speed in r/min and (ii) the motor field current.

b. If the inverter frequency is reduced to 50 Hz and the motor load adjusted to rated torque,
calculate the (i) the resulting motor speed and (ii) and the motor field current required to
again achieve unity-power-factor operation.

■ Solution

a. (i) The motor will operate at its synchronous speed which can be found from Eq. 4.44

ns =
(

120

poles

)
fe =

(
120

6

)
60 = 1200 r/min

(ii) As seen in Chapter 5, the field current can be determined from the generated
voltage. For motor operation,

Êaf = V̂a − j X s Îa = 1.0 − j0.836 × 1.0 = 1.30 � −39.9◦ per unit

where Va has been chosen as the reference phasor. Thus the field current is

If = 1.30 × 2.84 = 3.70 A

Note that we have chosen to solve for Eaf in per unit. A solution in real units would of
course have produced the same result.

b. (i) When the frequency is reduced from 60 Hz to 50 Hz, the motor speed will drop from
1200 r/min to 1000 r/min.

(ii) Let us again consider the equation for the generated voltage

Êaf = V̂a − j X s Îa

where here we will assume that the equation is written in real units with the voltages equal
to their line-neutral values.

As the inverter frequency is reduced from 60 Hz, the inverter voltage will drop
proportionally since the inverter maintains constant V/Hz. Thus we can write

Va =
(

ωm

ωm0

)
Va0

where the subscript 0 is used to indicate a 60-Hz value as found in part (a). Reactance is
also proportional to frequency and thus

X s =
(

ωm

ωm0

)
X s0
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The generated voltage is proportional to both the motor speed (and hence the
frequency) and the field current, and thus we can write

Eaf =
(

ωm

ωm0

)( If

If0

)
Eaf0

Finally, if we recognize that, to operate at rated torque and unity power factor under
this reduced frequency condition, the motor armature current will have to be equal to the
value found in part (a), i.e., Ia = Ia0, we can write the generated voltage equation as(

ωm

ωm0

) ( If

If0

)
Ê af0 =

(
ωm

ωm0

)
V̂a0 − j

(
ωm

ωm0

)
X s0 Îa0

or ( If

If0

)
Êaf0 = V̂a0 − j X s0 Îa0

Since the subscripted quantities correspond to the solution of part (a), they must
satisfy

Êaf0 = V̂a0 − j X s0 Îa0

and thus we see that we must have If = If0. In other words, the field current for this
operating condition is equal to that found in part (a), or If = 3.70 A.

Practice Problem 10.5

Consider 50-Hz operation of the synchronous motor of Example 10.8, part (b). If the load
torque is reduced to 75 percent of rated torque, calculate the field current required to achieve
unity power factor.

Solution
3.35 A

Although during steady-state operation the speed of a synchronous motor is
determined by the frequency of the drive, speed control by means of frequency control
is of limited use in practice. This is due in most part to the fact that it is difficult
for the rotor of a synchronous machine to track arbitrary changes in the frequency
of the applied armature voltage. In addition, starting is a major problem, and, as
a result, the rotors of synchronous motors are often equipped with a squirrel-cage
winding known as an amortisseur or damper winding similar to the squirrel-cage
winding in an induction motor, as shown in Fig. 5.3. Following the application of
a polyphase voltage to the armature, the rotor will come up almost to synchronous
speed by induction-motor action with the field winding unexcited. If the load and
inertia are not too great, the motor will pull into synchronism when the field winding
is subsequently energized.

Problems with changing speed result from the fact that, in order to develop torque,
the rotor of a synchronous motor must remain in synchronism with the stator flux.
Control of synchronous motors can be greatly enhanced by control algorithms in
which the stator flux and its relationship to the rotor flux are controlled directly. Such
control, which amounts to direct control of torque, is discussed in Section 10.2.2.
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10.2.2 Torque Control

Direct torque control in an ac machine, which can be implemented in a number of
different ways, is commonly referred to as field-oriented control or vector control. To
facilitate our discussion of field-oriented control, it is helpful to return to the discussion
of Section 5.6.1. Under this viewpoint, which is formalized in Appendix C, stator
quantities (flux, current, voltage, etc.) are resolved into components which rotate in
synchronism with the rotor. Direct-axis quantities represent those components which
are aligned with the field-winding axis, and quadrature-axis components are aligned
perpendicular to the field-winding axis.

Section C.2 of Appendix C derives the basic machine relations in dq0 variables
for a synchronous machine consisting of a field winding and a three-phase stator
winding. The transformed flux-current relationships are found to be

λd = Ldid + Lafif (10.14)

λq = Lqiq (10.15)

λf = 3

2
Laf id + L ffif (10.16)

where the subscripts d, q, and f refer to armature direct-, quadrature-axis, and field-
winding quantities respectively. Note that throughout this chapter we will assume
balanced operating conditions, in which case zero-sequence quantities will be zero
and hence will be ignored.

The corresponding transformed voltage equations are

vd = Raid + dλd

dt
− ωmeλq (10.17)

vq = Raiq + dλq

dt
+ ωmeλd (10.18)

vf = Rfif + dλf

dt
(10.19)

where ωme = (poles/2)ωm is the electrical angular velocity of the rotor.
Finally, the electromagnetic torque acting on the rotor of a synchronous motor is

shown to be (Eq. C.31)

Tmech = 3

2

(
poles

2

)
(λdiq − λqid) (10.20)

Under steady-state, balanced-three-phase operating conditions, ωme = ωe where
ωe is the electrical frequency of the armature voltage and current in rad/sec. Because
the armature-produced mmf and flux waves rotate in synchronism with the rotor and
hence with respect to the dq reference frame, under these conditions an observer in
the dq reference frame will see constant fluxes, and hence one can set d/dt = 0.1

1 This can easily be derived formally by substituting expressions for the balanced-three-phase armature
currents and voltages into the transformation equations.
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Letting the subscripts F, D, and Q indicate the corresponding constant, steady-
state values of field-, direct- and quadrature-axis quantities respectively, the flux-
current relationships of Eqs. 10.14 through 10.16 then become

λD = LdiD + LafiF (10.21)

λQ = LqiQ (10.22)

λF = 3

2
LafiD + L ffiF (10.23)

Armature resistance is typically quite small, and, if we neglect it, the steady-state
voltage equations (Eqs. 10.17 through 10.19) then become

vD = −ωeλQ (10.24)

vQ = ωeλD (10.25)

vF = RfiF (10.26)

Finally, we can write Eq. 10.20 as

Tmech = 3

2

(
poles

2

)
(λDiQ − λQiD) (10.27)

From this point on, we will focus our attention on machines in which the effects
of saliency can be neglected. In this case, the direct- and quadrature-axis synchronous
inductances are equal and we can write

Ld = Lq = Ls (10.28)

where Ls is the synchronous inductance. Substitution into Eqs. 10.21 and 10.22 and
then into Eq. 10.27 gives

Tmech = 3

2

(
poles

2

)
[(LsiD + LafiF)iQ − LsiQiD]

= 3

2

(
poles

2

)
LafiFiQ (10.29)

Equation 10.29 shows that torque is produced by the interaction of the field flux
(proportional to the field current) and the quadrature-axis component of the armature
current, in other words, the component of armature current that is orthogonal to the
field flux. We also see that, for a non-salient machine, the direct-axis component of
armature current, which is aligned with the field flux, produces no torque.

This result is fully consistent with the generalized torque expressions which are
derived in Chapter 4. Consider for example Eq. 4.75 which expresses the torque in
terms of the product of the stator and rotor mmfs (Fs and Fr respectively) and the sine
of the angle between them.

T = −
(

poles

2

) (
μ0πDl

2g

)
Fs Fr sin δsr (10.30)

where δsr is the electrical space angle between the stator and rotor mmfs. This shows
clearly that no torque will be produced by the direct-axis component of the armature
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mmf which, by definition, is that component of the stator mmf which is aligned with
that of the field winding on the rotor.

Equation 10.29 shows the torque in a nonsalient synchronous motor is propor-
tional to the product of the field current and the quadrature-axis component of the
armature current. This is directly analogous to torque production in a dc machine for
which Eqs. 7.13 and 7.16 can be combined to show that the torque is proportional to
the product of the field current and the armature current.

The analogy between a non-salient synchronous machine and dc machine can
be further reinforced. Consider Eq. 5.21, which expresses the rms value of the line-
neutral generated voltage of a synchronous generator as

Eaf = ωeLafiF√
2

(10.31)

Substitution into Eq. 10.29 gives

Tmech = 3

2

(
poles√

2

)
EafiQ

ωe
(10.32)

This is directly analogous to Eq. 7.19 (Tmech = Ea Ia/ωm) for a dc machine in which
the torque is proportional to the product of the generated voltage and the armature
current.

The brushes and commutator of a dc machine force the commutated armature
current and armature flux along the quadrature axis such that Id = 0. It is the in-
teraction of the quadrature-axis flux with the direct-axis field flux that produces the
torque.2 A field-oriented controller which senses the position of the rotor and con-
trols the quadrature-axis component of armature current produces the same effect in
a synchronous machine.

Although the direct-axis component of the armature current does not play a role
in torque production, it does play a role in determining the resultant stator flux and
hence the machine terminal voltage, as can be readily shown. Specifically, from the
transformation equations of Appendix C,

va = vD cos (ωet) − vQ sin (ωet) (10.33)

and thus the rms amplitude of the line-neutral armature voltage is equal to3

Va =
√

v2
D + v2

Q

2
= ωe

√
λ2

D + λ2
Q

2

= ωe

√
(LsiD + LafiF)2 + (LsiQ)2

2
(10.34)

2 In a practical dc motor, the brushes may be adjusted away from this ideal condition somewhat to
improve commutation. In this case, some direct-axis current will result, producing a small direct-axis
component of armature flux.
3 Strictly speaking, armature resistance should be included in the voltage expression, in which case the
rms amplitude of the armature voltage would be given by the expression

Va =
√

v2
D + v2

Q

2
=

√
(RaiD − ωeλQ)2 + (RaiQ + ωeλD)2

2
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Dividing the rms line-neutral voltage Va by the electrical frequency ωe, we get an
expression for the rms armature line-neutral flux linkage

(λa)rms = Va

ωe
=

√
λ2

D + λ2
Q

2
=

√
(LsiD + LafiF)2 + (LsiQ)2

2
(10.35)

Similarly, the transformation equations of Appendix C can be used to show that
the rms amplitude of the armature current is equal to

Ia =
√

i2
D + i2

Q

2
(10.36)

From Eq. 10.29 we see that torque is controlled by the product iFiQ of the field
current and the quadrature-axis component of the armature current. Thus, simply
specifying a desired torque is not sufficient to uniquely determine either iF or iQ.
In fact, under the field-oriented-control viewpoint presented here, there are actually
three indpendent variables, iF, iQ and iD, and, in general, three constraints will be
required to uniquely determine them. In addition to specifying the desired torque, a
typical controller will implement additional constraints on the terminal flux-linkage
and current using the basic relationships found in Eqs. 10.35 and 10.36.

Figure 10.14a shows a typical field-oriented torque-control system in block-
diagram form. The control system calculates reference values (set points) for the
various motor currents, indicated by the subscript “ref”. We will assume ideal con-
troller performance such that under steady-state conditions the currents supplied to
the motor are equal to their reference values, i.e., iD = (id)ref, iQ = (iq)ref, and
iF = (if)ref, and we will use these values interchangeably as appropriate.

The torque-controller block, which calculates the quadrature-axis current refer-
ence value (iq)ref, has two reference inputs, torque (Tref) and field current ((if)ref).
(if)ref is calculated by an auxiliary controller which also determines the reference
value (id)ref of the direct-axis current.

The torque controller calculates (iq)ref from Eq. 10.29 based upon Tref and (if)ref

(iq)ref = 2

3

(
2

poles

)
Tref

Laf(if)ref
(10.37)

Note that a position sensor is required to determine the angular position of the rotor
in order to implement the dq0 to abc transformation which determines the reference
values for the motor phase currents which are supplied by the 3-phase current-source
inverter.

In many applications, the ultimate control objective is not to control motor torque
but to control speed or position. Figure 10.14b shows how the torque-control system
of Fig. 10.14b can be used as a component of a speed-control system, with speed
feedback forming an outer control loop around the inner torque-control loop.

EXAMPLE 10.9

Consider again the 45-kVA, 220-V, six-pole synchronous motor of Example 10.8 operating at
60 Hz with a field current of 3.70 A. If the motor is loaded to rated torque and operating at
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Figure 10.14 (a) Block diagram of a field-oriented torque-control system for a
synchronous motor. (b) Block diagram of a synchronous-motor speed-control loop built
around a field-oriented torque control system.

rated speed in the steady-state under a field-oriented control system such that iD = 0, calculate
(a) the per-unit armature current and (b) the motor terminal voltage in per unit.

■ Solution

a. We must first calculate Laf. From Example 10.8, we see that the motor produces rated
60-Hz open-circuit voltage (220-V rms, line-line) at a field current of 2.84 A. From
Eq. 10.31

Laf =
√

2 Eaf

ωeiF

where Eaf is the rms, line-neutral generated voltage. Thus

Laf =
√

2 × (220/
√

3)

120π × 2.84
= 0.168 H
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Rated torque for this six-pole motor is equal to

Trated = Prated

(ωm)rated

= Prated

(ωe)rated × (2/poles)

= 45 × 103

120π × (2/6)
= 358 N · m

Thus, setting Tref = Trated = 358 N · m and iF = 3.70 A, we can find iQ from Eq. 10.37
as

iQ = 2

3

(
2

poles

)
Tref

Laf iF

= 2

3

(
2

6

)
358

0.168 × 3.70
= 128 A

With iD = 0, from Eq. 10.36 the rms armature current is equal to

Ia = iQ√
2

= 90.5 A

The base current of this motor is

Ibase = Pbase√
3 Vbase

= 45 × 103

√
3 × 220

= 118 A

and thus Ia = 90.5/118 = 0.77 per unit.
b. With iD = 0, from Eq. 10.21

λD = LafiF = 0.168 × 3.70 = 0.622 Wb

The base-inductance impedance of this machine is

Zbase = V 2
base

Pbase

= 2202

45 × 103
= 1.08 �

and the corresponding base inductance is

Lbase = Zbase

(ωe)base

= 1.08

120 π
= 2.87 mH

and thus the synchronous inductance is L s = 0.836 × 2.87 mH = 2.40 mH.
From Eq. 10.22 (with Lq = L s since this is a non-salient motor)

λQ = L siQ = (2.40 × 10−3) × 128 = 0.307 Wb

Finally, from Eq. 10.34, the line-neutral voltage under this operating condition is

Va = ωe

√
λ2

D + λ2
Q

2
= (120 π)

√
0.6202 + 0.3072

2
= 184 V

corresponding to a line-line terminal voltage of 320 V, considerably in excess of the 220 V
rated voltage. In practice, in addition to the fact that this operation is likely to damage the
motor insulation, it is unlikely to be achieved because the motor would be highly saturated
and hence the synchronous inductance and field-armature mutual inductance will be lower
than assumed here.

In the next example, we will see how a different choice of iF, iD, and iQ can produce the
same torque at a reduced terminal voltage.
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EXAMPLE 10.10

In this example, we will re-visit Example 10.9 with the objective of examining a field-oriented
controller which sets the motor torque equal to its rated value Trated and which checks if the
rms line-neutral armature flux linkage (λa)rms is greater than the rated value and if so, supplies
direct-axis current to reduce (λa)rms to its rated value.

Write a MATLAB script that applies this algorithm and searches over field currents up
to 5.0 A for an operating point which requires the minimum value of armature current. Note
that because the motor is operating at rated speed and frequency and because the armature
flux linkage is constrained to the rated value at maximum, the motor terminal voltage will not
exceed the rated value of 220 V line-line as opposed to the 320 V result with the controller of
Example 10.9.

■ Solution
From Eq. 10.35, the rated value of the rms line-neutral flux linkage (corresponding to rated
terminal voltage) is equal to

(λa)rated = Vrated

ωe

= 220/
√

3

120 π
= 337 mWb

The MATLAB script will implement the following algorithm:

■ From Eq. 10.35 we see that there is a maximum value of iQ such that iD can be adjusted
(by varying iF) to set (λa)rms equal to (λa)rated

(iQ)max =
√

2 (λa)rated

L s

■ Based upon the requirement to achieve rated torque Trated, the corresponding minimum
value of field current can be found from Eq. 10.29 as

(iF)min = 2

3

(
2

poles

)
Trated

Laf(iQ)max

■ For each value of field current iF, calculate iQ from Eq. 10.37 as

iQ = 2

3

(
2

poles

)
Trated

Laf iF

■ Setting iD = 0, calculate the rms line-neutral armature flux linkage from Eq. 10.35

(λa)rms =
√

(LafiF)2 + (L siQ)2

2

■ Check if (λa)rms is greater than the rated value (λa)rated. If yes, then using Eq. 10.35,
calculate the direct-axis current required to set the rms line-neutral flux linkage equal to
the rated value.

iD =
√

2 (λa)
2
rated − (L s iQ)2 − LafiF

L s

■ The rms line-neutral armature flux linkage can be calculated from Eq. 10.35 as

(λa)rms =
√

(L siD + LafiF)2 + (L siQ)2

2
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Figure 10.15 Plot of per-unit armature current versus field current for
Example 10.10.

and the rms line-neutral terminal voltage can be calculated as

Va = ωe(λa)rms

■ Finally, the rms armature current can be calculated from Eq. 10.36 as

Ia =
√

i 2
D + i 2

Q

2

and its per-unit value as Ia/Irated.

Figure 10.15 is a plot of the resultant armature current versus field current. The minimum
armature current of 1.00 per unit (118 A) occurs at a field current of 3.70 A. The direct-
and quadrature-axis currents under this condition are iD = −107 A and iQ = 128 A and the
corresponding terminal voltage is 220 V, line-line.

Here is the MATLAB script:

clc

clear

%%%%%%%%%%%%%%

% Motor parameters

%%%%%%%%%%%%%%

Prated = 45e3;

Vrated = 220;

Irated = Prated/(sqrt(3)*Vrated);

poles = 6;

Lspu = 0.836;

AFNL = 2.84;

frated = 60;
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omegaerated = 2*pi*frated;

omegamrated = omegaerated*(2/poles);

% Base impedance and inductance

Zbase = Vrated^2/Prated;

Lbase = Zbase/omegaerated;

% Synchronous inductance

Ls = Lspu*Lbase;

% Rated line-neutral voltage

Varated = Vrated/sqrt(3);

% Calculate Laf

Laf = sqrt(2)*Varated/(omegaerated*AFNL);

% Rated rms line-neutral flux linkage

Lambdaarated = Varated/omegaerated;

% Maximum value of iQ so that flux linkage

% can be limited to rated value

iQmax = sqrt(2)*Lambdaarated/Ls;

% Rated torque

Trated = Prated/omegamrated;

% Define range of iF starting with minimum value

% of field current to insure rated torque.

iFmin = (2/3)*(2/poles)*Trated/(Laf*iQmax);

iFmax = 5.0;

% Search over the field current to find that value

% which results in minimum armature current

deliF = 0.001;

n = 0;

iF = iFmin;

while iF <= iFmax

n = n+1;

ifld(n) = iF;

iQ(n) = (2/3)*(2/poles)*Trated./(Laf*iF);

iD(n) = 0;

Lambdaarms = sqrt(((Laf*iF)^2+(Ls*iQ(n))^2)/2);

% iD required if Lambdaarms > Lambdaarated

if Lambdaarms > Lambdaarated
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iD(n) = (sqrt(2*Lambdaarated^2-(Ls*iQ(n))^2) - Laf*iF)/Ls;

end

Ia(n) = sqrt((iD(n)*iD(n) + iQ(n)*iQ(n))/2);

Iapu(n) = Ia(n)/Irated;

iF = iF + deliF;

end

% Find index to minimum Ia

m = find(Ia == min(Ia));

Ia_min = Ia(m);

Iapu_min = Iapu(m);

iF_min = ifld(m);

iD_min = iD(m);

iQ_min = iQ(m);

lambdaa_min = sqrt(((Laf*iF_min+Ls*iD_min)^2+(Ls*iQ_min)^2)/2);

Va_min = omegaerated*lambdaa_min;

fprintf(’At iF = %1.2f:\n’,iF_min)

fprintf(’ Va = %3.1f [V, l-l]\n’,sqrt(3)*Va_min)

fprintf(’ Ia = %2.1f [A] = %1.2f [pu]\n’,Ia_min,Iapu_min)

fprintf(’ iQ = %2.1f [A], iD = %2.1f [pu]\n\n’,iQ_min,iD_min)

% Plot the results

hold off

plot(ifld,Iapu,’LineWidth’,2)

set(gca,’FontSize’,20)

xlabel(’i_F [A]’,’FontSize’,20)

ylabel(’I_a [pu]’,’FontSize’,20)

set(gca,’ylim’,[0.98,1.6])

set(gca,’ytick’,[1.0 1.1 1.2 1.3 1.4 1.5 1.6])

set(gca,’xlim’,[2 5])

set(gca,’xtick’,[2.0 2.5 3.0 3.5 4.0 4.5 5.0])

grid on

As we have discussed, a practical field-oriented control must determine values
for all three currents iF, iD, and iQ. In Example 10.9 two of these values were chosen
relatively arbitrarily (iF = 2.84 and iD = 0) and the result was a control that achieved
the desired torque but with a terminal voltage 30 percent in excess of the motor-
rated voltage. In a practical system, additional constraints are required to achieve an
acceptable control algorithm. One such algorithm would be to require that the motor
operate at rated flux and at minimum armature current, subject to the constraint that
the terminal voltage not exceed its rated value, as is illustrated in Example 10.10, with
negative direct-axis current added as needed to reduce the armature flux linkages.
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The discussion of this section has focused upon synchronous machines with field
windings and the corresponding capability to control the field excitation. The basic
concept, of course, also applies to synchronous machines with permanent magnets
on the rotor. However, in the case of permanent-magnet synchronous machines, the
effective field excitation is fixed and, as a result, there is one less degree of freedom
for the field-oriented control algorithm.

For a permanent-magnet synchronous machine, since the effective equivalent
field current is fixed by the permanent magnet, the quadrature-axis current is deter-
mined directly by the desired torque. Consider a three-phase permanent-magnet motor
which produces rated rms, line-neutral open-circuit (Eaf)rated at electrical frequency
ωe. From Eq. 10.31 we see that the equivalent LafiF product for this motor, which we
will refer to by the symbol �PM, is

�PM =
√

2(Eaf)rated

ωe
(10.38)

Thus, the direct-axis flux-current relationship for this motor, corresponding to
Eq. 10.21, becomes

λD = LdiD + �PM (10.39)

and the torque expression of Eq. 10.29 becomes

Tmech = 3

2

(
poles

2

)
�PMiQ (10.40)

From Eq. 10.40 we see that, for a permanent-magnet synchronous machine un-
der field-oriented control, the quadrature-axis current is uniquely determined by the
desired torque and Eq. 10.37 becomes

(iQ)ref = 2

3

(
2

poles

)
Tref

�PM
(10.41)

Once (iQ)ref has been specified, the only remaining control choice remains to
determine the desired value for the direct-axis current, (iD)ref. One possibility is
simply to set (iD)ref = 0. This will clearly result in the lowest possible armature
current for a given torque. However, as we have seen in Example 10.9, in some cases,
this will result in a terminal voltage in excess of the rated voltage of the machine. As
a result, under these conditions it is common to supply direct-axis current so as to
reduce the direct-axis flux linkage of Eq. 10.39, which will in turn reduce the terminal
voltage. This technique is commonly referred to as flux weakening and comes at the
expense of increased armature current.4 Figure 10.16 shows the block diagram for a
field-oriented-control system for use with a permanent-magnet motor.

4 See T. M. Jahns, “Flux-Weakening Regime Operation of an Interior Permanent Magnet Synchronous
Motor Drive,” IEEE Transactions on Industry Applications, Vol. 23, pp. 681–689.
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Figure 10.16 Block diagram of a field-oriented torque-control system
for a permanent-magnet synchronous motor.

EXAMPLE 10.11

A 25-kW, 4000-r/min, 220-V, two-pole, three-phase permanent-magnet synchronous motor
produces rated open-circuit voltage at a rotational speed of 3200 r/min and has a synchronous
inductance of 1.75 mH. Assume the motor is to be operated under field-oriented control at
2800 r/min and 65 percent of rated torque.

a. Calculate the required quadrature-axis current.
b. If the motor is operated with quadrature-axis current only (iD = 0), calculate the

resultant per-unit armature flux linkage.
c. If the field-oriented controller is set to maintain the armature flux-linkage at its rated value

(1.0 per unit), calculate the corresponding value of iD and the corresponding rms and
per-unit values of the armature current.

■ Solution

a. The rated speed of this machine is

(ωm)rated = 4000
(

π

30

)
= 419 rad/sec

and the rated torque is

Trated = Prated

(ωm)rated

= 25 × 103

419
= 59.7 N · m

This motor achieves its rated-open-circuit voltage of 220/
√

3 = 127 V rms at a
speed of n = 3200 r/min. The corresponding electrical frequency is

ωe =
(

poles

2

)(
π

30

)
n =

(
π

30

)
3200 = 335 rad/sec
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From Eq. 10.38,

�PM =
√

2(Eaf)rated

ωe

=
√

2 × 127

335
= 0.536 Wb

Thus, setting Tref = 0.65 × Trated = 38.8 N · m, from Eq. 10.41 we find that

(iQ)ref = 2

3

(
2

poles

)
Tref

�PM

= 2

3

(
38.8

0.536

)
= 48.3 A

c. With (iD)ref = 0,

λD = �PM = 0.536 Wb

and

λQ = L siQ = 1.75 × 10−3 × 48.3 = 0.0845 Wb

Thus, from Eq. 10.35, the rms line-neutral armature flux is equal to

λa =
√

λ2
D + λ2

Q

2
=

√
0.5362 + 0.08452

2
= 0.384 Wb

The base rms line-neutral armature flux can be determined from the base line-neutral
voltage (Va)base = 127 V and the base frequency (ωe)base = 419 rad/sec (66.7 Hz) as

(λa)base = (Va)base

(ωe)base

= 0.303 Wb

Thus, the per-unit armature flux is equal to 0.384/0.303 = 1.27 per unit. From this
calculation we see that the motor is significantly saturated at this operating condition. In
fact, the calculation is probably not accurate because such a degree of saturation will most
likely give rise to a reduction in the synchronous inductance as well as the magnetic
coupling between the rotor and the stator.

c. In order to maintain rated armature flux linkage, the control will have to produce a
direct-axis component of armature current to reduce the direct-axis flux linkage such that
the total armature flux linkage is equal to the rated value (λa)base. Specifically, we must
have

λD =
√

2(λa)
2
base − λ2

Q = √
2 × 0.3032 − 0.08442 = 0.420 Wb

We can now find iD from Eq. 10.39 (setting Ld = L s)

iD = λD − �PM

L s

= 0.420 − 0.536

1.75 × 10−3
= −66.3 A

The corresponding rms armature current is

Ia =
√

i 2
D + i 2

Q

2
=

√
66.32 + 48.32

2
= 58.0 A

The base rms armature current for this machine is equal to

Ibase = Pbase√
3Vbase

= 25 × 103

√
3 220

= 65.6 A

and hence the per-unit armature current is equal to 58.0/65.6 = 0.88 per unit.



Umans-3930269 book December 14, 2012 12:32

590 CHAPTER 10 Speed and Torque Control

Comparing the results of parts (b) and (c) we see how flux weakening by the introduction
of direct-axis current can be used to control the terminal voltage of a permanent-magnet
synchronous motor under field-oriented control.

Practice Problem 10.6

Consider again the motor of Example 10.11. Repeat the calculations of parts (b) and (c) of
Example 10.11 for the case in which the motor is operating at 80 percent of rated torque at a
speed of 2500 r/min.

Solution
For part (b) λa = 1.27 per unit.
For part (c), Ia = 0.98 per unit.

EXAMPLE 10.12

In this example, we will examine the field-oriented control of a 2-pole, three-phase permanent-
magnet motor designed for constant maximum torque for speeds below base speed and constant
maximum power for speeds above base speed. When operated at rated flux, the motor achieves
its rated terminal voltage of 460 V at a base speed of 3000 r/min and has a maximum safe
operating current of 80 A. The motor is designed so that it can be operated in excess of base
speed at a maximum terminal voltage of 460 V up to a speed of 7000 r/min. The motor is
non-salient, has a synchronous inductance of 4.85 mH and achieves rated open-circuit voltage
at a speed of 4900 r/min.

The motor is supplied by an electronic drive which includes a field-oriented controller
with a speed feedback loop as shown in block-diagram form in Fig. 10.17. For this application,
the controller gain has been set to G = 31.4 N · m/(rad/sec). The drive control algorithm
implements the following features:

■ The drive output current is limited to the motor maximum safe operating current
Ia,max = 80 A.

■ The drive will supply only quadrature-axis current up to the point that direct-axis current
is required to insure that the motor flux density does not exceed its rated value and that

θm
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Tref
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synchronous

motor
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�
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Figure 10.17 Block diagram of the synchronous-motor
speed-control loop for the permanent-magnet synchronous motor of
Example 10.12.
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the terminal voltage does not exceed 460 V. If the required combination of
quadrature-axis current and direct-axis current exceeds the maximum safe operating
current, the drive will reduce the quadrature-axis current, hence reducing the motor
torque, until no motor operating constraints (flux linkages, terminal voltage and current)
are exceeded.

To investigate the performance of the controller, we will assume that the motor is driving
a load which draws a constant power of 30 kW over the speed range of 2800 – 7000 r/min. For
the purposes of this example, we will neglect the effects of losses and armature resistance.

a. The motor is observed to be operating at a speed of 2800 r/min. (i) Calculate the motor
torque and the corresponding reference speed (ωm)ref. (ii) Calculate the direct- and
quadrature-axis currents. (iii) Calculate the armature current and the motor terminal
voltage.

b. The reference speed is set to 7000 r/min. (i) Calculate the corresponding motor speed and
torque. (ii) Calculate the direct- and quadrature-axis currents and the armature current in
amperes.

c. The motor and load have a combined inertia of J = 0.10 kg·m2. With the motor initially
operating at 2800 r/min, the reference speed is suddenly switched to 7000 r/min. Use
MATLAB/Simulink to plot the motor speed, torque, terminal voltage, and currents
(q-axis, d-axis and armature rms) as a function of time.

■ Solution
Some preliminary calculations:

■ From Eq. 10.35, the rms rated line-neutral armature flux linkage is calculated from the
rated line-neutral voltage and the base speed ((ωe)base = (ωm)base = 3000 × (π/30) =
314.2 r/min)

(λa)rated = 460/
√

3

314.2
= 845 mWb

■ The motor achieves rated open-circuit voltage at a speed of 4900 r/min
(ωe = 4900 × (π/30) = 513.1 rad/sec) and from Eq. 10.38,

�PM =
√

2 (Eaf)rated

ωe

=
√

2 (460/
√

3)

513.1
= 732 mWb

a. (i) At 2800 r/min with ωm = 2800 × (π/30) = 293.2 rad/sec, the corresponding torque is

Tload = Pload

ωm

= 102.3 N·m

From the block diagram of Fig. 10.17 setting Tref = Tload, the reference speed can be
calculated as

(ωm)ref = ωm + Tload

G
= 293.2 + 102.3

31.4
= 296.5 rad/sec

corresponding to a speed of 2831 r/min.



Umans-3930269 book December 14, 2012 12:32

592 CHAPTER 10 Speed and Torque Control

(ii) The value of quadrature-axis current required to produce the desired torque is
calculated from Eq. 10.41

iQ = 2

3

(
2

poles

)
Tload

�PM

= 93.2 A

This is is a non-salient motor with Ld = Lq = L s = 4.85 mH. Hence, from Eq. 10.22

λQ = L siQ = 452 mWb

From Eq. 10.39, with iD = 0,

λD = �PM = 732 mWb

and thus from Eq. 10.35

(λa)rms =
√

λ2
D + λ2

Q

2
= 608 mWb

which is less than (λa)rated. Because the motor is operating below base speed, this
guarantees that the terminal voltage will be less than 460 V. Thus flux weakening will not
be required and the controller will set iD = 0.

(iii) From Eq. 10.36 the armature current is

Ia = iQ√
2

= 65.9 A

which is within the safe operating limit of the motor.
Finally, from Eq. 10.35, with ωe = ωm = 293.2 rad/sec, the rms line-neutral voltage

is

Va = ωe(λa)rms = 293.2 × 0.608 = 178.4 V

corresponding to a line-line voltage of 308.9 V which is, as expected, considerably less
than the rated terminal voltage.

b. (i) In this case, the reference speed is given as nref = 7000 r/min and hence the motor
speed n must be found by equating the reference torque

Tref = G(ωref − ωm) = G(nref − n) × (π/30)

with the load torque

Tload = Pload

ωm

= Pload

n × (π/30)

This results in a quadratic equation for n

n2 − nref n +
(

Pload

G

)(
30

π

)2

= 0

which has two solutions, 12 r/min and the clearly correct value of 6988 r/min
(ωm = 731.7 rad/sec). The load torque is thus

Tload = Pload

ωm

= 41.0 N · m
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(ii) The quadrature-axis current can again be calculated from Eq. 10.41

iQ = 2

3

(
2

poles

)
Tload

�PM

= 37.3 A

Because the motor is operating above base speed, if necessary the controller will limit
both the rms line-neutral flux armature linkage to its rated value and the motor line-line
terminal voltage to its rated value of 460 V. To check whether controller action must be
included, we will start by assuming that flux weakening with direct-axis current is not
required. With iD = 0, from Eq. 10.35, the rms line-neutral armature flux linkage would be

(λa)rms =
√

λ2
PM + (L siQ)2

2
= 0.533 Wb

which again is less than (λa)rated. However, because the motor is operating above base
speed, it is necessary to check the corresponding terminal voltage. From Eq. 10.35 with
ωe = ωm = 731.7 rad/sec, the rms line-neutral voltage is

Va = ωe(λa)rms = 390.0 V

corresponding to a line-line voltage of 675.8 V which is in excess of the rated terminal
voltage.

Thus, under this operating condition, flux weakening is required and the controller
will supply negative direct-axis current sufficient to limit the line-line terminal voltage to
460 V (265.6 V line-neutral). The required rms line-neutral armature flux linkage is

(λa)rms = Va

ωe

= 265.6

731.7
= 363 mWb

and thus

λD =
√

2(λa)2
rms − λ2

Q =
√

2(λa)2
rms − (L siQ)2 = 480 mWb

We can find iD from Eq. 10.39

iD = λD − λPM

L s

= −51.9 A

Note that, as expected, iD is negative as required to produce flux weakening by reducing
the direct-axis flux.

From Eq. 10.36 the armature current is

Ia = iQ√
2

= 45.2 A

which is again well within the safe operating range of the motor.
c. We will assume that the drive can supply phase currents to the motor that exactly match

the required d- and q-axis currents and hence produce exactly the required torque. As a
result, we will write the simulation directly in terms of the d- and q-axis quantities without
the need to transform to phase variables.

The basic equations required for this simulation are those describing the speed
controller of Fig. 10.17

Tref = G(ωref − ωm) = G(nref − n) × (π/30)
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Figure 10.18 Simulink model for Example 10.12.

and the first-order differential equation describing the motor speed

J
dωm

dt
= Tmech − Tload

where

Tload = Pload

ωm

In integral form as required by Simulink, the motor speed given by

ωm = ωm0 + 1

J

∫ t

0

(Tmech − Tload)dt

where ωm0 is the motor speed at the start of the sumulation; in this case
ωm0 = 2800 × (π/30) = 293.2 rad/sec.

Figure 10.18 is the block diagram of the Simulink model. The block labeled
“Initialization” calls a MATLAB script which pre-loads the model parameters and initial
conditions for the simulation. The element labeled “Speed switch” initiates the speed
change by switching the reference speed from nref,a = 2831 r/min to nref,b = 7000 r/min.

The drive control algorithm is implemented in the subsystem labeled “Drive
Controller” by the following MATLAB function:

function [Tmech,Ia,Vall,id,iq] = Control(Iamax,Tref, ...

LambdaPM,L_s,Vrated,lambdaarated,omegae,poles)

Tmechmax = LambdaPM*(Iamax*sqrt(2))*(3/2)*(poles/2);

% Set Tmech = Tref to start

Tmech = Tref;

if Tmech > Tmechmax

Tmech = Tmechmax;

end

% First pass at iq and id

iq = (2/3)*(2/poles)*Tmech/LambdaPM;
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id = 0;

% Loop to find Tmech if necessary

sw = 0;

while (sw == 0)

% Check if corresponding Ia is greater than Iamax. If so

% reduce iq

if iq > sqrt(2)*Iamax;

iq = 0.999*sqrt(2)*Iamax;

end

% Find largest acceptable negative id

id1 = -LambdaPM/L_s;

id2 = -sqrt(2*Iamax^2-iq^2);

idmin = max(id1,id2);

% Find the corresponding minimum value of lambdaarms

lambdaarmsmin = sqrt(((LambdaPM+L_s*idmin)^2 + (L_s*iq)^2 )/2);

Vamin = omegae*lambdaarmsmin;

% Check if these minimum values acceptable

if (lambdaarmsmin <= lambdaarated) && ...

(Vamin <= Vrated/sqrt(3))

% Acceptable. First find out if id is needed by assuming

% iq only and checking lambdaarms and Va

sw = 1; %Set switch to exit Tmech loop

lambdaarms = sqrt((LambdaPM^2+(L_s*iq)^2)/2);

Va = omegae*lambdaarms;

if (lambdaarms <= lambdaarated) && (Va <= Vrated/sqrt(3))

id = 0; % No id needed

sw = 1;

else

% id needed. Find the value that meets both constraints

id1 = (sqrt(2*lambdaarated^2-(L_s*iq)^2) - LambdaPM)/L_s;

id2 = (sqrt(2*(Vrated/(sqrt(3)*omegae))^2-(L_s*iq)^2) ...

- LambdaPM)/L_s;

% Required id is the minimum (largest negative) value

id = min(id1,id2);

end

else

% Minimum values not acceptable. Reduce Tmech and loop

% until an acceptable Tmech is found

Tmech = 0.999*Tmech;

% Corresponding iq

iq = (2/3)*(2/poles)*Tmech/LambdaPM;
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end

end % end of ’while sw == 0

% Calculate Ia and Va

Ia = sqrt((id^2+iq^2)/2); % RMS armature current

lambdaarms = sqrt(((LambdaPM+L_s*id)^2+(L_s*iq)^2)/2);

Va = omegae*lambdaarms;

Vall = sqrt(3)*Va; % Line-line voltage

The motor speed is plotted in Fig. 10.19a. Notice that the speed switch is controlled
to apply the change in reference speed at 0.1 sec after the start of the simulation. The
motor then takes slightly more than 0.9 sec to reach its final speed of 6988 r/min.

Immediately following the change in reference speed, the reference torque signal
from the speed-controller jumps to a large value

Tref = (nref,b − nref,a) (π/30) G = 13.7 kN · m

Because the rms drive current is limited to 80 A, corresponding to a maximum
possible value of quadrature-axis current of iq,max = 80

√
2) = 113 A, the maximum
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Figure 10.19 Simulation results for Example 10.12: (a) speed, (b) torque,
(c) currents, and (d) line-line voltage.
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motor torque will be limited by the drive to

Tmech,max = 3

2

(
poles

2

)
�PM iq,max = 124.2 N · m

as can be seen in Fig. 10.19b where the motor torque immediately steps to this value as
the reference speed is switched to 7000 r/min. From Fig. 10.19c we see that the rms
armature current Ia and quadrature axis current also immediately step to their respective
maximum values of 80 A and 113 A respectively.

As can be seen in Fig. 10.19d, the corresponding terminal voltage steps to 328 V
which is less than the motor rated voltage of 460 V. As a result, flux weakening is not
required and direct-axis current is set equal to zero. As the motor speed increases, we see
that the q-axis current remains constant at its maximum value while the terminal voltage
increases. As can be seen from the figure, the terminal voltages reaches 460 V when the
motor speed is approximately 4000 at around 0.42 seconds. At this point, flux weakening
is required to limit the terminal voltage and the drive must supply negative d-axis current,
as can be seen in Fig. 10.19c. This in turn requires that the drive reduce the q-axis
component of armature current in order to limit the rms armature current to 80 A and there
is a corresponding reduction in motor torque, both of which can be seen in Fig. 10.19.
Finally, we see that as the motor speed approaches the reference value of 7000 r/min, the
reference torque drops rapidly and the motor speed, torque, and currents settle to the
steady-state values as calculated in part (b).

10.3 CONTROL OF INDUCTION MOTORS
10.3.1 Speed Control

Induction motors supplied from a constant-frequency source admirably fulfill the
requirements of substantially constant-speed drives. Many motor applications, how-
ever, require several speeds or even a continuously adjustable range of speeds. From
the earliest days of ac power systems, engineers have been interested in the develop-
ment of adjustable-speed ac motors.

The synchronous speed of an induction motor can be changed by (a) changing the
number of poles or (b) varying the line frequency. The operating slip can be changed
by (c) varying the line voltage, (d) varying the rotor resistance, or (e) applying voltages
of the appropriate frequency to the rotor circuits. The salient features of speed-control
methods based on these five possibilities are discussed in the following five sections.

Pole-Changing Motors In pole-changing motors, the stator winding is designed
so that, by simple changes in coil connections, the number of poles can be changed
in the ratio 2 to 1. Either of two synchronous speeds can then be selected. The rotor
is almost always of the squirrel-cage type, which reacts by producing a rotor field
having the same number of poles as the inducing stator field. With two independent
sets of stator windings, each arranged for pole changing, as many as four synchronous
speeds can be obtained in a squirrel-cage motor, for example, 600, 900, 1200, and
1800 r/min for 60-Hz operation.
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Figure 10.20 Principles of the pole-changing winding.

The basic principles of the pole-changing winding are shown in Fig. 10.20, in
which aa and a′a′ are two coils comprising part of the phase-a stator winding. An
actual winding would, of course, consist of several coils in each group. The windings
for the other stator phases (not shown in the figure) would be similarly arranged. In
Fig. 10.20a the coils are connected to produce a four-pole field; in Fig. 10.20b the
current in the a′a′ coil has been reversed by means of a controller, the result being a
two-pole field.

Figure 10.21 shows the four possible arrangements of these two coils: they can be
connected in series or in parallel, and with their currents either in the same direction
(four-pole operation) or in the opposite direction (two-pole operation). Additionally,
the machine phases can be connected either in Y or 	, resulting in eight possible
combinations.

Note that for a given phase voltage, the different connections will result in differ-
ing levels of air-gap flux density. For example, a change from a 	 to a Y connection

−a −a′a′a

(a)

−a −a′a

(b)

a′

−a

−a′a′

a

(c)

−a

a′−a′

a

(d)

Figure 10.21 Four possible arrangements of phase-a stator coils
in a pole-changing induction motor: (a) series-connected, four-pole;
(b) series-connected, two-pole; (c) parallel-connected, four-pole;
(d) parallel-connected, two-pole.
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will reduce the coil voltage (and hence the air-gap flux density) for a given coil ar-
rangement by

√
3. Similarly, changing from a connection with two coils in series

to two in parallel will double the voltage across each coil and therefore double the
magnitude of the air-gap flux density. These changes in flux density can, of course,
be compensated for by changes in the applied winding voltage. In any case, they
must be considered, along with corresponding changes in motor torque, when the
configuration to be used in a specific application is considered.

Armature-Frequency Control The synchronous speed of an induction motor can
be controlled by varying the frequency of the applied armature voltage. This method
of speed control is identical to that discussed in Section 10.2.1 for synchronous
machines. In fact, the same inverter configurations used for synchronous machines,
such as the three-phase voltage-source inverter of Fig. 10.12, can be used to drive
induction motors. As is the case with any ac motor, to maintain approximately constant
flux density, the armature voltage should also be varied directly with the frequency
(constant-volts-per-hertz).

The torque-speed curve of an induction motor for a given frequency can be cal-
culated by using the methods of Chapter 6 within the accuracy of the motor param-
eters at that frequency. Consider the torque expression of Eq. 6.36 which is repeated
here

Tmech = 1

ωs

[
nphV 2

1,eq(R2/s)

(R1,eq + (R2/s))2 + (X1,eq + X2)2

]
(10.42)

where ωs = (2/poles)ωe and ωe is the electrical excitation frequency of the motor in
rad/sec,

V̂1,eq = V̂1

(
j Xm

R1 + j (X1 + Xm)

)
(10.43)

and

R1,eq + j X1,eq = j Xm(R1 + j X1)

R1 + j (X1 + Xm)
(10.44)

To investigate the effect of changing frequency, we will assume that R1 is negli-
gible. In this case,

V̂1,eq = V̂1

(
Xm

X1 + Xm

)
(10.45)

R1,eq = 0 (10.46)

and

X1,eq = Xm X1

X1 + Xm
(10.47)
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Let the subscript 0 represent the rated-frequency values of each of the induction-
motor parameters. As the electrical-excitation frequency is varied, we can write

(X1,eq + X2) =
(

ωe

ωe0

)
(X1,eq + X2)0 (10.48)

Under constant-volts-per-hertz control, we can also write the equivalent source
voltage as

V̂1 =
(

ωe

ωe0

)
(V̂1)0 (10.49)

and hence, since V̂1,eq is equal to V̂1 multiplied by a reactance ratio which stays
constant with changing frequency,

V̂1,eq =
(

ωe

ωe0

)
(V̂1,eq)0 (10.50)

Finally, we can write the motor slip as

s = ωs − ωm

ωs
= poles

2

(
	ωm

ωe

)
(10.51)

where 	ωm = ωs − ωm is the difference between the synchronous and mechanical
angular velocities of the motor.

Substitution of Eqs. 10.48 through 10.51 into Eq. 10.42 gives

Tmech = nph[(V1,eq)0]2(R2/	ωm)[(
2 ωe0
poles

)
(R2/	ωm)

]2 + [(X1,eq + X2)0]2
(10.52)

Equation 10.52 shows the general trend in which we see that the frequency
dependence of the torque-speed characteristic of an induction motor appears only in
the term R2/	ωm. Thus, under the assumption that R1 is negligible, as the electrical
supply frequency to an induction motor is changed, the shape of the speed-torque
curve as a function of 	ωm (the difference between the synchronous speed and the
motor speed) will remain unchanged. As a result, the torque-speed characteristic will
simply shift along the speed axis as ωe( fe) is varied.

A set of such curves is shown in Fig. 10.22a. Note that as the electrical fre-
quency (and hence the synchronous speed) is decreased, a given value of 	ωm cor-
responds to a larger slip. Thus, for example, if the peak torque of a four-pole motor
driven at 60 Hz occurs at 1638 r/min, corresponding to a slip of 9 percent, when
driven at 30 Hz, the peak torque will occur at 738 r/min, corresponding to a slip of
18 percent.

In practice, the effects of R1 may not be fully negligible, especially for large
values of slip. If this is the case, the shape of the speed-torque curves will vary
somewhat with the applied electrical frequency. Figure 10.22b shows a typical family
of curves for this case.
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Figure 10.22 A family of typical induction-motor speed-torque curves for a
four-pole motor for various values of the electrical supply frequency. (a) R1

sufficiently small so that its effects are negligible. (b) R1 not negligible.
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EXAMPLE 10.13

A three-phase, 575-V, 60-Hz, 100-kW, four-pole induction motor has the following parameters
in �/phase:

X1 = 0.239 X2 = 0.344 Xm = 35.4091.4

R1 = 0.102 R2 = 0.125

This motor is to be operated from a variable-frequency, constant-volts-per-hertz motor
drive whose terminal voltage is 575 V at 60 Hz.

The motor is driving a load whose power can be assumed to vary as

Pload = 92.0
( n

1800

)3

kW

where n is the load speed in r/min. Motor rotational losses can be assumed to be negligible.
Write a MATLAB script to find the line-line terminal voltage, the motor slip and speed

in r/min, the motor load in kW, and the terminal current and power factor for (a) a source
frequency of 60 Hz and (b) a source frequency of 40 Hz.

■ Solution
As the electrical frequency fe is varied, the motor reactances will vary

X = X0

(
fe

60

)
where X0 is the reactance value at 60 Hz. Similarly, the line-neutral armature voltage must be
varied as

V1 = 220√
3

(
fe

60

)
= 127

(
fe

60

)
V

From Eq. 4.42, the synchronous angular velocity of the motor is equal to

ωs =
(

4π

poles

)
fe = π fe rad/sec

and, at any given motor speed ωm, the corresponding slip is given by

s = ωs − ωm

ωs

Using Eqs. 10.42 through 10.44, the motor speed can be found by searching over ωm for
that speed at which Pload = ωmTmech. The terminal current and power factor can be calculated
from the motor input impedance as shown in Chapter 6. If this is done, the result is:

a. For fe = 60 Hz:

Terminal voltage = 575 V line-line
Speed = 1736 r/min
Slip = 3.56 %
Pload = 82.5 kW
Terminal current = 91.4 A
Power factor = 90.6%
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b. For fe = 40 Hz:

Terminal voltage = 383 V line-line
Speed = 1172 r/min
Slip = 2.34 %
Pload = 25.4 kW
Terminal current = 41.7 A
Power factor = 91.8%

Here is the MATLAB script:

clc

clear

%Here are the 60-Hz motor parameters

V10 = 575/sqrt(3);

Nph = 3;

poles = 4;

fe0 = 60;

R1 = 0.102;

R2 = 0.125;

X10 = 0.239;

X20 = 0.344;

Xm0 = 35.40;

% Loop over two frequency values

fe1 = 60;

fe2 = 40;

for m = 1:2,

if m == 1

fe = fe1;

else

fe = fe2;

end

% Calculate the reactances and the voltage

X1 = X10*(fe/fe0);

X2 = X20*(fe/fe0);

Xm = Xm0*(fe/fe0);

V1 = V10*(fe/fe0);

%Calculate the synchronous speed
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omegas = 4*pi*fe/poles;

ns = 120*fe/poles;

%Calculate stator Thevenin equivalent

V1eq = abs(V1*j*Xm/(R1 + j*(X1+Xm)));

Z1eq = j*Xm*(R1+j*X1)/(R1 + j*(X1+Xm));

%Search over the slip until the Pload = Pmech

slip = 0.;

error = 1;

while error >= 0;

slip = slip + 0.00001;

rpm = ns*(1-slip);

omegam = omegas*(1-slip);

I2hat = V1eq/(Z1eq+j*X2+R2/slip);

I2 = abs(I2hat);

Pmech = 3*I2^2*R2*(1-slip)/slip;

Pload = 92e3*(rpm/1800)^3;

error = Pload - Pmech;

end %End of while loop

% Find I1

Z2 = R2/slip + j*X2;

Zm = j*Xm;

Z1 = R1+j*X1;

Zin = Z1+Zm*Z2/(Zm+Z2);

I1hat = V1/Zin;

I1 = abs(I1hat);

% Calculate the power factor

pf = Pmech/(3*V1*I1);

fprintf(’\nFor fe = %g [Hz]:’,fe)

fprintf(’\n Terminal voltage = %g [V l-l]’,V1*sqrt(3))

fprintf(’\n rpm = %g’,rpm)

fprintf(’\n slip = %g [percent] ’,100*slip)

fprintf(’\n Pload = %g [kW]’,Pload/1000)

fprintf(’\n I1 = %g [A]’,I1)

fprintf(’\n pf = %1.2f [percent]’,100*pf)

fprintf(’\n\n’)

end % End of for m = 1:2 loop
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Practice Problem 10.7

Repeat Example 10.13 for a source frequency of 50 Hz.

Solution

Terminal voltage = 479 V line-line
Speed = 1456 r/min
Slip = 2.94 %
Pload = 48.7 kW
Terminal current = 63.9 A
Power factor = 91.8%

Line-Voltage Control The internal torque developed by an induction motor is
proportional to the square of the voltage applied to its primary terminals, as shown
by the two torque-speed characteristics in Fig. 10.23. If the load has the torque-speed
characteristic shown by the dashed line, the speed will be reduced from n1 to n2. This
method of speed control is commonly used with small squirrel-cage motors driving
fans, where cost is an issue and the inefficiency of high-slip operation can be tolerated.
It is characterized by a rather limited range of speed control.

Rotor-Resistance Control The possibility of speed control of a wound-rotor motor
by changing its rotor-circuit resistance has already been pointed out in Section 6.7.1.
The torque-speed characteristics for three different values of rotor resistance are
shown in Fig. 10.24. If the load has the torque-speed characteristic shown by the
dashed line, the speeds corresponding to each of the values of rotor resistance are
n1, n2, and n3. This method of speed control has characteristics similar to those of dc
shunt-motor speed control by means of resistance in series with the armature.

The principal disadvantages of both line-voltage and rotor-resistance control are
low efficiency at reduced speeds and poor speed regulation with respect to change in
load. In addition, the cost and maintenance requirements of wound-rotor induction
motors are sufficiently high that squirrel-cage motors combined with solid-state drives
have become the preferred option in most applications.

Speed

Load

0.5 V1

V1

T
o
rq

u
e

n2 n1

Figure 10.23 Speed control by
means of line voltage.
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Figure 10.24 Speed control by
means of rotor resistance.

10.3.2 Torque Control

In Section 10.2.2 we developed the concept of field-oriented control for synchronous
machines. Under this viewpoint, the armature flux and current are resolved into two
components which rotate synchronously with the rotor and with the air-gap flux wave.
The components of armature current and flux which are aligned with the field-winding
are referred to as direct-axis components while those which are perpendicular to this
axis are referred to as quadrature-axis components.

It turns out that the same viewpoint which we applied to synchronous machines
can be applied to induction machines. As is discussed in Section 6.1, in the steady-state
the mmf and flux waves produced by both the rotor and stator windings of an induc-
tion motor rotate at synchronous speed and in synchronism with each other. Thus, the
torque-producing mechanism in an induction machine is equivalent to that of a syn-
chronous machine. The difference between the two is that, in an induction machine,
the rotor currents are not directly supplied but rather are induced as the induction-
motor rotor slips with respect to the rotating flux wave produced by the stator currents.
Thus, unlike as in the case of a synchronous machine, although the rotor and stator flux
waves rotate synchronously in an induction motor, they do not rotate synchronously
with the rotor.

To examine the application of field-oriented control to induction machines, we
begin with the dq0 transformation of Section C.3 of Appendix C. This transformation
transforms both the stator and rotor quantities into a synchronously rotating reference
frame. Under balanced-three-phase, steady-state conditions, zero-sequence quantities
will be zero and the remaining direct- and quadrature-axis quantities will be constant.
Hence the flux-linkage current relationships of Eqs. C.52 through C.58 become

λD = LSiD + LmiDR (10.53)

λQ = LSiQ + LmiQR (10.54)

λDR = LmiD + LRiDR (10.55)

λQR = LmiQ + LRiQR (10.56)
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In these equations, the subscripts D, Q, DR, and QR represent the constant
values of the direct- and quadrature-axis components of the stator and rotor quantities
respectively. It is a straightforward matter to show that the inductance parameters can
be determined from the equivalent-circuit parameters as

Lm = Xm0

ωe0
(10.57)

LS = Lm + X10

ωe0
(10.58)

LR = Lm + X20

ωe0
(10.59)

where the subscript 0 indicates the rated-frequency value.
Under steady-state conditions, the transformed voltage equations Eqs. C.63

through C.64 and C.66 through C.67 become

vD = RaiD − ωeλQ (10.60)

vQ = RaiQ + ωeλD (10.61)

0 = RaRiDR − (ωe − ωme)λQR (10.62)

0 = RaRiQR + (ωe − ωme)λDR (10.63)

where ωme is the rotor electrical angular velocity.
One can show that the resistances are related to those of the equivalent circuit as

Ra = R1 (10.64)

and

RaR = R2 (10.65)

For the purposes of developing a field-oriented control scheme, we will begin
with the torque expression of Eq. C.70

Tmech = 3

2

(
poles

2

) (
Lm

LR

)
(λDRiQ − λQRiD) (10.66)

For the derivation of the dq0 transformation in Section C.3, the reference frame
is chosen to be the synchronous frame of the stator and rotor flux waves, thus rotating
with the angular velocity ωs = (2/poles) ωe. It is not necessary for the purposes of
the derivation to specify the absolute angular location of the reference frame. It is
convenient at this point to choose the direct axis of the reference frame aligned with
the rotor flux.

If this is done, there will be no rotor flux aligned with the reference-frame quadra-
ture axis. Hence

λQR = 0 (10.67)
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and the torque expression of Eq. 10.66 becomes

Tmech = 3

2

(
poles

2

) (
Lm

LR

)
λDRiQ (10.68)

From Eq. 10.62 we see that

iDR = 0 (10.69)

and thus

λDR = LmiD (10.70)

and

λD = LSiD (10.71)

From Eqs. 10.70 and 10.71 we see that by aligning the synchronously rotating
reference frame with the axis of the rotor flux and thus setting λQR = 0, the direct-
axis rotor flux (which is, indeed, the total rotor flux) as well as the direct-axis flux are
determined by the direct-axis component of the armature current. Notice the direct
analogy with a dc motor. In a dc motor, the field- and direct-axis armature fluxes are
determined by the field current and in this field-oriented control scheme, the rotor
and direct-axis armature fluxes are determined by the direct-axis armature current.
In other words, in this field-oriented control scheme, the direct-axis component of
armature current serves the same function as the field current in a dc machine.

The torque equation, Eq. 10.68, completes the analogy with the dc motor. We see
that once the rotor direct-axis flux λDR is set by the direct-axis armature current, the
torque is then determined by the quadrature-axis armature current just as the torque
is determined by the armature current in a dc motor.

In a practical implementation of the technique which we have derived, the direct-
and quadrature-axis currents iD and iQ must be transformed into the three motor phase
currents ia(t), ib(t), and ic(t). This can be done using the inverse dq0 transformation
of Eq. C.48 which requires knowledge of θs, the electrical angle between the axis of
phase a, and the direct-axis of the synchronously rotating reference frame.

Since it is not possible to measure the axis of the rotor flux directly, it is necessary
to calculate θs, where θs = ωet + θ0 as given by Eq. C.46. Solving Eq. 10.63 for ωe

gives

ωe = ωme − RaR

(
iQR

λDR

)
(10.72)

From Eq. 10.56 with λQR = 0 we see that

iQR = −
(

Lm

LR

)
iQ (10.73)

Eq. 10.73 in combination with Eq. 10.70 then gives

ωe = ωme + RaR

LR

(
iQ

iD

)
= ωme + 1

τR

(
iQ

iD

)
(10.74)

where τR = LR/RaR is the rotor time constant.
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We can now integrate Eq. 10.74 to find

θ̄s =
[
ωme + 1

τR

(
iQ

iD

)]
t + θ0 (10.75)

where θ̄s indicates the calculated value of θs (often referred to as the estimated value
of θs). In the more general dynamic sense

θ̄s =
∫ t

0

[
ωme + 1

τR

(
iQ

iD

)]
dt ′ + θ0 (10.76)

Note that both Eqs. 10.75 and 10.76 require knowledge of θ0, the value of θ̄s at
t = 0. Although we will not prove it here, it turns out that in a practical implementation,
the effects of an error in this initial angle decay to zero with time, and hence it can
be set to zero without any loss of generality.

Figure 10.25a shows a block diagram of a field-oriented torque-control system
for an induction machine. The block labeled “Estimator” represents an algorithm
which implements the integration of Eq. 10.76, which calculates the estimate of θs

required by the transformation from dq0 to abc variables.

3-phase

current-

source

inverter

dq0

to

abc

transform

Torque

controller

Auxiliary

controller

(ia)ref

(ib)ref
Tref

(ic)ref
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ic

(iQ)ref

θ̂S

ωme

ωm

(iD)ref

(λDR)ref

(λa)ref
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2

Induction

motor

Field-

oriented

controller

ia

ib

ic
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motor
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(a)

Estimator
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Figure 10.25 (a) Block diagram of a field-oriented torque-control system
for an induction motor. (b) Block diagram of an induction-motor speed-control
loop built around a field-oriented torque control system.
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Note that a speed sensor is required to provide the rotor speed measurement
required by the estimator. Also notice that the estimator requires knowledge of the
rotor time constant τR = LR/RaR. In general, this will not be known exactly, both due
to uncertainty in the machine parameters as well as the fact that the rotor resistance
RaR will undoubtedly change with temperature as the motor is operated. It can be
shown that errors in τR result in an offset in the estimate of θs, which in turn will
result in an error in the estimate for the position of the rotor flux with the result
that the applied armature currents will not be exactly aligned with the direct- and
quadrature-axes. The torque controller will still work basically as expected, although
there will be corresponding errors in the torque and rotor flux.

As with the synchronous motor, the rms armature flux-linkages can be found
from Eq. 10.35 as

(λa)rms =
√

λ2
D + λ2

Q

2
(10.77)

Combining Eqs. 10.54 and 10.73 gives

λQ = LSiQ + LmiQR =
(

LS − L2
m

LR

)
iQ (10.78)

Substituting Eqs. 10.71 and 10.78 into Eq. 10.77 gives

(λa)rms =

√√√√ L2
Si2

D +
(

LS − L2
m

LR

)2
i2
Q

2
(10.79)

Finally, as discussed in the footnote to Eq. 10.34, the rms line-neutral armature
voltage can be found as

Va =
√

v2
D + v2

Q

2
=

√
(RaiD − ωeλQ)2 + (RaiQ + ωeλD)2

2

=

√√√√(
RaiD − ωe

(
LS − L2

m
LR

)
iQ

)2
+ (RaiQ + ωeLSiD)2

2
(10.80)

These equations show that the armature flux linkages and terminal voltage are de-
termined by both the direct- and quadrature-axis components of the armature current.
Thus, the block labeled “Torque Controller” in Fig. 10.25a must calculate refer-
ence values for the direct- and quadrature-axis currents (iD)ref and (iQ)ref which both
achieve the desired torque and meet the constraints on armature flux linkages (to avoid

saturation in the motor), armature current (Ia)rms =
√

(i2
D + i2

Q)/2 (to avoid excessive
armature heating), and armature voltage (to avoid potential insulation damage).

Note that, as we discussed with regard to synchronous machines in Section 10.2.2,
the torque-control system of Fig. 10.25a is typically embedded within a larger control
loop. One such example is the speed-control loop of Fig. 10.25b.
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EXAMPLE 10.14

The three-phase, 575-V, 60-Hz, 100-kW, four-pole induction motor of Example 10.13 is to be
driven by a field-oriented speed-control system (similar to that of Fig. 10.25b). The controller
is programmed to achieve the desired reference torque subject to insuring that motor voltage
and rms armature flux linkages not exceed the machine rated values and that the motor terminal
current not exceed 100 A rms in order to avoid overheating the motor. If the desired electro-
magnetic torque cannot be achieved without exceeding one or more constraints, the controller
will reduce the motor torque sufficiently to insure that all constraints are satisfied.

Find the direct- and quadrature-axis currents, the rms amplitude of the armature current,
the electrical frequency, and the rms terminal voltage if the electromagnetic power is 82.5 kW
and the motor is operating at a speed of 1736 r/min.

■ Solution
This example is most easily solved by writing a MATLAB script to implement the controller
algorithm. We must first determine the parameters for this machine. From Eqs. 10.57 through
Eq. 10.65

Lm = Xm0

ωe0

= 35.4

120π
= 93.90 mH

LS = Lm + X10

ωe0

= 91.90 + 0.239

120π
= 93.54 mH

LR = Lm + X20

ωe0

= 93.90 + 0.344

120π
= 94.81 mH

Ra = R1 = 0.102 �

RaR = R2 = 0.125 �

The rated rms line-neutral terminal voltage for this machine is (Va)rated = 575/
√

3 =
332.0 V and thus the rated rms armature flux linkage for this machine is

(λa)rms,rated = (Va)rated

ωe0

= 332.0

120 π
= 0.881 Wb

Because we know that this is an achievable operating point (see Example 10.13), we do
not need to include that portion of the algorithm which reduces the motor torque in the event
the operating point cannot be achieved without exceeding the motor operating constraints.

For the specified operating condition

ωm = n
(

π

30

)
= 1736

(
π

30

)
= 181.8 rad/sec

and the mechanical torque is

Tmech = Pmech

ωm

= 82.5 × 103

181.8
= 453.8 N · m

We will implement the relevant portion of the control algorithm as follows:

■ Step 1: As an initial estimate, set λDR = √
2 × (λa)rms,rated

■ Step 2: Calculate iQ from Eq. 10.68

iQ = 2

3

(
2

poles

)(
LR

Lm

)(
Tmech

λDR

)
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■ Step 3: Calculate iD from Eq. 10.70

iD = λDR

Lm

and the rms armature current from Eq. 10.36

Ia =
√

i 2
D + i 2

Q

2

■ Step 4: From Eqs. 10.71 and 10.78 calculate

λD = LSiD

λQ =
(

LS − L2
m

LR

)
and the corresponding rms armature flux linkage from Eq. 10.77

(λa)rms =
√

λ2
D + λ2

Q

2

■ Step 5: Calculate the rms line-neutral terminal voltage from Eq. 10.80

Va =
√

(RaiD − ωeλQ)2 + (RaiQ + ωeλD)2

2

■ Step 6: Check to see if all the constraints are satisfied. Specifically, the acceptable
solution must have

Ia ≤ 100 A

(λa)rms ≤ (λa)rms,rated

and

Va ≤ (Va)rated

If all the constraints are satisfied, the operating condition has been found. If not, reduce
λDR and return to Step 2.

This algorithm is implemented by the following MATLAB script

clc

clear

%Here are the 60-Hz motor parameters

Varated = 575/sqrt(3);

poles = 4;

R1 = 0.102;

R2 = 0.125;

X10 = 0.239;

X20 = 0.344;

Xm0 = 35.40;

fe0 = 60;
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omegae0 = 2*pi*fe0;

Lm = Xm0/omegae0;

LS = Lm+X10/omegae0;

LR = Lm+X20/omegae0;

Ra = R1;

RaR = R2;

% Maximum armature current

Iamax = 100;

% Rated rms armature flux linkages

lambdaarmsrated = Varated/omegae0;

lambdaarmsrated_peak = sqrt(2)*lambdaarmsrated;

% Specified operating condition

rpm = 1736;

omegam = rpm*pi/30;

omegame = omegam*(poles/2);

Pmech = 82.5e3;

Tmech = Pmech/omegam;

% Starting value of lambdaDR

lambdaDR = lambdaarmsrated_peak;

% Loop to find controller output

sw = 0;

while sw == 0;

iQ = (2/3)*(2/poles)*(LR/Lm)*(Tmech/lambdaDR);

iD = lambdaDR/Lm;

Ia = sqrt((iD^2+iQ^2)/2);

omegae = omegame+ (RaR/LR)*(iQ/iD);

fe = omegae/(2*pi);

lambdaD = LS*iD;

lambdaQ = (LS-Lm^2/LR)*iQ;

lambdaarms = sqrt((lambdaD^2+lambdaQ^2)/2);

Va = sqrt(((Ra*iD-omegae*lambdaQ)^2 +(Ra*iQ+omegae*lambdaD)^2)/2);

if (lambdaarms > lambdaarmsrated) || (Va > Varated) || (Ia > Iamax)

lambdaDR = 0.999*lambdaDR;

else

sw = 1;

end

end % End of loop
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fprintf(’iQ = %3.1f, iD = %3.1f [A]\n’,iQ,iD)

fprintf(’Ia = %3.1f [A]\n’,Ia)

fprintf(’omegame = %3.1f [rad/sec], omegae = %3.1f [rad/sec]\n’,omegame,omegae)

fprintf(’fe = %3.1f [Hz]\n’,fe)

fprintf(’Va = %3.1f [V,l-n], Va = %3.1f [V,l-l]\n’,Va,Va*sqrt(3))

Running the MATLAB script produces the following results:

iD = 12.6 A iQ = 128.7 A Ia = 91.4 A

fe = 60.0 Hz Va = 574.9 A

Note that the field-oriented control algorithm for this operating condition results in essen-
tially the same motor voltage, current, and applied electrical frequency as the volts-per-hertz
control of Example 10.13 part (a). This is not surprising; the motor responds to its terminal volt-
ages and currents and not to the algorithm that produces them and in this case both algorithms
apply essentially the same voltages and currents to this motor.

Practice Problem 10.8

Consider again the induction motor and field-oriented control system of Example 10.14. As-
sume that the speed is readjusted to 1172 r/min and that the electromagnetic power is 25.4 kW,
corresponding to the operating condition of Example 10.13 part (b). Find the direct- and
quadrature-axis currents, the rms amplitude of the armature current, the electrical frequency,
and the rms terminal voltage.

Solution

iD = 13.1 A iQ = 56.5 A Ia = 41.0 A

fe = 40.0 Hz Va = 389.7 A

Notice that, in this case, the volts-per-hertz algorithm of Example 10.13 and the field-
oriented algorithm of Example 10.14 give slightly different values of terminal voltage and
current for operation at the same power and speed. The reason for this is because the volts-per-
hertz algorithm approximates constant armature flux density based upon the terminal voltage
(which includes the voltage drop across the armature resistance) while the field-oriented algo-
rithm computes the armature flux density directly.

The ability to independently control the rotor flux and the torque has important
control implications. Consider, for example, the dynamic response of the direct-axis
rotor flux to a change in direct-axis current. Equation 10.62, with λqR = 0, becomes

0 = RaRidR + dλdR

dt
(10.81)

Substituting for idR in terms of λdR from Eq. 10.55

idR = λdR − Lmid

LR
(10.82)
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gives a differential equation for the rotor flux linkages λDR

dλdR

dt
+

(
RaR

LR

)
λdR =

(
Lm

LR

)
id (10.83)

From Eq. 10.83 we see that the response of the rotor flux to a step change in direct-
axis current id is relatively slow; λdR will change exponentially with the rotor time
constant of τR = LR/RaR. Since the torque is proportional to the product λdRiq we see
that fast torque response will be obtained from changes in iq. Thus, for example, to
implement a step change in torque, a practical control algorithm might start with a step
change in (iQ)ref to achieve the desired torque change, followed by an adjustment in
(iD)ref (and hence λdR) to readjust the armature current or terminal voltage as desired.
This adjustment in (iD)ref would be coupled with a compensating adjustment in (iQ)ref

to maintain the torque at its desired value.
As discussed in Example 10.14, under any steady-state operating condition both a

volts-per-hertz controller and a field-oriented controller can achieve the same operat-
ing point. It is the capability of a field-oriented controller to rapidly control torque and
respond to changes in operating conditions that distinguishes it from a volts-per-hertz
controller in many applications.

10.4 CONTROL OF VARIABLE-RELUCTANCE
MOTORS

Unlike dc and ac (synchronous or induction) machines, variable-reluctance motors
(VRMs) cannot be simply “plugged in” to a dc or ac source and then be expected to
run. As is discussed in Chapter 8, the phases must be excited with (typically unipolar)
currents, and the timing of these currents must be carefully correlated with the position
of the rotor poles in order to produce useful, time-averaged torque. The result is that,
although the VRM itself is perhaps the simplest of rotating machines, a practical
VRM drive system is relatively complex.

VRM drive systems are competitive only because this complexity can be realized
easily and inexpensively through the use of power and microelectronic circuitry. These
drive systems require a fairly sophisticated level of controllability for even the simplest
modes of VRM operation. Once the capability to implement this control is available,
fairly sophisticated control features can be added (typically in the form of additional
software) at little additional cost, further increasing the competitive position of VRM
drives.

In addition to the VRM itself, the basic VRM drive system consists of the follow-
ing components: a rotor-position sensor, a controller, and an inverter. The function of
the rotor-position sensor is to provide an indication of shaft position which can be used
to control the timing and waveform of the phase excitation. This is directly analogous
to the timing signal used to control the firing of the cylinders in an automobile engine.

The controller is typically implemented in software in microelectronic (micro-
processor) circuitry. Its function is to determine the sequence and waveforms of the
phase excitation required to achieve the desired motor speed-torque characteristics.
In addition to set points of desired speed and/or torque and shaft position (from the
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shaft-position sensor), sophisticated controllers often employ additional inputs includ-
ing shaft-speed and phase-current magnitude. Along with the basic control function of
determining the desired torque for a given speed, the more sophisticated controllers
attempt to provide excitations which are in some sense optimized (for maximum
efficiency, stable transient behavior, etc.).

The control circuitry consists typically of low-level electronics which cannot be
used to directly supply the currents required to excite the motor phases. Rather its
output consists of signals which control an inverter which in-turn supplies the phase
currents. Control of the VRM is achieved by the application of an appropriate set of
currents to the VRM phase windings.

Figures 10.26a to c show three common configurations found in inverter systems
for driving VRMs. These configurations are referred to as H-bridge inverters. The
switches labeled by “S” represent power-electronic components such as transistors or
TRIACS (switchable diodes). The elements labeled “D” are diodes, circuit elements
which carry current only in a single direction (in the direction of the arrow formed
by the diode symbol). Diodes can be modeled as a short-circuit for currents flowing
in the arrow direction and as an open circuit when currents attempt to reverse.

Each inverter in Fig. 10.26 is shown in a two-phase configuration. As can be
seen, extension of each configuration to drive additional phases can be readily ac-
complished. The configuration of Fig. 10.26a is perhaps the simplest. Closing switches

S1a

D1a

S2a

D2a

D1b

S1b

D2b

S2b

Phase 1 Phase 2

i1

v1

i2+
+ �

v1+ � v2+ �
v2+ �

�
V0

Phase 1 Phase 2

S1
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D2

S2

Phase 1 Phase 2

i1 i2

+

�
V0

+

�
V0

S1 S2

D1 D2

+

�
V0

(c)

(b)(a)

Figure 10.26 Inverter configurations. (a) Two-phase inverter which uses two switches per phase.
(b) Two-phase inverter which uses a split supply and one switch per phase. (c) Two-phase inverter
with bifilar phase windings and one switch per phase.
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S1a and S1b connects the phase-1 winding across the supply (v1 = V0) and causes the
winding current to increase. Opening just one of the switches forces a short across
the winding and the current will decay through the associated connected diode, while
opening both switches connects the winding across the supply with negative polarity
through the diodes D1a and D1b (v1 = −V0) and the winding current will decay more
rapidly. Note that this configuration is capable of regeneration (returning energy to
the supply), but not of supplying negative current to the phase winding. However,
since the torque in a VRM is proportional to the square of the phase current, there is
no need for negative winding current.

The average winding current can be controlled through the process of pulse-
width modulation, under which a series of switch configurations alternately charge and
discharge a phase winding. Using this technique, an inverter such as that of Fig. 10.26a
can readily be made to supply the range of waveforms required to drive a VRM.

The inverter configuration of Fig. 10.26a is perhaps the simplest of H-bridge
configurations which provide regeneration capability. Its main disadvantage is that
it requires two switches per phase. In many applications, the cost of the switches
(and their associated drive circuitry) dominates the cost of the inverter, and the result
is that this configuration is less attractive in terms of cost when compared to other
configurations which require one switch per phase.

Figure 10.26b shows one such configuration. This configuration requires a split
supply (i.e., two supplies of voltage V0) but only a single switch and diode per phase.
Closing switch S1 connects the phase-1 winding to the upper dc source. Opening the
switch causes the phase current to transfer to diode D1, connecting the winding to the
bottom dc source. Phase 1 is thus supplied by the upper dc source and regenerates
through the bottom source. Note that to maintain symmetry and to balance the energy
supplied from each source equally, phase 2 is connected oppositely so that it is supplied
from the bottom source and regenerates into the top source.

The major disadvantages of the configuration of Fig. 10.26b are that it requires a
split supply and that when the switch is opened, the switch must withstand a voltage of
2V0. This can be readily seen by recognizing that when diode D1 is forward-biased and
carrying current it looks like a short circuit and thus the switch S1 is connected across
the two supplies. Such switches are likely to be more expensive than the switches
required by the configuration of Fig. 10.26a. Both of these issues will tend to offset
some of the economic advantage which can be gained by the elimination of one switch
and one diode as compared with the inverter circuit of Fig. 10.26a.

A third inverter configuration is shown in Fig. 10.26c. This configuration re-
quires only a single dc source and uses only a single switch and diode per phase.
This configuration achieves regeneration through the use of bifilar phase windings.
In a bifilar winding, each phase is wound with two separate windings which are
closely coupled magnetically (this can be achieved by winding the two windings at
the same time) and can be thought of as the primary and secondary windings of a
transformer.

When switch S1 is closed, the primary winding of phase 1 is energized, exciting
phase 1. Opening the switch induces a voltage in the secondary winding (note the
polarity indicated by the dots in Fig. 10.26c) in such a direction as to forward-bias
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diode D1. The result is that current is transferred from the primary to the secondary
winding with a polarity such that the current in the phase decays to zero and energy
is returned to the source.

Although this configuration requires only a single dc source, it requires a switch
which must withstand a voltage in excess of 2V0 (the degree of excess being deter-
mined by the voltage developed across the primary leakage reactance as current is
switched from the primary to the secondary windings) and requires the more complex
bifilar winding in the machine. In addition, the switches in this configuration must
include snubbing circuitry (typically consisting of a resistor-capacitor combination)
to protect them from transient overvoltages. These overvoltages result from the fact
that although the two windings of the bifilar winding are wound such that they are as
closely coupled as possible, perfect coupling cannot be achieved. As a result, there
will be energy stored in the leakage fields of the primary winding which must be
dissipated when the switch is opened.

As is discussed in Chapter 8, VRM operation requires control of the current
applied to each phase. For example, one control strategy for constant torque production
is to apply constant current to each phase during the time that d L/dθm for that phase
is constant. This results in constant torque proportional to the square of the phase-
current magnitude. The magnitude of the torque can be controlled by changing the
magnitude of the phase current.

The control required to drive the phase windings of a VRM is made more complex
because the phase-winding inductances change both with rotor position and with
current levels due to saturation effects in the magnetic material. As a result, it is not
possible in general to implement an open-loop PWM scheme based on a pre-calculated
algorithm. Rather, pulse-width-modulation is typically accomplished through the use
of current feedback. The instantaneous phase current can be measured and a switching
scheme can be devised such that a switch can be turned off when the current has been
found to reach a desired maximum value and turned on when the current decays to
a desired minimum value. In this manner the average phase current is controlled to a
pre-determined function of the rotor position and desired torque.

This section has provided a brief introduction to the topic of drive systems for
variable-reluctance machines. In most cases, many additional issues must be con-
sidered before a practical drive system can be implemented. For example, accurate
rotor-position sensing is required for proper control of the phase excitation, and the
control loop must be properly compensated to ensure its stability. In addition, the finite
rise and fall times of current buildup in the motor phase windings will ultimately limit
the maximum achievable rotor torque and speed.

The performance of a complete VRM drive system is intricately tied to the
performance of all its components, including the VRM, its controller, and its inverter.
In this sense, the VRM is quite different from the induction, synchronous, and dc
machines discussed earlier in this chapter. As a result, it is useful to design the complete
drive system as an integrated package and not to design the individual components
(VRM, inverter, controller, etc.) separately. The inverter configurations of Fig. 10.26
are representative of a number of possible inverter configurations which can be used
in VRM drive systems. The choice of an inverter for a specific application must be
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made based on engineering and economic considerations as part of an integrated
VRM drive system design.

10.5 SUMMARY
This chapter introduces various techniques for the control of electric machines. The
broad topic of electric machine control requires a much more extensive discussion
than is possible here so our objectives have been somewhat limited. Most noticeably,
the discussion of this chapter focuses almost exclusively on steady-state behavior,
and the issues of transient and dynamic behavior are not considered.

The starting point is a discussion of dc motors, for which it is convenient to
subdivide the control techniques into two categories: speed and torque control. The
algorithm for speed control in a dc motor is relatively straightforward. With the
exception of a correction for voltage drop across the armature resistance, the steady-
state speed is determined by the condition that the generated voltage must be equal to
the applied armature voltage. Since the generated voltage is proportional to the field
flux and motor speed, we see that the steady-state motor speed is proportional to the
armature voltage and inversely proportional to the field flux.

An alternative viewpoint is that of torque control. Because the commutator/brush
system maintains a constant angular relationship between the field and armature flux,
the torque in a dc motor is simply proportional to the product of the armature current
and the field flux. As a result, dc motor torque can be controlled directly by controlling
the armature current as well as the field flux.

Because synchronous motors develop torque only at synchronous speed, the
speed of a synchronous motor is simply determined by the electrical frequency of
the applied armature excitation. Thus, steady-state speed control is simply a matter
of armature frequency control. Torque control is also possible. By transforming the
stator quantities into a reference frame rotating synchronously with the rotor (us-
ing the dq0 transformation of Appendix C), we found that torque is proportional to
the field flux and the component of armature current in space quadrature with the
field flux. This is directly analogous to the torque production in a dc motor. Con-
trol schemes which adopt this viewpoint are referred to as vector or field-oriented
control.

Induction machines operate asynchronously; rotor currents are induced by the
relative motion of the rotor with respect to the synchronously rotating stator-produced
flux wave. When supplied by a constant-frequency source applied to the armature
winding, the motor will operate at a speed somewhat lower than synchronous speed,
with the motor speed decreasing as the load torque is increased. As a result, precise
speed regulation is not a simple matter, although in most cases the speed will not vary
from synchronous speed by an excessive amount.

Analogous to the situation in a synchronous motor, in spite of the fact that the
rotor of an induction motor rotates at less than synchronous speed, the interaction
between the rotor and stator flux waves is indeed synchronous. As a result, a trans-
formation into a synchronously rotating reference frame results in rotor and stator
flux waves which are constant. The torque can then be expressed in terms of the
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product of the rotor flux linkages and the component of armature current in quadra-
ture with the rotor flux linkages (referred to as the quadrature-axis component of
the armature current) in a fashion directly analogous to the field-oriented viewpoint
of a synchronous motor. Furthermore, it can be shown that the rotor flux linkages
are proportional to the direct-axis component of the armature current, and thus the
direct-axis component of armature current behaves much like the field current in a
synchronous motor. This field-oriented viewpoint of induction machine control, in
combination with the power-electronic and control systems required to implement
it, has led to the widespread applicability of induction machines to a wide range of
variable-speed applications.

Finally, this chapter ends with a brief discussion of the control of variable-
reluctance machines. To produce useful torque, these machines typically require rela-
tively complex, nonsinusoidal current waveforms whose shape must be controlled as
a function of rotor position. Typically, these waveforms are produced by pulse-width
modulation combined with current feedback using an H-bridge inverter of the type
discussed in Section 10.4. The details of these waveforms depend heavily upon the
geometry and magnetic properties of the VRM and can vary significantly from motor
to motor.

10.6 CHAPTER 10 VARIABLES
λ Flux linkage [Wb]
�PM Permanent magnet direct-axis flux linkages [Wb]
ωe Electrical frequency [rad/sec]
ωm Rotor angular velocity [rad/sec]
ωme Rotor angular velocity in electrical units [rad/sec]
ωs Synchronous angular velocity [rad/sec]
τ Time constant [sec]
θs Rotor flux-axis angle [rad]
θ̄s Estimated value of θs [rad]
B Flux density [T]
D, l Linear dimensions [m]
e, E Voltage
Eaf Generated voltage [per unit]
Êaf Generated voltage, complex amplitude [per unit]
f Frequency [Hz]
fe Electrical frequency [Hz]
F Magnetomotive force [A]
G Gain [Volt/(rad/sec)], [N·m/(rad/sec)]
i Current [A]
I Current [A, per unit]
Î Current, complex amplitude [per unit]
J Moment of inertia [kg·m2]
Kf Geometric constant [�/(rad/sec)]
Km Torque constant [V/(rad/sec)]
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L Inductance [H]
Ls Synchronous inductance
n Angular velocity [r/min]
ns Synchronous angular velocity [r/min]
P Power [W]
poles Number of poles
R Resistance [�]
s Slip
t Time [sec]
τ Time constant [sec]
T Torque [N · m]
v Voltage [V]
V Voltage [V, per unit]
V̂ Voltage, complex amplitude [V, per unit]
Xm Magnetizing reactance [�, per unit]
Xs Synchronous reactance [�, per unit]

Subscripts:

a Armature
base Base quantity
d, D, DR Direct-axis component
dc Direct current
eq Equivalent
f, F Field, final
fl Full load
i Initial
max Maximum
mech Mechanical
min Minimum
q, Q, QR Quadrature-axis component
R Rotor
S Stator
ref Reference
rms Root mean square
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10.8 PROBLEMS
10.1 When operating at rated voltage, a 2.5-kW, 120-V, 1725 r/min separately

excited dc motor achieves a no-load speed of 1708 r/min at a field current of
0.85 A. The motor has an armature resistance of 163 mA and a shunt-field
resistance of 114 �. For the purposes of this problem you may assume the
rotational losses to be negligible.

This motor is to be used to control the speed of a load whose torque is
constant at 13.7 N · m over the speed range of 1400–1750 r/min. The motor
will be operated at a constant armature voltage of 120 V. The field winding
will be supplied from the 120-V dc armature supply via a pulse-width
modulation system and the average field voltage and current, and hence the
motor speed, will be varied by adjusting the duty cycle of the pulse-width
modulation; a duty cycle variation between 0 and 1.0 will result in a linear
variation of the average field voltage over the range of 0 to 120 V.

a. Calculate the field current required to achieve operation at 13.7 N · m
torque and 1750 r/min. Calculate the corresponding PWM duty cycle D.

b. Calculate the field current required to achieve operation at 13.7 N · m
torque and 1400 r/min. Calculate the corresponding PWM duty cycle.

c. Plot the required PWM duty cycle as a function of speed over the desired
speed range of 1400 to 1750 r/min.
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10.2 Repeat Problem 10.1 for a load whose torque is 13.7 N·m at 1500 r/min and
which varies as the speed to the 1.8 power.

10.3 The dc motor of problem 10.1 has a field-winding inductance L f = 3.4 H
and a moment of inertia J = 0.105 kg·m2. The motor is operating at rated
terminal voltage and an initial speed of 1500 r/min driving a constant-torque
load of 13.7 N · mu.

a. Calculate the initial field current If and PWM duty cycle D.

At time t = 0, the PWM duty cycle is suddenly switched from the value
found in part (a) to D = 0.75.

b. Calculate the final values of the field current and motor speed after the
transient has died out.

c. Solve for the field-current as a function of time.

d. Using MATLAB/Simulink, plot the motor speed and armature current as
a function of time.

10.4 The dc motor and load of Example 10.1 have a combined inertia of
J = 2.1 kg·m2. The motor is initially operating with an armature voltage of
240 V and field voltage of 62.5 V at a speed of 3600 rpm when the field
voltage is suddenly switched to 110 V.

a. Calculate the resultant steady-state motor speed and armature current.

b. Using MATLAB/Simulink, plot the motor speed and armature current as
a function of time.

10.5 A shunt-connected 240-V, 20-kW, 3400 r/min dc motor has the following
parameters

Field resistance: Rf = 197 �

Armature resistance Ra = 0.134 �

Geometric constant Kf = 0.531 V/(A · rad/sec)

When operating at rated voltage, no-load, the motor current is 1.93 A.

a. Calculate the no-load speed and rotational loss.

b. Assuming the rotational loss to be constant, use MATLAB to plot the
motor output power as a function of speed. Limit your plot to a
maximum power output of 20 kW.

c. Armature-voltage control is to be used to maintain constant motor speed
as the motor is loaded. For this operating condition, the shunt field
voltage will be held constant at 240-V. Plot the armature voltage as a
function of power output required to maintain the motor at a constant
speed of 3325 r/min.

d. Consider the situation for armature-voltage control is applied to this
motor while the field winding remains connected in shunt across the
armature terminals. Repeat part (c) for this operating condition. Is such
operation feasible? Why is the motor behavior significantly different
from that in part (c)?
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10.6 The data sheet for a small permanent-magnet dc motor provides the
following parameters:

Rated voltage: Vrated = 6 V
No-load speed: nnl = 15025 r/min
No-load current: Inl = 0.2 A
Stall current: Istall = 1.9 A

a. Calculate the armature resistance Ra and the torque constant Km.

b. Calculate the no-load rotational loss.

c. Driving a propellor on a small model airplane, the motor is observed to
be operating at a speed of 12000 r/min at a terminal voltage of 6.0 V.
Assuming the rotational loss varies as the cube of speed, calculate the
power supplied to the propeller. Calculate the motor efficiency at this
operating condition.

10.7 A small permanent-magnet dc motor is characterized by the following
parameters:

Rated voltage: Vrated = 3 V
Rated output power: Prated = 0.32 W
No-load speed: nnl = 13100 r/min
Torque constant: Km = 0.214 mV/(r/min)
Stall torque: Tstall = 0.106 oz·in

a. Calculate the motor armature resistance.

b. Calculate the no-load rotational loss.

c. Assume the motor to be connected to a load such that the total shaft
power (actual load plus rotational loss) is equal 300 mW at a speed of
13000 r/min. Assuming the total load to vary as the cube of the motor
speed, write a MATLAB script to plot the motor speed as a function of
terminal voltage for 1.0 V ≤ Va ≤ 3.0 V.

10.8 The data sheet for a 350-W permanent-magnet dc motor provides the
following parameters:

Rated voltage: Vrated = 24 V
Armature resistance: Ra = 97 m�

No-load speed: nnl = 3580 r/min
No-load current: Ia,nl = 0.47 A

a. Calculate the motor torque-constant Km in V/(rad/sec).

b. Calculate the no-load rotational loss.

c. The motor is supplied is supplied from a 30-V dc supply through a PWM
inverter. Table 10.1 gives the measured motor current as a function of the
PWM duty cycle D. Complete the table by calculating the motor speed
and the load power for each value of D. Assume that the rotational
losses vary as the cube of the motor speed.
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Table 10.1 Motor-performance data for Problem 10.8

D Ia [A] r/min Pload [W]

0.80 14.70
0.75 12.79
0.70 11.55
0.65 10.34
0.60 9.20
0.55 8.07
0.50 7.02

10.9 The motor of Problem 10.8 has a moment of inertia of
J = 1.33 × 10−3 kg·m2. For the purposes of this problem, assume that the
motor is unloaded and neglect any effects of rotational loss.

a. Calculate the time to achieve a speed of 3500 r/min if the motor is
supplied by a constant armature current of 15 A and

If the motor is supplied by a constant terminal voltage of 24 V,

b. calculate the time to achieve a speed of 3500 r/min and

c. plot the motor speed and armature current as a function of time.

10.10 A 1200-W, 240-V, 3600-r/min permanent-magnet dc motor is to be operated
from a current-source inverter so as to provide direct control of the motor
torque. The motor torque constant is Km = 0.645 V/(rad/sec) its armature
resistance is 2.33 �. The motor rotational loss at a speed of 3600 r/min is
109 W. Assume that the rotational loss can be represented as a constant loss
torque as the motor speed varies.

a. Calculate the rated armature current of this motor. What is the
corresponding mechanical torque in N · m?

b. The current source supplying a current of 4.4 A to the motor armature
and the motor speed is measured to be 3120 r/min. Calculate the load
torque and power.

c. Assume the load torque of part (b) to vary linearly with speed and the
motor and load to have a combined inertia of 9.2 × 10−3 kg·m2. Plot the
motor speed as a function of time if the armature current of part (b) is
suddenly increased to 5.0 A.

10.11 The dc motor of Problem 10.10 is to be controlled by a speed controller of
the form shown in Fig. 10.7. With the reference speed set to 3600 r/min
ωm = 120π , find

a. the reference voltage Va0 such that the no-load motor speed is 3600 rpm
and

b. the gain G such that the motor speed is 3550 r/min when the motor load
is equal to 1.2 kW and the corresponding armature voltage.

10.12 The dc motor of Problems 10.10 and 10.11 is operating with the controller of
Problem 10.11 with a reference speed of 3600 r/min. The motor is connected
to an ac generator whose rotational loss is 95 W at 3600 rpm and can be
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considered to be proportional to speed. The combined inertia of the motor
and generator is 0.02 kg·m2. The generator is initially unloaded and
operating at 3600 r/min when it is loaded to a torque of 3.0 N·m. Assuming
the generator load torque remains constant with speed, use MATLAB/
Simulink to plot the motor speed, terminal voltage and armature current as a
function of time.

10.13 A 500-V, 50-kW, 2200 r/min, separately excited dc motor has the following
parameters:

Field resistance: Rf = 127 �

Rated field voltage: Vf0 = 300 V
Armature resistance: Ra = 0.132 �

Geometric constant: Kf = 0.886 V/(A · rad/sec)

This motor is applied in an application for which the load torque varies
between no load and 220 N · m. The combined inertia of the motor and load
is 6.5 N · m. The application requires that the motor speed remains in the
range of 2125 r/min and 2150 r/min over this load range. Repeat the
calculations and MATLAB/Simulink simulation of Example 10.5 for this
motor and speed and load range.

10.14 A 75 kW, 480 V, 60-Hz, 2-pole synchronous motor has a synchronous
reactance of 0.87 per unit. The motor achieves rated speed, rated
open-circuit voltage at a field current of 27 A. For the purposes of this
problem, all motor losses can be ignored.

a. With the motor operating at rated voltage and speed, calculate the field
current required to achieve rated power, unity power factor operation.

b. With the motor operating at 40-Hz, 320-V, rated current and unity power
factor, calculate the motor speed, motor output power and and field
current.

c. With the motor operating at 75-Hz, 480-V, rated current and unity power
factor, calculate the motor speed, motor output power and and field
current.

10.15 A 1150-kVA, 4600-V, 60-Hz, three-phase, 4-pole synchronous motor is
to be driven from a variable-frequency, three-phase, constant V/Hz inverter
rated at 1250-kVA. The synchronous motor has a synchronous reactance
of 1.29 per unit and achieves rated open-circuit voltage at a field current
of 98 A.

a. Calculate the motor rated speed in r/min and rated current.

b. With the motor operating at rated voltage and speed and an input power
of 1000-kW, calculate the field current required to achieve
unity-power-factor operation.

The load power of part (b) varies as the speed to the 2.7 power. With the
motor field-current held fixed, the inverter frequency is reduced such that the
motor is operating at a speed of 1325 r/min.
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c. Calculate the inverter frequency and the motor input power and power
factor.

d. Calculate the field current required to return the motor to unity power
factor.

10.16 Consider a three-phase synchronous motor for which you are given the
following data:

Rated line-to-line voltage [V]
Rated [VA]
Rated frequency [Hz] and speed [r/min]
Synchronous reactance in per unit
Field current at rated open-circuit voltage (AFNL) [A]

The motor is to be operated from a variable-frequency, constant V/Hz
inverter at speeds of up to 120 percent of the motor rated speed.

a. Under the assumption that the motor terminal voltage and current cannot
exceed their rated values, write a MATLAB script which calculates, for a
given operating speed, the motor terminal voltage, the maximum
possible motor input power, and the corresponding field current required
to achieve this operating condition. You may consider the effects of
saturation and armature resistance to be negligible.

b. Exercise your program on the synchronous motor of Problem 10.15 for
motor speeds of 1500 and 2000 r/min.

10.17 For the purposes of performing field-oriented control calculations on
non-salient synchronous motors, write a MATLAB script that will calculate
the synchronous inductance Ls and armature-to-field mutual inductance Laf,
both in henries, and the rated torque in N · m, given the following data:

■ Rated line-to-line voltage [V]

■ Rated [VA]

■ Rated frequency [Hz]

■ Number of poles

■ Synchronous reactance in per unit

■ Field current at rated open-circuit voltage (AFNL) [A]

Exercise your program on a 460-V, 100-kW, 4-pole, 60-Hz motor with
synchronous reactance of 0.932 per unit and AFNL = 15.8 A.

10.18 A 125-kVA, 540-V, 60-Hz, 4-pole, three-phase synchronous machine is to be
operated as a synchronous motor under field-oriented torque control using a
system such as that shown in Fig. 10.14a. The machine has a synchronous
reactance of 0.882 per unit and AFNL = 17.3 A. The motor is operating at
rated speed, loaded to 50 percent of its rated torque at a field current of
14.6 A with the field-oriented controller set to maintain iD = 0.

a. Calculate the synchronous inductance Ls and armature-to-field mutual
inductance Laf, both in henries.
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b. Find the quadrature-axis current iQ and the corresponding rms
magnitude of the armature current ia.

c. Find the motor line-to-line terminal voltage.

10.19 The synchronous motor of Problem 10.18 is operating under field-oriented
torque control such that iD = 0. With the field current set equal to 15.6 A and
with the torque reference set equal to 0.8 times the motor rated torque, the
motor speed is observed to be 1515 r/min.

a. Calculate the motor output power.

b. Find the quadrature-axis current iQ and the corresponding rms
magnitude of the armature current ia.

c. Calculate the stator electrical frequency

d. Find the motor line-to-line terminal voltage.

10.20 Consider the case in which the load on synchronous motor in the
field-oriented torque-control system of Problem 10.18 is increased and the
motor begins slow down. Based upon some knowledge of the load
characteristic, it is determined that it will be necessary to raise the torque set
point Tref from 50 percent to 85 percent of the motor rated torque in order to
return the motor to its rated speed.

a. If the field current were to be left unchanged at 14.6 A, calculate the
values of quadrature-axis current, rms armature current and motor
line-to-line terminal voltage (in V and in per unit) which will result in
response to this change in reference torque.

b. In order to achieve this operating condition with reasonable armature
terminal voltage, the field-oriented control algorithm is changed to the
unity-power-factor algorithm described in the text following
Example 10.9. Based upon that algorithm, calculate

i. the motor field current,

ii. the direct- and quadrature-axis currents, iD and iQ,

iii. the rms armature voltage, and

iv. the motor terminal line-to-line terminal voltage (in V and in per unit).

10.21 Consider a 450-kW, 2300-V, 50-Hz, 6-pole synchronous motor with a
synchronous reactance of 1.32 per unit and AFNL = 117 A. It is to be
operated under field-oriented torque control using the unity-power-factor
algorithm described in the text following Example 10.9. It will be used to
drive a load whose torque varies quadratically with speed and whose torque
at a speed of 1000 r/min is 4100 N · m. The complete drive system will
include a speed-control loop such as that shown in Fig. 10.14b.
Write a MATLAB script whose input is the desired motor speed (up to
1000 r/min) and whose output is the motor torque, power and power factor,
the field current, the direct- and quadrature-axis currents, the armature
current and the line-to-line terminal voltage.

10.22 A 125-kVA, 480-V, 60-Hz, four-pole three-phase synchronous machine has a
saturated synchronous reactance of 1.15 and achieves rated open-circuit
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voltage at a field current of 18.5 A. This machine will be operated as a motor
and will be operated from an inverter with a field-oriented control algorithm.
For operation at rated torque and at 1500 r/min, find the field current which
results in minimum armature current and such that the terminal flux linkages
do not exceed their rated value. Find the corresponding direct- and
quadrature axis currents, the armature current in per-unit and Amperes,
terminal voltage and power output.

10.23 Consider a field-oriented controller which limits the motor terminal current
to its rated value and either the rms line-neutral flux linkage to its rated value
(for operation below rated speed) or the motor terminal voltage to its rated
value (for operation above rated speed). This controller is applied to the
motor of Example 10.10 with the objective of producing the maximum
possible torque at speeds of (a) 1000 r/min and (b) 1400 r/min. In each case,
calculate the resultant motor terminal voltage and current, the direct- and
quadrature-axis currents, the motor output power, and the torque in percent
of rated torque and the corresponding field current.

10.24 The synchronous machine and field-controlled inverter system of
Problem 10.22 is to be operated at a speed of 2000 r/min.

a. Find the field current which results in minimum armature current such
that the terminal voltage does not exceed the motor rated voltage. Find
the corresponding direct- and quadrature axis currents, the armature
current in per-unit and Amperes, terminal voltage, and power output.

b. With the motor operating at 2000 r/min as in part (a), the field-oriented
control algorithm is modified to deliver the maximum possible torque
subject to the constraint that the terminal voltage does not exceed the
motor rated voltage and the armature current does not exceed the rated
value. Find the corresponding direct- and quadrature axis currents, the
armature current in per-unit and Amperes, terminal voltage, power
output and torque in percent of rated torque.

10.25 A 2.5-kVA, 230-V, 2-pole, three-phase permanent-magnet synchronous
motor achieves rated open-circuit voltage at a speed of 3530 r/min. Its
synchronous inductance is 15.6 mH.

a. Calculate �PM for this motor.

b. If the motor is operating at rated voltage and rated current at a speed of
3600 r/min, calculate the motor power in kW and the peak direct- and
quadrature-axis components of the armature current, iD and iQ

respectively and the armature current in Amperes and in per-unit.

10.26 Field-oriented torque control is to be applied to the permanent-magnet
synchronous motor of Problem 10.25. If the motor is to be operated at
4000 r/min at rated terminal voltage,

a. calculate the torque and power which the motor can supply if the motor
current is limited to its rated value and

b. the corresponding values of iD and iQ.
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10.27 A 25-kVA, 480-V, 2-pole, three-phase permanent-magnet synchronous
motor has a maximum speed of 9500 r/min and produces rated open-circuit
voltage at a speed of 7675 r/min. The motor has a synchronous inductance
of 5.59 mH. The motor is to be operated under field-oriented torque
control.

a. Calculate the maximum torque the motor can produce without exceeding
rated armature current.

b. Assuming the motor to be operated with the torque controller adjusted to
produce maximum torque (as found in part (a)) and iD = 0, calculate the
maximum speed at which it can operate without exceeding rated
armature voltage.

c. In order to operate at speeds in excess of that found in part, flux
weakening will be employed to maintain the armature voltage at its rated
value. Assuming the motor to be operating at 9500 r/min with rated
armature voltage and current, calculate

i. the motor torque,

ii. the motor power and power factor,

iii. the direct-axis current iD, and

iv. the quadrature-axis current iQ.

10.28 The permanent magnet motor of Problem 10.27 is to be operated under
vector control using the following algorithm:

■ Terminal voltage not to exceed rated value

■ Terminal current not to exceed rated value

■ iD = 0 unless flux weakening is required to avoid excessive armature
voltage

Write a MATLAB script to produce plots of the maximum power and torque
which this system can produce as a function of motor speed for speeds up to
9500 r/min.

10.29 A three-phase, two-pole permanent-magnet synchronous motor achieves its
rated open-circuit voltage of 475 V at a speed of 19250 r/min and has a
synchronous inductance of 0.36 mH. Thermal considerations limit the motor
terminal current to a maximum value of 350 A. The motor is to be operated
from a field-oriented controller which limits the rms terminal flux density to
its rated value for speeds below 19250 r/min and which limits the motor
terminal voltage to its rated value for speeds in excess of 19250 r/min.
Calculate the maximum motor possible output power and the corresponding
terminal current and voltage and direct- and quadrature-axis currents for
operation at speeds of (a) 16000 r/min and (b) 25000 r/min.

10.30 Consider a 460-V, 50-kW, 4-pole, 60-Hz induction motor which has the
following equivalent-circuit parameters in ohms per phase referred to the
stator:

R1 = 0.049 R2 = 0.118 X1 = 0.53 X2 = 0.55 Xm = 29.6
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The motor is to be operated from a variable frequency, constant-V/Hz drive
whose output is 460-V at 60-Hz. Neglect any effects of rotational loss. The
motor drive is initially adjusted to a frequency of 60 Hz.

a. Calculate the peak torque and the corresponding slip and motor speed in
r/min.

b. Calculate the motor torque at a slip of 3.2 percent and the corresponding
output power.

c. Assuming the load torque of part (b) remains constant with speed,
estimate the resultant motor speed in r/min if the drive frequency is
reduced to 45 Hz by assume that R1 is negligible. Including the
effects of R1, calculate the actual motor torque corresponding to this
speed.

10.31 Consider the 460-V, 50-kW, 4-pole induction motor and drive system of
Problem 10.30.

a. Write a MATLAB script to plot the speed-torque characteristic of the
motor at drive frequencies of 20, 40 and 60 Hz for speeds ranging from
−200 r/min to the synchronous speed at each frequency.

b. Determine the drive frequency required to maximize the starting torque
and calculate the corresponding torque in N · m. Plot the speed-torque
characteristic for this drive frequency on the plot of part (a).

10.32 An 1100-kW, 2400-V, 8-pole, 60-Hz three-phase induction motor had the
following equivalent-circuit parameters in ohms per phase Y referred to the
stator:

R1 = 0.054 R2 = 0.29 X1 = 0.59 X2 = 0.61 Xm = 24.2

The motor will be driven by a constant-V/Hz drive whose voltage is 2400 V
at a frequency of 60 Hz.
The motor is used to drive a load whose power is 1050 kW at a speed of
842 r/min and which varies as the cube of speed. Using MATLAB, plot the
motor speed as a function of frequency as the drive frequency is varied
between 15 and 60 Hz.

10.33 A 125-kW, 60-Hz, 4-pole, 480-V three-phase wound-rotor induction motor
develops full-load torque at a speed of 1732 r/min with the rotor short-
circuited. An external non-inductive resistance of 790 m� is placed in series
with each phase of the rotor and the motor is observed to develop its rated
torque at a speed of 1693 r/min. Calculate the rotor resistance per phase of
the original motor.

10.34 The wound rotor of Problem 10.33 will be used to drive a constant-torque
load equal to the rated full-load torque of the motor. Using the results of
Problem 10.33, calculate the external rotor resistance required to adjust the
motor speed to 1550 r/min.

10.35 A 45-kW, 400-V, three-phase, 4-pole, 50-Hz, wound-rotor induction motor
develops a maximum internal torque of 237 percent at a slip of 15.7 percent
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when operated at rated voltage and frequency with its rotor short-circuited
directly at the slip rings. Stator resistance and rotational losses may be
neglected, and the rotor resistance may be assumed to be constant,
independent of rotor frequency. Determine

a. the slip at full load in percent,

b. the rotor I 2 R loss at full load in watts, and

c. the starting torque at rated voltage and frequency N · m.

If the rotor resistance is now doubled (by inserting external series resistance
at the slip rings), determine

d. the torque in N · m when the stator current is at its full-load value and

e. the corresponding slip.

10.36 A 45-kW, three-phase, 440-V, 6-pole wound-rotor induction motor develops
its rated full-load output at a speed of 1164 r/min when operated at rated
voltage and frequency with its slip rings short-circuited. The maximum
torque it can develop at rated voltage and frequency is 227 percent of
full-load torque. The resistance of the rotor winding is 0.34 �/phase Y.
Neglect rotational and stray-load losses and stator resistance.

a. Compute the rotor I 2 R loss at full load.

b. Compute the speed at maximum torque.

c. How much resistance must be inserted in series with the rotor to produce
maximum starting torque?

The motor is now run from a 50-Hz supply with the applied voltage adjusted
so that, for any given torque, the air-gap flux wave has the same amplitude as
it does when operated 60 Hz at the same torque level.

d. Compute the 50-Hz applied voltage.

e. Compute the speed at which the motor will develop a torque equal to its
60-Hz value with its slip rings short-circuited.

10.37 The three-phase, 2400-V, 1100-kW, 8-pole induction motor of
Problem 10.32 is to be driven from a field-oriented speed-control system
whose controller is programmed to set the rms line-neutral armature flux
linkages (λa)rms equal to their rated value. The machine is operating at
850 r/min driving a load which is known to be 950 kW at this speed.
Find:

a. the value of the peak direct- and quadrature-axis components of the
armature currents iD and iQ ,

b. the rms armature current under this operating condition,

c. the electrical frequency of the drive in Hz, and

d. the rms line-line armature voltage.

10.38 A field-oriented drive system will be applied to a 230-V, 15-kW, 4-pole,
60-Hz induction motor which has the following equivalent-circuit



Umans-3930269 book December 14, 2012 12:32

10.8 Problems 633

parameters in ohms per phase referred to the stator:

R1 = 0.0429 R2 = 0.0937 X1 = 0.459 X2 = 0.471 Xm = 24.8

The motor is connected to a load whose torque can be assumed proportional
to speed as Tload = 64(n/1800) N · m, where n is the motor speed in r/min.
The field-oriented controller is adjusted such that the rotor flux linkages λDR

are equal to the machine’s rated peak flux linkages and the motor speed is
1275 r/min. Find

a. the electrical frequency in Hz,

b. the rms armature current and line-to-line voltage, and

c. the motor input kVA.

d. If the field-oriented controller is set to maintain the motor speed at
1275 r/min, plot the rms armature V/Hz as a percentage of the rated
V/Hz as a function of λDR as λDR is varied between 75 and 100 percent
of the machine’s rated peak flux linkages. What percentage of rated
peak flux linkages will result in the motor operating at rated rms
armature V/Hz?

10.39 The 15-kW induction motor-drive and load of Problem 10.38 is operating at
a speed of 1425 r/min with the field-oriented controller adjusted to maintain
the rotor flux linkages λDR equal to the 85 percent of the machine’s rated
peak value.

a. Calculate the corresponding values of the direct- and quadrature-axis
components of the armature current, iD and iQ, and the rms armature
current.

b. Calculate the corresponding line-to-line terminal voltage drive electrical
frequency.

The quadrature-axis current iQ is now increased by 10 percent while the
direct-axis current is held constant.

c. Calculate the resultant motor speed and power output.

d. Calculate the terminal voltage and drive frequency.

e. Calculate the total kVA input into the motor.

f. With the controller set to maintain constant speed, determine the set
point for λDR as a percentage of rated peak flux linkages that sets the
terminal V/Hz equal to the rated machine rated V/Hz.
(Hint: This solution is most easily found using a MATLAB script to
search for the desired result.)

10.40 A three-phase, eight-pole, 60-Hz, 4160-V, 1250-kW squirrel-cage induction
motor has the following equivalent-circuit parameters in ohms per phase Y
referred to the stator:

R1 = 0.212 R2 = 0.348 X1 = 1.87 X2 = 2.27 Xm = 44.6

It is operating from a field-oriented drive system at a speed of 836 r/min
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and a power output of 1135 kW. The field-oriented controller is set to
maintain the rotor flux linkages λDR equal to the machine’s rated peak flux
linkages.

a. Calculate the motor rms line-to-line terminal voltage, rms armature
current, and electrical frequency.

b. Show that steady-state induction-motor equivalent circuit and
corresponding calculations of Chapter 6 give the same output power and
terminal current when the induction motor speed is 836 r/min and the
terminal voltage and frequency are equal to those found in part (a).
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A P P E N D I X A
Three-Phase Circuits

Generation, transmission, and heavy-power utilization of ac electric energy almost
invariably involve a type of system or circuit called a polyphase system or polyphase
circuit. In such a system, each voltage source consists of a group of voltages hav-
ing related magnitudes and phase angles. Thus, a q-phase system employs voltage
sources which typically consist of q voltages substantially equal in magnitude and
successively displaced by a phase angle of 360◦/q. A three-phase system employs
voltage sources which typically consist of three voltages substantially equal in mag-
nitude and displaced by phase angles of 120◦. Because it possesses definite economic
and operating advantages, the three-phase system is by far the most common, and
consequently emphasis is placed on three-phase circuits in this appendix.

The three individual voltages of a three-phase source may each be connected to
its own independent circuit. We would then have three separate single-phase systems.
Alternatively, as will be shown in Section A.1, symmetrical electric connections can
be made between the three voltages and the associated circuitry to form a three-phase
system. It is the latter alternative that we are concerned with in this appendix. Note
that the word phase now has two distinct meanings. It may refer to a portion of a
polyphase system or circuit, or, as in the familiar steady-state circuit theory, it may
be used in reference to the angular displacement between voltage or current phasors.
There is very little possibility of confusing the two.

A.1 GENERATION OF THREE-PHASE
VOLTAGES

Consider the elementary two-pole, three-phase generator of Fig. A.1. On the armature
are three coils aa′, bb′, and cc′ whose axes are displaced 120◦ in space from each
other. This winding can be represented schematically as shown in Fig. A.2. When
the field is excited and rotated, voltages will be generated in the three phases in
accordance with Faraday’s law. If the field structure is designed so that the flux is
distributed sinusoidally over the poles, the flux linking any phase will vary sinusoidally

635
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Figure A.1 Elementary two-pole, three-phase generator.
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Figure A.2 Schematic representation of
the windings of Fig. A.1.
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Figure A.3 Voltages generated in the windings
of Figs. A.1 and A.2.

with time, and sinusoidal voltages will be induced in the three phases. As shown in
Fig. A.3, these three voltages will be displaced 120◦ electrical degrees in time as a
result of the phases being displaced 120◦ in space. The corresponding phasor diagram
is shown in Fig. A.4. In general, the time origin and the reference axis in diagrams
such as Figs. A.3 and A.4 are chosen on the basis of analytical convenience.
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V̂aa′

V̂cc′ V̂bb
′

Figure A.4 Phasor diagram of
generated voltages.

There are two possibilities for the utilization of voltages generated in this manner.
The six terminals a, a′, b, b′, c, and c′ of the three-phase winding may be connected
to three independent single-phase systems, or the three phases of the winding may
be interconnected and used to supply a three-phase system. The latter procedure is
adopted almost universally. The three phases of the winding may be interconnected
in two possible ways, as shown in Fig. A.5. Terminals a′, b′, and c′ may be joined
to form the neutral n, yielding a Y connection, or terminals a and b′, b and c′, and
c and a′ may be joined individually, yielding a � connection. In the Y connection,
a neutral conductor, shown dashed in Fig. A.5a, may or may not be brought out. If
a neutral conductor exists, the system is a four-wire, three-phase system; if not, it is
a three-wire, three-phase system. In the � connection (Fig. A.5b), no neutral exists
and only a three-wire, three-phase system can be formed.

The three-phase voltages of Figs. A.3 and A.4 are equal and displaced in phase by
120 degrees, a general characteristic of a balanced three-phase system. Furthermore,
in a balanced three-phase system the impedance in any one phase is equal to that in
either of the other two phases, so that the resulting phase currents are also equal and
displaced in phase from each other by 120 degrees. Likewise, equal power and equal
reactive power flow in each phase. An unbalanced three-phase system, however, may
be unbalanced in one or more of many ways; the source voltages may be unbalanced,
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Figure A.5 Three-phase connections: (a) Y connection and (b) � connection.
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either in magnitude or in phase, or the phase impedances may not be equal. Note that
only balanced systems are treated in this appendix, and none of the methods developed
or conclusions reached apply to unbalanced systems. Most practical analyses are
conducted under the assumption of a balanced system. Many industrial loads are three-
phase loads and therefore inherently balanced, and in supplying single-phase loads
from a three-phase source definite efforts are made to keep the three-phase system
balanced by assigning approximately equal single-phase loads to each of the three
phases.

A.2 THREE-PHASE VOLTAGES, CURRENTS,
AND POWER

When the three phases of the winding in Fig. A.1 are Y-connected, as in Fig. A.5a,
the phasor diagram of voltages is that of Fig. A.6. The phase order or phase sequence
in Fig. A.6 is abc; that is, the voltage of phase a reaches its maximum 120◦ before
that of phase b.

The three-phase voltages V̂a, V̂b, and V̂c are called line-to-neutral voltages.
The three voltages V̂ab, V̂bc, and V̂ca are called line-to-line voltages. The use of
double-subscript notation in Fig. A.6 greatly simplifies the task of drawing the com-
plete diagram. The subscripts indicate the points between which the voltage is deter-
mined; for example, the voltage V̂ab is calculated as V̂ab = V̂a − V̂b.

�V̂b

�V̂a

�V̂c

V̂b

V̂c
V̂ca

V̂a

V̂ab

V̂bc

30�

120�

Figure A.6 Voltage phasor diagram for a Y-connected system.
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By Kirchhoff’s voltage law, the line-to-line voltage V̂ab is

V̂ab = V̂a − V̂b =
√

3 V̂a � 30◦ (A.1)

as shown in Fig. A.6. Similarly,

V̂bc =
√

3 V̂b � 30◦ (A.2)

and

V̂ca =
√

3 V̂c � 30◦ (A.3)

These equations show that the magnitude of the line-to-line voltage is
√

3 times the
line-to-neutral voltage.

When the three phases are �-connected, the corresponding phasor diagram of
currents is given in Fig. A.7. The � currents are Î ab, Î bc, and Î ca. By Kirchhoff’s
current law, the line current Î a is

Î a = Î ab − Î ca =
√

3 Î ab � −30◦ (A.4)

as can be seen from the phasor diagram of Fig. A.7. Similarly,

Î b =
√

3 Î bc � −30◦ (A.5)

�Î bc

�Î ca

�Î ab

Î b

Î c

Î ca

Î a

Î ab

Î bc

30�

120�

Figure A.7 Current phasor diagram for � connection.
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and

Î c =
√

3 Î ca � −30◦ (A.6)

Stated in words, Eqs. A.4 to A.6 show that for a � connection, the magnitude of
the line current is

√
3 times that of the � current. As we see, the relations between

� currents and line currents of a � connection are similar to those between the
line-to-neutral and line-to-line voltages of a Y connection.

With the time origin taken at the maximum positive point of the phase-a voltage
wave, the instantaneous voltages of the three phases are

va(t) =
√

2 Vrms cos ωt (A.7)

vb(t) =
√

2 Vrms cos (ωt − 120◦) (A.8)

vc(t) =
√

2 Vrms cos (ωt + 120◦) (A.9)

where Vrms is the rms value of the phase-to-neutral voltage. When the phase currents
are displaced from the corresponding phase voltages by the angle θ , the instantaneous
phase currents are

ia(t) =
√

2 Irms cos (ωt + θ) (A.10)

ib(t) =
√

2 Irms cos (ωt + θ − 120◦) (A.11)

ic(t) =
√

2 Irms cos (ωt + θ + 120◦) (A.12)

where Irms is the rms value of the phase current.
The instantaneous power in each phase then becomes

pa(t) = va(t)ia(t) = Vrms Irms[cos (2ωt + θ) + cos θ ] (A.13)

pb(t) = vb(t)ib(t) = Vrms Irms[cos (2ωt + θ − 240◦) + cos θ ] (A.14)

pc(t) = vc(t)ic(t) = Vrms Irms[cos (2ωt + θ + 240◦) + cos θ ] (A.15)

Note that the average power of each phase is equal

<pa(t)> = <pb(t)> = <pc(t)> = Vrms Irms cos θ (A.16)

The phase angle θ between the voltage and current is referred to as the power-factor
angle and cos θ is referred to as the power factor. If θ is negative, then the power
factor is said to be lagging; if θ is positive, then the power factor is said to be leading.

The total instantaneous power for all three phases is

p(t) = pa(t) + pb(t) + pc(t) = 3Vrms Irms cos θ (A.17)

Notice that the sum of the cosine terms which involve time in Eqs. A.13 to A.15
(the first terms in the brackets) is zero. We have shown that the total of the instanta-
neous power for the three phases of a balanced three-phase circuit is constant and
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P = p(t) = total instantaneous three-phase power

pa(t)

<pa(t)>, <pb(t)>,

<pc(t)>

pc(t) pb(t)

t

Figure A.8 Instantaneous power in a three-phase system.

does not vary with time. This situation is depicted graphically in Fig. A.8. Instanta-
neous powers for the three phases are plotted, together with the total instantaneous
power, which is the sum of the three individual waves. The total instantaneous power
for a balanced three-phase system is equal to 3 times the average power per phase.
This is one of the outstanding advantages of polyphase systems. It is of particular
advantage in the operation of polyphase motors since it means that the shaft-power
output is constant and that torque pulsations, with the consequent tendency toward
vibration, do not result.

On the basis of single-phase considerations, the average power per phase Pph

for either a Y- or �-connected system connected to a balanced three-phase load of
impedance Zph = Rph + j Xph �/phase is

Pph = Vrms Irms cos θ = I 2
ph Rph (A.18)

Here Rph is the resistance per phase. The total three-phase power P is

P = 3Pph (A.19)

Similarly, for reactive power per phase Qph and total three-phase reactive power Q,

Qph = Vrms Irms sin θ = I 2
ph Xph (A.20)

and

Q = 3Qph (A.21)

where Xph is the reactance per phase.
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The apparent power per phase, also referred to as the voltamperes per phase, Sph,
and total three-phase apparent power S are

Sph = Vrms Irms = I 2
rms Zph (A.22)

S = 3 Sph (A.23)

In Eqs. A.18 and A.20, θ is the angle between phase voltage and phase current.
As in the single-phase case, it is given by

θ = tan−1

(
Xph

Rph

)
= cos−1

(
Rph

Zph

)
= sin−1

(
Xph

Zph

)
(A.24)

The power factor of a balanced three-phase system is therefore equal to that of any
one phase.

A.3 Y- AND �-CONNECTED CIRCUITS
Three specific examples are given to illustrate the computational details of Y- and
�-connected circuits. Explanatory remarks which are generally applicable are incor-
porated into the solutions.

EXAMPLE A.1

Fig. A.9 shows an equivalent circuit for a 60-Hz transmission system consisting of a line
having an impedance Z l = 0.05+ j0.20�, at the receiving end of which is a load of equivalent
impedance ZL = 10.0+ j3.00�. The impedance of the return conductor should be considered
zero.

a. Compute the line current I ; the load voltage VL; the power, reactive power, and apparent
power taken by the load; and the power and reactive-power loss in the line.

Suppose now that three such identical systems are to be constructed to supply three such
identical loads. Instead of drawing the diagrams one below the other, let them be drawn in the
fashion shown in Fig. A.10, which is, of course, the same electrically.

b. For Fig. A.10 give the current in each line; the voltage at each load; the power, reactive
power, and apparent power supplied to each load; the power and reactive-power loss in

+

�
120 VG

Zl = 0.05 + j0.20

ZL = 10.0 + j3.00 V̂L

+

�

Î

Figure A.9 Circuit for Example A.1, part (a).
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120 V

120 V120 V

10.0 + j3.00

10.0 + j3.0010.0 + j3.00

0.05 + j0.20

G

G
0.05 + j0.20

0.05 + j0.20

G

Figure A.10 Circuit for Example A.1, part (b).

each of the three transmission systems; the total power, reactive power, and apparent
power supplied to the loads; and the total power and reactive-power loss in the three
transmission systems.

Next consider that the three return conductors are combined into one and that the phase
relationship of the voltage sources is such that a balanced four-wire, three-phase system results,
as in Fig. A.11.

c. For Fig. A.11 give the line current; the load voltage, both line-to-line and line-to-neutral;
the power, reactive power, and apparent power taken by each phase of the load; the power
and reactive-power loss in each line; the total three-phase power, reactive power, and
apparent power taken by the load; and the total power and reactive-power loss in the lines.

d. In Fig. A.11 what is the current in the combined return or neutral conductor?
e. Can this conductor be dispensed with in Fig. A.11 if desired?

Assume now that this neutral conductor is omitted. This results in the three-wire,
three-phase system of Fig. A.12.

f. Repeat part (c) for Fig. A.12.

120 V

120 V120 V

10.0 + j3.00

10.0 + j3.0010.0 + j3.00

0.05 + j0.20

0.05 + j0.20

0.05 + j0.20

Figure A.11 Circuit for Example A.1, parts (c) to (e).
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120 V

120 V120 V

10.0 + j3.00

10.0 + j3.0010.0 + j3.00

0.05 + j0.20

0.05 + j0.20

0.05 + j0.20

Figure A.12 Circuit for Example A.1 part (f).

g. On the basis of the results of this example, outline briefly the method of reducing a
balanced three-phase Y-connected circuit problem to its equivalent single-phase problem.
Be careful to distinguish between the use of line-to-line and line-to-neutral voltages.

■ Solution
a.

I = 120√
(0.05 + 10.0)2 + (0.20 + 3.00)2

= 11.4 A

VL = I |ZL| = 11.4
√

(10.0)2 + (3.00)2 = 119 V

PL = I 2 RL = (11.4)2 (10.00) = 1300 W

QL = I 2 XL = (11.4)2 (3.00) = 390 VAR

SL = I 2 |ZL| = (11.4)2
√

(10.0)2 + (3.00)2 = 1357 VA

Pl = I 2 Rl = (11.4)2 (0.05) = 6.5 W

Q l = I 2 X l = (11.4)2 (0.20) = 26 VAR

b. The first four obviously have the same values as in part (a).

Total power = 3 PL = 3 (1300) = 3900 W
Total reactive power = 3 QL = 3 (390) = 1170 VAR
Total apparent power = 3 SL = 3 (1357) = 4071 VA
Total line power loss = 3 Pl = 3 (6.5) = 19.5 W
Total reactive-power loss = 3 Q l = 3 (26) = 78 VAR

c. The results obtained in part (b) are unaffected by this change. The voltage in parts (a)
and (b) is now the line-to-neutral voltage. The line-to-line voltage is

√
3 (119) = 206 V

d. By Kirchhoff’s current law, the neutral current is the phasor sum of the three line currents.
These line currents are equal and displaced in phase by 120◦. Since the phasor sum of
three equal phasors 120◦ apart is zero, the neutral current is zero.
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e. The neutral current being zero, the neutral conductor can be dispensed with if desired.
f. Since the presence or absence of the neutral conductor does not affect conditions, the

values are the same as in part (c).
g. A neutral conductor can be assumed, regardless of whether one is physically present.

Since the neutral conductor in a balanced three-phase circuit carries no current and hence
has no voltage drop across it, the neutral conductor should be considered to have zero
impedance. Then one phase of the Y, together with the neutral conductor, can be removed
for study. Since this phase is uprooted at the neutral, line-to-neutral voltages must be
used. This procedure yields the single-phase equivalent circuit, in which all quantities
correspond to those in one phase of the three-phase circuit. Conditions in the other two
phases being the same (except for the 120◦ phase displacements in the currents and
voltages), there is no need for investigating them individually. Line currents in the
three-phase system are the same as in the single-phase circuit, and total three-phase
power, reactive power, and apparent power are three times the corresponding quantities in
the single-phase circuit. If line-to-line voltages are desired, they must be obtained by
multiplying voltages in the single-phase circuit by

√
3.

EXAMPLE A.2

Three impedances of value ZY = 4.00 + j3.00 = 5.00� 36.9◦ � are connected in Y, as shown
in Fig. A.13. For balanced line-to-line voltages of 208 V, find the line current, the power factor,
and the total power, reactive power, and apparent power.

■ Solution
The rms line-to-neutral voltage V on any one phase, such as phase a, is

V = 208√
3

= 120.1 V

Hence, the line current

Î = V

ZY

= 120.1

5.00� 36.9◦ = 24.02 � −36.9◦ A

and the power factor is equal to

Power factor = cos θ = cos (−36.9◦) = 0.80 lagging

ZY = 4.00 + j3.00

    = 5.00  36.9�
208 V

a

c

n

b

Figure A.13 Circuit for Example A.2.
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Thus

P = 3 I 2 RY = 3 (24.02)2 (4.00) = 6924 W

Q = 3 I 2 XY = 3 (24.02)2 (3.00) = 5193 VAR

S = 3 V I = 3 (120.1) (24.02) = 8654 VA

Note that phases a and c (Fig. A.13) do not form a simple series circuit. Consequently, the
current cannot be found by dividing 208 V by the sum of the phase-a and phase-c impedances.
To be sure, an equation can be written for voltage between points a and c by Kirchhoff’s voltage
law, but this must be a phasor equation taking account of the 120◦ phase displacement between
the phase-a and phase-c currents. As a result, the method of thought outlined in Example A.1
leads to the simplest solution.

EXAMPLE A.3

Three impedances of value Z� = 12.00+ j9.00 = 15.00� 36.9◦ � are connected in �, as shown
in Fig. A.14. For balanced line-to-line voltages of 208 V, find the line current, the power factor,
and the total power, reactive power, and apparent power.

■ Solution
The voltage across any one leg of the �, V� is equal to the line-to-line voltage Vl−l, which is
equal to

√
3 times the line-to-neutral voltage V . Consequently,

V = Vl−l√
3

= 208√
3

= 120.1 V

and the current in the � is given by the line-to-line voltage divided by the � impedance

Î � = Vl−l

Z�

= 208

15.00 � 36.9◦ = 13.87 � −36.9◦ A

Power factor = cos θ = cos (−36.9◦) = 0.80 lagging

From Eq. A.4 the phase current is equal to

I =
√

3 I� =
√

3 (13.87) = 24.02 A

Also

P = 3 P� = 3 I 2
� R� = 3 (13.87)2 (12.00) = 6926 W

Q = 3 Q� = 3 I 2
� X� = 3 (13.87)2 (9.00) = 5194 VAR

208 V

a

c

b

Z� = 12.00 + j9.00

    = 15.00  36.9�

Figure A.14 Circuit for Example A.3.



Umans-3930269 book December 14, 2012 12:36

A.4 Analysis of Balanced Three-Phase Circuits; Single-Line Diagrams 647

and

S = 3 (Sph)� = 3Vl−l I� = 3 (208) (13.87) = 8655 VA

Note that phases ab and bc do not form a simple series circuit, nor does the path cba form
a simple parallel combination with the direct path through the phase ca. Consequently, the
line current cannot be found by dividing 208 V by the equivalent impedance of Zca in parallel
with Zab + Zbc. Kirchhoff’s-law equations involving quantities in more than one phase can
be written, but they must be phasor quantities taking account of the 120◦ phase displacement
between phase currents and phase voltages. As a result, the method outlined above leads to the
simplest solution.

Comparison of the results of Examples A.2 and A.3 leads to a valuable and
interesting conclusion. Note that the line-to-line voltage, line current, power factor,
total power, reactive power, and apparent power are equal (within round-off error)
in the two cases; in other words, conditions viewed from the terminals A, B, and C
are identical, and one cannot distinguish between the two circuits from their terminal
quantities. It will also be seen that the impedance, resistance, and reactance per phase
of the Y connection (Fig. A.13) are exactly one-third of the corresponding values per
phase of the � connection (Fig. A.14). Consequently, a balanced � connection can
be replaced by a balanced Y connection providing that the circuit constants per phase
obey the relation

ZY = 1

3
Z� (A.25)

Conversely, a Y connection can be replaced by a � connection provided Eq. A.25 is
satisfied. The concept of this Y-� equivalence stems from the general Y-� transfor-
mation and is not the accidental result of a specific numerical case.

Two important corollaries follow from this equivalence: (1) A general computa-
tional scheme for balanced circuits can be based entirely on Y-connected circuits or
entirely on �-connected circuits, whichever one prefers. Since it is frequently more
convenient to handle a Y connection, the former scheme is usually adopted. (2) In
the frequently occurring problems in which the connection is not specified and is not
pertinent to the solution, either a Y or a � connection may be assumed. Again the Y
connection is more commonly selected. In analyzing three-phase motor performance,
for example, the actual winding connections need not be known unless the investi-
gation must consider detailed conditions within the windings themselves. The entire
analysis can then be based on an assumed Y connection.

A.4 ANALYSIS OF BALANCED THREE-PHASE
CIRCUITS; SINGLE-LINE DIAGRAMS

By combining the principle of �-Y equivalence with the technique revealed by Exam-
ple A.1, it is clear that any balanced-three-phase-circuit problem can be represented
by three single-phase equivalent circuits representing the individual phases. Specif-
ically, we have seen that in this case, the voltages and currents on each phase are
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1.4 + j1.6

G1 Load

0.80 + j1.0

G2

1.4 + j1.6

G1 Y �Load

0.80 + j1.0

G2

Load terminals or

substation bus

(a) (b)

Generator terminals

or bus

Figure A.15 Examples of single-line diagrams.

identical with the exception of a 120◦ phase shift between phases. Thus, a solution for
the voltages and currents in a single phase is sufficient to determine the voltages in
currents in the remaining two phases. As a result, all of the methods of single-phase-
circuit analysis can be applied. The end results of the single-phase analysis are then
translated back into three-phase terms to give the final results.

Under this technique, with three-phase systems represented in terms of their
Y-connection equivalent, three-phase equivalent circuits can be fully represented by
the equivalent circuit of one phase, with the equivalent for the other two phases
being unnecessary repetition. Similarly, a phasor representation for this system is
fully represented by the phasor diagram for a single phase. In each case, the currents
and voltages of the remaining phases can be easily obtained by phase shifting the
single-phase values by ±120◦.

Examples of such single-line diagrams are given in Fig. A.15, showing two three-
phase generators with their associated lines or cables supplying a common substation
load. Specific connections of apparatus can be indicated if desired. Thus, Fig. A.15b
shows that G1 is Y-connected and G2 is �-connected. Impedances are given in ohms
per phase.

When one is dealing with power, reactive power, and apparent power, it is some-
times more convenient to deal with the entire three-phase circuit at once instead of
concentrating on one phase. This possibility arises because simple expressions for
three-phase power, reactive power, and voltamperes can be written in terms of line-
to-line voltage and line current regardless of whether the circuit is Y- or �-connected.
Thus, from Eqs. A.18 and A.19, three-phase power is

P = 3 Pph = 3 Vph Iph cos θ (A.26)

Since Vl−l = √
3Vph, Eq. A.26 becomes

P =
√

3 Vl−l Iph cos θ (A.27)

Similarly,

Q =
√

3 Vl−l Iph sin θ (A.28)

and

S =
√

3 Vl−l Iph (A.29)



Umans-3930269 book December 14, 2012 12:36

A.4 Analysis of Balanced Three-Phase Circuits; Single-Line Diagrams 649

It should be borne in mind, however, that the power-factor angle θ , given by Eq. A.24,
is the angle between V̂ph and Î ph and not that between V̂l−l and Î ph.

EXAMPLE A.4

Figure A.15 is the equivalent circuit of a load supplied from two three-phase generating stations
over lines having the impedances per phase given on the diagram. The load requires 30 kW at
0.80 power factor lagging. Generator G1 operates at a terminal voltage of 797 V line-to-line
and supplies 15 kW at 0.80 power factor lagging. Find the load voltage and the terminal voltage
and power and reactive-power output of G2.

■ Solution
Let I , P , and Q, respectively, denote line current and three-phase active and reactive power.
The subscripts 1 and 2 denote the respective branches of the system; the subscript r denotes a
quantity measured at the receiving end of the line. We then have

I1 = P1√
3 E1 cos θ1

= 15,000√
3 (797) (0.80)

= 13.6 A

Pr1 = P1 − 3 I 2
1 R1 = 15,000 − 3 (13.6)2 (1.4) = 14.22 kW

Qr1 = Q1 − 3 I 2
1 X1 = 15,000 tan (cos−1 0.80) − 3 (13.6)2 (1.6) = 10.35 kVAR

The factor 3 appears before I 2
1 R1 and I 2

1 X1 in the last two equations because the current I1 is
the phase current. The load voltage is

VL = S√
3 I1

=
√

(14,220)2 + (10,350)2

√
3 (13.6)

= 748 V line-to-line

Since the load requires 30 kW of real power and 30 tan (cos−1 0.80) = 22.5 kVAR of
reactive power,

Pr2 = 30,000 − 14,220 = 15,780 W

and

Qr2 = 22,500 − 10,350 = 12.15 kVAR

I2 = S√
3 Vl−l

=
√

(15,780)2 + (12,150)2

√
3 (748)

= 15.4 A

P2 = Pr2 + 3 I 2
2 R2 = 15,780 + 3(15.4)2(0.80) = 16.35 kW

Q2 = Qr2 + 3 I 2
2 X2 = 12,150 + 3 (15.4)2 (1.0) = 12.87 kVAR

V2 = S√
3 I2

=
√

(16,350)2 + (12,870)2

√
3 (15.4)

= 780 V (l-l)
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A.5 APPENDIX A VARIABLES
a Armature
base Base quantity
d, D, DR Direct-axis component
dc Direct current
eq Equivalent
f, F Field, final
fl Full load
i Initial
max Maximum
mech Mechanical
min Minimum
q, Q, QR Quadrature-axis component
R Rotor
S Stator
ref Reference
rms Root mean square
ω Electrical frequency [rad/sec]
θ Phase angle [rad]
q Number of phases
t Time [sec]
i , I Current [A]
Î Current, complex amplitude [A]
p, P Power [W]
Q Reactive power [VAR]
R Resistance [�]
S Apparent power [VA]
v, V Voltage [V]
V̂ Voltage, complex amplitude [V]
X Reactance [�]
Z Impedance [�]

Subscripts:

� Delta connection
a, b, c Phase designations
l Line
l-l Line-to-line
L Load
ph Per phase
r Receiving end
rms Root mean square
Y Y connection
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A P P E N D I X B
Voltages, Magnetic
Fields, and Inductances
of Distributed
AC Windings

Both amplitude and waveform of the generated voltage and armature mmfs in ma-
chines are determined by the winding arrangements and general machine geometry.
These configurations in turn are dictated by economic use of space and materials in the
machine and by suitability for the intended service. In this appendix we supplement
the introductory discussion of these considerations in Chapter 4 by analytical treat-
ment of ac voltages and mmfs in the balanced steady state. Attention is confined to
the time-fundamental component of voltages and the space-fundamental component
of mmfs.

B.1 GENERATED VOLTAGES
In accordance with Eq. 4.52, the rms generated voltage per phase for a concentrated
winding (kw = 1) having Nph series turns per phase is

Erms =
√

2 π f Nph�p (B.1)

where f is the frequency and �p the fundamental flux per pole.
A more complex and practical winding will have coil sides for each phase dis-

tributed in several slots per pole. Equation B.1 can then be used to compute the
voltage distribution of individual coils. To determine the voltage of an entire phase
group, the voltages of the component coils must be added as phasors. Such addition
of fundamental-frequency voltages is the subject of this article.

651
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B.1.1 Distributed Fractional-Pitch Windings

A simple example of a distributed winding is illustrated in Fig. B.1 for a three-phase,
two-pole machine. This case retains all the features of a more general one with any
integral number of phases, poles, and slots per pole per phase. At the same time, a
double-layer winding is shown. Double-layer windings usually lead to simpler end
connections and to a machine which is more economical to manufacture and are found
in all machines except some small motors below 10 kW. Generally, one side of a coil,
such as a1, is placed in the bottom of a slot, and the other side, −a1, is placed in the
top of another slot. Coil sides such as a1 and a3 or a2 and a4 which are in adjacent
slots and associated with the same phase constitute a phase belt. All phase belts are
alike when an integral number of slots per pole per phase are used, and for the normal
machine the peripheral angle subtended by a phase belt is 60 electrical degrees for a
three-phase machine and 90 electrical degrees for a two-phase machine.

Individual coils in Fig. B.1 all span a full pole pitch, or 180 electrical degrees;
accordingly, the winding is a full-pitch winding. Suppose now that all coil sides in the
tops of the slots are shifted one slot counterclockwise, as in Fig. B.2. Any coil, such as
a1, −a1, then spans only five-sixths of a pole pitch or 5

6 (180) = 150 electrical degrees,
and the winding is a fractional-pitch, or chorded, winding. Similar shifting by two
slots yields a 2

3 -pitch winding, and so forth. Phase groupings are now intermingled, for
some slots contain coil sides in phases a and b, a and c, and b and c. Individual phase
groups, such as that formed by a1, a2, a3, a4 on one side and −a1, −a2, −a3, −a4

15� 15�
30�

YX

Z

O

�b2�b1

�b4

�b3

�c3
�c4

�c1
�c2

�a2

�a1

�a4

�a3

a1

a2

a3
a4

c4c3

c1

c2

b2 b1

b4
b3

Figure B.1 Distributed two-pole, three-phase
full-pitch armature winding with voltage phasor
diagram.
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30� 30�
60�

YW

X

Z

O

�b2

�b1

�b4

�b3 �c3

�c4

�c1

�c2

�a2

�a1

�a4 �a3

a1

a2

a4 a3

c4

c3

c1

c2

b2

b1

b4

b3

Figure B.2 Distributed two-pole, three-phase
fractional-pitch armature winding with voltage
phasor diagram.

on the other, are still displaced by 120 electrical degrees from the groups in other
phases so that three-phase voltages are produced. Besides the minor feature of short-
ening the end connections, fractional-pitch windings can be shown to decrease the
harmonic content of both voltage and mmf waves.

The end connections between the coil sides are normally in a region of negligible
flux density, and hence altering them does not significantly affect the mutual flux
linkages of the winding. Allocation of coil sides in slots is then the factor determining
the generated voltages, and only that allocation need be specified in Figs. B.1 and B.2.
The only requisite is that all coil sides in a phase be included in the interconnection in
such a manner that individual voltages make a positive contribution to the total. The
practical consequence is that end connections can be made according to the dictates
of manufacturing simplicity; the theoretical consequence is that when computational
advantages result, the coil sides in a phase can be combined in an arbitrary fashion to
form equivalent coils.

One sacrifice is made in using the distributed and fractional-pitch windings of
Figs. B.1 and B.2 compared with a concentrated full-pitch winding: for the same
number of turns per phase, the fundamental-frequency generated voltage is lower.
The harmonics are, in general, lowered by an appreciably greater factor, however,
and the total number of turns which can be accommodated on a fixed iron geometry
is increased. The effect of distributing the winding in Fig. B.1 is that the voltages of
coils a1 and a2 are not in phase with those of coils a3 and a4. Thus, the voltage of
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coils a1 and a2 can be represented by phasor OX in Fig. B.1, and that of coils a3 and
a4 by the phasor OY. The time-phase displacement between these two voltages is the
same as the electrical angle between adjacent slots, so that OX and OY coincide with
the centerlines of adjacent slots. The resultant phasor OZ for phase a is obviously
smaller than the arithmetic sum of OX and OY.

In addition, the effect of fractional pitch in Fig. B.2 is that a coil links a smaller
portion of the total pole flux than if it were a full-pitch coil. The effect can be super-
imposed on that of distributing the winding by regarding coil sides a2 and −a1 as an
equivalent coil with the phasor voltage OW (Fig. B.2), coil sides a1, a4, −a2, and
−a3 as two equivalent coils with the phasor voltage OX (twice the length of OW),
and coil sides a3 and −a4 as an equivalent coil with phasor voltage OY. The resultant
phasor OZ for phase a is obviously smaller than the arithmetic sum of OW, OX, and
OY and is also smaller than OZ in Fig. B.1.

The combination of these two effects can be included in a winding factor kw to
be used as a reduction factor in Eq. B.1. Thus, the rms generated voltage per phase is

Erms =
√

2πkw f Nph�p (B.2)

where Nph is the total turns in series per phase and kw accounts for the departure
from the concentrated full-pitch case. For a three-phase machine, Eq. B.2 yields the
line-to-line voltage for a �-connected winding and the line-to-neutral voltage for a
Y-connected winding. As in any balanced Y connection, the line-to-line voltage of
the latter winding is

√
3 times the line-to-neutral voltage.

B.1.2 Breadth and Pitch Factors

By separately considering the effects of distributing and of chording the winding,
reduction factors can be obtained in generalized form convenient for quantitative
analysis. The effect of distributing the winding in n slots per phase belt is to yield n
voltage phasors displaced in phase by the electrical angle γ between slots, γ being
equal to 180 electrical degrees divided by the number of slots per pole. Such a group
of phasors is shown in Fig. B.3a and, in a more convenient form for addition, again
in Fig. B.3b. Each phasor AB, BC, and CD is the chord of a circle with center at
O and subtends the angle γ at the center. The phasor sum AD subtends the angle
nγ , which, as noted previously, is 60 electrical degrees for the normal, uniformly
distributed three-phase machine and 90 electrical degrees for the corresponding two-
phase machine. From triangles OAa and OAd, respectively,

OA = Aa

sin (γ /2)
= AB

2 sin (γ /2)
(B.3)

OA = Ad

sin (nγ /2)
= AD

2 sin (nγ /2)
(B.4)

Equating these two values of OA yields

AD = AB
sin (nγ /2)

sin (γ /2)
(B.5)
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2
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(b)(a)

Figure B.3 (a) Coil voltage phasors and (b) phasor sum.

But the arithmetic sum of the phasors is n(AB). Consequently, the reduction factor
arising from distributing the winding over n slots each separated by γ electrical
degrees is

kb = AD

nAB
= sin (nγ /2)

n sin (γ /2)
(B.6)

The factor kb is called the breadth factor of the winding.
The effect of chording on the coil voltage can be obtained by first determining

the flux linkages with the fractional-pitch coil. Since there are n coils per phase and
Nph total series turns per phase, each coil will have Nc = Nph/n turns per coil. From
Fig. B.4 coil side −a is only ρ electrical degrees from side a instead of the full 180◦.
The flux linkage with the Nc-turn coil is

λ = Nc Bpeaklr

(
2

poles

) ∫ ρ+α

α

sin θ dθ

= Nc Bpeaklr

(
2

poles

)
[cos α − cos (α + ρ)] (B.7)

where
l = axial length of coil side

r = coil radius

poles = number of poles

With α replaced by ωt to indicate rotation at ω electrical radians per second, Eq. B.7
becomes

λ = Nc Bpeaklr

(
2

poles

)
[cos ρ − cos (ωt + ρ)]

= −Nc Bpeaklr

(
4

poles

)
sin

(ρ

2

)
sin

(
ωt +

(ρ

2

))
(B.8)
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dθ

�a a

α

π 2π
0

θ

θ

Nc-turn coil

B = Bpeak sin θ

ρ + α

Space distribution

of flux density

Figure B.4 Fractional-pitch coil in
sinusoidal field.

and the instantaneous voltage is

e = dλ

dt
= −ωNc Bpeaklr

(
4

poles

)
sin

(ρ

2

)
cos

(
ωt +

(ρ

2

))
(B.9)

The phase angle (ρ/2) in Eq. B.9 merely indicates that the instantaneous voltage
is no longer zero when α in Fig. B.5 is zero. The factor sin (ρ/2) is an amplitude-
reduction factor, however, so that the rms voltage of Eq. B.1 is modified

Erms =
√

2πkp f Nph�p (B.10)

where the pitch factor kp is

kp = sin
(ρ

2

)
(B.11)

When both the breadth and pitch factors apply, the rms voltage is

Erms =
√

2πkbkp f Nph�p =
√

2 πkw f Nph�p (B.12)

Phasor representing cos ωt

Phasor representing

difference of other two

Phasor representing

cos (ωt + ρ)

ρ

π � ρ
2

Figure B.5 Phasor addition for
fractional-pitch coil.
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which is an alternate form of Eq. B.2; the winding factor kw is seen to be the product
of the pitch and breadth factors.

kw = kbkp (B.13)

EXAMPLE B.1

Calculate the breadth, pitch, and winding factors for the distributed fractional-pitch winding
of Fig. B.2.

■ Solution
The winding of Fig. B.2 has two coils per phase belt, separated by an electrical angle of 30◦.
From Eq. B.6 the breadth factor is

kb = sin (nγ /2)

n sin (γ /2)
= sin [2(30◦)/2]

2 sin (30◦/2)
= 0.966

The fractional-pitch coils span 150◦ = 5π/6 rad, and from Eq. B.11 pitch factor is

kp = sin
(

ρ

2

)
= sin

(
5π

12

)
= 0.966

The winding factor is

kw = kbkp = 0.933

B.2 ARMATURE MMF WAVES
Distribution of a winding in several slots per pole per phase and the use of fractional-
pitch coils influence not only the emf generated in the winding but also the magnetic
field produced by it. Space-fundamental components of the mmf distributions are
examined in this article.

B.2.1 Concentrated Full-Pitch Windings

We have seen in Section 4.3 that a concentrated polyphase winding of Nph turns
per phase in a multipole machine produces a rectangular mmf wave around the
air-gap circumference. With excitation by a sinusoidal current of amplitude I , the
time-maximum amplitude of the space-fundamental component of the wave is, in
accordance with Eq. 4.7,

(Fag1)peak = 4

π

Nph

poles
(
√

2I ) A · turns/pole (B.14)

where the winding factor kw of Eq. 4.7 has been set equal to unity since in this case
we are discussing the mmf wave of a concentrated winding.

Each phase of a polyphase concentrated winding creates such a time-varying
standing mmf wave in space. This situation forms the basis of the analysis leading to
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Eq. 4.41. For concentrated windings, Eq. 4.41 can be rewritten as

F(θae, t) = 3

2

(
4

π

)(
Nph

poles

)
(
√

2I ) cos (θae − ωt) (B.15)

= 6

π

(
Nph

poles

)
(
√

2I ) cos (θae − ωt) (B.16)

The amplitude of the resultant mmf wave in a three-phase machine in ampere-
turns per pole is then

FA = 6

π

(
Nph

poles

)
(
√

2I ) A · turns/pole (B.17)

Similarly, for a q-phase machine, the amplitude is

FA = 2q

π

(
Nph

poles

)
(
√

2I ) A · turns/pole (B.18)

In Eqs. B.17 and B.18, I is the rms current per phase. The equations include
only the fundamental component of the actual distribution and apply to concentrated
full-pitch windings with balanced excitation.

B.2.2 Distributed Fractional-Pitch Winding

When the coils in each phase of a winding are distributed among several slots per
pole, the resultant space-fundamental mmf can be obtained by superposition from the
preceding simpler considerations for a concentrated winding. The effect of distribu-
tion can be seen from Fig. B.6, which is a reproduction of the two-pole, three-phase,
full-pitch winding with two slots per pole per phase given in Fig. B.1. Coils a1 and a2,
b1 and b2, and c1 and c2 by themselves constitute the equivalent of a three-phase,

15�

15�
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�b3

�c3
�c4

�c1
�c2
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�a1

�a4
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X
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a1
a2

a3
a4

c4c3
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b2 b1

b4
b3

Figure B.6 Distributed two-pole, three-phase, full-pitch
armature winding with mmf phasor diagram.
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two-pole concentrated winding because they form three sets of coils excited by
polyphase currents and mechanically displaced 120◦ from each other. They there-
fore produce a rotating space-fundamental mmf; the amplitude of this contribution is
given by Eq. B.17 when Nph is taken as the sum of the series turns in coils a1 and a2

only. Similarly, coils a3 and a4, b3 and b4, and c3 and c4 produce another identical
mmf wave, but one which is phase-displaced in space by the slot angle γ = 30◦ from
the former wave. The resultant space-fundamental mmf wave for the winding can be
obtained by adding these two sinusoidal contributions.

The mmf contribution from the a1a2, b1b2 and c1c2 coils can be represented
by the phasor OX in Fig. B.6. Such phasor representation is appropriate because
the waveforms concerned are sinusoidal, and phasor diagrams are simply convenient
means for adding sine waves. These are space sinusoids, however, not time sinusoids.
Phasor OX is drawn in the space position of the mmf peak for an instant of time when
the current in phase a is a maximum. The length of OX is proportional to the number
of turns in the associated coils. Similarly, the mmf contribution from the a3a4, b3b4,
and c3c4 coils may be represented by the phasor OY. Accordingly, the phasor OZ
represents the resultant mmf wave. Just as in the corresponding voltage diagram, the
resultant mmf is seen to be smaller than if the same number of turns per phase were
concentrated in one slot per pole.

In like manner, mmf phasors can be drawn for fractional-pitch windings as illus-
trated in Fig. B.7, which is a reproduction of the two-pole, three-phase, fractional-pitch
winding with two slots per pole per phase given in Fig. B.2. Phasor OW represents the
contribution for the equivalent coils formed by conductors a2 and −a1, b2 and −b1,
and c2 and −c1; OX for a1a4 and −a3 −a2, b1b4 and −b3 −b2, and c1c4 and −c3 −c2;
and OY for a3 and −a4, b3 and −b4, and c3 and −c4. The resultant phasor OZ is,

30�
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Figure B.7 Distributed two-pole, three-phase,
fractional-pitch armature winding with mmf
phasor diagram.
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of course, smaller than the algebraic sum of the individual contributions and is also
smaller than OZ in Fig. B.6.

By comparison with Figs. B.1 and B.2, these phasor diagrams can be seen to be
identical with those for generated voltages. It therefore follows that pitch and breadth
factors previously developed can be applied directly to the determination of resultant
mmf. Thus, for a distributed, fractional-pitch, polyphase winding, the amplitude of
the space-fundamental component of mmf can be obtained by using kbkp Nph = kw Nph

instead of simply Nph in Eqs. B.17 and B.18. These equations then become

FA = 6

π

(
kbkp Nph

poles

)
(
√

2I ) = 6

π

(
kw Nph

poles

)
(
√

2I ) (B.19)

for a three-phase machine and

FA = 2q

π

(
kbkp Nph

poles

)
(
√

2I ) = 2q

π

(
kw Nph

poles

)
(
√

2I ) (B.20)

for a q-phase machine, where FA is in ampere-turns per pole.

B.3 AIR-GAP INDUCTANCES
OF DISTRIBUTED WINDINGS

Figure B.8a shows an N -turn, full-pitch, concentrated armature winding in a two-pole
magnetic structure with a concentric cylindrical rotor. The mmf of this configuration
is shown in Fig. B.8b. Since the air-gap length g is much smaller than the average
air-gap radius r , the air-gap radial magnetic field can be considered uniform and equal
to the mmf divided by g. From Eq. 4.4 the space-fundamental mmf is given by

Fag1 = 4

π

Ni

2
cos θa (B.21)

and the corresponding air-gap flux density is

Bag1 = μ0
Fag1

g
= 2μ0 Ni

πg
cos θa (B.22)
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π
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Figure B.8 (a) N-turn concentrated coil and (b) resultant mmf.
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Equation B.22 can be integrated to find the fundamental air-gap flux per pole
(Eq. 4.47)

�p = l
∫ π/2

−π/2
Bag1r dθa = 4μ0 Nlr

πg
i (B.23)

where l is the axial length of the air gap. The air-gap inductance of the coil can be
found from Eq. 1.28

L = λ

i
= N�p

i
= 4μ0 N 2lr

πg
(B.24)

For a distributed multipole winding with Nph series turns and a winding factor
kw = kbkp, the air-gap inductance can be found from Eq. B.24 by substituting for N
the effective turns per pole pair (2kw Nph/poles)

L = 4μ0lr

πg

(
2kw Nph

poles

)2

= 16μ0lr

πg

(
kw Nph

poles

)2

(B.25)

Finally, Fig. B.9 shows schematically two coils (labeled 1 and 2) with winding
factors kw1 and kw2 and with 2N1/poles and 2N2/poles turns per pole pair, respec-
tively; their magnetic axes are separated by an electrical angle α (equal to poles/2
times their spatial angular displacement). The mutual inductance between these two
windings is given by

L12 = 4μ0

π

(
2kw1 N1

poles

) (
2kw2 N2

poles

)
lr

g
cos α

= 16μ0(kw1 N1)(kw2 N2)lr

πg(poles)2
cos α (B.26)

Although the figure shows one winding on the rotor and the second on the stator,
Eq. B.26 is equally valid for the case where both windings are on the same member.

�2

�1

2

r

g

1 Magnetic

axis of 2

Magnetic

axis of 1

α

Figure B.9 Two distributed windings
separated by electrical angle α.
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EXAMPLE B.2

The two-pole stator-winding distribution of Fig. B.2 is found on an induction motor with an
air-gap length of 0.381 mm, an average rotor radius of 6.35 cm, and an axial length of 20.3 cm.
Each stator coil has 15 turns, and the coil phase connections are as shown in Fig. B.10. Calculate
the phase-a air-gap inductance Laa0 and the phase-a to phase-b mutual inductance Lab.

■ Solution
Note that the placement of the coils around the stator is such that the flux linkages of each of
the two parallel paths are equal. In addition, the air-gap flux distribution is unchanged if, rather
than dividing equally between the two legs, as actually occurs, one path were disconnected and
all the current were to flow in the remaining path. Thus, the phase inductances can be found
by calculating the inductances associated with only one of the parallel paths.

This result may appear to be somewhat puzzling because the two paths are connected in
parallel, and thus it would appear that the parallel inductance should be one-half that of the
single-path inductance. However, the inductances share a common magnetic circuit, and their
combined inductance must reflect this fact. It should be pointed out, however, that the phase
resistance is one-half that of each of the paths.

The winding factor has been calculated in Example B.1. Thus, from Eq. B.25,

Laa0 = 16μ0lr

πg

(
kw Nph

poles

)2

= 16(4π × 10−7) × 0.203 × 0.0635

π(3.81 × 10−4)

(
0.933 × 30

2

)2

= 42.4 mH

The winding axes are separated by α = 120◦, and thus from Eq. B.26

Lab = 16μ0(kw Nph)
2lr

πg(poles)2
cos α = −21.2 mH

a1 a2

a3 a4

�a1 �a2

�a3 �a4

Phase a

b1 b2

b3 b4

�b1 �b2

�b3 �b4

Phase b

c1 c2

c3 c4

�c1 �c2

�c3 �c4

Phase c

Figure B.10 Coil phase connections of Fig. B.2 for Example B.2.
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B.4 APPENDIX B VARIABLES
α Rotation angle in electrical degrees [rad]
γ Angle between slots in electrical units [rad]
λ Flux linkage [Wb]
μ0 Permeability of free space = 4π × 10−7 [H/m]
�p Fundamental flux per pole [Wb]
ρ Coil span in electrical units [rad]
θa Stator spatial angle [rad]
θae Stator spatial angle in electrical units [rad]
ω Electrical frequency [rad/sec]
Bpeak Peak magnetic flux density [T]
e, E Generated voltage [V]
f Electrical frequency [Hz]
F , F Magnetomotive force [A]
FA mmf amplitude [A·turns/pole]
g aGp length [m]
i Current [A]
l Coil length [m]
kb Breadth factor
kp Pitch factor
kw Winding factor
L Inductance [H]
n Number of slots per phase
N Number of turns
Nc Number of turns per coil
Nph Number of turns per phase
poles Number of poles
q Number of phases
r Radius [m]

Subscripts:

ag Air gap
rms Root mean square
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C A P P E N D I X

The dq0 Transformation

In this appendix, the direct- and quadrature-axis (dq0) theory introduced in Sec-
tion 5.6 is formalized. The formal mathematical transformation from three-phase
stator quantities to their direct- and quadrature-axis components is presented. These
transformations are then used to express the governing equations for a synchronous
machine in terms of the dq0 quantities.

C.1 TRANSFORMATION TO DIRECT- AND
QUADRATURE-AXIS VARIABLES

In Section 5.6 the concept of resolving synchronous-machine armature quantities
into two rotating components, one aligned with the field-winding axis, the direct-
axis component, and one in quadrature with the field-winding axis, the quadrature-
axis component, was introduced as a means of facilitating analysis of salient-pole
machines. The usefulness of this concept stems from the fact that although each of
the stator phases sees a time-varying inductance due to the saliency of the rotor, the
transformed quantities rotate with the rotor and hence see constant magnetic paths.
Although not discussed here, additional saliency effects are present under transient
conditions, due to the different conducting paths in the rotor, rendering the concept
of this transformation all the more useful.

Similarly, this transformation is useful from the point of view of analyzing the
interaction of the rotor and stator flux- and mmf-waves, independent of whether or
not saliency effects are present. By transforming the stator quantities into equivalent
quantities which rotate in synchronism with the rotor, under steady-state conditions
these interactions become those of constant mmf- and flux-waves separated by a
constant spatial angle. This indeed is the point of view which corresponds to that of
an observer in the rotor reference frame.

The idea behind the transformation is an old one, stemming from the work of
Andre Blondel in France, and the technique is sometimes referred to as the Blondel
two-reaction method. Much of the development in the form used here was carried out

664
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Figure C.1 Idealized synchronous machine.

by R. E. Doherty, C. A. Nickle, R. H. Park, and their associates in the United States.
The transformation itself, known as the dq0 transformation, can be represented in a
straightforward fashion in terms of the electrical angle θme (equal to poles/2 times the
spatial angle θm) between the rotor direct axis and the stator phase-a axis, as defined
by Eq. 4.1 and shown in Fig. C.1.

Letting S represent a stator quantity to be transformed (current, voltage, or flux),
we can write the transformation in matrix form as⎡

⎣ Sd

Sq

S0

⎤
⎦= 2

3

⎡
⎣ cos (θme) cos (θme − 120◦) cos (θme + 120◦)

−sin(θme) −sin(θme − 120◦) −sin(θme + 120◦)
1
2

1
2

1
2

⎤
⎦

⎡
⎣ Sa

Sb

Sc

⎤
⎦ (C.1)

and the inverse transformation as⎡
⎣ Sa

Sb

Sc

⎤
⎦=

⎡
⎣ cos (θme) −sin(θme) 1

cos (θme − 120◦) −sin(θme − 120◦) 1
cos (θme + 120◦) −sin(θme + 120◦) 1

⎤
⎦

⎡
⎣ Sd

Sq

S0

⎤
⎦ (C.2)

Here the subscripts d and q represent the direct and quadrature axes, respectively.
A third component, the zero-sequence component, indicated by the subscript 0, is
also included. This component is required to yield a unique transformation of the
three stator-phase quantities; it corresponds to components of armature current which
produce no net air-gap flux and hence no net flux linking the rotor circuits. As can be
seen from Eq. C.1, under balanced-three-phase conditions, there are no zero-sequence
components. Only balanced-three-phase conditions are considered in this book, and
hence zero-sequence components are not discussed in any detail.

Note that the dq0 transformation applies to the instantaneous values of the quan-
tities to be transformed, not rms values. Thus when applying the formal instantaneous
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transformations as presented here, one must be careful to avoid the use of rms values
as are frequently used in phasor analyses such as are found in Chapter 5.

EXAMPLE C.1

A two-pole synchronous machine is carrying balanced three-phase armature currents

ia =
√

2Ia cos ωt ib =
√

2Ia cos (ωt − 120◦) ic =
√

2Ia cos (ωt + 120◦)

The rotor is rotating at synchronous speed ω, and the rotor direct axis is aligned with the stator
phase-a axis at time t = 0. Find the direct- and quadrature-axis current components.

■ Solution
The angle between the rotor direct axis and the stator phase-a axis can be expressed as

θme = ωt

From Eq. C.1

id = 2

3
[ia cos ωt + ib cos (ωt − 120◦) + ic cos (ωt + 120◦)]

= 2

3

√
2Ia[cos2 ωt + cos2 (ωt − 120◦) + cos2 (ωt + 120◦)]

Using the trigonometric identity cos2 α = 1
2
(1 + cos 2α) gives

id =
√

2Ia

Similarly,

iq = −2

3
[ia sin ωt + ib sin (ωt − 120◦) + ic sin (ωt + 120◦)]

= −2

3

√
2Ia[cos ωt sin ωt + cos (ωt − 120◦) sin (ωt − 120◦)

+ cos (ωt + 120◦) sin (ωt + 120◦)]

and using the trigonometric identity cos α sin α = 1
2

sin 2α gives

iq = 0

This result corresponds directly to our physical picture of the dq0 transformation. From
the discussion of Section 4.5 we recognize that the balanced three-phase currents applied to
this machine produce a synchronously rotating mmf wave which produces flux along the stator
phase-a axis at time t = 0. This flux wave is thus aligned with the rotor direct axis at t = 0
and remains so since the rotor is rotating at the same speed. Hence the stator current produces
only direct-axis flux and thus consists only of a direct-axis component.
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C.2 BASIC SYNCHRONOUS-MACHINE
RELATIONS IN dq0 VARIABLES

Equations 5.2 to 5.5 give the flux-linkage current relationships for a synchronous
machine consisting of a field winding and a three-phase stator winding. This simple
machine is sufficient to demonstrate the basic features of the machine representation
in dq0 variables; the effects of additional rotor circuits such as damper windings can
be introduced in a straightforward fashion.

The flux-linkage current relationships in terms of phase variables (Eqs. 5.2 to 5.5)
are repeated here for convenience⎡

⎢⎢⎣
λa

λb

λc

λf

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
Laa Lab Lac Laf

Lba Lbb Lbc Lbf

Lca Lcb Lcc Lcf

Lfa Lfb Lfc Lff

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ia

ib

ic

if

⎤
⎥⎥⎦ (C.3)

Unlike the analysis of Section 5.2, this analysis will include the effects of saliency,
which causes the stator self and mutual inductances to vary with rotor position.

For the purposes of this analysis the idealized synchronous machine of Fig. C.1 is
assumed to satisfy two conditions: (1) the air-gap permeance has a constant component
as well as a smaller component which varies cosinusoidally with twice the rotor angle
as measured (in electrical units) from the direct axis, and (2) the effects of space
harmonics in the air-gap flux can be ignored. Although these approximations may
appear somewhat restrictive, they form the basis of classical dq0 machine analysis
and give excellent results in a wide variety of applications. Essentially they involve
neglecting effects which result in time-harmonic stator voltages and currents and are
thus consistent with our previous assumptions neglecting harmonics produced by
discrete windings.

The various machine inductances can then be written in terms of the electrical
rotor angle θme (between the rotor direct axis and the stator phase-a axis), using the
notation of Section 5.2, as follows. For the stator self-inductances

Laa = Lal + Laa0 + Lg2 cos 2θme (C.4)

Lbb = Lal + Laa0 + Lg2 cos (2θme + 120◦) (C.5)

Lcc = Lal + Laa0 + Lg2 cos (2θme − 120◦) (C.6)

where Lal is the winding leakage inductance, Laa0 is the inductance corresponding
to the constant component of the air-gap permeance and Lg2 is the magnitude of the
inductance which corresponds to the component of air-gap permeance which varies
with rotor angle.

For the stator-to-stator mutual inductances

Lab = Lba = −1

2
Laa0 + Lg2 cos (2θme − 120◦) (C.7)

Lbc = Lcb = −1

2
Laa0 + Lg2 cos 2θme (C.8)
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Lac = Lca = −1

2
Laa0 + Lg2 cos (2θme + 120◦) (C.9)

For the field-winding self-inductance

Lff = L ff (C.10)

and for the stator-to-rotor mutual inductances

Laf = Lfa = Laf cos θme (C.11)

Lbf = Lfb = Laf cos (θme − 120◦) (C.12)

Lcf = Lfc = Laf cos (θme + 120◦) (C.13)

Comparison with Section 5.2 shows that the effects of saliency appear only in the
stator self- and mutual-inductance terms as an inductance term which varies with 2θme.
This twice-angle variation can be understood with reference to Fig. C.1, where it can
be seen that rotation of the rotor through 180◦ reproduces the original geometry of the
magnetic circuit. Notice that the self-inductance of each stator phase is a maximum
when the rotor direct axis is aligned with the axis of that phase and that the phase-
phase mutual inductance is maximum when the rotor direct axis is aligned midway
between the two phases. This is the expected result since the rotor direct axis is the
path of lowest reluctance (maximum permeance) for air-gap flux.

The flux-linkage expressions of Eq. C.3 become much simpler when they are
expressed in terms of dq0 variables. This can be done by application of the trans-
formation of Eq. C.1 to both the flux linkages and the currents of Eq. C.3. The
manipulations are somewhat laborious and are omitted here because they are simply
algebraic. The results are

λd = Ldid + Lafif (C.14)

λq = Lqiq (C.15)

λf = 3

2
Lafid + L ffif (C.16)

λ0 = L0i0 (C.17)

In these equations, new inductance terms appear:

Ld = Lal + 3

2
(Laa0 + Lg2) (C.18)

Lq = Lal + 3

2
(Laa0 − Lg2) (C.19)

L0 = Lal (C.20)

The quantities Ld and Lq are the direct-axis and quadrature-axis synchronous
inductances, respectively, corresponding directly to the direct- and quadrature-axis
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synchronous reactances discussed in Section 5.6 (i.e., Xd = ωeLd and Xq = ωeLq).
The inductance L0 is the zero-sequence inductance. Notice that the transformed flux-
linkage current relationships expressed in Eqs. C.14 to C.17 no longer contain in-
ductances which are functions of rotor position. This feature is responsible for the
usefulness of the dq0 transformation.

Transformation of the voltage equations

va = Raia + dλa

dt
(C.21)

vb = Raib + dλb

dt
(C.22)

vc = Raic + dλc

dt
(C.23)

vf = Rfif + dλf

dt
(C.24)

results in

vd = Raid + dλd

dt
− ωmeλq (C.25)

vq = Raiq + dλq

dt
+ ωmeλd (C.26)

vf = Rfif + dλf

dt
(C.27)

v0 = Rai0 + dλ0

dt
(C.28)

(algebraic details are again omitted), where ωme = dθme/dt is the rotor electrical
angular velocity.

In Eqs. C.25 and C.26 the terms ωmeλq and ωmeλd are speed-voltage terms which
come as a result of the fact that we have chosen to define our variables in a reference
frame rotating at the electrical angular velocity ωme. These speed voltage terms are
directly analogous to the speed-voltage terms found in the dc machine analysis of
Chapter 9. In a dc machine, the commutator/brush system performs the transformation
which transforms armature (rotor) voltages to the field-winding (stator) reference
frame.

We now have the basic relations for analysis of our simple synchronous ma-
chine. They consist of the flux-linkage current equations C.14 to C.17, the voltage
equations C.25 to C.28, and the transformation equations C.1 and C.2. When the
rotor electrical angular velocity ωme is constant, the differential equations are linear
with constant coefficients. In addition, the transformer terms dλd/dt and dλq/dt in
Eqs. C.25 and C.26 are often negligible with respect to the speed-voltage terms ωmeλq

and ωmeλd, providing further simplification. Omission of these terms corresponds to
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neglecting the harmonics and dc component in the transient solution for stator volt-
ages and currents. In any case, the transformed equations are generally much easier
to solve, both analytically and by computer simulation, than the equations expressed
directly in terms of phase variables.

In using these equations and the corresponding equations in the machinery liter-
ature, careful note should be made of the sign convention and units employed. Here
we have chosen the motor-reference convention for armature currents, with positive
armature current flowing into the machine terminals. Also, SI units (volts, amperes,
ohms, henrys, etc.) are used here; often in the literature one of several per-unit systems
is used to provide numerical simplifications.1

To complete the useful set of equations, expressions for power and torque are
needed. The instantaneous power into the three-phase stator is

ps = vaia + vbib + vcic (C.29)

Phase quantities can be eliminated from Eq. C.29 by using Eq. C.2 written for voltages
and currents. The result is

ps = 3

2
(vdid + vqiq + 2v0i0) (C.30)

The electromagnetic torque, Tmech, is readily obtained by using the techniques
of Chapter 3 as the power output corresponding to the speed voltages divided by the
shaft speed (in mechanical radians per second). From Eq. C.30 with the speed-voltage
terms from Eqs. C.25 and C.26, and by recognizing ωme as the rotor speed in electrical
radians per second, we get

Tmech = 3

2

(
poles

2

)
(λdiq − λqid) (C.31)

A word about sign conventions. When, as is the case in the derivation of this
appendix, the motor-reference convention for currents is chosen (i.e., the positive
reference direction for currents is into the machine), the torque of Eq. C.31 is the torque
acting to accelerate the rotor. Alternatively, if the generator-reference convention is
chosen, the torque of Eq. C.31 is the torque acting to decelerate the rotor. This result
is, in general, conformity with torque production from interacting magnetic fields
as expressed in Eq. 4.83. In Eq. C.31 we see the superposition of the interaction of
components: the direct-axis magnetic flux produces torque via its interaction with
the quadrature-axis mmf and the quadrature-axis magnetic flux produces torque via
its interaction with the direct-axis mmf. Note that, for both of these interactions,
the flux and interacting mmfs are 90 electrical degrees apart; hence the sine of the
interacting angle (see Eq. 4.83) is unity which in turns leads to the simple form of
Eq. C.31.

As a final cautionary note, the reader is again reminded that the currents, fluxes,
and voltages in Eqs. C.29 through Eq. C.31 are instantaneous values. Thus, the reader

1 See A. W. Rankin, “Per-Unit Impedances of Synchronous Machines,” Trans. AIEE 64:569–573,
839–841 (1945).
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is urged to avoid the use of rms values in these and the other transformation equations
found in this appendix.

C.3 BASIC INDUCTION-MACHINE RELATIONS
IN dq0 VARIABLES

In this derivation we will assume that the induction machine includes three-phase
windings on both the rotor and the stator and that there are no saliency effects. In this
case, the flux-linkage current relationships can be written as⎡

⎢⎢⎢⎢⎢⎢⎣

λa

λb

λc

λaR

λbR

λcR

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Laa Lab Lac LaaR LabR LacR

Lba Lbb Lbc LbaR LbbR LbcR

Lca Lcb Lcc LcaR LcbR LccR

LAa LaRb LaRc LaRaR LaRbR LaRC

LbRa LbRb LbRc LbRaR LbRbR LbRcR

LcRa LcRb LcRc LcRaR LcRbR LcRcR

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ia

ib

ic

iaR

ibR

icR

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.32)

where the subscripts (a, b, c) refer to stator quantities while the subscripts (aR, bR,
cR) refer to rotor quantities.

The various machine inductances can then be written in terms of the electrical
rotor angle θme (defined in this case as between the rotor phase-aR and the stator
phase-a axes), as follows. For the stator self-inductances

Laa = Lbb = Lcc = Laa0 + Lal (C.33)

where Laa0 is the air-gap component of the stator self-inductance and Lal is the leakage
component.

For the rotor self-inductances

LaRaR = LbRbR = LcRcR = LaRaR0 + LaRl (C.34)

where LaRaR0 is the air-gap component of the rotor self-inductance and LaRl is the
leakage component.

For the stator-to-stator mutual inductances

Lab = Lba = Lac = Lca = Lbc = Lcb = −1

2
Laa0 (C.35)

For the rotor-to-rotor mutual inductances

LaRbR = LbRaR = LaRcR = LcRaR = LbRcR = LcRbR = −1

2
LaRaR0 (C.36)

and for the stator-to-rotor mutual inductances

LaaR = LaRa = LbbR = LbRb = LccR = LcRc = LaaR cos θme (C.37)

LbaR = LaRb = LcbR = LbRc = LacR = LcRa = LaaR cos (θme − 120◦) (C.38)

LcaR = LaRc = LabR = LbRa = LbcR = LcRb = LaaR cos (θme + 120◦) (C.39)
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The corresponding voltage equations become

va = Raia + dλa

dt
(C.40)

vb = Raib + dλb

dt
(C.41)

vc = Raic + dλc

dt
(C.42)

vaR = 0 = RaRiaR + dλaR

dt
(C.43)

vbR = 0 = RaRibR + dλbR

dt
(C.44)

vcR = 0 = RaRicR + dλcR

dt
(C.45)

where the voltages vaR, vbR, and vcR are set equal to zero because the rotor windings
are shorted at their terminals.

In the case of a synchronous machine in which the stator flux wave and rotor
rotate in synchronism (at least in the steady state), the choice of reference frame for the
dq0 transformation is relatively obvious. Specifically, the most useful transformation
is to a reference frame fixed to the rotor.

The choice is not so obvious in the case of an induction machine. For example,
one might choose a reference frame fixed to the rotor and apply the transformation
of Eqs. C.1 and C.2 directly. If this is done, because the rotor of an induction motor
does not rotate at synchronous speed, the flux linkages seen in the rotor reference
frame will not be constant, and hence the time derivatives in the transformed voltage
equations will not be equal to zero. Correspondingly, the direct- and quadrature-axis
flux linkages, currents, and voltages will be found to be time-varying, with the result
that the transformation turns out to be of little practical value.

An alternative choice is to choose a reference frame rotating at the synchronous
angular velocity. In this case, both the stator and rotor quantities will have to be
transformed. In the case of the stator quantities, the rotor angle θme in Eqs. C.1 and
C.2 would be replaced by θS where

θS = ωet + θ0 (C.46)

is the angle between the axis of phase a and that of the synchronously rotating dq0
reference frame and θ0.

The transformation equations for the stator quantities then become⎡
⎣ Sd

Sq

S0

⎤
⎦ = 2

3

⎡
⎣ cos (θS) cos (θS − 120◦) cos (θS + 120◦)

−sin(θS) −sin(θS − 120◦) −sin(θS + 120◦)
1
2

1
2

1
2

⎤
⎦

⎡
⎣ Sa

Sb

Sc

⎤
⎦ (C.47)
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and the inverse transformation⎡
⎣ Sa

Sb

Sc

⎤
⎦ =

⎡
⎣ cos (θS) −sin(θS) 1

cos (θS − 120◦) −sin(θS − 120◦) 1
cos (θS + 120◦) −sin(θS + 120◦) 1

⎤
⎦

⎡
⎣ Sd

Sq

S0

⎤
⎦ (C.48)

Similarly, in the case of the rotor, θS would be replaced by θR where

θR = (ωe − ωme)t + θ0 (C.49)

is the angle between the axis of rotor phase aR and that of the synchronously rotating
dq0 reference frame and (ωe − ωme) is the electrical angular velocity of the syn-
chronously rotating reference frame as seen from the rotor frame.

The transformation equations for the rotor quantities then become⎡
⎣ SdR

SqR

S0R

⎤
⎦= 2

3

⎡
⎣ cos (θR) cos (θR − 120◦) cos (θR + 120◦)

−sin(θR) −sin(θR − 120◦) −sin(θR + 120◦)
1
2

1
2

1
2

⎤
⎦

⎡
⎣ SaR

SbR

ScR

⎤
⎦
(C.50)

and the inverse transformation⎡
⎣ SaR

SbR

ScR

⎤
⎦=

⎡
⎣ cos (θR) −sin(θR) 1

cos (θR − 120◦) −sin(θR − 120◦) 1
cos (θR + 120◦) −sin(θR + 120◦) 1

⎤
⎦

⎡
⎣ SdR

SqR

S0R

⎤
⎦ (C.51)

Using this set of transformations for the rotor and stator quantities, the trans-
formed flux-linkage current relationships become

λd = LSid + LmidR (C.52)

λq = LSiq + LmiqR (C.53)

λ0 = L0i0 (C.54)

for the stator and

λdR = Lmid + LRidR (C.55)

λqR = Lmiq + LRiqR (C.56)

λ0R = L0Ri0R (C.57)

for the rotor.
Here we have defined a set of new inductances

LS = 3

2
Laa0 + Lal (C.58)

Lm = 3

2
LaaR0 (C.59)

L0 = Lal (C.60)

LR = 3

2
LaRaR0 + LaRl (C.61)
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L0R = LaRl (C.62)

The transformed stator-voltage equations are

vd = Raid + dλd

dt
− ωeλq (C.63)

vq = Raiq + dλq

dt
+ ωeλd (C.64)

v0 = Rai0 + dλ0

dt
(C.65)

and those for the rotor are

0 = RaRidR + λdR

dt
− (ωe − ωme)λqR (C.66)

0 = RaRiqR + dλqR

dt
+ (ωe − ωme)λdR (C.67)

0 = RaRi0R + dλ0R

dt
(C.68)

Finally,using the techniques of Chapter 3, the torque can be expressed in a number
of equivalent ways including

Tmech = 3

2

(
poles

2

)
(λdiq − λqid) (C.69)

and

Tmech = 3

2

(
poles

2

)(
Lm

LR

)
(λdRiq − λqRid) (C.70)

C.4 APPENDIX C VARIABLES
λ Flux linkage [Wb]
θ Phase angle [rad]
θme Rotor angle in electrical units [rad]
θR, θS Angle to synchronously-rotating reference frame [rad]
ω, ωe Electrical frequency, rotor speed [rad/sec]
ωme Rotor angular velocity in electrical units [rad/sec]
i , I Current [A]
L , L Inductance [H]
Laa0 Inductance component corresponding to the

constant component of the air-gap permeance [H]
Lal Leakage inductance [H]
Lg2 Inductance component corresponding to the component of air-gap

permeance which varies with rotor angle [H]
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p Power [W]
poles Number of poles
R Resistance [�]
S Stator quantity
t Time
T Torque [N · m]
v Voltage [V]

Subscripts:

0 Zero sequence
a, b, c Phase designation
d Direct Axis
f Field winding
mech Mechanical
q Quadrature axis
R Rotor
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D A P P E N D I X

Engineering Aspects
of Practical Electric
Machine Performance
and Operation

In this book the basic essential features of electric machinery have been discussed;
this material forms the basis for understanding the behavior of electric machinery
of all types. In this appendix our objective is to introduce practical issues associated
with the engineering implementation of the machinery concepts which have been
developed. Issues common to all electric machine types such as losses, cooling, and
rating are discussed.

D.1 LOSSES
Consideration of machine losses is important for three reasons: (1) Losses determine
the efficiency of the machine and appreciably influence its operating cost; (2) losses
heat the machine and the corresponding temperature rise ultimately determines the
maximum power output that can be obtained without undue deterioration of the motor
insulation; and (3) the voltage drops or current components associated with supplying
the losses must be properly accounted for in a machine representation. Machine
efficiency, like that of transformers or any energy-transforming device, is given by

Efficiency = output

input
(D.1)

which can also be expressed as

Efficiency = input − losses

input
= 1 − losses

input
(D.2)

Efficiency = output

output + losses
(D.3)

676
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Rotating machines in general operate efficiently except at light loads. For example,
the full-load efficiency of average motors ranges from 80 to 90 percent for motors on
the order of 1 to 10 kW, 90 to 95 percent for motors up to a few hundred kW, and up
to a few percent higher for larger motors.

The forms given by Eqs. D.2 and D.3 are often used for electric machines, since
their efficiency is most commonly determined by measurement of losses instead of
by directly measuring the input and output under load. Efficiencies determined from
loss measurements can be used in comparing competing machines if exactly the same
methods of measurement and computation are used in each case. For this reason,
the various losses and the conditions for their measurement are precisely defined
by the American National Standards Institute (ANSI), the Institute of Electrical and
Electronics Engineers (IEEE), and the National Electrical Manufacturers Association
(NEMA). The following discussion summarizes some of the various commonly-
considered loss mechanisms.

Ohmic Losses Ohmic, or I 2 R losses, are found in all windings of a machine. By
convention, these losses are often computed on the basis of the dc resistances of the
winding at 75◦C although the calculation can typically be improved by measuring the
winding temperature at each specific operating point. In addition, the ac component
of the winding I 2 R loss, which determines the effective (ac) resistance of the winding
depends on the operating frequency and machine flux conditions. The increment in
loss represented by the difference between dc and effective resistances is included
with stray load losses, discussed below. In the field windings of synchronous and
dc machines, only the losses in the field winding are charged against the machine
efficiency; the losses in external sources supplying the excitation are charged against
the plant of which the machine is a part. Closely associated with I 2 R loss is the
brush-contact loss at slip rings and commutators. By convention, this loss is normally
neglected for induction and synchronous machines. For industrial-type dc machines
the voltage drop at the brushes is regarded as constant at 2 V total when carbon and
graphite brushes with shunts (pigtails) are used.

Mechanical Losses Mechanical losses consist of brush and bearing friction,
windage, and the power required to circulate air through the machine and venti-
lating system, if one is provided, whether by self-contained or external fans (except
for the power required to force air through long or restricted ducts external to the
machine). Friction and windage losses can be measured by determining the input to
the machine running at the proper speed but unloaded and unexcited. Frequently they
are lumped with core loss and determined at the same time.

Open-Circuit, or No-Load, Core Loss Open-circuit core loss consists of the hys-
teresis and eddy-current losses arising from the time-varying flux densities in the
iron of the machine with only the main exciting winding energized. In dc and syn-
chronous machines, these losses are confined largely to the armature iron, although
the flux variations arising from slot openings will cause losses in the field iron as well,
particularly in the pole shoes or surfaces of the field iron. In induction machines the
losses are confined largely to the stator iron. Open-circuit core loss can be found by
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measuring the input to the machine when it is operating unloaded at rated speed or
frequency and under the appropriate flux or voltage conditions, and then deducting
the friction and windage loss and, if the machine is self-driven during the test, the
no-load armature I 2 R loss (no-load stator I 2 R loss for an induction motor). Usually,
data are taken for a curve of core loss as a function of armature voltage in the neigh-
borhood of rated voltage. The core loss under load is then considered to be the value
at a voltage equal to rated voltage corrected for the armature resistance drop under
load (a phasor correction for an ac machine). For induction motors, however, this
correction is dispensed with, and the core loss at rated voltage is used. For efficiency
determination alone, there is no need to segregate open-circuit core loss and friction
and windage loss; the sum of these two losses is termed the no-load rotational loss.

Eddy-current loss varies with the square of the flux density, the frequency, and
the thickness of laminations. Under normal machine conditions it can be expressed
to a sufficiently close approximation as

Pe = Ke(Bmax f δ)2 (D.4)

where

δ = lamination thickness

Bmax = maximum flux density

f = frequency

Ke = proportionality constant

The value of Ke depends on the units used, volume of iron, and resistivity of the iron.
Variation of hysteresis loss can be expressed in equation form only on an empirical

basis. A commonly used relation is

Ph = Kh f Bn
max (D.5)

where Kh is a proportionality constant dependent on the characteristics and volume
of iron and the units used. The exponent n ranges from 1.5 to 2.5, a value of 2.0
often being used for estimating purposes in machines. In both Eqs. D.4 and D.5,
frequency can be replaced by speed and flux density by the appropriate voltage, with
the proportionality constants changed accordingly.

When the machine is loaded, the space distribution of flux density is significantly
changed by the mmf of the load currents. The actual core losses may increase no-
ticeably. For example, mmf harmonics cause appreciable losses in the iron near the
air-gap surfaces. The total increment in core loss is classified as part of the stray load
loss.

Stray Load Loss Stray load loss consists of the losses arising from nonuniform
current distribution in the copper and the additional core losses produced in the iron
by distortion of the magnetic flux by the load current. It is a difficult loss to determine
accurately. By convention it is taken as 1.0 percent of the output for dc machines.
For synchronous and induction machines, stray-load loss is typically determined by
various standard tests.
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D.2 RATING AND HEATING
The rating of electrical devices such as machines and transformers is often deter-
mined by mechanical and thermal considerations. For example, the maximum wind-
ing current is typically determined by the maximum operating temperature which
the insulation can withstand without damage or excessive loss of life. Similarly the
maximum speed of a motor or generator is typically determined by mechanical con-
siderations related to the structural integrity of the rotor or the performance of the
bearings. The temperature rise resulting from the losses considered in Section D.1 is
therefore a major factor in the rating of a machine.

The operating temperature of a machine is closely associated with its life ex-
pectancy because deterioration of the insulation is a function of both time and tem-
perature. Such deterioration is a chemical phenomenon involving slow oxidation and
brittle hardening leading to loss of mechanical durability and dielectric strength. In
many cases the deterioration rate is such that the life of the insulation can be repre-
sented as an exponential

Life = AeB/T (D.6)

where A and B are constants and T is the absolute operating temperature. Thus,
according to Eq. D.6, when life is plotted on a logarithmic scale against the reciprocal
of absolute temperature on a uniform scale, a straight line should result. Such plots
form valuable guides in the thermal evaluation of insulating materials and systems.
A very rough idea of the life-temperature relation can be obtained from the old and
more or less obsolete rule of thumb that the time to failure of organic insulation is
halved for each 8 to 10◦C rise.

The evaluation of insulating materials and insulation systems (which may include
widely different materials and techniques in combination) is to a large extent based
on accelerated life tests. Both normal life expectancy and service conditions will
vary widely for different classes of electric equipment. Life expectancy, for example,
may be a matter of minutes in some military and missile applications, may be 500
to 1000 h in certain aircraft and electronic equipment, and may range from 10 to
30 years or more in large industrial equipment. The test procedures will accordingly
vary with the type of equipment. Accelerated life tests on models, called motorettes,
are commonly used in insulation evaluation. Such tests, however, cannot be easily
applied to all equipment, especially the insulation systems of large machines.

Insulation life tests generally attempt to simulate service conditions. They usually
include the following elements:

■ Thermal shock resulting from heating to the test temperature.

■ Sustained heating at that temperature.

■ Thermal shock resulting from cooling to room temperature or below.

■ Vibration and mechanical stress such as may be encountered in actual service.

■ Exposure to moisture.

■ Dielectric testing to determine the condition of the insulation.



Umans-3930269 book December 14, 2012 12:36

680 APPENDIX D Engineering Aspects of Practical Electric Machine Performance and Operation

Enough samples must be tested to permit statistical methods to be applied in
analyzing the results. The life-temperature relations obtained from these tests lead to
the classification of the insulation or insulating system in the appropriate temperature
class.

For the allowable temperature limits of insulating systems used commercially, the
latest standards of ANSI, IEEE, and NEMA should be consulted. The three NEMA
insulation-system classes of chief interest for industrial machines are class B, class F,
and class H. Class B insulation includes mica, glass fiber, asbestos, and similar ma-
terials with suitable bonding substances. Class F insulation also includes mica, glass
fiber, and synthetic substances similar to those in class B, but the system must be capa-
ble of withstanding higher temperatures. Class H insulation, intended for still higher
temperatures, may consist of materials such as silicone elastomer and combinations
including mica, glass fiber, asbestos, and so on, with bonding substances such as
appropriate silicone resins. Experience and tests showing the material or system to be
capable of operation at the recommended temperature form the important classifying
criteria.

When the temperature class of the insulation is established, the permissible
observable temperature rises for the various parts of industrial-type machines can
be found by consulting the appropriate standards. Reasonably detailed distinctions
are made with respect to type of machine, method of temperature measurement,
machine part involved, whether the machine is enclosed, and the type of cool-
ing (air-cooled, fan-cooled, hydrogen-cooled, etc.). Distinctions are also made be-
tween general-purpose machines and definite- or special-purpose machines. The term
general-purpose motor refers to one of standard rating “up to 200 hp with standard
operating characteristics and mechanical construction for use under usual service
conditions without restriction to a particular application or type of application.” In
contrast a special-purpose motor is “designed with either operating characteristics or
mechanical construction, or both, for a particular application.” For the same class of
insulation, the permissible rise of temperature is lower for a general-purpose motor
than for a special-purpose motor, largely to allow a greater factor of safety where
service conditions are unknown. Partially compensating the lower rise, however, is
the fact that general-purpose motors are allowed a service factor of 1.15 when op-
erated at rated voltage; the service factor is a multiplier which, applied to the rated
output, indicates a permissible loading which may be carried continuously under the
conditions specified for that service factor.

Examples of allowable temperature rises can be seen from Table D.1. The table
applies to integral-horsepower induction motors, is based on 40◦C ambient temper-
ature, and assumes measurement of temperature rise by determining the increase of
winding resistances.

The most common machine rating is the continuous rating defining the output
(in kilowatts for dc generators, kilovoltamperes at a specified power factor for ac
generators, and horsepower or kilowatts for motors) which can be carried indefinitely
without exceeding established limitations. For intermittent, periodic, or varying duty,
a machine may be given a short-time rating defining the load which can be carried for
a specific time. Standard periods for short-time ratings are 5, 15, 30, and 60 minutes.
Speeds, voltages, and frequencies are also specified in machine ratings, and provision
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Table D.1 Table of allowable temperature rise, ◦C†.

Motor type Class B Class F Class H

1.15 service factor 90 115
1.00 service factor, encapsulated windings 85 110
Totally enclosed, fan-cooled 80 105 125
Totally enclosed, non-ventilated 85 110 130

†Excerpted from NEMA standards.

is made for possible variations in voltage and frequency. Motors, for example, must
operate successfully at voltages 10 percent above and below rated voltage and, for
ac motors, at frequencies 5 percent above and below rated frequency; the combined
variation of voltage and frequency may not exceed 10 percent. Other performance
conditions are so established that reasonable short-time overloads can be carried.
Thus, the user of a motor can expect to be able to apply for a short time an over-
load of, say, 25 percent at 90 percent of normal voltage with an ample margin of
safety.

The converse problem to the rating of machinery, that of choosing the size of
machine for a particular application, is a relatively simple one when the load require-
ments remain substantially constant. For many motor applications, however, the load
requirements vary more or less cyclically and over a wide range. The duty cycle of
a typical crane or hoist motor offers a good example. From the thermal viewpoint,
the average heating of the motor must be found by detailed study of the motor losses
during the various parts of the cycle. Account must be taken of changes in ventilation
with motor speed for open- and semi-closed motors. Judicious selection is based on
a large amount of experimental data and considerable experience with the motors in-
volved. For estimating the required size of motors operating at substantially constant
speeds, it is sometimes assumed that the heating of the insulation varies as the square
of the load, an assumption which obviously over-emphasizes the role of armature
I 2 R loss at the expense of the core loss. The rms ordinate of the power-time curve
representing the duty cycle is obtained by the same technique used to find the rms
value of periodically varying currents, and a motor rating is chosen on the basis of
the result; i.e.,

rms kW =
√

(kW)2 × time

running time + (standstill time/k)
(D.7)

where the constant k accounts for the poorer ventilation at standstill and equals
approximately 4 for an open motor. The time for a complete cycle must be short
compared with the time for the motor to reach a steady temperature.

Although crude, the rms-kW method is used fairly often. The necessity for
rounding the result to a commercially available motor size1 obviates the need

1 Commercially available motors are generally found in standard sizes as defined by NEMA. NEMA
Standards on Motors and Generators specify motor rating as well as the type and dimensions of the
motor frame.
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for precise computations. Special consideration must be given to motors that are
frequently started or reversed, for such operations are thermally equivalent to heavy
overloads. Consideration must also be given to duty cycles having such high torque
peaks that motors with continuous ratings chosen on purely thermal bases would be
unable to furnish the torques required. It is to such duty cycles that special-purpose
motors with short-time ratings are often applied. Short-time-rated motors in general
have better torque-producing capability than motors rated to produce the same power
output continuously, although, of course, they have a lower thermal capacity. Both
these properties follow from the fact that a short-time-rated motor is designed for
high flux densities in the iron and high current densities in the copper. In general, the
ratio of torque capacity to thermal capacity increases as the period of the short-time
rating decreases. Higher temperature rises are allowed in short-time-rated motors than
for general-purpose motors. A motor with a 150-kW, 1-hr, 50◦C rating, for example,
may have the torque ability of a 200-kW continuously rated motor; it will be able
to carry only about 0.8 times its rated output, or 120 kW continuously, however. In
many cases it will be the economical solution for a drive requiring a continuous ther-
mal capacity of 120 kW but having torque peaks which require the capability of a
200-kW continuously rated motor.

D.3 COOLING MEANS FOR ELECTRIC
MACHINES

The cooling problem in electric apparatus in general increases in difficulty with in-
creasing size. The surface area from which the heat must be carried away increases
roughly as the square of the dimensions, whereas the heat developed by the losses
is roughly proportional to the volume and therefore increases approximately as the
cube of the dimensions. This problem is a particularly serious one in large turbine
generators, where economy, mechanical requirements, shipping, and erection all de-
mand compactness, especially for the rotor forging. Even in moderate size machines,
for example, above a few thousand kVA for generators, a closed ventilating system
is commonly used. Rather elaborate systems of cooling ducts must be provided to
ensure that the cooling medium will effectively remove the heat arising from the
losses.

For turbine generators, hydrogen is commonly used as the cooling medium in
the totally enclosed ventilating system. Hydrogen has the following properties which
make it well suited to the purpose:

■ Its density is only about 0.07 times that of air at the same temperature and
pressure, and therefore windage and ventilating losses are much less.

■ Its specific heat on an equal-weight basis is about 14.5 times that of air. This
means that, for the same temperature and pressure, hydrogen and air are about
equally effective in their heat-storing capacity per unit volume, but the heat
transfer by forced convection between the hot parts of the machine and the
cooling gas is considerably greater with hydrogen than with air.
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■ The life of the insulation is increased and maintenance expenses decreased
because of the absence of dirt, moisture, and oxygen.

■ The fire hazard is minimized. A hydrogen-air mixture will not explode if the
hydrogen content is above about 70 percent.

The result of the first two properties is that for the same operating conditions the heat
which must be dissipated is reduced and at the same time the ease with which it can
be carried off is increased.

The machine and its water-cooled heat exchanger for cooling the hydrogen must
be sealed in a gas-tight envelope. The crux of the problem is in sealing the bearings.
The system is maintained at a slight pressure (at least 0.5 psi) above atmospheric so that
gas leakage is outward and an explosive mixture cannot accumulate in the machine.
At this pressure, the rating of the machine can be increased by about 30 percent above
its aircooled rating, and the full-load efficiency increased by about 0.5 percent. The
trend is toward the use of higher pressures (15 to 60 psi). Increasing the hydrogen
pressure from 0.5 to 15 psi increases the output for the same temperature rise by about
15 percent; a further increase to 30 psi provides about an additional 10 percent.

An important step which has made it possible almost to double the output of
a hydrogen-cooled turbine-generator of given physical size is the development of
conductor cooling, also called inner cooling. Here the coolant (liquid or gas) is forced
through hollow ducts inside the conductor or conductor strands. Examples of such
conductors can be seen in Fig. D.1. Thus, the thermal barrier presented by the electric
insulation is largely circumvented, and the conductor losses can be absorbed directly
by the coolant. Hydrogen is usually the cooling medium for the rotor conductors.
Either gas or liquid cooling may be used for the stator conductors. Hydrogen is the
coolant in the former case, and transit oil or water is commonly used in the latter. A
large hydroelectric generator in which both stator and rotor are water-cooled is shown
in Figs. 4.2 and 4.9.

(a) (b) (c)

Figure D.1 Cross sections of bars for two-layer stator windings of turbine-generators.
Insulation system consists of synthetic resin with vacuum impregnation. (a) Indirectly
cooled bar with tubular strands; (b) water-cooled bars, two-wire-wide mixed strands,
(c) water-cooled bars, four-wire-wide mixed strands.
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D.4 EXCITATION
The resultant flux in the magnetic circuit of a machine is established by the combined
mmf of all the windings on the machine. For the conventional dc machine, the bulk
of the effective mmf is furnished by the field windings. For the transformer, the
net excitation may be furnished by either the primary or the secondary winding,
or a portion may be furnished by each. A similar situation exists in ac machines.
Furnishing excitation to ac machines has two different operational aspects which are
of economic importance in the application of the machines.

D.4.1 Power Factor in AC Machines

The power factor at which ac machines operate is an economically important feature
because of the cost of reactive kilovoltamperes. Low power factor adversely affects
system operation in three principal ways. (1) Generators, transformers, and transmis-
sion equipment are rated in terms of kVA rather than kW because their losses and
heating are very nearly determined by voltage and current regardless of power factor.
The physical size and cost of ac apparatus are roughly proportional to kVA rating. The
investment in generators, transformers, and transmission equipment for supplying a
given useful amount of active power therefore is roughly inversely proportional to
the power factor. (2) Low power factor means more current and greater I 2 R losses in
the generating and transmitting equipment. (3) A further disadvantage is poor voltage
regulation.

Factors influencing reactive-kVA requirements in motors can be visualized read-
ily in terms of the relationship of these requirements to the establishment of magnetic
flux. As in any electromagnetic device, the resultant flux necessary for motor operation
must be established by a magnetizing component of current. It makes no difference
either in the magnetic circuit or in the fundamental energy conversion process whether
this magnetizing current be carried by the rotor or stator winding, just as it makes
no basic difference in a transformer which winding carries the exciting current. In
some cases, part of it is supplied from each winding. If all or part of the magnetizing
current is supplied by an ac winding, the input to that winding must include lagging
reactive kVA, because magnetizing current lags voltage drop by 90◦. In effect, the
lagging reactive kVA sets up flux in the motor.

The only possible source of excitation in an induction motor is the stator input.
The induction motor therefore must operate at a lagging power factor. This power
factor is very low at no load and increases to about 85 to 90 percent or more at full
load, the improvement being caused by the increased real-power requirements with
increasing load.

With a synchronous motor, there are two possible sources of excitation: alternat-
ing current in the armature or direct current in the field winding. If the field current
is just sufficient to supply the necessary mmf, no magnetizing-current component or
reactive kVA is needed in the armature and the motor operates at unity power factor.
If the field current is less, i.e., the motor is underexcited, the deficit in mmf must be
made up by the armature and the motor operates at a lagging power factor. If the field
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current is greater, i.e., the motor is over-excited, the excess mmf must be counterbal-
anced in the armature and a leading component of current is present; the motor then
operates at a leading power factor.

Because magnetizing current must be supplied to inductive loads such as trans-
formers and induction motors, the ability of over-excited synchronous motors to
supply lagging current is a highly desirable feature which may have considerable
economic importance. In effect, over-excited synchronous motors act as generators
of lagging reactive kilovoltamperes and thereby relieve the power source of the ne-
cessity for supplying this component. They thus may perform the same function as a
local capacitor installation. Sometimes unloaded synchronous machines are installed
in power systems solely for power-factor correction or for control of reactive-kVA
flow. Such machines, called synchronous condensers, may be more economical in the
larger sizes than static capacitors.

Both synchronous and induction machines may become self-excited when a suf-
ficiently heavy capacitive load is present in their stator circuits. The capacitive current
then furnishes the excitation and may cause serious overvoltage or excessive transient
torques. Because of the inherent capacitance of transmission lines, the problem may
arise when synchronous generators are energizing long unloaded or lightly loaded
lines. The use of shunt reactors at the sending end of the line to compensate the ca-
pacitive current is sometimes necessary. For induction motors, it is normal practice
to avoid self-excitation by limiting the size of any parallel capacitor when the motor
and capacitor are switched as a unit.

D.4.2 Turbine-Generator Excitation Systems

As the available ratings of turbine-generators have increased, the problems of sup-
plying the dc field excitation (amounting to 4000 A or more in the larger units) have
grown progressively more difficult. A common excitation source is a shaft-driven
dc generator whose output is supplied to the alternator field through brushes and
slip rings. Alternatively, excitation may be supplied from a shaft-driven alternator
of conventional design as the main exciter. This alternator has a stationary armature
and a rotating-field winding. Its frequency may be 180 or 240 Hz. Its output is fed
to a stationary solid-state rectifier, which in turn supplies the turbine-generator field
through slip rings.

Cooling and maintenance problems are inevitably associated with slip rings,
commutators, and brushes. Many modern excitation systems have minimized these
problems by minimizing the use of sliding contacts and brushes. As a result, some
excitation systems employ shaft-driven ac alternators whose field windings are sta-
tionary and whose ac windings rotate. By the use of rotating rectifiers, dc excitation
can be applied directly to the generator field winding without the use of slip rings.

Excitation systems of the latest design are being built without any sort of rotating
exciter-alternator. In these systems, the excitation power is obtained from a special
auxiliary transformer fed from the local power system. Alternatively it may be ob-
tained directly from the main generator terminals; in one system a special armature
winding is included in the main generator to supply the excitation power. In each of
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these systems the power is rectified using phase-controlled silicon-controlled recti-
fiers (SCRs). These types of excitation system, which have been made possible by
the development of reliable, high-power SCRs, are relatively simple in design and
provide the fast response characteristics required in many modern applications.

D.5 ENERGY EFFICIENCY OF ELECTRIC
MACHINERY

With increasing concern for both the supply and cost of energy comes a corresponding
concern for efficiency in its use. Although electric energy can be converted to me-
chanical energy with great efficiency, achieving maximum efficiency requires both
careful design of the electric machinery and proper matching of machine and intended
application.

Clearly, one means to maximize the efficiency of an electric machine is to min-
imize its internal losses, such as those described in Section D.1. For example, the
winding I 2 R losses can be reduced by increasing the slot area so that more copper
can be used, thus increasing the cross-sectional area of the windings and reducing the
resistance.

Core loss can be reduced by decreasing the magnetic flux density in the iron of
the machine. This can be done by increasing the volume of iron, but although the loss
goes down in terms of watts per pound, the total volume of material (and hence the
mass) is increased; depending on how the machine design is changed, there may be
a point beyond which the losses actually begin to increase. Similarly, for a given flux
density, eddy-current losses can be reduced by using thinner iron laminations.

One can see that there are trade-offs involved here; machines of more efficient
design generally require more material and thus are bigger and more costly. Users
will generally choose the “lowest-cost” solution to a particular requirement; if the
increased capital cost of a high-efficiency motor can be expected to be offset by
energy savings over the expected lifetime of the machine, they may select the high-
efficiency machine, more costly machine. If not, users are very unlikely to select this
option in spite of the increased efficiency.

Similarly, some types of electric machines are inherently more efficient than
others. For example, single-phase capacitor-start induction motors (Section 9.2) are
relatively inexpensive and highly reliable, finding use in all sorts of small appliances,
e.g., refrigerators, air conditioners, and fans. Yet they are inherently less efficient than
their three-phase counterparts. Modifications such as a capacitor-run feature can lead
to greater efficiency in the single-phase induction motor, but they are expensive and
often not economically justifiable.

To optimize the efficient use of electric machinery the machine must be properly
matched to the application, both in terms of size and performance. Since typical
induction motors tend to draw nearly constant reactive power, independent of load,
and since this causes resistive losses in the supply lines, it is wise to pick the smallest-
rating induction motor which can properly satisfy the requirements of a specific
application. Alternatively, capacitative power-factor correction may be used. Proper
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application of modern solid-state control technology can also play an important role
in optimizing both performance and efficiency.

There are, of course, practical limitations which affect the selection of the motor
for any particular application. Chief among them is that motors are generally avail-
able only in certain standard sizes. For example, a typical manufacturer might make
fractional-horsepower ac motors rated at 1

8 , 1
6 , 1

4 , 1
3 , 1

2 , 3
4 , and 1 hp (NEMA standard

ratings). This discrete selection thus limits the ability to fine-tune a particular appli-
cation; if the need is 0.8 hp, the user will undoubtedly end up buying a 1-hp device
and settling for a somewhat lower than optimum efficiency. A custom-designed and
manufactured 0.8-hp motor can be economically justified only if it is needed in large
quantities.

It should be pointed out that an extremely common source of inefficiency in
electric motor applications is the mismatch of the motor to its application. Even the
most efficient 50-kW motors will be somewhat inefficient when driving a 20-kW load.
Yet mismatches of this type often occur in practice, due in great extent to the difficulty
in characterizing operating loads and a tendency on the part of application engineers
to be conservative to make sure that the system in question is guaranteed to operate
in the face of design uncertainties. More careful attention to this issue can go a long
way toward increasing the efficiency of energy use in electric machine applications.
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Table of Constants and
Conversion Factors for
SI Units

CONSTANTS
Permeability of free space μ0 = 4π × 10−7 H/m
Permittivity of free space ε0 = 8.854 × 10−12 F/m

CONVERSION FACTORS
Length 1 m = 3.281 ft = 39.37 in
Mass 1 kg = 0.0685 slug = 2.205 lb (mass) = 35.27 oz
Force 1 N = 0.225 lbf = 7.23 poundals
Torque 1 N · m = 0.738 lbf·ft = 141.6 oz·in
Pressure 1 Pa (N/m2) = 1.45 × 10−4 lbf/in2 = 9.86 × 10−6 atm
Energy 1 J (W·sec) = 9.48 × 10−4 BTU = 0.239 calories
Power 1 W = 1.341 ×10−3 hp = 3.412 BTU/hr
Moment of inertia 1 kg·m2 = 0.738 slug·ft2 = 23.7 lb·ft2 = 141.6 oz·in·sec2

Magnetic flux 1 Wb = 104 kilolines
Magnetic flux density 1 T (Wb/m2) = l0,000 gauss = 64.5 kilolines/in2

Magnetizing force 1 A·turn/m = 0.0254 A·turn/in = 0.0126 oersted

688
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A
ac excitation, 22–29
ac excitation characteristics, of core

materials, 23–24
ac exciters, 263
ac hysteresis loop, 23, 24
ac machines, 193–200, 204–208,

223–227
armature winding, 190
categories of, 193
permanent-magnet, 319–329
power factor in, 684–685
rotating mmf waves in, 216–222
stator end windings of, 249
variable-speed performance as well as

torque control from, 553
ac stator, on the moving vehicle, 241
ac voltages, produced in the

armature-winding coils, 227
ac-to-dc resistance, ratio of, 284
Actual line-neutral load voltage,

calculating, 94
Actual transformer, 74, 77
Actuator, 159, 174–175
Adjustable-speed ac motors, 597
AFNL (Amperes Field No Load), 279
AFSC (Amperes Field Short

Circuit), 280
Air gap

energy storage in, 130
magnetic field radially directed, 212

Air-gap coenergy density, 145
Air-gap configuration, 132
Air-gap fields, 203, 237
Air-gap flux, 10–11, 227
Air-gap flux density, 194, 210,

243, 660
Air-gap flux wave, 225, 277, 347
Air-gap fringing fields, 8
Air-gap inductances, 660–662
Air-gap length, 5, 245
Air-gap line, 245, 275, 278, 407
Air-gap magnetic field, 213, 214
Air-gap mmf

for a concentrated full-pitch
winding, 213

depending only on winding
arrangement and symmetry of
magnetic structure, 210

distribution of, 203
of a multi-pole rotor winding, 207
produced by current, 203
of a single-phase winding resolved

into rotating traveling waves, 217
Air-gap mmf distribution, 204, 212
Air-gap mmf wave, 204, 220, 511
Air-gap mmfs, for phases, 219
Air-gap mutual inductance, 268
Air-gap non-uniformities, effects of, 245
Air-gap radial flux density, 194
Air-gap radial flux distribution, 254
Air-gap reluctance, 22
Air-gap space-harmonic fluxes, 247–248
Air-gap voltage, 271, 303, 304
Air-gap volume, reducing, 33
Allowable operating region, for a

synchronous generator, 294
Alnico, Curie temperature of, 43
Alnico 5, 29, 30, 35, 36
Alnico 8, 35, 36
American National Standards Institute

(ANSI), 677
American Society for Testing and

Materials (ASTM), 20
Amortisseur winding, 331, 576
Amperes, 5, 124
Ampere’s Law, 2
Amplitude, 243
Analytical fundamentals, electric-circuit

aspects, 413–417
Analytical techniques, 165–171
Analytical tools, for studying rotating

machines, 250
Angular resolution, of a VRM, 495
Angular velocity, of the stator flux

wave, 473
Apparent coercivity, 41
Apparent inductance, 269
Apparent power per phase, 642
Applied armature voltage, 599
Approximate allowable power, 561
Approximate allowable torque, 561

Approximate transformer equivalent
circuits, 79

Armature
effective resistance of, 283
mmf waves, 657–660
transferring through the brush contact,

442
of a two-pole dc machine, 209

Armature current, 555
calculating, 592, 593
expressed in per unit, 283
as a function of motor speed, 425
limited by motor cooling capability,

555
per-unit, 303
resolving into two components, 307,

309, 311
rms amplitude of, 580
serving two functions, 324
on short circuit, 281

Armature emf, 406
Armature flux linkages, 610
Armature heating, 295
Armature I2R loss, 681
Armature inductance, 443
Armature leakage reactance, 273
Armature mmf, 417–420
Armature mmf wave, backward-rotating

component of inducing currents and
loses in the rotor structure, 250

Armature phase-to-phase mutual
inductances, 268

Armature reaction, 427–428
Armature resistance, 273, 274, 284, 578
Armature terminals, 274, 569
Armature voltage, amplitude of, 573
Armature winding, 190

with addition of commutator, brushes,
and connections, 411, 412

alternating voltage, 227
coil connections, 209
of a dc machine, 200
effect of the slots containing, 227
heating, 294
mmf, 250
of a synchronous machine, 194

689
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Armature-circuit resistance control,
557–558

Armature-current control, 568–569
Armature-current input, 409
Armature-frequency control, 599–605
Armature-mmf wave, 403, 417
Armature-reaction effects, ignored,

420–426
Armature-resistance voltage drop,

269, 273
Armature-terminal voltage control,

558–568
Asymmetric rotor, VRM with, 470
Asynchronous machines, induction

machines as, 199
Asynchronous torque, 347
Audio-frequency signal, 185
Automatic voltage regulator (AVR), 290
Autotransformers, 87–90, 388
Auxiliary winding, 514
Average coenergy density, 237
Average output power, per phase of the

VRM, 490
Average phase current, controlled, 618
Average power, of each phase, 640
Average torque, 475, 487
Average winding current, 617
Axes, of easy magnetization, 19

B
Backward field, inducing rotor

currents, 522
Backward-field impedance, 525, 527
Backward-rotating flux wave, 235
Balanced (triangle) connection, replacing

by a balanced Y connection, 647
Balanced circuits, general comutational

scheme for, 647
Balanced steady state, analytical

treatment of ac voltages and mmfs
in, 651

Balanced three-phase system, 637, 638
Base current

of a motor, 582
for three-phase systems, 106

Base speed
defining, 560
of permanent-magnet motors, 320
range above and below, 561

Base to base, equations for conversion
from, 106

Base values, 101, 105
Base-inductance impedance, 582

B-H characteristic, 37
B-H curve, 20
B-H trajectory, 36–37
Bifilar phase windings, 617
Bifilar winding, in VRM drives, 472, 618
Blacked-rotor resistance,

calculating, 374
Blocked-rotor conditions, equivalent

circuit for, 373
Blocked-rotor reactance, 374, 375, 378
Blocked-rotor test, 372–380
Blondel, Andre, 664
Blondel two-reaction method, 664
Boundary film, 442
Breadth factor, of the winding, 655
Breakdown torque, 348, 363
Bridges, design of, 326
Brush-contact loss, at slip rings and

commutators, 677
Brushes

in contact with commutator
segments, 411

cooling and maintenance problems
associated with, 686

on synchronous machines, 194
waveform of voltage between, 202

Brushless dc motors, 329
Brushless excitation systems, 194, 263
Brushless motors, 329, 331
Brushless-dc motors, 331
Burden, on a transformer, 96, 97

C
Cantilever circuits, 79
Cantilever equivalent circuit, 80, 83, 85
Capability curves, 294, 295
Capacitor, 183, 516
Capacitor motors, modeling, 538
Capacitor-start motor, 515, 516
Capacitor-type motors, 515–517
Castleated hybrid stepping motor, 505
Castleated VRM, 473
Castleation, 474, 495, 502
C-core inductor, 49, 179–180
Ceramic 7, 35–36, 41
Ceramic magnets, temperature effects, 42
Ceramic permanent-magnet materials, 35
Chamfered or eccentric pole face, 419
Charge density, 123
Chopping, required, 503
Classes, of insulation, 680
Closed magnetic circuit, 68
Coenergy

calculating, 153, 154
changing in a singly-excited

device, 144
defined, 139
densities, 143, 237
expressions for, 152
finding, 149, 156
function, 149
for linear magnetic systems, 140
in terms of current and angular

displacement, 140
in terms of shaft angle, 231
writing, 234

Coercivity, 29, 32
Cogging torque, 439, 519
Coil inductance, 443
Coil sides, allocation of in slots, 653
Coil voltage, 196, 444
Coil voltage phasors, 655
Coils, 185, 411
Coil-wound rotor, flux-mmf situation,

348, 349
Collector rings, 194
Commutated coils, 442
Commutating poles, 443
Commutation, attainment of good, 442
Commutator action, 411–413
Commutators, 201, 228, 686
Compensating or pole-face winding, 445
Compensating windings, 444–446
Complex number, 285, 293
Complex quantity, real part of, 270
Compound generators, 408, 409
Compound machine, 446
Compound motor, 410
Compounding curves, 297
Computer-based numerical-integration

techniques, 166
Concentrated windings, 196
Conductor cooling, 683
Conductors, in armature slots, 211
Conservation of energy, 126
Conservative system, 130
Constant apparent power, 295
Constant dc-link current, produced by a

diode rectifier, 568
Constant flux operation, 573, 574
Constant material permeability, 6
Constant radial magnetic field, 185
Constant torque, 250
Constant voltage, variable frequency

operation, 573
Constant-amplitude magnetic flux, 267
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Constant-frequency power transformer
analyses, 79

Constant-power drive, 555
Constant-power regime, 574
Constants, 688
Constant-torque characteristic, 561
Constant-torque drive, 557
Constant-torque regime, 574
Constant-volts-per-hertz (constant V/Hz)

operation, 574
Continuous energy-conversion

equipment, 122
Continuous rating, most common

machine rating, 680
Control, of synchronous motors, 576
Controller, in a VRM, 615
Conversion devices, 122
Conversion factors, 688
Cooling problem, 682
Core, heating of, 25
Core flux, 67–68, 109
Core loss, 69

component, 68, 69, 76
corresponding to flux at no load, 276
density, 26, 27, 29
determining, 371
under load, 303, 678
reducing, 686
resistance, 76, 352, 371

Core-type construction, 65
Core-type transformers, 64
Cosines, law of, 323
Coulombs, 123
Counter emf, 109, 351, 522
Coupled-circuit viewpoint, 229–235
Critical field resistance, 430
Cross-magnetizing armature reaction,

418, 419
Cumulative series-field connection, 420
Cumulatively compounded motor, 410
Curie temperature, 43
Current, equations for, 169
Current density, 2, 123
Current distribution, nonuniform, 384
Current transformers (CTs), 96, 99–101
Current waveforms, for torque

production, 474–487
Cutting-of-flux equation, 225, 226
Cylindrical iron-clad solenoid actuators,

177–178
Cylindrical rotors, 196, 197
Cylindrically symmetric shaker system,

178–179

Cylindrical-rotor theory, 292

D
Damper, 162
Damper winding, 331, 576
D-axis current, 323
dc armature voltage, 403
dc current

on the rotor producing a flux
wave, 330

switching to create a variable dc, 568
dc generators, 201, 408, 448
dc machines, 200–202, 208–212,

227–228, 403–448
application advantages of, 410
armature winding, 190
armature windings of, 253
brushes and commutator of, 579
with commutator, 201
connection with a series-connected

field winding, 446
electric-circuit aspects, 413–417
essential features of, 403–404
expressing voltage in terms of

mechanical speed, 228
field winding on, 191
field-circuit connections of, 407
magnetic structure with more than two

poles, 211
magnetic-circuit aspects, 420–428
magnetization curves of, 406
outstanding advantages of, 407
rotor, 190, 191
schematic representations of, 404
space distribution of air-gap flux

density in, 202
dc magnetization characteristics, 180
dc magnetization curve, 21, 41, 155, 156
dc motors

analogy with, 608
control of, 554–572
dynamic equation governing the speed

of, 570
equivalent circuit for a separately

excited, 554
regulating speed of a separately

excited or shunt-connected, 562
speed-control system, 569
speed-torque characteristic, 409
speed-torque characteristics of, 409
types of, 448

dc power, required for excitation, 262
dc resistance, of the armature, 284

dc resistance loss, 283
Delay time, associated with current build

up, 477
Delayed commutation, 443
Demagnetization, 37–38, 436
Demagnetizing effect, of armature

reaction, 418, 427
Design classes, of squirrel-cage motors,

386–388
Device parameters, in per unit on the

device base, 102–103
Differential connection, 410, 420
Differential energy function, 147
Digital control systems, stepping motor

used in, 495
Digital electronics, stepping motors as

electromechanical companions
to, 504

Diodes, 616
Dipole nature, of a magnetic field, 203
Direct axis, 306, 403

air-gap flux, 406
components, 313, 606, 664
flux, 325
flux-current relationship, 587
magnetizing reactances, 308
mmf, 421
permeance, 407
quantities, 307, 577
synchronous inductance, 668
synchronous reactances, 308
variables, 664–666

Direct torque control, to an ac machine,
577

Displacement-current term, in Maxwell’s
equations, 2

Distributed fractional-pitch windings,
652–654, 658–660

Distributed multi-pole winding, 205
Distributed two-pole, three-phase

winding
with full-pitch coils, 204, 205
with voltage phasor diagram, 652

Distributed windings, 204
air-gap inductances of, 660–662
mmf of, 202–212
performance of a machine with, 223
producing sinusoidal mmf waves

centered on magnetic axes, 218
on the rotor, 208

Distribution transformers, 65, 90–91, 102
Diverter resistance, 432
Doherty, R. E., 665
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Domain magnetic moments, aligning, 19
Domains, of ferromagnetic materials, 19
Dominating air gap, 14
Double salient VRM, 463–464
Double-layer windings, 652
Double-revolving-field concept, 521
Double-squirrel-cage rotor bars, 385
Double-stator-frequency torque

pulsations, 513, 515
Doubly salient design, 469
Doubly salient machine, 469
Doubly salient structure, 469
Doubly salient VRM, 461, 462, 464
dq0 machine analysis, basis of classical,

667
dq0 transformation, 664–674

applying to instantaneous values of
quantities, 665–666

physical picture of, 666
reference frame for a synchronous

machine, 672
dq0 variables, 671
Duty cycle, obtaining, 681
Dynamic equations, 161–165

E
Eddy currents, 26, 192
Eddy-current losses, 677, 678
Effective inductance, 268
Effective permeability, 19
Effective resistance, of the armature, 283
Effective series turns per phase, for the

fundamental mmf, 206
Effective turns ratio, of the

autotransformer, 90
Efficiency, 304, 359, 543
Electric circuit, 7
Electric field intensity, 11
Electric fields, resulting in included

currents, 26
Electric machines, 212

cooling means for, 682–683, 684
performance and operation,

676–687
Electrical degrees, expressing angles

in, 195
Electrical devices, rating of, 679–682
Electrical frequency, 196–197, 357
Electrical input power, 128
Electrical radians, expressing angles

in, 195
Electrical space-phase angle, between

the rotor and stator mmf waves, 238

Electrical steel, 13. See also M-5
electrical steel

measuring magnetic characteristics
of, 58

reluctance of, 407
smooth-air-gap machine constructed

from, 237
Electrical terminals, systems with more

than two, 150
Electromagnet, lifting an iron slab, 177
Electromagnetic energy

conversion, 190
Electromagnetic power, 413–414, 415,

435, 441
Electromagnetic relay, schematic of, 129
Electromagnetic torque, 555, 577, 670

computing, 415
of a dc machine, 413
of a dc motor proportional to armature

current, 568
determined from the coenergy,

463–464
expressing, 404–405
of the forward field, 523
for permanent-magnet dc motors, 567

Electromechanical energy conversion,
122, 127

Electromechanical power, 355, 356
Electromechanical system

dynamic equations of motion of,
163–165

model of a simple, 161–162
Electromechanical torque

accelerating the rotor, 231–232
balancing mechanical torque, 264
balancing shaft torque, 264
counteracting, 362
expression for, 238
finding from coenergy, 231
as a function of slip, 361
maximum, 363
in a motor, 198
opposing rotation, 264
variations in, 264
for wound-rotor induction motor, 367

Electromechanical-energy-conversion
devices, 1, 129
principles, 122–172
process, 122

Electromotive force (emf), 11, 225. See
also speed voltage

equations for a transformer, 226
relation with armature, 409

Electronic sensors, determining shaft
position, 265

Electrostatic voltmeter, in schematic
form, 183–184

Elementary two-pole, three-phase
generator, 635, 636

Emf (electromotive force), 11, 225. See
also speed voltage

equations for a transformer, 226
relation with armature, 409

End effects, of linear machines, 244
End-turn fluxes, 249
End-turn leakage, 236
Energy

calculating, 153
changing in a singly-excited device,

144
conversion into heat, 127
densities, 143
expressions for, 152
magnetic force and torque from,

133–139
in singly excited magnetic-field

systems, 129–133
Energy conversion devices, 171
Energy efficiency, of electric machinery,

686–687
Energy input, to the magnetic core, 26
Energy method, 126, 128
Energy-conversion devices, 161
Energy-conversion systems, 129
Equilibrium displacement, 169, 170
Equilibrium point, 168
Equivalent circuits, 269–274

in actual units, 104
analysis of, 355–360
cantilever, 80, 83, 85
in complex form, 270
with core-loss resistance neglected,

358
eliminating an ideal transformer from,

101
for an instrumentation transformer,

96, 97
of multiwinding transformers, 91
showing an ideal transformer, 73
for single-phase induction motors, 522
steady-state terminal volt-ampere

characteristics, 265
tests determining parameters of, 82–85

Equivalent reactance, 81
Equivalent series impedance, 79
Equivalent series reactance, 79
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Equivalent series resistance, 79
Equivalent sinusoidal exciting current, 76
Equivalent-circuit representation, of a

synchronous machine, 287
Equivalent-circuit technique, 74
Equivalent-T circuit, 77, 79, 81
“Estimator” block, 609
Excitation, 22, 684–686
Excitation branch, of an equivalent

circuit, 76
Excitation coil, resistance of, 129
Excitation current, 23
Excitation frequency of a VRM, 473
Excitation requirements, for a magnetic

material, 24
Excitation system, 262
Exciter, 263
Exciting (magnetizing) component, 351
Exciting component, 76
Exciting current, 65–66

analyzed by Fourier-series
methods, 68

neglecting entirely, 80
producing core flux and power

input, 24
for a sinusoidal flux waveform, 68
treating as an equivalent sinusoidal

current, 76
Exciting mmf, 23
Exciting rms voltamperes, 24, 25
Exciting-current waveform, 68
Experimental results, in a functional

form, 304

F
Falling-flux portion, of the hysteresis

loop, 23
Faraday’s law, 11, 25, 224, 250, 266,

572, 635
Feedback-control system, block diagram

of, 562
Ferrite magnets, 35
Ferrities, 64
Ferromagnetic materials, 1, 19, 45
Ferromagnetic rotor, producing zero

torque, 498
Fictitious winding, having an

additional, 153
Field axis, 403
Field circuit, power in, 408
Field current, 291, 407, 421
Field excitation, adjusting, 297
Field excitation current, supplying, 263

Field theory expressions, for energy and
coenergy, 153

Field winding, 194
of a dc machine, 200
flux, 269
installed on the rotor of a large,

200-MW, 4-pole synchronous
generator, 192

replaced by a permanent magnet, 436
replaced by permanent magnets, 319
self-inductance, 667
two-pole cylindrical-rotor, 196
winding factor, 214

Field-current control, 554–557
Field-heating limitation, on machine

operation, 296
Field-oriented control, 577, 590, 606,

619
Field-oriented technique, 553
Field-oriented torque-control system,

587–588, 609
Field-resistance line, 429, 430
Field-to-armature mutual inductance,

272
Field-weakening, 324
Figure of merit, permanent-magnet

materials, 33
Finite burden, presence of, 97
Finite load torque, 500
Finite-element analyses, 246
Finite-element method, 2, 141
Flashing, between segments, 445
Flat-compounded generator, 431
Flux

for any magnetic circuit, 7
continuous through the magnetic

circuit, 31
created by a single coil side in a

slot, 248
produced by an mmf wave in a

uniform-air-gap machine, 306
produced by concentrated, full-pitch

windings, 203
Flux barriers, 326
Flux bridges, 325, 326
Flux density

in the air gap of the magnetic
circuit, 32

finding, 10–11, 12
maintaining at rated value, 574
obtaining large magnetic, 19

Flux distributions
around a salient pole, 246

associated with the rotor and
stator, 192

of interior-permanent-magnet
machine, 326

with only the armature excited and
only the field excited, 418

tendency toward distortion, 418
Flux linkage-current trajectory, 489
Flux linkages

of coils, 11, 17
versus current characteristic of a

VRM, 488
current equations, 669
current relationships, 667
expressed in terms of inductances and

currents, 266
expressions, 668
of the fictitious winding, 156
with the field winding, 267
with phase-a stator winding, 224
of the winding, 11

Flux paths, in a synchronous machine,
194

Flux wave, 199, 347
Flux weakening, 324, 587, 590, 593, 597
Flux-density wave, 247
Flux-mmf interactions, in a polyphase

induction motor, 389
Flywheel, aiding a motor, 388
Force

calculating from energy, 140
determining in terms of the electrical

state variable, 134
finding, 152, 156–157
finding on the plunger, 142
as a function of position, 135
in magnetic-field systems, 123–125
plotting, 137–138
produced by a magnetic field, 143
in systems with permanent magnets,

152–161
Force and torque expressions,

misapplied, 142
Force density (force per unit volume),

123, 124
Force-producing devices, 122, 127
Forward-field impedance, computing,

525
4/2 VRM, 471, 483
Fourier series, 204
Four-phase, 8/6 VRM, 472
Four-pole, single-phase synchronous

generator, 195
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Four-pole dc machine, cross section
of, 211

Four-pole synchronous ac generator,
with a smooth air gap, 214

Four-pole synchronous machine,
producing constant torque, 235

Fractional-pitch coil, 254, 656
Fractional-pitch windings, 653
Free space, magnetic permeability of, 3
Fringing fields, effect of, 8
Full H-bridge inverter, 558
Full-load armature-resistance voltage

drop, 562
Full-pitch coil, 203
Full-pitch windings, 652, 657–658
Full-wave rectification, commutator

providing, 201
Fundamental air-gap flux, 243, 661
Fundamental component, 68
Fundamental-frequency generated

voltage, 653

G
Gas turbines, 197
Gauss’ Law for magnetic fields, 2
General-purpose motor, 680
Generated emf, 409, 427
Generated voltage, 223–228, 269, 272,

299, 651–657
of a dc machine, 413
as a function of motor speed, 425
magnitude of the corresponding, 298
per-unit, 301, 303
phasor along the quadrature axis, 306
proportional to both motor speed and

field current, 576
Generator, heating in the end regions of

the stator core of, 296
Generator analysis, 429–434
Generator notation, for the armature

current, 307
Generator output power (per-phase or in

per unit), 313
Generator power, 288
Generator reactive power output, 301
Generator reference direction, 270
Generator steady-state power angles, 312
Generator terminal current, 288, 301
Generator terminal voltage, 288
Generic magnetic circuit, 158
Grain-oriented steel, 27
Gross motion, 165, 166–168
Guide rings, flux density in, 163

H
Hard magnetic materials, 32, 152

in a core of highly permeable soft
magnetic material, 36

in situations with varying mmf and
geometry, 38

stabilizing to operate over a specified
region, 38

subject to demagnetization, 41
Harmonics

effects of swamped out, 68
produced by discrete windings, 667

H-bridge configuration, 558,
568–569

H-bridge inverters, 616
Heavy torque overloads, 410
Helical restraining spring, 185
Henrys, measuring amperes, 12
Henrys per meter, 5
High material permeability, 7
High reactance, decreasing the power

factor, 387
High resistance-to-reactance ratio, 514
High-impact loads, driving, 388
High-permeability material, presence

of, 3
High-speed ground transportation, linear

induction motors proposed for, 391
High-voltage windings, 63
Hunting transient, 264
Hybrid stepping motor, 501–503
Hydraulic turbines, operating at

relatively low speeds, 197
Hydrogen, properties of, 682–683
Hysteresis effect, 20
Hysteresis loop, 20, 25, 26

for Alnico 5, 29, 30
B-H characteristic forming, 37, 46
for M-5 electrical steel, 29, 30

Hysteresis loss, 26, 677, 678
Hysteresis motors, 519–521
Hysteretic nature, of magnetic materials,

25, 26

I
I2R losses, 677
Ideal transformer

characteristics of, 72
eliminating from equivalent

circuit, 101
explicitly drawn or omitted, 78
impedance transformation properties

of, 72

with load, 70
transforming currents, 71

Idealized synchronous machine, 667
Impedance

converting to per unit, 107
of the equivalent stationary rotor, 354
referred to the primary, 73
referring, 72
in series with a voltage source, 285
in series with the secondary, 73
transformation properties of the ideal

transformer, 72
Impedance components, of typical

synchronous machines, 273
Independent base quantities, choosing

arbitrarily, 102
Induced voltage

maximum value of, 226
polarity of, 224
quantitative expressions for, 223
at winding terminals, 11

Induced-emf ratio, 77
Inductance, 132

of a coil on a magnetic circuit, 139
expressing, 163, 165
finding, 12
investigating, 266–269
of a magnetic circuit, 146
measured in henrys or weber-turns per

ampere, 12
polynomial curve fit of, 135
time-varying, 17
of a winding in a magnetic circuit, 12
written in terms of electrical rotor

angle, 667
Inductance-versus-angle curves, for

VRMs, 488
Induction and synchronous machines,

interconnected, 392
Induction machines, 198–200

described, 193
operating as generators, 362
operating asynchronously, 619
per-unit values of parameters, 102
reference frame for, 672
relations in dq0 variables, 671
similarity to transformers, 344
simplified equivalent circuit, 357
synchronously-rotating air-gap flux

wave in, 389
torque-slip curve, 362
transforming voltages and changing

frequency, 389
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Induction motors, 344
control of, 597–615
empirical distribution of leakage

reactances in, 376
operated at or close to synchronous

speed, 246
operating at high slip as inefficient,

356
operating at speeds less than the

synchronous mechanical
speed, 199

source of excitation in, 685
speed-control loop, 609
speed-torque characteristic, 199, 200
speed-torque curves, 601
with squirrel-cage rotors and

single-phase stator windings,
510, 511

torque-speed curves for
general-purpose, 386, 387

Induction-motor equivalent circuits,
351–354

application of Thevenin’s theorem
to, 360

applying, 369
no-load conditions, 372
simplified by Thevenin’s theorem, 361

Inductor
made up of two C-cores, 49, 179–180
pot-core, 52

Infinite bus, 263, 330
Infinite permeability, assumption of, 33
Inherent error, of current transformer

with a shorted secondary, 99
Inherent rotor resistance, 383
“Initialization” block, calling a

MATLAB script, 565, 594
Inner cooling, 683
In-phase component, 68
Input, to the transformer as primary, 63
Input power, 304, 543
Input signals, providing linear response

to, 168
Instantaneous phase currents, of the three

phases, 640
Instantaneous power, 640–641, 670
Instantaneous voltages, 640
Institute of Electrical and Electronics

Engineers (IEEE), 677
Instrumentation transformers, 96
Insulation, 679, 680
Integral-horsepower permanent-magnet

dc motor, 436, 437

Integration
as path independent, 130
path of, 147, 148

Interior-permanent-magnet ac machine,
325–329

Interior-permanent-magnet rotors, 325
Internal force distribution, 126
Internal losses, minimizing, 686
Internal mechanical power,

525, 532
Internal power, converted to mechanical

form, 524
Internal torque, of the backward field,

523
Internal voltage, 269
Interpoles, 443
Inverter systems, for driving VRMs, 616
Inverter volt-ampere rating, 490
Inverters, 616, 618–619
Iron, nonlinear magnetic properties of, 68
Iron-core transformer, 64, 109

J
Joules per second, 18

K
Kirchhoff’s current law, 9, 639, 644
Kirchhoff’s voltage law, 8, 639, 646
Kirchhoff’s-law equations, 647
Knee, of the magnetization curve, 36

L
Lagging power factor, 640, 685
Laminated steel core, with winding, 28
Laminations, of magnetic materials, 26
Laplace-transform form, 433
Large distribution system, 91
Large power transformer, 65, 66
Leading power factor, 640
Leakage fields, 9
Leakage fluxes, 64–65, 75, 110, 236,

247–249
Leakage impedances, 91, 303
Leakage inductances, 236, 268
Leakage reactances, 81, 271, 277

affected by saturation, 373
effect of ignoring drop, 304
often assumed to be constant, 110
in synchronous machines, 277

Levitation, used to provide induced
currents in, 241

Life expectancy, of electric equipment,
679

Linear, hard magnetic material,
connected in series, 157–158

Linear behavior, obtaining, 168
Linear commutation, 413, 442
Linear differential equations, 171
Linear machine iron, determining the

torque, 468
Linear machines, 241–244
Linear motors, 241
Linear relationship, between electrical

signals and mechanical motion, 166
Linear winding, 241, 242
Linearization, 168–171
Line-line voltage, calculating, 227
Line-neutral equivalent circuit,

322, 323
Line-to-line voltage

expressing, 94
magnitude of, 639
for a (triangle)-connected winding,

654
Line-to-line voltages, 638
Line-to-neutral voltages, 272,

358, 638
on the air-gap line, 281
using, 293, 645
for a Y-connected winding, 654

Line-voltage control, 605
Load component, 76, 351
Load lines, 32, 39, 40
Load requirements, 681
Load time, equation for, 438
Load torque, 556, 592
Long-shunt connection, 416
Loss measurements, efficiencies

determined from, 677
Loss mechanisms, 25–36, 127
Loss of synchronism, 265
Losses

changing with operating condition,
301

consideration of, 676–678
tests for determining, 110
in a three-phase, six-pole synchronous

machine, 302
in transformers and rotating machines,

110
Lossless electric energy storage

system, 182
Lossless-energy-storage system, 127
Loudspeaker, 61, 185–186, 187
Low of cosines, 323
Low-voltage windings, 63
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M
M-5 electrical steel, 13. See also

electrical steel
exciting rms voltamperes, 25
hysteresis loops for, 20, 29, 30
residual magnetization, 29

Machine efficiency, expressing, 676
Machine flux density, 573
Machine flux level, under short-circuit

conditions, 282
Machine leakage reactance, 303
Machine losses, consideration of,

676–678
Machine rotor, viewing with

stroboscopic light, 265
Machines, sizing, 681
Magnet

direction of magnetization of, 160
magnet flux around the ends of, 325
producing rotor flux without

dissipation, 319
stabilized, 41

Magnetic axis, of phase winding, 217
Magnetic circuits, 2, 3, 7

with an air gap, 5
with an air gap and two windings, 16
analytical fundamentals, 420–428
introduction to, 2–4
model, 9
of multiple elements in series and

parallel, 8
with a permanent magnet and a

movable plunger, 153–154
permeability of the “iron” parts of, 9
of a single-coil stator and an oval

rotor, 138–139
structures, 158
techniques of analysis, 1–2, 45

Magnetic conditions, in the air
gap, 211

Magnetic core, high permeability of, 3
Magnetic field intensity, 2, 4

in the air gap and magnetic
material, 31

reducing material flux density to
zero, 29

relationship with magnetic flux
density, 5

Magnetic fields
coenergy stored in the air gap, 237
created by action of currents in the

windings, 109
of distributed windings, 203

distribution in a salient-pole dc
generator, 215

forces and torques in, 123–125
lines fringing outward, 8
produced by permanent magnets and

windings, 153
in rotating machinery, 212–215
varying with time, 11
viewpoint, 235–241

Magnetic flux, 3, 4
Magnetic flux density, 2, 21
Magnetic force, 139–146
Magnetic hysteresis, 20, 430
Magnetic materials

less than ideal, 244
numerical data on, 20
permeabilities varying with flux

level, 8
properties of, 19–22
supporting a block of, 186–187

Magnetic permeabilities, 3, 244
Magnetic rotor, with saliency, 460
Magnetic saturation, 110, 244–247, 274
Magnetic stored energy, 18, 131
Magnetic torque, expressions for, 250
Magnetically coupled circuits, 74
Magnetically linear system, 143, 152
Magnetic-field electromechanical-

energy-conversion device,
127

Magnetic-system force density, 124
Magnetization characteristic, 43
Magnetization curve, 245

for Alnico 5, 39, 40
for common permanent-magnet

materials, 35
for a dc machine, 420–421, 422
for an existing synchronous

machine, 246
with generated voltage, 421
for a machine, 406
for samarium-cobalt, 155

Magnetizing component, 76
Magnetizing current, 68
Magnetizing impedance, 76
Magnetizing inductance, 76
Magnetizing reactance, 76, 85, 271, 352
Magnetizing resistance, 76, 85
Magnetomotive force, 3
Magnet-produced generated voltage, 322
Main core flux, in a synchronous

machine, 303
Main winding, 514

Main-field mmf, 420, 428
Material coercivity, 41
The MathWorks, Inc., 166
MATLAB

plot of per-unit armature current
versus field current, 584

plotting terminal current as a function
of speed, 369

polyfit function, 134, 136–137
problem solving using, 98–99
script implementing controller

algorithm, 611
script plotting inductance, 15, 16
spline function, 180, 304–306
using, 14–16
waveform and torque plotted, 479–482

MATLAB/Simulink package, 166
dynamic equations formulated as

integral equations, 565
investigating voltage build-up in a

self-excited dc machine, 432
plotting terminal voltage as a function

of time, 432
Maximum electromechanical torque, 363
Maximum energy product, of

permanent-magnet material, 32
Maximum machine power, 574
Maximum motor input power, 316
Maximum power, 284, 317
Maximum rotor mmf, 240
Maximum torque, 366, 383, 574
Maximum-torque point, 364
Maxwell’s equations, solution of, 2
Mean magnetization curve, 431
Mechanical force, 133, 144
Mechanical losses, 677
Mechanical output power, 128, 425
Mechanical power

equaling torque times angular
velocity, 357

product of torque and mechanical
speed, 406

required to drive a machine at
synchronous speed, 276

required to drive a synchronous
machine during a short-circuit
test, 282

Mechanical rectification, 227
Mechanical terminal, speed of, 162
Mechanical torque, 357, 611
Meters per second, 123
Microstepping, 500
Minimum burden reactance, 99
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Minor hysteresis loop, 37
Mmf

of distributed windings, 202–212
driving flux through a closed loop, 8
total, 16
total acting on the magnetic

circuit, 246
total for all three phases, 220

Mmf distributions
of maximum amplitude, 216
producing magnetic fields, 236
of a single-phase winding, 217
space-fundamental components

of, 657
of three-phase windings, 218

Mmf drop, 7, 8
Mmf phasors, 659
Mmf waves, 209, 210

of a dc machine armature, 208
of dc machines, 212
finding fundamental component

of, 242
idealized, 417
producing induction-motor action, 511
of the stator and rotor, 237
of a three-phase winding, 250

Motor analysis, of dc machines,
434–436

Motor base impedance, 315–316
Motor characteristics, plot of, 281
Motor input power, 304
Motor power output, 324
Motor reference direction, 270
Motor speed

calculating, 567
corresponding to a given armature

current, 434
finding, 559
in integral form as required by

Simulink, 594
plotted as a function of time, 560, 561

Motor terminal voltage, 323
Motor voltage, control, 560
Motor-application considerations,

386–388
Motorettes, 679
Motor-region torque and power

curves, 363
Motors

commercially available, 681
mismatched to applications, 687
standard sizes of, 687
starting as induction motors, 265

Multicircuit transformers, 90
Multiphase, multi-pole synchronous

machine, producing constant
torque, 235

Multiple electrical terminals,
electromechanical devices with, 146

Multiple windings, systems of, 247
Multiply excited magnetic-field systems,

146–152
Multi-pole machine, 224, 238
Multistack variable-reluctance stepping

motor, 495, 496
Multi-winding machine, 233
Multiwinding transformers, 90–91
Mutual flux, 63, 236, 247

in both transformers and rotating
machines, 110

inducing voltages in the windings, 109
linking both primary and secondary

windings, 76
in rotating machines, 109

Mutual inductance
between armature phases, 268
between coils, 17
magnitude of, 230
positive maximum and negative

maximum, 230
between rotor and stator windings, 260

Mutual interaction, between rotor and
stator currents, 150

MVA Autotransformer, 66

N
National Electrical Manufacturers

Association (NEMA), 677, 680
Negative sequence, 529
Negative torque, 238, 475, 482
Negative-traveling flux wave, 218
Negative-traveling waves, 220, 511
NEMA insulation-system classes, for

industrial machines, 680
Neodymium-iron-boron

Curie temperature of, 43
dc magnetization curve for, 41, 438
dc-magnetization characteristic of, 159
low values of recoil permeability, 41
magnetization curves, 41–42
materials, 36

Net flux, into a node in a magnetic
circuit, 9

Net internal torque, 524
Net magnetic flux, crossing a surface, 4
Net mmf, produced by all currents, 110

Net negative torque, VRM as a
generator, 475

Net positive torque, VRM as a motor,
475

Newtons, 123
Nickle, C. A., 665
No-load armature I2R loss, 678
No-load core loss, 371, 677–678
No-load input power, 370
No-load losses, assigning, 371
No-load magnetization characteristic,

421
No-load magnetization curve, 427
No-load phasor diagram, 69
No-load reactance, 372
No-load resistance drop, in most large

transformers, 67
No-load rotational losses, 276, 678
No-load rotor loss, 370
No-load test, on an induction motor,

370–372
Nonlinear analysis, of VRMs, 487–495
Nonlinear machine iron, determining the

torque, 468
Non-magnetic retaining ring, 321
Nonoriented steels, 27
Non-salient synchronous machine,

compared to a dc machine, 579
Non-salient-pole machines, torque in,

229–241
Nonsalient-pole rotor, 196
Nonuniform air gaps, 214–215, 246
Nonzero average torque, producing, 233
Normal magnetization curve, 21
N-turn, full-pitch, concentrated armature

winding, 660
Numerical-analysis packages, 494

O
Ohmic heating, 25–26
Ohmic losses, 677
Ohm’s law, 267, 429
Open- and short-circuit characteristics,

274–284
Open-circuit characteristic, 245, 274,

275, 277
Open-circuit core loss, 276, 302, 303,

305, 677–678
Open-circuit core-loss curve,

276, 303
Open-circuit flux distribution, 321,

325, 326
Open-circuit impedance, 84, 85
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Open-circuit saturation curve, 245,
274, 278

Open-circuit test, 84–85, 275, 330
Open-circuited machine armature

winding, 275
Open-circuited secondary, equivalent

circuit with, 85
Open-delta connection, 92
Open-loop control systems, 500
Open-loop PWM scheme, 618
Operating frequency, 573
Operating temperature, of a machine, 679
Opposite phase sequence, balanced

two-phase voltage sources of, 529
Oriented steels, operating at higher flux

densities, 27
Output, secondary, 63
Output power, 304
Over-excited motor, 685
Over-excited synchronous generator, 298
Over-excited synchronous motors, 685

P
Parallelogram, trigonometric formula for

the diagonal, 237
Park, R. H., 665
Peak air-gap density, 573
Peak amplitude, of the mmf wave, 206
Peak torque, in a VRM, 467
Peak value, of the mmf wave, 209
Peak-torque slip, for squirrel-cage

motors, 348
Performance characteristics, for dc

machines, 410
Periodic function of time, rms value

of, 23
Permanent magnets, 29–34

advantages coming with a price, 319
benefits of, 436
characteristics of temperature

dependent, 319
forces and torques in systems with,

152–161
on the rotor producing a flux

wave, 330
Permanent-magnet ac machines,

319–329
Permanent-magnet dc machines,

436–441
Permanent-magnet dc motors

equivalent circuit for, 440
exploded view of an alternate form of,

438–440

field flux fixed by the permanent
magnet, 567

Permanent-magnet loudspeaker, 61
Permanent-magnet materials, 1

application of, 34–45
force for, 141
immense difference from soft

magnetic materials, 32
properties temperature dependent, 41

Permanent-magnet motors, 319, 436, 437
Permanent-magnet rotor, producing peak

torque, 498
Permanent-magnet section,

replacing, 158
Permanent-magnet stepping motors, 498
Permanent-magnet synchronous

machines, 587
Permanent-magnet system, 188
Permanent-split-capacitor motor, 515,

516, 541
Permeability

of free space, 19
as a function of material flux

density, 48
of linear magnetic material, 5

Permeance
direct axis, 407
of a magnetic circuit, 7

Perturbation, of the device, 144
Per-unit (pu) values, converting, 103
Per-unit armature current, 584, 589
Per-unit equivalent circuit, 104
Per-unit form, translating to and

from, 101
Per-unit impedances, 102
Per-unit load current, 108
Per-unit load power, 108
Per-unit load voltage, 108
Per-unit power, MATLAB plot versus

power angle, 318
Per-unit power-angle characteristic, peak

of, 289
Per-unit reactances, calculating, 282
Per-unit system, 101–109
Per-unit transformer impedance, 108
Per-unit values, 104, 280
Phase, meanings of, 635
Phase adjustment, aligning flux

wave, 322
Phase belts, 652
Phase currents, 106

applying a fashion consistent with the
rotor position in a VRM, 467

calculating in amperes, 107
conditions associated with removal

of, 477
reversing, 498
turning off early, 486
turning off to reduce positive torque

production, 483
in VRMs switched on and off by

solid-state switches, 464
Phase excitation, complex control

problem for, 484
Phase inductances

for the doubly salient VRM, 461, 463
periodic in rotor angular position, 475

Phase order, 638
Phase sequence, 638
Phase voltage, base values for, 106
Phase windings, control required to drive

in a VRM, 618
Phase-1 current, plotted, 480
Phase-a current, 207, 272
Phase-a mmf, 256
Phase-a stator coils, 598
Phase-a terminal voltage, 269
Phase-controlled rectifier, 568
Phase-controlled silicon-controlled

rectifiers, 686
Phasor addition, for fractional-pitch

coil, 656
Phasor current, 285
Phasor diagrams, 285

construction of, 68–69
as convenient means for adding sine

waves, 659
of generated voltages, 636, 637
for salient-pole machines, 308–312
for short-circuit conditions, 277, 278
solving problems, 82
for a synchronous generator,

297, 298
Pitch factor, 656
Plot of current, versus speed, 369
Plugging, 362
Plunger, of high permeability, 38
Pole face, 419
Pole-changing motors, 597–599
Pole-changing winding, principles

of, 598
Pole-face windings, main disadvantage

of, 445–446
Polyphase ac machines, 216, 218
Polyphase circuit, 635
Polyphase currents, on the stator, 330
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Polyphase induction machines, 344–389
currents and fluxes in, 348–350
introduction to, 344–348
steady-state equivalent circuit for,

351–354
steady-state performance

characteristics of, 355
Poly-phase induction motor, 356
Polyphase induction motor,

354, 370
Polyphase machines, operating under

balanced conditions, 250
Polyphase mmf, graphical analysis,

221–222
Polyphase motors, 527–528
Polyphase squirrel-cage induction motor

torque-speed curve, 347
Polyphase synchronous machines,

262–265, 319
Polyphase system, 635
Polyphase voltage-source inverter,

driving a motor, 572
Polyphase windings, 218–221, 250
Positive sequence, 529
Positive torque, producing in a

VRM, 475
Positive-traveling waves, 220, 511
Pot-core inductor, 52
Potential transformers (PTs), 96–97
Power, 357

delivered across the air gap by the
forward field, 532

delivered by the stator winding, 524
delivered through the impedance to

voltage source, 285
determined from product of voltage

and current, 17
transferred across the air gap from the

stator, 355
Power and distribution transformers,

characteristics of, 102
Power angle, 286
Power bookkeeping, checking on, 526
Power factor, 640

in ac machines, 684–685
angle, 299
of a balanced three-phase system, 642
defined at the load side of a

transformer, 81
lagging because system is

inductive, 69
Power input

to the main winding, 543

at no load, 372
to the winding, 489

Power limits, study of, 285
Power output, 323
Power rating, of the autotransformer, 90
Power system operators, 295
Power system transformer, voltages on

the nameplate of, 78
Power-angle characteristic, 286

general form of, 314
for a motor, 316
peak proportional to magnitude of

system voltage, 287
of salient-pole machines, 312–318

Power-angle expression, compared to
expression for torque, 286

Power-electronic inverter systems, 558
Power-factor angle, 640
Power-system analyses, in per-unit

form, 101
Primary current, 76
Primary leakage flux, 67, 74
Primary leakage impedance, ignoring, 84
Primary leakage inductance, 75
Primary leakage reactance, 75
Primary or armature current, adjusting

itself, 110
Primary resistance, 67, 75
Primary terminal voltage, 75
Primary windings, 63, 75
Prime movers, 263, 300
Prime-mover torque, 264, 265
Principal harmonic, 68
Projecting poles, 196
Pulling out of step, 265
Pull-out torque, 265
Pulse-width modulation (PWM),

558, 572
Pure electric-field system, 123
Pure magnetic-field systems, 123

Q
Q-axis current, 323
Q-phase system, 635
Quadrature axis, 306, 309–310, 403
Quadrature-axis components, 577,

606, 664
of the armature current, 307–308, 620
phasor diagram illustrating, 313

Quadrature-axis current, 587
Quadrature-axis flux distribution,

326, 579
Quadrature-axis inductance, 325

Quadrature-axis magnetizing
reactances, 308

Quadrature-axis quantity, 307
Quadrature-axis synchronous

inductance, 668
Quadrature-axis synchronous

reactances, 308
Quadrature-axis variables,

transformation to, 664–666

R
Radial-air-gap permanent-magnet

synchronous motors, classes of, 321
Radians per second, 196
Rare-earth magnetic materials, 36
Rated armature current, 282
Rated torque, 559
Rating, of electrical devices,

679–682
Ratio of transformation, between two

windings, 64
RC circuit, connected to a battery, 175
Re[ ], indicating real part of a complex

number, 539
Reactance voltage, 443
Reactive power, 293, 372
Reactive power output, 298
Reactive power per phase, 641
Reactive-kVA requirements, 684
Reciprocating generator, 57, 58
Reciprocating linear machines, 241
Recoil line, 37
Recoil permeability, 37
Rectangular copper bar, curve of ratio of

effective ac resistance to dc
resistance, 384

Rectification, in a dc machine, 201
Rectification action, of the

commutator, 228
Rectified excitation current, 263
Rectified voltage, generated in the

armature, 405
Reduced-voltage starting, resulting in a

decrease in starting torque, 386
Reference direction, choice of, 270
Reference frame, rotating, 672
Reference values (set points), for motor

currents, 580
Referred resistance, changes in, 382
Referred rotor leakage reactance, at

stator frequency, 353
Referring, the impedance, 72
Reflected rotor resistance, 371
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Regeneration, configuration capable
of, 617

Relative permeability, 5
Relay, with movable plunger, 132
Relay structure, same as magnetic

structures, 129
Reliability, of VRMs, 504
Reluctance

in the air gap, 203
of the core and air gap, 6
of the cross-flux path, 419
of the electrical steel, 407
finding, 9
of the leakage-flux paths, 110
of a magnetic circuit, 163–164

Reluctance torque, 151, 314, 518
Remanent magnetization, 21, 29
Residual flux density, 42
Residual magnetism, 406, 408
Residual magnetization, 29
Resistance commutation, 443
Resistivity, of copper, 56
Resolution, of unbalanced two-phase

voltages, 531
Resultant air-gap mmf, 237
Resultant core flux, produced by the total

mmf, 16
Resultant field, 239
Resultant flux, peak value of, 240
Resultant flux linkages, resolution

of, 17
Resultant mutual flux, 74, 237
Right-hand rule, 4–5, 123, 124
Ripple-free torque, difficult to

achieve, 484
Rippling waveform, 405
Rising-flux portion, of the hysteresis

loop, 23
RL circuit, connected to a battery,

175–176
Rms amplitude, 269, 579
Rms armature current, 584, 589
Rms armature flux-linkages, 580, 610
Rms complex amplitude, of generated

voltage, 270
Rms exciting voltamperes, 24
Rms generated voltage per phase, 651
Rms line-neutral armature flux

linkage, 583
Rms line-neutral armature voltage, 610
Rms line-neutral flux linkage, rated value

of, 583
Rms line-neutral terminal voltage, 584

Rms line-neutral voltage, calculating for
a non-salient machine, 592

Rms values, of voltages and currents, 23
Rms-kW method, 681
Root-mean-square (rms) values. See rms

values
Rotating electric machines, forms and

and names of, 192
Rotating field of constant amplitude,

producing, 221
Rotating machines

compared to transformers, 109
described, 172
introduction to, 190–251
magnetic fields in, 212–215
understanding behavior of, 126

Rotating magnetic field, produced by
means of three-phase currents, 221

Rotating mmf wave, production of, 221
Rotation, introducing time variation, 226
Rotational loss

at any speed, 371
calculating, 377
for normal running conditions, 370

Rotational voltage, 443
Rotor, 190

bars, 369
circuit resistance, 366
conductors, 346
direct axis, 306
equilibrium position, 501
equivalent circuit for a polyphase

induction motor, 353
excitation, 320
extremely rugged VRM, 504
flux, 614
frequency, 383–386
getting stuck in a VRM, 467
of a hysteresis motor, 519
impedance, 373, 374
of an induction machine as

short-circuited, 352
leakage flux, 236
leakage reactance, 349, 375
loss, total, 355
mmf wave, 522
mmf waves, 236
overhang, 484
poles in a squirrel-cage rotor, 350
of a polyphase induction machine, 344
position sensing, 467–468, 615
power dissipation per stator phase, 356
quadrature axis, 306

resistance, 381–388, 389
resistance control, 605–606
rotating at the same speed as rotating

magnetic field, 262
self-inductance, 266–267
slip, 346
speed, 359
teeth, 473
terminals, 346
torque, 173
of a two-pole round-rotor generator,

207, 208
voltage equations, 674

Rotor currents
composition of, 522
determining, 346
frequency of, 346
at no load, 370
producing an mmf wave, 521
slip frequency of, 521

Rotor windings
electrically short-circuited, 198
excited with direct current, 232
of an induction machine, 199
of induction motors, 349

Run winding, 514

S
Saliency

effects of, 668
of the stator, 461

Salient poles, 196, 246
Salient-pole ac synchronous

generator, 193
Salient-pole construction, 197, 262
Salient-pole dc machine, 215
Salient-pole machines

both magnet and reluctance
torque, 327

essential features of, 306–312
phasor diagrams for, 308–312
power-angle characteristic of, 312–318
stiffer than cylindrical rotor, 315
structure of typical, 215
treating by cylindrical-rotor

theory, 312
Salient-pole synchronous generator, 307,

310, 314
Salient-pole synchronous machine

(SM), 315
Samarium-cobalt, 36, 41
Samarium-cobalt permanent magnet, 43,

155, 160–161
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Saturate synchronous reactance, 280
Saturated machine, converting less

useful work per cycle, 490
Saturated material, 19
Saturated operating conditions, 279
Saturated synchronous reactance,

279, 282
Saturated values, applying to typical

machine operating conditions, 309
Saturation

degree of, 245
effects of, 244, 489, 490
effects on VRM performance,

488–489
fixed degree of, 279
in a fully loaded machine, 246
under heavy inrush currents, 369
lowering required inverter volt-ampere

rating, 489
method of handling, 279
role in determining flux paths, 326
role in VRM performance, 494, 504

Saturation characteristics, of rotating
machines, 245

Saturation curve, 245
Saturation flux density, of magnetic

materials, 239
Sawtooth armature-mmf wave, 211
Sawtooth mmf wave, 209–210
Second winding, 191
Secondary current, 110
Secondary leakage inductance, 77
Secondary leakage reactance, 77
Secondary resistance, 77
Secondary windings, 63, 77
Second-harmonic variation, of

inductance, 138
Self inductances and mutual inductances,

between pairs of windings, 233
Self-excited generators, 408, 429
Self-excited machines, producing

unstable voltages, 448
Self-inductance

of a coil, 17
of each stator phase, 668
of field winding, 260, 266

Self-protected distribution
transformer, 65

Self-reactance, of the stator, 372
Self-starting synchronous-reluctance

motor, 518
Separately excited generator, 408
Separately excited motors, 410

Series field current, 420
Series generator, 408, 409
Series impedance, limitations on power

flow through, 285
Series motor, 410, 448
Series universal motors, 446–447, 510
Series winding, 409
Series-field diverter, 431
Series-resistance method, 557
Service factor, for general-purpose

motors, 680
Shaded-pole induction motors, 518
Shading coil, 518
Shaft output, 532
Shaft output power, 526
Shaft output torque, 359
Shaft power, 542
Shaft-position sensing, 321
Shell-type construction, 65
Shell-type transformers, 64
Short-circuit armature current, 277–278
Short-circuit characteristic, 276, 277, 278
Short-circuit current characteristic, 280
Short-circuit load loss, 282–283, 302
Short-circuit ratio (SCR), 280
Short-circuit resistance dc loss, 283
Short-circuit test, 83–84, 86, 330
Short-circuited coil, constituting an

inductive circuit, 442
Short-circuited secondary, equivalent

circuit with, 83
Short-pitching, stator coils of an ac

machine, 254
Short-shunt connection, 416
Short-time-rated motors, 682
Shunt field current, 432, 554
Shunt generator, 408, 409, 430
Shunt motors, 410, 448
Shunt reactors, 685
Shunt winding, 409
Shunt-connected generator, 429–430
Shunted-armature method, of speed

control, 557, 558
Shunt-excited generators, 429
SI units, table of constants and

conversion factors, 688
Silicon steel, desirable properties of, 64
Simplification, of gross-motion

problems, 167
Simplifying assumptions, permitting

attainment of useful engineering
solutions, 2–3

Simulation, results of, 167, 170

Simulink
plotting phase-1 current and torque,

484
solving problems, 166

Simulink block diagram, 484–486
Simulink model, 167, 168, 169, 565, 594
Single positive-traveling mmf, 242
Single positive-traveling mmf wave, 220
Single-coil rotor, 124
Single-line diagrams, examples of, 648
Single-phase, line-to-neutral equivalent

circuits, 271
Single-phase ac machinery, 217–218
Single-phase capacitor-start induction

motors, 687
Single-phase equivalent circuits, 355,

393, 647
Single-phase generator, 194
Single-phase induction motors, 522

classified in accordance with starting
methods, 513

compared to polyphase motors,
527–528

with main and auxiliary winding, 536
qualitative examination, 510–513
revolving-field theory of, 521–528
starting and running performance of,

513–521
Single-phase motors, 510, 527, 528
Single-phase permanent-magnet ac

generators, 343
Single-phase series motor, 447
Single-phase synchronous machine,

idealized, 233
Single-phase systems, three separate, 635
Single-phase winding, mmf wave of,

216–218
Single-phase-circuit analysis, applying,

648
Single-phase-winding

space-fundamental air-gap mmf,
217

Single-stack, variable-reluctance
stepping motor, 495

Singly salient machine, 469
Singly salient VRMs, 461, 462, 463
Sinusoidal approximation, of voltage

between brushes, 228
Sinusoidal mmf distributions, for both ac

and dc machines, 250
Sinusoidal space wave, amplitude of, 213
Sinusoidal spatial distributions, of

mmf, 212
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6/4 three-phase VRM, 470
Slip

at maximum torque, 363, 366
in most squirrel-cage motors, 348
of the rotor, 346
at which peak torque occurs, 348

Slip frequency, in the rotor, 346
Slip rings, 194, 263, 686
Slip-frequency equivalent circuit, 353
Slip-frequency leakage impedance,

352, 353
Slot and tooth-tip leakage, 236
Slot-leakage field, 385
Slot-leakage flux, 181, 248–249,

268, 384
Smooth-air-gap machine, 229, 230, 237
Snubbing circuitry, 618
Soft magnetic materials, 32

of constant permeability, 131
in field-theory terms, 141

Solenoid, plunger connected to a
spring, 188

Solenoid coil, 182
Solenoid force, plotting, 134–138
Solenoid magnet, cylindrical, 163, 164
Solid-state ac drive system

technology, 403
Solid-state rectifiers, 263
Space fundamental mmf wave, peak

value of, 211–212
Space harmonics, in the air-gap field, 236
Space vectors, 237
Space-fundamental air-gap, 214
Space-fundamental air-gap flux, 268
Space-fundamental air-gap magnetic

field, 214
Space-fundamental armature-reaction

flux, 308
Space-fundamental component

emphasizing, 247
of the mmf wave, 207
of the phase-a air-gap mmf, 219

Space-fundamental mmf, 206, 660
Space-fundamental mmf distribution, of

a single-phase winding, 216, 217
Space-fundamental mmf wave, for a

winding, 659
Space-fundamental sinusoidal mmf

waves, 218
Space-harmonic components, 212, 248
Space-harmonic flux components,

ignoring, 307
Sparking, 442

Sparkless commutation, 413, 442, 443
Spatial angle, measured with respect to

the rotor magnetic axis, 207
Special-purpose motor, 680
Speed control

for dc motors, 554–568
of induction motors, 597–606
by means of frequency of limited use

in practice, 576
by means of line voltage, 605
by means of rotor resistance, 605–606
of synchronous motors, 572–576

Speed decay, 371
Speed feedback, forming an outer

control loop, 580, 581
Speed sensor, 610
Speed voltage, 109, 162, 405–406. See

also emf (electromotive force)
generated by relative motion of air-gap

flux wave and stator coil, 224
induced in the armature by rotating

field winding, 198
for permanent-magnet dc motors, 567

Speed-control system, for a separately
excited or shunt-connected dc
motor, 562

Speed-torque characteristic
for an induction motor, 199, 200
for a series-connected motor under dc

operating conditions, 446, 447
Speed-voltage terms, 669
Split supply, 617
Split-phase induction motor, modeling,

538
Split-phase motors, 514
Split-phase-start synchronous-reluctance

motor, 519
Squirrel-cage induction motor,

198–199
Squirrel-cage motors, 386–388, 389
Squirrel-cage rotors, 344–345,

349–350, 384
Squirrel-cage winding, 384–385
Stabilizing winding, 435
Stable equilibrium positions, of an

unloaded stepping motor, 500
Stable rest positions, of the rotor, 499
Start winding, 514
Starting capacitor, 515
Starting compensator, 387
Starting current, reduced, 387
Starting torque, smaller than rated

torque, 364

State function
defining a new, 139
of two independent variables, 133
of two terminal currents and

mechanical displacement, 149
State variables, 130, 147
Static capacitors, 91
Static magnetic circuit, inductance

fixed, 17
Static transformer, as indispensable, 63
Stationary rotor, constituting the

rails, 241
Stator, 190

of a 4-pole dc motor, 443, 444
with excitation windings, 460
mmf waves, 236

Stator current
calculating, 359
measured as a function of stator

terminal voltage, 246
resolving into two components, 351

Stator equivalent circuit, for a polyphase
induction motor, 351

Stator flux, 233, 346
Stator inductances, as a function of rotor

angle, 461, 463
Stator input impedance, 358
Stator leakage flux, 236
Stator losses, 370
Stator magnetic field, rotating, 126
Stator mmf, resolving, 521
Stator phases, of VRMs, 504
Stator phenomena, equivalent circuit

representing, 352
Stator quantities, transforming into

equivalent quantities, 664
Stator resistance, varying with

stator-winding temperature,
370–371

Stator self-inductances, 267–268
Stator terminal voltage, 351
Stator windings, 190, 191, 232, 510
Stator-mmf wave

axis of, 520
resolution into two constant-amplitude

traveling waves, 546
of a single-phase motor, 521
traveling, 529

Stator-to-rotor mutual inductances, 230,
267, 668

Stator-to-stator mutual inductances, 667
Stator-voltage equations, transformed,

674
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Steady-state current, limiting in VRM
operation, 479

Steady-state dc machine performance,
428–436

Steady-state operating characteristics,
293–306

Steady-state power-angle characteristics,
284–293

Steady-state speed, of a synchronous
machine, 262

Steady-state speed control, as a matter of
armature frequency control, 619

Steady-state values, of generated
voltage, 421

Steam turbines, operating best at
relatively high speeds, 197

Stepper motors, 192, 460, 495
Stepping motors, 474, 495–503

closely related to VRMs, 504
designing to produce large restoring

torque, 500
issue of controlling, 503

Stored electric energy, system with, 127
Stray lead loss, 678
Stray leakage fields, 391
Stray-load losses, 283, 302, 303,

370, 677
Surface-permanent-magnet ac machine,

321–324
Surface-permanent-magnet ac

motor, 320
Switched-reluctance machines

(SRMs), 460
Switches, dominating cost of an

inverter, 617
Symmetric magnetic circuit, 57
Symmetrical two-phase machines,

unbalanced operation of, 528–535
Symmetrical-component concept, 547
Symmetrical-component systems, 530
Symmetrical-component theory, of

two-phase induction motors, 528
Synchronism, maintaining between

generators, 263
Synchronous angular velocity, 220
Synchronous condensers, 91, 300,

301, 685
Synchronous generators, 293

acting as voltage sources, 263
commonly connected to an external

system, 315
operating in parallel, 263
phasor diagram for, 309

supplying both real and reactive
power, 300

supplying electrical power to a load,
197

as three-phase machines, 197
Synchronous inductance, 268, 269
Synchronous machines, 193–198,

262–331, 665
4-pole, three-phase with a uniform air

gap, 234
described, 262
efficiency of, 301
field winding on, 191
with field windings, 587
magnetic structure of, 10
operated in conjunction with an

external system, 330
operating at a relatively constant

terminal voltage, 279
with permanent magnets on the

rotor, 587
per-unit values of, 102
steady-state operating characteristics

of, 293–306
steady-state power limits of, 285
VRMs as, 503

Synchronous mechanical angular
velocity, 357

Synchronous motor control, 572
Synchronous motors

compared to stepping motors, 497
control of, 572–597
as counterpart of synchronous

generator, 198
developing torque only at synchronous

speed, 265
electromechanical torque in opposition

to retarding torque, 264
operating connected to a

constant-frequency source, 331
operating from polyphase

variable-frequency drive
systems, 331

plot of maximum power and maximum
torque versus speed, 574

sources of excitation, 685
starting and running performance of,

513–521
steady-state speed of, 198

Synchronous reactance, 269, 273, 274,
278, 322

Synchronous speed, 220
finding, 359

of an induction motor, 597
of a machine, 235
of a motor, 575
of the stator field, 345

Synchronous-generator V curves, 297
Synchronous-machine behavior, 263
Synchronous-machine equivalent

circuits, 270, 271, 280
Synchronous-machine relations, in dq0

variables, 666–670
Synchronous-motor speed-control loop,

black diagram of, 590
Synchronous-motor V curves, 297
Synchronous-reluctance motors, building

in frames, 519
System analyses, procedure for

performing in per-unit, 102
System coenergy, equal to that of the air

gaps, 145
System planners, 295

T
Techniques, for the control of electric

machines, 553
Temperature dependence of the

magnetization characteristics,
42, 43

Terminal current, 299, 300, 414, 416
Terminal power, 415
Terminal voltage

calculating, 560
of a dc machine, 414
determining, 610
expressing, 269
MATLAB plot versus per-unit

generator power, 289
motor speed varying linearly with, 559
as phase reference, 272
plotted as a function of the generator

power, 288
of a separately excited generator,

408–409
of synchronous generators, 294

Terminals, of corresponding polarity,
71–72

Terminal-voltage equation, in terms of
rms complex amplitudes, 269

Teslas, 5, 123
Thermal constraints, machine terminal

current limiting, 574
Thevenin equivalent, 286
Thevenin-equivalent form, reducing a

circuit to, 364
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Thevenin-equivalent impedance,
330, 360

Thevenin-equivalent stator
impedance, 361

Thevenin-equivalent voltage, 301,
330, 360

Thevenin’s theorem, 330, 360–369
Third harmonic, 68
Three-phase, three-stack

variable-reluctance stepping
motor, 497

Three-phase, two-pole machine,
197, 198

Three-phase ac machine, 223
Three-phase base impedance, 106
Three-phase circuits, 635–649

analysis of balanced, 647–649
transformers in, 91–96

Three-phase conditions, instantaneous
phase currents under balanced, 219

Three-phase currents, producing a
rotating mmf wave, 207

Three-phase cylindrical-rotor
synchronous machine, 265, 266

Three-phase equivalent circuits, 648
Three-phase linear winding, 242
Three-phase machine, amplitude of the

resultant mmf wave in, 658
Three-phase permanent-magnet ac

machine, schematic diagram of, 319
Three-phase power, total, 641
Three-phase problems, solving in per

unit as single-phase problems, 106
Three-phase stator

excited with balanced 60-Hz
currents, 222

simplified two-pole winding, 218
Three-phase systems, 635

analysis of base values, 106
instantaneous power in, 641
most of world’s power systems as, 197

Three-phase transformers
advantages of, 92
forming, 91, 92
internal parts of, 92, 93

Three-phase voltages, generation of,
635–638

Three-phase voltage-source inverter,
572, 573

Three-phase VRM with a total of six
main stator poles, 473, 474

Three-phase Y-connected ac
machine, 254

Three-winding system, 247, 248
Time variations, of magnetic fields, 2
Time-averaged electromagnetic torque,

539, 542, 543
Time-maximum amplitude, 657
Time-varying flux, instantaneous value

of, 11
Torque

ability to independently control, 614
of the backward field, 524
calculating, 234–235, 323, 324
consisting of two sinusoidally

time-varying terms of
frequencies, 233

of a dc machine, 202
in a dc motor, 619
determining, 139–146, 149, 150
estimating maximum, 240
expressed in terms of the resultant

mmf wave, 239
expressing in a number of equivalent

ways, 674
finding, 139, 149
implementing a step change in, 615
increasing with increasing slip up to a

maximum value, 348
less with alternating than with direct

current, 447
in magnetic-field systems, 123–125
maximizing available, 482
in non-salient-pole machines, 229–241
of a permanent-magnet motor, 440
positive, 238
producing, 236, 578
proportional relationships, 236, 238,

241, 330
in systems with permanent magnets,

152–161
trade-off with velocity, 504
of a two-phase, permanent-magnet

stepping motor, 498–499
VRM, 466, 617

Torque angle, variations in, 264
Torque constant, of a permanent-magnet

motor, 440
Torque control, 568–572, 577–597,

605–615
Torque equation, 240, 263
Torque expression, for a motor, 587
Torque production, current waveforms

for, 474–487
Torque profiles, 476, 480
Torque pulsations, 513, 641

Torque zeros, in symmetric 4/2
VRMs, 469

Torque-angle curves, 264, 498
Torque-control system, 580, 581
Torque-controller block, 580
Torque-producing characteristics, 461
Torque-producing mechanism, in an

induction machine, 606
Torque-slip curve, of an induction

machine, 361, 362, 363
Torque-speed characteristic, 515

shifting along the speed axis, 600
of a single-phase induction motor,

511, 512
of a single-phase motor, 513
of a split-phase motor, 514

Torque-speed curve
of an induction machine, 361, 362, 363
of an induction motor, 599
plotting, 365

Torsional spring, connected to the
movable vane, 184

Total ampere-turns, 16
Total core loss, 29
Total equivalent resistance, 81
Total flux, linking primary winding, 74
Total input power, finding, 543
Total instantaneous power, for a balanced

three-phase system, 641
Total mmf, acting on the magnetic

circuit, 246
Total power, transferred across the air

gap from the stator, 355
Total rotor loss, 355
Total three-phase apparent power, 642
Total three-phase reactive power, 641
Transducers, 122
Transformation equations, 669, 672
Transformer analysis, engineering

aspects of, 78–87
Transformer core flux, 109
Transformer equivalent circuits, 104

analysis of, 357
development of, 74, 75
parameters, 101

Transformer terms, omission of, 669
Transformer voltage, 83, 224
Transformers, 1

calculating high-side voltage of, 108
compared to rotating machines, 109
introduction to, 63–65
schematic diagrams of, 65, 66
with secondary circuit open, 65, 66
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in three-phase circuits, 91–96
wound on close cores, 5

Transmission lines, impedances of, 92
TRIACS (switchable diodes), 447, 616
(triangle) connection, 637

current phasor diagram for, 639
magnitude of the line current, 640

Turbine generators
capability curves for large,

hydrogen-cooled, 294
end view of the stator of, 249
excitation systems, 685–686
hydrogen commonly used as the

cooling medium, 682–683
Turns ratio, not unique to a transformer

equivalent circuit, 81
Two air gaps, in series, 145
2-pole synchronous machine,

field-winding factor for, 214
Two-coil rotor, 173
200-MW, 2-pole synchronous

generator, 192
Two-phase hybrid stepping motor, with

castleated poles, 505
Two-phase induction motors, 528–546
Two-phase inverters, 616
Two-phase motors, 510, 529
Two-phase salient-pole synchronous

machine, 259–260
Two-phase stepping motor, schematic

diagram of, 497
Two-phase system, synthesis of an

unbalanced, 530
Two-pole, single-phase induction motor,

parameters of, 541
Two-pole, single-phase synchronous

generator, 193
Two-pole dc generator, 200–201
Two-pole machine, 212, 236
Two-winding magnetic circuit, 184
Two-winding transformer, 87, 88

U
Unbalanced three-phase system,

637–638
Under commutation, 443
Underexcited motor, 685
Under-excited synchronous

generator, 298
Unidirectional drive systems, operating

VRMs from, 504
Uniform air gaps, machines with,

212–214

Uniform-air-gap machine, 233
Unit-turns-ratio per-unit ideal

transformer, 102
Unity power factor (zero reactive power)

compounding curve, 297
field current required to maintain, 273
generator operating at, 298
at the motor terminals, 272
per-unit terminal current, 299
phasor diagram drawn for, 316

Universal motor, 447
Unsaturated conditions, machine

operating in, 277
Unsaturated synchronous reactance, 278,

279, 280
Unsymmetrical two-phase induction

machines, 536–546

V
V curves, 297
Variable reluctance machines (VRMs).

See VRMs (variable reluctance
machines)

Variable reluctance motors. See VRMs
(variable reluctance machines)

Vector control, 553, 577, 619
Vector diagram, of mmf waves, 236
Velocity, of the traveling wave, 244
Versatility, of dc machines, 403
“V”-magnet arrangement, found in

interior-permanent-magnet
machines, 326

Voltage “behind” leakage reactance, 271
Voltage buildup, in a self-excited dc

generator, 430
Voltage commutation, 443
Voltage equations, 669
Voltage ratio, between two

windings, 64
Voltage regulation, of a transformer, 86
Voltages

of both shunt and compound
generators, 409

generated in windings, 190
impedance interconnecting two, 285
induced by time-varying magnetic

fields, 190
Volt-ampere base, 102
Volt-ampere characteristics, of dc

generators, 408
Voltamperes per phase, 642
Volts per meter, 123
Volts-per-hertz algorithm, 614

VRM configurations, practical, 468–474
VRM drive system, 495, 615
VRMs (variable reluctance machines),

460
analysis of requiring numerical

analysis, 484
control of, 615–619
no windings on the rotor, 192
nonlinear analysis, 487–495
in series, 471
significance in engineering

applications, 504
types of, 461
wide variety of configurations, 469

W
Watts (W), 18
Weber (Wb), 4, 5
Weber-turns per ampere, 12
Wind turbine, induction generator driven

by, 363
Winding

effect of distributing in several
slots, 405

laid out flat, 209, 210
producing a magnetic field in the

core, 3
producing additional flux, 64

Winding currents
equivalent to unbalanced two-phase

currents, 514
maximum permissible value of, 239
much more unbalanced than applied

voltages, 532
producing magnetic fields outside the

core, 9
Winding factor, 56, 205, 207, 654, 657
Winding flux linkages, 244
Winding leakage inductance, 249
Winding resistances, correcting, 302
Winding-terminal voltage, finding, 17
Wound rotor, 344, 348
Wound-rotor induction machines,

344, 346
Wound-rotor induction motor, 366
Wound-rotor motors, 381–383

becoming less common, 386
rotor resistance increasing, 348
used for very severe starting

conditions, 389
Wound-rotor salient-pole synchronous

machines, 325
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Y
Y- and (triangle)-connected circuits,

examples of, 642–647
Y connection, 637, 647
Y-connected system, voltage phasor

diagram for, 638
Y-(triangle) equivalence, 647

Z
Zero net torque, 469
Zero-real-power axis, 300
Zero-sequence component, 665
Zero-sequence inductance, 668
Zero-torque positions

of a 4/2 VRM, 468

of a motor, 499
not all corresponding to stable

equilibrium positions, 499
not possible in 6/4 VRMs, 470
test for, 470
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Tis seventh edition of ELECTRIC MACHINERY was developed recognizing that 
the strength of this classic textbook since the first edition has been its emphasis on build-
ing an understanding of the fundamental physical principles underlying the performance 
of electric machines.  Much has changed over the years since the publication of the first 
edition due to the development of new grades of electrical steel, new insulation materi-
als, superior permanent-magnet materials, the introduction of power-electronic drives 
and controls, and the widespread availability of computers and numerical sofware which 
greatly increases the capability to apply analytical techniques to the analysis of electric 
machines. Yet the basic physical principles remain the same and this seventh edition is 
intended to retain the focus on these principles in the context of today’s technology.

KEY fEATuREs of THIs REvIsIoN ARE:

•   Te presentation of all material in the book has been carefully reviewed and revised and/
or expanded as needed for additional clarity. One such example is the expanded treatment 
of permanent-magnet ac machines in Chapter 5. Similarly, the dc-machine presentation of 
Chapter 7 has been reorganized for added clarity.

•   Numerous new examples have been added to this edition, bringing the total number of 
examples in the book to over 110.  In addition some of the examples from the previous 
edition have been revised.

•    Tis edition includes many new end-of-chapter problems.  

•    Although not a requirement for adoption of this edition, the use of MATLAB has been 
considerably expanded in examples, in practice problems, and in end-of-chapter problems.

•    New to this edition is a list of variables and their definitions which have been included at 
the end of each chapter.

•    Te seventh edition introduces some simple examples of electric-machinery dynamics 
and includes several MATLAB/Simulink examples and problems.

•   New and updated photos are included throughout the book.  

Instructor and student resources are posted on the website.  Check it out!   
Visit www.mhhe.com/umans7e.
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