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The number after each entry refers to a page where the symbol is explained in the text. 
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Sets and Functions 
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Complex numbers, 49, 191 
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Integers 

b divides a [orb is a factor of a], 9 

Greatest common divisor (gcd) of a and b, 10 

Greatest common divisor (gcd) of at> a2, •.• , a"' 16 

Least common multiple (lcm) of a and b, 16 
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Least common multiple (lcm) of a~> a2, ••• , a"' 16 

a is congruent to b modulo n, 25 

Congruence class of a modulo 11, 27, 28 

Set of congruence classes modulo 11, 30 

Rings and Ideals 

Multiplicative identity element in a ring with identity, 44 

Ring of 2 X 2 matrices over the real numbers ~' 46 

Ring of 2 X 2 matrices over 7L, Q, C, 7L11 respectively, 48 

Zero matrix in M(~), 47 

Ring of 2 X 2 matrices over a commutative ring R with identity, 48 

Ring R is isomorphic to ring S, 72 

Principal ideal generated by c, 144 

Ideal generated by cl> c2, ••• , C11 , 145 

a is congruent to b modulo the ideal I, 145 

Coset [congruence class) of a modulo the ideal I, 147 

Quotient ring [or factor ring) of the ring R by the ideal I, 147, 154 

Sum of ideals I and J (which is also an ideal), 149 

Product of ideals I and J (which is also an ideal), 150 

The subring {r + sva I d, r, s E 7L} of C, 322 

Ring of Gaussian integers, 322 

Ring of polynomials in Q[x) whose constant term is an integer, 336 

Norm function, 346 

Field of quotients [or field of rational functions) of the polynomial ring 
F[x] over the field F, 358 

Polynomials 

Ring of polynomials with coefficients in the ring R, 86 

Degree of the polynomialf(x), 88 

f(x) divides [or is a factor of) g(x), 96 

f(x) is congruent to g(x) modulo p(x), 125 

Congruence class [or residue class) of f(x) modulo p(x), 126 

Ring of congruence classes modulo p(x), 128, 131 
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This book is intended for a first undergraduate course in modern abstract algebra. 
Linear algebra is not a prerequisite. The flexible design makes the text suitable for 
courses of various lengths and different levels of mathematical sophistication, in
cluding (but not limited to) a traditional abstract algebra course, or one with a more 
applied flavor, or a course for prospective secondary school teachers. As 'in previous 
editions, the emphasis is on clarity of exposition and the goal is to produce a book that 
an average student can read with minimal outside assistance. 

New in the Third Edition 
Groups First Option Those who believe (as I do) that covering rings before groups 
is the better pedagogical approach to abstract algebra can use this edition exactly as 
they used the previous ones. 

Nevertheless, anecdotal evidence indicates that some instructors have used the sec
ond edition for a "groups first" course, which presumably means that they liked other 
aspects of the book enough that they were willing to take on the burden of adapting it to 
their needs. To make life easier for them (and for anyone else who prefers "groups first") 

It is now possible (though not necessary) to use this text for 

a course that covers groups before rings. 

See the TO THE INSTRUCTOR section for details. 
Much of the rewriting needed to make this option feasible also benefits the "rings 

first" users. A number of them have suggested that complete proofs were needed in 
parts of the group theory chapters instead of directions that said in effect "adapt the 
proof of the analogous theorem for rings". The full proofs are now there. 

Proofs for Beginners Many students entering a first abstract algebra course have 
had little (or no) experience in reading and writing proofs. To assist such students (and 
better prepared students as well), a number of proofs (especially in Chapters 1 and 2) 
have been rewritten and expanded. They are broken into several steps, each of which 
is carefully explained and proved in detail. Such proofs take up more space, but I think 
it's worth it if they provide better understanding. 

So that students can better concentrate on the essential topics, various items from 
number theory that play no role in the remainder of the book have been eliminated 
from Chapters 1 and 2 (though some remain as exercises). 

ix 



x Preface 

More Examples and Exercises In the core course (Chapters 1-8), there are 35% 
more examples than in the previous edition and 13% more exercises. Some older exer
cises have been replaced, so 18% of the exercises are new. The entire text has about 350 
examples and 1600 exercises. For easier reference, the examples are now numbered. 

Coverage The breadth of coverage in this edition is substantially the same as in 
the preceding ones, with one minor exception. The chapter on Lattices and Boolean· 
Algebra (which apparently was rarely used) has been eliminated. However, it is avail
able at our website (www.CengageBrain.com) for those who want to use it. 

The coverage of groups is much the same as before, but the first group theory chapter 
in the second edition (the longest one in the book by far) has been divided into two chap
ters of more manageable size. This arrangement has the added advantage of making the 
parallel development of integers, polynomials, groups, and rings more apparent. 

Endpapers The endpapers now provide a useful catalog of symbols and notations. 

Website The website (www.CengageBrain.com) provides several downloadable 
programs for TI graphing calculators that make otherwise lengthy calculations in 
Chapters l and 14 quite easy. It also contains a chapter on Lattices and Boolean 
Algebra, whose prerequisites are Chapter 3 and Appendices A and B. 

Continuing Features 

Thematic Development The Core Course (Chapters 1-8) is organized around two 
themes: Arithmetic and Congruence. The themes are developed for integers (Chapters 1 
and 2), polynomials (Chapters 4 and 5), rings (Chapters 3 and 6), and groups (Chapters 7 
and 8). See the Thematic Table of Contents in the TO THE STUDENT section for a 
fuller picture. 

Congruence The Congruence theme is strongly emphasized hi the development of 
quotient rings and quotient groups. Consequently, students can see more clearly that 
ideals, normal subgroups, quotient rings, and quotient groups are simply an extension 
of familiar concepts in the integers, rather than an unmotivated mystery. 

Useful Appendices These contain prerequisite material (e.g., logic, proof, sets, 
functions, and induction) and optional material that some instructors may wish to 
introduce (e.g., equivalence relations and the Binomial Theorem). 
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Here are some items that will assist you in making up your syllabus. 

Course Planning 

Using the chart on the opposite page, the Table of Contents (in which optional sections 
are marked), and the chapter introductions, you can easily plan courses of varying length, 
emphasis, and order of topics. If you plan to cover groups before rings, please note that 
Section 7.1 should be replaced by Section 7.1. A (which appears immediately after 7.1). 

Appendices 
Appendix A (Logic and Proof) is a prerequisite for the entire text. Prerequisites for 
various parts of the text are in Appendices B-F. Depending on the preparation of 
your students and your syllabus, you may want to incorporate some of this material 
into your course. Note the following. 

• Appendix 8 (Sets and Functions): The middle part (Cartesian 
products and binary operations) is first used in Section 3.1 [7.l.A]. *The last 
five pages (injective and surjective functions) are first used in Section 3.3 [7 .4]. 

• Appendix C (/ nduction ): Ordinary induction (Theorem C.l) is first used 
in Section 4.4. Complete Induction (Theorem C.2) is first used in Section 4.1 
[9.2]. The equivalence of induction and well-ordering (Theorem C.4) is not 
needed in the body of the text. 

• Appendix 0 (Equivalence Relations): Important examples of 
equivalence relations are presented in Sections 2.1, 5.1, 6.1, and 8.1, but the 
formal definition is not needed until Section 10.4 [9.4]. 

• Appendix E (The Binomial Theorem): This is used only in Section 
11.6 and occasional exercises earlier. 

• Appendix F (Matrix Algebra): This is a prerequisite for Chapter 16 but 
is not needed by students who have had a linear algebra course. 

Finally, Appendix G presents a formal development of polynomials and indetermi
nates. I personally think it's a bit much for beginners, but some people like it. 

Exercises 
The exercises in Group A involve routine calculations or short straightforward proofs. 
Those in Group B require a reasonable amount of thought, but the vast majority 
should be accessible to most students. Group C consists of difficult exercises. 

Answers (or hints) for more than half of the odd-numbered exercises are given 
at the end of the book. Answers for the remaining exercises are in the Instructor's 
Manual available to adopters of the text. 

*The section numbers in brackets are for groups-first courses. 
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CHAPTER INTERDEPENDENCE* 

1. 
Arithmetic 

in?l. 

14.1 2. \ 13. 
Chinese Remainder -«-------------- Congruence f----1--------+l Public-Key 

Theorem (CRT) in 71. Cryptography 

Geometric 
Constructions 

14.3 
The CRT 
for Rings 

4. 
Arithmetic 

inF[x] 

5. 
Congruence 

inF[x] 

in Integral 
Domains 

·. __ (See Note below) 

Galois 
Theory 

8. 
Normal 

Subgroups 
& Quotient 

Groups 

Topics in 
Group 
Theory 

16.1, 16.2 
Algebraic 

-------~ Coding 
Theory 

16.3 
BCH 
Codes 

NOTE: To go quickly from Chapter 3 to Chapter 6, first cover Section 4.1 (except the 
proof of the Division Algorithm), then proceed to Chapter 6. If you plan to cover 
Chapter 11, however, you will need to cover Chapter 4 first. 

*A solid arrow A---t8 means that A is a prerequisite for 8; a dashed arrow A--->8 means that 8 depends 
only on parts of A (see the Table of Contents for specifics). For the dotted arrow 3--·>6, see the Note 
at the bottom of the chart. 
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Overview 
This book begins with grade-school arithmetic and the algebra of polynomials from 
high school (from a more advanced viewpoint, of course). In later chapters of the 
book, you will see how these familiar topics fit into a larger framework of abstract 
algebraic systems. This presentation is organized around these two themes: 

Arithmetic You will see how the familiar properties of division, remainders, factor
ization, and primes in the integers carry over to polynomials, and then to more general 
algebraic systems. 

Congruence You may be familiar with "clock arithmetic".* This is an example of 
congruence and leads to new finite arithmetic systems that provide a model for what 
can be done for polynomials and other algebraic systems. Congruence and the related 
concept of a quotient object are the keys to understanding abstract algebra. 

Proofs 

The emphasis in this course, much more than in high-school algebra, is on the rigor
ous logical development of the subject. If you have had little experience with reading 
or writing proofs, you would do well to read Appendix A, which summarizes the basic 

· rules of logic and the proof techniques that are used throughout the book. 
You should first concentrate on understanding the proofs in the text (which is quite 

different from constructing a proof yourself). Just as you can appreciate a new build
ing without being an architect or a contractor, you can verify the validity of proofs 
presented by others, even if you can't see how anyone ever thought of doing it this way 
in the first place. 

Begin by skimming through the proof to get an idea of its general outline before 
worrying about the details in each step. It's easier to understand an argument if you 
know approximately1\where it's headed. Then go back to the beginning and read the 
proof carefully, line oy line. If it says "such and such is true by Theorem 5.18", check 
to see just what Theor~~ 5.18 says and be sure you understand why it applies here. If 
you get stuck, take thatpn:rt on faith and finish the rest of the proof. Then go back and 
see if you can figure out the sticky point. 

*When the hour hand of a clock moves 3 hours or 15 hours from 12, it ends in the same position, so 
3 = 15 on the clock. If the hour hand starts at 12 and moves 8 hours, then moves an additional 
9 hours, it finishes at 5; so 8 + 9 = 5 on the clock. 
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When you're really stuck, ask your instructor. He or she will welcome questions that 
arise from a serious effort on your part. 

Exercises 
Mathematics is not a spectator sport. You can't expect to learn mathematics without 
doing mathematics, any more than you could learn to swim without getting in the 
water. That's why there are so many exercises in this book. 

The exercises in group A are usually straightforward. If you can't do almost all of 
them, you don't really understand the material. The exercises in group B often require 
a reasonable amount of thought-and for most of us, some J:rial~nd error as well. But 
the vast majority of them are within your grasp. The exercises iry group C are usually 
difficult ... a good test for strong students. / 

Many exercises will ask you to prove something. As you build up your skill in un
derstanding the proofs of others (as discussed above), you will find it easier to make 
proofs of your own. The proofs that you will be asked to provide will usually be much 
simpler than proofs in the text (which can, nevertheless, serve as models).· 

Answers (or hints) for more than half of the odd-numbered exercises are given at 
the back of the book. 

Keeping It All Straight 
In the Core Course (Chapters 1-8), students often have trouble seeing how the various 
topics tie together, or even if they do. The Thematic Table of Contents on the next two 
pages is arranged according to the themes of arithmetic and congruence, so you can 
see how things fit together. 
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Directions: Reading from left to right across these two pages shows how the theme or 
subtheme in the left-hand column is developed in the four algebraic systems listed in the 
top row. Each vertical column shows how the themes are carried out for the system listed 
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subthemes (as do the sections of Chapters 1 and 4). For integral domains, however, there is a correspondence, as 
you will see in Chapter 10 (Arithmetic in Integral Domains). 
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Arithmetic in 7l Revisited 

/~-, > 

Algebra grew out of arithmetic and depends heavi( on it. So we begin our study of 
abstract algebra with a review of those facts from arithmetic that are used frequently 
in the rest of this book and provide a model for much of the work we do. We stress 
primarily the underlying pattern and properties rather than methods of computation. 
Nevertheless, the fundamental concepts are ones that you have seen before. 

The Division Algorithm 

Our starting point is the set of all integers 7L = {0, ± 1, ±2, ... }. We assume that you 
are familiar with the arithmetic of integers and with the usual order relation ( <) on 
the set 7L. We also assume the 

WELL-ORDERING AXIOM Eve1y nonempty subset of the set of nonnegative 
integers contains a smallest element. 

If you think of the nonnegative integers laid out on the usual number line, it is 
intuitively plausible that each subset contains an element that lies to the left of all the 
other elements in the subset-that is the smallest element. On the other hand, the Well
Ordering Axiom does not hold in the set 7L of all integers (there is no smallest negative 
integer). Nor does it hold in the set of all nonnegative rational numbers (the subset of 
all positive rationals does not contain a smallest element because, for any positive ratio
nal number r, there is always a smaller positive rational-for instance, r /2). 

NOTE: The rest of this chapter and the next require Theorem 1.1, which 
is stated below. Unfortunately, its proof is a bit more complicated than 
is desirable at the beginning of the course, since some readers may not 
have seen many (or any) formal mathematical proofs. To alleviate this 
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4 Chapter 1 Arithmetic in 7Z. Revisited 

situation, we shall first look at the origins of Theorem 1.1 and explain the 
idea of its proof. Unless you have a strong mathematical background, we 
suggest that you read this additional material carefully before beginning 
the proof. 

To ease the beginner's way, the proof itself will be broken into several 
steps and given in more detail than is customary in most books. However, 
because the proof does not show how the theorem is actually used in prac
tice, some instructors may wish to postpone the proof until the class has 
more experience in proving results. In any case, all students should at least 
read the outline of the proof (its first three lines and the statements of 
Steps 1-4). 

So here we go. Consider the following grade-school division problem: 

Quotient 
Divisor 
Dividend 

----+ 11 

~ 
12 
7 

Remainder ----+ 5 

Check: 11 +--- Quotient 
X7 +---Divisor 
77 
+ 5 +--- Remainder 
82 +--- Dividend 

The division process stops when we reach a remainder that is less than the divisor. 
All the essential facts are contained in the checking procedure, which may be verbally 
summarized like this: 

dividend= (divisor) (quotient) + (remainder). 

Here is a formal statement of this idea, in which the dividend is denoted by a, the 
divisor by b, the quoti~nt by q, and the remainder by r: 

I 

Let a, b be integers with b > 0, Then there exist unique integers q and r such 
that 

a= bq + r and 0::::; r <b. 

Theorem 1.1 allows the possibility that the dividend a might be negative but re
quires that the remainder r must not only be less than the divisor b but also must be 
nonnegative. To see why this last requirement is necessary, suppose a= -14 is divided 
by b = 3, so that -14 = 3q + r. If we only require that the remainder be less than 
the divisor 3, then there are many possibilities for the quotient q and remainder r, 
including these three: 

-14 = 3(-3) + (-5), with -5 < 3 

-14 = 3(-4) + (-2), with -2 < 3 

-14 = 3(-5) + 1, with 1 < 3 

[Here q = -3 andr = -5.] 

[Here q = -4 and r = -2.] 

[Here q = -5 and r = 1.]. 
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When the remainder is also required to be nonnegative as in Theorem 1.1, then there 
is exactly one quotient q and one remainder r, namely, q = -5 and r = 1, as will be 
shown in the proof. 

The fundamental idea underlying the proof of Theorem 1.1 is that division is just 
repeated subtraction. For example, the division of 82 by 7 is just a shorthand method 
for repeatedly subtracting 7: 

82 
-7 
75 +--- 82 - 7 . 1 
-7 
68 +--- 82 - 7 . 2 
-7 
61 +--- 82 - 7 . 3 
-7 
54 +--- 82 - 7 . 4 

.,--7 
47 +--- 82 - 7 . 5 
-7 
40 +--- 82 - 7 . 6 

40 
-7 
33 +--- 82 - 7 . 7 
-7 
26 +--- 82 - 7 . 8 
-7 
19 +--- 82 - 7 . 9 

12 +--- 82 - 7 . 10 
7 fs +--- 82 - 7 . 11 

The subtractions continue until you reach a nonnegative number less than 7 (in this 
case 5). The number 5 is the remainder, and the number of multiples of 7 that were 
subtracted (namely, 11, as shown at the right of the subtractions) is the quotient. 

In the preceding example we looked at the numbers 

82- 7 · 1, 82- 7 · 2, 82 - 7 · 3, and so on. 

In other words, we looked at numbers of the form 82- 7x for x = 1, 2, 3, ... and 
found the smallest nonnegative one (namely, 5). In the proof of Theorem 1.1 we shall 
do something very similar. 

Proof ofTheorem 1.1* 1>- Let a and b be fixed integers with b > 0. Consider the sets 
of all integers of the form 

a- bx, where xis an integer and a - bx 2: 0. 

Note that x may be any integer-positive, negative, or 0-but a---: bx must 
be nonnegative. There are four main steps in the proof, as indicated below. 

Step 1 Show that Sis nonempty by finding a value for x such that a - bx 2: 0. 

Proof of Step 1: We first show that a + b I a I 2: 0. Since b is a positive 
integer by hypothesis, we must have 

b 2: 1 

blal 2: lal 
blal 2: -a 

a+ blal 2: 0. 

[Multiply both sides of the preceding inequality by Ia I.] 
[Because I a I 2: -a by the definition of absolute value.] 

*For an alternate proof by induction of part of the theorem, see Example 2 in Appendix C. 



6 Chapter 1 Arithmetic in 7l Revisited 

Nowletx = -lal. Then 

a- bx =a- b(-iai) =a+ blal;::: 0. 

Hence, a - bx is in S when x = -Ia I, which means that Sis nonempty. 

Step 2 Find q and r such that a = bq + rand r 2:: 0. 

Proof of Step 2: By the Well-Ordering Axiom, S contains a smallest 
element-call it r. Since r E S, we know that r ;::: 0 and r = a - bx for 
some x, say x = q. Thus, 

r = a - bq and r;::: 0, or, equivalently, a = bq + r and r;::: 0. 

Step 3 Show that r < b. 

Proof of Step 3: We shall use a "proof by contradiction" (which is 
explained on page 506 of Appendix A). We want to show that r < b. 
So suppose, on the contrary, that r 2:: b. Then r - b 2:: 0, so that 

0 ::5 r - b = (a - bq) - b = a - b(q + 1). 

Since a - b(q + 1) is nonnegative, it is an element of S by definition. But 
since b is positive, it is certainly true that r - b < r. Thus 

a - b(q + 1) = r - b < r. 

The last inequality states that a - b(q + I)-which is an element of 
S-is less than r, the smallest element of S. This is a contradiction. 
So our assumption that r 2:: b is false, and we conclude that r <b. 
Therefore, we have found integers q and r such that 

a= bq + r and 0 ::5 r <b. 

Step 4 Show that r and q are the only numbers with these properties (that's what 
"unique" means in the statement of the theorem). 

Proof of Step 4: To prove uniqueness, we suppose that there are integers 
q1 and r1 such that a = bq1 + r1 and 0 ::5 r1 < b, and prove that q1 = q 
and r1 = r. 

Since a= bq +rand a= bq1 + ri> we have 

so that 

(*) 

Furthermore, 

bq + r = bq1 + r1 

0:5r<b 

0 ::5 r1 <b. 
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Multiplying the first inequality by -1 (and reversing the direction of the 
inequality), we obtain 

-b < -r :=:; 0 

0 :=:; 1'j <b. 

Adding these two inequalities produces 

-b < r1 - r < b 

-b < b(q- q1) < b [By Equation(*)] 

-1 < q - q1 < 1 [Divide each term by b.] 

But q- q1 is an integer (because q and q1 are integers) and the only 
integer strictly between -1 and 1 is 0. Therefore q- q1 = 0 and q = q1• 

Substituting q - q1 = 0 in Equation ( *) shows that r1 - r = 0 and 
hence r = r1• Thus the quotient and remainder are unique, and the 
proof is complete. · 

When both the dividend a and the divisor bin a division problem are positive, then 
the quotient and remainder are easily found either by long division (as on page 4) or 
with a calculator when the integers involved are larger. 

EXAMPlE 1 

Suppose a= 4327 is divided by b = 281. Entering a/bin a calculator produces 
15.39857 ···.The integer to the left of the decimal point (15 here) is the quo
tient q and the remainder is 

r =a- bq = 4327- 281 • 15 = 112. 

These calculations are shown on the graphing calculator screen in Figure 1. 

43271"281 .. • · ... ·· . 
. · ... ·. . 15.39857b51 

4327•28. 1*15. .:· .. · ... ·112 

FIGURE 1 

When the dividend a is negative, a slightly different procedure is needed so that the 
remainder will be nonnegative. 

*The symbol,_: indicates the end of a proof. 
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EXAMPLE 2 

Suppose a= -7432 is divided by b = 453. Entering a/bin a calculator pro
duces -16.40618 · · ·.In this case the quotient q is not -16; instead, 

q = (the integer to the left of the decimal point) -1 = -16 - 1 = -17. 

(Without this adjustment, you will end up with a negative remainder.) Now, as 
usual, 

r =a- bq = -7432-453 · (-17) = 269. 

The preceding calculations are summarized in the calculator screen in Figure 2. 

FIGURE 2 

Exercises 

A. In Exercises I and 2, find the quotient q and remainder r when a is divided by b, 
without using technology. Check your answers. 

1. (a) a=17;b=4 

2. (a) a= -51; b = 6 

(b) a = 0; b = 19 

(b) a = 302; b = 19 

(c) a = -17; b = 4 

(c) a = 2000; b = 17 

In Exercises 3 and 4, use a calculator to find the quotient q and remainder r when 
a is divided by b. 

3. (a) a = 517; b = 83 (b) a = -612; b = 74 

(c) a= 7,965,532; b = 127 

4. (a) a= 8,126,493; b = 541 (b) a = -9,217,645; b = 617 

(c) a = 171,819,920; b = 4321 

5. Let a be any integer and let b and c be positive integers. Suppose that when 
a is divided by b, the quotient is q and the remainder is r, so that 

a = bq + r and 0 :5 r < b. 

If ac is divided by be, show that the quotient is q and the remainder is rc. 

B. 6. Let a, b, c, and q be as in Exercise 5. Suppose that when q is divided by c, the 
quotient is k. Prove that when a is divided by be, then the quotient is also k. 

7. Prove that the square of any integer a is either of the form 3k or of the 
form 3k + 1 for some integer k. [Hint: By the Division Algorithm, a must 
be of the form 3q or 3q + 1 or 3q + 2.] 
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8. Use the Division Algorithm to prove that every odd integer is either of the 
form 4k + 1 or of the form 4k + 3 for some integer k. 

9. Prove that the cube of any integer a has to be exactly one of these forms: 9k 
or 9k + 1 or 9k + 8 for some integer k. [Hint: Adapt the hint in Exercise 7, 
and cube a in each case.] 

10. Let n be a positive integer. Prove that a and cleave the same remainder when 
divided by n if and only if a - c = nk for some integer k. 

11. Prove the following version of the Division Algorithm, which holds for both 
positive and negative divisors. 

Extended Division Algorithm: Let a and b be integers with b * 0. Then there 
exist unique integers q and r such that a = bq + r and 0 ::::; r < I b 1. 

[Hint: Apply Theorem 1.1 when a is divided by I b 1. Then consider two cases 
(b > 0 and b < 0).] 

Divisibility 

An important case of division occurs when the remainder is 0, that is, when the divisor 
is a factor of the dividend. Here is a formal definition: 

·· Letaaqd b be integ'erswith b =FO.Wesayithatb diyides a (orthatb is a clivi~ 
~or of a, qrthatb is a factor ofa) ifa =be for some integer c. In symbols, "b 
<]ivides 9," is written b 1 aand "b does not divide a" iswritten b {a. 

EXAMPLE 1 

3124 because 24 = 3 · 8, but 3 ,Y 17. Negative divisors are allowed: -6154 
because 54= (-6)(-9), but -6,1'(-13). 

EXAMPLE 2 

Every nonzero integer b divides 0 because 0 = b • 0. For every integer a, we 
have 1la because a= 1 ·a. 

Remark If b divides a, then a = be for some c. Hence -a = b(-c), so that 
b I (-a). An analogous argument shows that every divisor of -a is also a divisor of a. 
Therefore 

a and -a have the same divisors. 

Remark Suppose a* 0 andb I a. Then a= be, so that Ia I= lbllcl. Consequently, 
0 ::::; I b I ::::; I a 1. This last inequality is equivalent to - I a I ::::; b ::::; I a 1. Therefore 

(i) every divisor of the nonzero integer a is less than or equal to I a I ; 
(ii) a nonzero integer has only finitely many divisors. 
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Definition 

All the divisors of the integer 12 are 

1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12,-12. 

Similarly, all the divisors of 30 are 

1, -1, 2, -2, 3, -3, 5, -5, 6, -6, 10,-10, 15,-15, 30,-30. 

The common divisors of 12 and 30 are the numbers that divide both 12 and 30, that 
is, the numbers that appear on both of the preceding lists: 

1, -1, 2, -2, 3, -3, 6, -6. 

The largest of these common divisors, namely 6, is called the "greatest common 
divisor" of 12 and 30. This is an example of the following definition. 

·' Let a andb.beintegers, potboth.O;Th~gr~(ltest comrri9~ diVisbt(gb~jof 
a and.b.l$the largestihteger d thatdiVid~s bo:ih aEmd h .. 10.otheryvords,·' 
dis the gcd. of a and ·b provided that · · . · · · · 

: .. ·, ... ·, ,' ~. ,'. . ' '•, ' , ... ' ' >: . ':· '- : :, , . 

.. · ·'(l)ditl and cilh; ·· .. ·....••.•.•• : 
(2) ilclaahd ~lb,then c·:::; d: 

.The greatest.comrnor{divisbr ofa,ahd b.is usuallyd~noted (a,.b). •· 
•. ,, < • • ';- '. l "' ' •; ; ' •\ ;, ; . •' ' ','- ·,: •' ,• . ~; ·,. : ;' I . '--:· ! \ .'• ' . '• ''! ' ·• -- ,; :-

If a and b are not both 0, then their gcd exists and is unique. The reason is that 
a nonzero integer has only finitely many divisors, and so there are only a finite num
ber of common divisors. Hence there must be a unique largest one. Furthermore, the 
greatest common divisor of a and b satisfies the inequality 

(a, b) "2. 1 

because 1 is a common divisor of a and b. 

EXAMPLE 3 

(12, 30) = 6, as shown above. The only common divisors of 10 and 21 are 1 and 
-1. Hence (10, 21) = 1. Two integers whose greatest common divisor is 1, such 
as 10 and 21, are said to be relatively prime. 

EXAMPLE 4 

The common divisors of an integer a and 0 are just the divisors of a. If a > 0, 
then the largest divisor of a is clearly a itself. Hence, if a> 0, then (a, 0) = a. 
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Listing all the divisors of two integers in order to find their gcd can be quite time 
consuming. However, the Euclidean Algorithm (Exercise 15) is a relatively quick 
method for finding gcd's by hand. You can also use technology. 

, T;cfutotci~y tip: . lb fuid a gcd 6n a .TI ~graphing cal~ulator, sele~t "gcd''· i!l .the . 
NPrvrsubmehuqftheMATH:1tJe!l~t:.. · · · ·· · · · ·· · 

',-!--- ( 

We have seen that 6 = (12, 30). A little arithmetic shows that something else is true 
here: 6 is a linear combination of 12 and 30. For instance, 

6 = 12( -2) + 30(1) and 6 = 12(8) + 30(-3). 

You can readily find other integers u and v such that 6 = 12u + 30v. The following 
theorem shows that the same thing is possible for any greatest common divisor. 

Let a and b be integers, not both 0, and let d be their greatest common divi
sor. Then there exist (not necessarily unique) integers u and v such that 
d =au+ bv. 

CAUTION: Read the theorem carefully. The fact that d =au+ bv does 
not imply that d = (a, b). See Exercise 25. 

For the benefit of inexperienced readers, the proofs of Theorem 1.2 and 
Corollary 1.3 will be broken into several steps. The basic idea of the proof of 
Theorem 1.2 is to look at all possible linear combinations of a and b and find one 
that is equal to d. 

Proof of Theorem 1.2 ~> Let s be the set of all linear combinations of a and b, that is 

S = {am+ bn I m, n E Z}. 

Step 1 Find the smallest positive element of S. 

Proof of Step 1: Note that a2 + b2 = aa + bb is inS and a2 + b2 
2': 0. 

Since a and b are not both 0, a2 + b2 must be positive. Therefore S 
contains positive integers and hence must contain a smallest positive 
integer by the Well-Ordering Axiom. Let t denote this smallest positive 
element of S. By the definition of S, we know that t = au + bv for 
some integers u and v. 
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Step 2 Prove that t is the gcd of a and b, that is, t = d. 

Proof of Step 2: We must prove that t ~atisfies the two conditions in the 
definition of the gcd: 

(1) tlaandtlb; 

(2) If cIa and c I b, then c ::::; t. 

Proof of (I): By the Division Algorithm, there are integers q and r 
such that a = tq + r, with 0 ::::; r < t. Consequently, 

r =a- tq, 

r = a - (au + bv)q = a - aqu - bvq, 

r = a(1 - qu) + b( -vq). 

Thus r is a linear combination of a and b, and hence r E S. Since 
r < t (the smallest positive element of S), we know that r is not 
positive. Since r::::: 0, the only possibility is that r = 0. Therefore, 
a = tq + r = tq + 0 = tq, so that t I a. A similar argument shows 
that t I b. Hence, tis a common divisor of a and b. 

Proof of (2): Let c be any other common divisor of a and b, so that 
cIa and c I b. Then a= ck and b == cs for some integers k and s. 
Consequently, 

t = au+ bv = (ck)u + (cs)v 

= c(ku + sv). 

The first and last terms of this equation show that c I t. Hence, 
c ::::; I t I by the second Remark on page 9. But t is positive, so I t I = t. 
Thus c::::; t. 

This shows that t is the greatest common divisor d and completes 
the proof of the theorem. Ill 

Technology Tip: .To find the gcd o.f a and b and express it in the form au +1m on 
.. aTI calculator, download .the GCD program on our website( www. CengageBrain 
.com)~ Figure 1 sh()WS therysult when you enter a :=: 2579and b = 432l: The gcd 

. is land you can easily verify that 2579 ·~ 826 + 4321 • {-:-493) = 1. 

To do the same thing with Maple, use the cornniand igcdex(a,b, 's', 't');. 
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Let a and b be integers, not both 0, and let d be a positive integer. Then dis the 
greatest common divisor of a and b if and only if d satisfies these conditions: 

(i) dla and dlb; 

(ii) ifcla and clb, then cld. 

Proof~ The proof of an "if and only if" statement requires two steps 
(see page 507 in Appendix A). 

Step 1 Prove: If d = (a, b), then d satisfies conditions ( i) and ( ii). 

Proof of Step 1: If d = (a, b), then by the definition of the gcd, d divides 
both a and b. Sod satisfies condition (i). 

To verify that d satisfies condition (ii), suppose that cis an integer such 
that cIa and c I b. Then a = cr and b = cs for some integers rands, by the 
definition of "divides". By Theorem 1.2 there are integers u and v such that 

d =au+ bv 

d = (cr)u + (cs)u 

d = c(ru + sv) 

[Becm1se a= cr and b = cs.] 

[Factor c out of both terms.] 

But this last equation says that c I d. Therefore, d satisfies condition (ii). 

Step 2 Prove: If dis a positive integer that satisfies conditions ( i) and ( ii), then 
d= (a, b). 

Proof of Step 2: To prove that d =(a, b), we must show that d satisfies 
the requirements of the definition of the gcd, namely, 

(1) dlaanddlb; 

(2) If cIa and c I b, then c ::s d. 

Obviously d satisfies (1) since requirement (1) and condition (i) are 
identical. To prove that d satisfies requirement (2), suppose c is an inte
ger that divides both a and b, then c I d by condition (ii). Consequently, 
by the second Remark on page 9, c ::s I dl. But dis positive, so I dl = d. 
Thus, c ::s d. Therefore, d satisfies requirement (2) and, hence, dis the 
gcd of a and b. lit 

The answer to the following question will be needed on several occasions. If a I be, 
then under what conditions is it true that a I b or a I c? It is certainly not always true, as 
this example shows: 

613. 4, but 6~3 and 6 ~ 4. 

Note that 6 has a nontrivial factor in common with 3 and another in common with 4. 
When a divisor of be has no common factors (except ± 1) with either b or e, then there 
is a useful answer to the question. 
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lfalbc and (a, b)= 1, then ale. 

Proof ~Since (a, b) = 1, Theorem 1.2 shows that au + bv = 1 for some integers 
u and v. Multiplying this equation by c shows that acu + bcv =c. But 
a I be, so that be = ar for some r. Therefore 

c = acu + bcv = acu + (ar)v = a(cu + rv). 

The first and last parts of this equation show that a I c. II 

Exercises 

1. Find the greatest common divisors. You should be able to do parts (a)-(c) by 
hand, but technology is OK for the rest. 

(a) (56, 72) 

(d) (143, 231) 

(g) (4144, 7696) 

(b) (24, 138) 

(e) (306, 657) 

(h) (12378, 3054) 

2. Prove that b I a if and only if (-b) I a. 

3. If a I band b I c, prove that a I c. 

4. (a) If a I band a I c, prove that a I (b + c). 

(c) (112, 57) 

(f) (272, 1479) 

(b) If a I band a I c, prove that a I (br + ct) for any r, t E 7L. 

5. If a and bare nonzero integers such that a I band b I a, prove that a= ±b. 

6. If a I b and c I d, prove that ac I bd. 

7. If a < 0, find (a, 0). 

8. Prove that (n, n + 1) = 1 for every integer n. 

9. If a I c and b I c, must ab divide c? Justify your answer. 

10. If (a, 0) = 1, what can a possibly be? 

11. If n E 7L, what are the possible values of 

(a) (n, n + 2) (b) (n, n + 6) 

12. Suppose that (a, b) = 1 and (a, c) = 1. Are any of the following statements 
false? Justify your answers. 

(a) (ab, a) = 1 (b) (b, c) = 1 (c) (ab, c) = 1 

13. Suppose that a, b, q, and rare integers such that a= bq + r. Prove each of the 
following statements. 

(a) Every common divisor c of a and b is also a common divisor of band r. 

[Hint: For some integers sand t, we have a= cs and b = ct. Substitute 
these results into a= bq + r, and show that c I r.] 
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(b) Every common divisor of band r is also a common divisor of a and b. 

(c) (a, b) = (b, r). 

14. Find the smallest positive integer in the given set. [Hint: Theorem 1.2.] 

(a) {6u + 15vl u, v E Z} (b) {12r+17sjr,sEZ} 

15. The Euclidean Algorithm is an efficient way to find (a, b) for any positive 
integers a and b. It only requires you to apply the Division Algorithm 
several times until you reach the gcd, as illustrated here for (524, 148). 

(a) Verify that the following statements are correct. 

524 = 1,4:.8·3 + ,80 0 ::5 80 < 148 

148, =' 80:1 + ,68 0 ::5 68 < 80 

' ' 
80 = '68·3 + 12 0 ::5 12 < 68 

' ' 

68 = )2:5 + ,8 o ::58 < 12 

1i= .8:1+4 0::54<8 

' 
8 = 4·2 + 0 

[The divisor in each line becomes 
the dividend in the next line, 
and the remainder in each line 
becomes the divisor in the next line.] 

[As shown in part (b), the last 
nonzero remainder, namely 4, 
is the gcd (a, b).] 

(b) Use part (a) and Exercises 13 and Example 4 to prove that 

(524, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 8) = (8, 4) = (4, 0) = 4. 

Use the Euclidean Algorithm to find 

(c) (1003, 456) (d) (322, 148) (e) (5858, 1436) 

The equations in part (a) can be used to express the gcd 4 as a linear 
combination of 524 and 148 as follows. First, rearrange the first 5 equations in 
part (a), as shown below. 

80 = 524 - 148·3 (1) 

68 = 148 - 80 (2) 

12 = 80 - 68·3 (3) 

8 = 68 - 12·5 (4) 

4 = 12 - 8 (5) 

(f) Equation (1) expresses 80 as a linear combination of 524 and 148. Use this 
fact and Equation (2) to write 68 as a linear combination of 524 and 148. 

(g) Use Equation (1), part (f), and Equation (3) to write 12 as a linear 
combination of 524 and 148. 

(h) Use parts (f) and (g) to write 8 as a linear combination of 524 and 148. 

(i) Use parts (g) and (h) to write the gcd 4 as a linear combination of 524 and 
148, as desired. 

(j) Use the method described in parts (f)~(i) to express the gcd in part (c) as a 
linear combination of 1003 and 456. 
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B.16. If (a, b)= d, prove that(~,~)= 1. [Hint: a= dr and b = ds for some 

integers r and s (Why?). So a/ d = r and b / d = s and you must prove that 
(r, s) = 1. Apply Theorem 1.2 to (a, b) and divide the resulting equation by d.] 

17. Suppose (a, b)= 1. If a I c and b I c, prove that ab I c. [Hint: c = bt (Why?), so 
a I bt. Use Theorem 1.4.] 

18. If c > 0, prove that (ca, cb) = c(a, b). [Hint: Let (a, b) = d and (ca, cb) = k. 
Show that cd [ k and k [ cd. See Exercise 5.] 

19. If a [ (b + c) and (b, c) = 1, prove that (a, b) = 1 = (a, c). 

20. Prove that (a, b)= (a, b +at) for every t E 7L. 

21. Prove that (a, (b, c)) = ((a, b), c). 

22. If (a, c) = 1 and (b, c) = 1, prove that (ab, c) = 1. 

23. Use induction to show that if (a, b)= 1, then (a, bll) = 1 for all n::::::: 1.* 

24. Let a, b, c E 7L. Prove that the equation ax + by = c has integer solutions if 
and only if (a, b) I c. 

25. (a) If a, b, u, v E 7L are such that au + bv = 1, prove that (a, b) = 1. 

(b) Show by example that if au + bv = d > 1, then (a, b) may not be d. 

26. If a [ c and b [ c and (a, b)= d, prove that ab I cd. 

27. If c [ ab and (c, a) = d, prove that c I db. 

28. Prove that a positive integer is divisible by 3 if and only if the sum of its digits 
is divisible by 3. [Hint: 103 = 999 + 1 and similarly for other powers of 10.] 

29. Prove that a positive integer is divisible by 9 if and only if the sum of its digits 
is divisible by 9. [See Exercise 28.] 

30. If al> a2, .•• , all are integers, not all zero, then their greatest common 
divisor (gcd) is the largest integer d such that d [ ai for every i. Prove that 
there exist integers ui such that d = a 1u 1 + a2u2 + · · · + a 11ull. [Hint: Adapt 
the proof of Theorem 1.2.] 

31. The least common multiple (lcm) of nonzero integers al> a2, .•• , ak is the 
smallest positive integer m such that ai I m for i = 1, 2, ... , k and is denoted 
[a!> a2, ... , ak]. 

(a) Find each of the following: (6, 10], [4, 5, 6, 10], [20, 42], and [2, 3, 14, 36, 42]. 

(b) If tis an integer such that ai It fori= 1, 2, ... , k, prove that 
[a~> a2, ..• , ak] [ t. [Hint: Denote [a!> a2, .•• , a1cJ by m. By the Division 
Algorithm, t = mq + r, with 0 ::s r < m. Show that ai[ rfor i = 1, 2, ... , k. 
Since m is the smallest positive integer with this property, what can you 
conclude about r?] 

*Induction is discussed in Appendix C. 
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32. Let a and b be integers, not both 0, and let t be a positive integer. Prove that tis 
the least common multiple of a and b if and only if t satisfies these conditions: 

(i) a I t and b I t; 

(ii) If a I c and b I c, then tIc. 

C. 33. If a> 0 and b> 0, prove that [a, b] = (c~bb )'([a, b] is defined in Exercise 31.) 

34. Prove that 

(a) (a, b) I (a + b, a - b); 

(b) if a is odd and b is even, then (a, b)= (a+ b, a- b); 

(c) if a and bare odd, then 2(a, b) = (a + b, a - b). 

Primes and Unique Factorization 

Every nonzero integer n except ± 1 has at least four distinct divisors, namely 1, -1, n, -n. 
Integers that have only these four divisors play a crucial role. 

An integer p is said to be prirne if p 4 0, .±1 and the only divisors of pare 
±1 and ±p. 

EXAMPLE 1 

3, -5, 7, -11, 13, and -17 are prime, but 15 is not (because 15 has divisors 
other than ± 1 and ± 15, such as 3 and 5). The integer 4567 is prime, but prov
ing this fact from the definition requires a tedious check of all its possible divi
sors. Fortunately, there are more efficient methods for determining whether an 
integer is prime, one of which is discussed at the end of this section. 

It is not difficult to show that there are infinitely many distinct primes (Exercise 32). 
Because an integer p has the same divisors as - p, we see that 

p is prime if and only if -p is prime. 

If p and q are both prime and pI q, thenp must be one of 1, -1, q, -q. But since pis 
prime, p -:/= ± 1. Hence, 

if p and q are prime and pI q, then p = ±q. 

Under what conditions does a divisor of a product be necessarily divide b or c? 
Theorem 1.4 gave one answer to this question. Here is another. 
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Let p be an integer with p -=f. 0, ±1. Then pis prime if and only if p has this 
property: 

whenever pI be, then pI b or pI c. 

Proof~ Since this is an "if and only if" statement, there are two parts to the proof. 

Step 1 Assume that p is prime and prove that p has the property stated in the theorem. 

Proof of Step 1: If pis prime and divides be, consider the gcd of p and b. 
Now (p, b) must be a positive divisor of the prime p. So the only possibilities 
are (p, b)= 1 and (p, b)= ±p (whichever is positive). If (p, b)= ±p, then 
pI b. If (p, b)= 1, since pI be, we must have pIc by Theorem 1.4. In every 
case, therefore, pI b or pI c. Hence, p has the property stated in the theorem. 

Step 2 Assume that p is an integer that has the property stated in the theorem and 
prove that p is prime. 

Proof of Step 2: This proof is left to the reader (Exercise 14). 1114• 

If p is prime and pI a1a2 • • • an, then p divides at least one of the ai. 

Proof~ If pI a1 (a2a3 ···an), thenp I a 1 or pI a2a3 ···an by Theorem 1.5. If pI a!> 
we are finished. If pI a2 (a3a4 • • · an), then pI a2 or pI a3a4 · • • an by 
Theorem 1.5 again. If pI a2, we are finished; if not, continue this process, 
using Theorem 1.5 repeatedly. After at most n steps, there must be an a; 

that is divisible by p. II• 

Choose an integer other than 0, ± 1. If you factor it "as much as possible," you will 
find that it is a product of one or more primes. For example, 

12 = 4 . 3 = 2 . 2 . 3, 

60 = 12 . 5 = 2 . 2 . 3 . 5, 

113 = 113 (prime). 

In this context, we allow the possibility of a "product" with just one factor in case the number 
we begin with is actually a prime. What was done in these examples can always be done: 

Every integer n except 0, ±1 is a product of primes. 

Proof~ First note that if n is a product of primes, say n = p1p 2 • • • Pk> then -n = 

( -p1)P2 ···Pic is also a product of primes. Consequently, we need prove 
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the theorem only when n > 1. The idea of the proof can be summarized 
like this: 

Let S be the set of all integers greater than 1 that are not a product of 
primes. Show that S is the empty set. Then, since there are no integers 
in S, it must be the case that every integer greater than 1 is a product of 
primes (otherwise, it would be inS). 

Proof that Sis empty: The proof is by contradiction: We assume that Sis 
not empty and use that assumption to reach a contradiction. So assume that 
Sis not empty. Then S contains a smallest integer m by the Well-Ordering 
Axiom. Since m E S, m is not itself prime. Hence m must have positive divi
sors other than 1 or m, say m = ab with 1 < a < m and 1 < b < m. Since 
both a and b are less than m (the smallest element of S ), neither a nor b is in 
S. By the definition of S, both a and b are the product of primes, say 

a= PrP2 · · · Pr and 

with r 2: 1, s 2: 1, and each Pil q1 prime. Therefore 

is a product of primes, so that m !i S. We have reached a contradiction: 
m E Sand m !t S. Therefore, S must be empty. It 

. TechnologyTip:To find tlw primefactorizatiori of integetsaslarge as l o._._q dig
its on .aTI graphing calculator, download the FACTOR program 011 our website 
(www.<;::engageBrain,coh1), The pr()gram lises Theoreml.JO, yvhich is proved on 
page 21 ,to do the factorization, Maple andMathematica can find the prime fac-
torizationof these and muchlargedntegers very quickly~ · · · · 

An integer other than 0, ± 1 that is not prime is called composite. Although a com
posite integer may have several different prime factorizations, such as 

45 = 3. 3. 5, 

45 = (- 3) . 5 . (- 3), 

45 = 5. 3. 3, 

45 = (-5). (-3). 3, 

these factorizations are essentially the same. The only differences are the order of the 
factors and the insertion of minus signs. You can readily convince yourself that every 
prime factorization of 45 has exactly three prime factors, say q1 q2q3. Furthermore, 
by rearranging and relabeling the q's, you will always have 3 = ±qb 3 = ±q2, and 
5 = ±q3. This is an example of the following theorem. 
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Every integer n except 0, ±1 is a product of primes. This prime factorization 
is unique in the following sense: If 

n = P1P2 · · · Pr and 

with each p1, q1 prime, then r = s (that is, the number of factors is the same) 
and after reordering and relabeling the q's, 

Ps = ±q3, · · · 'Pr = ±qr. 

Proof~ Every integer n except 0, ± 1 has at least one prime factorization by 
Theorem 1. 7. Suppose that n has two prime factorizations, as listed in 
the statement of the theorem. Then 

Pt(P2P3 · · · p,) = q1q2q3 · · · q., 

so that p 1l q1 q2 · · · qs. By Corollary 1 .6, p 1 must divide one of the%· By 
reordering and relabeling the q's if necessary, we may assume that p 1 l q1• 

Since p 1 and q1 are prime, we must have p 1 = ±q1• Consequently, 

Dividing both sides by q1 shows that 

P2( ±p3p4 · · · p,) = q2q3q4 · · · q., 

so that p2 l q2q3 · · · qs. By Corollary 1.6, p2 must divide one of the%; as 
before, we may assume P2l q2. Hence, p2 = ±q2 and 

±q2P3P4 · · · Pr = q2q3q4 · · · qs. 

Dividing both sides by q2 shows that 

p3(±p4 · ' 'p,.) = q3q4 · · · qs. 

We continue in this manner, repeatedly using Corollary 1.6 and elimi
nating one prime on each side at every step. If r = s, then this process 
leads to the desired conclusion: p 1 = ±qb p2 = ±q2, ... , p,. = ±q,. So 
to complete the proof of the theorem, we must show that r = s. The 
proof that r = sis a proof by contradiction: We assume that r =f. s 
(which means that r > s or that r < s), and show that this assumption 
leads to a contradiction. 

First, suppose that r > s. Then after s steps of the preceding process, all 
the q's will have been eliminated and the equation will read 

±Ps+!Ps+2 ·' 'Pr = 1. 

This equation says (among other things) that p, 11. Since the only divi
sors of 1 are ± 1, we have p,. = ± 1. However, since p, is prime, we know 
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that p,. =F ± 1 by the definition of "prime". We have reached a contradic
tion (p,. = ±1 andp,. =F ±1). So r > s cannot occur. A similar argument 
shows that the assumption r < s also leads to a contraction and, hence, 
cannot occur. Therefore, r = s is the only possibility, and the theorem is 
proved. Ill · 

Technology Tip: The FACTOR· program forTI calculators un our website 
(wvyw.CengageBrain:com) factors a:n integer n as a prodUct of primes relatively 
quickly. forexafuple, ifn 94,017,thenn .=.l;f. 112 • 37, as'showninFigurel. 

' ~. ) .. . " ' ' ' , ' ' - ' ' ' ' ' . ' ' '. ' l " ' ' ' ' 

OnMaple, the commandifactor(Ii); will proclucethe prime factorization of n . . 
' 

If consideration is restricted to positive integers, then there is a stronger version of 
unique factorization: 

Every integer n > 1 can be written in one and only one way in the form 
n = p 1 p2 p3 • · • Pn where the Pi are positive primes such that p1 :::; p2 :::; 

P3:::; · · ·:::; Pr· 

Proof~~> Exercise 12 Ill 

Primality Testing 
In theory it is easy to determine if a positive integer n is prime. Just divide n by every 
integer between 1 and n to see if n has a factor other than 1 or n. Actually, you need only 
check prime divisors because any factor of n (except 1) is divisible by at least one prime. 
The following primality test greatly reduces the number of divisions that are necessary. 

Let n > 1. If n has no positive prime factor less than or equal to Vii, then n 
is prime. 

Before proving this theorem, it may be helpful to see how it is used. 
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EXAMPLE 2 

To prove that 137 is prime, the theorem says that we must verify that 137 has no 
positive prime factors less than or equal to VI37 = 11.7; that is, we need only 
show that 2, 3, 5, 7, and 11 are not factors of 137. You can easily verify that 
none of them divide 13 7. Hence, 13 7 is prime by Theorem 1.10. 

The proof of Theorem 1.10 (like several earlier in this chapter) is somewhat more 
detailed than is necessary. In particular, the underlined parts of the proof are normally 
omitted. 

Proof of Theorem 1.10 ~ The proof is by contradiction. Suppose that n is not 
prime. Then n has at least two positive prime factors, say p 1 and p2, 

so that n = p1p2k for some positive integer k. By hypothesis, n has no 
positive prime divisors less than or equal to Vii. Hence, p 1 > Vii and 
P2 > Vii. Therefore, 

n = P1P2k::::: P1P2 > VnVn = n, 

which says that n > n, a contradiction. Since the assumption that n is not 
prime has led to a contradiction, we conclude that n is prime. 

Theorem 1.10 is useful when working by hand with relatively small numbers. 
Testing very large integers for primality, however, requires a computer and techniques 
that are beyond the scope of this book. 

Exercises 

. A. 1. Express each number as a product of primes: 

(a) 5040 

(c) 45,670 

(b) -2345 

(d) 2,042,040 

2. (a) Verify that 25 - 1 and 27 - 1 are prime. 

(b) Show that 211 - 1 is not prime. 

3. Which of the following numbers are prime: 

(a) 701 

(c) 1949 

(b) 1009 

(d) 1951 

4. Primes p and q are said to be trvin primes if q = p + 2. For example, 3 and 5 are 
twin primes; so are 11 and 13. Find all pairs of positive twin primes less than 200. 

5. (a) List all the positive integer divisors of 3s51
, where s, t E 7L and s, t > 0. 

(b) If r, s, t E 7L are positive, how many positive divisors does 2''3sst have? 

6. If p > 5 is prime and pis divided by 10, show that the remainder is 1, 3, 7, or 9. 
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7. If a, b, c are integers and pis a prime that divides both a and a + be, prove 
that pI b or pI c. 

8. (a) Verify that x - 1 is a factor of x" - 1. 

(b) If n is a positive integer, prove that the prime factorization of 22" • 3"- 1 
includes 11 as one of the prime factors. [Hint: (22

" • 3") = (22 
• 3)".] 

9. Let p be an integer other than 0, ± 1. Prove that p is prime if and only if it 
has this property: Whenever rands are integers such that p = rs, then r = 
±1 or s = ±1. 

10. Let p be an integer other than 0, ± 1. Prove that p is prime if and only if for 
eacha E .Zeither(a,p) = 1 orpla. 

11. If a, b, c, d an1 integers and pis a prime factor of both a - b and c - d, prove 
that pis a prime factor of (a+ c) - (b + d). 

12. Prove Corollary 1.9. 

13. Prove that every integer n > 1 can be written in the form p['P2' · · · p;'t, with the 
p; distinct positive primes and every r; > 0. 

14. Let p be an integer other than 0, ± 1 with this property: Whenever b and c 
are integers such that pI be, then pI b or pI c. Prove that pis prime. 
[Hint: If dis a divisor of p, say p = dt, then pI d or pI t. Show that this 
implies d = ±p or d = ± 1.] 

15. If p is prime and pI a", is it true that p" I a"? Justify your answer. 
[Hint: Corollary 1.6.] 

16. Prove that (a, b) = 1 if and only if there is no prime p such that p I a and p I b. 

17. If pis prime and (a, b) = p, then (a2
, b2

) = ? 

18. Prove or disprove each of the following statements: 

(a) If pis prime and pI (a2 + b2
) and pI (c2 + d2

), thenp I (a2
- c2

). 

(b) Ifpisprimeandpl(a2 + b2
) andpl(c2 + d2

), thenpl(a2 + c2
). 

(c) If pis prime and pI a and pI (a2 + b2
), then pI b. 

B. 19. Suppose that a = pj' p2' · · · p'if and b = P1'Pz' · · · p/{, where p" p2, •.• , Pk are 
distinct positive primes and each r;, s; :2: 0. Prove that a I b if and only if 
r; ::::::; S; for every i. 

20. If a = pj1p}'P3' · · · p'if and b = P1'Pz'P~' · · · pf(, where p" p2, .•• , Pk are distinct 
positive primes and each r;, S; :2: 0, then prove that 

(a) (a, b)= pf'p2''p31
' • • • P'k', where for each i, n; =minimum of r;, s;. 

(b) [a, b] = p\'p~'P~' · · · pff, where t; = maximum of r;, s;. [See Exercise 31 in 
Section 1.2.] 

21. If c2 = ab and (a, b) = 1, prove that a and bare perfect squares. 

22. Let n = p'j'prz' · · · p/(, where PI> p2, ••• , Pic are distinct primes and each r; :2: 0. 
Prove that n is a perfect square if and only if each r; is even. 

23. Prove that a I b if and only if a2
1 b2

• [Hint: Exercise 19.] 
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24. Prove that a I b if and only if an I bn. 

25. Let p be prime and 1 :::; k < p. Prove that p divides the binomial coefficient (f). 
[Recall that (f) = k!(pp~ k)!.] 

26. If n is a positive integer, prove that there exist n consecutive composite 
integers. [Hint: Consider (n + 1)! + 2, (n + 1)! + 3, (n + 1)! + 4, .... ] 

27. If p > 3 is prime, prove that p2 + 2 is composite. [Hint: Consider the possible 
remainders when pis divided by 3.] 

28. Prove or disprove: The sums 

1 + 2 + 4, 1 + 2 + 4 + 8, 1 + 2 + 4 + 8 + 16, ... 

are alternately prime and composite. 

29. If n E 7L and n * 0, prove that n can be written uniquely in the form n = 2"m, 
where k 2: 0 and m is odd. 

30. (a) Prove that there are no nonzero integers a, b such that a2 = 2b2
• 

[Hint: Use the Fundamental Theorem of Arithmetic.] 

(b) Prove that Y2 is irrational. [Hint: Use proof by contradiction (Appendix A). 
Assume that Y2 = a/b (with a, b E ?L) and use part (a) to reach a contradiction.] 

31. If pis a positive prime, prove that Vf5 is irrational. [See Exercise 30.] 

32. (Euclid) Prove that there are infinitely many primes. [Hint: Use proof by 
contradiction (Appendix A). Assume there are only finitely many primes 
Ph p2 , ••• , P1o and reach a contradiction by showing that the number 
p 1p2 • • • Pk + 1 is not divisible by any of Ph P2, ... , Pk·] 

33. Let p > 1. If 2P - 1 is prime, prove that pis prime. [Hint: Prove the 
contrapositive: If p is composite, so is 2P - 1.] 
Note: The converse is false by Exercise 2(b). 

C. 34. Prove or disprove: If n is an integer and n > 2, then there exists a prime p such 
that n <p < n!. 

35. (a) Let a be a positive integer. If Va is rational, prove that Va is an integer. 

(b) Let r be a rational number and a an integer such that 1;' = a. Prove that r 
is an integer. [Part (a) is the case when n = 2.] 

36. Let p, q be primes with p 2: 5, q 2: 5. Prove that 241 (p2 
- q2

). 



Definition 

Congruence in and Modular Arithmetic 

Basic concepts of integer arithmetic are extended here to include the idea of 
"congruence modulo n." Congruence leads to the construction of the set 1Ln of all 
congruence classes of integers modulo n. This construction will serve as a model 
for many similar constructions in the rest of this book. It also provides our first 
example of a system of arithmetic that shares many fundamental properties with 
ordinary arithmetic and yet differs significantly from it. 

Congruence and Congruence Classes 

The concept of "congruence" may be thought of as a generalization of the equality 
relation. Two integers a and bare equal if their difference is 0 or, equivalently, if their 
difference is a multiple of 0. If n is a positive integer, we say that two integers are con
gruent modulo n if their difference is a multiple of n. To say that a - b = nk for some 
integer k means that n divides a - b. So we have this formal definition: 

Leta, b, n be integers with n> 0. Then a is congruentto b modulo n 
[written ''a= b (modn)"], provided that n dividesa :c._ b. 

EXAMPLE 1 

17 == 5 (mod 6) because 6 divides 17 - 5 = 12. Similarly, 4 == 25 (mod 7) 
because 7 divides 4- 25 = -21, and 6 == -4 (mod 5) because 5 divides 
6- (-4) = 10. 

Remark In the notation "a == b (mod n)," the symbols "==" and "(mod n)" 
are really parts of a single symbol; "a== b" by itself is meaningless. Some texts write 
"a ==n b" instead of "a== b (mod n)." Although this single-symbol notation is advanta
geous, we shall stick with the traditional "(mod n)" notation here. 

25 
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The symbol used to denote congruence looks very much like an equal sign. This is 
no accident since the relation of congruence has many of the same properties as the 
relation of equality. For example, we know that equality is 

reflexive: a = a for every integer a; 

symmetric: if a = b, then b = a; 

transitive: if a = b and b = c, then a = c. 

We now see that congruence modulo n is also reflexive, symmetric, and transitive. 

Let n be a positive integer. For all a, b, cEZ, 

(1) a= a (mod n); 

(2) if a = b (mod n), then b =a (mod n); 

(3) if a= b (mod n) and b = c (mod n), then a= c (mod n). 

Proof~ (1) To prove that a= a (mod n), we must show that n 1 (a- a). But 
a - a = 0 and n I 0 (see Example 2 on page 9). Hence, n I (a - a) and 
a= a (mod n). 

(2) a= b (mod n) means that a - b = nk for some integer k. Therefore, 
b- a= -(a- b)= -nk = n(-k). The first and last parts of this 
equation say that n I (b- a). Hence, b =a (mod n). 

(3) If a= b (mod n) and b = c (mod n), then by the definition of 
congruence, there are integers k and t such that a - b = nk and 
b- c = nt. Therefore, 

(a- b) + (b - c) = nk + nt 

a - c = n(k + t). 

Thus n I (a - c) and, hence, a= c (mod n). Ill; 

Several essential arithmetic and algebraic manipulations depend on this key fact: 

If a = b and c = d, then a + c = b + d and ac = bd. 

We now show that the same thing is true for congruence. 

If a= b (mod n) and c = d (mod n), then 

(1) a+ c = b + d (mod n); 

(2) ac = bd (mod n). 
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Proof.,.. (1) To prove that a+ c = b + d (mod n), we must show that n divides 
(a+ c) - (b +d). Since a= b (mod n) and c = d (mod n), we know that 
n I (a - b) and n I (b - d). Hence, there are integers k and t such that 

(*) a - b = nk and c - d = nt. 

We use these facts to show that n divides (a + c) - (b + d): 

(a + c)-(b + d) = a + c- b- d 

= (a - b) + (c- d) 

= nk + nt 

(a+ c) - (b + d) = n(k +t) 

[Arithmetic] 

[Rearrange terms.] 

[a - b = nk and c - d = nt.] 

[Factor right side] 

The last equation says that n divides (a + c) - (b + d). Hence, a + c = 
b + d(modn). 

(2) We must prove that n divides ac - bd. * 
ac - bd = ac + 0 - bd 

= ac-bc +be- bd [-be+ be= 0.] 

= (a - b)c + b(c- d) [Factor first two terms and last two terms.] 

= (nk)c + b(nt) [a- b = nk and c- d = nt by(*) above.] 

ac - bd = n(kc + bt) [Factor n from each term.] 

The last equation says that n I (ac- bd). Therefore, ac = bd (mod n). 111!1· 

With the equality relation, it's easy to see what numbers are equal to a given 
number a-just a itself. With congruence, however, the story is different and leads to 
some interesting consequences. 

teta.apd. iibe.lntegetsv:~ithn >.O.Jhe •. congrqepcec~laqsofe~mqdu.lon .• · 
(denot~d [a]) isthe.setofall those integers thafa,re congruenttciam.Qdulo • 

. · n, tilat)s, · ·•· · ·· ·. ·• .. ·· · .. ····.·. · ·.· .· · · .. ·•. · · 

· .'.[a]~{bJ•bEO~··· anq b:a\moqn)}. ··.· 

To say that b =a (mod n) means that b- a= kn for some integer k or, equivalently, 
that b = a + kn. Thus 

[a] = { b I b = a (mod n)} = { b I b = a + kn with k E Z} 

= {a +kn I kEZ}. 

*The first two lines of this proof are a standard algebraic technique: Rewrite 0 in the form -X+ X 
for a suitable expression X. 
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EXAMPLE 2 

In congruence modulo 5, we have 

[9] = {9 + 5k: I kE7L} = {9, 9 ± 5, 9 ± 10,9 ± 15, ... } 

= { ... ' -11,-6, -1, 4, 9, 14, 19, 24, ... }. 

EXAMPLE 3 

The meaning of the symbol "[ ]" depends on the context. In congruence 
modulo 3, for instance, 

(2] = {2 + 3klk:E7L} = { ... , -7, -4, -1,2, 5, 8, ... }, 

but in congruence modulo 5 the congruence class [2] is the set 

{2 + 5k I kE7L} = { ... ' -13, -8, -3, 2, 7, 12, ... }. 

This ambiguity will not cause any difficulty when only one modulus is 
under discussion. On the few occasions when several moduli are discussed 
simultaneously, we avoid confusion by denoting the congruence class of a 
modulo n by [a] 11 • 

EXAMPLE 4 

In congruence modulo 3, the congruence class 

[2] = { ... ' -7, -4, -1, 2, 5, 8, ... }. 

Notice, however, that [ -1] is the same class because 

(-1] = {-1 + 3kl kE7L} = { ... , -7, -4, -1, 2, 5, ... }. 

Furthermore, 2 = -1 (mod 3). This is an example of the following theorem. 

a= c (mod n) if and only if [a]= [c]. 

Since Theorem 2.3 is an "if and only if" statement, we must prove two different 
things: 

1. If a= c (mod n), then [a] = [c]. 

2. If [a] = [c], then a= c (mod n). 

Neither of these proofs will use the definition of congruence. Instead, the proofs will 
use only the fact that congruence is reflexive, symmetric, and transitive (Theorem 2.1). 
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Proof of Theorem 2.3~~> First, assume that a= c (mod n). To prove that [a]= [c], we first 
show that [a]<;:;;; [ c]. To do this, let b E [a]. Then by definition b = a (mod n ). Since 
a= c (mod n), we have b = c (mod n) by transitivity. Therefore, bE [c) and 
[a]<;:;;; [ c]. Reversing the roles of a and c in this argument and using the fact that 
c =a by symmetry, show that [c] <;:;;;[a]. Therefore, [a] = [c]. 

Conversely, assume that [a] = [c]. Since a= a (mod n) by reflexivity, 
we have a E [a] and, hence, a E [c]. By the definition of [c], we see that 
a = c (mod n). Ill. 

If A and Care two sets, there are usually three possibilities: Either A and Care dis
joint, or .4 = C, or A n Cis nonempty but A =I= C. With congruence classes, however, 
there are only two possibilities: 

Two congruence classes modulo n are either disjoint or identical. 

Proof~~> If [a] and [c] are disjoint, there is nothing to prove. Suppose that 
[a] n [c) is nonempty. Then there is an integer b with bE [a] and bE [c]. 
By the definition of congruence class, b =a (mod n) and b = c (mod n). 
Therefore, by symmetry and transitivity, a= c (mod n). Hence, [a] = [c] 
by Theorem 2.3. 

Let n > 1 be an integer and consider congruence modulo n. 

(1) If a is any integer and r is the remainder when a is divided by n, then 
[a]= [r]. 

(2) There are exactly n distinct congruences classes, namely, [0], [1], 
[2], ... , [n- 1]. 

Proof~~> (1) Let a EZ. By the Division Algorithm, a= nq + r, with 0:::; r < n. 
Thus a - r = qn, so that a= r (mod n). By Theorem 2.3, [a] = [r]. 
(2) If [a] is any congruence class, then (1) shows that [a] = [r] with 
0:::; r < n. Hence, [a] must be one of [0], [1], [2], ... , [n- 1]. 

To complete the proof, we must show that these n classes are all distinct. 
To do this, we first show that no two of 0, 1, 2, ... , n - 1 are congruent 
modulo n. Suppose that sand tare distinct integers in the list 0, 1, 2, ... , 
n - 1. Then one is larger than the other, say t, so that 0 :::; s < t < n. 
Consequently, t - sis a positive integer that is less than n. Hence, n does 
not divide t - s, which means that t =I= s. Thus, no two of 0, 1, 2, ... 1 

n - 1 are congruent modulo n. Therefore, by Theorem 2.3, the classes [0], 
[1 ], [2], ... , [ n - 1] are all distinct. Ill 
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Definition ·,: .:·-.,<:.--'. 1.'··\~·,·, :;·;;:-·''.:,,_'·(- . '_,:_··:·•' -,::>:-<>--;·;,',;_-:,-·_:;,;:',·,:.,''_ .. __ -. ,''-·," ·:.-_' ,_. ,"-\ _.:-·_'_, '_., '·.'-
The set of all congruencE:J classes.modulo .ni9 denoted 74 (which Js read 
"Zrnodr)").:' ··· · ' · · · .... ·.· · ····· · · ··. 

There are several points to be careful about here. The elements of Zn are classes, 
not single integers. So the statement [5] E Zn is true, but the statement 5 E Zn is not. 
Furthermore, every element of Zn can be denoted in many different ways. For example, 
we know that 

2 = 5 (mod 3) 2 = -1 (mod 3) 2 = 14 (mod 3). 

Therefore, by Theorem 2.3, [2] = [5] = [ -1] = [14] in Z3. Even though each element 
of Zn (that is, each congruence class) has infinitely many different labels, there are only 
finitely many distinct classes by Corollary 2.5, which says in effect that 

The set Z11 has exactly n elements. 

For example, the set Z3 consists of the three elements [0], [1], [2]. 

Exercises 

A. 1. Show that aP- 1 = 1 (mod p) for the given p and a: 

(a) a= 2,p = 5 (b) a= 4,p = 7 (c) a= 3,p = 11 

2. (a) If k = 1 (mod 4), then what is 6k + 5 congruent to modulo 4? 

(b) If r = 3 (mod 10) and s = -7 (mod 10), then what is 2r + 3s congruent to 
modulo 10? 

3. Every published book has a ten-digit ISBN-10 number (on the back cover 
or the copyright page) that is usually of the form x 1-x2x3xcx5x6x7x8x9-x10 

(where each xi is a single digit).* The first 9 digits identify the book. The last 
digit x10 is a check digit; it is chosen so that 

10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10 = 0 (mod 11). 

If an error is made when scanning or keying an ISBN number into a computer, 
the left side of the congruence will not be congruent to 0 modulo 11, and the 
number will be rejected as invalid. t Which of the following are apparently valid 
ISBN numbers? 

(a} 3-540-90518-9 (b) 0-031-10559-5 (c) 0-385-49596-X 

*Sometimes the last digit of an ISBN number is the letter X. In such cases, treat X as if it were the 
number 10. 

tThe procedures in Exercises 3 and 4 will detect every single digit substitution error (for instance, 
3 is entered as 8 and no other error is made).They will detect about 90% of transposition errors (for 
instance, 74 is entered as 47 and no other error is made). However, they may not detect multiple errors. 
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4. Virtually every item sold in a store has a 12-digit UPC barcode which is scanned 
at the checkout counter. The first 11 digits of a UPC number d1d2d3• • • • dnd12 

identify the manufacturer and product. The last digit d12 is a check digit which 
is chosen so that 

3d1 + d2 + 3d3 + d4 + 3d5 + d6 + 3d7 + d8 + 3d9 + d10 + 3dn + d12 = 0 (mod 10). 

If the congruence does not hold, an error has been made and the item must 
be scanned again, or the UPC code entered by hand. Which of the following 
UPC numbers were scanned incorrectly? 

(a) 037000356691 (b) 833732000625 (c) 040293673034 

5. (a) Which of [0], [1], [2], [3] is equal to [52000
] in~? [Hint: 5 = 1 (mod 4); use 

Theorems 2.2 and 2.3.] 

(b) Which of [0], [1], [2], [3], [4] is equal to [42001
] in 7l.5? 

6. If a= b (mod n) and kIn, is it true that a= b (mod k)? Justify ;:our answer. 

7. If a E LZ: prove that a2 is not congruent to 2 modulo 4 or to 3 modulo 4. 

8. Prove that every odd integer is congruent to 1 modulo 4 or to 3 modulo 4. 

9. Prove that 

(a) (n - a)2 = a2 (mod n) (b) (2n - a)2 = a2 (mod 4n) 

10. If a is a nonnegative integer, prove that a is congruent to its last digit mod 10 
[for example, 27 = 7 (mod 10)]. 

B.11. If a, bare integers such that a= b (mod p) for every positive prime p, prove 
that a= b. 

12. If p;:::: 5 and pis prime, prove that [p] = [1] or [p] = [5] in~· 
[Hint: Theorem 2.3 and Corollary 2.5.] · 

13. Prove that a= b (mod n) if and only if a and b leave the same remainder when 
divided by n. 

14. (a) Prove or disprove: If ab = 0 (mod n), then a= 0 (mod n) orb= 0 (mod n). 

(b) Do part (a) when n is prime. 

15. If (a, n) = 1, prove that there is an integer b such that ab = 1 (mod n). 

16. If [a] = [1] in 7Lm prove that (a, n) = 1. Show by example that the converse 
may be false. 

17. Prove that 1 0" = ( -1)" (mod 11) for every positive n. 

18. Use congruences (not a calculator) to show that 
(125698) (23797) -=/=- 2891235306. [Hint: See Exercise 21.] 

19. Prove or disprove: If [a] = [b] in ?L"' then (a, n) = (b, n). 

20. (a) Prove or disprove: If a2 = b2 (mod n), then a= b (mod n) or 
a= -b (mod n). 

(b) Do part (a) when n is prime. 
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21. (a) Show that 1 0" = 1 (mod 9) for every positive n. 

(b) Prove that every positive integer is congruent to the sum of its digits mod 
9 [for example, 38 = 11 (mod 9)]. 

22. (a) Give an example to show that the following statement is false: If ab = ac 
(mod n) and a =I= 0 (mod n), then b = c (mod n). 

(b) Prove that the statement in part (a) is true whenever (a, n) = 1. 

EXCURSION: The Chinese Remainder Theorem (Section 14.1) may be 
covered at this point if desired. 

Modular Arithmetic 

The finite set 7L, is closely related to the infinite set ?L. So it is natural to ask if it is 
possible to define addition and multiplication in 7L, and do some reasonable kind of 
arithmetic there. To define addition in 7L, we must have some way of taking two classes 
in 7L, and producing another class-their sum. Because addition of integers is defined, 
the following tentative definition seems worth investigating: 

The sum of the classes [a] and [c] is the class containing a + cor, in symbols, 

[a] (B [c] = [a + c], 

where addition of classes is denoted by (B to distinguish it from ordinary addition of 
integers. 

We can try a similar tentative definition for multiplication: 

The product of [a] and [c] is the class containing ac: 

[a] 0 [c] = [ac], 

where 0 denotes multiplication of classes. 

EXAMPLE 1 

In 7!_5 we have [3] (B [4] = [3 + 4] = [7] = [2] and [3] 0 [2] = [3 · 2] = [6] = [1]. 

Everything seems to work so far, but there is a possible difficulty. Every element of 
7L, can be written in many different ways. In 7L5, for instance, [3] = [13] and [4] = [9]. In 
the preceding example, we saw that [3] (B [4] = [2] in 7L5. Do we get the same answer if 
we use [13] in place of [3] and [9] in place of [4]? Inthis case the answer is "yes" because 

[13] (B [9] = [13 + 9] = [22] = [2]. 

But how do we know that the answer will be the same no matter which way we write 
the classes? 
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To get some idea of the kind of thing that might go wrong, consider these five 
classes of integers: 

A = { ... , -14, -8, -2, 0, 6, 12, 18, ... } 

B = { ... , -11,-7, -3, 1, 5, 9, 13, ... } 

c = { ... ,-9, -5, -1, 3, 7, 11, 15, ... } 

D = { ... , -16,-10,-4, 2, 8, 14, 20, ... } 

E = { ... , -18, -12, -6, 4, 10, 16, 22, ... }. 

These classes, like the classes in 1'.5, have the following basic properties: Every integer 
is in one of them, and any two of them are either disjoint or identical. Since 1 is in B 
and 7 is in C, we could define B + Cas the class containing 1 + 7 = 8, that is, B + C = 
D. But B is also the class containing -3 and C the class containing 15, and soB+ C 
ought to be the class containing -3 + 15 = 12. But 12 is in A, so that B + C =A. Thus 
you get different answers, depending on which "representatives" you choose from the 
classes B and C. Obviously you can't have any meaningful concept of addition if the 
answer is one thing this time and something else another time. 

In order to remove the word "tentative" from our definition of addition and mul
tiplication in E."' we must first prove that these operations do not depend on the 
choice of representatives from the various classes. Here is what's needed: 

If [a]= [b] and [c] = [d] in En. then 

[a+ c] = [b + d] and [ac] = [bd]. 

Proof~> Since [a] = [b], we know that a= b (mod n) by Theorem 2.3. Similarly, 
[c] = [d] implies that c = d (mod n). Therefore, by Theorem 2.2, 

a+ c = b + d (mod n) and ac = bd (mod n). 

Hence, by Theorem 2.3 again, 

[a + c] = [b + d] and [ac] = [bd]. Ill 

Because of Theorem 2.6, we know that the following formal definition of addition 
and multiplication of classes is independent of the choice of representatives from each 
class: 

. ·Addition anclrnl.lltiplication in· En are cteflil~d by 

[a +0] ... and 
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EXAMPLE 2 

Here are the complete addition and multiplication tables for 7L5 (verify that 
these calculations are correct):* 

EB [0] [1] [2] [3] [4] 0 [0] [1] [2] [3] [4] 
[0] [0] [1] [2] [3] [4] [0] [0] [0] [0] [0] [0] 
[1] [1] [2] [3] [4] [0] [1] [0] [1] [2] [3] [4] 
[2] [2] [3] [4] [0] [1] [2] [0] [2] [4] [1] [3] 
[3] [3] [4] [0] [1] [2] [3] [0] [3] [1] [4] [2] 
[4] [4] [0] [1] [2] [3] [4] [0] [4] [3] [2] [1] 

And here are the tables for 7L6: 

EB [0] [1] [2] [3] [4] [5] 
[0] [0] [1] [2] [3] [4] [5] 
[1] [1] [2] [3] [4] [5] [0] 
[2] [2] [3] [4] [5] [0] [1] 
[3] [3] [4] [5] [0] [1] [2] 
[4] [4] [5] [0] [1] [2] [3] 
[5] [5] [0] [1] [2] [3] [4] 

0 [0] [1] [2] [3] [4] [5] 
[0] [0] [0] [0] [0] [0] [0] 
[1] [0] [1] [2] [3] [4] [5] 
[2] [0] [2] [4] [0] [2] [4] 
[3] [0] [3] [0] [3] [0] [3] 
[4] [0] [4] [2] [0] [4] [2] 
[5] [0] [5] [4] [3] [2] [1] 

Properties of Modular Arithmetic 
Now that addition and multiplication are defined in ?4,we want to compare the properties 
of these "miniature arithmetics" with the well-known properties of 7L. The key facts about 
arithmetic in 7L (and the usual titles for these properties) are as follows. For all a, b, c E 7L: 

1. If a, b E 7L, then a + bE 7L. [Closure for addition] 

2. a+ (b+ c)= (a+ b)+ c. [Associative addition] 

3. a+ b = b +a.· [Commutative addition] 

4. a + 0 = a = 0 + a. [Additive identity] 

*These tables are read like this: If [a] appears in the left-hand vertical column and [c] in the top 
horizontal row of the addition table, for example, then the sum [a] EEl [c] appears at the intersection 
of the horizontal row containing [a] and the vertical column containing [c]. 



5. For each a E /Z, the equation 
a + x = 0 has a solution in /Z. 

6. If a, b E /Z, then ab E /Z. 

7. a(bc) = (ab)c. 

8. a(b + c)= ab + ac and 

(a+ b)c = ac +be. 

9. ab = ba 

10. a • 1 = a = 1 · a 

11. If ab = 0, then a = 0 orb = 0. 

2.2 Modular Arithmetic 35 

[Closure for multiplication] 

. [Associative multiplication] 

[Distributive laws] 

[Commutative multiplication] 

[Multiplicative identity] 

By using the tables in the preceding example, you can verify that the first ten of 
these properties hold in 2 5 and 2 6 and that Property 11 holds in 2 5 and fails in 
2 6• But using tables is not a very efficient method of proof (especially for verify
ing associativity or distributivity). So the proof that Properties 1-10 hold for 
any lln is based on the definition of the operations in lln and on the fact that 
these properties are known to be valid in /Z. 

For any classes [a], [b], [c] in !ln. 

1. If [a] E!ln and [b] E!Zn, then [a]<±! [b] E!Zn. 
2. [a]<±! ([b] <±! [c]) =([a]<±! [b]) <±! [c]. 

3. [a] <±! [b] = [b] <±! [a]. 

4. [a]<±! [OJ = [a] = [OJ<±! [a]. 

5. For each [a] in !Zn, the equation [a]<±! X= [OJ has a solution in !ln. 
6. If [a] Elln and [b] E!Zn, then [a] 8 [b] E!Zn. 
7. [a] 8 ([b] 8 [c]) =([a] 8 [b]) 8 [c]. 

8. [a] 8 ([b] <±! [c]) =[a] 8 [b] <±![a] 8 [c] and 

([a]<±! [b]) 8 [c] =[a] 8 [c] <±! [b] 8 [c]. 

9. [a] 8 [b] = [b] 8 [a]. 

10. [a] 8 [1] =[a]= [1] 8 [a]. 

Proof~ Properties 1 and 6 are an immediate consequence of the definition of <±! 
and 0 in llw 

To prove Property 2, note that by the definition of addition, 

[a]<±! ([b] <±! [c]) =[a]<±! [b + c] =[a+ (b +c)]. 

In ll we know that a+ (b + c)= (a+ b)+ c. So the classes of these 
integers must be the same in !ln; that is, [a+ (b +c)] = [(a+ b)+ c]. By 
the definition of addition in !ln, we have 

[(a+ b)+ c] =[a+ b] <±! [c] =([a]<±! [b]) <±! [c]. 
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This proves Property 2. The proofs of Properties 3, 7, 8, and 9 are 
analogous (Exercise 10). 

Properties 4 and 10 are proved by a direct calculation; for instance, 
[a] 8 [1] =[a· 1] =[a]. 

For Property 5, it is easy to see that X= [-a] is a solution of the 
equation since [a] <f) [-a] = [a + (-a)] = [0). II 

Exponents and Equations 

The same exponent notation used in ordinary arithmetic is also used in 74,. If [a] E 74,, 
and k is a positive integer, then [at denotes the product 

[a] 8 [a] 8 [a] 8 · · · 8 [a] (k factors). 

EXAMPLE 3 

In Z 5, [3f = [3] 8 [3] = [4] and [3]4 = [3] 8 [3] 8 [3] 8 [3] = [1). 

As noted on page 9, the set 7L11 has exactly n elements. Consequently, any equation 
in 7L11 can be solved by substituting each of these n elements in the equation to see 
which ones are solutions. 

EXAMPLE 4 

To solve x2 <f) [5] 8 x = [0] in Zr,, substitute each of [0], [1], [2], [3], [4], and [5] 
in the equation to see if it is a solution: 

X x 2 <f) [5] 8 x Is x2 <f) [5] 8 x = [0]? 

[0] [0]8[0] <:8 [5]8[0] = [0] <:8 [0] = [0] Yes; solution 

[1] [1]8[1] <:8 [5)8[1] = [1] <:8 [5) = [0] Yes; solution 

[2] [2]8 [2] <:8 [5]8[2] = [4] <:8 [4] = [2] No 

[3] [3)8[3] <:8 [5)8[3] = [3] <:8 [3] = [0] Yes; solution 

[4] [4]8[4] <:8 [5)8[4] = [4] <:8 [2] = [0) Yes; solution 

[5) [5]8[5) <:8 [5)8[5) = [1] <:8 [1] = [2] No 

So the equation has four solutions: [0], [1], [3], and [4). 

Example 4 shows that solving equations in 7L 11 may be quite different from solving 
equations in 7L. A quadratic equation in 7L has at most two solutions, whereas the 
quadratic equation x2 <f) [5]0x = [0] has four solutions in 7L 6. 

Exercises 

A. 1. Write out the addition and multiplication tables for 

(a) 7Lz (b) £4 
In Exercises 2-8, solve the equation. 

2. x2 <f) x = [0] in £4 

(d) 7L12 
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3. x 2 = [1] in 1:'8 

4. x4 = [1] in 1:'5 

5. x2 (£) [3] 0 x (£) [2] = [0] in ~ 

6. x2 (£) [8] 0 x = [0] in £9 
7. x3 (£) x2 (£) x (£) [1] = [0] in 1:'8 

8. x3 + x2 = [2] in 1:'10 

9. (a) Find an element [a] in 1:'7 such that every nonzero element of 1:'7 is a power 
of [a]. 

(b) Do part (a) in 1:'5. (c) Can you do part (a) in~? 

10. Prove parts 3, 7, 8, and 9 of Theorem 2.7. 

11. Solve the following equations. 

(a) X(£} X(£} X = [0] in 1:'3 

(b) X (£} X (£} X (£} X = [0] in 1:'4 

(c) X(£} X(£} X(£} X(£} X = [0] in 1:'5 

12. Prove or disprove: If [a] 0 [b] = [0] in 1:',, then [a] = [0] or [b] = [0]. 

13. Prove or disprove: If [a] 0 [b] = [a] 0 [c] and [a] =I= [0] in 1:'"' then [b] = [c]. 

B. 14. Solve the following equations. 

(a) x2 + x = [0] in 1:'5 

(b) x2 + x = [0] in ~ 

(c) If pis prime, prove that the only solutions of x2 + x = [0] in ZP are [0] and 
[p - 1]. 

15. Compute the following products. 

(a) ([a](£) [b])2 in 1:'2 

(b) ([a](£) [b])3 in 1:'3 [Hint: Exercise ll(a) may be helpful.] 

(c) ([a](£) [b])5 in 1:'5 [Hint: See Exercise 11(c).] 

(d) Based on the results of parts (a)-( c), what do you think ([a](£) [b]f is 
equal to in 1:'7? 

16. (a) Find all [a] in 1:'5 for which the equation [a] 0 x = [1] has a solution. Then 
do the same thing for 

(b)14 (d)~ 

The Structure of ll.P (p Prime) and ll.n 

We now present some facts about the structure of 1:'11 (particularly when n is prime) 
that will provide a model for our future work. First, however, we make a change of 
notation. 
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New Notation 

We have been very careful to distinguish integers in 7L and classes in 7L11 and have 
even used different symbols for the operations in the two systems. By now, however, 
you should be reasonably comfortable with the fundamental ideas and familiar with 
arithmetic in ?Ln- So we shall adopt a new notation that is widely used in mathemat
ics, even though it has the flaw that the same symbol represents two totally different 
entities. 

Whenever the context makes clear that we are dealing with ?Lm we shall abbrevi
ate the class notation "[a]" and write simply "a." In 7L6, for instance, we might say 
6 = 0, which is certainly true for classes in ~ even though it is nonsense if 6 and 
0 are ordinary integers. We shall use an ordinary plus sign for addition in 7L

11 
and 

either a small dot or juxtaposition for multiplication. For example, in 7L5 we may 
write things like 

4+1=0 or 3. 4 = 2 or 4 + 4 = 3. 

On those few occasions where this usage might cause confusion, we will return to the 
brackets notation for classes. 

EXAMPlE 1 

In this new notation, the addition and multiplication tables for 7L3 are 

+ 
0 

2 

0 

0 

2 

1 

1 

2 

0 

2 

2 

0 

1 

0 

1 

2 

0 

0 

0 

0 

1 

0 

1 

2 

2 

0 

2 

1 

CAUTION: Exponents are ordinary integers-not elements of 7L11 • In 7L3, 

for instance, 24 = 2 · 2 · 2 · 2 = 1 and 21 = 2, so that 24 =f- 21 

even though 4 = 1 in 7L3• 

The Structure of 7LP When p Is Prime 
Some of the 7L11 do not share all the nice properties of 7L. For instance, the product 
of nonzero integers in 7L is always nonzero, but in ~ we have 2 · 3 = 0 even though 
2 i= 0 and 3 i= 0. On the other hand, the multiplication table on page 34 shows that the 
product of nonzero elements in 7L5 is always nonzero. Indeed, 7L5 has a much stronger 
property than ?L. When a i= 0, the equation ax= 1 has a solution in 7L if and only if 
a = ± 1. But the multiplication table for 7L5 shows that, for any a i= 0, the equation 
ax = 1 has a solution in 7L5; for example, 

x = 3 is a solution of 2x = 1 

x = 4 is a solution of 4x = 1. 
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More generally, whenever n is prime, ?Ln has special properties: 

If p > 1 is an integer, then the following conditions are equivalent:* 

(1) p is prime. 

(2) For any a =f:. 0 in ?LP, the equation ax= 1 has a solution in ?LP. 

(3) Whenever be = 0 in ?LP, then b = 0 or c = 0. 

The proof of this theorem illustrates the two basic techniques for proving state
ments that involve ?L": 

(i) Translate equations in ?L" into equivalent congruence statements in ?L. Then 
the properties of congruence and arithmetic in 7L can be used. The brackets 
notation for elements of ?L" may be necessary to avoid confusion. 

(ii) Use the arithmetic properties of 1Ln directly, without involving arithmetic in ?L. 
In this case, the brackets notation in ?L" isn't needed. 

Proof ofTheorem 2.8 I» (1) =:}- (2) We use the first technique. Suppose pis prime 
and [a] =f:. [0] in ?LP' Then in ?L, a =I= 0 (mod p) by Theorem 2.3. Hence, 
p 1 a by the definition of congruence. Now the gcd of a and pis a posi
tive divisor of p and thus must be either p or 1. Since (a, p) also divides 
a and p 1 a, we must have (a,p) = 1. By Theorem 1.2, au+ pv = 1 for 
some integers u and v. Hence, au- 1 = p( -v), so that au= 1 (mod p). 
Therefore [au] = [1] in ?LP by Theorem 2.3. Thus [a][u] = [au] = [1], so 
that x = [u] is a solution of [a]x = [1]. 

(2) =?- (3) We use the second technique. Suppose ab = 0 in 7!.-r If 
a = 0, there is nothing to prove. If a =f:. 0, then by (2) there exists u E ?LP 
such that au = 1. Then 

0 = u · 0 = u(ab) = (ua)b = (au)b = 1 • b = b 

In every case, therefore, we have a= 0 orb= 0. 

(3) =?- (1) Back to the first technique. Suppose that band e are any 
integers and that pI be. Then be= 0 (mod p). So by Theorem 2.3, 

[b][e] =[be]= [0] in ?LP' 

Hence, by (3), we have [b] = [0] or [e] = [0]. Thus, b = 0 (mod p) ore= 0 
(mod p) by Theorem 2.3, which means that p I b or p I e by the definition 
of congruence. Therefore, p is prime by Theorem 1. 5. ll!ft 

The Structure of ll..n 
When n is not prime, the equation ax = 1 need not have a solution in ~,. For instance, 
the equation 2x = 1 has no solution in 7L4, as you can easily verify. The next result tells 
us exactly when ax = 1 does have a solution in ?Ln. For clarity, we use brackets notation. 

*See page 508 in Appendix A for the meaning of "the following conditions are equivalent" and what 
must be done to prove such a statement. 

' 
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Let a and n be integers with n > 1. Then 

The equation [a]x = [1] has a solution in 74, if and only if (a, n) = 1 in ?L. 

Proof~> Since this is an "if and only if" statement, the proof has two parts. 
First we assume that the equation has a solution and show that (a, n) = 1. 
If [w] is a solution of [a]x = [1], then 

[a][w] = [1] 

[aw] = [1] 

aw = 1 (mod n) in 7L 

aw - 1 = kn for some integer k 

aw + n(-k) = 1 

[Multiplication in 7L11] 

[Theorem 2.3] 

[Definition of congruence] 

[Rearrange terms] 

Denote (a, n) by d. Since dis a common divisor of a and n, there are inte
gers r and s such that dr = a and ds = n. So we have 

aw + n(-k) = 1 

drw + ds(-k) = 1 

d(rw- sk) = 1. 

So d 11. Since dis positive by definition, we must have d = 1, that is, (a, n) = 1. 
Now we assume that (a, n) = 1 and show that [a]x = [1] has a solu

tion in ?Ln- Actually, we've already done this. In the proof of (1) =? (2) 
of Theorem 2.8, the primeness of pis used only to show that (a,p) = 1. 
From there on, the proof is valid in any 7L11 when (a, n) = 1, and shows 
that [a]x = [1] has a solution in 7L11 • Ill 

Units and Zero Divisors 
Some special terminology is often used when dealing with certain equations. An ele
ment a in 7L11 is called a unit if the equation ax = 1 has a solution. In other words, a is 
a unit if there is an element b in 7L11 such that ab = 1. In this case, we say that b is the 
inverse of a. Note that ab = 1 also says that b is a unit (with inverse a). 

EXAMPLE 2 

Both 2 and 8 are units in 7L15 because 2 · 8 = 1. 8 is the inverse of 2 and 2 is the 
inverse of 8. Similarly, 3 is a unit in £4 because 3 · 3 = 1. So 3 is its own inverse. 

EXAMPLE 3 

Part (2) of Theorem 2.8 says that when pis prime, every nonzero element of ?LP 
is a unit. 

Here is a restatement of Theorem 2.9 in the terminology of units. 
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Let a and n be integers with n > 1. Then 

[a] is a unit in 1Ln if and only if (a, n) = 1 in 7L. 

A nonzero element a of 7Ln is called a zero divisor if the equation ax = 0 has a 
nonzero solution (that is, if there is a nonzero element c in 1Ln such that ac = 0). 

EXAMPlE 4 

Both 3 and 5 are zero divisors in 7L15 because 3 · 5 = 0. Similarly, 2 is a zero 
divisor in 7L4 because 2 · 2 = 0. 

EXAMPlE 5 

Part (3) of Theorem 2.8 says that when pis prime, there are no zero divisors in 7LP' 

Exercises 

A. 1. Find all the units in 

(b) 7Ls (d) 7LIO. 

2. Find all the zero divisors in 

(b) 7Ls (c) 7l.g 

3. Based on Exercises 1 and 2, make a conjecture about units and zero divisors 
in ?Ln. 

4. How many solutions does the equation 6x = 4 have in 

5. If a is a unit and b is a zero divisor in 7Lm show that ab is a zero divisor. 

6. Ifn is composite, prove that there is at least one zero divisor in 7Ln- (See 
Exercise 2.) 

7. Without using Theorem 2.8, prove that if pis prime and ab = 0 in 7LP, then 
a = 0 orb = 0. [Hint: Theorem 1.8.] 

8. (a) Give three examples of equations of the form ax = bin 7L12 that have no 
nonzero solutions. 

(b) For each of the equations in part (a), does the equation ax= 0 have a 
nonzero solution? 

B. 9. (a) If a is a unit in 7Lm prove that a is not a zero divisor. 

(b) If a is a zero divisor in 1Lm prove that a is not a unit. [Hint: Think 
contrapositive in part (a).] 
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10. Prove that every nonzero element of 7Ln is either a unit or a zero divisor, but 
not both. [Hint: Exercise 9 provides the proof of "not both".] 

11. Without using Exercises 13 and 14, prove: If a, b E7Ln and a is a unit, then the 
equation ax = b has a unique solution in Zw [Note: You must find a solution 
for the equation and show that this solution is the only one.] 

12. Let a, b, n be integers with n > 1 and let d = (a, n). If the equation [a]x = [b] 
has a solution in 7Lm prove that d I b. [Hint: If x = [r] is a solution, then [ar] = 
[b] so that ar - b = kn for some integer k.] 

13. Let a, b, n be integers with n > 1. Let d =(a, n) and assumed I b. Prove that 
the equation [a]x = [b] has a solution in 7Ln as follows. 

(a) Explain why there are integers u, v, a!> b!> n1 such that au + nv = d, 
a= da" b = db1, n = dn1• 

(b) Show that each of 

[ubJ], [ub 1 + nJ], [ub 1 + 2nd, [ubi> + 3nJ], ... , [ub1 + (d- l)n1] 

is a solution of [a]x = [b]. 

14. Let a, b, n be integers with n > 1. Let d = (a, n) and assumed I b. Prove that 
the equation [a]x = [b] has d distinct solutions in 7Ln as follows. 

(a) Show that the solutions listed in Exercise 13 (b) are all distinct. 
[Hint: [r] = [s] if and only if n I (r - s).] 

(b) If x = [r] is any solution of [a]x = [b], show that [r] = [ub1 + kn1] for some 
integer k with 0:::; k:::; d- 1. [Hint: [ar] - [aub 1] = [0] (Why?), so that 
n I (a(r- ub1)). Show that n1 I (a1(r- ub1)) and use Theorem 1.4 to show 
that n1 I (r - ub1).] 

15. Use Exercise 13 to solve the following equations.s 

(a) 15x = 9 in 7L18 (b) 25x = 10 in ~5 . 

16. If a -=/= 0 and b are elements of 7Ln and ax = b has no solutions in 7Lm prove that 
a is a zero divisor. 

17. Prove that the product of two units in 7L, is also a unit. 

18. The usual ordering of 7L by < is transitive and behaves nicely with respect to 
addition. Show that there is no ordering of 7Ln such that 

(i) if a < b and b < c, then a < c; 

(ii) if a < b, then a + c < b + c for every c in ?Ln. 

[Hint: If there is such an ordering with 0 < 1, then adding 1 repeatedly to both 
sides shows that 0 < 1 < 2 < · · · < n - 1 by (ii). Thus 0 < n - 1 by (i). Add 1 
to each side and get a contradiction. Make a similar argument when 1 < 0.] 

APPLICATION: Public Key Cryptography (Chapter 13) may be covered 
at this point if desired. 



Rings 

AlTERNATE ROUTE: If you want to cover groups before studying rings, 
you should read Chapters 7 and 8 now. 

We have seen that many rules of ordinary arithmetic hold not only in 7L but also in 
the miniature arithmetics 1Ln. You know other mathematical systems, such as the 
real numbers, in which many of these same rules hold. Your high-school algebra 
courses dealt with the arithmetic of polynomials. 

The fact that similar rules of arithmetic hold in different systems suggests 
that it might be worthwhile to consider the common features of such systems. 
In the long run, this might save a lot of work: If we can prove a theorem about one 
system using only the properties that it has in common with a second system, 
then the theorem is also valid in the second system. By "abstracting" the com
mon core of essential features, we can develop a general theory that includes 
as special cases 7L, 1Ln, and the other familiar systems. Results proved for this 
general theory will apply simultaneously to all the systems covered by the theory. 
This process of abstraction will allow us to discover the real reasons a particular 
statement is true (or false, for that matter) without getting bogged down in non
essential details. In this way a deeper understanding of all the systems involved 
should result. 

So we now begin the development of abstract algebra. This chapter is just 
the first step and consists primarily of definitions, examples, and terminology. 
Systems that share a minimal number of fundamental properties with 7L and 1Ln 
are called rings. Other names are applied to rings that may have additional prop
erties, as you will see in Section 3.1. The elementary facts about arithmetic and 
algebra in arbitrary rings are developed in Section 3.2. In Section 3.3 we consider 
rings that appear to be different from one another but actually are "essentially the 
same" except for the labels on their elements. 

43 
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Definition 

Definition 

Definition 

Definition and Examples of Rings 

We begin the process of abstracting the common features of familiar systems with this 
definition: 

A ring is a non empty set R equipped with two operations* (usually written· 
as addition and rnultipl ication)that satisfy the foliowi ng axioms. For oJI a, 

.. b,cER.: . 

1, lf.a ERandb E:R1then a+ b E.R. 

2. a+ (b +c)= (a+ b) +c: 

3. a +b = b+a. 

4: There is an ~lementW in R such . 
tha.t a+ OR =a =OR+ a for every 
aER, 

5. For eac;:h aER, the equation 
·.a + x =OR has a solution in R.+ 

6. If a ER ahdb ER,thenab ER. 

7 . . a(bc) = (ab)c. 
•' 

8 .. a(b t c)= ab + ac and 
(a+ b)c = ac+bc. · 

· [Closure for addition] 
- . _,· ,-

[Associative additio~] 

[Commutative additlorl] 

[Additive identity 
or zero element] 

[Ciosurefor multiplication] 

·. [f\ssoclative multiplication] 

[Distributive laws] 

These axioms are the bare minimum needed for a system to resemble 7l. and 7l.,. But 
· 7l. and 7l., have several additional properties that are worth special mention: 

Acornmutative ring is a ring R that satisfies this axiom: 

9. ab = bcdor all a, b ER. [Commutative multiplication] 

. A ring with identity .is a ring R that contains an elernent 1R satisfying this 
axiom: 

[Multiplicative identity] 

*"Operation" and "closure" are defined in Appendix B. 

tThose who have already read Chapter 7 should note that Axioms 1-5 simply say that a ring is an 
abelian group under addition. 



3.1 Definition and Examples of Rings 45 

In the following examples, the verification of most of the axioms is left to the 
reader. 

EXAMPLE 1 

With the usual addition and multiplication, 

7L (the integers) and IR (the real numbers) 

are commutative rings with identity. 

EXAMPlE 2 

The set 7Lm with the usual addition and multiplication of classes, is a commuta
tive ring with identity by Theorem 2.7. 

EXAMPlE 3 

Let E be the set of even integers with the usual addition and multiplication. 
Since the sum or product of two even integers is also even, the closure 
axioms ( 1 and 6) hold. Since 0 is an even integer, E has an additive identity 
element (Axiom 4). If a is even, then the solution of a + x = 0 (namely- a) is 
also even, and so Axiom 5 holds. The remaining axioms (2, 3, 7, 8, and 9) 
hold for all integers and, therefore, are true whenever a, b, care even. 
Consequently, E is a commutative ring. E does not have an identity, however, 
because no even integer e has the property that ae = a = ea for every even 
integer a. 

EXAMPLE 4 

The set of odd integers with the usual addition and multiplication is not a 
ring. Among other things, Axiom 1 fails: The sum of two odd integers is 
not odd. 

Although the definition of ring was constructed with 7L and 7L 11 as models, there 
are many rings that aren't at all like these models. In these rings, the elements may not 
be numbers or classes of numbers, and their operations may have nothing to do with 
"ordinary" addition and multiplication. 
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EXAMPLE 5 

The set T = {r, s, t, z} equipped with the addition and multiplication defined 
by the following tables is a ring: 

+ 
z 

r 
s 

z 
z 

r 

s 

t 

r s 

r s 
z t s 

z r 

s r z 

z r s 

z z z z z 

r z z r r 
s z z s s 

z z 

You may take our word for it that associativity and distributivity hold 
(Axioms 2, 7, and 8). The remaining axioms can be easily verified from the 
operation tables above. In particular, they show that Tis closed under both 
addition and multiplication (Axioms 1 and 6) and that addition is commuta
tive (Axiom 3). 

The element z is the additive identity-the element denoted OR in Axiom 4. It be
haves in the same way the number 0 does in 7L (that's why the notation OR is used in the 
axiom), but z is not the integer 0-in fact, it's not any kind of number. Nevertheless, 
we shall call z the "zero element" of the ring T. 

In order to verify Axiom 5, you must show that each of the equations 

r+x=z s+x=z t +X= Z z+x=z 

has a solution in T. This is easily seen to be the case from the addition table; for 
example, x = r is the solution of r + x = z because r + r = z. 

Finally, note that Tis not a commutative ring; for instance, rs =rand 
sr = z, so that rs =t- s1: 

EXAMPlE 6 

Let M(IR) be the set of all 2 X 2 matrices over the real numbers, that is, M(IR) 
consists of all arrays 

where a, b, c, dare real numbers. 

Two matrices are equal provided that the entries in corresponding positions are equal; 
that is, 

if and only if a = r, b = s, c = t, d = u. 

For example, 

(_~ 0) = (2 + 2 
1 1 - 4 

01) but G 5) 2 . 
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Addition of matrices is defined by 

For example, 

b') =(a+ a' 
d' c + c' 

b + b') 
d + d' ' 

7) = (3 + 4 
0 5 + 6 

-2 + 7) = ( 7 
1 + 0 11 

Multiplication of matrices is defined by 

For example, 

x) = (aw +by 
z cw+dy 

-5) (2 . 1 + 3 . 6 
7 = 0. 1 + ( -4)6 

11) 
-28 . 

ax + bz). 
ex+ dz 

2(-5) + 3 O 7 )c 
0( -5) + ( -4)7 

Reversing the order of the factors in matrix multiplication may produce a different 
answer, as is the case here: 

3) = (1 . 2 + ( -5)0 
-4 6. 2 + 7. 0 

23) 
-10 . 

1 . 3 + ( -5)( -4)) 
6·3+7(-4) 

So this multiplication is not commutative. With a bit of work, you can verify that 
M(~) is a ring with identity. The zero element is the zero matrix 

which is denoted 0 and X= ( =: =~)is a solution of 

G ~) + X= (~ ~). 
We claim thatthe multiplicative identity element (Axiom 10) is the matrix I = ( ~ 
To prove this claim, we first multiply a typical matrix in M(~) on the right by I: 

0) = (a · 1 + b · 0 
1 c·l+d·O 

a • 0 + b • 1) = (a 
c·O+d·l c 

0) 1 . 



48 Chapter 3 Rings 

Definition 

Since multiplication is not commutative here, we also need to check left multiplication 
by las well: 

b) = (1 · a + 0 · c 
d O·a+1·c 

'1 • b + 0 · d) = (a 
O·b+1·d c 

This proves that I satisfies Axiom 10. * Consequently, I is called the identity matrLx. 
Note that the product of nonzero elements of M(IR) may be the zero element; for 

example, 

-9) = (4(-3) + 6·2 
6 2(-3)+3·2 

EXAMPLE 7 

4( -9) + 6. 6) = (0 
2(-9)+3·6 0 

If R is a commutative ring with identity, then M(R) denotes the set of all 
2 X 2 matrices with entries in R. With addition and multiplication defined as 
in Example 6, M(R) is a noncommutative ring with identity, as you can read
ily verify. For instance, M(7L) is the ring of 2 X 2 matrices with integer entries, 
M(Q) the ring of 2 X 2 matrices with rational number entries, and M(7L11 ) the 
ring of 2 X 2 matrices with entries from 7L11 • 

EXAMPLE 8 

Let T be the set of all functions from IR to IR, where IR is the set of real 
numbers. As in calculus,/+ g andfg are the functions defined by 

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). 

You can readily verify that Tis a commutative ring with identity. The zero ele
ment is the function h given by h(x) = 0 for all x E IR. The identity element is the 
function e given by e(x) = 1 for all x E IR. Once again the product of nonzero 
elements of Tmay turn out to be the zero element; see Exercise 36. 

We have seen that some rings do not have the property that the product of two 
nonzero elements is always nonzero. But some of the rings that do have this property, 
such as 7L, occur frequently enough to merit a title. 

An integral domain is a commutative ring R with identity 1R ::f: OR that 
satisfies this axiom: 

11. Whenever a, bE Rand ab =OR, then a =OR orb =OR· 

*Checking a possible identity element under both right and left multiplication is essential. There 
are rings in which an element acts like an identity when you multiply on the right, but not when you 
multiply on the left. See Exercise 11. 
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The condition lR :f= OR is needed to exclude the zero ring (that is, the single-element 
ring {OR}) from the class of integral domains. Note that Axiom 11 is logically equiva
lent to its contrapositive. * 

Whenever a :f= OR and b :f= OR, then ab :f= OR· 

EXAMPLE 9 

The ring 7L of integers is an integral domain. If p is prime, then 7LP is an integral 
domain by Theorem 2.8. On the other hand, 7L6 is not an integral domain because 
4 · 3 = 0, even though 4 :f= 0 and 3 :f= 0. 

You should be familiar with the set Q of rational numbers, which consists of all 
fractions a/b with a, bE 7L and b :f= 0. Equality of fractions, addition, and multiplica
tion are given by the usual rules: 

a r 

b s 
if and only if 

a c ad+ be -+-=---
b d bd 

as= br 

a c ac 
-0-==-
b d bd 

It is easy to verify that Q is an integral domain. But Q has an additional property that 
does not hold in 7L: Every equation of the form ax = 1 (with a :f= 0) has a solution in 
Q. Therefore, Q is an example of the next definition. 

A field is a commutative ring R with identity 1R :f= OR that satisfies this 
axiom: 

12. For each a :f= OR in R, the equation ax= 1R has a solution in R. 

Once again the condition lR :f= OR is needed to exclude the zero ring. Note that 
Axiom 11 is not mentioned explicitly in the definition of a field. However, Axiom 11 
does hold in fields, as we shall see in Theorem 3.8 below. 

EXAMPLE 10 

The set ~ of real numbers, with the usual addition and multiplication, is a field. 
If pis a prime, then 7LP is a field by Theorem 2.8. 

EXAMPLE 11 

The set C of complex numbers consists of all numbers of the form a + bi, 
where a, bE~ and F = - 1. Equality in C is defined by 

a+ bi = r + si if and only if a= rand b = s. 

*See Appendix A for a discussion of contrapositives. 
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The set C is a field with addition and multiplication given by 

(a + bi) + (c + di) = (a + c) + (b + d)i 

(a + bi)(c + di) = (ac - b'd) + (ad+ bc)i. 

The field IR of real numbers is contained in C because lR consists of all complex 
numbers of the form a + Oi. If a + bi =I= 0 in C, then the solution of the equation 
(a+ bz)x = 1 isx = c + di, where 

and d = -b/(a2 + b2
) E IR (verify!). 

EXAMPLE 12 

Let K be the set of all 2 X 2 matrices of the form 

( 
a b), 

-b a 

where a and b are real numbers. We claim that K is a field. For any two matrices inK, 

( 
a b) ( c d) ( a + c 

-b a + -d c = -b - d 
b +d) 
a+ c 

( 
a b) ( c d) ( ac - bd 

-b a . -d c = -ad- be 
ad+ be). 
ac- bd 

In each case the matrix on the right is in K because the entries along the main 
diagonal (upper left to lower right) are the same and the entries on the opposite 
diagonal (upper right to lower left) are negatives of each other. Therefore, K is 
closed under addition and multiplication. K is commutative because 

( 
c d) ( a b) ( ac - bd 

-d c -b a = -ad - be 
ad+ be) ( a 
ac- bd = -b 

Clearly, the zero matrix and the identity matrix I are inK. If 

A= ( a b) 
-b a 

is not the zero matrix, then verify that the solution of AX= I is 

X= (a/ d 
bid 

-bid) 
a/ d E K, 

~)( -~ ~). 

Whenever the rings in the preceding examples are mentioned, you may assume 
that addition and multiplication are the operations defined above, unless there is some 
specific statement to the contrary. You should be aware, however, that a given set (such 
as Z) may be made into a ring in many different ways by defining different addition 
and multiplication operations on it. See Exercises 17 and 22-26 for examples. 
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Now that we know a variety of different kinds of rings, we can use them to produce 
new rings in the following way. 

EXAMPLE 13 

Let Tbe the Cartesian product 716 X 71, as defined in Appendix B. Define 
addition in Tby the rule 

(a, z) +(a', z') =(a+ a', z + z'). 

The plus sign is being used in three ways here: In the first coordinate on the right -hand 
side of the equal sign, + denotes addition in 716; in the second coordinate, + denotes 
addition in 71; the + on the left of the equal sign is the addition in Tthat is being defined. 
Since 716 is a ring and a, a' E 716, the first coordinate on the right, a + a', is in 716• Similarly 
z + z' E 71. Therefore, addition in Tis closed. Multiplication is defined similarly: 

(a, z)(a', z') = (aa', zz'). 

For example, (3, 5) + (4, 9) = (3 + 4, 5 + 9) = (1, 14) and (3, 5)(4, 9) = 
(3 · 4, 5 · 9) = (0, 45). You can readily verify that Tis a commutative ring with 
identity. The zero element is (0, 0), and the multiplicative identity is (1, 1). What 
was done here can be done for any two rings. 

Let Rand 5 be rings. Define addition and multiplication on the Cartesian 
product R x 5 by 

(r, s) + (r', s') = (r + r', s + s') and (r, s)(r', s') = (rr', ss'). 

Then R X 5 is a ring. If Rand 5 are both commutative, then so is R X 5. If both 
Rand 5 have an identity, then so does R X 5. 

Proof~>- Exercise 33. Ill 

Sub rings 
If R is a ring and Sis a subset of R, then S may or may not itself be a ring under the 
operations in R. In the ring 71 of integers, for example, the subset E of even integers is 
a ring, but the subset 0 of odd integers is not, as we saw in Examples 3 and 4. When 
a subset S of a ring R is itself a ring under the addition and multiplication in R, then 
we say that Sis a subring of R. 

EXAMPLE 14 

71 is a subring of the ring Q of rational numbers and Q is a subring of the field 
~ of all real numbers. Since Q is itself a field, we say that Q is a subfield of ~. 
Similarly, ~ is a subfield of the field C of complex numbers. 
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EXAMPLE 15 

The matrix rings M(7L) and M(Q) in Example 7 are subrings of M(IR). 

EXAMPLE 16 

The ring Kin Example 12 is a subring of M(IR). 

EXAMPLE 17 

Let Tbe the ring of all functions from IR to IR in Example 8. Then the subsetS 
consisting of all continuous functions from IR to IR is a subring of T. To prove 
this, you need one fact proved in calculus: The sum and product of continuous 
functions are also continuous. So Sis closed under addition and multiplication 
(Axioms 1 and 6). You can readily verify the other axioms. 

Proving that a subset S of a ring R is actually a subring is easier than proving directly 
that Sis a ring. For instance, since a + b = b + a for all elements of R, this fact is also true 
when a, b happen to be in the subset S. Thus Axiom 3 (commutative addition) automati
cally holds in any subset S of a ring. In fact, to prove that a subset of a ring is actually a 
subring, you need only verify a few of the axioms for a ring, as the next theorem shows. 

Suppose that R is a ring and that Sis a subset of R such that 

(i) Sis closed under addition (if a, b ES, then a+ b ES); 

(ii) Sis closed under multiplication (if a, b ES, then ab ES); 

(iii) ORES; 

(iv) If a ES, then the solution of the equation a+ x =OR is in 5. 

Then S is a subring of R. 

Note condition (iv) carefully. To verify it, you need not show that the equation 
a+ x =OR has a solution-we already know that it does because R is a ring. You need 
only show that this solution is an element of S (which implies that Axiom 5 holds for S). 

Proof ofTheorem 3.2 ~As noted before the theorem, Axioms 2, 3, 7, and 8 hold 
for all elements of R, and so they necessarily hold for the elements of the 
subsetS. Axioms 1, 6, 4, and 5 hold by (i)-(iv). Iii 

EXAMPlE 18 

The subsetS= {0, 3} of 7L6 is closed under addition and multiplication 
(0 + 0 = 0; 0 + 3 = 3; 3 + 3 = 0; similarly, 0 · 0 = 0 = 0 · 3; 3 · 3 = 3). By the 
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definition of S we have 0 E S. Finally, the equation 0 + x = 0 has solution 
x = 0 E S, and the equation 3 + x = 0 has solution x = 3 E S. Therefore, Sis a 
subring of 71.6 by Theorem 3.2. 

EXAMPlE 19 

(a Oc). Let S be the subset of M(IR) consisting of all matrices of the form 
Then Sis closed under addition and multiplication because b 

0) =(a+ r 
t b + s 

0 + 0) = (a + r 0 ) E S and 
c+t b+s c+t 

(a O)(r 0) ( ar 
b c s t = br + cs 

0
) E S. 

ct 

The identity matrix is inS (let a = 1, b = 0, c = 1) and the solution of 

Hence Sis a subring by Theorem 3.2. 

EXAMPLE 20 

The set 71.[\1:2] = {a + b\1:21 a, b E 71.} is a subring of IR. You can easily verify 
that 

(a+ b\1:2)(c + d\1:2) = ac + ad\1:2 + bc\1:2 + bd\1:2 · V2 

= (ac + 2bd) + (ad+ bc)\1:2) E 71.[\1:2]. 

So 71.[\1:2] is closed under multiplication. See Exercise 13 for the rest of the proof. 

Exercises 

A. 1. The following subsets of 71. (with ordinary addition and multiplication) satisfy 
all but one of the axioms for a ring. In each case, which axiom fails? 

(a) The set S of all odd integers and 0. 

(b) The set of nonnegative integers. 

2. Let R = {0, e, b, c} with addition and multiplication defined by the tables on 
page 54. Assume associativity and distributivity and show that R is a ring with 
identity. Is R commutative? Is R a field? 
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+ 0 e b c 0 e b c 

0 0 e b c 0 0 0 0 0 

e e 0 c b e 0 e b c 

b b c 0 e b 0 b b 0 

c c b e 0 c 0 c 0 c 

3. Let F = {0, e, a, b} with operations given by the following tables. Assume 
associativity and distributivity and show that F is a field. 

+ 0 

0 0 

e e 

a a 

b b 

e 

e 

0 

b 

a 

a 

a 

b 

0 

e 

b 

b 

a 

e 

0 

0 

e 

a 

b 

0 

0 

0 

0 

0 

e a 

0 0 

e a 

a b 

b e 

b 

0 

b 

e 

a 

4. Find matrices A and C in M(IR) such that AC = 0, but CA -:f::. 0, where 0 is the 
zero matrix. [Hint: Example 6.] 

5. Which of the following six sets are subrings of M(IR)? Which ones have an identity? 

(a) All matrices of the form G ~)with r E Q. 

(b) All matrices of the form(~ 

(c) All matrices of the form(: 

(d) All matrices of the form(: 

(e) All matrices of the form(~ 

(f) All matrices of the form ( ~ 

~)with a, b, c EE. 

~) with a, b, c E IR. 

~)with a E IR. 

~)with a E IR. 

~)with a E IR. 

6. (a) Show that the set R of all multiples of 3 is a subring of E. 

(b) Let k be a fixed integer. Show that the set of all multiples of k is a subring of E. 

7. Let Kbe the set of all integer multiples of Vl, that is, all real numbers of the 
form nVl with nEE. Show that K satisfies Axioms 1-5, but is not a ring. 

8. Is the subset { 1, -1, i, -i} a subring of IC? 

9. Let R be a ring and consider the subset R* of R X R defined by R* = { (r, r) I r E R}. 

(a) If R = E6, list the elements of R*. 

(b) For any ring R, show that R* is a subring of R x R. 
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10. Is S = {(a, b) J a + b = 0} a sub ring of 7/_ X 7L? Justify your answer. 

11. LetS be the subset of M(IR) consisting of all matrices of the form (~ ~). 
(a) Prove that Sis a ring. 

(b) Show that J = G ~)is a right identity inS (meaning that AJ =A for 
every A in S). 

(c) Show that J is not a left identity inS by finding a matrix BinS such that 
JB=I=B. 

For more information about S, see Exercise 41. 

12. Let 7L[z] denote the set {a + bi I a, bE 7/_}. Show that 7L[z] is a subring of C. 

13. Let 7L[Vl] denote the set {a + bVll a, bE 7/_}. Show that 7L[Vl] is a sub ring 
of IR. [See Example 20.] 

14. Let Tbe the ring in Example 8. LetS= {/E Tjj(2) = 0}. Prove that Sis a 
subring of T. 

15. Write out the addition and multiplication tables for 

(a) 7L2 X 7L 3 (b) 7L2 X 7L2 (c) 7/_ 3 X 7/_3 

16. Let A = G ~)and 0 = G ~)in M(IR). LetS be the set of all matrices B 

such that AB = 0. 

(a) List three matrices inS. [Many correct answers are possible.] 

(b) Prove that Sis a subring of M(IR). [Hint: If Band Care inS, show that 
B + C and BC are inS by computing A(B + C) and A(BC).] 

17. Define a new multiplication in 7L by the rule: ab = 0 for all a, b, E 7L. Show that 
with ordinary addition and this new multiplication, 7/_ is a commutative ring. 

18. Define a new multiplication in 7/_ by the rule: ab = 1 for all a, b, E 7L. With 
ordinary addition and this new multiplication, is 7/_ is a ring? 

19. LetS= {a, b, c} and let P(S) be the set of all subsets of S; denote the 
elements of P(S) as follows: 

S= {a,b,c}; D= {a,b}; E= {a,c}; F= {b,c}; 

A = {a}; B = { b}; C = { c}; 0 = 0. 

Define addition and multiplication in P(S) by these rules: 

M + N = (M - N) U (N- M) and MN=MnN 

Write out the addition and multiplication tables for P(S). Also, see Exercise 44. 

B. 20. Show that the subset R = {0, 3, 6, 9, 12, 15} of 71_ 18 is a subring. Does R have 
an identity? 

21. Show that the subsetS= {0, 2, 4, 6, 8} of 7/_ 10 is a subring. Does Shave an 
identity? 
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22. Define a new addition 8j and multiplication 0 on 7L by 

a 8j b = a + b - 1 and a 0 b = a + b - ab, 

where the operations on the right-hand side of the equal signs are ordinary 
addition, subtraction, and multiplication. Prove that, with the new operations 
EB and 0, 7L is an integral domain. 

23. Let E be the set of even integers with ordinary addition. Define a new 
multiplication* onE by the rule "a* b = abj2" (where the product on the 
right is ordinary multiplication). Prove that with these operations Eisa 
commutative ring with identity. 

24. Define a new addition and multiplication on 7L by 

a EBb= a+ b- 1 and a 0 b = ab- (a+ b)+ 2. 

Prove that with these new operations 7L is an integral domain. 

25. Define a new addition and multiplication on Q by 

rEB s = r + s + 1 and r 0 s = rs + r + s. 
Prove that with these new operations Q is a commutative ring with identity. Is 
it an integral domain? 

26. Let L be the set of positive real numbers. Define a new addition and 
multiplication on L by 

a EBb= ab and a@ b = a1ogb. 

(a) IsLa ring under these operations? 

(b) Is L a commutative ring? 

(c) IsLa field? 

27. Let S be the set of rational numbers that can be written with an odd 
denominator. Prove that Sis a subring of Q but is not a field. 

28. Let p be a positive prime and let R be the set of all rational numbers that can 
be written in the form r/i with r, i E ?L, and i;::: 0. Note that 7L ~ R because 
each n E7L can be written as njp0

. Show that R is a subring of Q. 

29. The addition table and part of the multiplication table for a three-element ring 
are given below. Use the distributive laws to complete the multiplication table. 

+ r s r s 

r r s r r r r 

s s r s r 

r s r 

30. Do Exercise 29 for this four-element ring: 

+ w X y z w X y z 

w w X y z w w w w w 

X X y z w X w y 

y y z w X y w w 

z z w X y z w w y 
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31. A scalar matrix in M(IR) is a matrix of the form(~ ~)for some real 
numberk. 

(a) Prove that the set of scalar matrices is a subring of M(IR). 

(b) If K is a scalar matrix, show that KA = AK for every A in M(IR). 

(c) If K is a matrix in M(IR) such that KA = AK for every A in M(IR), show 

that K is a scalar matrix. [Hint: If K = (: ~),let A = G ~).Use the 

fact that KA = AK to show that b = 0 and c = 0. Then make a similar 

argument with A = (~ ~)to show that a= d.] 

32. Let R be a ring and let Z(R) = {a E R I ar = ra for every r E R}. In other 
words, Z(R) consists of all elements of R that commute with every other 
element of R. Prove that Z(R) is a subring of R. Z(R) is called the center of 
the ring R. [Exercise 31 shows that the center of M(IR) is the subring of scalar 
matrices.] 

33. Prove Theorem 3.1. 

34. Show that M(7L2) (a112 X 2 matrices with entries in 7L2) is a 16-element 
noncommutative ring with identity. 

35. Prove or disprove: 

(a) If Rand S are integral domains, then R X Sis an integral domain. 

(b) If RandS are fields, then R X Sis a field. 
36. Let T be the ring in Example 8 and let f, g be given by 

ifx:::; 2 

if X> 2 
g(x) = {~- x 

if X:::; 2 

if X> 2. 

Show that f, g E T and that fg = Oy. Therefore Tis not an integral domain. 

37. (a) If R is a ring, show that the ring M(R) of all2 X 2 matrices with entries in 
R is a ring. 

(b) If R has an identity, show that M(R) also has an identity. 

38. If R is a ring and a ER, let AR = {r E R I ar = OR}. Prove that AR is a subring 
of R. AR is called the right annihilator of a. [For an example, see Exercise 16 in 
which the ringS is the right annihilator of the matrix A.] 

39. Let <CD(V2) = (r + sV21 r, sEQ}. Show that <CD(V2) is a subfield of IR. 
[Hint: To show that the solution of (r + sV21, = I is actually in <CD(V2), 
multiply 1/(r + sV2) by (r- sV2)/(r sY2).] 

40. Let d be an integer that is not a perfect square. Show that Q(Vd) = 
{a+ bvd I a, bE Q} is a subfield of C. [Hint: See Exercise 39.] 
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41. Let S be the ring in Exercise 11. 

(a) Verify that each of these matrices is a right identity inS: 

( ~ ~) (·7 
1 1 ' .3 

2 2 

.7) ( 2 .
3 

, and _
1 

(b) Prove ~at the matrix G ;) is a right identity inS if and only if 
x+y-1. 

(c) If x + y = 1, show that(; ;) is not a left identity inS. 

42. A division ring is a (not necessarily commutative) ring R with identity 
1 R =I= 0 R that satisfies Axioms 11 and 12 (pages 48 and 49). Thus a field is a 
commutative division ring. See Exercise 43 for a noncommutative example. 
Suppose R is a division ring and a, b are nonzero elements of R. 

(a) If bb = b, prove that b = 1R. [Hint: Let u be the solution of bx = lR and 
note that bu = b2v.] 

(b) If u is the solution of the equation ax= 1R, prove that u is also a solution 
of the equation xa = 1R. (Remember that R may not be commutative.) 
[Hint: Use part (a) with b = ua.] 

43. In the ring M(C), let 

1 = G ~) i=(i ~) 0 -l 

. ( 0 ] = -1 ~) k = (~ 
The product of a real number and a matrix is the matrix given by this rule: 

r(~ ~) = (:~ ~:) 
The set H of real quaternions consists of all matrices of the form 

(1 0) ( i al + bj + cj + dk = a 
0 1 

+ b 
0 -~) + c (_ ~ ~) 

0) ( 0 c) ( 0 di) 
-bi + -c 0 + di 0 

( 
a+ bi 

- -c + di 
c + di) 
a- bi ' 

where a, b, c, and dare real numbers. 

(a) Prove that 

i2 = j2 = k2 = -1 

jk = -kj = i 

ij = -ji = k 

ki = -ik = j. 

(b) Show that His a noncommutative ring with identity. 
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(c) Show that His a division ring (defined in Exercise 42). [Hint: If M = al + 
bi + cj + dk, then verify that the solution of the equation Mx = 1 is the 
matrix tal - tbi - tcj - tdk, where t = I/(a2 + b2 + c2 + d2).] 

(d) Show that the equation x2 = -1 has infinitely many solutions in H. 
[Hint: Consider quaternions of the form 01 + bi + cj- dk, where 
bz + cz + dz = 1.] 

44. LetS be a set and let P(S) be the set of all subsets of S. Define addition and 
multiplication in P(S) by the rules 

M+ N= (M- N) U (N-lvl) and MN= MnN. 

(a) Prove that P(S) is a commutative ring with identity. [The verification of 
additive associativity and distributivity is a bit messy, but an informal 
discussion using Venn diagrams is adequate for appreciating this example. 
See Exercise 19 for a special case.] 

(b) Show that every element of P(S) satisfies the equations x2 = xand 
x+x=~~· · 

C.45. Let C be the set IR X IR with the usual coordinatewise addition (as in 
Theorem 3.1) and a new multiplication given by 

(a, b)(c, d)= (ac- bd, ad+ be) 

Show that with these operations Cis a field. 

46. Let r and s be positive integers such that r divides ks + 1 for some k with 
1 :::; k < r. Prove that the subset {0, r, 2r, 3r, . .. , (s- l)r} of Z,s is a ring with 
identity ks + 1 under the usual addition and multiplication in Zrs· Exercise 21 
is a special case of this result. 

APPliCATION: Applications of the Chinese Remainder Theorem 
(Section 14.2) may be covered at this point if desired. 

Basic Properties of Rings 

When you do arithmetic in Z, you often use far more than the axioms for an integral 
domain. For instance, subtraction appears regularly, as do cancelation and the various 
rules for multiplying negative numbers. We begin by showing that many of these same 
properties hold in every ring. 

Arithmetic in Rings 
Subtraction is not mentioned in the axioms for a ring, and we cannot just assume 
that such an operation exists in an arbitrary ring. If we want to define a subtraction 
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operation in a ring, we must do so in terms of addition, multiplication, and the ring 
axioms. The first step is 

For any element a in a ring R, the equation a+ x =OR has a unique solution. 

Proof ~>- We know that a + x = 0 R has at least one solution u by Axiom 5. If v is 
also a solution, then a+ u =OR and a+ v = OR, so that 

v =OR+ v =(a+ u) + v = (u +a)+ v = u +(a+ v) = u +OR= u. 

Therefore, u is the only solution. II 

We can now define negatives and subtraction in any ring by copying what happens 
in familiar rings such as 7!_. Let R be a ring and a E R. By Theorem 3.3 the equa
tion a + x = 0 R has a unique solution. Using notation adapted from?!_, we denote this 
unique solution by the symbol "-a." Since addition is commutative, 

-a is the unique element of R such that 

a + (-a) = OR = (-a) + a. 

In familiar rings, this definition coincides with the known concept of the negative of 
an element. More importantly, it provides a meaning for "negative" in any ring. 

EXAMPLE 1 

In the ring 7!_6, the solution of the equation 2 + x = 0 is 4, and so in this ring 
-2 = 4. Similarly, -9 = 5 in 7!_ 14 because 5 is the solution of 9 + x = 0. 

Subtraction in a ring is now defined by the rule 

b- a means b +(-a). 

In 7!_ and other familiar rings, this is just ordinary subtraction. In other rings we have 
a new operation. 

EXAMPLE 2 

In 7!_6 we have 1 - 2 = 1 + (-2) = 1 + 4 = 5. 

In junior high school you learned many computational and algebraic rules for deal
ing with negatives and subtraction. The next two theorems show that these rules are 
valid in any ring. Although these facts are not particularly interesting in themselves, it 
is essential to establish their validity so that we may do arithmetic in arbitrary rings. 

If a+ b =a + c in a ring R, then b =c. 
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Proof"" Adding - a to both sides of a + b = a + c and then using associativity 
and negatives show that 

-a+ (a+ b)= -a+ (a+ c) 

(-a + a) + b = (-a + a) + c 

OR+ b =OR+ c 

b = c. Ill; 

For any elements a and b of a ring R, 

(1) a· OR= OR= OR· a. In particular, OR· OR= OR. 

(2) a( -b) = -ab and ( -a)b = -ab. 

(3) -(-a) = a. 
(4) -(a+ b)= (-a)+ (-b). 

(5) - (a - b) = -a +b. 

(6) (-a)(-b)=ab. 

If R has an identity, then 

(7) (-1R)a =-a. 

Proof ~>- (1) Since OR + OR = OR, the distributive law shows that 

a· OR + a· OR= a(OR + OR) =a· OR= a· OR + OR. 

Applying Theorem 3.4 to the first and last parts of this equation shows 
that a· OR= OR. The proof that OR· a= OR is similar. 

(2) By definition, -ab is the unique solution of the equation 
ab + x =OR, and so any other solution of this equation must be equal 
to -ab. But x =a( -b) is a solution because, by the distribution law 
and (1), 

ab + a( -b) = a[b + (-b)] = a[OR] = OR. 

Therefore, a(- b) = - ab. The other part is proved similarly. 

(3) By definition, -(-a) is the unique solution of (-a)+ x =OR. But 
a is a solution of this equation since (-a)+ a= OR. Hence, -(-a) =a 
by uniqueness. 

(4) By definition, -(a+ b) is the unique solution of (a+ b)+ x = 
OR, but (-a) + (-b) is also a solution, because addition is commutative, 
so that 

(a+ b)+ [(-a)+ (-b)]= a+ (-a)+ b +(-b) 

OR + OR =OR. 
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Therefore, -(a+ b)= (-a)+ (-b) by uniqueness. 

(5) By the definition of subtraction and (4) and (3), 

-(a- b)= -(a+ (-b))= (-a) +(-(-b))= -a+ b. 

(6) (-a)( -b)= -(a (-b)) [By the second equation in (2), with-bin 
place of b] 

= -( -ab) [By the first equation in (2)] 

= ab [By (3), with ab in place of a] 
(7) By (2), 

When doing ordinary arithmetic, exponent notation is a definite convenience, as is 
its additive analogue (for instance, a + a + a = 3a). We now carry these concepts over 
to arbitrary rings. If R is a ring, a E R, and n is a positive integer, then we define 

a''= aaa · · ·a (n factors). 

It is easy to verify that for any a E R and positive integers m and n, 

and 

If R has an identity and a =F 0 R> then we define a0 to be the element lR. In this case, the 
exponent rules are valid for all m, n :=:: 0. 

If R is a ring, a E R, and n is a positive integer, then we define 

na = a + a + a + · · · + a. (n summands) 

-na = (-a) + (-a) + (-a) + · · · + (-a). (n summands) 

Finally, we define Oa = OR. In familiar rings this is nothing new, but in other rings it 
gives a meaning to the "product" of an integer n and a ring element a. 

EXAMPLE 3 

Let R be a ring and a, bE R. Then 

(a + b)2 = (a+ b)(a + b) = a(a + b) + b(a + b) 

= aa + ab + ba + bb = a2 + ab + ba + b2
. 

Be careful here. If ab =F ba, then you can't combine the middle terms. If R is a com
mutative ring, howeve1~ then ab = ba and we have the familiar pattern 

(a+ b)2 = a2 + ab + ba + b2 = a2 + ab + ab + b2 = (i + 2ab + b2
. 

For a calculation of (a+ b)" in a commutative ring, with n > 2, see the Binomial 
Theorem in Appendix E. 

It's worth noting that subtraction provides a faster method than Theorem 3.2 for 
showing that a subset of a ring is actually a subring. 
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LetS be a nonempty subset of a ring R such that 

(1) S is closed under subtraction (if a, bE S, then a - bE S); 

(2) Sis closed under multiplication (if a, b ES, thenab ES). 

Then S is a subring of R. 

Proof~~> We show that S satisfies conditions (i)-(iv) of Theorem 3.2 and hence 
is a subring. The conditions will be proved in this order: (ii), (iii), (iv), 
and (i). 

(ii) Hypothesis (2) here is identical with condition (ii) of Theorem 3.2. 
Hence, S satisfies condition (ii). 

(iii) Since Sis nonempty, there is some element c with c E S. Applying (1) 
(with a = c and b = c), we see that c - c = OR is inS. Therefore, S 
satisfies condition (iii) of Theorem 3.2. 

(iv) If a is any element of S, then by (1), OR- a = -a is also inS. Since 
-a is the solution of a + x = OR, condition (iv) of Theorem 3.2 is 
satisfied. 

(i) If a, bE S, then -b is inS by the proof of (iv). By (1), a - (-b) = 
a + b is inS. So S satisfies condition (i) of Theorem 3.2. 

Therefore, Sis a subring of R by Theorem 3.2. 

Units and Zero ivisors 
Units and zero divisors in 7l..11 were introduced in Section 2.3. We now carry these con
cepts over to arbitrary rings. 

' . . ' ' 

.Anelementain.aringR.with.identity iscalledp.unit if there exi.sts uER 
sUchthatal..i :== 1R = ua. In this case the elemehtu is cal.ledthE:J (multiplica~ 
tive).irwerse ofa and Is denoted !7-1. · · · . . 

EXAMPLE 4 

The only units in 7l.. are 1 and -1. 

EXAMPLE 5 

By Theorem 2.10, the units in 7l.. 15 are 1, 2, 4, 7, 8, 11, 13, and 14. For instance, 
2 · 8 = 1, so T 1 = 8 and 8- 1 = 2. 
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EXAMPLE 6 

1 
Every nonzero element of the field !R is a unit: If a =/= 0, then a · - = 1. The same 

a 
thing is true for every field F. By definition, F satisfies Axiom 12: If a =/= Op, then 

the equation ax = 1 F has a solution in F. Hence, 

Every nonzero element of a field is a unit. 

EXAMPLE 7 

A matrix(: :) in M(!R) such that ad- be=/= 0 is a unit because, as you can 

easily verify, 

( 

d -b ) 
b) ad - be ad - be = ( 1 
d -e a 0 ( 

d -b ) 
0) and ad- be ad- be (a b) = (1 o). 
1 -e a e d 0 1 

Definition 

ad- be ad- be ad- be ad- be 

In particular, each of these matrices is a unit: 

A= G ~), B = ( -~ ~), 
Units in a matrix ring are called invertible matrices. 

EXAMPLE 8 

c = (1/53 0) 6 . 

Let Fbe a field and M(F) the ring of 2 X 2 matrices with entries in F. If 

A = (~ :) EM(F) and ad- be=/= Op, then ad- be is a unit in Fby Example 6. 

The computations in Example 7, with d 
1 

b replaced by (ad- be)-1
, show that A is 

a - e 
· · ... LI;(F) .h. ( d(ad-be)- 1 -b(ad-be)- 1) 

an mvertible matrlX [umt m 1v11 ] WJt mverse ( d b ) _ 1 ( d b ) -I · -e a - e a a - e 

An element a in a ring R is a zero divisor provided that 

(1) a=!= OR. 

(2) There exists a nonzero element c in R such that ac =OR orca= OR. 

Note that in requirement (2), the element e is not unique: Many elements in the ring 
may satisfy the equation ax= OR or the equation xa = OR (Exercise 6). Furthermore, 
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in a noncommutative ring, it is possible to have ac = 0 R and ca =f. 0 R (Exercise 4 in 
Section 3.1). 

EXAMPlE 9 

Both 2 and 3 are zero divisors in 716 because 2 · 3 = 0. Similarly, 4 and 9 are 
zero divisors in 71 12 because 4 · 9 = 0. 

For a zero divisor A in a matrix ring, it is possible to find a matrix C such that 
AC = 0 and CA = 0. 

EXAMPlE 10 

Let F be a field. A nonzero matrix (: ~) in M(F) such that ad - be = 0 F is a 

zero divisor because, as you can easily verify, 

In particular, each of these matrices is a zero divisor in the given ring: 

A = G ~) in M( ~), 

EXAMPlE 11 

B = (4/3 
-2 

-8) (4 
12 

in M(Q), and C = 
2 

Every integral R domain satisfies Axiom 11: If ab = 0 R' then a = 0 R or b = 0 R· 
In other words, the product of two nonzero elements cannot be 0. Therefore, 

An integral domain contains no zero divisors. 

Finally, we present some useful facts about integral domains and fields. 

Cancelation is valid in any integral domain R: If a =f. OR and ab = ac in R, then 
b =c. 

Cancelation may fail in rings that are not integral domains. In 71 12 , for instance, 
2 · 4 = 2 · 10, but 4 =f. 10. 

Proof ofTheorem 3.7 ~If ab =be, then ab -be= OR, so that a(b- c)= OR. Since 
a =f. OR, we must have b - c = OR (if not, then a is a zero divisor, contra
dicting Axiom 11). Therefore, b =c. Ill 
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Every field F is an integral domain. 

Proof ~>- Since a field is a commutative ring with identity by definition, we need 
only show that F satisfies Axiom 11: If ab = 0 F' then a = 0 F or b = 0 F· 
So suppose that ab =OF. If b =OF, there is nothing to prove. If b =f. OFo 
then b is a unit (Example 6). Consequently, by the definition of unit and 
part (1) of Theorem 3.5, 

a= a1F = abb-1 = OFb-1 =OF. 

So in every case, a = 0 F or b = 0 F· Hence, Axiom 11 holds and F is an 
integral domain. lllil' 

The converse of Theorem 3.8 is false in general (E is an integral domain that is not 
a field), but true in the finite case. 

Every finite integral domain R is a field. 

Proof~>- Since R is a commutative ring with identity, we need only show that for 
each a =f. OR, the equation ax= lR has a solution. Let a~o az, . .. , a, be 
the distinct elements of R and suppose a1 =f. 0 R· To show that a1x == 1 R 

has a solution, consider the products a1a~o a1a2, a1a3, ••• , a1a,. If a; =f. a1, 

then we must have a1a; =f. a1a1 (because a1a; = a1a1 would imply that a; = a1 
by cancelation). Therefore, a1a~o a1a2 , ••• , a1a, are n distinct elements of 
R. However, R has exactly n elements all together, and so these must be 
all the elements of R in some order. In particular, for some j, a1a1 == 1 R· 

Therefore, the equation a1x = 1 R has a solution and R is a field. B 

Exercises 

A. 1. Let R be a ring and a, b ER. 

(a) (a+ b)(a-b) =? (b) (a+ b? =? 

(c) What are the answers in parts (a) and (b) if R is commutative? 

2. Find the inverse of matrices A, B, and C in Example 7. 

3. An element e of a ring R is said to be idempotent if e2 == e. 

(a) Find four idempotent elements in the ring M(IR). 

(b) Find all idempotents in 1:12. 
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4. For each matrix A find a matrix C such that A C = 0 or CA = 0: 

A=G A= ( 5 
-2 

-10)· 
4 ' 

11 4) 
3/2 . 

5. (a) Show that a ring has only one zero element. [Hint: If there were more 
than one, how many solutions would the equation OR+ x =OR have?] 

(b) Show that a ring R with identity has only one identity element. 

(c) Can a unit in a ring R with identity have more than one inverse? Why? 

6. (a) Suppose A and Care nonzero matrices in M(IR.) such that AC = 0. If k 
is any real number, show that A(kC) = 0, where kC is the matrix C with 
every entry multiplied by k. Hence the equation AX= 0 has infinitely 
many solutions. 

(b) If A = G ~),find four solutions of the equation AX= 0. 

7. Let R be a ring with identity and letS= {nlR In El:}. Prove that Sis a 
subring of R. [The definition of na with n E £:, a E R is on page 62. Also see 
Exercise 27.] 

8. Let R be a ring and b a fixed element of R. Let T = {rb I r E R}. Prove that T 
is a subring of R. 

9. Show that the set S of matrices of the form (~ ~), with a and b real 
numbers is a subring of M(IR.). 

10. Let RandS be rings and consider these subsets of R X S: 

R = {(r, 08) I rER} and S ={(OR, s) I sES}. 

(a) If R = £:3 and S = £:5. What are the sets RandS? 

(b) For any rings R and S, show that R is a sub ring of R X S. 

(c) For any rings RandS, show that Sis a subring of R X S. 

11. Let R be a ring and m a fixed integer. Let S = {r E R I mr = 0 R}. Prove that S 
is a subring of R. 

12. Let a and b be elements of a ring R. 

(a) Prove that the equation a + x = b has a unique solution in R. (You 
must prove that there is a solution and that this solution is the only 
one.) 

(b) If R is a ring with identity and a is a unit, prove that the equation ax = b 
has a unique solution in R. 

13. LetS and Tbe subrings of a ring R. In (a) and (b), if the answer is "yes," 
prove it. If the answer is "no," give a counterexample. 

(a) IsS n Ta subring of R? 

(b) IsS U T a subring of R? 
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14. Prove that the only idempotents in an integral domain Rare OR and 1R. (See 
Exercise 3.) 

15. (a) If a and bare units in a ring R with identity, prove that ab is a unit whose 
inverse is (ab)- 1 = b-1a- 1• 

(b) Give an example to show that if a and bare units, then a-1b-1 need not be 
the multiplicative inverse of ab. 

16. Prove or disprove: The set of units in a ring R with identity is a subring of R. 

17. If u is a unit in a ring R with identity, prove that u is not a zero divisor. 

18. Let a be a nonzero element of a ring R with identity. If the equation ax = 1 R 

has a solution u and the equation ya = 1 R has a solution u, prove that u = v. 

19. Let RandS be rings with identity. What are the units in the ring R X S? 

20. Let R and S be nonzero rings (meaning that each of them contains at least 
one nonzero element). Show that R X S contains zero divisors. 

21. Let R be a ring and l~t a be a nonzero element of R that is not a zero divisor. 
Prove that cancelation holds for a; that is, prove that 

(a) If ab = ac in R, then b = c. 

(b) If ba = cain R, then b = c. 

22. (a) If ab is a zero divisor in a ring R, prove that a orb is a zero divisor. 

(b) If a orb is a zero divisor in a commutative ring Rand ab -=!= OR, prove that 
ab is a zero divisor. 

23. (a) Let R be a ring and a, b E R. Let m and n be nonnegative integers and 
prove that 

(i) (m + n)a = ma + na. 

(ii) m(a + b) = ma + mb. 

(iii) m(ab) = (ma)b = a(mb). 

(iv) (ma)(nb) = mn(ab). 

(b) Do part (a) when m and n are any integers. 

24. Let R be a ring and a, b E R. Let m and n be positive integers. 

(a) Show that a111a" = am+n and (a 111
)" = a111

". 

(!b) Under what conditions is it true that (ab)" = a"b"? 

25. LetS be a subring of a ring R with identity. 

(a) If S has an identity, show by example that 15 may not be the same as lR. 

(b) If both RandS are integral domains, prove that 15 = IR. 

B. 26. LetS be a subring of a ring R. Prove that 05 = OR. [Hint: For a E S, consider 
the equation a + x = a.] 

27. Let R be a ring with identity and b a fixed element of Rand letS= {nb InEZ:'}. 
Is S necessarily a subring of R? [Exercise 7 is the case when b = 1 R·] 
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28. Assume that R = {OR, 1R, a, b} is a ring and that a and bare units. Write out 
the multiplication table of R. 

29. Let R be a commutative ring with identity. Prove that R is an integral domain 
if and only if cancelation holds in R (that is, a -:/= 0 R and ab == ac in R imply 
b =c). 

30. Let R be a commutative ring with identity and bE R. Let Tbe the subring of all 
multiples of b (as in Exercise 8). If u is a unit in Rand u E T, prove that T = R. 

31. A Boolean ring is a ring R with identity in which x? = x for every x E R. For 
examples, see Exercises 19 and 44 in Section 3 .1. If R is a Boolean ring, prove that 

(a) a + a = 0 R for every a E R, which means that a = -a. [Hint: Expand 
· (a+ al] 

(b) R is commutative. [Hint: Expand (a+ bf] 

32. Let R be a ring without identity. Let Tbe the set R X 7L. Define addition and 
multiplication in T by these rules: 

(r, m) + (s, n) = (r + s, m + n). 

(r, m)(s, n) = (rs + ms + nr, mn). 

(a) Prove that Tis a ring with identity. 

(b) Let R consist of all elements of the form (r, 0) in T. Prove that R is a 
subring of T. 

33. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit. 

34. Let Fbe a field and A = (: ~)a matrix in M(F). 

(a) Prove that A is invertible if and only if ad- be -:/= OF. [Hint: Examples 7, 
8, and 10 and Exercise 17.] 

(b) Prove that A is a zero divisor if and only if ad - be = 0 F· 

35. Let A = (: ~)be a matrix with integer entries. 

(a) If ad- be = ± 1, show that A is invertible jn M(7L). [Hint: Example 7 .] 

(b) If ad- be -:/= 0, 1, or -1, show that A is neither a unit nor a zero divisor in 
M(7L). [Hint: Show that A has an inverse in M(IR) that is not in M(7L); see 
Exercise 5(c). For zero divisors, see Exercise 34(b) and Example 10.] 

36. Let R be a commutative ring with identity. Then the set M(R) of 2 X 2 
matrices with entries in R) is a ring with identity by Exercise 37 of Section 3.1. 

If A = (a b) E M(R) and ad - be is a unit in R, show that A is invertible in 
c d 1 

M(R). [Hint: Replace d b by (ad- bc)-1 in Example 7.] 
a - c 

37. Let R be a ring with identity and a, b ER. Assume that a is not a zero divisor. 
Prove that ab = 1R, if and only if ba = 1R. [Hint: Note that both ab == lR and 
ba = lR imply aba = a (why?); use Exercise 21.] 
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38. Let R be a ring with identity and a, bE R. Assume that neither a nor b is a 
zero divisor. If ab is a unit, prove that a and bare units. [Hint: Exercise 21.] 

39. (a) If R is a finite commutative ring with. identity and a E R, prove that a is 
either a zero divisor or a unit. [Hint: If a is not a zero divisor, adapt the 
proof of Theorem 3.8, using Exercise 21.] 

(b) Is part (a) true if R is infinite? Justify your answer. 

40. An element a of a ring is nilpotent if a"= OR for some positive integer n. 
Prove that R has no nonzero nilpotent elements if and only if OR is the unique 
solution of the equation x2 =OR. 

The following definition is needed for Exercises 41-43. Let R be a ring with identity. 
If there is a smallest positive integer n such that nlR =OR, then R is said to have 
characteristic 11. If no such n exists, R is said to have characteristic zero. 

41. (a) Show that 7L has characteristic zero and 7L 11 has characteristic n. 

(b) What is the characteristic of 7L4 X 7L6? 

42. Prove that a finite ring with identity has characteristic n for some n > 0. 

43. Let R be a ring with identity of characteristic n > 0. 

(a) Prove that na = OR for every a E R. 

(b) If R is an integral domain, prove that n is prime. 

C. 44. (a) Let a and b be nilpotent elements in a commutative ring R (see 
Exercise 40). Prove that a + band ab are also nilpotent. [You will need the 
Binomial Theorem from Appendix E.] 

(b) Let N be the set of all nilpotent elements of R. Show that N is a subring 
of R. 

45. Let R be a ring such that x3 = x for every x E R. Prove that R is commutative. 

46. Let R be a nonzero finite commutative ring with no zero divisors. Prove that 
R is a field. 

Isomorphisms and Homomorphisms 

If you were unfamiliar with roman numerals and came across a discussion of integer 
arithmetic written solely with roman numerals, it might take you some time to realize 
that this arithmetic was essentially the same as the familiar arithmetic in 7L except for 
the labels on the elements. Here is a less trivial example. 

EXAMPLE 1 

Consider the subsetS= {0, 2, 4, 6, 8} of 7L10. With the addition and multiplica
tion of 7L 10, Sis actually a commutative ring, as can be seen from these tables:* 

*The reason the elements of S are listed in this order will become clear in a moment. 
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+ 0 6 2 8 4 0 6 2 8 4 
0 0 6 2 8 4 0 0 0 0 0 0 
6 6 2 8 4 0 6 0 6 2 8 4 

2 2 8 4 0 6 2 0 2 4 6 8 
8 8 4 0 6 2 8 0 8 6 4 2 

4 4 0 6 2 8 4 0 4 8 2 6 

A careful examination of the tables shows that S is a field with five elements and that 
the multiplicative identity of this field is the element 6. 

We claim that Sis "essentially the same" as the field 2.5 except for the labels on the 
elements. You can see this as follows. Write out addition and multiplication tables 
for 2 5.* To avoid any possible confusion with elements of S, denote the elements of 
2.5 by 0, I, 2, 3, 4. Then relabel the entries in the 2.5 tables according to this scheme: 

Relabel 0 as 0, relabel I as 6, relabel2 as 2, 
relabel 3 as 8, relabel4 as 4. 

Look what happens to the addition and multiplication tables for 2.5: 

0 6 2 8 4 0 6 2 8 4 
+ fj 1 2 z ;r . E 1 2 z ;r 

0 0 6 2 8 4 0 0 0 0 0 0 
E E 1 2 z ;r E fj fj E fj fj 

6 6 2 8 4 0 6 0 6 2 8 4 
1 :r 2 z fi fj :r fj :r 2 z :4 

2 2 8 4 0 6 2 0 2 4 6 8 
t t z fi E :r t E t :4 r z 

8 8 4 0 6 2 8 0 8 6 4 2 
J J fi E 1 t J E J :r :4 t 

4 4 0 6 2 8 4 0 4 8 2 6 
;r ;r E 1 2 J ;r E ;r J 2 1 

By relabeling the elements of 2.5, you obtain the addition and multiplication 
tables for S. Thus the operations in 2.5 and S work in exactly the same way-the 
only difference is the way the elements are labeled. As far as ring structure goes, 
Sis just the ring 2.5 with new labels on the elements. In more technical terms, 2.5 

and S are said to be isomorphic. 

71 

In general, isomorphic rings are rings that have the same structure, in the sense that 
the addition and multiplication tables of one are the tables of the other with the ele
ments suitably relabeled, as in Example 1. Although this intuitive idea is adequate for 
small finite systems, we need a rigorous mathematical definition of isomorphism that 
agrees with this intuitive idea and is readily applicable to large rings as well. 

There are two aspects to the intuitive idea that rings R and S are isomorphic: 
relabeling the elements of R and comparing the resulting tables with those of S to 
verify that they are the same. Relabeling means that every element of R is paired with 
a unique element of S (its new label). In other words, there is a functionfR---+ S that 

*The 2.5 tables (in congruence class notation) are shown in Example 2 of Section 2.2. 
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Definition 

assigns to each r E R its new labelf(r) E S. In the preceding example, we used the rela
beling functionf "Z5 ~ S, given by 

J(O) = o J(l) = 6 /(2) = 2 !(3) = 8 /(4) = 4. 

Such a function must have these additional properties: 

(i) Distinct elements of R must get distinct new labels: 

If r =F r' in R, thenf(r) =F f(r') inS. 

(ii) Every element of S must be the label of some element in R:* 

For each s E S, there is an r E R such that f(r) = s. 

Statements (i) and (ii) simply say that the function/must be both injective and surjec
tive, that is, f must be a bijection. t 

In order for a bijection (relabeling scheme) f to be an isomorphism, applying f to 
the addition and multiplication tables of R must produce the addition and multiplica
tion tables of S. So if a+ b = c in the R-table, we must havef(a) + f(b) = f(c) in the 
S-table, as indicated in the diagram: 

However, since a+ b = c, we must also havef(a +b)= f(c). Combining this with the 
fact thatf(a) + f(b) = f(c), we see that 

f(a + b) = f(a) +/(b). 

This is the condition that f must satisfy in order for f to change the addition tables 
of R into those of S. The analogous condition on f for the multiplication tables is 
f(ab) = f(a)f(b). We now can state a formal definition of isomorphism: 

A ring R is isomorphic to a ringS (in symbols, R 2'; S) ifthere is a function 
f:R ~ S such that 

(i) f is injective; 

(ii) f is surjective; 

(iii)J(a+ b)= f(a) + f(b) and f(ab) ""'f(a) f(b) for all a, bER. 

In this case the function f is called an isomorphism. 

*Otherwise, we couldn't possibly get the complete tables of S from those of R. 
tlnjective, surjective, and bijective functions are discussed in Appendix B. 
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CAUTION: In order to be an isomorphism, a function must satisfy all 
three of the conditions in the definition. It is quite possible 
for a function to satisfy any two of these conditions but not 
the third; see Exercises 4, 25, and 32. 

EXAMPLE 2 

In Example 12 on page 50, we considered the field K of a112 x 2 matrices of 
the form 

where a and b are real numbers. We claim that K is isomorphic to the field 
C of complex numbers. To prove this, define a functionf:K---+ C by .the 
rule 

!( a 
-b 

b) . a =a+ bz. 

To show thatfis injective, suppose 

f ( a b) = f ( r s). 
-b a -s r 

Then by the definition of j, a + bi = r + si in C. By the rules of equality in C, 
we must have a= rand b = s. Hence, inK 

so thatjis injective. The function/is surjective because any complex number 
a + bi is the image under f of the matrix 

(_~ ~) 
inK. Finally, for any matrices A and Bin K, we must show thatf(A +B)= 
f(A) + j(B) andf(AB) = j(A)f(B). We have 

[ ( 
a b) ( c d)] f ( a + c 

f -b a + -d c = -b - d 
b +d) 
a+ c 

= (a + c) + ( b + d) i 

= (a+ bi) + (c + di) 

_ !( a b) + !( c d) 
-b a -d c 
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and 

f [( a b)( c d)] _ t(. ac - bd ad+ be) 
-b a -d c -ad- be ac- bd 

= (ac- bd) + (ad+ bc)i 

= (a+ bi)(c + di) 

= t( a b)t( c d). 
-b a -d c 

Therefore, f is an isomorphism. 

It is quite possible to relabel the elements of a single ring in such a way that the ring 
is isomorphic to itself. 

EXAMPlE 3 

Letf'C ~ C be the complex conjugation map given by f(a + bi) = a- bi. *The 
function f satisfies 

and 

f[(a + bi) + (c + di)] = f[(a +c) + (b + d)i] 

= (a+ c) - (b + d)i = (a- bi) + (c- di) 

= f(a + bi) + f(c + di) 

/[(a+ bi)(c + di)] = f[(ac- bd) +(ad+ bc)i] 

= (ac- bd) - (ad+ bc)i = (a- bi)(c- di) 

= f(a + bi)f(c + di). 

You can readily verify thatfis both injective and surjective (Exercise 17). 
Therefore f is an isomorphism. 

EXAMPlE 4 

If R is any ring and LR:R ~ R is the identity map given by LR(r) = r, then for 
any a, bER 

and 

Since LR is obviously bijective, it is an isomorphism. 

Our intuitive notion of isomorphism is symmetric: "R is isomorphic to S" means 
the same thing as "Sis isomorphic to R". The formal definition of isomorphism is not 

*The function (has a geometric interpretation in the complex plane, where a+ bi is identified with 
the point (a, b): It reflects the plane in the x-axis. 
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symmetric, howevet~ since it requires a function from R onto S but no function from 
S onto R. This apparent asymmetry is easily remedied. If fR ~ Sis an isomorphism, 
thenfis a bijective function of sets. Therefore,fhas an inverse function g:S ~ R such 
that go f = LR (the identity function on R) andfo g = Ls. *It is not hard to verify that 
the function g is actually an isomorphism (Exercise 29). Thus R = S implies that 
S = R, and symmetry is restored. 

Homomorphisms 
Many functions that are not injective or surjective satisfy condition (iii) of the definition 
of isomorphism. Such functions are given a special name. 

ahdSberl~gk:.·~···tu~cfionf:R.-tS)sssidto.t?e<l.bo~bmorp~is~'if. 
f{atb) 7{(aJ+f(b) a,nd f(ab! = f(aj((b): :fot~lla1 bE H .. · · 

Thus every isomorphism is a homomorphism, but as the following examples show, 
a homomorphism need not be an isomorphism because a homomorphism may fail to 
be injective or surjective. 

EXAMPLE 5 

For any rings RandS the zero map z:R ~ S given by z(r) = Os for every r E R is 
a homomorphism because for any a, bE R 

z(a + b) = Os = Os + Os = z(a) + z(b) 

and 
z(ab) = Os = Os · Os = z(a)z(b). 

When both R and S contain nonzero elements, then the zero map is neither 
injective nor surjective. 

EXAMPLE 6 

The functionf:2 ~ 2 6 given by f(a) = [a] is a homomorphism because of the 
way that addition and subtraction are defined in 2 6: for any a, b E 2 

f(a + b) = [a+ b] = [a] + [b] = f(a) + f(b) 

and 

f(ab) = [ab] = [a][b] = f(a)f(b). 

The homomorphism/is surjective, but not injective (Why?). 

*See Appendix B for details. 
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EXAMPLE 7 

The map g:IR ~ M(IR) given by 

g(r) = ( -~ ~) 
is a homomorphism because for any r, s E IR 

and 

g(r)+g(s)= + = ( 0 0) ( 0 0) ( 0 0 ) 
-r r -s s -r - s r + s 

g(r)g(s) 

0 
) = g(r + s) 

r + s 

= ( 0 0)( 0 0) = ( 0 0) = g(rs) 
-r r -s s -rs rs 

The homomorphism g is injective but not surjective (Exercise 26). 

CAUTION: Not all functions are homomorphisms. The properties 

f(a + b)= f(a) + f(b) and f(ab) = f(a)f(b) 

fail for many functions. For example, if f:IR ~ IR given by 
f(x) = x + 2, then 

/(3 + 4) = /(7) = 9 but /(3) + /(4) = 5 + 6 = 11 

so that/(3 + 4) =F f(3) + /(4). Similarly,/(3 · 4) * /(3)/(4) 
because 

/(3 . 4) = /(12) = 14, but /(3)/(4) = 5 · 6 = 30. 

Let f:R ~ S be a homomorphism of rings. Then 

(1) {(OR) = Os. 

(2) f( -a) = - f(a) for every a E R. 

(3) f(a- b)= f(a) - f(b) for all a, b ER. 

If R is a ring with identity and f is surjective, then 

(4) Sis a ring with identity f(1R)· 

(5) Whenever u is a unit in R, then f(u) is a unit inS and f(ut 1 = f(u- 1
). 
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Proof~> (1) f(OR'J + f(OR) = f(OR +oR) 

f(OR) + f(OR) = f(OR) 

f(OR) + f(OR) = f(OR) + Os 

f(OR) = Os 

(2) First, note that 

f(a) + f( -a) = f(a + (-a)) 

= f(OR) 

[f is a homomorphism.] 

[0 R + 0 R = 0 R in R] 

[f(OR) + Os = f(OR) inS] 

[Subtractf(OR)from both sides.]. 

[f is a homomorphism.] 

[a+ (-a)= OR] 

= Os [Part (1)]. 
Therefore,!( -a) is a solution of the equationf(a) + x = 08 . But the 

pnique solution of this equation is -f(a) by Theorem 3.3. Hence 
f( -a) = -f(a) by uniqueness. 

(3) f(a- b)= f(a + (-b)) 

= f(a) + f(-b)) 

= f(a) + ( -f(b)) 

= f(a)- f(b) 

[Definition of subtraction] 

[f is a homomorphism.] 

[Part (2)] 

[Definition of subtraction]. 

( 4) We shall show that f(l R) E Sis the identity element of S. Let s 
be any element of S. Then sincefis surjective, s = f(r) for some r ER. 
Hence, 

s · f(lR) = f(r)f(lR) = f(r • lR) = f(r) = s 

and, similarly,J(lRJ · s = s. Therefore, Shasf(lRJ as its identity element. 

( 5) Since u is a unit in R, there is an element v in R such that 
uv = lR = vu. Hence, by (4) 

f(u)f(v) = f(uv) = f(lR) = ls. 

Similarly, vu = lR implies thatf(v)f(u) = 18 . Therefore,j(u) is a unit in 
S, with inversef(v). In other words,j(u)- 1 = f(v). Since v = u- 1

, we see 
thatf(u)- 1 = f(v) = f(u- 1

). 

IffR ~Sis a function, then the image of fis this subset of S: 

Imf= {sES Is= f(r) for some rER} = {f(r) I rER}. 

Iff is surjective, then Im f = S by the definition of surjective. In any case we have: 

If f:R ~Sis a homomorphism of rings, then the image off is a subring of S. 

Proof~» Denote Imf by I. lis nonempty because 08 = f(ORJ Eiby (1) of Theorem 3.10. 
The definition of homomorphism shows that I is closed under multiplica
tion: If f(a),j(b) EI, thenf(a)f(b) = f(ab) EI. Similarly,! is closed under 
subtraction becausef(a)- f(b) = f(a- b) Eiby Theorem 3.10. Therefore, I 
is a subring of S by Theorem 3.6. Ill' 
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Existence of Isomorphisms 
If you suspect that two rings are isomorphic, there are no hard and fast rules for 
finding a function that is an isomorphism between them. However the properties of 
homomorphisms in Theorem 3.10 can sometimes be helpful. 

EXAMPLE 8 

If there is an isomorphism/from 1:12 to the ring 1:3 X 1:4, thenf(1) = (1, 1) by 
part (4) of Theorem 3.10. Sincefis a homomorphism, it has to satisfy 

/(2) = /(1 + 1) = /(1) + /(1) = (1, 1) + (1, 1) = (2, 2) 

/(3) = f(2 + 1) = /(2) + /(1) = (2, 2) + (1, 1) = (0, 3) 

/(4) = f(3 + 1) = /(3) + f(l) = (0, 3) + (1, 1) = (1, 0). 

Continuing in this fashion shows that iff is an isomorphism, then it must be 
this bijective function: 

/(1) = (1, 1) 

/(2) = (2, 2) 

/(3) = (0, 3) 

/(4) = (1, 0) 

/(5) = (2, 1) 

f(6) = (0, 2) 

f(7) = (1, 3) 

/(8) = (2, 0) 

/(9) = (0, 1) 

f(lO) = (1, 2) 

/(11) = (2, 3) 

f(O) = (0, 0). 

All we have shown up to here is that this bijective function/is the only possible 
isomorphism. To show that this factually is an isomorphism, we must verify 
that it is a homomorphistp. This can be done either by writing out the tables 
(tedious) or by observing that the rule off can be described this way: 

where [a] 12 denotes the congruence class of the integer a in 1:12, [ah denotes the 
class of a in 1:3, and [a]4 the class of a in 1:4. (Verify that this last statement is 
correct.) Then 

f([a] 12 + [b]12) = f([a + b]12) [Definition of addition in Zn] 

=([a+ bh, [a+ b]4) [Definition off] 

= ([ah + [bh, [a]4 + [b]4) [Definition of addition in Z3 and Z4] 

= ([ah, [a]4) + ([bh, [b]4) [Definition of addition in Z3 X Z4] 

= f([a]u) + f([b]u) [Definition off]. 

An identical argument using multiplication in place of addition shows that 
f([a]n[b] 12) = f([a]u)f([b]u). Therefore,/ is an isomorphism and 1:12 = 1:3 X 1:4. 

Up to now we have concentrated on showing that various rings are isomorphic, 
but sometimes it is equally important to demonstrate that two rings are not isomorphic. 
To do this, you must show that there is no possible function from one to the other 
satisfying the three conditions of the definition. 
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EXAMPlE 9 

7L6 is not isomorphic to 7L 12 or to 7L because it is not possible to have a surjective func
tion from a six-element set to a larger set (or an injective one from a larger set to 7!_6). 

To show that two infinite rings or two finite rings with the same number of elements 
are not isomorphic, it is usually best to proceed indirectly. 

EXAMPlE 10 

The rings 7L4 and 7L2 X 7L2 are not isomorphic. To show this, suppose on the 
contrary thatf:7L4 --+ 7L2 X 7L2 is an isomorphism. Thenf(O) = (0, 0) and 
f(l) = (1, 1) by Theorem 3.10. Consequently, 

/(2) = /(1 + 1) = /(1) + /(1) = (1, 1) + (1, 1) = (0, 0). 

Since f is injective and f(O) = /(2), we have a contradiction. Therefore, no 
isomorphism is possible. 

Suppose thatfR--+ Sis an isomorphism and the elements a, b, c, ... of R have a par
ticular property. If the elementsf(a),f(b),f(c), ... of Shave the same property, then we 
say that the property is preserved by isomorphism. According to parts (1), (4), and (5) of 
Theorem 3.10, for example, the property of being the zero element or the identity element 
or a unit is preserved by isomorphism. A property that is preserved by isomorphism can 
sometimes be used to prove that two rings are not isomorphic, as in the following examples. 

EXAMPlE 11 

In the ring 7!_8 the elements 1, 3, 5, and 7 are units by Theorem 2.10. Since 
being a unit is preserved by isomorphism, any isomorphism from 7L8 to another 
ring with identity will map these four units to four units in the other ring. 
Consequently, 7L8 is not isomorphic to any ring with less than fo'ur units. In 
particular, 7L8 is not isomorphic to 7!_4 X 7L2 because there are only two units in 
this latter ring, namely (1, 1) and (3, 1) as you can readily verify. 

EXAMPLE 12 

None of Q, IR, or C is isomorphic to 7L because every nonzero element in the 
fields Q, IR, and Cis a unit, whereas 7L has only two units (1 and -1). 

EXAMPLE 13 

Suppose R is a commutative ring andfR--+ Sis an isomorphism. Then for any 
a, bE R, we have ab = ba in R. Therefore, in S 

f(a)f(b) = f(ab) = f(ba) = f(b)f(a). 
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Hence, Sis also commutative because any two elements of S are of the formf(a), 
f(b) (sincefis surjective). In other words, the property of being a commutative 
ring is preserved by isomorphism. Therefore, no commutative ring can be iso-
morphic to a noncommutative ring. ' 

Exercises 

A. 1. Letf:Zc~£:2 X 1::3 be the bijection given by 

0--+ (0, 0), 
4--+ (0, 1), 

1--+(1,1), 
5--+ (1, 2). 

2--+ (0, 2), 3--+ (1, 0), 

Use the addition and multiplication tables of 1::6 and 1::2 X 1::3 to show thatfis 
an isomorphism. 

2. Use tables to show that 1::2 X 1::2 is isomorphic to the ring R of Exercise 2 in 
Section 3 .1. 

3. Let R be a ring and let R* be the subring of R X R consisting of all elements 
of the form (a, a). Show that the functionfR--+ R* given by f(a) =(a, a) is an 
isomorphism. 

4. LetS be the subring {0, 2, 4, 6, 8} of 1:: 10 and let 1::5 = {0, I, 2, 3, 4,} (notation 
as in Example 1). Show that the following bijection from 1::5 to Sis not an 
isomorphism: 

o -----+ o I -----+ 2 2 -----+ 4 3 -----+ 6 4 -----+ 8. 

5. Prove that the field IR of real numbers is isomorphic to the ring of all2 X 2 

matrices of the form G ~ ), with a E IR. [Hint: Consider the function/ given 

by f(a) = (~ ~).] 
6. Let R and S be rings and let R be the subring of R X S consisting of all 

elements of the form (a, Os). Show that the functionfR--+ R given by 
f(a) = (a, Os) is an isomorphism. 

7. Prove that IRis isomorphic to the ringS of all2 X 2 matrices of the form 

( a 
0 

), where a E IR. 
0 a 

8. Let Q ( Vl) be as in Exercise 39 of Section 3 .1. Prove that the function 

j:Q(Vl)--+ Q(Vl) given by f(a + bVl) =a- bVl is an isomorphism. 

9. If f: Z --+ Z is an isomorphism, prove that f is the identity map. [Hint: What 
are f(l ),f(l + 1 ), ... ?] 

10. If R is a ring with identity andf:R--+ Sis a homomorphism from R to a 
ringS, prove thatf(lR) is an idempotent inS. [Idempotents were defined in 
Exercise 3 of Section 3.2.] 
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11. State at least one reason why the given function is not a homomorphism. 

(a) f:IR -+IR andf(x) =\h. 
(b) g:E --7 E, where E is the ring of even integers andf(x) = 3x. 

(c) h:IR -+IR andf(x) = 2-'. 

(d) k:Q-+ Q, where k(O) = 0 and k(~) =~if a i:- 0. 

12. Which of the following functions are homomorphisms? 

(a) f7L-+ 7L, defined by f(x) = -x. 

(b) f7L 2 -+ 7L2, defined by f(x) = - x. 
1 

(c) g:Q-+ Q, defined by g(x) = - 2--. 
X + 1 

(d) h:!R-+ M(IR), defined by h(a) = ( -: ~). 
(e) j:7L12 -+ 7L4, defined by f([x] 12) = [x]4, where [u], denotes the class of the 

integer u in 7L11 • 

13. Let R and S be rings. 

(a) Prove thatf:R X S-+ R given by f((r, s)) = r is a surjective homomorphism. 

(b) Prove that g:R X S-+ S given by g((r, s)) =sis a smjective homomorphism. 

(c) If both RandS are nonzero rings, prove that the homomorphisms/ and g 
are not injective. 

14. Letf7L-+ 7!._6 be the homomorphism in Example 6. Let K = {a E7L if( a) = [0]}. 
Prove that K is a subring of 7L. 

15. Letf:R-+ S be a homomorphism of rings. If r is a zero divisor in R, isf(r) a 
zero divisor inS? 

B.16. LetT, R, and Fbe the four-element rings whose tables are given in Example 5 
of Section 3.1 and in Exercises 2 and 3 of Section 3 .1. Show that no two of 
these rings are isomorphic. 

17. Show that the complex conjugation functionf:C-+ C (whose rule is 
f(a + bi) =a- bi) is a bijection. 

18. Show that the isomorphism of 7L 5 and Sin Example I is given by the function 
whose rule isf([x]5) = [6x]w (notation as in Exercise 12(e)). Give a direct 
proof (without using tables) that this map is a homomorphism. 

19. Show that S = {0, 4, 8, 12, 16, 20, 24} is a subring of 7!._28 . Then prove that the 
mapf:7L7 -+ S given by f([xh) = [8xhs is an isomorphism. 

20. Let E be the ring of even integers with the * multiplication defined in 
Exercise 23 of Section 3.1. Show that the map f:E-+ 7L given by f(x) = x/2 is 
an isomorphism. 

21. Let 7!._* denote the ring of integers with the (jj and 0 operations defined in 
Exercise 22 of Section 3 .1. Prove that 7L is isomorphic to 7!._*. 
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22. Let 71 denote the ring of integers with the G) and 0 operations defined in 
Exercise 24 of Section 3 .1. Prove that 71 is isomorphic to 7L. 

23. Let C be the field of Exercise 45 of Section 3.1. Show that Cis isomorphic to 
the field C of complex numbers. 

24. (a) Let R be the set IR X IR with the usual coordinatewise addition, as in 
Theorem 3 .1. Define a new multiplication by the rule (a, b)( c, d) = 

(ac, be). Show that R is a ring. 

(b) Show that the ring of part (a) is isomorphic to the ring of all matrices in 

M(IR) of the form(~ ~). 
25. Let L be the ring of all matrices in M(7L) of the form(~ ~).Show that the 

functio~f:L ~~given by 1G ~) =a is a surjective homomorphism but 
not an tsomorphtsm. 

26. Show that the homomorphism gin Example 7 is injective but not surjective. 

27. (a) If g:R ~ S andfS ~Tare homomorphisms, show thatfo g:R ~Tis a 
homomorphism. 

(b) Iff and g are isomorphisms, show that f o g is also an isomorphism. 

28. (a) Give an example of a homomorphismfR ~ S such that R has an identity 
butS does not. Does this contradict part (4) of Theorem 3.10? 

(b) Give an example of a homomorphismf:R ~ S such that S has an identity 
but R does not. 

29. Letf:R ~ S be an isomorphism of rings and let g:S ~ R be the inverse 
function of f(as defined in Appendix B). Show that g is also an isomorphism. 
[Hint: To show g(a +b) = g(a) + g(b), consider the images of the left- and 
right-hand side under f and use the facts that f is a homomorphism and f o g is 
the identity map.] 

30. Letf:R ~ S be a homomorphism of rings and let K = {r ER if(r) = 05}. 

Prove that K is a subring of R. 

31. Let f:R ~ S be a homomorphism of rings and T a sub ring of S. 
Let P = {r E R I f(r) E T}. Prove that Pis a sub ring of R. 

32. Assume n = 1 (mod m). Show that the function f: 7L111 ~ 7L111" given by 
f([x] 111 ) = [nx]mn is an injective homomorphism but not an isomorphism when 
n 2:: 2 (notation as in Exercise 12(e)). 

33. (a) Let Tbe the ring of functions from IR to IR, as in Example 8 of Section 3.1. 
Let e:T ~ IR be the function defined by O(f) = /(5). Prove that e is a 
surjective homomorphism. Is e an isomorphism? 

(b) Is part (a) true if 5 is replaced by any constant c E IR? 

34. If f:R ~ Sis an isomomorphism of rings, which of the following properties 
are preserved by this isomorphism? Justify your answers. 

(a) a E R is a zero divisor. 
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(b) a ER is idempotent.* 

(c) R is an integral domain. 

35. Show that the first ring is not isomorphic to the second. 

(a) E and Z (b) IR X IR X IR X IR and M(IR) 

(c) 1:4 X 1:14 and 1:16 

(e) Z X 1:2 and Z 

(d) Q and IR 

(:t) 1:4 X 1:4 and 1:16 

36. (a) If f:R ~Sis a homomorphism of rings, show that for any r E Rand 
n E Z,f(nr) = nf(r). 

(b) Prove that isomorphic rings with identity have the same characteristic. 
[See Exercises 41-43 of Section 3.2.] 

(c) If f:R ~Sis a homomorphism of rings with identity, is it true that Rand 
S have the same characteristic? 

37. (a) Assume that e is a nonzero idempotent in a ring Rand that e is not a zero 
divisor.* Prove that e is the identity element of R. [Hint: e2 = e (Why?). If 
a E R, multiply both sides of e2 = e by a.] 

(b) LetS be a ring with identity and Taring with no zero divisors. Assume 
that f:S ~ Tis a nonzero homomorphism of rings (meaning that at least 
one element of Sis not mapped to Or). Prove thatf(ls) is the identity 
element of T. [Hint: Show thatf(ls) satisfies the hypotheses of part (a).] 

38. Let Fbe a field andf:F ~ R a homomorphism of rings. 

(a) If there is a nonzero element c of Fsuch thatf(c) =OR, prove thatfis 
the zero homorphism (that is,f(x) =OR for every x EF). [Hint: c- 1 exists 
(Why?). If xEF, considerf(xcc-1

).] 

(b) Prove thatfis either injective or the zero homomorphism. [Hint: If fis not 
the zero homomorphism andf(a) = f(b), thenf(a- b)= OR.] 

39. Let R be a ring without identity. Let Tbe the ring with identity of Exercise 32 
in Section 3.2. Show that R is isomorphic to the subring R ofT. Thus, if R is 
identified with R, then R is a subring of a ring with identity. 

C. 40. For each positive integer k, let kZ denote the ring of all integer multiples of k (see 
Exercise 6 of Section 3.1 ). Prove that if m =F n, then mZ is not isomorphic to nZ. 

41. Let m, n E Z with (m, n) = 1 and letf: Zmn ~ Zm X 1:" be the function given 
by f([a]nm) =([a],., [a]11). (Notation as in Exercise 12(e). Example 8 is the case 
m = 3, n = 4.) 

(a) Show that the map fis well defined, that is, show that if [a]11111 = [b] 11m in 
Zm, then [a] 111 = [b] 111 in 1:111 and [a]11 = [b] 11 in 1:11 • 

(b) Prove thatfis an isomorphism. [Hint: Adapt the proof in Example 8; the 
difference is that proving/is a bijection takes more work here.] 

42. If (m, n) =F 1, prove that 1:11111 is not isomorphic to 1:111 X 1:11 • 

*ldempotents are defined in Exercise 3 of Section 3.2. 





Arithmetic in F[x] 

In Chapter 1 we examined grade-school arithmetic from an advanced standpoint 
and developed some important properties of the ring 7L of integers. In this chapter 
we follow a parallel path, but the starting point here is high-school algebra
specifically, polynomials with coefficients in the f1elciiR of real numbers, such as 

x2
- 3x- 5, 6x3 

- 3x2 + 7 x + 4, x12- 1. 

Dealing with polynomials means dealing with the mysterious symbol "x", which 
is used in three different ways in high-school algebra. First, x often "stands for" a 

number, as in the equation 12x- 8 = 0, where xis the numbel-_g_. Second, x some

times doesn't seem to stand for any particular number but is tr5atecl as if it were a 

number in simplification exercises such as this one: 

x(x2 + 1) 
=X. 

Third, xis also used as the variable in the rules of functions such as f(x) = 3x + 5. 
Now that you know what rings and fields are, we shall consider polynomials 

with coefficients in any l'ing and attempt to clear up some of the mystery about 
the nature of x. In Sections 4.1-4.3, we shall see that when xis given a meaning 
similar to the second way it is used in high school, then the polynomials with coef
ficients in a field Fform a ring (denoted F[x]) whose structure is remal-kably similar 
to that of the ring 7L of integers. In many cases the proofs for 7L given in Chapter 1 
carry over almost verbatim to F[x]. 

In Sections 4.4-4.6 we consider tests to determine whether a polynomial is il-re
clucible (the analogue of testing an integer for primality). Here the development is 
not an exact copy of what was clone in the integers. The reason is that the polyno
mial ring F[x] has features that have no analogues in the ring of integers, namely, 
the concepts of the root of a polynomial and of a polynomial function (which cor
respond to the first and third uses of x in high school). 

85 
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Polynomial Arithmetic and the Division Algorithm 

The underlying idea here is to define "polynomial" in a way that is the obvious exten
sion of polynomials with real-number coefficients. Let R be any ring. A polynomial 
with coefficients in R is an expression of the form 

a0 + a1x + a2x
2 + · · · + anX', 

where n is a nonnegative integer and a1 E R. 
This informal definition raises several questions: What is x? Is it an element of R? 

If not, what does it mean to multiply x by a ring element? In order to answer these 
questions, note that an expression of the form a0 + a1x + a2x

2 + · · · + anxn makes 
sense, provided that the a1 and x are all elements of some larger ring. An analogy might 
be helpful here. The number 7T is not in the ring 7l. of integers, but expressions such as 
3 - 471' + 1271'2 + 71'3 and 8 - 71'2 + 671'5 make sense in the real numbers. Furthermore, 
it is not difficult to verify that the set of all numbers of the form 

with n 2:: 0 and a1 E 7l. 

is a subring of IR that contains both 7l. and 7T (Exercise 2). 
For the present we shall think of polynomials with coefficients in a ring R in much 

the same way, as elements of a larger ring that contains both R and a special element 
x that is not in R. This is analogous to the situation in the preceding paragraph with 
R in place of 7l. and x in place of 7T, except that here we don't know anything about 
the element x or even if such a larger ring exists. The following theorem provides the 
answer, as well as a definition of "polynomial". 

If R is a ring, then there exists a ring T containing an element x that is not in 
Rand has these propet-ties: 

(i) R is a subring of T. 

(ii) xa =ax for every a ER. 

(iii) The set R[x] of all elements of T of the form 

a0 + a1x + a2x
2 + · · · + anxn (where n 2:: 0 and a1 E R) 

is a subring of T that contains R. 

(iv) The representation of elements of R[x] is unique: If n ::; m and 

a0 + a1x + a2x
2 + · · · + anxn = b0 + b1x + b2x

2 + · · · + bnxm, 

then a1 = b, fori= 1, 2, ... , nand b1 =OR for each i > n. 

(v) a0 + a1x + a2x
2 + · · · + anxn = OR if and only if a1 = OR for every i. 

PI'OOf"' See Appendix G. We shall assume Theorem 4.1 here. 

The elements of the ring R[x] in Theorem 4.1 (iii) are called polynomials with 
coefficients in R and the elements a1 are called coefficients. The special element x is 
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sometimes called an indeterminate.* To avoid any misunderstandings in Theorem 4.1, 
please note the following facts. 

1. Property (ii) of Theorem 4.1 does not imply that the ring Tis commutative, but 
only that the special element x commutes with each element of the subring R 
(whose elements may not necessarily commute with each other). 

2. Property (v) is the special case of property (iv) when each b; = OR. 

3. The first expression in property (v) is not an equation to be solved for x. In this 
context, asking what value of x makes a0 + a1x + a2x

2 + · · · + a11X' =OR is as 
meaningless as asking what value of 1r makes 3 + 51T - 77T2 = 0 because x (like 
1r) is a specific element of a ring, not a variable that can be assigned values.t 

EXAMPLE 1 

The rings Z[x], Q[x], and !R[x] are the rings you are familiar with from high 
school. For instance, 3 + 5x - 7x2 is in all three of these rings, but 3 + 7.5x2 is 
only in Q[x] and IR[x] because the coefficient 7.5 is not an integer. Similarly, 
4.2 + 3x + VSx4 is in IR[x] but not in the other two rings since \15 is not a 
rational number. Terms with zero coefficents are usually omitted, as they were 
in the preceding sentence. 

EXAMPLE 2 

Let E be the ring of even integers. Then 4 - 6x + 4x3 E E[x]. However, the 
polynomial xis not in E[x], because it cannot be written with even coefficients. 

Polynomial Arithmetic 
The rules for adding and multiplying polynomials follow directly from the fact that 
R[x] is a ring. 

EXAMPLE 3 

If f(x) = 1 + 5x- x2 + 4x3 + 2x4 and g(x) = 4 + 2x + 3x2 + x3 in Z7[x], then 
the commutative, associative, and distributive laws show that 

f(x) + g(x) = (I + 5x- x2 + 4x3 + 2x4
) + (4 + 2x + 3x2 + x 3 + Ox4

) 

= (1 + 4) + (5 + 2)x + ( -1 + 3)x2 + (4 + l)x3 + (2 + O)x4 

= 5 +Ox+ 2x2 + 5x3 + 2x4 = 5 + 2x2 + 5x3 + 2x4
. 

*Although in common use, the term "indeterminate" is misleading. As shown in Appendix G, there 
is nothing undetermined or ambiguous about x. It is a specific element of the larger ring T and is 
not an element of R. 

tvariables and equations will be dealt with in Section 4.4. 
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Definition 

EXAMPLE 4 

The product of 1 - 7x + x2 and 2 + 3x in Q[x] is found by using the distribu
tive law repeatedly: 

(1 - 7x + x2)(2 + 3x) = 1(2 + 3x) - 7x(2 + 3x) + x2(2 + 3x) 

= 1(2) + 1(3x) - 7x(2) - 7x(3x) + x2(2) + ~(3x) 
= 2 + 3x - 14x - 21x2 + 2x2 + 3x3 

= 2- 11x- 19x2 + 3x3. 

The preceding examples are typical of the general case. You add polynomials by 
adding the corresponding coefficients, and you multiply polynomials by using the 
distributive laws and collecting like powers of x. Thus polynomial addition is given by 
the rule:* 

(ao + CIJX + C12X2 + ' ' ' + Cl11X
1
) + (bo + b1X + b2X2 + ' ' ' + h11X

1
) 

= (ao + bo) + (al + b1)x + (a2 + b2)x2 + · · · + (an + h11 )x" 

and polynomial multiplication is given by the rule: 

(ao + CIJX + C12X2 + ' ' ' + Cl11X
1)(bo + bix + hzX2 + ' ' ' + b117X

11
) 

= aobo + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · + a11b111x
11 +111

• 

For each k 2: 0, the coefficient of xk in the product is 

k 

aobk + aibk-1 + Ctzbk-2 + · · · + ak-2h2 + ak-lbi + a~cbo = '2-a;b~c-;, 
i=O 

where a; = 0 R if i > n and bj = 0 R if j > m. 
It follows readily from this description of multiplication in R[x] that if R is com

mutative, then so is R[x] (Exercise 7). Furthermore, if R has a multiplicative identity 
1R, then 1R is also the multiplicative identity of R[x] (Exercise 8). 

Let f(x) = a0 + a1x + a2x
2 + · · · + anxn be a polynomial in R[x] with an =I= OR. 

Then an is called the leading coefficient of f(x). The degree of f(x) is the 
integer n; it is denoted "deg f(x)". In other words, deg f(x) is the largest 
exponent of x that appears with a nonzero coefficient, arid this coefficient 
is the leading coefficient. 

EXAMPLES 

The degree of 3 - x + 4x2 - 7x3 E IR[x] is 3, and its leading coefficient is -7. 
Similarly, deg (3 + Sx) = 1 and deg (x12

) = 12. The degree of 2 + x + 4x2 -
Ox3 + Ox5 is 2 (the largest exponent of x with a nonzero coefficient); its leading 
coefficient is 4. 

*We may assume that the same powers of x appear by inserting zero coefficients where necessary. 
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The ring R that we start with is a subring of the polynomial ring R[x]. The elements 
of R, considered as polynomials in R[x], are called constant polynomials. The polyno
mials of degree 0 in R[x] are precisely the nonzero constant polynomials. Note that 

the constant polynomial OR does not have a degree 

(because no power of X appears With nonzero coefficient). 

If R is an integral domain and f(x), g(x) are nonzero polynomials in R[x], then 

deg[f(x)g(x)] = deg f(x) + deg g(x). 

Proof,.. Supposef(x) = a0 + a1x + a2x
2 + · · · + a11X

11 andg(x) = b0 + b1x + 
b2x

2 + · · · + b111X
111 with an =FOR and b111 =FOR, so that degf(x) =nand 

deg g(x) = m. Then 

f(x)g(x) = aobo + (aob! + a1bo)x + (azbo + a1b1 + a0b2)x
2 + · · · + a11b111~1+111 • 

The largest exponent of x that can possibly have a nonzero coefficient is 
n + m. But a11b117 =FOR because R is an integral domain and a11 =FOR and 
b111 =FOR· Therefore,j(x)g(x) is nonzero and deg[f(x)g(x)] = n + m = 
degf(x) + deg g(x). Ill 

If R is an integral domain, then so is R[x]. 

Proof,.. Since R is a commutative ring with identity, so is R[x] (Exercises 7 and 8). 
The proof of Theorem 4.2 shows that the product of nonzero polynomials 
in R[x] is nonzero. Therefore, R[x] is an integral domain. 

The first five lines of the proof of Theorem 4.2 are valid in any ring and lead to 
this conclusion. 

corollary 4.4 
Let R be a ring. If f(x), g(x), and f(x)g(x) are nonzero in R[x], then 

deg [f(x)g(x)] ::::; deg f(x) + deg g(x). 

EXAMPLE 6 

In Z6[x], letf(x) = 2x4 and g(x) = 5x. Thenf(x)g(x) = (2x4)(5x) = 4x5
, 

so deg [f(x)g(x)] = degf(x) + deg g(x). However, if g(x) = 1 + 3x2
, then 

f(x)g(x) = 2x4(1 + 3x3
) = 2x4 + 2 · 3x6 = 2x4 + Ox6 = 2x4

, 

which has degree 4. But degf(x) + deg g(x) = 6. So deg [f(x)g(x)] < degf(x) + 
deg g(x). 



90 Chapter 4 Arithmetic in f[x] 

For information on the degree of the sum of polynomials, see Exercises 4 and 12. 

Let R be an integral domain and f(x) ER[x]. Then 

f(x) is a unit in R[x] if and only if f(x) is a constant polynomial that is a unit in R. 

In particular, ifF is a fleld, the units in F[x] are the nonzero constants in F. 

Remember that the proof of an "if and only if" statement requires two separate proofs. 

Proof of Corollary 4.5"" First, assume thatf(x) is a unit in R[x]. Thenf(x)g(x) = 1R 
for some g(x) in R[x]. By Theorem 4.2, 

degf(x) + deg g(x) = deg [f(x)g(x)] = deg 1R = 0. 

Since the degrees of polynomials are nonnegative, we must have 
degf(x) = 0 and deg g(x) = 0. Therefore,J(x) and g(x) are constant poly
nomials, that is, constants in R. Sincef(x)g(x) = lR,J(x) is a unit in R. 

Conversely, assume thatf(x) is a constant polynomial that is a unit in R, 
say f(x) = b, with b a unit in R. Let h(x) = b-1. Thenf(x)h(x) = bb-1 = lR. 
Therefore,f(x) is a unit in R[x]. 

The last statement of the corollary follows immediately since 
every nonzero element of a field is a unit in the field (see Example 6 in 
Section 3.2). 

EXAMPlE 7 

The only units in E[x] are 1 and -1, since these are the only units in£:. The units in 
IR[x] (or in Q[x] or in <C[x]) are all nonzero constants, since IR, Q, and Care fields. 

Corollary 4.5 may be false if R is not an integral domain (Exercise 11). 

EXAMPlE 8 

5x + 1 is a unit in £:25[x] that is not a constant because (as you should verify) 
(5x + 1)(20x + 1) = 1. 

The Division Algorithm in F[x] 
Our principal interest in the rest of this chapter will be polynomials with coefficients in 
a field F (such as Q or 1R or £:5). As noted in the chapter introduction, the domain F[x] 
has many of the same properties as the domain £: of integers, including the Division 
Algorithm (Theorem 1.1), which states that for any integers a and b with b positive, 
there exist unique integers q and r such that 

a= bq + r and 0::; r <b. 
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For polynomials, the only changes are to require the divisor to be nonzero and to 
replace the statement "0 s r < b" by a statement involving degrees. Here is the formal state
ment (withf(x) in place of a, g(x) in place of b, and q(x), r(x) in place of q, r respectively). 

·-" -r : t~ -'~~ ,--,._, - - · 

···yffeore~m4~·s·.<··¥he··oivision ·Aiuorilhrn.lri''irxj · · 
Let F be a field and f(x), g(x) EF[x] with g(x) =F OF· Then there exist unique 
polynomials q(x) and r(x) such that 

f(x) = g(x)q(x) + r(x) and either r(x) = OF or deg r(x) < deg g(x). 

Example 9 shows how polynomial division works and why the Division Algorithm 
is valid in one particular case. 

EXAMPLE 9 

We shall dividef(x) = 3x5 + 2x4 + 2x3 + 4x2 + x- 2 by g(x) = 2x3 + 1. The 
italic column on the right keeps track of what happens at each step.* 

divisor g(x) l %x
2 + x + 1 

2x3 + 1j3x5 + 2x4 + 2x3 + 4x2 + x - 2 
5 3 ? 

3x + -x-
2 

4 3 5 ~ 2 2x + 2x + 2' + x -

2x4 + x 
5 

2x3 + -x2 
- 2 

2 
2x3 + 1 

5 
remainder r(x)-----+ 2x2 

- 3 

+---quotient q(x) 

+--- dividend f( x) 

+--- (%~ )g(x) 

+--- f(x)- (%x2)g(x) 

+--- xg(x) 

+--- f(x) - (%x2 )g(x) - xg(x) 

+--- 1g(x) 

+---f(x) - (%x2 )g(x) - xg(x) - 1g(x) = 

f(x) - g(x) (%x2 + x + 1) = 

f(x) - g(x)q(x) 

The last line on the left side and the last three lines on the right side show that 

f(x) - g(x)q(x) = r(x) or equivalently, f(x) = g(x)q(x) + r(x). 

So the Division Algorithm holds for the polynomialsf(x) and g(x). 

3 
*Division Refesher:The first term of the quotient 2x2 is obtained by dividing the leading term of the 

dividend (3x5
) by the leading term of the divisor (2x3

): 3x5/2x3 = ~x2 • The product of this term and the 

divisor ( (%x2)g(x)) is then subtracted from the dividend result~ng in 2x4 + 2x3 + %x2 + x- 2, as 

shown. The process is repeated, using this last expression as the dividend and the same divisor, and 
continues until you reach a polynomial with degree smaller than the degree of the divisor. 
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Of course, an example is not a proof, even though you can readily convince your
self that the same procedure works with other divisors and dividends (Exercise 5). 
Consequently, skipping the proof until you are ,familiar with mathematical induc
tion, would be quite reasonable. That's why the proof of Theorem 4.6 is marked 
optional. 

Proof ofTheorem 4.8 The Division Algorithm (Optional) ... 
We first prove the existence of the polynomials q(x) and r(x). 

Case 1: If f(x) = Op or if degf(x) < deg g(x), then the theorem is true 
with q(x) = Op and r(x) = f(x) becausef(x) = g(x)OF + f(x). 

Case 2: If f(x) =!= Op and deg g(x) :::; degf(x), then the proof of exis
tence is by induction on the degree of the dividendf(x).* If degf(x) = 0, 
then deg g(x) = 0 also. Hence,f(x) =a and g(x) = b for some nonzero 
a, b EF. Since Fis a field, b is a unit and a= b(b- 1a) + Op. Thus the 
theorem is true with q(x) = b-1a and r(x) = Op. 

Assume inductively that the theorem is true whenever the dividend 
has degree less than n. This part of the proof is presented in two columns. 
The left-hand column is the formal proof, while the right-hand column 
refers to Example 9. The example will help you understand what's being 
done in the proof. 

PROOF EXAMPLE9 

We must show that the theorem is true whenever 
the dividendf(x) has degree n, say n=5 

f(x) = anX1 + ... + alx + ao 

with a11 =!= Op. The divisor g(x) must have the 
form 

g(x) = b111X
11 + · · · + b1x + b0 

with b171 =!= OF and m:::; n. We begin as we would 
in the long division of g(x) into f(x). Since F is a 
field and b111 =!= 0 p, b111 is a unit. Multiply the divi
sor g(x) by a b -lxn-m to obtain 

.I f1 l1l 

= "l b -! x"-111(b X111 + .. · + b X + b ) L-•n 111 ..~ nr' 1.1 0 

f(x) = 3x5 + 2x4 + 2x3 + 4x2 + x - 2 
,....---"-... 

anx,fl 

m = 3 

g(x) = 2x3 + 1 
,....---"-... 

3 anbm-lx'-m = 3. 2-lxS-3 = lx2 

~ 

first term of 
the quotient 

3 3 
2x2g(x) = 2x2(2x3 + 1) 

3 
= 3x5 + -x2 

2 

*We use the Principle of Complete Induction; see Appendix C. 
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Since a11b111 -
1x"- 111g(x) and f(x) have the same 

degree and the same leading coefficient, the 
difference 

is a polynomial of degree less than n (or possibly 
the zero polynomial). Now apply the induction 
hypothesis with g(x) as divisor and the poly
nomial f(x) - anb111 -

1
X

11
-

111g(x) as dividend (or 
use Case 1 if this dividend is zero). By induction 
there exist polynomials q1(x) and r(x) such that 

f(x)- anbm-lr- 111g(x) = g(x)q1(x) + r(x) and 

r(x) = Op or deg r(x) < deg g(x). 

Therefore, 

f(x) - %x2g(x) 

= f(x) - ( 3x5 + %x2
) 

5 
= 2x4 + 2x3 + 2x2 + x - 2 

fourth line of long division 

5 
q1(x) = x + 1 r(x) = 2x2 - 3 
~ ,....-----"-, 

last part of remainder 
the quotient 

f(x) = g(x)[a
11
b111 -lXn-m + ql(x)] + r(x) and 

r(x) = Op or deg r(x) < deg g(x). 

Thus the theorem is truewithq(x) = a11b111 -
1x1-"'+ q1(x)when degf(x) = n. This completes 

the induction and shows that q(x) and r(x) always exist for any divisor and dividend. 
To prove that q(x) and r(x) are unique, suppose that qix) and r2(x) are polynomials 

such that 

f(x) = g(x)q2(x) + rix) and r2(x) = Op or deg rix) < deg g(x). 

Then 
g(x)q(x) + r(x) = f(x) = g(x)qix) + rix), 

so that 
g(x)[q(x) - q2(x)] = rix) - r(x). 

If q(x) - q2(x) is nonzero, then by Theorem 4.2 the degree of the left side is deg g(x) + 
deg[q(x) - qix)], a number greater than or equal to deg g(x). Howevei~ both rix) and r(x) 
have degree strictly less than deg g(x), and so the right-hand side of the equation must also 
have degree strictly less than deg g(x) (Exercise 12). This is a contradiction. Therefore 
q(x) - q2(x) = Op, or, equivalently, q(x) = q2(x). Since the left side is zero, we must have 

r2(x) - r(x) = Op, so that rlx) = r(x). Thus the polynomials q(x) and r(x) are unique. II 

Exercises 

NOTE: R denotes a ring and F afield. 

A. 1. Perform the indicated operation and simplify your answer: 

(a) (3x4 + 2x3 
- 4x2 + x + 4) + (4x3 + x2 + 4x + 3) in 1:5[x] 

(b) (x + 1)3 in 1:3[x] 

(c) (x- 1)5 in E5[x] 

(d) (x2
- 3x + 2)(2x3 - 4x + 1) in E7[x] 
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2. Show that the set of all real numbers of the form 

a0 + a(rr + a27T2 + · · · + a117T
11

, with n 2:: 0 and a; E: 7L 

is a subring of IR that contains both 7L and 7T. 

3. (a) List all polynomials of degree 3 in 7L2[x]. 

(b) List all polynomials of degree less than 3 in 7L3[x]. 

4. In each part, give an example of polynomialsf(x), g(x) E: Q(x] that satisfy the 
given condition: 

(a) The deg of f(x) + g(x) is less than the maximum of degf(x) and deg g(x). 

(b) Deg [f(x) + g(x)] =max {degf(x), deg g(x)}. 

5. Find polynomials q(x) and r(x) such thatf(x) = g(x)q(x) + r(x), and r(x) = 0 
or deg r(x) < deg g(x): 

(a) f(x) = 3x4 
- 2x3 + 6x2 

- x + 2 and g(x) = x2 + x + 1 in Q[x]. 

(b) f(x) = x4 
- 7x + 1 and g(x) = 2x2 + 1 in Q[x]. 

(c) f(x) = 2x4 + x2 
- x + 1 and g(x) = 2x - 1 in 7L5[x]. 

(d) f(x) = 4x4 + 2x3 + 6x2 + 4x + 5 and g(x) = 3x2 + 2 in 7L7[x]. 

6. Which of the following subsets of R[x] are subrings of R[x]? Justify your answer: 

(a) All polynomials with constant term OR. 

(b) All polynomials of degree 2. 

(c) All polynomials of degree:::; k, where k is a fixed positive integer. 

(d) All polynomials in which the odd powers of x have zero coefficients. 

(e) All polynomials in which the even powers of x have zero coefficients. 

7. If R is commutative, show that R[x] is also commutative. 

8. If R has multiplicative identity 1 R' show that 1 R is also the multiplicative 
identity of R[x]. 

9. If c E: R is a zero divisor in a commutative ring R, then is c also a zero divisor 
in R[x]? 

10. IfF is a field, show that F[x] is not a field. [Hint: Is x a unit in F[x]?] 

B. 11. Show that 1 + 3x is a unit in 7L9[x]. Hence, Corollary 4.5 may be false if R is 
not an integral domain. 

12. If f(x), g(x) E: R[x] andf(x) + g(x) =I= OR, show that 

deg[f(x) + g(x)] :::; max { degf(x), deg g(x)}. 

13. Let R be a commutative ring. If a11 =I= OR andf(x) = a0 + a1x + a2x
2 + · · · + 

a11x" (with a11 =I= OR) is a zero divisor in R[x], prove that a" is a zero divisor in R. 

14. (a) Let R be an integral domain andf(x), g(x) E: R[x]. Assume that the 
leading coefficient of g(x) is a unit in R. Verify that the Division Algorithm 
holds for f(x) as dividend and g(x) as divisor. [Hint: Adapt the proof of 
Theorem 4.6. Where is the hypothesis that Fis a field used there?] 
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(b) Give an example in E[x] to show that part (a) may be false if the leading 
coefficient of g(x) is not a unit. [Hint: Exercise 5(b) withE in place of Q.] 

15. Let R be a commutative ring with identity and a E R. 

(a) If a3 =OR, show that lR +ax is a unit in R[x]. [Hint: Consider 1 -ax+ 
a2x2.] 

(b) If a4 = OR, show that lR + ax is a unit in R[x]. 

16. Let R be a commutative ring with identity and a E R. If lR +ax is a unit in 
R[x], show that a11 =OR for some integer n > 0. [Hint: Suppose that the inverse 
of lR +ax is b0 + b1x + b2x2 + · · · + bkxk. Since their product is lR, b0 = IR 
(Why?) and the other coefficients are all 0 R·] 

17. Let R be an integral domain. Assume that the Division Algorithm always 
holds in R[x]. Prove that R is a field. 

18. Let cp:R[x] ~ R be the function that maps each polynomial in R[x] onto its 
constant term (an element of R). Show that 'Pis a surjective homomorphism 
of rings. 

19. Let cp:E[x] ~ E11[x] be the function that maps the polynomial a0 + a1x + · · · + 
akx'' in E[x] onto the polynomial [a0] + [adx + · · · + [ak]~, where [a] denotes 
the class of the integer a in E11 • Show that 'P is a surjective homomorphism of 
nngs. 

20. Let D:IR\[x] ~ IR\[x] be the derivative map defined by 

D(ao + alx + a2x2 + ... + anX11
) = al + 2a2x + 3a3x2 + ... + nanx'-1

• 

Is D a homomorphism of rings? An isomorphism? 

C. 21. Let h:R ~ S be a homomorphism of rings and define a function h:R[x] ~ S[x] 
by the rule 

h(a0 + a1x + · · · + an~) = h(a0) + h(a1)x + h(a2)x2 + · · · + h(an)x'. 

Prove that 

(a) his a homomorphism of rings. 

(b) his injective if and only if his injective. 

(c) his surjective if and only if his surjective. 

(d) If R = S, then R[x] = S[x]. 

22. Let R be a commutative ring and let k(x) be a fixed polynomial in R[x]. Prove 
that there exists a unique homomorphism cp:R[x] ~ R[x] such that 

cp(r) = r for all r E R and cp(x) = k(x). 

Divisibility in F[x] 

All the results of Section 1.2 on divisibility and greatest common divisors in E now 
carry over, with only minor modifications, to the ring of polynomials over a field. 
Throughout this section, F always denotes afield. 
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Definition 

Definition 

Let F be a field arid a(x), b(x) E F[x] with b(x) nonzero. We say thatb(x) 
divides a(x) [or that b(x) is a factorof a(1)], and write b(x) I a(x) if a(X) = 

· b(x)h(x) for some h(x) E F[X]. · 

EXAMPLE 1 

(2x + 1) I (6x2 
- x- 2) in Q[x] because 6x2 

- x- 2 = (2x + 1)(3x- 2). 
Furthermore, every constant multiple of 2x + 1 also divides 6x2 - x - 2. For 
instance, 5(2x + 1) = lOx+ 5 divides 6x2

- x- 2 because 6x2 - x- 2 = 

5(2x + l)[l(3x - 2)]. 

Example 1 illustrates the first part of the following result. 

Let F be a field and a(x), b(x) E F[x] with b(x) nonzero. 

(1) If b(x) divides a(x), then cb(x) divides a(x) for each nonzero c E F. 
(2) Every divisor of a(x) has degree less than or equal to deg a(x). 

Proof ,. (1) If b(x) I a(x), then a(x) = b(x)h(x) for some h(x) E F[x]. Hence, 

a(x) = IF· b(x)h(x) = cc-1b(x)h(x) = cb(x)[c- 1h(x)]. 

Therefore, cb(x) I a(x). 

(2) Suppose b(x) I a(x), say a(x) = b(x)h(x). By Theorem 4.2, 
deg a(x) = deg b(x) + deg h(x). 

Since degrees are nonnegative, we must have 0:::; deg b(x) :::; deg a(x). I! 

As we learned earlier, the greatest common divisor of two integers is the largest 
integer that divides both of them. By analogy, the greatest common divisor of two 
polynomials a(x), b(x) E F[x] ought to be the polynomial of highest degree that divides 
both of them. But such a greatest common divisor would not be unique because each 
constant multiple of it would have the same degree and would also divide both a(x) 
and b(x). In order to guarantee a unique gcd, we modify this definition slightly by 
introducing a new concept. A polynomial in F[x] is said to be monic if its leading 
coefficient is lF. For instance, x3 + x + 2 is monic in Q[x], but 2x + 1 is not. 

Let F be a field and a(x), b(x) E F[x], not both zero. The greatest common 
div.isor (gcd) of a(x) and b(x) is the monic polynomial of highest degree 
that divides both a(x) and b(x). 

In other words, d(x) is the gcd of a(x) and b(x) pravided that d(x) is monic and 

(1) d(x) I a(x) and d(x) I b(x); 

(2) If c(x) I a(x) and c(x) I b(x), then deg c(x) s deg d(x). 
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Polynomials a(x) and b(x) have at least one monic common divisor (namely IF)· Since 
the degree of a common divisor of a(x) and b(x) cannot exceed either deg a(x) or deg b(x) 
by Theorem 4.7, there must be at least one monic common divisor of highest degree. In 
Theorem 4.8 below we shall show that there is only one monic common divisor of highest 
degree, thus justifying the definition's reference to the greatest common divisor. 

EXAMPLE 2 

To find the gcd of 3x2 + x + 6 and 0 in Q[x], we note that the common divisors 
of highest degree are just the divisors of 3x2 + x + 6 of degree 2. These include 
3x2 + x + 6 itself and all nonzero constant multiples of this polynomial-in 
particular, the monic polynomial 

1 2 - 2 1 
3(3x + x + 6) - x + 3x + 2. 

Hence, x 2 + *x + 2 is a gcd of 3x2 + x + 6 and 0. 

EXAMPlE 3 

You can easily verify these factorizations in Q[x]: 

a(x) = 2x4 + 5x3 
- Sx - 2 = (2x + l)(x + 2)(x + l)(x - 1), 

b(x) = 2x3 - 3x2 - 2x = (2x + 1)(x - 2)x. 

It appears that 2x + 1 is a common divisor of highest degree of a(x) and b(x). 

In this case, the constant multiple _!_(2x + 1) = x + _!_is a monic common divi-
2 1 2 

sor of highest degree. For a proof that x + - actually is the greatest common 
divis01~ see Exercise 5(g). 2 

The remainder of this section, which is referred to only a few times in the rest of 
the book, may be skimmed if time is short-read the theorems and corollaries, but 
skip the proofs. 

Let F be a field and a(x), b(x) EF[x], not both zero. Then there is a unique great
est common divisor d(x) of a(x) and b(x). Furthermore, there are (not neces
sarily unique) polynomials u(x) and v(x) such that d(x) = a(x)u(x) + b(x)v(x). 

Steps I and 2 of the proof are patterned after the proof of Theorem I.2. 

Proof of Theorem 4.8 II> Let s be the set of all linear combinations of a(x) and 
b(x), that is, 

S = {a(x)m(x) + b(x)n(x) I m(x), n(x) EF[x]}. 

Step 1 Find a monic polynomial of smallest degree in S. 

Proof of Step 1: S contains nonzero polynomials (for instance, at least 
one of a(x) · IF+ b(x) ·OF or a(x) ·OF, + b(x) · IF). So the set of all 
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degrees of polynomials in Sis a nonempty set of nonnegative integers, 
which has a smallest element by the Well-Ordering Axiom. Hence, there 
is a polynomial w(x) of smallest degree inS. If dis the leading coef
ficient of w(x), then t(x) = d - 1w(x) is a monic polynomial of smallest 
degree in S. By the definition of S, 

t(x) = a(x)u(x) + b(x)v(x) for some u(x), v(x) EF[x]. 

Step 2 Prove that t(x) is a gcd of a(x) and b(x). 

Proof of Step 2: We must prove that t satisfies the two conditions in the 
definition of the gcd: 

(1) t(x) I a(x) and t(x) I b(x); 

(2) If c(x) I a(x) and c(x) I b(x), then deg c(x) :::::; deg t(x). 

Proof of ( 1): In the proof of Step 2 of Theorem 1.2, replace a, b, 
c, t, q, r, u, v, k, and s with a(x), b(x), c(x), t(x), q(x), r(x), u(x), 
v(x), k(x), and s(x), respectively, to show that t(x) is a common 
divisor of a(x) and b(x). 

Proof of (2): With the same replacements as in the proof of (1), 
repeat the proof of Step 2 of Theorem 1.2, until you reach this 
statement: 

t(x) = a(x)u(x) + b(x)v(x) = [c(x)k(x)]u(x) + [c(x)s(x)]v(x) 

= c(x)[k(x)u(x) + s(x)v(x)]. 

The first and last terms of this equation show that c(x) I t(x). By 
Theorem 4.7, deg c(x) :::::; deg t(x). 

This shows that t(x) is a greatest common divisor of f(x) and g(x). 

Step 3 Prove that t(x) is the unique gcd of a(x) and b(x). 

Proof of Step 3: Suppose that d(x) is any gcd of a(x) and b(x). To prove 
uniqueness, we must show that d(x) = t(x). Since d(x) is a common divi
sor, we have a(x) = d(x)f(x) and b(x) = d(x)g(x) for sbmef(x), g(x) EF[x]. 
Therefore, 

t(x) = a(x)u(x) + b(x)v(x) = [d(x)f(x)]u(x) + [d(x)g(x)]v(x) 

= d(x)[J(x)u(x) + g(x)v(x)]. 

By Theorem 4.2, 

deg t(x) = deg d(x) + deg [f(x)u(x) + g(x)v(x)]. 

Since they are gcd's, t(x) and d(x) have the same degree. Hence, 

deg [J(x)u(x) + g(x)v(x)] = 0, 

so thatf(x)u(x) + g(x)v(x) = c for some constant c EF. Therefore, 
t(x) = d(x)c. Since both t(x) and d(x) are monic, the leading coefficient 
on the left side is 1 F and the leading coefficient on the right side is c. So 
we must have c = IF. Therefore, d(x) = t(x) = a(x)u(x) + b(x)v(x) is the 
unique gcd of a(x) and b(x). Ill 



4.2 Divisibility in F[x] 99 

Let F be a field and a(x), b(x) EF[x], not both zero. A monic polynomial 
d(x) EF[x] is the greatest common divisor of a(x) and b(x) if and only if d(x) 
satisfies these conditions. 

(i) d(x) I a(x) and d(x) I b(x). 

(ii) if c(x) I a(x) and c(x) I b(x), then c(x) I d(x). 

Proof~ Adapt the proof of Corollary 1.3 to F[x]. lll!il! 

Polynomialsf(x) and g(x) are said to be relatively prime if their greatest common 
divisor is 1 F· 

Let F be a field and a(x), b(x), c(x) EF[x]. If a(x) I b(x)c(x) and a(x) and b(x) are 
relatively prime, then a(x) I c(x). 

Proof~ Adapt the proof of Theorem 1.4 to F[x]. lll!il! 

Exercises 

NOTE: F denotes afield. 

A. 1. If f(x) EF[x], show that every nonzero constant polynomial dividesf(x). 

2. If f(x) = cnxn + · · · + c0 with en i= OF, what is the gcd of f(x) and OF? 

3. If a, bE F and a i= b, show that x + a and x + bare relatively prime in F[x]. 

4. (a) Letf(x), g(x) E F[x]. If f(x) I g(x) and g(x) lf(x), show thatf(x) = cg(x) for 
some nonzero c E F. 

(b) If f(x) and g(x) in part (a) are monic, show thatf(x) = g(x). 

5. The Euclidean Algorithm for finding gcd's is described for integers in Exercise 15 
of Section 1.2. The process given there also works for polynomials over a 
field, with one minor adjustment. For integers, the last nonzero remainder is 
the gcd. For polynomials the last nonzero remainder is a common divisor of 
highest degree, but it may not be monic. In that case, multiply it by the inverse 
of its leading coefficient to obtain the gcd. Use the Euclidean Algorithm to 
find the gcd of the given polynomials: 

(a) x4 
- x3 

- x2 + 1 and x3 
- 1 in Q[x] 

(b) x 5 + x4 + 2x3 - x 2 - x - 2 and x4 + 2x3 + 5x2 + 4x + 4 in Q[x] 

(c) x4 + 3x3 + 2x + 4 and x 2 
- 1 in Z 5[x] 

(d) 4x4 + 2x3 + 6x2 + 4x + 5 and 3x3 + 5x2 + 6x in Z7[x] 
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(e) x3
- ix2 + 4x- 4iandx2 + 1 inC[x] 

(f) x4 + x + 1 and x2 + x + 1 in l 2[x] 

(g) 2x4 + 5x3 - 5x- 2 and 2x3 
- 3x2

---'- 2x in Q[x]. 

6. Express each of the gcd's in Exercise 5 as a linear combination of the two 
polynomials. 

B. 7. Letf(x) EF[x] and assume thatf(x) lg(x) for every nonconstant g(x) EF[x]. Show 
thatf(x) is a constant polynomial. [Hint: f(x) must divide both x + 1 and x.] 

8. Letf(x), g(x) EF[x], not both zero, and let d(x) be their gcd. If h(x) is a 
common divisor of f(x) and g(x) of highest possible degree, then prove that 
h(x) = cd(x) for some nonzero c EF. 

9. If f(x) =F OF andf(x) is relatively prime to Op, what can be said aboutf(x)? 

10. Find the gcd of x +a+ band x3 
- 3abx + a3 + b3 in Q[x]. 

11. Fill in the details of the proof of Theorem 4.8. 

12. Prove Corollary 4.9. 

13. Prove Theorem 4.10. 

14. Letf(x), g(x), h(x) E F[x], withf(x) and g(x) relatively prime. If f(x) I h(x) and 
g(x) I h(x), prove thatf(x)g(x) I h(x). 

15. Letf(x), g(x), h(x) EF[x], withf(x) and g(x) relatively prime. If h(x) lf(x), 
prove that h(x) and g(x) are relatively prime. 

16. Letf(x), g(x), h(x) E F[x], withf(x) and g(x) relatively prime. Prove that the 
gcd of f(x)h(x) and g(x) is the same as the gcd of h(x) and g(x). 

lrreducibles and Unique Factorization 

Throughout this section F always denotes a field. Before carrying over the results of 
Section 1.3 on unique factorization in l to the ring F[x], we must first examine an area 
in which l differs significantly from F[ x]. In l there are only two units,* namely ± 1, 
but a polynomial ring may have many more units (see Corollary 4.5). 

An element a in a commutative ring with identity R is said to be an associate of an 
element b of R if a= bu for some unit u. In this case b is also an associate of a because 
u -! is a unit and b = au-!. In the ring £:, the only associates of an integer n are n and 
-n because± 1 are the only units. If Fis a field, then by Corollary 4.5, the units in F[x] 
are the nonzero constants. Therefore, 

f(x) is an associate of g(x) in F[x] if and only if f(x) = cg(x) for some nonzero c E F. 

Recall that a nonzero integer p is prime in 7L if it is not ± 1 (that is, p is not a unit 
in 7L) and its only divisors are ±1 (the units) and ±p (the associates of p). In F[x] the 
units are the nonzero constants, which suggests the following definition. 

*"Unit" is defined just before Example 4 in Section 3.2. 
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Let F be a field. A nonconstant polynomial p(x) E F[x] is said to be 
irreducible* if its only divisors are its associates and the nonzero constant 
polynomials (units). A nonconstant polynomial that is not irreducible is 
said to be reducible. 

EXAMPLE 1 

The polynomial x + 2 is irreducible in Q[x] because, by Theorem 4.2, all its 
divisors must have degree 0 or 1. Divisors of degree 0 are nonzero constants. 
If f(x) I (x + 2), say x + 2 = f(x)g(x), and if degf(x) = 1, then g(x) has degree 
0, so that g(x) = c. Thus c 1(x + 2) = f(x), andf(x) is an associate of x + 2. A 
similar argument in the general case shows that 

every polynomial of degree 1 in F[x] is irreducible in F[x]. 

The definition of irreducibility is a natural generalization of the concept of primal
ity in 7L. In most high-school texts, however, a polynomial is defined to be irreducible 
if it is not the product of polynomials of lower degree. The next theorem shows that 
these two definitions are equivalent. 

Let F be a field. A nonzero polynomial f(x) is reducibl,e in F[x] if and only if f(x) 
can be written as the product of two polynomials of lower degree. 

Proof~> First, assume thatf(x) is reducible. Then it must have a divisor g(x) that 
is neither an associate nor a nonzero constant, say f(x) = g(x)h(x). If 
either g(x) or h(x) has the same degree asf(x), then the other must have 
degree 0 by Theorem 4.2. Since a polynomial of degree 0 is a nonzero 
constant in F, this means that either g(x) is a constant or an associate 
of f(x), contrary to hypothesis. Therefore, both g(x) and h(x) have lower 
degree thanf(x). 

Now assume thatf(x) can be written as the product of two polyno
mials of lower degree, and see Exercise 8. 

Various other tests for irreducibility are presented in Sections 4.4 to 4.6. For now, 
we note that the concept of irreducibility is not an absolute one. For instance, x 2 + 1 
is reducible in C[x] because x 2 + 1 = (x + i)(x - i) and neither factor is a constant or 
an associate of~ + 1. But~ + 1 is irreducible in Q[x] (Exercise 6). 

The following theorem shows that irreducibles in F[x] have essentially the same 
divisibility properties as do primes in 7L. Condition (3) in the theorem is often used to 
prove that a polynomial is irreducible; in many books, (3) is given as the definition of 
"irreducible". 

*You could just as well call such a polynomial "prime", but "irreducible" is the customary term with 
polynomials. 
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Let F be a fleld and p(x) a nonconstant polynomial in F[x]. Then the following 
conditions are equivalent:* 

(1) p(x) is irreducible. 

(2) If b(x) and c(x) are any polynomials such that p(x) 1 b(x)c(x), then 
p(x) I b(x) or p(x) I c(x). 

(3) If r(x) and s(x) are any polynomials such thatp(x) = r(x)s(x), then r(x) 
or s(x) is a nonzero constant polynomial. 

Proof~>- (1) ==? (2) Adapt the proof of Theorem 1.5 to F[x]. Replace statements 
about ±p by statements about the associates of p(x); replace statements 
about ± 1 by statements about units (nonzero constant polynomials) in 
F[x]; use Theorem 4.10 in place of Theorem 1.4. 

(2) ==? (3) If p(x) = r(x)s(x), then p(x) I r(x) or p(x) I s(x), by (2). If 
p(x) I r(x), say r(x) = p(x)v(x), then p(x) = r(x)s(x) = p(x)v(x)s(x). Since 
F[x] is an integral domain, we can cancelp(x) by Theorem 3.7 and con
clude that 1F = v(x)s(x). Thus s(x) is a unit, and hence by Corollary 4.5, 
s(x) is a nonzero constant. A similar argument shows that if p(x) I s(x), 
then r(x) is a nonzero constant. 

(3) ==? (1) Let c(x) be any divisor of p(x), say p(x) = c(x)d(x). Then 
by (3), either c(x) is a nonzero constant or d(x) is a nonzero constant. If 
d(x) = d =I= OF, then multiplying both sides of p(x) = c(x)d(x) = dc(x) by 
r' shows that c(x) = d- 1p(x). Thus in every case, c(x) is a nonzero con
stant or an associate of p(x). Therefore, p(x) is irreducible. II 

,';,B~6roflar§4.13. 
LetF be a field and p(x) an irreducible polynomial in F[x].lf p(x)la1(x)a2(x) · · · an(x), 
then p(x) divides at least one of the a/x). 

Proof~» Adapt the proof of Corollary 1.6 to F[x]. 1111 

Let F be a fleld. Every nonconstant polynomial f(x) in F[x] is a product of 
irreducible polynomials in F[x].t This factorization is unique in the following 
sense: If 

and 

*For the meaning of "the following conditions are equivalent" and what must be done to prove 
Theorem 4.12, see page 508 of Appendix A. Example 2 there is the integer analogue ofTheorem 4.12. 

twe allow the possibility of a product with just one factor in case f(x) is itself irreducible. 
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with each p1(x) and qJx) irreducible, then r = s (that is, the number of irre
ducible factors is the same). After the qJx) are reordered and relabeled, if 
necessary, 

p/x) is an associate of q/x) (I= 1, 2, 3, ... , r). 

Proof~~> To show thatf(x) is a product of irreducibles, adapt the proof of 
Theorem 1. 7 to F[ x]: Let S be the set of all nonconstant polynomials 
that are not the product of irreducibles, and use a proof by contradiction 
to show that S is empty. To prove that this factorization is unique up to 
associates, supposef(x) = p1(x)pz(x) · · · p1(x) = q1(x)qz(x) · · · qs(x) 
with eachplx) and %{x) irreducible. Thenp1(x)[pz(x) · · · p,(x)] = 
q1(x)qz(x) · · · qs(x), so that p1(x) divides q1(x)q2(x) · · · q8(x). Corollary 
4.13 shows that p1(x) I qj(x) for some}. After rearranging and relabel-
ing the q(x)'s if necessary, we may assume thatp1(x) I q1(x). Since q1(x) 
is irreducible,p1(x) must be either a constant or an associate of q1(x). 
However, p1(x) is irreducible, and so it is not a constant. Therefore, p1(x) 
is an associate of q1(x), withp1(x) = c1q1(x) for some constant c1• Thus 

q!(x)[cJPzCx)pJ(x) · · · p,(x)] = Pt(x)pz(x) · · · Pr(x) = q1(x)q2(x) · · · qs(x). 

Canceling q1(x) on each end, we have 

pz(x)[cJPJCx) · · · Pr(x)] = qz(x)q3(x) · · · qs(x). 

Complete the argument by adapting the proof of Theorem 1.8 to F[x], 
replacing statements about ±q1 with statements about associates of 
qj(x). Ill 

Exercises 

NOTE: F denotes afield and p a positive prime intega 

A. 1. Find a monic associate of 

(a) 3x3 + 2~ + x + 5 in Q[x] 

(c) ix3 + x - 1 in C[x] 

2. Prove that every nonzero f(x) E: F[x] has a unique monic associate in F[x]. 

3. List all associates of 

(a) x2 + x + 1 in.Z5[x] 

4. Show that a nonzero polynomial in Zp[x] has exactly p - 1 associates. 

5. Prove thatf(x) and g(x) are associates in F[x] if and only if f(x) I g(x) and 
g(x) lf(x). 

6. Show that x2 + 1 is irreducible in Q[x]. [Hint: If not, it must factor as 
(ax+ b)(cx +d) with a, b, c, d E: Q; show that this is impossible.] 

7. Prove thatf(x) is irreducible in F[x] if and only if each of its associates is 
irreducible. 
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8. If f(x) E F[x] can be written as the product of two polynomials of lower 
degree, prove thatf(x) is reducible in F[x]. (This is the second part of the 
proof of Theorem 4.11.) · 

9. Find all irreducible polynomials of 

(a) degree 2 in Z2[x] (b) degree 3 in Z 2[x] 

(c) degree 2 in Z 3[x] 

10. Is the given polynomial irreducible: 

(a) x2 - 3 in Q[x]? In IR[x]? 

(b) x2 + x - 2 in Z3[x]? In Z7[x]? 

11. Show that x3 
- 3 is irreducible in Z7[x]. 

12. Express x4 
- 4 as a product of irreducibles in Q[x], in IR[x], and in C[x]. 

13. Use unique factorization to find the gcd in C[x] of (x - 3)3(x- 4)4(x - i)2 

and (x - l)(x - 3)(x - 4l 
14. Show that x2 + x can be factored in two ways in Z6[x] as the product of non

constant polynomials that are not units and not associates of x or x + 1. 

B. 15. (a) By counting products of the form (x + a)(x + b), show that there are 
exactly (p2 + p)/2 monic polynomials of degree 2 that are not irreducible in 
Zp[x]. 

(b) Show that there are exactly (p2
- p)/2 monic irreducible polynomials of 

degree 2 in Zp[x]. 

16. Prove that p(x) is irreducible in F[x] if and only if for every g(x) E F[x], either 
p(x) I g(x) or p(x) is relatively prime to g(x). 

17. Prove (1) =* (2) in Theorem 4.12. 

18. Without using statement (2), prove directly that statement (1) is equivalent to 
statement (3) in Theorem 4.12. 

19. Prove Corollary 4.13. 

20. If p(x) and q(x) are nonassociate irreducibles in F[x], prove thatp(x) and q(x) 
are relatively prime. 

21. (a) Find a polynomial of positive degree in Z9[x] that is a unit. 

(b) Show that every polynomial (except the constant polynomials 3 and 6) 
in Z 9[x] can be written as the product of two polynomials of positive 
degree. 

22. (a) Show that x 3 + a is reducible in Z 3[x] for each a E &::3. 

(b) Show that x 5 + a is reducible in Z 5[x] for each a E &::5. 

23. (a) Show that x2 + 2 is irreducible in Z 5[x]. 

(b) Factor x4 - 4 as a product of irreducibles in Z 5[x]. 

24. Prove Theorem 4.14. 
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25. Prove that every nonconstantf(x) E F[x] can be written in the form 
cp1(x)p 2(x) · · · pnCx), with c E Fand eachpiCx) monic irreducible in F[x]. 
Show further that if f(x) = dq 1(x)qix) · · · q111(x) with d E F and each q1(x) 
monic irreducible in F[x], then m = n, c = d, and after reordering and 
relabeling if necessary, P; (x) = q;(x) for each i. 

Polynomial Functions, Roots, and Reducibility 

In the parallel development of F[x] and 7L, the next step is to consider criteria for 
irreducibility of polynomials (the analogue of primality testing for integers). Unlike 
the situation in the integers, there are a number of such criteria for polynomials whose 
implementation does not depend on a computer. Most of them are based on the fact 
that every polynomial in F[x] induces a function from F to F. The properties of this 
function (in particular, the places where it is zero) are closely related to the reducibility 
or irreducibility of the polynomial. 

Throughout this section, R is a commutative ring. Associated with each polynomial 
a11X

11 + · · · + a2x
2 + a1x + a0 in R[x] is a functionfR ~ R whose rule is 

for each r E R, 

The function/induced by a polynomial in this way is called a polynomial function. 

EXAMPLE 1 

The polynomial x2 + 5x + 3 E IR[x] induces the functionf!R ~ IR whose rule 
isf(r) = r2 + 5r + 3 for each r E R 

EXAMPLE 2 

The polynomial x4 + x + 1 E 7L3[x] induces the functionf7L 3 ~ 7L3 whose rule 
isf(r) = r 4 + r + 1. Thus 

f(O) = 04 + 0 + 1 = 1, /(1) = 14 + 1 + 1 = 0, 

/(2) = 24 + 2 + 1 = 1. 

The polynomial x 3 + x2 + 1 E 7l3[x] induces the function g:7L3 ~ 7L3 given by 

g(O) = 03 + 02 + 1 = 1, g(l) = 13 + 12 + 1 = 0, 

g(2) = 23 + 22 + 1 = 1. 

Thus/ and g are the same function on 7L 3, even though they are induced by 
different polynomials in 7L3[ x]. * 

Although the distinction between a polynomial and the polynomial function it 
induces is clear, the customary notation is quite ambiguous. For example, you will see a 

*Remember that functions f and g are equal if f(r) = g(r) for every r in the domain. 
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Definition 

statement such asf(x) = x2
- 3x + 2. Depending on the context,f(x) might denote the 

polynomial x2
- 3x + 2 E IR[x] or the rule of its induced functionf IR ~ IR. The sym

bol x is being used in two different ways here. In the polynomial x2 
- 3x + 2, x is an 

indeterminate (transcendental element) of the ring R[x]. *But in the polynomial func
tion fiR~ IR, the symbol xis used as a variable to describe the rule of the function. It 
might be better to use one symbol for an indeterminate and another for a variable, but 
the practice of using x for both is so widespread you may as well get used to it. 

The use of the same notation for both the polynomial and its induced function also 
affects the language that is used. For instance, one says "evaluate the polynomial 
3x2 

- 5x + 4 at x = 2" or "substitute x = 2 in 3x2 
- 5x + 4" when what is really meant 

is "find/(2) whenfis the function induced by the polynomial3x2 - 5x + 4". 
The truth or falsity of certain statements depends on whether x is treated as an 

indeterminate or a variable. For instance, in the ring IR[x], where xis an indetermi
nate (special element of the ring), the statement x2 

- 3x + 2 = 0 is false because, by 
Theorem 4.1, a polynomial is zero if and only if all its coefficients are zero. When x is a 
variable, however, as in the rule of the polynomial functionf(x) = ~- 3x + 2, things 
are different. Here it is perfectly reasonable to ask which elements of IR are mapped to 0 
by the function/, that is, for which values of the variable xis it true that~ - 3x + 2 = 0. It 
may help to remember that statements about the variable x occur in the ring R, whereas 
statements about the indeterminate x occur in the polynomial ring R[x]. 

Roots of Polynomials 
Questions about the reducibility of a polynomial can sometimes be answered by 
considering its induced polynomial function. The key to this analysis is the concept 
of a root. 

LetR be a commutative ring and {(x) E R[x]..An element a of R is said to· 
be a root(or zero)ofthe polynomial f(x) if f(a) =OR, that is, if the induced 
function{:R ~Rmaps a to OR· 

EXAMPLE 3 

The roots of the polynomialf(x) = x2
- 3x + 2 E IR[x] are the values of the 

variable x for whichf(x) = 0, that is, the solutions of the equation x2
- 3x + 2 = 0. 

It is easy to see that the roots are 1 and 2. 

EXAMPLE 4 

The polynomial x 2 + 1 E IR[x] has no roots in IR because there are no real
number solutions of the equation x 2 + 1 = 0. However, if x 2 + 1 is considered 
as a polynomial in C[x], then it has i and -i as roots because these are the 
solutions in C of x 2 + 1 = 0. 

*See page 550 in Appendix G for more information. 
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Let F be a field, f(x) E F[x], and a E F. The remainder when f(x) is divided by 
the polynomial x- a is f(a). 

EXAMPLE 5 

To find the remainder when fix)= x 79 + 3x24 + 5 is divided by x- 1, we apply 
the Remainder Theorem with a = 1. The remainder is 

f(1) = 179 + 3 . 124 + 5 = 1 + 3 + 5 = 9. 

EXAMPLE 6 

To find the remainder whenf(x) = 3x4 
- 8x2 + 11x + 1 is divided by x + 2, we 

apply the Remainder Theorem carefully. The divisor in the theorem is x - a, 
not x +a. So we rewrite x + 2 as x- (-2) and apply the Remainder Theorem 
with a= -2. The remainder is 

f(-2) = 3(-2)4
- 8(-2)2 + 11(-2) + 1 = 48-32-22 + 1 = -5. 

Proof ofTheorem 4.15~- By the Division Algorithm,f(x) = (x - a)q(x) + r(x), 
where the remainder r(x) either is Op or has smaller degree than the 
divisor x - a. Thus deg r(x) = 0 or r(x) = Op. In either case, r(x) = c for 
some c E F. Hence,f(x) = (x - a)q(x) + c, so thatf(a) = (a - a)q(a) + 
c =OF+ c =c. 

Let F be a field, f(x) E F[x], and a E F. Then a is a root of the polynomial f(x) 
if and only if x- a is a factor of f(x) in F[x]. 

Proof~> First assume that a is a root of fix). Then we have 

f(x) = (x - a)q(x) + r(x) 

f(x) = (x - a)q(x) + fia) 

f(x) = (x - a)q(x) 

Therefore, x - a is a factor of f(x). 

[Division Algorithm] 

[Remainder Theorem] 

[a is a root of f(x), so f(a) = Op.] 

Conversely, assume that x- a is a factor of f(x), say f(x) = (x- a)g(x). 
Then a is a root of f(x) becausef(a) = (a- a)g(a) = Opg(a) = Op. llil! 
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EXAMPLE 7 

To show that x7
- x 5 + 2x4

- 3x2
- x + 2 is, reducible in Q[x], note that 1 is a 

root of this polynomial. Therefore, x - 1 is a factor. 

·· Go rollary 4.17 
Let F be a field and f(x) a nonzero polynomial of degree n in F[x]. Then f(x) has 
at most n roots in F. 

Proof*~ If f(x) has a root a1 in F, then by the Factor Theorem,j(x) = (x- a1)h1(x) 
for some h1(x) E F[x]. If h1(x) has a root a2 in F, then by the Factor 
Theorem 

f(x) = (x - a1)(x - a2)h2(x) for some hix) E F[x]. 

If h2(x) has a root a3 in F, repeat this procedure and continue doing so 
until you reach one of these situations: 

(1) f(x) = (x- a1)(x- a2) • • • (x- a11 )hn(x) 
(2) f(x) = (x - a1)(x - a2) • • • (x - a~c)h1c(x) and h1c(x) has no 

root in F. 

In Case (1), by Theorem 4.2, we have 

degf(x) = deg(x - a1) + deg(x - a2) + · · · + deg(x - a") + deg h11(x) 
n = 1 + 1 + · · · + 1 + deg hnCx) 
n = n + deg hnCx) 

Thus, deg h11(x) = 0, so hn(x) = c for some constant c E F andf(x) 
factors as 

f(x) = c(x - a1)(x - a2) • • • (x - an). 

Clearly, then numbers a1, a2> ... , a11 are the only roots of f(x). 
The argument in Case (2) is essentially the same Gust replace n by k) 

and leads to this conclusion: n = degf(x) = k + deg h1c(x). So the num
ber of roots is k and k :::; n. Ill 

c~roll~ry.4,1s··· 
' ' ~ '., 

Let F be a field and f(x) E F[x], with deg f(x) 2: 2. If f(x) is irreducible in F[x], 
then f(x) has no roots in F. 

Proof~ If f(x) is irreducible, then it has no factor of the form x - a in F[x]. 
Therefore,j(x) has no roots in Fby the Factor Theorem. 

*If you prefer a proof by induction, see Exercise 29. 
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The converse of Corollary 4.18 is false in general. For example, x4 + 2x2 + 1 = 
(x2 + l)(x2 + 1) has no roots in Q but is reducible in Q(x]. However, the converse is 
true for degrees 2 and 3. 

. corollary 4.t9 
Let F be a field and let f(x) E F[x] be a polynomial of degree 2 or 3. Then f(x) is 
irreducible in F[x] if and only if f(x) has no roots in F. 

Proof~ Supposef(x) is irreducible. Thenf(x) has no roots in Fby Corollary 4.18. 
Conversely, suppose thatf(x) has no roots in F. Thenf(x) has no first
degree factor in F[x] because every first-degree polynomial ex + din F[x] 
has a root in F, namely -c-1d. Therefore, if f(x) = r(x)s(x), neither r(x) 
nor s(x) has degree 1. By Theorem 4.2, degf(x) = deg r(x) + deg s(x). 
Since f(x) has degree 2 or 3, the only possibilities for ( deg r(x), deg s(x)) 
are (2, 0) or (0, 2) and (3, 0) or (0, 3). So either r(x) or s(x) must have 
degree 0, that is, either r(x) or s(x) is a nonzero constant. Hence,j(x) is 
irreducible by Theorem 4.12. Ill. 

EXAMPlE 7 

To show that x 3 + x + 1 is irreducible in /l. 5 [x], you need only verify that none 
of 0, 1, 2, 3, 4 E /l. 5 is a root. 

We close this section by returning to its starting point, polynomial functions. 
Example 2 shows that two different polynomials in F[x] may induce the same function 
from F to F. We now see that this cannot occur if F is infinite. 

' ' ' ' '' - ' -~ _--' 

Corollary 4.20 
Let F be an infinite field and f(x), g(x) E F[x]. Then f(x) and g(x) induce the 
same function from F to F if and only if f(x) = g(x) in F[x]. 

Proof,.. Suppose thatf(x) and g(x) induce the same function from Fto F. Then 
f(a) = g(a), so thatf(a) - g(a) = OF, for every a E F. This means that 
every element ofF is a root of the polynomialf(x) - g(x). Since F is 
infinite, this is impossible by Corollary 4.17 unlessf(x) - g(x) is the 
zero polynomial, that is,J(x) = g(x). The converse is obvious. II 

Exercises 

NOTE: F denotes afield. 

A. 1. (a) Find a nonzero polynomial in /l.2[x] that induces the zero function on fl.2. 

(b) Do the same in /l.3[x]. 
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2. Find the remainder whenf(x) is divided by g(x): 

(a) f(x) = x 10 + x8 and g(x) = x - 1 in Q[x] 

(b) f(x) = 2x5 - 3x4 + x3 
- 2x2 + x - '8 and g(x) = x - 10 in Q[x] 

(c) f(x) = 10x75 
- 8x65 + 6x45 + 4x37 

- 2x15 + 5 and g(x) = x + 1 in Q[x] 

(d) f(x) = 2x5 
- 3x4 + x3 + 2x + 3 and g(x) = x - 3 in Z5[x] 

3. Determine if h(x) is a factor of f(x): 

(a) h(x) = x + 2 andf(x) = x 3 
- 3x2

- 4x- 12 in IR[x] 

(b) h(x) = x - ± andf(x) = 2x4 + x3 + x - %in Q[x] 

(c) h(x) = x + 2 andf(x) = 3x5 + 4x4 + 2x3 
- x 2 + 2x + 1 in Z5[x] 

(d) h(x) = x - 3 andf(x) = x 6 
- x3 + x - 5 in Z7[x] 

4. (a) For what value of k is x - 2 a factor of x 4 
- 5x3 + 5x2 + 3x + kin Q[x]? 

(b) For what value of k is x + 1 a factor of x 4 + 2x3 - 3x2 + kx + 1 in Z5[x]? 

5. Show that x- IF divides anx" + · · · + a2x 2 + a1x + a0 in F[x] if and only if 
a0 + a1 + a2 + · · · + an = OF. 

6. (a) Verify that every element of Z3 is a root of x3 
- x E Z3[x]. 

(b) Verify that every element of £:5 is a root of x 5 
- x E Z5[x]. 

(c) Make a conjecture about the roots of xP- x E Zp[x] (p prime). 

7. Use the Factor Theorem to show that x7 - x factors in Z7[x] as 
x(x - l)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6), without doing any polynomial 
multiplication. 

8. Determine if the given polynomial is irreducible: 

(a) x2 
- 7 in IR[x] (b) x2 

- 7 in Q[x] 

(c) x 2 + 7 in C[x] (d) 2x3 + x 2 + 2x + 2 in Z5[x] 

(e) x 3 
- 9 in Zu[x] (f) x4 + x2 + 1 in Z3[x] 

9. List all monic irreducible polynomials of degree 2 in Z3[x]. Do the same in Z 5[x]. 

10. Find a prime p > 5 such that x 2 + 1 is reducible in Zp(x]. 

11. Find an odd prime p for which x - 2 is a divisor of x 4 + x3 + 3x2 + x + 1 in 
Zp[x]. 

B.12. If a E Fis a nonzero root of cnxn + cn_ 1x"- 1 + · · · + c1x + c0 E F[x], show 
that a- 1 is a root of c0x' + c1xn-! + · · · + cn_1x + C11 • 

13. (a) If f(x) and g(x) are associates in F[x], show that they have the same roots 
in F. 

(b) If f(x), g(x) E F[x] have the same roots in F, are they associates in F[x]? 

14. (a) Suppose r, s E Fare roots of ax2 + bx + c E F[x] (with a =/=- OF). Use the 
Factor Theorem to show that r + s = -a-1b and rs = a- 1c. 
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(b) Suppose r, s, t E Fare roots of ax3 + bx2 + ex + d E F[x] (with a =I= OF)· 
Show that r + s + t = -a-1b and rs + st + rt = a- 1c and rst = -a- 1d. 

15. Prove that x2 + 1 is reducible in ~[x] if and only if there exist integers a and b 
such that p =a+ band ab = 1 (mod p). 

16. Letf(x), g(x) E F[x] have degree::::; nand let c0, c~o ... , en be distinct elements 
of F. If f(c) = g(c;) fori= 0, 1, ... , n, prove thatf(x) = g(x) in F[x]. 

17. Find a polynomial of degree 2 in Z6[x] that has four roots in Z6. Does this 
contradict Corollary 4.17? 

18. Let cp:C---+ C be an isomorphism of rings such that cp(a) = a for each 
a E Q. Suppose r E Cis a root of f(x) E Q[x]. Prove that cp(r) is also a 
root of f(x). 

19. We say that a E Fis a multiple root of f(x) E F[x] if (x- a)k is a factor of 
f(x) for some k: 2: 2. 

(a) Prove that a E IRis a multiple root of f(x) E IR[x] if and only if a is a 
root of bothj(x) andf'(x), wheref'(x) is the derivative of f(x). 

(b) If f(x) E IR[x] and if f(x) is relatively prime to f'(x), prove thatf(x) has 
no multiple root in IR. 

20. Let R be an integral domain. Then the Division Algorithm holds in R[x] 
whenever the divisor is monic, by Exercise 14 in Section 4.1. Use this fact to 
show that the Remainder and Factor Theorems hold in R[x]. 

21. If R is an integral domain andf(x) is a nonzero polynomial of degree n in 
R[x], prove thatf(x) has at most n roots in R. [Hint: Exercise 20.] 

22. Show that Corollary 4.20 holds ifF is an infinite integral domain. [Hint: See 
Exercise 21.] 

23. Letf(x), g(x), h(x) E F[x] and r E F. 

{a) If f(x) = g(x) + h(x) in F[x], show thatj(r) = g(r) + h(r) in F. 

(b) If f(x) = g(x)h(x) in F[x], show thatj(r) = g(r)h(r) in F 

Where were these facts used in this section? 

24. Let a be a fixed element ofF and define a map 'Pa:F[x]---+ Fby 'PaU(x)] = f(a). 
Prove that 'Pais a surje~tive homomorphism of rings. The map 'Pais called an 
evaluation homomorphism; there is one for each a E F. 

25. Let 0[7T] be the set of all real numbers of the form 

(a) Show that 0[1r] is a subring of IR. 

(b) Show that the function e:Q[x]---+ 0[1r] defined by e(f(x)) = j(1r) is an 
isomorphism. You may assume the following nontrivial fact: 1T is not 
the root of any nonzero polynomial with rational coefficients. Therefore, 
Theorem 4.1 is true with R = Q and 1T in place of x. However, see 
Exercise 26. 
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26. Let Q[v2] be the set of all real numbers of the form 

r0 + r 1 v2 + riv2) 2 + · · · + rn(v2y, with n ::::: 0 and ri E Q. 

(a) Show that Q[v2] is a subring of IR. ' 

(b) Show that the function 8:Q[x]---+ Q[v2] defined by 8(f(x)) = J(v2) is a 
surjective homomorphism, but not an isomorphism. Thus Theorem 4.1 is 
not true with R == Q and v2 in place of x. Compare this with Exercise 25. 

27. Let T be the set of all polynomial functions from F to F. Show that Tis a 
commutative ring with identity, with operations defined as in calculus: For 
each rEF, 

(f + g)(r) = f(r) + g(r) and (fg)(r) = f(r)g(r). 

[Hint: To show that Tis closed under addition and multiplication, use 
Exercise 23 to verify that f + g and fg are the polynomial functions induced 
by the sum and product polynomialsf(x) + g(x) andf(x)g(x), respectively.] 

28. Let Tbe the ring of all polynomial functions from £'.3 to £'. 3 (see Exercise 27). 

(a) Show that Tis a finite ring with zero divisors. [Hint: Consider f(x) = x + 1 
and g(x) == x2 + 2x.] 

(b) Show that T cannot possibly be isomorphic to Z.3[x]. Then see Exercise 30. 

29. Use mathematical induction to prove Corollary 4.17. 

C. 30. IfF is an infinite field, prove that the polynomial ring F[x] is isomorphic to 
the ring T of all polynomial functions from F to F (Exercise 27). [Hint: Define 
a map 'P:F[x]---+ Tby assigning to each polynomialf(x) E F[x] its induced 
function in T; 'Pis injective by Corollary 4.20.] 

31. Let 'P:F[x]---+ F[x] be an isomorphism such that 'P(a) == a for every a E F. 
Prove thatf(x) is irreducible in F[x] if and only if 'PCf(x)) is. 

32. (a) Show that the map 'P:F[x]---+ F[x] given by 'PCf(x)) = f(x + lF) is an 
isomorphism such that 'P(a) = a for every a E F. 

(b) Use Exercise 31 to show thatf(x) is irreducible in F[x] if and only if 
f(x + 1F) is. 

Irreducibility in Q[x]* 

The central theme of this section is that factoring in Q[x] can be reduced to factoring 
in Z.[x]. Then elementary number theory can be used to check polynomials with inte
ger coefficients for irreducibility. We begin by noting a fact that will be used frequently: 

If f(x) E Q[x], then cf(x) has integer 
coefficients for some nonzero integer c. 

*This section is used only in Chapters 11, 12, and 15. It may be omitted until then, if desired. Section 4.6 
is independent of this section. 
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For example, consider 

The least common denominator of the coefficients of f(x) is 12, and 14f(x) has integer 
coefficients: 

According to the Factor Theorem, finding first-degree factors of a polynomial 
g(x) E Q[x] is equivalent to finding the roots of g(x) in Q. Now, g(x) has the same 
roots as cg(x) for any nonzero constant c. When cis chosen so that cg(x) has integer 
coefficients, we can find the roots of g(x) by using 

Let f(x) = anxn + an_ 1xn- 1 + · · · + a1x + a0 be a polynomial with integer coef
ficients. If r =I= 0 and the rational number rjs (in lowest terms) is a root of f(x), 
then r I a0 and sIan. 

Proof~» First consider the case when s = 1, that is, the case when the integer r 
is a root of f(x), which means that a11r

11 + an-Irn-I + · · · +air+ a0 = 0. 
Hence, 

a0 = -a
11
r"- a

11
_I1;,-I - · · · -air 

ao = r(-a
11
1'n-I - a

11
_ 11)1

-
2 - • • • - aJ), 

which says that r divides a0 . 

In the general case, we use essentially the same strategy. Since r/ sis a 
root of f(x), we have 

(r') (r"-1

) (r) an s" + an-I s"-1 + ... + ai ~ + ao = 0. 

We need an equation involving only integers (as in the case when s = 1). 
So multiply both sides by s'', rearrange, and factor as before: 

(*) 

a,,r'' + a11 _ 1s1;1-I + · · · + a1s''- 1r + a0s'' = 0 

aoS11 = -a,,r''- an-1Sr11
-

1 - · · · - a1S11
-

1r 

aos" = r[- anrn-I - an-Is;;'-2 - · · · - a1s"- 1]. 

This last equation says that r divides a0s", which is not quite what we 
want. However, since r/s is in lowest terms, we have (r, s) = 1. It follows 
that (r, s'') = 1 (a prime that divides s" also divides s, by Corollary 1.6). 
Since r I a0s'' and (r, s'') = 1, Theorem 1.4 shows that r I a0 . A similar argu
ment proves that s I a11 Gust rearrange Equation ( *) so that a,,r'' is on one 
side and everything else is on the other side). II 
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EXAMPLE 1 

The possible roots in Q of f(x) = 2x4 + x 3 
- 21x2 

- 14x + 12 are of the form 
r / s, where r is one of ± 1, ±2, ±3, ±4, ±6, or'± 12 (the divisors of the constant 
term, 12) and sis ± 1 or ±2 (the divisors of the leading coefficient, 2). Hence, 
the Rational Root Test reduces the search for roots of f(x) to this finite list of 
possibilities: 

1 1 3 3 
1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12, -12, 2' 2' 2' 2' 

It is tedious but straightforward to substitute each of these inf(x) to find that -3 

and~ are the only roots of f(x) in Q. * By the Factor Theorem, both x - (- 3) = 

x + 3 and x - ~are factors of f(x). Division shows that 

j(x) = (x + 3)( x- ~}2x2 - 4x- 8). 

The quadratic formula shows that the roots of 2x2 - 4x - 8 are 1 ± VS, 
neither of which is in Q. Therefore, 2x2 

- 4x - 8 is irreducible in O[x] by 
Corollary 4.19. Hence, we have factoredf(x) as a product of irreducible poly
nomials in Q[x]. 

EXAMPLE 2 

The only possible roots of g(x) = x3 + 4x2 + x- 1 in Q are 1 and -1 (Why?). 
Verify that neither 1 nor -1 is a root of g(x). Hence g(x) is irreducible in Q[x] 
by Corollary 4.19. 

If f(x) E Q[x], then cf(x) has integer coefficients for some nonzero integer c. Any 
factorization of cf(x) in Z::[x] leads to factorization of f(x) in Q[x]. So it appears that 
tests for irreducibility in Q[x] can be restricted to polynomials with integer coefficients. 
However, we must first rule out the possibility that a polynomial with integer coeffi
cients could factor in Q[x] but not in Z::[x]. In order to do this, we need · 

Let f(x), g(x), h(x) E Z::[x] with f(x) = g(x)h(x). If pis a prime that divides every 
coefficient of f(x), then either p divides every coefficient of g(x) or p divides 
every coefficient of h(x). 

*A graphing calculator will reduce the amount of computation significantly. Since the x-intercepts of 
the graph of y = f(x) are the roots of f(x), you can eliminate any numbers from the list that aren't near 

an intercept. In this case, the graph indicates that you need only check -3, i• and -%· 
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Proof ~ Letf(x) = a0 + a1x + · · · + akxk, g(x) = b0 + b1x + · · · + bm:x!'\ and 
h(x) = c0 + c1x + · · · + cnx". We use a proof by contradiction. If the 
lemma is false, then p does not divide some coefficient of g(x) and some 
coefficient of h(x). Let b,. be the first coefficient of g(x) that is not divis
ible by p, and let c1 be the first coefficient of h(x) that is not divisible by 
p. Then pI bi for i < rand pI c1 for j < t. Consider the coefficient a,.+t of 
f(x). Sincef(x) = g(x)h(x), 

Consequently, 

b,ct = ar+t- [bocr+t + ... + b,.-!ct+d- [br+!ct-! + ... + br+tcoJ. 

Now, pI a,.+1 by hypothesis. Also, p divides each term in the first pair of 
brackets because r was chosen so that pI bi for each i < r. Similarly, p 
divides each term in the second pair of brackets because p I c1 for each 
j < t. Since p divides every term on the right side, we see that p l.b,.c1• 

Therefore, pI b,. or pI c1 by Theorem 1.5. This contradicts the fact that 
neither b,. nor c1 is divisible by p. 1!111 

Let f(x) be a polynomial with integer coefficients. Then f(x) factors as a prod
uct of polynomials of degrees m and n in Q[x] if and only if f(x) factors as a 
product of polynomials of degrees m and n in Z[x]. 

Proof~ Obviously, if f(x) factors in Z[x], it factors in Q[x]. Conversely, suppose 
f(x) = g(x)h(x) in Q[x]. Let c and d be nonzero integers such that cg(x) 
and dh(x) have integer coefficients. Then cdf(x) = [cg(x)][dh(x)] in Z[x] 
with deg cg(x) = deg g(x) and deg dh(x) = deg h(x). Let p be any prime 
divisor of cd, say cd =pt. Thenp divides every coefficient of the polyno
mial cdf(x). By Lemma 4.22,p divides either every coefficient of cg(x) 
or every coefficient of dh(x), say the former. Then cg(x) = pk(x) with 
k(x) E Z[x] and deg k(x) = deg g(x). Therefore, ptf(x) = cdf(x) = 
[cg(x)][dh(x)] = [pk(x)][dh(x)]. Cancelingp on each end, we have 
tf(x) = k(x)[dh(x)] in Z[x]. 

Now repeat the same argument with any prime divisor oft and cancel 
that prime from both sides of the equation. Continue until every prime 
factor of cd has been canceled. Then the left side of the equation will be 
±f(x), and the right side will be a product of two polynomials in Z[x], 
one with the same degree as g(x) and one with the same degree as h(x). 1!111 

EXAMPLE 3 

We claim thatf(x) = x4 
- Sx2 + 1 is irreducible in Q[x]. The proof is by con

tradiction. If f(x) is reducible, it can be factored as the product of two noncon
stant polynomials in Q[x]. If either of these factors has degree 1, thenf(x) has 
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a root in Q. But the Rational Root Test shows thatf(x) has no roots in Q. (The 
only possibilities are ± 1, and neither is a root.) Thus if f(x) is reducible, the 
only possible factorization is as a product of two quadratics, by Theorem 4.2. 
In this case Theorem 4.23 shows that there is such a factorization in Z[x]. 
Furthermore, there is a factorization as a product of monic quadratics in Z[x] 
by Exercise 10, say 

(x2 + ax + b )(x2 + ex + d) = x4 
- 5x2 + 1 

with a, b, c, d E Z. Multiplying out the left-hand side, we have 

x4 + (a + c)x3 + (ac + b + d)x2 + (be + ad)x + bd 
= x 4 + Ox3 

- 5x2 + Ox + 1. 

Equal polynomials have equal coefficients; hence, 

a+c=O ac + b + d = -5 be+ ad= 0 bd = 1. 

Since a+ c = 0, we have a= -c, so that 

-5 = ac + b + d = -2 + b + d, 

or, equivalently, 

5 = c2
- b- d. 

However, bd = 1 in Z implies that b = d = 1 orb= d = -1, and so there are only 
these two possibilities: 

or 

There is no integer whose square is 3 or 7, and so a factorization of f(x) as a 
product of quadratics in Z[x], and, hence in Q[x], is impossible. Therefore,f(x) 
is irreducible in Q[x]. 

The brute-force methods of the preceding example are less effective for polynomi
als of high degree because the system of equations that must be solved is complicated 
and difficult to handle in a systematic way. However, the irreducibility of certain poly
nomials of high degree is easily established by 

Let f(x) = anxn + · · · + a1x + a0 be a nonconstant polynomial with integer 
coefficients. If there is a prime p such that p divides each of a0, a1, ••• , an_1 

butp does not divide an and p2 does not divide a0 , then f(x) is irreducible in Q[x]. 

Proof~ The proof is by contradiction. If f(x) is reducible, then by Theorem 4.23 
it can be factored in Z[x], say 

f(x) = (bo + b1x + · · · + b,.x~')(co + C1X + · · · + C8 X8
), 
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where each b;, c1 E 7L, r::::: 1, and s::::: 1. Note that a0 = b0c0. By hypothe
sis, pI a0 and, hence, pI b0 or pI c0 by Theorem 1.5, say pI b0. Since p2 does 
not divide a0 , we see that c0 is not divisible by p. We also have a11 = brcs. 
Consequently, p does not divide br (otherwise a11 would be divisible by p, 
contrary to hypothesis). There may be other b; not divisible by pas well. 
Let bk be the first of the b; not divisible by p; then 0 < k :::; r < n and 

pI b; fori< k and 

By the rules of polynomial multiplication, 

so that 

Since pI ak and pI b; for i < k, we see that p divides every term on the 
right-hand side of this equation. Hence, pI bkc0. By Theorem 1.5,p must 
divide bk or c0 . This contradicts the fact that neither b" nor c0 is divisible 
by p. Therefore,f(x) is irreducible in Q[x]. Ill 

EXAMPLE 4 

The polynomial x17 + 6x13 
- 15x4 + 3x2 

- 9x + 12 is irreducible in Q[x] by 
Eisenstein's Criterion with p = 3. 

EXAMPLE 5 

The polynomial x 9 + 5 is irreducible in Q[x] by Eisenstein's Criterion with 
p = 5. Similarly, x" + 5 is irreducible in Q[ x] for each n ::::: 1. Thus 

there are irreducible polynomials of every degree in Q[x]. 

Although Eisenstein's Criterion is very efficient, there are many polynomials to 
which it cannot be applied. In such cases other techniques are necessary. One such 
method involves reducing a polynomial mod p, in the following sense. Let p be a posi
tive prime. For each integer a, let [a] denote the congruence class of a in 7LP. If f(x) = 

akxk + · · · + a1x + a0 is a polynomial with integer coefficients, let ](x) denote the 
polynomial [ak]xk + · · · + [a 1]x + [a0] in 7Lp[x]. For instance, if f(x) = 2x4 

- 3x2 + 
5x + 7 in 7L[x], then in 7L3[x], 

](x) = [2]x4 
- [3]x2 + [5]x + [7] 

= [2]x4 
- [O]x2 + [2]x + [1] = [2]x4 + [2]x + [1]. 

Notice that f(x) and ](x) have the same degree. This will always be the case 
when the leading coefficient of f(x) is not divisible by p (so that the leading 
coefficient of ](x) will not be the zero class in 7Lp). 
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Let f(x) = aki + · · · + a1x + a0 be a polyno~ial with integer coefficients, and 
let p be a positive prime that does not divide ak. If f(x) is irreducible in Zp[x], 
then f(x) is irreducible in Q[x]. 

Proof~ Suppose, on the contrary, that f(x) is reducible in Q[x]. Then by 
Theorem 4.23,/(x) = g(x)h(x) with g(x), h(x) nonconstant polynomials 
in Z[x]. Since p does not divide akl the leading coefficient of f(x), it 
cannot divide the leading coefficients of g(x) or h(x) (whose product is 
a1J Consequently, deg g(x) = deg g(x) and deg h(x) = deg h(x). In par
ticular, neither g(x) nor h(x) is a constant polynomial in Zp[x]. 

Verify thatf(x) = g(x)h(x) in Z[x] implies that f(x) = g(x)h(x) in 
Zp[x] (Exercise 20). This contradicts the irreducibility of f(x) in Zp(x]. 
Therefore,f(x) must be irreducible in Q[x]. '-' 

The usefulness of Theorem 4.25 depends on this fact: For each nonnegative in
teger k, there are only finitely many polynomials of degree kin 74 [x] (Exercise 17). 
Therefore, it is always possible, in theory, to determine whether a given polynomial in 
Zp[x] is irreducible by checking the finite number of possible factors. Depending on 
the size of p and on the degree of f(x), this can often be done in a reasonable amount 
of time. 

EXAMPLE 6 

To show thatf(x) = x 5 + 8x4 + 3x2 + 4x + 7 is irreducible in Q[x], we reduce 
mod 2. In Z2[x], ](x) = x 5 + x 2 + 1. * It is easy to see that ](x) has no roots in 
Z2 and hence no first-degree factors in Z2[x]. The only quadratic polynomials in 
Z2[x] are x 2

, x2 + x, x2 + 1, and x2 + x + 1. However, if x2
, x2 + x = x(x + 1), 

or x2 + 1 = (x + l)(x + 1) were a factor, then ](x) would have a first-degree 
factor, which it doesn't. You can use division to show that the remaining qua
dratic, x2 + x + 1, is not a factor of ](x). Finally, ](x) cannot have a factor 
of degree 3 or 4 (if it did, the other factor would have degree 2 or 1, which is 
impossible). Therefore, ](x) is irreducible in Z2[x]. Hence,f(x) is irreducible 
in Q[x]. 

CAUTION: If a polynomial in Z[x] reduces mod p to a polynomial that 
is reducible in l4[x], then no conclusion can be drawn from 
Theorem 4.25. Unfortunately, there may be many p for 
which the reduction of f(x) is reducible in Zp[x], even when 
f(x) is actually irreducible in Q[x]. Consequently, it may 
take more time to apply Theorem 4.25 than is first apparent. 

*When no confusion is likely, we omit the brackets for elements of Z2• 
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Exercises· 

A. 1. Use the Rational Root Test to write each polynomial as a product of irreduc-
ible polynomials in Q[x]: ' 

(a) - x4 + x 3 + x 2 + x + 2 

(c) 3x5 + 2x4
- 7x3 + 2~ 

(e) 2x4 + 7 x3 + 5x2 + 7 x + 3 

(b) x 5 + 4 x4 + x 3 
- x 2 

(d) 2x4
- 5x3 + 3x2 + 4x- 6 

(f) 6x4
- 3lx3 + 25x2 + 33x + 7 

2. Show that Vp is irrational for every positive prime integer p. [Hint: What are 
the roots of x2 

- p? Do you prefer this proof to the one in Exercises 30 and 31 
of ~ection 1.3?] 

3. If a monic polynomial with integer coefficients has a root in Q, show that this 
root must be an integer. 

4. Show that each polynomial is irreducible in Q[x], as in Example 3. 

(a) x4 + 2x3 + x + 1 (b) x4
- 2x2 + 8x + 1 

5. Use Eisenstein's Criterion to show that each polynomial is irreducible in Q[x]: 

(a) x 5 - 4x + 22 (b) 10- 15x + 25x2 - 7x4 

(c) 5x11 
- 6x4 + 12x3 + 36x - 6 

6. Show that there are infinitely many integers k such that x9 + 12x5 - 21x + k 
is irreducible in Q[x]. 

7. Show that each polynomialf(x) is irreducible in Q[x] by finding a prime p 
such thatf(x) is irreducible in Zp[x] 

(a) 7x3 + 6x2 + 4x + 6 (b) 9x4 + 4x3 
- 3x + 7 

8. Give an example of a polynomialf(x) E Z[x] and a prime p such thatf(x) 
is reducible in Q[x] but f(x) is irreducible in Zp[x]. Does this contradict 
Theorem 4.25? 

9. Give an example of a polynomial in Z[x] that is irreducible in Q[x] but factors 
when reduced mod 2, 3, 4, and 5. 

10. If a monic polynomial with integer coefficients factors in Z[x] as a product of 
polynomials of degrees m and n, prove that it can be factored as a product of 
monic polynomials of degrees m and n in Z[x]. 

B. H. Prove that 30x"- 91 (where n E Z, n > 1) has no roots in Q. 

12. Let Fbe a field andf(x) E F[x]. If c E F andf(x +c) is irreducible in F[x], 
prove thatf(x) is irreducible in F[x]. [Hint: Prove the contrapositive.] 

13. Prove thatf(x) = x4 + 4x + 1 is irreducible in Q[x] by using Eisenstein's 
Criterion to show thatf(x + 1) is irreducible and applying Exercise 12. 

14. Prove thatf(x) = x 4 + x 3 + x 2 + x + 1 is irreducible in Q[x]. [Hint: Use the 
hint for Exercise 21 withp = 5.] 

15. Letf(x) = a11X
11 + a11 _ 1xn-J + · · · + a1x + a0 be a polynomial with integer 

coefficients. If pis a prime such that pI all pI az, ... , pI a11 but p ,/' a0 and 
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p2 {am prove thatf(x) is irreducible in Q[x]. [Hint: Let y = 1/x inj(x)/x"; the 
resulting polynomial is irreducible, by Theorem 4.24.] 

16. Show by example that this statement is false: If f(x) E Z[x] and there is no 
prime p satisfying the hypotheses of Theorem 4.24, thenf(x) is reducible in Q[x]. 

17. Show that there are nk+! - nk polynomials of degree kin &"
11
[x]. 

18. Which of these polynomials are irreducible in Q[x]: 

(a) x4 
- x2 + 1 (b) x4 + x + 1 

(d) x5 + 5x2 + 4x + 7 

19. Write each polynomial as a product of irreducible polynomials in Q[x]. 

(a) x5 + 2x4 - 6x2 - 16x- 8 (b) x7 - 2x6 - 6x4 - 15x2 - 33x- 9 

20. If f(x) = an~ + · · · + a1x + a0, g(x) = b,.x,. + · · · + b1x + b0, and h(x) = 

csx' + · · · + c1x + c0 are polynomials in Z[x] such thatf(x) = g(x)h(x), show 
that in £'11 [x], f(x) = g(x)h(x). Also, see Exercise 19 in Section 4.1. 

C. 21. Prove that for p prime,j(x) = xp-! + xP-2 + · · · + x2 + x + 1 is irreducible 
in Q[x]. [Hint: (x- 1)f(x) = xP- 1, so thatj(x) = (xP- 1)/(x- 1) and 
f(x + 1) = [(x + l)P -1]/x. Expand (x + 1)P by the Binomial Theorem 

(Appendix E) and note thatp divides(~) when k > 0. Use Eisenstein's 

Criterion to show thatf(x + 1) is irreducible; apply Exercise 12.] 

EXCURSION: Geometric Constructions (Chapter 15) may be covered at 
this point if desired. 

Irreducibility in IR{[x] and C[x]* 

Unlike the situation in Q[x], it is possible to give an explicit description of all the irre
ducible polynomials in IR[x] and C[x]. Consequently, you can immediately tell if a poly
nomial in IR[x] or C[x] is irreducible without any elaborate tests or criteria. These facts 
are a consequence of the following theorem, which was first proved by Gauss in 1799: 

Every nonconstant polynomial in C[x] has a root in C. 

This theorem is sometimes expressed in other terminology by saying that the field 
C is algebraically dosed. Every known proof of the theorem depends significantly on 
facts from analysis and/or the theory of functions of a complex variable. For this rea
son, we shall consider only some of the implications of the Fundamental Theorem on 
irreducibility in C[x] and IR[x]. For a proof, see Hungerford [5]. 

*This section is used only in Chapters 11 and 12. It may be omitted until then, if desired. 
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A polynomial is irreducible in C[x] if and only if it has degree 1. 

Proof~ A polynomialf(x) of degree 2: 2 in IC[x] has a root inC by Theorem 4.26 
and hence a first-degree factor by the Factor Theorem. Thereforef(x) is 
reducible in C[x], and every irreducible polynomial in C[x] must have 
degree 1. Conversely, every first-degree polynomial is irreducible 
(Example 1 in Section 4.3). ll 

Every nonconstant polynomial f(x) of degree n in C[x] can be written in the 
form c(x- a1)(x- a2) • • • (x- an) for some c, a1, a2, ... , an E C. This factor
ization is unique except for the order of the factors. 

Proof~By Theorem 4.14,/(x) is a product of irreducible polynomials in C[x]. 
Each of them has degree 1 by Corollary 4.27, and there are exactly n of 
them by Theorem 4.2. Therefore, 

f(x) = (r1x + s1)(r2x + s2) • • • (r11X + S11 ) 

= r1(x- (-r~- 1s 1))rix- (-r2-
1s2)) • • • r,/x- (-r 11 -

1s11)) 

= c(x - aJ)(x - a2) • • • (x - ct11), 

where c = r1r2 • • • f'11 and ai = ri-1si. Uniqueness follows from Theorem 4.14; 
see Exercise 25 in Section 4.3. 

To obtain a description of all the irreducible polynomials in IR[x], we need 

If f(x) is a polynomial in IR[x] and a+ bi is a root of f(x) inC, then a- bi is also 
a root of f(x). 

Proof ~If c = a + bi E C (with a, b E IR), let c denote a - bi. Verify that for 
any c, dEC, 

(c +d) = c + d and cd = c d. 

Also note that c = c if and only if cis a real numba Now, if f(x) = ct11xn + 
· · · + a1x + a0 and cis a root of f(x), thenf(c) = 0, so that 

0 = 0 =/(c) = ct11 C
11 + · · · + a1 c + a0 

= anC 11 + ... +ale+ ao 
= a11c" + · · · + a1c + a0 [Because each aiE IR.] 

= f(c). 

Therefore c = a - bi is also a root of f(x). 
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A polynomial f(x) is irreducible in IR[x] if and only if f(x) is a first-degree poly
nomial or 

f(x) = ax2 + bx + c with b2 
- 4ac < 0. 

Proof~> The proof that the two kinds of polynomials mentioned in the theo
rem are in fact irreducible is left to the reader (Exercise 7). Conversely, 
supposef(x) has degree;:::: 2 and is irreducible in IR[x]. Thenf(x) has a 
root w in C by Theorem 4.26. Lemma 4.29 shows that w is also a root 
of f(x). Furthermore, w i=- w (otherwise w would be a real root of f(x), 
contradicting the irreducibility of f(x)). Consequently, by the Factor 
Theorem, x- wand x- ware factors of f(x) in C[x]; that is,j(x) = 
(x - w)(x - W)h(x) for some h(x) in C[x]. Let g(x) = (x- w)(x- W); 
thenf(x) = g(x)h(x) in C[x]. Furthermore, if w = r + si (with'r, s E IR), 
then 

g(x) = (x - w)(x - W) = (x - (r + si))(x - (r - si)) 

= x2 
- 2rx + (r2 + i). 

Hence, the coefficients of g(x) are real numbers. 
We now show that h(x) also has real coefficients. The Division 

Algorithm in IR[x] shows that there are polynomials q(x), r(x) in IR[x] 
such thatf(x) = g(x)q(x) + r(x), with r(x) = 0 or deg r(x) < deg g(x). In 
C[x], however, we havef(x) = g(x)h(x) + 0. Since q(x) and r(x) can be 
considered as polynomials in C[x], the uniqueness part of the Division 
Algorithm in C[x] shows that q(x) = h(x) and r(x) = 0. Thus h(x) = 
q(x) E IR[x]. Sincef(x) = g(x)h(x) andf(x) is irreducible in IR[x] and 
deg g(x) = 2, h(x) must be a constant d E IR. Consequently,j(x) = dg(x) 
is a quadratic polynomial in IR[x] and hence has the form ax2 + bx + c 
for some a, b, c E IR. Sincef(x) has no roots in IR, the quadratic formula 
(Exercise 6) shows that b2

- 4ac < 0. II 

····.··.··,c·filfiTrary:4.31 
Every polynomial f(x) of odd degree in IR[x] has a root in IR. 

Proof~> By Theorem 4.14,j(x) = p 1(x)p2(x) · · · Pk(x) with eachp;(x) irreduc
ible in IR[x]. Eachp;(x) has degree 1 or 2 by Theorem 4.30. Theorem 4.2 
shows that 

degf(x) = degp1(x) + degpix) + · · · + degpk(x). 

Sincef(x) has odd degree, at least one of the p;(x) must have degree 1. 
Therefore,j(x) has a first-degree factor in IR[x] and, hence, a root in IR. II 
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It may seem that the Fundamental Theorem and its corollaries settle all the basic 
questions about polynomial equations. Unfortunately, things aren't quite that simple. 
None of the known proofs of the Fundamental Theorem provides a constructive way 
to find the roots of a specific polynomial.* Therefore, even though we know that every 
polynomial equation has a solution in C, we may not be able to solve a particular 
equation. 

Polynomial equations of degree less than 5 are no problem. The quadratic formula 
shows that the solutions of any second-degree polynomial equation can be obtained 
from the coefficients of the polynomials by taking sums, differences, products, quotients, 
and square roots. There are analogous, but more complicated, formulas involving cube 
and fourth roots for third- and fourth-degree polynomial equations (see page 423 for one 
version ofthe cubic formula). However, there are no such formulas for finding the roots 
of all fifth-degree or higher-degree polynomials. This remarkable fact, which was proved 
nearly two centuries ago, is discussed in Section 12.3. 

Exercises 

A. 1. Find all the roots inC of each polynomial (one root is already given): 

(a) x 4
- 3x3 + x 2 + 7x- 30; root 1 - 2i 

(b) x4
- 2x3 

- x2 + 6x- 6; root 1 + i 
(c) x4 - 4x3 + 3~ + 14x + 26; root 3 + 2i 

2. Find a polynomial in IR[x] that satisfies the given conditions: 

(a) Monic of degree 3 with 2 and 3 + i as roots 

(b) Monic of least possible degree with 1 - i and 2i as roots 

(c) Monic of least possible degree with 3 and 4i- 1 as roots 

3. Factor each polynomial as a product of irreducible polynomials in Q[x], in 
IR[x], and in C[x]: 

(a) x4 - 2 (b) x 3 + 1 (c) x 3 - x 2 - 5x + 5 

4. Factor x2 + x + 1 + i in C[x]. 

B. 5. Show that a polynomial of odd degree in IR[x] with no multiple roots must 
have an odd number of real roots. 

*It may seem strange that it is possible to prove that a root exists without actually exhibiting one, 
but such "existence theorems" are quite common in mathematics. A very rough analogy is the 
situation that occurs when a person is killed by a sniper's bullet. The police know that there is a 
killer, but actually finding the killer may be difficult or impossible. 
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6. Letf(x) = ax2 + bx + c E IR[x] with a -=1= 0. Prove that the roots of f(x) inC 
are 

-b + Vb2 - 4ac ~b- Vb2 - 4ac 
and 

2 
. 

2a a 

[Hint: Show that ax2 + bx + c = 0 is equivalent to x2 + (b/a)x = -c/a; then 
complete the square to find x.] 

7. Prove that every ax2 + bx + c E: IR[x] with b2 
- 4ac < 0 is irreducible in !R[x]. 

[Hint: See Exercise 6]. 

8. If a + bi is a root of x 3 
- 3x2 + 2ix + i- 1 E C[x], then is it true that a - bi 

is also a root? 



Definition 

Congruence in F[ x] and Congruence-Class Arithmetic 

In this chapter we continue to explore the analogy between the ring Z of integers 
and the ring F[x] of polynomials with coefficients in a fleld F. We shall see that the 
concepts of congruence and congruence-class arithmetic carry over from Z to 
F[x] with practically no changes. Because of the additional features of the polyno
mial ring F[x] (polynomial functions and roots), these new congruence-class rings 
have a much richer structure than do the rings Zno This additional structure leads 
to a striking result: Given any polynomial over any fleld, we can flnd a root of that 
polynomial in some larger fleld. 

Congruence in F[x] and Congruence Classes 

The concept of congruence of integers depends only on some basic facts about divisibility 
in Z. IfF is a field, then the polynomial ring F[x] has essentially the same divisibility 
properties as does Z. So it is not surprising that the concept of congruence in Z and its 
basic properties (Section 2.1) can be carried over to F[x] almost verbatim. 

Let F be afleld and f(x), g(x), p(x) E F[x] with p(x) nonzero. Then f(x) is 
congruent to g(x) modulo p(X)-'--written f(x) = g(x) (mod p(x))-provided 
thatp(x)divides f(x)- g(x): 

EXAMPLE 1 

In Q[x], x2 + x + 1 = x + 2 (mod x + 1) because 

(x2 + x + 1) (x + 2) = x2
- 1 = (x + 1)(x- 1). 

125 
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Definition 

EXAMPLE 2 

In IR[x], 3x4 + 4x2 + 2x + 2 = x3 + 3x2 + 3~ + 4 (mod x2 + 1) because 
division shows that 

(3x4 + 4x2 + 2x + 2) - (x3 + 3x2 + 3x + 4) = 3x4
- x3 + x2 - x- 2 

= (x2 + 1)(3x2 
- x - 2). 

Let F be a field and p(x) a nonzero polynomial in F[x]. Then the relation of 
congruence modulo p(x) is 

(1) reflexive: f(x) = f(x) (mod p(x)) for all f(x) EF[x]; 

(2) symmetric: if f(x) = g(x) (mod p(x)), then g(x) = f(x) (mod p(x)); 

(3) transitive: if f(x) = g(x) (mod p(x)) and g(x) = h(x) (mod p(x)), then 
f(x) = h(x) (mod p(x)). 

Proof~ Adapt the proof of Theorem 2.1 with p(x),f(x), g(x), h(x) in place of 
n, a, b, c. 1111: 

Let F be a field and p(x) a nonzero polynomial in F[x]. If f(x) = g(x) (mod p(x)) 
and h(x) = k(x) (mod p(x)), then 

(1) f(x) + h(x) = g(x) + k(x) (mod p(x)), 

(2) f(x)h(x) = g(x)k(x) (mod p(x)). 

Proof~ Adapt the proof of Theorem 2.2 with p(x),f(x), g(x), h(x), k(x) in place 
of n, a, b, c, d. Ill! 

LetF be afleldand f(x), p(x) E=F[x]withp(x) nonzero~The cong~uence C!a$s 
(or residue 'class) off(x) tnodulop(x) is denoted [f(x)] and consists of all. 
polynomials inF[x] that are congruent tof(x) modulo p(x), tha±is, · · · 

[f(x)] ·~ {g(x) I g(x) E F[~]and g(x) ·~ r(x) (mod p()<))}.< . 

Since g(x) = f(x) (mod p(x)) means that g(x)- f(x) = k(x)p(x) for some k(x) E F[x] 
or, equivalently, that g(x) = f(x) + k(x)p(x), we see that 

[f(x)] = {g(x) I g(x) = f(x) (mod p(x))} 

= {f(x) + k(x)p(x) I k(x) EF[x]}. 
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EXAMPLE 3 

Consider congruence modulo x 2 + I in IR[x]. Tl}e congruence class of 2x + 1 is 
the set 

{(2x + I)+ k(x)(x2 + I) I k(x) E IR[x]}. 

The Division Algorithm shows that the elements of this set are the polynomials in IR[x] 
that leave remainder 2x + 1 when divided by x2 + 1. 

EXAMPLE 4 

Consider congruence modulo x 2 + x + 1 in Z 2[x]. To find the congruence 
class of~' we note that~= x + 1 (mod x2 + x + 1) because~- (x + 1) = 
x 2

- x- 1 = (x2 + x + 1)1 (remember that 1 +I= OinZ2, so that 1 = -1). 
Therefore, x + 1 is a member of the congruence class [x2

]. In fact, the next 
theorem shows that [x + 1] = [x2

]. 

f(x) = g(x) (mod p(x)) if and only if [f(x)] = [g(x)]. 

Proof~>- Adapt the proof of Theorem 2.3 withf(x), g(x), p(x), and Theorem 5.1 
in place of a, c, n, and Theorem 2.1. 111, 

Two congruence classes modulo p(x) are either disjoint or identical. 

Proof~>- Adapt the proof of Corollary 2.4. 

Under congruence modulo n in Z, there are exactly n distinct congruence classes 
(Corollary 2.5). These classes are [0], [1], ... , [n- 1]. Note that there is a class for each 
possible remainder under division by n. In F[x] the possible remainders under divi
sion by a polynomial of degree n are all the polynomials of degree less than n (and, of 
course, 0). So the analogue of Corollary 2.5 is 

Let F be a field and p(x) a polynomial of degree n in F[x], and consider congru
ence modulo p(x). 

(1) If f(x) EF[x] and r(x) is the remainder when f(x) is divided by p(x), then 
[f(x)] = [r(x)]. 
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(2) LetS be the set consisting of the zero polynomial and all the poly
nomials of degree less than n in F[x]. Then every congruence class 
modulo p(x) is the class of some polynomial in 5, and the congru
ence classes of different polynomials inS are distinct. 

Proof~(l) By the Division Algorithm,f(x) = p(x)q(x) + r(x), with r(x) =OF or 
deg r(x) < n. Thus,f(x)- r(x) = p(x)q(x), so thatf(x) = r(x) (modp(x)). 
By Theorem 5.3, (f(x)] = [r(x)]. 

(2) Since r(x) = OF or deg r(x) < n, we see that r(x) E S. Hence, every 
congruence class is equal to the congruence class of a polynomial in S. 
Two different polynomials inS cannot be congruent modulo p(x) because 
their difference has degree less than n, and hence is not divisible by p(x). 
Therefore, different polynomials in S must be in distinct congruence 
classes by Theorem 5.3. Ill 

The set of all congruence classes modulo p(x) is denoted 

F[x]/(p(x)), 

which is the notational analogue of E11 • 

EXAMPLE 5 

Consider congruence modulo x2 + 1 in ~[x]. There is a congruence class for 
each possible remainder on division by x2 + 1. Now, the possible remainders 
are polynomials of the form rx + s (with r, s E ~; one or both of r, s may 
possibly be 0). Therefore, ~[x]/(x2 + 1) consists of infinitely many distinct 
congruence classes, including 

[0], [x], [x + 1], [5x + 3], [~x + 2], [x- 7], .... 

Corollary 5.5 states that [rx + s] = [ex+ d] if and only if rx +sis equal (not 
just congruent) to ex + d. By the definition of polynomial equality, rx + s = 

ex+ d if and only if r = e and s =d. Therefore, every element of ~[x]/(x2 + 1) 
can be written uniquely in the form [rx + s]. 

EXAMPLE 6 

Consider congruence modulo x 2 + x + 1 in E2[x]. The possible remainders on 
division by x2 + x + 1 are the polynomials of the form ax + b with a, bE E2. 

Thus there are only four possible remainders: 0, 1, x, and x + 1. Therefore, 
E2[x]/(x2 + x + 1) consists of four congruence classes: [0], [1], [x], and [x + 1]. 

EXAMPLE 7 

The pattern in Example 6 works in the general case. Let n be a prime integer, 
so that En is a field and the Division Algorithm holds in E11[x]. If p(x) E E,[x] 
has degree k, then the possible remainders on division by p(x) are of the form 
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a0 + a1x + · · · + a~c_ 1x"- 1 , with a1E7l.w There are n possibilities for each of 
the k coefficients a0, .•• , a~c_ 1 , and so there are nk different polynomials of this 
form. Consequently, by Corollary 5.5, there are exactly nk distinct congruence 
classes modulo p(x) in 7l.n[x]/(p(x)). 

Exercises 

NOTE: F denotes afield and p(x) a nonzero polynomial in F[x]. 

A. 1. Letf(x), g(x),p(x) EF[x], withp(x) nonzero. Determine whetherf(x) = g(x) 
(mod p(x)). Show your work. 

(a) f(x) = x 5 
- 2x4 + 4x3 + x + 1; g(x) = 3x4 + 2x3 

- 5x2 
- 9; 

p(x) = x2 + 1; F = Q 

(b) f(x) = x4 + x2 + x + 1; g( x) = x4 + x 3 + x2 + 1; 
p(x) = x2 + x; F= 7l.2 

(c) f(x) = 3x5 + 4x4 + 5x3 - 6x2 + 5x- 7; 
g(x) = 2x5 + 6x4 + x 3 + 2x2 + 2x- 5;p(x) = x3

- x2 + x- 1; F = IR 

2. If p(x) is a nonzero constant polynomial in F[x], show that any two 
polynomials in F[x] are congruent modulo p(x). 

3. How many distinct congruence classes are there modulo x3 + x + 1 in 7l.2[x]? 
List them. 

4. Show that, under congruence modulo x3 + 2x + 1 in 7l.3 [x], there are exactly 
27 distinct congruence classes. 

5. Show that there are infinitely many distinct congruence classes modulo x2 
- 2 

in Q[x]. Describe them. 

6. Let a E F. Describe the congruence classes in F [x] modulo the polynomial x - a. 

7. Describe the congruence classes in F[x] modulo the polynomial x. 

B. 8. Prove or disprove: If p(x) is relatively prime to k(x) andf(x)k(x) = g(x)k(x) 
(modp(x)), thenf(x) = g(x) (modp(x)). 

9. Prove thatj(x) = g(x) (mod p(x)) if and only if f(x) and g(x) leave the same 
remainder when divided by p(x). 

10. Prove or disprove: If p(x) is irreducible in F[x] andf(x)g(x) = OF (mod p(x)), 
thenf(x) = OF (mod p(x)) or g(x) =OF (mod p(x)). 

11. If p(x) is reducible in F[x], prove that there existf(x), g(x) E F[x] such that 
f(x) =I= OF (mod p(x)) and g(x) =I= OF (mod p(x)) butf(x)g(x) = OF (mod p(x)). 

12. If f(x) is relatively prime to p(x), prove that there is a polynomial g(x) EF[x] 
such thatf(x)g(x) = IF (mod p(x)). 

13. Supposef(x), g(x) E IR[x] andf(x) = g(x) (mod x). What can be said about the 
graphs of y = f(x) andy = g(x)? 
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Definition 

Congruence-Class Arithmetic 

Congruence in the integers led to the rings ?Ln- Similarly, congruence in F[x] also pro
duces new rings and fields. These turn out to be much richer in structure than the rings 
?Ln- The development here closely parallels Section 2.2. 

Let F be a field and p(x) a nonconstant polynomial in F[x]. If [f(x)] = [g(x)] and 
[h(x)] = [k(x)] in F[x]/(p(x)), then, 

[f(x) + h(x)] = [g(x) + k(x)] and [f(x)h(x)] = [g(x)k(x)]. 

Proofll> Copy the proof of Theorem 2.6, with Theorems 5.2 and 5.3 in place of 
Theorems 2.2 and 2.3. 11!11 

Because of Theorem 5.6 we can now define addition and multiplication of con
gruence classes just as we did in the integers and be certain that these operations are 
independent of the choice of representatives in each congruence class. 

- : . . . 

Let (be afl eld and p(x) a nonconstant polynomial. in F[x]. Addition and 
multi pi ication ih F[x]/(p(x)) are defined by · · · · 

·· [f(x)J+ [g(x)]'==[f(x)+ g(x)], 
' . ' . . - . 

·. . [f())][g(x)l = [f(x )g(x) ] .. 

EXAMPLE 1 

Consider congruence modulo x 2 + 1 in ~[x]. The sum of the classes [2x + 1] 
and [3x + 5] is the class 

[(2x + 1) + (3x + 5)] = [5x + 6]. 

The product is 

[2x + 1][3x + 5] = [(2x + 1)(3x + 5)] = [6x2 + 13x + 5]. 

As noted in Example 5 of Section 5.1, every congruence class in ~[x]/(x2 + 1) 
can be written in the form [ax+ b]. To express the class [6x2 + I3x + 5] in this 
form, we divide 6x2 + l3x + 5 by x 2 + 1 and find that 

6x2 + 13x + 5 = 6(x2 + 1) + (13x- 1). 

It follows that 6~ + 13x + 5 = l3x - 1 (mod~ + 1 ), and hence [6~ + l3x + 5] = 
[l3x - 1]. 
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EXAMPlE 2 

In Example 6 of Section 5.1, we saw that ZdxJ/(x2 + x + 1) consists of four 
classes: [OJ, [1J, [xJ, and [x + 1]. Using the definition of addition of classes, 
we see that [x + lJ + [1J = [x + 1 + 1J = [x](remember that 1 + 1 = 0 
in 7l.2). Similar calculations produce the following addition table for 
7l.2[xJ/(x2 + x + 1): 

+ [OJ [1J [xJ [x + 1J 

[OJ [OJ [1J [xJ [x + 1J 

[1J [1J [OJ [x + 1J [xJ ---------- -------------------------
[xJ [xJ [x + 1J [OJ [1 J 

[x + 1J [x + 1J [xJ [1J [OJ 

Most of the multiplication table for 7l.2[xJ/(x2 + x + 1) is easily obtained from 
the definition: 

[OJ [1 J [xJ [x + 1J 

[OJ [OJ [OJ [OJ [OJ 

[1J [OJ [1J [xJ 
---------- ----------------------~ 

[x + 1J 

[xJ [OJ [xJ 

[x+1J [OJ [x+1J 

To fill in the rest of the table, note, for example, that 

[xJ · [x + 1J = [x(x + 1)J = [x2 + x]. 

Now division or simple addition in 7l.2[xJ shows that x2 + x = (x2 + x + 1) + 1. 
Therefore, x2 + x = 1 (mod x2 + x + 1), so that [x2 + xJ = [1]. A similar calcu
lation shows that [xJ · [xJ = [~J = [x + 1J (because x2 = (~ + x + 1) + (x + 1) 
in 7l.2[x]). Verify that [x + 1][x + 1J = [x]. 

If you examine the tables in the preceding example, you will see that 
7l.2[xJ/(x2 + x + 1) is a commutative ring with identity (in fact, a field). In view 
of our experience with 7l. and 7l., this is not too surprising. What is unexpected is the 
upper left-hand corners of the two tables (the sums and products of [OJ and [1]). It is 
easy to see that the subset F* = {[OJ, [1]} is actually a subring of 7l.2[xJ/(x2 + x + 1) 
and that F* is isomorphic to 7l.2 (the tables for the two systems are identical except for 
the brackets in F*). These facts illustrate the next theorem. 

Let F be a field and p(x) a nonconstant polynomial in F[x]. Then the set 
F[x]j(p(x)) of congruence classes modulo p(x) is a commutative ring with 
identity. Furthermore, F[x]/(p(x)) contains a subring F* that is isomorphic to F. 
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Proof.,. To prove that F[x]/(p(x)) is a commutative ring with identity, adapt the 
proof of Theorem 2. 7 to the present case. Let F* be the subset of 
F[x]/(p(x)) consisting of the congruepce classes of all the constant 
polynomials; that is, F* = {[a] I a EF}. Verify that F* is a subring of 
F[x]/(p(x)) (Exercise 10). Define a map cp:F ---'7 F* by cp(a) = [a]. This 
definition shows that cp is surjective. The definitions of addition and 
multiplication in F[x]j(p(x)) show that 

cp(a +b)= [a+ b] =[a]+ [b] = cp(a) + cp(b) and 

cp(ab) = [ab] =[a]· [b] = cp(a) · cp(b). 

Therefore, cp is a homomorphism. 
To see that cp is injective, suppose cp(a) = cp(b). Then [a]= [b], so that 

a= b (mod p(x)). Hence,p(x) divides a- b. However,p(x) has degree :2:: 1, 
and a - bE F. This is impossible unless a - b = 0. Therefore, a = b and 
cp is injective. Thus cp:F ---'7 F* is an isomorphism. II 

We began with a field F and a polynomialp(x) in F[x]. We have now constructed a 
ring F[x]/(p(x)) that contains an isomorphic copy of F. What we would really like is a 
ring that contains the field F itself There are two possible ways to accomplish this, as 
illustrated in the following example. 

EXAMPlE 3 

In Example 2, we used the polynomial x2 + x + 1 in 2 2[x] to construct the ring 
2 2[x]/(x2 + x + 1), which contains a subset F* = {[0], [1]} that is isomorphic to 
2 2. Suppose we identify 2 2 with its isomorphic copy F* inside 2 2[x]/(x2 + x + 1) 
and write the elements ofF* as if they were in 2 2. Then the tables in Example 2 
become 

+ 0 1 [x] [x + 1] 

0 0 1 [x] [x + 1] 

1 1 0 [x + 1] [x] 

[x] [x] [x + 1] 0 

[x + 1] [x + 1] [x] 0 

0 [x] [x + 1] 

0 0 0 0 0 

1 0 1 [x] [x + 1] 

[x] 0 [x] [x + 1] 1 

[x + 1] 0 [x + 1] 1 [x] 

We now have a ring that has 2 2 as a subset. If this procedure makes you a bit 
uneasy (is 2 2 really a subset?), you can use the following alternate route to the 
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same end. Let E be any four-element set that actually contains 7l.2 as a subset, 
say E = {0, 1, r, s}. Define addition and multiplication in E by 

+ 0 r s 0 1 r s 

0 0 1 r s 0 0 0 0 0 

1 0 s r 0 1 r s 

r r s 0 1 r 0 r s 1 

s s r 1 0 s 0 s r 

A comparison of the tables for 7l.2[x]/(x2 + x + 1) and those forE shows that 
these two rings are isomorphic (replacing [x] by rand [x + 1] by s changes 
one set of tables into the other). Therefore, E is essentially the same ring we 
obtained before. However, E does contain 7l.2 as an honest-to-goodness subset, 
without any identification. 

What was done in the preceding example can be done in the general case. Given 
a field F and a polynomial p(x) in F[x], we can construct a ring that contains F as 
a subset. The customary way to do this is to identify F with its isomorphic copy F* 
inside F[x]/(p(x)) and to consider F to be a subset of F[x]/(p(x)). If doing this 
makes you uncomfortable, keep in mind that you can always build a ring isomorphic 
to F[x]/(p(x)) that genuinely contains F as a subset, as in the preceding example. 
Because this latter approach tends to get cumbersome, we shall follow the usual 
custom and identify Fwith F* hereafter. Consequently, when a, b EF, we shall write 
b[x] instead of [b][x] and a+ b[x] instead of [a]+ [b][x] =[a+ bx]. Then Theorem 5.7 
can be reworded: 

Let F be a field and p(x) a nonconstant polynomial in F[x]. Then F[x]j(p(x)) is a 
commutative ring with identity that contains F. 

If a and n are integers such that (a, n) = 1, then by Theorem 2.10, [a] is a unit in 7l.11 • 

Here is the analogue for polynomials. II 

Let F be a field and p(x) a nonconstant polynomial in F[x]. If f(x) EF[x] and f(x) 
is relatively prime to p(x), then [f(x)] is a unit in F[x]/(p(x)). 

Proof ~>-By Theorem 4.8 there are polynomials u(x) and v(x) such thatf(x)u(x) + 
p(x)v(x) = 1. Hence,f(x)u(x) - 1 = -p(x)v(x) = p(x)( -v(x)), which 
implies that [f(x)u(x)] = [1] by Theorem 5.3. Therefore, [f(x)][u(x)] = 
[f(x)u(x)] = [1], so that [f(x)] is a unit in F[x]/(p(x)). Ill 
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EXAMPLE 4 

Since x2 - 2 is irreducible in Q[x), 2x + 5 and xZ - 2 are relatively prime in O[x]. 
(Why?) Hence, [2x + 5) is a unit in the ring O[x]/(x1 - 2). The proof of Theorem 5.9 
shows that its inverse is [u(x)], where (2x + 5)u(x) + (x1- 2)v(x) = 1. Using the 
Euclidean Algorithm as in Exercise 15 of Section 1.2, we find that 

Therefore, [-
1

2

7 
x + 

1

5

7
] is the inverse of [2x + 5) in Q[x]/(x2 

- 2). 

Exercises 

A. In Exercises 1-4, write out the addition and multiplication tables for the congruence
class ring F[x]/(p(x)). In each case, is F[x]/(p(x)) afield? 

1. F= 7L2;p(x) = x 3 + x + 1 

3. F = 7L2;p(x) = x 2 + 1 

2. F= 7L3;p(x)= x2 + 1 

4. F= 7L5;p(x) = x2 + 1 

B. In Exercises 5-8, each element of the given congruence-class ring can be written 
in the form [ax + b] (Why?). Determine the rules for addition and multiplication 
of congruence classes. (In other words, if the product [ax+ b][cx + d] is the 
class [rx + s], describe how to find rands from a, b, c, d, and similarly for 
addition.) 

5. IR[x]/(x2 + 1) [Hint: See Example 1.] 

6. Q[x]/(x2
- 2) 7. Q[x]/(x2

- 3) 8. O[x]/(x2
) 

9. Show that IR[x]/(x2 + 1) is a field by verifying that every nonzero congruence 
class [ax+ b] is a unit. [Hint: Show that the inverse of [ax+ b] is [ex+ d], 
where c = -a/(a2 + b2

) and d = b/(a2 + b2
).] 

10. Let Fbe a field and p(x) EF[x]. Prove that F* = {[a] I a EF} is a subring of 
F[x]/(p(x)). 

11. Show that the ring in Exercise 8 is not a field. 

12. Write out a complete proof of Theorem 5.6 (that is, carry over to F[x] the 
proof of the analogous facts for 7L). 

13. Prove the first statement of Theorem 5.7. 

14. In each part explain why [fix)] is a unit in F[x]/(p(x)) and find its inverse. 
[Hint: To find the inverse, let u(x) and v( x) be as in the proof of Theorem 5.9. 
You may assume that u(x) = ax + b and v(x) = ex + d. Expandingf(x)u(x) + 
p(x)v(x) leads to a system of linear equations in a, b, c, d. Solve it.] 

(a) [f(x)] = [2x - 3) E O[x]/(x2 
- 2) 

(b) [f(x)] = [x2 + x + 1] E7L3[x]/(x2 + 1) 
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C.15. Find a fourth-degree polynomial in Z2[x] whose roots are the four elements of 
the field Z2[x]/(~ + x + 1), whose tables are given in Example 3. [Hint: The 
Factor Theorem may be helpful.] 

16. Show that Q[x]/(~ - 2) is a field. 

The Structure of F[x]/(p(x)) When p(x) Is Irreducible 

Whenp is a prime integer, then Theorem 2.8 states, in effect, that ZP is a field (and, of 
course, an integral domain). Here is the analogous result for F[x] and an irreducible 
polynomial p(x). 

Let F be a field and p(x) a nonconstant polynomial in F[x]. Then the following 
statements are equivalent: 

(1) p(x) is irreducible in F[x]. 

(2) F[x]/(p(x)) is a field. 

(3) F[x]j(p(x)) is an integral domain. 

Theorem 5.10 and most of its proof are a copy of Theorem 2.8 and its proof, with 
Z replaced by F[x] and ZP by F(x)/(p(x)), and the necessary adjustments made for the 
differences between prime integers and irreducible polynomials. 

Proof ofTheorem 5.10 ~ (1) =} (2) By Theorem 5.7, F(x)/(p(x)) is a commutative 
ring with identity, and thus satisfies Axioms 1-10. To prove that 
F(x)/(p(x)) is a field, we must verify that every nonzero element in 
F(x)/(p(x)) is a unit (Axiom 12, page 49). Suppose that [a(x)] =I= [0] in 
F(x)/(p(x)). We must find [u(x)] such that [a(x)] [u(x)] = [1p]. Since 
[a(x)] =I= [0], we know that a(x) =I= 0 (mod p(x)) by Theorem 5.3. Hence, 
p(x) ,r a(x) by the definition of congruence. Now the gcd of a(x) and 
p(x) is a monic polynomial that divides both a(x) and p(x). Sincep(x) 
is irreducible, the gcd is either IF or a monic associate of p(x) (the only 
monic divisors of p(x)). As explained on page 100, an associate of p(x) 
is a polynomial of the form cp(x), with OF =I= c EF. Consequently, a(x) 
is not divisible by any associate of p(x) (because a(x) is not divisible by 
p(x)). Since the gcd also divides a(x) and p(x) ,r a(x), the gcd of a(x) and 
p(x) must be IF. By Theorem 4.8, there are polynomials u(x) and v(x) so 
that a(x)u(x) + p(x)v(x) = 1F. Hence, a(x)u(x)- IF= p(x)( -v(x)), so 
that a(x)u(x) == lF(mod p(x)). Therefore, [a(x)u(x)] = [IF] in F(x)/(p(x)) 
by Theorem 5.3. Thus, [a(x)][u(x)] = [a(x)u(x)] = [lF], so that [a(x)] is a 
unit. Hence, F(x)/(p(x)) satisfies Axiom 12 and F(x)j(p(x)) is a field. 

(2) =? (3) This is an immediate consequence of Theorem 3.8. 
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(3) ==? (1) We shall verify statement (2) of Theorem 4.12 to show that 
p(x) is irreducible. Suppose that b(x) and c(x) are any polynomials in F[x] 
and p(x) I b(x)c(x). Then b(x)c(x) = OF (mod p(x)). So by Theorem 5.3, 

[b(x)][c(x)] = [b(x)c(x)] = [Op) in F(x)/(p(x)). 

Because F(x)/(p(x)) is an integral domain by (3), we have [a(x)] = [Op] 
or [b(x)] = [Op). Thus, b(x) = Op (mod p(x)) or c(x) =OF (mod p(x)) by 
Theorem 5.3, which means thatp(x) I b(x) or p(x) I c(x) by the definition 
of congruence. Therefore, p(x) is irreducible by Theorem 4.12. 1J 

Theorem 5.10 can be used to construct finite fields. If pis prime and fix) is irreduc
ible in Zp[x] of degree k, then Zp[x)/(f(x)) is a field by Theorem 5.10. Example 7 in 
Section 5.1 shows that this field has pk elements. Finite fields are discussed further in 
Section 11.6, where it is shown that there are irreducible polynomials of every positive 
degree in ZP [x] and, hence, finite fields of all possible prime power orders. See Exercise 9 
for an example. 

Let Fbe a field and p(x) an irreducible polynomial in F[x]. Let K denote the field of 
congruence classes F[x]/(p(x)). By Theorems 5.8 and 5.10, Fis a subfield of the field 
K. One also says that K is an extension field of F. Polynomials in F[x] can be consid
ered to have coefficients in the larger field K, and we can ask about the roots of such 
polynomials in K. In particular, what can be said about the roots of the polynomial 
p(x) that we started with? Even though p(x) is irreducible in F[x], it may have roots in 
the extension field K. 

EXAMPLE 1 

The polynomial p(x) = x2 + x + 1 has no roots in £:2 and is, therefore, irreducible 
in Z2[x] by Corollary 4.19. Consequently, K = Z 2 [x]/(x2 + x + 1) is an extension 
field of £:2 by Theorem 5.10. Using the tables for Kin Example 3 of Section 5 .2, 
we see that 

[xf + [x] + 1 = [x + 1] + [x] + 1 = 1 + 1 = 0. 

This result may be a little easier to absorb if we use a different notation. Let 
a = [x]. Then the calculation above says that a 2 + a + 1 = 0; that is, a is a root 
inK of p(x) = x 2 + x + 1. It's important to note here that you don't really 
need the tables forK to prove that a is a root of p (x) because we know that 
x2 + x + 1 = 0 (mod x 2 + x + 1). Consequently, [x2 + x + 1] = 0 inK, and 
by the definition of congruence-class arithmetic, 

a 2 +a+ 1 = [x]2 + [x] + 1 = [x2 + x + 1] = 0. 

For the general case we have 

Let F be a field and p(x) an irreducible polynomial in F[x]. Then F[x]/(p(x)) is an 
extension field ofF that contains a root of p(x). 
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Proof,.. Let K = F[x]/(p(x)). Then K is an extension field of Fby Theorems 5.8 
and 5.1 0. Let p(x) = a11x" + · · · + a1x + a0, where each a; is in F and, 
hence, inK. Let a= [x] inK. We shall show that a is a root of p(x). By 
the definition of congruence-class arithmetic in K, 

a a" + · · · +a a + a = a [x]" + .. · + a [x] + a n I 0 n• I 0 

= [a11X
1 + · · · + a1x + a0] 

= [p(x)] = Op [Because p(x) =OF (mod p(x)).]. 

Therefore, a E K is a root of p(x). Ill: 

Let F be a field and f(x) a nonconstant polynomial in F[x]. Then there is an 
extension field K ofF that contains a root of f(x). 

Proof,.. By Theorem 4.14,/(x) has an irreducible factor p(x) in F[x]. By Theorem 
5.11, K = F[x]/(p(x)) is an extension field of Fthat contains a root of p(x). 
Since every root of p(x) is a root of f(x), K contains a root of f(x). 

The implications of Theorem 5.11 run much deeper than might first appear. 
Throughout the history of mathematics, the passage from a known number system to a 
new, larger system has often been greeted with doubt and distrust. In the Middle Ages, 
some mathematicians refused to acknowledge the existence of negative numbers. When 
complex numbers were introduced in the seventeenth century, there was uneasiness
which extended for nearly a century-because some mathematicians would not accept 
the idea that there could be a number whose square is - 1, that is, a root of x2 + 1. One 
cause for these difficulties was the lack of a suitable framework in which to view the 
situation. Abstract algebra provides such a framework. Theorem 5.11 and its corollary, 
then, take care of the doubt and uncertainty. 

It is instructive to consider the complex numbers from this point of view. Instead 
of asking about a number whose square is -1, we ask, "Is there a field containing 
IR in which the polynomial x 2 + 1 has a root?" Since x2 + 1 is irreducible in IR[x], 
Theorem 5.11 tells us that the answer is yes: K = IR[x]/(x2 + 1) is an extension field of 
IR that contains a root of x2 + 1, namely a= [x]. In the field K, a is an element whose 
square is -1. But how is the field K related to the field of complex numbers introduced 
earlier in the book? 

As is noted in Example 5 of Section 5.1, every element of K = IR[x]/(x2 + 1) can 
be written uniquely in the form [ax + b] with a, bE JR. Since we are identifying each 
element r E IR with the element [r] in K, we see that every element of K can be written 
uniquely in the form 

[a+ bx] =[a]+ [b][x] =a+ ba. 

Addition in K is given by the rule 

(a+ ba) + (c + da) = [a + bx] + [c + dx] = [(a+ bx) + (c + dx)] 

= [(a + c) + (b + d)x] = [a + c] + [b + d][x]. 
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so that 

(a + ba) + (c + da) = (a + c) + (b + d)a. 

Multiplication in K is given by the rule 

(a+ ba)(c + da) =[a+ bx][c + dx] =[(a+ bx)(c + dx)] 

= [ac + (ad+ bc)x + bdx2] 

= ac + (ad+ bc)a + bda2
. 

However, a is a root of x 2 + 1, and so a2 = -1. Therefore, the rule for multiplication 
in Kbecomes 

(a + ba)(c + da) = (ac - bd) + (ad+ bc)a. 

If the symbol a is replaced by the symbol i, then these rules become the usual rules for 
adding and multiplying complex numbers. In formal language, the field K is isomor
phic to the field C, with the isomorphism/being given by f(a + ba) = a + bi. 

Up to now we have taken the position that the field C of complex numbers was 
already known. The field K constructed above then turns out to be isomorphic to the 
known field C A good case can be made, however, for not assuming any previous 
knowledge of the complex numbers and using the preceding example as a definition 
instead. In other words, we can define C to be the field IR [x]/(x2 + 1). Such a definition 
is obviously too sophisticated to use on high-school students, but for mature students 
it has the definite advantage of removing any lingering doubts about the validity of 
the complex numbers and their arithmetic.* Had this definition been available several 
centuries ago, the introduction of the complex numbers might have caused no stir 
whatsoever. 

Exercises 

NOTE: F always denotes afield. 

A. 1. Determine whether the given congruence-class ring is a field. Justify your 
answer. 

(a) .!Z3[x]/(x3 + 2x2 + x + 1) 

(b) .!Z5[x]/(2x3 
- 4x2 + 2x + 1) 

(c) .!Z2[x]/(x4 + x 2 + 1) 

B. 2. (a) Verify that Q(Yl) = {r + sV21 r, sEQ} is a subfield of R 

(b) Show that Q(Yl) is isomorphic to Q[x]/(x2
- 2). [Hint: Exercise 6 in 

Section 5.2 may be helpful.] 

*Only a minor rearrangement of this bool1 is needed to accommodate such a definition. A few 
examples in Chapter 3 would have to be omitted, and the discussion of irreducibility in C[x] 
and IR[x] (Section 4.6) would have to be postponed. All the intervening material in Chapter 5 is 
independent of any formal knowledge of the complex numbers. 
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3. If aEF, describethefieldF[x]/(x- a). 

4. Let p(x) be irreducible in F[x]. Without using Theorem 5.10, prove that if 
[f(x)][g(x)] = [OF] in F[x]j(p(x)), then [f(x)] = [OF] or [g(x)] = [OF]. [Hint: 
Exercise 10 in Section 5. 1 .] 

5. (a) Verify that Q(V3) = {r + sV31 r, sEQ} is a subfield of Ill 

(b) Show that Q(V3) is isomorphic to Q[x]/(:0- 3). 

6. Letp(x) be irreducible in F[x]. If [f(x)] -=F [OF] inF[x]/(p(x)) and h(x) E 

F[x], prove that there exists g(x) EF[x] such that [J(x)][g(x)] = [h(x)] in 
F[x]/(p(x)). [Hint: Theorem 5.10 and Exercise 12(b) in Section 3.2.] 

7. Ifj(x) EF[x] has degree n, prove that there exists an extension field E of 
F such thatf(x) = c0(x - c1)(x - c2) • · · (x - en) for some (not necessarily 
distinct) ci E E. In other words, E contains all the roots of f(x). 

8. If p(x) is an irreducible quadratic polynomial in F[x], show that F[x]/(p(x)) 
contains all the roots of p(x). 

9. (a) Show that Z2[x]/(x3 + x + 1) is a field. 

(b) Show that the field Z2[x]/(x3 + x + 1) contains all three roots of x3 + x + 1. 

10. Show that Q[x]/(x2 - 2) is not isomorphic to Q[x]/(x2 - 3). [Hint: Exercises 2 
and 5 may be helpful.] 

11. Let Kbe a ring that contains 1:6 as a subring. Show that p(x) = 3:0 + 1 E Z6[x] has 
no roots inK. Thus, Corollary 5.12 may be false ifF is not a field. [Hint: If u 
were a root, then 0 = 2 · 3 and 3u2 + 1 = 0. Derive a contradiction.] 

12. Show that 2x3 + 4x2 + 8x + 3 E Z16[x] has no roots in any ring K that contains 
1:16 as a subring. [See Exercise 11.] 

C.13. Show that every polynomial of degree 1, 2, or 4 in Z2[x] has a root in 
Z2[x]/(x4 + x + 1). 





Ideals and Quotient Rings 

Congruence in the integers led us to the finite arithmetics 1Ln and helped moti
vate the definition of a ring. Congruence in the polynomial ring F[x] resulted in a 
new class of rings consisting of the various F[x]j(p(x)). These rings enabled us to 
construct extension fields ofF that contained roots of the polynomial p(x). In this 
chapter the concept of congruence is extended to arbitrary rings, producing 
additional rings and a deeper understanding of algebraic structure. 

You will see that much of the discussion is an exact parallel of the development 
of congruence in 7L (Chapter 2) and in F[x] (Chapter 5). Nevertheless, the results 
here are considerably broader than the earlier ones. 

Ideals and Congruence 

Our goal is to develop a notion of congruence in arbitrary rings that includes as spe
cial cases congruence modulo n in 7L and congruence modulo p(x) in F[x]. We begin by 
taking a second look at some examples of congruence in 7L and F[x] from a somewhat 
different viewpoint than before. 

EXAMPLE 1 

In the ring 7L, a= b (mod 3) means that a- b is a multiple of 3. Let !be the set 
of all multiples of 3, so that 

I= {0, ±3, ±6, ... } . 

Then congruence modulo 3 may be characterized like this: 

a= b (mod 3) means a- bEl. 

141 
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Definition· 

Observe that the subset I is actually a subring of 7!.. (sums and products of mul
tiples of 3 are also multiples of 3). Furthermore, the product of any integer and 
a multiple of 3 is itself a multiple of 3. Thus the subring !has this property: 

Whenever k E 7!.. and i E I, then ki E I. 

EXAMPLE 2* 

The notation f(x) = g(x) (mod :x? - 2) in the polynomial ring Q[x] means that 
f(x) - g(x) is a multiple of :x? - 2. Let !be the set of all multiples of :x? - 2 in Q[x], 
that is, I= {h(x)(:x? - 2) I h(x) E Q[x]}. Once again, it is not difficult to check that I is 
a subring of Q[x] with this property: 

Whenever k(x) E Q[x] and t(x) E L then k(x)t(x) E I 

(the product of any polynomial with a multiple of :x? - 2 is itself a multiple of :x? - 2). 
Congruence modulo :x? - 2 may be described in terms of I: 

f(x) = g(x) (mod x2 
- 2) means f(x)- g(x) El. 

These examples suggest that congruence in a ring R might be defined in terms 
of certain subrings. If I were such a subring, we might define a = b (mod I) to 
mean a - bE I. The subring I might consist of all multiples of a fixed element, as in 
the preceding examples, but there is no reason for restricting to this situation. The 
examples indicate that the key property for such a subring I is that it "absorbs prod
ucts": Whenever you multiply an element of !by any element of the ring (either inside 
or outside I), the resulting product is an element of I. The set of all multiples of a fixed 
element has this absorption property. We shall see that many other subrings have it as 
well. Because such subrings play a crucial role in what follows, we pause to give them 
a name and to consider their basic properties. 

Asubring/ ofa ringRis~n· id~al provided: 

.· Whenever·lERa~daE:J,tnen.ra E:·1 and C1(E:h 

The double absorption condition that raE I and arE I is necessary for noncommutative rings. 
When R is commutative, as in the preceding examples, this condition reduces to raE I. 

EXAMPLE 3 

The zero ideal in a ring R consists of the single element 0 R· This is a subring that absorbs all 
products since rO R = 0 R = 0 Rr for every r E R. The entire ring R is also an ideal. 

*Skip this example if you have not read Chapter 5. 
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EXAMPLE 4 

In the ring Z[x] of all polynomials with integer coefficients, let /be the set of 
polynomials whose constant terms are even integers. Thus x3 + x + 6 is in J, 
but 4x2 + 3 is not. Verify that I is an ideal in Z[x] (Exercise 2). 

EXAMPLE 5 

Let T be the ring of all functions from IR to IR, as described in Example 8 
of Section 3 .1. Let I be the subset consisting of those functions g such that 
g(2) = 0. Then I is a subring ofT (Exercise 14 of Section 3.1). If fis any 
function in T and if g E J, then 

(fg)(2) = f(2)g(2) = f(2) . 0 = 0. 

Therefore,fgEJ. Similarly, gjEJ, so that/is an ideal in T. 

EXAMPLE 6 

The subring Z of the rational numbers is not an ideal in Q because Z fails to 

have the absorption property. For instance, ~ E Q and 5 E Z, but their product, 
5 . . 77 2' 1s not m !L. 

EXAMPLE 7 

Verify that the set I of all matrices of the form (~ ~) with a, b E IR forms a 

subring of the ring M(IR) of all 2 X 2 matrices over the reals. It is easy to see 
that I absorbs products on the left: 

0) = (ra + sb 0
0
) EJ. 

0 ta + ub 

But I is not an ideal in M(IR) because it may not absorb products on the right-for 
instance, 

One sometimes says that I is a left ideal, but not a two-sided ideal, in M(IR). 

The following generalization of Theorem 3.6 often simplifies the verification that a 
particular subset of a ring is an ideal. 
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A nonempty subset I of a ring R is an ideal if'and only if it has these properties: 

(i) if a, b E I, then a- b E I; 

(ii) if r E Rand a E I, then ra E I and ar E I. 

Proof ~ Every ideal certainly has these two properties. Conversely, suppose I 
has properties (i) and (ii). Then I absorbs products by (ii), so we need 
only verify that I is a sub ring. Property (i) states that I is closed under 
subtraction. Since I is a subset of R, the product of any two elements 
of I must be in I by (ii). In other words, I is closed under multiplication. 
Therefore, I is a subring of R by Theorem 3.6. 11, 

Finitely Generated Ideals 
In the first example of this section we saw that the set I of all multiples of 3 is an ideal 
in 7l.. This fact is a special case of 

Let R be a commutative ring with identity, c ER, and I the set of all multiples 
of c in R, that is, I= {rc I r ER). Then I is an ideal. 

Proof.,.. If rj, r2, r E Rand r1 c, r2c E I, then 

and 

because r1 - r2 and 1'1'1 are elements of R. Similarly, since R is commuta
tive, (r1c)r = (rr 1)c El. Therefore, I is an ideal by Theorem 6. 1. II 

The ideal I in Theorem 6.2 is called the principal ideal generated by c and hereafter 
will be denoted by (c). In the ring 7l., for example, (3) indicates the ideal of all multiples 
of 3. In any commutative ring R with identity, the principal ideal (lR) is the entire ring 
R because r = r1R for every r E R. It can be shown that every ideal in 7L is a principal 
ideal (Exercise 40). However, there are ideals in other rings that are not principal, that 
is, ideals that do not consist of all the multiples of a particular element of the ring. 

EXAMPLE 8 

We have seen that the set I of all polynomials with even constant terms is an 
ideal in the ring 7L[x]. We claim that I is not a principal ideal. To prove this, 
suppose, on the contrary, that I consists of all multiples of some polynomial 
p(x). Since the constant polynomial2 is in I, 2 must be a multiple of p(x). 
By Theorem 4.2, this is possible only if p(x) has degree 0, that is, if p(x) is a 
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constant, say p(x) = c. Since p(x) EI, the constant c must be an even integer. Since 
2 is a multiple of p(x) = c, the only possibility is c = ±2. On the other hand, x EI 
because it has even constant term 0. Therefore, x must be a multiple of p(x) = ±2. 
However, if ±2g(x) = x, then g(x) has degree 1 by Theorem 4.2, say g(x) = ax + b. 
But ±2(ax + b) = x implies that ±2a = 1 because the coefficient of x must be the 
same on both sides. This is impossible because a is an integer. Therefore, I does not 
consist of all multiples of p(x) and is not a principal ideal. 

In a commutative ring with identity, a principal ideal consists of all multiples of a 
fixed element. Here is a generalization of that idea. 

Let R be a commutative ring with identity and c1, c2 , ... , en ER. Then the set 
I= {r1c1 + r2c2 + · · · + rncn I r1, r2, ... , rn ER) is an ideal in R. 

Proof" Exercise 14. 111 

The ideal I in Theorem 6.3 is called the ideal generated by cb c2, ••• , C11 and is 
sometimes denoted by (ell c2, ... , c11). Such an ideal is said to be finitely generated. A 
principal ideal is the special case n = 1, that is, an ideal generated by a single element.* 
The generators of a finitely generated ideal need not be unique, that is, the ideal gener
ated by cl> c2> ... , en might be the same set as the ideal generated by dl> d2, •.• , d10 even 
though no c; is equal to any d; (Exercise 16). 

EXAMPLE 9 

In the ring Z[x], the ideal generated by the polynomial x and the constant poly
nomial 2 consists of all polynomials of the form 

f(x)x + g(x)2, with f(x), g(x) E Z[x]. 

It can be shown that this ideal is the ideal I of all polynomials with even 
constant term, which was discussed in Example 8 (Exercise 15). 

Congruence 

Now that you are familiar with ideals, we can define congruence in an arbitrary ring: 

Let/ be an ideal ih aring Rand leta, b ER. Then a is congruent to b modulo 
I [written a= b (mod l)]providedthat a-bE/. 

*When a commutative ring does not have an identity, the ideal generated by c1, c2, ••• , en is defined 
somewhat differently (see Exercise 33). 
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Example 1 shows that congruence modulo 3 in the integers is the same thing as 
congruence modulo the ideal I, where I is the principal ideal (3) of all multiples of 3. 
Similarly, Example 2 shows that congruence modulo x2

- 2 in Q[x] is the same as con
gruence modulo the principal ideal (x2 

- 2). Thus congruence modulo an ideal includes 
as a special case the concepts of congruence in 7L and F[x] used earlier in this book. 

EXAMPlE 10 

Let T be the ring of all functions from IR to IR and let I be the ideal of all func
tions g such that g(2) = 0. If f(x) = x2 + 6 and h(x) = 5x, then the function 
f- h is in I because 

(f- h)(2) = /(2) - h(2) = (22 + 6) - (5 . 2) = 0. 

Therefore,/= h (mod I). 

Let I be an ideal in a ring R. Then the relation of congruence modulo I is 

(1) ref1exive: a= a (mod I) for every a E R; 

(2) symmetric: if a = b (mod 1), then b = a (mod I); 

(3) transitive: if a= b (mod I) and b = c (mod 1), then a = c (mod 1). 

This theorem generalizes Theorems 2.1 and 5.1. Observe that the proof is virtually 
identical to that of Theorem 2.1-just replace statements like "k is divisible by n" or 
"n I k" or "k = nt" with the statement "k E I". 

PI'OOf of Theorem 6.4"'" (1) a a = 0 REI; hence, a= a (mod I). 

(2) a= b (mod I) means that a-· b = i for some i EL Therefore, b- a= 
- (a - b) = -i. Since I is an ideal, the negative of an element of I is also 
in I, and sob- a= -iEI. Hence, b =a (mod I). 

(3) If a = b (mod I) and b = c (mod I), then by the definition of con
gruence, there are elements i and j in I such that a - b = i and b - c = j. 
Therefore, a - c = (a - b) + ( b - c) = i + j. Since the ideal I is closed under 
addition, i + j E I and, hence, a = c (mod I). Ill! 

Let I be an ideal in a ring R. If a= b (mod I) and c = d (mod 1), then 

(1) a+ c = b + d (mod I); 

(2) ac = bd (mod 1). 
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This theorem generalizes Theorems 2.2 and 5.2. Its proof is quite similar to theirs 
once you make the change to the language of ideals. 

Proof of Theorem 8.5 ~ (1) By the definition of congruence, there are i, j E: I such 
that a- b = i and c- d = j. Therefore, (a+ c)- (b +d)= (a- b) + 
(c- d)= i+ jE:I. Hence, a+ c = b + d (mod I). 

(2) ac- bd = ac- be+ be- bd =(a- b)c + b(c- d) = ic + bj. Since 
the ideal I absorbs products on both left and right, icE: I and bj E: I. Hence, 
ac - bd = ic + bj E: I. Therefore, ac = bd (mod I). • 

If I is an ideal in a ring R and a E: R, then the congruence class of a modulo I is the 
set of all elements of R that are congruent to a modulo I, that is, the set 

{b E:R I b =a (mod I)} = {beRI b- aE:I} 

= { b E: R I b - a = i, with i E: I} 

= {beRib =a+ i, with iE:I} 

={a+ iliei}. 

Consequently, we shall denote the congruence class of a modulo I by the symbol a + I 
rather than the symbol [a] that was used in 7L and F[x]. The plus sign in a + I is just a 
formal symbol; we have not defined the sum of an element and an ideal. In this con
text, the congruence class a + I is usually called a (left) coset of I in R. 

Let I be an ideal in a ring Rand let a, c E: R. Then a = c (mod I) if and only 
if a+ I= c +I. 

Proof ~ With only minor notational changes, the proof of Theorem 2.3 carries 
over almost verbatim to the present case. Simply replace "mod n" by "mod 
I" and "[a]" by "a + F'; use Theorem 6.4 in place of Theorem 2.1. Ill 

Let I be an ideal in a ring R. Then two cosets of I are either disjoint or identical. 

Proof~ Copy the proof of Corollary 2.4 with the obvious notational changes. • 

If I is an ideal in a ring R, then the set of all cosets of I (congruence classes modulo I) 
is denoted R/ I. 

EXAMPLE 11 

Let I be the principal ideal (3) in the ring 7L. Then the cosets of I are just the 
congruence classes modulo 3, and so there are three distinct cosets: 0 + I= [0], 
1 + I= [1 ], and 2 + I= [2]. The set 7L /I of all cosets is precisely the set 7L3 in 
our previous notation. 
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EXAMPLE 12 

Let !be the ideal in Z:[x] consisting of all polynomials with even constant 
terms. We claim that Z:[ x ]/I consists of exactly two distinct co sets, namely, 
0 +I and 1 +I. To see this, consider any cosetf(x) +I. The constant term of 
f(x) is either even or odd. If it is even, thenf(x) El, so thatf(x) = 0 (mod I). 
Therefore,f(x) +I= 0 + I by Theorem 6.6. If /(x) has odd constant term, 
thenf(x) - 1 has even constant term, so thatf(x) = 1 (mod I). Thusf(x) +I= 
1 +!by Theorem 6.6. 

EXAMPLE 13 

Let T be the ring of functions from !R to !R and let I be the ideal of all functions 
g such that g(2) = 0. Note that for each real number r, the constant function/,. 
(whose rule is/,.(x) = r) is an element ofT. Let h(x) be any element ofT. Then 
h(2) is some real number, say h(2) = c, and 

(h - fc)(2) = h(2) - fcC2) = c - c = 0. 

Thus h- fc El, so that h = fc (mod I) and, hence, h +I= fc +I. Consequently, 
every coset of I can be written in the form/,. + I for some real number r. 
Furthermore, if c =I= d, thenfc (2) =I= fd(2), so that [fc- !d](2) =I= 0 andfc- !d ~I. 
Hence,fc =I= !d (mod I) andfc + I =I= !d + I. Therefore, there are infinitely many dis
tinct cosets of I, one for each real number r. 

Exercises 

NOTE: R denotes a ring . 

. A. 1. Show that the set K of all constant polynomials in Z:[x] is a subring but not an 
ideal in Z:[x]. 

2. Show that the set I of all polynomials with even constant terms is an ideal in 
£:[X]. 

3. (a) Show that the set! = { (k, 0) I k E Z:} is an ideal in the ring Z: X Z:. 

(b) Show that the set T = { (k, k) IkE Z:} is not an ideal in Z: X Z:. 

4. Is the set J = {(~ ~) J r E !R} an ideal in the ring M(IR) of 2 X 2 matrices 
over IR? 

5. Show that the set K = { ( ~ ~) I a, bE !R} is a subring of M(!R) that absorbs 

products on the right. Show that K is not an ideal because it may fail to 
absorb products on the left. Such a set K is sometimes called a right ideal. 

6. (a) Show that the set of nonunits in Z: 8 is an ideal. 

(b) Do part (a) for Z: 9. [Also, see Exercise 24.] 
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7. Let c ER and let I= {rc I rER}. 

(a) If R is commutative, prove that lis an ideal (that is, Theorem 6.2 is true 
even when R does not have an identity). 

(b) If R is commutative but has no identity, is can element of the ideal I? 
[Hint: Consider the ideal {2k IkE E} in the ring E of even integers. Also see 
Exercise 3 3.] 

(c) Give an example to show that if R is not commutative, then !need not be 
an ideal. 

8. If I is an ideal in R and J is an ideal in the ring S, prove that I X J is an ideal in 
the ~ing R X S. 

9. Let R be a ring with identity and let !be an ideal in R. 

(a) If lR El, prove that I= R. 

(b) If I contains a unit, prove that I= R. 

10. If I is an ideal in a field F, prove that I= (Op) or I= F. [Hint: Exercise 9 .] 

11. List the distinct principal ideals in each ring: 

(a) 7L 5 (b) 7!_ 9 (c) 7L 12 

12. List the distinct principal ideals in 7L 2 X 7L 3. 

13. If R is a commutative ring with identity and (a) and (b) are principal ideals 
such that (a)= (b), is it true that a= b? Justify your answer. 

14. Prove Theorem 6.3. 

15. Show that the ideal generated by x and 2 in the ring 7L[x] is the ideal I of all 
polynomials with even constant terms (see Example 9). 

16. (a) Show that (4, 6) = (2) in 7L, where (4, 6) is the ideal generated by 4 and 6 
and (2) is the principal ideal generated by 2. 

(b) Show that (6, 9, 15) = (3) in 7L. 

17. (a) If I and J are ideals in R, prove that In J is an ideal. 

(b) If [I~c] is a (possibly infinite) family of ideals in R, prove that the 
intersection of all the Ik is an ideal. 

18. Give an example in 7L to show that the set theoretic union of two ideals may 
not be an ideal (in fact, it may not even be a subring). 

19. If I is an ideal in RandS is a subring of R, prove that In Sis an ideal inS. 

20. Let I and J be ideals in R. Prove that the set K = {a + b I a E I, bE J} is an 
ideal in R that contains both I and J. K is called the sum of I and J and is 
denoted I + J. 

21. If dis the greatest common divisor of a and bin 7L, show that (a)+ (b)= (d). 
(The sum of ideals is defined in Exercise 20.) 

22. Let I and J be ideals in R. Is the set K = { ab I a E I, b E J} an ideal in R? 
Compare Exercise 20. 
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23. (a) Verify that I= {0, 3} is an ideal in 7L 6 and list all its distinct cosets. 

(b) Verify that I= {0, 3, 6, 9, 12} is an ideal in 7L 15 and list all its distinct cosets. 

B. 24. Let R be a commutative ring with identity, and let N be the set of nonunits in 
R. Give an example to show that N need not be an ideal. 

25. Let J be an ideal in R. Prove that I is an ideal, where 

I = { r E R I rt = 0 R for every t E J}. 

26. Let I be an ideal in R. Prove that K is an ideal, where 

K = {a eR Ira elfor every rER}. 

27. LetfR--+ S be a homomorphism of rings and let 

K= {reRif(r) = 08}. 

Prove that K is an ideal in R. 

28. If I is an ideal in R, prove that I[x] (polynomials with coefficients in I) is an 
ideal in the polynomial ring R[x]. 

29. If (m, n) = 1 in 7L, prove that (m) n (n) is the ideal (mn). 

30. Prove that the set of nilpotent elements in a commutative ring R is an ideal. 
[Hint: See Exercise 44 in Section 3.2.] 

31. Let R be an integral domain and a, b ER. Show that (a)= (b) if and only if 
a = bu for some unit u E R. 

32. (a) Prove that the set J of all polynomials in 7L[x] whose constant terms are 
divisible by 3 is an ideal. 

(b) Show that J is not a principal ideal. 

33. Let R be a commutative ring without identity and let a E R. Show that 
A = {ra + naIr E R, n E 7L} is an ideal containing a and that every ideal 
containing a also contains A. A is called the principal ideal generated by a. 

34. If M is an ideal in a commutative ring R with identity and if a E R with a (t M, 
prove that the set 

J = { m + ra I r E R and m EM} 

is an ideal such that M ~ J 

35. Let /be an ideal in 7L such that (3) s;;;: Is; 7L. Prove that either I= (3) or I= 7L 

36. Let I and J be ideals in R. Let IJ denote the set of all possible finite sums of 
elements of the form ab (with a el, bE J), that is, 

lJ = {a1b1 + a2b2 + · · · + anbn In 2: 1, akEI, b~cel}. 

Prove that IJ is an ideal, IJ is called the product of I and J. 

37. Let R be a commutative ring with identity lR *OR whose only ideals are 
(OR) and R. Prove that R is a field. [Hint: If a* OR, use the ideal (a) to find a 
multiplicative inverse for a.] 

38. Let /be an ideal in a commutative ring Rand let 

J = { r E R I rn E I for some positive integer n}. 
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Prove that J is an ideal that contains I. [Hint: You will need the Binomial 
Theorem from Appendix E. Exercise 30 is the case when I= (OR).] 

39. (a) Show that the ring M(IR) is not a division ring by exhibiting a matrix that 
has no multiplicative inverse. (Division rings are defined in Exercise 42 of 
Section 3.1.) 

(b) Show that M(IR) has no ideals except the zero ideal and M(IR) itself. 
[Hint: If J is a nonzero ideal, show that J contains a matrix A with a 
nonzero entry c in the upper left-hand corner. Verify that 

( 0
1 o

0
). A. (c-

0

1 o
0

) __ (
0
1 o) 

0 
and that this matrix is in J. Similarly, 

show that(~ ~)is in J. What is their sum? See Exercise 9.] 

40. Prove that every ideal in 7L is principal. [Hint: If I is a nonzero ideal, show that 
I must contain positive elements and, hence, must contain a smallest positive 
element c (Why?). Since c E!, every multiple of cis also in I; hence, (c)(;;; I. 
To show that I(;;; (c), let a be any element of I. Then a= cq + r with 0::::; r < c 
(Why?). Show that r = 0 so that a = cq E (c).] 

41. (a) Prove that the setS of rational numbers (in lowest terms) with odd 
denominators is a subring of Q. 

(b) Let I be the set of elements of S with even numerators. Prove that I is an 
ideal inS. 

(c) Show that S/ I consists of exactly two distinct cosets. 

42. (a) Let p be a prime integer and let T be the set of rational numbers (in lowest 
terms) whose denominators are not divisible by p. Prove that Tis a ring. 

(b) Let !be the set of elements of Twhose numerators are divisible by p. 
Prove that I is an ideal in T. 

(c) Show that T /I consists of exactly p distinct cosets. 

43. Let.! be the set of all polynomials with zero constant term in 7L[x]. 

(a) Show that J is the principal ideal (x) in 7L[x]. 

(b) Show that 7L[x]/J consists of an infinite number of distinct cosets, one for 
each n E7L. 

44. (a) Prove that the set T of matrices of the form(~ ~)with a, bE IRis a 
subring of M(IR). 

(b) Prove that the set I of matrices of the form ( ~ ~) with b E IR is an ideal 
in the ring T. 

(c) Show that every coset in T/I can be written in the form(~ 0) +I. 
a 
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45. (a) Prove that the setS of matrices of the form (a be) with a, b, c E IRis a 
subring of M(IR). 0 

(b) Prove that the set I of matrices of the form (
0 ~)with bE IRis an ideal 

in the ringS. 0 

(c) Show that there are infinitely many distinct cosets inS/ I, one for each pair 
in IR X R 

C. 46. Let Fbe a field. Prove that every ideal in F[x] is principal. [Hint: Use the 
Division Algorithm to show that the nonzero ideal I in F[x] is (p(x)), where 
p(x) is a polynomial of smallest possible degree in I.] 

47. Prove that a subring S of 7l.n has an identity if and only if there is an element u 
inS such that u2 = u and Sis the ideal (u). 

Quotient Rings and Homomorphisms 

We now show that the set of congruence classes modulo an ideal is itself a ring. As you 
might expect, this is a straightforward generalization of what we did with congruence 
classes in 7l. and F[x]. However, you may not have expected these rings of congruence 
classes to have close connections with some topics studied in Chapter 3, isomorphisms 
and homomorphisms. These connections are explored in detail and provide new insight 
into the structure of rings. 

Let I be an ideal in a ring R. The elements of the set R/ I are the co sets of I (con
gruence classes modulo J), that is, all sets of the form a + I = {a + i I i E I}. In order 
to define addition and multiplication of cosets as we did with congruence classes in 7l. 
and F[x], we need 

Let I be an ideal in a ring R. If a+ I= b +I and c +I= d +I in R/1, then 

(a + c) + I = (b + d) + I and ac + I= bd + I. 

Proof,.. This is a generalization of Theorem 2.6, in slightly different notation. 
Replace "[a]" by "a + F' and copy the proof of Theorem 2.6, using 
Theorems 6.5 and 6.6 in place of Theorems 2.2 and 2.3. Ill 

We can now define addition and multiplication in R/ I just as we did in 7l11 and 
F[x]/(p(x)): The sum of the coset a +I (congruence class of a) and the coset c +I 
(congruence class of c) is the coset (a+ c)+ I (congruence class of a+ c). In symbols, 

(a + I) + (c + I) = (a + c) + I. 
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This statement may be a bit confusing because the plus sign is used with three entirely 
different meanings: 

as a formal symbol to denote a coset: a + I; 
as an operation on elements of R: a + c; 

as the addition operation on co sets that is being defined.* 

The important thing is that, because of Theorem 6.8, coset addition is independent 
of the choice of representative elements in each coset. Even if we replace a + I by an 
equal coset b + I and replace c + I by an equal coset d +I, the resulting coset sum, 
namely (b +d) +I, is the same as (a+ c) +I. 

Multiplication of cosets is defined similarly and is independent of the choice of 
representatives by Theorem 6.8: 

(a + I)( c + I) = ac + I. 

EXAMPLE 1 

If I is the principal ideal (3) in 7L, then addition and multiplication of cosets is 
the same as addition and multiplication of congruence classes in Section 2.2. 
Thus 7L/ I is just the ring 7L3• 

EXAMPLE 2t 

If Fis a field, p(x) is a polynomial in F[x], and I is the principal ideal (p(x)), 
then cosets of I are precisely congruence classes modulo p(x), so that addition 
and multiplication of cosets are done exactly as they were in Section 5.2. Thus 
F[x]/ I is the congruence-class ring F[x]/(p(x)). 

EXAMPLE 3 

Let I be the ideal of polynomials with even constant terms in 7L[x]. As we saw 
in Example 12 of Section 6.1, 7L[x]/ I consists of just two distinct cosets, 0 +I 
and 1 +I. We have (1 +I)+ (1 +I)= (1 + 1) +I= 2 +I, but 2 EI, so that 
2 = 0 (mod I) and, hence, 2 + I = 0 + I. Similar calculations produce the 
following tables for 7L[x]/ I. It is easy to see that 7L[x]/ I is a ring (in fact, a field) 
isomorphic to 7L2: 

+ 
O+I 

1 +I 

0+1 1+1 
O+I 

1 + I 
1 +I 

O+I 

O+I 

1 +I 

0+1 1+1 
O+I O+I 

O+I 1+I 

*This ambiguity can be avoided by using a different notation for cosets, such as [a], and a different 
symbol for coset addition, such as Ejj. The notation above is customary, however, and once you're 
used to it, there should be no confusion. 

tSkip this example if you have not read Chapter 5. 
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Definition 

These examples illustrate the following theorem, which should not be very surpris
ing in view of your previous experience with 7L and F[x]. 

Let I be an ideal in a ring R. Then 

(1) R/1 is a ring, with addition and multiplication of cosets as defined 
previously. 

(2) If R is commutative, then R/ I is a commutative ring. 

(3) If R has an identity, then so does the ring R/1. 

Proof~ (1) With the usual change of notation ("a+ I" instead of "[a]"), the 
proof of Theorem 2.7 carries over to the present situation since that 
proof depends only on the fact that 7L is a ring. Don't take our word for 
it, though; write out the proof in detail for yourself. 

(2) If R is commutative and a, c E R, then ac = ca. Consequently, in 
R/Iwe have (a+ I)(c +I)= ac +I= ca +I= (c + I)(a +I). Hence, 
R/ I is commutative. 

(3) The identity in R/ I is the coset 1 R + I because (a + 1)(1 R + I) = 
aiR+ I= a+ I and similarly (lR + I)(a +I) =a+ I. 

The ring R/ I is called the quotient ring (or factor ring) of R by I. One sometimes 
speaks of factoring out the ideal I to obtain the quotient ring R/ I. 

Homomorphisms 

Quotient rings are the natural generalization of congruence-class arithmetic in 7L and 
F[x]. As is often the case in mathematics, however, a concept developed with one idea 
in mind may have unexpected linkages with other important mathematical concepts. 
That is precisely the situation here. We shall now see that the concept of homomor
phism that arose in our study of isomorphism of rings in Chapter 3 is closely related 
to ideals and quotient rings. 

Let f:R~S be.a.homomorphismofrings.Thi:mthekerneJ offistheset 

K = {rERif(~) 70s}. 

Thus, the kernel off is the subset of R consisting of those elements of R that 
fmaps to 08 inS. Note that OR is in the kernel sincef(OR) = 08 by Theorem 3.10. 
However, the kernel may also contain nonzero elements. 
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EXAMPLE 4 

In Example 6 of Section 3.3 we saw that the functionf:::Z--+ 1:6 defined by 
f(r) = [r] E 1:6 is a homomorphism of rings. Its kernel K contains many nonzero 
integers. For instance, 12 EKbecausef(12) = [12] = [0] in 1:6. In fact every 
multiple of 6 is in the kernel because 

K= {rE::Zif(r) = [0]} = {rE::ZI[r] = [0]} 

= {rE ::Zir= O(mod6)} 

= {rE::ZI6Ir} 

= {all multiples of 6} 

So the kernel K is the principal ideal (6) in 1:. 

EXAMPLE 5 

[Definition off] 

[Theorem 2.3] 

[Definition of congntence mod 6] 

[61 r means r is a multiple of 6]. 

The function 8:1R[x]--+ IR that sends each polynomial in IR[x] to its constant 
term in IR is a ring homomorphism (Exercise 1). Its kernel consists of all 
polynomials with constant term 0. But every polynomial with 0 constant term 
is divisible by x. So the kernel is the principal ideal (x) in IR[x]. 

Examples 4 and 5 provide examples of the following theorem. 

Let f:R--+ S be a homomorphism of rings. Then the kernel K off is an ideal in 
the ring R. 

Proof ~>We shall use Theorem 6.1 to show that K = {r E R I f(r) = Os} is an ideal. 
We must verify that is a nonempty subset of R that is closed under sub
traction and absorbs products. First, K is non empty because 0 R E K as 
noted before Example 4. To prove that K is closed under subtraction, we 
must show that for a, bE K, the element a - b is also inK. To show 
a- b EK, we must show thatf(a- b) = 08 . This follows from the fact 
that/is a homomorphism and thatf(a) = 08 andf(b) = 08 (because a, 
bEK): 

f(a- b)= f(a)- f(b) = Os- Os = 08 . 

To prove that K absorbs products we must first verify that raE K for any 
r E R and a E K, that is, that f(ra) = 0 8 ; here's the proof: 

f(ra) = f(r)f(a) = f(r) Os = Os. 

A similar argument shows that arE K. Therefore K is an ideal by 
Theorem 6.1. Ill; 
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In Examples 4 and 5, the kernel of the homomorphism contained many nonzero 
elements. Sometimes, however, the kernel of a homomorphism contains only 0 R> in 
which case we have an interesting result. 

Let f:R---+ S be a homomorphism of rings with kernel K. Then K = (OR) if and 
only iff is injective. 

Proof~ Suppose that K = (0 R). We must show that/ is injective, so assume 
that a, b ER andf(a) = f(b). Because/is a homomorphism, 
f(a- b)= f(a) - f(b) = 08 . Hence, a- b is in the kernel K =(OR), 
which means that a - b =OR and a= b. Therefore/is injective. 

Conversely, suppose/is injective. If c EK, we must show that c =OR. 
By the definition of the kernel,/( c)= 08 . By Theorem 3.10,/(0R) = 08 = 
f(c). Therefore, c =OR because/is injective. Hence, the kernel consists 
of the single element OR, that is, K = (0~. Ill: 

EXAMPLE 6 

In Example 7 of Section 3.3 we saw that the function g:IR---+ M(IR) given by 

g(r) = ( 
0 0

) is a ring homomorphism. Its kernel of g consists of all real 

- r r (0 0) ( 0 0) (0 0) numbers r such that g(r) = 
0 0 

, that is, such that _ r r = 
0 0 

. 

This can only occur when r = 0. So the kernel is the zero ideal (0). Hence, g is 
injective by Theorem 6.11. 

Theorem 6.10 states that every kernel is an ideal. Conversely, every ideal is the 
kernel of a homomorphism: 

Let I be an ideal in a ring R. Then the map 1r:R---+ R/1 given by 1r(r) = r + I is 
a surjective homomorphism with kernel I. 

The map 1T is called the natural homomorphism from R to R/ I. 

Proof of Theorem 8.12 ~>The map 1T is smjective because given any coset r + I in 
R/ I, 1r(r) = r + I. The definition of addition and multiplication in R/ I 
shows that 1T is a homomorphism: 

1r(r + s) = (r + s) + I= (r + I) + (s + I) = 1r(r) + 1r(s); 

1r(rs) = rs + I= (r + I)(s + I) = 1r(r) 1r(s). 
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The kernel of 'TT is the set of elements r E R such that 'TT(r) = 0 R + I 
(the zero element in R/ I). However, 'TT(r) = 0 R + I if and only if r + I= 
0 R + I, which occurs if and only if r = 0 R (mod I), that is, if and only if 
r E /. Therefore, I is the kernel of 'TT. 

The natural homomorphism 'TT in Theorem 6.12 is a special case of a more general 
situation. If fR ---? S is a surjective homomorphism of rings, we say that S is a 
homomorphic image of R. Iff is actually an isomorphism (so that Sis an isomorphic 
image of R), then we know that R and Shave identical structure. Whenever one 
of them has a particular algebraic property, the other one has it too. Iff is not an 
isomorphism, then properties of one ring may not hold in the other. However, the 
properties of S and the homomorphism f often give us some useful information 
about R. An analogy with sculpture and photography may be helpful: If fR ---? S 
is an isomorphism, then S is an exact, three-dimensional replica of R. Iff is only a 
surjective homomorphism, then S is a two-dimensional photographic image of R in 
which some features of R are accurately reflected but others are distorted or missing. 
The next theorem tells us precisely how R, S, and the kernel off are related in these 
circumstances. 

:« "~~ .;:;::, ' \ t' ,, ' 

theofefl16Dl3 · 
Let f:R---? S be a surjective homomorphism of rings with kernel K. Then the 
quotient ring R/K is isomorphic to S. 

The theorem states that every homomorphic image of a ring R is isomorphic to a 
quotient ring R/ K for some ideal K. Thus if you know all the quotient rings of R, then 
you know all the possible homomorphic images of R. The ideal K measures how much 
information is lost in passing from the ring R to the homomorphic image R/ K. When 
K = (OR), then/is an isomorphism by Theorem 6.11, and no information is lost. But 
when K is large, quite a bit may be lost. 

Proof of Theorem 6.13"' We shall define a function 'P from R/K to sand then 
show that it is an isomorphism. To define cp, we must associate with 
each coset r + K of R/K an element of S. A natural choice for such an 
element would be f(r) E S; in other words, we would like to define 
cp:R/K---? S by the rule cp(r + K.) = f(r). The only possible problem is that 
a coset can be labeled by many different elements of R. So we must show 
that the value of 'P depends only on the coset and not on the particular 
representative r chosen to name it. If r + K = t + K, then r = t (mod 
K) by Theorem 6.6, which means that r- t EKby the definition of 
congruence. Consequently, since/is a homomorphism,f(r)- f(t) = 

f(r- t) = Os. Therefore, r + K = t + Kimplies thatf(r) = f(t). It 
follows that the map cp:R/K---? S given by the rule cp(r + K) = f(r) is a 
well-defined function, independent of how the coset is written. 
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If s e:.S, then s = f(r) for some r ER because/is surjective. Thus 
s = f(r) = cp(r + K), and 'Pis surjective. To show that 'Pis injective, we 
assume that cp(r + K) = cp( c + K) and show that r + K = c + K, as follows: 

cp(r + K) = cp(c + K) 

f(r) =/(c) [Definition of cp] 

f(r) - f(c) = Os 

f(r- c)= 08 . [f is a homomorphism.] 

Thus, r c e:.K and hence, r = c (mod K). So r + K = c + Kby 
Theorem 6.6. Therefore, 'Pis injective. 

Finally, 'P is a homomorphism because f is 

and 

cp[(c + K)(d + K)] = cp(cd + K) = f(cd) = f(c)f(d) 

= cp(c + K)cp(d + K) 

cp[(c + K) + (d + K)] = cp[(c + d) + K] = /(c + d) =/(c) + f(d) 

= cp(c + K) + cp(d + K). 

Therefore, cp:RIK---+ Sis an isomorphism. lei: 

The First Isomorphism Theorem is a useful tool for determining the structure of 
quotient rings, as illustrated in the following examples. 

EXAMPLE 7 

In the ring Z[x], the principal ideal (x) consists of all multiples of x, that is, 
all polynomials with constant term 0. What does the quotient ring Z[x]l(x) 
look like? We can answer the question by using the function 8:Z[x]---+ Z, 
which maps each polynomial to its constant term. The function 8 is certainly 
surjective because each k E Z is the image of the polynomial x + kin Z[x]. 
Furthermore, 8 is a homomorphism of rings (Exercise 1). The kernd of 8 
consists of all those polynomials that are mapped to 0, that is, all polynomials 
with constant term 0. Thus the kernel of 8 is the ideal (x). By Theorem 6.13 the 
quotient ring Z[x]l(x) is isomorphic to Z. 

EXAMPLE 8 

Let Tbe the ring of functions from IR to IR and I the ideal of all functions 
g such that g(2) = 0. In Example 13 of Section 6.1 we saw that T I I con
sists of the co sets j,. + I, one for each real number r, where j,.: IR ---+ IR is the 
constant function given by fr(x) = r for every x. This suggests the possibility 
that the quotient ring T I I might be isomorphic to the field R We shall use 
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Theorem 6.13 to show that this is indeed the case by constructing a surjective 
homomorphism from Tto lR whose kernel is the ideal I. Let cp:T-+ lR be the 
function defined by cp(f) = /(2). Then cp is surjective because for every real 
number r, r = j,.(2) = cp(j,.). Furthermore, cp is a homomorphism of rings: 

cp(f +h) = (f + h)(2) = /(2) + h(2) = cp(f) + cp(h) 

cp(fh) = (fh)(2) = f(2)h(2) = cp(f)cp(h). 

By definition, the kernel of cp is the set 

{gETicp(g) = 0} = {gETig(2) = 0}. 

Thus the kernel is precisely the ideal I. By Theorem 6.13, T /I is isomorphic to !R. 

EXAMPLE 9 

What do the homomorphic images of the ring 7/._ look like? To answer this 
question, suppose thatf:7!._-+ Sis a surjective homomorphism. If fis actually 
an isomorphism, then S looks exactly like 71._, of course (in terms of algebraic 
structure). If fis surjective, but not an isomorphism (that is, not injective), then 
the kernel K off is a nonzero ideal in 7/._ by Theorem 6.11. Since K is an ideal 
in 71._, Kmust be a principal ideal, say K = (n) for some n =f. 0, by Exercise 40 
in Section 6.1. By Theorem 6.13, Sis isomorphic to 71._/K. = 71._/(n) = 7/._n- Thus 
every homomorphic image of 7/._ is isomorphic either to 7/._ or to 7/._n for some n. 

Exercises 

A. 1. Show that the map B:IR[x]-+ lR that sends each polynomialf(x) to its constant 
term is a surjective homomorphism. 

2. Show that every homomorphic image of a field F is isomorphic either to F 
itself or to the zero ring. [Hint: See Exercise 10 in Section 6J and Exercise 7 
below.] 

3. If Fis a field, R a nonzero ring, andfF-+ R a surjective homomorphism, 
prove thatfis an isomorphism. 

4. Let [a]n denote the congruence class of the integer a modulo n. 

(a) Show that the mapf7!._ 12 -+7/._4 that sends [a] 12 to [a]4 is a well-defined, 
surjective homomorphism. 

(b) Find the kernel off 

5. Let I be an ideal in an integral domain R. Is it true that R/ I is also an integral 
domain? 

6. The function cp:IR[x]-+ lR given by cp(f(x)) = f(2) is a homomorphism of 
rings by Exercise 24 of Section 4.4 (with a = 2). Find the kernel of cp. [Hint: 
Theorem 4.16.] 
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7. If R is a ring, show that R/(0~ = R. 

8. Let Rand S be rings. Show that Tr:R X S ~ R given by Tr(r, s) = r is a 
surjective homomorphism whose kernel is isomorphic to S. 

9. R = { (~ ~) I a, b, c E 7L} is a ring with identity by Example 19 

in Section 3 .1. 

(a) Show that the mapf:R ~ 7L given by 1(~ ~) = a is a surjective 
homomorphism. 

(b) What is the kernel off? 

10. (a) Letf:R ~ S be a surjective homomorphism of rings and let !be an ideal 
in R. Prove thatf(!) is an ideal inS, where/(!) = {s E SIs= f(a) for 
some a El}. 

(b) Show by example that part (a) may be false if fis not surjective. 

11. ?L[Yl] is a ring by Exercise 13 of Section 3.1. Letf:?L[Yl] ~ ?L[Yl] be the 
function defined by f(a + bYl) =a- bYl. 

(a) Show thatfis a surjective homomorphism of rings. 

(b) Use Theorem 6.11 to show thatfis also injective and hence is an 
isomorphism. [You may assume that V2 is irrational.] 

12. Let I be an ideal in a noncommutative ring R such that ab - ba E I for all 
a, b E R. Prove that R/ I is commutative. 

13. Let I be an ideal in a ring R. Prove that every element in R/ I has a square root 
if and only if for every a E R, there exists bE R such that a - b2 E I. 

14. Let I be an ideal in a ring R. Prove that every element in R/ I is a solution of 
x2 = x if and only if for every a E R, a2 

- a E /. 

15. Let I be an ideal in a commutative ring R. Prove that R/ I has an identity if 
and only if there exists e E R such that ea - a E I for every a E R. 

16. Let I -=F R be an ideal in a commutative ring R with identity. Prove that R/ I is 
an integral domain if and only if whenever abE I, either a E I or bE I. 

17. Suppose I and J are ideals in a ring R and let f :R ~ R/ I X R/ J be the 
function defined by f(a) =(a+ I, a+ 1). 

(a) Prove thatfis a homomorphism of rings. 

(b) Is/surjective? [Hint: Consider the case when R = ?L, I= (2), J = (4).] 

(c) What is the kernel off? 

18. Let R be a commutative ring with identity with the property that every ideal 
in R is principal.· Prove that every homomorphic image of R has the same 
property. 

19. Let I and K be ideals in a ring R, with K ~ I. Prove that I j K = {a + K I a E I} is 
an ideal in the quotient ring R/K. 



6.2 Quotient Rings and Homomorphisms 161 

20. Letj:R ~ S be a homomorphism of rings with kernel K. Let !be an ideal 
in R such that I<;;;; K. Show that ]:RII ~ S given by ](r + I) = f(r) is a well
defined homomorphism. 

21. Use the First Isomorphism Theorem to show that 7L20I(5) = 7L 5. 

22. Letj:R ~ S be a homomorphism of rings. If J is an ideal inS and I= 
{ r E R I f(r) E J], prove that I is an ideal in R that contains the kernel off 

23. (a) Let R be a ring with identity. Show that the map f:lL ~ R given by 
f(k) = k1Ris a homomorphism. 

(b) Show that the kernel of jis the ideal (n), where n is the characteristic of 
R. [Hint: "Characteristic" is defined immediately before Exercise 41 of 
Section 3.2. Also see Exercise 40 in Section 6.1.] 

24. Find at least three idempotents in the quotient ring Q[x]l(x4 + x2). 

[See Exercise 3 in Section 3.2.] 

25. Let R be a commutative ring and J the ideal of all nilpotent elements of R 
(as in Exercise 30 of Section 6.1). Prove that the quotient ring Rl J has no 
nonzero nilpotent elements. 

26. Let Sand I be as in Exercise 41 of Section 6.1. Prove that S I I= 7L2• 

27. Let T and I be as in Exercise 42 of Section 6.1. Prove that T I I= 7LP' 

28. Let T and I be as in Exercise 44 of Section 6.1. Prove that T I I= R 

29. Let S and I be as in Exercise 45 of Section 6 .I. Prove that S I I= IR X IR. 

C. 30. (The Second Isomorphism Theorem) Let I and J be ideals in a ring R. Then 
In J is an ideal in I, and J is an ideal in I+ J by Exercises 19 and 20 of 

Section 6.1. Prove that 
1 
~ 

1 
= 1 : 

1
. [Hint: Show thatf:I ~(I+ J)IJ given 

by f(a) = a + J is a surjective homomorphism with kernel In J.] 

31. (The Third Isomorphism Theorem) Let I and K be ideals in a ring R such that 
K<;;;; I. Then IlK is an ideal in RIKby Exercise 19. Prove that (RIK)I(IIK) = 
Rl I. [Hint: Show that the map j:RIK ~ Rl I given by f(r + K) = r + I is a well
defined surjective homomorphism with kernel IlK] 

32. (a) Let Kbe an ideal in a ring R. Prove that every ideal in the quotient 
ring RIK is of the form IlK for some ideal I in R. [Hint: Exercises 19 
and 22.] 

(b) If j:R ~Sis a surjective homomorphism of rings with kernel K, prove 
that there is a bijective function from the set of all ideals of S to the set of 
all ideals of R that contain K. [Hint: Part (a) and Exercise 10.] 

EXCURSION: The Chinese Remainder Theorem for Rings 
(Section 14.3) may be covered at this point if desired. 
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Definition 

The Structure of R/1 When lis Prime or Maximal* 

Quotient rings were developed as a natural genenilization of the rings 7LP and F[ x]/ (p(x)). 
Whenp is prime and p(x) irreducible, then 7LP and F[x]/(p(x)) are fields. In this section 
we explore the analogue of this situation for quotient rings of commutative rings. We. 
shall determine the conditions necessary for a quotient ring to be either an integral 
domain or a field. 

Primes in 7L and irreducibles in F[x] play essentially the same role in the structure 
of the congruence class rings. Our first task in arbitrary commutative rings is to find 
some reasonable way of describing this role in terms of ideals. According to Theorem 1.5, 
a nonzero integer p (other than ± 1) is prime if and only if p has this property: 
Whenever pI be, then pI b or pI c. To say that pI a means that a is a multiple of p, that 
is, a is an element of the principal ideal (p) of all multiples of p. Thus this property of 
primes can be rephrased in terms of ideals: 

If p =F 0, ± 1, then p is prime if and only if 
whenever beE (p ), then bE (p) or c E (p ). 

The condition p =F ± 1 guarantees that 1 is not a multiple of p and, hence, that the ideal 
(p) is not all of ll. Using this situation as a model, we have this 

An id~aiP ina cbmmutativeringRJssaidto beprimeif,P =& Rc:d1dvvhenever •. 
bcEP,thenbEPorceP,. · , · · · · · 

EXAMPLE 1 

As shown above, the principal ideal (p) is prime in 7L whenever p is a prime 
integer. On the other hand, the ideal P = (6)is not prime in 7L because 
2 · 3EPbut2(;tPand3(;tP. 

EXAMPLE 2 

The zero ideal in any integral domain R is prime because ab =OR implies 
a= OR orb= OR. 

EXAMPLE 3 

The implication (1) ==} (2) of Theorem 4.12 shows that ifF is a field and p(x) is 
irreducible in F[x], then the principal ideal (p(x)) is prime in F[x]. 

*This section is not used in the sequel and may be omitted if desired. 
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EXAMPLE 4 

Let !be the ideal of polynomials with even constant terms in Z[x]. Then I is not 
principal (Example 8 of Section 6.1) and clearly I =I= Z[x]. Letf(x) = a11X' + · · · + a0 

and g(x) = bmxm + · · · + b0 be polynomials in Z[xJ such thatf(x)g(x) El. Then the 
constant term of f(x)g(x), namely a0b0, must be even. Since the product of two odd 
integers is odd, we conclude that either a0 is even (that is,j(x) EI) or b0 is even (that 
is, g(x) EI). Therefore, lis a prime ideal. 

The ideal I in Example 4 is prime, and the quotient ring Z[x]/ I is a field (see 
Example 3 of Section 6.2). Similarly, Z/(p) = ZP is a field whenp is prime. However, 
the next example shows that R/ P may not always be a field when Pis prime. 

EXAMPLE 5 

The principal ideal (x) in the ring Z[x] consists of polynomials that are mul
tiples of x, that is, polynomials with zero constant terms. Hence, (x) =I= Z[x]. If 
f(x) = a11X

11 + · · · + a0 and g(x) = bmxm + · · · + b0 andf(x)g(x) El, then the 
constant term of f(x)g(x), namely a0b0, must be 0. This can happen only if 
a0 = 0 or b0 = 0, that is, only if j(x) E (x) or g(x) E (x). Therefore, (x) is a prime 
ideal. However, Example 7 of Section 6.2 shows that the quotient ring Z[x]/(x) 
is isomorphic to Z. Therefore, Z[x]/(x) is an integral domain but not a field. 

In light of Example 5, the next theorem is the best we can do with prime ideals. 

Let P be an ideal in a commutative ring R with identity. Then Pis a prime ideal 
if and only if the quotient ring R/P is an integral domain. 

Proof~> If Pis any ideal in R, then by Theorem 6.6, a+ P =OR+ Pin R/ P if 
and only if a= OR (mod P). Furthermore, a= OR (mod P) if and only if 
a E P. So we have this useful fact: 

(*) a + P = 0 R + P in R/ P if and only if aEP. 

Suppose Pis prime. By Theorem 6.9, R/P is a commutative ring 
with identity. In order to prove that R/ Pis an integral domain, we must 
show that its identity is not the zero element and that it has no zero 
divisors. Since Pis prime, P =I= R. Consequently, 1 R c=f. P because any ideal 
containing 1 R must be the whole ring. However, 1 R c=f. P implies that 
lR + P =I= OR+ PinR/Pby(*). NowweshowthatR/Phasnozero 
divisors. If (b + P)(e + P) = OR + P, then be+ P = OR + P and beEP 
by(*). Hence b EP or eEP. Thus b + P =OR+ P or c + P =OR+ P, so 
that R/ P has no zero divisors. Therefore R/ Pis an integral domain. 
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Definition 

Now assume that R/ Pis an integral domain. Then by definition 
1 R + P =I= 0 R + P and hence 1 R fl. P by ( *). Therefore P =I= R. To complete 
the proof that P is prime we assume that be E P and show that b E P or 
c E P. Now if beEP, then in R/ P we'have (b + P)(c + P) =be+ P = 

OR+ Pby(*). Thus b + P =OR+ Pore+ P =OR+ PbecauseR/Phas 
no zero divisors. Hence b E P or c E P by ( *). Therefore P is prime. 

Since the quotient ring modulo a prime ideal is not necessarily a field, it is natural 
to ask what conditions an ideal must satisfy in order for the quotient ring to be a field. 

EXAMPLE 6 

Consider the ideal (3) in 7L. We know that 7L/(3) = 7L3 is a field. Now consider 
the ideal (3). Suppose J is an ideal such that (3) ~ J ~ 7L. If J =I= (3), then there 
exists a E J with a fl. (3). In particular, 3 ,{' a, so that 3 and a are relatively prime. 
Hence, there are integers u and v such that 3u + av = 1. Since 3 and a are in 
the ideal J, it follows that 1 E J. Therefore J = 7L by Exercise 9 of Section 6.1, 
and so there are no ideals strictly between ( 3) and 7L. 

EXAMPLE 7 

The quotient ring 7L[x]/(x) is not a field (Example 5). Furthermore, the ideal I 
of polynomials with even constant terms lies strictly between (x) and 7L[x], that 
is, (x) ~ I~ 7L[x]. 

Here is a formal definition of the property suggested by these examples: 

An ideal M ina rlrigRis saidt'o be 11laximal. if M =I= Rand wheneverJis::m .. 
ideal such that M~J ~R,.then M = J or J = R: · · · · · 

Example 6 shows that the ideal (3) is maximal in 7L and Example 7 shows that the 
ideal (x) is not maximal in 7L[x]. Note that a ring may have more than one maximal 
ideal. The ideal { 0, 2, 4} is maximal in 7L6, and so is the ideal { 0, 3}. There are infinitely 
many maximal ideals in 7L (Exercise 3). Maximal ideals provide the following answer 
to the question posed above: 

Let M be an ideal in a commutative ring R with identity. Then M is a maximal 
ideal if and only if the quotient ring R/M is a field. 

Proof~~> We shall use the same fact that was used in the proof of Theorem 6.14: 

(*) a + M = 0 R + Min R/ M if and only if a EM. 
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Suppose R/ M is a field. Then by definition 1 R + M =F 0 R + M and 
hence 1 R r:J. M by ( *). Therefore M =F R. To show that M is maximal, we 
assume that J is an ideal with M ~ J ~ R and show that M = J or 
J = R. If M = J, there is nothing to prove. If M =F J, then there exists 
a E J with a r:J. M. Hence a + M =F 0 R + Min the field R/ M, and a + M 
has an inverse b + M such that (a+ M)(b + M) = ab + M = lR + M. 
Then ab = lR (mod Jvf) by Theorem 6.6, so that ab- lR = m for some 
mE M. Thus lR = ab - m. Since a and m are in the ideal J, it follows 
that 1 R E J and J = R. Therefore M is a maximal ideal. 

Now assume M is a maximal ideal in R. By Theorem 6.9, R/M is a com
mutative ring with identity. In order to prove that R/ M is a field, we first 
show that its identity is not the zero element. Since M is maximal, M =F R. 
Consequently, 1 R fj:. M because any ideal containing 1 R must be the whole 
ring. However, 1Rr:J.Mimplies that IR + M *OR+ Min R/Mby(*). 

Next we show that every nonzero element of R/Mhas a multiplicative 
inverse. If a + M is a nonzero element of R/M, then a fj:. M (otherwise a + M 
would be the zero coset). The set 

J = {m + ra IrE Rand mE M} 

is an ideal in R that contains M by Exercise 34 of Section 6.1. Furthermore, 
a = 0 R + lR a is in J, so that M =F J. By maximality we must have J = R. 
Hence 1 R E J, which implies that 1 R = m + ca for some m EM and c E R. 
Note that ca- lR = -mE M, so that ca = 1R (mod M), and hence 
ca + M = 1R + Mby Theorem 6.6. Consequently, the coset 
c + M is the inverse of a + Min R/M: 

(c + M)(a + M) = ca + M = 1R + M. 

So every nonzero element of R/M is a unit (Axiom 12 is satisfied). 
Therefore, R/M is a field. llilV 

.. ·.·· ·Boro·r,k·ry··· 6:.:1··s·········. · ··. 

In a commutative ring R with identity, every maximal ideal is prime. 

Proof~~> If M is a maximal ideal, then R/M is a field by Theorem 6. 15. Hence, 
R/Mis an integral domain by Theorem 3.8. Therefore, Mis prime by 
Theorem 6.14. • 

Theorem 6.15 can be used to show that several familiar ideals are maximal. 

EXAMPLE 8 

The ideal I of polynomials with even constant terms in Z[x] is maximal because 
Z[x]/Iis a field (see Example 3 of Section 6.2). 
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EXAMPLE 9 

Let Tbe the ring of functions from IR to IR and let /be the ideal of all functions 
g such that g(2) = 0. In Example 8 of Section 6.2 we saw that T/ I is a field 
isomorphic to IR. Therefore, I is a maximal ideal in T. 

Exercises 

A. 1. If n is a composite integer, prove that (n) is not a prime ideal in 71... 

2. If R is a finite commutative ring with identity, prove that every prime ideal in 
R is maximal. [Hint: Theorem 3.9.] 

3. (a) Prove that a nonzero integer pis prime if and only if the ideal (p) is 
maximal in 71... 

(b) Let Fbe a field and p(x) E F[xl. Prove that p(x) is irreducible if and only if 
the ideal (p(x)) is maximal in F[x]. 

4. Let R be a commutative ring with identity. Prove that R is an integral domain 
if and only if (OR) is a prime ideal. 

5. List all maximal ideals in 71..6. Do the same in 71.. 12 . 

6. (a) Show that there is exactly one maximal ideal in 71..8. Do the same for 71..9. 

[Hint: Exercise 6 in Section 6.1.] 

(b) Show that 71.. 10 and 71.. 15 have more than one maximal ideal. 

7. Let R be a commutative ring with identity. Prove that R is a field if and only if 
(0 R) is a maximal ideal. 

8. Give an example to show that the intersection of two prime ideals need not be 
prime. [Hint: Consider (2) and (3) in 71...] 

9. Let R be an integral domain in which every ideal is principal. If (p) is a 
nonzero prime ideal in R, prove that p has this property: Whenever p factors, 
p = cd, then c or dis a unit in R. 

B. 10. Let p be a fixed prime and let J be the set of polynomials in 71..[ x] whose 
constant terms are divisible by p. Prove that J is a maximal ideal in 7L[x]. 

11. Show that the principal ideal (x- 1) in 7L[x] is prime but not maximal. 

12. If p is a prime integer, prove that M is a maximal ideal in 71.. X 71.., where M = 

{(pa, b) I a, b E7L}. 

13. If 1 is an ideal in a ring R, then I X I is an ideal in R X R by Exercise 8 of 
Section 6.1. Prove that (R X R)/(I X I) is isomorphic to R/I X R/ I. 
[Hint: Showthatthefunctionf:R X R~R/IX R/Igiven byf((a, b))= 
(a+ I, b +I) is a surjective homomorphism of rings with kernel I X I.] 

14. If Pis a prime ideal in a commutative ring R, is the ideal P X P a prime ideal 
in R X R? [Hint: Exercise 13.] 
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15. (a) Let R be the set of integers equipped with the usual addition and 
multiplication given by ab = 0 for all a, bE R. Show that R is a 
commutative ring. 

(b) Show that M = {0, ±2, ±4, ±6, ... }is a maximal ideal in R that is not 
prime. Explain why this result does not contradict Corollary 6.16. 

16. Show that M = {0, ±4, ±8, ... } is a maximal ideal in the ring E of even 
integers but E/ M is not a field. Explain why this result does not contradict 
Theorem 6.15. 

17. Letf:R ~ S be a surjective homomorphism of commutative rings. If J is a 
prime ideal in S, and I = { r E R I f(r) E J}, prove that I is a prime ideal in R. 

18. Let P be an ideal in a commutative ring R with P =F R. Prove that P is prime 
if and only if it has this property: Whenever A and B are ideals in R such that 
AB ~ P, then A~ P orB~ P. [AB is defined in Exercise 36 of Section 6.1. This 
property is used as a definition of prime ideal in noncommutative rings.] 

19. Assume that when R is a nonzero ring with identity, then every ideal of 
R except R itself is contained in a maximal ideal (the proof of this fact is 
beyond the scope of this book). Prove that a commutative ring R with identity 
has a unique maximal ideal if and only if the set of nonunits in R is an ideal. 
Such a ring is called a local ring. (See Exercise 6 of Section 6.1 for examples of 
local rings.) 

20. Find an ideal in 7L X 7L that is prime but not maximal. 

C. 21. (a) Prove that R = {a + bi I a, bE 7L} is a subring of C and that 

M = {a + bi 131 a and 31 b} 
is a maximal ideal in R. [Hint: If r + si fl. M, then 3 A' r or 3 A's. Show 
that 3 does not divide r2 + s2 = (r + si)(r - si). Then show that any ideal 
containing r + si and M also contains 1.] 

(b) Show that R/M is a field with nine elements. 

22. Let R be as in Exercise 21. Show that J is not a maximal ideal in R, where J = 
{a + bi 151 a and 51 b}. [Hint: Consider the principal ideal K = (2 + i) in R.] 

23. If Rand J are as in Exercise 22, show that R/J = 7L5 X 7L 5. 

24. If Rand K are as in Exercise 22, show that R/K = 7L5• 

25. Prove that T = {a + bY'il a, bE 7L} is a subring of IR and M = 
{a+ bV'il5l a and 51 b} is a maximal ideal in T. 

AlTERNATIVE ROUTES: At this point there are three possibilities. 
You may explore a new algebraic concept, groups (Chapter7)-if you 
have not already done so-or continue further with either integral 
domains (Chapter 10) or fields (Chapter 11). 





Groups 

The algebraic systems with which you are familiar, such as 7L, 1Ln, the rational 
numbers, the real numbers, and other rings all have two operations: addition and 
multiplication. In this chapter, we introduce a different kind of algebraic structure
called a group-that uses a single operation. Groups arise naturally in the study of 
symmetry, geometric transformations, algebraic coding theory, and in the analysis 
of the solutions of polynomial equations. 

AlTERNATE ROUTE: If you have not read Chapter 3 (Rings), you 
should replace Section 7.1 with Section 7.l.A, which begins on page 183. 

Definition and Examples of Groups 

A group is an algebraic system with one operation. Some groups arise from rings by 
ignoring one of their operations and concentrating on the other. As we shall see, for 
example, the integers form a group under addition (but not multiplication) and the 
nonzero rational numbers form a group under multiplication (but not addition). But 
many groups do not arise from a system with two operations. The most important of 
these latter groups (the ones that were the historical starting point of group theory) 
developed from the study of permutations.* Consequently, we begin with a consider
ation of permutations. 

Informally, a permutation of a set Tis just an ordering of its elements. For example, 
there are six possible permutations of T = { 1, 2, 3}: 

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1. 

*In the early nineteenth century, permutations played a key role in the attempt to find formulas for 
solving higher-degree polynomial equations similar to the quadratic formula. For more information, 
see Chapter 12. 

169 
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Each such ordering determines a bijective function from T to T: map 1 to the first 
element of the ordering, 2 to the second, and 3 to the third.* For instance, 2 3 1 
determines the functionfT--+ Twhose rule isf(l) = 2;!(2) = 3;f(3) = 1. Conversely, 
every bijective function from T to T defines an ordering of the elements, namely,f(l), 
f(2), f(3). Consequently, we define a permutation of a set T to be a bijective function 
from T to T. This definition preserves the informal idea of ordering and has the advan
tage of being applicable to infinite sets. For now, however, we shall concentrate on finite 
sets and develop a convenient notation for dealing with their permutations. 

EXAMPLE 1 

LetT= {1, 2, 3}. The permutation/whose rule isf(l) = 2,f(2) = 3,f(3) = 1 

may be represented by the array G ~ ~), in which the image under f of an 

element in the first row is listed immediately below it in the second row. Using 
this notation, the six permutations of Tare 

G 
G 

2 

2 

2 

3 

2 

3 

2 

1 

2 

1 

2 

2 

Since the composition of two bijective functions is itself bijective, the composi
tion of any two of these permutations is one of the six permutations on the list 

(1 2 3) (1 2 3) . a.bove .. For instance, iff= 
3 2 1 

and g = 
2 1 3 

, thenfo g IS the func-
tion giVen by 

(f 0 g)(l) = f(g(l)) = f(2) = 2 

(f 0 g)(2) = f(g(2)) = /(1) = 3 

(f 0 g)(3) = f(g(3)) = f(3) = 1. 

Thus Jog= G ~ ~).It is usually easier to make computations like this 

by visually tracing an element's progress as we first apply g and then!; for 
example, 

~------,, 

( l 2 3 )'\o ( 1 r 3) = ( 1 2 31 ) 
321\213 23 
', ""-----',_"'--

*Bijective functions are discussed in Appendix B. 
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If we denote the set of permutations of Thy S3, then composition of functions 
( o ) is an operation on the set S3 with this property: 

Since composition of functions is associative,* we see that 

(fog)oh =jo(goh) for all/, g, hE S3. 

Verify that the identity permutation I = C ~ D has this property: 

Joj=j and foJ=j for every jE S3. 

Every bijection has an inverse function;* consequently, 

if jE S3, then there exists g E S3 such that 

Jog=! and goj= J. 

For instance, iff= G ~ ~),then g = G ~ n because 

G 
and 

2 

1 

2 

3 

DOG 

DOG 

2 

3 

2 

1 

~) = c 

D=G 

2 

2 

2 

2 
3) 3 . 

You should determine the inverses of the other permutations in S3 (Exercise 1 ). 
Finally, note that fog may not be equal to go f; for instance, 

G 2 ~) 0 G 
2 

D=G 
2 

D 2 1 3 
but 

G 

2 
DOG 

2 ~) = G 
2 3) 

1 2 1 2 . 

*See Appendix B. 
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Definition 

By abstracting the key properties of S3 under the operation a, we obtain this 

A group is anooempty,iet c'equi'ppedvvitha bioary~peration ~.that$atis~ • 
,fles the followingaxiom~t: .· .•. · .. ·. · ..•.. , •·· · · '.· · · 

1. Closure:lfaE G.~nd bE:G,th,en'a *btiG: 

2. Associativityi~ 1 (b ~c)= (a* b) * c for ail a, b, c E G. 

3 .. There t's an element e E(j (cCJ.IIe8 the identityelen1ent).such that 
a *e ='a= e*aforeveryaEG; .. ,.. , . , · .· · · ·· 

. 4. For each ~EG,there isanelemertfdEG (called the inverse qf.a) 
such that a * d = e and .d *a.==: e. · · 

A group is said to beabeliant'ifitalso,satisfle~this:axiom: 
5, Commutativity: a *b = b *a for alia, bE G. 

A group G is said to be finite (or of finite order) if it has a finite number of elements. 
In this case, the number of elements in G is called the order of G and is denoted I Gl. A 
group with infinitely many elements is said to have infinite order. 

EXAMPLE2 

The discussion preceding the definition shows that S3 is a nonabelian group of 
order 6, with the operation * being composition of functions. 

EXAMPLE 3 

The permutation group S3 is just a special case of a more general situation. Let 
n be a fixed positive integer and let T be the set { 1, 2, 3, ... , n}. Let Sn be the set 
of all permutations ofT (that is, all bijections T -t T). We shall use the same 

notation for such functions as we did in S3. In S6, for instance, (
1 2 3 4 5 6

) 
. 462351 

denotes the permutation that takes 1 to 4, 2 to 6, 3 to 2, 4 to 3, 5 to 5, and 6 to 
1. Since the composite of two bijective functions is bijective,§ Sn is closed under 
the operation of composition. For example, in S6 

( 
1 2 

3 5 
2 3 4 5 63) 
4 5 2 1 

-T 

(Remember that in composition of functions, we apply the right-hand function 
first and then the left-hand one. In this case, for instance, 4 -t 3 -t 2, as shown 

tBinary operations are defined in Appendix B. 

tin honor of the Norwegian mathematician N.H. Abel (1802-1829). 

§See Appendix B. 
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by the arrows.) We claim that S11 is a group under this operation. Composition 
of functions is known to be associative, and every bijection has an inverse func
tion under composition. t It is easy to verify that the identity permutation 

G ~ ~ . . . :) is the identity element of sll. sn ·is called the symmetric 

group on n symbols. The order of S11 is n! = n(n - 1)(n - 2) .. , 2.1 (Exercise 20). 

EXAMPLE 4 

The preceding example is easily generalized. Let T be any non empty set, possi
bly infinite. Let A(T) be the set of all permutations ofT (all bijective functions 
T ~ T). The arguments given above for S11 carry over to A(T) and show that 
A(T) is a group under the operation of composition of functions (Exercise 12). 

EXAMPLE 5 

Think of the plane as a sheet of thin, rigid plastic. Suppose you cut out a square, 
pick it up, and move it around,i then replace it so that it fits exactly in the cut-out 
space. Eight ways of doing this are shown below (where the square is centered at 
the origin and its corners numbered for easy reference). We claim that any mo
tion of the square that ends with the square fitting exactly in the cut-out space 
has the same result as one of these eight motions (Exercise 14). 

All Rotations Are Taken Counterclockwise Around the Center: 

r0 = rotation of oo 
4 

2 

r1 = rotation of 90° 

4 

2 

tsee Appendix B for details. 

4 

3 

3 4 

3 

2 

tFiip it, rotate it, turn it over, spin it, do whatever you want, as long as you don't bend, break, or distort it. 
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r2 =rotation of 180° 

4 2 

3 3 

2 4 

r3 = rotation of 270° 

4 

3 2 4 

2 3 

d = reflection in the x-mds 

4 2 

d 

~ 

3 3 

2 4 

t = reflection in they-axis 

4 4 

3 3 

2 2 
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h = reflection in line y = x 

4 3 

h 

~ 

3 2 4 

2 

v = reflection in line y = - x 

4 

v 

3 4 2 

2 3 

If you perform one of these motions and follow it by another, the result will be 
one of the eight listed above; for example, 

4 3 4 

3 2 4 3 

2 2 

If you think of a motion as a function from the square to itself, then the idea of follow
ing one motion by another is just composition of functions. In the illustration above 
(h followed by r1 is t), we can write r1 o h = t (remember r1 o h means first apply h, then 
apply r1). Verify that the set 
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equipped with the composition operation has this table: 

0 ro ri r2 r3 d h v 
ro ro ri r2 r3 d h v 

ri rl r2 r3 ro h v d 

r2 r2 r3 ro ri v d h 

r3 r3 ro ri r2 v d h 

d d v t h ro r3 r2 ri 
h h d v t ri ro r3 r2 

h d v r2 ri ro r3 
v v h d r3 r2 ri ro 

Clearly D 4 is closed under o, and composition of functions is lmown to be associative. 
The table shows that r0 is the identity element and that every element of D4 has an 
inverse. For instance, r3 o r1 = r0 = r1 o r3 .Therefore, D4 is a group. It is not abelian 
because, for example, hod =F do h. D4 is called the dihedral group of degree 4 or 
the group of symmetries of the square. 

EXAMPLE 6 

The group of symmetries of the square is just one of many symmetry groups. 
An analogous procedure can be carried out with any regular polygon of n sides. 
The resulting group Dn is called the dihedral group of degree 11. The group D3, for 
example, consists of the six symmetries of an equilateral triangle (counterclockwise 
rotations about the center of 0°, 120°, and 240°; and the three reflections shown 
here), with composition of functions as the operation: 

3 3 3 2 

1 

2 2 

Symmetry groups arise frequently in art, architecture, and science. 
Crystallography and crystal physics use groups of symmetries of vanous 
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three-dimensional shapes. The first accurate model of DNA (which led to the 
Nobel Prize for its creators) could not have been constructed without a recogni
tion of the symmetry of the DNA molecule. Symmetry groups have been used by 
physicists to predict the existence of certain elementary particles that were later 
found experimentally. 

Groups and Rings 

A ring R has two associative operations, and it is natural to ask if R is a group under 
either one. For addition the answer is yes: 

Every ring is an abelian group under addition. 

Proof~J> An examination of the first five axioms for a ring (in Section 3.1) shows that 
they are identical to the five axioms for an abelian group, with the operation * 
being +, the identity element e being 0 R' and the inverse of a being -a. II 

EXAMPLE 7 

By Theorem 7.1, each of the following familiar rings is an abelian group under 
addition: 

7L, 7L"' Q, IR, C; 

Matrix rings, such as M(IR) and M(7L2); 

Polynomial rings such as 7L[x], IR[x], and 7L 11[x]. 

Hereafter, when we use the word "group" without any qualification in referring 
to these or other rings, it is understood that the operation is addition. 

Multiplication, however, is a different story: 

A nonzero ring R is never a group under multiplication. 

If R has no identity, Axiom 3 fails. If R has an identity, then 0 R has no inverse and 
Axiom 4 fails. Nevertheless, certain subsets of a ring with identity may be groups 
under multiplication. 

The nonzero elements of a field Fform an abelian group under multiplication. 

Hereafter we shall denote the set of nonzero elements in a field F by F*. 

Proof of Theorem 7.2 tJ> Multiplication in F* satisfies the following ring axioms: 
6 and 11 (closure), 7 (associativity), 10 (identity), 12 (inverses), and 9 
(commutativity)-see pages 44, 48, and 49. So F* satisfies group axioms 
1-5 and, therefore, is an abelian group under multiplication. Ill 
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EXAMPLE 8 

Theorem 7.2 shows that each of the following is an abelian group under 
multiplication: 

Q* the nonzero rational numbers; IR* the nonzero real numbers; 

C* the nonzero complex numbers. 

EXAMPLE 9 

If pis prime, then 71-p is a field by Theorems 2.7 and 2.8. Therefore, 7Lp* is a 
group under multiplication by Theorem 7.2. 

EXAMPLE 10 

The positive rational numbers Q** form an infinite abelian group under multi
plication, because the product of positive numbers is positive, 1 is the identity 
element, and the inverse of a is 1/ a. Similarly, the positive reals IR** form an 
abelian group under multiplication. 

EXAMPLE 11 

The subset { 1, - 1, i, - i} of the complex numbers forms an abelian group of 
order 4 under multiplication. You can easily verify closure, and 1 is the identity 
element. Since i(- z) = 1, i and - i are inverses of each other; - 1 is its own 
inverse since (-1)(-1) = 1. Hence, Axiom 4 holds. 

EXAMPLE 12 

Neither the nonzero integers nor the positive integers form a group under mul
tiplication. Although 1 is the multiplicative identity for each system, no integers 
except for ± 1 have a multiplicative inverse, so Axiom 4 fails. For example, the 
equation 2x = 1 has no integer solution, so 2 has no inverse under multiplica
tion in the integers. 

EXAMPLE 13 

When n is composite, the nonzero elements of 7L 11 do not form a group under 
multiplication because (among other things) closure fails. In 7L6, for instance, 
2 · 3 = 0 and in 7L20, 4 · 5 = 0. Similarly if n = rs, then in 7Lm rs = 0. 

A ring R with identity always has at least one subset that is a group under 
multiplication. Recall that a unit in R is an element a that has a multiplicative inverse, 
that is, an element u such that au= lR = ua. 
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If R is a ring with identity, then the set U of all units in R is a group under 
multiplication.* 

Proof~ The product of units is a unit (Exercise 15 in Section 3.2), so U is closed lmder 
multiplication (Axiom 1 ). Multiplication in R is associative, so Axiom 2 holds. 
Since 1 R is obviously a unit, Uhas an identity element (Axiom 3). Axiom 4 
holds in Uby the definition of unit. Therefore, U is a group. lj 

EXAMPLE 14 

Denote the multiplicative group of units in 7L11 by U11 • According to Theorem 2.10, 
U,, consists of all a E 7L11 such that (a, n) = 1 (when a is considered as an ordinary 
integer). Thus the group of units in 7L8 is U8 = {1, 3, 5, 7}, and the group of units 
in 7L 15 is U15 = {1, 2, 4, 7, 8, 11, 13, 14}. Here is the operation table for U8: 

1 3 5 7 

1 1 3 5 7 

3 3 7 5 

5 5 7 3 

7 7 5 3 1 

EXAMPLE 15 

Examples 7 and 10 of Section 3.2, and Exercise 17 of Section 3.2 show that the 
group of units in M(IR) is 

GL(2, IR) = { (~ ~)/where a, b, e, dE IR and ad- be -:F 0 }, 

which is called the general linear gronp of degree 2 over JR. It is an infinite 
nonabelian group (Exercise 7). 

EXAMPLE 16 

Examples 8 and 10 of Section 3.2, and Exercise 17 of Section 3.2 show that the 
group of units in M(7L2) is 

GL(2, 7L2) = { C ~)/where a, b, e, dE 7L2 and ad- be -:F 0 }, 

the general linear group of degree 2 over 7L2 . It is a nonabelian finite group of 
order 6 (Exercise 7). 

*Theorem 7.2 is a special case ofTheorem 7.3 because the units in a field are the nonzero elements. 
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New Groups from Old 
The Cartesian product, with operations defined coordinatewise, allowed us to con
struct new rings from known ones. The same is true for groups. 

Let G (with operation*) and H (with operation<>) be groups. Define an operation" 
on G X H by 

(g, h)" (g', h') = (g * g', h <> h'). 

Then G x His a group. If G and Hare abelian, then so Is G x H. If G and H 
are finite, then so is G x Hand I G X HI= I G II HI· 

Proof,. Exercise 26. 111 

EXAMPLE 17 

Both 7L and 7L6 are groups under addition. In 7L X 7L6 we have (3, 5) "(7, 4) = 
(3 + 7, 5 + 4) = (10, 3). The identity is (0, 0), and the inverse of (7, 4) is ( -7, 2). 

EXAMPLE 18 

Consider IR* X D4, where IR* is the multiplicative group of nonzero real num
bers. The table in Example 5 shows that 

(2, r 1) "(9, v) = (2 · 9, r 1 o v) = (18, d). 

The identity element is (1, r0), and the inverse of (8, r3) is (1/8, r 1). 

Exercises 

A. 1. Find the inverse of each permutation in S3. 

2. Find the multiplicative inverse of each nonzero element in 

(b) 1Ls 

3. What is the order of each group: 

(d) S5 

4. Determine whether the set G is a group under the operation *. 

(a) G = {2, 4, 6, 8} in 7L 10 ; a* b = ab 

(b) G = 7L; a * b = a - b 

(c) G = { n E 7L I n is odd}; a * b = a + b 

(d) G= {2xlx<=4J};a*b=ab 
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5. Find the inverse of the given group element. [Hint: Example 8 in Section 3.2-
or Example 16 in Section 7.l.A-and Exercise 2.] 

(a) ( 22 0) . 77 

1 
Ill ILJ 

6. Give an example of an abelian group of order 4 in which every nonidentity 
element a satisfies a* a= e. [Hint: Consider Theorem 7.4.] 

7. (a) Show that the group GL(2, Z2) has order 6 by listing all its elements. 

(b) Show by example that the groups GL(2, IR) and GL(2, Z2) are nonabelian. 

8. Use Theorem 2.10 to list the elements of each of these groups: U4, U6, U10, 

Uzo, UJo· 

9. Write out the operation table for the group D3 described in Example 6. 

10. Show that G = { ( -~ ~)I a, bE IR, not both 0} is an abelian group under 

matrix multiplication. 

11. Consider the additive group Z2 and the multiplicative group L = { ± 1, ± i} of 
complex numbers. Write out the operation table for the group Z2 X L. 

12. Let Tbe a nonempty set and A(T) the set of all permutations ofT. Show that 
A(T) is a group under the operation of composition of functions. 

13. Give examples of nonabelian groups of orders 12, 16, 30, and 48. 
[Hint: Theorem 7.4 may be helpful.] 

B.14. Show that every rigid motion of the square (as described in the footnote at the 
beginning of Example 5) has the same result as an element of D4. [Hint: The 
position of the square after any motion is completely determined by the location 
of corner 1 and by the orientation of the square-face up or face down.] 

15. Write out the operation table for the symmetry groups of the following figures: (a)= (c)[><] 
16. Let 1, i, j, k be the following matrices with complex entries: 

1=G ~), i=(~ -~), j=(_~ ~), k=(~ D· 
(a) Prove that 

i2 = f = lt2 = -1 ij = -ji = k 

jk = -kj = i ki = -ik = j. 
(b) Show that set Q = {1, i, -1, -i, j, k, -j, -k} is a group under matrix 

multiplication by writing out its multiplication table. Q is called the 
quaternion group. 
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17. If G is a group under the stated operation, prove it; if not, give a counterexample: 

(a) G = Q; a * b = a + b + 3 

(b) G= {rEOir=FO};a*b=ab/3 

18. Let K = {r ErR I r =F 0, r =F 1}. Let G consist of these six functions from K to K: 

1 
f(x) = --

1- X 
( ) 

X- 1 
gx =-

x 
1 

h(x) =-
X 

i(x) = x j(x) = 1 - x 
X 

k(x) = -
x- 1 

Is G a group under the operation of function composition? 

19. Do the nonzero real numbers form a group under the operation given by a* b = 
I a I b, where I a I is the absolute value of a? 

20. Prove that S11 has order n!. [Hint: There are n possible images for 1; after one 
has been chosen, there are n - 1 possible images for 2; etc.] 

21. Suppose G is a group with operation *· Define a new operation# on G by 
a# b = b *a. Prove that G is a group under#. 

22. List the elements of the group D 5 (the symmetries of a regular pentagon). 
[Hint: The group has order 10.] 

23. Let SL(2, !R) be the set of all2 X 2 matrices(: ~)such that a, b, c, dE rR 

and ad - be = 1. Prove that SL(2, !R) is a group under matrix multiplication. 
It is called the special linear group. 

24. Prove that the set of nonzero real numbers is a group under the operation * 
defined by 

a* b = {
ab 

a/b 

if a> 0 

if a< 0. 

25. Prove that [R* X rR is a group under the operation* defined by (a, b)* (c, d) = 

(ac, be+ d). 

26. Prove Theorem 7 .4. 

27. If ab = ac in a group G, prove that b =c. 

28. Prove that each element of a finite group G appears exactly once in each row 
and exactly once in each column of the operation table. [Hint: Exercise 27.] 

29. Here is part of the operation table for a group G whose elements are a, b, c, d. 
Fill in the rest of the table. [Hint: Exercises 27 and 28.] 

a b c d 

a a b c d 

b b a 

c c a 

d d 
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30. A partial operation table for a group G = { e, a, b, c, d,f} is shown below. 
Complete the table. [Hint: Exercises 27 and 28.] 

e a b c d f 

e e a b c d f 

a a b e d 

b b 

c c f a 

d d 

f f 

31. Let Tbe a set with at least three elements. Show that the permutation group 
A(T) (Exercise 12) is nonabelian. 

32. Let Tbe an infinite set and let A(T) be the group of permutations ofT 
(Exercise 12). Let M = {feA(T) I f(t) =!= t for only a finite number oft E T}. 
Prove that M is a group. 

33. If a, bE IR with a=/= 0, let T,,6:1R--+ IR be the function given by T,,ix) =ax+ b. 
Prove that the set G = {Ta,b I a, bE IR with a=!= 0} forms a nonabelian group 
under composition of functions. 

34. Let H = { IJ,6 I bE IR} (notation as in Exercise 33). Prove that His an abelian 
group under composition of functions. 

C. 35. If fe S"' prove thatfk= I for some positive integer k, wheref' means 
f of of o • • · of (k times) and I is the identity permutation. 

36. Let G = {0, 1, 2, 3, 4, 5, 6, 7} and assume G is a group under an operation* 
with these properties: 

(i) a * b :=::; a + b for all a, b E G; 

(ii) a * a = 0 for all a E G. 

Write out the operation table for G. [Hint: Exercises 27 and 28 may help.] 

Definition and Examples of Groups 

NOTE: If you have read Section 7.1, omit this section and begin Section 7.2. 

A group is an algebraic system with one operation. Some groups arise from familiar 
systems, such as 7L, ?l_"' the rational numbers, and the real numbers, by ignoring one 
of their operations and concentrating on the other. As we shall see, for example, the 
integers form a group under addition (but not multiplication) and the nonzero ratio
nal numbers form a group under multiplication (but not addition). But many groups 
do not arise from a system with two operations. The most important of these latter 
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groups (the ones that were the historical starting point of group theory) developed 
from the study of permutations.* Consequently, we begin with a consideration of 
permutations. 

Informally, a permutation of a set Tis just an ordering of its elements. For example, 
there are six possible permutations of T = { 1, 2, 3}: 

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1. 

Each such ordering determines a bijective function from T to T: map 1 to the first 
element of the ordering, 2 to the second, and 3 to the third. t For instance, 2 3 1 de
terminesthefunctionf:T---+ Twhoseruleisf(l) = 2;!(2) = 3;!(3) = 1. Conversely, 
every bijective function from T to T defines an ordering of the elements, namely, 
f(l), f(2), f(3). Consequently, we define a permutation of a set T to be a bijective 
function from T to T. This definition preserves the informal idea of ordering and 
has the advantage of being applicable to infinite sets. For now, however, we shall 
concentrate on finite sets and develop a convenient notation for dealing with their 
permutations. 

EXAMPlE 1 

LetT= {1, 2, 3}. The permutation/whose rule isf(l) = 2,/(2) = 3,/(3) = 1 

may be represented by the array G ~ ~), in which the image under f of an 

element in the first row is listed immediately below it in the second row. Using 
this notation, the six permutations of Tare 

G 
G 

2 

2 

2 

3 

2 
3 

2 

1 

2 

1 

2 

2 

Since the composition of two bijective functions is itself bijective, the composi
tion of any two of these permutations is one of the six permutations on the list 

. . (1 2 3) (1 2 3) . a.bove .. For mstance, 1f f = 
3 2 1 

and g = 
2 1 3 

, thenjo g IS the func-
tion giVen by 

(f 0 g)(l) = f(g(l)) = /(2) = 2 

(f 0 g)(2) = f(g(2)) = /(1) = 3 

(f 0 g)(3) = f(g(3)) = f(3) = 1. 

*In the early nineteenth century, permutations played a key role in the attempt to find formulas for 
solving higher-degree polynomial equations similar to the quadratic formula. For more information, 
see Chapter 12. 

tsijective functions are discussed in Appendix B. 
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Th f ( 1 2 3) . 11 . 1 . us o g = 
2 3 1 

. It 1s usua y eas1er to rna <::e computatiOns like this 

by visually tracing an element's progress as we first apply g and then}; for example, 

)!-------,, 

( t 2 3 )'\o ( 1 T 3) = ( 1 2 3 ) 
321\213 231 
',, """----- ~ ''*-.. / 

~~--------------------------

If we denote the set of permutations of T by S3, then composition of functions 
( o) is an operation on the set S3 with this property: 

If jES3 and gES3, thenfo gES3. 

Since composition of functions is associative,* we see that 

for aUf, g, hE s3. 

Verify that the identity permutation I = ( ~ ~ ~) has this property: 

foj=J and jof=j for every jES3. 

Every bijection has an inverse function;* consequently, 

iff E S3, then there exists g E s3 such that 

Jog=! and goj=f. 

For instance, if f = ( ~ 2 3) (1 2 3) 
1 2 

, then g = 
2 3 1 

because 

c 

2 ~) 0 G 2 
n=c 

2 D I 3 2 

and 

G 2 
noc 

2 
D=G 

2 ~). 3 1 2 

You should determine the inverses of the other permutations in S3 (Exercise 1). 
Finally, note that/ o g may not be equal togo}; for instance, 

c 
but 

G 
*See Appendix B. 

2 

2 

2 

1 

noG 
2 

1 

2 

2 

D=G 

~) = c 
2 

3 

2 

1 

~) 
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Definition 

By abstracting the key properties of S3 under the operation o, we obtain this 

A group .is a nonempty.set G ~quippeq with ~binary operation *that 
satisfies the following axiomst: ·· · ·. 

,.,, ' ,, ,. -

i. Closure: If a eG .and bEG, th~n a *bE G .•. 
· 2; Assodat'tvit;:a *(b ;c)= (a*b) *Cf6r'~lla,.b, cEC?, 

3. There is an elemente E G (called the iderftity ~lem~nt) sucb that . 

a.* e c=a=e *afor every~ eG. · .. · .. · ·> · . · .... ·· ·.· .... · 
4: For each a E G,jh~reis an<elernE?ntdE G,(calledth.~ invers~ of a) 

such that a * d = e and d *a =e. · · · 
· Agroup f~ said to b~·abel i~n*,ifit ai$o s~ti~fles this akiom:. ···· 

5. Commuta,tlvity:a*b = b*afor all ~,beG. . . 

A group G is said to be finite (or of finite order) if it has a finite number of elements. 
In this case, the number of elements in G is called the order of G and is denoted J GJ. A 
group with infinitely many elements is said to have infinite order. 

EXAMPLE 2 

The discussion preceding the definition shows that S3 is a nonabelian group of 
order 6, with the operation * being composition of functions. 

EXAMPLE 3 

The permutation group S3 is just a special case of a more general situation. Let 
n be a fixed positive integer and let T be the set { 1, 2, 3, ... , n}. Let S11 be the set 
of all permutations of T (that is, all bijections T--+ T). We shall use the same 

. f, h f . d'd. S I S f, . (
1 2 3 4 5 6

) notatiOn or sue unctwns as we 1 m 3. n 6, or mstance, 
4 6

. 
2 3 5 1 

denotes the permutation that takes 1 to 4, 2 to 6, 3 to 2, 4 to 3, 5 to 5, and 6 to 
1. Since the composite of two bijective functions is bijective,§ S11 is closed under 
the operation of composition. For example, in S6 

( 
1 2 

3 5 

... -----.., 
', 

rJ< .. -4 5 6 )\'? ( 1 2 3 ~ 5 6) = ( 1 

2 4 1 6 \ 6 4 2 3 5 1 6 
......... .):.... ',, ... A ...... 

tsinary operations are defined in Appendix B. 
*In honor of the Norwegian mathematician N.H. Abel (1802-1829). 
§See Appendix B for details. 

2 3 4 5 63) 
4 5 2 __ -r 
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(Remember that in composition of functions, we apply the right-hand function 
first and then the left-hand one. In this case, for instance, 4 ~ 3 ~ 2, as shown 
by the arrows.) We claim that S11 is a group under this operation. Composition 
of functions is known to be associative, and every bijection has an inverse func
tion under composition.t It is easy to verify that the identity permutation 

(
1 2 3 

.. . n) is the identity element of s/1. sn is called the symmetric 
1 2 3 n 

group on n symbols. The order of S11 is nl = n(n- 1)(n- 2) ... 2.1 (Exercise 20). 

EXAMPlE 4 

The preceding example is easily generalized. Let T be any nonempty set, 
possibly infinite. Let A(T) be the set of all permutations of T (all bijective 
functions T ~ T). The arguments given above for S11 carry over to A(T) and 
show that A(T) is a group under the operation of composition of functions 
(Exercise 12). 

EXAMPLE 5 

Think of the plane as a sheet of thin, rigid plastic. Suppose you cut out a 
square, pick it up, and move it around,+ then replace it so that it fits exactly in 
the cut-out space. Eight ways of doing this are shown below (where the square 
is centered at the origin and its corners numbered for easy reference). We claim 
that any motion of the square that ends with the square fitting exactly in the 
cut-out space'has the same result as one of these eight motions (Exercise 14). 

All Rotations Are Taken Counterclockwise Around the Cente1:· 

r0 = rotation of oo 

4 4 

3 3 

2 2 

tsee Appendix B for details. 
!Flip it, rotate it, turn it over, spin it, do whatever you want, as long as you don't bend, break, or 
distort it. 



188 Chapter 7 Groups 

r1 = rotation of 90° 

4 3 

3 4 2 

2 

r2 =rotation of 180° 

4 2 

3 3 

2 4 

r3 = rotation of 270° 

4 

3 2 4 

2 3 

d = reflection in the x-axis 

4 2 

d 

~ 

3 3 

2 4 



t = reflection in they-axis 

4 

2 

h = reflection in line y = x 

4 

2 

' ' 

3 

3 

v = reflection in line y = - x 

4 

3 

2 
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4 

3 

2 

3 

2 4 

v 

4 2 

3 

If you perform one of these motions and follow it by another, the result will be 
one of the eight listed above; for example, 

4 3 4 

3 2 4 3 

2 2 
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If you think of a motion as a function from the square to itself, then the idea of fol
lowing one motion by another is just composition of functions. In the illustration 
above (h followed by r1 is t), we can write r1 o h = t (remember r1 o h means first apply 
h, then apply r1). Verify that the set ' 

D4 = {r0, ri> r2, r3, h, v, d, t} 

equipped with the composition operation has this table: 

0 ro ri r2 r3 d h v 
ro ro ri r2 r3 d h v 
ri ri r2 r3 ro h v d 
r2 r2 r3 ro ri v d h 
r3 r3 ro ri r2 v d h 
d d v t h ro r3 r2 ri 
h h d v l"J ro r3 r2 

h d v r2 ri ro r3 
v v h d r3 r2 ri ro 

Clearly D4 is closed under o, and composition of functions is known to be associa
tive. The table shows that r0 is the identity element and that every element of D4 has 
an inverse. For instance, r3 o r1 = r0 = r1 o r3 .Therefore, D4 is a group. It is not abelian 
because, for example, h o d ::f. do h. D 4 is called the dihedral group of degree 4 or the 
group of symmetries of the square. 

EXAMPlE 6 

The group of symmetries of the square is just one of many symmetry groups. An 
analogous procedure can be carried out with any regular polygon of n sides. The 
resulting group D 11 is called the dihedral group of degree 11. The group D3, for ex
ample, consists of the six symmetries of an equilateral triangle (counterclockwise 
rotations about the center of 0°, 120°, and 240°; and the three reflections shown 
here and on the next page), with composition of functions as the operation: 

3 3 3 2 

2 3 2 3 
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3 3 3 
u 

2 2 2 

Symmetry groups arise frequently in art, architecture, and science. Crystallography 
and crystal physics use groups of symmetries of various three-dimensional shapes. 
The first accurate model of DNA (which led to the Nobel Prize for its creators) could 
not have been constructed without a recognition of the symmetry of the DNA mol
ecule. Symmetry groups have been used by physicists to predict the existence of certain 
elementary particles that were later found experimentally. 

Systems with Two Operations 
We now examine some familiar systems with two operations to see what groups arise 
when only one of the operations is considered. 

EXAMPLE 7 

We now show that each of the following is an abelian group under addition, 
that is, with the operation* in the definition of a group being +: 

7L the integers; 7L 11 the integers mod n; 

Q the rational numbers; IR the real numbers; C the complex numbers. 

That each system is closed under addition is a fact from basic arithmetic 
(Axiom 1). Likewise, addition in each of these systems is associative: For any 
three numbers a, b, c, 

a+ (b + c) = (a +b) + c [Additive form of Axiom 2] 

In each system, the identity element is 0 because 

a+O=a=O+a [Additive form of Axiom 3] 

Similarly, the inverse of a is -a because 

a+ (-a)= 0 and -a+ a= 0 [Additive form of Axiom 4] 

Finally, each group is abelian because for any two numbers a and b, 

a+b=b+a [Additive form of Axiom 5] 

Hereafter, when we use the word "group" without any qualification in refer
ring to 7L, 7L"' Q, IR, or C, it is understood that the operation is addition. When 
it comes to multiplication, we have this basic fact: 

None of 7L, 7L11 , 0, IR, or C is a group under multiplication. 
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To be sure, each has 1 as its multiplicative identity element, but unfortunately 
0 has no inverse-the equation Ox = 1 has no solutions-so Axiom 4 fails. 
Nevertheless, certain subsets of these systems m~y be groups under multiplication. 

EXAMPLE 8 

Each of the following is an abelian group under multiplication: 

Q* the nonzero rational numbers; IR* the nonzero real numbers; 

C* the nonzero complex numbers. 

Each system is closed under multiplication because the product of nonzero num
bers is nonzero (Axiom 1 ). Basic arithmetic tells us that multiplication is associa
tive and commutative (Axioms 2 and 5). The identity element in each system is 1 
because a· 1 = a = 1 · a (Axiom 3). The inverse of a is 1ja (Axiom 4). 

EXAMPLE 9 

Let p be a prime, and consider the nonzero elements of 7LP under multiplica
tion. If a =/= 0 and b =!= 0, then ab =/= 0 by condition (3) of Theorem 2.8, so 
closure holds (Axiom 1). The identity element is 1 (Axiom 3) and inverses exist 
by condition (2) of Theorem 2.8 (Axiom 4). Multiplication is associative and 
commutative by Theorem 2.7 (Axioms 2 and 5). So the nonzero elements of 7LP 
form an abelian group under multiplication. 

EXAMPLE 10 

Each of 

Q** the positive rational numbers and IR** the positive real numbers 

is an abelian group under multiplication. Both systems are closed under multi
plication since the product of positive numbers is positive. The identity element 
is 1 and the inverse of a is 1/ a. 

EXAMPLE 11 

The subset L = {1, -1, i, -i) of the complex numbers forms an abelian group 
under multiplication. You can easily verify that closure holds and that 1 is the 
identity element. Since i(-i) = -P = -(-1) = 1, we see that i and -i are inverses 
of each other; -1 is its own inverse since ( -1 )( -1) = 1. Hence, Axiom 4 holds. 

EXAMPLE 12 

Neither the nonzero integers nor the positive integers form a group under multiplica
tion. Although 1 is the multiplicative identity for each system, no integers except for 
± 1 have a multiplicative inverse, so Axiom 4 fails. For example, the equation 2x = 1 
has no integer solution, so 2 has no inverse under multiplication in the integers. 



7.1.A Definition and Examples of Groups 193 

EXAMPLE 13 

When n is composite, the nonzero elements of 7!..~ do not form a group under 
multiplication because (among other things) closure fails. In 7!.. 6, for instance, 
2 · 3 = 0 and in 7!..20, 4 · 5 = 0. Similarly if n = rs, then in 7!.."' rs = 0. 

EXAMPlE 14 

Let U11 be the set of units in 1Lw* By Exercise 17 of Section 2.3, the product of 
two units is a unit, so U11 is closed under multiplication (which is known to be 
associative and commutative). The identity 1 is a unit since 1 · 1 = 1. So U,, 
is an abelian group under multiplication. By Theorem 2.10, Un consists of all 
a E 7!..11 such that (a, n) = 1 (when a is considered as an ordinary integer). Thus, 
the group of units in 7l.s is Us= {1, 3, 5, 7}, and the group of units in 7!..15 is 
U15 = {1, 2, 4, 7, 8, 11, 13, 14}. Here is the multiplication table for Us: 

1 3 5 7 

1 1 3 5 7 

3 3 1 7 5 

5 5 7 1 3 

7 7 5 3 1 

The next example involves matrices.t A 2 X 2 matrix over the real numbers, is an 
array of the form 

where a, b, c, dare real numbers. 

Two matrices are equal provided that the entries in corresponding positions are 
equals, that is, 

if and only if a = r, b = s, c = t, d = u. 

For example, 

(_~ 0) = (2 + 2 
1 1 - 4 

but (5
1 

Matrix multiplication is defined by 

x) = (aw + by . ax + bz). 
z cw + dy ex + dz 

*Recall that an element a in 1Ln is a unit if the equation ax= 1 has a solution (that is, if a has an inverse 
under multiplication). 

tlf you have taken a course in linear algebra, you can skip this paragraph. 
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For example, 

-5 ) ( 2. 1 + 3 . 6 
7 = 0 . 1 + ( -4)6 

2(-5) + 3 . 7) ( 20 
0( -5) + ( -4)7 - -24 

Reversing the order of the factors in this product produces 

3) = (1 . 2 + ( -5)0 
-4 6. 2 + 7. 0 

1 . 3 + ( -5)( -4)) = ( 2 
6·3+7(-4) 12 

11) 
-28 . 

23) 
-10 . 

So matrix multiplication is not commutative. A straightforward (but tedious) compu
tation shows that matrix multiplication is associative. It's easy to verify that 

Hence, G ~)is the identity element. 

EXAMPlE 15 

We shall show that the set of matrices 

{ (: ~)I where a, b, e, dE~ and ad- bc;to o} 
is a group under multiplication, called the general linear group of degree 2 over ~ 
and denoted GL(2, ~). The discussion before the example shows that GL(2, ~) 
has associative multiplication and an identity element (Axioms 2 and 3). You can 
readily verify that when ad - be i=- 0, 

( 

d -b ) 
b) ad - be ad - be = ( 1 
d -e a 0 

ad- be ad- be 
( 

d -b ) 
0) and ad- be ad- be (a b) = (1 o). 
1 -e a e d 0 1 

ad- be ad- be 

So every matrix in GL(2, ~)has an inverse (Axiom 4). 
To finish the proof, we need only show that GL(2, ~) is closed under multiplication 

. (a b) (w x)· . (Axiom 1). Suppose that e d and y z are m GL(2, ~),so that ad- be i=- 0 

and ·wz- xy i=- 0, and hence, (ad- be)(wz- xy) i=- 0. To prove that 

x) = (aw +by 
z ew + dy 

ax + bz) 
ex+ dz 
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is in GL(2, IR), we must prove that (aw + by)(ex + dz) - (ax+ bz)(ew + dy) i= 0. 
Verify that 

(aw + by)(ex + dz) - (ax+ bz)(ew + dy) =(ad- be)(wz- xy) =I= 0. 

So the product matrix is in GL(2, IR). Therefore, GL(2, IR) is closed under multi
plication and is a group, which is nonabelian (Exercise 7). 

The discussion preceding Example 15 carries over to matrices whose entries are in 
systems other than the real numbers, such as Q, C, and ?LP (withp prime). 

EXAMPlE 16 

We shall show that 

GL(2, 7L2) = { (~ ~)I where a, b, e, dE7L2 and ad- be =I= o} 
the general linear group of degree 2 over 7L2, is a group under multiplication. 
Matrix multiplication is associative, and the identity matrix is obviously in 
GL(2, 7L2). The proof that GL(2, 7L2) is closed under multiplication is identical 

to the one for GL(2, IR)inExample 15. If A=(~ ~) E GL(2, ?L2), then ad- be =I= 0 

in ?L2, so ad - be has an inverse by Example 9. Verify that the inverse of A is 

( 
d(ad- be)-1 -b(ad- be)-1

) h' h. h . . . . 
_ e( ad _ bet 1 a( ad _ bet 1 , w 1c lS t e same mverse matnx giVen m 

Example 15, with a change of notation: (ad- bet1 in place of d 
1 

b . Hence, 
a - e 

GL(2, 7L2) is a group. It is a finite nonabelian group of order 6 (Exercise 7). 

New Groups from Old 
The Cartesian product G X H of sets G and His defined on page 512 of Appendix B. 
Theorem 7.4 on the next page shows that the Cartesian product can be used to pro
duce new groups from known ones.* 

*Theorems 7.1-7.3 appear in Section 7.1 and assume that you have read Chapter 3, so they are 
not included in Section 7.1.A. However, many of the preceding examples are special cases of 
these theorems: Example 1 is a special case ofTheorem 7.1; Examples 8 and 9 are special cases 
ofTheorem 7.2; and Examples 14-16 are special cases ofTheorem 7.3. So you haven't missed 
anything crucial for this chapter. You may wish to read Theorems 7.1-7.3 at a later date, after you 
have read Chapter 3. 
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Let G (with operation*) and H (with operation<>) be groups. Define an opera
tion 1111 on G x H by 

(g, h) 1111 (g', h') = (g * g', h <> h'). 

Then G x His a group. If G and Hare abelian, then so is G x H. If G and H 
are finite, then so is G X Hand IG X HI= IGIIHI. 

Proof~>- Exercise 26. 11111 

EXAMPlE 17 

Both 7L and 7L6 are groups under addition. In 7L X 7L6 we have (3, 5) 1111 (7, 4) = 
(3 + 7, 5 + 4) = (10, 3). The identity is (0, 0), and the inverse of (7, 4) is ( -7, 2). 

EXAMPlE 18 

Consider IR* X D4, where IR* is the multiplicative group of nonzero real num
bers. The table in Example 5 shows that 

(2, rJ) 1111 (9, v) = (2 · 9, r1 o v) = (18, d). 

The identity element is (1, r0), and the inverse of (8, r3) is (lj8, rJ). 

Exercises 

The exercises for this section are the same as those for Section 7. 1-see page 180. 

Basic Properties of Groups 

Before exploring the deeper concepts of group theory, we must develop some additional 
terminology and establish some elementary facts. We begin with a change in notation. 

Now that you are comfortable with groups, we can switch to the standard multi
plicative notation. Instead of a* b, we shall write ab when discussing abstract groups. 
However, particular groups in which the operation is addition (such as 7L) will still be 
written additively. 

Although we have spoken of the inverse of an element or the identity element of a 
group, the definition of a group says nothing about inverses or identities being unique. 
Our first theorem settles the question, however. 

Let G be a group and let a, b, c E G. Then 

(1) G has a unique identity element. 
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(2) Cancelation holds in G: 

If ab = ac, then b = c; if ba = ca, then b = c. 

(3) Each element of G has a unique ir;werse. 

Pi,OOfll> (1) The group G has at least one ide~tity by the definition of a group. If 
e and e' are each identity elements of G, then 

ee' = e [Because e' is an identity element.] 
ee' = e' [Because e is an identity element.] 

Therefore, 
e = ee' = e', 

so that there is exactly one identity element. 

(2) By the definition of a group, the element a has at least one inverse 
d such that da = e =ad. If ab = ac, then d(ab) = d(ac). By associativity 
and the properties of inverses and identities, 

(da)b = (da)c 
eb = ec 
b =c. 

The second statement is proved similarly. 

(3) Suppose that d and d' are both inverses of a E G. Then ad= e = ad', 
so that d = d' by (2). Therefore a has exactly one inverse. 

Hereafter the unique inverse of an element a in a group will be denoted a- 1
. The 

uniqueness of a- 1 means that 

whenever ay = e = ya, then y = a-1
• 

coronary 1. 
If G is a group and a, bEG, then 

(1) (abr 1 = b-1a-1; 

(2) (a-1r1 =a. 

Note the order of the elements in statement (1). A common mistake is to write the 
inverse of ab as a- 1b- 1, which may not be true in nonabelian groups. See Exercise 2 
for an example. 

Proof of Corollary 7.611> (1) we have 

(ab)(b- 1a- 1) = a(bb- 1)a- 1 = aea- 1 = aa-1 = e 

and, similarly, (b- 1a- 1)(ab) =e. Since the inverse of ab is unique by 
Theorem 7.5, b-1a- 1 must be this inverse, that is, (ab)- 1 = b-1a-1

• 

(2) By definition, a- 1a = e and (a-1)(a-1)- 1 = e, so that 
a- 1a = a-\a- 1

)- 1. Canceling a-1 by Theorem 7.5 shows that 
a= (a- 1)- 1. Ill 
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Let G be a group and let a E G. We define a2 = aa, a 3 = aaa, and for any positive 
integer n, 

a"= aaa ···a (n factors). 

We also define a0 = e and 

(n factors). 

These definitions are obviously motivated by the usual exponent notation in IR and 
other familiar rings. But be careful in the nonabelian case when, for instance, (ab y may 
not be equal to a"b". Some exponent rules, however, do hold in groups: 

Let G be a group and let a E G. Then for all m, n in Z, 

and 

Proof 1> The proof consists of a verification of each statement in each possible 
case (m ;::::: 0, n ;::::: 0; m ;::::: 0, n < 0; etc.) and is left to the reader 
(Exercise 21). 

NOTE ON ADDITIVE NOTATION: To avoid confusion, the operation in cer
tain groups must be written as addition (for example, the additive group of real 
numbers since multiplication there has a completely different meaning). Here is 
a dictionary for translating multiplicative statements into additive ones: 

Operation: 

Identity: 

Inverse: 

Exponents: 

Theorem 7.7: 

Multiplicative 
Notation 

ab 

e 
a-1 

d' = aa · · ·a (n factors) 
a-n= a-1 ... a-1 

aman = am+n 
(amyl == amn 

Order of an Element 

Additive 
Notation 

a+b 

0 

-a 

na = a+ a + · · · + a (nsummands) 
(-n )a = -a - a - · · · -a 

(ma) + (na) = (m + n)a 
n(ma) = (mn)a 

We return now to multiplicative notation for abstract groups. An element a in a group 
is said to have finite order if a"= e for some positive integer k.* In this case, the order 
of the element a is the smallest positive integer n such that a"= e. The order of a is 

*In additive notation, the condition is ka = 0. 
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denoted 14 An element a is said to have infinite order if ak =I= e for every positive 
integer k. 

EXAMPLE 1 

In the multiplicative group of nonzero real numbers, 2 has infinite order 
because i' =I= 1 for all k ;:::: 1. In the group L = { ± 1, ± i} under multiplication 
of complex numbers, the order of i is 4 because P = - 1, i3 = - i, and i4 = 1. 

Similarly, ,_ il = 4. The element G ~ D in s3 has order 3 because 

G 2 

1 
2 

3 
and 

The identity element in a group has order 1. 

EXAMPLE 2 

G 2 

1 
2 

2 

In the additive group Z12, the element 8 has order 3 because 8 + 8 = 4 and 
8 + 8 + 8 = 0. 

In the multiplicative group of nonzero real numbers, the element 2 has infinite 
order and all the powers of 2 (2-3

, 2°, 25
, etc.) are distinct. On the other hand, in the 

multiplicative group L = { ± 1, ± i}, the element i has order 4 and its powers are not 
distinct; for instance, 

and 

Observe that i 10 = i2 and 10 = 2 (mod 4). These examples are illustrations of 

Let G be a group and let a E G. 

(1) If a has infinite order, then the elements ak, with k EZ, are all distinct. 

(2) If a1 = al with i =1= ), then a has finite order. 

Proof ~Note first that statement (1) is true if and only if statement (2) is true, 
because each statement is the contrapositive of the other, as explained 
on pages 503-504 of Appendix A. So we need only prove one of them. 
We shall prove statement (2): 

Suppose that c/ = al, with i > j. Then multiplying both sides by a-1 
shows that ai-J = al-J = a0 = e. Since i- j > 0, this says that a has finite 
order. fill 
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Let G be a group and a E G an element of f1 nite order n. Then: 

(1) ak = e if and only if n I k; 

(2) a1 = ai if and only if I= j (mod n ); 

(3) If n = td, with d ~ 1, then a1 has order d. 

Proof "'(1) If n divides k, say k = nt, then ak = a111 = (a11
)

1 = e1 = e. Conversely, 
suppose that cl = e. By the Division Algorithm, k = nq + r with 
0 :::; r < n. Consequently, 

By the definition of order, n is the smallest positive integer with a" = e. 
Since r < n, a" = e can occur only when r = 0. Thus, k = nq + 0 and n 
divides k. 

(2) First, note that a;= al if and only if a1-J = e. [Proof if d = al, 
then ai-J = e by the proof of Theorem 7.8(2). Conversely, if ai-J = e, 

then multiplying both sides by al shows that d = al.] But by (1), with 
k = i- j, we have ai-J = e if and only if n I (i- j), that is, if and only 
if i = j (mod n). Therefore, a;= al if and only if i = j (mod n). 

(3) Since Ia I = n, we have (aY = c/d = d' = e. We must show that dis the 
smallest positive integer with this property. If k is any positive integer such 
that (a~k = e, then c/k = e. Therefore, n I tk by part (1), say tk = nr = (td)r. 
Hence, k = dr. Since k and dare positive and d I k, we have d:::; k. Ill 

Let G be an abelian group in which every element has finite order. If c E G is 
an element of largest order in G (that is, I a I :::; I c I for all a E G), then the order 
of every element of G divides I c I. 

For example, (1, 0) has order 4 in the additive abelian group 1:4 X 1:2 and every other 
element has order 1, 2, or 4 (Exercise 10(b)). Thus (1, 0) is an element of largest possible 
order, and the order of every element of the group divides 4, the order of (1, 0). 

Proof of Corollary 7.10"' Suppose, on the contrary, that a E G and lal does not 
divide lcJ. Then there must be a prime p in the prime factorization of the 
integer lal that appears to a higher power than it does in the prime fac
torization of lcJ. By prime factorization we can write lal as the product 
of a power of p and an integer that is not divisible by p and similarly for 
c. Thus there are integers m, n, r, s such that lal = p"m and lei = psn, with 
(p, m) = 1 = (p, n) and r > s. By part (3) of Theorem 7.9, the element a111 

has order p" and cP' has order n. Exercise 33 shows that a 111cP' has order 
p"n. Hence, la 111cP'I = p~'n > psn = JcJ, contradicting the fact that cis an 
element of largest order. Therefore, lal divides lcJ. Ill 
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Exercises 

NOTE: Unless stated otherwise, G is a group with identity element e. 

A. 1. If c2 = c in a group, prove that c = e. 

2. Let a= G ~ D and b = C ~ Din S3. Verify that (abr1 
=1= a-1b-1

• 

3. If a, b, c, dE G, then (abed)- I = ? 

4. If a, bEG and ab = e, prove that ba =e. 

5. LetfG-+ Gbe given by f(a) = a-1
• Prove thatfis a bijection. 

6. Give an example of a group in which the equation x 2 = e has more than two solutions. 

7. Find the order of the given element. 

(a) 5 in U8 

(
1 2 3 4 5 6 7). 

(b) 2 3 7 5 1 4 6 m 87 

(c) e -:)in GL(2, ~) 

(d) ( =i _1) in GL(2, ~) 
8. Give an example of a group that contains nonidentity elements of finite order 

and of infinite order. 

9. (a) Find the order of the groups U10, U12, and U24 . 

(b) List the order of each element of the group U20 . 

10. Find the order of every element in each group: 

(e) 7L 

11. Let G be an additive group. Write statement (2) of Theorem 7.8 and statements 
(1)~(3) of Theorem 7.9 in additive notation. 

12. If a, bEG and n is any integer, show that (aba -1)
11 = ab"a-1

• 

13. If G is a finite group of order n and a E G, prove that lal :::; n. [Hint: Consider the 
n + 1 elements e = a0 a, a2

, a3
, .•. , d. Are they all distinct?] Thus every element 

in a finite group has finite order. The converse, however, is false; see Exercise 25 
in Section 8.3 for an infinite group in which every element has finite order. 

14. True or false: A group of order 11 contains an element of order 11. Justify your 
answer. 

15. (a) If a E G and a 12 = e, what order can a possibly have? 

(b) If e =/=bEG and bP = e for some prime p, what is lbl? 

16. (a) If a E G and lal = 12, find the orders of each of the elements a, a2
, a3

, ••• , a11
• 

(b) Based on the evidence in part (a), make a conjecture about the order of d' 
when lal = 11. 
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17. (a) Let a, bE G. Prove that the equations ax= band ya =beach have a 
unique solution in G. [Hint: Two things must be done for each equation: 
First find a solution and then show that it is the only solution.] 

(b) Show by example that the solution of ax= b may not be the same as the 
solution of ya = b. [Hint: Consider S3.] 

18. Let G = {a" a2, ••• , a11 } be a finite abelian group of order n. Let x = a1a2 • •• a". 
Prove that x2 = e. 

19. If a, bEG, prove that lbab- 1
1 = lal. 

20. (a) Show that a= ( -~ _:)has order 3 in GL(2, IR) and b = (
0 

-l) 
has order 4. 1 0 

(b) Show that ab has infinite order. 

B. 21. Prove Theorem 7.7. 

22. Let G = {e, a, b} be a group of order 3. Write out the operation table for G. 
[Hint: Exercise 28 in Section 7.1.] 

23. Let G be a group with this property: If a, b, c E G and ab = ca, then b = c. 
Prove that G is abelian. 

24. If ( ab i = a2b2 for all a, b, E G, prove that G is abelian. 

25. Prove that G is abelian if and only if (abt 1 = a- 1b- 1 for all a, bE G. 

26. Prove that every nonabelian group G has order at least 6; hence, every group 
of order 2, 3, 4, or 5 is abelian. [Hint: If a, bEG and ab =I= ba, show that the 
elements of the subset H = {e, a, b, ab, ba} are all distinct. Show that either 
a2 li H or a2 = e; in the latter case, verify that aba li H.] 

27. If every nonidentity element of G has order 2, prove that G is abelian. 
[Hint: lal = 2 if and only if a =I= e and a= a-1

• Why?] 

28. If a E G, prove that lal = la-11. 
29. If a, b, c E G, prove that there is a unique element x E G such that axb =c. 

30. If a, bEG, prove that labl = lbal. 

31. (a) If a, bEG and ab = ba, prove that (ab )lallbl = e. 

(b) Show that part (a) may be false if ab =I= ba. 

32. If IGI is even, prove that G contains an element of order 2. [Hint: The identity 
element is its own inverse. See the hint for Exercise 27.] 

33. Assume that a, bE G and ab = ba. If lal and lbl are relatively prime, prove that 
ab has order lallbl. [Hint: See Exercise 31.] 

34. Suppose G has order 4, but contains no element of order 4. 

(a) Prove that no element of G has order 3. [Hint: If lgl = 3, then G consists 
of four distinct elements g, i, l = e, d. Now gd must be one of these four 
elements. Show that each possibility leads to a contradiction.] 

(b) Explain why every nonidentity element of G has order 2. 

(c) Denote the elements of G bye, a, b, c and write out the operation table for G. 
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35. If a, bEG, b6 = e, and ab = b4a, prove that b3 = e and ab = ba. 

36. Suppose a, bE Gwith lal = 5, b =I= e, and aba- 1 = b2
• Find lbl. 

37. If ( ab )3 = a3 b3 and ( ab )5 = a5 b5 for all a, b E G, prove that G is abelian. 

C. 38. If (ab Y = aibi for three consecutive integers i and all a, bEG, prove that G is 
abelian. 

39. (a) Let G be a nonempty finite set equipped with an associative operation 
such that for all a, b, c, dE G: 

if ab = ac, then b = c and if bd = cd, then b =c. 

Prove that G is a group. 

(b) Show that part (a) may be false if G is infinite. 

40. Let G be a nonempty set equipped with an associative operation with these 
properties: 

(i) There is an element e E G such that ea = a for every a E G. 

(ii) For each a E G, there exists dE G such that da = e. 

Prove that G is a group. 

41. Let G be a nonempty set equipped with an associative operation such that, 
for all a, b E G, the equations ax = b and ya = b have solutions. Prove that G 
is a group. 

Subgroups 

We continue our discussion of the basic properties of groups, with special attention 
to subgroups. 

. A subset H of a group G is a subgroup Of G .if Hi.s itself a group .under the. 
operation in G, · · 

Every grot).p G has two subgroups: G itself and the one-element group { e}, which is 
called the trivial subgroup. All other subgroups are said to be proper subgroups. 

EXAMPLE 1 

The set IR* of nonzero real numbers is a group under multiplication. The group 
IR** of positive real numbers is a proper subgroup of IR*. 

EXAMPLE 2 

The set 7l. of integers is a group under addition and is a subgroup of the additive 
group Q of rational numbers. 
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EXAMPLE 3 

The subset L = {1, -1, i, -i} of the complex numbers is a group under multipli
cation.* So it is a subgroup of C*, the multiplicative group of nonzero complex 
numbers. 

EXAMPLE 4 

Recall that the multiplicative group of units in Zs is Us = { 1, 3, 5, 7}. The 
upper-left quarter of its operation table in Example 14 of Section 7.1 or 
Section 7 .LA shows that the subset { 1, 3} is a subgroup of Us. 

EXAMPLE 5 

The upper-left quarter of the operation table for D4 in Example 5 of Section 7.1 
or 7.1.A shows that H = {r0, r!> r2, r3} is a subgroup of D4. 

EXAMPLE 6 

In the additive group 1:6 X 1:4, let H = { (0, 0), (3, 0), (0, 2), (3, 2)}. Verify that 
His a subgroup by writing out its addition table. 

When proving that a subset of a group is a subgroup, it is never necessary to check asso
ciativity. Since the associative law holds for all elements of the group, it automatically holds 
when the elements are in some subset H. In fact, you need only verify two group axioms: 

A nonempty subset H of a group G is a subgroup of G provided that 

(i) if a, bE H, then abE H; and 

(ii) if a E H, then a-1 E H. 

Proof " Properties (i) and (ii) are the closure and inverse axioms for a group. 
Associativity holds in H, as noted above. Thus we rieed only verify that 
e E H. Since His nonempty, there exists an element c E H. By (ii), c -I E H, 
and by (i) cc-1 = e is in H. Therefore His a group. lit 

EXAMPLE7 

Let H consist of alL 2 X 2 matrices of the form b = ( ~ ~) with b E lit Since 

1 · 1 - b · 0 = 1, His a nonempty subset of the group GL(2, IR), which was 

*See Example 11 of Section 7.1 or Section 7.1.A. 



7.3 Subgroups 205 

defined in Example 15 of Section 7.1 or 7 .I. A. The product of two matrices in 
His in H because 

(1 a) (1 c) = (1 a + c) 
0 1 0 1 0 1 

The inverse of ( ~ ~) is ( ~ - ~), which is also in H. Therefore, His a 

subgroup of GL(2, IR) by Theorem 7 .11. 

When lf is finite, just one axiom is sufficient to guarantee that His a subgroup. 

Let H be a nonempty fl nite subset of a group G. If His closed under the opera
tion in G, then His a subgroup of G. 

Proof ~ By Theorem 7.11, we need only verify that the inverse of each element 
of His also in H. If a E H, then closure implies that ak E H for every 
positive integer k. Since His finite, these powers cannot all be distinct. 
So a has finite order n by Theorem 7.8 and a"= e. Since n- 1 = -1 
(mod n), we have d'- 1 = a- 1 by Theorem 7.9. If n > 1, then n- 1 is 
positive and a- 1 = a"-1 is in H. If n = 1, then a= e and a-1 = e =a, so 
that a- 1 is in H. 

EXAMPlE 8 

Let H consist of all permutations in S 5 that fix the element 1. In other words, 
H = {fES5 Ifi1) = 1}. His a finite set since S 5 is a finite group. If g, h EH, 
then g(l) = 1 and h(l) = 1. Hence, (go h)( 1) = g(h( 1)) = g(l) = 1. Thus 
go h EH and His closed. Therefore, His a subgroup of S5 by Theorem 7.12. 

The Center of a Group 
If G is a group, then the center of G is the subset denoted Z( G) and defined by 

Z( G) = {a E G I ag = ga for every g E G}. 

In other words, an element of G is in Z( G) if and only if it commutes with every 
element of G. If G is an abelian group, then Z( G) = G because all elements commute 
with each other. When G is nonabelian, however, Z( G) is not all of G 

EXAMPlE 9 

The center of S 3 consists of the identity element alone because this is the only 
element that commutes with every element of S 3 (Exercise 25). 
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EXAMPLE 10 

The operation table for D4 in Example 5 of Section 7.1 or 7.1.A shows that r1 

commutes with some elements of D4 (for instance, r1 o r3 = r3 o r1). However, 
it does not commute with every element of D4 because r1 o d =t do r1. Hence, 
r1 is not in Z(D4) nor is d. Careful examination of the table shows that 
Z(D4) = {r0, r2} since these are the only elements that commute with every 
element of D4• It is easy to verify that {r0, r2} is a subgroup of D4. This is an 
example of the following result. 

The center Z(G) of a group G is a subgroup of G. 

Proof~>- For every g E G, we have eg = g = ge. Hence, e E Z( G) and Z( G) is non
empty. If a, bE Z( G), then for any g E G we have ag = ga and bg = gb, 
so that 

(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab). 

Therefore, abE Z( G). Finally, if a E Z( G) and g E G, then ag = ga. 
Multiplying both sides of this equation on the left and right by a- 1 

shows that 

a- 1(ag)a- 1 = a-1(ga)a- 1 

ga-l = a-lg 

Therefore, a-1 E Z( G) and Z( G) is a subgroup by Theorem 7 .11. 

Cyclic Groups 

An important type of subgroup can be constructed as follows. If G is a group and 
a E G, let (a) denote the set of all powers of a: 

( ) - { -3 -2 -I 0 I 2 } - { 11 I 77}• a- ... ,a ,a ,a ,a,a,a, ... - a nElL. 

If G is a group and aEG, then (a)= {anln ElL) is a subgroup of G. 

Proof ~>- The product of any two elements of (a) is also in (a) because aial = ai+J. 
The inverse of cl< is a-k, which is also in (a). By Theorem 7.11, (a) is a 
subgroup of G. 11!1 

The group (a) is called the cyclic subgroup generated by a. If the subgroup (a) is the 
entire group G, we say that G is a cyclic group. Note that every cyclic group is abelian 
since dal = ai+J = alai. 
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EXAMPLE 11 

The multiplicative group of units in the ring Z15 is U15 = {1, 2, 4, 7, 8, 11, 13, 14} 
by Theorem 2.10. In order to determine the cyclic subgroup generated by 7, we 
compute 

Therefore, the element 7 has order 4 in U15 • We claim that the cyclic subgroup 
(7) consists of {7°, 71

, 72
, 73

} = {1, 7, 4, 13}. [Proof By definition, every ele
ment of (7) is of the form 7i for some integer i. Since every integer is congruent 
modulo 4 to one of 0, 1, 2, 3, the element i must be one of 7°, 71,72 or 73 by 
Theorem 7.9(2).] Hence, (7) = {1, 7, 4, 13}. Thus, the cyclic subgroup (7) has 
order 4-the order of the element 7 that generates the group. 

EXAMPLE 12 

Different elements of a group may generate the same cyclic subgroup. For 
instance, verify that 13 has order 4 in U15 . Then the same argument used in 
Example 11 shows that the cyclic subgroup (13) = {13°, 13 1

, 132
, 133

} = 
{1, 13, 4, 7} = (7). 

The argument used in Examples 11 and 12 works in general and provides the con
nection between the two uses of the word "order". It states, in effect, that the order of 
an element a is the same as the order of the cyclic subgroup generated by a. 

Let G be a group and let a E G. 

(1) If a has infinite order, then (a) is an infinite subgroup consisting of 
the distinct elements a\ with k EZ. 

(2) If a has finite order n, then (a) is a subgroup of order n and (a) = 
{ _ 0 1 2 3 n-1} e-a,a,a,a, ... ,a . 

Proof~~> (1) This is an immediate consequence of part (1) of Theorem 7.8. 

(2) Let d be any element of (a). Then i is congruent modulo n to one 
of 0, 1, 2, ... , n - 1. Consequently, by part (2) of Theorem 7.9, d must be 
equal to one of a0

, al, a2, ••. , a"-1. Furthermore, no two of these powers 
of a are equal since no two of the integers 0, 1, 2, ... , n - 1 are congruent 
modulo n. Therefore, (a)= {a0, al, a2

, ••• , a"- 1
} is a group of order n. Ill 

NOTE ON ADDITIVE NOTATION: When the group operation is addi
tion, then, as shown in the dictionary on page 198, we write ka in place 
of ak. So the cyclic subgroup (a) = {na I n E Z}. Theorem 7.15 in additive 
notation is shown on the next page. 
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Let G be an additive group and let a E G. 

(1) If a has infinite order, then (a) is an infinite subgroup consisting of 
the distinct elements ka, with k EZ'.. 

(2) If a has finite order n, then (a) is a subgroup of order nand 

(a)= {0, 1a, 2a, 3a, 4a, ... , (n - 1)a}. 

EXAMPLE 13 

Since £'. = { n 1 I n E £'.}, we see that the additive group £'. is an infinite cyclic 
group with generator 1, that is£'. = (1). The set E of even integers is a cyclic 
subgroup of the additive group£'. because E = {n2 In E £'.}. 

EXAMPLE 14 

Each of the additive groups 1'.11 is a cyclic group of order n generated by 1 because 
1'.11 consists of the "powers" of 1, namely, 1, 2 = 1 + 1, 3 = 1 + 1 + 1, etc. For 
instance, £'.4 = {1, 2, 3, 0}, that is, {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1}. 

The subgroup { 1, -1, i, - i} of the multiplicative group of nonzero elements of IC 
is the cyclic subgroup (1) because i2 = -1, i3 = -i, and i4 = 1. Similarly, the multipli
cative group of nonzero elements of £'.7 is the cyclic group (3), as you can easily verify. 
These examples are special cases of the following theorem. 

fh~orem 7.16 
Let F be any one of Q, IR, IC, or Z'.P (with p prime), and let F* be the multiplica
tive group of nonzero elements of f.t If G is a finite subgroup ofF*, then G is 
cyclic.* 

Proof ~ Let c E G be an element of largest order (there must be one since G is 
finite), say lei = m. If a E G, then lal divides m by Corollary 7.10, so that 
am= 1 by part (1) of Theorem 7.9. Thus every element of G is a solu
tion of the equation x11 

- 1 = 0. Since a polynomial equation of degree 
m has at most m solutions in F (by Corollary 4. 17§), we must have IGI :::; m. 
But (c) is a subgroup of G of order m by Theorem 7. 15. Therefore, (c) 
must be all of G, that is, G is cyclic. II 

tsee Examples 8 and 9 of Section 7.1 or 7.1. A. 
*For those who have read Chapter 3: The theorem and its proof are valid when F is any field. 
§If you haven't read Section 4.4, you'll have to take this on faith for now. 
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Now that we know what cyclic groups look like, the next step is to examine the 
possible subgroups of a cyclic group. 

Every subgroup of a cyclic group is itself cyclic. 

Proof ~ Suppose G = (a) and His a subgroup of G. If H = (e) , then His the 
cyclic subgroup generated bye (all of whose powers are just e). If H =F 
(e), then H contains a nonidentity element of G, say a; with i =F 0. Since 
His a subgroup, the inverse element a-; is also in H. One of i or -i is 
positive, and so H contains positive powers of a. Let k be the smallest 
positive integer such that a k E H. We claim that His the cyclic subgroup 
generated by ak. To prove this, we must show that every element of H 
is a power of ak. If hE H, then hE G, so that h = a111 for some m. By the 
Division Algorithm, m = kq + r with 0 ::; r < k. Consequently, r = m - kq 
and 

Both d 11 and a'c are in H. Therefore, arE H by closure. Since ak is the 
smallest positive power of a in Hand since r < k, we must have r = 0. 
Therefore, m = kq and h = a 111 = akq = (a1)q E (c/c). Hence, H = (ak). Ill 

For additional information on the structure of cyclic groups and their subgroups, 
see Exercises 44-46. 

Generators of a Group 
Suppose G is a group and a E G. Think of the cyclic subgroup (a) as being constructed 
from the one-element setS= {a} in this way: Form all possible products of a and a- 1 

in every possible order. Of course, each such product reduces to a single element of 
the form a11

• We want to generalize this procedure by beginning with a set S that may 
contain more than one element. 

Let 5 be a nonempty subset of a group G. Let (5) be the set of all possible 
products, in every order, of elements of 5 and their inverses.* Then 

(1) (5) is a subgroup of G that contains set 5. 

(2) If His a subgroup of G that contains the set 5, then H contains the 
entire subgroup (5). 

*We allow the possibility of a product with one element so that elements of Swill be in (S). 
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This theorem shows that (S) is the smallest subgroup of G that contains the setS. In 
the special case when S = {a}, the group (S) is just the cyclic subgroup (a) , which is the 
smallest subgroup of G that contains a. The group (S) is called the subgroup generated 
by S. If (S) is the entire group G, we say that S generates G and refer to the elements of 
S as the generators of the group. 

Proof of Theorem 7.18~~> (1) (S) is nonempty because the set sis nonempty and 
every element of S (considered as a one-element product) is an element of 
(S). If a, b E(S), then a is of the form a1a2 • • • a~o where k;::::: 1 and each ai 
is either an element of S or the inverse of an element of S. Similarly, 
b = b1 b2 • • • b1, with t ;::::: 1 and each bi either an element of S or the in
verse of an element of S. Therefore, the product ab = a1a2 • • • a~cb 1b2 • • • b1 

consists of elements of S or inverses of elements of S. Hence, abE (S), 
and (S) is closed. The inverse of the element a = a1a2 • • • ak of (S) is 
a-1 = ak-l · · · a2 -

1a1-
1 by Corollary 7.6. Since each ai is either an element 

of S or the inverse of an element of S, the same is true of ai-l· Therefore, 
a- 1 E(S). Hence, (S) is a subgroup of G by Theorem 7.11. 

(2) Any subgroup that contains the set S must include the inverse 
of every element of S. By closure, this subgroup must also contain all 
possible products, in every order, of elements of Sand their inverses. 
Therefore, every subgroup that contains S must also contain the entire 
group (S). 

EXAMPLE 15 

The group U15 = {1, 2, 4, 7, 8, 11, 13, 14} is generated by the setS= {7, 11} 
smce 

73 = 13 

72
• 11 = 14 

Different sets of elements may generate the same group. For instance, you can readily 
verify that U15 is also generated by the set {2, 13} (Exercise 9). 

EXAMPLE 16 

Using the operation table in Example 5 of Section 7.1 or 7 .l.A, we see that in 
the group D 4, 

(rD1 = r1 

h1 = h 

(rl)2 = r2 (rl)3 = r3 

r1 o h = t (r1? o h = v 

(rl)4 = ro 

(ri)3 
o h =d. 

Therefore, D4 is generated by {r1, h}. Note that the representation of group 
elements in terms of the generators is not unique; for instance, 



Exercises 

A. 1. List all the cyclic subgroups of 

(a) U15 (b) U3o 

2. (a) List all the cyclic subgroups of D4• 

(b) List at least one subgroup of D4 that is not cyclic. 

3. List the elements of the subgroup (a), of S7, where 

(
1 2 3 4 5 6 7) 

a= 3276514' 
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In Exercises 4--8, list (if possible) or describe the elements of the given cyclic subgroup. 

4. (2) in the additive group Z12• 

5. (2) in the additive group ll.. 

6. (2) in the multiplicative group of nonzero elements of Z 11 . 

7. (2) in the multiplicative group I))* of nonzero rational numbers. 

8. (3) in the multiplicative group of nonzero elements of Z11 • 

9. Show that U15 is generated by the set {2, 13}. 

10. Show that (1, 0) and (0, 2) generate the additive group Z X Z7. 

11. Show that the additive group Z2 X Z3 is cyclic. 

12. Show that the additive group Z2 X Z4 is not cyclic but is generated by two elements. 

13. Let H be a subgroup of a group G. If eGis the identity element of G and en is 
the identity element of H, prove that eG =en. 

14. Let Hand K be subgroups of a group G. 

(a) Show by example that H U Kneed not be a subgroup of G. 

(b) Prove that H U K is a subgroup of G if and only if H c;;; K or K c;;; H. 

15. (a) Let Hand Kbe subgroups of a group G. Prove that H n K is a subgroup 
of G. 

(b) Let {HJ be any collection of subgroups of G. Prove that n Hi is a 
subgroup of G. 

16. Let G1 be a subgroup of a group G and H 1 a subgroup of a group H. Prove 
that G1 X H 1 is a subgroup of G X H. 

17. Show that the only generators of the additive cyclic group 7l. are 1 and -1. 

18. Show that (3, 1 ), (-2, -1 ), and ( 4, 3) generate the additive group Z X Z. 

19. Let G be an abelian group and let T be the set of elements of G with finite 
order. Prove that Tis a subgroup of G; it is called the torsion subgroup. (This 
result may not hold if G is nonabelian; see Exercise 20 of Section 7 .2.) 

20. Let G be an abelian group, k a fixed positive integer, and H = 
{a E Glial divides k}. Prove that His a subgroup of G. 
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21. (a) If Gis a group and ab EZ(G), is it true that a and bare in Z(G)? [Hint: D4.] 

(b) If G is a group and abE Z( G), prove that ab = ba. 

22. If a is the only element of order 2 in a group G, prove that a E Z( G). 

23. Let G be a group and let a E G. Prove that (a) = (a-1). 

24. Show that 0**, the multiplicative group of positive rational numbers, is not 
a cyclic group. [Hint: if 1 =I= r E Q**, then there must be a rational between r 
and r 2

.] 

25. Show that the center of S 3 is the identity subgroup. 

26. (a) Let Hand Kbe subgroups of an abelian group G and let HK = {ab I a EH, 
b E K}. Prove that HK is a subgroup of G. 

(b) Show that part (a) may be false if G is not abelian. 

27. Let Hbe a subgroup of a group G and, for x E G, let x- 1Hx denote the set 
{x- 1ax I a E H}. Prove that x-1 Hx is a subgroup of G. 

28. Let G be an abelian group and n a fixed positive integer. 

(a) Prove that H = {a E G I a"= e} is a subgroup of G. 

(b) Show by example that part (a) may be false if G is nonabelian. [Hint: S3.] 

29. Prove that a nonempty subset H of a group G is a subgroup of G if and only if 
whenever a, b E H, then ab- 1 E H. 

30. Let A(T) be the group of permutations of the set T and let T1 be a nonempty 
subset of T. Prove that H = {f E A(T) lf(t) = t for every t E T1} is a subgroup 
of A(T). 

31. Let T and T1 be as in Exercise 30. Prove that K = {fE A(T) lf(T1) = Td is a 
subgroup of A(T) that contains the subgroup H of Exercise 30. Verify that if 
T1 has more than one element, then K =/= H. 

32. Let H be a subgroup of a group G and assume that x - 1Hx ~ H for every x E G 
(notation as in Exercise 27). Prove that x-I Hx = H for each x E G. 

33. Let G be a group and a E G. The centralizer of a is the set C(a) = {g E G I 
ga = ag}. Prove that C(a) is a subgroup of G. 

34. If G is a group, prove that Z( G) = aljG C(a) (notation as in Exercise 33). 

35. Prove that an element a is in the center of a group G if and only if C(a) = G 
(notation as in Exercise 33). 

36. True or false: If every proper subgroup of a group G is cyclic, then G is cyclic. 
Justify your answer. 

37. Suppose that His a subgroup of a group G and that a E G has order n. If ak E H 
and (k, n) = 1, prove that a E H. 

B. 38. (a) Let p be prii:ne and let b be a nonzero element of 7LP. Show that bP- 1 = 1. 
[Hint: Theorem 7.16.] 

(b) Prove Fermat's Little Theorem: If p is a prime and a is any integer, then 
ct ==a (mod p). [Hint: Let b be the congruence class of a in 7/_P and use 
part (a).] 
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39. If His a subgroup of a group G, then the normalizer of His the set N(H) = 

{x E G I x- 1Hx = H} (notation as in Exercise 27). Prove that N(H) is a 
subgroup of G that contains H. 

40. Prove that H = {G ;) I a = 1 or -1, b E ::z} is a subgroup of GL(2, Q). 

41. Let G be an abelian group and n a fixed positive integer. Prove that H = {an 1 a E G} 
is a subgroup of G. 

42. Let k be a positive divisor of the positive integer n. Prove that Hk = 

{a E Un I a= 1 (mod k)} is a subgroup of un. 
43. List all the subgroups of £:12 . Do the same for 220. 

44. Let G = (a) be a cyclic group of order n. 

(a) Prove that the cyclic subgroup generated by am is the same as the cyclic 
subgroup generated by ad, where d = (m, n). [Hint: It suffices to show that 
ad is a power of am and vice versa. (Why?) Note that by Theorem 1.2, there 
are integers u and v such that d = mu + nv.] 

(b) Prove that am is a generator of G if and only if ( m, n) = 1. 

45. Let G = (a) be a cyclic group of order n. If His a subgroup of G, show that IH! 
is a divisor of n. [Hint: Exercise 44 and Theorem 7.17.] 

46. Let G = (a) be a cyclic group of order n. If k is a positive divisor of n, prove 
that G has a unique subgroup of order k. [Hint: Consider the subgroup 
generated by an!k.] 

47. Let G be an abelian group of order mn where (m, n) = 1. Assume that G 
contains an element a of order m and an element b of order n. Prove that G is 
cyclic with generator ab. 

48. Show that the multiplicative group IR* of nonzero real numbers is not cyclic. 

49. If G is an infinite additive cyclic group with generator a. Prove that the 
equation x + x = a has no solution in G. 

50. Show that the additive group Q is not cyclic. [Hint: Exercise 49.] 

51. Let G and H be groups. If G X His a cyclic group, prove that G and Hare 
both cyclic. (Exercise 12 shows that the converse is false.) 

52. Prove that { G ';)I n E Z} is a cyclic subgroup of GL(2, IR). 

53. Prove that 1':111 X Zn is cyclic if and only if (m, n) = 1. 

54. If G =F (e) is a group that has no proper subgroups, prove that G is a cyclic 
group of prime order. 

55. Is the additive group G = {a + bVl I a, bE Z} cyclic? 

56. Show that the group U20 of units in 1':20 is not cyclic. 

57. Show that the group U18 of units in 2 18 is cyclic. 

58. If Sis a nonempty subset of a group G, show that (S) is the intersection of the 
family of all subgroups H such that S <;;H. 
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Isomorphisms and Homomorphisms* 

If you were unfamiliar with roman numerals and came across a discussion of integer 
arithmetic written solely with roman numerals, it might take you some time to realize 
that this arithmetic was essentially the same as the familiar arithmetic in 7L except for. 
the labels on the elements. Here is a less obvious example of the same situation. 

EXAMPlE 1 

Recall the multiplicative subgroup L = {1, i, -i, -1} of the complex numbers 
and the multiplicative group Us= {1, 2, 3, 4} of units in ?Ls, whose operation 
tables are shown below. t 

Us L 
2 3 4 1 i -i -1 

1 2 3 4 1 1 i -i -1 
2 2 4 1 3 i i -1 1 -i 
3 3 1 4 2 -i -i 1 -1 i 
4 4 3 2 1 -1 -1 -i i 1 

At first glance, these groups don't seem the same. But we claim that they are 
"essentially the same", except for the lablels on the elements. To see this clearly, 
relabel the elements of Us according to this scheme: 

Relabel 1 as 1; Relabel 2 as i; Relabel 3 as -i; Relabel 4 as -1. 

Now look what happens to the table for Us-it becomes the table for L! 

1 i -i -1 
I :l ,6 4' 

1 1 i -i -1 
I I :l ,6 4' 

i i -1 1 -i 

z z 4' X ,6 
-i -i 1 -1 i 

,6 ,6 X rr :l 
-1 -1 -i i 1 

4' 4' ,6 :l X 

The rewritten table shows that the operations in Us and L work in exactly the 
same way-the only difference is the way the elements are labeled. As far as 

*The first few pages of this section explain the concept of isomorphism for groups, which is 
essentially the same as the explanation for rings in Section 3.3. If you have read that section, feel 
free to begin this one at the Definition on page 216. 
tro make the elements of the two groups easily distinguishable, the elements of L are in boldface. 
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group structure goes Ls is just the group Us with new labels on the elements. In 
more technical terms, Us and L are said to be isomorphic 

In general, isomorphic groups are groups that have the same structure, in the sense 
that the operation table for one is the operation table of the other with the elements 
suitably relabeled. Although this intuitive idea is adequate for small finite groups, we 
need to develop a rigorous mathematical definition of isomorphism .that agrees with 
this intuitive idea and is readily applicable to large groups as well. 

There are two aspects to the intuitive idea that groups G and H are isomorphic: 
relabeling the elements of G, and comparing the new operation table with that of H. 
Relabeling means that every element of G is paired with a unique element of H (its new 
label). In other words, there is a function/ G~H that assigns to each rEG its new label 
f(r) E H. In the preceding example, we used the relabeling function f U5 ~ K given by 

f(l) = 1 f(2) = i /(3) = -i /(4) = -l. 
The functionfG~H must have these properties: 

(1) Distinct elements of G get distinct labels in H: 

If r =I= r' in G, thenf(r) =I= f(r') in H. 

(2) Every element of His the label of some element of G:* 

For each h E H, there is an r E G such that f(r) = h. 

Properties (1) and (2) simply say that the function/must be both injective and surjec
tive, that is,fis a bijection.t 

In order to be an isomorphism, however, the table of G must become the table of H 
when/is applied. If this is the case, then for two elements a and b of G, the situation 
must look like this: 

G H 

* b * f(b) 

a c f(a) /(c) 

As indicated in the two tables, 

a* b = c in G and f(a) * f(b) = f(c) in H 

Since a* b = c in G, we must havef(a *b) = f(c) in H. Combining this with the fact 
thatf(c) = f(a) * f(b) in Hwe see that 

f(a * b)=f(a) */(b). 

This is the condition thatfmust satisfy in order forfto change the operation tables of 
G into those of H. We can now state a formal definition of isomorphism. 

*Otherwise we could not get the complete table of H from that of G. 
tlnjective, surjective, and bijective functions are discussed in Appendix B. 
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Definition 
.. -

Let G and Hbe groups with the group operation. denoted by *.G is 
isomorphicto.a group H (in symbols, G =H) if there is afunction.f·G-+ H 
such that · · · - · 

(i) fis.injective: 

(ii) f is surjective; 

(iii) f(a ¥;b)= f(a)*f(b) for all a, bE G. 

In this case, the function f is calied ari isomOrphism .. 

It can be shown that G = H if and only if H = G (Exercise 53). 

NOTE: In the preceding discussion, we have temporarily reverted to the * 
notation for group operations to remind you that in a specific group, the 
operation might be addition, multiplication, or something else. In such 
cases, condition (iii) of the definition may take a different form; for instance, 

Condition (iii) f(a *b)= f(a) *f(b) 

G and H additive: f(a + b)= f(a) + f(b) 

G and H multiplicative: f(ab) = f(a)f(b) 

G additive, H multiplicative: f(a +b)= f(a)f(b) 

G multiplicative, H additive: f(ab) = f(a) + f(b) 

EXAMPLE 2 

The multiplicative group Us= {1, 3, 5, 7} of units in Zs is isomorphic to the 
additive group Z2 X Z2. To prove this, letf Us-+ Z2 X Z2 be defined by 

/(1) = (0, 0) /(3) = (1, 0) /(5) = (0, 1) /(7) = (1, 1). 

Clearly /is a bijection. Showing thatf(ab) = f(a) + f(b) for a, bE Us is equiva-
lent to showing that the operation table for Z2 X Z2 can be obtained from that 
of Us simply by replacing each a E Us by f(a) E.l:2 X Z2 .Use the tables below to 
verify that this is indeed the case. Therefore,/ is an isomorphism: 

Us Z2 X Z2 

0 3 5 7 + (0, 0) (1, 0) (0, 1) (1, 1) 

1 3 5 7 (0, 0) (0, 0) (1, 0) (0, 1) (1, 1) 

3 3 1 7 5 (1, 0) (1, 0) (0, 0) (1' 1) (0, 1) 

5 5 7 1 3 (0, 1) (0, 1) (1, 1) (0, 0) (1, 0) 
7 7 5 3 (1, 1) (1, 1) (0, 1) (1, 0) (0, 0) 
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EXAMPlE 3 

Let E be the additive group of even integers. We claim thatf£:-+ E given by 
f(a) = 2a is an isomorphism. Since£:: and Ear~ infinite, comparing tables is 
not an option. However, the formal definition of isomorphism will do the job. 
We begin by showing that/is injective.* Suppose a, b EZ andf(b) = f(b) in E. 
Then 

f(b) = f(b) 

2a = 2b 

a=b 

[Definition off] 

[Divide both sides by 2.] 

Hence,/ is injective. Now suppose nEE. Since n is an even integer, n = 2k for 
some integer k. Therefore,/(k) = 2k = n, and/ is smjective. Finally, for all a, 
b EZ, 

f(a + b) = 2(a +b) = 2a + 2b = f(a) + f(b). 

Hence,/ is an isomorphism of additive groups. 

EXAMPlE 4 

The additive group IR of real numbers is isomorphic to the multiplicative group 
IR** of positive real numbers. To prove this, letfiR-+IR** be given by f(r) = 10,.. 
To show that/is injective, suppose that 

f(r) = f(s). 

Then 
10" = ws 

log 10' =log lOs 

r=s 

[Definition off] 

[Take logarithms of both sides.] 

[Basic property of logarithms] 

So fis injective. To prove thatjis surjective, let k E IR. Then r = log k is a real 
number, and by the definition of logarithm, 

f(r) = 10,. = 1010g k = k. 

Thus, f is also surjective. Finally, 

f(r + s) = 10'-+s = lO,.lOs = f(r)f(s). 

Therefore,/ is an isomorphism and IR = IR**. 

*Injective, surjective, and bijective functions are discussed in Appendix B. 
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EXAMPLE 5 

Two finite groups with different numbers of e~ements (such as 7L5 and £:10) can
not be isomorphic, because no function from one to the other can be a bijection. 

Example 1 presented two groups with the same number of elements that were 
isomorphic. However, this is not always the case. 

EXAMPLE 6 

S3 and the additive group 7L6 each have order 6, but are not isomorphic. There is 
no way to relabel the addition table of 7L6 to obtain the table of S3 because the 
operation in S3 is not commutative, but addition in £:6 is. A similar argument in 
the general case (see Exercise 16) shows that for groups G and H, 

If G is abelian and His nonabelian, then G and H are not isomorphic. 

EXAMPLE 7 

The additive groups 7L4 and £:2 X £:2 each have order 4 but are not isomorphic 
because every nonzero element of £:2 X 7L2 has order 2, but £:4 has two elements 
of order 4 (namely, 1 and 3). So relabeling the addition table of one cannot 
produce the table of the other. More generally by Exercise 29, 

Iff is an isomorphism, then a andf(a) have the same order. 

If G is a group, then an isomorphism G-+ G is called an automorphism of the group G. 

EXAMPLE 8 

If G is a group, then the identity map La: G-+ G given by La (r) = r is an auto
morphism of G. It is clear that La is bijective, and for any a, b E G, 

La(a *b)= a* b = La(a) * La(b). 

EXAMPLE 9 

Let c be a fixed element of a group G. Define f G-+ G by f(g) = c-1gc. 
Then 

If g E G, then cgc- 1 E G and 

f(cgc- 1) = c- 1(cgc- 1)c = {c- 1c)g(c- 1c) = ege =g. 

Sofis surjective. To show thatfis injective, supposef(a) = f(b). Then c- 1ac = 
c- 1bc. Canceling con the right side and c- 1 on the left side by Theorem 7.5, we 
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have a= b. Hence,fis injective. Therefore,fis an isomorphism, called the inner 
automorphism of Ginduced by c. For more about automorphisms, see Exercises 36, 
37, 58, and 59. 

The next theorem completely characterizes all cyclic groups. 

Let G be a cyclic group. 

(1) If G is infinite, then G is isomorphic to the additive group ?L. 

(2) If G is finite of order n, then G is isomorphic to the additive group ?Ln. 

Proof~~> (1) Suppose that G =(a) is an infinite cyclic group. By Theorem 7.15 G 
consists of the elements ak with k E ?L, all of which are distinct (meaning 
that a; = al if and only if i = j). The function/ G ~ 7L defined by f( a1 = k 
is easily seen to be a bijection (Exercise 17). Since 

f(aia1) = f(d + 1) = i + j = f(d) + f(a1), 

fis an isomorphism. Therefore, G = ?L. 

(2) Now suppose that G =(b) and b has order n. By Theorem 7.15, 
G = {b0

, b1, b2
, .•• , bn- 1}, and by Corollary 2.5, ?Ln = {[0], (1], (2], ... , 

[n - 1]}. Define g: G ~ 7l11 by gW) = [i]. Clearly g is a bijection. Finally, 

g(bibi) = g(bi + i) = u + JJ = [iJ + UJ = gW) + g(bi). 

Hence, g is an isomorphism and G = ?Ln. 

EXAMPlE 10 

In multiplicative group <CD* of nonzero rational numbers, the cyclic subgroup 

. { 1 1 1 1 }*. generated by 2 1s (2) = ... , 16' S' 4' 2' 1 , 2, 4, 8, 1 6, . . . . The 

group (2) is isomorphic to the additive group 7L by Theorem 7.19. 

EXAMPlE 11 

The upper left-hand quadrant of the operation table for D4 in Example 5 
of Section 7.1 or 7.1.A and Theorem 7.12 show that G = {r0, rl> r2, r3} is 
a subgroup of D4. Verify that both G and Us= {1, 2, 3, 4} are cyclic. By 
Theorem 7.19 each is isomorphic to the additive group 7L4 . Hence, they are 
isomorphic to each other: G = Us (Exercise 21). 

*Exercise 7 of Section 7.3. 
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Definition 

Homomorphisms 

Many functions that are not injective or surjective satisfy condition (iii) of the defini
tion of isomorphism. Such functions are given a· special name and play an important 
role in later sections of this chapter. 

LetG and H be groups (with operation*). A function f.·G :--*His said to be 
.. a homomorphism if ' . 

f(a *b)== f(a) *((b) for all a, be G. 

Every isomorphism is a homomorphism, but a homomorphism need not be an 
isomorphism. 

EXAMPLE 12 

The function fiR*:--* IR* given by f(x) = x2 is a homomorphism of multiplica
tive groups because 

f(ab) = (ab)2 = a2b2 = f(b)f(b). 

However,fis not injective becausef(l) = f( -1) and is not surjective because 
f(x) = x 2 ?:: 0 for all x, so no negative number is an image under f 

EXAMPlE 13 

The functionfZ :--* £:5 given by f(a) = [a] is a homomorphism of additive 
groups because 

f(a +b)= [a+ b] =[a]+ [b] =f(b) = f(b). 

The homomorphism! is surjective, but not injective (Why?). 

EXAMPlE 14 

If G and Hare groups, the functionfG X H :--* G given by f((x, y)) =xis a 
surjective homomorphism (Exercise 9). If His not the identity group, g is not 
injective. For instance, if eH of. a E H, then (e0, a) of. (e0, eH) in G X H, but 
f((e 0, a)) = e0 andf((e0 , eH)) = ea. 

Recall that the image of a function f G :--* H is a subset of H, namely Im f = 
{hE HI h = f(a) for some a E G}. The function! can be considered as a surjective map 
from Gto Imf 



7.4 Isomorphisms and Homomorphisms 221 

Let G and H be groups with identity elements eG and eH, respectively. If 
f:G --'7 His a homomorphism, then 

(1) f(eG) = eH. 

(2) f(a-1) = f(at1 for every a E G. 

(3) lm f is a subgroup of H. 

(4) Iff is injective, then G = lm f. 

Proof 1> (1) Sincefis a homomorphism, e6 is the identity in G, and eHis the 
identity in H, we have 

f(eG)f(eG) = f(eGeG) 

f(eG)f(eG) = f(eG) 

f(eG)f(eG) = eHf(eG) 

[f is a homomorphism.] 

[ e6 is the identity in G.] 

[J(e6 ) EH and eH is the identity in H.] 

Cancelingf(e6) on the right (by Theorem 7.5) producesf(e6 ) = eH. 

(2) By (1) we have 

f(a- 1)f(a) = f(a- 1a) = f(eG) = eH = f(a)- 1f(a). 

Cancelingf(a) on each end shows thatf(a- 1
) = f(a)- 1

• 

(3) The identity eHEimfby (1), and so Imjis nonempty. Since 
f(a)f(b) = f(ab), Imfis closed. The inverse of eachf(a) E Imfis also in 
Imfbecausef(a)-1 = f(a- 1

) by (2). Therefore, Imfis a subgroup of Hby 
Theorem 7.11. 

( 4) As noted before the theorem,/ can be considered as a surjective 
function from G to Imf If jis also an injective homomorphism, thenfis an 
isomorphism. 

Group theory began with the study of permutations and groups of permutations. 
The abstract definition of a group came later and may appear to be far more general 
than the concept of a group of permutations. The next theorem shows that this is 
not the case, however. 

~··-~~-y-;~;,_·cc::;_::-;;c:-~·:-~-,,-.;. .. -,-- :;-:_·,' ---- "~->7\:T---::·-,·-- ,·J<~- '· '-,--,,_,,-- ,~<·-" 

The6rem.·1:21 · .. :: dayley's·theolem .... 
Every group G is isomorphic to a group of permutations. 

Proof ~> Consider the group A( G) of all permutations of the set G. Recall that 
A( G) consists of all bijective functions from G to G with composition as 
the group operation. These functions need not be homomorphisms. 
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To prove the theorem, we find a subgroup of A( G) that is isomorphic to 
G.* We do this by constructing an injective homomorphism of groups 
f G--+ A( G); then G is isomorphic to the subgroup Imf of A( G) by 
Theorem 7.20. 

If a E G, then we claim that the map 'Pa:G-+ Gdefined by 'Pa(x) =ax is 
a bijection of sets [that is, an element of A( G)]. This follows from the fact 
that if bEG, then ~pa(a- 1 b) = a(a-1b) = b; hence, 'Pais surjective. If 'Pa(b) = 

'Pa(c), then ab = ac. Canceling a by Theorem 7.5, we conclude that b =c. 
Therefore, 'Pais injective and, hence, a bijection. Thus 'Pa E A( G). 

Now definefG-+ A( G) by f(a) = 'Pa· For any a, bE G,f(ab) = 'Pab is 
the map from Gto Ggiven by 'Pab(x) = abx. On the otherhand,f(a) of(b) = 
'Pa o 'Pb is the map given by ('Pa o 'Pb)(x) = 'PaC'Pb(x)) = ~pa(bx) = abx. Therefore, 
f(ab) = f(a) of(b) andfis a homomorphism of groups. Finally, suppose 
f(a) = f(c), so that ~pa(x) = 'Pc(x) for all x E G. Then a = ae = 'Pa(e) = 'Pc(e) = 
ce =c. Hence,/ is injective. Therefore, G = Imfby Theorem 7.20. II 

Every finite group G of order n is isomorphic to a subgroup of the symmetric 
group sn" 
Proof ~> The group G is isomorphic to a subgroup H of A( G) by the proof of 

Theorem 7.21. Since G is a set of n elements, A( G) is isomorphic to Sn 
by Exercise 38. Consequently, His isomorphic to a subgroup K of S11 by 
Exercise 22. Finally, by Exercise 21, G =Hand H = K imply that G = K. Ill 

Any homomorphism from a group G to a group of permutations is called a 
representation of G, and G is said to be represented by a group of permutations. The 
homomorphism G--+ A (G) in the proof of Theorem 7.21 is called the left regular repre
sentation of G. By the use of such representations, group theory can be reduced to the 
study of permutation groups. This approach is sometimes very advantageous because 
permutations are concrete objects that are readily visualized. Calculations with per
mutations are straightforward, which is not always the case in some groups. In certain 
situations, group representations are a very effective tool. 

On the other hand, representation by permutations has some drawbacks. For one 
thing, a given group can be represented as a group of permutations in many ways-the 
homomorphism G-+ A( G) of Theorem 7.21 is just one of the possibilities (see Exercises 
49, 51, and 54 for others). And many of these representations may be quite inefficient. 
According to Corollary 7.22, for example, every group of order 12 is isomorphic to a 
subgroup of S12, but S12 has order 12! = 479,001,600. Determining useful information 
about a subgroup of order 12 in a group that size is likely to be difficult at best. 

Except for some special situations, then, the study of elementary group theory via 
the abstract definition (as we have been doing) rather than via concrete permutation 
representations is likely to be more effective. The abstract approach has the advantage 
of eliminating nonessential features and concentrating on the basic underlying struc
ture. In the long run, this usually results in simpler proofs and better understanding. 

*The group A(G) itself is usually far too large to be isomorphic to G. For instance, if G has order n, 
then A(G) has order n! by Exercise 20 of Section 7.1. 
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Exercises 

A. 1. (a) Show that the functionf!R ....-.+ IR given by f(x) = 3x is an isomorphism of 
additive groups. 

(b) Let IR** be the multiplicative group of positive real numbers. Show that 
fiR**....-.+ IR** given by f(x) = 3x is not a homomorphism of groups. 

2. Show that the function g:IR**-----+ IR** given by g(x) = Vi: is an isomorphism. 

3. Show that GL(2, £:2) is isomorphic to S3 by writing out the operation tables 
for each group. [Hint: List the elements of GL(2, £:2) in this order: 

G ~), G ~), (~ ~), G ~), C ~), C ~) and the elements 

of s3 in this order: c ~ 3) (1 2 3) (1 2 3) (1 2 3) 3' 213' 321' 231' 
(1 2 3) (1 2 3) 

3 1 2 ' 1 3 2 .] 

4. Prove that the function fiR*....-.+ IR* defined by f(x) = x3 is an isomorphism. 

5. Prove that the function g:£:9 ....-.+ £:9 defined by g(x) = 2x is an isomorphism. 

6. Prove that the function h:£:8 ....-.+ £:8 defined by h(x) = 2x is a homomorphism 
that is neither injective nor surjective. 

7. Prove that the function fiR*....-.+ IR** defined by f(x) = lxl is a surjective 
homomorphism that is not injective. 

8. Prove that the function g:IR ....-.+ IR* defined by g(x) = 2x is an injective 
homomorphism that is not smjective. 

9. If G and Hare groups, prove that the functionfG X H....-.+ G given by f((a, b))= 
a is a surjective homomorphism. 

10. Show that the function fiR-----+ IR defined by f(x) = x2 is not a homorphism. 

11. ~r.ove. that the functio_n g:IR* ....-.+ GL(2, IR) defined by g (x) = G ~) is an 
mJectlve homomorph1sm. 

12. Prove that the function h: IR ....-.+ GL(2, IR) defined by h (x) = ( 
1 ~) is an 

injective homomorphism. x 

13. Show that U5 is isomorphic to U10• 

14. Prove that the additive group £:6 is isomorphic to the multiplicative group of 
nonzero elements in £:7. 

15. Let f G....-.+ H be a homomorphism of groups. Prove that for each a E G and 
each integer n,f(a") = f(ay. 

16. If fG ....-.+His a smjective homomorphism of groups and G is abelian, prove 
that His abelian. 
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17. Prove that the function/in the proof of Theorem 7.19(1) is a bijection. 

18. Let G, H, GI> H 1 be groups such that G = G1 and H = H 1. Prove that 
GXH= G1 X H1. 

19. Prove that a group G is abelian if and only if the functionf G---+ G given 
by f(x) = x-1 is a homomorphism of groups. In this case, show that/is an 
isomorphism. 

20. Let N be a subgroup of a group G and let a E G. 

(a) Prove that a-1Na = {a- 1na In EN} is a subgroup of G. 

(b) Prove that N is isomorphic to a-1Na. [Hint: DefinefN---+ a-1Na by 
f(n) = a-1na.] 

21. Let G, H, and K be groups. If G = Hand H = K, then prove that G = K. 
[Hint: Iff G---+ Hand g:H---+ K are isomorphisms, prove that the composite 
function g of G---+ K is also an isomorphism.] 

22. Iff G---+ His an isomorphism of groups and if Tis a subgroup of G, prove 
that Tis isomorphic to the subgroup f(T) = {fia) I a E T} of H. 

23. (a) If G is an abelian group, prove that the function f G---+ G given by 
f(x) = x2 is a homomorphism. 

(b) Prove that part (a) is false for every nonabelian group. [Hint: A counter
example is insufficient here (Why?). So try Exercise 24 of Section 7.2.] 

B. 24. Let G be a multiplicative group. Let G0
P be the set G equipped with a new 

operation* defined by a* b = ba. 

(a) Prove that G0
P is a group. 

(b) Prove that G = G0
P. [Hint: Corollary 7.6 may be helpful.] 

25. Assume that a and b are both generators of the cyclic group G, so that G = 
(a) and G = (b). Prove that the function! G---+ G given by f(c/) = bi is an 
automorphism of G. 

26. If G = (a) is a cyclic group and f G---+ His a surjective homomorphism of 
groups, show thatf(a) is a generator of H, that is, His the cyclic group (!(a)). 
[Hint: Exercise 15.] 

27. Let G be a multiplicative group and c a fixed element of G. Let H be the set G 
equipped with a new operation * defined by a * b = acb. 

(a) Prove that His a group. 

(b) Prove that the map f G---+ H given by f(x) = c -I x is an isomorphism. 

28. Letf G---+ H be a homomorphism of groups and suppose that a E G has finite 
order k. 

(a) Prove thatf(a)'< =e. [Hint: Exercise 15.] 

(b) Prove that 1/(a)l divides lal. [Hint: Theorem 7.9.] 

29. Iff G---+ His an injective homomorphism of groups and a E G, prove that 
1/(a)l = lal. 
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30. LetfG---+ Hbe a homomorphism of groups and let Kbe a subgroup of H. 
Prove that the set {a E G lf(a) E K} is a subgroup of G. 

31. If fG---+ G is a homomorphism of groups, prove that F = {a E G lf(a) =a} is 
a subgroup of G. 

32. If A = (: ~) is a matrix, the number ad - be is denoted det A and called 

the determinant of A. Prove that the functionfGL(2, IR)---+ IR* given by 
f(A) = det A is a surjective homomorphism. 

33. LetfG---+ Hbe a homomorphism of groups and let K[ = {a E G If( a)= es}, 
that is, the set of elements of G that are mapped by fto the identity element 
of H. Prove that K1 is a subgroup of G. See Exercises 34 and 35 for examples. 

34. The functionf::Z:---+ Zs given by f(x) = [x] is a homomorphism by Example 13. 
Find K1 (notation as in Exercise 33). 

35. The function/ Us---+ Us given by f(x) = x 2 is a homomorphism by Exercise 23. 
Find K1 (notation as in Exercise 33). 

36. Let G be a group and let Aut G be the set of all automorphisms of G. Prove 
that Aut G is a group under the operation of composition of functions. 
[Hint: Exercise 21 may help.] 

37. Let G be a group and let Aut G be as in Exercise 36. Let Inn Gbe the set of 
all inner automorphisms of G (that is, isomorphisms of the formf(a) = c- 1ac 
for some c E G, as in Example 9.). Prove that Inn G is a subgroup of Aut G. 
[Note: Two different elements of G may induce the same inner automorphism, 
that is, we may have c- 1ac = d- 1adfor all a E G. Hence, linn Gl:::; IGI.J 

38. Let Tbe a set n elements and let A(1) be the group of permutations ofT 
Prove that A(T) = Sw [Hint: If the elements of Tin some order are relabeled as 
1, 2, ... , n, then every permutation of Tbecomes a permutation of 1, 2, ... , n.] 

39. Show that the additive groups £: and Q are not isomorphic. 

In Exercises 40-44, explain why the given groups are not isomorphic. (Exercises 16 
and 29 may be helpful.) 

40. £:6 and s3 

42. 1:4 X 1:2 and 1:2 X 1:2 X 1:2 

41. £:4 X 1:2 and D 4 

43. Us and U10 

45. Is Us isomorphic to U12? Justify your answer. 

44. U10 and U12 

46. Prove that the additive group IR of all real numbers is not isomorphic to the 
multiplicative group IR* of nonzero real numbers. [Hint: If there were an 
isomorphismf!R---+ IR*, thenj(k) = -1 for some k; use this fact to arrive at a 
contradiction.] 

47. Show that D4 is not isomorphic to the quaternion group of Exercise 16 of 
Section 7 .1. 

48. Prove that the additive group Q is not isomorphic to the multiplicative group 
Q** of positive rational numbers, even though IR and IR** are isomorphic. 
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49. Let G be a group and let A( G) be the group of permutations of the set G. 
Define a function g from G to A( G) by assigning to each dE G the inner 
automorphism induced by d-1 (as in Example 9 with c = d-1

). Prove that g is 
a homomorphism of groups. 

50. Let G be a group and h EA(G). Assume that h o Cf!a = Cf!a o h for all a E G 
(where Cf!a is as in the proof of Theorem 7.21). Prove that there exists bEG 
such that h(x) = xb- 1 for all x E G. 

51. (a) Let G be a group and c E G. Prove that the map ec:G--+ G given by 
ec(X) =XC-! is an element of A( G). 

(b) Prove that h: G--+ A( G) given by h(c) = ec is an injective homomorphism 
of groups. Thus G is isomorphic to the subgroup Imhof A( G). This is the 
right regular representation of G. · 

52. Find the left regular representation of each group (that is, express each group 
as a permutation group as in the proof of Theorem 7.21): 

53. Let f G--+ H be an isomorphism of groups. Let g:H--+ G be the inverse 
function off as defined in Appendix B. Prove that g is also an isomorphism of 
groups. [Hint: To show that g(ab) = g(a)g(b), consider the images of the left
and right-hand sides underfand use the facts thatfis a homomorphism and 
fog is the identity map.] 

54. (a) Show that D3 = S3• [Hint: D3 is described in Example 6 of Section 7.1 
or 7 .1.A. Each motion in D3 permutes the vertices; use this to define a 
function from D 3 to S3.] 

(b) Show that D 4 is isomorphic to a subgroup of S4 . [Hint: See the hint 
for part (a). This isomorphism represents D4, a group of order 8, as a 
subgroup of a permutation group of order 4! = 24, whereas the left 
regular representation of Corollary 7.22 represents Gas a subgroup 
of S8, a group of order 8! = 40,320.] 

{ (
1 -n 11 -11 ) I } 55. (a) Prove that H = 

1 
+ 

11 
11 E 7L is a group under matrix 

multiplication. 

(b) Prove that H = 7L. 

56. (a) Prove that K = { C -=-4 ~n 
multiplication. 

(b) Is K isomorphic to 7L? 

1 
: 

2
n) I 11 E 7L} is a group under matrix 

57. Prove that the additive group 7L[x] is isomorphic to the multiplicative group 
Q** of positive rationals. [Hint: Let p0, p 1, p2, ... be the distinct positive 
primes in their usual order. Define cp:7L[x]--+ Q** by 
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58. Prove that G is an abelian group if and only if Inn G consists of a single 
element. [Hint: See Exercise 37.] 

59. (a) Verify that the group Inn D4 has order 4. [Hint: See Exercise 37.] 

(b) Prove that Inn D4 = 7L2 X 7L2. 

60. Prove that Aut 7L = 7L2• [Hint: What are the possible generators of the cyclic 
group 7L? See Exercises 25 and 26.] 

61. Prove that Aut 7L11 = U,,. [Hint: See Exercise 25 above and Exercise 44 of 
Section 7.3.] 

62. Prove that Aut (7L 2 X 7L2) = S3. 

APPLICATION: Linear Codes (Section 16.1) may be covered at this point 
if desired. 

The Symmetric and Alternating Groups* 

The finite symmetric groups S11 are important because, as we saw in Corollary 7.22, 
every finite group is isomorphic to a subgroup of some Sll' In this section, we introduce 
a more convenient notation for permutations, and some important subgroups of the 
groups S11 • We begin with the new notation. 

Consider the permutation G ! ~ ~ ~ ~)in S6. Note that 2 is mapped to 4, 4 

is mapped to 6, 6 is mapped to 5, 5 is mapped back to 2, and the other two elements, 
1 and 3, are mapped to themselves. All the essential information can be summarized 
by this diagram: 

It isn't necessary to include the arrows here as long as we keep things in the same order. 
A complete description of this permutation is given by the symbol (2465), with the 
understanding that 

each element is mapped to the element listed immediately to the right; 

the last element in the string is mapped to the first; 

elements not listed are mapped to themselves. 

*Except for a few well-marked examples and exercises, this section is needed only in Sections 8.5, 
9.3-9.5, and 12.3. 
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Definition 

This is an example of cycle notation. Here is a formal definition. 

' ' 

Let a1i a21 a31 .•• ,'ak (with k :2.: 1) be distinct elements of the set {11 2, 3, ... I n }. 
Then (a1a2a3 ... ak) denotes the permutation in Sn that maps a1 to a21 a2 to 
a3, ... , ak_1 to ak1 andak to a1, and maps every other.ele.ment of {1, 21 3, ... In} 
to itself. (a1a2a3 ••• ak) is called a cycle of length k ora k-cycle. 

EXAMPLE 1 

In S4, (143) is the 3-cycle that maps 1 to 4, 4 to 3, 3 to 1, and 2 to itself; it was 

written G ~ ~ ~)in the old notation. N9te that (143) may also be denoted by 

(431) or (314) since each of these indicates the function that maps 1 to 4, 4 to 3, 
3 to 1, and 2 to 2. 

EXAMPLE 2 

According to the definition above, the 1-cycle (3) inS" is the permutation that 
maps 3 to 3 and maps every other element of { 1, 2, ... , n} to itself; in other 
words, (3) is the identity permutation. Similarly, for any k in { 1, 2, ... , n}, the 
1-cycle (k) is the identity permutation. 

Strictly speaking, cycle notation is ambiguous since, for example, (163) might de
note a permutation in S6, in S7, or in any S" with n :::.: 6. In context, however, this 
won't cause any problems because it will always be made clear which group Sn is under 
discussion. 

Products in cycle notation can be visually calculated just as in the old notation. For 
example, we know that 

(
1 2 3 4) 0 (1 2 3 4) = (1 2 3 4) 
1423 2413 4312' 

(Remember that the product inS" is composition of functions, and so the right-hand 
permutation is performed first.) In cycle notation, this product* becomes 

(o 3) (n 4 3) = (1 4 2 3). 

~ 
The arrows indicate the process: 1 is mapped to 2 and 2 is mapped to 4, so that the 
product maps 1 to 4. Similarly, 4 is mapped to 3 and 3 is mapped to 2, so that the 
product maps 4 to 2. 

*Hereafter we shall om itt he composition symbol oand write the group operation in Sn multiplicatively. 
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EXAMPLE 3 

In the old notation S3 consists of 

In the new notation, the elements of S3 (in the same order) are 

(1), (23), (13), (12), (123), and (132). 

Two cycles are said to be disjoint if they have no elements in common. For instance, 
(13) and (2546) are disjoint cycles in S6, but (13) and (345) are not since 3 appears in 
both cycles. 

EXAMPLE 4 

As shown before Example 3, (243)(1243) = (1423). Verify that 

(1243)(243) = (2341). 

Hence, the cycles (243) and (1234) do not commute with each other. On the other 
hand, you can easily verify that the disjoint cycles (13) and (2546) do commute: 

(13)(2546) = G ~ ~ : ~ ~) = (2546)(13). 

This is an illustration of the following theorem. 

····yheorem .. 7. 
If a= (a 1a2 · · · ak) and T = (b 1b2 · · · brJ are disjoint cycles in Sn, then aT= Tcr.* 

Proof,.. Exercise 18. ill 

It is not true that every permutation is a cycle, but every permutation can be 
expressed as the product of disjoint cycles. Consider, for example, the permutation 

( 
1 2 3 4 5 6 7) . . d I h . d . lf 1 d 
5 1 7 2 4 6 3 

m S7. Fm an e ement t at 1s not mappe to 1tse , say , an trace 

where it is sent by the permutation: 

1 is mapped to 5, 5 is mapped to 4, 4 is mapped to 2, and 
2 is mapped to 1 (the element with which we started). 

*Greek letters are often used to denote permutations. We shall generally use the letters alpha (a), 
beta ({3), delta (8), sigma (u), and tau (r). For the entire Greek alphabet, see the inside back cover of 
this book. 



230 Chapter 7 Groups 

Thus the given permutation has the same action as the cycle (1542) on these four 
elements. Now look at any element other than 1, 5, 4, 2 that is not mapped onto itself, 
say 3. Note that 

3 is mapped to 7, and 7 is mapped to 3. 

Thus the 2-cycle (37) has the same action on 7 and 3 as the given permutation. The only 
element now unaccounted for is 6, which is mapped to itself You can now easily verify 
that the original permutation is the product of the two cycles we have found, that is, 

(
1 2 3 4 5 6 7) 
5 1 7 2 4 6 3 = ( 1542)( 37). 

Although some care must be used and the notation is more cumbersome, essentially 
the same procedure works in the general case. 

Every permutation in Sn is the product of disjoint cycles.* 

Proof~ Adapt the procedure in the preceding example; see Exercise 44. 

The order of a permutation r in Sn is the least common multiple of the lengths 
of the disjoint cycles whose product is r.t 

Proof"" Exercise 19. 111 

EXAMPLES 

The permutation r = (12)(34)(567) is a product of disjoint cycles of lengths 2, 2, 
and 3. The least common multiple of 2, 2, and 3 is 6. Theorem 7.25 tells us that 
r has order 6. You can verify this directly by computing the powers of r: 

r = (12)(34)(567), 

r 4 = (567), 

The Alternating Groups 

r 2 = (576), 

r 5 = (12)(34)(576), 

r 3 = (12)(34), 

'T6 = (1). • 

A 2-cycle is often called a transposition. Transpositions have some interesting properties. 

EXAMPLE 6 

If (ab) is a transposition, verify that (ab)(ab) = (1). Hence, 

Every transposition is its own inverse. 

*As usual, we allow the possibility of a product with just one cycle in it. 

trhe least common multiple is defined in Exercise 31 of Section 1.2. 
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EXAMPLE 7 

We claim that the inverse of the product (12)(34)(14)(13) is (13)(14)(34)(12) (the 
same transpositions in reverse order). To prove this claim, we use the fact that a 
transposition is its own inverse: 

(12)(34)(14)(13) . (13)(14)(34)(12) = (12)(34)(14) . (14)(34)(12) 

= (12)(34). (34)(12) = (12)(12) = (1). 

A similar argument works in the general case and shows that 

If 0'1, 0'2, 0'3, ••• , 0'11 _ 1, and 0"11 are transpositions, then 

(o-10'20"3' • 'Un-10'nt
1 = O'nO'n-1' • • 0"30"20"1• 

You can easily verify that 

(1) = (12)(12), (123) = (12)(23), (1234) = (12)(23)(34). 

These are examples of the following theorem. 

Every permutation in Sn is a product of (not necessarily disjoint) transpositions. 

Proof~ Since every permutation is a product of cycles by Theorem 7 .24, we need 
only verify that every cycle (a1a2 · · · a1J is a product of transpositions: 

(a1a2 · · · ak) = (alaz)(aza3) · · · (ale- 1a1J IJ!il: 

This corollary can also be proved directly by induction, without using Theorem 7.24 
(Exercise 33). 

A permutation in S" is said to be even if it can be written as the product of an 
even number of transpositions, and odd if it can be written as the product of an odd 
number of transpositions. 

EXAMPLE 8 

(132) is even and (1243)(243) is odd because, as you can easily verify, 

(132) = (12)(13) and (1243)(243) = (23)(34)(14). 

Since no integer is both even and odd, the even-odd terminology for permutations 
suggests that no permutation is both even and odd. This is indeed the case, but it 
requires proof The first step is to prove 

The identity permutation in Sn is even, but not odd. 

Proof~ We write the identity permutation as (1). Verify that (12)(12) = (1). 
Hence, the identity permutation is even. To show that it is not odd, we 
use a proof by contradiction. Suppose that (1) = rk · · · r2r 1 with each r,. 
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a transposition and k odd. Let c be a symbol that appears in at least one 
of these transpositions. Let r,. be the first transposition (reading from 
right to left) in which c appears, say r,. = (cd). Then c does not appear in 
r,. _ 1, • • • r 1 and is, therefore, left fixed by these transpositions. If r = k, 
then cis left fixed by all the r's except rk> so that the product-the iden
tity permutation-maps c to d, a contradiction. Hence, r < k. 

Now consider the transposition r,.+Jo It must have one of the follow
ing forms (where x, y, c, d denote distinct elements of { 1, 2, · · · n}: 

I. (xy) II. (xd) III. (cy) IV (cd). 

Consequently, there are four possibilities for the product rr+ 1r,.: 

I. (xy)(cd) II. (xd)(cd) III. (cy)(cd) IV (cd)(cd). 

In Case I, verify that (xy)(cd) = (cd)(xy). Replace (xy)(cd) by (cd)(xy) in 
the product; this moves the first appearance of c one transposition to the 
left. In Case II, verify that (xd)(cd) = (xc)(xd); if we replace (xd)(cd) by 
(xc)(xd), then once again the first appearance of cis one transposition far
ther left. Show that a similar conclusion holds in Case III by verifying that 
(cy)(cd) = (cd)(dy). 

Each repetition of the procedure in Cases I-III moves the first ap
pearance of c one transposition farther left. Eventually Case IV must 
occur; otherwise, we could keep moving c until it first appears in the last 
permutation at the left, rk> which is impossible, as we saw in the first para
graph. In Case IV, however, we have rr+ 1r,. = (cd)(cd) = (1). So we can 
delete these two transpositions and write (1) as a product of two fewer 
transpositions than before. Obviously, we can carry out the same argu
ment for any symbol that appears in a transposition in the product. If the 
original product contains an odd number of transpositions, eliminating 
two at a time eventually reduces it to a single transposition (1) = (ab), 
which is a contradiction. Therefore, the identity permutation (1) cannot 
be written as the product of an odd number of transpositions. 111. 

' th(forenft.'2B , 
:'"',·:: -----

No permutation in Sn is both even and odd. 

Proof I> Suppose a E sn can be written as (]'1(]'2 ... (]'k and as TJT2 •.. r,. with 
each a;, rj a transposition, k odd, and r even. Since every transposition is 
its own inverse, Corollary 7.6 shows that 

(1) = aa- 1 = (a1 • • • O'~c) (r1 • • • r,.)- 1 

= al ... akrr-1 ... TJ-1 

= O'J · • • O'kTr · · 'TJ· 

Since k is odd and r is even, k + r is odd, and we have written (1) as the 
product of an odd number of transpositions. This contradicts Lemma 7.27, 
and completes the proof of the theorem. Ill 
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The set of all even permutations in Sn is denoted An and is called the alternating 
group of degree n; the word "group" is justified by the following theorem. 

An is a subgroup of Sn of order n!/2. 

Proof~~> If a and f3 are in Am then a= cr1cr2 • • ·cr" and f3 = TJ'T2 · · · r"' with each 
cr;, r1 a transposition and k, r even. Thus, af3 = cr1cr2 · • • cr~cr 1 r2 · · · r,. 
Since k + r is even, af3 E Aw So An is closed under multiplication. By 
Example 7, a- 1 = crkcrk _ 1 • • • cr2cr1. Since k is even, a- 1 EAw Therefore, 

An is a subgroup by Theorem 7.11. Exercise 24 shows that IAnl = n!/2. 

EXAMPLE 9 

The elements of S3 are listed in Example 3. Because IS3I = 3!, we know that 

IA3I = ~! = 3. Since (12), (13), and (23) are obviously odd, A3 must consist of 

(123), (132), and (1). 

Exercises 

A. 1. Write each permutation in cycle notation: 

( 
1 2 3 4 5 6 7 8 9) 

(a) 7 2 1 4 56 3 8 9 

( 
1 2 3 4 5 6 7 8 9) 

(c) 4 8 1 7 52 6 3 9 

2. Compute each product: 

(a) (12)(23)(34) 

(c) (12)(53214)(23) 

( 
1 2 3 4 5 6 7 8 9) 

(b) 2 4 3 57 6 8 9 1 

(d) (1 2 3 4 56 7 8 9) 
125476938 

(b) (246)(147)(135) 

(d) (1234)(2345) 

3. Express as a product of disjoint cycles: 

(
1 2 3 4 56 7 8 9) 

(a) 2 1 3 54 7 9 8 6 

(
1 2 3 4 5 6 7 8 9) 

(c) 3 51 2 4 9 8 7 6 

(e) (7236)(85)(571)(1537)(486) 

(b (1 2 3 4 56 7 8 9) 
) 351246897 

(d) (14)(27)(523)(34)(1472) 

4. Write each permutation in Exercise 3 as a product of transpositions. 
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5. Find the order of each permutation. 

(a) (12) (b) (123) (c) (1234) 

(d) What do you think the order of (123456789) is? 

6. Find the order of each permutation. 

(a) (13)(24) (b) (123)(456) (c) (123)(435) 

(d) (1234)(4231) (e) (1234)(24)(43215) 

7. Which of these permutations are even: 

(a) (2468) (b) (246)(134) (c) (12)(123)(1234) 

8. List the elements in each group: 

9. What is the order of each group: 

(b) A5 (c) A 10 

10. Is the set B, of odd permutations in Sn a group? Justify your answer. 

11. List the order of each element of A4. 

12. Write (12)(34) as the product of two 3-cycles. 

13. Show that a= (123)(234)(567)(78910) has order 10 inS" (n 2:: 10). 
[Hint: Write a as a product of disjoint cycles and use Theorem 7.25.] 

14. Show that {3 = (1236)(5910)(465)(5678) has order 21 in Sn (n;:::: 10). 

B.15. Prove that the cycle (a1a2 · · · a~c) is even if and only if k is odd. 

16. Show that the inverse of (a!a2 ... a ~c) in sn is (akak- I ... a3a2a!). 

17. Prove that a k-cycle in the group Sn has order k. 

18. Let 0' = (a1a2 · • · a1c) and T = (b 1b2 • • • br) be disjoint cycles in S11 • Prove that 
O'T = TO'. [Hint: You must show that O'T and TO' agree as functions on each i 
in { 1, 2, ... , n}. Consider three cases: i is one of the a's; i is one of the b's; i is 
neither.] 

19. Prove Theorem 7.25: The order of a permutation r inS" is the kast common 
multiple of the lengths of the disjoint cycles whose product is r. 
[Hint: Theorem 7.23 and Exercise 17 may be helpful.] 

20. Let a and {3 be permutations in S,. 

(a) Fill the blanks in the table. 

a {3 

even even 

even odd 

odd even 

odd odd 

af3a- 1 a{3a- 1{3- 1 

even 

(b) What conclusions can you draw from the results in part (a). 
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21. Find the order of a 1000
, where a is the permutation C 2 3 4 5 6 7 8 9

). 
[Hint: Write a as a product of disjoint cycles.] 3 7 8 9 4 5 2 1 6 

22. Show that S 10 contains elements of orders 10, 20, and 30. Does it contain an 
element of order 40? 

23. Prove that {(1), (12)(34), (13)(24), (14)(23)} is a subgroup of A4. 

24. Let Bn denote the set of odd permutations in Sn. Define a functionfAn---+ Bn 
by !(ex) = (12)cx. 

(a) Prove thatfis injective. 

(b) Prove thatfis surjective. [Hint: If {3 E Bm then (12){3 E An-] 
So f is bijective. Hence, An and Bn have the same number of elements. 

(c) Show that !Ani= n!/2. [Hint: Every element of Sn is in A, or B11 (but not 
both) and ISnl = n!.] 

See Exercise 39(a) and (b) for a generalization of this exercise. 

25. Show that the subgroup G of S4 generated by the elements a = (1234) and 
r = (24) has order 8. 

26. Prove that the center of S" (n > 2) is the identity subgroup. 

27. If a is a k-cycle with k odd, prove that there is a cycler such that r 2 = a. 

28. Let a be a k-cycle in S". 

(a) Prove that a 2 is a cycle if and only if k is odd. 

(b) If k = 2t, prove that there are t-cycles rand {3 such that a2 = r/3. 

29. Let a and r be transpositions inS" with n :::::: 3. Prove that ar is a product of 
(not necessarily disjoint) 3-cycles. 

30. Prove that every element of A 11 is a product of 3-cycles. 

31. Let a be a product of disjoint cycles of the same length. Prove that a is a 
power of a cycle. 

32. Prove that the decomposition of a permutation as a product of disjoint cycles 
is unique except for the order in which the cycles are listed. 

33. Use induction on n to give an alternate proof of Theorem 7.26: Every 
element of S" is a product of transpositions. [Hint: If the statement is true 
for n = k- 1 and if r E Sk, consider the transposition (Ia), where r = r(k). 
Note that (kr)r fixes k and hence may be considered as a permutation of 
{1,2, ... ,k-l}.] 

34. If n:::::: 3; prove that every element of Sn can be written as a product of at most 
n - 1 transpositions. 

35. Let r be a transposition and let a E S11 • Prove that ara -l is a transposition. 

36. If Tis the k-cycle (ala2 ... ak) and if a E sm prove that ara-l = 
(a(a1)a(a2) · · · a(a~c)). 
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37. Let H consist of all permutations in S17 that fix 1 and n, that is, 

H ={a ES11 la(l) = 1 and a(n) = n}. 

Prove that His a subgroup of S11 • 

38. Show that D4 is isomorphic to the group Gin Exercise 25. [Hint: Note that 
every element of D4 produces a permutation of the vertices of the square 
(see Example 5 in Section 7.1 or 7.1.A.). If the vertices are numbered 1, 2, 
3, 4, then this permutation can be considered as an element of S4• Define a 
functionfD4 -+ S4 by mapping each element of D4 to its permutation of the 
vertices. Verify thatfis an injective homomorphism with image G.] 

39. Let G be a subgroup of S" that contains an odd permutation T. 

(a) Prove that the number of even permutations in G is the same as the 
number of odd permutations in G. 

(b) Explain why 2 divides I Gl. 

(c) If K is a subgroup of S11 of odd order, prove that K is actually a subgroup 
of All' 

C. 40. Prove that every element of A11 is a product of n-cycles. 

41. Prove that the transpositions (12), (13), (14), ... , (ln) generate S11 • 

42. Prove that (12) and (123 · · · n) generateS". 

43. Iff is an automorphism of S3, prove that there exists u E S3 such that 
j(T) = uTu-1 foreveryTES3. 

44. Use the following steps to prove Theorem 7.24: Every permutation Tin sll is a 
product of disjoint cycles. 

(a) Let a1 be any element of {1, 2, ... , n} such that T(a1) =!= a 1• Let a2 = T(a1), 

a3 = T(a2), a4 = T(a3), and so on. Let k be the first index such that T(a1J is 
one of a 1, ... , ak _ 1• Prove that T( a ~c) = a 1• Conclude that T has the same 
effect on a1, ••. , ak as the cycle (a 1a2 • • • a1J. 

(b) Let b1 be any element of {1, 2, ... , n} other than a~> ... , ak that is not 
mapped to itself by T. Let b2 = T(b1), b3 = T(b2), and so on. Show that 
T(bi) is never one of a~> ... , ak. Repeat the argument in part (a) to find a 
b,. such that T(b,.) = b1 and T agrees with the cycle (b 1b2 • • • b,.) on the b's. 

(c) Let c1 be any element of {1, 2, ... , n} other than the a's orb's above such 
that T(c1) =!= c1. Let c2 = T(c1), and so on. As above, find C8 such that T 

agrees with the cycle (c1c2 · · • cs) on the c's. 

(d) Continue in this fashion until the only elements unaccounted for are those 
that are mapped to themselves by T. Verify that Tis the product of the cycles 

(a 1 • • • a~c)(b 1 • • • b,.)(c1 • • • c,) · · · 

and that these cycles are disjoint. 

45. Prove that S11 is isomorphic to a subgroup of A"+2. 



Normal Subgroups and Quotient Groups 

Congruence in the integers led to the finite arithmetics 1Ln, which produced 
a number of interesting results. Now we shall extend the concept of congru 
ence to groups, producing new groups and a deeper understanding of algebraic 
structure. 

Congruence and Lagrange's Theorem 

In this section we present the analogue for groups of the concept of congruence, 
which was introduced for integers in Chapter 2 and for rings in Chapter 6. * Except 
for some notational changes, the first three results of this section are virtually identical 
to those proved earlier for integers and rings. The following chart shows this parallel 
development. 

INTEGERS 

Theorem 2.1 

Theorem2.3 

Corollary 2.4 

RINGS 

Theorem 6.4 

Theorem 6.6 

Corollary 6. 7 

GROUPS 

Theorem 8.1 

Theorem 8.2 

Corollary 8.3 

We begin by looking at an example of congruence in 7L from a somewhat different 
viewpoint. 

*Chapter 6 is not a prerequisite for this section, but it will be mentioned occasionally. Section 2.1 will 
be the model for the presentation here. 

237 
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Definition 

EXAMPLE 1 

In the integers, a= b (mod 4) means that 4 diyides a - b, that is, that a - b is a 
multiple of 4. Let K be the set of all multiples of 4, so that 

K = {0, ±4, ±8, ±12, ... }. 

Thus, 

a= b (mod 4) means a-bEK. 

Note that K is actually a subgroup of 7L (the additive cyclic subgroup generated 
by 4). Instead of thinking of congruence modulo the element 4, we can con
sider this as congruence modulo the subgroup K: 

a= b (mod K) means a-bEK. 

Now let G be any group and K a subgroup of G. The last line of the preced
ing example could be used as a definition of congruence modulo K. However, we 
normally use multiplicative notation for groups. So we must translate the pro
posed definition and results from Section 2.1 into equivalent statements in multi
plicative notation.* The following dictionary may be helpful for this translation. 

ADDITIVE NOTATION 

a+b 

0 

-c 

a- b =a+ (-b) 

MULTIPLICATIVE NOTATION 

ab 

Thus, the additive statement a - b E K is equivalent to the multiplicative state
ment ab - 1 E K, and we have the following definition of congruence. 

LetKbe a subgroup of a group G and let a, bEG: Jhena.is congruentto b 
modulo K[written a= b. (mod K)]provided .. thatab~1 EK · · 

EXAMPLE 2 

Let Kbe the subgroup {r0, r11 r2, r3} of D4. Then the operation table in Example 5 
of Section 7.1 or 7.1.A shows that d- 1 = d and h o d- 1 =hod= r 1 EK. Therefore, 
h = d(mod K). 

*There is a possibility of confusion here since integer multiplication is also defined. In carrying 
over congruence from integers to groups, we consider only the additive structure of the integers 
and ignore integer multiplication because the integers form an additive group, but not a 
multiplicative one. 
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Let K be a subgroup of a group G. Then the relation of congruence modulo 
K is 

(1) reflexive: a= a (mod K) for all a E G; 

(2) symmetric: if a = b (mod K), then b =a (mod K); 

(3) transitive: if a = b (mod K) and b = c (mod K), then a = c (mod K). 

The idea is to translate the proof of Theorem 2.1 to the present situation by chang
ing congruence mod n to congruence mod K and replacing statements such as "x is 
divisible by n" or "n I x" or "x = nt" with the statement "x E K''. We must also change 
additive notation to multiplicative notation by using the dictionary above. It's straight
forward for parts (1) and (3), but a bit trickier for part (2), since integer addition is 
commutative, but the multiplicative operation in G may not be. 

Proof ofTheorem 8.1 ~ (1) aa-1 = e and e EK. Hence, a= a (mod K). 

(2) a = b (mod K) means ab - 1 = k for some k E K. Therefore, by 
Corollary 7 .6, 

k-1 = (ab-1r1 = (b-l)-1a-I = ba-I. 

Since K is a group, the inverse of an element of K is also inK. Reading 
the preceding line from right to left, we see that ba-1 = k- 1 E K. Hence, 
b =a (mod K). 

(3) If a = b (mod K) and b = c (mod K), then by the definition of 
congruence, there are r, sEKsuch that ab- 1 =rand bc-1 = s. Therefore, 

(ab- 1)(bc- 1) = rs 
ac-1 = rs 

Thus, ac-1 EK (because rands are inK). Hence, a= c (mod K). 

If K is a subgroup of a group G and if a E G, then the congruence class of a modulo 
K is the set of all elements of G that are congruent to a modulo K, that is, the set 

{bEGib=a(modK)} = {bEGiba- 1 EK} 

= {bEG I ba-1 = k, with kEK}. 

Right multiplication by a shows that the statement ba- 1 = k is equivalent to b = ka. 
Therefore, the congruence class of a modulo K is the set 

{bEGib=ka,withkEK} = {kalkEK}, 

which is denoted Ka and called a right coset of Kin G. In summary: 

The congruence class of a modulo K is the right coset Ka = { ka I with k E K}. 

When the operation in the group G is addition, then a right coset is denoted K + a.* 

*For those who have read Section 6.1: Cosets of an ideal/ in a ring were denoted a+ I instead of 
I+ a. It didn't make any difference there because addition in a ring is commutative, so a+ i = i +a 
for every i E I. However, in Section 8.2 we shall see that when G is nonabelian, it is possible to have 
Ka of- aK, where aK = {ak I with k E K}. 
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Let K be a subgroup of a group G and let a, c E G. Then a = c (mod K) if and 
only if Ka = Kc. 

Proof"'" With minor notational changes, the proof is essentially the same as that of . 
Theorem 2.3. Just replace "mod n" with "mod K" and "[a]" with "Ka" and 
use Theorem 8.1 in place of Theorem 2.1. Ill: 

Let K be a subgroup of a group G. Then two right cosets of K are either 
disjoint or identical. 

Proof"'" Copy the proof of Corollary 2.4 with the same notational changes as in 
the proof of Theorem 8.2. Ill 

lagrange's Theorem 
At this point we temporarily leave the parallel treatment of congruence in the integers 
and groups and use right cosets to develop some facts about finite groups that have no 
counterpart in the integers. 

Let K be a subgroup of a group G. Then 

(1) G is the union of the right cosets of K: G = UGKa. 
aE 

(2) For each a E G, there is a bijection f:K ~ Ka. Consequently,, if K is 
finite, any two right cosets off\ contain the same number of elements. 

Proof"'" (1) Since every right coset consists of elements of G, we have U
0
Ka ~ G 

aE 

If bE G, then b = eb E Kb ~ U Ka, so that G ~ U T(a. Hence, G = U T(a. 
aEG aEifJ aEG""' 

(2) DefinefK ~ Ka by f(x) = xa. Then by the definition of Ka,fis 
surjective. If f(x) = f(y), then xa = ya, so that x = y by Theorem 7.5. 
Therefore,/ is injective and, hence, a bijection. Consequently, if K 
is finite, every coset Ka has the same number of elements as K, 
namely IK]. Ill 

If His a subgroup of a group G, then the number of distinct right cosets of 
H in G is called the index of H in G and is denoted [G:H]. If G is a finite group, 
then there can be only a finite number of distinct right cosets of H; hence, the 
index [G:H] is finite. If G is an infinite group, then the index may be either finite 
or infinite. 
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EXAMPlE 3 

Let H be the cyclic subgroup (3) of the additive group ?l. Then H consists of all 
multiples of 3, and the cosets of Hare just the congruence classes modulo 3; 
for instance, 

H+2= {h+21hEH} = {3z+2lze7l} =[2]. 

Since there are exactly three distinct congruence classes modulo 3 (cosets of H), 
we have [?l:H] = 3. 

EXAMPlE 4 

Under addition the group 7l of integers is a subgroup of the group Q of ratio
nal numbers. By the definition of congruence and Theorem 8.2, 

7l+a=7l+c if and only if a-cEll. 

Consequently, if 0 < c < a< 1, then 7l + a and 7l + care distinct cosets because 
0 < a - c < 1, which means that a - c cannot be in ?l. Since there are infinitely 
many rationals between 0 and 1, there are an infinite number of distinct cosets 
of 7l in Q. Hence, [Q:?l] is infinite. 

··rheor~ITI<8u5 [agrange'sTheorem 
If K is a subgroup of a finite group G, then the order of K divides the order of 
G. In particular, IGI = IKI [G:K]. 

Proof ll> It is convenient to adopt the following notation. If A is a finite set, then lA I 
denotes the number of elements in A. Observe that if A and Bare disjoint 
finite sets, then lA U Bl = IAI + IBI. Now suppose that [G:K] =nand 
denote the n distinct co sets of Kin G by Kc1, Kc2o ... , Ken- By 
Theorem 8.4 

G = Kc1 U Kc2 U · · · U Kc11 • 

Since these cosets are all distinct, they are mutually disjoint by Corollary 8.3. 
Consequently, 

IGI = 1Kc11 + IKc21 +···+IKe,,!. 

For each c;, however, IKe;! = IKI by Theorem 8.4. Therefore, 

IGI = IKI + IKI + · · · + IKI = IKin = IKI[G:K]. 
n summands 

Lagrange's Theorem shows that there are a limited number of possibilities for the 
subgroups of a finite group. For instance, a subgroup of a group of order 12 must 
have one of these orders: 1, 2, 3, 4, 6, or 12 (the only divisors of 12). Be careful, 
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however, for these are only the possible orders of subgroups. Lagrange's Theorem does 
not say that a group G must have a subgroup of order k for every k that divides IGI. 
For instance, the alternating group A4 has order 12 but has no subgroup of order 6 
(Exercise 44). Lagrange's Theorem also puts limitations on the possible orders of 
elements in a group: 

Let G be a finite group. 

(1) If a E G, then the order of a divides the order of G. 

(2) If I G I = k, then ak = e for every a E G. 

Proof~> (1) If a E G has order n, then the cyclic subgroup (a) of G has order n 
by Theorem 7.15. Consequently, n divides IGI by Lagrange's Theorem. 

(2) If a E G has order n, then n I k by part (1 ), say k = nt. Therefore, 
ak = ant = (an)t = et = e. 1!1; 

The Structure of Finite Groups 
A major goal of group theory is the classification of all finite groups up to isomor
phism; that is, we would like to produce a list of groups such that every finite group is 
isomorphic to exactly one group on the list. This is a problem of immense difficulty, 
but a number of partial results have already been obtained. Theorem 7.19, for exam
ple, provides a classification of all cyclic groups; it says, in effect, that every nontrivial 
finite cyclic group is isomorphic to exactly one group on this list: 7l.2, 7L3, 7L4, •... All 
finite abelian groups will be classified in Section 9.2. 

We now use Lagrange's Theorem and its corollary to classify all groups of prime 
order and all groups of order less than 8. In the proofs below enough of the necessary 
calculations are included to show you how the argument goes, but you should take 
pencil and paper and supply all the missing computations. 

Let p be a positive prime integer. Every group of order p is eye I ic and isomor
phic to ll..P. 

Proof ~> If G is a group of order p and a is any nonidentity element of G, then 
the cyclic subgroup (a) is a group of order greater than 1. Since the 
order of the group (a) must divide p and since p is prime, (a) must be a 
group of order p. Thus (a) is all of G, and G is a cyclic group of order p. 
Therefore, G = 7LP by Theorem 7.19. 1!1 
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Every group of order 4 is isomorphic to either 1:4 or 1:2 x 1:2• 

Proof ~ Let G be a group of order 4. Either G contains an element of order 4 or 
it does not. If it does, then the cyclic subgroup generated by this element 
has order 4 by Theorem 7.15 and, hence, must be all of G. Therefore, G 
is a cyclic group of order 4, and G = 1:4 by Theorem 7.19. 

s;;;r ~''"'-'~ 

Now suppose that G does not contain an element of order 4. Let e, a, 
b, c be the distinct elements of G, withe the identity element. Since every 
element of G must have order dividing 4 by Corollary 8.6 and since e is 
the only element of order 1, each of a, b, c must have order 2. Thus the 
operation table of G must look like this: 

e a b c 

e e a b c 

a a e 

b b e 

c c e 

In order to fill in the missing entries, we first consider the product ab. If 
ab = e, then ab = aa and, hence, a= b by cancelation. This is a contra
diction, and so ab * e. If ab =a, then ab = ae and b = e by cancelation, 
another contradiction. Similarly, ab = b implies the contradiction a = e. 
Therefore, the only possibility is ab = c. Similar arguments show that 
there is only one possible operation table for G, namely, 

e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

Letf G----+1:2 X 1:2 be given by fie)= (0, O),fia) = (1, O),fib) = (0, 1), 
andf(c) = (1, 1). Show thatfis an isomorphism by comparing the 
operation tables of the two groups. Iii 

·· fHelfrenfs.9 · · 
Every group G of order 6 is isomorphic to either 1:6 or 53. 

Proof~ If G contains an element of order 6, then G is a cyclic group of order 6 
and, hence, is isomorphic to 1:6 by Theorem 7.19. So suppose G contains 
no element of order 6. Then every nonidentity element of G has order 
2 or 3 by Corollary 8 .6. If every nonidentity element of G has order 2, 
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c 

then G is an abelian group by Exercise 27 of Section 7.2. If c and dare 
nonidentity elements of G, then the setH= {e, c, d, cd} is closed under 
multiplication (because c2 = e = d2 and cd = de). Hence, His a subgroup 
of G by Theorem 7.12. This is a contradiction since no group of order 6 
can have a subgroup of order 4 by Lagrange's Theorem. Therefore, the 
nonidentity elements of G cannot all have order 2, and G must contain 
an element a of order 3. Let Nbe the cyclic subgroup (a)= {e, a, a2} and 
let b be any element of Gthat is not inN. The cosets Ne = {e, a, a2} and 
Nb = {b, ab, a2b} are not identical since brt,N = Ne and, hence, must be 
disjoint (Corollary 8.3). Therefore, G consists of the six elements e, a, a2

, 

b, ab, a2b. 
We now show that there is only one possible operation table for G. 

What are the possibilities for b2? We claim that b2 cannot be any of a, a2, 
b, ab, or a2b. For instance, if b2 = a, then b4 = cl However, b either has 
order 2 (in which case a2 = b4 = b2b2 = ee = e, a contradiction) or order 3 
(in which case a2 = b4 = b3b = eb = b, another contradiction since b rt, N). 
Similar arguments show that the only possibility is b2 = e. 

Next we determine the product ba. It is easy to see that ba cannot 
be any of b, e, a, or a2 (for instance, ba = a implies b = e). So the only 
possibilities are ba = ab or ba = a2b. If ba = ab, then verify that ba has 
order 6 by computing its powers. This contradicts our assumption that 
G has no element of order 6. Therefore, we must have ba = a2b. Using 
these two facts: 

b2 = e and ba = a2b, 

we can now compute every product in G. For example, ba2 = (ba)a = 
(a2b)a = a2(ba) = a2a2b = a4b = ab. 

Verify that the operation table for G must look like this: 

e a c? b ab a2b 

e e a a2 b ab a2b 

a a a2 e ab a2b b 
a2 a2 e a a2b b ab 

b b a2b ab e a2 a 

ab ab b a2b a e a2 

a2b a2b ab b a2 a e 

By comparing tables, show that G is isomorphic to S3 under the 
correspondence 

e a a2 b ab a2b 

t t t t t t 
2 DG 2 DG 2 DG 2 DG 2 DC 2 3) 
2 3 1 1 2 3 2 . 
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The last three theorems provide a complete classification of all groups of order less 
than 8, as summarized in this table: 

If G has order 

2 

3 

4 

5 

6 

7 

then G is isomorphic to 

71_2 

71_3 

7L4 or 7L2 X 7L2 

1Ls 
71_6 or s3 

71_7 

The classification of groups is discussed further in Chapter 9, particularly in Section 9. 5 
where the preceding chart is extended to order 15. 

Exercises 

A. 1. Let K be a subgroi.1p of a group G and let a E G. Prove that Ka = Kif and only 
if a Ek. 

In Exercises 2--6, G is a group and K is a subgroup of G List the distinct right cosets of Kin G. 

2. K = {r0, v}: G = D4 [The operation table for D4 is in Example 5 of Section 7.1 
or 7.l.A.] 

3. K = {ro, r!> rz, r3}; G = D4. 

4. K = { G ~ ~), G ~ D }; G = S3. 

5. K= {1, 17}; G= U32· 

6. K = (3); G = U3z· 

In Exercises 7-11, G is a group and His a subgroup of G Find the index [G:H]. 

7. H = {r0,r2}; G = D4. 

8. H = (3); G = lL12. 

9. H = (3); G = lL2o· 

10. His the subgroup generated by 12 and 20; G = 71_40 . 

11. His the cyclic subgroup generated by G ~ ~ ~} G = S4. 

12. * (a) Let K = { (1 ), (12)(34), (13)(24), (14)(23)}. Show that K is a subgroup of 
A 4, and hence, a subgroup of S4. [Hint: Theorem 7.12.] 

(b) State the number of cosets of Kin A4 . Don't list them. 

(c) State the number of cosets of Kin S4. Don't list them. 

*Skip this exercise if you haven't read Section 7.5. 
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In Exercises 13-15, K is a subgroup of G Determine whether the given cosets are 
disjoint or identical. 

13. G = 7L; K = (7) 

(a) K + 4 and K + 3 (b) K = 4 and K + 13 7 (c) K + ( -4) and K + 59 

14. * G = S4; K is the subgroup of Exercise 12. 

(a) K(12) and K(34) (b) K(1234) and K(1324) 

15. G = U32; K = (9) 

(a) K17 and K19 (b) K9 and K25 

16. Suppose G is the cyclic group (a) and lal = 15. If K = (a3
), list all the distinct 

cosets of Kin G. 

17. What are the possible orders of the subgroups of G when G is 

(a) 1:24 (b) S4 (c) D4 X 1:10 

18. Give examples, other than those in the text, of infinite groups G and H such that 

(a) [G:H] is finite (b)[G:H] is infinite 

19. Let G be a finite group that has elements of every order from 1 through 12. 
What is the smallest possible value of IGI? 

20. A group G has fewer than 100 elements and subgroups of orders 10 and 25. 
What is the order of G? 

21. Let Hand K, each of prime order p, be subgroups of a group G. If H =1- K, 
prove that H n K = (e). 

22. If Hand K are subgroups of a finite group G, prove that IH n K] is a common 
divisor of IHI and IKI. 

B. 23. If G is a group with more than one element and G has no proper subgroups, 
prove that G is isomorphic to ZP for some prime p. 

24. If G is a group of order 25, prove that either G is cyclic or else every 
nonidentity element of G has order 5. 

25. Let a be an element of order 30 in a group G. What is the index of (a4
) in the 

group (a)? 

26. Prove that a group of order 8 must contain an element of order 2. 

27. If n > 2, prove that n - 1 is an element of order 2 in U11 • 

28. If n > 2, prove that the order of the group U" is even. 

29. Let Hand Kbe subgroups of a finite group G such th<tt K ~ H, [G:H] is finite, 
and [H:K] is finite. Prove that [G:K] = [G:H][H:K]. [Hint: Lagrange.] 

30. Let Hand Kbe subgroups of an infinite group G such that K ~ H, [G:H] is 
finite, and [H:K] is finite. Prove that [G:K] is finite and [G:K] = [G:H][H:K]. 
[Hint: Let Hal> Ha2, .•• , Ha11 be the distinct cosets of H in G and let Kbl> 
Kb2, ••• , Kb"' be the distinct cosets of Kin H. Show that Kb;a1 (with 1 ::s i::; m 
and 1 :s:; j ::; n) are the distinct cosets of Kin G.] 

*Skip this exercise if you haven't read Section 7.5. 
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31. If G is a group of even order, prove that G contains an element of order 2. 

32. If G is an abelian group of order 2n, with n odd, prove that G contains exactly 
one element of order 2. 

33. (a) If a and beach have order 3 in a group and a2 = b2
, prove that a= b. 

[Hint: What are a- 1 and b-1?] 

(b) If G is a finite group, prove that there is an even number of elements of 
order 3 in G. 

34. Let G be an abelian group of odd order. If a!> a2, a3, ••• , all are the distinct 
elements of G (one of which is the identity e), prove that a1a2a3 • • ·all = e. 

35. If p and q are primes, show that every proper subgroup of a group of order pq 
is cyclic. 

36. Let Hand K be subgroups of a finite group G such that [ G:H] = p and [ G:K] = q, 
withp and q distinct primes. Prove thatpq divides [G:H n K]. 

37. Let G be an abelian group of order n and let k be a positive integer. If (k, n) = 1, 
prove that the functionfG ~ G given by f(a) =ale is an isomorphism. 

38. If G is a group of order n and G has 21l -
1 subgroups, prove that G = \e) or 

G = 7L2. 

C. 39. Let G be a nonabelian group of order 10. 

(a) Prove that G contains an element of order 5. [Hint: Exercise 27 of 
Section 7.2.] 

(b) Prove that G contains five elements of order 2. [Hint: Use techniques 
similar to those in the proof of Theorem 8.9.] 

40. If a prime p divides the order of a finite group G, prove that the number of 
elements of order p in G is a multiple of p - 1. 

41. Prove that a group of order 33 contains an element of order 3. 

42. Let G be a group generated by elements a and b such that Ia I= 4, lbl = 2, and 
ba = a3b. Show that G is a group of order 8 and that G is isomorphic to D4. 

43. Let G be a group generated by elements a and b such that Ia I= 4, b2 ~ a2
, and 

ba = a3b. Show that G is a group of order 8 and that G is isomorphic to the 
quaternion group of Exercise 16 in Section 7 .1. 

44.* (a) Show that A4 (which has order 12 by Theorem 7.29) has exactly three 
elements of order 2. 

(b) Prove that the elements of order 2 and the identity element form a 
subgroup. 

(c) Prove that A4 has no subgroup of order 6. Hence, the converse of 
Lagrange's Theorem is false. [Hint: If N is a subgroup of order 6, use 
Theorem 8.9 to determine the structure of Nand use part (b) to reach a 
contradiction.] 

*Skip this exercise if you haven't read Section 7.5. 
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Normal Subgroups 

Suppose G is a group and K is a subgroup. Our goal in this section and the next is 
to create a new group (if possible), whose elements are the right cosets of K (that is, 
congruence classes mod K)-much as we created 7Lm whose elements are congruence . 
classes of integers. 

Recall that the definition of addition of congruence classes of integers in Chapter 2 
depended on part (1) of Theorem 2.2, which states 

If a= b (mod n) and c = d (mod n), then a+ c = b + d (mod n).* 

If K is a subgroup of a multiplicative group G, then the translation of this statement 
to congruence mod K is 

(*) If a = b (mod K) and c = d (mod K.), then ac = bd (mod K). 

Unfortunately, however, statement(*) is false for some subgroups. (see Exercise 2 for 
an example). Nevertheless, there is a class of subgroups for which statement (*)is true. 
We shall identify these "special" subgroups in this section and define multiplication of 
their right cosets in Section 8.3.t 

Recall that if K is a subgroup of G, then the right coset Ka is the set Ka 
{ ka I k E K} . Similarly, the left coset aK is defined to be the set 

aK = {akl kEK}. 

EXAMPlE 1 

Let Kbe the subgroup {r0 , v} of D4, whose operation table is shown below. The 
right coset Kd is the set {r0 o d, v o d} = {d, r3} and the left coset dK is the set 
{do r0, do v) = {d, r1}. So Kd of dK. 

D4 0 ro l'j rz r3 d h v 

ro ro I'J l'z 1'3 d h v 

l'j l'j l'z I'J ro h v d 

l'z l'z I'J ro I'J v d h 

I'J r 3 ro I'J l'z v d h 

d d v h ro r3 l'z 1'j 

h h d v l'j ro 1'3 l'z 

h d v l'z l'j ro I'J 

v v h d r3 l'z l'j ro 

*We don't deal with integer multiplication here because the integers form a group under addition, but 
not under multiplication. Similarly in Chapter 6, when developing the basic facts about congruence 
and cosets in rings, we dealt only with the additive group of a ring and ignored its multiplication. 

tEssentially the same thing was done in Chapter 6 when we needed to prove Theorem 6.5 (the 
analogue ofTheorem 2.2 for rings)-the discussion did not apply to every subring, but only to 
ideals, each of which is a special kind of subring. 
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EXAMPLE 2 

Let Nbe the subgroup {r0, rb r2, r3} of D4. The,n the right coset Nv is the set 

Nv = {r0 o v, r 1 o v, r2 o v, r3 o v} = {v, d, h, t} 

and the left coset vN is the same set: 

So in this case, Nv = vN.* Similar calculations (Exercise 3) show that every right 
coset of N is also a left coset, that is, 

Nr0 = roN, Nr1 = r1N, Nr2 = r2N, Nr3 = r3N, 

Nd = dN, Nh = hN, Nt = tN, Nv = vN. 

Subgroups with this property have a special name. 

A subgroup N of a group G is said to be normal if Na =aN for every a E G. 

EXAMPLE 3 

N = {r0, r1, r2, r3} is a normal subgroup of D4, but K = {r0, v} is not, as shown 
in Examples 1 and 2. 

EXAMPLE 4 

If N is a subgroup of an abelian group G and a E G, then na = an for every 
n EN, so that the right coset Na is the same as the left coset aN. Hence, 

Every subgroup of an abelian group is normal. 

EXAMPLE 5 

Let Mbe the subgroup {r0, r2} of D4. Then the operation table for D4 in 
Example 1 shows that r0 o a = a o r0 and r2 o a = a o r2 for every a E D4. So it is 
certainly true that Ma = aM for every a E D4. Hence, !vi is a normal subgroup 
of D4. 

In Example 5, the subgroup M is the center of D4 (see Example 10 of Section 7.3). 
So the center of D 4 is a normal subgroup. The same thing is true in general. 

*Remember that the elements of a set may be I isted in any order. 
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EXAMPLE 6 

The center Z( G) of a group G is the subgroup 

Z( G) = { c E G I cg = gc for every g E G} 

(Theorem 7.13). Since ca = ac for every cEZ(G) and aEG, we see that 
Z( G) a = aZ( G) for every a E G. Hence, Z( G) is a normal subgroup of G. 

Other examples of normal subgroups appear in Exercises 3-5, 7-9, 14, and 23. 
Examples 4-6, though important, are misleading in that the elements of the normal 
subgroup N commute with all the other elements of the group in each case. In the gen
eral case, however, this is not necessarily true. When N is a normal subgroup of G, then, 

The condition Na = aN does not imply that na = an for every n E N. 

EXAMPLE 7 

As we saw in the Example 2, N = {r0, r 1 r2, r3} is a normal subgroup of D4• In 
particular, Nv = vN. However, v does not commute with all the elements of N. 
For instance, r3 o v E Nv and v o r3 E vN, but the operation table for D4 shows that 

r 3 o v = t and v o r 3 = d, 

even though Nv = vN. 

Thus, if N is a normal subgroup of G, the elements of N may not commute 
with every element of G. Nevertheless, you can think of the normal subgroup N 
as providing a weak version of commutativity in the following sense. 

If n E N, and a E G, then for some n1, n2 E N, 

na = an1 and au = n2a, 

because na EN a and N a = aN and similarly, an E aN and aN = Na. 

EXAMPLE 8 

Once again, consider the normal subgroup N = {r0, r1, r2, r3) of D4• The 
operation table for D4 shows that r3 o v = t and v o r 1 = t. Hence, 

This is the first part of the preceding boldface statement, with n = r3, a = v, 

and n1 = r 1• 

Our goal at the beginning of this section was to find a class of subgroups for which 
statement(*) on page 248 (the group theory analogue of Theorem 2.2) is true. Normal 
subgroups are exactly what's needed. 
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Let N be a normal subgroup of a group G. 

If a= b (mod N) and c = d (mod N), then ac = bd (mod N). 

The proof is essentially a translation into multiplicative notation of the proof 
of part (1) of Theorem 2.2, with commutativity of integers replaced by the weak 
commutativity in G provided by the normal subgroup N. 

Proof of Theorem 8.10 ... By the definition of congruence, there are elements 
m,nEKsuch thatab- 1 = m and cr1 = n. Then 

(ac)(bd)-1 = acd- 1b -I [Corollary 7.6] 

= anb- 1 [Because cd-1 = n.] 

Now an E aN and aN= Na by normality, so an = n2a for some n2 EN. Hence, 

(ac)(bd)- 1 = anb- 1 

= n2ab-1 

[Because ab-1 =mEN.] 

Therefore, (ac)(bd)-1 = n2m EN, and ac = bd (mod N). 

We close this section with a theorem that provides alternate descriptions of nor
mality. Verifying condition (2) or (3) in the theorem is often the easiest way to prove 
that a given subgroup is normal. 

The following conditions on a subgroup N of a group G are equivalent: 

(1) N is a normal subgroup of G. 

(2) a-1Na <;; N for every a E G, where a-1Na = {a- 1na In EN}. 

(3) aNa-1 <;; N for every a E G, where aNa-1 = {ana-1 In EN}. 

(4) a-1Na = N for every a E G. 

(5) aNa-1 = N for every a E G. 

Note that in (4), a- 1Na = N does not mean that a- 1na = n for each n EN; 
all it means is that a-1na = n1 for some n1 EN. Analogous remarks apply to (2), 
(3), and (5). 

Proof of Theorem 8.11 "'(1) ==? (2) Suppose n EN and a- 1na Ea- 1Na. We must 
show that a-1na EN. Note that na is an element of the right coset Na. 
Since N is normal by (1 ), Na = aN. Hence, na = an1 for some n1 EN. 
Thus a- 1na = a- 1an 1 = en1 = n1 EN. Therefore, a- 1Na <;; N. 
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(2) # (3) If (2) holds for every element of G, then it holds with a- 1 in 
place of a, that is, 

But (a-1
)-

1 =a, so that(**) is statement (3): aNa-1 r;;;.N. Similarly, if 
(3) holds for every element of G, then it holds with a- 1 in place of a, 
which implies statement (2). 

(3) ==?- (4) Since (3) implies (2), we have a-1Na r;;;. N. To prove 
Ns a-1Na, suppose n EN. Then n = a- 1(ana- 1)a. By (3) ana- 1 = n2 for 
some n2 EN. Thus n = a-1n2a Ea-1Na, which proves that Ns a-1Na. 
Therefore, a-1Na = N. 

(4) # (5) If (4) holds for every element of G, then it holds with a- 1 in 
place of a, that is, 

N = (a-1)-1Na- 1 = aNa- 1• 

Similarly, if (5) holds for every element of G, then it holds with a- 1 in 
place of a, which implies statement (4). 

( 5) ==?- ( 1) Suppose n EN and an E aN. Then ana- 1 E aN a-1 = N by ( 5), 
so that ana- 1 = n3 for some n3 EN. Multiplying this last equation on the 
right by a shows that an = n3a EN a. Therefore, aN r;;;. N a. Conversely, if 
na EN a, then a-1na E a-1Na = N because (5) implies (4). Hence, a-1na = 
n4 for some n4 EN. Multiplying on the left by a shows that na = an4 E aN. 
Thus N a r;;;. aN. Therefore, N a = aN for every a E G and N is a normal 
subgroup of G. 

EXAMPLE 9 

Verify that A = { G ~ DG ~ ~ )G ~ D} is a subgroup of S3. You 

could show that A is a normal subgroup by calculating the right and left cosets, 
but that is cumbersome and time consuming. It's easier to proceed as follows. If 
c E S3, then by Exercise 20 of Section 7 .4, c -I Ac is a subgroup of order 3. But 
A is the only subgroup of order 3 in S3 (all the other nonidentity elements of 
S3 have order 2, and hence, cannot be in a group of order 3 by Corollary 8.6). 
Therefore, we must have c- 1Ac =A. Thus, A is a normal subgroup by part (5) 
of Theorem 8.11. 

Exercises 

A. 1. Let Kbe a subgroup of a group G and let aE G. Prove that aK =Kif and only 
if a EK. 

2. Let Kbe the subgroup {r0, v} of D4. Show that r1 == t (mod K) and r2 == h 
(mod I(), but r1 o r2 =!= to h (mod I(). 

3. Prove that N = {r0, r!> r2, r3} is a normal subgroup of D4 by listing all its right 
and left cosets. 
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4. If G is a group, show that (e) and G are normal subgroups. 

5. (a) Prove that G = { (~ ~) I a, b, dE IR and ad =F 0} is a group under 

matrix multiplication and that N = { ( b ~) I b E IR} is a subgroup of G. 

(b) Use Theorem 8.11 to show that N is normal in G. 

6. Prove that { G ~ ~), C ~ D} is a subgroup of S3 but not normal. 

7. Let G and H be groups. Prove that G* = {(a, e) I a E G} is a normal subgroup 
of 0 X H. 

8. (a) List all the cyclic subgroups of the quaternion group (Exercise 16 of 
Section 7.1). 

(b) Show that each of the subgroups in part (a) is normal. 

9. Let N be a subgroup of a group G. Suppose that, for each a E G, there exists 
bEG such that Na = bN. Prove that N is a normal subgroup. 

10. If G is a group, prove that every subgroup of Z(G) is normal in G. [Compare 
with Exercise 14.] 

11. A subgroup N of a group G is said to be characteristic if j{N) ~ N for every 
automorphism/ of G. Prove that every characteristic subgroup is normal. 
(The converse is false, but this is harder to prove.) 

12. Prove that for any group G, the center Z( G) is a characteristic subgroup. 

13. Let N be a subgroup of a group G. Prove that N is normal if and only if 
f(N) = N for every inner automorphism/ of G. 

14. Show by example that if M is a normal subgroup of Nand if N is a normal 
subgroup of a group G, then lvf need not be a normal subgroup of G; in 
other words, normality isn't transitive. [Hint: Consider M = { v, r0} and 
N = {h, v, r2, r0} in D4.] 

15. * Prove that All is a normal subgroup of sn. [Hint: If (J E s/1 and r E A/1, is 
a- - 1 ro- even or odd? See Example 7 of Section 7.5 .] 

B.16. If Kis a normal subgroup of order 2 in a group G, prove that K~Z(K). 
[Hint: If K = {e, k} and a E G, what are the possibilities for aka- 1?] 

17. LetfG----+ Hbe a homomorphism of groups and let K = {aE G!f(a) = eH}· 
Prove that K is a normal subgroup of G. 

18. If K and N are normal subgroups of a group G, prove that K n N is a normal 
subgroup of G. 

19. Let Nand K be subgroups of a group G. If N is normal in G, prove that N n K 
is a normal subgroup of K. 

20. (a) Let Nand Kbe subgroups of a group G. If N is normal in G, prove that NK = 

{nk In EN, k EK} is a subgroup of G. [Compare Exercise 26(b) of Section 7.3.] 

(b) If both Nand K are normal subgroups of G, prove that NK is normal. 

*Skip this exercise if you haven't read Section 7.5. 
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21. If K and N are normal subgroups of a group G such that K n N = (e), prove 
that nk = kn for every n EN, k E K. 

22. Iff G ~ His a surjective homomorphism of groups and if N is a normal 
subgroup of G, prove thatf(N) is a normal subgroup of H. 

23. Let N be a subgroup of a group G of index 2. Prove that N is a normal 
subgroup as follows. 

(a) If a f/:. N, prove that the coset Na consists of all elements of G that are 
not inN. 

(b) For each a E G, prove that a-1Na <;;Nand apply Theorem 8.11. [Hint: If 
a f/:. Nand n EN, a-1na is either inN or in Na by part (a). Show that the 
latter possibility leads to a contradiction.] 

24. Let N = {A E G L(2, IR) I det A E Q}. Prove that N is a normal subgroup of 
GL(2, IR). [Hint: Exercise 32 of Section 7.4.] 

25. Prove that SL(2, IR) is a normal subgroup of GL(2, IR). [Hint: SL(2, IR) is 
defined in Exercise 23 of Section 7.1 Use Exercise 17 above and Exercise 32 of 
Section 7.4.] 

26. Let H be a subgroup of order n in a group G. If His the only subgroup of 
order n, prove that His normal. [Hint: Theorem 8.11 and Exercise 20 in 
Section 7.4.] 

27. Prove that a subgroup N of a group Gis normal if and only if it has this 
property: abE N if and only if ba EN, for all a, bE G. 

28. Prove that the cyclic subgroup (a) of a group G is normal if and only if for 
each g E G, ga = akg for some k E ?L. 

29. Let N be a cyclic normal subgroup of a group G, and H any subgroup of N. 
Prove that His a normal subgroup of G. [Compare Exercise 14.] 

30. Let A and B be normal subgroups of a group G such that A n B = (e) and 
AB = G (see Exercise 20). Prove that A X B =G. [Hint: Define fA X B ~ G 
by f(a, b)= ab and use Exercise 21.] 

31. Let Hbe a subgroup of a group G and let N(H) be its normalizer (see 
Exercise 39 in Section 7.3). Prove that 

(a) His a normal subgroup of N(H). 

(b) If His a normal subgroup of a subgroup K of G, then[(<;; N(H). 

32. Prove that Inn G is a normal subgroup of Aut G. [See Exercise 37 of Section 7.4.] 

33. Let Tbe a set with three or more elements and let A(1) be the group of all 
permutations ofT. If aE T, letHa= {fEA(1) lf(a) =a}. Prove that Ha is a 
subgroup of A(T) that is not normal. 

34. Let G be a group that contains at least one subgroup of order n. Let N = nK, 
where the intersection is taken over all subgroups K of order n. Prove that N is 
a normal subgroup of G. [Hint: For each a E G, verify that a-1Na = na-- 1Ka, 
where the intersection is over all subgroups K of order n; use Exercise 20 of 
Section 7 .4.] 
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35. Let H be a subgroup of a group G and let N = n a-1 Ha. Prove that N is a 
normal subgroup of G. aEG 

36. If M is a characteristic subgroup of Nand N is a normal subgroup of a group 
G, prove that M is a normal subgroup of G. [See Exercise 11.] 

37. Let G be a group all of whose subgroups are normal. If a, bEG, prove that 
there is an integer k such that ab = bak. 

Quotient Groups 

Let N be a normal subgroup of a group G. Then 

G/ N denotes the set of all right cosets of N in G. 

Our first goal is to define an operation on right cosets so that GjN becomes a group. 
Since right co sets are congruence classes, our experience with 7L and other rings suggests 
that it would be reasonable to define such an operation as follows: The product of the 
coset N a (the congruence class of a) and the coset Nb (the congruence class of b) is the 
coset Nab (the congruence class of ab). In symbols, this definition reads 

(Na)(Nb) =Nab. 

As in the past, we must verify that the definition does not depend on the elements 
chosen to represent the various cosets, and so we must prove 

Let N be a normal subgroup of a group G. If Na = Nc and Nb = Nd in GjN, 
then Nab = Ned. 

Proof"' Na = Nc implies that a= c (mod N) by Theorem 8.2, similarly, Nb = Nd 
implies that b = d (mod N). Therefore, ab = cd (mod N) by Theorem 8.1 0. 
Hence, Nab= Ned by Theorem 8.2. Ill 

Let N be a normal subgroup of a group G. Then 

(1) GjN is a group under the operation defined by (Na)(Nc) = Nac. 

(2) If G is f1 nite, then the order of G/N is IGI/INI. 
(3) If G is an abelian group, then so is G/N. 

The group G/N is called the quotient group or factor group of G by N. 
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Proof of Theorem 8.13 ~ (1) The operation in GjN is well defined by Theorem 8.12. 
The coset N = Ne is the identity element in GjN since (Na)(Ne) = 
Nae = Na and (Ne)(Na) = Nea = Na for every Na in GjN. The inverse 
of Na is the coset Na- 1 since (Na)(Na- 1) = Naa -! = Ne and, similarly, 
(Na- 1)(Na) = Ne. Associativity in GjN follows from that in G: 

[(Na)(Nb)](Nc) = (Nab)(Nc) = N(ab)c = Na(bc) = (Na)(Nbc) 

= (Na)[(Nb)(Nc)]. 

Therefore, GjN is a group. 

(2) The order of GjN is the number of distinct right cosets of N, that is, 
the index [G:N]. By Lagrange's Theorem, [G:N] = !GI/!NJ. 

(3) Exercise 11. Ill 

EXAMPLE 1 

In Example 2 of Section 8.2 we saw that N = (r0, r~> r2, r3} is a normal sub
group of D4. The operation table for D4 in Example 1 of Section 8.2 shows that 

Nv = {r0 o v, r1 o v, r2 o v, r3 o v} = { v, d, h, t}. 

Since every element of D4 is in either Nr0 or Nv and since any two cosets of N are 
either disjoint or identical (Corollary 8.3), every coset of N must be equal to Nr0 

or Nv. In other words, D4jN = {Nr0, Nv}. Since r0 o v = v = v o r0 and v o v = r0, 

the operation table for the quotient group D 4j N is 

Nr0 Nv 

Nr0 Nr0 Nv 

Nv Nv Nr0 

By Theorem 8.7, D4jN is isomorphic to the additive group 7L2. 

EXAMPLE 2 

In Example 5 of Section 8.2 we saw that M = {r0, r2} is a normal subgroup of D4 . 

Using the operation table for D4, we find that D4jM consists of these four cosets: 

Mh = {h, v} = Mv Md= {d, t} = Mt. 

We shall choose one way of representing each coset and list the elements of D4! M 
as Mr0, Mr1, Mh, and Md. When we compute products in D4jM, we express the 
answers in terms of these four cosets. For instance, since do r 1 = v in D4, we have 
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(Jvfd)(Mr1) = M(do r1) = Mv; but Mv = Mh, so we write (Md)(Mr1) = Mh in the 
table below. You should fill in the missing entries: 

Mr0 Mr 1 iVJh Md 

Mr0 Mr0 Mr1 Mh Md 

Mr1 Mr1 Mr0 Md 

Mh Mh Md Mr0 

Md Md Mh 

The completed tabel shows that D4/M is an abelian group in which every nonidentity 
element has order 2 (Exercise 3). So D4/M is not cyclic. Hence, D4/M is isomorphic 
to £:2 X £:2 by Theorem 8.8. 

Examples 3-7 deal with abelian groups. So every subgroup is normal. 

EXAMPLE 3 

In the additive group £:12, let Nbe the cyclic group (4) = {0, 4, 8}. These four 
cosets of N contain every element of £:12: 

N + 0 = {0, 4, 8} = N 

N + 1 = {1, 5, 9} 

N + 2 = {2, 6, 10} 

N+ 3 = {3, 7, 11}. 

Hence, every coset is one of these four. For instance, 5 is in N + 1 and 5 is also 
in N + 5 (Why?). So the two cosets are not disjoint. Hence, N + 1 = N + 5 by 
Corollary 8.3. Similarly, 

N + 4 = N + 0 and N + 6 = N + 2. 

Using these facts, we see that the addition table for Z12 jN is 

N+O 

N+ 1 

N+2 

N+3 

N+O 

N+O 

N+ 1 

N+2 

N+3 

N+ 1 

N+ 1 

N+2 

N+3 

N+O 

N+2 N+3 

N+2 N+3 

N+3 N+O 

N+O N+1 

N+1 N+2 

Verify that N + 1 has order 4. So 1':12/ N is a cyclic group of order 4 and hence, is 
isomorphic to £4 by Theorem 7.19. 
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EXAMPLE 4 

Let Nbe the cyclic subgroup ((1, 2)) of the additive group G = 7L2 X 7L4• Since 
(1, 2) + (1, 2) = (0, 0), we see that N = {(0, 0), (1, 2)}. Consequently, GjN con
sists of these four cosets 

N + (0, 0) = {(0, 0), (1, 2)} = N + (1, 2) 

N + (1, 0) = {(1, 0), (0, 2)} = N+ (0, 2) 

N + (0, 1) = {(0, 1), (1, 3)} = N + (1, 3) 

N + (1, 1) = {(1, 1), (0, 3)} = N + (0, 3) 

and has the following addition table: 

N + (0, 0) N + (1, 0) N + (0, 1) 

N + (0, 0) N + (0, 0) N + (1, 0) N + (0, 1) 

N + (1, 0) N+(1,0) N + (0, 0) N+(1,1) 

N + (0, 1) N + (0, 1) N + (1, 1) N + (1, 0) 

N + (1, 1) N+(1,1) N + (0, 1) N + (0, 0) 

N + (1, 1) 

N + (1, 1) 

N + (0, 1) 

N + (0, 0) 

N + (1, 0) 

Use the table to verify that GjN is a cyclic group of order 4 generated by N + (0, 1). 
Therefore, GjN =~by Theorem 7.19. 

It is not always necessary (or even possible) to write out the operation table for a 
quotient group Gj N in order to determine its structure, as was done in Examples 1-4. 

EXAMPLE 5 

By Theorem 2.10, the group U14 = {1, 3, 5, 9, 11, 13} and thus has order 6. Let 

. I I IUI41 6 Mbe the cychc subgroup (13) = {1, 13}. Then ul4/ M = IMI = 2 = 3 by 

Theorem 8.13. Therefore, U14/M is isomorphic to 7L3 by Theorem 8.7. 

EXAMPlE 6 

In the additive group 7L, let K be the cyclic subgroup 

(4) ={0, ±4, ±8, ±12, ... }. 

As we saw in Example 1 of Section 8.1, a= b (mod 4) means a- b E.K. Hence, 

a = b (mod 4) if and only if a = b (mod K). 
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So the set of integers that are congruent to a modulo 4 (the congruence class 
[a]) is exactly the same as the set of integers that are congruent to a modulo K 
(the coset K + a). In other words, [a] = K + a. Arithmetic is the same in either 
notation: ' 

Ka + Kb ~ K(a + b) is the same as [a] + [b] = [a+ b]. 

Therefore, ?Lj K is the group of congruence classes modulo 4, that is, ?Lj K = 7L4• The 
same argument works with any positive integer n in place of 4: 

If K is the cyclic subgroup (n) of ?L, then ?Lj K = Z11 • 

EXAMPlE 7 

The subgroup 7L of integers in the additive group Q of rational numbers is 
normal since Q is abelian. Example 4 of Section 8.1 shows that there are infi
nitely many distinct cosets of 7L in Q. Consequently, the quotient group Qj?L is 
an infinite abelian group. Nevertheless, every element of Qj?L has .finite order 
(Exercise 25). 

The Structure of Groups 
If N is a normal subgroup of a group G, then the structure of each of the groups N, 
G, and GjN is related to the structure of the others. If we know enough information 
about two of these groups, we can often determine useful information about the third, 
as illustrated in the following theorems. 

Let N be a normal subgroup of a group G. Then GjN is abelian if and only if 
aba-1b-1 EN for all a, bE G. 

Proof~ GIN is abelian if and only if 

Nab= NaNb = NbNa = Nba for all a, bE G. 

But Nab= Nba if and only if (ab)(ba)- 1 EN by Theorem 8.21; and 
(ab)(ba)- 1 = aba-Jb-1 by Corollary 7.6. Therefore, G/ N is abelian if and 
only if aba-lb-1 EN for all a, bE G. 111, 

If G is a group, Example 6 of Section 8.2 shows that its center Z(G) is a normal 
subgroup of G. 
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If G is a group such that the quotient group Gjl(G) is cyclic, then G is abelian. 

Proof~> For notational convenience, denote Z( G) by C. Since G 1 C is cyclic, it 
has a generator Cd, and every coset in GjC is of the form ( Cdl = Cdk 
for some integer k. Let a and b be any elements of G. Since a = ea is in 
the coset Ca and since Ca = Cdi for some i, we have a = c1 di for some 
c1 E C. Similarly, b = c2di for some c2 E C and integer j. Now didi = 
di+i = di+i = didi, and c1 and c2 commute with every element of G by the 
definition of the center. Consequently, 

Therefore, G is abelian. Ill 

Exercises 

1. Let Nbe the subgroup (4> of Z20 • Find the order of 13 + Nin the group 
Z2o/N. 

2. Let G be the subgroup (3> of Z, and let N be the subgroup (15>. Find the order 
of 6 + Nin the group G/N. 

3. Complete the table in Example 2 and verify that every nonidentity element of 
D 4/ M has order 2. 

A. 4. N = { G ~ ~), G ~ ~), G ~ D} is a normal subgroup of S3 by 

Example 9 of Section 8.2. Show that S3/ N = Z2 . 

5. Show that Z 18/M = Z6, where M is the cyclic subgroup (6>. 

6. Show that Z6/N = Z 3, where Nis the subgroup {0, 3}. 

7. Show that U26/(5> is isomorphic to Z3. 

8. Let G = Z4 X Z4 and let N be the cyclic subgroup generated by (3, 2). Show 
that G/ N = Z4. 

9. Let G = Z 6 X Z 2 and let Nbe the cyclic subgroup ((1, 1)>. Describe the 
quotient group G/ N. 

10. (a) Let M be the cyclic subgroup ((0, 2)> of the additive group G = Z2 X Z4 

and let N be the cyclic subgroup ((1, 2)>, as in Example 4. Verify that M is 
isomorphic N. 

(b) Write out the operation table of G/ M, using the four cosets M + (0, 0), 
M + (1, 0), M + (0, 1), M + (1, 1). 
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(c) Show that G/M is not isomorphic to G/N (the operation table for G/N is 
in Example 4). Thus for normal subgroups M and N, the fact that M == N 
does not imply that G /M is isomorphic to G / N. 

11. If N is a subgroup of an abelian group G, prove that G/N is abelian. 

12. If N is a normal subgroup of a group G and if x 2 EN for every x E G, prove 
that every nonidentity element of the quotient group G/N has order 2. 

13. (a) Give an example of a nonabelian group G such that G/Z( G) is abelian. 

(b) Give an example of a group G such that G/Z( G) is not abelian. 

{ ( 
1 2 3 4) ( 1 2 3 4) ( 1 2 3 4) ( 1 2 3 4) } 14' (a) Show that V = 1 2 3 4 ' 2 1 4 3 ' 3 4 1 2 ' 4 3 2 1 

is a normal subgroup of S4. 

(b) Write out the operation table for the group S4/V. 

B. In Exercises 15 and 16, find an element of infinite order and an element of finite 
order in the given quotient group. There are many correct answers. Remember that 7L 
is an additive group. 

15. (71_ X 71_)/((5, 5)) 

16. (71_ X 71_)/((6, 9)) 

17. Let E be the group of even integers and N the subgroup of all multiples of 8. 

(a) Show that E/N has order 4. 

(b) To what well-known group is E/Nisomorphic? [Hint: Theorem 8.8.] 

18. Show that U32/N == U16 , where N is the subgroup { 1, 17}. 

19. An element b of a group is said to be a square if there is an element c in the 
group such that b = c2

. Let N be a subgroup of an abelian group G. If both 
Nand G/Nhave the property that every element is a square, prove that every 
element of G is a square. 

20. If Gis a group and [G:G/Z(G)] = 4, prove that G/Z(G) == 7L2 X 7L2. 

21. Let G be an abelian group and Tits torsion subgroup (see Exercise 19 of 
Section 7.3). Prove that G/Thas no nonidentity elements of finite order. 

22. Let IR* be the multiplicative group of nonzero real numbers and let N be the 
subgroup { 1, -1}. Prove that IR* / N is isomorphic to the multiplicative group 
IR** of positive real numbers. 

23. Describe the quotient group IR*/IR**, where IR* and IR** are as in Exercise 22. 

24. If G is a cyclic group, prove that G/N is cyclic, where N is any subgroup of G. 

25. (a) Find the order of%' 
1
;, and ~: in the additive group 0/7L 

(b) Prove that every element of Qj7L has finite order. 

(c) Prove that 0/7!_ contains elements of every possible finite order. 
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26. Prove that the set of elements of finite order in the group IR/Z is the subgroup 
0/Z. 

27. Let G and H be groups and let G* be the subset of G X H consisting of all (a, e) 
withaE G. 

(a) Show that G* is isomorphic to G. 

(b) Show that G* is a normal subgroup of G X H. 

(c) Show that (G X H)/G* =H. 

28. Let M and Nbe normal subgroups of a group G such that M n N =(e). 
Prove that G is isomorphic to a subgroup of G/M X G/N. 

29. If N is a normal subgroup of a group G and if every element of Nand of G/N 
has finite order, prove that every element of G has finite order. 

30. If N is a finite normal subgroup of a group G and if G/N contains an element 
of order n, prove that G contains an element of order n. 

31. Let G be a group of order pq, with p and q (not necessarily distinct) primes. 
Prove that the center Z( G) is either (e) or G. 

32. A group His said to be finitely generated if there is a finite subset S of H such 
that H = (S) (see Theorem 7.18). If N is a normal subgroup of a group G 
such that the groups Nand G /N are finitely generated, prove that G is finitely 
generated. 

33. Let G be a group and letS be the set of all elements of the form aba-!b- 1 with 
a, bE G. The subgroup G' generated by the setS (as in Theorem 7.18) is called 
the commutator subgroup of G. Prove 

(a) G' is normal in G. [Hint: For any g, a, bEG, show that g- 1(aba- 1b-1)g = 
(g- 1ag)(g- 1bg)(g-1a- 1g)(g- 1b- 1g) is inS.] 

(b) G/G' is abelian. 

34. Let G be the additive group IR X IR. 

(a) Show that N = {(x, y) IY = -x} is a subgroup of G. 

(b) Describe the quotient group G/N. 

35. Let N be a normal subgroup of a group G and let G' be the commutator 
subgroup defined in Exercise 33. If N n G' = (e), prove that 

(a) N~Z(G) (b)ThecenterofG/NisZ(G)/N. 

36. If G is a group, prove that G / Z( G) is isomorphic to the group Inn G of all 
inner automorphisms of G (see Exercise 37 in Section 7.4). 

C. 37. Let A, B, N be normal subgroups of a group G such that N ~A, N ~B. If 
G = AB and An B = N, prove that G/N = A/N X B/N. (The special case 
N = (e) is Exercise 30 in Section 8.2.) 
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Quotient Groups and Homomorphisms 

There is a close connection between normal subgroups, quotient groups, and homo
morphisms.* The following definition is crucial for developing this connection. 

let{: G ~ A be a, homo~brph ism of groups. Then th~ k~/11~1 of(isthe set .. 
{a E G I ((a) = eri}; . · . . . 

Thus, the kernel is the set of elements in G that are mapped onto the identity element 
in Hby the homomorphism! 

EXAMPlE 1 

Let IR1* be the multiplicative group of nonzero real numbers and IR1** the 
multiplicative group of positive real numbers. The functionf!R1* ~ IR1** given 
by f(x) = x2 is a homomorphism becausef(ab) = (ab)2 = a2b2 = f(a)f(b). Its 
kernel is the set of real numbers x such that x2 = 1, namely, { 1, -1}. 

EXAMPlE 2 

Verify that the functionf:IR1* X IR* ~ IR1* given by f(a, b) = b is a homomor
phism of multiplicative groups. Its kernel is the set of all pairs (a, b) such that 
b = 1, that is, {(a, 1) I a EIR1*}. 

EXAMPlE 3 

In Example 13 of Section 7.4, we saw that the functionf:Z ~ Z 5 given by 
f(a) = [a] is a homomorphism of additive groups. Its kernel is the set 

K={aEZif(a) =[OJ}= {aEZI[a] = [0]}. 

But [a] = [0] if and only if a= 0 (mod 5) by Theorem 2.3, and a= 0 (mod 5) if 
and only if 51 a by the definition of congruence. Hence, K is the set of all integer 
multiples of 5, that is, the cyclic group (5). 

You can easily verify that each of the kernels in Examples 1-3 is actually a (normal) 
subgroup. The same thing is true in the general case. 

*If you have read Chapter 6, this should not come as a surprise. The first part of this section simply 
carries over to groups the facts about ideals, quotient rings, and ring homomorphisms that were 
developed at the end of Section 6.2. (pages 154-158). 
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Let f:G--+ H be a homomorphism of groups with kernel K. Then K is a normal 
subgroup of G. 

Proof ~>If c, dE K, thenf(c) = eHandf(d) = eH by the definition of kernel. 
Hence,f(cd) = f(c)f(d) = e#H = eH, so that cdEK. If cEK, then by 
Theorem 7.20f(c- 1) = f(c)- 1 = (eH)- 1 = eH. Thus c-1 EK. Therefore, K 
is a subgroup of G by Theorem 7 .11. To show that K is normal, we must 
verify that for any a E G and c E K, a -I ca E K (Theorem 8.11). However, 

Therefore, a -I ca E K and K is normal. Ill 

EXAMPLE 4* 

Define fS11 --+ 7L2 as follows: f( O") = 0 if O" is even and f( O") = 1 if O" is odd. 
Then f is a homomorphism (Exercise 7). Clearly, the kernel off consists of all 
even permutations, that is, the kernel is A 11 • By Theorem 8.16, A11 is a normal 
subgroup of S11 • 

The kernel of a homomorphismfmeasures how farfis from being injective. 

Let f:G--+ H be a homomorphism of groups with kernel K. Then 

K = (eG) if and only if f is injective. 

Prooft.,.. Suppose K = (e0 ). Ifj(a) = f(b), then 

f(ab- 1) = f(a)f(b- 1) [fis a homomorphism.] 

= f(a)f(b)- 1 [Part (2) of Theorem 7.20] 

= f(a)f(a)-1 = eH [f(a) = f(b) by hypothesis.] 

Thus, ab- 1 is in the kernel, so that ab- 1 = e0 and hence, a= b. Therefore, 
jis injective. 

Conversely, suppose f is injective. If c is any element in the kernel K, 
thenf(c) = eH. By part (1) of Theorem 7.20,f(e0 ) = eH. Hence,!( c)= 
f(e 0 ), which implies that c = e0 sincefis injective. Therefore, e0 is the 
only element of K, so K= (e0). 

*Skip this example if you haven't read Section 7.5. 

tThe proofs of Theorems 8.17-8.20 are simply translations from rings to groups of the proofs of 
Theorems 6.11-6.13. 
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Theorem 8.16 states that every kernel is a normal subgroup. Conversely, every 
normal subgroup is a kernel: 

If N is a normal subgroup of a group G, then the map 1r:G ~ G/N given by 
1r(a) = Na is a surjective homomorphism with kernel N. 

Proof~ The map 7T is surjective because given any coset N a in GIN, we have 
1r(a) = Na. The definition of the group operation in G/ N shows that 7T is 
a homomorphism: 

1r(ab) =Nab = NaNb = 1r(a)1r(b). 

The identity element of G/ N is Ne. So the kernel of 7T is 

{aEGI1r(a) = Ne} = {aEGI Na = Ne} [Definition of 1r] 

= {a E G I a== e (mod N)} 

= {aEGI ae-1EN} 

= {aEGiaEN} =N 

[Theorem 8.2] 

[Definition of congruence] 

[ae-1 = ae = a.] lill 

In order to prove the First Isomorphism Theorem below, we need this lemma. 

--, '~j ~ 

·cern rna ·a.·1 
Let f:G ~ H be a group homomorphism with kernel K. Let a, b.E G. Then 

f(a) =((b) if and only if Ka = Kb. 

Proof~ If f(a) = f(b), thenf(a)f(b)- 1 =eH. By Theorem 7.20, 

f(ab- 1) = f(a)f(b- 1) = f(a)f(b)- 1 = eH· 

Hence, ab- 1 EK and a= b (mod K). So Ka = Kb by Theorem 8.2. 

Conversely, suppose Ka = Kb. By Theorem 8.2, a== b (mod K), which 
means that ab- 1 EK. Hence,f(ab-1) = eH, and by Theorem 7.20, 

Multiplying both ends on the right by f(b) shows thatf(a) = f(b). Ill 
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Let f:G--+ H be a surjective homomorphism of groups with kernel K. Then the 
quotient group G/K is isomorphic to H. 

Proof~ We would like to define cp:G/ K--+ H by cp(Ka) = f(a). However, a coset 
can be labeled by many different elements. We need to know that the 
value of 'P depends only on the coset, and not on the particular repre
sentative element chosen to name it. So suppose that Ka = Kb. Then 
f(a) = f(b) by Lemma 8.19, which means that cp(Ka) = cp(Kb). Therefore, 
the map cp:G/ K--+ H given by cp(Ka) = f(a) is a well-defined function, 
independent of how cosets are written. 

To prove that 'Pis surjective, suppose h EH. Then h = f(c) for some 
c E G because/is surjective. Thus, cp(Kc) = f(c) = h, and 'Pis surjective. 
To prove that 'Pis injective, suppose cp(Ka) = cp(Kb). Thenf(a) = f(b), 
so that Ka = Kb by Lemma 8.19. Hence, 'Pis injective. Finally, 'Pis a 
homomorphism because/is 

cp(KaKb) = cp(Kab) = f(ab) = f(a)f(b) = cp(Ka) cp(Kb). 

Therefore, cp: G / K--+ His an isomorphism. 

The First Isomorphism Theorem makes it easier to identify certain quotient groups. 

EXAMPlE 5 

Let G and Hbe groups and definefG X H--+ G by f(a, b) =a. Thenfis a 
surjective homomorphism by Exercise 9 of Section 7.4. The kernel of fis 

H = {(a, b) lf(a, b)= eo} = {(a, b) I a= eo} = {(eo, b) I aEH}. 

By the First Isomorphism Theorem, (G X H)/ H = G, and it is easy to show 
that His isomorphic to H (Exercise 15). 

EXAMPLE 6 

The functionf:C*--+ ~** given by f(a + bi) = a2 + b2 is a smjective homo
morphism of multiplicative groups (Exercise 16). Since 1 is the identity in~**, 
the kernel off is N = {a + bi I a2 + b2 = 1}. Then N is a normal subgroup by 
Theorem 8.16 and C* / N = ~** by the First Isomorphism Theorem. 

EXAMPLE 7 

As we saw in Example 1, the functionf:~*--+ ~**given by f(x) = x 2 is a 
homomorphism with kernel K = {1, -1}. Note thatfis surjective because 
for any positive real number c,f(Vc) = (Vc) 2 = c. By the First Isomorphism 
Theorem, ~*/K= ~**. 
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Subgroups of Quotient Groups 
Let N be a normal subgroup of a group G. We now investigate the subgroups of the 
quotient group G/N. 

Let N be a normal subgroup of a group G and let K be any subgroup of G that 
contains N. Then K/N is a subgroup of G/N. 

Proof~ N is obviously a subgroup of K. By normality, Na = aN for every a E G. 
In particular, Na = aN for every a E K. Hence, N is a normal subgroup 
of K and K/Nis a group by Theorem 8.13. The elements of K/N are the 
cosets Na with a E K. Since, every such coset is an element of G/ N, we 
conclude that K/ N is a subgroup of G/ N. Ill· 

When K is a normal subgroup of G, we get a stronger result. 

Let K and N be normal subgroups of a group G with N r:;;; K r:;;; G. Then K/N is a 
normal subgroup of G/N, and the quotient group (G/N)/(K/N) is isomorphic 
to G/K. 

Proof ~ The basic idea of the proof is to define a surjective homomorphism 
from G/Nto G/Kwhose kernel is K/N. Then the conclusion of the 
theorem will follow immediately from the First Isomorphism Theorem. 
First note that, if Na = Nc in G/N, then ac- 1 EN by Theorem 8.2 
and the definition of congruence modulo N. Since N r:;;; K, this means 
that ac- 1 EK. Consequently, Ka = Kc in G/ Kby Theorem 8.2 again. 
Therefore, themapf:G/N--+ G/K given by f(Na) = Ka is a well-defined 
function, that is, independent of the coset representatives in G/ N. 
Clearly fis smjective since any Ka in G/ K is the image of Na in G/N. 
The definition of coset operation shows that 

f(NaNb) = f(Nab) = Kab = KaKb = f(Na)f(Nb). 

Hence,fis a homomorphism. Since the identity element of G/K is Ke, 
a coset Na is in the kernel off if and only if f(Na) = Ke, that is, if and 
only if Ka = Ke. However, Ka = Ke if and only if a EKby Theorem 8.2. 
Thus the kernel off consists of all co sets Na with a E K; in other words, 
K/N is the kernel off Therefore, K/ N is a normal subgroup of G/N 
(Theorem 8 .16), and by the First Isomorphism Theorem, ( G / N)/ (K/N) = 
( G/N)/kernelf = G/ K. Ill 

*Yes, Virginia, there is a Second Isomorphism Theorem; see Exercise 40. For more about Virginia, go 
to www.stormfax.com/bios.htm 
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Let N be a normal subgroup of a group G and let K be any subgroup of G that 
contains N. Then K is normal in G if and only if K/ N is normal in G/ N. 

Proof~ If K is normal in G, then K/ N is normal in G/ N by Theorem 8.22. 
Conversely, suppose that K/ N is normal in G / N. Let a be any element of 
G and k any element of K. We first prove that a-1ka E K. Since K/ N 
is normal, 

Na- 1/w = (Na-1)(Nk)(Na) = (Na)-1(Nk)(Na) EK/N. 

Hence, Na- 1 ka = Nt for some t E K, so that a- 1 ka = nt for some n EN. 
Since N r;;;_ K, we have a - 1ka = nt E K, as desired. Since a and k were 
arbitrary, this proves that a - 1 Ka r;;;_ K. Therefore, K is normal in G by 
Theorem 8.11. 1!1 

We now have complete information about subgroups of G/ N that arise from 
subgroups of G that contain N. Are these the only subgroups of G/ N? The next 
theorem answers this question in the affirmative. 

Theorem 8.24 
If Tis any subgroup of G/N, then T = H/N, where His a subgroup of G that 
contains N. 

Proof~ Let H = {a E G I N a E T}. Exercise 23 shows that His a subgroup of G. 
If a EN, then ae- 1 = ae =a EN, so a= e (mod N). By Theorem 8.2, 
N a = NeE T. Hence, a E H. Therefore, N r;;;_ H. Finally, the quotient 
group H/ N consists of all cosets Na with a E H, that is, all Na E T. Thus, 
H/N= T. 

Simple Groups 
In Section 8.1 we considered the classification problem for finite groups-the attempt 
to produce a list of groups such that every finite group is isomorphic to exactly one 
group on the list. We now introduce the groups that apparently are the key to solving 
the classification problem. Recall that a group G always has two normal subgroups, 
the trivial group <e) and G itself (Exercise 4 in Section 8.2). A group G is said to be 
simple if its only normal subgroups are <e) and G. 

EXAMPLES 

If p is prime, then any (normal) subgroup H of the additive group 7/_P must have 
order dividingp by Lagrange's Theorem. SoH must have order 1 or p, so that 
H = <O) or H = 7/_P' Therefore, 7/_P is simple. 
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G is a simple abelian group if and only if G is isomorphic to the additive group 
7LP for some pr'1me p. 

Proof~ The preceding example shows that any group isomorphic to 7LP is 
simple. Conversely, suppose G is simple. Since every subgroup of an 
abelian group is normal, G has no subgroups at all, except (e) and G. 
So if a is any nonidentity element of G, then the cyclic subgroup (a) 
must be G itself. Since every infinite cyclic group is isomorphic to 7L by 

. Theorem 7.19 and 7L has many proper subgroups, G = (a) must be a 
cyclic group of finite order n. We claim that n is prime. If n were com
posite, say n = td with 1 < d < n, then (a') would be a subgroup of G 
of order dby part (3) of Theorem 7.9, which is impossible since Gis 
simple. Therefore, G is cyclic of prime order and, hence, is isomorphic 
to some 7LP by Theorem 7.19. 1111. 

Nonabelian simple groups are relatively rare. There are only five of order less than 
1000 and only 56 of order less than 1,000,000. A large class of nonabelian simple 
groups, the alternating groups, is considered in Section 8.5. 

We now show why simple groups are the basic building blocks for all groups. If G 
is a finite group, then it has only finitely many normal subgroups other than itself (and 
there is at least one such subgroup since (e) is normal). Let G1 be a normal subgroup 
(other than G) that has the largest possible order. We claim that G I G1 is simple. If 
GIG1 had a proper normal subgroup, then by Theorem 8.24 and Corollary 8.23 this 
subgroup would be of the form M I Gb where M is a normal subgroup of G such that 
G1 £ M £ G. In this case, M would be a normal subgroup other than G with order 
larger than jG1j, a contradiction. Hence, G / G1 is simple. 

If G1 =!= (e), let G2 be a normal subgroup of G1 (other than G1) of largest possible 
order. (G2 is normal in Gj, but need not be normal in G.) The argument in the preced
ing paragraph, with G1 in place of G and G2 in place of G1, shows that G11 G2 is simple. 
Similarly, if G2 =!= (e), there is a normal subgroup G3 of G2 such that G3 =!= G2 and G2/ G3 

is simple. This process can be continued until we reach some G11 that is the identity 
subgroup (and this must occur since the order of G; gets smaller at each stage). Then 
we have a sequence of groups 

G = G ::J G ::J G ::J G ::J .. · ::J G ::J G = (e) 
1 

0 ;;r: I ;;r: 2 ;;r: 3 ;;r: ;;r: n-1 ;;r: n 

such that each G; is a normal subgroup of its predecessor and each quotient group 
G;IGi+ 1 is simple. The simple groups G0IG1, G1IG2, • •. , G11 _ 11Gn are called the 
composition factors of G. 

It can be shown that the composition factors of a finite group G are independent 
of the choice of the subgroups G;. In other words, if you made different choices of 
the G;, the simple quotient groups you would obtain would be isomorphic to the ones 
obtained in the previous paragraph. This means that the composition factors of G are 
completely determined by the structure of G and suggests a strategy for solving the 
classification problem. If we could first classify all simple groups and then show how 
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the composition factors of an arbitrary group determine the structure of the group, it 
would be possible to classify all groups. 

The good news is that the first half of this plan has already succeeded. For more 
than four decades, a number of group theorists around the world worked on various 
aspects of the problem and eventually obtained a list of simple groups such that every 
finite simple group is isomorphic to exactly one group on the list.* The complete proof 
of this spectacular result runs some 10,000 pages! For a brief history of the search for 
simple groups, see Gallian [23] or Steen [25]. 

Exercises 

NOTE: The congruence class of a in "£11 is denoted [a]11 whenever necessary to avoid 
confusion. 

A. In Exercises 1-9, verify that the given function is a homomorphism and .find its 
kernel. 

1. f C--? IR, where f(a + bi) = b. 

2. g: IR* --? "£2, where g(x) = 0 if x > 0 and g(x) = 1 if x < 0. 

3. h: IR*--? IR*, where h(x) = x3. 

4. fO*--? 0**, wheref(x) =I xl. 

5. g: Q X "£--? "£, wheref((x, y)) = y. 

6. h: C--? C, where h(x) = x4• 

7 .t f S" --? "£2, where f( 0') = 0 if 0' is even and f( 0') = 1 if 0' is odd. 

8. f "£12--? "£12• wheref(x) = 3x. 

9. f J'..--? "£2 X "£4, wheref(a) = ([ah, [a]4). 

10. q;:S11 --? Sn+l> where for eachf E S"' cp(f) E Sn+l is given by 

cp(f)(k) = {f(k) 
n + 1 

ifl :::; k:::; n 

ifk=n+1 

11. Suppose that k, n, and rare positive integers such that kIn. Show that the 
functionf"Zn--? zk given by f([a]n) = [ra]lc is well defined (meaning that if 
[aJn = [b]"' then [ra]k = [rb]1J 

*The proof was first announced in 1981, but a few years later a gap in the proof was discovered. It 
took until2004 for this gap to be fixed. 

tSkip this exercise if you haven't read Section 7.5. 
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In Exercises I2-14, verify that the given function is a surjective homomorphism of 
additive groups. Then find its kernel and identify the cyclic group to which the kernel 
is isomorphic. [Exercise II may be helpful.] 

12. h:7L 12 --+ 7L 6, where h([a]u) = [ak 

13. h:7L 16 --+ 7L4 , where h([a] 16) = [3ak 

14. h:7L18 --+ 7L3, where h([x] 18) = [2xh. 

15. If H and H are the groups in Example 5. Show that H = H. 

16. Prove that the function/ C*--+ IR** given by f(a + bi) = a2 + b2 is a surjective 
homomorphism of groups. 

17. (a) Produce a list of groups such that every homomorphic image of 7L 12 is 
isomorphic to exactly one group on the list. [Hint: See Exercise 26 in 
Section 7 .4.] 

(b) Do the same for 7L20 . 

18. Find all homomorphic images of D 4. 

19. Find all homomorphic images of S3. 

20. (a) List all subgroups of 7L 12/ H, where H = {0, 6}. 

(b) List all subgroups of 7L20/ K, where K = {0, 4, 8, 12, 16}. 

21. Suppose that G is a simple group and f: G--+ His a surjective homomorphism 
of groups. Prove that either/is an isomorphism or H =(e). 

B. 22. Let G be an abelian group. 

(a) Show that K = {a E Glial:::; 2} is a subgroup of G. 

(b) Show that H = {x2
1 x E G} is a subgroup of G. 

(c) Prove that G/ K =H. [Hint: Define a surjective homomorphism from G to 
H with kernel K.] 

23. If N is a normal subgroup of a group G and Tis a subgroup of G / N, show 
that H = {a E GINa E T} is a subgroup of G. 

24. If k I 11 and/ ult--? uk is given by f([x],) = [x]b show thatjis a homomorphism 
and find its kernel. · 

25. Prove that (Z X lL)/((1, 1)) = 7L. [Hint: Show thatf7L X 7L--+ 7L, given by 
f((a, b))= a- b, is a smjective homomorphism.] 

26. Prove that (7L X Z)/((2, 2)) = 7L X 7L2• [Hint: Show that h:7L X 7L--+ 7L X 7L2> 
given by h((a, b))= (a- b, [bh) is a surjective homomorphism.] 

27. Let Mbe a normal subgroup of a group G and let Nbe a normal subgroup 
of a group H. Use the First Isomorphism Theorem to prove that M X N is a 
normal subgroup of G X Hand that(G X H)/(MX N) = G/MX H/N. 

28. SL(2, IR) is a normal subgroup of GL(2, IR) by Exercise 25 of Section 8.2. 
Prove that GL(2, IR)/SL(2, IR) is isomorphic to the multiplicative group IR* of 
nonzero real numbers. 

29. If kIn, prove that 7L11 / (k) = 7Lk. [Exercise 11 may be helpful.] 
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30. If fG-+ His a homomorphism of finite groups, prove that IImfl divides I Gl 
and IHI· [Imf was defined just before Theorem 7 .20.] 

31. Prove that £:12 = £:3 X £:4• [Considerf£:--+ £:3 X £:4, given by f(a) = ([ah, [a]4).] 

32. Let M be a normal subgroup of a group G and let N be a normal subgroup of 
a group H. Iff: G--+ His a homomorphism such that f(Jvf) <;;;; N, prove that the 
map g:G/ M--+ H/N given by g(Ma) = Nf(a) is a well-defined homomorphism. 

33. Let f G--+ H be a surjective homomorphism of groups with kernel K. Prove 
that there is a bijection between the set of all subgroups of Hand the set of 
subgroups of G that contain K. 

34. (An exercise for those who know how to multiply 3 X 3 matrices.) Let G be 
the set of all matrices of the form 

where a, b, cEQ. 

(~ ~ ;) 
(a) Show that G is a group under matrix multiplication. 

(b) Find the center C of G and show that Cis isomorphic to the additive 
group Q. 

(c) Show that G/ Cis isomorphic to the additive group Q X Q. 

35. Let G and H be the groups in Exercises 33 and 34 of Section 7 .1. Use the 
First Isomorphism Theorem to prove that His normal in G and that G/ His 
isomorphic to the multiplicative group IR* of nonzero real numbers. 
[Hint: Consider the mapfG-+ IR* given byf(Tab) =a.] 

36. Let N be a normal subgroup of a group G and let f G--+ H be a 
homomorphism of groups such that the restriction of fto N is an 
isomorphism N = H. Prove that G = N X K, where K is the kernel of f. 
[Hint: Exercise 30 in Section 8.2.] 

37. Prove that Q* = Q** X £:2. [Hint: Exercises 4 and 36.] 

38. Let N be a normal subgroup of a group G. Prove that G / N is simple if and 
only if there is no normal subgroup K such that N ~ K ~ G. 
[Hint: Corollary 8.23 and Theorem 8.24.] 

39.* The additive group Z[x] contains Z (the set of constant polynomials) as a 
normal subgroup. Show that Z[x]/Z is isomorphic to Z[x]. This example 
shows that G/ N = G does not necessarily imply that N = (e). [Hint: Consider 
the map T:Z[x]--+ Z[x]/Z given by T(f(x)) = Z + xf(x).] 

C. 40. (Second Isomorphism Theorem) Let K and N be subgroups of a group G, with 
N normal in G. Then NK = {nk In EN, k E K} is a subgroup of G that contains 
both K and N by Exercise 20 of Section 8 .2. 

(a) Prove that N is a normal subgroup of NK. 

*Skip this exercise if you have not read the first part of Section 4.1. 
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(b) Prove that the functionfK ~ NK/ N given by f(k) = Nk is a surjective 
homomorphism with kernel K n N. 

(c) Conclude that K/(N n K) = NK/N. 

41. Cayley's Theorem 7.21 represents a group Gas a subgroup of the permutation 
group A( G). A more efficient way of representing Gas a permutation group 
arises from the following generalized Cayley's Theorem. Let K be a subgroup 
of G and let T be the set of all distinct right co sets of K. 

(a) If a E G, show that the map fa: T ~ T given by fa(Kb) = Kba is a 
permutation of the set T. 

(b) Prove that the function cp:G~ A(T) given by cp(a) =fa-,, is a 
homomorphism of groups whose kernel is contained inK. 

(c) If K is normal in G, prove that K =kernel cp. 

(d) Prove Cayley's Theorem by applying parts (b) and (c) with K =(e). 

42. A group G is said to be metabelian if it has a subgroup N such that N is 
abelian, N is normal in G, and G/ N is abelian. 

(a) Show that S3 is metabelian. 

(b) Prove that every homomorphic image of a metabelian group is metabelian. 

(c) Prove that every subgroup of a metabelian group is metabelian. 

APPLICATION: Decoding Techniques (Section 16.2) may be covered at 
this point if desired. 

The Simplicity of A 11 * 

As we saw at the end of Section 8.4, simple groups appear to be the key to solving the 
classification problem for finite groups. This fact and the following theorem are one 
reason that the alternating groups A 11 are important. 

Theoreh18.26 
For each n :f. 4, the alternating group An is a simple group. 

The group A4 is not simple (Exercise 7). Although the entire proof of Theorem 8.26 
is rather long, it requires only basic facts about the symmetric groups and normal 
subgroups. There will be many instances in the proof where we will deal with permuta
tions such as (abed) or (a2b) or (ab)(cd). In all such cases, 

distinct letters represent distinct elements of {1, 2, ... , n}. 

The proof of the theorem requires two lemmas. 

*Section 7.5 is a prerequisite. This section is not used in the sequel and may be omitted if desired. 
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Every element of An (with n 2: 3) is a product 'of 3-cycles. 

Proof~ Every element of An is by definition the product of pairs of transposi
tions. But every such pair must be of one of these forms: (ab) (cd) or 
(ab) (ac) or (ab) (ab). In the first case verify that (ab) (cd) = (adb) (adc), 
in the second that (ab) (ac) = (acb), and in the last that (ab) (ab) = (1) = 
(abc) (acb). Thus every pair of transpositions is either a 3-cycle or a 
product of two 3-cycles. Hence, every product of pairs of transpositions 
is a product of 3-cycles. II) 

If N is a normal subgroup of An (with n 2: 3) and N contains a 3-cycle, then 
N =An. 

Proof 5I> For notational convenience, assume that (123) EN [the argument when 
(rst) EN is the same; just replace 1, 2, 3 by r, s, t, respectively]. Since 
(123) EN, we see that (123)(123) = (132) is also inN. Fork 2:4, let 
x = (12)(3k) and verify that x-1 = (3k)(12). The normality of Nimplies 
that x(132)x- 1 EN by Theorem 8.11. But 

x(132)x- 1 = (12)(3k)(l32)(3k)(12) = (12k). 

Therefore, 

(*) N contains all 3-cycles of the form (12k) with k 2: 3. 

Verify that every other 3-cycle can be written in one of these forms: 

(la2), (lab), (2ab), 

where a, b, c 2: 3. By ( *) and closure in N, 

(la2) = (12a)(l2a) EN; 

(lab)= (12b)(12a)(12a) EN; 

(2ab) = (12b)(l2b)(l2a) EN; 

(abc) 

(abc) = (12a)(l2a)(l2c)(12b)(l2b)(l2a) EN. 

Thus N contains all 3-cycles, and, hence, N contains all products of 
3-cycles by closure. Therefore, N =An by Lemma 8.27. R 

We are now ready to prove Theorem 8.26. The following fact will be used frequently: 

For example, (12345)- 1 = (15432) and (678)- 1 = (687), as you can easily verify. 
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Proof of Theorem 8.28 ... A2 and A3 are simple abelian groups (Exercise 2). So 
assume n;::: 5. We must prove that A 11 has no proper normal subgroups. 
Let N be any normal subgroup of Am with N =!= (1). We need only 
show that N = A 11 • When all the nonidentity elements of N are written 
as products of disjoint cycles, then there are three possibilities for the 
lengths of these cycles: 

1. Some cycle has length ;::: 4. 

2. Every cycle has lengths 3, and some have length 3. 

3. Every cycle has lengths 2. 

We shall show that in each of these cases, N = A11 • 

Case 1 N contains an element u that is the product of disjoint cycles, at least 
one of which has length r;::: 4. For notational convenience we assume that 
u = (1234 · · · r}r, where r is a product of disjoint cycles, none of which 
involve the symbols 1, 2, 3, 4, ... , r.t Let 8 = (123) EA11 • Since Nis a 
normal subgroup and u EN, we have u- 1(8u8- 1) EN by Theorem 8.11. 
An easy computation shows that 

u- 1(8u8- 1
) = [(1234 · · · r)rr 1 (123)[(1234 · · · r)r](123)- 1 

= r-1(1234 · · · r)- 1(123)[(1234 · · · r)r](123)- 1 [Corollary 7.6] 

= r - 1(1r · · · 432)(123)(1234 · · · r)r(l32) 

= r- 1r(lr · · · 432)(123)(1234 · · · r)(l32) 

= (1)(13r) = (13r). 

Therefore, (13r) EN, and hence, N = A 11 by Lemma 8.28. 

[Statement(**)] 

[Theorem 7.23] 

Case 2A N contains an element cr that is the product of disjoint cycles, at least 
two of which have length 3. For convenience we assume that cr = 
(123)(456) r, where r is a product of disjoint cycles, none of which in
volve the symbols 1, 2, ... , 6. Let 8 = (124) E An- Then, as in Case 1, 
N contains cr-1(8cr8- 1), and we have a similar calculation: · 

cr- 1(8cr8- 1) = [(123)( 456)rr 1(124)(123)( 456)r(124)- 1 

= r - 1( 456)- 1(123)- 1(124)(123)( 456)r(124)- 1 [Corollary 7.6] 

= r- 1(465)(132)(124)(123)(456)7 (142) [Statement(**)] 

= r- 1r(465)(132)(124)(123)( 456)(142) [Theorem 7.23] 

= (14263). 

Therefore, (14263) EN, and N = A 11 by Case 1. 

tThe same argument works with an arbitrary r-cycle (abed·· ·I) in place of (1234 · · · r); just replace 
1 by a, 2 by b, etc. Analogous remarks apply in the other cases, where specific cycles will also be 
used to make the argument easier to follow. 
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Case 2B N contains an element cr that is the product of one 3-cycle and some 
2-cycles. We assume that cr = (123}r, where 7 is a product of disjoint 
transpositions, none of which involv('( the symbols 1, 2, 3. Since a 
product of disjoint transpositions is its own inverse (Exercise 5), 
Theorem 7.23 shows that 

cr2 = (123)7(123)7 = (123)(123)77 = (123)(123) = (132). 

But cr2 EN since cr EN. Therefore, (132) EN, and N =An by Lemma 8.28. 

Case 2C N contains a 3-cycle. Then N = A11 by Lemma 8.28. 

Case 3 Every element of N is the product of an even number of disjoint 
2-cycles. Then a typical element cr of N has the form (12)(34)7, where 
Tis a product of disjoint transpositions, none of which involve the 
symbols 1, 2, 3, 4. Let 8 = (123) EAil' Then, as above, cr- 1(8cr8- 1

) EN. 
Using Corollary 7.6, Theorem 7.23, and statement(**), we see that 

cr- 1(8cr8- 1) = T- 1(34)(12)(123)(12)(34)7(132) = (13)(24). 

Since n :::::: 5, there is an element kin { 1, 2, ... , n} distinct from 1, 2, 3, 4. 
Let a = (13k) E An. Let ,(3 = (13)(24), which was just shown to be inN. 
Then by the normality of Nand closure, ,B(a,Ba - 1) EN. But 

,B(a,Ba- 1) = (13)(24)(13k)(l3)(24)(lk3) = (13k). 

Therefore, (13k) EN, and N =An by Lemma 8.28. Ill 

Theorem 8.26leads to an interesting fact about the normal subgroups of S": 

If n :::::: 5, then (1 ), An, and Snare the only normal subgroups of Sn. 

Sketch of Proof~ Suppose that N is a normal subgroup of sll. Then N n An is 
a normal subgroup of An (Exercise 19 of Section 8.2). Theorem 8.26 
shows that N n All must either be A, or (1 ). If N n A, = A"' then N = A11 

or S, (Exercise 10). If N n A11 = (1), then all the nonidentity elements of 
N are odd. Since the product of two odd permutations is even, that is, an 
element of A"' and N n All = (1 ), the product of any two elements of N 
is (1). Therefore, N = (1) (Exercises 8 and 9). ill 
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Exercises 

A. 1. (a) List all the 3-cycles in S4. 

(b) List all the elements of A4 and express each as a product of 3-cycles. 

2. (a) Verify that A2 = (1). 

(b) Show that A3 is a cyclic group of order 3 and hence simple by Theorem 8.25. 

3. Find the center of the group A4. 

4. If n 2: 5, what is the center of An? 

B. 5. If cr E: sn is a product of disjoint transpositions, prove that cr2 = (1). 

6. Prove that A 5 has no subgroup of order 30. [Hint: Exercise 23 of Section 8.2.] 

7. Prove that N = {(1), (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4. 

Hence, A4 is not simple. [Hint: Exercise 23 of Section 7.5. For normality, use 
Exercise l(a) and straightforward computations.] 

8. Prove that no subgroup of order 2 in Sn (n 2: 3) is normal. [Hint: Exercises 26 
of Section 7.5 and 16 of Section 8.2.] 

9. Let Nbe a subgroup of Sn such that err= (1) for all nonidentity elements 
cr, r EN. Prove that N = (1) or N is cyclic of order 2. [Hint: If N =/= (1), let 
cr be a nonidentity element of N. Show that cr has order 2. If r is any other 
nonidentity element of N, show that cr = r.] 

10. If N is a normal subgroup of Sn and N n An = A"' prove that N = An or Sw 
[Hint: Why is An s;;; Ns;;; Sn? Use Theorem 7.29 and Lagrange's Theorem.] 

U. Prove that A 11 is the only subgroup of index 2 in Sn- [Hint: Exercise 23 of 
Section 8.2 and Corollary 8.29.] 

12. If fSn ~ Sn is a homomorphism, prove thatj(A 11 ) s;;; A 11 • 
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Topics in Group Theory 

This chapter takes a deeper look at various aspects of the classification problem 
for finite groups, which was introduced in Section 8.1. After the necessary pre
liminaries are developed in Section 9.1, all finite abelian groups are classified up 
to isomorphism in Section 9.2. The basic tools for analyzing nonabelian groups are 
presented in Sections 9.3 and 9.4. Applications of these results and several other 
facts about the structure of finite groups are considered in Section 9.5, where 
groups of small order are classified. 

Sections 9.3 and 9.4 are independent of Sections 9.1 and 9.2 and may be read 
first if desired. Sections 9.1-9.4 are prerequisites for Section 9.5. 

Direct Products 

If G and Hare groups, then their Cartesian product G X His also a group, with the 
operation defined coordinatewise (Theorem 7.4). In this section we extend this notion 
to more than two groups. Then we examine the conditions under which a group is 
(isomorphic to) a direct product of certain of its subgroups. When these subgroups are 
of a particularly simple kind, then the structure of the group can be completely deter
mined, as will be demonstrated in Section 9.2. Throughout the general discussion, all 
groups are written multiplicatively, but specific examples of familiar additive groups 
are written additively as usual. 

If G~o G2o ... , G11 are groups, we define a coordinatewise operation on the Cartesian 
product G1 X G2 X · · · X Gn as follows: 

(a~o alo ... 'an)(b" blo' .. 'bn) = (albl, a2b2> . .. 'anbn). 

It is easy to verify that G1 X G2 X · · · X G11 is a group under this operation: If e; is the 
identity element of Gh then ( e~o e2, •.• , e11 ) is the identity element of G1 X G2 X · · · X G" 
and (a 1 -I, a2 -I, ... , a" -I) is the inverse of (a 1, a2, ... , a,J. This group is called the direct 
product of G" G2, ... , G11 • * 
*When each G; is an additive abelian group, the direct product of G1, ••• , Gn is sometimes called the 
direct sum and denoted G1 EB G2 EB · · · EB G"' 281 
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EXAMPLE 1 

Recall that U11 is the multiplicative group of uni~s in 7l.11 and that U4 = {1, 3} 
and U6 = {1, 5} (see Theorem 2.10). The direct product U4 X U6 X 7l.3 consists 
of the 12 triples 

(1, 1, 0), 

(3, 1, 0), 

(1, 1, 1), 

(3, 1, 1), 

(1, 1, 2), 

(3, 1, 2), 

(1, 5, 0), 

(3, 5, 0), 

(1, 5, 1), 

(3, 5, 1), 

(1, 5, 2), 

(3, 5, 2). 

Note that U4 has order 2, U6 has order 2, 7L3 has order 3, and the direct product 
U4 X U6 X 7L3 has order 2 · 2 · 3 = 12. Similarly, in the general case, 

if G1, G2, ••• ,G11 are finite groups, then 

G1 X G2 X • • • X G11 has order \G1\ ·\G2\ • • ·\GJ 

In the preceding example it is important to note that the groups U4, U6, and 
7L3 are not contained in the direct product U4 X U6 X 7L3• For instance, 5 is an 
element of U6, but 5 is not in U4 X U6 X 1l.3 because the elements of U4 X U6 X 7l.3 

are triples. In general, for 1 :::; i :::; n 

G; is not a subgroup of the direct product G1 x G2 x · · · x Gil'* 

This situation is not entirely satisfactory, but by changing our viewpoint slightly 
we can develop a notion of direct product in which the component groups may 
be considered as subgroups. 

EXAMPLE 2 

It is easy to verify that M = {0, 3} and N = {0, 2, 4} are normal subgroups of 
7L6 (Do it!). Observe that every element of 7L6 can be written as a sum of an ele
ment in Mandan element inN in one and only one way: 

0=0+0 

3 = 3 + 0 

1 = 3 + 4 

4=0+4 
2=0+2 
5 = 3 + 2. 

Verify that, when the elements of 7L6 are written as sums in this way, then the 
addition table for 7L6 looks like this: 

0+0 3+4 0+2 3+0 0+4 3+2 

0+0 0+0 3+4 0+2 3+0 0+4 3+2 

3+4 3+4 0+2 3+0 0+4 3+2 0+0 

0+2 0+2 3 + 0 0+4 3+2 0+0 3+4 

3+0 3+0 0+4 3+2 0+0 3+4 0+2 

0+4 0+4 3+2 0+0 3+4 0+2 3+0 

3+2 3+2 0+0 3+4 0+2 3+0 0+4 

*It is true, however, that an isomorphic copy of Gi is a subgroup of G1 X G2 X··· X Gn (see Exercise 12). 
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Compare the 7L6 table with the operation table for the direct product M X N: 

(0, 0) (3, 4) (0, 2) (3, 0) (0, 4) (3, 2) 
' 

(0, 0) (0, 0) (3, 4) (0, 2) . (3, 0) (0, 4) (3, 2) 

(3, 4) (3, 4) (0, 2) (3, 0) (0, 4) (3, 2) (0, 0) 

(0, 2) (0, 2) (3, 0) (0, 4) (3, 2) (0, 0) (3, 4) 

(3, 0) (3, 0) (0, 4) (3, 2) (0, 0) (3, 4) (0, 2) 

(0, 4) (0, 4) (3, 2) (0, 0) (3, 4) (0, 2) (3, 0) 

(3, 2) (3, 2) (0, 0) (3, 4) (0, 2) (3, 0) (0, 4) 

The only difference in these two tables is that elements are written a + b in 
the first and (a, b) in the second. Among other things, the tables show that the 
direct product M X N is isomorphic to 7L6 under the isomorphism that assigns 
each pair (a, b) EM X N to the sum of its coordinates a + bE 7L6• 

Consequently, we can express 7L6 as a direct product in a purely internal fashion, 
without looking at the set M X N, which is external to 7L6: Write each element uniquely 
as a sum a + b, with a EM and bEN. We now develop this same idea in the general 
case, with multiplicative notation in place of addition in 7L 6• 

Let N1, N2 .. . , Nk be normal subgroups of a group G such that every element 
in G can be written uniquely in the form a1a2 · · · ak, with a; EN;.* Then G is 
isomorphic to the direct product N 1 x N2 x · · · x N1(' 

The proof depends on this useful fact: 

Let M and N be normal subgroups of a group G such that M n N =(e). If a EM 
and bEN, then ab = ba. 

Proof"" Consider a- 1b-1ab. Since Mis normal, b-1ab E Mby Theorem 8.11. 
Closure in M shows that a- 1b-1ab = a- 1(b- 1ab) EM. Similarly, the 
normality of Nimplies that a-1b- 1a EN and, hence, a-1b-1ab = 
(a-]b- 1a)b EN. Thus a-lb- 1ab EM n N =(e). Multiplying both sides 
of a- 1b-1ab =eon the left by ba shows that ab = ba. IIIII 

Proof of Theorem 9.1 ,.. Guided by the example preceding the theorem (but using 
multiplicative notation), we define a map 

*Uniqueness means that if a1a2 ••. ak = b1b2 .•. bk with each a;, b; EN;, then a;= b; for every i. 
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Since every element of G can be written in the form a1a2 · · ·ale (with 
a1 EN) by hypothesis,/ is surjective. If /(a" a2, ... , a ~c) = f(b1, b2, ... , b~c), 
then a1a2 · · · ale = b1 b2 · · · bk. By the uniqueness hypothesis, a1 = b1 for 
each i(l ::; i ::; k). Therefore, 

and f is injective. 
In order to prove that f is a homomorphism we must first show that 

the Ns are mutually disjoint subgroups, that is, N1 n ~ = (e) when i * j. 
If a E N1 n ~, then a can be written as a product of elements of the N's 
in two different ways: 

ee · · · eae · · · e · · · e = a = ee · · · e · · · eae · · · e. 
t t t t t t t t 

The uniqueness hypothesis implies that the components in N1 must be 
equal: a= e. Therefore, N1 n ~=(e) fori* j. In showing that/is a 
homomorphism, we shall make repeated use of this fact, which together 
with Lemma 9.2, implies that a1b1 = b1a1 for a1 E N1 and b1 E ~: 

Continuing in this way we successively move a4, a5, •.. , ak to the left 
until we obtain 

f[(al> . .. , a~c)(bl> .. . , b~c)] = (a1a2 · · · a~c)(b1b2 · · · b~c) 
= f(a" ... , a~c)f(b" ... , b~c). 

Therefore,/ is homomorphism and, hence, an isomorphism. II 

Whenever G is a group and N 1, ... , Nk are subgroups satisfying the hypotheses 
of Theorem 9.1 we shall say that G is the direct product of Nh ... , Nk and write 
G = N1 X · · · XNk. Each N1 is said to be a direct factor of G. Depending on the con
text, we can think of Gas the external direct product of the N1 (each element a k-tuple 
(a!> ... , a ~c) E N 1 X · · · X N~c) or as an internal direct product (each element written 
uniquely in the form a1a2 · · · ak E ak E G). 

The next theorem is often easier to use than Theorem 9.1 to prove that a group is 
the direct product of certain of its subgroups. The statement of the theorem uses the 
following notation. If M and N are subgroups of a group G, then MN denotes the set 
of all products mn, with m E NI and n EN. 
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If M and N are normal subgroups of a group G such that G = MN and M n N =(e), 
then G = M X N. 

For the case of more than two subgroups, see Exercise 25. 

Proof of Theorem 9.3 ... By hypothesis every element of G is of the form mn, with 
m E AI/, n EN. Suppose that an element had two such representations, say 
mn = m 1ni> with m, m 1 EM and n, n1 EN. Then 

mn = m 1n1 

-1 -1 m 1 mn = m1 m1n1 

m1-
1mn = n1 

m 1-
1mnn- 1 = n,n- 1 

m1-
1m = n1n-1 

[Left multiply both sides by m 1- 1.] 

[Right multiply both sides by n-1
.] 

But m 1- 1m EM and n1n-1 EN and M n N =(e). Thus m1- 1m = e and 
m = m1; similarly, n = n1. Therefore, every element of Gcan be written 
uniquely in the form mn (mE M, n EN), and, hence, G = M X N by 
Theorem 9.1 . 

EXAMPlE 3 

By Theorem 2.10, the multiplicative group of units in 1:: 15 is U15 = 
{1, 2, 4, 7, 8, 11, 13, 14}. The groups M = {1, 11} and N = {1, 2, 4, 8} are 
normal subgroups whose intersection is (1). Every element of N is in MN (for 
instance, 2 = 1 · 2), and similarly forM. Since 11 · 2 = 7, 11 · 8 = 13, and 
11 · 4 = 14, we see that U15 = MN. Therefore, U15 = M X N by Theorem 9.3. 
Since N is cyclic of order 2 and M cyclic of order 4 (2 is a generator), we con
clude that U15 is isomorphic to 7L2 X 1::4 (see Exercise 10 and Theorem 7.19). 

Exercises 

NOTE: Unless stated otherwise, G" ... , G" are groups. 

A. 1. Find the order of each element in the given group: 

(a) 1::2 X 1::4 (b) 1::3 X 1::3 X 7L2 (c) D4 X 1::2 

2. What is the order of the group U5 X U6 X U7 X U8? 

3. (a) List all subgroups of 1::2 X 1::2. (There are more than two.) 

(b) Do the same for 1::2 X 1::2 X 1::2. 

4. If G and Hare groups, prove that G X H == H X G. 
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5. Give an example to show that the direct product of cyclic groups need not be 
cyclic. 

6. (a) Write 2 12 as a direct sum of two of its subgroups. 

(b) Do the same for 2is· 

(c) Write 2 30 in three different ways as a direct sum of two or more of its 
subgroups. [Hint: Theorem 9.3.] 

7. Let Gb ... , Gil be groups. Prove that Gi X · · · X G11 is abelian if and only if 
every G; is abelian. 

8. Let i be an integer with 1 ::::; i::::; n. Prove that the function 

7T;:Gi X G2 X··· X Gil-+ G; 

given by 7T;(a~o a2, a3, •.. , a11 ) = a; is a surjective homomorphism of groups. 

9. Is 2 8 isomorphic to 2 4 X 2 2? 

B.10. (a) If f.Gi-+ Hi and g:G2 -+ H 2 are isomorphisms of groups, prove that 
the map 8:Gi X G2 -+ Hi X H2 given by 8(a, b)= (j(a), g(b)) is an 
isomorphism. 

(b) If G; = H;for i = 1, 2, ... , n, prove that 

11. Let H, K, M, N be groups such that K = M X N. Prove that H X K = 
HXMXN. 

12. Let i be an integer with 1 ::::; i ::::; n. Let G; be the subset of Gi X · · · X G11 

consisting of those elements whose ith coordinate is any element of G; and 
whose other coordinates are each the identity element, that is, 

Prove that 

(a) G; is a normal subgroup of G1 X · · · X G11 • 

(b) G; = G;. 

(c) G1 X · · · X G, is the (internal) direct product of its subgroups G~o ... , 
Gil. [Hint: Show that every element of Gi X · · · X Gil can be written 

uniquely in the form aia2 ···a"' with a;E G;; apply Theorem 9.1.] 

13. Let G be a group and let D = {(a, a, a) I a E G}. 

(a) Prove that Dis a subgroup of G X G X G. 

(b) Prove that D is normal in G X G X G if and only if G is abelian. 

14. If G~o ... , Gn are finite groups, prove that the order of (ai, a2, •.• , a11 ) in 
G1 X · · · X Gil is the least common multiple of the orders !a1!, !a2!, ... , !an!· 

15. Let ib i2o ... , ill be a permutation of the integers 1, 2, ... , n. Prove that 

G;, X G;
2 

X · · · X G;, 
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is isomorphic to 

[Exercise 4 is the case n = 2.] 

16. If N, K are subgroups of a group G such that G = N X K and M is a normal 
subgroup of N, prove that M is a normal subgroup of G. [Compare this with 
Exercise 14 in Section 8.2.] 

17. Let 01* be the multiplicative group of nonzero rational numbers, Q** the 
subgroup of positive rationals, and H the subgroup { 1, - 1}. Prove that 
Q* = Q** X H. 

18. Prove that ~6 is isomorphic to 7L2 X 7l.4 [Hint: Theorem 9.3.] 

19. Let G be a group andfi:G.-+ G"fz:G.-+ Gz, ... ,fn:G.-+ G11 homomorphisms. 
Fori= 1, 2, ... , n, let 7T; be the homomorphism of Exercise 8. Let 
f*:G.-+ GJ X · · · X Gn be the map defined by f*(a) = (fi(aJ),f2(a2), .•• ,fn(a11)). 

(a) Prove that/* is a homomorphism such that 7T; of* = J; for each i. 

(b) Prove that/* is the unique homomorphism from G to GJ X · · · X G11 such 
that 7T; of* = J; for every i. 

20. Let NJ , ... , Nk be subgroups of an abelian group G. Assume that every 
element of G can be written in the form aJ · · · a11 (with a; EN;) and that 
whenever aJa2 · · · a11 = e, then a;= e for every i. Prove that 
G = NJ X N2 X · · · X Nk. 

21. Let G be an additive abelian group with subgroups Hand K. Prove that 
G = H X Kif and only if there are homomorphisms 

H~G~K 
~-a; 

such that oJC'7TJ(x)) + o2(1T2(x)) = x for every x E G and 7TJ o oJ = LH, 1Tz o o2 = Lx, 
7TJ o o2 = 0, and 7T2 o oJ = 0, where Lx is the identity map on X, and 0 is the map 
that sends every element onto the zero (identity) element. [Hint: Let 7T; be as in 
Exercise 8.] 

22. Let G and H be finite cyclic groups. Prove that G X His cyclic if and only if 
(JGJ, JHJ) = 1. 

23. (a) Show by example that Lemma 9.2 may be false if N is not normal. 

(b) Do the same for Theorem 9.3. 

24. Let N, Kbe subgroups of a group G, with N normal in G. If Nand K are 
abelian groups and G = NK, is G the direct product of Nand K? 

25. Let Ni> ... , Nk be normal subgroups of a group G. Let NJN2 · · · Nk denote 
the set of all elements of the form aJa2 · • · ak with a1 EN;. Assume that 
G = NJN2 · • · Nk and that 

for each i (1 sis n). Prove that G = NJ X N2 X · · · X N1c. 
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26. Let N.,, ... , Nk be normal subgroups of a finite group G. If G = N 1 N2 • • • Nk 
(notation as in Exercise 25) and IGI = !Nd · IN21 · · · !N~c!, prove that G = 
N 1 X N 2 X · · · X Nk. 

27. Let N, H be subgroups of a group G. G is called the semi direct product of N 
and H if N is normal in G, G = NH, and N n H = (e). Show that each of the 
following groups is the semidirect product of two of its subgroups: 

(a) S3 (b) D4 (c) S4 

28. A group G is said to be indecomposable if it is not the direct product of 
two of its proper normal subgroups. Prove that each of these groups is 
indecomposable: 

(c) 7L 

29. If pis prime and n is a positive integer, prove that ?LP" is indecomposable. 

30. Prove that Q is an indecomposable group. 

31. Show by example that a homomorphic image of an indecomposable group 
need not be indecomposable. 

32. Prove that a group G is indecomposable if and only if whenever Hand K are 
normal subgroups such that G = H X K, then H = (e) or K = (e). 

33. Let I be the set of positive integers and assume that for each i E I, G; is a 
group.* The infinite direct product of the G; is denoted I1 G; and consists 

iEJ 

of all sequences (all a2, ... ) with a; E G;. Prove that I1 G; is a group under the 
coordinatewise operation i E 

1 

C. 34. With the notation as in Exercise 33, let 2:: G;denote the subset of I1 G; 
iEJ iEJ 

consisting of all sequences (ell c2, ... ) such that there are at most a finite 
number of coordinates with cj =!=- ej, where ej is the identity element of Gi' 
Prove that 2:: G; is a normal subgroup of I1 G;. 2:: G; is called the infinite 

iEJ iEl iEl 
direct sum of the G;. 

35. Let G be a group and assume that for each positive integer i, N; is a normal 
subgroup of G. If every element of G can be written uniquely in the form 
n; • n; · · · n;, with i1 < i2 < · · · < ik and n;. EN;., prove that G = 2:: N; (see 

l 1 k J 1 iEl 

Exercise 34).t [Hint: Adapt the proof of Theorem 9.1 by definingf(a~> a2, •.• ) 

to be the product of those a; that are not the identity element.] 

36. If (m, n) = 1, prove that U,,11 = Um X Uw 

*Any infinite index set I may be used here, but the restriction to the positive integers simplifies the 
notation. 

tuniqueness means that if a,.,··· a,.,= bi, · · · bi,• with i1 < i2 < · · · < ik andj1 < }2 < · · · <}1, then k = t 
and for r = 1, 2, ... , k: i,. =},.and a,.,b,.,. 
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37. Let Hbe a group and r 1:H--+ Gb T2:H--+ G2 , .•• , T11:H--+ G11 homomorphisms 
with this property: Whenever Gis a group and g1:G-+ Gb g2:G-+ G2, ... , 

gn: G--+ Gn are homomorphisms, then there exists a unique homomorphism 
g*: G--+ H such that Ti o g* = gi for every i. Prove that H = G1 X G2 X · · · X G

11
• 

[See Exercise 19.] · 

Finite Abelian Groups 

All finite abelian groups will now be classified. We shall prove that every finite abe
lian group G is a direct sum of cyclic subgroups and that the orders of these cyclic 
subgroups are uniquely determined by G. The only prerequisites for the proof other 
than Section 9.1 are basic number theory (Section 1.2) and elementary group theory 
(Chapters 7 and 8, omitting Sections 7.5 and 8.5). 

Following the usual custom with abelian groups, all groups are written in additive 
notation in this section. The following dictionary may be helpful for translating from 
multiplicative to additive notation: 

MULTIPLICATIVE NOTATION 

ab 

MN = {mn I mElvf, nEN} 

direct product 1vf X N 

direct factor 1vf 

ADDITIVE NOTATION 

a+b 

0 

ka 

ka = 0 

M+N= {m+nlmEM,nEN} 

direct sum 1vf ® N 

direct summand 1vf 

Here is a restatement in additive notation of several earlier results that will be used 
frequently here: 

Let G be an additive group and let a E G. 

(1) If a has order n, then ka = 0 if and only if n I k. 

(3) If a has order td, with d > 0, then ta has order d. 11 

• :::._7':-;--:_;:; :-;::=:~;;x:;;·y,~-·~ {- -·;~-:--, -·;-,--

in th'e'orem ·g, r· ... 
If N1, ... , Nk are normal subgroups of an additive group G such that every 
element of G can be written uniquely in the form a1 + a2 + · · · + ak with 
aieNil then G = N1 EB N2 ® · · · EB Nk. Ill 
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If M and N are normal subgroups of an additive group G such that G = M + N 
and M n N = (0), then G = M fB N. Ill 

Finally we note that Exercise 11 of Section 9.1 will be used without explicit mention . 
at several points. 

If G is an abelian group and pis a prime, then G(p) denotes the set of elements in 
G whose order is some power of p; that is, 

G(p) = {a E G llal = p" for some n ;;:::: 0}. 

It is easy to verify that G(p) is closed under addition and that the inverse of any element 
in G(p) is also in G(p) (Exercise 1). Therefore, G(p) is a subgroup of G. 

EXAMPLE 1 

If G = 1:12, then G(2) is the set of elements having orders 2°, 21
, 22

, etc. Verify 
that G(2) is the subgroup {0, 3, 6, 9}; similarly, G(3) = {0, 4, 8}. If G = 1:3 fB 1:3, 

then G(3) = G since every nonzero element in G has order 3. 

The first step in proving that a finite abelian group G is the direct sum of cyclic 
subgroups is to show that G is the direct sum of its subgroups G(p), one for each of the 
distinct primes dividing the order of G. In order to do this, we need 

Let G be an abelian group and a E G an element of finite order. Then 
a= a1 + a2 + · · · + a1, with ai E G(p;), where p1, ... , Pt are the distinct positive 
primes that divide the order of a. 

P1•oof ~The proof is by induction on the number of distinct primes that divide the 
order of a. If lal is divisible only by the single prime P1> then the order of 
a is a power of p 1 and, hence, a E G(p1). So the lemma is true in this case. 
Assume inductively that the lemma is true for all elements whose order 
is divisible by at most k - 1 distinct primes and that lal is divisible by the 
distinct primes P~> ... , Pk· Then lal = p 1 '

1 
• • • p ~c'\ with each ri > 0. Let 

m = p{' · · ·p1/k and n = p{1, so that lal = mn. Then (m, n) = 1 and by 
Theorem 1.2 there are integers u, v such that 1 = mu + nv. Consequently, 

a= la = (mu + nv)a = mua + nva. 

But mua E G(p1) because a has order mn, and, hence, p{1 (mua) = (nm)ua = 
1L(mna) = uO = 0. Similarly, m(nva) = 0 so that by Theorem 7.9 the order of 
nva divides m, an integer with only k - 1 distinct prime divisors. Therefore, 
by the induction assumption nva = a2 + a3 + · · · + ak, with ai E G(pi). Let 
a 1 = mua; then a = mua + nva = a1 + a2 + · · · + a10 with ai E G(pJ Ill 
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If G is a finite abelian group, then 

G = G(p1) EB G(p2) EB · · : EB G(pt), 

where p 1, ... , p1 are the distinct positive primes that divide the order of G. 

Proof~~> If a E: G, then its order divides JGI by Corollary 8.6. Hence, a= 
a 1 + · · · +at, with aiE: G(p) by Lemma 9.4 (where a1 = 0 if the prime 
p1 does not divide Jai). To prove that this expression is unique, suppose 
that a1 + a2 + · · · + at = b1 + b2 + · · · + bt, with ab b; E: G(pJ Since G is 
abelian 

For each i, b; - a; E: G(p;) and, hence, has order a power of p;, say p; r,. If 
m = p2r2 

• • • p/', then m(b;- a;)= 0 fori;:::: 2, so that 

m(a1 - bJ) = m(b2 - a2) + · · · + m(b1 - a1) == 0 + · · · + 0 = 0. 

Consequently, the order of a 1 - b1 must divide m by Theorem 7.9. But 
a 1 - b1 E: G(p1), so its order is a power of p 1. The only power of p 1 that 
divides m = p{2 

• • • p/' isp 1° == 1. Therefore, a1 - b1 = 0 and a1 = b1• 

Similar arguments for i = 2, ... , t show that a; == b; for every i. Therefore, 
every element of G can be written uniquely in the form a1 + · · · + at, with 
a; E: G(p;) and, hence, G = G(p1) EB · · · EB G(pt) by Theorem 9 .1. Ill. 

If pis a prime, then a group in which every element has order a power of pis called 
a p-group. Each of the G(p;) in Theorem 9.5 is a p-group by its very definition. An 
element a of a p-group B is called an element of maximal order if Jbl :::; Jal for every 
bE: B. If Jal = p" and bE: B, then b has order pi with}:::; n. Since p" == pipn-J we see that 
p"b == p"-i(pib) = 0. Hence, 

If a is an element of maximal order p" in a p-group B, then p"b = 0 for every b EB. 

Note that elements of maximal order always exist in a .finite p-group. 
The next step in classifying finite abelian groups is to prove that every finite abelian 

p-group has a cyclic direct summand, after which we will be able to prove that every 
finite abelian p-group is a direct sum of cyclic groups. 

Let G be a finite abelian p-group and a an element of maximal order in G. Then 
there is a subgroup K of G such that G = (a) EB K. 

The following proof is more intricate than most of the proofs earlier in the book. 
Nevertheless, it uses only elementary group theory, so if you read it carefully, you 
shouldn't have trouble following the argument. 
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Proof of Lemma 9.8 ~ Consider those subgroups H of G such that (a) n H = (0). 
There is at least one (H = (0)), and since G is finite, there must be a largest 
subgroup Kwith this property. Then,(a) n K = (0), and by Theorem 9.3 
we need only show that G = (a) + K. If this is not the case, then there 
is a nonzero b such that b !i (a) + K. Let k be the smallest positive inte
ger such that pkb E (a) + K (there must be one since G is a p-group and, 
hence, pib = 0 = 0 + 0 E (a) + K for some positive j). Then 

(1) c = pk-lb is not in (a)+ K 

and pc = pkb is in (a) + K, say 

(2) pc = ta + k (tElL, k E K). 

If a has order p't, then p11x = 0 for all x E G because a has maximal order. 
Consequently, by (2) 

Therefore,p11
-

1ta = -p11
-

1kE(a) n K= (O)andp11
-

1ta = 0. Theorem 7.9 
shows that p 11 (the order of a) divides pn-J t, and it follows that pI t, 
say t = pm. Therefore, pc = ta + k = pma + k, and consequently, 
k = pc - pma = p(c - ma). Let 

(3) d= c- ma. 

Thenpd = p(c- ma) = kEK, but d !i K(since c- ma = k' EKwould 
imply that c = ma + k' E (a)+ K, contradicting (1)). Use Theorem 7.12 
to verify that H = {x + zd I x E K, z E 7L} is a subgroup of G with 
K ~ H. Since d = 0 + 1d E Hand d !i K, His larger thanK. But K is the 
largest group such that (a) n K = (0), so we must have (a) n H * (0). If w 
is a nonzero element of (a) n H, then 

(4) w =sa= k1 + rd (k1 EK; r, sElL). 

We claim that p t r; for if r = py, then since pd E K, 0 * w =sa = k1 + 
ypd E (a) n K, a contradiction. Consequently, (p, r) = 1, and by 
Theorem 1.2 there are integers u, v with pu + rv = 1. Then 

c = 1c = (pu + rv)c = u(pc) + v(rc) 

= u(ta + k) + v(r(d + ma)) [by (2) and (3)] 

= u(ta + k) + v(rd + rma) 

= u(ta + k) + v(sa- k1 + rma) [by (4)] 

= (ut + vs + rm)a + (uk- vk1) E(a) + K. 

This contradicts (1). Therefore, G = (a) + K, and, hence, G = (a) ffi K by 
Theorem 9. 3. Ill 
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Abelian Groups 
Every finite abelian group G is the direct surri of cyclic groups, each of prime 
power order. 

Proof.,. By Theorem 9.5, G is the direct sum of its subgroups G(p), one for each 
prime p that divides I Gl. Each G(p) is a p-group. So to complete the 
proof, we need only show that every finite abelian p-group His a di
rect sum of cyclic groups, each of order a power of p. We prove this by 
induction on the order of H. The assertion is true when H has order 2 
by Theorem 8.7. Assume inductively that it is true for all groups whose 
order is less than IHI and let a be an element of maximal order pn in H. 
Then H =(a) ffi Kby Lemma 9.6. By induction, K is a direct sum of 
cyclic groups, each with order a power of p. Therefore, the same is true 
of H = (a) (B K. II . 

EXAMPLE 2 

The number 36 can be written as a product of prime powers in just four 
ways: 36 = 2 · 2 · 3 · 3 = 2 · 2 · 32 = 22 

• 3 · 3 = 22 
• 32

. Consequently, by 
Theorem 9. 7 every abelian group of order 36 must be isomorphic to one of the 
following groups: 

You can easily verify that no two of these groups are isomorphic (the number 
of elements of order 2 or 3 is different for each group). Thus we have a com
plete classification of all abelian groups of order 36 up to isomorphism. 

You probably noticed that a familiar group of order 36, namely 1'.36, doesn't appear 
explicitly on the list in the preceding example. However, it is isomorphic to 1'.4 ffi 1'.9, 

as we now prove. 

·····lemnta9.8 
If (m, k) = 1, then 1'.111 ffi l'.k = 1'.111/c 

Proof~>- The order of (1, 1) in 1'.111 (B l'.k is the smallest positive integer t such that 
(0, 0) = t(1, 1) = (t, t). Thus t = 0 (mod m) and t = 0 (mod k), so that 
m I t and k I t. But (m, k) = 1 implies that mk I t by Exercise 17 in 
Section 1.2. Hence, mk:::; t. Since mk(l, 1) = (mk, mk) = (0, 0) and 
tis the smallest positive integer with this property, we must have mk = 

t = 1(1, 1)1. Therefore, 1'.111 (B l'.k (a group of order mk) is the cyclic group 

generated by (1, 1) and, hence, is isomorphic to 1'.111k by Theorem 7.19. II 
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If n = Pt'p2n, · · · Pt1
, with p1, ... , Pt distinct primes, then 

1Ln = 1Lp,"· EB · · · EB 7Lp,"·· 

Proof,... The theorem is true for groups of order 2. Assume inductively that it 
is true for groups of order less than n. Apply Lemma 9.8 with m = p 1

11
' 

and k = p2
11

' • • • Pt'. Then 7L11 = 7Lp,"' EB 7Lb and the induction hypothesis 
shows that 7L" = 7Lp,"' EB · · · EB 7Lp,"·· Ill 

Combining Theorems 9.7 and 9.9 yields a second way of expressing a finite abelian 
group as a direct sum of cyclic groups. 

EXAMPLE 3 

Consider the group 

Arrange the prime power orders of the cyclic factors by size, with one row for 
each prime: 

2 2 
3 

Now rearrange the cyclic factors of G using the columns of this array as a guide 
(see Exercise 15 of Section 9.1) and apply Theorem 9.9: 

G = (7Lz) EB (7Lz EB 1l3) EB (1L4 EB 1L3 EB 7Ls) EB (7Ls EB 1L3 EB 7Lzs) 
'---r-----' 

G = 7Lz EB 7L6 EB 7L6o EB 7L60o· 

This last decomposition of Gas a sum of cyclic groups is sometimes more 
convenient than the original prime power decomposition: There are fewer 
cyclic factors, and the order of each cyclic factor divides the order of the next 
one. Although the notation is a bit more involved, the same process works in 
the general case and proves the following Theorem. 

Every finite abelian group is the direct sum of cyclic groups of orders 
m1, m2, ..• , m1, where m1 J m2, m2 1 m3, m3 J m4, ... , and m1_ 1 J m1. 

We pause briefly here to present an interesting corollary that will be used in 
Chapter 11. A version of it was proved earlier as Theorem 7. 16. 
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If G is a finite subgroup of the multiplicative group of nonzero elements of a 
field F, then G is cyclic.* 

Proof~> Since G is a finite abelian group, Theorem 9.10 implies that 
G = 7L111 , EB · · · EB 7L111 ,, where each mi divides m1• Every element b in 
?Lm, EB · · · EB ?Lm, satisfies m1b = 0 (Why?). Consequently, every element 
g of the multiplicative group G must satisfy ft'• = 1 F (that is, must be a 
solution of the equation xm,- IF= 0). Since G has order m1m2 • • • m1 

and x"• - 1 F = 0 has at most m1 distinct solutions in F by Corollary 4.17, 
we must have t = 1 and G = 1Lm,· I!· 

If G is a finite abelian group, then the integers mil ... , m1 in Theorem 9.10 are 
called the invariant factors of G. When G is written as a direct sum of cyclic groups 
of prime power orders, as in Theorem 9. 7, the prime powers are called the elementary 
divisors of G. Theorems 9. 7 and 9.10 show that the order of G is the product of its 
elementary divisors and also the product of its invariant factors. 

EXAMPlE 4 

All abelian groups of order 36 can be classified up to isomorphism in terms 
of their elementary divisors (as in Example 2) or in terms of their invariant 
factors (using the procedure in Example 3): 

ELEMENTARY INVARIANT ISOMORPHIC 
GROUP DIVISORS FACTORS GROUP 

7!_2 8:1 7/_2 8:1 7!_3 8:1 7!_3 2, 2, 3, 3 6, 6 7!_6 8:1 7/_6 

7/_2 8:1 7/_2 8:1 7!_9 2, 2, 32 2, 18 7/_2 8:1 7/_18 

7!_4 8:1 7!_3 8:1 7!_3 22, 3, 3 3, 12 7!_3 8:1 7/_12 

7!_4 8:1 7!_9 22, 32 36 7/_36 

The Fundamental Theorem 9.7 can be used to obtain a list of all possible abelian 
groups of a given order. To complete the classification of such groups, we must show 
that no two groups on the list are isomorphic, that is, that the elementary divisors of a 
group are uniquely determined.t 

Let G and H be finite abelian groups. Then G is isomorphic to H if and only if 
G and H have the same elementary divisors. 

*If you have not read Sections 3.1 and 4.4, skip this corollary until you have. 

tThe remainder of this section is optional. Theorem 9.12 is often considered to be part of the 
Fundamental Theorem of Finite Abelian Groups. 
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It is also true that G = H if and only if G and H have the same invariant factors 
(Exercise 24). 

Proof of Theorem 9.12 ~ If G and H have the same elementary divisors, then both G 
and Hare isomorphic to the same direct sum of cyclic groups and, hence, 
are isomorphic to each other. Conversely, iff G-+ His an isomorphism, 
then a andf(a) have the same order for each a E G. It follows that for 
each prime p,f(G(p)) = H(p) and, hence, G(p) = H(p). The elementary 
divisors of G that are powers of the prime p are precisely the elementary 
divisors of G(p), and similarly for H. So we need only prove that isomor
phic p-groups have the same elementary divisors. In other words, we need 
to prove this half of the theorem only when G and Hare p-groups. 

Assume G and Hare isomorphic p-groups. We use induction on the 
order of G to prove that G and H have the same elementary divisors. 
All groups of order 2 obviously have the same elementary divisor, 2, by 
Theorem 8.7. So assume that the statement is true for all groups of order 
less than IGI. Suppose that the elementary divisors of G are 

p'\p"', ... ,p'\p,p, ... ,p .____,__.., 
r copies 

and that the elementary divisors of Hare 

p"\p"", ... ,p"\p,p, ... ,p .____,__.., 
s copies 

Verify that pG = {px I x E G} is a subgroup of G (Exercise 2). If G is the 
direct sum of groups Ci> verify that pG is the direct sum of the groups p Ci 
(Exercise 4). If Ci is cyclic with generator a of order p", then pCi is the cyclic 
group generated by pa. Since pa has order p"-1 by part (3) of Theorem 7.9, 
p Ci is cyclic of order p"- 1

• Note that when n = 1 (that is, when Ci is cyclic of 
order p), then pCi = (0). Consequently, the elementary divisors of pG are 

A similar argument shows that the elementary divisors of pH are 

Ifj:G-+ His an isomorphism, verify thatf(pG) =pH so thatpG =pH. 
Furthermore, pG =F G (Exercise 9), so that lPG I< IGI. Hence pG and pH 
have the same elementary divisors by the induction hypothesis; that is, 
t = k and 

p",-1 = p1111
-

1, so that ni- 1 = mi- 1 fori= 1, 2, ... , t. 

Therefore, ni = mi for each i. So the only possible difference in elemen
tary divisors of G and His the number of copies of p that appear on 
each list. Since IGI is the product of its elementary divisors, and similarly 
for ~1, and since G = H, we have 

p"'P"' ... p"pr = IGI = ~~ = pm'pm' ... pm"]Js. 

Since mi = n; for each i, we must have pr = ps and, hence, r = s. Thus G 
and H have the same elementary divisors. Ill 
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Exercises 

NOTE: All groups are written additively, and p always denotes a positive prime, unless 
noted otherwise. 

A. 

B. 

1. If G is an abelian group, prove that G(p) is a subgroup. 

2. If G is an abelian group, prove that pG = {px I x E G} is a subgroup of G. 

3. List all abelian groups (up to isomorphism) of the given order: 

(a) 12 (b) 15 (c) 30 (d) 72 

(e) 90 (f) 144 (g) 600 (h) 1160 

4. If G and Gi (1 ::::; i::::; n) are abelian groups such that G = G1 ttl· · ·ttl G"' 
show that pG = pG1 ttl · · · ttl pGw 

5. Find the elementary divisors of the given group: 

(a) l2so (b) 1::6 ttl 1::12 ttl 1::18 

(c) lro ttl l2o ttl £:30 ttl 14o (d) £:12 ttl l::3o ttl lwo ttl £:240 

6. Find the invariant factors of each of the groups in Exercise 5. 

7. Find the elementary divisors and the invariant factors of the given group. Note 
that the group operation is multiplication in the first three and addition in the last. 

(a) U8 (b) U17 

8. If G is the additive group Ojl, what are the elements of the subgroup G(2)? 
Of G(p) for any positive prime p? 

9. (a) If G is a finite abelian p-group, prove that pG-=!= G. 

(b) Show that part (a) may be false if G is infinite. [Hint: Consider the group 
G(2) in Exercise 8.] 

10. If G is an abelian p-group and ( n, p) = 1 prove that the map f G ----* G given by 
f(a) = na is an isomorphism. 

11. If G is a finite abelian p-group such that pG = {0), prove that G = ;IP ttl · · · ttl l::P 
for some finite number of copies of l::P' 

12. (Cauchy's Theorem for Abelian Groups) If G is a finite abelian group and pis 
a prime that divides !GI, prove that G contains an element of order p. 
[Hint: Use the Fundamental Theorem to show that G has a cyclic subgroup 
of order p'<; use Theorem 7.9 to find an element of order p.] 

13. Prove that a finite abelian p-group has order a power of p. 

14. If G is an abelian group of order im, with (p, m) = 1, prove that G(p) has 
orderi. 

15. If G is a finite abelian group and pis a prime such that p" divides IGI, then 
prove that G has a subgroup of order p". 

16. For which positive integers n is there exactly one abelian group of order n (up 
to isomorphism)? 
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17. Let G, H, Kbe finite abelian groups. 

(a) If G ffi G = H ffi H, prove that G =H. 

(b) If G ffi H = G ffi K, prove that H = K. 

18. If G is an abelian group of order n and k I n, prove that there exist a group H 
of order k and a surjective homomorphism G--+ H. 

19. Let G be an abelian group and T the set of elements of finite order in G. Prove 
that 

(a) Tis a subgroup of G (called the torsion subgroup). 

(b) Every nonzero element of the quotient group GjThas infinite order. 

20. If G is an abelian group, do the elements of infinite order in G (together with 
0) form a subgroup? [Hint: Consider 7L 8:1 7L3.] 

C. 21. If G is an abelian group and f: G--+ 7L a surjective homomorphism with kernel 
K, prove that G has a subgroup H such that H = 7L and G = K ffi H. ' 

22. Let G and H be finite abelian groups with this property: For each positive 
integer m the number of elements of order m in G is the same as the number 
of elements of order m in H. Prove that G = H. 

23. Let G be finite abelian group with this property: For each positive integer 
m such that m IIGI, there are exactly m elements in G with order dividing m. 
Prove that G is cyclic. 

24. Let G and H be finite abelian groups. Prove that G = H if and only if G and H 
have the same invariant factors. 

25. If G is an infinite abelian torsion group (meaning that every element in G has 
finite order), prove that G is the infinite direct sum 2: G(p), where the sum is 
taken over all positive primes p. [Hint: See Exercises 34 and 35 in Section 9.1 
and adapt the proof of Theorem 9.5.] 

The Sylow Theorems 

Nonabelian finite groups are vastly more complicated than finite abelian groups, 
which were classified in the last section. The Sylow Theorems are the first basic step 
in understanding the structure of nonabelian finite groups. Since the proofs of these 
theorems are largely unrelated to the way the theorems are actually used to analyze 
groups, the proofs will be postponed to the next section.* In this section we shall try 
to give you a sound understanding of the meaning of the Sylow Theorems and some 
examples of their applications. 

Throughout the general discussion in this section all groups are vvritten multiplica
tively and all integers are assumed to be nonnegative. 

*Puritans who believe that the work must come before the fun should read Section 9.4 before 
proceeding further. 
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Once again the major theme is the close connection between the structure of 
a group G and the arithmetical properties of the integer JGJ. One of the most im
portant results of this sort is Lagrange's Theorem, which states that if G has a 
subgroup H, then the integer JHJ divides JGJ. The First Sylow Theorem provides a 
partial converse: 

Let G be a finite group. If p is a prime and pk divides I G I, then G has a 
subgroup of order pk. 1J 

EXAMPLE 1 

The symmetric group S6 has order 6! = 720 = 24 
• 32 

• 5. The First Sylow 
Theorem (withp = 2) guarantees that S6 has subgroups of orders 2, 4, 8, and 
16. There may well be more than one subgroup of each of these orders. For 
instance, there are at least 60 subgroups of order 4 (Exercise 1). Applying the 
theorem withp = 3 shows that S6 has subgroups of orders 3 and 9. Similarly, 
S6 has at least one subgroup of order 5. 

If p is a prime that divides the order of a group G, then G contains a subgroup K 
of order p by the First Sylow Theorem. Since K is cyclic by Theorem 8. 7, its generator 
is an element of order p in G. This proves 

If G is a finite group whose order is divisible by a prime p, then G contains an 
element of order p. 

Let G be a finite group and p a prime. If p" is the largest power of p that divides J G J, 
then a subgroup of G of order p" is called a Sylow p-subgroup. The existence of Sylow 
p-subgroups is an immediate consequence of the First Sylow Theorem. 

EXAMPLE 2 

Since S4 has order 4! = 24 = 23 
• 3, every subgroup of order 8 is a Sylow 

2-subgroup. You can readily verify that 

{(1), (1234), (13)(24), (1432), (24), (12)(34), (13), (14)(32)} 

is a subgroup of order 8 and, hence, a Sylow 2-subgroup. There are two other 
Sylow 2-subgroups (Exercise 2). Any subgroup of S4 of order 3 is a Sylow 
3-subgroup. Two of the four Sylow 3-subgroups are {(123), (132), (1)} and 
{(134), (143), (1)}. 
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EXAMPLE 3* 

Let p be a prime and G a finite abelian group ~f order p"m, where p ,r m. Then 

G(p) = {a E G llal = pk for some k 2: 0} 

is a Sylow p-subgroup of G since G(p) has order p" by Exercise 14 of Section 9.2. 
As we shall see, G(p) is the unique Sylow p-su~group of G. Theorem 9.5 shows 
that G is the direct sum of all its Sylow subgroups (one for each of the distinct 
primes that divide IGI). 

Let G be a group and x E G. Example 9 of Section 7.4 shows that the map f: G-+ G 
given by f(a) = x- 1ax is an isomorphism. If Kis a subgroup of G, then the image of K 
underfis x- 1Kx = {x- 1kx I kEK}. Hence, x- 1Kx is a subgroup of G that is isomorphic 
to K. In particular, x- 1Kx has the same order asK. Consequently, 

if Kis a Sylow p-subgroup of G, then so is x-1Kx. 

The next theorem shows that every Sylow p-subgroup of G can be obtained from Kin 
this fashion. 

If P and K are Sylow p-subgroups of a group G, then there exists x E G such 
that P = x-1Kx. Ill 

Theorem 9.15, together with the italicized statement in the preceding paragraph, 
shows that 

any two Sylow p-subgroups of G are isomorphic. 

Let G be a finite group and K a Sylow p-subgroup for some prime p. Then K is 
normal in G if and only if K is the only Sylow p-subgroup in G. 

Proof~~> We know that x- 1Kx is a Sylow p-subgroup for every x E G. If K is the 
only Sylow p-subgroup of G, then we must have x- 1Kx = Kfor every 
x E G. Therefore, K is normal by Theorem 8.11. Conversely, suppose 
K is normal and let P be any Sylow p-subgroup. By the Second Sylow 
Theorem there exists x E G such that P = x-I Kx. Since K is normal, 
P = x-1Kx = K. Therefore, Kis the unique Sylow p-subgroup. llll 

*Skip this example if you haven't read Section 9.2. 
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The preceding theorems establish the existence of Sylow p-subgroups and the rela
tionship between any two such subgroups. The next theorem tells us how many Sylow 
p-subgroups a given group may have. 

/·irheorel11 .. 9.17 .. ··. ·• Thitd Syl owrHeorelll 
The number of Sylow p-subgroups of a finite group G divides 1 G 1 and is of the 
form 1 + pk for some nonnegative integer k. 

Applications of the Sylow Theorems 
Simple groups (those with no proper normal subgroups) are the basic building blocks 
for all groups. So it is useful to be able to tell if there are any simple groups of a partic
ular order. The Third Sylow Theorem, together with appropriate counting arguments 
and Corollary 9. 16, can often be used to establish the existence of a proper normal 
subgroup of a group G, thus showing that G is not simple. 

EXAMPLE 4 

If G is a group of order 63 = 32 
• 7, then each Sylow 7-subgroup has order 7 and 

the number of such subgroups is a divisor of 63 of the form 1 + 7 k by the Third 
Sylow Theorem. The divisors of 63 are 1, 3, 7, 9, 21, 63 and the numbers of the 
form 1 + 7k (with k :::=:: 0) are 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, etc. Since 1 is the 
only number on both lists, Ghas exactly one Sylow 7-subgroup. This subgroup is 
normal by Corollary 9.16. Consequently, no group of order 63 is simple. 

EXAMPLE 5 

We shall show that there is no simple group of order 56 = 23 
• 7. The only 

divisors of 56 of the form 1 + 7k are 1 and 8. So G has either one or eight 
Sylow 7-subgroups, each of order 7. If there is just one Sylow 7-group, it 
has to be normal by Corollary 9 .16. So G is not simple in that case. If G has 
eight Sylow 7-groups, then each of them has six nonidentity elements, and 
each nonidentity element has order 7 by Corollary 8.6. Furthermore, the 
intersection of any two of these subgroups is (e) by Exercise 21 of Section 8.1. 
Consequently, there are 8 · 6 = 48 elements of order 7 in G. Every Sylow 
2-subgroup of G has order 8. Each element of a Sylow 2-subgroup must have 
order dividing 8 by Corollary 8.6 and, therefore, cannot be in the set of 48 
elements of order 7. Thus there is roominG for only one group of order 8. 
In this case, therefore, the single Sylow 2-subgroup of order 8 is normal by 
Corollary 9. 16, and G is not simple. 

In the preceding examples, the Sylow Theorems were used to reach a negative con
clusion (the group is not simple). But the same techniques can also lead to positive 
results. In particular, they allow us to classify certain finite groups. 
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Let G be a group of order pq, where p and q are primes such that p > q. If 
q t (p- 1), then G = 1Lpq· 

Proof.,. By the Third Sylow Theorem, the number of Sylow p-subgroups must divide 
IGI = pq, and hence, must be one of l,p, q, or pq. However, the number 
must also be of the form 1 + pk for some integer k. Since p > q, we cannot 
have q = 1 + pk. Furthermore, both p = 1 + pk and pq = 1 + pk imply that 
p 11, which is impossible. Therefore, there is exactly one Sylow p-subgroup 
H of order p, which is normal by Corollary 9.16. A similar argument (using 
the fact that q t (p- 1)) shows that there is a unique Sylow q-subgroup K 
of order q, which is also normal. Since H n K is a subgroup of both Hand 
K, its order must divide both IHI = p and IKI = q by Lagrange's Theorem. 
Hence, H n K = (e). Exercise 15 shows that G = HK. Therefore, 
G = H X KbyTheorem 9.3. But H= 7LP andK= 1Lq by Theorem 8.7. 
Consequently, by Lemma 9 .8, G = H X K = 7LP X 1Lq = 7Lpq· * Ill 

EXAMPLE 6 

It is now easy to classify all groups of order 15 = 5 · 3. Apply Corollary 9.18 
with p = 5, q = 3 to conclude that every group of order 15 is isomorphic to 71.15 • 

Similarly, there is a single group (up to isomorphism) for each of these orders: 
33 = 11 · 3, 35 = 7 · 5, 65 = 13 · 5, 77 = 11 · 7, and 91 = 13 · 7. 

Other applications of the Sylow Theorems are given in Section 9.5. 

Exercises 

NOTE: Unless stated otherwise, G is a finite group and pis a positive prime. 

A. 1. Show that S6 has at least 60 subgroups of order 4. [Hint: Consider cyclic 
subgroups generated by a 4-cycle (such as ((1234))) or by the product of 
a 4-cycle and a disjoint transposition (such as ((1234)(56))); also look at 
noncyclic subgroups, such as { (1 ), (12), (34), (12)(34)} .] 

2. (a) List three Sylow 2-subgroups of S4. 

(b) List four Sylow 3-subgroups of S4. 

3. List the Sylow 2-subgroups and Sylow 3-subgroups of A4. 

4. List the Sylow 2-subgroups, Sylow 3-subgroups, and Sylow 5-subgroups of 
71. 12 X 71. 12 X 71. 10• [Section 9.2 is a prerequisite for this exercise.] 

*The proof of Lemma 9.8 is independent of the rest of Section 9.2 and may be read now if you skipped 
that section. 
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5. How many Sylow p-subgroups can G possibly have when 

(a) p = 3 and IGI =72 (b) p = 5 and IGI =. 60 

6. Classify all groups of the given order: 

(a) 115 (b) 143 (c) 391 

7. Prove that there are no simple groups of the given order: 

(a) 42 (b) 200 (c) 231 (d) 255 

B. 8. Use Cauchy's Theorem to prove that a finite p-group has orderp11 for some n:::::: 0. 

9. If N is a normal subgroup of a (not necessarily finite) group G and both N 
and GIN are p-groups, then prove that G is a p-group. 

10. If His a normal subgroup of G and IHI = p'c, show that His contained in 
every Sylow p-subgroup of G. [You may assume Exercise 24 in Section 9.4.] 

11. If jis an automorphism of G and K is a Sylow p-subgroup of G, is it true that 
f(K) = K? 

12. Let Kbe a Sylow p-subgroup of G and H any subgroup of G. Is K n H a 
Sylow p-subgroup of H? [Hint: Consider S4.] 

13. If every Sylow subgroup of G is normal, prove that G is the direct product of 
its Sylow subgroups (one for each prime that divides IGI). A group with this 
property is said to be nilpotent. 

14. If pis prime, prove that there are no simple groups of order 2p. 

15. (a) If Hand K are subgroups of G, then HK denotes the set 
{hkE G I h E.H, ke.K}. If H n ](=(e), prove that IHKI = IHI·IR:l 
[Hint: If hk = h 1k~> thenh 1- 1h = k1k- 1.] 

(b) If Hand K are any subgroups of G, prove that 

IHKI = IHI·IKI. 
IHnKI 

16. If G is a group of order 60 that has a normal Sylow 3-subgroup, prove that 
G also has a normal Sylow 5-subgroup. 

17. If G is a noncyclic group of order 21, how many Sylow 3-subgroups does 
Ghave? 

18. If G is a simple group of order 168, how many Sylow 7 -subgroups does 
G have? 

19. If p and q are distinct primes, prove that there are no simple groups of order pq. 

20. If G has order p'cm with m < p, prove that G is not simple. 

21. Prove that there are no simple groups of order 30. 

22. If p and q are distinct primes, prove that there is no simple group of order p2q. 

23. (a) If IGI = 105, prove that G has a subgroup of order 35. 

(b) If IGI = 375, prove that G has a subgroup of order 15. 
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24. Let K be a Sylow p-subgroup of G and N a normal subgroup of G. Prove that 
K n N is a Sylow p-subgroup of N. 

C. 25. If p, q, rare primes with p < q < r, prove that a group of order pqr has a 
normal Sylow r-subgroup and, hence, is riot simple. 

Conjugacy and the Proof of the Sylow Theorems 

Appendix D (Equivalence Relations) is a prerequisite for this section. The proofs of the 
Sylow Theorems depend heavily on the concept of conjugacy, which we now develop. 

Let G be a group and a, b E G. We say that a is conjugate to b if there exists x E G 
such that b = x-1ax. For example, (12) is conjlJ.gate to (13) in S3 because 

(123)- 1(12)(123) = (132)(12)(123) = (13). 

The key fact about conjugation is 

Conjugacy is an equivalence relation on G. 

Proof~>- We write a~ b if a is conjugate to b. Reflexive: a~ a since a= eae = e-1ae. 
Symmetric: If a~ b, then b = x-1ax for some x in G. Multiplying on the 
left by x and on the right by x- 1 shows that a= xbx-1 = (x- 1

)- 1bx-1. 

Hence, b ~a. Transitive: If a~ band b ~ c, then b = x-1ax and c = y-1 by 
for some x, y E G. Hence, c = y- 1(x- 1ax)y = (y- 1x- 1) a(xy) = (xy)- 1a(xy). 
Thus a ~ c; therefore, ~ is an equivalence relation. 11: 

The equivalence classes in G under the relation of conjugacy are called conjugacy 
classes. The discussion of equivalence relations in Appendix D shows that 

The conjugacy class of an element a consists of all the elements in G that are 
conjugate to a. 

Two conjugacy classes are either disjoint or identical. 

The group G is the union of its distinct conjugacy classes. 

EXAMPLE 1 

The conjugacy class of (12) in S3 consists of all elements x-1(12)x, with x E S3 . 

A straightforward computation shows that for any x E S3, x-1(12)x is one of 
(12), (13), or (23); for instance, 

(23)- 1(12)(23) = (23)(12)(23) = (13) 

(132r 1C12)(132) = (123)(12)(132) = (23). 

Thus the conjugacy class of (12) is {(12), (13), (23)}. Similar computations show 
that there are three distinct conjugacy classes in S3: · 

{(1)} {(123), (132)} {(12), (13), (23)}. 
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Although these conjugacy classes are of different sizes, note that the number of 
elements in any conjugacy class (1, 2, or 3) is a divisor of 6, the order of S3. We 
shall see that this phenomenon occurs in the general' case as well. 

Let G be a group and a E G. The centralizer of a is denoted C(a) and consists of all 
elements in G that commute with a, that is, 

C( a) = {g E G I ga = ag}. 

If G = S3 and a = (123), for example, you can readily verify that C(a) 
{(1), (123), (132)} and that C(a) is a subgroup of S3• If a is a nonzero rational number 
in the multiplicative group Q*, every element of Q* commutes with a, so C(a) is the 
entire group Q*. These examples are illustrations of 

\;., ~. : ' 

·rheorem 9.2o 
If G is a group and a E G, then C(a) is a subgroup of G. 

Proof~~> Since ea = ae, we have e E C(a), so that C(a) is nonempty. If g, hE C(a), 
then 

(gh)a = g(ha) = g(ah) = (ga)h = (ag)h = a(gh). 

So gh E C(a), and C(a) is closed. Multiplying ga = ag on both the left 
and right by g- 1 shows that ag- 1 = g- 1a. Hence, gE C(a) implies that 
g-1 E C(a). Therefore, C(a) is a subgroup by Theorem 7.11. 

The centralizer leads to a very useful fact about the size of conjugacy classes: 

Let G be a finite group and a E G. The number of elements in the conjugacy 
class of a is the index [G:C(a)] and th'1s number divides I G I· 

Proof~> For notational convenience, we shall sometimes denote C(a) by C in this 
proof. Let S be the set of distinct right co sets of C in G, and let T be the 
conjugacy class of a in G (which consists of the distinct conjugates of a). 
Define a functionfS -7 Tby the rule:f(Cx) = x- 1ax. We shall show 
below that/is a well-defined bijection of sets, which means that Sand 
Thave the same number of elements. The number of elements inS is 
the number of distinct right cosets of C(a), namely [G:C(a)], and the 
number of elements in Tis the number of distinct conjugates of a. This 
proves the first part of the theorem. As for the final part, the number 
[G:C(a)] divides IGI by Lagrange's Theorem 8.5. 
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Now for the details: Reading each of the following "if and only if" 
statements in the direction=?- shows thatfis well defined (meaning that 
Cx = Cy impliesf(Cx) = f( Cy)): 

Cx = Cy {=} xy-l E C 

{=} (xy- 1)a = a(xy-1) 

{=}a= (xy- 1)-1a(xy-1) 

{=}a = yx- 1axy- 1 

{=} y-1ay = x-1ax 

{=} f(Cy) = f( Cx) 

[Theorem 8.2] 

[Definition of C] 

[Left multiply by (xy-l)-1.] 

[Corollary 7.6] 

[Left multiply by y-1 and 
right multiply by y.] 

[Definition off] 

Reading these same statements in the direction-{::= from bottom to top 
shows thatf(Cx) = f( Cy) implies Cx = Cy, so thatfis injective.* Finally, 
fis surjective because, given any conjugate u- 1au of a, it is the image of 
the coset Cu. Therefore, f is bijective and the proof is complete. lifl 

Let G be a finite group and let Cb C2, ••• , C1 be the distinct conjugacy classes of G. 
Then G = C1 U C2 U · · · U C1• Since distinct conjugacy classes are mutually disjoint, 

(1) 

where IC;I denotes the number of elements in the class C;. Now choose one element, 
say a;, in each class C;. Then C; consists of all the conjugates of a;. By Theorem 9.21, 
IC;I is precisely [G:C(a;)], a divisor of IGI. So equation (1) becomes 

(2) IGI = [G:C(a1)] + [G:C(a2)] + · · · + [G:C(a1)]. 

This equation (in either version (1) or (2)) is called the class equation of the group G. It 
will be the basic tool for proving the Sylow Theorems. Other applications of the class 
equation are discussed in Section 9. 5. 

EXAMPLE 2 

In Example 1 we saw that S3 has three distinct conjugacy classes of sizes 1, 2, 
and 3. Since IS31 = 6, the class equation of s3 is 6 = 1 + 2 + 3. 

If c and x are elements of a group G, then ex= xc if and only if x-1cx =c. Thus cis 
in the center of G [ex = xc for every x E G] if and only if c has exactly one conjugate, itself 
[x- 1cx = c for every x E G]. Therefore, the center Z( G) of G is the union of all the one
element conjugacy classes of G, so that the class equation can be written in a third form: 

(3) 

where Ch ... , C,. are the distinct conjugacy classes of G that contain more than one 
element each and each!C;I divides IGI. 

In addition to the class equation, one more result is needed for the proof of the 
Sylow Theorems. 

*The reasons in the right-hand column above must be adjusted when reading from bottom to top 
(Exercise 4). 
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If G is a finite abelian group and pis a prime that divides the ot·der of G, then 
G contains an element of order p. 

The lemma is an immediate consequence of the Fundamental Theorem of Abelian 
Groups (Exercise 12 in Section 9.2). The following proof, however, depends only on 
Chapters 7 and 8. 

Proof of Lemma 9.22 ~ The proof is by induction on the order of G, using the 
Principle of Complete Induction.* To do this, we must first show that 
the theorem is true when IGI = 2. In this case, if p divides IGI, thenp = 2. 
The nonidentity element of G must have order 2 by part (1) of 
Corollary 8.6, and so the theorem is true. 

Now assume that the theorem is true for all abelian groups of order 
less than nand suppose IGI = n. Let a be any nonidentity element of 
G. Then the order of a is a positive integer and is therefore divisible by 
some prime q (Theorem 1.8), say lal = qt. The element b = d has order 
q by Theorem 7.9. If q = p, the theorem is proved. If q i= p, let N be the 
cyclic subgroup (b). N is normal since G is abelian and N has order q by 
Theorem 7.15. By Theorem 8.13 the quotient group GjNhas order 
IGI/INJ = njq < n. Consequently, by the induction hypothesis, the theorem 
is true for GjN. The prime p divides IGI, and IGI = INIIG/NI = q IGjN]. 
Since q is a prime other than p, p must divide I G j N] by Theorem 1. 5. 
Therefore, GjN contains an element of order p, say Nc. Since Nc has 
orderp in GjN, we have NcP = (Nc)P = Ne and, hence, cP EN. Since N 
has order q, cPq = (cP)q = e by part (2) of Corollary 8.6. 

Therefore, c must have order dividingpq by Theorem 7.9. However, 
c cannot have order 1 because then Nc would have order 1 instead of p 
in GjN. Nor can c have order q because then (Nc)q = Ncq = Ne in GjN, 
so thatp (the order of Nc) would divide q by Theorem 7.9. The only 
possibility is that c has order p or pq; in the latter case, cq has order p by 
Theorem 7.9. In either case, G contains an element of order p. Therefore, 
the theorem is true for abelian groups of order n and, hence, by induc
tion for all finite abelian groups. Ill 

Proofs of the Sylow Theorems 

We now have all the tools needed to prove the Sylow Theorems. 

Proof of the First Sylow Theorem 9.13 ~The proof is by induction on the order 
of G. If I Gl = 1, then p 0 is the only prime power that divides I Gl, and G 
itself is a subgroup of order p 0

. Suppose IGI > 1 and assume inductively 
that the theorem is true for all groups of order less than IGI. Combining 
the second and third forms of the class equation of G shows that 

IGI = IZ(G)I + [G:C(aJ)] + [G:C(a2)] + · · · + [G:C(ar)J, 

*See Appendix C. 
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where for each i, [G:C(ai)] > 1. Furthermore, IZ(G)I2:: 1 (since e EZ(G)), 
and !C(ai)l < IGI (otherwise, [G:C(a)] = 1). 

Suppose there is an indexj such that p does not divide [ G: C(a)]. Then 
by Theorem 1.5 pk must divide !C(a)l b'ecause pk divides IGI by hypothesis 
and IGI = !C(a)l · [G:C(aj)] by Lagrange's Theorem. Since the subgroup 
C(aj) has order less than IGI, the induction hypothesis implies that C(a), 
and, hence, G has a subgroup of order pk. 

On the other hand, if p divides [G:C(a)] for every i, then since p 
divides IGI,p must also divide IGI- [G:C(a1)]- • • ·- [G:C(ar)] = 
IZ( G) I. Since Z( G) is abelian, Z( G) contains an element c of order p by 
Lemma 9.22. Let Nbe the cyclic subgroup. generated by c. Then Nhas 
order p and is normal in G (Exercise 8). Consequently, the order of the 
quotient group GjN, namely IG!jp, is less than IGI and divisible by p"-1. 

By the induction hypothesis Gj N has a subgroup T of order pk-J. There 
is a subgroup H of G such that N ~ Hand T = Hj N by Theorem 8 .24. 
Lagrange's Theorem shows that 

!HI =IN!. IH!NI =IN!. IT!= pp''- 1 = p". 

So G has a subgroup of order p" in this case, too. I!! 

The basic tools needed to prove the last two Sylow Theorems are very similar to those 
used above, except that we will now deal with conjugate subgroups rather than conjugate 
elements. More precisely, let Hbe a fixed subgroup of a group G and let A and B be any 
subgroups of G. We say that A is H-conjugate to B if there exists an x E H such that 

B = x- 1Ax = {x-1ax I aEA}. 

In the special case when His the group G itself, we simply say that A is conjugate to B, 
or that B is a conjugate of A. 

Let H be a subgroup of a group G. Then H-conjugacy is an equivalence rela
tion on the set of all subgroups of G. 

Proof~> Copy the proof of Theorem 9.19, using subgroups A, B, Cin place of 
elements a, b, c. I!! 

Let A be a subgroup of a group G. The normalizer of A is the set N(A) 
defined by 

N(A) = {gE G I g- 1Ag =A}. 

Theorem9.24, 
If A is a subgroup of a group G, then N(A) is a subgroup of G and A is a normal 
subgroup of N(A), 
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Proof 1> Exercise 7 shows that A s;;; N(A) and that g E N(A) if and only if Ag = gA. 
Using this fact, the proof of Theorem 9.20 can be readily adapted to prove 
that N(A) is a subgroup. The definition of N(A) shows that A is normal 
inN(A). m ' 

Let H and A be subgroups of a finite group G. The number of distinct 
H-conjugates of A (that is, the number of elements in the equivalence class 
of A under H-conjugacy) is [H:H n N(A)] and, therefore, divides 1 Hj. 

Proof~> The proof of Theorem 9.21 carries over to the present situation if you 
replace G by H, a by A, and C by H n N(A). 

Let 0 be a Sylow p-subgroup of a finite group G. If x E G has order a power of 
p and x-10x = Q, then x E Q. 

Proof~~> Since Q is normal in N(Q) by Theorem 9.24, the qtiotient group N(Q)/Q is 
defined. By hypothesis, x E N(Q). Since lxl is some power of p, the coset 
Qx in N(Q)/Q also has order a power of p. Now Qx generates a cyclic 
subgroup T of N(Q)/Q whose order is a power of p. By Theorem 8.24, 
T = HjQ, where His a subgroup of G that contains Q. Since the 
orders of the groups Q and Tare each powers of p and IHI = IQI ·ITI 
by Lagrange's Theorem, IHI must be a power of p. But Q ~ H, and IQI 
is the largest power of p that divides IGI by the definition of a Sylow 
p-subgroup. Therefore, Q = H, and, hence, T = HjQ is the identity 
subgroup. So the generator Qx of Tmust be the identity coset Qe. The 
equality Qx = Qe implies that x E Q. m 

Proof of the Second Sylow Theorem 9.15~~> Since J( is a Sylow p-subgroup, K has 
order p", where IGI = p"m and p .r m. Let K = Kb K2, ••• , K1 be the dis
tinct conjugates of Kin G. By Theorem 9.25 (with H = G and K = A), 
t = [G:N(K)]. Note thatp does not divide t [reason:p11m = IGI = 
IN(K)I · [ G:N(K)] = IN(K)I · t and p11 divides IN(K)I because K is a subgroup 
of N(K)]. We must prove that the Sylow p-subgroup Pis conjugate to K, 
that is, that Pis one of the I(. To do so we use the relation of P-conjugacy. 

Since each Ki is a conjugate of K1 and conjugacy is transitive, every 
conjugate of Ki in G is also a conjugate of K1. In other words, every con
jugate of Ki is some 10. Consequently, the equivalence class of Ki under 
P-conjugacy contains only various fi;. So the setS= {K1, K 2, . .• , KJ 
of all conjugates of K is a union of distinct equivalence classes under 
P-conjugacy. The number of subgroups in each of these equivalence 
classes is a power of p because by Theorem 9.25 the number of sub
groups that are P-conjugate to Ki is [P: P n N(Ki)], which is a divisor of 
IPI = p11 by Lagrange's Theorem. Therefore, t (the number of subgroups 
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in the set S) is the sum of various powers of p (each being the number of 
subgroups in one of the distinct equivalence classes whose union isS). 
Since p doesn't divide t, at least one of these powers of p must be p 0 = 1. 
Thus some Ki is in an equivalence class by itself, meaning that 
x-1 Kix = Ki for every x E P. Lemma 9.26 (with Q = Ki) implies that 
x E Ki for every such x, so that P £;;; K;. Since both P and Ki are Sylow 
p-subgroups, they have the same order. Hence, P = K;. 

Proof of the Third Sylow Theorem 9.17 ... Let s = { Kj, ... ' Kr} be the set of all 
Sylow p-subgroups of G. By the Second Sylow Theorem, they are all the 
distinct conjugates of K1• The proof of the Second Sylow Theorem shows 
that t = [G: N (K1)], which divides the order of G by Lagrange's Theorem. 

Let P be one of the Ki and consider the relation of P-conjugacy. The 
only P-conjugate of Pis P itself by closure. The proof of the Second Sylow 
Theorem shows that the only equivalence class consisting of a single sub
group is the class consisting of P itself. The proof also shows that Sis the 
union of distinct equivalence classes and that the number of subgroups in 
each class is a power of p. Just one of these classes contains P, so the num
ber of subgroups in each of the others is a positive power of p. Hence, the 
number t of Sylow p-subgroups is the sum of 1 and various positive powers 
of p and, therefore, can be written in the form 1 + kp for some integer k. Ill; 

Exercises 

NOTE: Unless stated otherwise, G is a finite group and pis a positive prime. 

A. 1. List the distinct conjugacy classes of the given group. 

2. If a E G, then show by example that C(a) may not be abelian. [Hint: If 
a = (12) in S5, then (34) and (345) are in C(a).] 

3. If His a subgroup of G and a E H, show by example that the conjugacy class 
of a in H may not be the same as the conjugacy class of a in G. 

4. Write out the part of the proof of Theorem 9.21 showing thatfis injective, 
including the reasons for each step. Your answer should begin like this: 

f(Cy) = f(C x) =} y- 1ay = x-1ax [Definition off] 

=}a = yx-1axy-1. [Left multiply by y and right multiply by y-1.] 

5. List all conjugates of the Sylow 3-subgroup ((123)> in S4. 

6. If Hand K are subgroups of G and His normal inK, prove that K is a 
subgroup of N(H). In other words, N(H) is the largest subgroup of Gin which 
His a normal subgroup. 

7. If A is a subgroup of G, prove that 

(a) A£;;; N(A); 

(b) gEN(A) if and only if Ag = gA. 
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8. If N is a subgroup of Z( G), prove that N is a normal subgroup of G. 

B. 9. If Cis a conjugacy class in G andfis an automorphism of G, prove thatf( C) is 
also a conjugacy class of G. 

10. Let G be an infinite group and H the subset of all elements of G that have only 
a finite number of distinct conjugates in G. Prove that His a subgroup of G. 

11. If G is a nilpotent group (see Exercise 13 of Section 9.3), prove that G has 
this property: If m divides IGI, then G has a subgroup of order m. [You may 
assume Exercise 22.] 

12. Let K be a Sylow p-subgroup of G and N a normal subgroup of G. If K is a 
normal subgroup of N, prove that K is normal in G. 

13. Prove Theorem 9.23. 

14. Let N be a normal subgroup of G, a E G, and C the conjugacy class of a in G. 

(a) Prove that a EN if and only if C ~ N. 

(b) If Ci is any conjugacy classinG, prove that Ci ~Nor Ci n N = 0. 

(c) Use the class equation to show that INI = lq + ... + lq, where cj, ... ' 
Ck are all the conjugacy classes of G that are contained in N. 

15. If N =f. (e) is a normal subgroup of G and IGI = p", prove that N n Z(G) =f. (e). 
[Hint: Exercise 14(c) may be helpful.] 

16. Complete the proof of Theorem 9.24. 

17. Prove Theorem 9.25. 

18. If K is a Sylow p-subgroup of G and His a subgroup that contains N(I(), 
prove that [G:H] = 1 (modp). 

19. If K is a Sylow p-subgroup of G, prove that N(N(K)) = N(J(). 

20. If His a proper subgroup of G, prove that G is not the union of all the 
conjugates of H. [Hint: Remember that His a normal subgroup of N(H); 
Theorem 9.25 may be helpful.] 

21. If His a normal subgroup of G and His a subgroup of G with IHI = pk, 
prove that His contained in every Sylow p-subgroup of G. [You may assume 
Exercise 24.] 

C. 22. If IGI = p", prove that G has a normal subgroup of order p"- 1
. [Hint: You may 

assume Theorem 9.27 below. Use induction on n. Let N = (a) , where a E Z( G) 
has order p (Why is there such an a?); then GjN has a subgroup of order p"-2

; 

use Theorem 8.24.] 

23. If IGI = i\ prove that every subgroup of G of order p"- 1 is normal. 

24. If His a subgroup of G and H has order some power of p, prove that 
His contained in a Sylow p-subgroup of G. [Hint: Proceed as in the 
proofs of the Second and Third Sylow Theorems but use the relation of 
H-conjugacy instead of P-conjugacy on the set {KI> ... , K1} of all Sylow 
p-subgroups.] 
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The Structure of Finite Groups 

The tools developed in Sections 9.1-9.4 are applied here to various aspects of the 
classification problem. In particular, all groups of orders :::;15 are classified. We begin 
with some useful facts about p-groups. 

If G is a group of order pn, with p prime and n 2: 1, then the center Z( G) 
contains more than one element. In particular, jl(G)I = pk with 1 :::; k:::; n. 

Proof~» By Lagrange's Theorem, IZ(G)I = pk with 0:::; k:::; n. We now show that 
k 2: 1, that is, that IZ( G)l 2: p. Form (3) of the class equation (page 306) 
shows that 

where each jq is a number larger than 1 that divides IGI. Since IGI = p", 
the divisors of IGilarger than 1 are positive powers of p. Therefore, each 
jq is divisible by p. Since IGI is also divisible by p, it follows that p divides 
IZ( G)l and, hence, jZ( G)j2: p. 

CofoHary 9.28 
If pis a prime and n > 1, then there is no simple group of order pn. 

Proof~» If G is a group of order p", then Z( G) is a normal subgroup. If Z( G) -=!= 

G, then G is not simple. If Z( G) = G, then G is abelian and not simple by 
Theorem 8.25. 

':'corollary '9'.29 .·· 
If G is a group of order p2

, with p prime, then G is abelian. Hence, G is 
isomorphic to 7Lp' or 7LP X 7LP. 

EXAMPlE 1 

By Corollary 9.29, every group of order 9 is isomorphic to 7L9 or 7L3 X 7L 3. 

Similarly, the only groups of order 169 = 132 (up to isomorphism) are 7L 169 and 
7!_13 X 7!_13· 
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Proof of Gm·ollary 9.29 ... Z( G) has order p or p2 by Lagrange's Theorem and 
Theorem 9.27. If Z( G) has order p2

, then G.= Z( G), which means that 
G is abelian. If Z( G) has order p, then the quotient group GjZ( G) has 
order IGI/IZ( G)l = p2jp = p by Theorem 8.13. Hence, GjZ( G) is cyclic by 
Theorem 8.7. Therefore, G is abelian by Theorem 8.15. The last state
ment of the theorem now follows immediately from the Fundamental 
Theorem of Finite Abelian Groups. II: 

In Corollary 9.18 certain groups of order pq (with p, q prime) were characterized. 
We can now extend that argument to some groups of order p2q. 

Letp and q be distinct primes such that q =I= 1 (mod p) and p2 =I= 1 (mod q). If G 
is a group of order p2q, then G is isomorphic to 7Lp'q or 7LP x 7LP x 1Lq, 

EXAMPLE 2 

Theorem 9.30 allows us to classify all groups of order 45. Note that 45 = 32 
• 5, 

and that 5 =I= 1 (mod 3) and 32 =I= 1 (mod 5). So if G is a group of order 45, 
then by Theorem 9.30 (with p = 3 and q = 5), G is isomorphic to 7L45 or to 
7!_3 X 7!_3 X 7L5. Similar arguments may be used to classify groups of many differ
ent orders, including 

99 = 9 . 11, 153=9·17, 175=25·7, 245=49·5, 

325 = 25 . 13, 539 = 49 . 11. 

Proof of Theorem 9.30 ... By the Third Sylow Theorem, the number of Sylow 
p-subgroups of G is congruent to 1 modulo p and divides IGI. Since the 
divisors of IGI are 1, p, p2

, q, pq, and p2q, the only possibilities are 1 and 
q. There cannot be q of them because q =I= 1 (mod p). Hence, there is a 
unique Sylow p-subgroup H, which is normal by Corollary 9.16. Similarly, 
G has 1, p, or p2 Sylow q-subgroups, and neither p nor p2 is possible since 
/ =I= 1 (mod q). Hence, there is a unique normal Sylow q-subgroup K. 
The order of the subgroup H n K must divide both~~ = p2 and IKI = q by 
Lagrange's Theorem. Hence, H n K =(e). Furthermore, HK = G 
by Exercise 15 in Section 9.3. Therefore, G = H X Kby Theorem 9.3. 
Now His isomorphic to 7LP' or 7LP X 7LP by Corollary 9.29 and K = 1Lq 
by Theorem 8.7. Consequently, by Lemma 9.8, G = H X K = 
7Lp' X 7Lq = 7Lp'q or G = H X K = 7LP X 7LP X 1Lq. Ill 

· ···c~t~llarY9.al 
If p and q are distinct primes, then there is no simple group of order p2q. 
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Proof~>- Suppose G is a group of order p2q. If either p2 =/=. 1 (mod q) or q =/=. 1 
(mod p), then the proof of Theorem 9.30 shows that G has a normal 
Sylow subgroup and, hence, is not simple. If both p 2 = 1 (mod q) and 
q = 1 (mod p ), then q I (p2 

- 1) and pI ( q - 1 ), which implies that p :=; 

q- 1 or, equivalently, q;;::. p + 1. Since p 2
- 1 = (p- 1)(p + 1), we 

know that q I (p - 1) or q I (p + 1) by Theorem 1. 5. The former is impos
sible because q "2:. p + 1, and the latter implies that q :=; p + 1, so that 
q = p + 1. Since p and q are primes, the only possibility is p = 2 and 
q = 3. Exercise 2 shows that no group of order 22 

• 3 = 12 is simple. It· 

Dihedral Groups 
We now introduce a family of groups that play a crucial role in the classification of 
groups of order 2p. Recall that the group D4 consists of various rotations and reflections 
of the square (see Section 7.1 or 7.1.A). This idea can be generalized as follows. Let P 
be a regular polygon of n sides (n ;;::. 3). * For convenient reference, assume that P has its 
center at the origin and a vertex on the negative x-axis, with the other vertices numbered 
counterclockwise from this one, as illustrated here in the cases n = 5 and n = 6. 

y 

5 

2 

Think of the plane as a thin sheet of hard plastic. Cut out P, pick it up, and replace it, not 
necessarily in the same position, but so that it fits exactly in the cut-out space. Such a motion 
is called a symmetry of P. t By considering a symmetry as a function from P to itself and 
using composition of functions as the operation (gf means motion! followed by motion g), 
the set D

11 
of all symmetries of P forms a group, called the dihedral group of degree n. 

The dihedral group Dn is a group of order 2n generated by elements rand d 
such that 

lrl = n, ldl = 2, and 

Proof~>- The proof that D 11 is a group is left to the reader. Let r be the counter
clockwise rotation of 360jn degrees about the center of P; r sends 
vertex 1 to vertex 2, vertex 2 to vertex 3, and so on. Note that r has 

*"Regular" means that all sides of P have the same length and all its vertex angles (each formed by 
two adjacent sides) are the same size. It can be shown that the perpendicular bisectors of then sides 
all intersect at a single point, which is called the center of P. 

tAll motions that result in the same final position for Pare considered to be the same. 
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order n because r" is a 360° rotation that returns P to its initial position 
(the identity symmetry). Let d be the reflection in the x-axis. As shown in 
the following figure, d "reverses the orientation" of P: vertices that were 
formerly numbered counterclockwise from vertex 1 are now numbered 
clockwise: 

y y 

6 5 

2 3 5 

The element d has order 2 because reflecting twice in the x-axis also 
returns P to its initial position. 

Since adjacent vertices of P remain adjacent under any symmetry, 
the final position of Pis completely determined by two factors: the 
new orientation of P (whether the vertices are numbered clockwise 
or counterclockwise from vertex 1) and the new location of vertex 1. 
Consequently, every symmetry is the same as either 

(0::::::; i < n) 

or 

(0::::::; i < n) 

[Counterclockwise rotation of i(360jn) 
degrees that preserves orientation and moves 
vertex I to the position originally occupied by 
vertex i + 1] 

[Reflection in the x-axis that reverses 
orientation followed by a counterclockwise 
rotation that moves vertex I to the position 
originally occupied by vertex i + 1] 

Therefore 

D = {e = r0 r r2 r"-1. d = r0d rd r2d r"- 1d} 
n ' ' ' ... ' ' ' ' ' ... ' . 

Furthermore, the 2n elements listed here are all distinct (ri and 1j move 
vertex 1 to different positions and ri = rid is impossible since ri preserves 
the vertex orientation, but rid reverses it). Hence, D" is a group of order 2n. 

Finally, verify that drd moves vertex 1 to the position originally 
occupied by vertex n and leaves the vertices in counterclockwise order. 
In other words, drd is the rotation that moves vertex 1 to vertex n, that 
is, drd = r"- 1

• Since r has order n, r- 1 = r"- 1 and, hence, drd = r- 1
• 

Multiplying on the right by d shows that dr = r- 1d. Ill 

We can now classify another family of groups. 

If G is a group of order 2p, where p is an odd prime, then G is isomorphic to 
the cyclic group 7!_2P or the dihedral group DP. 
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EXAMPlE 3 

Theorem 9.33 can be used to classify all groups of orders 6, 10, 14, 22, 26, 34, 
etc. For instance, every group of order 22 is is'omorphic either to 7L22 or D 11 , 

and every group of order 38 is isomorphic either to 7L 38 or D 19 • Theorem 9.33 
also provides a second proof that there are exactly two nonisomorphic groups 
of order 6. (See Theorem 8.9 for the first proof.) 

Proof of Theorem 9.33 ~ G contains an element a of order p and an element b of 
order 2 by Cauchy's Theorem (Corollary 9.14). Note that b2 = e implies 
b-1 = b. Let Hbe the cyclic group (a). Since IGI = 2p, the subgroup 
H has index 2 and is, therefore, normal by Exercise 23 of Section 8.2. 
Consequently, bab = bab-1 EH. Since His cyclic, bab = d for some t. 
Using this and the fact that b2 = e, we see that 

a1
' = (c/) 1 = (bab) 1 = (bab)(bab)(bab) · · · (bab) = bc/b = b(bab)b =a 

Hence, t2 = 1 (mod p) by part (2) of Theorem 7.9. Consequently, 
p divides t2 - 1 = (t- l)(t + 1), which implies that pI (t- 1) or pI (t + 1) 
by Theorem 1.5. Thus t = 1 (mod p) or t = -1 (mod p). 

If t= 1 (modp), thenbab = d =a by Theorem 7.9. Multiplying 
both sides by b shows that ba = ab. It follows that ab has order 2p = IGI 
(Exercise 33 of Section 7 .2). Therefore, G is cyclic and isomorphic to 7L2P 

by Theorem 7.19. 
If t = -1 (modp), then bab = a- 1• Exercise 9 shows that the map 

fDP---+ G given by f(ridj) = dbj is a homomorphism. Let K be the 
subgroup (b). Since IHI = p (with p odd) and IKI = 2, H n K = (e) by 
Lagrange's Theorem and G = HKby Exercise 15 in Section 9.3. Thus 
every element of G can be written in the form dbj, which implies thatf 
is surjective. Since DP and G have the same order,f must be injective and, 
hence, an isomorphism. 111. 

Groups of Small Order 
We are now in a position to complete the classification of groups of small order that 
was begun in Section 8.1, where groups of orders s 7 were classified. We already 
know three abelian groups of order 8 (7L2 X 7L2 X 7L2, 7L4 X 7L2, and 7L8) and one nona
belian one (D4). Another nonabelian group of order 8, the quaternion group Q, was 
introduced in Exercise 16 of Section 7.1. It is not isomorphic to D4 by Exercise 47 of 
Section 7.4. These five groups are the only ones: 

•·•rh~oren1 .. 9.134· .. •··· 
If G is a group of order 8, then G is isomorphic to one of the following groups: 
7L8 , 7L4 X 7L2, 7L2 X 7L2 X 7L2, the dihedral group 0 4, or the quaternion group Q. 
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Proof"" If G is abelian, then G is isomorphic to .Z8, .Z4 x .Z2, or .Z2 X .Z2 X .Z2 by the 
Fundamental Theorem of Finite Abelian Groups. So suppose G is a nona
belian group of order 8. The nonidentity elements of G must have order 2, 
4, or 8 by Lagrange's Theorem. However,. G cannot contain an element of 
order 8 (because then G would be cyclic and abelian), nor can all the non
identity elements of G have order 2 (see Exercise 27 of Section 7.2). Hence, 
G contains an element a of order 4. Let b be any element of G such that 
b rt (a)= {e, a, d, a3

}. Then the eight elements e, a, a2
, a3

, b, ab, a2b, a3b 
are all distinct because Ia I= 4 and d = ajb implies b = ai-j E (a), contrary 
to the choice of b. Thus G = {e, a, a2, a3

, b, ab, a2b, a3b}. 
The subgroup (a) has order 4 and index 2 in G. Hence, (a) is normal by 

Exercise 23 of Section 8 .2. Now the element bab -! has order 4 by Exercise 19 
of Section 7.2 and bab -I E (a) by normality. Therefore, bab -I is either a or a3 

(because e has order 1 and c? has order 2). If bab -I = a, however, then 
ba = ab, which implies that G is abelian. Therefore, bab- 1 = a3 = a- 1 so that 
ba = a -I b. This fact can be used to construct most of the multiplication table 
of G. Forinstance, (ab)a2 = a(ba)a = a(a-1b)a = ba = a-1b = a3b. You can 
use similar arguments to verify that the table must look like this: 

e a az a3 b ab a2b a3b 

e e a a2 a3 b ab a2b a3b 

a a a2 a3 e ab a2b a3b b 
a2 a2 a3 e a a2b a3b b ab 
a3 a3 e a a2 a3b b ab a2b 

b b a3b a2b ab 

ab ab b a3b a2b 

a2b a2b ab b a3b 

a3b a3b a2b ab b 

In order to complete the table, we must find b2. Since b2 = db implies b 
= ai E (a), which is a contradiction, b2 must be one of e, a, a2, or a3. If b2 

= a, however, then ab = b2b = bb2 = ba, which implies that G is abelian. 
Similarly, b2 = a3 implies that G is abelian (Exercise 15). Therefore, b2 = 

e or b2 = a2
. Each of these possibilities leads to a different table for G. 

Completing the table when b2 = e and comparing it to the table for D4 in 
Example 1 of Section 8.2 shows that G = D4 under the correspondence 

d ~ ri, b ~ d, ab ~ h, a2b ~ t, a3b ~ v 

(Exercise 4). Similarly, completing the table when b2 = a2 and comparing it 
to the table for the quaternion group Q shows that G = Q (Exercise 5). II 

According to the Fundamental Theorem of Finite Abelian Groups there are two 
abelian groups of order 12: .Z4 X .Z3 = .Z12 and .Z2 X .Z2 X .Z3 . We have also seen two 
nonabelian groups of order 12: the alternating group A4 and the dihedral group D6• It 
can be shown that there is a third nonabelian group T of order 12, which is generated 
by elements a and b such that ial = 6, b2 = a3, and ba = a- 1b and that no two of these 
three nonabelian groups are isomorphic (Exercise 16). 
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If G is a group of order 12, then G is isomorpric to one of the following groups: 
Z12, Z2 X Z2 X Z3 , the alternating group A4 , the dihedral group 0 6 , or the 
group T described in the preceding paragraph. 

Proof~>- An argument similar to the proof of Theorem 9.34 can be used to prove 
the theorem. See Theorem II.6.4 in Hungerford [5]. Ill! 

The preceding results provide a complete classification of all groups of orders ::::; 15, 
that is, a list of groups such that every group of ()rder ::::; 15 is isomorphic to exactly one 
group on the list. 

ORDER GROUPS REFERENCE 
2 Zz Theorem 8.7 

3 z3 Theorem 8.7 

4 Z4, Z2 X Z2 Theorem 8.8 

5 Zs Theorem 8.7 

6 z6, s3 Theorem 8.9 

7 z7 Theorem 8.7 

8 Z8, Z4 X Z2, Z2 X Z2 X Z2, D 4, Q Theorem 9.34 

9 Z9, z3 x z3 Corollary 9.29 

10 Zw, Ds Theorem 9.33 

11 z11 Theorem 8.7 

12 Z12, Z2 X Z2 X Z3, A4, D6, T Theorem 9.35 

13 Z13 Theorem 8.7 

14 zi4,D7 Theorem 9.33 

15 zls Corollary 9. 18 

This list could be continued to order 100 and beyond. For more than half of the 
orders between 2 and 100, the techniques presented above provide a complete clas
sification of groups of that order (Exercise 6). For other orders, however, a great deal 
of additional work would be necessary. For instance, there are 14 different groups of 
order 16 and 267 of order 64. There is no known formula giving the number of distinct 
groups of order n. 

Exercises 

A. 1. If p and q are primes with p < q and q =!= 1 (mod p) and G is a group of order 
p2q, prove that G is abelian. 

2. Prove that there is no simple group of order 12. [Hint: Show that one of the 
Sylow subgroups must be normal.] 

3. Prove that D 3 is isomorphic to S6 . 
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4. (a) In the proof of Theorem 9.34, complete the operation table for the group 
Gin the case when b2 = e. 

(b) Show that G = D 4 under the correspon~ence 

d ~ r;, b-----+ d, ab-----+ h, a2b-----+ t, a3b-----+ v 

by comparing the table in part (a) with the table for D4 in Example I of 
Section 8.2. 

5. (a) In the proof of Theorem 9.34, complete the operation table for the group 
G in the case when b2 = d. 

(b) Show that G = Q under the correspondence 

arbs-----+ irp (0 s r s 3, 0 s s s I) 

by comparing the table in part (a) with the table for Q (see Exercise 16 in 
Section 7.1). 

6. Theorems 8.7, 9.7, 9.30, and 9.33, and Corollaries 9.18 and 9.29 are sufficient 
to classify groups of many orders. List all such orders from 16 to 100. 

B. 7. If G is a group such that every one of its Sylow subgroups (for every prime p) is 
cyclic and normal, prove that G is a cyclic group. 

8. Let n ;::: 3 be a positive integer and let G be the set of all matrices of the forms 

or with a E7ln-

(a) Prove that G is a group of order 2n under matrix multiplication. 

(b) Prove that G is isomorphic to Dn-

9. Complete the proof of Theorem 9.33 by showing that when bab = a- 1, the 
mapfDP ~ G given by f(rid1) = dbl is a homomorphism. [Hint: bab = a- 1 is 
equivalent to ba = a- 1b. Use this fact and Theorem 9.32 to compute products 
in GandDp.] 

10. Prove that the dihedral group D6 is isomorphic to S3 X 7l2. 

11. (a) If n = 2k, show that rk is in the center of Dn

(b) If n is even, show that Z(D 11 ) = {e, rk}. 

(c) If n is odd, show that Z(D11) = {e}. 

12. In Theorem 9.32, r is used to denote a rotation. To avoid confusion here, r will 
denote the 60° rotation in D 6 and r will denote the 120° rotation in D 3• The 
proof of Theorem 9.32 shows that the elements of D6 can be written in the 
form ridl, and the elements of D3 in the form ridJ. 

(a) Show that the function cp:D6 ~ D3 given by cp(ridfJ = ridJ is a surjective 
homomorphism, with kernel {r0

, r3
}. 

(b) Prove that D6/Z(D6) is isomorphic to D3. [Hint: Exercise 11.] 

13. What is the center of the quaternion group Q? 

14. Show that every subgroup of the quaternion group Q is normal. 
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15. If G is a group of order 8 generated by elements a and b such that Ia I = 4, 
b r:f:. (a), and b2 = a3

, then G is abelian. [This fact is used in the proof of 
Theorem 9.34, so don't use Theorem 9.34 to prove it.] 

16. Let G be the group S3 X 2 4 and let a= ((123), 2) and b = ((12), 1). 

(a) Show that lal = 6, b2 = a3
, and ba = a- 1b. 

{b) Verify that the set T = {e = a0
, a1

, a2
, a3

, a\ a5
, b, ab, a2b, a3b, a4b, a5b} 

consists of 12 distinct elements. 

(c) Show that Tis a nonabelian subgroup of G. [Hint: Use part (a) and 
Theorem 7.12.] 

(d) Show that Tis not isomorphic to D 6 or to A4• 

17. Let n be a composite positive integer and p a prime that divides n. Assume 
that 1 is the only divisor of n that is congruent to 1 modulo p. If G is a group 
of order n, prove that G is not simple. 

18. If G is a simple group that has a subgroup K of index n, prove that IGI 
divides n!. [Hint: Let Tbe the set of distinct right cosets of K and consider 
the homomorphism cp:G----'7 A(I) of Exercise 41 in Section 8.4. Show that cp is 
injective and note that A(I) = S" (Why?).] 

C.19. Classify all groups of order 21 up to isomorphism. 

20. Classify all groups of order 66 up to isomorphism. 

21. Prove that there is no simple nonabelian group of order less than 60. 
[Hint: Exercise 18 may be helpful.] 



Arithmetic in Integral Domains 

In Chapters 1 and 4 we saw that the ring 7L of integers and the ring F[x] of polynom i
als over a field F have very similar structures: both have division algorithms, great
est common divisors, and unique factorization into primes (irreducibles). In this 
chapter we find conditions under which these properties carry over to arbitrary 
integral domains, with particular emphasis on unique factorization. 

Unique factorization turns out to be closely related to the ideals of a domain. On 
the one hand, unique factorization is not possible unless the principal ideals of the 
domain satisfy certain conditions (Section 1 0.2). On the other· hand, ideals can be 
used to restore a kind of unique factorization to some domains that lack it Indeed, 
ideals were originally invented just for this purpose, as we shall see in Section 10.3. 

Section 10.4 (The Field of Quotients of an Integral Domain) is independent of 
the rest of the chapter and may be read at any point after Chapter 3. Sections 10.2 
and 10.3 depend on Chapter 6, but the rest of the chapter may be read after 
Chapter 4. 

The interdependence of the sections of this chapter is shown below. The 
dashed arrows indicate that Sections 10.2, 10.3, and 10.5 depend only on the f1rst 
part of Section 10.1 (pages 322-324) and that Section 10.5 uses only three results 
in Section 10.2, all of which can be read independently of the rest of that section. 

10.1 <-
~~~~~~10.3 

10.4 

A shortened version of Sections 10.1 and 10.2 that contains all the basic informa
tion may be obtained by omitting the last parts of each of these sections (see the 
notes on pages 325 and 337). 

321 
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Euclidean Domains 

In early chapters we analyzed the structure of 7L and the polynomial ring F[x] by using 
divisibility, units, associates, and primes (irreducibles). We begin by defining these con
cepts in the more general setting of an integral domain.* 

Throughout this chapter, R is an integral domain. 

Let a, bE R, with a nonzero. We say that a divides b (or a is a factor of b) and write 
a I b if b = ac for some c E R. Recall that an element u in R is a unit provided that 
uv = lR for some v E R. Thus the units in R are precisely the divisors of lR. 

EXAMPLE 1 

The only units in 7L are 1 and - 1. IfF is a field, then the units in the polyno
mial ring F[x] are the nonzero constant polynomials (Corollary 4.5). 

EXAMPLE 2 

The set 7L[V2] = { r + sV21 r, s E 7L} is a subring of the real numbers (Exercise 1 ). 
The element 1 + V2 is a unit in 7L[V2] because 

(1 + V2)(-1 + V2) = 1. 

The ring in the preceding example is one of many similar rings that will frequently be 
used as examples later. If dis a fixed integer, then it is easy to verify that the set 7L[Vd] 
= {r + sVd ir, s E 7L} is an integral domain that is contained in the complex numbers. If 
d;;:::: 0, then 7L[Vd] is a subring of the real numbers (Exercise 1). When d = -1, then the 
ring 7L[v=T] is usually denoted 7L[z] and is called the ring of Gaussian integers. 

Remark Let u E R be a unit with inverse v, so that uv = 1R. For any bE R we 
have u(vb) = (uv)b = 1Rb =b. Therefore, 

a unit divides every element of R 

An element a E R is an associate of bE R provided a = bu for some unit u. Now, u 
has an inverse, say uv = 1R, and vis also a unit. Multiplying both sides of a= bu by v 
shows that av = buv = blR = b. Use these facts to verify that 

a is an associate of b if and only if b is an associate of a 

and 

a nonzero element of R is divisible by each of its associates. 

*The basic definitions apply in any commutative ring with identity. We restrict our attention to 
integral domains because most of the theorems fail in nondomains. 



10.1 Euclidean Domains 323 

EXAMPlE 3 

Every nonzero integer n has exactly two associates in l: nand -n. If Fis a 
field, the associates of f(x) EF[x] are the nonzero constant multiples of f(x). 
In the ring Z:[v2], the elements v2 and 2- v2 are associates because 
v2 = (2 - v2)(1 + v2) and 1 + v2 is a unit by Example 2. 

A nonzero element p E R is said to be irreducible provided that p is not a unit and 
the only divisors of p are its associates and the units of R. 

EXAMPLE 4 

The irreducible elements in Z: are just the prime integers because the only divi
sors of a prime pare ±p (its associates) and ± 1 (the units in 1::). The definition 
of irreducible given above is identical to the definition of an irreducible polyno
mial in the integral domain F[x], when Fis a field (see Section 4.3). In Section 10.3 
we shall see that 1 + i is irreducible in the ring Z:[i]. 

The next theorem is usually the easiest way to prove that an element is irreducible 
and is sometimes used as a definition. Theorem 4.12 is the special case when R = F[x]. 

Letp be a nonzero, non unit element in an integral domain R. Thenp is irreducible 
if and only if 

whenever p = rs, then r or s is a unit. 

Proof~~> If pis irreducible and p = rs, then r is a divisor of p. So r must be either 
a unit or an associate of p. If r is a unit, there is nothing to prove. If r is 
an associate of p, say r = pv, thenp = rs = pvs. Cancelingp on the two 
ends (Theorem 3. 7) shows that lR = vs. Therefore, sis a unit. 

To prove the converse, suppose p has the stated property. Let c be any 
divisor of p, say p = cd. Then by hypothesis either cord is a unit. If d 
is a unit, then so is d- 1. Multiplying both sides of p = cdby d- 1 shows 
that c = d- 1p. Thus in every case cis either a unit or an associate of p. 
Therefore, p is irreducible. Ill 

Euclidean Domains 

The Division Algorithm was a key tool in analyzing the arithmetic of both Z: and 
F[x]. So we now look at domains that have some kind of analogue of the Division 
Algorithm. To see how to describe such an analogue, note that the degree of a poly
nomial in F[x] can be thought of as defining a function from the nonzero polynomials 
in F[x] to the nonnegative integers. By identifying the key properties of this function 
we obtain this 
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Definition .·An integral domain R i$ a Euclidean dortwin ifthere i8 a function 8 from 
the nonzeroelements of R .. to the nonnegative integers with these properties: , 

(i) I fa and bare nonzero elementsdfR, then o(a) s, o(ab). 

(ii) If a, b eR and b *OR, then there exist q, reR s~ch that a = 1Jq +r 
andeitherr ~OR or o(r) < o(b). · · 

EXAMPlE 5 

IfF is a field, then the polynomial domain F[x] is a Euclidean domain with 
the function 8 given by 8(/(x)) = degree of f(x). Property (i) follows from 
Theorem 4.2 because 

8(f(x)g(x)) = degf(x)g(x) = degf(x) + deg g(x) 

2 degf(x) = 8(/(x)), 

and property (ii) is just the Division Algorithm (Theorem 4.6). 

EXAMPlE 6 

7L is a Euclidean domain with the function 8 given by 8(a) = lal. Property (i) 
holds because labl = lallbl2lal for all nonzero a and b. If a, belL, with b > 0, 
then by the Division Algorithm (Theorem 1.1) there are integers q and r such that 
a = bq + rand 0 ~ r < b. Either r = 0, or rand b are both positive, in which 
case, 8(r) = lrl = r < b = lbl = 8(b). Therefore, property (ii) holds when b > 0. 
For the case when b < 0, see Exercise 9. 

EXAMPLE 7 

We shall prove that the ring of Gaussian integers lZ[i] = {s + ti I s, telL} is a 
Euclidean domain with the function 8 given by 8(s + ti) = s2 + t2. Since s + ti = 0 if 
and only if both sand tare 0, we see that 8(s + ti) 2 1 when s + ti * 0. Verify 
that for any a= s + ti and b = u +vi in ?L[i], o(ab) = o(a) o(b) (Exercise 17). 
Then when b * 0 we have 

8(a) = 8(a). 1 ~ 8(a)o(b) = o(ab), 

so that property (i) holds. If b * 0, verify that a/b is a complex number that can 
be written in the form c + di, where c, dE Q (Exercise 11 ). Since cEQ, it lies 
between two consecutive integers; and similarly for d. Hence, there are integers 
m and n such that lm- cl ~ 1/2 and In- dl ~ 1/2. Since a/b = c + di, 

a = b[c + di] = b[(c- m + m) + (d- n + n)i] 

= b[(m + ni) + ((c- m) + (d- n)i)] 

= b[m + ni] + b[(c- m) + (d- n)i] 

= bq + r, 
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where q = m + niEZ[i] and r = b[(c- m) + (d- n)i]. Since r =a- bq and a, 
b, q E Z[i], we see that r E Z[i]. Property (ii) holds because 

o(r) = o(b)o[(c- m) + (d- n)i] = o(b)[(c- m)2 + (d- n)2
] 

:::; o(b)[(l/2)2 + (1/2)2
] = (1/2). 8(b) < o(b). 

NOTE: The remainder of this section is optional. The development here is 
elementary and assumes only the basic facts about rings in Section 3.1. A 
more sophisticated approach is presented in Section 10.2, where ideals are 
used to develop the key facts about a wider class of domains that includes 
Euclidean domains as a special case. Thus this section develops some re
markably strong results with a minimum of mathematical tools, whereas 
Section 10.2 obtains the same results more efficiently in a wider setting. 

It is possible that a given integral domain may be made into a Euclid~an domain 
in more than one way by defining the function o differently (see Exercises 12 and 13). 
Whenever the Euclidean domains in the preceding examples are mentioned, however, 
you may assume that the function o is the one defined above. 

In F{x], the units are the polynomials of degree 0 (Corollary 4.5), that is, the poly
nomials that have the same degree as the identity polynomial! F· Furthermore, if k is 
a constant (unit in F[x]), thenf(x) and kf(x) have the same degree. Analogous facts 
hold in any Euclidean domain. 

Let R be a Euclidean domain and u a nonzero element of R. Then the following 
conditions are equivalent: 

(1) uisaunit. 

(2) o(u) = o(1R). 

(3) o(c) = o(uc) for some nonzero c ER. 

Proof"' (1) '* (2) Exercise 15. 

(2) =} (3) Statement (3) holds with c = lR because o(lR) = o(u) = o(u. lR). 

(3) =? (1) According to (ii) in the definition of a Euclidean domain (with c 
and uc in place of a and b), there exist q, r E R such that 

c = (uc)q + r and either r = OR or o(r) < o(uc). 

If o(c) :5 o(uc), then by part (i) of the definition (with C and lR - uq in 
place of a and b) and statement (3), 

o(c) :5 o(c(1R - uq)) = 8(c - ucq) = 8(r) < 8(uc) = O(c), 

so that o(c) < o(c), a contradiction. Hence, we must haver= OR. Thus 
c = (uc)q, which implies that lR = uq. Therefore, u is a unit. • 
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Definition 

In the remainder of this section we shall develop the basic facts about greatest com
mon divisors, irreducibles, and unique factorization in Euclidean domains. The devel
opment here parallels the ones given in Chapter 1 for 7l and in Chapter 4 for F[x] and 
most of the arguments are the same ones used there, with appropriate modifications. 
Alternatively, the major results in Sections 1.2-1.3 and 4.2-4.3 may be considered as 
special cases of the theorems proved here. 

Greatest Common Divisors 
The integers are ordered by:::::; and polynomials in F[x] are partially ordered by their 
degrees. This made it natural to define greatest common divisors in these domains in 
terms of size or degree. The same idea carries over to Euclidean domains, where "size" 
is measured by the function 0. ; -·-

Let R.be aEuclidean domain and a1 bER(not both zer()).A greatest 
common divisorofa and b Is an elementd.such that · 

(i) d I a and d I b; 

(ii) if c I a and c I b, then o(c):::::; o(d). 

Any two elements of a Euclidean domain R have at least one common divisor, 
namely lR. If cIa, say a= ct, then o(c):::::; o(ct) = o(a). Consequently, every common 
divisor c of a and b satisfies o(c) :::::; max {o(a), o(b)}, which implies that there is a 
common divisor of largest possible o value. In other words, greatest common divisors 
always exist. 

When gcd's were defined in 7l and F[x], an extra condition was included in each 
case: The gcd of two integers is the positive common divisor of largest absolute value 

· and the gcd of two polynomials is the monic common divisor of highest degree. These 
extra conditions guarantee that greatest common divisors in 7l and F[x] are unique. 
In arbitrary Euclidean domains there are no such extra conditions and greatest com
mon divisors are not unique. Thus the preceding definition is consistent with, but not 
identical to, what was done in 7l and F[x]. 

EXAMPLE 8 

7l is a Euclidean domain with o(a) = lal. Under the preceding definition, 2 is 
the gcd of 10 and 18 just as before. However, -2 also satisfies this definition 
because -2 divides both 10 and 18 and any common divisor of 10 and 18 has 
absolute value:::::; 1-21. Note that the greatest common divisors 2 and -2 are 
associates in 7l. 
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Let R be a Euclidean domain and a, b ER (not both zero). 

(1) If dis a greatest common divisor of a and b, then every associate of 
dis also a greatest common divisor of a and b. 

(2) Any two greatest common divisors of a and b are associates. 

(3) If dis a greatest common divisor of a and b, then there exit u, vER 
such that d = au + bv. 

Proof~ (1) Exercise 16. 

We now find a particular greatest common divisor of a and b that will 
then be used to prove statements (2) and (3). Let 

S = {o(w) I OR =t- w ER and w =as+ bt for somes, tER}. 

Since at least one of a= alR + bOR and b = aOR + blR is nonzero by 
hypothesis, Sis a nonempty set of nonnegative integers. By the Well
Ordering Axiom, S contains a smallest element, that is, there are 
elements d*, u*, v* of R such that d* =au* + bv* and 

(A) for every nonzero w of the form as + bt (with s, t E R), 8(d*) :::; 8(w). 

We claim that d* is a greatest common divisor of a and b. To prove 
this we first show that d* I a. By the definition of Euclidean domain, 
there are elements q, r such that a = d*q + rand either r = OR or 
o(r) < o(d*). Note that 

r = a - d*q = a - (au* + bv*)q 

=a - aqu* - bv*q = a(lR- qu*) + b( -v*q). 

Thus r is a linear combination of a and b, and, hence, we cannot have 
8(r) < 8(d*) by (A). Therefore, r =OR, so that a= d*q and d* I a. A similar 
argument shows that d* I band, hence, d* is a common divisor of a and b. 

Let c be any other common divisor of a and b. Then a= cs and b = ct 
for somes, t ER and hence 

(B) d* = au* + bv* = (cs)u* + (ct)v* = c(su* + tv*). 

Thus by part (i) of the definition of Euclidean domain 8(c):::; 
8(c(su* + tv*)) = 8(d*). Therefore, d* is a greatest common divisor of 
a and b. Note that (B) also shows that 

(C) every common divisor c of a and b divides d*. 

This completes the preliminaries. We now prove the rest of the theorem. 

(2) Let dbe any greatest common divisor of a and b. Since d divides 
both a and b and d* is a greatest common divisor, we must have 8 (d) :::; 8 (d*) 
by part (ii) of the definition. The same definition with the roles of d and 
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d* reversed shows that 8(d*) :=; 8(d). Hence, 8(d) = 8(d*). By (C) we 
know that d I d*, say d* = dk. Therefore, 8(d) = 8(d*) = 8(dk). Hence, k 
is a unit by Theorem 10.2 and dis an associate of d*. Since every gcd is 
an associate of d*, any two of them must be associates of each other by 
Exercise 6. 

(3) If dis a greatest common divisor of a and b, then as we saw in the 
previous paragraph d* = dk, with k a unit. Since d* =au* + bv*, we have 

d = d*k- 1 = (au* + bv*)k-1 = a(u*k-1) + b(v*k- 1). 

Hence, d =au+ bv, with u = u*k- 1and v = v*k-1• Ill 

Let R be a Euclidean domain and a, b ER (not both zero). Then dis a greatest 
common divisor of a and b if and only if d satisfies these conditions: 

(i) d I a and d I b; 

(ii) if c I a and c I b, then c I d. 

Proof,.. If dis a greatest common divisor of a and b, then d satisfies (i) by defini
tion. Suppose cis a common divisor of a and b. Let d* be as in ( ***) in 
the proof of Theorem 10.3. Then c I d*, say d* =ct. Furthermore, d* is 
an associate of d by Theorem 10.3 so that d* = dk, with k a unit. Hence, 
d = d*r' = (ct)k- 1 = c(tk-1

), so that c I d. Therefore, condition (ii) holds. 
The proof of the converse is Exercise 18. II 

The Euclidean Algorithm (Exercise 15 of Section 1.2) provides the most efficient 
way of calculating the greatest common divisor of two integers. With minor modifica
tion its proof carries over to Euclidean domains and provides a constructive method 
of finding both greatest common divisors and the coefficients needed to write the gcd 
of a and b as a linear combination of a and b. See Exercise 31. 

Unique Factorization 
Elements a and b of a Euclidean domain are said to be relatively prime if one of their 
greatest common divisors is 1R. In any domain the units are the associates of 1R. Thus 
by Theorem 10.3, a and b are relatively prime if and only if one of their greatest 
common divisors is a unit. 

Let R be a Euclidean domain and a, b, c ER. If a I be and a and bare relatively 
prime, then a I c. 

Proof,.. Copy the proof of Theorem 1.4, using Theorem 10.3 in place of 
Theorem 1.2. 
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Let p be an irreducible element in a Euclidean domain R. 

(1) If p I be, then p I b or p I c. 

(2) If p I a1a2 · · ·an, then p divides at least one of the ai. 

Pt•oof ~> (1) Let d be a greatest common divisor of p and b. Since d divides p, we 
know that dis either an associate of p or a unit. If dis an associate of 
p, thenp is also a greatest common divisor of p and b by Theorem 10.3; 
in particular, p I b. If dis a unit, then p and b are relatively prime and, 
hence, p I e by Theorem 10.5. 

(2) Copy the proof of Corollary 1.6, using (1) in place of 
Theorem 1.5. 1!1 

Let R be a Euclidean domain. Every nonzero, nonunit element of R is the prod
uct of irreducible elements,* ancl this factorization is unique up to associates; 
that is, if 

with each Pi and qj irreducible, then r =sand, after reordering and relabel
ing if necessary, 

Pi is an associate of qi fori= 1, 2, ... , r. 

Pt•oof ~> LetS be the set of all nonzero nonunit elements of R that are not the 
product of irreducibles. We shall show that Sis empty, which proves that 
every nonzero nonunit element has at least one factorization as a prod
uct of irreducibles. Suppose, on the contrary, that Sis nonempty. Then 
the set { 8(s) I s E S} is a nonempty set of nonnegative integers, which 
contains a smallest element by the Well-Ordering Axiom. That is, there 
exists a E S such that 

(*) 8(a)::::; 8(s) for every sES. 

Since a E S, 1 is not itself irreducible. By the definition of irreducibility, 
a= be with both band e nonunits. Now 8(b)::::; 8(be) by the definition of 
Euclidean domain. If 8(b) = 8(be), then b would be a unit by Theorem 10.2, 
which is a contradiction. Hence, 8(b) < 8(be) = 8(a), so that b fl. S by(*). A 
similar argument shows that e fl. S. By the definition of S, both b and c are 
the product of irreducibles and, hence, so is a= be. This contradicts the fact 

*We allow the possibility of a product with just one factor in case the original element is itself 
irreducible. 
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that a E S. Therefore, Sis empty, and every nonzero nonunit element of R 
is the product of irreducibles. To show that this factorization is linique up 
to associates, copy the proof of Theorem 4.14, replacing constant by unit 
and Corollary 4.13 by Corollary 10.6. 

Exercises 

NOTE: Unless stated otherwise, R is an integral domain. 

A. 1. Show that Z[Yd] is a subring of C. If d:::::: 0, show that Z[Yd] is a subring of R 

2. Let d =F ± 1 be a square-free integer (that is, d has no integer divisors of the 
form c2 except ( ±1)2

). Prove that in Z[Vd], r + sVd = r1 + s1 Vd if and only 
if r = r1 and s = s1• Give an example to show that this result may be false if d 
is not square-free. 

3. If the statement is true, prove it; if it is false, give a counterexample: 

(a) If a I b and c I din R, then ac I bd. 

(b) If a I band c I din R, then (a+ c) I (b +d). 

4. Prove that c and dare associates in R if and only if c I d and d I c. 

5. If a = be with a =F 0 and band c nonunits, show that a is not an associate of b. 

6. Denote the statement "a is an associate of b" by a- b. Prove that- is an 
equivalence relation; that is, for all r, s, t E R: (i) r- r. (ii) If r ~ s, then s ~ r. 
(iii) If r- s and s- t, then r- t. 

7. Prove that every associate of an irreducible element is irreducible. 

8. If u and v are units, prove that u and v are associates. 

9. Show that the function 8 in Example 6 has property (ii) in the definition 
of a Euclidean domain in the case when b < 0. [Hint: Apply the Division 
Algorithm with a as dividend and lbl as divisor. Then modify the result.] 

10. Is 2x + 2 irreducible in Z[x]? Why not? 

11. If a= s + ti and b = u +vi are in Z[i] and b =F 0, show that a/b = c + di, where 

c = su + tv and d = tu - sv. 
u2+v2 u2+v2 

12. (a) Show that£' is a Euclidean domain with the function 8 given by 8(n) = n2
. 

(b) Is (Q a Euclidean domain when 8 is defined by 8(r) = r2? 

13. Let R be a Euclidean domain with function 8 and let k be a positive integer. 

(a) Show that R is also a Euclidean domain under the function() given by 
8(r) = 8(r) + k. 

(b) Show tl,lat R is also a Euclidean domain under the function {3 given by 
{3(r) = k8(r). 
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14. Let Fbe a field. Prove that Pis a Euclidean domain with the function 8 given 
by 8(a) = 0 for each nonzero a E F. 

15. Let R be a Euclidean domain and u E R. Prove that u is a unit if and only if 
o(u) = o(1R). 

16. If dis the greatest common divisor o.f a and bin a Euclidean domain, prove 
that every associate of dis also a greatest common divisor of a and b. 

17. (a) If a= s + ti and b = u +vi are nonzero elements of 2(i], show that 
o(ab) = 8(a)8(b), where o(r + si) = r2 + i. 

(b) If R is a Euclidean domain, is it true that o(ab) = 8(a)8(b) for all nonzero 
a, hER? 

18. Complete the proof of Corollary 10.4 by showing that an element d satisfying 
conditions (i) and (ii) is a greatest common divisor of a and b. 

19. Show that the elements q and r in the definition of a Euclidean domain are 
not necessarily unique. [Hint: In 2[i], let a = -4 + i and b = 5 + 3i; consider 
q = -1 and q = -1 + i.] · 

B. 20. If any two nonzero elements of R are associates, prove that R is a field. 

21. If every nonzero element of R is either irreducible or a unit, prove that R is a 
field. 

22. (a) Show that 1 + i is not a unit in 2[i]. [Hint: What is the inverse of 1 + i inC?] 

(b) Show that 2 is not irreducible in 2[i]. 

23. Let p be a nonzero, nonunit element of R such that whenever p I cd, then p I c 
or p I d. Prove that p is irreducible. 

24. If fR ~ Sis a surjective homomorphism of integral domains, p is irreducible 
in R, andf(p) * 08 , isf(p) irreducible inS? 

25. Let R be a Euclidean domain. Prove that 

(a) 8(1R) ::; o(a) for all nonzero a E R. 

(b) If a and bare associates, then o(a) = o(b). 

(c) If a I band o(a) = 8(b), then a and bare associates. 

26. Show that 2[ v=l)is a Euclidean domain with 8(r + sv=l) = r2 + 2s2
. 

27. Let w = ( -1 + ~)/2 and 2[w] = {r + sw I r, s E 2}. Prove that 2[w] is 
a Euclidean domain with o(r + sw) = (r + sw)(r + sw2

) = r2
- rs + s2

. 

[Hint: Note that w3 = 1 and w2 + w + 1 = 0 (Why?).] 

28. Prove or disprove: Let R be a Euclidean domain; then 
I= {a E R l8(a) > 8(1R)} is an ideal in R. 

29. Let R be a Euclidean domain. If the function 8 is a constant function, prove 
that R is a field. 

30. (a) Prove that 1 - i is irreducible in 2[i). [Hint: If a I (1 - i ), then 1 - i = ab; 
see Exercises 17(a) and 25.] 

(b) Write 2 as a product of irreducibles in 2[i]. [Hint: Try 1 - i as a factor.] 
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Definition 

C. 31. State and prove the Euclidean Algorithm for finding the gcd of two elements 
of a Euclidean domain. 

32. Let R be a Euclidean domain such that 8(a +b) s max{8(a), 8(b)} for all 
nonzero a, b E R. Prove that q and r in the definition of Euclidean domain are 
unique. 

Principal Ideal Domains and Unique Factorization 
Domains 

A Euclidean domain is, in effect, a domain that has an analogue of the Division 
Algorithm. Consequently, all the proofs used for the integers and polynomial rings, 
most of which ultimately depended on the Division Algorithm, can be readily carried 
over to Euclidean domains. We now consider domains that may not have an analogue 
of the Division Algorithm but do have the other important arithmetic properties of Z, 
such as unique factorization and greatest common divisors. 

A principal ideal domain (PI D) is an integraldornain .in which everyideal 
is principal. 

The next theorem shows, for example, that Z, Q[x], and Z[i] are all principal ideal 
domains because all of them are Euclidean domains (see Examples 5-7 of Section 10.1). 
Example 8 of Section 6.1 shows that the polynomial ring Z[x] is not a PID. 

Theorem 1 0'.8 ·· 
Every Euclidean domain is a principal ideal domain. 

Proof~~> Suppose I is a nonzero ideal in a Euclidean domain R. Then the set 
{ 8 (i) 1 i E I} is a non empty set of nonnegative integers, which contains a 
smallest element by the Well-Ordering Axiom. That is, there exists bE I 
such that 

(*) 8(b) :::; 8(i) for every iEI. 

We claim that I is the principal ideal (b) = { rb I r E R}. Since b E I and I 
is an ideal, rb E I for every r E R; hence, (b) ~ I. Conversely, suppose c E I. 
Then there exist q, r E R such that 

c == bq +I' and or 8(r) < 8(b). 

Since r =. c - bq and both c and b are in I, we must have rEI. Hence, it is 
impossible to have 8(r) < 8(b) by(*). Consequently, r =OR and c = bq + 
r = bq E (b). Thus I~ (b) and, hence, I= (b). Therefore, R is a PID. 
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The converse of Theorem 10.8 is false: There are principal ideal domains that are 
not Euclidean domains (see Wilson and Williams [21]). Thus the class of Euclidean 
domains is strictly contained in the class of principal ideal domains. 

In our development of the integers, polynomial rings, and Euclidean domains we 
first considered greatest common divisors and used them to prove unique factoriza
tion. Although this approach could also be used with principal ideal domains, it is 
just as easy to proceed directly to unique factorization.* We begin by developing the 
connection between divisibility and principal ideals in any integral domain. 

Let a and b be elements of an integral domain R. Then 

(1) (a)£;;; (b) if and only if b I a. 

(2) (a) = (b) if and only if b I a and a I b. 

(3) (a)~ (b) if and only if b I a and b is not an associate of a. 

Proof~> (1) Note first that the principal ideal (b) consists of all multiples of b, 
that is, all elements divisible by b. Hence, 

aE(b) if and only if b I a. 

Now if (a)£;;; (b), then a is in the ideal (b), so that b I a. Conversely, if 
b I a, then a E (b), which implies that every multiple of a is also in the 
ideal (b). Hence, (a)£;;; (b). 

(2) (a)= (b) if and only if (a)£;;; (b) and (b)£;;; (a). By (1), (a)£;;; (b) and 
(b)£;;; (a) if and only if b I a and a I b. 

(3) To prove this, use (1), (2), and Exercise 4 in Section 10.1, which 
shows that a I b and b I a if and only if b is an associate of a. II 

To understand the origin of the next definition, it may help to recall the typical 
process for factoring an integer a 1 as a product of primes. Find a prime divisor p 1 of 
a1 and factor: a1 = p1a2• Next find a prime divisor P2 of a2 and factor: a2 = p2a3, so 
that a 1 = p 1p2a3• Now find a prime divisor p 3 of a3 and factor again: a3 =:= p 3a4 and 
a1 = p 1p2p3a4. Continue in this manner. Since a1 has only a finite number of prime 
divisors, we must eventually have some ak prime so that ak = Pk • 1 and a1 = 
p1p2Pk · · · Pk • 1. The only way to continue factoring (with positive factors and with
out changing the p's) is to use the fact that 1 = 1 · 1 repeatedly to write a1 as 

a, = P1P2P3 · · · Pk • 1 · 1 · 1 · · · 1. 

Now look at the same procedure from the point of view of ideals. We have a2 1 a~o a3 1 a1o 
a4 1 a3, . .. , 11 a1o 111, 111, and so on. Consequently, by Lemma 10.9 this factorization 
process leads to a chain of ideals 

(a1) £;;; (a2) £;;; (a3) £;;; ... £;;; (a~c) £;;; (1) £;;; (1) £;;; (1) £;;; ... 

*Greatest common divisors are discussed at the end of this section; also see Exercises 20-22. 
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Definition 

in which all the ideals are equal after some point. This suggests that factorization as 
a product of irreducibles is somehow related to chains of principal ideals in which all 
the ideals are equal after some point and motivates the following definition. 

.·An integral domainR satisfies the ascending chain condition (ACC) on 
principal ideals provided that whenever (a1) ~ (a2) c;;;; (a3) c;;;; • • ·, thenthere 
exists a positive integer n such that (a;) == (a0 ) for all /:-::::: n. · 

Note that in this definition the identical ideals beginning with (an) may not be the 
ideal (1 R). Nevertheless, the preceding discussion suggests the possibility that 7L has the 
ACC on principal ideals. This is indeed the cas~ as we now prove. 

Every principal ideal domain R satisfies the ascending chain condition on 
principal ideals. 

Proof~> If (a1) c;;;; (a2) c;;;; • • • is an ascending chain of ideals in R, let A be the set

theoretic union U (a,). We claim that A is an ideal. Suppose a, bEA; 
1'2:1 

then a E (a) and bE (a~c) for somej, k :-::::: 1. Either j s k or k sj, say j::::; k. 
Then (a)<;;;; (ak), so that a, bE (a~c). Since (a1c) is an ideal, we know that 
a - b E (a ~c) <;;;; A and ra E (a ~c) <;;;; A for any r E R. Therefore, A is an ideal by 

Theorem 6.1. Since R is a PID, A =(c) for some c ER. Since A= U (a1), 
1'2:1 

we know that c E (an) for some n. Consequently, (c)<;;;; (an) and for each 
i 2 n 

Therefore, (a) = (a11) for each i 2 n. 

As we shall see, Lemma 10.10 is the key to showing that every nonzero nonunit 
element in a PID can be factored as a product of irreducibles. The fact that this fac
torization is essentially unique is a consequence of the next lemma. 

Let R be a principal ideal domain. If pis irreducible in Rand pI be, then pI b or 
PI c. 

Proof*~> If pI be, then be is in the ideal (p). If (p) were known to be a prime 
ideal, we could conclude that bE (p) or c E (p), that is, that pI b or pI c. 
Since every maximal ideal is prime by Corollary 6.16, we need only show 

*For an alternate proof using greatest common divisors in place of Corollary 6.16, see Exercise 23. 
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that (p) is a maximal ideal. Suppose I is any ideal with (p) 5;:;; I 5;:;; R. Since 
R is a PID, I= (d) for some dE:R. Then (p) 5;:;; (d) =I implies that dIp. 
Since pis irreducible, d must be either a unit or an associate of p. If d 
is a unit, then I = (d) = R by Exercise 9 of Section 6 .1. If dis an 
associate of p, say d = pu, thenp I d and, hence, (d) 5;:;; (p). In this case, 
(p) 5;:;; (d) 5;:;; (p), so that (p) = (d) =I. Therefore, (p) is maximal, and 
the proof is complete. U 

Let R be a principal ideal domain. Every nonzero, nonunit element of R is 
the product of irreducible elements,* and this factorization is unique up to 
associates; that is,if 

with each p1 and Q; 'Irreducible, then r =sand, after reordering and relabeling 
if necessary, 

p1 is an associate of q1 for I = 1, 2, ... , r. 

Proof"" Let a be a nonzero, nonunit element in R. We must show that a has at 
least one factorization. Suppose, on the contrary, that a is not a product 
of irreducibles. Then a is not itself irreducible. So a = a 1b1 for some 
nonunits a1 and b1 (otherwise every factorization of a would include a 
unit and a would be irreducible by Theorem 10.1). If both a1 and b1 are 
products of irreducibles, then so is a. Thus at least one of them, say a~> is 
not a product of irreducibles. Since b1 is not a unit, a1 is not an associate 
of a (Exercise 5 in Section 10.1). Consequently, (a)~ (at) by part (3) of 
Lemma 10.9. 

Now repeat the preceding argument with a1 in place of a. This leads 
to a nonzero nonunit a2 such that (a1) ~ (a2) and a2 is not a product of 
irreducibles. Continuing this process indefinitely would lead to a strictly 
ascending chain of principal ideals (a1) ~ (a2) ~ (a3) ~ • • ·,contradict
ing Lemma 10.10. Therefore, a must have at least one factorization as a 
product of irreducibles. 

Now we must show that this factorization is unique up to associates. 
To do this, adapt the proof of Theorem 4.14 (the case when R = F[x]) 
to the general situation by replacing the word constant by unit and using 
Lemma 10.11 and Exercise 2 in place of Corollary 4.13. Ill 

To appreciate the importance of Theorem 10.12, it may be beneficial to examine a 
domain in which unique factorization fails. 

*We allow the possibility of a product with just one factor in case the original element is itself 
irreducible. 
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EXAMPLE 1 

Let Q2 [x] denote the set of polynomials with rational coefficients and integer 

constant terms. For instance, x, lx, and 2 are ~n Q2[x], but x2 +..!_and -
4

1 
are 

2 2 
not. Verify that Q2[x] is an integral domain and that the constant polynomial2 
is irreducible in Q2[x] (Exercise 16). The irreducible element 2 is a factor of 

x E Q2[x] because x = 2 · (~x). Similarly, 2 is an irreducible factor of ~x 

because ~x = 2 · ( ix). Hence, x = 2 · 2 · ( ix). In fact, the process of 

factoring out irreducible 2's never ends because 

( *) x = 2 · (~x) = 2 · 2 · ( ±x) = 2 · 2 · 2 · ( ix) = · · · 

= 2 · 2 .. · 2 · (_!__x) = · · · 2n . 
In view of this, it should not be surprising that x cannot be factored as a prod
uct of irreducibles of Q2[x] (Exercise 17). 

Compare this situation with the prime factorization of a1 in 7l as described on 
page 333. In 7l the factorization becomes trivial after a finite number of steps (the 
only remaining factors are 1 's ), and all the ideals in the corresponding chain are equal 
after that point. In the factorization ( *) in Q2[x], however, things are different. The 
remaining factors each time a 2 is factored from x are the elements 

1 1 1 1 x, 2x, 4x, Sx ... ' 2nx .... 
No two of these elements are associates (Exercise 3) and each element is 2 times 
the following one, that is, each element is divisible by the following one. Therefore, 
by part (3) of Lemma 10.9 

Hence, the ACC for principal ideals does not hold in Q;z[x]. 

Unique Factorization Domains 
In our study of Euclidean domains and principal ideal domains, the main result was 
that unique factorization held. Now we reverse the process and consider domains in 
which unique factorization always holds to see what other properties from ordinary 
arithmetic they may have. 
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An integral domain R is a unique factorization.domain (UFD) provided 
that every nonzero, nonunit element of R is the product of irreducible 
elements,''" and this factorization is unique up to associates; that is, if 

P1P2 · · · Pr = q1q2 · · · qs 

with eachp1 and qi irreducible, then r =sand, after reordering and relabel
ing if necessary, 

p1 is an associate of q1 for I = 1, 2, ... ; r. 

EXAMPLE 2 

Theorem 10.12 shows that every PID is a unique factorization domain. In 
particular, the ring Z[i] of Gaussian integers is a UFD. 

EXAMPLE 3 

As noted in Example 1, (CI);z:[x] is not a unique factorization domain because the 
element x has no factorization as a product of a finite number of irreducibles. In 
Section 10.3 we shall see that Z[ v=5] fails to be a UFD for a different reason: 
Every element is a product of irreducibles, but this factorization is not unique. 

EXAMPlE 4 

A proof that the polynomial ring Z[x] is a UFD is given in Section 10.5. Since 
Z[x] is not a principal ideal domain (see Example 8 of Section 6.1), we see that 
the class of all unique factorization domains is strictly larger than the class of 
all principal ideal domains. 

NOTE: The remainder of this section is optional and is not needed for the sequel. 

When working with two integers, you can always arrange things so that the same 
primes appear in the factorizations of both elements. For instance, consider the prime 
factorizations - 18 = 2 · 3 · (- 3) and 40 = 2 · (-2) · (-2) · 5. The list of all primes that 
appear in both factorizations is 2, 3, -3, 2, -2, -2, 5, but several of these primes are 
associates of each other. By eliminating any prime on the list that is an associate of an 
earlier number on the list we obtain the list 2, 3, 5 in which no two numbers are associ
ates. We can write both 18 and 40 as products of these three primes and the units ± 1: 

-18 = 2. 3. ( -3) = ( -1). 2. 3. 3 = ( -1). 2°.32 • 5° 

40 = 2. (-2). (-2). 5 = (-1)(-1). 2. 2. 2. 5 = (1). 23 .3°. 51 

Essentially the same procedure works in any UFD. 

*We allow the possibility of a product with just one factor in case the original element is itself irreducible. 
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If c and dare nonzero elements in a unique factorization domain R, then 
there exist units u and v and irreducibles p1, p2, ... , pk, no two of which are 
associates, such that 

where each m1 and n1 is a nonnegative integer. Furthermore, 

cJd if and only if for each i = 1 1 2, o • o 1 k, 

In the example preceding the theorem, with c = .,- 18 and d = 40, we had u = -1, v = 1, 
p 1 = 2,p2 = 3, andp3 = 5. 

Proof ofTheorem 10.13 ~Since R is a UFD, both c and d can be factored,, say 
c = q1q2 • • • qs and d = r1r2 • • • r, with each q1 and lj irreducible. In the list 
qb q2, ... , q, r1, r2, ... , r1 delete any element that has an associate appear
ing earlier on the list and denote the remaining elements by Pb p2, ••• , 

Pk· Then each p 1 is irreducible, no two of them are associates of each other, 
and each one of the q's and r's is an associate of some Pi· Consequently, in 
the factorization c = q1q2 • • • qs each% is of the form wpi with w a unit. 
By rearranging terms, c can be written (product of units) (product of p's). 
The product of these units is itself a unit, call it u. By rearranging the p's 
in this product and inserting other p's with zero exponents if necessary, 
we can write c = upt'P2

111
' • • • Pk"\ with each mi 2:: 0. A similar procedure 

works for d and proves the first part of the theorem. 
To prove the first half of the last statement of the theorem, suppose 

c I d. Then d = cb for some b E R. Since the irreducible Pi appears exactly 
n1 times in the factorization of d, it must also appear exactly ni times in the 
factorization of cb. But Pi already appears m1 times in the factorization of c 
and may possibly appear in the factorization of b, so we must have mi:;::; ni. 

Conversely, suppose that m1 :;::; ni for every i. Verify that d = ca, where 

Therefore, c I d. ill' 

Every unique factorization domain satisfies the ascending chain condition on 
principal ideals. 

Proof~First, suppose (c) and (d) are principal ideals in a UFD R such that 
(d)~ (c). Then c I d and cis not an associate of dby Lemma 10.9. If c and 
dare written in the form given by Theorem 10.13, then each mi:;::; ni. If 
m1 = n1 for every i, then c = uv -l d, which means that c is an associate of 
d, a contradiction. Hence, there must be some index j for which m1 < nf 
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Suppose (aJ) ~ (a2) ~ (a3) ~ • • ·is a chain of principal ideals in R. 
Lemma 10.9 shows that each ai divides a1 .. By Theorem 10.13 we 
may assume that a1 = vpt'Pt1 

• • • Pknk lind that each ai is of the form 
ai = up{'p2

1111 · · · p1tk, where the pj are nonassociate irreducibles. If 
there are just a finite number of strict inclusions (£) in the chain of 
ideals, then there are only equalities after a certain point and the ACC 
holds. There cannot be an infinite number of strict inclusions because 
the first paragraph shows that each time a strict inclusion occurs, one 
of the exponents on one of the p's must decrease. Consequently, after 
a finite number of strict inclusions, there would be an an of the form 
an = up1° · · · = Pko = u. Thus an is a unit, which implies that (an) = R by 
Exercise 9 of Section 6.1. For each i?: n we have (an)~ (ai) ~ R = (an), so 
that (an) = (ai.). Therefore, R satisfies the ACC on principal ideals. Ill· 

Irreducibles in a unique factorization domain have a property that we have 
used frequently in the special cases of Euclidean domains and principal ideal 
domains. 

Let p be an irreducible element in a unique factorization domain R. If pI be, 
then pI b or pI c. 

Proof ll> If b or cis 0 R• then there is nothing to prove because p I 0 R· If cis a unit 
andp I be, thenpt =be for some tER andptc- 1 =b. Hence,p I b; simi
larly, if b is a unit, thenp I c. If both band care nonzero nonunits, then 
b = q1 · · · qk and c = qk+l · · · qs with the qi (not necessarily distinct) 
irreducibles. Since p I be, we have pr = be = q1 • • • qs for some r E R. The 
irreducible p must be an associate of some q1 by unique factorization. 
Therefore, p divides qi and, hence, divides b or c. Ill• 

We are now in a position to characterize unique factorization domains. 

An integral domain R is a unique factorization domain if and only if 

(1) R has the ascending chain condition on principal ideals; and 

(2) whenever pis irreducible in Rand pI cd, then pIc or pI d. 

As the proof of the theorem shows, condition (1) corresponds to the existence of 
an irreducible factorization for each nonzero nonunit element and condition (2), to 
the uniqueness of this factorization. The two conditions are independent: (1) fails and 
(2) holds in Q2[x] (see Example 1 and Exercise 33), whereas (1) holds and (2) fails in 
Z[ v=5] (as we shall see in Example 4 and Exercise 21 of Section 10.3). 
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Definition 

Proof of Theorem 10.16 ~If R is a UFD, then R satisfies (1) and (2) by Corollary 10.14 
and Theorem 10.15. Conversely, assume R satisfies (1) and (2) and let a 
be a nonzero nonunit element of R. The argument used in the proof of 
Theorem 10.12, which depends only on the ACC, is valid here and shows 
that a can be factored as a product of irreducibles. To show that this 
factorization is unique, adapt the proof of Theorem 4.14 (the case when 
R = F[x]) to the general situation by replacing the word constant by unit 
and using (2) and Exercise 2 in place of Corollary 4.13. Ill 

Greatest Common Divisors 
Greatest common divisors were a useful tool in our study of 7L, F[ x ], and other Euclidean 
domains. In each case the gcd of two elements was defined to be a common divisor of 
"largest size," where size was measured by absolute value in 7L, by polynomial degree 
in F[x], and by the function o in an arbitrary Euclidean domain. Unfortunately, there 
may be no similar way to measure "size" in an arbitrary integral domain, so greatest 
common divisors must be defined in terms of divisibility properti~s alone: 

Let a1, a2, ..• , an be elements (not all zero) of an integral domain R. A 
greatest common divisor of a1, a2 . :. , an is an element d ofR such that · 

(i) d divides each of the a1; 

(i i) if c E Rand c divides each of the a1, then c I d. 

Corollaries 1.3, 4.9, and 10.4 show that this definition is equivalent to the definitions 
used previously in 7L, F[x], and other Euclidean domains. The only difference is that great
est common divisors in 7L and F[x], are no longer unique (see the discussion on page 326). 

Let d be a greatest common divisor of a1, a2, ... , an in an integral domain R. 
Then 

(1) Every associate of dis also a gcd of a1, ... , an. 

(2) Any two greatest common divisors of a1, ... , an are associates. 

Proof~ (1) Exercise 7. 

(2) Suppose both d and tare gcd's of al> ... , an. Then t divides each 
a;, and, therefore, t I d by (ii) in the definition of the greatest common 
divisor d. But d also divides each a;, and, hence, d I t by (ii) in the defini
tion of the gcd t. Since tId and d I t, we know that d and tare associates 
by Exercise 4of Section 10.1. Ill 

WARNING:· In some integral domains a finite set of elements may not 
have a greatest common divisor (see Exercise 13 in Section 10.3). 
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Leta11 a21 ••• I an (not all zero) be elements in a unique factorization domain R. 
Then a1, ... I an have a greatest common divisor in R. 

Proof~>- The gcd of any set of elements is the gcd of the nonzero members of the 
set, so we may assume that each ai is nonzero. By Theorem 10.13 there are 
irreducibles PI> ... , p 1 (no two of which are associates), units Uj, ... , u, 
and nonnegative integers mu such that 

a! = UJPt'1Ipzm12p{11J . .. Pr'"l' 

Clz = UzP!m'lpzm"P3m" . .. p/"'' 

Let k1 be the smallest exponent that appears onp1; that is, k1 is the 
minimum of mu, m2b m3b ... , m111 • Similarly, let k2 be the smallest 
exponent that appears onp2, and so on. Use Theorem 10.13 to verify 
that d = p/<p/' ... p/'' is a gcd of a~> ... , a11 • Iii 

In an arbitrary unique factorization domain, it may not be possible to write the 
gcd of elements a and b as a linear combination of a and b as it was in 7L and F[x]. In 
Section 10.5, for example, we shall see that 1 is a gcd of the polynomials x and 2 in 
the UFD Z[x], but 1 is not a linear combination of x and 2 in 7L[x] (Exercise 6). In a 
principal ideal domain, however, the gcd of a and b can always be written as a linear 
combination of a and b (Exercise 20). 

Exercises 

A. 1. If a, bare nonzero .. elements of an integral domain and a is a nonunit, prove 
that (ab) ~(b). 

2. Suppose p is an irreducible element in an integral domain R such that whenever 
pI be, then p I b or p I c. If p I a1a2 · · · a"' prove that p divides at least one ai. 

3. (a) Prove that the only units in Q2[x] are 1 and -1. [Hint: Theorem 4.2.] 

(b) If f(x) E Q2[x], show that its only associates aref(x) and -j(x). 

4. Is a field a UFD? 

5. Give an example to show that a subdomain of a unique factorization domain 
need not be a UFD. 

6. Prove that 1 is not a linear combination of the polynomials 2 and x in 7L[x], that 
is, prove it is impossible to findf(x), g(x) ElL[x] such that 2f(x) + xg(x) = 1. 
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7. Let dbe a gcd of ab . .. , akin an integral domain. Prove that every associate 
of dis also a gcd of at> ... , ak. 

8. Let p be an irreducible element in an integral domain. Prove that lR is a gcd of 
p and a if and only if p r a. 

B. 9. Let R be a PID. If (c) is a nonzero ideal in R, then show that there are only 
finitely many ideals in R that contain (c). [Hint: Consider the divisors of c.] 

10. Prove that an ideal (p) in a PID is maximal if and only if pis irreducible. 

11. Prove that every ideal in a principal ideal domain R (except R itself) is 
contained in a maximal ideal. [Hint: Exercise 10.] 

12. Prove that an ideal in a PID is prime if and only if it is maximal. 
[Hint: Exercise 10.] 

13. LetfR--+ S be a smjective homomorphism of rings with identity. 

(a) If R is a PID, prove that every ideal inS is principal. 

(b) Show by example that Sneed not be an integral domain. 

14. Let p be a fixed prime integer and let R be the set of all rational numbers that 
can be written in the form a/b with b not divisible by p. Prove that 

(a) R is an integral domain containing 7L [Note n = n/1]. 

(b) If ajb ER and p r a, then a/b is a unit in R. 

(c) If I is a nonzero ideal in Rand I i= R, then I contains p 1 for some t > 0. 

(d) R is a PID. (If I is an ideal, show that I= (i'), where i' is the smallest 
power of pin I.) 

15. Let I be a nonzero ideal in Z[i]. Show that the quotient ring Z[i]/ I is finite. 

16. (a) If pis prime in Z, prove that the constant polynomial pis irreducible in 
Q;£:[x]. [Hint: Theorem 4.2 and Exercise 3.] 

(b) If p and q are positive primes in Z with pi= q, prove that p and q are not 
associates in Qz[x]. 

17. (a) Show that the only divisors of x in il)z[x] are the integers (constant poly

nomials) and first-degree polynomials of the form l_ x with 0 i= n E Z. 
n 

(b) For each nonzero n E Z, show that the polynomiall_x is not irreducible 
in Qz[x]. [Hint: Theorem 10.1.] n 

(c) Show that x cannot be written as a finite product of irreducible elements 
in Qz[x]. 

18. A ring R is said to satisfy the ascending chain condition (ACC) on ideals if 
whenever I1 ~ I2 ~ I3 ~ • · • is a chain of ideals in R (not necessarily principal 
ideals), then there is an integer n such that~= I, for all} 2 n. Prove that if 
every ideal-in a commutative ring R is finitely generated, then R satisfies the 
ACC. [Hint: See Theorem 6.3 and adapt the proof of Lemma 10.10.] 
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19. A ring R is said to satisfy the descending chain condition (DCC) on ideals if 
whenever / 1 ;::::> 12 ;::::> 13 ;::::> · · · is a chain of ideals i1;1 R, then there is an integer n 
such that I;= In for allj 2 n. 

(a) Show that 7L does not satisfy the DCC. 

(b) Show that an integral domain R is a field if and only if R satisfies the 
DCC. [Hint: If 0 =I= a ER is not a unit, what can be said about the chain 
of ideals (a);::::> (a2

) ;::::> (a3
) ;::::> · · · ?] 

20. Let R be a PID and a, b ER, not both zero. Prove that a, b have a greatest 
common divisor that can be written as a linear combination of a and b. 
[Hint: Let /be the ideal generated by a and b (see Theorem 6.3); then I= (d) 
for some dE R. Show that dis a gcd of a and b.] 

21. Let R be a PID and San integral domain that contains R. Let a, b, dER. 
lf dis a gcd of a and b in R, prove that dis a gcd of a and b in S. 
[Hint: See Exercise 20.] 

22. Extend Exercise 20 to any finite number of elements. 

23. Give an alternative proof of Lemma 10.11 as follows. If pI b, there is nothing to 
prove. If p t b, then 1R is a gcd of p and b by Exercise 8. Now show thatp I c by 
copying the proof of Theorem 1.4 with p in place of a and Exercise 20 in place 
of Theorem 1.2. 

24. Let R be an integral domain. Prove that R is a PID if and only if (i) every 
ideal of R is finitely generated (Theorem 6.3) and (ii) whenever a, b ER, the 
sum ideal (a)+ (b) is principal. [Sum is defined in Exercise 20 of Section 6.1.] 

25. Let R be an integral domain in which any two elements (not both 0~ have 
a gcd. Let (r, s) denote any gcd of rands. Use~ to denote associates as in 
Exercise 6 of Section 10 .1. Prove that for all r, s, t E R: 

(a) If s ~ t, then rs ~ rt. 

(b) If s ~ t, then (r, s) ~ (r, t). 

(c) r(s, t) ~ (rs, rt). 

(d) (r, (s, t)) ~ ((r, s), t). [Hint: Show that both are gcd's of r, s, t.] 

26. Let R be an integral domain in which any two elements (not both OR) have a 
gcd. With the notation of Exercise 25, prove that if (b, c)~ lR and (b, d)~ lR, 
then (b, cd) ~ 1R. [Hint: By Exercise 25(a) and (c), d ~ (bd, cd), so that 
1R ~ (b, d)~ (b, (bd, cd)). Apply parts (d), (c), and (a) of Exercise 25 to show 
that (b, (bd, cd)) ~ (b, cd). 

27. Let R be an integral domain in which any two elements (not both zero) have a 
gcd. Let p be an irreducible element of R. Prove that whenever p I cd, then p I c 
or pI d. [Hint: Exercises 8 and 26.] 

28. If R is a UFD, if a, b, and care elements such that a I c and b I c, and if 1R is a 
gcd of a and b, prove that ab I c. 

29. Let R be a UFD. If a I be and if 1R is a gcd of a and b, prove that a I c. 
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30. A least common multiple (lcm) of the nonzero elements ab ... , ak is an 
element b such that (i) each ai divides b and (ii) if each ai divides an element c, 
then b I c. Prove that any finite set of non~ero elements in a UFD has a least 
common multiple. 

31. Prove that nonzero elements a and b in R have a least common multiple if and 
only if the intersection of the principal ideals (a) and (b) is also a principal ideal. · 

C. 32. Prove that every ideal I in E[V~lJ is finitely generated (Theorem 6.3) as 

follows. Let 10 =In£: and let 11 = {bEE I a+ bVd E!for some a EE}. 

(a) Prove that 10 and 11 are ideals in£:. Therefore, 10 = (r0) and 11 = (r1) for 
some riEl::. 

(b) Prove that 10 <;;;; 11• 

(c) By the definition of 11 there exists a1 EE such that a1 + r 1Vd is in I. Prove 

that I is the ideal generated by r0 and a1 + r 1Vd. [Hint: If r + sW E I, 

then s El1 so that s = r 1s1• Show that (r + sW)- s1(a1 + r 1Vd) El0; use 

this to writer + sW as a linear combination of r0 and a1 + r 1Vd.] 
33. Prove that p(x) is irreducible in (Dz[x] if and only if p(x) is either a prime 

integer or an irreducible polynomial in Q[x] with constant term ± 1. 
Conclude that every irreducible p(x) in Q 2 [x] has the property that 
whenever p(x) I c(x)d(x), thenp(x) I c(x) or p(x) I d(x). 

34. Show that every nonzero f(x) in Q 2[x] can be written in the form 
cx'p1(x) · · ·Pte( X), with c E 0, n 2:: 0, and each Pi(x) nonconstant irreducible 
in Qz[x] and that this factorization is unique in the following sense: If f(x) = 
dx"q1 (x) · · · qtCx) with dE Q, m 2:: 0, and each qi(x) nonconstant irreducible 
in Q2[x], then c = ±d, m = n, k = t, and, after relabeling if necessary, each 
Pi(x) = ±qJx). 

35. Prove that any two nonzero polynomials in 0 2[x] have a gcd. 

36. (a) Prove thatf(x) is irreducible in E[x] if and only if f(x) is either a prime 
integer or an irreducible polynomial in O[x] such that the gcd in£: of the 
coefficients of f(x) is 1. 

(b) Prove that E[x] is a UFD. [Hint: See Theorems 4.14 and 4.23.] 

Factorization of Quadratic Integers* 

In this section we take a closer look at the domains E[Vd]. Because unique factoriza
tion frequently fails in these domains, they provide a simplified model of the kinds of 
difficulties that played a crucial role in the historical origin of the concept of an ideal. 
These domains also illustrate how ideals can be used to "restore" unique factorization 
in some domains that lack it. We begin with a brief sketch of the relevant history. 

*The prerequisites for this section are pages 322-324 of Section 10.1 and the definition of unique 
factorization domain (page 337). 
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Early in the last century, Gauss proved the "Law of Biquadratic Reciprocity," 
which provides a fast way of determining whether or not a congruence of the form 
x4 = c (mod n) has a solution. Although the statement of this theorem involves only 
integers, Gauss's proof was set in the larger domain Z[i]. He proved and used the fact 
that Z[i] is a unique factorization domain. 

Since Gauss's proof involved Z[i] and i is a complex fourth root of 1, the German 
mathematician E. Kummer thought that analogous theorems for congruences of 
degree p might involve unique factorization in the domain. 

Z[w] = {a0 + a1w + a2w
2 + · · · + ap_ 1wp-l J aiEZ}, 

where w = cos(2n/p) + i sin (27Tjp) is a complex pth root of 1. He was unable to 
develop higher-order reciprocity theorems because he discovered that Z[w] may not 
be a UFD.* 

Later in the century questions about unique factorization arose in connection 
with the following problem. It is easy to find many nonzero integer solutions of the 
equation x 2 + i = z2

, such as 3, 4, 5, or 5, 12, 13. But no one has ever found nonzero 
integer solutions for x 3 + i = z3 or x4 + l = z4

, which suggests that 

x" + y" = z11 has no nonzero integer solutions when n > 2. 

This statement is known as Fermat's Last Theorem because in the late 1630s Fermat 
wrote it in the margin of his copy of Diophantus' Arithmetica and added "I have 
discovered a truly remarkable proof, but the margin is too small to contain it." Fermat's 
"proof" has never been found. Most mathematicians today doubt that he actually had 
a valid one. 

In 184 7 the French mathematician G. Lame thought he had found a proof of 
Fermat's Last Theorem in the case when n is prime.t His proof used the fact that for 
any odd positive prime p, xP + yP can be factored in the domain Z[w] described above: 

xP + yP = (x + y)(x + wy)(x + w2y) ... (x + wP-1y). 

Lame's purported proof depended on the assumption that Z[w] is a unique factoriza
tion domain. When he became aware of Kummer's work, he realized that his proof 
could not be carried through. 

Kummer had already found a way to avoid the difficulty. He invented what he 
called "ideal numbers" and proved that unique factorization does hold for these ideal 
numbers. This work eventually led to a proof that Fermat's Theorem is true for a large 
class of primes, including almost all the primes less than 100. This was a remark
able breakthrough and deeply influenced later work on the problem.§ But it had even 
greater significance in the development of modern algebra. For Kummer's "ideal num
bers" were what we now call ideals. 

We shall return to ideals at the end of the section. Now we consider factorization 
in the domains Z[Vd]. These domains are similar to the ones that Kummer used and 

*The domain Z[w] is a UFD for every prime p less than 23 and fails to be a UFD for every larger prime. 

tlf the theorem is true for prime exponents, then it is true for all exponents; see Exercise 1. 

§Fermat's Last Theorem was finally proved in 1994 by Andrew Wiles. His proof uses results and 
techniques not available until relatively recently. 
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illustrate in simplified form the problems he faced and his method of solution. We 
shall assume that the integer dis square-free, meaning that d =f. 1 and d has no integer 
factors of the form c2 except (±ll The following function is the key to factorization 
in E[Vd]. 

The function!V: E[Yd] -+,E given by. .· .. . .. ·• 

N(s + tV"a)==(s +tW)(s-tW)= s2 ~dt2 
, '-, ' ' • • ' • • .' < ,· ,·-- •• ', 

is cal.led the norm. 

For example, in E[\13], 

N(5 + 2\13) =52
- 3 · 22 = 13 and N(2- 4\13) = 22 - 3(-4)2 = -44. 

Note that 

when d < 0, the norm of every element is nonnegative. 

For instance, in E[v=-5], 

N(s + tv=-5) = s2
- ( -5)F = s2 + 5t2 2: 0. 

In Example 7 of Section 10.1, we saw that the norm makes E[i] = E[v=l] into a 
Euclidean domain. This is not true in general, but we do have 

If dis a square-free integer, then for all a, b E E[Vd] 

(1) N(a) = 0 if and only if a= 0. 

(2) N(ab) = N(a)N(b). 

Proof~~> (1) If a= s + tVd, then N(a) = s2
- dr so that N(a) = 0 if and only if 

s2 = dt2
. If d = - 1, then ? = - F can occur in E if and only if s = 0 = t, 

that is, if and only if a = 0. So supposed -1. Every prime in the 
factorization of i and t2 must occur an even number of times. But the 
prime factors of d do not repeat because dis square-free. So if p is a prime 
factor of d, it must occur an odd number of times in the factorization 
of dt2

• By unique factorization in E, the equation s2 = dt2 is impossible 
unless s = 0 = t, that is, unless a = 0. 

(2) Let a = r + sVd and b = m + nVd. The proof is a straightfor
ward computation (Exercise 3). II 
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Let d be a square-free integer. Then u E::l[Yd] is a unit if and only if N(u) = ±1. 

Proof~>- If u is a unit, then uv = 1 for some v E E[Yd ]. By Theorem 10.19, 
N(u)N(v) = N(uv) = N(l) = 12

- d · 02 = 1. SinceN(u) and N(v) 
are integers, the only possibilities are N(u) = ±1 and N(v) = ±1. 
Conversely, if u = s + tVd and N(u) = ±1, let u = s- tVd E:l:[Yd]. 
Then by the definition of the norm, uu = N( u) = ± 1. Hence, 
u( ±u) = 1 and u is a unit. ll 

EXAMPLE 1 

In £:[\12] the element 3 + 2\12 is a unit because N(3 + 2\12) = 
32 

- 2 · 22 = 1. Verify that the inverse of 3 + 2\12 is 3 - 2\12. Every 
power of a unit is also a unit, so £:[\12] has infinitely many units, including 
(3 + 2\12), (3 + 2\12)2

, (3 + 2\12) 3
, ... 

According to Theorem 10.20 we can determine every units + tVd in E[Yd] by 
finding all the integer solutions (for s and t) of the equations s2 

- dt2 = ± 1. When 
d > 1, these equations have infinitely many solutions (see the preceding example and 
Burton [12]). When d = -1, the equations reduce to? + P = 1.* The only integer 
solutions ares= ± 1, t = 0, and s = 0, t = ± 1. So the only units in E[i] = E[v=T] are 
± 1 and ±i. If d < -1, say d = -kwith k > 1, then the equations reduce to?+ kt2 = 1.* 
Since k > 1, the only integer solutions ares= ± 1, t = 0. Thus we have 

Let d be a square-free integer. If d > 1, then E[W] has infinitely many units. 
The units in :t:[v=-1] are ± 1 and ±i. If d < -1, then the units in E[W] are ± 1. 

Let d be a square-free integer. If p E::l[Yd] and N(p) is a prime integer in£:, 
then pis irreducible in E[W]. 

Proof~>- Since N(p) is prime, N(p) * ± 1, sop is not a unit in E[Yd] by 
Theorem 10.20. If p = ab in E[Yd], then by Theorem 10.19, N(p) = 
N(a)N(b) in£:. Since N(a), N(b), N(p) are integers and N(p) is prime, 
we must have N(a) = ± 1 or N(b) = ± 1. So a orb is a unit by Theorem 
10.20. Therefore,p is irreducible by Theorem 10.1. II! 

*Since the left side of the equation is always nonnegative, -1 cannot be on the right side. 
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EXAMPLE 2 

The element 1 - i is irreducible in Z[i] because N(l- v=T) = 2. Similarly, 1 + i 
is also irreducible. Therefore, a factorization of 2 as a product of irreducibles in 
Z[i] is given by 2 = (1 + i)(l - i). 

The converse of Corollary 10.22 is false. For instance, in Z[v=5] the norm of 
1 + v=5 is 6, which is not prime in Z. But the next example shows that 1 + v=5 is 
irreducible in Z[v=5]. 

EXAMPLE 3 

To show that 1 + v=5 is irreducible in Z[v=5], suppose 1 + v=5 = ab. By 
Theorem 10.1 we need only show that a orb is a unit. By Theorem 10.19, 
N(a)N(b) = N(ab) = N(l + v=5) = 6. Since N(a) and N(b) are nonnegative 
integers, the only possibilities are N(a) = 1, 2, 3, or 6. If a= s + tv=5 and 
N(a) = 2, then s2 + 5t2 = 2. It is easy to see that this equation has no integer 
solutions for sand t; so N(a) = 2 is impossible. A similar argument shows 
that N(a) = 3 is impossible. If N(a) = 1, then a is a unit by Theorem 10.20. If 
N(a) = 6, then N(b) = 1 and b is a unit. Therefore, 1 + v=5 is irreducible. 

We have seen an example of an integral domain in which a nonzero, nonunit element 
could not be factored as a product of irreducibles (Exercise 17 in Section 1 0.2). We shall 
now see that Z[Yd] may fail to be a UFD for a different reason: Although factorization 
as a product of irreducibles is always possible in Z[Yd], it may not be unique. 

Let d be a square-free integer. Then every nonzero, nonunit element in Z[Yd] 
is a product of irr-educible elements.* 

Proof~> LetS be the set of all nonzero, nonunits in Z[Yd] that are not the product 
of irreducibles. We must show that Sis empty. So suppose, on the con
trary, that Sis nonempty. Then the set W = {I N(t) II t E S} is a nonempty 
set of positive integers. By the Well-Ordering Axiom, W contains a small
est integer. Thus there is an element a E S such that I N(a) I:::; I N(t) I for 
every t E S. Since a E S we know that a is not itself irreducible. So there 
exist nonunits b, c E Z[ Yd] such that a = be. At least one of b, c must 
be inS (otherwise a would be a product of irreducibles and, hence, not 
inS), say bE S. Since band care nonunits, IN( b) I> 1 and I N(c) I> 1 by 
Theorem 10.20. But I N(a) I= I N(b) II N(c) I by Theorem 10.19, so we must 
have 1 <I N(b) I< I N(a) I· But b ES, so I N(a) I:::; I N(b) I by the choice of a. 
This is a contraction. Therefore, Sis empty, and the theorem is proved. lA 

*As usual, we allow a "product" with just one factor. 
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EXAMPLE 4 

The domain Z[v=5] is not a unique factorization domain. The element 6 in 
Z[v=5] has two factorizations: 

6 = 2 · 3 and 6 = (1 + v=5)(1 - v=5). 

The proof that 1 + v=5 is irreducible was given in Example 3. The proofs that 2, 3, 
and 1 - v=5 are iiTeducible are similar. For instance, if 2 = ab, then N(a)N(b) = 
N(ab) = N(2) = 4 so that N(a) = 1, 2, or 4. But N(a) = 2 is impossible because the 
equation 82 + 5f = 2 has no integer solutions. So either N(a) = 1 and a is a unit, 
or N(a) = 4. In the latter case N(b) = 1 and b is a unit. Therefore, 2 is irreducible by 
Theorem 10.1. Since the only units in Z[v=5] are ± 1, it is clear that neither 2 nor 3 
is an associate of 1 + v=5 or 1 - v=5. Thus the factmization of 6 as a product of 
irreducibles is not unique up to associates and Z[v=5] is not a UFD. 

The preceding example demonstrates that the irreducible 2 divides the product 
(1 + v=5)(1 - v=5) in Z[v=5] but does not divide either 1 + v=5 or 1 - v=5. 
So when unique factorization fails, an irreducible element p may not have the property 
that when pI cd, then p I c or p I d.* Another consequence of the failure of unique fac
torization is the possible absence of greatest common divisors (Exercise 13). 

Unique Factorization of Ideals 
We are now in the position that Kummer was in a century and a half ago and the 
question is: How can some kind of unique factorization be restored in domains such 
as Z[v=5]? Kummer's answer was to change the focus from elements to ideals.t The 
product IJ of ideals I and J is defined to be the set of all sums of elements of the form 
ab, with a E I and bE J; that is, 

IJ = {a1b1 + a2b2 + · · · + a11b11 In 2: 1, a~cEI, b~cEl}. 

Exercise 36 in Section 6.1 shows that IJ is an ideal. Instead of factoring an element a 
as a product of irreducibles, Kummer factored the principal ideal (a) as a product of 
prime ideals. 

EXAMPLE 5 

We shall express the principal ideal (6) in Z[v=5] as a product of prime ideals. 
The irreducible factorization of elements 6 = 2 · 3 seems a natural place to start, 
and it is easy to prove that the ideal ( 6) is the product ideal (2)(3) (Exercise 16). 
But (2) is not a prime ideal (for instance, the product (1 + v=5) (1 - v=5) = 6 
is in (2) but neither of the factors is in (2)). So we must look elsewhere. Let P be 
the ideal in Z[v=5] generated by 2 and 1 + v=5, that is, 

P = {2a + (1 + v=5)b I a, bE Z[v=5]}. 

*This is not particularly surprising in view ofTheorem 10.16. 

tKummer used different terminology, but the ideas here are essentially his. We use the modern 
terminology of ideals that was introduced by R. Dedekind, who generalized Kummer's theory. 
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Then Pis an ideal by Theorem 6.3. Exercise 17 shows that r + sv=5 E P if and 
only if r and s are both even or both odd. This implies that the only distinct 
cosets in E[v=5]/ Pare 0 + P and 1 + P, as we now see: If m + nv=5 
has m odd and n even, then (m + nv=5)- 1 = (m- 1) + nv=5 EP because 
m- 1 and n are even. Hence, (m + nv=5) + P = 1 + P. Similarly, if m is 
even and n is odd, then (m- 1) + nv=5 EP because m- 1 and n are odd. It 
follows that the quotient ring E[v=5]/ Pis isomorphic to 1':2• Therefore, Pis 
a prime ideal in E[v=5] by Theorem 6.14. A similar argument (Exercise 19) 
shows that Q1 and Q2 are prime ideals, where 

Q1 = {3a + (1 + v=5)b I a, b EE[v=5]}, 

Q2 = {3a + (1 - v=5)b lc a, bE E[v=5]}. 

Exercises 18 and 19 show that the product ideal P2 = P Pis precisely the 
ideal (2) and that Q1Q2 = (3). Therefore, the ideal (6) is a product of four 
prime ideals: (6) = (2)(3) = P2Q1Q2• 

Kummer went on to show that in the domains he was considering, the factorization 
of an ideal as a product of prime ideals is unique except for the order of the factors. 
This result was later generalized by R. Dedekind. In order to state this generalization 
precisely, we need to fill in some background. 

An algebraic number is a complex number that is the root of some monic polyno
mial with rational coefficients. If tis an algebraic number and tis the root of a poly
nomial degree n in Q[x], then 

O(t) = {ao + a1t + azt2 + · · · + an-!tn-l I aiEQ} 

is a subfield of IC and every element in O(t) is an algebraic number.* An algebraic 
integer is a complex number that is the root of some monic polynomial with integer 
coefficients. It can be shown that the set of all algebraic integers in Q(t) is an integral 
domain. If w is a complex root of xP - 1, then the domain 1':[ w] that Kummer used 
is in fact the domain of all algebraic integers in Q(w) (see Ireland and Rosen [13; 
page 199]). So Kummer's results are a special case of 

Lett be an algebraic number and Rthe domain of all algebraic integers in 
Q(t). Then every ideal in R (except 0 and R) is the product of prime ideals 
and this factorization is unique up to the order of the factors. 

For a proof see Ireland and Rosen [13; page 174]. 
Most of the rings l':[Vd] are also special cases of Theorem 10.24. Forif dis a square

free integer, then t = v'd is an algebraic number (because it is a root of x 2 
- d) and 

Q(Yd) = {a0 + a1Vd I aiEQ}. The algebraic integers in the field Q(Yd) are called 

*For a proof see Theorems 11.7 and 11.9. 
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quadratic integers. Every element r + sVd of .:Z[Yd] is a quadratic integer in Q(Yd) 
because it is a root of this monic polynomial in .:Z[x]: · 

x 2 - 2rx + (r2 - ds2) = (x - (r + sVd))(x - (r - sVd)). 

When d = 2 or 3 (mod 4), then .:Z[Yd] is the domain R of all quadratic integers in 
Q(Yd), but when d = 1 (mod 4), there are quadratic integers in R that are not in 
.:Z[Yd] (see Exercise 22).* 

Theorem 10.24 has proved very useful in algebraic number theory. But it does not 
answer many questions about unique factorization of elements, such as: If R is the 
domain of all quadratic integers in Q(Yd), for what values of dis R a UFD? When 
d< O,Risa UFD if and only if d= -1, -2, -3, -7,-11,-19,-43,-67, or -163 
(see Stark [19]). When d > 0, R is known to be a UFD ford= 2, 3, 5, 6, 7, 11, 13, 17, 
19, 21, 22, 23, 29, and many other values. But there is no complete list as there is when 
dis negative. It is conjectured that R is a UFD for infinitely many values of d. 

Exercises 

A. 1. If X' + l = zk has no nonzero integer solutions and k I n, then show that 
x" + y" = z" has no nonzero integer solutions. 

2. Let w be a complex number such that uJ' = 1. Show that 

.:Z[w] = {a0 + a1w + a2w
2 + · · · + ap_ 1cd'-1

1 aiE.:Z} 

is an integral domain. [Hint: uJ' = 1 implies cd'+ 1 = w, cd'+2 = w2
, etc.] 

3. If a= r + sVd and b = m + nVd in .:Z[v'd], show that N(ab) = N(a)N(b). 

4. Explain why .:Z[v=5] is not a Euclidean domain for any function 8. 

5. If a E Q is an algebraic integer, as defined on page 350, show that a E .:Z. 
[Hint: Theorem 4.21.] 

B. 6. In which of these domains is 5 an irreducible element? 

(a) .:Z (b) .:Z[i] (c) .:Z[-v=-2] 

7. In .:Z[v='?], factor 8 as a product of two irreducible elements and as a product 
of three irreducible elements. [Hint: Consider (1 + v='?)(l - v=-7).] 

8. Factor each of the elements below as a product of irreducibles in .:Z[i], [Hint: 
Any factor of a must have norm dividing N(a).] 

(a) 3 (b) 7 (c) 4 + 3i (d) 11 + 7i 

9. (a) Verify that each of 5 + \12, 2 - \12, 11 - 7\12, and 2 + V2 is irreducible 
in .:Z[Vl]. 

*Since dis square-free, d ~ 0 (mod 4), 
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(b) Explain why the fact that 

(5 + Yl)(2 - Yl) = (11 - 7Yl)(2 + Yl) 

does not contradict unique factorization in E[Yl]. 

10. Find two different factorizations of 9 as a product of irreducibles in E[v=-5]. 

11. Show that E[v=-6] is not a UFD. [Hint: Factor 10 in two ways.] 

12. Show that E[vT6] is not a UFD. [Hint: Factor 6 in two ways.] 

13. Show that 6 and 2 + 2v=5 have no greatest common divisor in E[v=-5]. 
[Hint: A common divisor a of 6 and 2 + 2v=5 must have norm dividing 
both N( 6) = 36 and N(2 + 2 v=-5) = 24; hence, a = r + sv=-5 with r2 + 
5i = N(a) = 1, 2, 3, 4, 6, or 12. Use this to find the common divisors. Verify 
that none of them is divisible by all the others, as required of a gcd. Also see 
Example 4.] 

14. Show that 1 is a gcd of 2 and 1 + v=5 in E[v=-5], but 1 cannot be written in 
the form 2a + (1 + v=5)b with a, bE E[v=-5]. 

15. Prove that every principal ideal in a UFD is a product of prime ideals 
uniquely except for the order of the factors. 

16. Show that (6) = (2)(3) in E[v=-5]. (The product of ideals is defined on page 349.) 

17. Let P be the ideal {2a + (1 + v=5)b I a, bE E[v=-5]} in E[v=-5]. Prove that 
r + sv=-5 EP if and only if r = s (mod 2) (that is, rands are both even or 
both odd). 

18. Let P be as in Exercise 17. Prove that P2 is the principal ideal (2). 

19. Let Q1 be the ideal {3a + (1 + v=5)b I a, bE E[v=-5]} and Q2 the ideal 
{3a + (1 - v=5)b I a, b EE[v=-5]} in E[v=-5]. 

(a) Prove that r + sv=-5 E Q1 if and only if r = s (mod 3). 

(b) Show that E[v=5]/Q1 has exactly three distinct cosets. 

(c) Prove that E[v=5]/Q1 is isomorphic to 1':3; conclude that Q1 is a prime ideal. 

(d) Prove that Q2 is a prime ideal. [Hint: Adapt (a)-(c).] 

(e) Prove that Q1Q2 = (3). 

20. If r + sv=-5 E E[v=-5] with s i= 0, then prove that 2 is not in the principal 
ideal (r + sv=-5). 

21. If dis a square-free integer, prove that E[Yd] satisfies the ascending chain 
condition on principal ideals. 

C. 22. Let dbe a square-free integer and let Q(Yd) be as defined on page 350. We 
know that E[Yd] ~ Q(Yd) and every element of E[Yd] is a quadratic integer. 
Determine all the quadratic integers in Q(Yd) as follows. 

(a) Show that every element of Q(Yd) is of the form (r + s Yd)jt, where 
r, s, t E 1': and the gcd (r, s, t) of r, s, tis 1. Hereafter, let a = (r + sYd)jt 
denote such an arbitrary element of Q(Yd). 
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(b) Show that a is a root of 

p(x) = x2
- (

2
;·) X+ c2 

~/i) E Q(x). 

[Hint: Show that p(x) = (x - a)(x- Ci), where a= (r - sYd)jt.] 

(c) If s =J:. 0, show thatp(x) is irreducible in Q[x]. 

(d) Prove that a is a quadratic integer if and only if p(x) has integer 
coefficients. [Hint: If s =J:. 0, use Exercise 5; if s =J:. 0 and a is a root of a 
monic polynomialf(x) EZ[x], use Theorem 4.23 to show that a is a root 
of some monic g(x) EZ[x], with g(x) irreducible in Q[x]. Apply (c) and 
Theorem 4.14 to show g(x) = p(x).] 

(e) If a is a quadratic integer, show that t J2r and t2 J4ds2
• Use this fact to prove 

that t must be 1 or 2. [Hint: dis square-free, (r; s, t) = 1; use (b) and (d).] 

(f) If d = 2 or 3 (mod 4), show that a is a quadratic integer if and only if 
t = 1. [Hint: If t = 2, then r 2 = di (mod 4) by (b) and (d). If sis even, 
reach a contradiction to the fact that (r, s, t) = 1; if sis odd, use Exercise 7 
of Section 2.1 to get a contradiction.] 

(g) If d = 1 (mod 4) and a E Q(Yd), show that a is a quadratic integer if and 
only if t = 1, or t = 2 and both rands are odd. [Hint: Use (d).] 

(h) Use (f) and (g) to show that the set of all quadratic integers in Q(v'd) is Z"[Yd] 

if d = 2 or 3 (mod 4) and { m + 
2
nVd I m, n, E Z and m = n(mod 2)} 

if d = 1 (mod 4). 

The Field of Quotients of an Integral Domain* 

For any integral domain R we shall construct a field F that contains R and consists of 
"quotients" of elements of R. When the domain R is Z", then Fwill be the field II) of 
rational numbers. So you may view these proceedings either as a rigorous formaliza
tion of the construction of II) from Z or as a generalization of this construction to 
arbitrary integral domains, The field Fwill be the essential tool for studying factoriza
tion in R[x] in Section 10.5. 

Our past experience with rational numbers will serve as a guide for the formal 
development. But all the proofs will be independent of any prior knowledge of the 
rationals. 

A rational number ajb is determined by the pair of integers a, b (with b =J:. 0). But 

?ifferent pairs may determine the same rational number; for instance, ~ = i = ~' and 
m general 

a c 
if and only if ad= be. 

b d 

*This section is independent of the rest of Chapter 10. Its prerequisites are Chapter 3 and Appendix D. 
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This suggests that the rationals come from some kind of equivalence relation on pairs 
of integers (equivalent pairs determine the same rational number). We now formalize 
this idea. 

Let R be an integral domain and let S be this set of pairs: 

S ={(a, b)ja, bERand b =I= OR}. 

Define a relation ~ on the set S by 

(a, b)~ (c, d) means ad= be in R. 

The relation~ is an equivalence relation on S. 

Proof~ Reflexive: Since r is commutative ab = ba, so that (a, b)~ (a, b) for every 
pair (a, b) inS. Symmetric: If (a, b)~ (c, d), then ad= be. By commutativ
ity cb = da, so that (c, d)~ (a, b). Transitive: Suppose that (a, b)~ (c, d) 
and (c, d)~ (r, s). Then ad= be and cs = dr. Multiplying ad= be by sand 
using cs = dr we have ads= (bc)s = b(cs) = bdr. Since d OR by the defini
tion of S and R is an integral domain we can cancel d from ads = bdr and 
conclude that as= br. Therefore, (a, b)~ (r, s). 111: 

The equivalence relation~ partitions S into disjoint equivalence classes by Corollary D.2 
in Appendix D. For convenience we shall denote the equivalence class of (a, b) by [a, b] rather 
than the more cumbersome [(a, b)]. Let F denote the set of all equivalence classes under~. 
Note that by Theorem D.l, 

[a, b] = [c, d] in F if and only if (a, b)~ (c, d) inS. 

·Therefore, by the definition of~, 

[a,h]=[c,d]inF if and only if ad= be in R. 

We want to make the set F into a field. Addition and multiplication of equivalence 
classes are defined by 

[a, b] + [c, d] =[ad+ be, bd] 

[a, b][c, d] = [ac, bd].* 

In order for this definition to make sense, we must first show that the quantities on 
the right side of the equal sign are actually elements of the set F. Now [a, b] is the 

*These definitions are motivated by the arithmetical rules for rational numbers (just replace the 
fraction rfs by the equivalence class [r, s]): 

a c ad + be a c ac 
b+d=~ b·d= bd 
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equivalence class of the pair (a, b) inS. By the definition of S we have b =I= OR; simi
larly, d =I= OR. Since R is an integral domain, bd =I= OR. T.hus (ad+ be, bd) and (ae, bd) 
are in the setS, so that the equivalence classes [ad+ be, bdJ and [ae, bdJ are elements 
of F. But more is required in order to guarantee that addition and multiplication in 
Fare well defined. 

d. . h . 1 3 3 d 1 . 1 b 4 d h In or mary ant metlc, 2 · 5 = lO an rep acmg 2 y 8 pro uces t e same answer 

because 1· % = :~ = 
1
3
0

. The answer doesn't depend on how the fractions are repre

sented. Similarly, in F we must show that arithmetic does not depend on the way the 
equivalence classes are written: 

Addition and multiplication in Fare independent of the choice of equivalence 
class representatives. In other words, if [a, b] =[a', b'] and [c, d] = [c', d'], then 

[ad+ be, bd] = [a'd' + b'c', b'd'] 
and 

[ac, bd] = [a'c', b'd']. 

Proof~> As noted above [ad+ be, bd] =[a' d' + b' e', b' d'] in Fif and only if 
(ad+ be)b' d' = bd(a' d' + b' e') in R. So we shall prove this last state
ment. Since [a, b] =[a', b'] and [e, d] = [e', d'] we know that 

(*) ab' = ba' and ed' = de'. 

Multiplying the first equation by dd' and the second by bb' and adding 
the results show that 

ab'dd' = ba'dd' 

ed'bb' = de'bb' 

ab'dd' + ed'bb' = ba'dd' + de'bb' 

(ad+ be)b'd' = bd(a'd' + b'e'). 

Therefore, [ad+ be, bd] = [a' d' + b' e', b' d']. 
For the second part of the proof multiply the first equation in ( *) by 

ed' and the second by ba' so that 

ab' ed' = ba' ed' and ed' ba' = de' ba'. 

By commutativity the right side of the first equation is the same as the 
left side of the second equation so that the other sides of the two equa
tions are equal: ab' ed' = de' ba'. Consequently, 

(ae)(b' d') = ab' ed' = de' ba' = (bd)(a' e'). 

The two ends of this equation show that [ ae, bdJ = [a' e', b' d']. Ill 
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If R is an integral domain and F is as above, then for all nonzero a, b, c, d, k ER: 

(1) [OR, b] =[OR, d]; 

(2) [a, b] = [ak, bk]; 

(3) [a, a]= [c, c]. 

Proof~~> Exercise 1. 11 

, . :·-. --;;-,-.--,~1.--; --, ·--- ,'-~:-'/:~<;·-:-.·--·H. ~-~':~L:>·Y ·-

; le111nYa'l0.28 , 
With the addition and multiplication defined above, F is a field. 

Proof~~> Closure of addition and multiplication follows from Lemma 10.26 and 
the remarks preceding it. Addition is commutative in F because addition 
and multiplication in R are commutative: 

[a, b] + [c, d] = [ad+ be, bd] = [cb + da, db]= [c, dJ +[a, b]. 

Let OF be the equivalence class [OR, b] for any nonzero b ER (by (1) in 
Lemma 10.27 all pairs of the form (OR, b) with b *OR are in the same 
equivalence class). If [a, b] EF, then by (2) in Lemma 10.27 (with k =b): 

[a, b] + Op= [a, b] +[OR, b] = [ab + bOR, bb] = [ab, bb] =[a, b]. 

Therefore, 0 F is the zero element of F. The negative of [a, b] in F is [-a, b] 
because 

The proofs that addition is associative and that multiplication is associa
tive and commutative are left to the reader (Exercise 2), as is the verifica
tion that [1R, 1R] is the multiplicative identity element in F. If [a, b] is a 
nonzero element ofF, then a* OR. Hence, [b, a] is a well-defined element 
ofF and by (3) in Lemma 10.27 

Therefore, [b, a] is the multiplicative inverse of [a, b]. To see that the dis
tributive law holds in F, note that 

[a, b]([c, d] + [r, s]) =[a, b][cs + dr, ds] 

= [a(cs + dr), b(ds)] 

= [acs + adr, bds]. 
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On the other hand, by (2) in Lemma 10.27 (with k =b) 

[a, b][c, d] +[a, b][r, s] = [ac, bd] + [ar, bs] 

= [(ac)(bs) + (bd)(ar), (bd)(bs)] 

= [(acs + adr)b, (bds)b] 

= [acs + adr, bds]. 

Therefore, [a, b]([c, d] + [r, s]) =[a, b][c, dJ +[a, b][r, s]. 

We usually identify the integers with rational numbers of the form ajl. The same 
idea works in the general case: 

Let R be an integral domain and Fthe field of Lemma 10.28. Then the subset 
R* ={[a, 1R] I a ER) ofF is an integral domain that is isomorphic toR. 

Proof.,. Verify that R* is a sub ring ofF (Exercise 3). Clearly [lR, lR], the identity 
element of F, is in R*, so R* is an integral domain. Define a map 
fR---+ R* by f(a) = [a, lR]· Thenfis a homomorphism: 

f(a) + f(c) =[a, lR] + [c, lRJ =[aiR+ 1Rc, 1R1R] 

= [a + c, lR] = f(a + c) 

f(a)f(c) = [a, lRJ[c, lR] = [ac, 1R] = f(ac). 

If f(a) = f(c), then [a, lR] = [c, 1R], which implies that aiR= IRe by the 
boldface statement following Theorem 10.25. Thus a= c andfis injec
tive. Since f is obviously surjective, f is an isomorphism. Ill 

The equivalence class notation for elements ofF is awkward and doesn't convey the 
promised idea of "quotients". This is easily remedied by a change of notation. Instead 
of denoting the equivalence class of (a, b) by [a, b], 

denote the equivalence class of (a, b) by a/b. 

If we translate various statements above from the brackets notation to the new quotient 
notation, things begin to look quite familiar: 

Let R be an integral domain. Then there exists a field F whose elements are of 
the form a/b with a, b ER and b -=1- OR, subject to the equality condition 

a e. F -=-In 
b d 

if and only if ad= be in R. 

Addition and multiplication in Fare given by 

a e ad + be a e ae 
b + d = bd ' b . d = bd' 

The set of elements in F of the form a/1 R (a E R) is an integral domain isomor
phic toR. 
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Proof~ Lemmas 10.28 and 10.29 and the notation change preceding the 
theorem.* a 

It is now clear that if R = ?L, then the field Fi~ precisely Q. So Theorem 10.30 may 
be taken as a formal construction of Q from ?L. In the general case, we shall follow the 
same custom we use with Q: The ring R will be identified with its isomorphic copy in · 
F. Then we can say that R is the subset ofF consisting of elements of the form aj1R. 
The field F is called the field of quotients of R. 

EXAMPLE 1 

Let F be a field. The field of quotients o( the polynomial domain F[x] is 
denoted by F(x) and consists of allf(x)jg(x), wheref(x), g(x) EF[x] and g(x) =!= 
OK. The field F(x) is called the field of rational functions over F. 

The field of quotients of an integral domain R is the smallest field that contains R 
in the following sense. t 

Let R be an integral domain and Fits field of quotients. If K is a field containing 
R, then K contains a subfield E such that R ~ E ~ K and E is isomorphic to F. 

Proof~:> If ajb E F, then a, b E R and b is nonzero. Since R ~ K, b - 1 exists. Define a 
mapfF---+ Kby f(ajb) = ab-1• Exercise 9 shows thatjis well defined, that 
is, ajb = cjdinFimpliesf(ajb) = f(cjd) inK. Exercise 10 shows thatfis 
an injective homomorphism. If E is the image ofF under f, then F == E. 
For each a E R, a= alR - 1 = f(af1R) EE, so R ~ E~K. Ill 

Exercises 

NOTE: Unless noted otherwise, R is an integral domain and Fits field of quotients. 

A. 1. Prove Lemma 10.27. 

2. Complete the proof of Lemma 10.28 by showing that 

(a) Addition of equivalence classes is associative. 

(b) Multiplication of equivalence classes is associative. 

(c) Multiplication of equivalence classes is commutative. 

3. Show that R* = {[a, lR] I a E R} is a subring of F. 

*At this point you may well ask, "Why didn't we adopt the quotient notation sooner?" The reason is 
psychological rather than mathematical. The quotient notation makes things lool1 so much like the 
familiar rationals that there is a tendency to assume everything works like it always did, instead of 
actually carrying out the formal (and tiresome) details of the rigorous development. 

tTheorem 10.31 is not used in the sequel. 
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B. 4. If R is itself a field, show that R = F. 

5. If R = Z[i], then show that F ~ {r + si I r, sEQ}. 

6. If R = Z[Yd], then show that F ~ {r + sv'd I r, sEQ). 

7. Show that there are infinitely many integral domains R such that ;z ~ R ~ Q, 
each of which has Q as its field of quotients. [Hint: Exercise 28 in 
Section 3.1.] 

8. LetfR ~ R 1 be an isomorphism of integral domains. Let Fbe the field of 
quotients of R and F 1 the field of quotients of R1• Prove that the map 
f*:F ~ F1 given by f*(ajb) = f(a)jf(b) is an isomorphism. 

9. If R is contained in a field K and ajb = cjd in F, show that ab- 1 = cd- 1 inK. 
[Hint: ajb = cjd implies ad= bcin K.] 

10. (a) Prove that the map fin the proof of Theorem 10.31 is injective. 
[Hint: f(ajb) = f(cjd) implies ab- 1 = cd-1; show that ad= be.] 

(b) Use a straightforward calculation to show thatjis a homomorphism. 

11. Let a, bE R. Assume there are positive integers m, n such that am = bm, a" = 
b", and (m, n) = 1. Prove that a= b. [Remember that negative powers of a and 
b are not necessarily defined in R, but they do make sense in the field F; for 
instance, a-2 = 1Rfa2

.] 

12. Let R be an integral domain of characteristic 0 (see Exercises 41-43 in 
Section 3.2). 

(a) Prove that R has a subring isomorphic to 2 [Hint: Consider {n1R In E 2} .] 

(b) Prove that a field of characteristic 0 contains a subfield isomorphic to Q. 
[Hint: Theorem 10.31.] 

13. Prove that Theorem 10.30 is valid when R is a commutative ring with no 
zero divisors (not necessarily an integral domain). [Hint: Show that for any 
nonzero a E R, the class [a, a] acts as a multiplicative identity for F and the set 
{[ra, a] I r E R} is a sub ring ofF that is isomorphic to R. The even integers are 
a good model of this situation.] 

Unique Factorization in Polynomial Domains* 

Throughout this section R is a unique factorization domain. We shall prove that the 
polynomial ring R[x] is also a UFD. The basic idea of the proof is quite simple: Given 
a polynomial f(x), factor it repeatedly as a product of polynomials of lower degree 
untilj(x) is written as a product of irreducibles. To prove uniqueness, consider f(x) as 

*The prerequisites for this section are pages 322-324 of Section 10.1, the definition of unique 
factorization domain (together with Theorems 10.13, 10.15, and 10.18), and Section 10.4. Theorems 10.13, 
10.15, and 10.18 depend only on the definition of UFD and may be read independently of the rest of 
Section 10.2. 
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a polynomial in F[x], where F is the field of quotients of R. Use the fact that F[x] is 
a UFD (Theorem 4.14) to show that factorization in R[x] is unique. There are some 
difficulties, however, in carrying out this progra.q1. 

EXAMPLE 1 

The polynomial 3x2 + 6 cannot be factored as a product of two polynomials of 
lower degree in :l'[x] and is irreducible in Q[x]. But 3x2 + 6 is reducible in :l'[x] 
because 3x2 + 6 = 3(x2 + 2) and neither 3 nor x2 + 2 is a unit in :l'[x]. 

So the first step is to examine the role of constant polynomials in R[x]. By 
Corollary 4.5 and Exercise 1 

and 

the units in R[x] are the units in R 

the irreducible constant polynomials in R[x] are 
the irreducible elements of R. 

For example, the units of :l'[x] are± 1. The constant polynomial3 is irreducible in :l'[x] 
even though it is a unit in Q[x]. 

The constant irreducible factors of a polynomial in R[x] may be found by factoring 
out any constants and expressing them as products of irreducible elements in R. 

EXAMPLE2 

In :l'[x], 

6x2 + 18x + 12 = 6(x2 + 3x + 2) = 2 · 3(x2 + 3x + 2). 

Note that x2 + 3x + 2 is a polynomial whose only constant divisors in :l'[x] are 
the units ± 1. This example suggests a strategy for the general case. 

Let R be a unique factorization domain. A nonzero polynomial in R[x] is said to be 
primitive if the only constants that divide it are the units in R. For instance, x2 + 3x + 
2 and 3x4 5x3 + 2x are primitive in :l'[x]. Primitive polynomials of degree 0 are units. 
Every primitive polynomial of degree 1 must be irreducible by Theorem 10.1 (because 
every factorization includes a constant (Theorem 4.2) and every such constant must be 
a unit). However, primitive polynomials of higher degree need not be irreducible (such 
as x2 + 3x + 2 = (x + 1 )(x + 2) in :l'[x]). On the other hand, an irreducible polynomial 
of positive degree has no constant divisors except units by Theorems 4.2 and 10.1. So 

an irreducible polynomial of positive degree is primitive. 

Furthermore, a~ the example illustrates, 

every nonzero polynomialf(x) E R[x] 
factors asf(x) = cg(x) with g(x) primitive. 
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To prove this claim, let c be a greatest common divisor of the coefficients of f(x). * Then 
f(x) = cg(x) for some g(x). Now we show that g(x) is.primitive. If dER divides g(x), 
then g(x) = dh(x) so thatf(x) = cdh(x). Since cd is a constant divisor of f(x), it must 
divide the coefficients of f(x) and, hence, must divide the gcd c. Thus cdu = c for some 
tl E R. Since c =F 0 R we see that du = 1R and dis a unit. Therefore, g(x) is primitive. 

Using these facts about primitive polynomials, we can now modify the argument 
given at the beginning of the section and prove the first of the two conditions neces
sary for R[x] to be a UFD. 

;.····rneoren1···1.0.32 
Let R be a unique factorization domain. Then every nonzero, nonunit f(x) in 
R[x] is a product of irreducible polynomials.t 

Proof~ Letf(x) = cg(x) with g(x) primitive. Since R is a UFD cis either a unit 
or a product of irreducible elements in R (and, hence, in R[x]). So we 
need to prove only that g(x) is either a unit or a product of irreducibles 
in R[x]. If g(x) is a unit or is itself irreducible, there is nothing to prove. 
If not, then by Theorem 10.1 g(x) = h(x)k(x) with neither h(x) or k(x) 
a unit. Since g(x) is primitive, its only divisors of degree 0 are units, so 
we must have 0 < deg h(x) < deg g(x) and 0 < deg k(x) < deg g(x). 
Furthermore, h(x) and k(x) are primitive (any constant that divides one 
of them must divide g(x) and hence be a unit). If they are irreducible, 
we're done. If not, we can repeat the preceding argument and factor 
them as products of primitive polynomials of lower degree, and so on. 
This process must stop after a finite number of steps because the degrees 
of the factors get smaller at each stage and every primitive polynomial 
of degree 1 is irreducible. So g(x) is a product of irreducibles in R[x]. Ill 

The proof that factorization in R[x] is unique depends on several technical facts 
that will be developed next. But to get an idea of how all the pieces fit together, you 
may want to read the proof of Theorem 10.38 now, referring to the intermediate re
sults as needed and accepting them without proof. Then you can return to this point 
and read the proofs, knowing where the argument is headed. 

Let R be a unique factorization domain and g(x), h(x) ER[x]. If pis atl irreduc
ible element of R that divides g(x)h(x), then p divides g(x) or p divides h(x). 

Proof~ Copy the proof of Lemma 4.22, which is the special case R = 7L. Just 
replace 7L by R and prime by irreducible and use Theorem 10.15 in place 
of Theorem 1.5. 111!1 

*The gcd c exists byTheorem 10.18. 

t As usual we allow a "product" with just one factor. 
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Let R be a unique factorization domain'. Then the product of primitive 
polynomials in R[x] is primitive. 

Proofr.- If g(x) and h(x) are primitive and g(x)h(x) is not, then g(x)h(x) is 
divisible by some non unit c E R. Consequently, each irreducible factor p 
of c divides g(x)h(x). By Lemma 10.33,p divides g(x) or h(x), contradict
ing the fact that they are primitive. Therefore, g(x)h(x) is primitive. 11 

Let R be a unique factorization domain and r, 5 nonzero elements of R. Let f(x) 
and g(x) be primitive polynomials in R[x] such that rf(x) = 5g(x). Then rand 5 
are associates in Rand f(x) and g(x) are associates in R[x]. 

Proofr.- If r is a unit, thenf(x) = r-isg(x). Since r-is divides the primitive 
polynomialf(x), it must be a unit, say (r-is)u = lR. Hence,f(x) and g(x) 
are associates in R[x]. Furthermore, u is a unit in Rand su = r so that r 
and s are associates in R. 

If r is a nonunit, then r = Pilh · · · Pk with each Pi irreducible. Then 
pJP2 • • • Pkf(x) = sg(x), so Pi divides sg(x). By Lemma 10.33 Pi divides 
s or g(x). Since Pi is a nonunit and g(x) is primitive, Pi must divides, say 
s =Pit. ThenpJ]J2 • • • pkf(x) = sg(x) = Pitg(x). Cancelingpi shows 
that p2 ... p1J(x) = tg(x). Repeating the argument with p2 shows that 
p3 • • • Pkf(x) = zg(x), where P2Z = t and, hence, pJ]J2z =Pit = s. After 
k such steps we have f(x) = wg(x) and s = pJ]J2 ... PkW for some wE R. 
Since w divides the primitive polynomialf(x), w is a unit. Therefore, 
f(x) and g(x) are associates in R[x]. Since s =Pi ... PkW = rw, rands 
are associates in R. Ill; 

Let R be a unique factorization domain and Fits field of quotients. Let f(x), 
g(x) be primitive polynomials in R[x]. If f(x) and g(x) are associates in F[x], 
then they are associates in R[x]. 

Proof~> If f(x) and g(x) are associates in F[x], then g(x) = !._ f(x) for some 
r s 

nonzero -EFby Corollary 4.5. Consequently, sg(x) = rf(x) in R[x]. 
s 

Therefore,f(x) and g(x) are associates in R[x] by Theorem 10.35. ill 

Let R be a unique factorization domain and Fits field of quotients. If f(x) E R[x] 
has positive degree and is irreducible in R[x], then f(x) is irreducible in F[x]. 
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Proof~>- If f(x) is not irreducible in F[x], thenf(x) = g(x)h(x) for some g(x), h(x) 
EF[x] with positive degree. Let b be a least common denominator of the 
coefficients of g(x). Then bg(x) has coefficients in R. So bg(x) = ag1(x) with 

a ER and g1(x) primitive of positive degree in R[x]. Hence, g(x) = ~g1 (x). 
Similarly h(x) = ~ h1(x) withe, dER and h1(x) primitive of positive degree 
. a e ae 
m R[x]. Therefore,f(x) = g(x)h(x) = bg1(x) dh1(x) = bdg1(x)h1(x), 

so that bdf(x) = aeg1(x)h1(x) in R[x]. Now f(x) is primitive because it is 
irreducible and g1(x)h1(x) is primitive by Corollary 10.34. So bd is an as
sociate of ae by Theorem 10.35, say bdu = ae for some unit u ER. 

· ae 
Therefore,f(x) = bdg1(x)h1(x) = ug1(x)h1(x). Since ug1(x) and h1(x) are 

polynomials of positive degree in R[x], this contradicts the irreducibility 
of f(x). Therefore,f(x) must be irreducible in F[x]. It 

If R is a unique factorization domain, then so is R[x]. 

Proof~~> Every nonzero nonunitf(x) in R[x] is a product of irreducibles by 
Theorem 10.32. Any such factorization consists of irreducible constants 
(that is, irreducibles in R) and irreducible polynomials of positive degree. 
Suppose 

with each e;, dj irreducible in Rand each p;(x), %{x) irreducible of posi
tive degree in R[x] (and, hence, primitive).* Thenp1(x) · · · Pk(x) and 
q1(x) · · · qtCx) are primitive by Corollary10.34. So Theorem 10.35 shows 
that e1 • • • em is an associate of d1 • · • d11 in Rand p 1(x) · · · Pk(x) is an 
associate of q1(x) · · · qtCx) in R[x]. Hence, e1 • • ·em= ud1d2 • • • d,, for 
some unit u E R. Associates of irreducibles are irreducible (Exercise 7 of 
Section 10.1), so -ud1 is irreducible. Since R is a UFD, we must have m = n 
and (after relabeling if necessary) e1 is an associate of ud1 (and hence of 
d1), and e; is an associate of d; for i ;:::: 2. Let F be the field of quotients 
of R. Each of the p;(x), q;(x) is irreducible in F[x] by Corollary 10.37. 
Unique factorization in F[x] (Theorem 4.14) and an argument simi-
lar to the one just given for R show that k = t and (after relabeling if 
necessary) eachp;(x) is an associate of q;(x) in F[x]. Consequently,p;(x) 
and q;(x) are associates in R[x] by Corollary 10.36. Therefore, R[x] is a 
UFD. 

*It may be that neither factorization contains constants, but this doesn't affect the argument. It is not 
possible to have irreducible constants in one factorization but not in the other (Exercise 5). 
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An immediate consequence of Theorems 1.8 and 10.38 and Example 8 of 
Section 6.1 is 

Z[x] is a unique factorization domain that is not a principal ideal domain. 

As illustrated in the preceding discussion, theorems about Z[x] and Q[x] are quite 
likely to carry over to an arbitrary UFD and its field of quotients. Among such results 
are the Rational Root Test and Eisenstein's Criterion (Exercises 9-11 ). 

Exercises 

NOTE: Unless stated otherwise R is a UFD and Fits field of quotients. 

A. 1. Let R be any integral domain and pER. Prove that pis irreducible in R if and 
only if the constant polynomial pis irreducible in R[x]. [Hint: Corollary 4.5 
may be helpful.] 

2. Give an example of polynomialsf(x), g(x) ER[x] such thatf(x) and g(x) are 
associates in F[x] but not in R[x]. Does this contradict Corollaryl0.36? 

3. If c1 · · · c111f(x) = g(x) with ci E Rand g(x) primitive in R[x], prove that each 
ci is a unit. 

4. If g(x) is primitive in R[x], prove that every nonconstant polynomial in R[x] 
that divides g(x) is also primitive. 

B. 5. Prove that a polynomial is primitive if and only if 1R is a greatest common 
divisor of its coefficients. This property is often taken as the definition of 
primitive. 

6. If f(x) is primitive in R[x] and irreducible in F[x], prove thatf(x) is irreducible 
in R[x]. 

7. If R is a ring such that R[x] is a UFD, prove that R is a UFD. 

8. If R is a ring such that R[x] is a principal ideal domain, prove that R is a field. 

9. Verify that the Rational Root Test (Theorem 4.21) is valid with Z and Q 

replaced by R and F. 

10. Verify that Theorem 4.23 is valid with Z and Q replaced by Rand F. 

11. Verify that Eisenstein's Criterion (Theorem 4.24) is valid with Z and Q 
replaced by Rand F and prime replaced by irreducible. 

12. Show that x 3 
- 6x2 + 4ix + 1 + 3i is irreducible in (Z[i])[x]. 

[Hint: Exercise 11.] 



Field Extensions 

High-school algebra deals primarily with the three fields Q, IR, and C and plane 
geometry, with the set IR X R Calculus is concerned with functions from IR to IR. 
Indeed, most classical mathematics is set in the field C and its subfields. Other 
fields play an equally important role in more recent mathematics. They are used in 
analysis, algebraic geometry, and parts of number theory, for example, and have 
numerous applications, including coding theory and algebraic cryptography. 

In this chapter we develop the basic facts about fields that are needed to prove 
some famous results in the theory of equations (Chapter 12) and to study some of 
the topics listed above. The principal theme is the relationship of a field with its 
various subfields. 

Vector Spaces 

An essential tool for the study of fields is the concept of a vector space, which is 
introduced in this section. Vector spaces are treated in detail in books and courses 
on linear algebra. Here we present only those topics that are needed for our study of 
fields. If you have had a course in linear algebra, you can probably skip most of this 
section. Nevertheless, it would be a good idea to review the main results, particularly 
Theorems 11.4 and 11.5. 

Consider the additive abelian group* M(IR) of all 2 X 2 matrices over the field IR 

of real numbers. If r is a real number and A = (: ~)is an element of J\!J(IR), then the 

*Except for the last two results in the chapter, group theory is not a prerequisite for this chapter. In 
this section you need only know that an additive abelian group is a set with an addition operation 
that satisfies Axioms 1-5 in the definition of a ring (page 44). 

365 
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Definition 

product of the number r and the matrix A is defined to be the matrix r A = (ra rb). 
rc rd 

This operation, which is called scalar multiplication, takes a real number (field ele
ment) and a matrix (group element) and produces another matrix (group element). 
This is an example of a more general concept. Let F be a field and G an additive abe
lian group.* Then a scalar multiplication is an operation such that for each a E F and 
each v E G there is a unique element avE G. 

Lef F be.a Jlela. Av~ctorsp9C8 ()Ve.rf is an adqitive abeli~n group* v . 
. equipped with a scalar multiplication such. that for ail a, .a1'; a2E::F and v, 
'V

1
, V

2
EY:, ·• . , . . . . . 

(i) a(v1 + v2) av1 + av2; 

(ii) (a1 + a2)v = a1v+ a;v; .. 
. (tii) a1(~2V) = (a1a2)v; 

(iv) 1Fv == v. · 

EXAMPLE 1 

Scalar multiplication in M(IR), as defined above, makes M(IR) into a vector 
space over IR (Exercise 1). 

EXAMPLE 2 

Consider the set Q 2 = Q X Q, where Q is the field of rational numbers. Then 
Q2 is a group under addition (Theorem 3.1 or 7.4); its zero element is (0, 0) and 
the negative of (s, t) is ( -s, - t). For a E Q and (s, t) E Q2, scalar multiplication 
is defined by a(s, t) = (as, at). Under these operations Q2 is a vector space over 
Q (Exercise 2). 

EXAMPLE 3 

The preceding example can be generalized as follows. If F is any field and n :2:: 1 
an integer, let F" = F X F X · · · X F (n summands). Then F" is a vector space 
over F, with addition defined coordinatewise: 

(sl> s21 .•• , s11 ) + (t!> t2, .•. , f11) = (s1 + tl> s2 + t2, .•• , S11 + t11) 

and scalar multiplication defined by: 

a(sb s2, .•. , s11) = ( asb as2, ... , as11 ) a E F 

(see Exercise 5). 

*See the preceding footnote. 
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EXAMPLE 4 

The complex numbers C form a vector space over the real numbers IR, with 
addition of complex numbers (vectors) defined as usual and with scalar mul
tiplication being ordinary multiplication (the product of a real number and a 
complex number is a: complex number). 

Special terminology is used in situations like the preceding example. IfF and K are 
fields with F ~ K, we say that K is an extension field of F. For instance, the complex 
numbers C are an extension field of the field IR of real numbers. As the preceding 
example shows, the extension field C can be considered as a vector space over IR. The 
same thing is true in the general case. 

If K is an extension field of F, then K is a vector space over F, with 
addition of vectors being ordinary addition in [( and scalar 

multiplication being ordinary multiplication in K 

(the product of an element the subfield F and an element of K is an element of K). 
For the purposes of this chapter, extension fields are the most important examples of 
vector spaces. 

If Vis a vector space over a field F, then the following properties hold for any v E V 
and a E F (Exercise 21): 

-(av) = ( -a)v = a( -v). 

Spanning Sets 

Suppose Vis a vector space over a field F and that w and v1, v2, •.. , v, are elements 
of V. We say that w is a linear combination of vb v2, ... , v, if w can be written in 
the form 

for some ai E F. 

If every element ofavectorspaceV over a field F i~ a linear combination of . 
V1 ;y2, .· ... ' v n, we. say that the set { v1, v2, .. · . ! ·vn}spans V over F. 

EXAMPLE 5 

The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans the vector space 0 3 over Q because 
every element (a, b, c) of 0 3 is a linear combination of these three vectors: 

(a, b, c)= a (1, 0, 0) + b (0, 1, 0) + c(O, 0, 1). 

EXAMPLE 6 

Every element of C (considered as a vector space over IR) is a linear combina
tion of 1 and i because every element can be written in the form a1 + bi, with 
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a, bE IR. Thus the set {1, i} spans Cover IR. The set {1 + i, 5i, 2 + 3i} also 
spans C because any a + bi E C is a linear combination of these three elements 
with coefficients in IR: 

b 
a+ bi = 3a(l + i) + 5 (5i) + (-a)(2 + 3i). 

linear Independence and Bases 

The set { 1, i} not only spans the extension field C of IR, but it also has this property: If 
al + bi = 0, then a = 0 and b = 0. In other words, when a linear combination of 1 and 
i is 0, then all the coefficients are 0. On the other hand, the set {1 + i, 5i, 2 + 3i} does 
not have this property because some linear combinations of these elements are 0 even 
though the coefficients are not; for instance, 

1 
2(1 + i) + 5 (5i) - 1(2 + 3i) = 0. 

The distinction between these two situations will be crucial in our study of field 
extensions. 

A subset {v1, v2, ••. , Vn} of a vector space V over a fleldf is said to be 
linearly independent over F provided that whenever 

c1v1 + c2v2 + · · · + CnVn = Ov 

with each c;EF, then c; =OF for every f. A set that is not linearly. indepen
dent is said to be linearly dependent. 

Thus, a set {ull ul> ... , u"'} is linearly dependent over F if there exist elements 
bl> bz, . .. , b111 ofF, at least one of which is nonzero, such that b1u1 + b2u2 + · · · + h111U111 = 011• 

EXAMPLE 7 

The remarks preceding the definition show that the subset { 1, i} of Cis linearly 
independent over IR and that the set {1 + i, 5i, 2 + 3i} is linearly dependent. 
Note, however, that both of these sets span C. 

EXAMPLE 8 

Consider the subset {(3, 0, 0), (0, 0, 4)} of the vector space 0 3 over 0 and sup
pose ell c2 E 0 are such that c1(3, 0, 0) + ciO, 0, 4) = (0, 0, 0). Then 

(0, 0, 0) = c1(3, 0, 0) + c2(0, 0, 4) = (3cl> 0, 4c2), 

which implies that c1 = 0 = c2. Hence, {(3, 0, 0), (0, 0, 4)} is linearly indepen
dent over 0. However, the set {(3, 0, 0), (0, 0, 4)} does not span 0 3 because 
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there is no way to write the vector (0, 5, 0), for example, in the form a1(3, 0, 0) 
+ a2(0, 0, 4) = (3ai> 0, 4a2) with ai E Q. 

Let V be a vector space over a field F. The preceding examples show that linear 
independence and spanning do not imply each other; a subset of V may have one, 
both, or neither of these properties. A subset that has both properties is given a special 
name. 

Asubset{v1, V2, ~ .. ; , vn} of a vector space V over a field F is said to be a 
bas.!s of V if it spans V and is linearly independent over F. · 

EXAMPLE 9 

Example 5 shows that the subset {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans the vector 
space (])3 over Q. This set is also linearly independent over Q (Exercise 8) and, 
hence, is a basis. 

EXAMPLE 10 

Examples 6 and 7 show that the set { 1, i} is a basis of C over IR. We claim that 
the set {1 + i, 2i} is also a basis of Cover R If c1(1 + i) + c2(2i) = 0, with cl> 
c2 E IR, then c11 + (c1 + 2c2)i = 0. This can happen only if c1 = 0 and c1 + 2c2 = 0. 
But this implies that 2c2 = 0 and, hence, c2 = 0. Therefore, {1 + i, 2i} is linearly 
independent. In order to see that {1 + i, 2i} spans C, note that the element 

(
b- a) a + bi E C can be written as a(l + i) + -

2
- 2i. 

One situation always leads to linear dependence. Let Vbe a vector space over a field 
F and Sa subset of V. Suppose that v, ui> u2, ..• , u 1 are some of the elements of Sand 
that vis a linear combination of ui> u2, ••• , u1, say v = a1u 1 + · · · + Cl/41, with each 
ai EF. If w 1, ... , w, are Jhe rest of the elements of S, then 

and, hence, 

Since at least one of these coefficients is nonzero (namely - 1 p), Sis linearly dependent. 
We have proved this useful fact: 

If v E Vis a linear combination of u1, u2, ••• , u1 E V, then any set 
containing v and all the u; is linearly dependent. 

In fact, somewhat more is true. 
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Let V be a vector space over a field F. The su9set {u1, u2, ... , un} of Vis linearly 
dependent over F if and only if some uk is a linear combination of the preced
ing ones, u1, u 2, ... , uk-1· 

Proof~ If some u1c is a linear combination of the preceding ones, then the set 
is linearly dependent by the remarks preceding the lemma. Conversely, 
suppose { ul> ... , u11 } is linearly dependent. Then there must exist elements 
cl> ... , C11 E F, not all zero, such that c1u1 + c2u2 + · · · + C11U 11 = Ov. Let k 
be the largest index such that c1c is nonzero. Then c; = Op for i > k and 

c 1u 1 + c2u2 + · · · + ckuk = Ov 

ckuk = -c1u 1 - c2u 2 - • · • - ck-luk-l· 

Since F is a field and c1c =/= 0, ck -I exists; multiplying the preceding equa
tion by c~c- 1 shows that u1c is a linear combination of the preceding u's: 

The next lemma gives an upper limit on the size of a linearly independent set. It 
says, in effect, that if V can be spanned by n elements over F, then every linearly inde
pendent subset of V contains at most n elements. 

Let V be a vector space over the field F that is spanned by the set 
{v1, v2, ... , Vn}. If {u1, u2, ... , um} is any linearly independent subset of V, then 
m:::;n. 

Proof~ By the definition of spanning, every element of V (in particular u 1) is a 
linear combination of vb ... , V11 • So the set { ul> vi> v 2, ... , V11 } is linearly 
dependent. Therefore, one of its elements is a linear combination of the 
preceding ones by Lemma 11.1, say V; = a1u1 + b1v1 + · · · + b;_ 1v;- 1• 

If v; is deleted, then the remaining set 

(*) 

still spans V since every element of Vis a linear combination of the v's 
and any appearance of v; can be replaced by a1u 1 + b1v1 + · · · + 
b;_ 1 v;_ 1. In particular, u2 is a linear combination of the elements of the 
set(*). Consequently, the set 

is linearly dependent. By Lemma 11.1 one of its elements is a linear 
combination of the preceding ones. This element can't be one of the u's 
because this would imply that the u's were linearly dependent. So some 
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vi is a linear combination of 'Llt> u 2, and the v's that precede it. Deleting vi 
produces the set 

This set still spans V since every element of Vis a linear combination of 
the v's and vi> vi can be replaced by linear combinations of ut> Uz, and the 
other v's. In particular, u3 is a linear combination of the elements in this 
new set. We can continue this process, at each stage adding a u, deleting 
a v, and producing a set that spans V. If m > n, we will run out of v's be
fore all the u's are inserted, resulting in a set of the form { ul> u2o ... , u 11 } 

that spans V. But this would mean that U 111 would be a linear combination 
of ul> ... , u"' contradicting the linear independence of { ul> ... , u 111 }. 

Therefore, m ::::; n. 

Let V be a vector space over a field F. Then any two finite bases of V over F 
have the same number of elements. 

Proof~>- Suppose { ul> ... , u 11,} and { v1, ... , v11) are bases of V over F. Then the 
v's span V and the u's are linearly independent, so m ::::; n by Lemma 11.2. 
Now reverse the roles: The u's span V and the v's are linearly indepen
dent, so n ::::; m by Lemma 11.2 again. Therefore, m = n. Ill 

According to Theorem 11.3, the number of elements in a basis of V over F does not 
depend on which basis is chosen. So this number is a property of V. 

lfa vectorspaceVovera field F has afinite basis, then Vis said to be finite 
dimensional overF. The dimension of Vover Fis the number of elements 
ih any basis of Vand is denoted [V:F]. If V does not have afinite basis, then 
Vis said to be infi,nite dimensional over F. 

EXAMPLE 11 

The dimension of 0 3 over 0 is 3 because {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis. 
More generally, ifF is a field, then F' is an n-dimensional vector space over F 
(Exercise 27). 

EXAMPLE 12 

[C:~] = 2 since {1, i} is a basis of Cover~. On the other hand, the extension 
field~ of 0 is an infinite-dimensional vector space over 0. The proof of this fact 
is omitted here because it requires some nontrivial facts about the cardinality of 
infinite sets. 
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Applications to Extension Fields 
In the remainder of this section, K is an extension field of a field F. We say that K is 
a finite-dimensional extension of F if K, considered as a vector space over F, is finite 
dimensional over F. 

Remark If [K:F] = 1 and {u} is a basis, then every element of Kis of the form 
cu for some c E F. In particular, 1 F = cu, and, hence, u = c- 1 is in F. Thus, K = F. On 
the other hand, if K = F, it is easy to see that {lF} is a basis and, hence, [K:F] = 1. 
Therefore, 

[K:F] = 1 if and only if K= F. 

If F, K, and L are fields with F ~ K ~ L, thc:n both K and L can be considered as 
vector spaces over F, and L can be considered as a vector space over K. It is reason
able to ask how the dimensions [K:F], [L:K], and [L:F] are related. Here is the answer. 

Let F, K, and L be fields with F ~ K ~ L. If [K:F] and [L:K] are finite, then Lis a 
finite-dimensional extension ofF and [L:F] = [L:K][K:F]. 

Proof,.. Suppose [K:F] = m and [L:K] = n. Then there is a basis { u~> ... , u111 } of 
Kover F and a basis { v 1, ••• , v"} of L over K. Each u; and v1 is nonzero 
by Exercise 19; hence, all the products u;v1 are nonzero. The set of all 
products { u;v1 11 :::; i :::; m, 1 :::; j :::; n} has exactly mn elements (no two 
of them can be equal because u;v1 = u~cv1 implies that u;v1 - u~cv1 = 0 K 

with u;, uk E K, contradicting the linear independence of the v's over K). 
We need to show only that this set of mn elements is a basis of L over F 
because in that case [L:K][K:F] = nm = [L:F]. 

If w is any element of L, then w is a linear combination of the basis 
elements vb ... , v"' say 

(*) with each b1 E K. 

Each b1 E K is a linear combination of the basis elements ub . : . , u 111 so 
there are aiJ E F such that 

b1 = a 11u 1 + a21U2 + · · · + CL111 JUm 

b2 = a 12u 1 + a22u 2 + · · · + a1112U 111 

Substituting the right side of each of these expressions in ( *) shows that 
w is a sum of terms of the form aiJu;v1 with aiJ E F. Therefore, the set of 
all products u;v1 spans L over F. 
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To show linear independence, suppose ciJ E F and 

(**) "2.cijuivi = CllUJV! + c12u1v2 + · · · + C11111U111V, =OF. 
i, j 

By collecting all the terms involving v~> then all those involving v2, and 
so on, we can rewrite ( * *) as 

(cllUJ + C21U2 + ' ' ' + C1111Um)V1 

+ (cl2u! + c22u2 + ... + cm2um)v2 

+ ... + (c]nU] + c2,u2 + ... + Cmnum) Vn = Op. 

The coefficients of the v's are elements of K, so the linear independence 
of the v's implies that for each}= 1, 2, ... , n 

cyu1 + c21u2 + · · · + C111}Um = Op. 

Since each ciJ E F and the u's are linearly independent over F, we inust 
have ciJ = Opfor all i,j. This completes the proof of linear independence, 
and the theorem is proved. II 

The following result will be needed for the proof of Theorem 11.15 in Section 11.4. 

Let K and L be finite dimensional extension fields ofF and let f:K ---7 L be an 
isomorphism such that f(c) = c for every c E F. Then [K:F] = [L:F]. 

Proof,.. Suppose [K:F] = n and { ull ... , u11 } is a basis of Kover F In order to 
prove that [L:F] = n also, we need only show that {f( tt1), ..• ,f( u11)} is 
a basis of Lover F Let vEL; then since/is an isomorphism, v = f(u) 
for some u E K. By the definition of basis, u = c1u1 + · · · + c11u, with 
each ciEF Hence, v = f(u) = f(c 1u 1 + · · · + C11U11 ) = f(c 1)f(u1) + · · · + 
f(c11)/(u11). Butf(ci) = ci for every i, so that v = cif(u1) + · · · + c,f(u,). 
Therefore, {f( u 1); ••• ,f( u,)} spans L. To show linear independence, 
suppose that 

dJ!(u1) + · · · + d,J(u11 ) = Op 

with each diE F. Then since/( di) = di we have 

f(d!u! + · · · + d,u11 ) = f(dJ)f(u 1) + · · · + f(d11)f(u11 ) 

= dJ!(u1) + · · · + d,,f(u 11) = Op. 

Since the isomorphism/is injective, d1u1 + · · · + d,,u11 =OF by Theorem 6.11. 
But the u's are linearly independent inK, and, hence, every di = Op. Thus 
{f( u1), .•• ,f( U 11)} is linearly independent and, therefore, a basis. II 
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Exercises 

NOTE: V denotes a vector space over afield F, and K denotes an extension field of F. 

A. 1. Show that M(IR) is a vector space over R 

2. Show that Q 2 is a vector space over Q. 

3. Show that the polynomial ring IR[x] (with the usual addition of polynomials 
and product of a constant and a polynomial) is a vector space over IR. 

4. If n 2: 1 is an integer, let IR11[x] denote the set consisting of the constant 
polynomial 0 and all polynomials in IR[x] of degree:::; n. Show that IR11[x] 
(with the usual addition of polynomials and product of a constant and a 
polynomial) is a vector space over R 

5. If n 2: 1 is an integer, show that F 11 is a vector space over F. 

6. If { v1, v2 , ..• , v,} spans Kover F and w is any element of K, show that 
{w, v1, v2, ••• , V11 } also spans K. 

7. Show that {i, 1 + 2i, 1 + 3i} spans Cover R 

8. Show that the subset {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of Q3 is linearly independent 
over Q. 

9. Show that { v'2, v'2 + i, V3 - i} is linearly dependent over IR. 

10. If vis a nonzero element of V, prove that {v} is linearly independent over F. 

11. Prove that any subset of V that contains Ov is linearly dependent over F. 

12. If the subset { u, v, w} of Vis linearly independent over F, prove that 
{ u, u + v, u + v + w} is linearly independent. 

13. If S = {vi> ... , v1J is a linearly dependent subset of V, then prove that any 
subset of V that contains Sis also linearly dependent over F. 

14. If the subset T = { u~> ... , u1} of Vis linearly independent over F, then prove 
that any nonempty subset of Tis also linearly independent. 

15. Let b and d be distinct nonzero real numbers and c any real number. Prove that 
{b, c + di} is a basis of Cover IR. 

16. If K is an n-dimensional extension field of 7LP, what is the maximum possible 
number of elements inK? 

17. Let {vi> ... , V11 } be a basis of V over F and let ci> ... , C11 be nonzero elements 
of F. Prove that {c1vi> c2v2> ... , C11V 11 } is also a basis of V over F. 

18. Show that {1, [x]} is a basis of 7L2[x]j(x2 + x + 1) over 7L2. 

19. If {vi> v2 ..• , v11 } is a basis of v, prove that vi=/= Ovfor every i. 

20. Let F, K, and L be fields such that F <;;;: K <;;;: L. If S = { v1, v2 , ... , V11 } spans L 
over F, explain why S also spans L over K. 

B. 21. For any vector v E V and any element a E F, prove that 

(a) Opv = Ov. [Hint: Adapt the proof of Theorem 3.5.] 

(b) aOv = Ov. 

(c) -(av) = (-a) v = a(-v). 
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22. (a) Prove that the subset {1, \12} of IRis linearly independent over Q. 

(b) Prove that v'3 is not a linear combination of 1 and v'2 with coefficients in 
Q. Conclude that {1, \12} does not span IR over Q. 

23. (a) Show that {1, \12, v'3} is linearly independent over Q. 

(b) Show that {1, \12, v'3, W} is linearly independent over Q. 

24. Let v be a nonzero real number. Prove that { 1, v} is linearly independent over 
Q if and only if v is irrational. 

25. (a) Let k;::: 1 be an integer. Show that the subset {1, x, x2
, x3

, ... , x'<} of IR[x] 
is linearly independent over IR (see Exercise 3). 

(b) Show that IR[x] is infinite dimensional over IR. 

26. Show that the vector space IR11[x] of Exercise 4 has dimension n + 1 over IR. 

27. If F is a field, show that the vector space F 11 has dimension n over F 

28. Prove that K has exactly one basis over F if and only if K = F = 7L 2• 

29. Assume 1F + lF -=f. OF. If {u, v, w} is a basis of Vover F, prove that the set 
{ u + v, v + w, u + w} is also a basis. 

30. Prove that {vi> ... , v11 } is a basis of V over F if and only if every element of V 
can be written in a unique way as a linear combination of vi> ... , V 11 ("unique" 
means that if w = c1v1 + · · · + C11V11 and w = d1v1 + · · · + dnvm then C; = d; 
for every i). 

31. Let p(x) = a0 + a1x + · · · + a11~ be irreducible in F[x] and let L be the 
extension field F[x]!(p(x)) of F. Prove that L has dimension n over F. 
[Hint: Corollary 5.5, Theorems 5.8 and 5.10, and Exercise 30 may be helpful.] 

32. If S = {vi> ... , vJ spans V over F, prove that some subset of Sis a basis of K 
over F. [Hint: Use Lemma 11.1 repeatedly to eliminate v's until you reduce to a 
set that still spans Vand is linearly independent.] 

33. If the subset { u1, .•. , uJ of Vis linearly independent over F and wE Vis not a 
linear combination of the u's, prove that { ul> ... , u1, w} is linearly independent. 

34. If Vis infinite-dimensional over F, then prove that for any positive integer k, 
V contains a set of k vectors that is linearly independent over F. [Hint: Use 
induction; Exercise 10 is the case k = 1, and Exercise 33 can be used to prove 
the inductive step.] 

35. Assume that the subset {vi> ... , v11 } of Vis linearly independent over F and that 
w = c1v1 + · · · + C11Vm with c; E F. Prove that the set {w -vi> w- v2> . .. , w- V11 } 

is linearly independent over F if and only if c1 + · · · + c11 -=f. 1 F· 

36. Assume that Vis finite-dimensional over F and Sis a linearly independent 
subset of V. Prove that Sis contained in a basis of V. [Hint: Let (V:F] = n 
and S = {ul> ... , u171 }; then m :S n by Lemma 11.2. If S does not span V, 
then there must be some w that is not a linear combination of the u's. Apply 
Exercise 33 to obtain a larger independent set; if it doesn't span, repeat the 
argument. Use Lemma 11.2 to show that the process must end with a basis that 
contains S.] 
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37. Assume that [V:F] =nand prove that the following conditions are equivalent: 

(i) { v1, ••• , v,} spans V over F. 

(ii) { vl> ..• , v11 } is linearly independent over F. 

(iii) { vb ... , V11 } is a basis of V over F. 

38. Let F, K, and L be fields such that F <;:;:; K <;:;:; L. If [L:F] is finite, then prove that 
[L:K] and [K:F] are also finite and both are:::::; [L:F]. [Hint: Use Exercises 20 
and 32 to show that [L:K] is finite. To show that [K:F] is finite, suppose 
[L:F] = n. The set {lx} is linearly independent by Exercise 10; if it doesn't 
span K, proceed as in the hint to Exercise 36 to build larger and larger linearly 
independent subsets of K. Use Lemma 11.2 and the fact that [L:F] = n 
to show that the process must end with a basis of K containing at most n 
elements.] · 

39. If [K:F] = p, with p prime, prove that there is no field E such that F c E c K. 
[Hint: Exercise 38 and Theorem 11.4.] * * 

Simple Extensions 

Field extensions can be considered from two points of view. You can look upward from 
a field to its extensions or downward to its subfields. Chapter 5 provided an example 
of the upward point of view. We took a field F and an irreducible polynomial p(x) in 
F[x] and formed the field of congruence classes (that is, the quotient field) F[x]/(p(x)). 
Theorem 5.11 shows that F[x]/(p(x)) is an extension field of F that contains a root 
ofp(x). 

In this section we take the downward view, starting with a field K and a subfield F. 
If u E K, what can be said about the subfields of K that contain both u and F? Is there 
a smallest such subfield? If u is the root of some irreducible p(x) in F[x], how is this 
smallestsubfield related to the extension field F[x]/(p(x)), which also contains a root 
of p(x)? 

The theoretical answer to the first two questions is quite easy. Let Kbe an extension 
field ofF and u E K. Let F( u) denote the intersection of all subfields of K that contain 
both F and u (this family of subfields is nonempty since Kat least is in it). Since the 
intersection of any family of subfields of K is itself a field (Exercise 1 ), F( u) is a field. 
By its definition, F( u) is contained in every subfield of K that contains F and u, and, 
hence, F(u) is the smallest subfield of K containing F and u. F(u) is said to be a simple 
extension of F. 

As a practical matter, this answer is not entirely satisfactory. A more explicit 
description of the simple extension field F(u) is needed. It turns out that the structure 
of F(u) depends on whether or not u is the root of some polynomial in F[x]. So we 
pause to introduce some terminology. 

An element u of an extension field K ofF is said to be algebraic over F if u is 
the root of some nonzero polynomial in F[x]. An element of K that is not the 
root of any nonzero polynomial in F[x] is said to be transcendental over F. 
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EXAMPLE 1 

In the extension field C of IR, i is algebraic over [[;£ because i is the root of x2 + 1 E 

IR[x]. You can easily verify that element 2 + i of Cis a root of x3 
- x2- 7x + 15 E 

O[x]. Thus 2 + i is algebraic over Q. Similarly, ~ is algebraic over Q since it 
is a root of x 5 

- 3. 

EXAMPLE 2 

Every element c in a field Fis algebraic over Fbecause cis the root of x- c EF[x]. 

EXAMPLE 3 

The real numbers 7T and e are transcendental over Q (proof omitted). Hereafter 
we shall concentrate on algebraic elements. For more information on transcen
dental elements, see Exercises 10 and 24-26. 

If u is an algebraic element of an extension field K of F, then there may be many 
polynomials in F[x] that have u as a root. The next theorem shows that all of them 
are multiples of a single polynomial; this polynomial will enable us to give a precise 
description of the simple extension field F(u). 

Let K be an extension fleld ofF and u E K an algebraic element over F. Then 
there exists a unique monic irreducible polynomial p(x) in F[x] that has u as a 
root Furthermore, if u is a root of g(x) EF[x], then p(x) divides g(x). 

Proof fj> LetS be the set of all nonzero polynomials in F[x] that have u as a root. 
Then Sis nonempty because u is algebraic over F. The degrees of poly
nomials in S form a nonempty set of nonnegative integers, which must 
contain a smallest element by the Well-Ordering Axiom. Let p(x) be a 
polynomial of smallest degree in S. Every nonzero constant multiple 
of p(x) is a polynomial of the same degree with u as a root. So we can 
choose p(x) to be monic (if it isn't, multiply by the inverse of its leading 
coefficient). 

If p(x) were not irreducible in F[x], there would be polynomials k(x) 
and t(x) such that p(x) = k(x)t(x), with deg k(x) < degp(x) and deg t(x) < 
degp(x). Consequently, k(u)t(u) = p(u) = OF inK. Since K is a field either 
k(u) = OF or t(u) = OF> that is, either k(x) or t(x) is inS. This is impossible 
since p(x) is a polynomial of smallest degree inS. Hence, p(x) is irreducible. 

Next we show that p(x) divides every g(x) inS. By the Division 
Algorithm, g(x) = p(x)q(x) + r(x), where r(x) = OF or deg r(x) < degp(x). 
Since u is a root of both g(x) and p(x), 

r(u) = g(u) - p(u)q(u) = OF+ OFq(u) = OF· 
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So u is a root of r(x). If r(x) were nonzero, then r(x) would be inS, 
contradicting the fact that p(x) is a polynomial of smallest degree in S. 
Therefore, r(x) = Op, so that g(x) = p(x)q(x). Hence, p(x) divides every 
polynomial in S. 

To show that p(x) is unique, suppose t(x) is a monic irreducible 
polynomial inS. Then p(x) I t(x). Since p(x) is irreducible (and, hence, 
nonconstant) and t(x) is irreducible, we must have t(x) = cp(x) for some 
c E F. But p(x) is monic, so cis the leading coefficient of cp(x) and, 
hence, of t(x). Since t(x) is monic, we must have c = 1p. Therefore, p(x) = 

t(x) and p(x) is unique. ~· 

If K is an extension field of F and u E K is algebraic over F, then the monic, irre
ducible polynomial p(x) in Theorem 11.6 is calledthe minimal polynomial of u over F. 
The uniqueness statement in Theorem 11.6 means that once we have found any monic, 
irreducible polynomial in F[x] that has u as a root, it must be the minimal polynomial 
of u over F. 

EXAMPLE 4 

::(2 - 3 is a monic, irreducible polynomial in Q[x] that has v'3 E IR as a root. 
Therefore, ::(2- 3 is the minimal polynomial of v'3 over Q. Note that ::(2- 3 is 
reducible over IR since it factors as (x - vJ)(x + vJ) in IR[x]. So the minimal 
polynomial of v'3 over IRis x- \13, which is monic and irreducible in IR[x]. 

EXAMPLE 5 

Let u = v'3 + V5 E IR. Then u2 = 3 + 2v'3YS + 5 = 8 + 2Vf5. Hence, 
1i 8 = 2Vf5 so that (u2

- 8)2 = 60, or, equivalently, (u2
- 8)2

- 60 = 0. 
Therefore, tt = v'3 + V5 is a root of (x2

- 8)2
- 60 = x4

- 16x2 + 4 EO[x]. 
Verify that this polynomial is irreducible in Q[x] (Exercise 14). Hence, it must 
be the minimal pdlynomial of v'3 + V5 over Q. 

The minimal polynomial of u provides the connection between the upward and 
downward views of simple field extensions and allows us to give a useful description 
of F(tt). 

Let K be an extension field of F and u E K an algebraic element over F with 
minimal polynomial p(x) of degree n. Then 

(1) F(u) == F[x]/(p(x)). 

(2) {1r, u, ii, ... , un - 1} is a basis of the vector space F(u) over F. 

(3) [F(u): F] = n. 
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Theorem 11.7 shows that when 11 is algebraic over F, then F( u) does not depend on K 
but is completely determined by F[x] and the minimal.polynomial p(x). Consequently, 
we sometimes say that F ( u) is the field obtained by adjoining u to F. 

Proof ofThemlem 11.7 ~ (1) Since F( u) is a field containing u, it must contain 
every positive power of u. Since F(u) also contains F, F(u) must 
contain every element of the form b0 + b1u + b2u

2 + · · · + b1u
1 

with b,.EF, that is, F(u) contains the elementf(u) for every j(x) EF[x]. 
Verify that the map cp:F[x] ~ F(u) given by cp(f(x)) = f(u) is a 
homomorphism of rings. A polynomial in F[x] is in the kernel of cp 
precisely when it has u as a root. By Theorem 11.6 the kernel of cp 
is the principal ideal (p(x)). The First Isomorphism Theorem 6.13 
shows that F[x]/(p(x)) is isomorphic to Im cp under the map that sends 
congruence class (coset) [f(x)] to f(u). Furthermore, since p(x) is 
irreducible, the quotient ring F[x]j(p(x)), and, hence, Im cp, are fields 
by Theorem 5.10. Every constant polynomial is mapped to itself by cp 
and cp(x) = u. So Im cp is a subfield of F(u) that contains both F and 
u. Since F(u) is the smallest subfield of K containing F and u, we must 
have F(u) = Im cp = F[x]/(p(x)). 

(2) and (3) Since F(u) = Im cp, every nonzero element of F(u) is 
of the formj(u) for somej(x) EF[x]. If degp(x) = n, then by the 
Division Algorithmf(x) = p(x)q(x) + r(x), where r(x) = b0 + b1x + 
· · · + b"_ 1x"- 1 EF[x]. Consequently,j(u) = p('u)q(u) + r(u) = OFq(u) + 
r(u) = r(u) = b0lF + b1u + · · · + bn_ 1u"- 1

. Therefore, the set 
{IF, u, u2

, ... , u"- 1
} spans F(u). To show that this set is linearly 

independent, suppose c0 + c1u + · · · + c"_ 1u"- 1 =OF with each 
c,.EF. Then u is a root of c0 + c1x + · · · + C11 _ 1x"- 1

, so this poly
nomial (which has degree :s n-1) must be divisible by p(x) (which 
has degree n). This can happen only when c0 + c1x + · · · + cn_ 1xn-! 
is the zero polynomial; that is, each c; = OF. Thus {IF, u, 1i, ... , u"- 1

} 

is linearly independent over F and, therefore, a basis of F(u). 
Hence, [F(u): F] = n. Ill 

EXAMPLE 6 

The minimal polynomial of V3 over 0 is ~ - 3. Applying Theorem 11.7 with n = 2 
we see that {1, V3} is a basis of 0( V3) over 0, whence [0( V3): OJ= 2. Similarly, 
Example 5 shows that V3 + V5 has minimal polynomial x4 

- 16~ + 4 over 0 so 
that [0( V3 + V5): OJ= 4 and {1, V3 + V5, ( V3 + V5)2

, ( V3 + V5)3
} is a 

basis. 

An immediate consequence of Theorem 11.7 is that 

if u and v have the same minimal polynomialp(x) 
in F[x], then F(u) is isomorphic to F(v). 
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The reason is that both F(u) and F(v) are isomorphic to F[x]/(p(x)) and, hence, to 
each other. Note that this result holds even when u and v are not in the same extension 
field of F. The remainder of this section, which is not needed until Section 11.4, deals 
with generalizations of this idea. We shall consider not only simple extensions of the 
same field, but also simple extensions of two different, but isomorphic, fields. 

Suppose F and E are fields and that u:F ~ E is an isomorphism. Verify that the . 
map from F[x] to E[x] that mapsf(x) = a0 + a1x + a2x

2 + · · · + a11x" to the polyno
mial uf(x) = u(a0) + u(a1)x + u(a2)x

2 + · · · + u(a11)x'' is an isomorphism of rings 
(Exercise 21 in Section 4.1). Note that if f(x) = c is a constant polynomial in F[x] 
(that is, an element of F), then this isomorphism maps it onto u(c) EE. Consequently, 
we say that the isomorphism F[x] ~ E[x] extends the isomorphism u:F ~ E, and we 
denote the extended isomorphism by u as well. 

Let u:F ~ E be an isomorphism of fields. Let u be an algebraic element in 
some extension field of F with minimal polynomial p(x) EF[x]. Let v be an 
algebraic element in some extension field of E, with minimal polynomial 
up(x) E E[x]. Then u extends to an isomorphism of fields Ci:F(u) ~ E(v) such 
that Ci(u) = v and Ci(c) = u(c) for every c EF. 

The special case when u is the identity map F ~ F states whenever u and v have 
the same minimal polynomial, then F( u) = F( v) under a function that maps u to v and 
every element of F to itself. 

Proof of Corollary 11.8 I> The isomorphism (J extends to an isomorphism (also 
denoted u) F[x] ~ E[x] by the remarks preceding the corollary. The proof 
of Theorem 11.7 shows that there is an isomorphism r:E[x]/(up(x)) ~ E(v) 
given by r([g(x)]) = g(v). Let 1T be the surjective homomorphism 

E[x] ~ E[x]j(up(x)) 

that maps g(x) to [g(x)] and consider the composition 

F[x] ~ E[x] ~ E[x]j(up(x))~ E(v) 

f(x) --~ uf(x) --~ [uf(x)] --~ uf(v). 

Since all three maps are surjective, so is the composite function. The 
kernel of the composite function consists of all h(x) EF[x] such that 
u h( v) = 0 E· Since r is an isomorphism, u h( v) = 0 E if and only if [ u h(x)] 
is the zero class in E[x]j(up(x)), that is, if and only if uh(x) is a mul
tiple of up(x). But if uh(x) = k(x) · up(x), then applying the inverse of 
the isomorphism u shows that h(x) = u- 1 (k(x))p(x). Thus the kernel of 
the composite function is the principal ideal (p(x)) in F[x]. Therefore, 
F[x]j(p(x)) = E(v) by the First Isomorphism Theorem 6.13; the proof 
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of that theorem shows that this isomorphism (call it e) is given by 
6([/(x)]) = crf(v). Note that 6([x]) = v and t.hatfor each ce.F, 6([c]) = 
cr(c). So we have the following situation, where (j! is the isomorphism of 
Theorem 11.7: 

F[u] ~ F[x]j(p(x)) ~ E(v) 

f[u] +--- [f(x)] --~ crf(v) 

c +---- [c] ---~ cr(c) ce.F. 

The composite function e o q;- 1 : F(u) ~ E(v) is an isomorphism that ex
tends cr and maps u to v. II 

EXAMPLE 7 

The polynomial x3 - 2 is irreducible in ICD[x] by Eisenstein's Criterion. It has a 
root in IR, namely \12. Verify that V2w is also a root of x3 - 2 in <C, where 

-1 + V'Si. . 
w = 

2 
1s a complex cube root of 1. Applymg Corollary 11.8 to the 

identity map iQ ~ lCD we see that the real subfield Q(\Y2) is isomorphic to 
the complex subfield lCD( V2w) under a map that sends \12 to V2w and each 
element of lCD to itself. 

Exercises 

NOTE: Unless stated otherwise, K is an extension field of the field F. 

A. 1. Let {E;Ii e. I} be a family of subfields of K. Prove that nE; is a subfield of K 
iEl 

2. If u e.K, prove that F(u2
) <;::; F(u). 

3. If u e.K and c e.F, prove that F(u +c)= F(u) = F(cu). 

4. Prove that 0(3 + i) = Q(l - i). 

5. Prove that the given element is algebraic over lCD: 

(a) 3 + Si (b) Vi- V2 (c) 1 + \12 
6. If u E K and u2 is algebraic over F, prove that u is algebraic over F 

7. If Lis a field such that F <;::; K <;::; L and u E L is algebraic over F, show that u is 
algebraic over K. 

8. If u, v E K and u + vis algebraic over F, prove that u is algebraic over F( v). 

9. Prove that Vii is algebraic over ICD('rr). 

10. If u E K is transcendental over F and 0 F * c E F, prove that each of u + 1 p, cu, 
and u2 is transcendental over F. 

11. Find [Q({/2): lCD]. 
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12. If a + hiE C and h =F 0, prove that C = IR(a + hi). 

13. If [K:F] is prime and u EKis algebraic over F, show that either F(u) = K or 
F(u) =F. 

14. Prove that x4
- 16x2 + 4 is irreducible in Q[x]. 

B. 15. Show that every element of Cis algebraic over IR [Hint: See Lemma 4.29.] 

16. If u E K is algebraic over F and c E F, prove that u + 1 F and cu are algebraic 
over F. 

17. Find the minimal polynomial of the given element over Q: 

(a) V1 + -v'5 (b) V3i + v'2 
18. Find the minimal polynomial of v'2 + 'i over Q and over R 

19. Let u be an algebraic element of Kwhose minimal polynomial in F[x] has prime 
degree. If E is a field such that F £;;;; E £;;;; F( u ), show that E = For E, = F( u ). 

20. Let u be an algebraic element of Kwhose minimal polynomial in F[x] has odd 
degree. Prove that F(u) = F(u2

). 

21. Let F = Q( 7T4) and K = Q( 1T). Show that 1T is algebraic over F and find a basis 
of Kover F. 

22. If rands are nonzero, prove that Q(Vr) = Q(Vs) if and only if r = h for 
some tEO. 

23. If K is an extension field of Q such that [K:Q] = 2, prove that K = Q (Vd) for 
some square-free integer d. [Square-free means dis not divisible by p 2 for any 
prime p.] 

24. If u E K is transcendental over F, prove that F( u) = F(x), where F(x) is the 
field of quotients of F[x], as in Example 1 of Section 10.4. [Hint: Consider the 
map from F(x) to F(u) that sendsf(x)jg(x) tof(u)g(u)- 1

.] 

25. If u E K is transcendental over F, prove that all elements ofF( u), except those 
in F, are transcendental over F. 

3 

26. Let F(x) be as in Exercise 24. Show that ~1 E F(x) is transcendental 
x+ 

over F. 

Algebraic Extensions 

The emphasis in the last section was on a single algebraic element. Now we consider 
extensions that consist entirely of algebraic elements. 

An extension field K of afield F is said to be an ~lgebraic extension 'ofF if 
every element of K is algebraic ,over F. 
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EXAMPLE 1 

If a + bi E C, then a + bi is a root of 

(x - (a + bi))(x - (a - bi)) = x2 - 2ax + (a2 + b2
) E IR[x]. 

Therefore, a + bi is algebraic over IR, and, hence, C is an algebraic extension 
of JR. On the other hand, neither C nor IR is an algebraic extension of Q since 
there are real numbers (such as rrr and e) that are not algebraic over Q. 

Every algebraic element u over F lies in some finite-dimensional extension field 
ofF, namely F(u), by Theorem 11.7. On the other hand, if we begin with a finite
dimensional extension of F we have 

If K is a fl nite-dimensional extension field ofF, then K is an algebraic exten
sion of F. 

Proof~ By hypothesis, K has a finite basis over F, say { v~> v2, ••• , v11}. Since 
these n elements span K, Lemma 11.2 implies that every linearly inde
pendent set in K must have n or fewer elements. 

If u EK, there are two possibilities: (1) ui = uj with 0::::; i <j; and 
(2) all nonnegative powers of u are distinct. In Case (1), tt is a root of 
the polynomial x;- xj EF[x] and hence, is algebraic over F. In Case (2), 
{lF> u, u2

, ..• , u 11
} is a set of n + 1 elements inK and must, therefore, be 

linearly dependent over F. Consequently, there are elements c; in F, not 
all zero, such that c0lp + c1u + c2u

2 + · · · + C11U
11 = Op. Therefore, u is 

the root of the nonzero polynomial c0 + c1x + c2x
2 + · · · + C11X

11 in F[x] 
and, hence, algebraic over F. 

If an extension field K of F contains a transcendental element u, then K must 
be infinite dimensional over F (otherwise u would be algebraic by Theorem 11.9). 
Nevertheless, the converse of Theorem 11.9 is false since there do exist infinite
dimensional algebraic extensions (Exercise 16). 

Simple extensions have a nice property. You need only verify that the single ele
ment u is algebraic over F to conclude that the entire field F(u) is an algebraic 
extension (because F(u) is finite dimensional by Theorem 11.7 and, hence, algebraic 
by Theorem 11.9). This suggests that generalizing the notion of simple extension 
might lead to fields whose algebraicity could be determined by checking just a finite 
number of elements. 

If UJ> ... , U 11 are elements of an extension field K ofF, let 

F(ull u2o ... , u") 

denote the intersection of all the subfields of K that contain F and every u;. As in the case 
of simple extensions, F( ub ... , u11 ) is the smallest subfield of K that contains F and all the 
u;. F(ttb ... , u11 ) is said to be a finitely generated extension ofF, generated by ub . .. , U 11 • 
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EXAMPLE 2 

The field 0( v'3, i) is the smallest subfield of~ that contains both the field 0 
and the elements v'3 and i. 

EXAMPLE 3 

A finitely generated extension may actually be a simple extension. For instance, 
the field O(i) contains both i and - i, so Q(i, - i) = O(i). 

EXAMPLE 4 

Every finite-dimensional extension is also finitely generated. If { u11 ••• , un] is 
a basis of Kover F, then all linear combinations of the ui (coefficients in F) are 
in F(u11 • •• , un). Therefore, K = F(1.t 11 ••• , un). 

The key to dealing with finitely generated extensions is to note that they can be 
obtained by taking successive simple extensions. For instance, if K is an extension 
field ofF and u, v EK, then F(u, v) is a subfield of K that contains both F and u 
and, hence, must contain F( u). Since v is in F( u, v), this latter field must contain 
F(u)(v), the smallest subfield containing both F(u) and v. But F(u)(v) is a field 
containing F, u, and v and, hence, must contain F(u, v). Therefore, F(u, v) = F(u)(v). 
Thus the finitely generated extension F(u, v) can be obtained from a chain of simple 
extensions: 

Ff.;;. F(u) f.;;. F(u)(v) = F(u, v). 

EXAMPLE 5 

The extension field Q( v'3, i) can be obtained by this sequence of simple 
extensions: 

As we saw in Example 4 of Section 11.2, x2 
- 3 is the minimal polynomial 

of v'3 over 0, so that [O(v'3): 0] = 2 by Theorem 11.7. Similarly, x2 + 1 
[whose coefficients are in 0( v'3)] is the minimal polynomial of i over 0( v'3) 
because its roots ±i are not in o( v'3), so x2 + 1 is irreducible over o( v'3) by 
Corollary4.19. By Theorem 11.7 again, [O(v'3)(i):O(v'3)] = 2. Consequently, 
by Theorem 11.4, 

[0( v'3, i):Q] = [0( v'3)(i):O( v'3)][0( \13):0] = 2. 2 = 4. 

Thus, the finitely generated extension 0( \13, i) is finite dimensional and, hence, 
algebraic over 0 by Theorem 11.9. 
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Essentially the same argument works in the general case and provides a useful way 
to determine that an extension is algebraic: 

If K = F(u1, ... , un) is a finitely generated extension field ofF and each U1 is 
algebraic over F, then K is a finite-dimensional algebraic extension of F. 

Proof~~> The field K can be obtained from this chain of extensions: 

F r;;_ F( u 1) r;;;; F( UJ> u2) r;;_ F( ul> ttl> u3) r;;;; · · · 
r;;;.F(ul> ... , U 11 -1) r;;;.F(ul> ... , U 11) = K. 

Furthermore, F(ub u2) = F(uJ)(u2), F(uJ> u2, u3) = F(ub u2)(u3), and in 
general F( ul> ... , u;) is the simple extension F( ul> ... , ui-1)( u} Each u,. 
is algebraic over F and, hence, algebraic over F(ul> . .. , u,._ 1) by Exercise 
7 of Section 11.2. But every simple extension by an algebraic element is 
finite dimensional by Theorem 11.7. Therefore, 

[F(ul> . .. , u,.):F(u1, ... , u,._ 1)] 

is finite for each i = 2, ... , n. Consequently, by repeated application of 
Theorem 11.4, we see that [K:F] is the product 

[K:F(ub ... , U11 _ 1)] • • • [F(ub u2, u3):F(ul> u2)][F(u1, u2):F(u1)][F(u1):F]. 

Thus [K:F] is finite, and, hence, K is algebraic over Fby Theorem 11.9. 

EXAMPlE 6 

Both v'3 and V5 are algebraic over 0, so 0( v'3, VS) is a finite-dimensional 
algebraic extension field of Q by Theorem 11.10. We can calculate the dimen
sion of 0( v'3, VS) over 0 by considering this chain of simple extensions: 

or;;;; o( v'3) r;;_ o( V3)( VS) = o( V3, VS). 

We know that [0( v'3):Q] = 2. To determine [0( V3)( VS):O( V3)] we shall 
find the minimal polynomial of V5 over O(v'3).The obvious candidate is 
x 2

- 5; it is irreducible in O[x], but we must show that it is irreducible over 
0( V3), in order to conclude that it is the minimal polynomial. If V5 or -YS 
is in o( v'3), then ± V5 = a + bv'3, with a, bE 0. Squaring both sides shows 

5 - c?- 3b2 

that 5 = a2 + 2abv'3 + 3b2
, whence v'3 = b , contradicting 

2a 
the fact that v'3 is irrational; a similar contradiction results if a = 0 orb = 0. 

Therefore, ±YS are not in o( v'3), and, hence,~- 5 is irreducible over o( V3) 
by Corollary 4.19. So x2 

- 5 is the minimal polynomial of V5 over 0( \13), and 
[O(V3)(V5): O(v'3)] = 2 by Theorem 11.7. Consequently, by Theorem 11.4 

[O(V3, VS):OJ = [O(V3)(V5):0(v'3)J[O(v'3):0J = 2 · 2 = 4. 
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The remainder of this section is not used in the sequel. Theorem 11.4 tells us that 
the top field in a chain of finite-dimensional extensions is finite dimensional over the 
ground field. Here is an analogous result for algebraic extensions that may not be finite 
dimensional. ' 

If Lis an algebraic extension field of K and K is an algebraic extension field of 
F, then L is an algebraic extension of F. 

Proof~ Let u E L. Since u is algebraic over K, there exist ai E K such that 
a0 + a1u + a2u 2 + · · · + a111U

111 = OK. Since each of the ai is in the field 
F(ab ... , am), u is actually algebraic over F(a1, ••• , am)· Consequently, 
in the extension chain 

F(a, ... , a111 )( u) is finite dimensional over F(all ... , am) by Theorem 11. 7. 
Furthermore, [F(all ... , a111):F] is finite by Theorem 11.10 since each ai is 
algebraic over F. Therefore, F(ab ... , a11, u) is finite dimensional over F 
by Theorem 11.4 and, hence, is algebraic over Fby Theorem 11.9. Thus 
u is algebraic over F. Since u was an arbitrary element of L, L is an alge
braic extension of F. II 

Let K be an extension field ofF and let E be the set of all elements of K that 
are algebraic over F. Then Eisa subfield of K and an algebraic extension field 
of F. 

Proof~ Every element of F is algebraic over F, so F ~E. If u, vEE, then u and v 
are algebraic over Fby definition. The subfield F(u, v) is an algebraic ex
tension of Fby Theorem 11.10, and, hence, F(u, v) ~E. Since F(u, v) is 
a field, u + v, uv, -u, -v EF(u, v) ~E. Similarly, if u is nonzero, then 
u- 1 EF(u, v) ~E. Therefore, E is closed under addition and multiplica
tion; negatives and inverses of elements of E are also in E. Hence, E is a 
field. a 

EXAMPlE 7 

If K = C and F = Q in Corollary 11.12, then the field E is called the field of 
algebraic numbers. The field E is an infinite-dimensional algebraic extension 
of Q (Exercise 16). Algebraic numbers were discussed in a somewhat different 
context on page 350. 
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Exercises 

NOTE: Unless stated otherwise, K is an extension field of the field F. 

A. 1. If u, v EK, verify that F(u)(v) = F(v)(u). 

2. If K is a finite field, show that K is an algebraic extension of F. 

3. Find a basis of the given extension field of a. 

(a) a(vs, i) (b) a(vs, V7) (c) a(V2, \13, vs) (d) a(\12, \13) 
4. Find a basis of a( \12, + \13) over a( \13). 
5. Show that [a( \13, i ):a] = 4. 

6. Verify that [a(V2, VS, VIO):a] = 4. 

7. If [K:F] is finite and u is algebraic over K, prove that [K(u):K] :s; [F(u):F]. 

8. If [K:F] is finite and u is algebraic over K, prove that [K(u):F(u)] :s; [K:F]. 
[Hint: Show that any basis of Kover Fspans K(u) over F(u).] 

9: If [K:F] is finite and u is algebraic over K, prove that [F( u):F] divides [K( u):F]. 

B.10. Prove that [K:F] is finite if and only if K = F(u~> .. . , un), with each u; 
algebraic over F. [This is a stronger version of Theorem 11.10.] 

11. Assume that u, v EK are algebraic over F, with minimal polynomials p(x) and 
q(x), respectively. 

(a) If degp(x) = m and deg q(x) =nand (m, n) = 1, prove that [F(u, v):F] = mn. 

(b) Show by example that the conclusion of part (a) may be false if m and n 
are not relatively prime. 

(c) Whatis[a(V2, V2):a]? 

12. Let D be a ring such that F <;:;; D <;:;; K. If K is algebraic over F, prove that D is a 
field. [Hint: To find the inverse of a nonzero u ED, use Theorem 11.7 to show 
that F(u) <;:;;D.] 

13. Let p(x) and q(x) be irreducible in F[x] and assume that deg p(x) is relatively 
prime to deg q(x). Let u be a root of p(x) and v a root of q(x) in some 
extension field of F. Prove that q(x) is irreducible over F(u). 

14. (a) Let F1 <;:;; F2 <;:;; F3 <;:;; • • • be a chain of fields. Prove that the union of all the F; 
is also a field. 

(b) If each F; is algebraic over F1, show that the union of the F; is an algebraic 
extension of F1• 

15. Let E be the field of all elements of K that are algebraic over F, as in Corol
lary 11.12. Prove that every element of the set K- E is transcendental over E. 

16. Let E be the field of algebraic numbers (see Example 7). Prove that E is an 
infinite dimensional algebraic extension of a. [Hint: It suffices to show that 
[E:a] :2.: n for every positive integer n. Consider roots of the polynomial 
xn - 2 and Eisenstein's Criterion.] 
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17. Assume that 1p + 1p =I= Op. If u EF, let Vu denote a root of x2 - u 
inK. Prove that F( Vu + Vv) = F( Vu, Vv). [Hint: 1, (Vu + vv), 
(Vu + Vv)Z, (Vu + Vv) 3

, etc., must span F( Vu + Vv) by Theorem 11.7. 
Use this to show that Vu and Vv are in F(Vu + vv).] 

18. If nh ... , n1 are distinct positive integers, show that 

[0( VnJ, ... , vl1;): OJ :::; 21
• 

C.19. If each n; is prime in Exercise 18, show that:::; may be replaced by=. 

Splitting Fields 

Let F be a field and f(x) a polynomial in F[x]. Previously we considered extension 
fields of F that contained a root of f(x). Now we investigate extension fields that 
contain all the roots of f(x). 

The word "all" in this context needs some clarification. Suppose f(x) has degree n. 
Then by Corollary 4.17, f(x) has at most n roots in any field. So if an extension field 
K ofF contains n distinct roots of f(x), one can reasonably say that K contains "all" 
the roots of f(x), even though there may be another extension of Fthat also contains 
n roots of f(x). On the other hand, suppose that K contains fewer than n roots of f(x). 
It might be possible to find an extension field of K that contains additional roots of 
f(x). But if no such extension of K exists, it is reasonable to say that K contains "all" 
the roots. We can express this condition in a usable form as follows. 

Let K be an extension field ofF andf(x) a nonconstant polynomial of degree n in 
F[x]. If f(x) factors in K[x] as 

f(x) = c(x - u 1)(x - u2) • • • (x - U 11) 

then we say thatf(x) splits over the field K. In this case, the (not necessarily distinct) 
elements ull ... , u 11 are the only roots of f(x) inK or in any extension field of K. For 
if vis in some extension of K andf(v) = Op, then c(v- u 1)(v- u2) • • • (v- u11 ) = Op. 
Now cis nonzero sincef(x) is nonconstant. Hence one of the v- u;must be zero, that 
is, v = u;. So if f(x) splits over K, we can reasonably say that K contains all the roots 
of f(x). The next step is to consider the smallest extension field that contains all the 
roots of f(x). 

IfF is a field and f(x) EF[x], then an extension field K of.F is said to be a 
splitting field (or root field) of f(x) over Fprovided that 

(i) f(x) splits over K, say f(x) = c(x - u1)(x - u2) • · • (x- u,J; 

(ii) K = F(ut, U2, ... , Un). 

EXAMPLE 1 

If~ + 1 is considered as a polynomial in IR[x], then Cis a splitting field since 
~ + 1 = (x + 1)(x- 1) in C[x] and C = IR(l) = IR(i, -i). Similarly, 0( V2) is a splitting 



11 .4 S p I itt i n g Fie I d s 389 

field of the polynomial x2
- 2 in Q[x] since x2 

- 2 = (x + V2)(x - \12) and 
o(\12) = o(\12,- \12). 

EXAMPlE 2 

The polynomialf(x) = x4
- x2

- 2 in Q[x] factors as (x2 - 2)(x2 + 1), so its 
roots inC are ± V2 and ± i. Therefore, 0( \12, i) is a splitting field of f(x) 
over Q. 

EXAMPlE 3 

Every first-degree polynomial ex + din F[x] splits over F since ex + d = 
e(x- ( -e-1d)) with -e- 1d EF. Obviously, Fis the smallest field containing both 
Fand e- 1d, that is, F= F(e-1d). So Fitself is the splitting field of ex+ dover F. 

EXAMPlE 4 

The concept of splitting field depends on the polynomial and the base field. For 
instance, C is a splitting field of x2 + 1 over IR but not over Q because C is not 
the extension Q(i, -i) = Q(i). See Exercise 1 for a proof. 

At this point we need to answer two major questions about splitting fields: Does 
every polynomial in F[x] have a splitting field over F? If it has more than one splitting 
field over F, how are they related? 

The informal answer to the first question is easy. Givenf(x) E F[x], we can find an 
extension F( u) that contains a root u of f(x) by Corollary 5.12. By the Factor Theorem 
in F(u)[x], we know thatf(x) = (x- u)g(x). By Corollary 5.12 again there is an exten
sion F(u)(v) of F(u) that contains a root v of g(x). Continuing this, we eventually get a 
splitting field of f(x). We can formalize this argument via induction and prove slightly 
more: 

.·.·theOrem ·11.1 
Let F be a field and f(x) a nonconstant polynomial of degree n in F(x). Then 
there exists a splitting field K of f(x) over F such that [K:F]::; nl. 

Proof~ The proof is by induction on the degree of f(x). If f(x) has degree 1, 
then F itself is a splitting field of f(x) and [F:F] = 1 ::; 1!. Suppose 
the theorem is true for all polynomials of degree n - 1 and thatf(x) 
has degree n. By Theorem 4.14 f(x) has an irreducible factor in F[x] 
Multiplying this polynomial by the inverse of its leading coefficient 
produces a monic irreducible factor p(x) of f(x). By Theorem 5.11 
there is an extension field that contains a root u of p(x) (and, hence, 
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of f(x)). Furthermore, p(x) is necessarily the minimal polynomial of u. 
Consequently, by Theorem 11.7 [F(u): F] = degp(x)::::; degf(x) = n. 
The Factor Theorem 4.16 shows thatf(x) = (x - u)g(x) for some g(x) 
EF(u)[x]. Since g(x) has degree n- 1, the induction hypothesis guar
antees the existence of a splitting field K of g(x) over F(u) such that 
[K:F(u)]::::; (n- 1)!. In K[x], 

g(x) = c(x - u 1)(x - u2) • • • (x - U 11 _,) 

and, hence,j(x) = c(x- u)(x- u 1) • • • (x- U 71 _ 1). Since 

K = F(u)(u1, .•. , U 11 _ 1) = F(u, UJ> ••• , U 11 _ 1) 

we see that K is a splitting field of f(x) over F such that [K:F] = [K:F(u)] 
[F(u):F]::::; ((n- l)!)n = n!. This completes the inductive step and the 
proof of the theorem. Ill 

The relationship between two splitting fields of the same polynomial is quite easy 
to state: 

Any two splitting fields of a polynomial in F[x] are isomorphic. 

Surprisingly, the easiest way to prove this fact is to prove a stronger result of which 
this is a special case. 

Let a:F---+ E be an isomorphism of fields, f(x) a nonconstant polynomial in 
F[x], and a{(x) the corresponding polynomial in E[x]. If K is a splitting field of 
f(x) over F and L is a splitting field of af(x) over E, then a extends to an 
isomorphism K = L. 

If F = E and a is the identity map F---+ F, then the theorem states that any two 
splitting fields of f(x) are isomorphic. 

Proof of Theorem 11.14~~> The proof is by induction on the degree of f(x). If 
degf(x) = 1, then by the definition of splitting fieldf(x) = c(x- u) in 
K [x] and K = F(u). Butf(x) = ex- cu is in F[x], so we must have c 
and cu in F. Hence, u = c-1cu is also in F. Therefore, K = F(u) =F. On 
page 380 we saw that a extends to an isomorphism F[x] = E[x]; hence, 
af(x) also has degree 1, and a similar argument shows that E = L. In 
this case, a itself is an isomorphism with the required properties. 

Suppose the theorem is true for polynomials of degree n - 1 and that 
f(x) has degree n. As in the proof of Theorem 11.13,j(x) has a monic 
irreducible factor p(x) in F[x] by Theorem 4.14. Since a extends to an 
isomorphism F[x] = E[x], (page 380), ap(x) is a monic irreducible factor 
of af(x) ~n E[x]. Every root of p(x) is also a root of f(x), so K contains 
all the roots of p(x), and similarly L contains all the roots of ap(x). Let 
u be a root of p(x) inK and v a root of ap(x) in L. Then a extends to an 
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isomorphism F( u) ~ E( v) that maps u to v by Corollary 11.8, and the 
situation looks like this: 

K L 
Ul ur 
F(u) = E(v) 
Ul Ul 
F ~E. 

The Factor Theorem 4.16 shows thatf(x) = (x- u)g(x) in F(u)[x] and, 
hence, in E(v)[x] 

crf(x) = cr(x - u)crg(x) = (x - cru)crg(x) = (x - v)crg(x). 

Now f(x) splits over K, say f(x) = c(x- u)(x- u2) • • • (x - u11). 

Sincef(x) = (x - u)g(x), we have g(x) = c(x - u2) • • • (x- u11). The 
smallest subfield containing all the roots of g(x) and the field F(u) is 
F(u, u2, ••• , u11) = K, so K is a splitting field of g(x) over F(u). Similarly, 
Lis a splitting field of crg(x) over E(v). Since g(x) has degree n- 1, the 
induction hypothesis implies that the isomorphism F(u) = E(v) can be 
extended to an isomorphism K = L. This completes the inductive step 
and the proof of the theorem. 

A splitting field of some polynomial over F contains all the roots of that poly
nomial by definition. Surprisingly, however, splitting fields have a much stronger 
property, which we now define. 

An algebrai.9 extension.· field· Kof f Is normal prqvided thafwheneveran • 
irreducible polynomic:Hfn F[x] has one root inK, thert it splits over K(that .. 

. is, has all. its roots lrr K). · · · · .· · · ·. 

The field K is a splitting field over the field F of some polynomial in F[x] ·If and 
only if K is a finite-dimensional, normal extension of F. 

Proof~ If K is a splitting field of f(x) E F[x], then K = F( u~> ... , u11), where the 
u; are all the roots of f(x). Consequently, [K:F] is finite by Theorem 11.10. 
Let p(x) be an irreducible polynomial in F[x] that has a root v inK. 
Consider p(x) as a polynomial in K[x] and let L be a splitting field of 
p(x) over K, so that F 5;; K 5;; L. To prove that p(x) splits over K, we need 
only show that every root of p(x) in Lis actually inK. 

Let wE L be any root of p(x) other than v. By Corollary 11.8 (with 
E = F and cr the identity map), there is an isomorphism F( v) = F( w) that 
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maps v to w and maps every element ofF to itself. Consider the sub field 
K(w) of L; the situation looks like this: 

Since 

K K(w) 
Ul Ul 

F(v) = F(w) 
Ul Ul 
F = F. 

K(w) = F(ub ; .. , U 11)(w) = F(ull ... , um w) = F(w)(ull ... , U 11 ) 

we see that K(w) is a splitting field of f(x) over F(w). Furthermore, since 
v E K and K is a splitting field of f(x) over F, K is also a splitting field 
of f(x) over the subfield F(v). Consequently, by Theorem 11.14 the iso
morphism F(v) = F(w) extends to an isomorphism K-+ K(w) that maps 
v tow and every element of Fto itself. Therefore, [K:F] = [K(w):F] by 
Theorem 11.5. In the extension chain Fe;;;_ Kr;;;_ K(w), [K(w):K] is finite by 
Theorem 11.7 and [K:F] is finite by the remarks in the first paragraph of 
the proof. So Theorem 11.4 implies that 

[K:F] = [K(w):F] = [K(w):K][K:F]. 

Canceling [K:F] on each end shows that [K(w):K] = 1, and, therefore, 
K(w) = K. But this means that w is inK. Thus every root of p(x) in Lis 
inK, and p(x) splits over K. Therefore, K is normal over F. 

Conversely, assume K is a finite-dimensional, normal extension of F 
with basis { ub ... , U11 }. Then K = F( u1, ... , u 11). Each ui is algebraic 
over Fby Theorem 11.9 with minimal polynomialpi(x). Since eachplx) 
splits over Kby normality,f(x) = p 1(x) · · · p 11(x) also splits over K. 
Therefore, K is the splitting field of f(x). Ill 

EXAMPLE 5 

The field 0( V'2) contains the real root V'2 of the irreducible polynomial 
x3

- 2 E Q[x] but does not contain the complex root \Y2w (as described in 
Example 7 of Section 11.2). Therefore, 0( V'2) is not a normal extension of 0 
and, hence, cannot be the splitting field of any polynomial in Q[x]. 

At this point it is natural to ask if a field F has an extension field over which 
every polynomial in F[x] splits. In other words, is there an extension field that 
contains all the roots of all the polynomials in F[x]? The answer is "yes," but the 
proof is beyond the scope of this book. A field over which every nonconstant 
polynomial splits is said to be algebraically closed. For example, the Fundamental 
Theorem of Algebra and Corollary 4.28 show that the field C of complex numbers 
is algebraically closed. 
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If K is an algebraic extension ofF and K is algebraically closed, then K is called the 
algebraic closure of F. The word "the" is justified by a tpeorem analogous to Theorem 
11.14 that says any two algebraic closures ofF are isomorphic. For example, Cis the 
algebraic closure of IR since C = IR(i) is an algebraic extension of IR that is algebraically 
closed. The field C is not the algebraic closure of a, however, since C is not alge
braic over a. The subfield E of algebraic numbers (see Example 7 of Section 11.3) 
is the algebraic closure of a (Exercise 20). · 

Exercises 

NOTE: F is afield. 

A. 1. Show that V2 is not in a(i) and, hence, C * a(z). [Hint: Show that V2 = a + bi, 
with a, bE a, leads to a contradiction.] 

2. Show that x 2
- 3 and x 2

- 2x- 2 are irreducible in Q[x] and have the same 
splitting field, namely a( \13). 

3. Find a splitting field of x4 
- 4x2 

- 5 over a and show that it has dimension 
4 over a. 

4. If f(x) E IR[x], prove that IR or Cis a splitting field of f(x) over IR. 

5. Let K be a splitting field of f(x) over F. If E is a field such that F ~ E ~ K, 
show that K is a splitting field of f(x) over E. 

6. Let K be a splitting field of f(x) over F. If [K:F] is prime, u E K is a root of 
f(x), and u ~ F, show that K = F(u). 

7. If u is algebraic over F and K = F(u) is a normal extension ofF, prove that K 
is a splitting field over F of the minimal polynomial of u. 

8. Which of the following are normal extensions of a? 
(a) a(V3) (b) a(V3) (c) a( vs, i) 

9. Prove that no finite field is algebraically closed. [Hint: If the elements of the 
field Fare a1, ••• , a"' with a1 nonzero, consider 
a1 + (x- a1)(x- a2) • • • (x- a11) EF[x].] 

B. 10. By finding quadratic factors, show that a( \12, \13) is a splitting field of 
x4 + 2x3

- 8x2
- 6x- 1 over a. 

11. Find and describe a splitting field of x4 + 1 over a. 
12. Find a splitting field of x4 - 2 

(a) over a. (b) over IR. 

13. Find a splitting field of x 6 + x 3 + 1 over a. 
14. Show that a( \12, i) is a splitting field of x 2

- 2\12x + 3 over a( \12). 
15. Find a splitting field of x2 + 1 over 1':3. 

16. Find a splitting field of x 3 + x + 1 over 1':2 . 
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17. If K is an extension field ofF such that [K:F] = 2, prove that K is normal. 

18. Let F, E, K be fields such that F ~ E ~ K and E = F( ub ... , u 1), where the u; 

are some of the roots of f(x) E F[x]. Prove that K is a splitting field of f(x) 
over F if and only if K is a splitting field of f(x) over E. 

19. Prove that the following conditions on a field K are equivalent: 

(i) Every nonconstant polynomial in K[x] has a root inK. 

(ii) Every nonconstant polynomial in K[x] splits over K (that is, K is 
algebraically closed). 

(iii) Every irreducible polynomial in K[x] has degree 1. 

(iv) There is no algebraic extension field pf K except K itself. 

20. Let K be an extension field of F and E the subfield of all elements of K that 
are algebraic over F, as in Corollary 11.12. If K is algebraically closed, prove 
that E is an algebraic closure of F. [The special case when F = Q and K = C 
shows that the field E of algebraic numbers is an algebraic closure of Q.] 

21. Let Kbe an algebraic extension field ofF such that every polynomial in F(x) 
splits over K. Prove that K is an algebraic closure of F. 

C. 22. If K is a finite-dimensional extension field ofF and a:F _,. K is a homomorphism 
of fields, prove that there exists an extension field L of K and a homomorphism 
r:K _,. L such that r(a) =a( a) for every a EF. 

23. Prove that a finite-dimensional extension field K of F is normal if and only if 
it has this property: Whenever Lis an extension field of K and a:K _,. L an 
injective homomorphism such that a( c)= c for every c EF, then a(K) ~K. 

Separability 

Every polynomial has a splitting field that contains all its roots. These roots may all be 
distinct, or there may be repeated roots.* In this section we consider the case when the 
roots are distinct and use the information obtained to prove a very useful fact about 
finite-dimensional extensions. 

Let F be a field. A polynomial f(x) E F[x] of degree n is said to be separable if it 
has n distinct roots in some splitting field.t Equivalently,f(x) is separable if it has no 
repeated roots in any splitting field. If K is an extension field of F, then an' element 
u E K is said to be separable over F if u is algebraic over F and its minimal polynomial 
p(x) E F[x] is separable. The extension field K is said to be a separable extension (or to 
be separable over F) if every element of K is separable over F. Thus a separable exten
sion is necessarily algebraic. 

*A repeated root occurs when f(x) = (x - u1) • • • (x - Un) in the splitting field and some U; = u1 
with i * }. 
tsince any two splitting fields are isomorphic, this means that f(x) has n distinct roots in every 
splitting field. 
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EXAMPlE 1 

The polynomial :x? + 1 E Q[x] is separable since it has.distinct roots i and -i 
in C. Butf(x) = x 4 

- x 3 
- x + 1 is not separable because it factors as 

(x- 1)2(x2 + x + 1). Hence,f(x) has one repeated root and a total of three 
distinct roots in C. 

There are several tests for separability that make use of the following concept. The 
derivative of 

f(x) = c0 + c1x + c2x 2 + · · · + C11X
11 EF[x] 

is defined to be the polynomial 

f'(x) = c1 + 2c2x + 3c3x 2 + · · · + nc11x''- 1 EF[x]*. 

You should use Exercises 4 and 5 to verify that derivatives defined in this algebraic 
fashion have these familiar properties. 

(f + g)'(x) = f'(x) + g'(x) 

(fg)'(x) = f(x)g' (x) + f'(x)g(x). 

Let F be a field and f(x) Ef[x]. If f(x) and f'(x) are relatively prime in f[x], then 
f(x) is separable. 

Note that the lemma operates entirely in F[x] and does not require any knowl
edge of the splitting field to determine separability. For other separability criteria, see 
Exercises 8 - 1 0. 

Proof of lemma 11.16 I» We shall prove the contrapositive: If f(x) is not separable, 
thenf(x) andf'(x) are not relatively prime (which is logically equivalent 
to the statement of the theorem).t Let Kbe a splitting field of f(x) and 
suppose thatf(x) is not separable. Thenj(x) must have a repeated root u 
inK. Hence,j(x) = (x- u?g(x) for some g(x) EK[x] and 

f'(x) = (x- u)2g'(x) + 2(x- u)g(x). 

Therefore,j'(u) = OFg'(u) + O~(u) =OF and u is also a root ofj'(x). If 
p(x) EF[x] is the minimal polynomial of u, thenp(x) is nonconstant and 
divides bothj(x) andf'(x). Therefore,j(x) andf'(x) are not relatively 
prime. Ill• 

*When F = IR, this is the usual derivative of elementary calculus. But our definition is purely algebraic 
and applies to polynomials over any field, whereas the limits used in calculus may not be defined in 
some fields. 
tsee Appendix A (pages 503, 504 and 506) for the definition and use of the contrapositive in proofs. 
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Recall that for a positive integer n and c E F, 

nc is the element c + c + · · · + c (n summands). 

A field F is said to have characteristic 0 if n 1 F =I= 0 F for every positive n. For example, 
Q, IR, and C all have characteristic 0, but 7L3 does not (since 3 · 1 = 0 in 7L3). Every 
field of characteristic 0 is infinite (Exercise 3). If Fhas characteristic 0, then for every 
positive n and c E F, 

So nc = OF if and only if c = OF· This fact is the key to separability in fields of char
acteristic 0: 

Let F be a field of characteristic 0. Then every irreducible polynomial in F[x] is 
separable, and every algebraic extension field K ofF is a separable extension. 

The theorem may be false ifF does not have characteristic 0 (Exercise 15). 

Proof of Theorem 11.17 II> An irreducible p(x) E F[x] is nonconstant and, hence, 

p(x) = eX' + (lower-degree terms), 

Then 

p'(x) = (nc)xn-! + (lower-degree terms), with nc =!=OF· 

Therefore, p' (x) is a nonzero polynomial of lower degree than the 
irreducible p(x). So p(x) and p' (x) must be relatively prime. Hence, p(x) 
is separable by Lemma 11.16. In particular, the minimal polynomial of 
each u E K is separable. So K is a separable extension. Ill 

Separable extensions are particularly nice because every finitely generated (in 
particular, every finite-dimensional) separable extension is actually simple: 

If K is a finitely generated separable extension field ofF, then K = F(u) for 
some uEK. 

Proof~~> By hypothesis K = F(u~o ... , u 11). The proof is by induction on n. There 
is nothing to prove when n = 1 and K = F(ut). In the next paragraph we 
shall show that the theorem is true for n = 2. Assume inductively that it 
is true for 11 = k - 1 and suppose n = k. By induction and the case 11 = 2, 
there exist t, u E K such that 

*This theorem will be used only in Section 12.2. 
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To complete the proof, we assume K = F( v, w) and show that K is 
a simple extension of F. Assume first that F is infinite (which is always 
the case in characteristic 0 by Exercise 3): Letp(x) EF[x] be the minimal 
polynomial of v and q(x) EF[x] the minimal polynomial of w. Let L be a 
splitting field of p(x)q(x) over F. Let w = w1, w2o ... , Wn be the roots of 
q(x) in L. By the definition of separability, all theW; are distinct. Let 
v = v1, v2, • .. , v111 be the roots of p(x) in L. Since Pis infinite, there exists 
c E F such that 

V·- V 
c=!=----'--'-

w- wj 
fora111::::; i:::=;m, 1 <j:::=;n, 

Let u = v + cw. We claim that K = F(u). To show that w EF(u), let 
h(x) = p(u- ex) EF(u)[x] and note that w is a root of h(x): 

h(w) = p(u- cw) = p(v) = OF· 

Suppose some wj (with}=!= 1) is also a root of h(x). Thenp(u- cwj) = 
OF> so that u - cwj is one of the roots of p(x), say u - cwj = v;. Since 
u = v + cw, we would have 

v + cw - cwj = V; or, equivalently, c= 
w- wj 

This contradicts ( * ). Therefore, w is the only common root of q(x) and h(x). 
Let r(x) be the minimal polynomial of w over F(u). Then r(x) 

divides q(x), so that every root of r(x) is a root of q(x). But r(x) also 
divides h(x), so all its roots are roots of h(x). By the preceding para
graph, r(x) has a single root win L. Therefore, r(x) EF(u)[x] must have 
degree 1, and, hence, its root w is in F(u). Since v = u- cw, with u, 
w EF(u), we see that v EF(u) and, hence,](= F(v, w) £;;; F(u). But 
u = v + cw EK, so F(u) £;;; K, whence K = F(u). This completes the 
proof when F is infinite. For the case of finite F, see Theorem 11.28 in 
the next section. • 

EXAMPlE 2 

Applying the proof of the theorem to 0( \13, YS), we have v = \13, v2 = - \13, 
w = YS, w2 = -VS, so we can choose c = 1. Then u = V3 + Y5 and 
o( V3, vs) is the simple extension 0( V3 + vs). 

Exercises 

NOTE:]( is an extension field of the .field F 

A. 1. If ](is separable over F and E is a field with F £;;; E £;;; K, show that K is 
separable over E. 

2. If Fhas characteristic 0, show that Khas characteristic 0. 
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3. Prove that every field of characteristic 0 is infinite. [Hint: Consider the elements 
n1Fwith n EZ, n > 0.] 

B. 4. If f(x), g(x) EF[x], prove 

(a) (f + g)'(x) = f'(x) + g'(x). 

(b) If cEF, then (cf)'(x) = cf'(x). 

5. (a) If j(x) =ex' EF[x] and g(x) = bo + b,x + · · · + bkx' EF[x], prove that 
(fg)'(x) = f(x)g'(x) + f'(x)g(x). 

(b) If f(x), g(x) are any polynomials in F[x], prove that (fg)'(x) = f(x)g'(x) + 
f'(x)g(x). [Hint: If j(x) = a0 + a1x + · · · + anx', then (fg)(x) = a0g(x) + 
a1xg(x) + · · · + a11x'g(x); use part (a) and Exercise 4.] 

6. If f(x) E F[x] and n is a positive integer, prove that the derivative of f(x)" is 
nf(x)"-'J'(x). [Hint: Use induction on nand Exercise 5.] 

7. (a) If Fhas characteristic O,j(x) EF[x], andf'(x) =OF, prove thatf(x) = c for 
some cEF. 

(b) Give an example in Z2[ x] to show that part (a) may be false if F does not 
have characteristic 0. 

8. Prove that u EK is a repeated root of f(x) EF[x] if and only if u is a root of 
bothf(x) andf'(x). [Hint: f(x) = (x- u)"'g(x) with m 2 1, g(x) EK[x], and 
g(u) =t- OF> u is a repeated root of f(x) if and only if m > 1. Use Exercises 5 and 
6 to computef'(x).] 

9. Prove thatf(x) EF[x] is separable if and only if f(x) andf'(x) are relatively 
prime. [Hint: See Lemma 11.16 and Exercise 8.] 

10. Let p(x) be irreducible in F[x]. Prove that p(x) is separable if and only if 
p'(x) =t-Op 

11. Assume Fhas characteristic 0 and K is a splitting field of f(x) E F[x]. If d(x) 
is the greatest common divisor of f(x) andf'(x) and h(x) = f(x)/d(x) EF[x], 
prove 

(a) f(x) and h(x) have the same roots inK. 

(b) h(x) is separable. 

12. Use the proof of Theorem 11.18 to express each of these. as simple extensions 
of a: 
(a) a( V2, v'3) (b) a( v'3, i) (c) a( V2, v'3, vs) 

13. If p and q are distinct primes, prove that a( Vp, yq) = a( vP + yq). 

14. Assume that Fis infinite, that v, w EK are algebraic over F, and that w is the 
root of a separable polynomial in F[x]. Prove that F(v, w) is a simple extension 
of F. [Hint: Adapt the proof of Theorem 11.18 .] 

15. Here is an example of an irreducible polynomial that is not separable. Let 
F = Zz(t) be the quotient field of Z 2[t] (the ring of polynomials in 
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the indeterminate t with coefficients in £:2), as in Example 1 of 
Section 10.4. 

(a) Prove that:>? - tis an irreducible polynomial in F[x]. [Hint: If x2 - t 
has a root in F, then there are polynomials g(t), h(t) in Z2[t] such that 
[g(t)jh(tW = .t; this leads to a contradiction; apply Corollary 4.19.] 

(b) Prove that:>?- t EF[x] is not separable. [Hint: Showthat its derivative is 
zero and use Exercise 10.] 

Finite Fields 

Finite fields have applications in many areas, including projective geometry, combina
tories, experimental design, and cryptography. In this section, finite fields are charac
terized in terms of field extensions and splitting fields, and their structure is completely 
determined up to isomorphism. 

We begin with some definitions and results that apply to rings that need not be 
fields or even finite. But our primary interest will be in their implications for finite 
fields. 

Let R be a ring with identity. Recall that for a positive integer m and c E R, me is 
the element c + c + · · · + c (m summands). The ring R is said to have characteristic 0 if 
m1R =I= OR for every positive m. On the other hand, if m1R = OR for some positive m, 
then there is a smallest such m by the Well-Ordering Axiom. Then R is said to have 
characteristic n if n is the smallest positive integer such that nlR = OR·* For example, Q 
has characteristic 0 and £:3 has characteristic 3. 

If R is an integral domain, then the characteristic of R is either 0 or a positive 
prime. 

Proof~~> If R has characteristic 0, there is nothing to prove. So assume R has 
characteristic n > 0. If n were not prime, then there would exist positive 
integers k, t such that n = kt, with k <nand t < n. The distributive laws 
show that 

ksummands t summands 

= 1R1R + ' ' ' + 1R1R = 1R + ' ' ' + }R 

= (kt)1R = n1R = OR. 

[kt summands] 

*If you have read Chapter 7, you will recognize that when the characteristic of R is positive, it is 
simply the order of the element 1R in the additive group of R. 
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Since R is an integral domain either klR =OR or tlR =OR, contradict
ing the fact that n is the smallest positive integer such that nlR =OR. 
Therefore, n is prime. 

Let R be a ring with identity of characteristic n > 0. Then k1R =OR if and only 
ifnI k.* 

Proof,... IfnI k, say k = nd, then klR = ndlR = (nl R)(dlR) = OR (dlR) = OR. 
Conversely, suppose klR =OR. By the Division Algorithm, k = nq + r 
with 0::; r < n. Now nlR = OR, so that 

Since r <nand n is the smallest positive integer such that nlR =OR by 
the definition of characteristic, we must haver= 0. Therefore, k = nq 
andn I k. 

Let R be a ring with identity. Then 

(1) The set P = {k1RikEZ} is a subring of R. 

(2) If R has characteristic 0, then P = E. 

(3) If R has characteristic n > 0, then P =En. 

Proof~> Definef:Z ---1- R by f(k) = klR. Then 

j(k + f) = (k + t)lR = klR + tlR = j(k) + j(t). 

The distributive laws (as in the proof of Lemma 11.19) show that 

j(kt) = (kt)lR = (klR)(tlR) = j(k)j(t). 

Therefore,/ is a homomorphism. The image of /is precisely the set P, 
and, therefore, Pis a ring by Corollary 3.11. Consequently,/ can be con
sidered as a surjective homomorphism from Z onto P. Then P =£'/(Kerf) 
by the First Isomorphism Theorem 6.13. If R has characteristic 0, then 
the only integer k such that klR =OR is k = 0. So the kernel of /is the 
ideal (0) in£', and P = Zj(O) = E. If R has characteristic n > 0, then 
Lemma 11.20 shows that the kernel off is the principal ideal (n) consist
ing of all multiples of n. Hence, P = Zj(n) = 1'11 • 

*This lemma is just a special case (in additive notation) of part (1) ofTheorem 7.9, with a = 1R and 
e =OR. 
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According to Theorem 11.21 a field of characteristic 0 contains a copy of 7L and, 
hence, must be infinite. Therefore, by Lemma 11.19 we have 

Every finite field has characteristic p for some prime p. 

The converse of Corollary 11.22 is false, however, since there are infinite fields of 
characteristic p (Exercise 8). 

If K is a field of prime characteristic p (in particular, if K is finite), then Theorem 11.21 
shows that K contains a subfield P isomorphic to 7LP. This field P is called the prime 
subfield of K and is contained in every subfield of K (because every subfield contains 
lx and, hence, contains tlx for every integer t).* See Exercise 4 for another description 
of P. We shall identify the prime subfield P with its isomorphic copy 7LP; then 

every field of characteristic p contains 7Lr 

The number of elements in a finite field K is called the order of K. To determine the 
order of a finite field K of characteristic p, we consider K as an extension field of its 
prime subfield 7LP: 

A finite field K has order pn, where pis the characteristic of K and n = [K: 7LP]. 

Proof~~> There is certainly a finite set of elements that spans Kover 7LP (the set K 
itself, for example). Consequently, by Exercise 32 of Section 11.1, Khas 
a finite basis {u" u2 , ••. , U 11}over 7LP' Every element of K can be written 
uniquely in the form 

with each c; E: 7LP by Exercise 30 of Section 11.1. Since there are exactly p 
possibilities for- each c;, there are precisely p 11 distinct linear combinations 
of the form ( * ). So K has order p", with n = number of elements in the 
basis = [K:7Lp]. Ill 

Theorem 11.23 limits the possible size of a finite field. For instance, there can
not be a field of order 6 since 6 is not a power of any prime. It also suggests several 
questions: Is there a field of order p11 for every prime p and every positive integer n? 

*If K has characteristic 0, then K contains an isomorphic copy P of ?L Since K contains the 
multiplicative inverse of every nonzero element of P, it follows that K contains a copy of the field 
II). As in the case of characteristic p, this field (called the prime subfield) is contained in every 
subfield of K. See Theorem 10.31 (with R = P""' Z and F""' II)) for a more precise statement and proof. 
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How are two fields of order pn related? The answers to these questions are given in 
Theorem 11.25 and its corollaries. In order to prove that theorem, we need a techni
cal lemma. 

Let p be a prime and R a commutative ring with identity of characteristic p. 
Then for every a, b ER and every positive integer n, 

Proof~> The proof is by induction on n. If n = 1, then the Binomial Theorem in 
Appendix E shows that 

(a + b )P = aP + (;)aP1b + · · · + e )ar-rbr 

+ .. · + ( p )abP-1 + bP. 
p- 1 

Each of the middle coefficients (p) = '( p! )I is an integer by 
r r. p- r . 

Exercise 6 in Appendix E. Since every term in the denominator is strictly 
less than the prime p, the factor of p in the numerator does not cancel, and, 

therefore, e) is divisible by p, say(~) = tp. Since R has characteristic p, 

Thus all the middle terms are zero and (a + b)" = aP + bP. So the theo
rem is true when n = 1. Assume the theorem is true when n = k. Using 
this assumption and the case when n = 1 shows that 

Therefore, the theorem is true when n = k + 1 and, hence, for all n by 
induction. • 

*Terminology due to Vincent 0. McBrien. 
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Let K be an extension field of ?LP and n a positive integer. Then K has order 
pn if and only if K is a splitting field of xP" - x over ?LP' 

Proof~ Assume K is a splitting field of f(x) = xP" - x E ?Lp(x). Since 
f'(x) = p"xp''-l- 1 = Oxp''-l- 1 = -1,/(x) isseparableby 
Lemma 11.16. Let E be the subset of K consisting of the p" distinct roots 
of xP" x. Note that c E E if and only if cP" = c. We shall show that the 
set E is actually a subfield of K. If a, b E E, then by Lemma 11.24. 

(a + b )p'' = aP" + bP" = a + b. 

Therefore, a + b E E, and E is closed under addition. The set E is closed 
under multiplication since (ab )P" = aP"bP" = ab. Obviously, OK and 1K are 
in E. If a is a nonzero element of E, then -a and a- 1 are in E because, 
for example, 

The argument for -a is similar (Exercise 7). Therefore, Eisa subfield of 
K. Since the splitting field K is the smallest subfield containing the set E 
of roots, we must have K = E. Therefore, K has order p". 

Conversely, suppose Khas order p". We need only show that every ele
ment of K is a root of xP" - x, for in that case, the pn distinct elements of 
K are all the possible roots and K is a splitting field of xP" - x. * Clearly 0 K 
is a root, so let c be any nonzero element of K. Let cb ell ... , ck be all the 
nonzero elements of J( (where k = pn - 1 and cis one of the ci) and let u be 
the product u = c1 c2c3 • • • c1" The k elements cc1, cell ... , cck are all dis
tinct (since cci = cc1 implies ci = c), so they are just the nonzero elements 
of Kin some other order, and their product is the element u. Therefore, 

u = (cc1)(cc2) • · • (ccK) = d'(c1c2c3 • · • c~c) = Ck'U. 

Canceling u shows that d' = 1 K and, hence, ck+ 1 = c, or equivalent 
ck+ 1 - c =OK. Since k + 1 = p11

, cis a root of xp'' - x. II 

Theorem 11.25 has several important consequences; together with the theorem 
they provide a complete characterization of all finite fields. 

For each positive prime p and positive integer n, there exists a field of order pn. 

Proof"' A splitting field of x!" - x over 7LP exists by Theorem 11.13; it has order 
p" by Theorem 11.25 

*A short proof, using group theory, is given in Exercise 22. 
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Two finite fields of the same order are isomorphic. 

Proof~ If K and L are fields of order p", then both are splitting fields of xp'' - x 
over ?LP by Theorem 11.25 and, hence, are isomorphic by Theorem 11.14 
(with cr the identity map on ?Lp). Ill: 

According to Corollary 11.27, there is (up to isomorphism) a unique field of order 
p". This field is called the Galois field of order p". We complete our study of finite fields 
with two results whose proofs depend on group theory. 

Let K be a finite field and Fa subfield. Then K is a simple extension of F. 

Proof ~ By Theorem 7.16 the multiplicative group of nonzero elements of 
K is cyclic. If u is a generator of this group, then the subfield F( u) 
contains OF and all powers of u and, hence, contains every element of K. 
Therefore, K = F(u). 

Let p be a positive prime. For each positive integer n, there exists an 
irreducible polynomial of degree n in ?Lp[x]. 

Proof~ There is an extension field K of ?LP of order p" by Corollary 11.26. By 
Theorem 11.28, K = ?Lp(u) for some u EK. The minimal polynomial of u 
in ?Lp[x] is irreducible of degree [K:?Lp] by Theorem 11.7. Theorem 11.23 
shows that [K:?Lp] = n. Ill 

Exercises 

A. 1. If Risaringwithidentityandm,nE7L,provethat(mlR)(n1R) = (mn)1R. 
[The case of positive m, n was done in the proof of Lemma 11.19.] 

2. What is the characteristic of 

(a) Q 

(d) M(!R) 

(b) 7L2 X 7L6 

(e) M(7L3) 

3. Let R be a ring with identity of characteristic n ::=:: 0. Prove that na =OR for 
every a ER .. 

4. If K is a field of prime characteristic p, prove that its prime subfield is the 
intersection of all the subfields of K. 
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5. Let Fbe a subfield of a finite field K. If Fhas order q, show that Khas order 
cf, where n = [K:F]. 

6. Show that a field K of order p" contains all kth roots of 1 K' where k = p" - 1. 

7. Let E be the set of roots of xP" - x EZp[x] in some splitting field. If a EE, 
prove that -a E E. 

B. 8. Let p be prime and let Zp(x) be the field of quotients of the polynomial ring 
Zp[x] (as in Example 1 of Section 10.4). Show that Zp(x) is an infinite field of 
characteristic p. 

9. Let R be a commutative ring with identity of prime characteristic p. If a, 
b E R and n 2::. 1, prove that (a - b )P" = aP" - bP". 

10. Let Kbe a finite field of characteristic p. Prove that the mapf:K--+ K given by 
f(a) = aP is an isomorphism. Conclude that every element of Khas a pth root 
inK. 

11. Show that the Freshman's Dream (Lemma 11.24) may be false if the 
characteristic pis not prime or if R is noncommutative. [Hint: Consider £:6 

and M(£:2).] 

12. If cis a root of f(x) E Zp[x], prove that d' is also a root. 

13. Prove Fermat's Little Theorem: If pis a prime and a E Z, then aP =a (mod p). If 
a is relatively prime top, then d'- 1 = 1 (mod p ). [Hint: Translate congruence 
statements in Z into equality statements in ZP and use Theorem 11.25.] 

14. Let Fbe a field andf(x) a monic polynomial in F[x], whose roots are all 
distinct in any splitting field K. Let E be the set of roots of f(x) inK. If the set 
E is actually a subfield of K, prove that F has characteristic p for some prime p 
and that f(x) = xP" - x for some n 2::. 1. 

15. (a) Show that x3 + x + 1 is irreducible in Z2[x] and construct a field of 
order 8. 

(b) Show that x3
- x + 1 is irreducible in Z3[x] and construct a field of order 27. 

(c) Show that x4 + x + 1 is irreducible in Z2[x] and construct a field of 
order 16. 

16. Let K be a finite field of characteristic p, Fa subfield of K, and m a positive 
integer. If L = {a E K I aP"' EF}, prove that 

(a) Lis a subfield of K that contains F. 

(b) L =F. [Hint: Use Exercise 10 to show that the map g:K--+ K given by 
g(a) = aP"' is an isomorphism such that g(F) =F. What is g- 1(F)?] 

17. If E and Fare subfields of a finite field K and E is isomorphic to F, prove that 
E=F. 

18. Let K be a field and k, n positive integers. 

(a) Prove that ~c- 1K divides x" - 1K in K[x] if and only if kIn in Z. 
[Hint: n = kq + r by the Division Algorithm; show that x'- 1K = 
(x'< -1K)h(x) + (Xr - 1K), where h(x) = X1

,-k + x'-2/c + · · · + Xz-qk.) 



406 Chapter 11 Field Extensions 

Application 1 

(b) If p 2: 2 is an integer, prove that (pk- 1) I (p"- 1) if and only if k 1 n. 
[Hint: Copy the proof of part (a) withp in place of x.] 

19. Let Kbe a finite field of order p". 

(a) If Fis a subfield of K, prove that Fhas order pdfor some d such that d 1 n. 
[Hint: Exercise 18 may be helpful.] 

(b) If dIn, prove that Khas a unique subfield of order pd. [Hint: See Exercise 17 
and Corollary 11.27 for the uniqueness part.] 

20. Let p be prime andf(x) an irreducible polynomial of degree 2 in Zp[x]. If K is 
an extension field of ZP of order p3

, prove thatf(x) is irreducible in K[x]. 

21. Prove that every element in a finite field can be written as the sum of two 
squares. 

22. Use part (2) of Corollary 8.6 to prove that every nonzero element c of a finite 
field K of order p" satisfies c~' -I = 1 K· Conclude that c is a root of xP" - x 

and use this fact to prove Theorem 11.25. 

BCH codes"( Section 16.3) may becoveredat this point ifdesired. 



Galois Theory 

A major question in classical algebra was whether or not there were formulas for 
the solution of higher-degree polynomial equations (analogous to the quadratic 
formula for second-degree equations). Although formulas for third- and fourth
degree equations were found in the sixteenth century, no further progress was 
made for almost 300 years. Then Ruffini and Abel provided the surprising answer: 
There is no formula for the solution of all polynomial equations of degree n when 
n 2::5. This result did not rule out the possibility that the solutions of special types 
of equations might be obtainable from a formula. Nor did it give any clue as to 
which equations might be solvable by formula. 

It was the amazingly original work of Galois that provided the full explanation, 
including a criterion for determining which polynomial equations can be solved 
by a formula. Galois' ideas had a profound influence on the development of later 
mathematics, far beyond the scope of the original solvability problem. 

The solutions of the equation f(x) = 0 lie in some extension of the coefficient 
field of f(x). Galois' remarkable discovery was the close connection between such 
field extensions and groups (Section 12. 1). A detailed description of the connec
tion is given by the Fundamental Theorem of Galois Theory in Section 12.2. This 
theorem is the principal tool for proving Galois' Criterion for the solvability of 
equations by formula (Section 12.3). 

The Galois Group 

The key to studying field extensions is to associate with each extension a certain group, 
called its Galois group. The properties of the Galois group and theorems of group 
theory can then be used to establish important facts about the field extension. In this 
section we define the Galois group and develop its basic properties. Throughout this 
section F is afield. 

407 
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Definition Let K be an extensioh fielc:l of F. An F~automorphisrl1 of K i~ an isomor
phism u:K ~ K that fixes F elementwise (thC;J.t is, u(c) = c for every c E F). 
The set of all F,automorphisms of K is denoted GalFK and is called the 
Galois group of Kover F. · 

The use of the word "group" in the definition is justified by: 

Theorel1112.1 
If K is an extension field ofF, then GalrK is a group under the operation of 
composition of functions. 

Proof~> GalFK is nonempty since the identity map d( ~ K is an automor
phism.* If u, T E GalFK then u o T is an isomorphism from K to K 
by Exercise 27 of Section 3.3. For each c EF, (u o T)(c) = u(T(c)) = 

u(c) = c. Hence, u o T E GalFK, and GalFK is closed. Composition of 
functions is associative, and the identity map L is the identity element of 
GalFK. Every bijective function has an inverse function by Theorem B.1 
in Appendix B. If u E GalFK, then u -I is an isomorphism from K to K 
by Exercise 29 of Section 3.3. Verify that u- 1(c) = cfor every c E F 
(Exercise 1). Therefore, u- 1 EGalFK, and GalFKis a group. 

EXAMPlE 1.At 

The complex conjugation map u:C ~ C given by u(a + bi) = a - bi is an auto
morphism of C, as shown in Example 3 of Section 3.3. For every real number a, 

u(a) = u(a + Oi) = a - Oi = a. 

Sou is in Ga11RC. Note that i and -i are the roots of x2 + 1 E ~and that u maps 
these roots onto each other: u(i) = - i and u(- i) = i. This is an example of the 
next Theorem. 

··fhebrem 12.2 
Let K be an extension field ofF and f(x) E F[x]. If u E K is a root of f(x) and 
u E GalrK, then u(u) is also a root of f(x). 

*Throughout this chapter,~ denotes the identity map on the field under discussion. 

tThroughout this secti~n and the next, three basic examples appear repeatedly. The first appearance 
of Example 1 is labeled 1.A, its second appearance 1.B, etc.; the first appearance of Example 2 is 
labeled 2.A, and so on. 
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Proof~ If f(x) =co+ CJX + c2x2 + ... + cnx", then 

c0 + c1u + c2u
2 + · · · + c;,u" = Or. 

Since iJ is a homomorphism an<:[ iJ( ci) = ci for each ci E F, 

Or= ~J(Or) = ~J(c0 + c1u + c2u
2 + · · · + c,u") 

= ~J(c0) + iJ(ct)iJ(u) + 1J(c2)1J(ui + · · · + iJ(c11)iJ(u)" 

= c0 + CtiJ(u) + C21J(u)2 + · · · + Cn~J(u)" = f(iJ(u)). 

Therefore, ~J(u) is a root of f(x). Iii 

Let u EKbe algebraic over Fwith minimal polynomialp(x) EF[x]. Theorem 12.2 
states that every image of u under an automorphism of the Galois group must also be 
a root of p(x). Conversely, is every root of p(x) inK the image of u under some auto
morphism of Gal riG Here is one case where the answer is yes. 

Let K be the splitting field of some polynomial over F and let u, vEK. Then 
there exists (J E GalrK such that ~J(u) = v if and only if u and v have the same 
minimal polynomial in F[x]. 

Proof~ If u and v have the same minimal polynomial, then by Corollary 11.8 
there is an isomorphism ~J:F(u) = F(v) such that ~J(u) = v, and iJ fixes 
F elementwise. Since K is a splitting field of some polynomial over F, 
it is a splitting field of the same polynomial over both F(u) and F(v). 
Therefore, iJ extends to an F-automorphism of K (also denoted iJ) by 
Theorem 11.14. In other words, iJ E GalrK and ~J(u) = v. The converse is 
an immediate consequence of Theorem 12.2. Iii 

EXAMPlE 1.B 

Example 1.A shows that Gal[!;!C has at least two elements, the identity map ~ and 
the complex conjugation map IJ. We now prove that these are the only elements 
in Gal[i;!C. LetT be any automorphism in Gal[i;!C. Since i is a root of x2 + 1, 
T(i) = ±i by Theorem 12.2. If T(i) = i, then since T fixes every element of IR, 

T(a + bi) = T(a) + T(b)T(i) = a + bi, 

and, hence, T = ~. Similarly, if T(i) = - i, then 

T(a + bi) = T(a) + T(b)T(i) =a+ b(-i) =a- bi, 

and, therefore, T = iJ. Thus Gal[i;!C = { ~, iJ} is a group of order 2 and, hence, 
isomorphic to 7L2 by Theorem 8.7. 
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The preceding example shows that an ~-automorphism of IC = ~(i) is completely 
determined by its action on i. The same thing is true in the general case: 

Let K = F(u1, ••• , un) be an algebraic extension field of F. If 0', r E GaiFK and 
O"(u) = r(ui) for each i = 1, 2, ... , n, then 0' = r. In other words, an auto
morphism in GaiFK is completely determined by its action on u1, ... , Un. 

Proof~>- Let {3 = r- 1 
o (J' E GalFK. We shall show that {3 is the identity map L. 

Since 0'( ui) = r( u) for every i, 

Let v EF('u1). By Theorem 11.7 there exist ciEF such that v = c0 + c1u 1 + c2u1
2 + 

· · · + c111 _ 1u1
111

-
1, where m is the degree of the minimal polynomial of u1• Since {3 is a 

homomorphism that fixes u 1 and every element ofF, 

{3(v) = {3(co + c,u, + CzUI2 + · · · + Cm-!ut'- 1
) 

= {3(co) + {3(c1){3(u1) + {3(c2){3(u1
2
) + · · · + {3(c111 _ 1){3(u!"'-1

) 

= Co+ CJUJ + c2u 1
2 + · · · + Cm-JU/n-l = V 

Therefore, {3( v) = v for every v E F ( u 1). Repeating this argument with F( u1) in place of 
Fand u2 in place of u1 shows that f3(v) = v for every v EF(u1)(u2) = F(u1, u2). Another 
repetition, with F(u" u2) in place ofF and u3 in place of ul> shows that {3(v) = v for 
every v E F( u1, u2, u3). After a finite number of repetitions we have {3( v) = v for every 
v E F(u1, u2> ... , u11 ) = K, that is, L = {3 = 7-l o 0'. Therefore, 

7 = r o L = r o (r- 1 
o 0') = (r o r- 1) o 0' = L o 0' = 0'. Ill 

EXAMPLE 2.A 

By Theorem 12.2 any automorphism in the Galois group of 0( V3,V5) over 0 
takes V3 to V3 or - V3, the roots of x 2 

- 3. Similarly, it must take V5 to 
±VS, the roots of x2 

- 5. Since an automorphism is completely determined by 
its action on V3 and V5 by Theorem 12.4, there are at most four automorphisms 
in GaloO( V3, vs), corresponding to the four possible actions on V3 and VS: 

We now show that Gal0 0( V3, VS) is a group of order 4 by constructing non
identity automorphisms r, a, {3 with these actions. To construct r, note that~- 3 
is the minimal polynomial of both V3 and -V3 over 0. By Corollary 11.8, 
there is an isomorphism 0':0( V3) = o(- V3) such that (J'( V3) = - V3, and (T 

fixes 0 elementwise. Example 6 of Section 11.3 shows that x2 
- 5 is the mini

mal polynomial of V5 over 0( V3). By Corollary 11.8 again, u extends to 
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a IQ-automorphism T of lCD( V3)(V5) = lCD( V3, vs) such that r( vs) = VS. 
Therefore, T E GalqJIQ( V3, vs) and r( V3) = a-( \13) = - V3 and r( vs) = v's. 
A similar two-step argument produces automorphisms a and f3 with the actions 
listed above. Furthermore, each ofT, a, f3 has order 2 in Gal0 1Q( V3, v's); for 
instance, · · 

(ror)(v'3) = r(r(v'3)) = r(-v'3) = -r(v'3) = -(-\13) = v'3 = ~(V3) 

and (r o r)(VS) = V5 = ~(vs). Therefore, r o r = ~ by Theorem 12.4. 
Use Theorem 8.8 to conclude that Gal01Q( V3, v's) == 7L2 X 7L2 or compute 
the operation table directly (Exercise 4). For instance, you can readily verify 
that ( T 0 a)( v'3) = f3( \13) and ( T 0 a)( YS) = /3( VS) and, hence, T o a = f3 by 
Theorem 12.4. 

In the preceding example, lCD( v'3, VS) is the splitting field of f(x) = 
(x2 

- 3)(x2 
- 5), and every automorphism in the Galois group permutes the four roots 

V3, - v'3, VS, - V5 of f(x). This is an illustration of 

'corollary 1·2. 
If K is the splitting field of a separable polynomial f(x) of degree n in F[x], then 
GalrK is isomorphic to a subgroup of Sn. 

Proof,.. By separability f(x) has n distinct roots inK, say u~> ... , u,. Consider 
s/1 to be the group of permutations of the set R = { Uj, .•. ' u/1}. If 0" E 

GalFK, then a-( u 1), a-( u2), ... , a-( U 11 ) are roots of f(x) by Theorem 12.2. 
Furthermore, since a- is injective, they are all distinct and, hence, must be 
ul> 'l.t2, ... , 'l.t 11 in some order. In other words, the restriction of a- to the 
set R (denoted a- I R) is a permutation of R. Define a map 8:GalFK---+ S11 

by 8(a-) = a-IR. Since the operation in both groups is composition of 
functions, it is easy to verify that 8 is a homomorphism of groups. 
K = F ( ul> ... , U 11 ) by the definition of splitting field. If a-IR = T I R, then 
a-(uJ = r(u;) for every i, and, hence, a-= T by Theorem 12.4. Therefore, 
8 is an injective homomorphism, and thus Gal~( is isomorphic to Im 8, a 
subgroup of S, by Theorem 7.20. Ill 

If K is the splitting field of f(x), we shall usually 

identify GalFK with its isomorphic subgroup in S11 

by identifying each automorphism with the permutation it induces on the roots of 
f(x). 

EXAMPLE 3.A 

Let Kbe the splitting field of x3 
- 2 over IQ. Verify that the roots of x3 

- 2 are 

Vl, Vlw, Vlw2
, where w = ( -1 + v'3i)/2 is a complex cube root of 1. Then 

Gal0 K is a subgroup of S3. By Theorem 12.3, there is at least one automorphism 
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cr that maps the first root V2 to the second V2w; it must take the third root 
V2w 2 to itself or to the first root V2 by Theorem 12.2. So cr is either the permu-
tation (12) or (123) in s3. . 

CAUTION: When K is the splitting field of a polynomialf(x) EF[x], then by 
Corollary 12.5 every element of GalpK produces a permuta
tion of the roots of f(x), but not vice versa: A permutation 
of the roots need not come from an F-automorphism of K. 
For example, Ql( \/3, VS) is a splitting field of f(x) = 
(~ - 3)(~ - 5), but by Example 2.A there is no Ql-automorphism 
of 0( V3, vs) that gives this permutation of the roots 

V3 -V3 vs -vs 
t t t t 
vs -vs V3 -V3 

Let K be an extension field of F. A field E such that F ~ E ~ K is called an interme
diate field of the extension. In this case, we can consider K as an extension of E. The 
Galois group GalEK consists of all automorphisms of K that fixE elementwise. Every 
such automorphism automatically fixes each element of F since F ~ E. Hence, every 
automorphism in GalEK is in GalpK, that is, 

if E is an intermediate field, GalEK is a subgroup of GalFK. 

EXAMPLE 2.13 

Ql( \/3) is an intermediate field of the extension Ql( \/3, VS) of Ql. Example 2.A 
shows that GalQQl( V3, vs) = { L, T' a, (3}. The automorphisms that fix every 
element of Ql( V3) are exactly the ones that map V3 to itself by Theorem 12.4. 
Therefore, 

GalQCV3JQl( \13, VS) 
is the subgroup {L, a} of {L, T, a, (3}. 

We now have a natural way of associating a subgroup of the Galois group with 
each intermediate field of the extension. Conversely, if His a subgroup of the Galois 
group, we can associate an intermediate field with H by using 

·· The~ret1112.6 ······ ·· 
Let K be an extension fleld of F. If H is a subgroup of GalrK, let 

EH = {k E K I cr(k) = k for evei'Y cr E H). 

Then EH is an intermediate fleld of the extension. 

The field E His called the fixed field of the subgroup H. 
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Proof ofTheorem 12.8 ~ If c, dEE H and (J' E H, then 

(J'(C + d) = (J'(c) + (J'(d) = c + d and (J'(cd) = (J'(c)(J'(d) = cd. 

Therefore, EH is closed under addition and multiplication. Since 
(J'(Op) = Op and (J'(lp) = lp for every automorphism, Op and 1p are in EH. 
Theorem 3.10 shows that for any nonzero c in EH and any (J' in H, 

(_J'(-c) = -(J'(c) = -c and (J'(c- 1) = (J'(c)- 1 = c-1• 

Therefore, - c E E H and c - 1 E E H· Hence, E His a subfield of K. Since 
His a subgroup of GalpK, (J'( c) = c for every c E F and every (J' E H. 
Therefore, F <;;;:; E H· 

EXAMPLE 2.C 

Consider the subgroup H = {L, a} of the Galois group {L, T, a, /3} of o( V3, \15) 
over 0. Since a( V3) = \13, the subfield 0( V3) is contained in the fixed field 
EH of H. To prove that EH = 0( \13), you must show that the elements of 0( V3) 
are the only ones that are fixed by Land a; see Exercise 14. 

EXAMPLE 1.C 

As we saw in Example 1.B, Gal~IC = { L, (J'}, where (J' is the complex conjuga
tion map. Obviously, the fixed field of the identity subgroup is the entire field 
C. Since (J' fixes every real number and moves every nonreal one, the fixed field 
of Gal~IC is the field IR. 

Unlike the situation in the preceding example, the ground field F need not always 
be the fixed field of the group GalpK. 

EXAMPLE 3.8 

Every automorphism in the Galois group of 0( -\Yl") over 0 must map -\Y2 to 
a root of x3

- 2 by Theorem 12.2. Example 3.A shows that -\Y2 is the only 
real root of this polynomial. Since 0( -\Yl") consists entirely of real numbers 

by Theorem 11.7, every automorphism in Gal0 0( -\Yl") must map -\Y2 to itself. 
Therefore, Gal0 0( V2) consists of the identity automorphism alone by 

Theorem 12.4. So the fixed field of Gal0 0( V2) is the entire field 0( V2). 

Exercises 

NOTE: Unless stated otherwise, K is an extension field of the field F 

A. 1. If (J' is an F-automorphism of K, show that (J' - 1 is also an F-automorphism of K. 

2. Assume [K:F] is finite. Is it true that every F-automorphism of K is completely 
determined by its action on a basis of Kover F? 
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3. If [K:F] is finite, a E GalFK, and u E K is such that a( u) = u, show that 
a E GalF(u)K. 

4. Write out the operation table for the group 

Gal00(0, v's) = {L, T, a, {3}. 

[See Example 2.A.) 

5. Letf(x) EF[x] be separable of degree nand K a splitting field of f(x). Show 
that the order of GalFK divides n!. 

6. If K is an extension field of 0 and a is an automorphism of K, prove that (J' is 
a 0-automorphism. [Hint: a(l) = 1 implies that a(n) = n for all n E 1::.] 

B. 7. (a) Show that Gal0 0( V2) has order 2 and, hence, is isomorphic to 1::2. 

[Hint: The minimal polynomial is x2
- 2; see Theorem 11.7.] 

(b) If dE 0 and v'd .;=. 0, show that Gal0 0( v'd) is isomorphic to 1::2. 

8. Show that GalQO I ( V2) * (L). 
9. (a) Let w = ( -1 + 0i)/2 be a complex cube root of 1. Find the minimal 

polynomial p(x) of w over 0 and show that w2 is also a root of p(x). 
[Hint: w is a root of x3 

- 1.] 

(b) What is GalQO( w )? 

10. (a) Find Gal0 0( \12, 0). [Hint: See Example 2.A.] 

(b) If p, q are distinct positive primes, find GalQO( Vp, yq). 

11. Find GalQO( \12, i). [Hint: Consider 0 ~ 0 ( V2) ~ 0( \12, i) and proceed as 
in Example 2.A.] 

12. Show that GalQO( \12, 0, v's) == 1::2 X 1::2 X 1::2. 

13. If Fhas characteristic 0 and K is the splitting field of f(x) E F[x], prove that 
the order of GalFK is [K:F]. [Hint: K = F(u) by Theorems 11.17 and 11.18.] 

14. Let Hbe the subgroup {L, a} of GalQO( 0, vs) = {L, T, a, {3}. Show that 
the fixed field of His o( 0). [Hint: Verify that 0( 0) ~ EH ~ o( V3, vs); 
what is [0( 0, v's):O ( 0)]?] 

15. (a) Show that every automorphism of ~maps positive elements to positive 
elements. [Hint: Every positive element of~ is a square.) 

(b) If a, bE~, a< b, and a E Gal0~, prove that a( a) <a( b). 
[Hint: a< b if and only if b - a> 0.) 

(c) Prove that Gal0~ = (L). [Hint: If c < r < d, with c, dE 0, then c < a(r) < d; 
show that this implies a(r) = r.] 

C.16. Suppose t, £2, ... , £" = 1 are n distinct roots of x' - 1 in some extension field 
of 0. Prove that Ga!QO(t) is abelian. 

17. Let E be an intermediate field that is normal over F and a E GalFK. Prove that 
dE)= E. 
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The Fundamental Theorem of Gal.ois Theory 

The essential idea of Galois theory is to relate properties of an extension field with 
properties of its Galois group. The key to doingthis is the Fundamental Theorem of 
Galois Theory, which will be proved in this section. 

Throughout this section, K is a finite-dimensional extension field of F. Let S be the 
set of all intermediate fields and Tthe set of all subgroups of the Galois group GalFK. 
Define a function cp:S---+ T by this rule: 

For each intermediate field E, 

The function cp is called the Galois correspondence. Note that K (considered as a 
subfield of itself) corresponds to the identity subgroup of GalFK, and the subfield F 
corresponds to the entire group GalFK (considered as a subgroup of itself). 

EXAMPLE 2.0* 

Consider the Galois correspondence for the extension 0(\13, VS) of 0 and the 
intermediate field 0( \13). By the preceding remarks and Example 2.B on 
page 412, we have 

o(V3,V5)-----* Ga1o(V3,V5)o(V3,V5) = {L}. 

0(\13)-----* Galo(V3JO(V3,V5) = {L, a}. 

0-----* Ga10 0(V3,V5) = {L,T,a,{3}. 

Example 2. c shows that E = o( \13) is the fixed field of the subgroup H = ( L, a} = 

Galo(V3)0( \13, VS). Furthermore, K = o(\13, VS) = o( \13)( VS) is a normal, 
separable extension of the fixed field E = 0( \13) because it's the splitting field of 
x2 

- 5 (Theorem 11.15) and has characteristic 0 (Theorem 11.17). 

We now construct the tools necessary to show that, under appropriate assump
tions, the Galois correspondence is a bijective map from the set of intermediate fields 
to the set of subgroups of GalFK. 

··Lemma1217 
Let K be a finite-dimensional extension field of F. If His a subgroup of the 
Galois gwup GaiFK and E is the fixed field of H, then K is a simple, normal, 
separable extension of£. 

Example 2.D above (with K = 0(\13,YS), E = 0(\13), and H = {L, a}) is an 
illustration of Lemma 12.7. 

*The numbering scheme for examples in Sections 12.1 and 12.2 is explained on page 408. 
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Proof of lemma 12.7 ~Each u E [(is algebraic over F by Theorem 11.9 and, hence, 
algebraic over E by Exercise 7 in Section 11.2. Every automorphism in 
Hmust map u to some root of its minimal polynomialp(x) EE[x] by 
Theorem 12.2. Therefore, u has a finite number of distinct images under 
automorphisms in H, say u = ub u2, •.. , u1 E K. 

If U" E Hand u; = T( u) (with T E H), then U"( u;) = U"(r( u )). Since U" o T E H, 
we see that U"( u;) is also an image of u and, hence, must be in the set 
{ub u2, ••• , u1}. Since U" is injective, the elements U"(u1), ••• , U"(u1) are t 
distinct images of u and, hence, must be the elements ur. u2, ••• , u1 in some 
order. In other words, every automorphism in H permutes ub u2, ... , u1• Let 

f(x) = (x - u 1)(x - u2) • • • (x - uJ 

Since the u; are distinct,f(x) is separable. We claim thatf(x) is actually 
in E[x]. To prove this, let U" EH and recall that U" induces an isomor
phism K[x] = K[x] (also denoted U"), as described on page 380. Then 

U"j(x) = (x- U"(u1))(x- U"(u2)) • • · (x - U"(u1)). 

Since U" permutes the u;, it simply rearranges the factors of f(x), and, hence, 
U"j(x) = f(x). Therefore, every automorphism of H maps the coefficients 
of the separable polynomialf(x) to themselves, and, hence, these coeffi
cients are in E, the fixed field of H. Since u = u 1 is a root of f(x) EE[x], 
u is separable over E. Hence, K is a separable extension of E. 

The field K is finitely generated over F (since [K:F] is finite; see 
Example 4 in Section 11.3). Consequently, K is finitely generated over E, 
and, hence, K = E(u) for some u EKby Theorem 11.18. Letf(x) be as in 
the preceding paragraph. Thenf(x) splits in K[x], and, hence, K = E(u) 
is the splitting field of f(x) over E. Therefore, K is normal over E by 
Theorem 11.15. 

·~;, / ,' .~ ;- :- --- - -, - -

,Theorem 12.8 · · 
Let K be a finite-dimensional extension field of F. If His a subgroup of the 
Galois group GalrK and E is the fixed field of H, then H = Ga/EK and IHI = 
[K:E]. Therefore, the Galois correspondence is surjective. 

Proof~ Lemma 12.7 shows that K = E(u) for some u EK. If p(x), the minimal 
polynomial of u over E, has degree n, then [K:E] = n by Theorem 11.7. 
Distinct automorphisms of GalEK map u onto distinct roots of p(x) by 
Theorems 12.2 and 12.4. So the number of distinct automorphisms in 
GalEK is at most n, the number of roots of p(x). Now H r:;;, GalEKby the 
definition of the fixed field E. Consequently, 

IH] ::=:; IGalEKI ::=:; n = [K:E]. 

Letf(x) be as in the proof of Lemma 12.7. Then H contains at least t 
automorphisms (the number of distinct images of u under H). Since 
u = u 1 is a root of f(x),p(x) dividesf(x). Hence, 

IHJ 2': t = degf(x) 2 deg p(x) = n = [K:E]. 
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Combining these inequalities, we have 

!HI :::; !GalEKI :::; [K:E] :::;· !H\. 

Therefore, !HI = !GalEKI = [K:E], and, hence, H = GalEK. II 

EXAMPLE 3.C 

The Galois group Gal<Cl!O( V2) =(~)by Example 3.B, so both of the intermedi
ate fields 0( V2) and 0 are associated with (~) under the Galois correspondence. 
Note that 0( V2) is not a normal extension of 0 [it doesn't contain the com
plex roots of x3 

- 2, so this polynomial has a root but doesn't split in 0( Yl)]. 

Galois Extensions 
Although the Galois correspondence is surjective by Theorem 12.8, the preceding 
example shows that it may not be injective. In order to guarantee injectivity, additional 
hypotheses on the extension are necessary. The preceding proofs and example suggest 
that normality and separability are likely candidates. 

If K is a finite-dimensional, normal, separable extension field of the field F, 
we say that K is a Galois extension ofF or thatK is Galois .over F. 

A Galois extension of characteristic 0 is simply a splitting field by Theorems 11.15 
and 11.17. 

Theorem l2. B · 
Let K be a Galois extension ofF andEan intermediate field. Then E is the fixed 
field of the subgroup GaiEK. 

If E and L are intermediate fields with GalEK = GalLK, then Theorem 12.9 shows 
that both E and L are the fixed field of the same group, and, hence, E = L. Therefore, 
the Galois correspondence is injective for Galois extensions. 

Proof ofTheorem 12.9 J> The fixed field Eo of GalEK contains E by definition. To show 
that E0 <:;;: E, we prove the contrapositive: If u fl. E, then u is moved by some 
automorphism in GalEJ(, and, hence, u fl. E0. Since K is a Galois extension 
of the intermediate field E (normal by Theorem 11.15 and Exercise 5 of 
Section 11.4; separable by Exercise 1 of Section 11.5), it is an algebraic 
extension of E. Consequently, u is algebraic over E with minimal polyno
mialp(x) EE[x] of degree:=::: 2 (if degp(x) = 1, then u would be in E). The 
roots of p(x) are distinct by separability, and all of them are in Kby normal
ity. Let v be a root of p(x) other than u. Then there exists lT E GalEK such 
that lT(u) = v by Theorem 12.3. Therefore, u fi_E0, and, hence, E0 =E. Ill 
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Let K be a finite-dimensional extension field of F. Then K is Galois over F if and 
only ifF is the fixed field of the Galois group GalrK. 

Proof~ If K is Galois over F, then Theorem 12.9 (withE= F) shows that Fis 
the fixed field of GalFK. Conversely, ifF is the fixed field of GalFK, then 
Lemma 12.7 (withE= F) shows that K is Galois over F. 111 

In view of Corollary 12.10, a Galois extension is often defined to be a finite
dimensional one in which F is the fixed field of GalFK. When reading other books on 
Galois theory, it's a good idea to check which definition is being used so that you don't 
make unwarranted assumptions. 

EXAMPLE 2.E 

The field 0( V3, VS) is a Galois extension of 0 because it is the splitting 
field of f(x) = (x2 

- 3)(x2 
- 5). So the Galois correspondence is bijective by 

Theorem 12.8 and the remarks after Theorem 12.9. The Galois group 
Gal{)O( V3, vs) = {~, T, a, {3} by Example 2.A. Verify the accuracy of the 
chart below, in which subfields and subgroups in the same relative position cor
respond to each other under the Galois correspondence. For instance, 0( V3) 
corresponds to{~, a} by Example 2.B. 

Intermediate Fields Subgroups 

Note that all the intermediate fields are themselves Galois extensions of 0 
(for instance, 0( VS) is the splitting field of x2 - 5). Furthermore, the corre
sponding subgroups of the Galois group are normal. A similar situation holds 
in the general case, as we now see. 

If K is a Galois extension field ofF, then 

(1) There is bijection between the setS of all intermediate fields of the 
extension and the set T of all subgroups of the Galois group GalrK, 
given by assigning each intermediate field E to the subgroup 
GaiEK. Furthermore, 

[K:E] = I GaiEKI and [E:F] = [GalrK:GaiEK]. 
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(2) An intermediate field Eisa normal extension ofF if and only if the 
corresponding group GaiEK is a normal subgroup of GaiFK, and in 
this case GaiFE = GaiFl\jGaiEK· 

Proof~ Theorem 12.8 and the remarks after Theorem 12.9 prove the first state
ment in part (1). Each intermediate field E is the fixed field of GalEK 
by Theorem 12.9. Consequently, [K:E] = IGalEKI by Theorem 12.8. In 
particular, ifF= E, then [K:F] = IGalFKI. Therefore, by Lagrange's 
Theorem 8.5 and Theorem 11.4, 

[K:E][E:F] = [K:F] = IGalFKI = IGalEKI [GalFK:GalEK]. 

Dividing the first and last terms of this equation by [K:E] = IGalEKI 
shows that 

[E:F] = [GalFK:GalEK]. 

To prove part (2), assume first that GalEK is a normal subgroup of 
G1:).1FK. If p(x) is an irreducible polynomial in F[x] with a root u in E, we 
must show that p(x) splits in E[x]. Since K is normal over F, we know that 
p(x) splits in K[x]. So we need to show only that each root v of p(x) inK is 
actually in E. There is an automorphism IJ in GalFK such that IJ( u) = v by 
Theorem 12.3. If Tis any element of Gal£K, then normality implies 
To IJ = IJ o T1 for some T1 E GalEK. Since u EE, we have T(v) = T(!J(u)) = 
1J(T1(u)) = !J(u) = v. Hence, vis fi'<ed by every element Tin GalEK and, 
therefore, must be in the fixed field of Gal£K, namely E (see Theorem 12.9). 

Conversely, assume that E is a normal extension of F. Then E is finite 
dimensional over Fby part (1). By Lemma 12.12, which is proved below, 
there is a surjective homomorphism of groups B:GalFK -7 Gal FE whose ker
nelis GalEK. Then GalEKis a normal subgroup of GalFKby Theorem 8.16, 
and GalFK/GalEK = Gal FE by the First Isomorphism Theorem 8.20. II 

EXAMPlE 3.0 

The splitting field K of x3 
- 2 is a Galois extension of Q whose Galois group is 

a subgroup of S3 by Example 3.A. *Note that Q <;;; Q\12) <;;; K. Since x 3 
- 2 

is the minimal polynomial of \12, [0(\12):0] = 3 by Theorem 11.7. Neither 

of the other roots ( Vlw and Vlw2
) is a real number, and, hence, neither is in 

Q(Vl). So [K:Q] > 3. Since [K:Q] :S 6 (Theorems 11.13, 11.14) and [K:Q] is 
divisible by 3 (Theorem 11.4), we must have [K:Q] = 6. Thus Gal0 K has order 
6 by Theorem 12.11 and is S3. 

The only proper subgroups of S3 are the cyclic group ( ( 123)) of order 3 
and three cyclic groups of order 2: ((12)), ((13)), ((23)). Verify that the Galois 
correspondence is as follows, where subgroups and subfields in the same rela
tive position correspond to each other. The integer by the line connecting two 

*We consider 53 as the group of permutations oft he roots -0'2, V2w,V2w2 in this order. For instance, 

(12) interchanges V2 and #wand fixes V2w 2
• 
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subfields is the dimension of the larger over the smaller. The integer by the line 
connecting two subgroups is the index of the smaller in the larger. 

Intermediate Fields 

O(w) 3 

~ 
0 

3 
3 

Subgroups 

3<(;~ 
<(23)> <(13)> <(12)> 

<(123)> 3 

~ 
S3 

3 
3 

The field O(w) is an intermediate field because w = (~}V2)2(Vlw) EK. 

O(w) is the splitting field of x2 + x + 1 (Exercise 3) and, hence, Galois over 0. 
The corresponding subgroup is the normal subgroup ( (123) ). On the other 

hand, Example 3.C shows that 0(-0'2) is not Galois over 0; the corresponding 
subgroup ( (23)) is not normal in S3 . 

The preceding example illustrates an important fact: 

The Galois correspondence is inclusion-reversing. 

For instance, 0 c;;; 0( w ), but the corresponding subgroups satisfy the reverse inclusion: 
s3 2 ((123)). 
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Finally, we complete the proof of the Fundamental Theorem by proving 

Let K be a finite-dimensional normal extension fleld ofF andEan intermedi
ate fleld, which is normal over F. Then there is a surjective homomorphism 
of groups e:GalrK----+ GalrE whose kernel is GaiEK. 

Proof~>- Let cr E GalFK and u E E. Then u is algebraic over F with minimal 
polynomial p(x). Since E is a normal extension ofF, p(x) splits in E[x], 
that is, all the roots of p(x) are in E. Since cr(u) must be some root of 
p(x) by Theorem 12.2, we see that cr( u) E E. Therefore, cr(E) s;; E for 
every cr E GalFK. Thus the restriction of cr to E (denoted cr I E) is an 
F-isomorphism E = cr(E). Hence, [E:.F] = [cr(E):F] by Theorem l1.5. 
Since F s;; cr (E) s;; E, we have [E:F] = [E:cr(E)] [ cr(E):F] by Theorem 11.4, 
which forces [E:cr(E)] = 1. Therefore, E = cr(E), and cr IE is actually an 
automorphism in GalFE. 

Define a function e:GalFK----+ Gal FE by 8( cr) = cr I E. It is easy to 
verify that e is a homomorphism of groups. Its kernel consists of the au
tomorphisms of K whose restriction to E is the identity map, that is, the 
subgroup GalEK. 

To show that e is smjective, note that K is a splitting field over F 
by Theorem 11. 15, and, hence, K is a splitting field of the same poly
nomial over E. Consequently, every r E GalFE can be extended to an 
F-automorphism cr in GalFK by Theorem 11.14. This means that 
CT IE= 1', that is, e(cr) = 1'. Therefore, e is surjective. 

In the preceding proof, the normality of K was not used until the last paragraph. 
So the first paragraph proves this useful fact: 

Corollary 12.13 
Let K be an extension fleld ofF andEan intermediate fleld that is normal over 
F. If cr E GalrK, then .cr I E E Galrf. 

Exercises 

NOTE: K is an extension field of the field F. 

A. 1. If K is Galois over F, show that there are only finitely many intermediate fields. 

2. If K is a normal extension of Q and [K:Q] = p, with p prime, show that 
Gal10K = 7LP. 

3. (a) Show that w = ( -1 + V3i)/2 is a root of x3 
- 1. 

(b) Show that w and w2 are roots of x2 + x + 1. Hence, Q( w) is the splitting 
field of x 2 + x + 1. 
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4. Exhibit the Galois correspondence of intermediate fields and subgroups for 
the given extension of II): 

(a) O(Vd), where dE Q, but Vd t;t: Q. 

(b) Q((t)), where (t) is as in Exercise 3. 

5. If K is Galois over F and GalpK is an abelian group of order 10, how many 
intermediate fields does the extension have and what are their dimensions 
over F? 

6. Give an example of extension fields K and L ofF such that both K and L are 
Galois over F, K =F L, and GalpK = Gal pL. 

B. 7. Exhibit the Galois correspondence for the given extension of II): 

(a) 0( V2;V3) (b) Q(i,Vl) 

8. If K is Galois over F, GalpK is abelian, and E is an intermediate'field that is 
normal over F, prove that GalEK and GalpE are abelian. 

9. Let K be Galois over F and assume GalpK = En. 

(a) If E is an intermediate field that is normal over F, prove that GalEK and 
GalpE are cyclic. 

(b) Show that there is exactly one intermediate field for each positive divisor 
of n and that these are the only intermediate fields. 

10. Two intermediate fields E and L are said to be conjugate if there exists 
(}' E GalpK such that (J'(E) = L. Prove that E and L are conjugate if and 
only if GalEK and GalLK are conjugate subgroups of GalpK (as defined on 
page 308). 

H. (a) Show that K = O(Vl, i) is a splitting field of x4
- 2 over Q. 

(b) Prove that [K:Q] = 8 and conclude from Theorem 12.11 that Gal<D!Khas 

order 8. [Hint: II)~ o("V2) ~ o("\Yi, i).] 

(c) Prove that there exists(}' E Gal<D!K such that (J'("V2)= ("\Yi)i and (J'(i) = i 
and that (}' has order 4. 

(d) By Corollary 12.13 restriction of the complex conjugation map to K is an 
element T of Gal<D!K. Show that 

[Hint: Use Theorem 12.4 to show these elements are distinct.] 

(e) Prove that Gal<D!K= D4. [Hint: Map(}' to r 1 toT to v.] 

12. Let K be as in Exercise 11. Prove that Gal<D!(l)J( = 24. 

C. 13. Let K be as in Exercise 11. Exhibit the Galois correspondence for this extension. 

[Among the intermediate fields are 0( ( 1 + i) "\Yi) and 0( ( 1 - i) V2).] 

14. Exhibit the Galois correspondence for the extension 0( Vl, V3, VS) of Q. 
[The Galois group has seven subgroups of order 2 and seven of order 4.] 
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Solvability by Radicals 

The solutions of the quadratic equation ax2 + bx + c = 0 are given by the well-known 
formula 

-b ± Vb2 - 4ac 
x= 

2a 
This fact was known in ancient times. In the sixteenth century, formulas for the solu
tion of cubic and quartic equations were discovered. For instance, the solutions of 
x3 + bx + c = Oare given by 

x = V( -c/2) + Vd + V( -c/2)- Vd 
x = w(V ( -c/2) + Vd) + w2(V ( -c/2) - W) 

x = w2(V(-c/2) + W) + w(V(-c/2)- W), 

where d = W /27) + (c2 /4), w = ( -1 + v'3i)/2 is a complex cube root ~f 1, and the 
other cube roots are chosen so that 

(V( -c/2) + Vd)(V( -c/2) - W) = -b/3.* 

In the early 1800s Ruffini and Abel independently proved that, for n :::::: 5, there 
is no formula for solving all equations of degree n. But the complete analysis of the 
problem is due to Galois, who provided a criterion for determining which polynomial 
equations are solvable by formula. This criterion, which is presented here, will enable 
us to exhibit a fifth-degree polynomial equation that cannot be solved by a formula. To 
simplify the discussion, we shall assume that all .fields have characteristic 0. 

As illustrated above, a "formula" is a specific procedure that starts with the coefficients 
of the polynomialf(x) EF[x] and arrives at the solutions of the equationf(x) = OF by 
using only the field operations (addition, subtraction, multiplication, division) and the 
extraction of roots (square roots, cube roots, fourth roots, etc.). In this context, an nth 
root of an element c in Fis any root of the polynomial X' - c in some extension field of F. 

If f(x) EF[x], then performing field operations does not get you out of the coef
ficient field F (closure!). But taking an nth root may land you in an extension field. 
Taking an mth root after that may move you up to still another extension field. Thus 
the existence of a formula for the solutions of f(x) = OF implies that these solutions lie 
in a special kind of extension field of F. 

EXAMPLE 1 

Applying the cubic formula above to the polynomial x3 + 3x + 2 shows that 
the solutions of x3 + 3x + 2 = 0 are 

v -1 + V2 + v -1 - V2, 

wV-1 + V2 + (w2)\!/-1- V2, 

(w2)V-1 + V2 + w\V-1- V2. 

*The formulas for the general cubic and the quartic are similar but more complicated. 
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Definition 

All these solutions lie in the extension chain: 

Q <;;;Q(w) <;;; O(w., Yl) <;;;Q(w, Vl, V-1 +v'2) <;;;IQ(w,Vl, V -1 + v'2, V -1- v'2) 
II II II II II 

F0 <;;; F, <;;; Fz <;;; F3 <;;; F4• 

Each field in this chain is a simple extension of the preceding one and is of the form Fj( u ), 
where u11 EFjfor some n (that is, u is an nth root of some element of Fj): 

F1 = F0 (w), where w3 = 1 EF0• 

F2 = F1 ( v'2), where ( v'2)2 = 2 EF0 <;;; F1• 

F3 = F2 (V -1 + v'2), where (V -1 + v'2)3 = -1 + v'2 EF2• 

F4 =F3 (V-l- v'2), where(V-1- v'2)3 = -1- v'2EF2 <;;;F3• 

Since F4 contains all the solutions of x 3 +' 3x + 2 = 0, it also contains a splitting 
field of x 3 + 3x + 2. 

The preceding example is an illustration of the next definition. 

A field K is said to be a radical extension of a field F if there is a chain of 
fields 

F = fo<;;;f1 <;;;f2<;;; · · · <;;;ft = K 

such that for each i = 1, 2, . , . , t, 

F1 = FH(uD and some power of u1 is in F1,...1• 

Letf(x) EF[x]. The equationf(x) =OF is said to be solvable by radicals if there is a 
radical extension ofF that contains a splitting field of f(x). The example above shows 
that x 3 + 3x + 2 = 0 is solvable by radicals. 

The preceding discussion shows that if there is a formula for its solutions, then the 
equationf(x) = OF is solvable by radicals. Contrapositively, if f(x) = OF is not solvable 
by radical, then there cannot be a formula (in the sense discussed above) for finding its 
solutions. 

Solvable Groups 
Before stating Galois' Criterion for an equation to be solvable by radicals, we need to intro
duce a new class of groups. A group G is said to be solvable if it has a chain of subgroups 

G = Go 2 G, 2 Gz 2 · · · 2 Gn-1 2 Gn =(e) 
such that each G1 is a normal subgroup of the preceding group G1_ 1 and the quotient 
group G1_ 1j G1 is abelian. 

EXAMPLE 2 

Every abelian group G is solvable because every quotient group of G is abelian, 
so the sequence G2 (e) fulfills the conditions in the definition. 
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EXAMPLE 3 

Let ((123)) be the cyclic subgroup of order 3 in S3. The chain S3 ;:2 ((123)) ;:2 ((1)) 
shows that S3 is solvable. But for other symmetric groups we have 

For n ::::: 5 the group Sn is not solvable. 

Proof.,. Suppose, on the contrary, that S11 is solvable and that 

is the chain of subgroups required by the definition. Let (rst) be any 
3-cycle in Sn and let u, v be any elements of {1, 2, ... , n} other than 
r, s, t (u and v exist because n::::: 5). Since S11/G1 is abelian, Theorem 8.14 
(with a= (tus), b = (srv)) shows that G1 must contain 

(tus)(srv)(tus)- 1(srv)- 1 = (tus)(srv)(tsu)(svr) = (rst). 

Therefore, G1 contains all the 3-cycles. Since G1/ G2 is abelian, we can 
repeat the argument with G1 in place of Sn and G2 in place of G1 and 
conclude that G2 contains all the 3-cycles. The fact that each G;- d G; is 
abelian and continued repetition lead to the conclusion that the iden
tity subgroup G1 contains all the 3-cycles, which is a contradiction. 
Therefore, S11 is not solvable. 

Every homomorphic image of a solvable group G is solvable. 

Proof~> Suppose thatfG---+ His a surjective homomorphism and that G = 

G0 ;:2 G1 ;:2 G2 ;:2 · • • ;:2 G1 = (eG) is the chain of subgroups in the defini
tion of solvability. For each i, let H; = f( G;) and consider this chain of 
subgroups: 

H = H 0 ;:2 H 1 ;:2 H 2 ;:2 • · · ;:2 H 1 = f((eG)) = (eH)· 
Exercise 22 of Section 8.2 shows that H; is a normal subgroup of H;_ 1 

for each i = 1, 2, ... , t. Let a, bE H;_ 1• Then there exist c, dE G;-1 such 
that f( c) = a and f( d) = b. Since G;- j G; is abelian by solvability, 
cdc- 1d- 1 E G; by Theorem 8.14. Consequently, 

aba-lb- 1 = f(c)f(d)f(c- 1)/(d-1) = f(cdc-ld- 1) Ef(G;) = H;. 

Therefore, H;_ 1j H; is abelian by Theorem 8.14, and His solvable. Ill 
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Galois' Criterion 
Ifj(x) EF[x], then the Galois group of the polynomialf(x) is GalFK, where Kis a splitting 
field of f(x) over F.* Galois' Criterion states that 

f(x) = OF is solvable by radicals if and only if the Galois 
group of f(x) is a solvable group. 

In order to prove Galois' solvability criterion, we need more information about 
radical extensions and nth roots. If F is a field and ( is a root of x" - 1 F in some 
extension field ofF (so that (" = 1 F), then (is called an nth root of unity. The deriva
tive nx"-1 of x" - 1 F is nonzero (since F has characteristic 0) and relatively prime to 
x!' - 1 F· Therefore, x" - 1 F is separable by Lemma 11.16. So there are exactly n distinct 
nth roots of unity in any splitting field K of x!' ...,... 1 F· If ( and T are nth roots of unity 
inK, then 

((T)" = (nTn = lF 1F = lF, 

so that (Tis also an nth root of unity. Since the set of nth roots of unity is closed under 
multiplication, it is a subgroup of order n of the multiplicative group of the field K 
(Theorem 7.12) and is, therefore, cyclic by Theorem 7.16 or Corollary 9.11. A genera
tor of this cyclic group of nth roots of unity inK is called a primitive nth root of unity. 
Thus (is a primitive nth root of unity if and only if(, ( 2

, (
3

, ••• 'r = 1F are then 
distinct nth roots of unity. 

EXAMPlE 4 

The fourth roots of unity inC are 1, -1, i, -i. Since i2 = -1, i3 = -i, and i4 = 1, 
i is a primitive fourth root of unity. Similarly, - i is also a primitive fourth root of 
unity. DeMoivre's Theorem shows that for any positive n, 

cos(27T /n) + i sin(27r /n) is a primitive nth root of unity in C. 

When n = 3, this states that 

w = cos(27T/3) + i sin(27r/3) = (-1/2) + (v'3/2)i 

is a primitive cube root of unity. 

Let F be a field and (a primitive nth root of unity in F. Then F contains a 
primitive dth root of unity for every positive divisor d of n. 

Proof~ By hypothesis (has order n in the multiplicative group of F. If n = dt, 
then ( 1 has order d by Theorem 7.9. So ( 1 generates a subgroup of order 
d, each of whose elements must have order dividing dby Corollary 8.6. 
In other words, ((C)"/= 1F for every k. Thus the d distinct powers ( 1

, 

*Since any two splitting fields of f(x) are isomorphic by Theorem 11.14, it follows that the corre
sponding Galois groups are isomorphic. So the Galois group of f(x) is independent of the choice of K. 
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((~2' ..• ' end-!' ((~d = 1 Fare roots of xd - 1 F· Since ~ - 1 F has at most 
d roots and every dth root of unity is a root of xd - 1 p, ( 1 is a primitive dth 
root of unity. Iii · 

We can now tie together the preceding themes and prove two theorems that are 
special cases of Galois' Criterion as well as essential tools for proving the general case. 

Let F be a field of characteristic 0 and (a primitive nth root of unity in some 
extension field of F. Then K = F (() is a normal extension ofF, and GalrK is 
abelian. 

Proof~ The field K = F(() contains all the powers of ( and is, therefore, a split
ting field of x" - 1 F· * Hence, K is normal over F by Theorem 11.15. 
Every automorphism in the Galois group must map ( onto a root of 
x"- 1F by Theorem 12.2. So if u, r E GalpK, then u(() = (k and 
r(() = t for some positive integers k, t. Consequently, 

(u or)(() = u(r(()) = u((1
) = u(()f = ((1'/ = (1ct. 

(r 0 u)(() = r(u(()) = r(t1 = r(()'< = cnk = (1
ct. 

Therefore, u or = To u by Theorem 12.4, and GalFK is abelian. 

Let F be a field of characteristic 0 that contains a primitive nth root of unity. 
If u is a root of xn - c EF[x] in some extension field ofF, then K = F(u) is a 
normal extension ofF, and GalrK is abelian. 

Prooft ~> By hypothesis, u11 = c. If ( is a primitive nth root of unity in F, then for 
anyk, 

Consequently, since(, ( 2
, •.. , (" = 1F are distinct elements ofF, the ele

ments (u, ( 2u, ( 3u, ... , ("u = u are then distinct roots of x' - c. Hence, 
K = F( u) is a splitting field of x' - c over F and is, therefore, normal 
over Fby Theorem 11.15.§ If u, r, EGalpK, then u(u) = (ku and r(u) = 

(
1u for some k, t by Theorem 12.2. Consequently, since (k and ( 1 are in F, 

*The field K = F(t) is a radical extension ofF since ?n = 1F. Thus xn - 1F =OF is solvable by radicals. 
So the theorem, which says that GaiFK (the Galois group of x"- 1F), is abelian (and hence, solvable), 
is a special case of Galois' Criterion. 

tFor an alternate proof showing that GaiFK is actually cyclic, see Exercise 22. 

§The field K = F(u) is also a radical extension ofF since un = CEF, so xn - c = OF is solvable by 
radicals. Hence, the theorem is another special case of Galois' Criterion. 
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(0" 0 T)(u) = O"(T(u)) = O"(t1u) = O"(t1)0"(u) = ncku) = ct+kU. 

(T 0 O")(u) = T(O"(u)) = r(tku) = r(t")r(u) = tkWu) = ct+ku. 

Therefore, O" or = roO" by Theorem 12.4, and GalFK is abelian. Ill 

Let F be a field of characteristic 0 and f(x) EF[x]. Then f(x) =Or is solvable by 
radicals if and only if the Galois group of f(x) is solvable. 

We shall prove only the half of the theorem that is needed below; see Section V9 of 
Hungerford [5] for the other half. 

Proof ofTheorem 12.19 ~Assume thatf(x) =OF is solvable by radicals. The proof, 
whose details are on pages 429-431, is in three steps: 

1. Theorem 12.21: There is a normal radical extension K ofF that con
tains a splitting field E of f(x). * 

2. The field E is normal over Fby Theorem 11.15. 

3. Theorem 12.22: Any intermediate field of Kthat is normal over Fhas 
a solvable Galois group; in particular, GalFE (the Galois group of 
f(x)) is solvable. 1111 

Before completing the proof of Theorem 12.19, we use it to demonstrate the insol
vability of the quintic. 

EXAMPLE 5 

We claim that the Galois group of the polynomialf(x) = 2x5
- lOx+ 5 E Q[x] 

is S5, which is not solvable by Theorem 12.14. Consequently, the equation 
2x5 -lOx + 5 = 0 is not solvable by radicals by Theorem 12.19. So, as 
explained on page 424, 

there is no formula (involving only field operations and 
extraction of roots) for the solution of all fifth-degree 

polynomial equations. 

To prove our claim, note that the derivative of f(x) is 10x4 
- 10, whose only 

real roots are ±1 (the others being ±i). Thenf"(x) = 40x3
, and the second

derivative test of elementary calculus shows thatf(x) has exactly one relative 
maximum at x = - 1, one relative minimum at x = 1, and one point of inflec
tion at x = 0. So its graph must have the general shape shown on the next page. 
In particular,J(x) has exactly three real roots. 

*This is a crucial technical detail. The definition of solvability by radicals guarantees only a radical 
extension ofF containing E. But a radical extension need not be normal over F (Exercise 19), and if 
it is not, the FundamentaiTheorem 12.11 can't be used. 
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Note thatf(x) is irreducible in Q[x] by Eisenstein's Criterion (withp = 5). If K 
is a splitting field of f(x) inC, then Gal10Khas order [K:Q] by the Fundamental 
Theorem. If r is any root of f(x), then [K:Q] = [K:Q(r)] [Q(r):Q] by Theorem 11.4 
and [Q(r):Q] = 5 by Theorem 11.7. So the order of Gal10Kis divisible by 5. It 
follows that Gal10K contains an element of order 5. * 

The group Gal10K, considered as a group of permutations of the roots of 
f(x), is a subgroup of S 5 (Corollary 12.5). But the only elements of order 5 in 
S5 are the 5-cycles (see Exercise 19 in Section 7.5). So Gal10K contains a 5-cycle. 
Complex conjugation induces an automorphism on K (Corollary 12.13). This 
automorphism interchanges the two nonreal roots of f(x) and fixes the three 
real ones. Thus Gal,aK contains a transposition. Exercise 8 shows that the only 
subgroup of S5 that contains both a 5-cycle and a transposition is S5 itself. 
Therefore, GataK = S5 as claimed. 

We now complete the proof of Galois' Criterion, beginning with a technical lemma 
whose import will become clear in the next theorem. 

' 

Lemmal2.2o· 
Let F, E, L be fields of characteristic 0 with 

F r;;; E r;; L = E(v) and 

If Lis finite dimensional over F and E is normal over F, then there exists 
an extension field M of L, which is a radical extension of E and a normal 
extension of F. 

Proof~>- By Theorem 11.15, E is the splitting field over F of some g(x) E F[x]. 
Let p(x) E F[x] be the minimal polynomial of v over F and let M be a 
splitting field of g(x) p(x) over F. Then M is normal over Fby Theorem 11.15. 
Furthermore, F r;; E r;; L r;; M (since L = E( v) and E is generated over 
Fby the roots of g(x)). Let v = vl> v2, •. . , v, be all the roots of 
p(x) in M. For each i there exists 0'; E GalpM such that 0'; ( v) = V; by 

*If you have read Chapter 9 use Corollary 9.14; otherwise, use Exercise 9 in this section. 
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Theorem 12.3. Corollary 12.13 shows that G';(E) ~E. By hypothesis, vk = 
b E E; so for each i, 

Consequently, 

E~ L = E(v1) ~ E(vb v2) ~E (vi> v2, v3) ~ · • • ~ E (vi> v2, ••• , v,.) = M 
is a radical extension of E. Ill 

Let F be a field of characteristic 0 and f(x) Ef[x]. If f(x) =Or is solvable by 
radicals, then there is a normal radical extension field ofF that contains 
a splitting field of f(x). 

Proof~>- By definition some splitting field K of f(x) is contained in a radical 
extension 

where F; = F;_ 1 ( u;) and ( u;) 11
' is in F;_ 1 for each i = 1, 2, ... , t. Applying 

Lemma 12.20 withE= F, L = Fb and v = u 1 produces a normal radical 
extension field M 1 ofF that contains F1. By hypothesis ( u2 ) 112 E F 1 ~ M1. 

Applying Lemma 12.20 withE= Mb v = u2, and L = M 1(u2) produces 
a normal extension field M 2 of F that is a radical extension of M 1 and, 
hence, a radical extension of F. Furthermore, M 2 contains F2 = F1(u2). 

Continued repetition of this argument leads to a normal radical exten
sion field lvf1 ofF that contains F1 and, hence, contains K. II 

Let K be a normal radical extension field ofF andEan intermediate field, all 
of characteristic 0. If E is normal over F, then GalrE is a solvable group. 

Proof~>- By hypothesis there is a chain of subfields 

F = F0 ~ F1 ~ F2 ~ F3 ~ • • • ~ F1 == K, 

where F; = F;_ 1(u;) and (u;) 11
' is in Fi_ 1 for each i = 1, 2, ... , t. Let 11 be 

the least common multiple of 111> n2, ••• , n1 and let ~ be a primitive nth 
root of unity. For each i 2:: 0, let E; = F;(t). Then for each i 2:: 1 

Since ( u;)"' E F;-J ~ E;_ 1 for i 2:: 1 and C E F, 
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is a radical extension ofF that contains K (and, hence, E).* The normal 
extension K = F1 is the splitting field of some polynomialp(x) EF[x] 
by Theorem 11.15, and, hence, L = E1 =FtC() is the splitting field of 
p(x)(x'- 1p) over F. Therefore, Lis Galois over Fby Theorems 11.15 
and 11.17. 

Consider the following chain of subgroups of GalpL: 

We shall show that each subgroup is normal in the preceding one and 
that each quotient is abelian. Since each ni divides n, E0 contains a primi
tive n;th root of unity by Lemma 12.16. Consequently, by Theorem 12.18 
each Ei (with i ::=::: 1) is a normal extension of Ei-1> and the Galois group 
GalE1-1E; is abelian. Since Lis Galois over F, it is Galois over every f0. 
Applying the Fundamental Theorem 12.11 to the extension L of Ei-1> we 
see that GalE,L is a normal subgroup of GalE,_,L and that the quotient 
group GalEi-IL/GalE,L is isomorphic to the abelian group GalE,_,E;. 
Similarly by Theorems 12.11 and 12.17, E0 is normal over F, GalE,L is 
normal in GalpL, and GalpL/GalE,L is isomorphic to the abelian group 
GalpE0• Therefore, GalpL is a solvable group. 

Since E is normal over F, the Fundamental Theorem shows that 
GalE£ is normal in GalpL and GalpL/GalEL is isomorphic to GalpE. 
So GalpE is the homomorphic image of the solvable group GalpL 
(see Theorem 8.18) and is, therefore, solvable by Theorem 12.15. 

Exercises 

NOTE: F denotes afield, and all .fields have characteristic 0. 

A. 1. Find a radical extension of Q containing the given number: 

(a) \VI + V7 - ~2 + V5 

(b) (~ V2 + i)/(Vs) 

(c) ('13 - V2)/(4 + V2) 
2. Show that x2 

- 3 and x 2 
- 2x - 2 E Q[x] have the same Galois group. 

[Hint: What is the splitting field of each?] 

3. If K is a radical extension ofF, prove that [K:F] is finite. 
[Hint: Theorems 11.7 and 11.4.] 

*The construction of L does not use the hypothesis that K is normal over F, and, as we shall see 
below, every field in the chain is a normal extension of the immediately preceding one. But this is not 
enough to guarantee that Lis normal (hence Galois) over F (Exercise 19). We need the hypothesis 
that K is normal over'Fto guarantee this, so that we can use the Fundamental Theorem on L. 
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4. Prove that for n;::: 5, An is not solvable. [Hint: Adapt the proof of 
Theorem 12.14.] · 

5. (a) Show that S4 is a solvable group. [Hint: Consider the subgroup H = 
{(12)(34), (13)(24), (14)(23), (1)} of A4.] 

(b) Show that D 4 is a solvable group. 

6. If G is a simple nonabelian group, prove that G is not solvable. [This fact and 
Theorem 8.26 provide another proof that An is not solvable for n;::: 5.] 

7. List all the nth roots of unity inC when n = 
(a) 2 (b) 3 (c) 4 (d) 5 (e) 6 

B. 8. Let G be a subgroup of S5 that contains a transposition rr = (rs) and a 5-cycle a. 
Prove that G = S5 as follows. 

(a) Show that for some k, ak is of the form (rsxyz). LetT= ak E G; by 
relabeling we may assume that rr = (12) and T = (12345). · 

(b) Show that (12), (23), (34), (45) E G. [Hint: Consider rkrrT-k fork;::: 1]. 

(c) Show that (13), (14), (15) E G. [Hint: (12)(23)(12) = ?] 

(d) Show that every transposition is in G. Therefore, G = S5 by Theorem 7.26. 

9. Let G be a group of order 11. If 5111, prove that G contains an element of order 
5 as follows. Let S be the set of all ordered 5-tuples (r, s, t, u, v) with r, s, t, u, 
v E G and rstuv =e. 

(a) Show that S contains exactly 11
4 5-tuples. [Hint: If r, s, t, u, E G and v = 

(rstu)- 1, then (r, s, t, u, v) E S.] 

(b) Two 5-tuples inS are said to be equivalent if one is a cyclic permutation of 
the other.* Prove that this relation is an equivalence relation on S. 

(c) Prove that an equivalence class inS either has exactly five 5-tuples in it or 
consists of a single 5-tuple of the form (r, r, r, r, r). 

(d) Prove that there are at least two equivalence classes inS that contain 
a single 5-tuple. [Hint: One is {(e, e, e, e, e)}. If this is the only one, 
show that n4 == 1 (mod 5). But 5J 11, so n4 == 0 (mod 5), which is a 
contradiction.] 

(e) If {(c, c, c, c, c)}, with c =Fe, is a single-element equivalence class, prove 
that c has order 5. 

10. If N is a normal subgroup of G, N is solvable, and Gl N is solvable, prove that 
G is solvable. 

11. Prove that a subgroup H of a solvable group G is solvable. [Hint: If G = G0 ::2 

G1 ::2 · · · ::2 G" = (e) is the solvable series for G, consider the groups H; = H n G;. 
To show that H;- 11' H; is abelian, verify that the map H;_ 1 I H;-+ G;_ 1 I G; given 
by H;x-+ G;x is a well-defined injective homomorphism.] 

*For instance, (r, s, t, u, v) is equivalent to each of (s, t, u, v, r), (t, u, v, r, s), (u, v, r, s, t), (v, r, s, t, u), 
(r, s, t, u, v) and to no other 5-tuples inS. 
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12. Prove that the Galois group of an irreducible quadratic polynomial is 
isomorphic to 7l.2• 

13. Prove that the Galois group of an irreducible cubic polynomial is isomorphic 
to 7!_3 or s3. 

14. Prove that the Galois group of an irreducible quartic polynomial is solvable. 
[Hint: Corollary 12.5 and Exercises 5 and 11.] 

15. Let p(x), q(x) be irreducible quadratics. Prove that the Galois group of f(x) = 
p(x)q(x) is isomorphic to 7l.2 X 7l.2 or 7l.2• [Hint: If u is a root of p(x) and v a 
root of q(x), then there are two cases: v f/. F( u) and v E F( u).] 

16. Use Galois' Criterion to prove that every polynomial of degree:::; 4 is solvable 
by radicals. [Hint: Exercises 12-15.] 

17. Find the Galois group G of the given polynomial in Q[x]: 

(a) x 6 
- 4x3 + 4 [Hint: Factor.] 

(b) x4
- 5x2 + 6 

(c) x 5 + 6x3 + 9x 

(d) x 4 + 3x3 - 2x - 6 

(e) x 5
- lOx- 5 [Hint: See Example 5.] 

18. Determine whether the given equation over Q is solvable by radicals: 

(a) x 6 + 2x3 + 1 = 0 (b) 3x5
- 15x + 5 = 0 

(c) 2x5
- 5x4 + 5 = 0 (d) x 5

- x4
- 16x + 16 = 0 

19. (a) Prove that Q(\12i) is normal over Q by showing it is the splitting field of 
x2 + 2. 

(b) Prove that 0(-\12(1 - i)) is normal over O(V2i) by showing that it is the 
splitting field of x 2 + 2Wi. 

(c) Show that Q <;;; O(V2i) <;;; O(Vl(l - i)) is a radical extension of Q with 

[O(V2 ( 1 i) ):0] = 4 and note that Q contains all second roots of unity 
(namely ± 1). 

(d) Let L = O(Vl(l - i) ). Show that v = \Y2(1 + i) is not in L. 
[Hint: If vEL and u = ·V2(1 - i) E L, show that v/u = i and (v- 1t)/2i = 
V2 EL, which implies that [L:Q] 2 o(V2, i):Q], contradicting (c) and 
Exercise 12(b) in Section 12 .2.] 

(e) Prove that L = 0( Vl( 1 - i)) is not normal over Q [Hint: u and v (as in 
(d)) are roots of the irreducible polynomial x4 + 8.] 

20. Let~ be a primitive fifth root of unity. Assume Exercise 21 in Section 4.5 and 
prove that GalQQ((), the Galois group of x5 - 1, is cyclic of order 4. 

21. What is the Galois group of x 5 + 32 over Q? [Hint: Show that Q(() is a 
splitting field, where~ is a primitive fifth root of unity; see Exercise 20.] 

22. Prove that the group GalFK in Theorem 12.18 is cyclic. [Hint: Define a map 
jfrom GalFK to the additive group 7l.11 by j(<T) = k, where <T(u) = (ku. Show 
thatfis a well-defined injective homomorphism and use Theorem 7.17.] 
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C. 23. If p is prime and G is a subgroup of SP that contains a transposition and a 
p-cycle, prove that G = Sr [Exercise 8 is the case p = 5.] 

24. If f(x) E Q[x] is irreducible of prime degreep andf(x) has exactly two 
nonreal roots, prove that the Galois group of f(x) is SP. [Example 5 is 
essentially the case p = 5.] 

25. Construct a polynomial in Q[x] of degree 7 whose Galois group is S7• 
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C H A P T E R 

Public-Key Cryptography 

Prerequisites: Section 2.3 

Codes have been used for centuries by merchants, spies, armies, and diplomats to trans
mit secret messages. In recent times, the large volume of sensitive material in government 
and corporate computerized data banks (much of which is transmitted by satellite or 
over telephone lines) has increased the need for efficient, high-security codes. 

It is easy to construct unbreakable codes for one-time use. Consider this "code pad": 

Actual Word: 
Code Word: 

morning 
bat 

evening 
glxt 

Monday 
king 

Tuesday 
button 

attack 
figle 

If I send you the message FIGLE BUTTON BAT, there is no way an enemy can know 
for certain that it means "attack on Tuesday morning" unless he or she has a copy of 
the pad. Of course, if the same code is used again, the enemy might well be able to 
break it by analyzing the events that occur after each message. 

Although one-time code pads are unbreakable, they are cumbersome and inef
ficient when many long messages must be routinely sent. Even if the encoding and 
decoding are done by a computer, it is still necessary to design and supply a new pad 
(at least as long as the message) to each participant for every message and to make all 
copies of these pads secure from unauthorized persons. This is expensive and imprac
tical when hundreds of thousands of words must be encoded and decoded every day. 

For frequent computer-based communication among several parties, the ideal code 
system would be one in which 

1. Each person has efficient, reusable, computer algorithms for encoding and 
decoding messages. 

2. Each person's decoding algorithm is not obtainable from his or her encoding 
algorithm in any reasonable amount of time. 

437 
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A code system with these properties is called a public-key system. Although it may not 
be clear how condition 2 could be satisfied, it js easy to see the advantages of a public
key system. 

The encoding algorithm of each participant could be publicly announced-perhaps 
published in a book (like a telephone directory)-thus eliminating the need for couriers 
and the security problems associated with the distribution of code pads. This would not 
compromise secrecy because of condition 2: Knowing a person's encoding algorithm 
would not enable you to determine his or her decoding algorithm. So you would have no 
way of decoding messages sent to another person in his or her code, even though you 
could send coded messages to that person. 

Since the encoding algorithms for a public-key system are available to everyone, forgery 
appears to be a possibility. Suppose, for example, that a bank receives a coded message 
claiming to be from Anne and requesting the bank to transfer money from Anne's account 
into Tom's account. How can the bank be sure the message was actually sent by Anne? 

The answer is as simple as it is foolproof. Coding and decoding algorithms are in
verses of each other: Applying one after the other (in either order) produces the word 
you started with. So Anne first uses her secret decoding algorithm to write her name; 
say it becomes Gybx. She then applies the bank's public encoding algorithm to Gybx 
and sends the result (her "signature") along with her message. The bank uses its secret 
decoding algorithm on this "signature" and obtains Gybx. It then applies Anne's pub
lic encoding algorithm to Gybx, which turns it into Anne. The bank can then be sure 
the message is from Anne, because no one else could use her decoding algorithm to 
produce the word Gybx that is encoded as Anne. 

One public-key system was developed by R. Rivest, A. Shamir, and L. Adleman 
in 1977. Their system, now called the RSA system, is based on elementary number 
theory. Its security depends on the difficulty of factoring large integers. Here are the 
mathematical preliminaries needed to understand the RSA system. 

Let p, r, s, c E7L with p prime. If p ,r c and rc = sc (mod p), then r = s (mod p). 

Proof~ Since rc = sc (mod p ),p divides rc - sc = (r - s)c. By Theorem 1.5 
pI (r- s) orp I c. Since p ,r c, we have pI (r- s), and, hence, r = s (mod p). II 

If pis prime, a E7L, and p ,r a, then aP-1 = 1 (mod p). 

Proof*~ None of the numbers a, 2a, 3a, ... , (p- l)a is congruent to 0 modulo 
p by Exercise 1. Consequently, each of them must be congruent to one 
of 1, 2, 3, ... ,p -1 by Corollary 2.5 and Theorem 2.3. If two of them 
were congruent to the same one, say ra = i =sa (modp) with 

1 ::::; i, r, s ::::; p - 1, 

*A proof based on group theory is outlined in Exercise 38 of Section 7.3, and one based on field theory 
is in Exercise 13 of Section 11.6. 
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then we would haver== s (modp) by Lemma 13.1 (with c =a). This is 
impossible because no two of the numbers 1, 2, 3, ... , p - 1 are con
gruent modulo p (the difference of any two is less thanp and, hence, 
not divisible by p). Therefore, in some order a, 2a, 3a, ... , (p - 1)a are 
congruent to 1, 2, 3, ... , p - 1. By repeated use of Theorem 2.2, 

a· 2a · 3a ... (p- 1)a == 1 · 2 · 3 · .. (p- 1) (modp). 

Rearranging the left side shows that 

a · a · a . .. a · 1 · 2 · 3 .. · (p - 1) == 1 · 2 · 3 ... (p - 1) (mod p) 

ap- 1(1 · 2 · 3 .. · (p- 1)) == 1(1 · 2 · 3 ... (p- 1)) (modp). 

Now p ,y (1 · 2 · 3 ... (p - 1)) (if it did, p would divide one of the fac
tors by Corollary 1.6. Therefore, a"-1 == 1 (modp) by Lemma 13.1 (with 
c = 1 . 2 . 3 ... (p - 1)). Ill 

Throughout the rest of this discussion p and q are distinct positive primes. Let 
n = pq and k = (p - 1)(q - 1). Choose d such that (d, k) = 1. Then the equation 
dx = 1 has a solution in 7l.k by Theorem 2.9 (with n = k). Therefore, the congruence 
dx == 1 (mod k) has a solution in 71.; call it e. 

Let p, q, n, k, e, d be as in the preceding paragraph. Then bed== b (mod n) for 
every bE 71.. 

Proof ~ Since e is a solution of dx == 1 (mod k), de - 1 = kt for some t. Hence, 
ed = let + 1, so that 

If p ,Y b, then by Lemma 13.2, 

bed= (!JP-1)(q-1)b == (1)(q-1)t b == b (modp). 

If pI b, then band every one of its powers are congruent to 0 modulo p. 
Therefore, in every case, bed== b (mod p ). A similar argument shows that 
bed== b (mod q). By the definition of congruence, 

and q 1 wd- b). 

Therefore, pq I (bed - b) by Exercise 2. Since pq = n, this means that n 
divides wd- b), and, hence, bed== b (mod n). Ill 

The least residue modulo 11 of an integer cis the remainder r when cis divided 
by n. By the Division Algorithm, c = nq + r, so that c- r = nq, and, hence, c = r 
(mod n). Since two numbers strictly between 0 and n cannot be congruent modulo 
n, the least residue of c is the only integer between 0 and n that is congruent to c 
modulo n. 
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We can now describe the mechanics of the RSA system, after which we shall show 
how it satisfies the conditions for a public-key system. The message to be sent is first 
converted to numerical form by replacing t(ach letter or space by a two-digit number:* 

space = 00, A = 01, B = 02, ... , Y = 25, Z = 26. 

For instance, the word GO is written as the number 0715 and WEST is written · 
23051920, so that the message "GO WEST" becomes the number 07150023051920, 
which we shall denote by B. 

Letp, q, n, k, d, e, be as in Theorem 13.3, withp and q chosen so that B < pq = n. 
To encode message B, compute the least residue of Be modulo n; denote it by C. Then 
Cis the coded form of B. Send C in any convenient way. 

The person who receives C decodes it by computing the least residue of Cd modulo 
n. This produces the original message for the following reasons. Since Be, is congruent 
modulo n to its least residue C, Theorem 13.3 shows that 

The least residue of Cd is the only number between 0 and n that is congruent to Cd 
modulo n and 0 < B < n. So the original message B is the least residue of Cd. 

Before presenting a numerical example, we show that the RSA system satisfies the 
conditions for a public-key system: 

1. When the RSA system is used in practice, p and q are large primes (several hun
dred digits each). Such primes can be quickly identified by a computer. Even 
though B, e, C, d are large numbers, there are fast algorithms for finding the 
least residues of Be and Cd modulo n. They are based on binary representation 
of the exponent and do not require direct computation of Be or Cd (which would 
be gigantic numbers). See Knuth [31] for details. So the encoding and decoding 
algorithms of the RSA system are computationally efficient. 

2. To use the RSA system, each person in the network uses a computer to choose 
appropriate p, q, d and then determines n, k, e. The numbers e and n for the 
encoding algorithm are publicly announced, but the prime factors p, q of nand 
the numbers d and k are kept secret. Anyone with a computer can encode mes
sages by using e and n. But there is no practical way for outsiders to determine 
d (and, hence, the decoding algorithm) without first findingp and q by factoring 
n.t With present technology this would take thousands of years! So the RSA 
system appears secure, as long as new and very fast methods of factoring are 
not developed. 

Even when n is chosen as above, there may be some messages that in numerical 
form are larger than n. In such cases the original message is broken into several blocks, 
each of which is less than n. Here is an example, due to Rivest-Shamir-Adleman. 

*More numbers could be used for punctuation marks, numerals, special symbols, etc. But this will be 
sufficient for illustrat·ing the basic concepts. 

t Alternatively, one might try to find k and then solve the congruence ex= 1 (mod k) to get d. But this 
can be shown to be computationally equivalent to factoring n, so no time is saved. 
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EXAMPLE 1 

Letp = 47 and q =59. Then n = pq = 47 ·59= 2773 and k = (p- 1)(q- 1) = 
46 · 58 = 2668. * Let d = 157. A graphing calculator or computer quickly veri
fies that (157, 2668) = 1 and that the solution of 157x = 1 (mod 2668) is e = 17.t 
We shall encode the message "IT'S ALL GREEK TO ME." We can encode only 
numbers less than n = 2773. So we write the message in two-letter blocks (and 
denote spaces by #): 

IT 
0920 

EE 
0505 

S# 
1900 

K# 
1100 

AL 
0112 

TO 
2015 

L# 
1200 

#M 
0013 

GR 
0718 

E# 
0500. 

Then each block is a number less than 2773. The first block, 0920, is encoded by 
using e = 17 and a computer to calculate the least residue of 920 17 modulo 2773: 

92017 = 948 (mod 2773). 

The other blocks are encoded similarly, so the coded form of the message is 

0948 

2390 

2342 

0778 

1084 

0774 

1444 

0219 

2663 

1655. 

A person receiving this message would used= 157 to decode each block. For 
instance, to decode 0948, the computer calculates 

948 157 = 920 (mod 2773). 

This is the original first block 0920 = IT. 

For more information on cryptography and the RSA system, see Hoff stein, Pipher, 
and Silveman [33), Rivest-Shamir-Adleman [34], Simmons [35], and Trappe and 
Washington [36]. 

Exercises 

A. 1. Let p be a prime and k, a E 7L such that p .r a and 0 < k < p. Prove that ka =/= 0 
(modp). [Hint: Theorem 1.5.] 

2. If p and q are distinct primes such that pIc and q I c, prove that pq I c. [Hint: 
If c = pk, then q I pk; use Theorem 1.5.] 

*These numbers will illustrate the concepts. But they are too small to provide a secure code since 
2773 can be factored by hand. 

tro solve the congruence on a calculator, use the Technology Tip on page 12 to find u and v such that 
157u + 2668v = 1.Then 157u- 1 = 2668v, which means that 157u = 1 (mod 2668). 



442 Chapter 13 Public-Key Cryptography 

3. Use a calculator and the RSA encoding algorithm withe= 3, n = 2773 to 
encode these messages: 

(a) GOHOME (b) COMEBACK (c) DROP DEAD 

[Hint: Use 2-letter blocks and don't omit spaces.] 

4. Prove this version of Fermat's Little Theorem: If p is a prime and a E 71., then 
aP = a (mod p ). [Hint: Consider two cases, p I a and p % a; use Lemma 13.2 in 
the second case.] 

B. 5. Find the decoding algorithm for the code in Exercise 3. 

6. Let C be the coded form of a message that was encoded by using the RSA 
algorithm. Suppose that you discover that C and the encoding modulus n 
are not relatively prime. Explain how you could factor n and thus find the 
decoding algorithm. [The probability of such a C occurring is less than 10-99 

when the prime factors p, q, of n have more than 100 digits.] 



The Chinese Remainder Theorem 

Prerequisites: Section 2.1 and Appendix C for Section 14.1; Section 3.1 
for Section 14.2; Section 6.2 for Section 14.3. 

The Chinese Remainder Theorem (Section 14.1) is a famous result in numbertheory 
that was known to Chinese mathematicians in the first century. It also has practical 
applications in computer arithmetic (Section 14.2). An extension of the theorem 
to rings other than 7L has interesting consequences in ring theory (Section 14.3). 
Although obviously motivated by Section 14.1, Section 14.3 is independent of the 
rest of the chapter and may be read at any time after you have read Section 6.2. 

Proof of the Chinese Remainder Theorem 

A congruence is an equation with integer coefficients in which"=" is replaced by 
"=(mod n)." The same equation can lead to different congruences, such as 

6x + 5 == 7 (mod 3) or 6x + 5 == 7 (mod 5). 

Only integers make sense as solutions of congruences, so the techniques of solving 
equations are not always applicable to congruences. For instance, the equation 6x + 5 = 7 
has x = 1j3 as a solution, but the congruence 6x + 5 == 7 (mod 3) has no solutions 
(Exercise 3), and 6x + 5 == 7 (mod 5) has infinitely many solutions (Exercise 4). 

A number of theoretical problems and practical applications require the solving of 
a system of linear congruences, such as 

x == 2 (mod4) 

x == 5 (mod 7) 

x == 0 (mod 11) 

x == 8 (mod 15) 
443 
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A solution of the system is an integer that is ,a solution of every congruence in the sys
tem. We shall examine some cases in which a system of linear congruences must have 
a solution. 

If m and n are relatively prime positive integers and a, b EZ, then the system 

x =a (mod m) 

x=b(modn) 

has a solution. 

Proof~ Since (m, n) = 1, there exist integers u and v such that mu + nv = 1 by 
Theorem 1.2. This equation and the definition of congruence lead to 
four conclusions: 

(i) mu = 0 (mod m) 

(iii) nv = 0 (mod n) 

(ii) nv = 1 (mod m) [Because 1 - nv = mu.] 

(iv) mu =1 (mod n) [Because 1 - mu = nv.] 

Let t = bmu + anv. Then by (i), (ii), and Theorem 2.2, 

t = bmu + anv = b · 0 +a· 1 =a (mod m), 

so that t =a (mod m). Similarly, by (iii), (iv), and Theorem 2.2, 

t = bmu + anv = b · 1 +a· 0 = b (mod n), 

so that t = b (mod n). Therefore, tis a solution of the system. 

The proof of Lemma 14.1, provides the 

Solution Algorithm for the System in Lemma 14.1 

1. Find u and v such that mu + nv = 1.* 

2. Then t = bmu + anv is a solution of the system 

EXAMPLE 1 

To solve the system 

x = 2 (mod 4) 

x = 5 (mod 7), 

apply the algorithm with m = 4, n = 7, a= 2, b = 5: 

1. It is easy to see that u = 2, v = - 1 satisfy 4u + 7v = 1. 

2. Therefore, a solution of the system is 

t = bmu + anv = 5 · 4 · 2 + 2 · 7 · ( -1) = 26. 

*This can be done by hand by using the Euclidean Algorithm; see Exercise 15 in Section 1.2. It can 
also be done on a computer or graphing calculator; see theTechnologyTip on page 12. 
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Let m1, m2, ... , mr be pairwise relatively prime positive integers (meaning 
that (mi, m) = 1 whenever I=!= j). Let a1, a2, ... , ar be any integers. 

(1) The system 

has a solution. 

x == a1 (mod m 1) 

x == a2 (mod m2) 

x == a3 (mod m3) 

(2) If tis one solution of the system, then an integer z is also a solution 
if and only if z == t (mod m1 m2 m3 · · · mJ 

For reasons that will become apparent below, we shall use induction to prove the 
first part of the theorem. For a proof that does not use induction, see Exercise 21. 

Proof ofTheorem 14.2~>- (1) The proof is by induction on the number r of congru
ences in the system. If r = 2, then there is a solution by Lemma 14.1 
(with m = ml> n = m2, a = a~> b = a2). So suppose inductively that there 
is a solution when r = k and consider the system 

x == a1 (mod m1) 

x == a2 (mod m2) 

x == a3 (mod m3) 

x == ak (mod m1J 
x == ak+ 1 (mod mk+ 1) 

By the induction hypothesis, the system consisting of the first k congru
ences in (*)has a solutions. Furthermore, m1m2m3 • • • mk and mk+ 1 are 
relatively prime (Exercise 5). Consequently, by Lemma 14.1, the system 

x == s (mod m1m2m3 • • • m1J 
(**) x == ak+ 1 (mod mk+l) 

*So named because it was known to Chinese mathematicians in the first century. 
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has a solution t. The number t nece~sarily satisfies 

' 
t = s (mod m1m2m3 ·, • • m1J 

Consequently, for each i = 1, 2, 3, ... , k, 

(Reason: If t- sis divisible by m1m2m3 • • • mk> then it is divisible by each 
m;). Now sis a solution of the first k congruences in ( ** ), so for each i:::::; k 

and 

By transitivity (Theorem 2.1), 

fori= 1, 2, ... , k. 

Since tis a solution of(**), it must also satisfy t = ak+l (mod mk+J). 
Hence, tis a solution of the system ( * ), so that there is a solution 
when r = k + 1. Therefore, by induction, every such system has a 
solution. 

(2) If z is any other solution of the system, then for each i = 1, 2, ... , r, 

and t = a; (mod m;). 

By transitivity (Theorem 2.1), z = t (mod m} Thus 

m1 I (z - t), m2 1 (z - t), m3 I (z - t), ... , m,. I (z - t). 

Therefore, m1m2m3 • • • m,. 1 (z- t) by Exercise 7. Hence, 

Conversely, if z = t (mod m1m2m3 · · · m,.), then, as above, z = t (mod m;) 
for each i = 1, 2, ... , r. Since t =a; (mod m;), transitivity shows that z =a; 
(mod m;) for each i. Therefore, z is a solution of the system. II 

The proof of Theorem 14.2 actually provides an effective computational algorithm 
for solving large systems: Solve the first two by Lemma 14.1, then repeat the inductive 
step as often as needed to determine a solution of the entire system. 

EXAMPLE 2 

We shall solve the system 

x = 2 (mod 4) 

x = 5 (mod 7) 

x = 0 (mod 11) 

x = 8 (mod 15). 
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Example 1 shows that x = 26 is a solution of the system consisting of the first two 
congruences: 

Next we solve the system 

x = 2 (mod 4) 

x = 5 (mod 7). 

x = 26 (mod 4 · 7) 

x = 0 (mod 11). 

First, note that u = 2 and v = - 5 satisfy 28u + 11 v = 1. * Then the Solution 
Algorithm preceding Example 1 (with a = 26, m = 4 · 7 = 28, b = 0, n = 11) shows 
that a solution is 

bmu + anv = 0 · 28 · 2 + 26 · 11 · ( -5) = -1430. 

You can readily verify that x = - 1430 is also a solution of the system consistmg of the 
first three congruences: 

Finally, we solve this system: 

x = 2 (mod 4) 

x = 5 (mod 7) 

x = 0 (mod 11). 

x = -1430 (mod 4 · 7 · 11) 

x = 8 (mod 15). 

Note that u = 2 and v = -41 satisfy 308u + l5v = 1. * So by the Solution Algorithm 
(with a= -1430, m = 4 · 7 · 11 = 308, b = 8, n = 15), a solution is 

bmu + anv = 8 · 308 · 2 + (-1430) · 15 · (-41) = 884,378. 

You can ve1ify that x = 884,378 is a solution of the entire system 

x = 2 (mod 4) 

x = 5 (mod 7) 

x = 0 (mod 11) 

x = 8 (mod 15). 

Since 4 · 7 · 11 · 15 = 4620 and 884,378 = 1958 (mod 4620), as you can easily 
verify, x = 1958 is also a solution of the system by Theorem 14.2. When work
ing by hand, the smaller solution is easier to use. So we say that the solutions 
of the system are all numbers that are congruent to 1958 modulo 4620. 

*The values for u and v were· found with a graphing calculator program; see the Technology Tip on 
page 12. 
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Techi1~Iogy Tip: Systems such as th~! one in' E~ample 2. can be solved by the 
ChineseRemainder Theorem program for n graphing ca1culators.that can be 
downloaded from our website (ADDRESS TBA): In Example 2, when asked, 
you enter the list of constants {2, 5, 0, 8} and the corresponding 'list of moduli 
{ 4, 7, 11, 15}. The program then produces the solution, as shown in Figure 1 .. 

~· . 
SOLUTION 

·1958 
MODULO 

4620 

·Done · 

FIGURE 1< 

To. solve the same system with Maple, use the command 
chrem ([2, 5, 0, 8], [4, 7, 11, 15]); . · 

Exercises 

A. 1. If u = v (mod n) and u is a solution of 6x + 5 = 7 (mod n), then show that vis 
also a solution. [Hint: Theorem 2.2.] 

2. If 6x + 5 = 7 (mod n) has a solution, show that one of the numbers 1, 2, 3, ... , 
n - 1 is also a solution. [Hint: Exercise 1 and Corollary 2.5.] 

3. Show that 6x + 5 = 7 (mod 3) has no solutions. [Hint: Exercise 2.] 

4. Show that 6x + 5 = 7 (mod 5) has infinitely many solutions. 
[Hint: Exercises 1 and 2.] 

5. If mi> m2, . •. , m1" mk+I are pairwise relatively prime positive integers (that is, 
(mi, m;) = 1 when i =F j), prove that m1m2 • • • m1c and mk+I are relatively prime. 
[Hint: If they aren't, then some prime p divides both of them (Why?). Use 
Corollary 1.6 to reach a contradiction.] 

6. If (m, n) = 1 and m 1 d and n I d, prove that mn I d. [Hint: If d = mk, then 
n I mk; use Theorem 1.4.] 

7. Let m1, m2, .•. , m,. be pairwise relatively prime positive integers (that is, 
(mim;) = 1 when i =F j). Assume that mi I d for each i. Prove that 
m1m2m3 ... m, I d. [Hint: Use Exercises 5 and 6 repeatedly.] 

In Exercises 8-13, solve the system of congruences. 

8. x =·5 (mod 6) 
x=7(mod11) 

10. x = 1 (mod 2) 
x = 2 (mod 3) 
x = 3 (mod 5) 

9. x=3(modll) 
x = 4 (mod 17) 

11. x = 2 (mod 5) 
x = 0 (mod 6) 
x = 3 (mod 7) 



12. x = 1 (mod 5) 
x = 3 (mod 6) 
x = 5 (mod 11) 
x = 10 (mod 13) 
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13. x = 1 (mod 7) 
x. = 6 (mod 11) 
x = 0 (mod 12) 
x = 9 (mod 13) 
x=O(mod17) 

B. 14. (Ancient Chinese Problem) A gang of 17 bandits stole a chest of gold coins. 
When they tried to divide the coins equally among themselves, there were 
three left over. This caused a fight in which one bandit was killed. When the 
remaining bandits tried to divide the coins again, there were ten left over. 
Another fight started, and five of the bandits were killed. When the survivors 
divided the coins, there were four left over. Another fight ensued in which 
four bandits were killed. The survivors then divided the coins equally among 
themselves, with none left over. What is the smallest possible number of coins 
in the chest? 

15. If (a, n) = d and d 1 b, show that ax= b (mod n) has a solution. [Hint: b = de 
for some c, and au + nv = d for some u, v (Why?). Multiply the last equation 
by c; what is auc congruent to modulo n?] 

16. If (a, n) = d and d ..r b, show that ax= b (mod n) has no solutions. 

17. If (a, n) = 1 and s, tare solutions of ax= b (mod n), prove that s = t (mod n). 
[Hint: Show that n 1 (as- at) and use Theorem 1.4.] 

18. If (a, n) = d and s, tare solutions of ax= b (mod n), prove that s = t (mod n/ d). 

19. If (m, n) = d, prove that the system 

x =a (mod m) 

x = b (mod n) 

has a solution if and only if a = b (mod d). 

20. If s, tare solutions of the system in Exercise 19, prove that s = t (mod r), 
where r is the least common multiple of m and n. 

21. (Alternate Proof of part (1) of the Chinese Remainder Theorem) For each 
i = 1, 2, ... , r, let N; be the product of all the m1 except 111;, that is, 

N; = 111 11112 · · · 111;-!111i+l · · · m, .. 

(a) For each i, show that (N;, m;) = 1, and that there are integers u; and v; such 
that N;u; + m;v; = 1. 

(b) For each i andj such that i =F j, show that N;u; = 0 (mod 111). 

(c) For each i, show that N;u; = 1 (mod m;). 

(d) Show that t = a;N1u1 + a2N2u2 + a1N1u3 + · · · + a,.N,.u,. is a solution of 
the system. 
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Applications of the Chinese Remainder Theorem 

Every computer has a limit on the size of integers that can be used in machine arith
metic, called the word size. In a large computer this might be 235

. Computer arithmetic 
with integers larger than the word size requires time-consuming multiprecision tech
niques. In such cases an alternate method of addition and multiplication, based on the 
Chinese Remainder Theorem, is often faster. 

For any numbers r, s, t, n less than the word size, a large computer can quickly 
calculate 

r +sand r. s (even when the answer is larger than the word size); 

the least residue of t modulo n* (including the case when t exceeds the word size
see Exercise 2); 

sums and products in 7L11 • 

Finally, a computer can use a slight variation of the Chinese Remainder Theorem 
solution algorithm (Theorem 14.2) to solve systems of congruences. But this may 
involve numbers larger than the word size and, hence, require slower multiprecision 
techniques. 

To get an idea of how the alternate method works, imagine that the word size of 
our computer is 100, so that multiprecision techniques must be used for larger num
bers. The following example shows how to multiply two four-digit numbers on such a 
computer, with minimal use of multiprecision techniques. 

EXAMPLE 1 

We shall multiply 3456 by 7982 by considering various systems of congruences 
and using the Chinese Remainder Theorem. We begin by choosing several 
numbers as moduli and finding the least residues of 3456 and 7982 for each 
modulus:t 

3456 = 74 (mod 89) 
3456 = 36 (mod 95) 
3456 = 61 (mod 97) 
3456 = 26 (mod 98) 
3456 = 90 (mod 99) 

7982 = 61 (mod 89) 
7982 = 2 (mod 95) 
7982 = 28 (mod 97) 
7982 = 44 (mod 98) 
7982 = 62 (mod 99). 

Then by Theorem 2.2 we lmow that 3456 · 7982 = 74 · 61 (mod 89). Taking the 
least residue of 74 · 61 modulo 89 and proceeding in similar fashion for the other 
congruences, we have 

*The least-residue m'odulo n of a number I is the remainder r when I is divided by n. By the Division 
Algorithm, I= nq + r so that 1- r = nq and I= r (mod n). 

tThe reason why 89, 95, 97, 98, and 99 were chosen as moduli will be explained below. 
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3456 · 7982 = 74 · 61 = 64 (mod 89) 
3456 · 7982 = 36 · 2 = 72 (mod 95) 
3456 · 7982 = 61 · 28 = 59 (mod 97) 
3456 · 7982 = 26 · 44 = 66 (mod 98) 
3456 · 7982 = 90 · 62 = 36 (mod 99). 

Therefore, 3456 · 7982 is a solution of this system: 

x = 64 (mod 89) 
x = 72 (mod 95) 

(***) x=59(mod97) 
x = 66 (mod 98) 
x = 36 (mod 99). 

The Chinese Remainder Theorem* shows that one solution of(***) is 27,585,792 
and that every solution (including 3456 · 7982) is congruent to this one modulo 
89 · 95 · 97 · 98 · 99 = 7,956,949,770 (which we denote hereafter by M). Since no two 
numbers between 0 and M can be congruent modulo M, 27,585,792 is the only solu
tion between 0 and lvf. We know that 0 < 3456 · 7982 < 104 

• 104 = 108 < lvf. Since 
3456 · 7982 is a solution, we must have 3456 · 7982 = 27,585,792. 

Now look at this example from a different perspective. If you think of the least 
residue of a number modulo n as an element of Zm then the congruences in ( *) say 
that the integer 3456 may be represented by the element (74, 36, 61, 26, 90) in the ring 
Z 89 X Z 95 X Z 97 X Z 98 X Z 99. Similarly, 7982 is represented by (61, 2, 28, 44, 62). Saying 
that 74 · 61 = 64 (mod 89) in(**) is the same as saying 74 · 61 = 64 in Z89. So the 
congruences in ( **) are equivalent to multiplication in Z 89 X Z 95 X Z97 X Z9s X "l.99: 

(74, 36, 61, 26, 90) . (61, 2, 28, 44, 62) = (74. 61, 36 . 2, 61 . 28, 26 . 44, 90 . 62) 
= (64, 72, 59, 66, 36). 

The solution of ( ***) shows that the element (64, 72, 59, 66, 36) of the ring 
Zs9 X Z 95 X Z 97 X Z 98 X Z 99 represents the integer 27,585,792. 

The procedure in the case of a realistic word size is now clear. Let ml> ... , m,. be 
pairwise relatively prime positive integers: 

1. Represent each integer t as an element of "l.
1111 

X · · · X Z 111, by taking the congru
ence class of t modulo each m1• 

2. Do the arithmetic in Z1111 X · · · X Zm,-
3. Use the Chinese Remainder Theorem to convert the answer into integer form. 

The m1 must be chosen so that their product lvi is larger than any number that will 
result from the computations. Otherwise, the conversion process in Step 3 may fail 
(Exercises 3-5). This is sometimes done, as in the example, by taking the m1 to be as 

*Up to this point, all computations have been quickly performed by our imaginary computer. This is 
the first place where slower multi precision calculations may be needed because of numbers that 
exceed the word size. 
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large as possible without exceeding the word size o( the computer. If smaller moduli 
are chosen, more of them may be necessary to ~nsure that M is large enough. 

The conversion process from integer to modular representation and back (Steps 1 
and 3) requires time that is not needed in conventional integer multiplication (espe
cially Step 3, which may involve multiprecision techniques). But this need be done only 
once for each number, at input and output. The modular representation may be used 
for all intermediate calculations. It is much faster than direct computation with large 
integers, especially in a computer with parallel processing capability, which can work 
simultaneously in each 71.111" Under appropriate conditions the speed advantage in Step 2 
outweighs the disadvantage of the extra time required for Steps 1 and 3. For more 
details, see Knuth [31]. 

It is sometimes necessary to find an exact solution (not a decimal approximation) 
of a system of linear equations. When there are hundreds of equations or unknowns 
in the system and the coefficients are large integers, the usual computer methods will 
produce only approximate solutions because they round off very large numbers dur
ing the intermediate calculations. The Chinese Remainder Theorem is the basis of a 
method of finding exact solutions of such systems. 

Very roughly, the idea is this. Let ml> ... , m,. be distinct primes (and, hence, 
pairwise relatively prime).* For each mi> translate the given system of equations into 
a system over 71.111 , by replacing the integer coefficients by their congruence classes 
modulo mi. Then solve each of these new systems by the usual methods (Gauss
Jordan elimination works equally well over the field 71.111, as over IR., and round-off is 
not a problem with the smaller numbers in ?l.m). Finally, use the Chinese Remainder 
Theorem and matrix algebra to convert these solutions modulo mi into a solution of 
the original system.t 

Exercises 

·A. 1. Assume that your computer has word size 100. Use the method outlined in 
the text to find the sum 123,684 + 413,456, using m1 = 95, m2 = 97, m3 = 98, 
m4 = 99. 

2. (a) Find the least residue of 64,397 modulo 12, using only arithmetic in 71. 12 . 

[Hint: Use Theorems 2.2 and 2.3 and the fact that 64,397 = 

(((6. 10 + 4)10 + 3)10 + 9)10 + 7.] 

(b) Let n be a positive integer less than the word size of your computer and 
t any integer (possibly larger than the word size). Explain how you might 
find the least residue of t modulo n, using only arithmetic in 71." (and thus 
avoiding the need for multiprecision methods). 

*Considerations of size similar to fhose discussed above play a role in the selection of them;. 

!This conversion is a bit trickier than may first appear. For instance, the system 

8x + 5y 7= 12 x + 5y = 5 
becomes 

4x + 5y = 10 4x + 5y = 3 
over Z7. 

You can verify that x = 4, y = 3 is a solution of the Z7 system. It is not immediately clear how to get 
from this to the solution of the original system, which is x = 1j2, y = 8j5. 
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3. Use the method outlined in the text to represent 7 and 8 as elements of 2:3 X 2:5. 

Show that the product of these representatives in 2:3 X 2:5 is (2, 1). If you use the 
Chinese Remainder Theorem as in the text to convert (2, 1) to integer form, do 
you get 56? Why not? This example shows why the method won't work when the 
product of the mi is less than the answer to the arithmetic problem in question. 
Also see Exercise 5. 

B. 4. Letf:Z 4 2:3 X 2:4 X 2:5 be given by f(t) = ([th, [t]4, [t]5), where [t]n is the 
congruence class oft in Zw The functionfmay be thought of as representing t 
as an element of 2:3 X 2:4 X 2:5 by taking its least residues. 

(a) If 0 s r, s < 60, prove thatf(r) = f(s) if and only if r = s. 
[Hint: Theorem 14.2.] 

(b) Give an example to show that if r or sis greater than 60, then part (a) may 
be false. 

5. Let ml> m2> ... , m,. be pairwise relatively prime positive integers an.d 
f:Z 4 2:111 , X 2:111, X··· X 2':111,, the function given by 

f(t) = ([t]111 ,, [t]1112 , • • ·, [t],), 

where [t]111, is the congruence class oft in 2:111,. Let M = m1m2 • · · m,.. If 
0 s r, s < M, prove thatf(r) = f(s) if and only if r = s. [Exercise 4 is a special 
case.] 

6. Assume Exercise 7(c). If your computer has word size 235
, what mi might you 

choose in order to do arithmetic with integers as large as 2184 (approximately 
2.45 X 1055)? 

C. 7. (a) If a and bare positive integers, prove that the least residue of 2a- 1 
modulo 2b - 1 is 2,.- 1, where r is the least residue of a modulo b. 

(b) If a and bare positive integers, prove that the greatest common divisor of 
2a- 1 and 2b- 1 is 21

- 1, where tis the gcd of a and b. [Hint: Use the 
Euclidean Algorithm and part (a).] 

(c) Let a and b be positive integers. Prove that 2a- 1 and 2b - 1 are relatively 
prime if and only if a and b are relatively prime. 

The Chinese Remainder Theorem for Rings 

The Chinese Remainder Theorem for two congruences can be extended from Z to 
other rings by expressing it in terms of ideals. The key to doing this is the definition of 
congruence modulo an ideal (Section 6.1) and the following fact: When A and Bare 
ideals in a ring R, the set of sums {a+ b I a EA, b E B} is denoted A+ Band is itself 
an ideal (Exercise 20 of Section 6.1). 

Let m and n be integers. Let I be the ideal of all multiples of m in Z and J the ideal 
of all multiples of n. Then congruence modulo m is the same as congruence modulo the 
ideal!. If (m, n) = 1, then mu + nv = 1 for some u, v E Z. Multiplying this equation by 
any integer r shows that m(ur) + n(ur) = r. Thus every integer is the sum of a multiple 
of m and a multiple of n, that is, the sum of an element of the ideal I and an element 
of the ideal J. Therefore, I+ J is the entire ring Z. So the condition (m, n) = 1 amounts 
to saying I+ J = Z. 
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When (m, n) = 1, the intersection of the ideals I and J is the ideal consisting of all 
multiples of mn (Exercise 6 of Section 14.1). So two integers are congruent modulo mn 
precisely when they are congruent mo'dulo the ideal In J. 

The italicized statements in the preceding paragraphs tell us how to translate the 
Chinese Remainder Theorem for two congruences into the language of ideals. By 
replacing the ideals in that discussion by ideals in any ring R, we obtain 

, ... ofh~~~~~~,~14:3 ·. ?t'hf~'~i~.,R,~ffi§.irtJ~t;fh~tiVeril'ra·r Rifi~s:·T~·;:;;:;:, 
Let I and J be ideals in a ring R such that I+ J = R. Then for any a, b ER, the 
system 

x ==a (mod I) 

x == b (mod J) 

has a solution. Any two solutions of the system are congruent modulo In J. 

When R has an identity, the theorem can be extended to the case of r ideals II> I2, ••. , 

I,. and congruences x == a1c (mod h), under the hypotheses that I; + ~ = R whenever i * j 
(see Exercise 6 and Hungerford [5; p. 131]). 

Proof of Theorem 14.3 ... Since I + J = R and b - a E R, there exist i E I, j E J 
such that i + j = b - a. Hence, a + i = b - j. Let t = a + i; then 

t - a = (a + i) - a = i E I, 

so that t ==a (mod I). Similarly, since a+ i = b - j 

t - b = (a + i) - b = ( b - j) - b = - j E J. 

Hence, t == b (mod J), and tis a solution of the system. If z is also a 
solution, then 

z ==a (mod I) and t ==a (mod I) imply that z == t (mod I) 

by Theorem 6.4. Similarly, z == t (mod J). This means that z- t EI and 
z - t E J. Therefore, z - t E In J and z == t (mod In J). Ill 

One consequence of the Chinese Remainder Theorem is a useful isomorphism of 
rings. 

If I and J are ideals in a ring Rand I + J = R, then there is an isomorphism 
of rings 

R/(1 n J) = R/1 X R/J. 
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Proof ~~> Define a map f:R--+ R/ I x R/ J by f(r) = (r + I, r + J). Thenf is a 
homomorphism because 

and 

f(r) + f(s) = (r + I, r + J) + (s + I, s + J) 

= ((r + s) + I, (r + s) + J) = f(r + s) 

f(r)f(s) = (r + I, r + J)(s + I, s + J) 

= (rs + I, rs + J) = f(rs). 

To show that f is surjective, let (a + I, b + J) E R/ I X R/ J. We must find 
an element of R whose image under fis (a + I, b + J). By Theorem 14.3 
there is a solution t E R for this system: 

x =a (mod I) 

x = b (mod J). 

Butt= a (mod I) implies that t +I= a+ !by Theorem 6.6. Similarly, 
t = b (mod J) implies t + J = b + J, so that 

f(t) = (t + I, t + J) = (a + I, b + J). 

Therefore,/ is surjective. 
Let K be the kernel off By the First Isomorphism Theorem 6.13, R/ K 

is isomorphic to R/ I X R/ J. Now K consists of all elements r E R such 
that f(r) is the zero element in R/ I X R/ J, that is, all r such that 

(r +I, r + J) = (OR+ I, OR+ J), 

or equivalently, 

r +I= OR+ I and r + J =OR+ J. 

But r + I = 0 R + I means that r = 0 R (mod I), and, hence, rEI. 
Similarly, r + J = 0 R + J implies r E J. Therefore, r E I n J. So I n J is 
the kernel off, and R/ (I n J) = R/Ker f = R/ I X R/ J. II 

If (m, n) = 1, then there is an isomorphism of rings 7Lmn = 7Lm X 7Ln. 

Proof ~~>In the ring 71., the ideal (m) consists of all multiples of m and the ideal 
(n) of all multiples of n. The first three paragraphs of this section show 
that (m) + (n) = 7L and, that (m) n (n) is the ideal (mn) of all multiples 
of mn. Furthe_rmore, the quotient rings 71./(mn), 71./(m), and 71./(n) are, 
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respectively, 7Lmm 71.111 , and 7Ln- Therefore, by Theorem 14.4 (with R = 71., 
I= (m), J = (n)) there is an isomorphism 

71.11111 = 71./(mn) = 71./((m) n (n)) = 71./(m) X 71./(n) = 71.111 X 71.11 • Ill 

If n = Pt'P 2n'p 3n3 
• • • Pt', where the p1 are distinct positive primes and each 

n1 > 0, then there is an isomorphism of rings 

Proof~ Since the pj are distinct primes, p/' and the product P7tl· · ·p/'' are rela
tively prime for each i. So repeated use of Corollary 14.5 shows that 

Exercises 

A. 1. (a) Show that 71.5 X 71. 12 is isomorphic to 71.3 X 71.20 . 

(b) Is 71.4 X 71.35 isomorphic to 71.5 X 71.28? 

2. If I and J are ideals in a ring R and a E I, b E J, show that ab E I n J. 

B. 3. If (m, n) * 1, show that 71.11111 is not isomorphic to 71.111 X 71.11 • [Hint: If (m, n) = d, 

then ~n is an integer (Why?). If there were an isomorphism, then 1 E 71.11111 

would be mapped to (1, 1) E 71.111 X 7Ln- Reach a contradiction by showing that 
1

~
1 

• 1 * 0 in 71.""" but ~
1 

• (1, 1) = (0, 0) in 7Lm X 71.".] 

4. Which of the following rings are isomorphic: 71.2 X 71.6 X 71.7, 71.3 X 71.4 X 71.7, 
71.84> 71.7 X 7LI2' 71.2 X 71.3 X 7LI4' 71.4 X 7L2I? 

5. If fr, ! 2, ! 3 are ideals in a ring R with identity such that II + ! 3 = R and ! 2 + ! 3 = 
R, prove that (II n ! 2) + !3 = R. [Hint: If r E R, then r = ii + i3 and 1 R = t2 + t3 

for some ii Ell> t2 El2, and i3, t3 El3. Then r = (ii + i3)(t2 + t3); multiply this out 
to show that r is in (II n ! 2) + ! 3• Exercise 2 may be helpful.] 

6. Let Il> h, ! 3 be ideals in a ring R with identity such that ! 1 + Ij = R whenever 
i * }. If a1 E R, ptove that the system 

x = a1 (mod ! 1) 

x = a2 (mod ! 2) 

x = a3 (mod ! 3) 
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has a solution and that any two solutions are congruent modulo ~ n /2 n !3• 

[Hint: If sis a solution of the first two congruences, use Exercise 5 and 
Theorem 14.3 to show that the system · 

X = s (mod Il n lz) 
x = a3 (riwd / 3) 

has a solution, and it is a solution of the original system.] 





Geometric Constructions 

Prerequisites: Sections 4.1, 4.4, and 4.5. 

Since the sixth century B.c., mathematicians have studied geometric construc
tions with straightedge (unmarked ruler) and compass. Despite their prowess in 
geometry, the ancient Greeks were never able to perform certain constructions 
using only straightedge and compass, such as 

Duplication of the Cube: Construct the edge of a cube having twice the 
volume of a given cube.* 

Trisection of the Angle: Construct an angle one third the size of a given angle. 

Squaring the Circle: Construct a square whose area is equal to the area of 
a given circle. 

Finally in the last century it was proved that each of these constructions is impos
sible. This chapter presents an elementary proof of the impossibility of the first 
two constructions listed above (the third is discussed in Exercise 21 ). 

Many people remain fascinated by these problems, particularly angle trisection, 
and continue to publish what they say are "solutions," even though it has been proved 
that there are none (see, for example Dudley [37]). Consequently, it is important to 
understand just what we claim is impossible here and what constitutes a proof. 

The ancient Greeks knew that all the constructions listed above could readily be car
ried out provided that additional tools were permitted. For instance, any angle can be 
trisected using a compass and straightedge with just one mark on it. The Greeks also 

*This problem supposedly had its origin in an ancient legend: Athens was afflicted by a plague and 
its people were told by the oracle at Delos that the plague would end when they built a new altar 
to Apollo in the shape ·of a cube that had twice the volume of the old altar, which was also a cube. 

459 
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knew that some angles, such as 90°, can be trisected by straightedge and compass alone 
(Exercise 3). So the issue is not whether these constructions can ever be performed, but 
whether they can be performed in every possible case using only an (unmarked) straight
edge and a compass. Furthermore, physical measurement alone is not sufficient to jus
tify such constructions because no measuring device is absolutely accurate. Justification 
requires a valid mathematical proof based on accepted principles and the rules of logic. 

The key to the impossibility proofs presented here (and to every other known proof 
of these facts) is to translate the geometric problem into an equivalent algebraic one. 
Under this translation process, as we shall see, constructions with a straightedge cor
respond to solving linear equations and constructions with a compass to solving qua
dratic equations. Before we can begin this translation process, we present a typical 
straightedge-and-compass construction to give you a feel for what we are dealing with. 

EXAMPLE 1 

Given points 0 and P, construct a line perpendicular to line OP through 0 as 
follows. Construct the circle with center 0 and radius OP; it intersects line OP 
at points Rand P, as shown on the left side of Figure 1. Segments OR and OP 
are radii of the circle and thus have the same length. Now construct the circle 
with center Rand radius RP and the circle with center P and radius RP. These 
circles intersect in points A and B as shown in the center of Figure 1. Segments 
RP, RA, and PA have the same length. (Why?) 

---------,1:-------

' ' R.' 0 \P 

R 0 P 

FIGURE 1 

Draw the line AO. In triangle RAP, shown on the right of Figure 1, the sides 
RA and PA are congruent, as are the sides OR and OP. Side OA is congruent to 
itself. Therefore, triangles ORA and OPA are congruent by slde-side-side. Since 
angles ROA and POA are congruent and supplementary, each of them must 
be a right angle. Therefore, line AO is perpendicular to line OP at 0. 

Outline of the Argument 
Now we begin the translation from geometry to algebra. The following outline should 
help you to see where we're h~aded and to keep things straight as we go along. The 
capitalized headings here correspond to the headings on the subsections below. 

CONSTRUCTIBLE POINTS We begin with any two points and determine 
what additional points can be constructed from them by straightedge-and-compass 
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constructions; these are the constructible points. Next we use the distance between the 
original two points as the unit length and coordinatize the plane. 

CONSTRUCTIBLE NUMBERS A number r is said to be constructible if the 
point (r, 0) is a constructible point. We then examine the equations of lines and circles 
determined by constructible points and the coordinates of their intersection points. 
This leads to a characterization of constructible numbers in terms of certain subfields 
of IR and square roots of positive elements of IR. 

ROOTS 0 F POL YN 0 M lA lS The characterization of constructible numbers 
is then used to show that certain cubic polynomials have no constructible numbers as 
roots. 

IMPOSSIBILITY PROOFS Finally, we demonstrate the impossibility of the 
constructions in question by using proof by contradiction: If the construction were 
possible, then one of the cubic polynomials mentioned in the preceding paragraph 
would have a constructible number as a root, which is a contradiction. · 

Constructible Points 
We first give a formal mathematical description of straightedge-and-compass con
structions, such as those in Example 1, that begin with two points 0 and P. LetS be 
the set { 0, P}. Form the line determined by the two points of S. Form the two circles 
with centers 0 and P and radius OP. Let S1 be the set of all points of intersection of 
this line and these circles, together with the points 0, Pin the original setS. Repeat 
this process with S1. Form every line determined by pairs of points in S1. Form every 
circle whose radius is the distance between some pair of points in S1 and whose center 
is a point in S 1. Let S2 be the set of all points of intersection of these lines and circles, 
together with the points in S 1. Repeat the process with S2 . Continuing in this way pro
duces a sequence of sets 

s <;;; sl <;;; S2 <;;; s3 <;;; • • • 

A constructible point is any point that lies in some Si. A constructible line is a line that 
contains at least two constructible points. A constructible circle is one whose center is 
a constructible point and whose radius has length equal to the distance between some 
pair of constructible points. For example, all the labeled points and all the lines and 
circles in Figure 1 are constructible. Note that points of intersection of constructible 
lines and circles are constructible points. 

Now we coordinatize the plane by taking 0 as the origin, the distance from 0 to 
Pas the unit length, and the line OP as the x-axis, and P having coordinates (1, 0). 
Figure 1 shows that they-axis (the line AO) is a constructible line. The point (0, 1) is 
constructible since it is the intersection of the y-axis and the constructible circle with 
center 0 and radius OP. A similar argument shows that 

(r, 0) is constructible if and only if (0, r) is constructible. 

Constructible Numbers 
A real number r is said to be a constructible number if the point (r, 0) is a constructible 
point. Every integer is a constructible number (Exercise 4). If r is the distance between 
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two constructible points A and B, then r is a constructible-number because (r, 0) is the 
intersection of the constructible x-axis and the constructible circle with center 0 and 
radius r. Exercise 18 shows that 

a point is constructible if and only if its coordinates are 
constructible numbers. 

Let a, b, c, d be constructible numbers with c * 0 and d > 0. Then each of 
a+ b, a- b, ab, ajc, and Vd is a constructible number. 

Proof,.. We first assume a and c are positive and show that a/ c is a constructible 
number. Since a and care constructible numbers, the points (a, 0) and 
(0, c) are constructible and so is the line L they determine. The line 
through the constructible point (0, 1) parallel to Lis constructible 
(Exercise 19). It intersects the x-axis at the constructible point (x, 0), as 
shown on the left side of Figure 2, Hence, xis a constructible number. 

Use similar triangles to show that.!_ = .::., which implies that x = a/c. 
c a 

When a = 0 or when a or c is negative, Exercise 13 shows that a/cis a 
constructible. 

c B= (l,y) __ _ 

0 A 
a d+l 

FIGURE 2 

If b = 0, then ab = 0 is certainly constructible, If b 1=- 0, then 1/b is 
constructible by the previous paragraph, and hence a/(1/b) = ab is also 
constructible, Exercise 2 shows that a + b and a - b are constructible. 

The number d + I is constructible by Exercise 2. So the midpoint A 
of the line segment joining the constructible points (0, 0) and (d + I, 0) 
is constructible (Exercise 20), Hence, the circle with center A and radius 
(d + 1)/2 is constructible, The constructible line that is perpendicular 
to the x-axis at the point (1, 0) intersects this circle at the constructible 
point B = (1, y), as shown on the right of Figure 2. A theorem in plane 
geometry states that an angle that is inscribed in a semi-circle (such as 
OED) is a.right angle. Use the three right triangles on the right side 
of Figure 2 and the Pythagorean Theorem to show that l = d and, 
therefore, y = Yd. It follows that y = Vd is a constructible number. II\ 
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Every rational number is constructible. 

Proof~>- Every integer is constructible (Exercise 4). Therefore, every quotient of a 
pair of integers (rational number) is constructible by Theorem 15.1. !II 

In order to determine exactly which real numbers are constructible, we must examine 
the equations of constructible lines and circles. 

Let F be a subfleld of the field IR of real numbers. 

(1) If a line contains two points whose coordinates are in F, then the line 
has an equation of the form 

ax+ by+ c = 0, where a, b, cEF. 

(2) If the center of a circle is a point whose coordinates are in F and the 
radius of the circle is a number whose square is in F, then the circle 
has an equation of the form 

x2 + y2 + rx + sy + t = 0, where r, s, t EF. 

Proof~>- (1) Suppose (xb y1) and (x2, y 2) are points on the line with x;, Y;EF. If 
x1 * x2, the two-point formula for the equation of a line shows that the 
line has equation 

( Y2 = Y!) x- 1y + [-x1 (Y2 = y,) + y1] = 0 
, x2 x1 , t x2 x1 

Cax +by+ c = 0 

Since F is a field and X;, Y; E F, each of a, b, cis in F. The case when x1 = x2 

is left to the reader. 
(2) If (x1, y1) is the center and k the radius, with Xj, y" k? E F, then 

the equation of the circle is 

(x - x,)2 + (y - y,)2 = k2 

x 2 + l + (-2x1)x + (-2y 1)y + [x/ + y/- k2
] = 0. 

The coefficients are in F. !II 
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Let F be a subfield of IR and k a positive element ofF such that Ykf/J. Let 
F(Yk) be the set {a + bYk I a, b E F). Then 

(1) f(Yk) is a subfield of IR that contains F. 

(2) Every element of F(Yk) can be written uniquely in the form a + bYk, 
with a, bE F. 

Proof~ (1) Exercise 15. 

(2) If a+ bVk = a1 + b1 Vk, with a, b, ab b1 EF, then a- a1 = 
(b1 - b) Vk. If b- b1 =I= 0, then Vk,; (a- a1) (b1 - b)-1, which is an 
element of F. This contradicts the fact that Vk t/:. F. Hence, b1 - b1 = 0, 
and, therefore, a- a1 = (O)Yk = 0. Thus a= a1 and b = b1. • 

The field F(Yk) is called a quadratic extension field of F. Quadratic extension fields 
play a crucial role in determining which numbers are constructible. 

lemma 15.5 
Let F be a subfield of IR. Let L1 and L2 be lines whose equations have coefficients 
in F. Let C1 and C2 be circles whose equations have coefficients in F. Then 

(1) If L1 intersects L2 , then the point of intersection has coordinates in F. 

(2) If C1 intersects C2 , then the points of intersection have coordinates 
in For in some quadratic extension field F(Yk). 

(3) If L1 intersects C1, then the points of intersection have coordinates 
in For in some quadratic extension field F(Yk). 

Proof~ (1) Suppose L 1 and L2 have equations 

L 1 :a1x + b1y = c1 

L 2 :a2x + b2y = c2 

with ai, bi, ci E F. Since L 1 intersects L2, these equations have a simulta
neous solution. By using elimination or determinants, we see that this 
solution is 

and 

Since ai, bi, ci E F, the point of intersection (x, y) has coordinates in the 
field F. 

(2) Suppose C1 and C2 have equations 

C1: x2 + l + l'JX + StY + t1 = 0 

C2: X
2 + l + l'2X + S2Ji + t2 = 0 
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with rio sio tiE F. The coordinates of the intersection points satisfy both 
equations and, hence, must satisfy the equation obtained by subtracting 
the second equation from the first: · 

(r1 - r2)x + (s1 - s2)y + (t1 - t2) = 0. 

This is the equation of a line, and its coefficients are in F. Since the inter
section points of C1 and C2 lie on this line and on the circle C1, we need 
only prove (3) to complete the proof of the theorem. 

(3) Let £ 1 and C1 have the equations given above. At least one of 
ab b1 must be nonzero, say b1 =/= 0. Solve the equation of £ 1 for y and 
substitute this result in the equation for C1. Verify that this leads to an 
equation of the form ax2 + bx + c = 0, with a, b, c E F. The solutions of 
this equation are 

-b + Vb2 - 4ac 
X= =A± BVk, 

2a 

where A = -b/2a, B = l/2a, and k = b2
- 4ac are elements of F. Since 

£ 1 and C1 intersect, we know that k :2: 0. Using the equation for Lb we 
see that the coordinates of the points of intersection of £ 1 and C1 are 

x = A + BVk and y = c1 - alA - a1B Vk 
b! b! 

x =A- BVk and 

If k = 0, these reduce to a single point of intersection. Since b1 =/= 0, all 
these coordinates lie either in F (if Vk E F) or in the quadratic extension 
F(Vk) (if YkttF). Ill 

'.········th~·~.f~fu· .. ·l 
If a real number r is constructible, then there is a finite chain of fields 
Q = F0 ~ F1 ~ F2 ~ • • • ~ Fn ~ !R! such that r E Fn and each Fi is a quadratic exten
sion of the preceding field, that is, 

F1 = O(Wo), F2 = F1(ye;-) Fs = F2(YC;),. , , , Fn = Fn-1(~), 

where ci E Fi but VC; $ Fi for i = 0, 1, 2, ... , n - 1. 

A finite chain of fields as in the theorem is called a quadratic extension chain. 

Proof of Theorem 15.8 ~Let r be a constructible number. Then the point (r, 0) can 
be constructed from the points 0 = (0, 0) and P = (1, 0) by a finite 
sequence of operations of the following types: 

(i) Form the line determined by A and B, where A, Bare previously 
constructed points or elements of { 0, P}; 

(ii) Form the circle with center A and radius the distance from B to C, 
where A, B, Care previously constructed points or elements of { 0, P}; 

(iii) Determine the points of intersection of lines and circles formed in 
(i) and (ii). 
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This process begins with the points 0 and P whose coordinates are in Q. 
Lines or circles determined by them will have equations with rational 
coefficients by Lemma 15.3. The intersections of such lines and circles 
will be points whose coordinates are either in Q or in some quadratic 
extension O(V'Co) by Lemma 15.5. The lines and circles determined by 
these points will have equations with coefficients in the field F 1 = O(Wo) 
by Lemma 15.3. The intersections of such lines and circles will have 
coefficients either in F1 or in some quadratic extension F 1(ye;-) by 
Lemma 15.5. Continuing in this fashion, we see that at each stage of the 
construction of (r, 0) the points in question have coordinates in some 
field F; and at the next stage the newly created points have coordinates in 
F; or in a quadratic extension F;(~). After a finite number of such steps 
we reach the point (r, 0), which necessarily has coordinates in the last 
field of the quadratic extension chain 0 = F0 5; F1 5; F2 5; · · · 5; Fn- 11!1 

Roots of Polynomials 

There are two ways to show that some real numbers are not constructible. The method 
presented here is elementary and depends only on Chapter 4. But if you've covered 
Sections 11.1 and 11.2, skip to Theorem 15.9 and use the footnote below in place of 
the proof given there.* 

Let F be a subfteld of ~ and f(x) E F[x]. Suppose that kEF but Vk tt:. F. 
If a + bYk is a root of f(x), then a - bYk is also a root of f(x). 

Proof~> If u = r + sv'k E F( v'k), let u denote r - sv'k. This operation is well 
defined because every element ofF( Yk) can be written uniquely in the 
form r + sVk(r, s EF) by Lemma 15.4. Verify that for any u, v EF( Yk), 
( u + v) = u + v and uv = u · v. Also note that u = u if and only if s = 0, 
that is, if and only if u E F. The rest of the proof is identical to the 
proof of Lemma 4.29, which is the special case when F = ~' k = -1, 
and Vk = i. Ill 

Let F be a subfteld of a field K. Let f(x), g(x) EF[x] and h(x) EK[x]. If f(x) = 
g(x)h(x), then h(x) is actually in F[x]. 

*If/( Ef and Vk rt:. F, then x2
- k E F[x] is the minimal polynomial of Vk over F, and, hence, 

[F( Vk):F] = 2 by Theorem 11.7. If Q i;; · · · ~ Fn is a quadratic extension chain, then [Fn:Q] must be 
a power of 2 by Theorem 11.4. Therefore, the minimal polynomial of a constructible number u has 
degree 2' for some k (since this degree is the dimension [Q(u): Q], which must divide [Fn: Q]). 
Consequently, no constructible number can be the root of an irreducible cubic in Q[x]. Since a 
cubic polynomial in Q[x] with no rational roots is irreducible by Corollary 4.19, no such polynomial 
can have a constructible number as a root. 



15 Geometric Constructions 467 

Proof~>- By the Division Algorithm in F[x], there are polynomials k(x) and r(x) 
in F[x] such thatf(x) = g(x)k(x) + r(x), with r(x) = 0 or 
deg r(x) < deg g(x). Since Fe;; K, all these polynomials are in K[x]. Now 
consider the Division Algorithm in K[x], which says that there is a unique 
quotient and remainder. We havef(x) = g(x)k(x) + r(x), and by hypoth
esis we also havef(x) = g(x)h(x) + 0. By uniqueness, we must have 
r(x) = 0 and h(x) = k(x). Since k(x) EF[x], the lemma is proved. ,. 

Let f(x) be a cubic polynomial in Q[x]. If f(x) has no roots in Q, then f(x) has no 
constructible numbers as roots. 

The theorem implies, for example, that V2 is not a constructible number because it is 
a root of x3 

- 2, which has no rational roots by the Rational Root Test (Theorem 4.21). 

Proof of Theorem 15.9.,.. Suppose on the contrary thatf(x) has real roots that are 
constructible. Each such root lies in a quadratic extension chain of Q by 
Theorem 15.6. Among all the quadratic extension chains containing a 
root of f(x), choose one of the smallest possible length, say Q =Far;;; 
F1 r;;; • • • r;;; F;,. This means thatf(x) has a root r in Fn and that no qua
dratic extension chain of length n - 1 or less contains any root of 
f(x). Note that F,, * Q sincef(x) has no rational roots. By the Factor 
Theorem 4.16f(x) = (x- r)t(x) for some t(x) EF;,[x]. Now rEF"' and 
by the definition of a quadratic extension chain Fn = Fn-J ( Vk) for some 
k E F;,- 1 with Vk t/'. F;,_ 1• Therefore r = a + b Vk with a, b E F;,_ 1. We 
must have b * 0; otherwise, r would be in the chain Fa r;;; F1 r;;; · • • r;;; Fn-J, 
contradicting the fact thatf(x) has no roots in a chain of length n - 1. 
By Lemma 15.7 r =a- bYk is also a root of f(x) = (x- r)t(x). Since 
r of. r (because b of. 0) r must be a root of t(x). By the Factor Theorem 

f(x) = (x - r)(x - Y)h(x) for some h(x) E Fn[x]. 

Let g(x) = (x - r)(x- Y) and observe that the coefficients of g(x) are in 
F;,-1: 

g(x) = (x- (a+ bYk))(x- (a- bYk)) = x2 - 2ax + (a2
- kb2

). 

Therefore,f(x) = g(x)h(x) withf(x), g(x) EF;,_ 1[x]. Consequently, 
h(x) EF;,_ 1[x] by Lemma 15.8. Now f(x) has degree 3 and g(x) has 
degree 2, so h(x) must have degree 1 by Theorem 4.2. Since every first 
degree polynomial over a field has a root in that field, h(x)-and, hence, 
f(x)-has a root in Fn-J· This contradicts the choice of Far;;; F1 r;;; • • · r;;; F;, 
as a quadratic extension chain of minimal length containing a root of f(x). 
Therefore,f(x) has no constructible numbers as roots. II 

Impossibility Proofs 
Finally, we are in a position to prove the impossibility of the constructions discussed 
at the beginning of the chapter. In what follows, it is assumed that whenever a point, 
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line radius, etc., may be chosen arbitrarily, a constructible point, line, radius, etc., will 
be chosen. This guarantees that all points, lines, etc., produced by the construction 
process will be constructible ones. 

DUPLICATION OF THE CUBE Label the endpoints of one edge of the 
given cube as 0 and P and use this edge OP as the unit segment for coordinatizing . 
the plane. Since the given cube has side length 1, its volume is also 1. If there were 
some way to construct with straightedge and compass the side of a cube of volume 2, 
then the length c of this side would be a constructible number such that c3 = 2. 
Thus c would be a root of x 3 

- 2. But this polynomial has no rational roots by 
the Rational Root Test and, hence, no constructible ones by Theorem 15.9. This 
contradiction shows that duplication of the cube by straightedge and compass is 
impossible. 

TRISECTION OF THE ANGLE It suffices to prove that an angle of 60° 
cannot be trisected by straightedge and compass. Choose two points 0, P and 
coordinatize the plane with 0 as origin and P = (1, 0). The point Q = (1/2, V'3/2) 
is constructible since its coordinates are constructible numbers by Theorem 15.1 and 
Corollary 15.2. Furthermore, Q lies on the unit circle x2 + y2 = 1. Therefore, angle 
POQ has cosine 1/2 (the first coordinate of Q) and, hence, has measure 60°. If it were 
possible to trisect this angle with straightedge and compass, there would be a 
finite sequence of constructions that would result in a constructible point R such that 
the angle ROP has measure 20°, as shown in Figure 3. 

R 

p 

FIGURE3 

The point T where the constructible line OR meets the constructible unit circle is 
a constructible point. Hence, its first coordinate, which is cos 20°, is a constructible 
number. Therefore, 2 cos 20° is a constructible number by Theorem 15.1. But for any 
angle of t degrees, elementary trigonometry (Exercise 5) shows that 

cos 3t = 4 cos3 t - 3 cos t. 

If t = 20°, then this identity becomes 

1 2 = 4 cos3 20° - 3 cos 20°. 
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Multiplying by 2 and rearranging, we have 

(2 COS 20°)3 
- 3(2 COS 20°) _:_ 1 = 0. 

Thus the supposedly constructible number 2 cos 20° is a root of x3 
- 3x - 1. The 

Rational Root Test shows that his polynomial has no rational roots and, hence, no 
constructible ones by Theorem 15.9. This is a contradiction. Therefore, an angle of 60° 
cannot be trisected by straightedge and compass. 

Exercises 

A. 1. Prove that r is a constructible number if and only if- r is constructible. 

2. Let a, b be constructible numbers. Prove that a + b and a - b are 
constructible. 

3. Use straightedge and compass to construct an angle of 

(a) 30° 

(c) Show that angles of 90° and 45° can be trisected with straightedge and 
compass. 

4. Prove that every integer is a constructible number. [Hint: 1 is constructible 
(Why?); construct a circle with center (1, 0) and radius 1 to show 2 is 
constructible.] 

5. Prove that cos 3t = 4 cos3 t - 3 cos t. [Hint: These identities may be helpful: 
(1) cos(t1 + t2) = cos t1 cos t2 - sin t1 sin t2; (2) cos 2t = 2 cos2 t- 1 and 
sin 2t = 2 sin t cos t; (3) sin2 t + cos2 t = 1.] 

6. Is it possible to trisect an angle of 3t degrees if cos 3t = 1/3? What if 
cos 3t = 11/16? 

B. 7. Consider a rectangular box with a square bottom of edge x and height y. 
Assume the volume of the box is 3 cubic units and its surface area is 7 square 
units. Can the edges of such a box be constructed with straightedge and 
compass? 

8. Use straightedge and compass to construct a line segment of length 1 + \13, 
beginning with the unit segment. 

9. Is it possible to construct with straightedge and compass an isosceles triangle 
of perimeter 8 and area 1? 

10. (a) Prove that the sum of two constructible angles is constructible. 
[A constructible angle is an angle whose sides are constructible lines.] 

(b) Prove that it is impossible to construct an angle of 1 o with straightedge 
and compass, starting with the unit segment. [Hint: If it were possible, 
what could be said about an angle of 20°?] 

11. Prove that an angle oft degrees is constructible if and only if cost is a 
constructible number. 
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12. Prove that r is a constructible number if and only if a line segment of length 
lrl can be constructed by straightedge and compass, beginning with a segment 
of length 1. 

13. Let a, c be constructible numbers with c =F 0. Prove that a/cis constructible. 
[Hint: The case when a> 0, c > 0 was done in the proof of Theorem 15.1.] 

14. Prove that the set of all constructible numbers is a field. 

15. Let Fbe a subfield of IR and kEF. Prove that F(Yk) = {a+ bv'kja, b EF} is 
a subfield of C that contains F. If k > 0, show that F is a subfield of IR. 
[Hint: Adapt the hint for Exercise 39 in Section 3.1.] 

16. Prove the converse of Theorem 15.6: If r is in some quadratic extension chain, 
then r is a constructible number. [Hint: Theorem 15.1 and Corollary 15.2.] 

17. Let C be a constructible point and La constructible line. Prove that the line 
through C perpendicular to L is constructible. [Hint: The case when Cis on 
L was done in Example 1. If Cis not on L and D is a constructible point on 
L, the circle with center C and radius CD is constructible and meets L at the 
constructible points D and .E. The circles with center D, radius CD and center 
E, radius CE intersect at constructive points C and Q. Show that line CQ is 
perpendicular to L.] 

18. Prove that (r, s) is a constructible point if and only if rands are constructible 
numbers. [Hint: The lines through (r, s) perpendicular to the axes are 
constructible by Exercise 17.] 

19. Let A be a constructible point not on the constructible line L. Prove that the 
line through A parallel to Lis constructible [Hint: Use Exercise 17 to find a 
constructible line 1\11 through A, perpendicular to L. Then construct a line 
through A perpendicular toM.] 

20. Prove that the midpoint of the line segment between two constructible points 
is a constructible point. [Hint: Adapt the hint to Exercise 17 .] 

· C. 21. Squaring the Circle Given a circle of radius r, show that it is impossible to 
construct by straightedge and compass the side of a square whose area is the 
same as that of the given circle. You may assume the nontrivial fact that 7T is 
not the root of any polynomial in Q[x]. 



Algebraic Coding Theory 

Prerequisites: Section 7.4 and Appendix F for Section 16.1; Section 8.4 
for Section 16.2; Section 11.6 for Section 16.3. 

Coding theory deals with the fast and accurate transmission of messages over 
an electronic "channel" (telephone, telegraph, radio, TV, satellite, computer relay, 
etc.) that is subject to "noise" (atmospheric conditions, interference from nearby 
electronic devices, equipment failures, etc.). The noise may cause errors so 
that the message received is not the same as the one that was sent. The aim of 
coding theory is to enable the receiver to detect such errors and, if possible, to 
correct them.* 

The use of abstract algebra to solve coding problems was pioneered by 
Richard W. Hamming, whose name appears several times in this chapter. In 1950 
he developed a large class of error-correcting codes, some of which are presented 
here. 

Linear Codes 

Verbal messages are normally converted to numerical form for electronic transmis
sion. When computers are involved, this is usually done by means of a binary code, 
in which messages are expressed as strings of O's and l's. Such messages are easily 

*Thus coding theory has virtually no connection with the secret codes discussed in Chapter 13. 
The purpose of the latter was to conceal the message, whereas the purpose here is to guarantee 
its clarity. 

471 
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handled because the internal processing units on most computers represent letters, 
numerals, and symbols in this way. The discussion here deals only with such binary 
codes.* 

Throughout this chapter we assume that we have a binary symmetric channel, 
meaning that: 

1. The probability of a 0 being incorrectly received as a 1 is the same as the 
probability of a 1 being incorrectly received as a 0; 

2. The probability of a transmission error in a single digit is less than .5; and 

3. Multiple transmission errors occur independently.t 

Here is a simple example that gives a flavor of the subject. 

EXAMPLE 1 

Suppose that the message to be sent is a single digit, either 1 or 0. Themes
sage might be, for example, a signal to tell a satellite whether or not to orbit a 
distant planet. With a single-digit message, the receiver has no way to tell if an 
error has occurred. But suppose instead that a four-digit message is sent: 1111 
for 1 or 0000 for 0. Then this code can correct single errors. For instance, if 
1101 is received, then it seems likely that a single error has been made and that 
1111 is the correct message. It's possible, of course, that three errors were made 
and the correct message is 0000. But this is much less likely than a single error.§ 
The code can detect double errors, but not correct them. For instance, if 1100 
is received, then two errors probably have been made, but the intended message 
isn't clear. 

Example 1 illustrates in simplified form the basic components of coding theory. 
The numerical message words (0 and 1) are translated into codewords (0000 and 1111 ) . 
. Only codewords are transmitted, but in the example any four-digit string of O's and l's 
is a possible received word. By comparing received words with codewords and decid
ing the most likely error, a decoder detects errors and, when possible, corrects them.** 
Finally, the corrected codewords are translated back to message words, or an error is 
signaled for received words that can't be corrected. 

Now consider Example 1 from a different viewpoint. Think of the message words 0 
and 1 as elements of Z2, and the received words as the additive group Z2 X Z2 X Z2 X Z2 
(with its elements written as 4-digit strings of O's and 1's). Using Theorem 7.12, you 

*"Binary" refers to the fact that these codes are based on 7L2• Although binary codes are the most 
common, other codes can be constructed by using any finite field in place of 7L2• 

tThe accuracy rate of message transmission depends on these probabilities. Since elementary 
probability is not a prerequisite for this book, our discussion of such questions will be minimal; see 
Exercises 27-31. 

§If the probability of receiving a wrong digit is .01, then three or four errors occur in a message word 
less than .0004% of the time (once in 250,000 transmissions); see Exercise 27. 

**This is sometimes called maximum-likelihood decoding. 
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can easily verify that the set of codewords {0000, 1111} is a subgroup of order 2 of the 
received words, as shown schematically here: 

Message Words 

7L2 

0 

Codewords 

0000 

1111 

Received Words 

7L2 X 7L2 X 7L2 X 7L2 

Next, we extend these ideas to the general case. For each positive integer n, 

B(n) denotes 7L2 x 7L2 x 7lz X · · · x 7lz (n copies). 

With coordinatewise addition, B(n) is an additive group of order 2n (Exercise 10). The 
elements of B(n) will be written as strings of O's and 1's of length n. 

lfO < k< n, thenan (n, k) binary linear code consists of a subgroup C of 
B(n )of order 21(; · · · , 

For convenience, Cis often called an (n, k) code, a linear code, or just a code.* The 
elements of Care called codewords. Only codewords are transmitted, but any element 
of B(n) can be a received word. 

The code in Example 1 is C = {0000, 1111}, a subgroup of order i of the group 
B(4) = 7L2 X 7L2 X 7L2 X 7L2 of order 24

• So this is a (4, 1) code, in which the set of 
message words is B(1) = 7L2• Similarly, in the general case of an (n, k) code, we shall 
consider B(k) = 7L2 X 7L2 X 7L2 X · · · X 7L2 (k copies of 7L2), which has order 2k to be 
the set of message words. 

Although any method of assigning each message word to a unique code word can 
be used, the assignment made in Example 1 is convenient because the first digit in each 
code word is the corresponding message word: 0 ~ 0000 and 1 ~ 1111. The (n, k) codes 
discussed below have the same feature: The first k digits of an n-digit codeword form 
the corresponding message word. 

EXAMPLE 2 

We shall construct the (6, 5) parity-check code. The message words are the ele
ments of B(5), that is, all five-digit strings of O's and 1's. A message word is con
verted to a codeword (element of B(6)) by adding a sixth digit to the string; the 
extra digit is the sum (in 7L2) of the digits in the message word. For instance, if 
the message word is 11011, then 1 + 1 + 0 + 1 + 1 = 0, so the corresponding 
codeword in B( 6) is 110110. Similarly, the message word 10101 E B( 5) has 
1 + 0 + 1 + 0 + 1 = 1, so the corresponding codeword is 101011 EB(6). 

An element of B(6) is a codeword if and only if the sum of its digits is 
0. [Reason: If the sum of the message-word digits is 0, a 0 is added to make 
the codeword; if the sum of the message-word digits is 1, a 1 is added for the 

*Linear codes are also called block codes or group codes. 
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codeword and 1 + 1 = 0; see Exercise 12 for the converse.] Using this property, it 
is easy to show that the set C of codewords is a subgroup of B(6) (Exercise 13). 

This code can detect single transmission errors (1 is received as 0 or 0 as 1) 
because the sum of the digits in the received word is 1 instead of 0. The same 
is true for any odd number of errors. But it cannot detect an even number of 
errors, nor can it correct any errors. For each n;:::: 2, an (n, n - 1) parity-check 
code can be constructed in the same way. 

When retransmission of messages is easy, a parity-check code can be very useful. 
Such codes are frequently used in banking and in the internal arithmetic of computers. 
But when retransmission is expensive, difficult, or impossible, an error-correcting code 
is more desirable. We now develop the math~matical tools for determining the number 
of errors a code can detect or correct. 

The Hamming weight of an element u ofB(n) is the number of nontero 
co9rdinates in u; it is denoted Wt(u). · · · · 

EXAMPLE 3 

If u = 11011 in B(S), then Wt(u) = 4. Similarly, v = 1010010 E B(7) has weight 
3, and 0000000 has weight 0. 

Let u,v E B(n). The Hamming distance between a and v,.denoted d(u, v), is 
the number of coordinates in which uand vdiffer:* · · · · 

EXAMPLE 4 

If u = 00101 and v = 10111 in B(S), then d(u, v) = 2 because u and v differ in 
the first and fourth coordinates. In B( 4) the distance between 0000 and 1111 is 4. 

If u, v, wEB(n), then 

(1) d(u, v) = Wt(u- v); 

(2) d(u, v) ::5 d(u, w) + d(w, v). 

Proof~ (1) A coordinate of u - v is nonzero if and only if u and v differ in that 
coordinate. So the number of nonzero coordinates in u - v, namely 
Wt(u- v), is the same as the number of coordinates in which u and v 
differ, namely d(u, v). 

*In other words, if u = u1u2 • • • un and v = v1v2 • • • Vn (with each U;, V; either 1 or 0), then d(u, v) is the 
number of indices i such that u; i= V;. 



Definition 

16.1 Linear Codes 475 

(2) It suffices by (1) to prove that Wt(u- v) :5 Wt(u- w) + Wt(w- v). 
The left side of this inequality is the number of nonzero coordinates of 
u - v, and the right side is the total number of nonzero coordinates in 
u- wand w- v. So we need to verify only that whenever u- v has non
zero ith coordinate, at least one of u - w and w - v also has nonzero ith 
coordinate. Using the subscript ito denote ith coordinates, suppose the ith 
coordinate u; - v; of u - vis nonzero. If the ith coordinate u; - w; of 
u - w is nonzero, then there is nothing to prove. If u; - w; = 0, then 
u; = W;, and, hence, W; - v; = u; - v; =F 0. Therefore, the ith coordinate 
W; - v; of w - vis nonzero. II' 

If a cpdeword u is transmitted and the word w is received, then the number of 
errors in the transmission is the number of coordinates in which u and w differ, that 
is, the Hamming distance from u tow. Since a large number of transmission errors is 
less likely than a small number (Exercise 27), the nearest codeword to a received word 
is most likely to be the codeword that was transmitted. Therefore, a received word is 
decoded as the codeword that is nearest to it in Hamming distance. If there is more 
than one codeword nearest to it, the decoder signals an error.* This process is called 
nearest-neighbor decoding.t 

A linear code issaid to correct terrors if every codeword that is trans~ 
rnlttedwith tor fewer errors is correctly decoded by nearest-neighbor 
decoding~ 

A linear code corrects terrors if and only if the Hamming distance between 
any two codewords is at least 2t + 1. 

Proof ~> Assume that the distance between any two codewords is at least 2t + 1. 
If the codeword u is transmitted with t or fewer errors and received 
as w, then d(u, w) :5 t. If vis any other codeword, then d(u, v) 2': 2t + 1 
hypothesis. Hence, by Lemma 16.1, 

2t + 1 :5 d(u, v) :5 d(u, w) + d(w, v) :5 t + d(w, v). 

Subtracting t from both sides of 2t + 1 :5 t + d(w, v) shows that 
d(w, v) 2': t + 1. Since d(u, w) :5 t, u is the closest codeword tow, so 
nearest-neighbor decoding correctly decodes w as u. Hence, the code 
corrects terrors. The proof of the converse is Exercise 15. II!J 

*Alternatively, the decoder can be programmed to choose one of the nearest codewords arbitrarily. 
This is usually done when retransmission is difficult or impossible. 

tunder our assumptions in this chapter, nearest-neighbor decoding coincides with maximum
likelihood decoding. 
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Definition 

Since only codewords are transmitted, errors are detected whenever a received 
word is not a codeword. 

A linear code is said to detect terrors if the received word in any trans
mission with. at least one: but no more than terrors, .isnot a codeword. 

A linear code detects terrors if and only if the Hamming distance between 
any two codewords is at least t + 1. 

Proof ~ Assume that the distance between any two codewords is at least t + 1. If 
the codeword u is transmitted with at least one, but not more than t errors, 
and received as w, then 

0 < d(u, w):::; t, and hence d(u, w) < t + 1. 

So w cannot be a codeword. Therefore, the code detects t errors. The 
proof of the converse is Exercise 16. Ill 

If u and v are distinct codewords, then d(u, v) is the weight of the nonzero code
word u- v by Lemma 16.1. Conversely, the weight of any nonzero codeword w is 
the distance between the distinct codewords w and 0 = 000 · · · 0 E B(n) because 
Wt(w) = Wt(w- 0) = d(w, 0). Therefore, the minimum Hamming distance between any 
two codewords is the same as the smallest Hamming weight of all the nonzero codewords. 
Combining this fact with Theorems 16.2 and 16.3 yields. 

Corollary.l6.4i 
A linear code detects 2t errors and corrects terrors if and only if the Hamming 
weight of every nonzero codeword is at least 2t + 1. 

EXAMPLE 5 

Let the message words be 00, 10, 01, 11 E B(2) and construct a ( 10, 2) code 
by assigning to each message word the codeword (element of B(10)) obtained 
by repeating the message word five times: 

0000000000, 1010101010,0101010101, 1111111111. 

The set C of codewords is closed under addition and, hence, a subgroup of 
order 22 (Theorem 7.12). So Cis a (10, 2) code. Every nonzero codeword has 
Hamming weight at least 5 = 2 · 2 + 1. By Corollary 16.4 (with t = 2), the 
code C corrects two errors arid detects four errors. 
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Systematic Codes 

By constructing codes that repeat the message words a large number of times (five 
in the last example), you can always guarantee a high degree of error detection and 
correction. The disadvantage to such rep~tition codes is their inefficiency when long 
messages must be sent. It is time consuming and expensive to transmit a large number 
of digits for each message word. So the goal is to construct codes that achieve an ac
ceptable accuracy rate without unnecessarily reducing the transmission rate. 

One efficient technique for constructing linear codes is based on matrix multipli
cation. Codes constructed in this way are automatically equipped with an encoding 
algorithm that assigns each message word to a unique codeword. 

EXAMPLE 6 

We shall construct a (7, 4) code. The message words will be the elements of 
B(4), and the codewords elements of B(7). Message words are considered as 
row vectors and converted to codewords by right multiplying by the following 
matrix, whose entries are in :Z2: 

(

1 0 0 0 0 1 1) 
0 1 0 0 1 0 1 

G= 0 0 1 0 1 1 0 . 

0001111 

For instance, the message word 1101 is converted to the codeword 1101001 because 

0 1 0 0 1 0 1 

(

1 0 0 0 0 1 1) 

(1 1 0 1) 0 0 1 0 1 1 0 = (1 1 0 1 0 0 1). 

0001111 

The complete set C of codewords may be found similarly: 

Message Word Codeword Message Word Codeword 

0000 0000000 1000 1000011 

0001 0001111 1001 1001100 

0010 0010110 1010 1010101 

0011 0011001 1011 1011010 

0100 0100101 1100 1100110 

0101 0101010 1101 1101001 

0110 0110011 1110 1110000 

0111 0111100 1111 1111111 

Theorem 16.6 below shows that Cis actually a subgroup of B(7). So Cis a (7, 4) 
code, called the (7, 4) Hamming code. The preceding table shows that every nonzero 
codeword has Hamming weight at least 3 = 2 · 1 + 1. Hence, by Corollary 16.4 
(with t = 1) this code corrects single errors and detects double errors. 
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The table in Example 6 shows that codewords in the Hamming (7, 4) code have a 
special form: The first four digits of each codeword form the corresponding message 
word. For instance, 1101001 is the codeword for 1101. *An (n, k) code in which the first 
k digits of each codeword form the corresponding message word is called a systematic 
code. All the examples above are systematic codes. Systematic codes are convenient 
because codewords are easily translated back to message words: Just take the first k 
digits. 

We can construct other systematic codes by following a procedure similar to that 
in the last example. A k X n standard generator matrix is a k X n matrix G with entries 
in 7L2 of the form 

0 0 0 0 all a!n-k 
0 1 0 0 0 a21 a2n-k 

=(hI A), 
0 0 0 0 a(k-1)! ak-!n-k 
0 0 0 0 1 ak! akn-k 

where h is the k X k identity matrix and A is a k X (n - k) matrix. For instance, the 
matrix Gin Example 6 is a 4 X 7 standard generator matrix. It has the form (14 1 A), 
where A is a 4 X 3 matrix. 

A standard generator matrix can be used as an encoding algorithm to convert ele
ments of B(k) into codewords (elements of B(n )) by right m'.lltiplication. Each u E B(k) 
is considered as a row vector of length k. The matrix product uG is then a row vector 
of length n, that is, an element of B(n). Because the first k columns of G form the 
identity matrix I"' the first k coordinates of the codeword uG form the corresponding 
message word u E B(k) (Exercise 23). In order to justify calling uG a "codeword," we 
must show that the set of all such elements is a subgroup of B(n). 

If f:B(k)--+ B(n) is an injective homomorphism of groups, then the image off 
is an (n, k) code. 

Proof 11> Imfis a subgroup of B(n) that is isomorphic to B(k) by Theorem 7.20. 
Therefore, Imfhas order 2" and, hence, is an (n, k) code. IIIII 

If G is a k x n standard generator matrix, then {uG I u EB(k)) is a systematic 
(n, k) code. 

Proof 11> Define a functionfB(k)--+ B(n) by f(u) = uG. The image of fis 
{f(u) 1 u EB(k)} = {uG I u EB(k)}. By Lemma 16.5 and the italicized 

*The last three digits of each codeword are check digits that can be used to determine if a 
received word is a codeword; see Exercise 22. 
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remarks preceding it, we need to show only thatfis an injective homo
morphism of groups. Since matrix multiplication is distributive, 

f(u + v) = (u + v)G = uG + vG = f(u) + f(v). 

Hence, f is a homomorphism of groups. 
If ·u = u 1u 2 • • • uk E B(k), then the first k coordinates of uG are 

u 1u2 • • • uk because G is a standard generator matrix, and similarly for 
v = v1v2 • • • vkEB(k). We use this fact to show thatfis injective. If 
f(u) = f(v), then in B(n) 

u 1u2 • • • uk ***** = uG = f(u) = f(v) = vG = v1v2 • • • vk *****, 

where the *'s indicate the remaining coordinates of uG and vG. Since 
these elements of B(n) are equal, they must be equal in every coordinate. 
In particular, u 1 = v1, u2 =Vi, ... , uk = vk. Therefore, u = v in B(k), 
and f is injective. II 

EXAMPLE 7 

By Theorem 16.6, the standard generator matrix 

(

1 0 0 0 1 
G= 0 1 0 1 0 

0 0 1 1 1 

generates the ( 6, 3) code { uG I u E B(3)}. Verify that the encoding algorithm 
u---+ uG produces these codewords: 

Message Word Codeword Message Word Codeword 

000 000000 100 100011 

001 001110 101 101101 

010 010101 110 110110 

011 011011 111 111000 

Since the Hamming weight of every nonzero codeword is at least 3, this code 
corrects single errors and detects double errors by Corollary 16.4 (with t = 1). 

Describing a large code by means by a standard generator matrix is much more 
efficient than listing all the codewords. For instance, in a (50, 30) code there are only 
1500 entries in the 30 X 50 generator matrix, but more than a billion codewords. 

Linear algebra can be used to show that every systematic linear code is given by 
a standard generator matrix. The standard generator matrices for the codes in the 
examples above are in Exercises 7-9. 
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Exercises 

A. 1. Show that C = {0000, 0101, 1010, 1111} is a (4, 2) code. 

2. Find the Hamming weight of 

(a) 0110110EB(7) (b) 11110011 EB(8) 

(c) 000001 EB(6) (d) 101101101101 EB(12) 

3. Find the Hamming distance between 

(a) 0010101 and 1010101 

(b) 110010101 and 100110010 

(c) 111111 and 000011 

(d) 00001000 and 10001000 

4. Use nearest-neighbor decoding in the Hamming (7, 4) code to detect errors 
and, if possible, decode these received words: 

(a) 0111000 

(c) 1011100 

(b) 1101001 

(d) 0010010 

5. List all codewords generated by the standard generator matrix: 

6. 

7. 

(a) G 0 0 n (b) G 0 ~) 1 1 0 

(c) G 0 0 

D (d) G 0 0 1 

D 1 0 1 0 0 

0 0 1 

Determine the number of errors that each of the codes in Exercise 5 will 
detect and the number of errors each will correct. 

Show that the standard generator matrix 

1 0 0 0 0 

0 1 0 0 0 1 

G= 0 0 0 0 

0 0 0 1 0 1 

0 0 0 0 1 1 

generates the (6, 5) parity-check code in Example 2. [Hint: List all the 
codewords generated by G; then list all the codewords in the parity-check 
code; compare the two lists.] 

8. Show that the standard generator matrix 

(
1 0 1 0 1 0 1 0 1 01) 

G = 0 1 0 1 0 1 0 0 
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generates the (10, 2) repetition code in Example 5. [Hint: See the hint for 
Exercise 7.] 

9. Show that 1 X 4 standard generator matrix ( 1 1 1 1) generates the code in 
Example 1. 

10. Prove that B(n) = £:2 X £:2 X £:2 X · · · X £:2 (n factors) with coordinatewise 
addition is an abelian group of order 2". 

B.11. Prove that for any u, v, w EB(n), 

(a) d(u, v) = d(v, u). 

(b) d(u, v) = 0 if and only if u = v. 

(c) d(u, v) = d(u + w, v + w). 

12. Prove that an element of B(6) is a codeword in the (6, 5) parity-check code 
(Example 2) if the sum of its digits is 0. [Hint: Compare the sum of ~he first 
five digits with the sixth digit.] 

13. Prove that the set of all codewords in the (6, 5) parity-check code (Example 2) 
is a subgroup of B(6). [Hint: Use Exercise 12.] 

14. If u and v are distinct codewords of a code that corrects t errors, explain why 
d( u, v) 2:: t. 

15. Complete the proof of Theorem 16.2 by showing that if a code corrects t 
errors, then the Hamming distance between any two codewords is at least 
2t + 1. [Hint: If u, v are codewords with d(u, v)::; 2t, obtain a contradiction 
by constructing a word w that differs from u in exactly t coordinates and from 
v in tor fewer coordinates; see Exercise 14.] 

16. Complete the proof of Theorem 16.3 by showing that if a code detects terrors, 
then the Hamming distance between any two codewords is at least t + 1. 

17. Construct a (5, 2) code that corrects single errors. 

18. Show that no (6, 3) code corrects double errors. 

19. Construct a (7, 3) code in which every nonzero codeword has Hamming 
weight at least 4. 

20. Is there a (6, 2) code in which every nonzero codeword has Hamming weight 
at least 4? 

21. Suppose only three messages are needed (for instance, "go," "slow down," 
"stop"). Find the smallest possible n so that these messages may be 
transmitted in an (n, k) code that corrects single errors. 

22. Let G be the standard generator matrix for the (7, 4) Hamming code in 
Example 6. 

(a) If u = (ub u 2 , u 3, u4) is a message word, show that the corresponding 
codeword uG is 
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(b) If v = (vb v2, v3, v4, v5, v6, v7) EB(7), show that vis a codeword if and 
only if its last three coordinates (the check digits) satisfy these equations: 

Vs = Vz + v3 + v4 

v6 = v1 + v3 + v4 

v7 = v1 + v2 + v4 

23. If G is a k X n standard generating matrix and u = u 1u2u3 • • • uk is a message 
word, show that the first k digits of the codeword uG are u~> u2, ••• , u1" 

24. If Cis a linear code, prove that either every codeword has even Hamming 
weight or exactly half of the codewords have even Hamming weight. 

25. Prove that the elements of even Hamming weight in B(n) form an (n, n- 1) 
code. 

26. If k < n andfB(k)--+ B(n) is a homomorphism of groups, is Imfa ~inear 
code? Is Imfan (n, k) linear code? 

NOTE: A knowledge of elementary probability and a calculator are needed for 
Exercises 27-31. 

27. Assume that the probability of transmitting a single digit incorrectly is .01 
and that a four-digit codeword is transmitted. Construct a suitable probability 
tree and compute the probability that the codeword is transmitted with 

(a) no errors; 

(c) two errors; 

(b) one error; 

(d) three errors; 

(e) four errors; (f) at least three errors. 

28. Do Exercise 27 for a five-digit codeword. 

29. Suppose the probability of transmitting a single digit incorrectly is greater 
than .5. Explain why "inverse decoding" (decoding 1 as 0 and 0 as 1) should 
be employed. 

30. Assume that the probability of transmitting a single digit incorrectly is .01 
and that M is a 500-digit message. 

(a) What is the probability that M will be transmitted with no errors? 

(b) Suppose each digit is transmitted three times (111 for each 1, 000 for 
each 0) and that each received digit is decoded by "majority rule" (111, 
110, 101, 011 are decoded as 1 and 000, 001, 010, 100 as 0). What is 
the probability that the message received when M is transmitted will be 
correctly decoded? [Hint: Find the probability that a single digit will be 
correctly decoded after transmission.] 

31. (a) Show that the number of ways that k errors can occur in ann-digit 

message is (Z} where (Z) is the binomial coefficient. 

(b) If pis the probability that a single digit is transmitted incorrectly and q is 
the probability that it is transmitted correctly, show that the probability 

that k errors occur in ann-digit message is (Z) pkqn-k. 
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Decoding Techniques 

Nearest-neighbor decoding for an (n, k) code was implemented in Section 16.1 by 
comparing each received word with all2k codewords in order to decode it. But when k 
is very large, this brute-force technique may be impractical or impossible. So we now 
develop decoding techniques that are sometimes more efficient. One of them is based 
on groups and cosets. 

EXAMPlE 1 

Let Cbe the (5, 2) code {00000, 10110,01101, 11011}. From the elements of 
B(S) not inC, choose one of smallest weight (which in this case is weight 1), say 
e1 = 10000. Form its coset e1 + Cby adding e1 successively to the elements of 
C and list the coset elements, with e1 + c directly below c for each c E C: 

C: 00000 110110 01101 11011 
e1 + C: 10000 00110 11101 01011 

Thus, for example, 11101 is directly below 01101 E Cbecause e1 + 01101 = 10000 + 
01101 = 11101. Among the elements not listed above, choose one of smallest weight, 
say e2 = 01000, and list its coset in the same way (with e2 + c below c E C): 

C: 

e1 + C: 

e2 + C: 

00000 

10000 

01000 

10110 

00110 

11110 

01101 

11101 

00101 

11011 

01011 

10011 

Among the elements not yet listed, choose one of smallest weight and list its coset, 
and continue in this way until every element of B(S) is on the table. Verify that this is 
a complete table: 

00000 10110 01101 11011 Codewords 

10000 00110 11101 01011 

01000 11110 00101 10011 

00100 10010 01001 11111 Received Words 

00010 10100 01111 11001 

00001 10111 01100 11010 

11000 01110 10101 00011 

10001 00111 11100 01010 

The decoding rule (which will be justified below) is: Decode a received word was the 
codeword at the top of the column in which w appears. For instance, 01001 (fourth row) 
is decoded as 01101; and 01010 (last row) is decoded as 11011. Similarly, 11000 
(seventh row) is decoded as 00000. 

The decoding table in the example is called a standard array, and the decoding rule 
standard-array decoding or coset decoding. The same procedure can be used to con
struct a standard array for any code C. Its rows are the co sets of C, with C itself as the 
first row. Each is of the forme+ C, where e is the coset leader (an element of smallest 
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weight in the coset and listed first in the row). The element e + c (with c E C) is listed 
in the column below c and is decoded as c. 

· ·····Theorem1.6.7 
Let C be an (n, k) code. Standard-array decoding for C is nearest-neighbor 
decoding. · 

Proof 1> If w EB(n), then w = e +vEe+ C, where e is a coset leader and vis 
the codeword at the top of the column containing w. Standard-array 
decoding decodes was v. We must show that vis a nearest codeword to 
w. If u E Cis any other codeword, then w u is an element of w + C. 
But w + Cis the coset of e (because e = w- v Ew + C). By construc
tion, the coset leader e has smallest weight in its coset, so Wt(w - u) 2 

Wt(e). Therefore, by Lemma 16.1, 

d(tu, u) = Wt(w- u) 2 Wt(e) = Wt(w- v) = d(w, v). 

Thus vis a nearest codeword tow. 

When nearest-neighbor decoding is implemented by a standard array, a codeword is 
automatically chosen whenever there is more than one codeword that is nearest to a re
ceived word w (rather than an error being signaled). So incorrect decoding may occur in 
such cases. The code in the last example corrects single errors (every codeword has weight 
at least 3; see Corollary 16.4). Since two or more errors are much less likely than a single 
one, standard-array decoding for this code has a high rate of accuracy (Exercise 18). 

Once a standard array has been constructed, it's much more efficient for decoding 
than brute-force comparison with all codewords. Unfortunately, constructing a stan
dard array for a large code may require as much computer time and memory as brute 
force. But when a code is given by a generator matrix, a much shorter decoding array 
is possible, as we now see. 

Consider an (n, k) code with k x 11 standard generator matrix G = (Ik 1 A). The 

parity-check matrix of the code is the 11 x (n- k) matrix H = (
1 

A ).* 
n-k 

EXAMPLE 2 

Verify that the standard generator matrix for the (5, 2) code {00000, 10110, 
01101, 11011} of Example 1 is 

1 0 G=G 0 

*Since the generator matrix can always be obtained from the parity-check matrix, many books on coding 
theory define a code in terms of its parity-check matrix rather than its generator matrix. In most books, 
the parity-check matrix 'is defined to be the transpose of our matrix H, that is, the (k- n) X n matrix 
whose ith row is the same as the ith column of H. The matrix His more convenient here, and, in any case, 
all the results are easily translated from one notation to the other. 
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Here k = 2, n = 5, n - k = 3, and A is 2 x 3. So the parity-check matrix is the 
5 x 3 matrix 

0 

0 

~ (~). H= 1 0 0 

0 1 0 

0 0 1 

Verify that the product matrix GH is the 2 x 3 zero matrix. The phenomenon 
occurs in the general case as well. 

If G = (lk 1 A) is the standard generator matrix for a linear code and 

H = cn~J is its parity-check matrix, then GH is the zero matrix. 

Proof ~>The entry in row i and column} of GH is the product of the ith row of G 
(see page 478) and the jth column of H:* 

= oilalj + O;zGzj + ... + ouau + ... + O;kakj 

+ ailolj + ai2ozj + · · · + auojj + · · · + a;(n-k)o(n-k)t 

Since 8,~ = 0 whenever r =!=sand since addition is in Z2, this sum reduces to 

8uau + auojj = 1au + au1 =au+ au= 0. Ill 

In an (n, k) code with k x n standard generator matrix G, every received word 
w EB(n) is a row vector of length n. Since the parity-check matrix His n x (n - k), 

*The Kronecker delta symbol8,5 is defined as follows: when r = s, 8,5 = 1 and when r=Fs, 8,5 = 0. 
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the product wH is a row vector of length n - k, that is, an element of B(n - k). Let 0 
denote 000 · · · 0 EB(n - k). 

EXAMPLE 3 

Let Hbe the 5 x 3 parity-check matrix for the (5, 2) code in Example 2. Then 
llOOOH = 011 and lOllOH = 0: 

1 1 0 

1 0 1 
( 1 1 0 0 0) 1 0 0 = ( 0 1 1) and 

0 1 0 
0 0 1 

1 1 0 

1 0 1 

(1 0 1 1 0) 1 0 0 = (0 0 0). 

0 1 0 
0 0 1 

The fact that 10110 is a codeword in this code and l0110H = 0 is an example of 
the following Theorem. 

Let C be an (n, k) code with standard generator matrix G and parity-check 
matrix H. Then an element win B(n) is a codeword if and only if wH = 0. 

PI'OOf "'Define a functionfB(n)---* B(n- k) by f(w) = wH. Then/is a homo-
morphism of groups (same argument as in the proof of Theorem 16.6). 
Now w is a codeword if and only if wE C. Also, w EK (the kernel of f) 
if and only if wH = 0. So we must prove that wE C if and only if w EK, 
that is, that C = K. By the definition of generator matrix, every element 
of Cis of the form uG for some u EB(k). But (uG)H = u(GH) = 0 
because GH is the zero matrix (Lemma 16.8). Therefore, C ~ K. Since 
Cis a subgroup of order i', we need to show only that Khas order 2" in 
order to conclude that C = K. 

Exercise 14 shows thatfis surjective. By the First Isomorphism 
Theorem 8.20, B(n - k) = B(n)/ K, and, hence, by Lagrange's Theorem 8.5, 

2" = IB(n)l = IKI [B(n):K] 

= IKI·IB(n)/Ki = iKi·iB(n- k)l = IKI· 2"-". 

Dividing the first and last terms of this equation by 2"-" shows that 
IKI = 2". II) 
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Let C be a linear code with parity-check matrix Hand let u, v EB(n). Then u 
and v are in the same coset of C if and only if uH = vH. 

PI100f ~ To say that u and v are in the same coset means u + C = v + C. 
Theorem 8.2 in additive notation shows that 

u+C=v+C 

By Theorem 16.9, 

if and only if u- vEC. 

u-vEC if and only if (u- v)H = 0. 

Since matrix multiplication is distributive, (u - v)H = uH- vH. Also, 
uH - vH = 0 is equivalent to uH = vH. Hence, 

(u- v)H = 0 if and only if uH = vH. 

Combining the three centered statements above proves the theorem. 11, 

If w EB(n) and His the parity-check matrix, then wH is called the syndrome of w. 
By Corollary 16.10, wand its coset leader e have the same syndrome. If w = e + v with 
v E C, the standard array decodes w, as v = w- e. Therefore, standard-array (nearest
neighbor) decoding can be implemented as follows: 

1. If w is a received word, compute the syndrome of w (that is, wH). 

2. Find the coset leader e with the same syndrome (that is, eH = wH). 
3. Decode was w-e. 

Since this procedure (called syndrome decoding) requires only that you know the syn
dromes of the coset leaders, the standard array can be replaced by a much shorter table. 

EXAMPlE 4 

The coset leaders for the (5, 2) code {00000, 10110, 01101, 11011}, as shown in 
Example 1, are 

00000,10000,01000,00100,00010,00001,11000,10001. 

Multiplying each of them by the parity-check matrix H given in Example 2 produces 
its syndrome: 

Syndrome I 000 110 101 100 010 001 011 111 

Coset Leader 00000 10000 01000 00100 00010 000001 11000 10001 

To decode w = 01001, for example, we compute 01001H = 100. The table shows 
that the coset leader with this syndrome is e = 00100. So we decode was w-e= 
01001 - 00100 = 01101. 

Depending on the size of the code and whether or not coset leaders can be 
determined without constructing the entire standard array, syndrome decoding may 
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be more efficient than brute-force nearest-neighbor decoding. For example, a (56, 48) 
code has 248 (approximately 2.8 X 1014

) codewords but only 28 = 256 cosets. 
Standard-array and syndrome decoding are complete decoding schemes, meaning 

that they always find a nearest codeword for each received word. When retransmission 
of the message is impractical, complete decoding is a necessity. But when retransmis
sion is feasible, it may be better to use an incomplete decoding scheme that corrects 
t errors and requests retransmission when more than t errors are detected. We now 
describe one such scheme. 

Let e; E B(n) denote the row vector with 1 in coordinate i and 0 in every other 
coordinate. In B(3), for instance, e1 = 100, e2 = 010, and e3 = 001. Each e;has weight 1; 
in fact 

e1, e2, ••• , e11 are the only elements of weight 1 in B(n). 

Consider the product of e2 EB(3) and this matrix H: 

e2H = ( 0 I 0) ( ~ ~ ~ ) = ( 0 1 1) = row 2 of H. 
1 1 I 

Exercise 10 shows that the same thing happens in the general case. If e; E B(n) and H 
is a matrix with n rows, then 

e;H is the ith row of the matrix H. 

Now assume that Cis a linear code with parity-check matrix Hand that the rows 
of Hare nonzero and no two of them are the same. Then e;H = ith row of H #- 0 by 
hypothesis; hence, by Theorem 16.9, 

e; is not a codeword. 

Furthermore, if i #- j, then e; and ej cannot be in the same coset of C (otherwise row i 
of H = e;H = ejH =row j of Hby Corollary 16.10). Thus 

e; is the only element of weight 1 in its coset. 

So every other element in the coset of e; has weight at least 2. * Consequently, 

e; is always the coset leader in its coset. 

Finally, if the syndrome of a received word w is the ith row of H, then wH = e,H, so 
wand e; are in the same coset by Corollary 16.10. 

*The only element of weight 0 is 000 · · · 0, whose coset is C. Cis not the coset of e; because e; is 
not a codeword. 
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The preceding paragraph suggests a convenient way to implement (possibly incom-
plete) syndrome decoding when the rows of Hare nonzero and distinct: 

1. If w is received, compute its syndrome wH. 

2. If wH = 0, decode was w (because w is a codeword by Theorem 16.9). 

3. If wH i= 0 and wH is the ith row of H, decode w by changing its ith coordinate 
(that is, decode was w - ei because ei is w's coset leader). 

4. If wH i= 0 and wH is not a row of H, do not decode and request a retransmission. 

This scheme (called parity-check matrix decoding) can be easily implemented with large 
codes because there is no need to compute cosets or find coset leaders. Furthermore, 

Let C be a linear code with parity-check matrix H. If every row of His 
nonzero and no two are the same, then parity-check matrix decoding 
corrects all single errors. 

Proof ~> When a codeword u is transmitted with exactly one error in coordinate 
i and received as w, then w- u = ei. By Theorem 16.9, wH = (ei + u)H = 
eH + uH = eiH + 0 = eiH, which is the ith row of H. Therefore, w is 
correctly decoded as w-ei= u. 

EXAMPLE 5 

Let C be the (5, 2) code whose parity-check matrix His give in Example 2. If 
10011 is received, its syndrome is 

1 0 
0 1 

(1 0 0 1 1)H = (1 0 0 1 1) 0 0 

0 1 0 

0 0 1 

= (1 0 1) =row 2 of H. 

Therefore, 10011 is decoded as 10011 - e2 = 10011 - 01000 = 11011. If 11000 
is received, verify that its syndrome is 011, which is not a row of H. Therefore, 
11000 is not decoded, and a retransmission is requested. 

In one important class of codes, parity-check matrix decoding is actually complete 
syndrome (nearest-neighbor) decoding. 
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EXAMPLE 6 

The standard generator matrix G for the Hamming (7, 4) code was given in 
Example 6 of Section 16.1. Its parity-check matrix H has distinct, nonzero 
rows: 

0 1 1 
1 0 1 
1 1 0 

H= 1 1 
0 0 

0 0 

0 0 

The possible syndromes of a received word w in this code are 000 and the seven 
nonzero elements of B(3). But all the nonzero elements of B(3) appear as rows 
of H. So every syndrome either is 000 (decode w as itself) or is the ith row of H 
for some i (decode w by changing its ith coordinate). Therefore, every received 
word is decoded. 

Example 6 is one of an infinite class of codes that can be described by using the 
fact that a linear code is completely determined by its parity-check matrix (from which 
a standard generator matrix is easily found). Let r 2: 2 be an integer and let n = 2" - 1 
and k = 2"- 1 - r. Then n - k = r. The preceding example is the case r = 3. Let H 
be then X (n - k) matrix whose last r rows are the identity matrix~· and whose n rows 
consist of all the nonzero elements of B(r). Since the number of nonzero elements in 
B(r) is 2r - 1 = n, each nonzero element appears exactly once as a row of H. So the 
rows of Hare distinct and nonzero. The code with this parity-check matrix is called a 
Hamming code. 

In every Hamming code, all possible syndromes are rows of H. So parity-check 
matrix decoding is complete syndrome decoding that corrects all single errors. 

Exercises 

A. 1. Find the parity-check matrix of each standard generator matrix in Exercise 5 
of Section 16.1. 

2. Find the parity-check matrix for the code in Example 7 of Section 16.1. 

3. Find the parity-check matrix for the parity-check code in Example 2 of 
Section 16.1. [See Exercise 7 in Section 16.1.] 

4. Find the parity-check matrix for the (1 0, 2) repetition code in Example 5 of 
Section 16.1.-[See Exercise 8 in Section 16.1.] 

5. Find a parity-check matrix for the (15, 11) Hamming code. 



16.2 Decoding Techniques 491 

0 

0 1 

1 0 
6. Show that the linear code C with parity-check matrix 0 1 cannot correct 

1 0 
0 1 

every single error. 

7. Let C be the (4, 2) code with standard generator matrix G = G ~ ~ D· 
Construct a standard array for C and find the syndrome of each coset leader. 

8. Construct a standard array for the (6, 3) code in Example in 7 of Section 16.1 
and find the syndrome of each coset leader. 

9. Choose new coset leaders (when possible) for the (5, 2) code in Example 1 and 
use them to construct a standard array. How does this array compare with the 
one in Example 1? 

10. Let e; = 00 · · · 010 · · · 00 EB(n) have 1 in coordinate i and 0 elsewhere. If His 
a matrix with n rows, show that e;H is the ith row of H. 

B. 11. Suppose a codeword u is transmitted and w is received. Show that standard
array decoding will decode w as u if and only if w - u is a coset leader. 

12. If every element of weight :::; tis a coset leader in a standard array for a code 
C, show that C corrects t errors. 

13. If a codeword u is transmitted and w is received, then e = w - u is called 
an error pattern. Prove that an error will be detected if and only if the 
corresponding error pattern is not a codeword. 

14. Prove that the functionfB(n)---+ B(n - k) in the proof of Theorem 16.9 is 
surjective. [Hint: If v = v1v2 · • · V 11-kEB(n- k), show that v = f(u), where 
u = 000 · · · Ov 1v2 • • • V 11 -kEB(n).] 

15. Let C be a linear code with parity-check matrix H. Prove that C corrects single 
errors if and only if the rows of Hare distinct and nonzero. 

16. Show by example that parity-check matrix decoding with the Hamming (7, 4) 
code cannot detect two or more errors. 

17. Show that in any Hamming code, every nonzero codeword has weight at least 3. 
18. [Probability required.] In the (5, 2) code in Example 1, suppose that the 

probability of a transmission error in a single digit is .01. 
(a) Show that the probability of a single codeword being transmitted without 

error is .95099. 
(b) Show that the probability of a 100-word message being transmitted 

without error is less than .01. 
(c) Show that the probability of a single codeword being transmitted with 

exactly one error is .04803. 
(d) Show that the probability that a single codeword is correctly decoded by 

the standard array in Example 1 is at least .99921. 
(e) Show that the probability of a 100-word message being correctly decoded 

by the standard array is at least .92. [Hint: Compare with part (b).] 
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BCH Codes 

The Hamming codes in the last section have efficient decoding algorithms that correct 
all single errors. The same is true of the BCH codes* presented here. But these codes 
are even more useful because they correct multiple errors. 

The construction of a BCH code uses a finite ring whose additive group is (isomor
phic to) some B(n). Each ideal in such a ring is a linear code because its additive group 
is (isomorphic to) a subgroup of B(n). The additional algebraic structure of the ring 
provides efficient error-correcting decoding algorithms for the code. 

The finite rings in question are constructed as follows. Let n be a positive integer 
and (x" - 1) the principal ideal in Z2[x] consisting of all multiples of x 11 

-- 1. 
The elements of the quotient ring Z2[x]/(x" - 1) are the congruence classes (cosets) 
modulo::('- 1. By Corollary 5.5, the distinct congruence classes in 1::2 [x]j(x'- 1) are 
in one-to-one correspondence with the polynomials of the form 

with a;E7L2• 

Each such polynomial has n coefficients, and there are two possibilities for each coef
ficient. Hence, Z2[x]/(x"- 1) is a ring with 211 elements. Furthermore, then coefficients 
(a0, at> a2, ••• , a11 _ 1) of the polynomial(*) may be considered as an element of the 
group B(n) = 1::2 X · · · X 1::2. 

The fund ion {:1::2 [x ]/ (xn - 1) ......:r B(n) given by 

f([ao + a1x + a2x2 + ... an-1 xn-1]) = (ao. a1, a2, ... 'an-1) 

is an isomorphism of additive groups. 

Proof ~ Exercise 7. 11 

Theorem 16.12 shows that every ideal of Z2[x]j(x' - 1) can be considered as 
a linear code since it is (up to isomorphism) a subgroup of B(n). In particular, if 
g(x) El::2[x], then the congruence class (coset) of g(x) generates a principal ideal I in 
Zz[x]j(x"- 1). The ideal I consists of all congruence classes of the form [h(x)g(x)] with 
h(x) EZ2[x]. BCH codes are of this type. 

In order to define a BCH code that corrects terrors, choose a positive integer r such 
that t < 2~'- 1 . Let n = 2r - 1. Then g(x) is determined by considering a finite field of 
order 2,., as explained below. 

EXAMPLE 1 

We lett= 2 and r = 4, so that n = 24
- 1 = 15. We shall construct a code in 

Z2[x]j(x15
- 1) that corrects all double errors by finding an appropriate g(x). To 

do this, we need a field of order 24 = 16. 

*The initials BCH stand for Bose, Chaudhuri, and Hocquenghem, who invented these codes in 
1959-1960. 
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The polynomial! + x + x4 is irreducible in Z2[x] (Exercise 3). Hence, 
K = Z2[x]j(l + x + x4

) is a field of order 16 by Theorem 5.10 (and the remarks 
after it). By Theorem 5.11, K contains a root a of 1'+ x + x4

. Using the fact that 

1 +a+ a4 = 0 an<;l, hence, a4 = 1 +a* 

we can compute the powers of a. For example, ci = a2a4 =a? (1 +a)= a2 + a3. 
Similarly, we obtain 

a 1 =a a6=a?+a3 a 11 = a + a? + a3 

a?= a2 a7 = 1 +a+ a3 a 12 = 1 + a + a? + a3 

a3 = a3 a 8 =l+a? a 13 = 1 + a? + a3 

a4 = 1 +a ct=a+a3 a 14 = 1 + a3 

a5=a+a2 a 10 = 1 +a+ a 2 al5 = 1 

These elements are distinct and nonzero by statements (1) and (2) of Theorem 11.7 
(with u = a and p(x) = 1 + x + x4

). Therefore, they are all the nonzerb ele
ments of K, and a is a generator of the multiplicative group of K. 

To construct the polynomial g(x), we first find the minimum polynomials of 
a, a2

, a3, a4 over 1:':2. By the construction of K, the minimal polynomial of a is 
m1(x) = 1 + x + x4

• This polynomial m1(x) is also the minimal polynomial of 
a 2 and a4

, for instance, by the Freshman's Dream (Lemma 11.24), 

ml(a2) = 1 + (a2) + (a2)4 

= 12 + (a)2 + (a4)
2 = (1 +a+ a 4)

2 = 02 = 0. 

Verify that the minimum polynomial of a3 is m3(x) = 1 + x + x2 + x3 + x4 

(Exercise 5). The polynomial g(x) is defined as the product m1(x)m3(x), so that 

g(x) = (1 + x + x4)(1 + x + x2 + x3 + x4) 

= 1 + x4 + x6 + x7 + x8 
E Z2[x]. 

Let C be the ideal generated by [g(x)] in Z2[x]j(x15 - 1 ). Then Cis a code by 
Theorem 16.12. We shall see that Cis a (15, 7) code that corrects all single and 
double errors. 

Just what do the codewords of Clook like? By Corollary 5.5, each congruence class 
in 2dx]/(x15

- 1) is the class of a unique polynomial of the form 

with a; E 1:':2. 

So we shall denote the class by this polynomial. t When convenient, this poly
nomial will be identified (as in Theorem 16.12) with the element a0 a1 a2 · · · a14 = 
(a0, al> a2, .•• , a 14) of B(15). The codewords consist of the classes of polyno
mial multiples of g(x). For example, 

*Remember, 1 = -1 in 7l.2• 

tThis is analogous to what was done in Section 2.3, when we began writing elements (classes) in 
?l.n in the form A rather than [A]. 
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Codeword in Polynomial Form 

g(x) = 1 + x4 + x6 + x7 + x8 

xg(x) = x(l + x4 + x6 + x7 + x8
) 

= X + x5 + X
7 + x8 + x9 

(1 + x6)g(x) = (1 + x6)(1 + x4 + x6 + x7 + x8
) 

= 1 + x4 + x? + xs + x1o + xl2 + xl3 + xl4 

In B(15) Form 

1000 1 0111 000000 

010001011100000 

100010011010111 

If g(x) is multiplied by a polynomial h(x) of degree;::::: 7, then the codeword 
h(x)g(x) has degree 2 15 and is not of the form (**).For example, if h(x) = x8, 

then 
h(x)g(x) = x8g(x) = x8(1 + x4 + x6 + x1 + x8

) 

= xs + xl2 + xl4 + x1s + xl6. 

The polynomial of the form (**)that is in the same class as h(x)g(x) is there
mainder when h(x)g(x) is divided by x 15 - 1 (see Corollary 5.5). Verify that 

h(x)q(x) = (1 + x)(x15 - 1) + (1 + x + x8 + x 12 + x 14). 

Hence, [f(x)g(x)] is the codeword 1 + x + x8 + x 12 + x 14 or, equivalently, 
11 0000001 000 1 0 1. 

The procedure in Example 1 is readily generalized. If t is the number of errors the 
code should correct, let n = 2r - 1, where r is chosen so that t < 2r-l (in the example, 
t = 2, r = 4). By Corollary 11.26, there is a finite field K of order 2~'. By Theorem 11.28, 
K = Z2(a), where a is a generator of the multiplicative group of nonzero elements of 
K (and so has multiplicative order 2'- 1 = n). Let 

m1(x), mix), m3(x), ... , m2lx) EZ2[x] 

be the minimal polynomials of the elements 

Let g(x) be the product in Z2[x] of the distinct polynomials on the list m1(x), 
mix), ... , m21(x). 

The ideal C generated by [g(x)] in Z2[x]/(x" - 1) is called the (primitive narrow
sense) BCH code of length 11 and designed distance 2t + 1 with generator polynomial 
g(x). So the code in Example 1 is a BCH code of length 15 and designed distance 
5 (= 2 · 2 + 1). If g(x) has degree m, then Exercise 14 shows that the code Cis an 
(n, k) code, where k = n- m. 

A BCH code of length n and designed distance 2t + 1 corrects terrors. 

Proof ~ The proo.f requires a knowledge of determinants; see Lidl-Pilz [32; 
page 230]. Ill 
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Theorem 16.13 shows that there are BCH codes that will correct any desired num
ber of errors. More importantly, from a practical viewpoint, there are efficient algo
rithms for decoding large BCH codes.* A complete description of them would take 
us too far afield. But here, in simplified form, is the underlying idea of the error
correcting procedure. 

Let C be a BCH code of designed distance 2t + 1 and generator polynomial g(x). 
By the definition of g(x), each minimal polynomial m1(x) divides g(x). Hence, g(a/) = 0 
for each i = 1, 2, ... , 2t. If [f(x)] is a codeword inC, thenf(x) = h(x)g(x) for some 
h(x), and, therefore, 

f(ci) = h(c/)g(a/) = h(ci) · 0 = 0. 

Conversely, if f(x) E Z2[x] has every ci as a root, then every mi(x) divides f(x) by 
Theorem 11.6. This implies that g(x) lf(x) (Exercise 8). Therefore, 

[f(x)] is a codeword if and only if f(o/) = 0 for 1 :::; is 2t 

The decoder receives the word a 0a 1 · · · ab which represents the (class of) the 
polynomial 

The decoder computes these elements of the field K = Z2(a): 

If all of them are 0, then r(x) is a codeword by the remarks above. If certain ones are 
nonzero, the decoder uses them (according to a specified procedure) to construct a 
polynomial D(x) E K[x], called the error-locator polynomial. Since K is finite, the non
zero roots of D(x) inK can be found by substituting each ai E Kin D(x)]. 

If no more than t errors have been made, the nonzero roots of D(x) give the 
location of the transmission errors. For instance, if a7 is a root, then a7 is incor
rect in the received word r(x); similarly if a 0 = 1 is a root, then an error occured in 
transmitting a0 • 

If D(x) has no roots in K or if certain of the r(ai) are 0, so that D(x) cannot be 
constructed, then more than t errors have been made. So the decoder follows set pro
cedures (omitted here) to choose arbitrarily a nearest codeword to r(x). 

EXAMPLE 2 

In the (15, 7) BCH code of Example 1, suppose this word is received: 

r(x) = x + x7 + x8 = 010000011000000. 

*This is one reason BCH codes are widely used. For example, the European and trans-Atlantic 
communication system used a BCH code with I= 6 and r = 8. It is a (255, 231) code that corrects six 
errors with a failure probability of only 1 in 16 million. 
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Using the table at the beginning of Example 1 and the fact that u + u = 0 for 
every element u inK (Exercise 1), we have 

r(a) =a+ a7 + a 8 = a+ (1 + a+ a 3) + (1 + a 2) = a 2 + a3 = a 6. 

r(a3) = a3 + (a3f + (a3)8 

= a3 + a2l + a24 = a3 + a6 + a9 

= a 3 + (a2 + a 3) +(a+ a 3) =a + a 2 + a 3 =all. 

Exercise 6 shows that 

r(a2) = r(af = (a6f = a 12; 
r(a4) = r(a)4 = (a6)4 = a24 = a9. 

The error-locator polynomial is given by this formula (which is justified in 
Exercise 15): 

D(x) = x2 + r(a)x + (r(a2) + 
7;.~:;). 

Using the table at the beginning of Example 1, we see that 

By substituting each of the nonzero elements of Kin D(x), we discover that 

D(a5) = (a5)2 + a6a5 + al4 = a10 + all + al4 

= (1 +a+ a 2) + (a+ a 2 + a 3) + (1 + a3) = 0; 

D(a9'y = (a9)2 + a6a9 + al4 = al8 + al5 + al4 = a3 + 1 + al4 

= a 3 + 1 + (1 + a 3) = 0. 

Therefore, a 5 and a 9 are the roots of D(x), so errors occurred in the coefficients 
of x5 and x9. The received word 

r(x) = x + x7 + x8 = 01000Q011QOOOOO 

is corrected as 

c(x) = x + x5 + x7 + x8 + x9 = 010001011100000, 

which is a codeword (see page 494). 
Similarly, if r( x) = ~ + x6 + K + x10 = 001000100110000 is received, then 

r(a) = a 8, r(a2) = a, r(a3) = a9
, and 

D(x) = x2 + r(a)x + [r(a2) + rr~:1] = x2 + a 8x + (a + ::) 

= x2 + a 8x + (a + a) = x2 + a 8x = x(x + a 8). 

The only nonzero root of D(x) is a 8, so a single error occurred in the coefficient 
of x8

' and the correct word is 

c(x) = x2 + x6 + x8 + x9 + x10 = 001000101110000. 
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Finally, if 1 + x + x4 is received, then 

r(a) = 1 + a + a 4 = 0 and 

So D(x) cannot be constructed, and we conclude that more than two errors have 
occurred. Similarly, if 1 + x + x3 is received, then verify that D(x) = x? + a7 x + a5 

and that D(x) has no roots inK. Once again, more than two errors have occurred. 

Exercises 

NOTE: Unless stated otherwise, K is the .field 7L2[x]/(1 + x + x4
) of order 16 and a is a 

root ofl + x + x4
, as in Example l. 

A. 1. (a) Prove thatf(x) + f(x) = 0 for every f(x) E 7L2[x]. 

(b) Prove that u + u = 0 for every u in the field K. 

2. Show that the only irreducible quadratic in 7L2[x] is x2 + x + 1. 
[Hint: List all the quadratics and use Corollary 4.19.] 

3. Prove that 1 + x + x4 is irreducible in 7L2[x]. [Hint: Exercise 2 and Theorem 4.16.] 

4. Prove that the minimal polynomial of a5 over 7L2 is 1 + x + x?. 
[Hint: Use the table in Example 1.] 

5. (a) Prove that the minimal polynomial of a3 over 7!_2 is 1 + x + x2 + x3 + x4
. 

[Hint: Exercise 2, Theorem 4.16, and the table in Example 1.] 

(b) Show that a4 is also a root of 1 + x + x4
. 

B. 6. If f(x) E Z2[x] and a is an element in some extension field of 7!_2> prove that for 
every k 2: 1,j(a21

') = f(ak'l [Hint: Lemma 11.24.] 

7. (a) Show that the function! Z 2[x]/(x"- 1)--? B(n) given by 

f([ao + alx + a2x2 + ... + an-!Xn-1]) = (ao, a!> a2, ... 'an-I) 

is surjective. 

(b) Prove thatjis a homomorphism of additive groups. 

(c) Prove thatjis injective. [Hint: Theorem 8.17 in additive notation.] 

8. (a) Let Fbe a field andf(x) EF[x]. If p(x) and q(x) are distinct monic 
irreducibles in F[x] such that p(x) !f(x) and q(x) !f(x), prove that 
p(x)q(x) !f(x). [Hint: If f(x) = q(x)h(x), then p(x) 1 q(x)h(x); use part (2) 
of Theorem 4.12.] 

(b) If m1(x), m2(x), ... , m~c(x) are distinct monic irreducibles in F[x] such that 
each m;(x) dividesf(x), prove that g(x) = m1(x)m2(x) · · · m~c(x) dividesf(x). 

9. Let C be the (15, 7) BCH code of Examples 1 and 2. Use the error-correction 
technique presented there to correct these received words or to determine that 
three or more errors have been made. 

(a) 1 + x = 110000000000000. 

(b) 1 + x3 + x4 + x5 = 100111000000000. 
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(c) 1 + x2 + x4 + x7 = 101010010000000. 

(d) 1 + x6 + x7 + x8 + x9 = 100000111100000. 

10. Show that the generator polynomial for the BCH code with t = 3, r = 4, 
n = 15 is g(x) = 1 + x + x2 + x4 + x5 + x8 + x 10

• [Hint: Exercises 3-5 may 
be helpful.] 

11. Let K = Z2(a) be a finite field of order 2,., whose multiplicative group is 
generated by a. For each i, let mi(x) be the minimal polynomial of ai over 7L2. 

If n = 2,.- 1, prove that each mi(x) divides r - 1. [Hint: a"= 1 (Why?); use 
Theorem 11.6.] 

12. If g(x) is the generator polynomial of a BCH code in Z2[x]j(x" - 1), prove that 
g(x) divides x'- 1. [Hint: Exercises 11 and 8(b).] 

13. Let g(x) E Z2[x] be a divisor of x" - 1 and let C be the principal ideal generated 
by [g(x)] in Z2[x]/(x' - 1). Then Cis a code. Prove that Cis cyclic, meaning 
that C (with codewords written as elements of B(n)) has this property: If 
(c0, CJ> .•. , C11 _ 1) E C, then (en-!> c0, cl> ... , C11 _ 2) E C. [Hint: C11 _ 1 + c0x + · · · + 
C11 -2Xn-l = X(Co + C1X +'' · + C11-IX'- 1

)- C11_1(X
11

- 1).] 

C.14. Let C be the code in Exercise 13. Assume g(x) has degree m and let k = n - m. 
Let Jbe the set of all polynomials in Z2[x] of the form a0 + a1x + a2x

2 + · · · + 
ak-1:;(<-1. 

(a) Prove that every element in Cis of the form [s(x)g(x)] with s(x) E J. [Hint: 
Let [h(x)g(x) E C. By the Division Algorithm, h(x)g(x) = e(x)(r - 1) + 
r(x), with deg r(x) < nand [h(x)g(x)] = [r(x)]. Show that r(x) = s(x)g(x), 
where s(x) = h(x) - e(x)f(x) and g(x)f(x) = x' - 1. Use Theorem 4.2 to 
show s(x) E J.] 

(b) Prove that C has order 2\ and, hence, Cis an (n, k) code. [Hint: Use 
Corollary 5.5 to show that if s(x) =F t(x) in J, then [s(x)g(x)] =F [t(x)g(x)] in 
C. How many elements are in J?] 

15. Let C be the ( 15, 7) BCH code of Examples 1 and 2, with codewords written 
as polynomials of degree :S14. Suppose the codeword c(x) is transmitted 
with errors in the coefficients of xi and xi and r(x) is received. Then D(x) = 

(x + a~(x + d) E K[x], whose roots are ai and c), is the error-locator polynomial. 
Express the coefficients of D(x) in terms of r(a), r(a2

), r(a3) as follows. 

(a) Show that r(x) - c(x) = xi + xj. 

(b) Show that r(a1
') = a1

d + akj fork= 1, 2, 3. [See the boldface statement on 
page 495.] 

(c) Show that D(x) = x2 + (a1 + aj)x + ai+j = x2 + r(a)x + ai+j. 

'+. ( 2 r(a3) . 3 . . 3 
(d) Show that a' 1 = r a ) + --.[Hint: Show that r(a) =(a'+ a1 ) = 

r(a) 
a3i + a3j + ai+j(ai + aj) = r(a3) + r(a)ai+j and solve for ai+j; note that 
r(aY = r(a2

).] 

16. Show that a BCH code with t = 1 is actually a Hamming code (see page 490). 
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Logic and Proof 
This Appendix summarizes the basic facts about logic and proof that are needed to 
read this book. For a complete discussion of these topics see Galovich [7], Smith
Eggen-St. Andre [10], or Solow [11]. 

logic 
A statement is a declarative sentence that is either true or false. For instance, each of 
these sentences is a statement: 

1T is a real number. 

Every triangle is isosceles. 

103 bald eagles were born in the United States last year. 

Note that the last sentence is a statement even though we may not be able to verify its 
truth or falsity. Neither of the following sentences is a statement: 

What time is it? Wow! 

Compound Statements 
We frequently deal with compound statements that are formed from other statements 
by using the connectives "and" and "or". The truth of the compound statement will 
depend on the truth of its components. If P and Q are statements, then 

For example, 

"P and Q" is a true statement when both 
P and Q are true, and false otherwise. 

1r is a real number and 9 < 10 

is a true statement because both of its components are true. But 

1r is a real number and 7 - 5 = 18 

is a false statement since one of its components is false. 
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In ordinary English the word "or" is most often used in exclusive sense, meaning 
"one or the other but not both," as in 

He is at least 21 years old or he is younger than 21. 

But "or" can also be used in an inclusive sense, meaning "one or the other, or possibly 
both," as in the sentence 

They will win the first game or they will win the second. 

Thus the inclusive "or" has the same meaning as "and/or" in everyday language. In math
ematics, "or" is always used in the inclusive sense, which allows the possibility that both com
ponents might be true but does not require it. Consequently, if P and Q are statements, then 

"P or Q" is a true statement when at least one of P or Q 
is true and false when both P and Q are false. 

For example, both 

7>5 or 3 + 8 = 11 

and 

7>5 or 3 + 8 = 23 

are true statements because at least one component is true in each case, but 

4<2 or 5 + 3 = 12 

is false since both components are false. 

Negation 
The negation of a statement Pis the statement "it is not the case that P", which we can 
conveniently abbreviate as "not-P". Thus the negation of 

7 is a positive integer 

is the statement "it is not the case that 7 is a positive integer", which we would normally 
write in the less awkward form "7 is not a positive integer". If Pis a statement, then 

The negation of P is tme exactly when P is false, and 
the negation of Pis false exactly when Pis true. 

The negation of the statement "P and Q" is the statement "it is not the case that P and 
Q". Now "P and Q" is true exactly when both P and Q are true, so to say that this is 
not the case means that at least one of P or Q is false. But this occurs exactly when at 
least one of not-P or not-Q is true. Thus 

The negation of the statement "P and Q" is the statement 
"not-P or not-Q". 

For example, the negation of 

/is continuous andfis differentiable at x = 5 

is the statement 

fis not continuous orfis not differentiable at x = 5. 

The negation of the statement "P or Q" is the statement "it is not the case that P 
or Q". Now "P or Q" is true exactly when at least one of P or Q is true. To say that this 
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is not the case means that both P and Q are false. But P and Q are both false exactly 
when not-P and not-Q are both true. Hence, 

The negation of the statement "P or Q" is the statement 
"not-P and not-Q". 

For instance, the negation of 

119 is prime or v'3 is a rational number 

is the statement 

119 is not prime and v'3 is not a rational number. 

Quantifiers 
Many mathematical statements involve quantifiers. The universal quantifier states that 
a property is true for all the items under discussion. There are several grammatical 
variations of the universal quantifier, such as 

For all real numbers c, c2 > -1. 

Every integer is a real number. 

All integers are rational numbers. 

For each real number a, the number a2 + I is positive. 

The existential quantifier asserts that there exists at least one object with certain 
properties. For example, 

There exist positive rational numbers. 

There exists a number x such that x2
- Sx + 6 = 0. 

There is an even prime number. 

In mathematics, the word "some" means "at least one" and is, in effect, an existential 
quantifier. For instance, 

Some integers are prime 

is equivalent to saying "at least one integer is prime", that is, 

There exists a prime integer. 

Care must be used when forming the negation of statements involving quantifiers. 
For example, the negation of 

All real numbers are rational 

is "it is not the case that all real numbers are rational", which means that there is at 
least one real number that is irrational(= not rational). So the negation is 

There exists an irrational real number. 

In particular, the statements "all real numbers are not rational" and "all real num
bers are irrational" are not negations of "all real numbers are rational". This example 
illustrates the general principle: 

The negation of a statement with a universal quantifier 
is a statement with an existential quantifier. 
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The negation of the statement 

There exists a positive integer 

is "it is not the case that there is a positive integer", which means that "every integer is 
non positive" or, equivalently, "no integer is positive". Thus 

The negation of a statement with an existential quantifier 
is a statement with a universal quantifier. 

Conditional and Biconditional Statements 
In mathematical proofs we deal primarily with conditional statements of the form 

If P, then Q 

which is written symbolically asP::=?- Q. The statement Pis called the hypothesis or 
premise, and Q is called the conclusion. Here are some examples: 

If c and dare integers, then cd is an integer. 

If fis continuous at x = 3, thenfis differentiable there. 

a =F 0 ::=?- a2 > 0. 

There are several grammatical variations, all of which mean the same thing as "if P, 
then Q": 

P implies Q. 
Pis sufficient for Q. 
Q provided that P. 

Q whenever P. 

In ordinary usage the statement "if P, then Q" means that the truth of P guarantees 
the truth of Q. Consequently, 

"P ::=?- Q" is a true statement when both P and Q are 
tme and false when P is true and Q is false. 

Although the situation rarely occurs, we must sometimes deal with the statement 
"P ::=?- Q" when Pis false. For example, consider this campaign promise: "If I am elected, 
then taxes will be reduced". If the candidate is elected (Pis true), the truth or falsity of 
this statement depends on whether or not taxes are reduced. But what if the candidate 
is not elected (P is false)? Regardless of what happens to taxes, you can't fairly call 
the campaign promise a lie. Consequently, it is customary in symbolic logic to adopt 
this rule: 

When Pis false, the statement "P ::=?- Q" is true. 

The contrapositive of the conditional statement "P ::=?- Q" is the statement "not-Q 
::=?- not-P". For instance, the contrapositive of this statement about integers 

If c is a multiple of 6, then cis even 

is the statement 

If cis not even, then cis not a multiple of 6. 
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Notice that both the original statement and its contrapositive are true. Two statements 
are said to be equivalent if one is true exactly when the other is. We claim that 

The conditional statement "P =? Q" is equivalent 
to its contrapositive "not-Q ==>- not-P". 

To prove this equivalence, suppose P ==>- Q is true and consider the statement not-Q =? 
not-P. Suppose not-Q is true. Then Q is false. Now if P were true, then Q would neces
sarily be true, which is not the case. SoP must be false, and, hence, not-Pis true. Thus 
not-Q==>-not-P is true. A similar argument shows that when not-Q==>- not-Pis true, then 
P ==>- Q is also true. 

The converse of the conditional statement "P ==>- Q" is the statement "Q ==>- P". For 
example, the converse of the statement 

If b is a positive real number, then b2 is positive 

is the statement 

If b2 is positive, then b is a positive real number. 

This last statement is false since, for example, ( -3)2 is the positive number 9, but -3 
is not positive. Thus 

The converse of a true statement may be false. 

There are some situations in which a conditional statement and its converse are 
both true. For example, 

If the integer k is odd, then the integer k + 1 is even 

is true, as is its converse 

If the integer k + 1 is even, then the integer k is odd. 

We can state this fact in succinct form by saying that "k is odd if and only if k + 1 is 
even". More generally, the statement 

P if and only if Q, 

which is abbreviated as "P iff Q" or "P # Q", means 

P=? Q and Q==>-P. 

"P if and only if Q" is called a biconditional statement. The rules for compound state
ments show that "P if and only if Q" is true exactly when bothP =? Q and Q =?Pare 
true. In this case, the truth of P implies the truth of Q and vice versa, so that Pis true 
exactly when Q is true. In other words, "P if and only if Q" means that P and Q are 
equivalent statements. 

Theorems and Proof 
The formal development of a mathematical topic begins with certain undefined terms 
and axioms (statements about the undefined terms that are assumed to be true). These 
undefined terms and axioms are used to define new terms and to construct theorems 
(true statements about these objects). The proof of a theorem is a complete justifica
tion of the truth of the statement. 
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Most theorems are conditional statements. A theorem that is not stated in condi
tional form is often equivalent to a conditional statement. For instance, the statement 

Every integer greater than 1 is a product of primes 

is equivalent to 

If n is an integer and n > 1, then n is a product of primes. 

The first step in proving a theorem that can be phrased in conditional form is 
to identify the hypothesis P and the conclusion Q. In order to prove the theorem 
"P ==? Q", one assumes that the hypothesis Pis true and then uses it, together with 
axioms, definitions, and previously proved theorems, to argue that the conclusion Q is 
necessarily true. 

Methods of Proof 
Some common proof techniques are described below. While such summaries are help
ful, there are no hard and fast rules that give a precise procedure for proving every 
possible mathematical statement. The methods of proof to be discussed here are in 
the nature of maps to guide you in analyzing and constructing proofs. A map may not 
reveal all the difficulties of the terrain, but it usually makes the route clearer and the 
journey easier. 

DIRECT METHOD This method of proof depends on the basic rule of logic 
called modus pmzens: If R is a true statement and "R ==? S" is a true conditional 
statement, then Sis a true statement. To prove the theorem "P ==? Q" by the direct 
method, you find a series of statements Pb P2 , ••. , Pn and then verify that each of 
the implications P ==? Pl> P 1 ==? P2, P2 ==? P3, •.• , Pn-l ==? P, and Pn ==? Q is true. Then 
the assumption that Pis true and repeated use of modus ponens show that Q is true. 

The direct method is the most widely used method of proof. In actual practice, it 
may be quite difficult to figure out the various intermediate statements that allow you 
to proceed from P to Q. In order to find them, most mathematicians use a thought 
process that is sometimes called the forward-backward technique. You begin by work
ing forward and asking yourself, What do I know about the hypothesis P? What facts 
does it imply? What statements follow from these facts? And so on. At this point you 
may have a list of statements implied by P whose connection with the conclusion Q, 
if any, is not yet clear. 

Now work backward from Q by asking, What facts would guarantee that Q is 
true? What statements would imply these facts? And so on. You now have a list of 
statements that imply Q. Compare it with the first list. If you are fortunate some state
ment will be on both lists, or more likely, there will be a statementS on the first list and 
a statement Ton the second, and you may be able to show that S ==? T. Then you have 
P ==? Sand S ==? T and T ==? Q, so that P ==? Q. 

When you have used the forward-backward technique successfully to find a proof 
that P ==? Q, you should write the proof in finished form. This finished form may look 
quite different from the thought processes that led you to the proof. Your thought 
process jumped forward and backward, but the finished proof normally should begin 
with P and proceed in step-by-step logical order from P to S to T to Q. The fin
ished proof should contain only those facts that are needed in the proof. Many state
ments that arise in the forward- backward process turn out to be irrelevant to the final 
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argument, and they should not be included in the finished proof. As illustrated in most 
of the proofs in this book, the finished proof is usually written as a narrative rather 
than a series of conditional statements. 

CONTRAPOSITIVE METHOD Since every conditional statement is equiv
alent to its contrapositive, you may prove "not-Q ==? not-P" in order to conclude that 
"P ==? Q" is true. For example, instead of proving that for a certain function/, 

If a =F b, thenf(a) =F f(b) 

you can prove the contrapositive 

If /(a) = f(b), then a= b. 

PROOF BY CONTRADICTION Suppose that you assume the truth of a 
statement Rand that you make a valid argument that R ==? S (that is, R ==?Sis a true 
statement). If the statement Sis in fact a false statement, there is only one possible 
conclusion: The original statement R must have been false, because a true premise R 
and a true statement R ==? S lead to the truth of S by modus ponens. 

In order to use this fact to prove the theorem "P ==? Q", assume as usual that Pis a 
true statement. Then apply the argument in the preceding paragraph with R = not-Q. 
In other words, assume that not-Q is true and find an argument (presumably using P 
and previously proved results) that shows not-Q ==? S, where Sis a statement known to 
be false. Conclude that not-Q must be false. But not-Q is false exactly when Q is true. 
Therefore, Q is true, and we have proved that P ==? Q. Once again, the hard part will 
usually be finding the statement Sand proving that not-Q implies S. 

EXAMPlE 1 

Recall that an integer is even if it is a multiple of 2 and that an integer that is 
not even is said to be odd. We shall use proof by contradiction to prove this 
statement 

If m2 is even, then m is even. 

Here P is the statement "m2 is even" and Q is the statement "m is even": We 
assume "m is not even" or equivalently "m is odd" (statement not-Q). But every 
odd integer is 1 more than some even integer. Since every even integer is a mul
tiple of 2, we must have m = 2k + 1 for some integer k. Then the basic laws of 
arithmetic show that 

m2 = (2k + 1)2 = 4k2 + 4k + I = 2(2k2 + 2k) + 1. 

This last statement says that m2 is 1 more than a multiple of 2, that is, m2 is odd. 
But we are given that m2 is even (statement P), arid, hence, "m2 is both odd and 
even" (statementS). This statement is false since no integer is both odd and even. 
Therefore, our original assumption (not-Q) has led to a contradiction (the false 
statement S). Consequently, not-Q must be false, and, hence, the statement "m is 
even" (statement Q) is true. 
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In Example 1 various statements were labeled by letters so that you could easily 
relate the example to the general discussion. This is not usually done in proofs by 
contradiction, and such proofs may not be given in as much detail as in this example. 

The choice of a method of proof is partly a matter of taste and partly a question of ef
ficiency. Although any of those listed above may be used, one method may lead to a much 
shorter or easier-to-follow proof than another, depending on the circumstances. In addi
tion there are methods of proof that can be applied only to certain types of statements. 

PROOF BY INDUCTION This method is discussed in detail in Appendix C. 

CONSTRUCTION METHOD This method is appropriate for theorems that 
include a statement of the type "There exists a such-and-such with property so-and
so". For instance, 

There is an integer d such that d 2 
- 4d - 5 = 0. 

If r and s are distinct rational numbers, then there is a rational number between r 
~~ . 

If r is a positive real number, then there is a positive integer m such that_!_ < r. 
m 

To prove such a statement, you must construct (find, build, guess, etc.) an object with 
the desired property. When you are reading the proof of such a statement, you need 
only verify that the object presented in the proof does in fact have the stated property. 
An existence proof may amount to nothing more than presenting an example (for 
instance, the integer 2 provides a proof of "there exists a positive integer"). But more 
often a nontrivial argument will be needed to produce the required object. 

Caution Although an example is sufficient to prove an existence state
ment, examples can never prove a statement that directly or indirectly 
involves a universal quantifier. For instance, even if you have a million 
examples for which this statement is true: 

If cis an integer, then c2 
- c + 11 is prime, 

you will not have proved it. For the statement says, in effect, that for eve1y 
integer c, a certain other integer is prime. This is not the case when c = 
12 since 122 - 12 + 11 = 143 = 13 · 11. So the statement is false. This 
example demonstrates that 

A counterexample is sufficient to disprove a statement. 

The moral of the story is that when you are uncertain if a statement is true, try to 
find some examples where it holds or fails. If you find just one example where it fails, 
you have disproved the statement. If you can find only examples where the statement 
holds, you haven't proved it, but you do have encouraging evidence that it may be true. 

Proofs of Multiconditiona.l Statements 
In order to prove the biconditional statement "P if and only if Q", you must prove 
both "P =? Q" and" Q =;.. P". Proving one of these statements and failing to prove the 
other is a common student mistake. For example, the proof of 

A triangle with sides a, b, cis a right triangle with 
hypotenuse c if and only if c2 = « + b2 
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consists of two separate parts. First you must assume that you have a right triangle 
with sides a, band hypotenuse c and prove that c2 = a2 + b2

. Then you must give a 
second argument: Assume that the sides of a triangle satisfy c2 = a2 + b2 and prove 
that this is a right triangle with hypotenuse c. 

A statement of the form 

The following conditions are equivalent: P, Q, R, S, T 

is called a multiconditional statement and means that any one of the statements P, Q, 
R, S, or T implies every other one. Thus a multiconditional statement is just shorthand 
for a list of biconditional statements; P ~ Q and P ~ R and P ~ Sand P ~ T and 
Q ~ R and Q ~ S, etc. To prove this multiconditional statement you need only prove 

P =? Q and Q =? R and R =? S and S =? T and T =? P. 

All the other required implications then follow immediately; for instance, from T =? P 
and P =? Q, we know that T =? Q, and similarly in the other cases. 

EXAMPlE 2 

In order to prove this theorem about integers: 

The following conditions on a positive integer p are equivalent: 

(1) pis prime. 

( 2) If p is a factor of ab, then p is a factor of a or p is a factor of b. 

( 3) If p = rs, then r = ± 1 or s = ± 1. 

you must make three separate arguments. First, assume (1) and prove (2), so 
that (1) =? (2) is true. Second, you assume (2) and prove (3), so that (2) =? (3) 
is true. Finally, you must assume (3) and prove (1), so that (3) =? (1) is true. Be 
careful: At each stage you assume only one of the three statements and use it 
to prove another; the third statement does not play a role in that part of the 
argument. 



Sets and Functions 
For our purposes, a set is any collection of objects; for example, 

The set 7L of integers. 

The set of right triangles with area 24. 

The set of positive irrational numbers. 

The objects in a set are called elements or members of the set. If B is a set, the 
statement "b is an element of B" is abbreviated as "bE B". Similarly, "b !i B" means 
"b is not an element of B". For example, if 7L is the set of integers, then 

2 E 7L and 1r (l 71.. 

There are several methods of describing sets. A set may be defined by verbal 
description as in the examples above. A small finite set can be described by listing all 
its elements. Such a list is customarily placed between curly brackets; for instance, 

{3, 7, -4, 9} or {a, b, c, r, s, t}. 

Listing notation is sometimes used for infinite sets as well. For example, {2, 4, 6, 8, ... } 
indicates the set of positive even integers. Strictly speaking, this notation is ambiguous in 
the infinite case since it relies on everyone's seeing the same pattern and understanding 
that it is to continue forever. But when the context is clear, no confusion will result. 

Finally, a set can be described in terms of properties that are satisfied by its elements, 
and by these elements only. This is usually done with set-builder notation. For example, 

{xI xis an integer and x > 9} 

denotes the set of all elements x such that xis an integer greater than 9. In general, the 
vertical line is shorthand for "such that" and "{y I P}" is read "the set of all elements 
y such that P". Thus each of the following is the set of even integers: 

{xI xis an even integer}. 

{t I t E 7L and t is even}. 

{r I r ElL and r is a multiple of 2}. 

{y I y E 7L andy = 2k for some integer k}. 

509 
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The Empty Set 
Some special cases of set-builder notation lead to, an unusual set. For instance, the set 

{xI xis an integer and 0 < x < 1} 

has no elements since there is no integer between 0 and 1. The set with no elements is 
called the empty set or null set and is denoted 0. For every element c, 

c E 0 is false and c (t 0 is true. 

The empty set is a very convenient concept to have around, but some care must be 
taken when dealing with theorems that are true only for nonempty sets (that is, sets that 
have at least one element). 

Subsets 
A set B is said to be a subset of a set C (written B ~C) provided that every element of 
B is also an element of C. In other words, B ~ C exactly when this statement is true: 

XEB=}XEC. 

For example, the set of even integers is a subset of the set 7L of all integers, and the set 
of rational numbers is a subset of the set of real numbers. 

The definition of "B ~ C" allows the possibility that B = C (since it is certainly 
true in this case that every element of B is also an element of C). In other words, 

B ~ B for every set B. 

If B is a subset of C and B * C we say that B is a proper subset of C and write B c C. 
The subset relation is easily seen to be transitive, that is, * 

If B ~ C and C ~ D, then B ~D. 

Two sets B and C are equal when they have exactly the same elements. In this case 
every element of B is an element of C and every element of Cis an element of B. Thus, 

B=C if and only if B~ Cand C~B. 

This fact is the most commonly used method of proving that two sets are equal: Prove 
that each is a subset of the other. 

Basic logic leads to a surprising fact about the empty set. Since the statement 
x E 0 is always false, the implication 

is always true (see Appendix A). But this is precisely the definition of "0 is a subset 
of C". So 

the empty set 0 is a subset of every set. 
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Operations on Sets 
We now review the standard ways of constructing new sets from given ones. If E and 
C are sets, then the relative complement of C in E is denoted E - C and consists of the 
elements of E that are not in C. Thus 

B - C = {xI x E Band x (t C}. 

For example, if E is the set of even integers, then 7L - E is the set of odd integers. 
The intersection of sets E and C consists of all the elements that are in both E and 

C and is denoted E n C. Thus 

B n c = {xI X E Band X E C}. 

For example, if E = { -2, 1, \12, 5, 1r} and Cis the set of positive rational numbers, 
then En C = {1, 5} since 1 and 5 are the only elements in both sets. If E is the set of 
positive integers and C the set of negative integers, then E n C = 0 since there are no 
elements in both sets. When E and Care sets such that E n C = 0, we say .that E and 
C are disjoint. 

The union of sets E and C consists of all elements that are in at least one of E or 
C and is denoted E U C. Thus, 

B U C = {xI x E B or x E C}. 

For example, the union of E = {1, 3, 5, 7} and C = { -1, 1, 4, 9} is B U C = 
{ -1, 1, 3, 4, 5, 7, 9}. If E is the set of rational numbers and Cis the set of irrational 
numbers, then E U Cis the set of all real numbers. 

You should verify that union and intersection have the following properties. For 
any sets E, C, and D, 

EUE=E 

EU0=E 

EUC=CUE 

Er:;;;.EU C 

Er:;;;.C if and only if 

EnE=E 

En0=0 

En C= cnE 

En Cr:;;;.E 

BU C= C 

E r:;;;. C if and only if E n C = E 

E U ( C U D) = (E U C) U D E n ( C n D) = (E n C) n D 

E n ( C U D) = (E n C) U (E n D) 

E U (C n D)= (E U C) n (E U D). 

The concepts of union and intersection extend readily to large, possibly infinite, 
collections of sets. Suppose that lis some nonempty set (called an index set) and that 
for each i E I, we are given a set A;. Then the intersection of this family of sets (denoted 

n A;) is the set of elements that are in all the sets A;, that is, 
iE[ 

n A;= {xI X E A; for every i E J}. 
iEf 

Similarly, the union of this family of sets (denoted U A;) is the set of elements that 
are in at least one of the sets A;, that is, iEI 

.U A;= {xlxeAjforsomejEJ}. 
tEl 
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The Cartesian product of sets B and Cis denoted B X C and consists of all ordered 
pairs (x, y) with x E Bandy E C. Equality of ordered pairs is defined by this rule: 

(x, y) = (u, v) if and only if x = u in B and y = v in C. 

For example, if B = {r, s, t} and C = { 5, 7}, then B X Cis the set 

{ (r, 5), (r, 7), (s, 5), (s, 7), (t, 5), (t, 7)}. 

The set IR of real numbers is sometimes identified with the number line. When this is 
done, the Cartesian product IR X IR is just the ordinary coordinate plane, the set of all 
points with coordinates (x, y) where x, y E IR. 

The Cartesian product of any finite number of sets Bl> B2, ••• , B11 is defined in a 
similar fashion. B1 X B2 X · · · X B11 is the set of all ordered n-tuples (xl> x 2, •.• , X11) 

where X; E B; for each i = 1, 2, ... , n. For example, if B = { 0, 1}, 7L is the set of integers, 
and IR the set of real numbers, then B X 7L X IR is the set of all ordered triples of the 
form (0, k, r) and (1, k, r) with k E 7L and r E R The product B X 7L X IRis an infinite 
set; among its elements are (0, -5, 3), (1, 24, 11'), and (1, 1, -V3). 

Functions 
A function (or map or mapping)jfrom a set B to a set C (denotedfB ~C) is a rule 
that assigns to each element b of B exactly one element c of C; cis called the image of 
b or the value of the functionfat band is usually denotedf(b). The set B is called the 
domain and the set C the range of the function! 

Your previous mathematics courses dealt with a wide variety of functions. For 
instance, if IRis the set of real numbers, then each of the following rules defines a function 
from IR to IR: 

f(x) =cos x, g(x) = x2 + 1, h(x) = x 3 
- 5x + 2. 

The rule of a function need not be given by an algebraic formula. For instance, consider 
the functionj:7L ~ {0, 1}, whose rule is 

f(x) = 0 if xis even andf(x) = 1 if xis odd. 

If B is a set, then the function from B to B defined by the rule "map every element to 
itself" is called the identity map on Band is denoted ~B· Thus ~B:B ~ B is defined by 

~B(x) = x for every x E B. 

Composition of Functions 
Let f and g be functions such that the range off is the same as the domain of g, say 
f:B ~ C and g: C ~ D. Then the composite off and g is the function h:B--+ D whose 
rule is · 

h(x) = g(f(x)). 
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In other words, the composite function is obtained by first applying j and then 
applying g: 

I ~]) B~ C --r 

x ~ f(x) ~ g(f(x)). 

Instead of h, the usual notation for the composite function off and g is go f (note the 
order). Thus, go f:B ....-j- Dis defined by (go f)(x) = g(f(x)). 

EXAMPLE 1 

Let E be the set of even integers and N the set of nonnegative integers. Let 
fE ....-j- 71. be defined by f(x) = x/2 (since xis even, x/2 is an integer). Let g:7l. ....-j- N 
be given by g(n) = n2

• Then the composite function go f:E ....-j- N has this rule: 

(go f)(x) = g(f(x)) = g(x/2) = (x/2)2 = x 2/4. 

The composite function in the opposite order,/ o g (first apply g, then/), is not 
defined since the range of g is not the same as the domain off For instance, 
g(3) = 9, but the domain of jis the set of even integers; even though the rule of 
fmakes sense for odd integers,f(g(3)) = /(9) = 9/2, which is not in 71.. 

EXAMPLE 2 

Letf7l. ....-j- 71. and g:7l. ....-j- 71. be given by f(x) = x- 1 and g(x) = x 2
. Then the 

composite function/ o g:7l. ----j-71. is given by the rule 

(f o g)(x) = f(g(x)) = f(x 2
) = x2 

- 1. 

In this case the composite function in the opposite order go jis also defined; its 
rule is 

(go f)(x) = g(f(x)) = g(x - 1) = (x - If = x 2 
- 2x + 1. 

Thus we have, for instance, 

(f 0 g)(3) = 9 - 1 = 8 but (g 0 /)(3) = 9 - 6 + 1 = 4. 

So even though both are defined, f o g is not the same function as g of 

Two functions h:B ....-j- C and k:B ....-j- Care said to be equal provided that 
h(b) = k(b) for every b EB. 

EXAMPLE 3 

LetfB ....-j- C be any function and ~c: C ....-j- C the identity map on C. Then 
~c o f:B ....-j- C, and for every b E B 

<~co J)(b) = ~cU(b)) = f(b). 
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Therefore Lc of= f Similarly, if LB is the identity map on B, thenf o LB:B ~ C, 
and for every b E B 

(j 0 LB)(b) = j(LB (b)) = j(b). 

Consequently, 

Iff :B --------+ C, then tc of= f and fotB=J. 

If f:B ~ C, g:C ~ D, and h:D ~ E are functions, then each of the com
posite functions (fog) o hand/ o (go h) is a map from B to E. We claim that 

(fog) o h = Jo (go h). 

The proof of this statement is simply an exercise in using the definition of 
composite function. For each b E B 

[(f 0 g) 0 h](b) = (f 0 g)(h(b)) = f[g(h(b))] 

and 

[f 0 (g 0 h)](b) = f[(g 0 h) (b)] = f[g(h(b))]. 

Since the right sides of the two equalities are identical, the composite functions 
(f o g) o h and f o (g o h) have the same effect on each bE B, which proves the 
claim. 

Binary Operations 
Informally we can think of a binary operation on the integers, for example, as a rule 
for producing a new integer from two given ones. Ordinary addition and multiplica
tion are operations in this sense: Given a and b we get a + band ab. Producing a new 
integer from a pair of given ones also suggests the idea of a function. Addition of 
integers may be thought of as the function/from 7L X 7L to 7L whose rule is 

f(a, b) =a+ b. 

Similarly, multiplication can be thought of as the function g:7L X 7L ~ 7L given by 
g(a, b) = ab. 

With the preceding examples in mind we make this formal definition. A binary 
operation on a nonempty set B (usually called simply an operation on B) is a function 
f:B X B ~B. The familiar examples suggest a new notation for the general case. We 
use some symbol, say*, to denote the operation and write a* b instead of f(a, b). 

EXAMPLE 4 

As we saw above, ordinary addition and multiplication are operations on 7L. 
Another operation on 7L is defined by the functionf:7L X 7L ~ 7L whose rule is 
f(a, b)= ab- 1. If we denote this operation by*, then 3 * 5 = 15 - 1 = 14, 
and, similarly, 

12 * 4 = 47 -7 * 4 = -29 
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Note that a * b = ab - I = ba - I = b * a, so that the order of the elements 
doesn't matter when applying*, as is the case with ordinary addition and 
multiplication (the technical term for this property 'is commutativity). On the 
other hand, 

(1 * 2) * 3 = 1 * 3 = 2 but 1 * (2 * 3) = 1 * 5 = 4, 

so that (a * b) * c =t- a * ( b * c) in general. Thus * is not associative as are addition 
and multiplication (meaning that (a + b) + c = a + (b + c) and (ab)c = a(bc) 
always). 

EXAMPlE 5 

Let S be a nonempty set. If f:S ~Sand g:S ~ S are functions, then their 
composite f o g is also a function from S to S. So if B is the set of all functions 
from S to S, then composition of functions is an operation on the set B. In 
other words, the map that sends (j, g) to f o g is a function from B X B to B. 
The discussion of composite functions above shows that the operation o on B 
is associative (that is, (fog) o h = f o (go h) always) but not commutative 
(fog need not equal go f). 

Let * be an operation on a set Band C s;;; B. The subset Cis said to be dosed under 
the operation * provided that 

Whenever a, b E C, then a * b E C. 

Consider, for example, the operation of ordinary multiplication on the set B of posi
tive real numbers. Let C be the subset of positive integers. Then Cis closed under the 
operation since ab is a positive integer whenever a and b are. But when the operation 
on B is ordinary division, then Cis not closed: If a and b are integers, a -:- b need not 
be an integer (for instance, 3 -:- 7 = 3/U.C). 

If* is an operation on a set B, then B (considered as a subset of itself) is closed 
under * by the definition of an operation. Nevertheless many texts, including this 
one, routinely list the closure of B under * as one of the properties of the operation. 
Although this isn't logically necessary, it calls your attention to the importance of 
closure and reminds you that closure cannot be taken for granted for subsets other 
thanE. 

Injective and Surjective Functions 
A function f:B ~ C is said to be injective (or one-to-one) provided f maps distinct 
elements of B to distinct elements of C, or in functional notation: If a =t- b in B, then 
f(a) =t- f(b) in C. This rather awkward statement is equivalent to its contrapositive, so 
that we have this useful description: 

f:B -----+ C is injective provided that 

whenever f(a) = f(b) inC, then a= bin B. 
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EXAMPLE 6 

Let IR be the set of real numbers. In order to show that the functionf:IR--+ IR 
given by f(x) = 2x + 3 is injective, we assume thatf(a) = f(b), that is, 

2a + 3 = 2b + 3. 

Subtracting 3 from each side shows that 2a = 2b; dividing both sides by 2 we 
conclude that a= b. Therefore,/ is injective. 

EXAMPLE 7 

The mapf:Z-+ Z given by f(x) = x 2 is not injective because we havef( -3) = 9 = 
/(3), but -3 i= 3. Alternatively, the distinct elements 3 and-3 have the same image. 

A functionf:B--+ Cis said to be surjective (or onto) provided that every 
element of Cis the image under f of at least one element of B, that is, 

For each c E C there exists b E B such that/( b) = c. 

EXAMPLE 8 

Let N be the set of nonnegative integers andf:Z--+ N the function given by 
f(x) = lxl. Then/is surjective since every element of N is the image under/of 
at least one element of Z (namely itself). Note, however, thatfis not injective 
since, for example, f(l) = f (- 1 ). 

EXAMPLE 9 

Let Ebe the set of even integers and consider the map g:Z-+ E given by g(x) = 
4x. We claim that the element 2 in E is not the image under g of any element 
of Z. If 2 = g(b) for some b EZ, then 2 = 4b, so that 1 = 2b. This is impos
sible since 1 is not an integer multiple of 2. Therefore, g is not surjective. Note, 
however, that g is injective since 4a = 4b (that is, g(a) = g(b)) implies that a= b. 

EXAMPLE 10 

Let IR be the set of real numbers and f: IR --+ IR the function given by 
f(x) = 2x + 3. To prove thatfis surjective, let c E IR; we must find bE IR such 
thatf(b) =c. In other words, we must find a number b such that 2b + 3 = c. 

To do so, we solve this last equation for b and find b = c ; 
3

. Then 

f(b) = 2( c ; 
3

) + 3 = c - 3 + 3 = c. Therefore,/ is surjective. The map fis 

also injective (see Example 6). 

The preceding ·examples demonstrate that injectivity and swjectivity are indepen
dent concepts. One does not imply the other, and a particular map might have one, both, 
or neither of these properties. 
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If f:B--)> Cis a function, then the image of jis this subset of C: 

Imf = {c I c = f(b) for some b EB} ·= {f(b) I b EB}. 

For example, iff: 7l.--)> 7l. is given by f(x) = 2x, then Imfis the set of even integers since 
Imf = {f(x) I x E 7l.} = {2x I x E 7l.}. Similarly, if g :ll.--)> 7l. is given by g(x) = lxl, then 
Im g is the set of nonnegative integers. A map fB--)> Cis surjective exactly when every 
element of Cis the image of an element of B. Thus 

f:B --)> Cis surjective if and only if Im f = C. 

If f:B--)> Cis a function and Sis a subset of B, then the image of the subset Sis 
the set 

f(S) = {c I c = f(b) for some bES} = {f(b) I bES}. 

If f:ll.--)> 7l. is given by f(x) = 2x, for example, and Sis the set of odd integers, then 
f(S) = {2x I xis odd} is the set of even integers that are not multiples of 4, If the subset 
Sis the entire set B, thenf(B) is precisely Imf 

Bijective Functions 
A functionf:B--)> Cis bijective (or a bijection or one-to-one correspondence) provided 
thatfis both injective and surjective. 

EXAMPLE 11 

Examples 6 and 10 show that the mapf:~--)> ~given by f(x) = 2x + 3 is 
bijective. 

EXAMPLE 12 

The mapjfrom the set {1, 2, 3, 4, 5} to the set {v, w, x, y, z} given by 

f(l) = v /(2) = w j(3) =X f(4) = y f(S) = z 

is easily seen to be bijective. 

The last example illustrates the fact that for any finite sets Band C, there is a bijec
tion from B to C if and only if B and C have the same number of elements. In par
ticular, if B is finite and C c B,then there cannot be a bijection from B to C. But the 
situation is quite different Jith infinite sets. 

EXAMPLE 13 

Let E be the set of even integers and consider the map f:ll.--)> E given by 
f(x) = 2x. By definition every even integer is 2 times some integer, so fis surjec
tive. Furthermore, 2a = 2b implies that a = b, so f is injective. Therefore,/ is a 
bijection. In this case, a bit more is true. Define a map g:E--)> 7l. by g(u) = uj2; 



518 Appendix B Sets and Functions 

this makes sense since u/2 is an integer when u is even. Consider the composite 
function go f:7L--+ 7L: 

(go f) = g(f(x)) = g(2x) = 2x/2 = x. 

Thus (go f)(x) = x = ~71. (x) for every x, and the composite map go jis just the 
identity map ~71. on 7L. Now look at the other composite,/ o g:E--+ E: 

(f o g)(u) = f(g(u)) = f(u/2) = 2(u/2) = u. 

Therefore, the composite map fog is the identity map ~E· 

Example 13 illustrates a property that all bijective functions have, as we now prove. 

A function f:B--+ C is bijective if and only if there exists a function g:C--+ 8 
such that 

g 0 f = ~8 and 

Proof"' Assume first thatfis bijective. Define g:C--+ Bas follows. If c E C, then 
there exists b EB such thatf(b) = c because/is surjective. Furthermore, 
since/is also injective, there is only one element b such thatf(b) = c (for 
if f(b') = c, thenf(b) = f(b') implies b = b'). So we can define a function 
g: C--+ B by this rule: 

g(c) = b, where b is the unique element of B such thatf(b) = c. 

Then g(c) = b exactly whenf(b) =c. Thus for any c E C 

(fog)( c) = f(g(c)) = f(b) = c, 

from which we conclude that/ o g = ~c· Similarly, for each u E B,f( u) is 
an element of C, say f( u) = v, and, hence, by the definition of g, we have 
g(v) = u. Therefore, 

(go f)(u) = g(f(u)) = g(v) = u 

and go f = ~B· This proves the first half of our biconditional theorem. 
To prove the other half, we assume that a map g: C--+ B with the 

stated properties is given. We must show thatjis bijective. Supposef(a) = 

f(b). Then 
g(f(a)) = g(f(b)) 

(go f)(a) = (go f)(b) 

~B (a) = ~B(b) 
a= b. 
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Therefore,f(a) = f(b) implies a = b, andfis injective. To show thatfis 
surjective, let c be any element of C. Then g( c) E B and f(g( c)) = 
(f o g)(c) = ~c(c) = c. So we have found an' element of B thatfmaps 
onto c (namely g(c)); hence,fis surjective. Therefore,/ is bijective, and 
the theorem is proved. Ill 

If f:B -+ Cis a bijection, then the map g in Theorem B.1 is called the 
inverse off and is sometimes denoted by f- 1

. Reversing the roles off 
and g in Theorem B.1 shows that the inverse map g of a bijection f is 
itself a bijection. 

Exercises 

NOTE: 7L is the set of integers, Q the set of rational numbers, and IR the set of real 
numbers. 

A. 1. Describe each set by listing: 

(a) The integers strictly between- 3 and 9. 

(b) The negative integers greater than -10. 

(c) The positive integers whose square roots are less than or equal to 4. 

2. Describe each set in set-builder notation: 

(a) All positive real numbers. 

(b) All negative irrational numbers. 

(c) All points in the coordinate plane with rational first coordinate. 

(d) All negative even integers greater than -50. 

3. Which of the following sets are nonempty? 

(a) {r E Q I r2 = 2} 

(b) {rE1Rir2 + 5r- 7 = 0} 

(c) {tE7LI6t2
- t- 1 = 0} 

4. Is B a subset of C when 

(a) B = 7L and C = Q? 

(b) B =all solutions of x2 + 2x- 5 = 0 and C = 7L? 

(c) B = {a, b, 7, 9, 11, -6} and C = Q? 

5. If A <;;; B and B <;;; C, prove that A <;;; C. 

6. In each part find B - C, B n C, and B U C: 

(a) B = 7L, C = Q. (b) B = IR, C = Q. 

(c) B = {a, b, c, 1, 2, 3, 4, 5}, C = {a, c, e, 2, 4, 6, 8}. 

7. List the elements of B X Cwhen B ={a, b, c} and C = {0, 1, c}. 
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8. List the elements of A X B X Cwhen A= {0, 1} and B, Care as in Exercise 7. 

9. Let A= {1, 2, 3, 4}. Exhibit functionsfandgfrom A to A such that/ o g =F go f 
10. Do Exercise 9 when A= 7L. 

11. Is the subset B closed under the given operation? 

(a) B = even integers; operation: multiplication in 7L. 

(b) B = odd integers; operation: addition in 7L. 

(c) B =nonzero rational numbers; operation: division in the set of nonzero 
real numbers. 

(d) B = odd integers; operation* on 7L, where a* b is defined to be the 
number ab- (a+ b)+ 2. 

12. Find the image of the function/when 

(a) f:IR--+ IR;f(x) = x2
• 

(b) f:lL--+ Q;j(x) = x- 1. 

(c) f:IR--+ IR;f(x) = -x2 + 1. 

13. Let B = {1, 2, 3, 4} and C = {a, b, c}. 

(a) List four different surjective functions from B to C. 

(b) List four different injective functions from C to B. 

(c) List all bijective functions from C to C. 

14. (a) Give an example of a function/that is injective but not surjective. 

(b) Give an example of a function g that is surjective but not injective. 

15. Let B and C be non empty sets. Prove that the function 

fB XC----+ CX B 

given by f(x, y) = (y, x) is a bijection. 

B.16. List all the subsets of {1, 2}. Do the same for {1, 2, 3} and {1, 2, 3, 4}. Make 
a conjecture as to the number of subsets of ann-element set. [Don't forget the 
empty set.] 

17. Verify each of the properties of sets listed on page 511. 

18. If a, bE IR with a< b, then the set {r E IR I a~ r < b} is denoted [a, b). Let N 
denote the nonnegative integers and P the positive integers. Find these unions 
and intersections: 

(a) U [n, n + 1) 
neN 

(c) n [-l,o) 
nEP n 

(b) u [l, 2 + l) 
IIEP n n 

19. Prove that for any sets A, B, C: 

A X (B U C)= (A X B) U (A X C) 



20. Let A, B be subsets of U. Prove De Morgan's laws: 

(a) U- (A n B) = (U- A) U (U- B) 

(b) U- (AU B)= (U- A) n (U- B) 

21. Prove that for any sets A, B, C: 

(A - B) U (B - A) = (A U B) - (A n B) 
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22. If Cis a finite set, then ICI denotes the number of elements in C. If A and 
Bare finite sets, is it true that lA U Bl = lA I+ IBI? 

23. Let~** denote the positive real numbers. Does the following rule define a 
function from~** to~: assign to each positive real number c the real number 
whose square is c? 

24. Determine whether the given operation on~ is commutative (that is, a* b = 
b *a for all a, b) or associative (that is, a* (b *c)= (a* b)* c for all a, b, c). 

(a) a* b = 2ab (b) a* b = ab2 

(c) a * b = 0 (d) a * b = (a + b )12 

(e) a* b = 1 (f) a* b = b 

(g) a*b=a2 +b2 

25. Prove that the given function is injective. 

(a) fZ---+ Z;f(x) = 2x 

(b) f:~---+ ~;f(x) = x 3 

(c) f:Z---+ Q;j(x) = x/7 

(d) f~---+ ~;f(x) = -3x + 5 

26. Prove that the given function is surjective. 

(a) f:~---+ ~;f(x) = x 3 

(b) f:Z---+ Z;f(x) = x - 4 

(c) f:~---+ ~;f(x) = -3x + 5 

(d) f:Z X Z---+ Q;j(a, b)= alb when b =I= 0 and 0 when b = 0. 

27. Letf:B---+ C and g:C---+ D be functions. Prove: 

(a) Iff and g are injective, then go f:B---+ Dis injective. 

(b) Iff and g are surjective, then g of is surjective. 

28. (a) Letf:B---+ C and g:C---+ D be functions such that go fis injective. Prove 
that f is injective. 

(b) Give an example of the situation in part (a) in which g is not injective. 

29. (a) Letf:B---+ C and g:C---+ D be functions such that go fis surjective. Prove 
that g is surjective. 

(b) Give an example of the situation in part (a) in whichfis not surjective. 



522 Appendix B Sets and Functions 

30. Let g:B X C---+ C (with B =I= 0) be the function given by g (x, y) = y. 

(a) Prove that g is surjective. 

(b) Under what conditions, if any, is g injective? 

31. If f:B ---+ C is a function, then f can be considered as a map from B to Im f 
sincef(b) Elm/for every b EB. Show that the mapf:B---+ Imfis surjective. 

32. Let B be a finite set and f:B ---+ B is a function. Prove that f is injective if and 
only iff is surjective. 

33. Letf:B---+ C be a function and letS, Tbe subsets of B. 

(a) Prove thatf(S U T) = f(S) U f(T). 

(b) Prove thatf(S n T) ~f(S) nj(T). 

(c) Give an example wheref(S n T) =I= f(S) nj(T). 

34. Prove thatf:B---+ Cis injective if and only if f(S n T) = f(S) n f(T) for every 
pair of subsets S, T of B. 

35. Letf:B---+ C and g:C---+ D be bijective functions. Then the composite function 
go f:B---+ Dis bijective by Exercise 27. Prove that (go f)- 1 = f- 1o g-1• 



Well Ordering and Induction 
We assume that you are familiar with ordinary arithmetic in the set 7L of integers and 
with the usual order relation ( <) on 7L The subset of nonnegative integers will be 
denoted by N. Thus 

N = {0, 1, 2, 3, ... }. 

Finally, we assume this fundamental axiom: 

WELL-ORDERING AXIOM Every nonempty subset of N contains a smallest 
element. 

Most people find this axiom quite plausible, but it is important to note that it 
may not hold if N is replaced by some other set of numbers; see page 3 of the text for 
examples. 

An important consequence of the Well-Ordering Axiom is the method of proof 
known as mathematical induction. It can be used to prove statements such as 

A set of n elements has 2" subsets. 

Denote this statement by the symbol P(n) and observe that there are really infinitely 
many statements, one for each possible value of n: 

P(O): A set of 0 elements has 2° = 1 subset. 

P(l): A set of 1 element has 21 = 2 subsets. 

P(2): A set of 2 elements has 22 = 4 subsets. 

P(3): A set of 3 elements has 23 = 8 subsets. 

And so on. To prove the original proposition we must prove that 

P(n) is a true statement for every n EN. 

Here's how it can be done. 

523 
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Assume that for each nonnegative integer n, a statement P(n) is given. If 

(i) P(O) is a true statement; and 

(ii) Whenever P(k) is a true statement, then P(k + 1) is also true, 

then P(n) is a true statement for every n EN. 

The example of the number of subsets of a set of n elements is continued after the 
proof of the theorem. You may want to read that example now to see how Theorem C.l 
is applied, which is quite different from the manner in which it is proved. 

Proof of Theorem C.l ~LetS be the subset of N consisting of those integers} 
for which P(j) is false. To prove the theorem we need only show that 
Sis empty; we shall use proof by contradiction to do this. Suppose S 
is nonempty. Then by the Well-Ordering Axiom, S contains a smallest 
element, say d. Since P(d) is false by the definition of Sand P(O) is true 
by property (i), we must have d =F 0. Consequently, d ::=::: 1 (because dis a 
nonnegative integer), and, hence, d- 1 ::=::: 0, that is, d- 1 EN. Since 
d - 1 < d and dis the smallest element in S, d - 1 cannot be in S. 
Therefore, P(d- 1) must be true (otherwise d- 1 would be inS). 
Property (ii) (with k = d- 1) implies that P((d- 1) + 1) = P(d) is also 
a true statement. This is a contradiction since dES. Therefore, Sis the 
empty set, and the theorem is proved. lit 

In order to apply the Principle of Mathematical Induction to a series of state
ments, you must verify that these statements satisfy both properties (i) and (ii). Note 
that property (ii) does not assert that any particular P(k) is actually true, but only that 
a conditional relationship holds: If P(k) is true, then P(k + 1) must also be true. So to 
verify property (ii), you assume the truth of P(k) and use this assumption to prove that 
P(k + 1) is true. As we shall see in the examples below, it is often possible to prove this 
conditional statement even though you may not be able to prove directly that a particu
lar P(j) is true. The assumption that P(k) is true is called the induction assumption or 
the induction hypothesis. 

You may have seen induction used to prove statements such as "the sum 
. . . n(n+l)" . 

of the first n nonnegative mtegers 1s 
2 

; here P(n) 1s the statement: 
n(n + 1)" 

"0 + 1 + 2 + 3 + · · · + n = 
2 

. Although such examples make nice exercises 

for beginners, they are not typical of the way induction is used in advanced math
ematics. The examples below will give you a more comprehensive picture of inductive 
proof. They are a bit more complicated than the usual elementary examples but are 
well within your reach. 
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EXAMPLE 1 

We shall use the Principle of Mathematical Induction to prove that for each n ;::::; 0, 

A set of n elements has 2n subsets. 

If n = 0, then the set must be the empty set (the only set with no elements). Its one and 
only subset is itself (since 0 is a subset of every set). So the statement 

P(O): A set of 0 elements has 2° = 1 subset 

is true (property (i) holds). 
In order to verify property (ii) of Theorem C. 1, we assume the truth of 

P(k): A set of k elements has 2" subsets 

and use this induction hypothesis to prove 

P(k + 1): A set of k + 1 elements has 2k+1 subsets. 

To do this, let Tbe any set of k + 1 elements and choose some element c ofT. Every 
subset of Teither contains cor does not contain c. The subsets of Tthat do not 
contain c are precisely the subsets of T- { c}. Since the set T- { c} has one fewer 
element than T, it is a set of k elements and, therefore, has exactly 2" subsets (because 
the induction hypothesis P(k) is assumed true). Now every subset of T that contains 
c must be of theform { c} U D, where D is a subset of T - { c} . There are ic possible 
choices forD and, hence, 2" subsets of Tthat contain c. Consequently, the total num
ber of subsets of Tis 

(
Number of s~bsets) + (Number of subs~ts that) = 2k + 2k 

that contam c do not contam c 
= 2(2/c) 

Thus any set T of k + 1 elements has 2k+I subsets, that is, P(k + 1) is a 
true statement. We have now verified property (ii) and can, therefore, apply 
Theorem C.l to conclude that P(n) is true for every n EN; that is, every set of n 
elements has 2n subsets. 

The Principle of Mathematical Induction cannot be conveniently used on certain 
propositions, even though they appear to be suitable for inductive proof. In such cases 
a variation on the procedure is needed: 

Assume that for each nonnegative integer n, a statement P(n) is given. If 

(i) P(O) is a true statement; and 

(ii) Whenever P(J) is a true statement for all j such that 0 s j < t, then 
P(t) is also true, 

then P(n) is a true statement for every n EN. 
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Although commonly used, the title "complete induction" is a bit of a misnomer 
since, as we shall see, this form of induction is equivalent to the previous one. 

Proof of Theorem C.2 II> For each n EN, let Q(n) be the statement 

P(j) is true for all} such that 0 ::s j ::s n. 

Note carefully that the last inequality sign in this statement is ::s and not <. 
We shall use the Principle of Mathematical Induction (Theorem C. I) to show 
that Q(n) is true for every n EN. This will mean, in particular, that P(n) is true 
for every n EN. Now Q(O) is the statement 

P(j) is true for all} such that 0 ::s j ::s 0. 

In other words, Q(O) is just the statement "P(O) is true". But we know 
that this is the case by hypothesis (i) in the theorem. Suppose that Q(k) is 
true, that is, 

P(j) is true for all j such that 0 ::s j ::s k. 

By hypothesis (ii) (with t = k + 1), we conclude the P(k + I) is also true. 
Therefore, P(J) is true for all} such that 0 ::5 j ::5 k + 1, that is, Q(k + I) 
is a true statement. Thus we have shown that whenever Q(k) is true, then 
Q(k + I) is also true. By the Principle of Mathematical Induction, Q(n) 
is true for every n EN, and the proof is complete. ill: 

In the formal description of induction (either principle), the notation P(n) is quite 
convenient. But it is rarely used in actual proofs by induction. The next example is 
more typical of the way inductive proofs are usually phrased. But even here we include 
more detail than is customary in such proofs. 

EXAMPLE 2 

We shall use the Principle of Complete Induction to prove: 

If n, bEN and b > 0, then there exist q, r EN such that 

n = bq + r and 0 ::5 r <b. 

This statement (called the Division Algorithm for nonnegative integers) is just a 
formalization of grade-school long division: When n is divided by b, there is a quotient 
q and remainder r (smaller than the divisor b) such that n = bq + r; see the discussion 
on page 4 of the text. 

Statement ( *) is true for n = 0 and any positive b (let q = 0 and r = 0). So property 
(i) of Theorem C.2 holds. Suppose that ( *) is true for all n such that 0 ::s n < t (this is the 
induction hypothesis). We must show that ( *) is true for n = t. If t < b, then t = bO + t, 
so ( *) is true with q = 0 and r = t. If b ::5 t, then 0 ::5 t - b < t, and by the induction 
hypothesis, (*)is true for n = t - b. Therefore, there exist integers q1 and r1 such that 

t - b = q1b + r1 and 0 ::5 r1 < b. 
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Consequently, 

t = b + qlb + I'] = (1 + ql)b + I'] and 

Therefore,(*) is true for n = t (with q = 1 + q1 and r = r 1). Hence, property 
(ii) of Theorem C.2 is satisfied. By the Principle of Complete Induction,(*) is 
true for every n E N. 

Some mathematical statements are false (or undefined) for n = 0 or other small 
values of n but are true for n = r and all subsequent integers. For instance, it can be 
shown that 

3n > n + 1 for every integer n ;::: 1. 

2" > n2 + 2 for every integer n ;::: 5. 

Such statements can often be proved by using a variation of mathematical induction 
(either principle): 

In order to prove that statement P(n) is true for each integer 11 ;::: r, 
follow the same basic procedure as before, 

starting with P(r) instead of P(O). 

The validity of this procedure is a consequence of 

Let r be a positive integer and assume that for each n ;::: r a statement P(n) 
is given. If 

(i) P(r) is a true statement; 

and either 

or 

(ii) Whenever k;::: rand P(k) is true, then P(k + 1) is true; 

(ii') Whenever P(j) is true for all j such that r:::;; j < t, then P(t) is true, 
then P(n) is true for every n ;::: r. 

Proof.,. Conditions (i) and (ii) are the analogue of Theorem C. 1. Verify that 
the proof of Theorem C.l. carries over to the present case verbatim if 
0 is replaced by r, 1 by r + 1, and N by the set Nr = {nInE Nand n;::: r}. 
Conditions (i) and (ii') are the analogue of Theorem C.2; its proof 
carries over similarly. Ill 

The final theorem to be proved here is not necessary in order to read the rest of 
the book. But it is a result that every serious mathematics student ought to know. 
It is also a good illustration of the fact that intuition can sometimes be misleading. 
Most people feel that the Well-Ordering Axiom is obvious, whereas the Principle of 
Complete Induction seems deeper and in need of some proof. But as we shall now see, 
these two statements are actually equivalent. Among other things, this suggests that 
the Well-Ordering Axiom is a good deal deeper than it first appears. 
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The following statements are equivalent: 

(1) The Well-Ordering Axiom. 

(2) The Principle of Mathematical Induction. 

(3) The Principle of Complete Induction. 

Proof., The proof of Theorem C.l shows that (1) =:- (2), and the proof of 
Theorern C.2 shows that (2) =:- (3). To prove (3) =:- (1), we assume the 
Principle of Complete Induction and let S be any subset of N. To prove 
that the Well-Ordering Axiom holds, we must show 

If Sis nonempty, then S has a smallest element. 

To do so, we shall prove the equivalent contrapositive statement 

If S has no smallest element, then Sis empty. 

Assume S has no smallest element; to prove that Sis empty we need only 
show that the following statement is true for every n EN: 

n is not an element of S. 

Since 0 is the smallest element of N, it is also the smallest element of any 
subset of N containing 0. Since S has no smallest element, 0 cannot be 
in S, and, hence, ( **) is true when n = 0 (property (i) of Theorem C.2 
holds). Suppose ( * *) is true for all j such that 0 ~ j < t. Then none of 
the integers 0, 1, 2, ... , t- 1 is inS, or equivalently, every element in 
S must be greater than or equal to t. If t were in S, then t would be the 
smallest element in S since s 2: t for all s E S. Since S has no smallest 
element, tis not inS. In other words, (**)is true when n = t. Thus 
the truth of(**) when}< t implies its truth fort (property (ii) of 
Theorem C.2 holds). By the Principle of Complete Induction, (**)is 
true for all n E N. Therefore, S is empty, and the proof is complete. II: 

Exercises 

A. 1. Prove that the sum of the first n nonnegative integers is n(n + l)j2. 
[Hint: Let P(k) be the statement: 

0 + 1 + 2 + ' ' ' + k = k(k + l)j2.] 

2. Prove that for each nonnegative integer n, 2" > n. 

3. Prove that 2n-J ~ n! for every nonnegative integer n. [Recall that 0! = 1 and 
for n > 0, n! = 1· 2 · 3 · · · (n - l)n.] 

4. Let r be a real number, r * 1. Prove that for every integer n 2: 1, 
· r"- 1 

1 + r + r2 + r3+ · · · + rn-J = --. 
r- 1 
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B. 5. Prove that 4 is a factor of 7" - 311 for every positive integer n. 
[Hint: 7k+I - 3k+I = 7k+I - 7 · 3k + 7 · 3k- 3k~I = 7(7/c- 3~ + (7 - 3)3/c.] 

6. Prove that 3 is a factor of 4" - 1 for every positive integer n. 

7. Prove that 3 is a factor of 22"+ 1 + 1 for every positive integer n. 

8. Prove that 5 is a factor of 24
"-

2 + 1 for every positive integer n. 

9. Prove that 64 is a factor of 911
- Sn - 1 for every nonnegative integer n. 

10. Use the Principle of Complete Induction to show that every integer greater 
than 1 is a product of primes. [Recall that a positive integer pis prime 
provided that p > 1 and that the only positive integer factors of p are 1 
andp.] 

11. LetB be a set of n elements. Prove that the number of different injective 
functions from B to B is n!. [n! was defined in Exercise 3.] 

12. True or false: n2 
- n + 11 is prime for every nonnegative integer n. Justify 

your answer. [Primes were defined in Exercise 10.] 

13. Let B be a set of n elements. 

(a) If n ::=::: 2, prove that the number of two-element subsets of B is n(n - 1)/2. 

(b) If n ::=::: 3, prove that the number of three-element subsets of B is n(n - l)(n - 2)j3!. 

(c) Make a conjecture as to the number of k-element subsets of B when n ::=::: k. 
Prove your conjecture. 

14. At a social bridge party every couple plays every other couple exactly once. 
Assume there are no ties. 

(a) If n couples participate, prove that there is a "best couple" in the following 
sense: A couple u is "best" provided that for every couple v, u beats v or u 
beats a couple that beats v. 

(b) Show by example that there may be more than one best couple. 

15. What is wrong with the following "proof" that all roses are the same color. 
It suffices to prove the statement: In every set of 11 roses, all the roses in 
the set are the same color. If n = 1, the statement is certainly true. Assume 
the statement is true for n = k. Let S be a set of k + 1 roses. Remove one 
rose (call it rose A) from S; there are k roses remaining, and they must all 
be the same color by the induction hypothesis. Replace rose A and remove 
a different rose (call it rose B). Once again there are k roses remaining that 
must all be the same color by the induction hypothesis. Since the remaining 
roses include rose A, all the roses in Shave the same color. This proves that 
the statement is true when n = k + 1. Therefore, the statement is true for all 
11 by induction. 
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16. Let n be a positive integer. Suppose that there are three pegs and on one of 
them n rings are stacked, with each ring being smaller in diameter than the 
one below it, as shown here for n = 5: 

The game is to transfer all the rings to another peg according to these rules: 
(i) only one ring may be moved at a time; (ii) a ring may be moved to any 
peg but may never be placed on top of a smaller ring; (iii) the final order of 
the rings on the new peg must be the same as their original order on: the first 
peg. Prove that the game can be completed in 2" - 1 moves and cannot be 
completed in fewer moves. 

17. Let x be a real number greater than -1. Prove that for every positive integer n, 
(1 + xY 2: 1 + nx. 

C. 18. Consider maps in the plane formed by drawing a finite number of straight lines 
(entire lines, not line segments). Use induction to prove that every such map 
may be colored with just two colors in such a way that any two regions with 
the same line segment as a common border have different colors. Two regions 
that have only a single point on their common border may have the same color. 
[This problem is a special case of the so-called Four-Color Theorem, which 
states that every map in the plane (with any continuous curves or segments of 
curves as boundaries) can be colored with at most four colors in such a way 
that any two regions that share a common border have different colors.] 



Equivalence Relations 
This appendix may be read anytime after you've finished Appendix B, but it is not 
needed in the text until Section 10.4. If you read it before that point, you should 
have no trouble with Examples 1-3 but may have to skip some of the later examples. 
Chapter 2 is a prerequisite for the examples labeled "integers", Chapter 6 for those 
labeled "rings", and Section 8.1 for those labeled "groups". 

If A is a set, then any subset of A X A is called a relation on A. A relation Ton A 
is called an equivalence relation provided that the subset Tis 

(i) Reflexive: (a, a) E T for every a EA. 
(ii) Symmetric: If (a, b) E T, then (b, a) E T. 

(iii) Transitive: If (a, b) E T and (b, c) E T, then (a, c) E T. 

If Tis an equivalence relation on A and (a, b) E T, we say that a is equivalent to b and 
write a~ b instead of (a, b) E T. In this notation, the conditions defining an equiva
lence relation become 

(i) Reflexive: a ~ a for every a EA. 
(ii) Symmetric: If a~ b, then b ~ a. 

(iii) Transitive: If a ~ b and b ~ c, then a ~ c. 

When this notation is used, the relation is usually defined without explicit reference to 
a subset of A X A. 

EXAMPLE 1 

Let A be a set and define a ~ b to mean a = b. In other words, the equivalence 
relation on A is the subset T = {(a, b) I a= b} of A X A. Then it is easy to see 
that ~ is an equiyalence relation. 

EXAMPLE 2 

The relation on the set JR.! of real numbers defined by 

r ~ s means lrl = lsi 
is an equivalence relation, as you can readily verify. 

531 
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EXAMPLE 3* 

Define a relation on the set 7L of integers by 

a~ b means a- b is a multiple of 3. 

For example, 17 ~ 5 since 17- 5 = 12, a multiple of 3. Clearly a~ a for every 
a since a- a = 0 = 3 · 0. To prove property (ii), suppose a ~ b. Then a- b is 
a multiple of 3. Hence,- (a- b) is also a multiple of 3. But- (a- b)= b- a. 
Therefore, b ~a. To prove property (iii), suppose a~ band b ~ c. Then a- b 
and b- care multiples of 3 and so is their difference (a- b)- (b- c) = a- c, 
so that a~ c. Thus~ is an equivalence relation (usually called congruence 
modulo 3 and denoted a= b (mod 3)). 

EXAMPLE 4 (INTEGERS) 

If n is a fixed positive integer, the relation of congruence modulo n on the set 7L, 
defined by 

a = b (mod n) if and only if a- b is a multiple of n, 

is an equivalence relation by Theorem 2.1. 

EXAMPLE 5 (RINGS) 

If I is an ideal in the ring R, then the relation of congruence modulo I, defined 
by 

a = b (mod I) if and only if a - b E I, 

is an equivalence relation on R by Theorem 6.4. 

EXAMPLE 6 (GROUPS) 

If K is a subgroup of a group G, then the relation defined by 

a= b if and only if ab- 1 EK 

is an equivalence relation on G by Theorem 8 .1. 

Caution It is quite possible to have a relation on a set that satisfies one or two, but 
not all three, of the properties that define an equivalence relation. For instance, the 
order relation ::::; on the set IR of real numbers is reflexive and transitive but not sym
metric; for other examples, see Exercises 8 and 9. Therefore, you must verify all three 
properties in order to prove that a particular relation is actually an equivalence relation. 

*If you've already read Section 2.1, skip Examples 3 and 8; it's just congruence modulo n when n = 3. 
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Let~ be an equivalence relation on a set A.lf a E A, then the equivalence class of 
a (denoted [a]) is the set of all elements in A that are equivalent to a, that is, 

[a]= {bib E Aandb~a}. 

In Example 2, for instance, the equivalence class [9] of the number 9 consists of all real 
numbers b such that b ;._ 9, that is, all numbers b such that lbl = 191. Thus [9] = {9,- 9}. 

EXAMPLE 7 (RINGS, GROUPS) 

If I is an ideal in a ring R, then an equivalence class under the relation of con
gruence modulo I is a coset a + I= {a + i I i E I}. Similarly, if K is a subgroup 
of a group G, then an equivalence class of the relation congruence modulo K is 
a right coset Ka = {ka I k E K}. 

EXAMPLE 8 

In Example 3, the equivalence class of the integer 2 consists of all integers b 
such that b ~ 2, that is, all b such that b - 2 is a multiple of 3. But b - 2 is 
a multiple of 3 exactly when b is of the form b = 2 + 3k for some integer k. 
Therefore, 

[2] = {2 + 3k I kEZ} = {2 + 0, 2 ± 3, 2 ± 6, 2 ± 9, ... } 
= { ... ' -7, -4, -1, 2, 5, 8, 11, ... }. 

A similar argument shows that the equivalence class [8] consists of all integers 
of the form 8 + 3k (k E ZY; consequently, 

[8] = { ... ' -7, -4, -1, 2, 5, 8, 11, 14, 17, ... }. 

Thus [2] and [8] are the same set. Note that 2 ~ 8. This is an example of 

Let~ be an equivalence relation on a set A and a, b EA. Then 

a~ c if and only if [a]= [c]. 

Proof*~>- Assume a~ c. To prove that [a] = [c], we first show that [a]~ [c]. To do 
this, let bE [a]. Then b _.._,. a by definition. Since a ~ c, we have b ~ c by 
transitivity. Therefore, bE [c] and [a]~ [c]. Reversing the roles of a 
and c in this argument and using the fact that c ~ a by symmetry, show 
that [c] ~[a]. Therefore, [a] = [c]. Conversely, assume that [a] = [c]. Since 
a~ a by reflexivity, we have a E [a], and, hence, a E [c]. The definition of 
[c] shows that a~ c. 1111 

*If you've read Section 2.1, note that this proof and the proof of Corollary 0.2 are virtually identical to 
the proofs ofTheorem 2.3 and Corollary 2.4: just replace= by~. 



534 Appendix 0 Equivalence Relations 

Generally when one has two sets, there are three possibilities: The sets are equal, 
the sets are disjoint, or the sets have some (but not all) elements in common. With 
equivalence classes, the third possibility cannot occur: 

.... <coro1larYD.2· 
Let ~ be an equivalence relation on a set A. Then any two equivalence 
classes are either disjoint or identical. 

Proof,. Let [a] and [c] be equivalence classes. If they are disjoint, then there is 
nothing to prove. If they are not disjoint, then [a] n [c] is nonempty, and 
by definition there is an element b such that b E [a] and b E [ c]. By the 
definition of equivalence class, b ~a and b ~ c. Consequently, by transi
tivity and symmetry, a~ c. Therefore, [a] = [c] by Theorem D.l. II 

A partition of a set A is a collection of nonempty, mutually disjoint* subsets of A 
whose union is A. Every equivalence relation ~ on A leads to a partition as follows. 
Since a E [a] for each a E A, every equivalence class is nonempty, and every element of 
A is in one. Distinct equivalence classes are disjoint by Corollary D.2. Therefore, 

The distinct equivalence classes of an equivalence 
relation on a set A form a partition of A. 

Conversely, every partition of A leads to an equivalence relation whose equivalence 
classes are precisely the subsets of the partition (Exercise 21). 

Exercises 

A. 1. Let P be a plane. If p, q are points in P, thenp ~ q means p and q are the same 
distance from the origin. Prove that~ is an equivalence relation on P. 

2. Define a relation on the set Q of rational numbers by: r ~ s if and only if 
r - s E 7L. Prove that ~ is an equivalence relation. 

3. (a) Prove that the following relation on the set~ of real numbers is an 
equivalence relation: a- b if and only if cos a= cos b. 

(b) Describe the equivalence class of 0 and the equivalence class of 'TT j2. 

4. If m and n are lines in a plane P, define m ~ n to mean that m and n are 
parallel. Is ~ an equivalence relation on P? 

5. (a) Let ~ be the relation on the ordinary coordinate plane defined by 
(x, y) ~ (u, v) if and only if x = u. Prove that~ is an equivalence relation. 

(b) Describe the equivalence classes of this relation. 

*That is, any two of the subsets are disjoint. 
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6. Prove that the following relation on the coordinate plane is an equivalence 
relation: (x, y) ~ (u, v) if and only if x-u is an integer. 

7. Letf:A---+ B be a function. Prove that the following relation is an equivalence 
relation of A: u ~ v if and only if f(u) = f(v). 

8. Let A = { 1, 2, 3}. Use the ordered-pair definition of a relation to exhibit a 
relation on A with the stated properties. 

(a) Reflexive, not symmetric, nottransitive. 

(b) Symmetric, not reflexive, not transitive. 

(c) Transitive, not reflexive, not symmetric. 

(d) Reflexive and symmetric, not transitive. 

(e) Reflexive and transitive, not symmetric. 

(t) Symmetric and transitive, not reflexive. 

9. Which of the properties (reflexive, symmetric, transitive) does the given 
relation have? 

(a) a< bon the set IR of real numbers .. 

(b) A~ Bon the set of all subsets of a setS. 

(c) a =I= bon the set IR of real numbers. 

(d) ( -l)a = (-It on the set 7L of integers. 

B. 10. If r is a real number, then [r] denotes the largest integer that is :::; r; for 
instance [1r] = 3, [7] = 7 and [-1.5] = -2. Prove that the following relation is 
an equivalence relation on IR: r ~ s if and only if [r] = [s]. 

11. Let~ be defined on the set IR* of nonzero real numbers by: a~ b if and only 
if ajb E Q. Prove that~ is an equivalence relation. 

12. Is the following relation an equivalence relation on IR: a~ b if and only if 
there exists k E 7L such that a = 1 Okb. 

13. In the set IR[x] of all polynomials with real coefficients, definef(x) ~ g(x) if 
and only if f'(x) = g'(x), where' denotes the derivative. Prove that~ is an 
equivalence relation on IR[x]. 

14. Let Tbe the set of all continuous functions from IR to IR and define/~ g if 
and only if /(2) = g(2). Prove that ~ is an equivalence relation. 

15. Prove that the relation on 7L defined by a ~ b if and only if a2 = b2 (mod 6) is 
an equivalence relation. 

16. LetS= {(a, b) I a, b E7L and b =I= 0} and define (a, b)~ (c, d) if and only if 
ad= be. Prove that~ is an equivalence relation on S. 

17. Let~ be a symmetric and transitive relation on a set A. What is wrong 
with the following "proof" that ~ is reflexive: a ~ b implies b ~ a by 
symmetry; then a~ band b ~a imply a~ a by transitivity. [Also see 
Exercise 8(f).] 
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18.* Let G be a group and define a ~ b if and only if there exists c E G such that 
b = c- 1ac. Prove that~ is an equivalence relation on G. 

19.* (a) Let Kbe a subgroup of a group G and define a~ b if and only if 
cc1 bE K. Prove that ~ is an equivalence relation on G. 

(b) Give an example to show that the equivalence relation in part (a) need 
not be the same as the relation in Example 6. 

20.* Let G be a subgroup of S11 • Define a relation on the set {1, 2, ... , n} by 
a~ b if and only if a = O'(b) for some 0' in G. Prove that~ is an equivalence 
relation: 

21. Let A be a set and { Ai I i E J} a partition of A. Define a relation on A by: 
a~ b if and only if a and bare in the saine subset of the partition (that is, 
there exists k E I such that a E Ak and b E Ak). 

(a) Prove that~ is an equivalence relation on A. 

(b) Prove that the equivalence classes of~ are precisely the subsets Ai of the 
partition. 

*Sections 7.2 and 7.3 are prerequisites for Exercises 18-20. 



APP.ENDIX. 

The Binomial Theorem 
Appendix C and Section 3.2 are the prerequisites for this appendix. The material 
presented here is used in Section 11.6 and in occasional exercises elsewhere. 

As 'Ve saw in Example 3 of Section 3 .2, 

for any elements a, b in a commutative ring R. Similar calculations using distributivity 
and commutative multiplication show that 

(a + b)3 = a3 + 3a2b + 3ab2 + b3 

(a+ b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
. 

There is a pattern emerging here, but it may not be obvious unless certain facts are 
pointed out first. 

Recall that 0! is defined to be 1 and that for each positive integer n, the symbol n! 
denotes the number n(n- 1 )(n- 2) · · · 3 · 2 · 1. For each k, with 0 ::::: k ::::: n, the binomial 

coefficient(~) is defined to be the number k!(n 
11~ k)!' This number may appear to 

be a fraction, but every binomial coefficient is actually an integer (Exercise 6). For 

. (4) 4! 4 . 3 . 2 . 1 . . (4) 4! 
mstance, 

1 
= 

11
(
4 

_ 
1
)! = 

1
• 

3
. 

2
. 

1 
= 4, and similarly, 

2 
= 

2121 
= 6. Note 

that these numbers appear as coefficients in the preceding expansion of (a + b)4
; in 

fact, you can readily verify that 

(a+ b)4 = a4 + (~)a3b + G)azbz + (:)ab3 + b4. 

This is an example of 

537 
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Let R be a commutative ring and a, b ER. Then for each positive integer n, 

(a+ b)n =an+ G)an-1b + G)an-2b2 + ... + C: 1)abn-1 + bn. 

Proof ~The proof is by induction on n. If n = 1, the theorem states that 
(a+ bY = a1 + b1

, which is certainly true. Assume that the theorem is 
true when n = k, that is, that 

(a+ b)k = ak + (~)a"-'b + ... + (~)ak-rbr + ... + C-: 1)abk-l + bk. 

We must use this assumption to prove that the theorem is true when n = k + 1. By the 
definition of exponents (a+ b)k+I =(a+ b)(a +hi. Applying the induction hypoth
esis to (a+ hi and using distributivity and commutative multiplication, we have 

(a+ b)k+I =(a+ b)(a +b)" 

=(a+ b)[ a"+ (~)ak-ib + ... + e)ak-rbr + ... + (k: 1)abk-i + b"] 

=a[ a"+ (~)ak-lb + · · · + (~)ak-rbr + · · · + (k: Jabk-l + b"] 

+ b[ ak + (~)ak-lb + ... + (~)ak-rbr + ... + (k: 1)abk-i + b"] 

= [ale+ I + G)a"b + ... + (~)~-r+lbr + ... + (k: 1)a2bk-l + ab"] 

+ [a"b + (~)ak-w + ... + (~)ak-rb'+I + ... + (k: 1)abk + b"+'] 

= ak+l + [ (~) + 1]dcb + [G)+ G) ]ak-lb2 + ... 

+ [ C: 1) + (~) ]a"-'b'·+I + · · · + [ 1 + (k: 1) Jab"+ bk+ 1
• 

Exercise 5 (which you should do) shows that for r = 0, 1, . .. , k 

( k ) (k) (k + 1) 
r+1 + r = r+1 · 

Apply this fact to each of the coefficients in the last part of the equation above. 

For instance, (~) + 1 = (~) + (~) = (" 7 1), and(~)+(~)= (k; 1
), and 

so on. Then, from the first and last parts of the equation above we have 

(k + 1) (k + 1) (a+ b)k+I = ak+i_+ 1 a"b + 2 a"-lb2 + ... 

+ a + .. ·+ a + . (k + 1) k-rbr+i (k + 1) bk bk+i 
r + 1 k 



Appendix E The Binomial Theorem 539 

Therefore, the theorem is true when n = k + 1, and, hence, by induction it is true for 
every positive integer n. ~ 

Exercises 

A. 1. Let x andy be real numbers. Find the coefficient of x 5i in the expansion of 
(2x- Y.t [Hint: Apply Theorem E.l with a= 2x, b = y.] 

2. If x andy are real numbers, what is the coefficient of x 12l in the expansion of 
(x3 _ 3y)1o? 

B. 3. Let rand n be integers with 0 < r < n. Prove that (n) = ( n ). 
r n- r 

4. Prove that for any positive integer n, 2" = (~) + (n) + (~) + ... + (n). 
[Hint: 2" = (1 + lY.] 1 n 

5. Let r and k be integers such that 0 :5 r :5 k - 1. Prove that ( k 
1
) + (k) = 

(k + 1) . r + r 
r + 

1 
. [Hznt: Use the fact that . 

(k- r)(k - (r + 1))! = (k- r)! = ((k + 1) - (r + 1))!] 

to express each term on the left as a fraction with denominator (k + l)!(k- r)!. Add 

the fractions, simplify the numerator, and compare the result with(~: : ).] 

6. Let n be a positive integer. Use mathematical induction to prove this 

statement: For each integer r such that 0 :5 r :5 n, C) is an integer [Hint: For 

n = 1 it is easy to calculate(~) = 1 = G} assume the statement is true for 

n = k and use Exercise 5 to show that the statement is true for n = k + 1.] 

7. Here are the first five rows of Pascal's triangle: 

RowO: 1 
Row1: 1 1 
Row2: 1 2 1 
Row3: 1 3 3 1 
Row4: 1 4 6 4 1 

Note that each entry in a given row (except the l's on the end) is the sum of the 
two numbers above it in the preceding row. For instance, the first 4 in row 4 is, 
the sum of 1 and 3 in row 3; similarly, 6 in row 4 is the sum of the two 3's in 
row 3. 
(a) Write out the next three rows of Pascal's triangle. 
(b) Prove that the entries in row n of Pascal's triangle are precisely the 

coefficients in the expansion of (a+ b)", that is, (n), (~), (~), ... , ( 11
). 

[Hint: Exercise 5 may be helpful.] 0 n 
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Matrix Algebra 
This appendix may be read at any time after Section 3.1 but is needed only in Chapter 16. 
Throughout this appendix, R is a ring with identity. 

Rings of 2 X 2 matrices with entries in 71., QJ, IR, and C were introduced in Section 3.1. 
These matrices are special cases of this definition: An n x m matrix over R is an array 
of n horizontal rows and m vertical columns 

ru 

r21 

r3! 

rnl 

with each ruE R. For example, 

A~(~ 
-6 4 10 

j) 0 5 -2 
3 4 12 
5 2 0 

4 X 5 over 7l. 

r12 r13 

r22 r23 

r32 r33 

rn2 rn3 

B~ G 4 

2 

3 X 3 over 71.5 

c = (~ 0 

1 1 

2 X 4 over 71.2 

Matrices are usually denoted by capital letters and their entries by lowercase 
letters with double subscripts indicating the row and column the entry appears in. For 
instance, in the matrix A = (au) above, the entry in row 4 and column 2 is a42 = 5. In 
matrix C, c12 = 0 and c23 = 1. Thus, for example, row i of an n X m matrix (ru) is 

Then X m zero matrix is the n X m matrix with OR in every entry. The identity matrix 111 

is then X n matrix with 1R in positions 1-1, 2-2, 3-3, ... , n-n, and OR in all other posi
tions. For example, over the ring IR, 
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I,~(~ 
0 0 

~) 
1 0 0 0 0 

I,~ G 0 

D 
0 1 0 0 0 

1 0 
1 Is= 0 0 1 0 0 

0 
0 0 0 0 1 0 

0 0 
0 0 0 0 1 

The identity matrix I,, can be succinctly described by I,,= (oij), where oij is the Kronecker 
delta symbol, defined by 

() .. = { 1R if i = j. 
v OR if i =/= j. 

It is sometimes convenient to think of a large matrix as being made up of two 
smaller ones. For example, if A is the 3 X 2 matrix 

0 1 3 

Sllnilarly, ( 1) denote< the matcix (~ ~) whece A ~ G 3) 6 . 

If A = (aij) and B = (bij) are n X m matrices, then their matrix sum A + B is 
the n X m matrix with aij + bij in position i-j. In other words, just add the entries in 
corresponding positions, as in this example over Z 5: 

3 

2 

2 

4 ~) = e 0 

1 

If A and B are of different sizes, their sum is not defined. But if A, B, Care n X m 
matrices, then Exercise 3 shows that matrix addition is commutative [A + B = B + A] and 
associative [A + (B + C) = (A + B) + C]. Then X m zero matrix acts as an identity 
for addition (Exercise 4). 

For reasons that are made clear in a linear algebra course, the product of matrices 
A and B is defined only when the number of columns of A is the same as the number of 
rows of B. The simplest case is the product of a 1 X m matrix A consisting of a single 

row (a1 a2 a3 • • · ~m) and an m X 1 matrix B consisting of a single column(::).* 

bm 

*A matrix with only one row is called a row vector and a matrix with only one column a column 
vector. Single subscripts are adequate to describe the entries of row and column vectors. 
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The product is defined to be the 1 x 1 matrix whose single entry is the element 

For example, over 7L 

l)G) ~ 2. 4 + 3. 0 + I. 2 ~ 10. 

If A is an n x m matrix and B is an m x k matrix, then the matrix product AB is 
then X k matrix (cu), where the entry in position i-j is the product of the ith row of A 
and the jth column of B: 

m 

cu = anbv + ai2b21 + ai3b31 + a;4b41 + · · · + a;111b1111 = ~a;,b,1 • 

EXAMPLE 1 

The product of 

A =G 3 

5 

2 

1 

6 

6 
2 

0 

r= I 

is a 2 X 4 matrL'< whose entry in position 1-1 is 10 (the product of row 1 of A and 
column 1 of Bas shown in(*) above). In position 2-3 the entry in AB is the product of 
row 2 of A and column 3 of B: 

1 . 6 + 5 . 2 + 0 . 0 = 16. 

Similar calculations show that 

AB=G 
3 

5 

2 

1 
6 

6 

2 

0 

13 

7 
18 

16 
11) 8 . 

The product BA is not defined because B has four columns, but A has only two 
rows. 

If A, B, C are matrices of appropriate sizes so that each of the products AB and 
BC is defined, then matrix multiplication is associative: A(BC) = (AB)C (Exercise 7). 
Similarly, if E, F, G are matrices such that the products EG and FG are defined, then the 
distributive law holds: (E + F)G = EG + FG (Exercise 5). The identity matrices act as 
identity elements for multiplication in this sense: If A is ann x m matrix, then / 11 • A = A 
and A · ! 111 =A (Exercise 6). Even when both products AB and BA are defined, matrix 
multiplication may not be com~utative (see Example 6 in Section 3.1). 

Let M,lR) denote the set of all n x n matrices over the ring R. Since all the matri
ces in M,,(R) have the same number of columns and rows, both A + Band AB and BA 
are defined for all A, BE M,,(R). The properties of matrix addition and multiplication 
listed above provide the proof of 
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If R is a ring with identity, then the set Mn(R) of all n x n matrices over R is a 
noncom mutative ring with identity ln .. 

Exercises 

NOTE: Unless stated otherwise, all matrices are over a ring R with identity. 

A. 1. Assume A and Bare matrices over 7L. Find A + B. 

(a) A= G 2 

5 

-2 
7 

0) B _ (0 
11 6 

-8 2 4) 
0 4 1 

2. Assume A and B are matrices over 7L6• Find AB and BA whenever the 
products are defined. 

(a) A ~ G D B ~ G ~ D 
(b) A = G ~) B = (~ ~ D 

(e) A ~ (3 2 1 0) B ~ (~ ~ ~) 
B. 3. Let A= (a;), B = (bu), and C = (cu) ben X m matrices. Prove that 

(a) A + B = B + A (b) A + (B + C) = (A + B) + C 

4. If A = (au) is ann x m matrix and Z is then x m zero matrix, prove that 
A+ Z =A. 

5. (a) Let E and Fbe 1 x m row vectors and G = (g;) an m X k matrix. Prove 
that (E + F)G = EG + FG. 

(b) Let E = ( eu) and F = Uu) be n X m matrices and G = (g;) an m X k 
matrix. Prove that (E + F)G = EG + FG. 
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6. If A is ann X m matrix, prove that I,,· A= A and A· 1,11 =A. 

C. 7. Let A= (aij) be ann x m matrix, B = (bij) an m x kmatrix, and C = (cij) a 
k x p matrix. Prove that A(BC) = (AB)C. (Hint: BC = (du), where 

k 111 

dtj = '22b1rCrj' and AB = (e1r), where e1r = 22aitbtr· The i-j entry of A(BC) is 

~ait~~
1

= ~ait(~bu.c1) = ~~aub11.:~.
1

Showthatthei-jentryof(AB)Cis 
this same double sum.] 



Polynomials 
In high school there is some ambiguity about the "x" in polynomials. Sometimes x 
stands for a specific number (as in the equation 5x - 6 = 17). Other times x doesn't 
seem to stand for any number-it's just a symbol that is algebraically manipulated 
(as in exercises such as (x + 3)(x- 5) = x2

- 2x- 15).* Our goal here is to develop a 
rigorous definition of "polynomial" that removes this ambiguity. The prerequisites for 
this discussion are high-school algebra and Chapter 3. 

As a prelude to the formal development, note that the polynomials from high 
school can be described without ever mentioning x. For instance, 5 + 6x- 2x3 is com
pletely determined by its coefficients (5, 6, 0, -2).t But 5 + 6x- 2x3 can also be written 
5 + 6x - 2x3 + Ox4 + Ox5 + Ox6

. To allow for such additional "zero terms", we list the 
coefficients as an infinite sequence (5, 6, 0, -2, 0, 0, 0, 0, ... ) that ends in zeros. 

Adding polynomials in this new notation is pretty much the same as before: Add 
the coefficients of corresponding powers of x, that is, add sequences coordinatewise: 

5 + 6x -2x3 

3 - 2x + 5x2 
- 4x3 

8 + 4x + 5x2 
- 6x3 

(5, 6, 0, -2, 0, 0, 0, ... ) 
(3, -2, 5, -4, 0, 0, 0, ... ) 

(8, 4, 5, -6, 0, 0, 0, ... ). 

Multiplication can also be described in terms of sequences, as we shall see, If you keep 
this model in mind, you will see clearly where the formal definitions and theorems 
come from. 

Except in Theorem 4.1 at the end of this appendix, R is a ring with identity (not 
necessarily commutative). A polynomial with coefficients in the ring R is defined to be 
an infinite sequence 

such that each a; E R and only finitely many of the a; are nonzero; that is, for some 
index k, a; = OR for all i > k. The elements a; E R are called the coefficients of the 
polynomial. 

*Sometimes x is also used as a variable that can take infinitely many values (as in the function 
f(x) = x3 - x). This usage is discussed in Section 4.4. 

to is the coefficient of x2
• 
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The polynomials (a0, a1o a2o ... ) and (b0, b1o b2, ... ) are equal if they are equal as 
sequences, that is, if a0 = b0, a1 = b1o and in general, ai = bi for every i ;::::: 0. Addition of 
polynomials is denoted by E8 and defined by the rule 

(a0, a!> a2o ... ) E8 (bo, bb b2, ... ) = (ao + bo, a1 + bb a2 + b2o ... , ai + bi, ... ). 

You should verify that the sequence on the right is actually a polynomial, that is, that 
after some point all its coordinates are zero (Exercise 2). 

Multiplication of polynomials is denoted 0 and defined by the rule* 

(a0, ab a2o ... ) 0 (b0, bb b2, .... ) = (c0, cb c2, ... ), where 
Co= aobo 
c1 = a0b1 + a1b0 

c2 = a0b2 + a1b1 + a2b0 

II 

=~aibn-i· 
i=O 

To show that the product defined here is actually a polynomial you must verify that 
after some point all the coordinates of (c0, c~> ... ) are zero (Exercise 2). 

Let R be a ring with identity and P the set of polynomials with coefficients in 
R. Then P is a ring with identity. If R is commutative, then so is P. 

Proof ~~> Exercise 2 shows that Pis closed under addition and multiplication. To 
show that addition in Pis commutative, we note that ai + bi = bi + ai 
for all ai, biER because R is a ring; therefore, in P 

(a0, a!> a2, ... ) E8 (b0, bb b2, ... ) 
= (a0 + b0, a1 + bb ... ) = (b0 + a0, b1 + a1, ... ) 

= (b0, bb b2, ... ) E8 (ao, ab a2o ... ). 

Associativity of addition and the distributive laws are proved similarly. You 
can readily check that the multiplicative identity in P is the polynomial 
(JR, OR, OR, OR, . .. ), the zero element is the polynomial (OR, OR, OR, . .. ), 
and the solution of the equation (a0, a!> a2o .. . ) +X= (OR, OR, OR, . .. ) is 
X= ( -a0, -a~> -a2 . .. ). 

To complete the proof that Pis a ring with identity, we must show 
that multiplication is associative. Let A, B, C E P, where 

*To understand the formal definition, do the following multiplication problem and look at the 
coefficients of each power of x in the answer: (a0 + a1x + a2x2)(b0 + b1x + b2x2

). 
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Then the nth coordinate of (A 0 B) 0 Cis 

n 11 [ i ] . 11 i .2.: (ab );C11 -i = .2.: 2.:a1b;-J C11 -; = .2.: 2-:aJbi-h-i· 
i=O i=O j=O i=Oj=O 

Exercise 6 shows that the last sum on the right is the same as 

where the sum is taken over all integers u, v, w such that u + v + w = n 
and u 2: 0, v 2: 0, w 2: 0. On the other hand, the nth coordinate of 
A 0 (B0 C) is 

(***) r~a,.(bc)n-r = 1~ar[%b8C11 -r-s] = ~%arbscn-r-s· 
Exercise 6 shows that the last sum on the right is also equal to(**). Since 
the nth coordinates of (A 0 B) 0 C and A 0 (B 0 C) are equal for each 
n 2: 0, (A 0 B) 0 C =A 0 (B 0 C). The proof of the final statement of 
the theorem is left to the reader (Exercise 3). Ill:. 

In the old notation, constant polynomials behave like ordinary numbers. In the 
new notation, constant polynomials are of the form (r, 0, 0, 0, .... ), and essentially 
the same thing is true: 

Let P be the ring of polynomials with coefficients in the ring R. Let R* be the 
set of all polynomials in P of the form (r, OR, OR, OR, ... ), with r ER. Then R* is 
a subring of P and is isomorphic toR. 

Proof~>- Consider the functionf:R-? R* given by 

f(r) = (r, OR, OR, OR, ... ). 

You can readily verify thatfis bijective. Furthermore, 

f(r + s) = (r + s, OR, OR, OR, ... ) 

= (r, OR, OR, OR, ... ) 8j (s, OR, OR, OR)= f(r) + f(s) 

and 

f(rs) = (rs, OR, OR, OR, ... ) 

= (r, OR, OR, OR, ... ) 0 (s, OR, OR, OR, ... ) = f(r) 0 f(s). 

Therefore, f is an isomorphism, and, hence, R* is a subring. IIIli 

Now that the basic facts have been established, it's time to recover the "old" nota
tion for polynomials. First, we want polynomials in R* to look more like "constants" 
(elements of R), so 

(a, OR, OR, OR, ... ) will be denoted by the boldface letter a. 
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Next, reverting to the original source of our sequence. notation, 

There is no ambiguity about what x is here-it is a specific sequence in P; it is not an 
element of R or R*, and it does not "stand for" any element of R or R*. 

This notation makes things look a bit more familiar. For instance, 

(a, OR, OR, OR, ... )+ (b, OR, OR, ... )(OR, 1R, OR, OR, ... ) 

becomes a + bx. Similarly, we would expect cx3 (the "constant" c times x 3) to be the 
sequence (OR, OR, OR, c, OR, OR, ... ) with c in position 3.* But we can't just assume that 
everything works as it did in the old notation. The required proof is given in the next 
two results. 

Let P be the ring of polynomials with coefficients in the ring Rand x the 
polynomial (OR, 1R, OR, OR, ... ). Then for each element a = (a, OR, OR, ... ) of 
R* and each integer n 2: 1: 

(1) xn =(OR, OR, ... , OR, 1R, OR, ... ), where 1R is in position n. 

(2) axn =(OR, OR, ... , OR, a, OR, ... ), where a is in position n. 

Proof ~ The polynomial x can be described like this: 

where ei = OR for all i =F 1, and e1 = 1R. 

Statement (1) will be proved by induction on n.t It is true for n = 1 by 
the definition of x 1 = x. Suppose that it is true for n = k, that is, suppose 
that 

Then 

xk+ 1 = xkx = (d0, db d2, ••. )(e0, e!> e2> .. . ) = (r0, r!> r2> .. . ), 

where for each} 2: 0, 

Since ei =OR fori =F 1 and di =OR fori =F k, we have 

*Remember that in the polynomial (r, s, t, ... ) the element r is in position 0, sis in position 1, tis in 
position 2, etc. 

tsee Appendix C. 
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and, for}=!= k + 1, 

lj =doe;+ dleJ-l + · · · + 0-zez + 0-lel + 0eo 
'-r--' 

0 0 

=A-1e1 = 0-11R = d;-l· 

But}- 1 =I= k since} =I= k + 1. Therefore, r1 = 0- 1 =OR for all} =I= k + 1. 
Hence, xk+l = (r0, rb rll .. . ) =(OR, OR, . .. , OR, 1R, OR, . .. ), with 1R in 
position k + 1. So ( 1) is true for n = k + 1 and, therefore, true for all n 
by induction. 

A similar inductive argument proves (2); see Exercise 7. 111 

Let P be the ring of polynomials with coefficients in the ring R. Then P 
contains an isomorphic copy R* of Rand an element x such that 

(1) ax=xaforeveryaER*. 

(2) Every element of P can be written in the form a0 + a1x + a2x
2 + 

... + anxn. 

(3) If a0 + a1x + · · · + anxn = b0 + b1x + · · · + bmxm with n s m, then 
a;= b; fori s nand b; =OR fori> n; in particular, 

(4) a0 + a1x + a2x
2 + · · · + anxn = OR if and only if a;= OR for every I :2: 0. 

Proof~> Let x be as in Lemma G.3. The proof of (1) is left to the reader (Exercise 5). 

(2) If (a0, ab a2, ..• ) E P, then there is an index n such that a;= OR for 
all i > n. By Lemma G.3 

= (a0, OR, OR, ... )+ (OR, ab OR, ... )+ (OR, OR, a2, OR, ... ) 

+ · · · + (OR, . .. , OR, a"' OR, ... ) 

= a0 + a1x + a2x
2 + · · · + a11x'. 

(3) Reversing the argument in (2) shows that a0 + a1x + · · · + a11x!' 
is the sequence (a0, ab a2, •.• , a, OR, OR, .. . ) and that b0 + b1x + · · · + 
b,x"' = (b0, bb bll ... , b111 , OR, OR, ... ). If these two sequences are equal, 
then we must have a;= b; fori s nand OR= b; for n < ism. 

( 4) is a special case of (3): Just let b; = OR. Ill 

When polynomials are written in the form a0 + a1x + · · · + a11x", addition and 
multiplication look as they did in high school, except for the use of boldface print in 
certain symbols. 
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EXAMPLE 1 

In the ring of polynomials with real-number coefficients, the distributive laws 
and Theorems G.2 and G.4 show that 

(3x + 1)(2x + 5) = (3x + 1)2x + (3x + 1)5 

= 3x2x + 1 · 2x + 3x5 + 1 · 5 

= 3 · 2xx + 1 · 2x + 3 · 5x + 1 · 5 

=6x2+17x+5. 

In terms of elements, the distinction between boldface and regular print is 
important because a is a sequence, while a is an element of R. But in terms of algebraic 
structure, there is no need for distinction because R* (consisting of all the boldface a's) 
is isomorphic toR (consisting of all the a's). Consequently, there is no harm in identi
fying R with its isomorphic copy R* and writing the elements of R == R* in ordinary 
print.* Then polynomials look and behave as they did before. For this reason, the 
standard notation for the polynomial ring is R[x], which we shall use hereafter instead 
of P. 

We have now come full circle in terms of notation, with the added benefits of 
a rigorous justification of our past work with polynomials, a generalization of these 
concepts to rings, and a new viewpoint on polynomials. Beginning with a ring R with 
identity we have constructed an extension ring R[x] of R (that is, a ring in which R is a 
subring). This extension ring contains an element x that commutes with every element 
of R. The element x is not in R and does not stand for an element of R. Every element 
of the extension ring can be written in an essentially unique way in terms of elements of 
Rand powers of x. Because x has the property that a0 + a1x + · · · + a11X' =OR if and 
only if every a; = 0 R, x is said to be transcendental over R or an indeterminate over R. t 

We are now in position to prove Theorem 4.1, in which the ring R need not have 
an identity. 

If R is a ring, then there exists a ring T containing an element x that is not in 
Rand has these properties: 

(i) R is a subring ofT. 

(ii) xa =ax for every a ER. 

*You've been making this identification for years when, for example, you treat the constant 
polynomial 4 as if it were the real number 4. The identification question can be avoided by 
rewriting the definition of polynomial to say that a polynomial is either an element of R or a sequence 
(a~o a2, ••• ) with at least one a; i= OR fori 2:: 1 and all a; eventually zero. Then the polynomials actually 
contain Rasa subset. The definitions of addition and multiplication, as well as the proofs of the 
theorems, then have to deal with several cases. Proceed in the obvious (but tiring) way until you 
have proved Theorem G.4 again. 

tThe latter terminology is a bit misleading since xis a well-defined element of R[x]. 
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(iii) The set R[x] of all elements ofT of the form 

(where n ;:::: 0 and a1 E R) 

is a subring of T that contains R. 

(iv) The representation of elements of R[x] is unique: If n ::::; m and 

ao + a1x + a2x2 + ... + anxn = bo + b1x + b2x2 + ... + bnxm, 

then a1 = b1 for I= 1, 2, ... , nand b1 =OR for each I> n. 
(v) a0 + a1x + a2x

2 + · · · + anxn = OR if and only if a1 = OR for every I. 

Proof~ There are two cases: (1) R has an identity; and (2) R does not have an 
identity. 

Case 1: Use Theorems G.l and G.4, with T = P = R[x] and R* identified 
withR. 

Case 2: Let S be a ring with identity that contains R as a subring. With 
many familiar rings, an S is easy to find. For example, ring of even inte
gers has no identity, but is a subring of 7!.., which does have an identity. 
For the general case, use Exercise 39 of Section 3.3. 

Apply Case 1 with Sin place of R, to construct S[x] = T. The poly
nomials in S[x] whose coefficients are actually in R form a subring of 
S[x] = Tthat contains R, as you can readily verify (Exercise 10); this 
subring is R[x]. Hence, property (i) of the theorem is satisfied. Since 
properties (ii)-(v) hold for all elements of S[x], they necessarily hold for 
all elements of R[x]. IIIII; 

Finally, note that 

When R does not have an identity, the polynomial x is not itself in R[x]. 

For instance, the ring of polynomials over the ring R of even integers consists of all 
polynomials with even coefficients. So it does not contain x = lx or any polynomial 
kx with k odd. 

Exercises 

A. 1. Express each polynomial as a sequence and express each sequence as a 
polynomial. 

(a) (0, 1, 0, 1, 0, 1, 0, 0, 0, ... ) 

(b) (0, 1, 2, 3, 4, 5, 6, 6, 8, 9, 0, 0, 0,.' .) 

(c) 3x6
- 5x4 + 12x3

- 3x2 + 7.5x- 11 

(d) (x- l)(x3 - x2 + 1) 

2. (a) If (a~o a2, ••• ) and (b~o b2o ... ) are polynomials, show that their sum is a 
polynomial (that is, after some point all coordinates of the sum are zero). 
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(b) Show that (all a2, •. . ) 0 (bll b2, .. . ) is a polynomial. [Hint: If a;= OR for 
i > k and b; = OR fori> t, examine the ith coordinate of the product for 
i > k + t.] 

3. Prove these parts of Theorem G.l: 

(a) addition in Pis associative; 

(b) both distributive laws hold in P; 

(c) Pis commutative if R is. 

4. Complete the proof of Theorem G.2 by proving that 

(a) jis injective; (b) jis surjective 

5. Prove (1) in Theorem G.4. 

B. 6. (a) In the proof of Theorem G.l (associative multiplication in P) show that 
11 i 

~ ~ ajbi-jcn-i = ~ aubvcw where the last sum is taken over all 
i=Oj=O 

nonnegative integers u, v, w such that u + v + w = n. [Hint: Compare the two 
sums term by term; the sum of the subscripts of c~b;-AI-i is n; to show that 
aubvcw is in the other sum, let}= u and i = u + v and verify that n- i = w.] 

n n-r 

(b) Show that ~ ~arbscn-r-s = ~aubvcw [last sum as in part (a)]. 
r=Os=O 

7. Prove (2) in Lemma G.3. [Hint: a= (a0, all a2, ••• ), where a;= OR fori> 1, and 
by (1), x" = (d0, db d2, ..• ), where dn = lR and d; = OR fori* n; use induction 
onn.] 

8. Let R be an integral domain. Using sequence notation, prove that the 
polynomial ring R[x] is also an integral domain. 

9. Let R be a field. Using sequence notation, prove that the polynomial ring R[x] 
is not a field. [Hint: Is (OR, lR, OR, OR, . .. ) a unit?] 

10. In the proof of Case (2) of Theorem 4.1, show that R[x] is a subring of S[x] 
that contains R. 

C. H. (a) Let Q[7T] be the set of all real numbers of the form r0 + r11r + r21r
2 + 

· · · + rn1T11
, where n 2: 0 and each r;EO. Show that 0[1r] is a silbring 

ofR 

(b) Assume that r0 + r 11T + · · · + rn1Tn = 0 if and only if each r; = 0. (This 
fact was first proved in 1882; the proof is beyond the scope of this book.) 
Prove that Q[7T] is isomorphic to the polynomial ring Q[x]. 
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For exercises that ask for proofs, there may be a sketch of the full proof (you fill in minor 
details), a key part of the proof (you fill in the rest), or a comment that should enable you to 
find a proof. 

Chapter 1 

Section 1.1 (page 8) 

1. (a) q = 4; r = 1 (b) q = 0; r = 0 (c) q = -5; r = 3 

3. (a) q = 6; r = 19 (b) q = -9; r = 54 (c) q = 62,720; r = 92 

5. Multiply the equation and the inequality by c. Apply the Division Algorithm 
appropriately. 

7. If a= 3q + 1, then a2 = (3q + OZ = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1, which is 
of the form 3k + 1 with k = 3q2 + 2q. Use similar arguments when a = 3q or 
a= 3q + 2. 

9. By the Division Algorithm, every integer a is of the form 3q or 3q + 1 or 3q + 2. 
Compute a3 in each case and proceed as in Exercise 7. 

Section 1.2 (page 14) 

I. (a) 8 (c) 1 (e) 9 (g) 592. 

3. a I b means b = au for some integer u. Similarly, b I c melins c = bv for some 
integer v. Combine these two equations to show that c = a · (something), which 
proves that a I c. 

5. a I b means b = au for some integer u, and b I a means a = bv for some integer v. 
Combine the equations to show that a = auv, which implies that 1 = uv. Since u 
and v are integers, what are the only possibilities? 

7. lai-Why? 

9. Advice: Before tryirig to prove a simple statement, check to see if there are any 
obvious counterexamples. 

11. (a) 1 or 2 

13. (c) By parts (a) and (b), the set of common divisors of a and b is identical to the 
set of common divisors of b and r. What is the largest integer in this set? 
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19. Suppose dl a and dl b, so that a= du and b = dv. Since a I (b +c), b + c = aw. 
Hence, c = aw- b = duw- dv = d(uw- v), so that dl c. Since (b, c)= 1, what 
can you conclude about d and (a, b)? 

21. Every common divisor of a and (b, c) is also a common divisor of (a, b) and c. 
[Proof If dl (b, c), then dl band dl c by the definition of (b, c). If dl a also, then d 
is a common divisor of a and b, and, hence, dl (a, b) by Corollary 1.3.] A similar 
argument shows that the common divisors of (a, b) and care also common 
divisors of a and (b, c). 

25. (a) (a, b) divides both a and b by definition. What does this say about (a, b) and I? 

27. d = cu + av for some u, v (Why?). Hence, db= cbu + abv. Use the fact that 
ab = cw for some w (Why?) to show that c I db. 

29. First show that every integer n is the sum of a multiple of 9 and the sum of its digits. 
[Example: 7842 = 7 · 1000 + 8 · 100 + 4 · 10 + 2 = 7(999 + 1) + 8(99 + 1) + 
4(9 + 1) + 2 = (7 . 999 + 8 . 99 + 4 . 9) + (7 + 8 + 4 + 2) = 9(7 . 111 + 8 . 11 + 4) 
+ (7 + 8 + 4 + 2).] Thus, every n is of the form 9k + r, where r is the sum of the 
digits of n. Hence, n is divisible by 9 if and only if 9 divides r. 

31. (a) 30; 60; 420; 72 

33. Let d = (a, b). Then a = du and b = dv for some integers u and v. Let m = ab/ d. 
Show that m is a common multiple of a and b. If cis any other common multiple 
of a and b, use Exercise 26 to show that m :s c. What does this tell you? 

Section 1.3 (page 22) 

1. (a) 5040 = 24 
• 32 

• 5 · 7 

3. All of them. 

(c) 45,670 = 2 · 5 · 4567 

5. (a) 3, 32
, 33

, ••. , 3s; 3 · 5, 32 
• 5, 33 

• 5, ... , 3s · 5; 3 · 52
, 32 

• 52
, 33 

• 52
, ... , 

3'. 52
; 3 . 53

, ••• ; 3 . 51
, 32

• 51
, 33 

• sr, ... '3'. 51
; 5, 52

, •.• ' 51
• 

7. Because p divides a, there is an integer k such that a= pk. Similarly, a+ be= pd 
for some integer d. Hence be = pd- a = pd- pk = p(d- k). Apply Theorem 1.5. 

9. (¢=)Suppose p has the given property and let dbe a divisor of p, say p = dt. By 
the property, d = ± 1 (in which case t = ±p) or t = ±I (in which cased= ±p). 
Thus the only divisors of p are ± 1 and ±p, and p is prime. 

11. a - b = pv and c - d = pw for some v, w (Why?). Add the two equations and 
rewrite each side of the sum equation to obtain the fact that p divides 
(a + c) - (b + d). 

17. Every prime divisor of a2 is also a divisor of a by Theorem 1.5, and similarly for b2
. 

b PI' ... p/( - - . . b . . . 
19. - = =pi' r, · · · p/( 'k. Smce a I b, we know that- IS an mteger. Smce 

a Pi'· "Plf a 
the P; are distinct primes, each of the exponents on the right side of the preceding 
equation must be nonnegative (Why?)-that is, s1 - r1 ::=:: 0, s2 - r2 ::=:: 0, ... , 

s"- '" ::=:: 0. 

21. If c has prime decomposition p 1p2 · · · Pk, then ab = 2 = p 1p 1P2P2 · · · PkPk· Now P1 
must divide a orb by Theorem 1.5, say a. Since (a, b)= 1,p1 cannot divide b. Hence, 
(p 1? I a. By relabeling and reindexing if necessary, show that a = p 1p 1P2p2 · · · pjpj = 
(p1P2 · ··Pi and b = Pj+lPj+l · · · PkPk = (pj+1Pj+2 · · · Pkf 
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23. Suppose a and b are positive and a2
1 b2

. Suppose that a = Pi'Pz' · · · p/! and 
b = Pi'P2' · · ·pi;, where Pb p2, ••• , Pk are distinct positive primes with each 
r;, si 2:. 0 (see Exercise 13). Then a2 = pf''p~'' · · · ifc'k and b2 = pf'p~s, · · · Pksk and 
because a2

1 b2 we have 2ri:::; 2si, and hence ri:::; s;, for each i = 1, 2, ... , k by 
Exercise 19. Thus, there are nonnegative integers ub ... , uk such that si = r·i + ui 
for each i. Use this fact and the prime decompositions of a and b to show that 
a I b. The converse is easy. 

25. Exercise 6 in Appendix E shows that(~) is an integer. e)= p, and fork> 1, the 

denominator of(~) is the product of integers that are each strictly less thanp. 

27. If p > 3 is prime, thenp = 6k + 1 or 6k + 5 (Why can the other cases be 
eliminated?). If p = 6k + 1, thenp2 + 2 ~ (6k + 1)2 + 2 = 36~ + 12k + 3 = 
3(12~ + 4k + 1). The other case is handled similarly. 

29. Let k be the highest power of 2 that divides n. Then n = 2km for some integer m, 
which must be odd because otherwise 2k+l would divide n, contradicting the 
fact that k is the highest power of 2 that divides n. Uniqueness follows from the 
Fundamental Theorem of Arithmetic. 

33. Verify that X'- 1 = (x- l)(X'- 1 + X'- 2 + · · · + x2 + x + 1). Conclude that 
y"'" - 1 = (y"')" - 1 has y"' - 1 as a factor. Apply this fact withy = 2 and p = mn 
to show that 2P - 1 is composite whenever p is. 

Chapter 2 

Section2.1 (page30) 

1. (a) 24 = 16""" 1 (mod 5) 

3. (a) and (c) 

5. (a) 5 """ 1 (mod 4), so 52000 """eooo """ 1 (mod 4) by Theorem 2.2. Apply Theorem 2.3. 

(b) First, find a negative number that's congruent to 4 (mod 5). 

7. By Corollary 2.5, a""" 0 or a""" 1 or a""" 2 or a""" 3 (mod 4). Hence, a2 is 
congruent to 02 or 12 or 22 or 32 (mod 4) by Theorem 2.2. 

9. (a) (n - a)2 = n2 - 2na + a2. Hence, (n - a)2 - a2 is divisible by n. 

13. (=>)By the Division Algorithm, a= qn +rand b = pn + s with the remainders r 
and s satisfying 0 :::; r < nand 0 :::; s < n. If a""" b (mod n), then a - b = kn (Why?), 
and, hence, kn = (qn + r)- (pn + s), which implies that r- s = (k- q + p)n, that 
is, n I (r - s). Since rands are strictly less than n, this is impossible unless r - s = 0. 
To prove the converse, assume r =sand show that n I (a- b). 

15. Use Theorem 1.2 and the definition of congruence. 

17. Note that 10 """ -1 (mod 11) and use Theorem 2.2. 

19. a - b = nk for some.k (Why?). Show that any common divisor of a and n also 
divides b, and that any common divisor of b and n also divides a. What does this 
say about (a, n) and (b, n)? 

21. 10""" 1 (mod 9); hence 10"""" 1"""" 1 (mod 9) by Theorem 2.2. 
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Section 2.2 (page 36) 

1. (a) + [0] [1] [0] [.1] 

[0] [0] [1] [0] [0] [0] 

[1] [1] [0] [1] [0] [1] 

(c) + [0] [1] [2] [3] [4] [5] [6] 

[0] [0] [1] [2] [3] [4] [5] [6] 

[1] [1] [2] [3] [4] [5] [6] [0] 

[2] [2] [3] [4] [5] [6] [0] [1] 

[3] [3] [4] [5] [6] [0] [1] [2] 

[4] [4] [5] [6] [0] [1] [2] [3] 

[5] [5] [6] [0] [1] [2] [3] [4] 

[6] [6] [0] [1] [2] [3] [4] [5] 

[0] [1] [2] [3] [4] [5] [6] 

[0] [0] [0] [0] [0] [0] [0] [0] 

[1] [0] [1] [2] [3] [4] [5] [6] 

[2] [0] [2] [4] [6] [1] [3] [5] 

[3] [0] [3] [6] [2] [5] [1] [4] 

[4] [0] [4] [1] [5] [2] [6] [3] 

[5] [0] [5] [3] [1] [6] [4] [2] 

[6] [0] [6] [5] [4] [3] [2] [1] 

3. x = [1], [3], [5], or [7] 

5. x = [1], [2], [4], or [5] 

7. x = [3] or [7] 

9. (a) [a] = [3] or [5] (c) No 

11. (a) x = [0], [1], or [2] (c) x = [0], [1], [2], [3], or [4] 

13. Look in .£:4 or &:6• 

15. (a) [af + [hf (c) [a]5 + rw 

Section 2.3 (page 41) 

1. (a) a = 1, 2, 3, 4, 5, and 6 (c) a = 1, 2, 4, 5, 7, and 8. 

3. Several possibilities, including Exercise 10. 

5. Since b is a zero divisor, be = 0 with b =I= 0 and c =/= 0. Hence, ( ab )c = 0. Use the 
fact that a is a unit to show that ab =I= 0. What do you conclude? 

7. ab = 0 in .ZP means p I ab in .£:. Apply Theorem 1.5 and translate the result into .Zr 

9. (a) Since a is a unit, ab = 1 for some b. If a were also a zero divisor, then we would 
have ac = 0 for some c =F 0. Consider the product abc and reach a contradiction. 
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11. Existence of a solution: au = 1 for some u (Why?). Multiply both sides of 
ax = b by u. Uniqueness: Assume that r and s are solutions of ax = b and use 
the fact that a is a unit to show that r = s. 

15. (a) 3, 9, 15. 

17. If a and care units, then ab = 1 and cd = 1 for some b, d. Use this to show that 
ac is a unit. 

Chapter 3 

Section 3.1 (page 53) 

1. (a) Closure for addition. 

5. (a) Subring without identity (every product is the zero matrix) (c) Not a subring 

(e) Commutative subring with identity. 

7. Axioms 1-5 are easy to verify. Is K closed under multiplication? 

11. (a) Partial proof Closure under addition holds since G ~) + (; ~) = 

(~: ~ ~: ~) E S. The zero matrix is inS. Use Theorem 3.2. 

(c) J fails to be a left identity for any BE S whose bottom row is nonzero
check it out. 

13. Use Theorem 3.2. Closure under addition: (a + bv'2) + (c + dVl) = 

(a + c) + (b + d) Vi E7L (Vi) since a+ c E7L and b + dE7L. Closure under 
multiplication: See Example 20. Also, 0 = 0 + OVl E 7L (Vi). You do the rest. 

15. (a) + (0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(0,0) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(1, 1) (1, 1) (0,2) (1,0) (0,1) (1,2) (0,0) 

(0,2) (0,2) (1,0) (0,1) (1,2) (0,0) (1, 1) 

(1,0) (1,0) (0,1) (1,2) (0,0) (1,1) (0,2) 

(0,1) (0,1) (1,2) (0,0) (1,1) (0,2) (1,0) 

(1,2) (1,2) (0,0) (1, 1) (0,2) (1,0) (0,1) 

(0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

(1 '1) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(0,2) (0,0) (0,2) (0,1) (0,0) (0,2) (0,1) 

(1,0) (0,0) (1,0) (0,0) (1,0) (0,0) (1,0) 

(0,1) (0,0) (0,1) (0,2) (0,0) (0,1) (0,2) 

(1,2) (0,0) (1,2) (0,1) (1,0) (0,2) (1, 1) 



19. + 0 S A B 

0 0 S A B 

S S 0 F E 

A A F 0 D 

B B E D 0 

C C D E F 

D D C B A 

E E B C S 

F F A S C 

0 S A B 

0 0 0 0 0 

S 0 S A B 

A 0 A A 0 

B 0 B 0 B 
c 0 c 0 0 

D 0 D A B 

E 0 E A 0 

F 0 F 0 B 

C D E F 

C D E F 

D C B A 

E ·B C S 

F A S C 

0 S A B 

S 0 F E 
A F 0 D 

B E D 0 

C D E F 

0 0 0 0 

C D E F 

0 A A 0 

0 B 0 B 
c 0 c c 
0 D A B 

C A E C 

C B C F 
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21. The multiplicative identity is 6. 

23. To prove that E is closed under *, you must verify that when a and b are even 
integers, so is a* b = ab/2. To prove that* is associative, verify that (a* b)* c = 

a* (b *c) as follows. By definition, (a* b)* c = (ab/2) * c = (ab~2 )c. Express 

a* (b *c) in terms of multiplication in 7l. and verify that the two expressions are 
equal. Commutativity of * is proved similarly. To prove the distributive law, you 
must verify that a* (b + c) = a* b + a* c, that is, that a(b + c)/2 = ab/2 + 
ac/2. If there is a multiplicative identity e, then it must satisfy e * a = a for every 
a E E, which is equivalent to ea/2 = a in 71.. But ea/2 = a implies that e = 2. 

25. Partial proof Axiom 4: The zero element is -1 because r E8 ( -1) = r + ( -1) + 
1 = r. Axiom 5: Since -1 is the zero element, we must show that the equation 
a E8 x = -1 has a solution. The solution is x = -2 - a because a E8 (- 2 - a) = 
a + (-2 - a) + 1 = -1. To prove that this ring is an integral domain, you must 
assume that a 8 b = -1 and show that a = -1 or b = -1. Now a 8 b = -1 
means that ab + a + b = -1 in Q, that is, that ab + a + b + 1 = 0. Factor the 
left side and use the fact that iQ is an integral domain. 

. a c ad+ be 
27. Partial proof: If c and dare odd, then so IS cd. Hence, b + d = bd E S, and 

Sis closed under addition. 0 E S since, for example, 0 = 0/5. Use Theorem 3.2. 
As to S being a field, what is the solution of (2/7)x = 1? 
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31. (b) If K = (~ ~) and A = (: ~),then 

KA = (k O)(a b) = (ka 
0 k e d ke 

kb) = (ak 
kd ek 

bk) = (a 
dk e ~)(~ ~) = AK. 

35. Consider R = 7!..2, S = 7!..3 and examine the table in the answer to Exercise 15(a). 

37. (a) Copy the proof used for M(IR) in Example 6. 

39. The proof that Q( v'2) is a ring is essentially the same as in Exercise 13. The hint 
shows how to verify that the solution of (r + sv'2)x = I is actually in Q( v'2). 

. (X 41. (b) Partwl proof If y x) is a right identity, then 
y .. 

G ~)(; ;) = (~ ~) 

(
ax+ ay 

bx +by 

(
a(x + y) 

b(x + y) 

ax+ ay) =(a 
bx +by b 

a(x + y)) =(a 
b(x+y) b 

This last equation holds only when x + y = I. 

~) 

~). 

43. (b) Since His contained in the ring M(C), its addition is commutative and 
associative, its multiplication is associative, and the distributive law holds. So you 
need to verify only that His closed under addition and multiplication, that the 
zero and identity matrices are in H, and that the negative of every matrix in His 
also in H. 

Section 3.2 (page 66) 

1. (a) a2 - ab + ba - b2• 

3.(b)O,l,4,9 

5. (c) No. Suppose u is a unit in R with inverse u- 1 and vis another inverse of u. 
Then uv = I R, so that u - 1uv = u - 11 R, which implies that v = u - 1. Hence, there is 
only one inverse. 

. . . (a 4b)(e 4d) (ae + 4bd 4ad + 4be) 
9. Closure under multlphcatwn: b a d e = be + ad 4bd + ac = 

(
ac + 4bd 4(ad + be)) . . . 
ad + be ae + 

4
bd E S. Venfy that SIS closed under subtraction and 

apply Theorem 3.6. 

11. Sis nonempty since ORES (Why?). If r, s E S, then by definition mr = OR and 
ms =OR. Hence, m(r- s) = mr- ms =OR- OR= OR. So r -- sES. Similarly, 
by Exercise 23, m(rs) = (mr)s = ORs =OR. So rs ES. Therefore, Sis a subring by 
Theorem 3.6. 

15. (b) Many possible examples. Almost any pair of invertible matrices in M(IR) will 
provide an example. 
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17. If ub =OR and u is a unit with inverse v, left multiply both sides of ub =OR by v 
to conclude that b =OR- If cu =OR, a similar argument (with right multiplication 
by v) shows that c =OR- Thus, there is no nol1Zero element whose product with u 
is OR and, hence, u is not a zero divisor. 

19. If (a, b)(c, d) = (lR, 18), what can be said about ac and bd? 

21. ab = ac is equivalent to a(b- c) = OR-

25. (a) See Exercise 21 of Section 3.1 (to which the answer is "yes"). 

(b) Consider 1 s 1 R and 1 sls and use Exercise 21. 

27. No. For a counterexample, let b be almost any matrix in M(IR). 

31. (a) (a + a)2 = a + a because :x? = x for every x. But (a + a? = (a + a)(a + a) = 
a2 + ~ + a2 + ~ = a + a + a + a. 

39. (b) No. You should be able to find a counterexample. 

41. (b) 12 

Section 3.3 (page 80) 

1. The tables for 7l.2 X 7l.3 are in the answer to Exercise 15 (a) of Section 3.1. 

3. If f(a) = f(b), then (a, a)= (b, b), and, hence, a= b by the equality rules for ordered 
pairs. Therefore, f is injective./( a+ b)= (a+ b, a+ b) =(a, a)+ (b, b)= f(a) + f(b). 
Complete the proof by showing thatf(ab) = f(a)f(b) and thatfis surjective. 

11. Many correct answers, including the following. 

(a) /does not preserve addition; for example /(4 + 9) = V4+9 = Vf3 = 3.6, 
butf(4) + /(9) = v'4 + v'9 = 2 + 3 = 5. Sof(4 + 9) =I= f(4) + /(9). 

(b) /does not preserve multiplication; for examplef(2 · 5) = /(10) = 30, but 
/(2) ·/(5) = (6)(15) = 90. Sof(2 • 5) =I= f(2) ·/(5). 

13. Partial proofs: (a) To prove f is surjective, let r E R. Then (r, Os) E R X Sand 
f((r, Os)) = r. Hence,/ is surjective. 

(c) If a is a nonzero element of S, thenf((OR, a)) = OR = f((OR, Os)), but 
(OR, a) =I= (OR, Os). Hence,jis not injective. 

17. Surjective: If a + bi is a complex number, thenf(a - bl) = a - ( -bi) = a+ bi. 
Injective: lfj(a + bz) = f(c + dz), use the definition of fand the definition of equality 
for complex numbers (Example 11 of Section 3.1) to show that a + bi = c + di. 

21. The multiplicative identity in 7l.* is 0. If there is an isomorphism fill.--+ 7l.*, 
Theorem 3.10 shows thatfmust satisfy f(l) = 0. Hence,/(2) = f(l + 1) = 
/(1) Ei:)/(1) = 0 EEl 0 = 0 + 0- 1 = -1. Similarly,/(3) = f(l + 2) = 
/(1) Ei:)/(2) = 0 EEl ( -1) = 0 + ( -1) -1 = -2. What is/(4)?/(5)?/( -1)? Find a 
formula for f Then use this formula to show thatfis injective, surjective, and a 
homomorphism. 

25. jis not an isomorphism because it is not injective. For instance, 

~G ~) = 1 = ~G ~),but G ~) * G ~). 
27. (a) Because/and g are homomorphisms, (jog)( a+ b)= f(g(a +b))= 

f(g(a) + g(b)) = f(g(a)) + f(g(b)) = (Jo g)(a) + (jo g)(b). A similar argument 
shows that (fo g)(ab) = (fog)( a) • (fog)( b). (continues on next page) 
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(b) You must show two things: (I) If fand g are injective, so isjo g; and (2) iff 
and g are surjective, so is/ o g. To prove (I), assume (f o g)(a) = (f o g)(b), that is, 
f(g(a)) = f(g(b)). Then use the injectivity of fand g to show a= b. 

31. Since f(O R) = 0 s E T, we see that 0 REP; so P is nonempty. Let a, b E P; then 
f(a) E Tandf(b) E T. Hence,j(a- b)= f(a)- f(b) E T. Thus, a-bE P. A 
similar argument shows that abE P. Therefore, Pis a subring by Theorem 3.6. 

35. (a) 7l. has an identity and E doesn't. (c) The rings have different numbers of 
elements, and so no injective function is possible from 7l.4 X 7l.14 to 7l. 16 . (e) The 
equation x + x =OR has a nonzero solution in 7l. X 7l.2 (What is it?) but not in ll.. 

37. (b) Sincejisnonzero, thereexistsaESsuch thatf(a) =FOr. Hence,j(Is)f(a) = 
f(ls a) = f(a) =F Or, which implies thatf(ls) =F Or. Show thatf(ls) is an 
idempotent and apply part (a). 

Chapter 4 

Section 4.1 (page 93) 

1. (a) 3x4 + x 3 + 2~ + 2 (c) x 5 
- 1. 

3. (a)~;~+~;~ +x;~ +~ +x;~ + 1;~ +~ + I;x3 +x+ 1;~ +~ +x+ 1. 

5. (a) q(x) = 3~ - 5x + 8; r(x) = -4x - 6. 

(c) q(x) = ~ + 3~ + 2x + 3; r(x) = 4. 

9. Yes (read the definition of zero divisor and remember that R is a subset of R[x]). 

11. The fact that (r + s)(r - s) = r2 
- s2 may be helpful. 

13. Thereexistsg(x)ER[x] such thatf(x)g(x) =OR (Why?). Supposeg(x) = b0 + b1x + 
· · · + bk:x!' (with bk =F OR)· Multiply outf(x)g(x) and look at the coefficient of 
x''+k. What must this coefficient be? Anp what does that say about a.-

15. (b) Add one term to the polynomial in the hint for part (a). 

17. If 0 =/= bE R, then bE R[x] and IR = bq(x) + r(x). Use the fact that deg b = 0 
to show that r(x) = 0 and q(x) E R. Hence, every nonzero element of R has an 
inverse. 

Section 4.2 (page 99) 

1. If OF =F cEF, then c has an inverse; hence,j(x) = c(c- 1/(x)). 

5. (a) x - 1 (c) ~ - I (e) x - i. 

7. Sincef(x) I (x + I) andf(x) I x,j(x) must divide (x + I)- x = 1. Hence, 
degj(x) = 0; so f(x) is a constant. 

9. IF is a linear combination of f(x) and OF (Why?). What does this imply? 

15. Every divisor of h(x) is also a divisor of f(x). 

Section 4.3 (page 103) 

3 2 1 I 5 3 1. (a) x + 3r + 3x + 3 (c) x - ix + i. 

3. (a) x2 + x + I; 2x2 + 2x + 2; 3~ + 3x + 3; 4~ + 4x + 4. 
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7. (=?) Supposef(x) is irreducible andg(x) = cf(x), with OF* cEF. If g(x) = r(x)s(x), 
thenf(x) = (c- 1r(x))s(x), and, hence, either c-~r(x) or s(x) is a nonzero constant by 
Theorem 4.12. If c- 1r(x) is a constant, show that r(x) is also a constant. Hence, g(x) 
is irreducible by Theorem 4.12. 

9. (a) x2 + x +I (c) ~+I;~+ x + 2; X2 + 2x + 2; 2~ + 2; 2~ + x +I; 
2x2 +2x+l. 

11. If it were reducible, it would have a monic factor of degree 1 (Why?), that is, a 
factor of the form x + a with a .E 71.7• Verify that none of the seven possibilities is 
a factor. 

13. (x - 3)(x - 4)3• 

15. (a) If f(x) E 7l.p[x] is a monic reducible quadratic, then it must factor asf(x) = 
(ex+ d)(c- 1x + e)forsomec,d, eEll.P(Why?).Hence,f(x) = c(x + dc- 1)c-1(x + ec) = 
(x + a)(x +b) with a= dc- 1 and b = ec. When counting the possible pairs of factors, 
remember that, for example, (x + 2)(x + 3) is the same factorization as (x + 3)(x + 2). 
Also consider factorizations such as (x + 2)(x + 2). 

23. (a) Proceed as in the answer to Exercise 11, with 71.5 in place of 71.7. · 

Section 4.4 (page 109) 

1. (a) Many correct answers, includingf(x) = ~ + x. 

3. (a) No;f(-2)*-0. (c) Yes. 

5. The Factor Theorem may be helpful. 

7. Show that every element of 71.7 is a root of x7 
- x. 

9. In 71.3 [x]: ~ + 1; x2 + x + 2; ~ + 2x + 2. 

13. (a) If f(x) = cg(x) with c *OF, then g(x) = c- 1f(x). Hence, g(u) =OF implies 
f(u) =OF and vice versa. 

15. If~ + I is reducible, then x2 + I = (x + a)(x + b) for some a, bE ll.P (see the 
answer to Exercise 2!(a) of Section 4.3). Expand the right side. 

19. (a) If f(x) = (x- a/g(x) with g(a) * 0, thenf'(x) = k(x- al-1g(x) + 
(x- a)"g'(x). If a is a multiple root of f(x), then k;::: 2 and k- I ;::: I. If a is a 
root of bothf(x) andf'(x), show that k;::: 2. 

23. (a) Let n be the maximum of the degrees of f(x), g(x), and h(x). Using zero 
coefficients as necessary, we havef(x) = a0 + a1x + · · · + a"X', g(x) = b0 + b1x + 
... + bnX', and h(x) = Co + CjX + ... + CnX'. Then in F[x], g(x) + h(x) = (bo + 
b1x + · · · + b"X') + (c0 + c1x + · · · + c,X') = (b0 + c0) + (b 1 + c1)x + · · · + 
(b" + cn)X'. Sincef(x) = g(x) + h(x) in F[x], we must have a0 = b0 + c0, a1 = b1 + cb 
an = b" + cw Therefore, in F, g(r) + h(r) = (b0 + c0) + (b1 + c1)r + · · · + 
(bn + cn)r" = a0 + a1r+ · · · + anr" = f(r). 

29. The proof is by induction on the degree n of f(x). If n = 0, thenf(x) is a nonzero 
constant polynomial and therefore has no roots. So the corollary is true for 
n = 0. Now assume that the corollary is true for all polynomials of degree k- I and 
suppose that degf(x) = k. Prove that the corollary is true forf(x) (that is, when 
n = k). [You supply the work here.] Conclude that the corollary is true for every 
degree n. 
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Section 4.5 (page 119) 

1. (a) ( -1)(x + l)(x- 2)(x2 + 1) 

(e) (x + 3)(2x + 1)(x2 + 1). 

3. Use the Rational Root Test. 

(c) xx(x + 2)(x- 1)(3x- 1) 

5. (a) Letp = 2. (c) Letp = 2 orp = 3. 

7. (a) Letp = 5 and use Corollary 4.19. 

11. Apply Eisenstein's Criterion and Corollary 4.18. 

17. A polynomial of degree k has k + 1 coefficients. There are n choices for each 
coefficient except the coefficient ak of~- How many choices are there for ak? 

19. (a) (x + 2)(x - 2)(x3 + 2x2 + 4x + 2) · 

Section 4.6 (page 123) 

1. (a) 1 - 2i; 1 + 2i; 3; -2 (c) 3 + 2i; 3 - 2i; -1 + i; -1 - i. 

3. (a) x4 
- 2 in Q[x]; (r + v'2)(x + ~)(x - ~)in ~[x]; 

(x - ~i)(x + ~i)(x + ~)(x- ~)in C[x]. (c) (x- 1)(x2 
- 5) in Q[x]; 

(x - l)(x + v's)(x - v's) in ~[x] and C[x]. 

5. Nonreal roots of f(x) occur in pairs by Lemma 4.29. 

Chapter 5 

+ 

[0] 

[I] 

[x] 

[x+ I] 

[x'J 

[x2 + I] 

[x2 + x] 

[x2 +X+ I] 

Section 5.1 (page 129) 

1. (a) f(x) = g(x) (mod p(x)) 
(c) f(x) '4= g(x) (mod p(x)) 

(b) f(x) = g(x) (modp(x)) 

3. There are eight congruence classes. 

5. Use Corollary 5.5. 

7. Each congruence class can be written in the form [a], with a E F. 

9. See the answer to Exercise 13 of Section 2.1 withf(x} and g(x) in place of a and b. 

Section 5.2 (page 134) 

1. 

[0] [I] [x] [x+ I] [x2] [x2 +I] [x2 + x] [x2 + x +I] 

[0] [!] [x] [x+ I] [x2] [x2 +I] [.x2 + x] [x2+x+ I] 

[I] [0] [x+ I] [x] [x2 +I] [.x2] [.x2 +X+ I] [x2 + x] 

[x] [x+ I] [0] [I] [x2+x] [x2 + x +I] [x2] [x2 + 1] 

[x+ I] [x] [I] [0] [_x2 + x +I] [x2 +x] [x2 + I] [x2] 

[x2] [x2 +I] [x2 + x] [_x2 + x +I] [0] [I] [x] [x +I] 

[x2 + I] [x2] [.x2 +X+ I] [x2 +x] [I] [0] [x+ I] [x] 

[x2 +x] [_x2 +X +'I] [x'J [x2 +I] [x] [x+ I] [OJ [I] 

[x2 +x+ I] [x2 + x] [.x2 +I] [x'] [x+ I] [x] [I] [0] 
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[0] [I] [x] [x+ 1] [x2] [x2 +I] [xl + x] [x2 + x + 1] 

[0] [0] [0] [0] [0] [0] [0] [0] [0] 

[I] [0] [I] [x] [x+ I] [xl] [ . .-2 +I] [xl + x] [xl+x+ I] 

[x] [0] [x] [xl] [xl + x] [x+l] [I] [xl +X+ I] [xl +I] 

[x +I] [0] [x+ I] [x2 +x] [xl +I] [xl + x+ I] [xl] [I] [x] 

[ . .-2] [0] [xl] [x+ I] [xl+x+ I] [xl +x] [x] [ . .-2+ I] [I] 

[ • .-2 +I] [OJ [xl +I] [I] [xl] [x] [xl+x+l] [x+ I] [xl+x] 

[ . .-2+x] [0] [xl + x] [xl+x+I] [I] [xl +I] [x+ I] [x] [ . .-2] 

[xl+x+ I] [0] [xl+x+I] [ . .-2+ I] [x] [I] [xl + x] [xl] [x+ I] 

3. + [0] [1] [x] [x + 1] 

[0] [0] [1] [x] [x + 1] 

[1] [1] [0] [x + 1] [x] 

[x] [x] [x + 1] [0] [1] 

[x +1] [x +1] [x] [1] [0] 

[0] [1] [x] [x + 1] 

[0] [0] [0] [0] [0] 

[1] [0] [1] [x] [x + 1] 

[x] [0] [x] [1] [x + 1] 

[x + 1] [0] [x + 1] [x + 1] [0] 

7. [ax + b] + [ex + d] = [(a + c)x + (b + d)]; 
[ax + b][cx + d] = [(ad+ bc)x + (3ac + bd)]. 

11. Consider the product of [x] with itsel£ 

Section 5.3 (page 138) 

1. (a) Field (Use Corollary 4.19 and Theorem 5.10.) 
(c) Not a field. (Show that x4 + x? + 1 is reducible.) 

3. By Corollary 5.5, the distinct elements of F[x]/(x - a) are the classes of the form 
[c] with cEF: Use this to show that F[x]/(x- a) is isomorphic to F. 

5. (a) Verify that the multiplicative inverse of r + sV3 is!:.. - ~V3, where t = ,2 - 3;. 
t t 

7. By Corollary 5.12, there is an extension field K of Fthat contains a root c1 of 
f(x). Hence,j(x) = (x- c1)g(x) in K[x]. Use Corollary 5.12 again to find an 
extension field L of Kthat contains a root c2 of g(x). Continue. 

9. (a) UseCorollary4.19andTheorem5.10. 
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Ghapter 8 

Section 6.1 (page 148) 

1. To see that K is not an ideal, consider what happens when you multiply a 
constant polynomial by a polynomial of positive degree. 

9. (a) If rER and IRE!, then r = r • 1REI. Hence, R,;Jand thus R =I. 

11. (a) (0) ={0} and (1) = (2) = (3) = (4) = d:5 (c) (0) = {0}; (1) = (5) = (7) = 
(11) = d:l2; (2) = (6) = (10) = {0, 2, 4, 6, 8, 10}; (4) = (8) = {0, 4, 8}; (3) = (9) = 
{0, 3, 6, 9}; (6) = {0, 6}. 

13. No; see the answer for Exercise 11. 

17. (a) In J contains OR (Why?) and hence is nonempty. If a, bEl n J, then a, bEl, 
so that a - b is in I by Theorem 6.1. Similarly a - bE J. Hence, a - bE In J. 
Now show that if rER, then raE! n J and raE In J. Apply Theorem 6.1. 

27. Use Theorem 6.1. Kis nonempty becausef(OR) = Os by Theorem 3.10, and, 
hence, OREK. If a, bEK, thenf(a) = Osandf(b) = Os by the definition of K. To 
show that a - bE K, you must prove that f(a - b) = Os. If r E R, you must prove 
thatf(ra) = Os in order to show that ra EK. 

29. An element of (m) n (n) is divisible by both m and n; hence, it is in (mn) (see 
Exercise 17 of Section 1.2). 

31. (==?)If (a)= (b)= (0~, show that a= OR= band, hence, a= bu with u = IR. If 
(a) =(b)-=/= (OR), then both a and bare nonzero and a= a· 1R E (a). Therefore, 
a E (b), so that a = bu for some u E R. Similarly, b = av for some v E R. Hence, 
a= bu = avu, which implies that uv = IR (Theorem 3.7), so that u is a unit. 

35. If I-=/= (3), show that! contains an element b such that (3, b) = 1. Use Theorem 1.3 
to show that 1 Eland, hence, by Exercise 9(a), I= d:. 

41. (a) See Exercise 27 in Section 3.1. 

43. (b) If f(x) Ed:[x] has constant term c, then x dividesf(x)- c, so thatf(x) == 
c (mod J) by part (a). Hence,j(x) + J = c + J by Theorem 6.6. If b, care 
distinct integers, then b - c cannot be divisible by x (Why?). Hence, b - c $. J 
and b ;¥= c (mod J). Therefore, b + J-=/= c + J by Theorem 6.6. 

47. Half proof Suppose that ·uES. If u2 = u and S = (u), then Sis a subring since it 
is an ideal. If s E S, then s = ru for some r E d:"" Hence, su = (ru )u = ru2 = ru = s. 
So u is the identity element in S. 

Section 6.2 (page 159) 

3. By Exercise 10 in Section 6.1, the kernel of jis either (OF) or F. Explain 
why it cannot be F. Hence,/ is injective by Theorem 6.11 and, therefore, an 
isomorphism. 

5. Consider the case when R = d: and I is the principal ideal (n ). Then d:/ I is just 
d:"" Is d:" always an integral domain? 

7. Apply the First Isomorphism Theorem to the identity map from R toR. 

9. ~b) The ideal consisting of all matrices in R of the form G ~).with b, c 
mtegers. 
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13. Half proof Let a + IE R/ I. If there is an element b E R such that a - b2 E J, 
then a s b2 (mod J). So a + I= b2 + I= (b + I)(b +I) by Theorem 6.6. Hence, 
b + I is a square root of a + I in R/ I. · 

17. (a) f(a +b) =((a +b) +I, (a +b) + J) =((a+ I) + (b +I), (a+ J) + (b + J)) = 
(a +I, a+ J) + (b +I, b + J) = f(a) + f(b). A similar argument shows that 
f(ab) = f(a)f(b). (c) In J 

21. LetfZ20 --+ Z 5 be given by f([a]z0) = [a]s, where [a], denotes an element of 
Zn- First, show thatfis a well-defined function (independent of the choice 
of representative in the congruence class). Then show that/is a surjective 
homomorphism of rings with kernel (5). Apply the First Isomorphism Theorem. 

25. If r + J is a nilpotent element of R/ J, then for some n, we have OR + J = (r + J)" = 
r;, + J. Hence, r" E J (Why?), which means that r" is nilpotent in R. Hence, (r")m = 

0 R for some m. But this says r E J, and, hence, r + J is the zero coset 0 R + J. 

29. Define a functionfS--+ ~ X~ by 1(~ ~) = (a, c). Show thatfis a surjective 

homomorphism of rings with kernel I. Apply the First Isomorphism Theorem. 

Section 6.3 (page 166) 

1. By the definition of composite, n = cd with 1 < lei < In I and 1 < ldl < lnl. Hence, 
c and d cannot be multiples of n. Thus cd = n E (n), but c (/:. (n) and d (/:. (n). 
Therefore, (n) is not a prime ideal. 

3. (a) Use Theorem 2.8 to show that pis prime if and only if ZP is a field. But 
ZP = Z/(p); apply Theorem 6.15. 

5. The maximal ideals in Z6 are { 0, 3} and { 0, 2, 4}. 

7. If R is a field, use Exercise 10 of Section 6.1. If (ORJ is a maximal ideal, use 
Theorem 6.15 and Exercise 7 of Section 6.2. 

9. If p = cd, then cd E (p). Since (p) is prime, either c E (p) or dE (p), say c E (p). 
Hence, c = pv for some v E R. Use this and the fact that p = cd to show that dis 
a unit. 

15. (b) M is not prime because, for example, 3 · 7 = 0 EM, but 3 (/:. M and 7 (/:. M. 

17. I is an ideal by Exercise 22 of Section 6.2. Use the fact that J * S (Why?) and 
surjectivity to show that!* R. If rsEI, thenf(rs) EJ. Hence,f(r)f(s) EJ (Why?), so 
thatf(r) EJ orf(s) EJby primality. Therefore, rEI or s EJ, and, hence, lis prime. 

19. (==?)Suppose. R has a unique maximal ideal M. Then M * R by definition, and 
so M is contained in the set of nonunits by Exercise 9 of Section 6.1. If cis a 
nonunit, then the ideal (c) * R (Why?). So (c) is contained in a maximal ideal by 
hypothesis. But M is the only maximal ideal. Soc E (c)~ M. Since every nonunit 
is in M, the set of nonunits is the ideal M. 

Chapter 7 

Section 7.1 (page 180} 

1. G ~ ~r~ = G ~ Dand(! ~ ~r~ = G ~ ~).Eachoftheother 
permutations is its own inverse. 



570 Answers and Suggestions for Selected Odd-Numbered Exercises 

3. (a) 18 (c) 24 (e) 6. 
5. (a) G ~) (c) G 6) 2 . 

9. 0 ro f] rz s u 

ro ro ri rz s u 

ri ri rz ro u s 

rz rz ro fJ u s 

s s u ro f] rz 

u s rz ro ri 

u u s ri rz ro 
13. S3 X 7l.2 is nonabelian of order 12 and D4 X 7l.2 is nonabelian of order 16. 

17. (a) G is a group. Closure: If a, bE Q, then a * b = a + b + 3 E Q. Associativity: 
(a* b)* c = (a + b + 3) * c = (a + b + 3) + c + 3 =a + b + c + 6 = 
a + (b + c + 3) + 3 = a * (b + c + 3) = a * (b * c). Verify that -3 is the 
identity element and that the inverse of a is -6 - a because a* ( -6 - a) = 
a+(-6-a)+3=-3and,similarly,(-6-a)*a=-3. (c) Gisagroup 
with identity 0. The inverse of a is -a/ (I +a). 

19. No; there is no identity e satisfying both a* e = a and e *a = a for every a. 

23. Most of the argument in Example 15 of Section 7.l.A can be carried over to this 
situation by replacing "=I= 0" by"= 1" throughout. To show that the inverse of a 
matrix in SL(2, IR) is also in SL(2, IR), use the formula for the inverse of a matrix 
(in Example 7 of Section 3.2 and in Example 15 of Section 7 .l.A). 

27. If ab = ac, then b = eb = (a- 1a)b = a- 1(ab) = a- 1(ac) = (a- 1a)c = ec =c. 

31. Let a, b, c be distinct elements ofT. Let O" EA(1) be given by O"(a) = b, O"(b) =a, and 
O"(t) = t for every other element ofT. LetT EA(1) be given by T(a) = b, T(b) = c, 
T(c) = a, and T(t) = t for every other element of T. Verify that (O" o T)(a) = a and 
(To O")(a) = c; hence, O" o T =I= ToO". 

Section 7.2 (page 201} 

1. e = c- 1c = c- 1c2 = (c- 1c)c = ec = c. 

5. If f(a) = f(b), then a- 1 = b-1. Hence, (a- 1)- 1 = (b-1)-1• Therefore, by Corollary 7.6, 
a= (a-1)- 1 = (b-1)- 1 =b. Thusfis injective. Corollary 7.6 can also be used to 
prove that f is surjective. 

7. (a) 2 (c) 6. 

9. (a) UIO has order 4; u24 has order 8. 

13. If G is a finite group of order nand a E G, then then + 1 elements a0
, a, a2

, 

a3
, ••• , d' cannot all be distinct. Hence, d = c! for some i andjwith n ~ i > j, 

which implies that d-j = e with 0 :5:: i - j :5:: n (Why?). What does this say about lar. 

17. (a) x = a- 1b is a solution of ax= b because a(a- 1b) = (aa- 1)b = eb =b. If cis 
also a solution, then ac = b = a(a- 1b). Hence, c = a- 1b by Theorem 7.5(2). 

27. If a, bEG, then by hypothesis, aa = e, bb = e, and abab =e. Left multiply both 
sides of the last equation by ba and simplify. 
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29. Let x = a- 1cb- 1 and show that axb =c. To prove uniqueness, assume ayb = c 
andshowthaty = a- 1cb- 1• 

31. (b) In S3, let a = G ~ D and b = C ~ ~).Verify that lal = 2, lbl = 2, 

ab = G ·~ ~}and (ab)4 = ab. 

33. Let Ia I= m and lbl = n, with (m, n) = 1. If (abl = e and ab = ba, then cfbk = 
(ab)k = e, so that ak = b-k. Hence, J<n = (b-kt = W)-k =e. Therefore, m I kn 
by Theorem 7.9 and, hence, m I k by Theorem 1.4. Similarly, n I k. So mn I k (see 
Exercise 17 of Section 1.2). 

35. ab = b4a=?aba-1 = b4 =?ab3a-1 = (aba- 1)(aba-1)(aba-1) = (b4) 3 = b12 = e 
(because b6 =e)=? ab3 =a=? b3 = e. Therefore, ab = b4a = b3ba = eba = ba. 

Section 7.3 (page 211) 

1. (a) (1} = U15; (2} = (8} = {1, 2, 4, 8}; (4} = {1, 4}; (7} = (13} = {1,4, 7, 13}; 
(11} = {1, 11}; (14} = {1, 14}. 

5. (2} = { ... , -8, -6, -4, -2, 0, 2, 4, 6, 8, ... } 

{ 
1 1 1 1 } 1. (2} = ... , 16, 8, 4, 2, 1, 2, 4, 8, 16, ... 

9. 1 = 24
; 2 = 21

; 4 = 22
; 7 = 133

; 8 = 23
; 11 = 2. 13; 13 = 131

; 14 = 23
• 13. 

11. Using additive notation, we see that the group is cyclic with generator (1, 1): 
1(1, 1) = (1, I); 2(1, 1) = (0, 2); 3(1, 1) = (1, 0); 4(1, I)= (0, 1); 5(1, 1) = 
(1, 2); 6(1, 1) = (0, 0). 

13. Since eHis the identity in H, eHeH = eH. Apply Exercise 1 of Section 7.2 with c = eH. 

15. (a) If a, b EH n K, then a, b EH and a, b EK. Since His a subgroup, ab EH 
and a-1 E H. Similarly, abE K and a-1 E K. Hence, abE H n K and a-1 E H n K. 
Therefore, H n K is a subgroup by Theorem 7 .11. 

29. Since His nonempty, there is some c E H. By hypothesis, e = cc-1 E H. If dE H 
then since e E H, we have d-1 = ed-1 E H. Use this and the fact that d = (d-1t 1 to 
show that c, dE H implies cd E H. Apply Theorem 7 .11. 

31. If x-1ax and x-1bxEx-1Hxwith a, bEH, thenabEH, and, hence, (x-1ax)(x-1bx) = 
x-1(ab)x Ex-1Hx. Show that (x-1axt1 = x-1a-1x Ex-1Hx. Apply Theorem 7.11. 

33. Theorem 1.2 may be helpful. 

35. (=?)If a is in the center of G, then ag = ga for every g E G. Hence, C(a) = 
{gEGiag=ga} =G. 

41. If an, bn E H, then since G is abelian, anbn = (ab)n E H. Also (~t1 = a-n = 
(a-1Y EH. Apply Theorem 7.11. 

43. The subgroups of £:12 are {0}, {0, 6}, {0, 3, 6, 9}, {0, 4, 8}, {0, 2, 4, 6, 8, 10}, and £:12• 

47. See Exercise 33 of Section 7.2. 

49. G =(a}= {na InEZ}. Assume thatgEGis a solution of x + x =a. Theng = ka 
for some integer k. Hence, ka + ka = a, which implies that a has finite order 
(Why?). This is a contradiction, so x + x = a has no solution in G. 

53. If (m, n) = 1, use Exercise 47. To prove that if Zm X Zn is cyclic, then (m, n) = 1, 
we prove the equivalent contrapositive statement: If (m, n) * 1, then Zm X Zn is not 



572 Answers and Suggestions for Selected Odd-Numbered Exercises 

cyclic. If (m, n) = d> 1, thenm = dr, n = ds, and drs< mn. If (a, b)EZ:111 X :I"' 
then drs( a, b)= (drsa, drsb) = (sma, rnb) = (0, 0). Therefore, the order of 
(a, b) is a divisor of drs (by Theorem 7.9 in additive notation) and, hence, strictly less 
than mn. So (a, b) does not generate Zm X Zn (a group of order mn) by Theorem 7.15. 

57. (a) Show that U18 = {1, 5, 7, 11, 13, 17} is generated by 5. 

Section 7.4 (page 223) 

1. (a) Homomorphism: f(x + y) = 3(x + y) = 3x + 3y = f(x) + f(y). Surjective: 
If t E IR, thenf(t/3) = 3(t/3) = t. Injective: If f(x) = f(y), then 3x = 3y, and, 
hence, x = y. 

5. g is a homomorphism since for any a, b, g(a +b)= 2(a +b)= 2a + 2b = g(a) + g(b). 
You can easily computef(O),J(l), ... ,/(8) to see that/is injective and surjective. 

7. /is a homomorphism since for any a, b,f(ab) = labl = iallbl = f(a)f(b). Why isf 
surjective? 

11. gis a homomorphism since for any a, b, g(a)g(b) = G ~)G ~) = G :b)= 

?(~b!. I~ g(a) = g(b), then G ~) = G ~),which implies that a= b. Hence g 
IS mJectJve. 

13. Show that both groups are cyclic of order 4 and use Theorem 7.19. 

15. f(a0
) = f(eG) = eH = f(a)0

• For positive integers, use induction:f(a1
) = f(a) = 

f(a) 1• If f(a'J = f(a)k, thenf(a"+ 1) = f(a"a 1
) = f(a'Jf(a) = f(4f(a) = /(4 + 1. 

Hence,/( a") = f(a)" for all n ~ 0. What about negative n? 

19. (=?)If G is abelian, thenfis a homomorphism becausef(ab) = (abt1 = b-Ia-1 = 
a-Ib-1 = f(a)f(b). In this case,fis an isomorphism by Exercise 5 of Section 7.2. 

21. Because/and g are homomorphisms, (go f)(ab) = g[f(ab)] = g[f(a)f(b)] = 
g(f(a))g(f(b)) = (go f)(a) (go f)( b). Hence, go /is a homomorphism. If 
c EK, then since g is surjective, there exists b EH such that g(b) = c. Sincefis 
surjective, there exists a E G such thatf(a) = b. Thus, (go f)( a) = g(f(a)) = 
g(b) = c and go /is surjective. To complete the proof, show that/is injective. 

29. If d' = eG, then by Exercise 15 and Theorem 7.20,/(a)" = f(a") = f(eG) = eH. 
Similarly, if f(a)" = eH thenf(a") = f(a)" = eH = f(eG)· Hence, a" = eG since /is 
injective. So a" = eG if and only if f(a)" = eH. 

31. If a, b EF, then because/is a homomorphism,J(ab) = f(a)f(b) = ab. So ab EF, 
and Fis closed under the group operation. Use Theorem 7.20 to show that the 
inverse of every element of Fis also in F. Then use Theorem 7.11. 

35. K1 = {1,4}. 

37. If/, g E Inn G, thenf(a) = c- 1ac and g(a) = d- 1ad for some c, d. Show that 
(fog)( a)= (dct1a(dc) and, hence,Jo gEinn G. Show that the inverse function 
h of fis given h(a) = cac- 1 = (c- 1)- 1ac- 1 Einn G. Use Theorem 7.11. 

41. See Example 6. 

43. Verify that every nonidentity element of U8 has order 2 but that this is not true 
for U10, Hence, there is no isomorphism/by Exercise 29. 
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51. (a) If8c(x) = 8Jy), then xc- 1 = yc- 1
. Hence, X= y by Theorem 7.5. Therefore, ec 

is injective. If X E G, then XC E G and ec(xc) = .(xc)c-1 
=X. Hence, ec is surjective. 

59. (a) Show that hand v both induce the same inner automorphism (that is, h-1ah = 
v-1av for every a ED4). Do the same for r0 and r2, for r1 and r3, and ford and t. 
Then show that the inner automorphisrris induced by h, r0, rb and dare all 
distinct (that is, no two of them have the same action on every element of D4). 

Section 7.5 (page 233) 

1. (a) (173) (c) (1476283). 

3. (a) (12)(45)(679) (c) (13)(254)(69)(78). 

5. (a) 2 (c) 4. 

7. (a) odd (c) even. 

9. (a) 3 (c) 60. 

11. There are eight 3-cycles (list them), each of order 3. Each of (12)(34), (13)(24), 
and (14)(23) has order 2. The identity (1) has order 1. 

15. (a1a2 • • • ak) = (a1ak)(a1ak_ 1) • • • (a1a4)(a1a3)(a1a2). There are k -1 transpositions 

(one for each of a2, a3, ••• , ak). k- 1 is even if and only if k is odd. 

19. Suppose r = u 1u 2 · · · u,., where the u; are disjoint cycles, with u 1 having order 
kb u 2 having order k2, ••• , and u, having order k,. Show that r" = (1) if and 
only if u;" = (1) for every i. Use Theorem 7.9 to show that k;J n for every i. 

23. Use Theorem 7.12. 

25. Verify that ru = u- 1r; use this to show that any product of powers of u and 
powers of 7 is one of: u, u 2

, u 3, u 4 = (1), 7, 0'7, u 27, or u 37. 

29. There are three possible cases (where a, b, c, dare distinct symbols): (ab)(ab), 
(ab)(ac), and (ab)(cd). But (ab)(ab) = (1) = (abc)3

; (ab)(ac) = (acb); and (ab)(cd) = 
(acb)(acd). 

35. Let 7 = (ab) and express u as a product of disjoint cycles. Since disjoint cycles 
commute by Exercise 18, all cycles in 0'70'-

1 not involving a orb will cancel and 
u7u-1 will reduce to the form K(ab)K-1, where K has one of the following forms (in 
which a, b, x, y, u, v are distinct symbols):(· · 'xaby · · ·); (· · · xbay · · ·); 
(· · · xay · · · ubv · · ·); (· · · xay · · ·); (· · · ubv · ··);or(· · · xay · ·-)(- · · ubv · · ·). 
Verify that K(ab)K-1 is a transposition in each case. 

39. (a) The argument used in Exercise 24(a) and (b) can be used here if Sn is 
replaced by G, (12) is replaced by 7, Bn is replaced by the set of odd permutations 
in G, and An is replaced by the set of even permutations in G. In the Hint for 
Exercise 24(b ), replace (12) by 7-1, which is odd (Why?). 

(b) See Exercise 24(c) and replace /Sn/ by /G/. 
(c) Use part (b). 

45. The idea is to find an injective homomorphism Sn--+ An+2 and then apply part (4) 
of Theorem 7.20. First, note that any permutation in Sn can also be considered as 
a permutation in Sn+2• Let a be the transposition (n + 1, n + 2) in Sn+2. 

DefinefSn--+ An+2 as follows. If u is odd, thenf(u) = ua. If u is even, then 
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f(a) =a. To show thatjis a homomorphism, suppose that cr and Tare inS"" 
Consider four cases: (1) a and T are both even; (2) a is even and T is odd; (3) a is 
odd and Tis even; (4) a and Tare both odd. Show thatf(aT) = f(cr)f(T) in each 
case. To show thatfis injective, you must show thatf(cr) = j(T) implies that cr = T. 
Prove it in cases 1 and 4 and show that f( cr) = f( r) cannot occur in cases 2 and 3. 

Chapter 8 

Section 8.1 (page 245) 

1. (=>)If Ka = K, then a= ea EKa = K. So aEK. 

3. Kr0 = {r0, rb rz, r3}; Kd = {d, h, t, v} 

7. 4 9. 1 

17. (a) 1, 2, 3, 4, 6, 8, 12, 24 

19. 27, 720. 

11. 6. 

(c) I, 2, 4, 5, 8, 10, 16, 20, 40, 80. 

21. H n K is a subgroup of Hand of K, and so its order must divide p by Lagrange's 
Theorem. Hence, IH n Kl is either I (in which case H n K =(e)) or p (in which 
case H = H n K = K). 

23. If e * a E G, then (a) is a nonidentity subgroup of G. Hence, G = (a). If IGI = Ia I 
has composite order, say Ia I = td, then (d) is a subgroup of order d by Theorem 7.9. 
Use Theorem 8.7. 

25. 2. 

31. List the element of Gin pairs: a, a-1
; b, b- 1

; c, c-1
, etc. with a -:F a- 1

; b -:F b- 1; 

c * c-1; etc. for as long as possible. Use the fact that there is an odd number of 
nonidentity elements to show that at some point you must reach a nonidentity 
element k such that k = k-1. What is the order of k? 

35. A proper subgroup has ordern, with I< n <pqandn adivisorofpq. Use Theorem 8.7. 

41. If G contains no element of order 3, show that every nonidentity element has 
order 11. Apply Exercise 40, with p = 11. What do you conclude? 

Section 8.2 (page 252) 

5. (b) If G ~)EN and(~ ~) E G, then 

(~ ~r~G ~)(~ ~) = c~a -b/ad)C 
I/d 0 ~)(~ ~) 

= c~a -b/ad)(a 
I/d 0 

b: cd) = G cd/a) N 
1 E . 

7. G* = G X (e) is a subgroup by Exercise 16 of Section 7.3.1t is normal by 
Theorem 8.11 since for any (c, d) E G X Hand (a, e) E G*, (c, d)- 1(a, e)(c, d) = 
(c-1, d- 1)(a, e)(c, dj = (c-1ac, d- 1ed) = (c- 1ac, e) E G*. 

11. If c E G, letfbe the inner automorphism given by f(x) = c- 1xc (see Example 9 
of Section 7.4). Since N is characteristic,f(N) ~ N, that is c-1 Nc ~ N. Hence, N 
is normal by Theorem 8 .11. 



Section 8.3 575 

13. See Example 9 of Section 7.4 and Theorem 8.11. 

17. First, prove that K is a subgroup of G. To show that K is normal, we show that 
for any aE G and kEK, a-IkaEK: · 

f(a-Ika) = f(a-I)f(k)f(a) [fis a homomorphism.] 

= f(a)-V(k)j(a) [Theorem 7.20] 

= f(a)-Ie8 f(a) [kEK] 

= f(a)-V(a) = es. 

Therefore, a-I ka E K and K is normal by Theorem 8.11. 

19. Use Exercise 15 of Section 7.3 to show that N n Kis a subgroup of K. If gEK 
and n EN n K, thengE G, n EN, and, hence, g-IngENby the normality of 
Nin G. But nEN n Kimplies that n EK, and, hence, g-IngEKby closure in 
K. Therefore, g-Ing EN n K, so that g-I(N n K)g ~ N n K. Hence, N n K is 
normal in Kby Theorem 8.11. 

21. If n EN and kEK, use normality to show that k-I(n-Ikn) = (k-In-Ik)n is in 
Kn N ={e). 

23. (a) If a if,N, then Ne =Nand Na are disjoint cosets (Why?). Since [G:NJ = 2, 
these two cosets contain all the element of G. Therefore, any element that is not 
inN must be in Na. 

27. Partial proof' If N is normal and ab = n E N, then ba = babb -I = bnb -I and 
bnb-I EN by normality. 

29. Let N = {a). Then H = {ak) for some k by Theorem 7.17. If g E G, then 
g-IagENby normality; hence, g-Iag =a' for some t. Consequently, for any 
~; E H, g-Iakig = (g-Iag)"; = (a~k; = Ca1ti E H. 

35. N is a subgroup by Exercises 15 and 27 of Section 7.3. Show that N is normal in G. 

37. By hypothesis, the cyclic group {a) is normal. Hence, b-1ab E {a), that is, b-1ab = ak 
for somek. 

Section 8.3 (page 260} 

3. Partial Answer: (Mh)(MrJ) = M(h o r1) = Md; (Mr1) (Mh) = M(r 1 o h)= Mt = Md. 

5. Show that 71. 18/ M is cyclic with generator 1 + M; then show that 1 + M has 
order 6 in 71. 18/M. 

7. Find the orders of the groups U26, {5), and U26/{5) (see Example 14 of Section 7.1 
or 7.1.A). Us~ Theorem 8.13 and 8.7. 

9. G/N=-71.2. 

11. Since ab = bainG, NaNb =Nab= Nba = NbNa in G/N. 

15. The identity element of the quotient group is the coset (0, 0) + {(5, 5)) = {(5, 5)). 
(1, 0) + {(5, 5)) has infinite order since for any positive integer k, k(1, 0) = (k, 0)~ 
{(5, 5)). On the other hand, (1, 1) + {(5, 5)) has order 5, as you can easily verify. 

19. If bEG, then Nb is a square in G/ N, say Nb = (Nc)2 = NeZ. Since bE Nb, b = ncZ 
for some n EN. What do you know about elements of N? 

21. If Tg has finite order n, then Tft = (Tgt = Te= T, soft E T. What does this tell you 
about the order of ft? And what, in tum, does that tell you about the order of g? 

23. IR* /IR** =- ll.z. 
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25. (a) 9,5,7 (b) Ifm,nE7l.,thenn(m/n+7l.)=m+7l.=0+7l.inQ/7l.. 

31. What are the possible orders of Z(G)? Then, what are the possible orders of 
G/Z(G)? Use Theorems 8.7 and 8.15. 

37. Hint: Show that the function/A/ N X B/ N ~ G/ N given by f(Na, Nb) = Nab is 
well defined. Then show that if a E A and b E B, then Nab = Nba. Use this fact 
to prove thatfis a homomorphism. 

Section 8.4 (page 270) 

1. f((a + bz) + (c + di)) = f((a + c) + (b + d)i) = b + d = f(a + bz) + f(c + di); 
the kernel is 71.. 

3. You provide the proof that his a homomorphism. The kernel is (1) (soh is 
injective by Theorem 8.17). 

5. f((x, y) + (u, v)) = f((x + u, y + v) = y + v = f(x, y) + f(u, v); sofis a 
homomorphism. You find the kernel. 

11. If [a],= [b]m then n I (a- b) by Theorem 2.3. Since kIn, it follows that k I (a- b). 
Use this fact to show that [ra]k = [rb]k· 

13. /is well-defined by Exercise ll.fis a homomorphism becausef([ah + [bh6) = 
f([a + b] 16) = [a + b]4 = [a]4 + [b]4 = f([a] 16) + f([b] 16). Find the kernel and 
explain why it is isomorphic to 71.4• 

17. (a) (O), 7Lz, 1l.3, 1l.4, 71.6, 71.12. 

19. (e), S3, and 71.2. 

21. Kernelfis a normal subgroup of G, so what can it be? What does that imply? 

25. Show that/is a homomorphism. If cis any integer, thenf(O, -c) = 0- (-c) = c; 
hencefis surjective. If (a, b) is in the kernel of;; then a- b = 0 and, hence, 
a = b. So (a, b) = (a, a) = a(l, 1) E ((1, 1)). Show that any element of ((1, 1)) is in 
the kernel; hence the kernel is ((1, 1)). Apply the First Isomorphism Theorem 8.20. 

27. Verify thatf G X H ~ G/ M X H/N given by f(a, b) = (Ma, Nb) is a surjective 
homomorphism with kernel M X N. Apply Theorem 8.16 and the First 
Isomorphism Theorem 8.20. 

31. Verify thatf 7l. ~ 71.3 X 71.4, given by f(a) = ([ah, [a]4), is a homomorphism. Use 
Exercise 17 of Section 1.2 to show that the kernel is (12). Use brute force to show 
thatfis surjective: Verify that/(1),/(2), ... ,/(12) are all the elements of 71.3 X 71.4. 

33. Since H = G / K by the First Isomorphism Theorem, it ~uffices to construct a 
bijection from the set S of all subgroups of G that contain K and the s.et T of 
all subgroups of G/ K. If B is a subgroup of G that contains K, then B/ K is a 
subgroup of G/ K, so define(}: S ~ Tby (}(B)= B/ K. Then(} is surjective by 
Theorem 8.24. Show that(} is injective. 

Section 8.5 (page 277) 

1. (a) (123), (132), (124), (142), (134), (143), (234), (243). 

3. (1). 

5. Theon;m 7.23 and Example 6 of Section 7.5. 

9. If N * (1), then N contains a nonidentity element u. If T *- (1) is inN, then 
uu = (1) = uT implies that u = T by Theorem 7.5. Hence, N = {(1), u}; and N 
is cyclic of order 2. 
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Chapter 9 

Section 9.1 (page 285) 

3. (a) {(0, 0)}; {(0, 0), (1, 0)}; {(0, 0), (0, 1)}; {(0, 0), (1, 1)}; Z.2 X Z.2. 

5. Z.z X Z.z. 

9. No. 

13. (b) If Dis normal, then for any a, bEG, (a, e, e)(b, b, b)(a, e, e)- 1 ED. But 
(a, e, e)(b, b, b)(a, e, e)-1 = (aba- 1, b, b). Since this is in D, we must have aba- 1 = 
b, which implies that ab = ba. 

23. (a) Let M = ((123)) and N = ((12)) in S3. 

25. First, verify that N; n (NI ... N;-IN;+I ... Nk) =(e) implies that when i =/= j, then 
N; n ~=(e) because ~<;;N1 • • • N;_ 1N;+I · · · Nk. Use the homomorphism/in the 
proof of Theorem 9.1. Ifj(ab ... , ak) = e, then a;= (a1 • • • a;_ 1)-

1e(ai+ 1 • • • ak)-1
• 

Use Lemma 9.2 and Corollary 7.6 repeatedly to show that 
a; EN; n N 1 • • • N;_ 1Ni+ 1 • • • Nk =(e). Hence,fis injective by Theorem 8.17. 

27. (a) What are the normal subgroups of S3? 

Section 9.2 (page 297) 

1. If p"a = 0 andpmb = 0, thenp"(-a) = -(p"a) = 0 andp"'+"(a +b)= p"p"'(a +b)= 
p"'(p"a) + p"(p"'b) = 0. Hence, a+ beG(p) and -aeG(p). Use Theorem 7.11. 

3. (a) Z.4 ffi Z.3; Z.z ffi Z.z ffi Z.3 (c) Z.z ffi Z.3 ffi Z.s (e) Z.z ffi Z.3 ffi Z.3 ffi Z.s; 
Z.z ffi Z.9 ffi Z.s (g) Z.z ffi Z.z ffi Z.z ffi Z.3 ffi Z.s ffi Z.s; Z.z ffi Z.4 ffi Z.3 ffi Z.s ffi Z.s; 
~ffi~ffi~ffi4~ffi~ffi~ffi~ffi~~ffi~ffi~ffi~~ffi~ffi4 

5. (a) 2, 53 (c) 2, 2, 22
, 23

, 3, 5, 5, 5, 5. 

7. (a) 2, 2 and 2, 2 (c) 2, 22 and 2, 22
. 

9. (a) G must contain an element of order p (Why?). If a has order p, then pa = 0. 

13. If q is a prime other than p and if q divides IGI, use Exercise 12 to reach a 
contradiction. 

19. (a) Exercise 1 is the special case when every element of finite order has order a 
power of p. Essentially the same proof works here. 

Section 9.3 (page 302) 

3. {(12)(34), (13)(24), (14)(23), (1)} is the only Sylow 2-subgroup. The four Sylow 
3-subgroups are ((123)), ((124)), ((134)), ((234)). 

5. (a) 1 or 4. 

7. (a) Show that G has a normal Sylow ?-subgroup. (c) Show that G has a 
normal Sylow-11 subgroup. 

9. If a E G, then (Na)p'' = N in G/ N, so that aP" EN. 

13. For each prime that divides IGI, there is exactly one Sylow subgroup by the 
Second Sylow Theorem. Let P~> p 2, ••• , Pk be the distinct primes that 
divide IGI, and let N~> N2, • •• , Nk be the corresponding Sylow groups. Define 
fN1 X N2 X · · · X Nk---'> G by f(ab a2, ••. , ak) = a1a2 • · • ak. The proof of 
Theorem 9.1 shows that/is a homomorphism. Then Imf= N 1N2 • • • Nk = 
{a1a2 • • • ak I a; EN;} is a subgroup of G by Theorem 7.20. The Sylow subgroups 



578 Answers and Suggestions for Selected Odd-Numbered Exercises 

of Imf also are N~> N2, •.• , Nk (Why?). By the definition of Sylow subgroups, 
IImfl = IN11 • IN21 · · · INkl = IGI. Hence, Imf = G, andfis surjective. By the 
definition of the direct product, IN1 X N2 X · · · X Nkl = IN11· IN2I· · ·INkl = IGJ. 
Since N 1 X N2 X · · · X Nk and G have the same number of elements the 
surjective mapfmust also be injective (Why?). Therefore,fis an 
isomorphism. 

21. Show that there is a normal Sylow 3- or 5-subgroup. Note that if there are six 
Sylow 5-subgroups, G has 24 distinct elements of order 5 (Why?). Similarly, if 
there are ten Sylow 3-subgroups, G has 20 distinct elements of order 3. 

Section 9.4 (page 310) 

1. (a) {r0}, {r2}, {r!> r 3}, {h, v}, {d, t}. 

3. Look at H = {r0, r!> r2, r3} in D4. 

5. ((123)), ((124)), ((134)), ((234)). 

9. If Cis the conjugacy class of a E G, show thatf( C) is the conjugacy class of f(a). 

15. In the equation of Exercise 14(c), verify that each ICA is either 1 or a positive 
power of p. At least one !C;I is 1 beacuse {e} is a conjugacy class. Since IN! is 
divisible by p, there must be more than one !C;I = 1 and, hence, some nonidentity 
element of Z( G) in N. 

19. If b EN(N(K)), then b-1N(K)b = N(K). Hence, b-1Kb ~ N(K), since K~ N(K). 
Verify that both K and b-1Kb are Sylow p-subgroups of N(K) and, hence, 
conjugate in N(K). But K is normal in N(K), and so b-1Kb = K. Hence, bE N(K). 

21. If Sis a Sylow p-subgroup containing H (Exercise 24), then every Sylow 
p-subgroup is of the from a-1Sa for some a E G and, therefore, contains a- 1Ha. 

Section 9.5 (page 318) 

1. First show that p2 =IE 1 (mod q). [If p2 = 1 (mod q), then q divides p + 1 or 
p - 1 (Why?). Use the facts that p < q and q =IE 1 (mod p) to show that both 
possibilities lead to a contradiction.] Then use Theorem 9.30. 

5. (a) 

e a a2 a3 b ab a2b a3b 

e e a a2 a3 b ab a2b a3b 

a a a2 a3 e ab a2b a3b b 
a2 a2 a3 e a a2b a3b · b ab 
a3 a3 e a a2 a3b b ab ~b 

b b a3b a2b ab a2 a e a3 

ab ab b a3b a2b a3 a2 a e 

~b a2b ab b a3b e a3 ~ a 

a3b a3b a2b ab b a e a3 a2 

7. Use Exercise 13 of Section 9.3 and Theorem 9.9. 

13. {1, -1}.. 

17. How many Sylow p-subgroups does G have? Use Corollary 9.16. 
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Chapter 10 

Section 10.1 (page 330) 

3. (a) True. Proof a I b means b = au and e I d means d = cv. Hence, bd = auev = 
ae(uv). 

5. If a is an associate of b, then a = bu for some unit u. Hence, bu = a = be, and, 
therefore, u = e, a contradiction. 

7. Suppose q = pu, where pis irreducible and u is a unit. Suppose q = rs; then rs = 
pu, and, hence,p = (pu)u- 1 = (rs)u- 1 = r(su- 1

). Since pis irreducible, r is a unit 
or su- 1 is a unit by Theorem 10.1. But if su- 1 is a unit, say su- 1w = 1, then sis a 
unit. Therefore, q is irreducible by Theorem 1 0.1. 

17. (a) 8(ab) = 8((su - tv) + (sv + tu)z) = (su - tv)2 + (sv + tu)2 = iu2 
- 2stuv + 

tV+ iif + 2stuv + Fu2 = iu2 + Fv2 + iif + t2u2 = (i + F)(u2 + v2) = 

8(a)8(b). 

21. If OR =t- a E R, use Theorem 10.1 to show that a2 can't be irreducible. and, hence, 
must be a unit. Hence, a is a unit. 

23. Suppose p = rs. Then p I r or p Is. Show that r or s must be a unit and apply 
Theorem 10.1. 

29. Assume that 8(a) = k for all nonzero a E R. If b =t- OR, then there exist q, r such 
that 1R = bq + r, with r =OR or 8(r) < 8(b). The latter condition is impossible 
because 8(r) = k = 8(b). Thus r =OR, and, hence, q is a multiplicative inverse of b. 

Section 10.2 (page 341} 

1. (ab) £;:;(b) since b I ab. If (ab) =(b), then ab I b, say abu =b. Hence, au= 1R, 
contradicting the fact that a is a nonunit. 

5. See Example 3. 

11. If (a) is an ideal other than R, then a is not a unit (Why?) and, hence, must be 
divisible by an irreducible element p (Theorem 10.12). Hence, (a)£;:; (p), with (p) 
maximal by Exercise 10. 

13. (b) Verify thatfZ ~ Z6, given by f(a) = [a], is a surjective homomorphism. 

15. By Theorem 10.8, I= (b) for some nonzero b. If a EZ[z], then a= bq + r with 
r = 0 or 8(r) < 8(b), and, hence, a""" r (mod 1). By Theorem 6.6, the number 
of distinct cosets of I (congruence classes mod I) is at most the number 
of possible r's under division by b. Show that there are only finitely many 
possible r's. 

21. By Exercise 20, d = au+ bv for some u, v E R. If e E Sis a common divisor of 
a and b, then e necessarily divides d. Hence, dis a gcd of a and b in S. 

29. For some d, be = ad. If a = r1r2 • • • rk> d = z1z2 • • • zm b = PtPz · · · p., and 
e = q1q2 • • • q1 with eachP;, q;, r;, z;, irreducible, thenptP2 · · • Psq1q2 • • • q1 = 
r1r2 • • • rkz1z2 • • • Z11 • So each r; is an associate of pj or qj. But r; cannot be an 
associate of any pj (otherwise r; would divide the gcd 1R of a and b, which implies 
that the irreducible r; is a unit). 
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Section 10.3 (page 351) 

1. If x = a, y = b, z = cis a solution of x" + Y' = z" and n = kt, show that x = a', 
y = b1

, z = c1 is a solution of::!'+ yk = zk, contradicting the hypothesis. 

3. N(ab) = N((rm + snd) + (rn + sm)Vd) = (rm + snd)2
- d(rn + sm)2 = r2m2 + 

2mnrsd + ;n2d2
- dr2n2 - 2mnrsd- d;m2 = r2m2 + s2n2J2- dr2n2 - ds2m2 = 

(,Z - di)(m2 - dn2) = N(a)N(b). 

9. (a) Use Corollary 10.22. 

17. (=:>)Leta =.u + v v=5 andb = w + zv=5. If r + sv=5 EP, thenr + s v=5 = 

2a + (1 + v=s)b = 2(u + vv=5) + (1 + v=s)(w + zv=5) = (2u + w- Sz) + 
(2v + w + z) v=5. Hence, r- s = (2u + w- Sz) - (2v + w + z) = 2(u- v- 3z), 
so that r = s (mod 2). 

Section 10.4 (page 358) 

1. (2) [a, b] = [ak, bk] because a(bk) = b(ak). 

3. [a, 1R] + [b,1Rl =[aiR+ 1Rb, 1R1Rl =[a+ b,1R] ER* and [a, 1RJ[b, 1Rl = 
[ab, 1R1Rl = [ab, 1Rl ER*; hence, R* is closed under addition and multiplication. 
The zero element [0 R, 1 Rl of F is in R*. The negative of [a, 1 Rl is [-a, 1 Rl E R*. 

5. Y,(ebrify thda)tfF--'> {r + si I r, sEQ} given by f([a + bi, c + di]) = c~: !n + 
c +a . . h" 
2 2 i 1s an 1somorp 1sm. 

c + d 

11. mu + nv = 1 for some integers u and v by Theorem 1.2; u and v may be negative. 
Negative powers of a are defined in F and, hence, in F, a = a1 = a"m+nv = a"''" a"'" = 
(a"')'"(a")" = (b"')'"(b7' = bmu+~ru = bl = b. 

Section 10.5 (page 364) 

1. (==:>)If f(x) is a unit in R[x], thenf(x)g(x) = 1R for some g(x). By Theorem 4.2, 
degf(x) + deg g(x) = deg 1R = 0. Hence, degf(x) = 0 = deg g(x), so thatf(x), 
g(x) E R. Hence,f(x) is a unit in R. 

3. (==:>)Assume pis irreducible in R[x]. If p = rs in R, then either r or sis a unit in 
R[x]. Hence, r or sis a unit in R by Exercise 1. Therefore, pis irreducible in R by 
Theorem 10.1. 

5. Since c1c2 · · • cmf(x) = g(x), each ci divides g(x). Therefore, ci is a unit in R 
because g(x) is primitive. 

9. First use the fact that R[x] is a UFD to show that R is an integral domain. If cis 
a nonzero, nonunit element of R, then cis a nonzero, nonunit element of R[x] by 
Exercise 1. Hence, c = p 1p2 • • • Pk, with each Pi irreducible in R[x]. Theorem 4.2 shows 
that each piER. Hence, pi is irreducible in R by Exercise 3. Use the fact thatR[x] is a 
UFD to show that this factorization is unique up to order and associates in R. 

Chapter 11 

Section 1-1.1 (page 374) 

7. a+ bi = (b- 2a)i + a(1 + 2!) + 0(1 + 3i). Also, a+ bi = (-2a)i + 
(a- b)(l + 2z) + b(l + 3z). 
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9. Verifythat((-3/\12)- \13)\12 + V3(v'2 + i) + \13(\13- i) = 0. 

11. If the subset is {Ov, Uz, u3, ... , U 11}, then IFOv·+ 0Fu2 + 0Fu3 + · · · + OFun = Ov, 
with the first coefficient nonzero. 

13. There exist C; EF, not all zero, such that c1v 1 + · · · + ckvk = Ovsince the V; are 
linearly dependent. The set {vi> ... , vk> wb ... , w,} is linearly dependent because 
c1v 1 + · · · + ckvk + 0Fw1 + · · · + OFw, = Ovand not all the coefficients are zero. 

15. For any r + siEIC, r + si = (~- ;~)b + ~(c + di). Hence, {b, c + di} spans IC 

over IR. Prove that it is also linearly independent over IR. 

23. (a) If a + b\12 + c\13 = 0, then a + b\12 = -c\13. Squaring both sides and 
rearranging, show that 2abv'2 = 32 - a2 - 2b2• If ab =!= 0, then v'2 = 
(32 - a2 

- 2b2)/2ab E Q, which contradicts the fact that v'2 is irrational. Hence, 
a = 0 orb = 0. If a = 0, then b\12 + c\13 = 0. Square both sides and make a 
similar argument to show that be = 0. Hence, b = 0 or c = 0. But a = 0 and b = 0 
imply that c\13 = 0, whence, c = 0. Similarly, a = 0 and c = 0 imply that b = 0. 

33. Suppose c1u 1 + · · · + c1u1 + dw = Ov. If d =!= OF, then w = -d-1c1u 1 - d- 1c2u 2 -

· · · -d - 1c,u,, a contradiction. Hence, d = OF. Then all the c; = OF because 
{uh ... , u,} is linearly independent. 

37. ((i) =?(iii)) Suppose S = {vi> ... , v,} spans V over F. Then some subset T of Sis 
a basis of Vover Fby Exercise 32. Since [V:F] = n, Tmust haven elements, and, 
hence, T = S. Use Exercise 36 to prove (ii) =?(iii). (iii) implies (i) and (ii) by the 
definition of basis. 

Section11.2 (page381) 

3. Both F(u +c) and F(u) contain Fby definition. Since c EFand u EF(u), 
u + c EF(u). Therefore, F(u) ;:;:2 F(u + c), since F(u +c) is the smallest subfield 
containing F and u + c. Conversely, u = ( u + c) - c E F( u + c), so that 
F(u) ~ F(u + c), since F(u) is the smallest subfield containing F and u. 
Therefore, F(u +c)= F(u). 

5. (a) Verify that 3 + 5i is a root of x?- 6x + 34. (c) Verify that 1 + V2 is a 
root of x 3 

- 3::¢ + 3x - 3. 

7. By hypothesis, u is a root of some p(x) EF[x]. But F[x] ~ K[x], so that u is a root 
ofp(x)EK[x]. 

9. v'1T" is a root of x2 - 1T E Q( 7r)[x]. 

11. 6. 

15. By the Factor Theorem, a + bi is a root of f(x) = (x- (a + bi))(x- (a - bl)). 
Verify thatf(x) has real coefficients. 

17. (a) x4 - 2::¢ - 4. 

21. 1T is a root of x4 
- 1r4 E Q( 1T

4)[x] and, hence, is algebraic over Q( 7r4). Therefore, 
{ 1, 1T, 71"

2
, 7r3

} is a basis by Theorem 11.7. 

Section 11.3 (page 387) 

3. Many correct answers, including (a) {1, VS, i, VSi} 
(c) {1, v'2, \13, VS, v'6, v'IO, Vi5, V30}. 
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5. Use Corollary 4.19 to show that x2 + 1 is irreducible over Q(\13) and thus is 
the minimal polynomial of i over Q(\13). Hence, [Q(\13, i): Q(\13)] = 2 and 
[Q(\13, i):Q] = [Q(\13, l):Q(\13)] [Q(V3):Q] = 2. 2 = 4. 

7. [K(u):F] is finite by Theorems 11.7 and 11.4. Hence, u is algebraic over Fby 
Theorem 11.9. If p(x) E F[x] is the minimal polynomial of u over F and 
q(x) EK[x] is the minimal polynomial of u over K, then q(x) lp(x) by Theorem 11.6. 
Hence, by Theorem 11.7, [K(u):K] = deg q(x) ::s degp(x) = [F(u):F]. 

9. [F(u):F] and [K(u):F(u)] are finite by Theorems 11.4, 11.7, and 11.9 and 
Exercise 8. Apply Theorem 11.4 to Fr;; F(u) r;; K(u). 

11. (a) Theorem 11.4 applied to F r;; F( u) r;; F( u, v) shows that m = deg p(x) = 
[F(u):F] divides [F(u, v):F]. Similarly, n I [F(u, v):F]. Hence, mn I [F(u, v):F] by 
Exercise 17 of Section 1.2. Use Theorem 11.4 and Exercise 7 to show that 
[F(u, v):F] ::s mn. Therefore, [F(u, v):F] = mn. 

13. Let h(x) EF(u)[x] be the minimal polynomial of v over F(u); then h(x) I q(x). By 
Exercise ll(a) and Theorems 11.4 and 11.7, (degp(x)) (deg q(x)) = [F(u, v):F] = 
[F(u, v):F(u)] [F(u):F] = (deg h(x))(degp(x)). Therefore, deg h(x) = deg q(x), 
and, hence, q(x) = kh(x) for some k E K. Since h(x) in irreducible over F( u), so is 
q(x). 

15. If u is algebraic over E, then it is algebraic over Fby Theorem 11.10 and 
Corollary 11.11. 

Section 11.4 (page 393) 

3. Q( VS, i) is a splitting field; it has dimension 4 by Exercise 3 of Section 11.3. 

7. The minimal polynomialp(x) of u is irreducible in F[x] and has a root inK. 
Therefore,p(x) splits over K = F(u). 

11. The fourth roots of -1 are ( :±: V'i/2) :±: ( Vi/2 )i, so that Q( Vi, i) is a splitting 
field. 

15. ~ + 1 is irreducible in £:3[x] by Corollary 4.19. Hence, by Theorem 5.11, £:3[x]/(~ + 1) 
is a field of nine elements that contains the roots [x] and [2x] of~ + 1. 

21. If p(x) E K[x] is irreducible and u is a root of p(x), then K( u) is algebraic over K 
by Theorem 11.1 0. Therefore, u is algebraic over F by Corollary 11.11. Its minimal 
polynomial q(x) over F splits over K and divides the irreducible p(x) in K[x] by 
Theorem 11.6. Show that p(x) has degree 1 and apply Exercise 19. 

Section 11.5 (page 397) 

1. Every polynomial in F[x] is also in E[x]. 

7. (a) If/(x) = a11X' + · · · + ao andf'(x) =OF, then for each k > 0, (kiF) ak = ka" =OF. 
Since Fhas characteristic 0, k1F =!=OF, and hence, ak = 0. Therefore,f(x) = a0. 

9. If j{x) andf'(x) are not relatively prime, then their gcd has a root u in some 
splitting field. Hence, u is a repeated root of f(x) by Exercise 8, so thatf(x) is not 
separable. · 

13. Use the proof of Theorem 11.18, as in Example 2. 
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Section 11.6 (page 404) 

3. na =a+ a+ · · · +a= lia + lRa + · · · + lRa = (lR + · · · + lR)a = (nlR)a = 
ORa= OR. 

5. Let p = characteristic F = characteristic K. F has order pm, where m = [F:£:p], by 
Theorem, 11.23, and, hence, q = pm. Since [K:£:p] = [K:F] [F:£:p] = nm, 
Theorem 11.23 shows that K has order pmn = q". 

13. Every element a of ;EP is a root of xP - x by the proof of Theorem 11.25. Hence, 
aP = a in £:P, which means that d' = a (mod p) in £:. If a is relatively prime top in 
£:, then a is a nonzero element of the field ;EP and, hence, has an inverse. 

17. Since E = F, each has order p" for some prime p. By Theorem 11.25, 
E = £:p(ul> .. . , u1) = F, where the u; are all the roots of xP"- x inK. 

Chapter 12 

Section 12.1 (page 413) 

1. If o-(c) = cforevery cEF, then o--1(c) = u- 1 (u(c)) =c. 

3. Use Theorem 11.7 to show that o-(c) = cfor all c EF(u). 

5. Use Corollary 12.5 and Lagrange's Theorem 8.5. 

9. (a) p(x) = x? + x + 1 (b) Gal0 01(w) = £:2. 

11. Gal0 01( Vi, i) = £:2 X £:2. 

Section 12.2 (page 421) 

1. The number of intermediate fields is the same as the number of subgroups of 
GalFK, which is finite by Theorem 12.11. 

5. Four, of dimensions 10, 5, 2, and 1. 

9. (a) Every subgroup of£:" = GalFK (in particular, GalEK) is cyclic and normal 
by Theorem 7.17. By Theorem 12.11, GalFE = GalFK/GalEK; apply Exercise 24 
of Section 8.3. 

11. (b) [01( \?'2):01] = 4 since x4
- 2 is irreducible in 01[x] by Eisenstein's Criterion. 

x? + 1 is the minimal polynomial of i over 01(Vl) by Corollary 4.19. 

Section 12.3 (page 431) 

1. (a) Many correct answers, including 01 ~ 01( vs) ~ 01( vs, 0) ~ 
01(vs, 0, \o/2 + vs)~01(vs, 0, \o/2 + vs, \o/1 + 0). 

5. (a) A4 consists of the subgroup Hand the eight 3-cycles (123), (132), (124), (142), 
(134), (143), (234), (243). Show that His normal in A4. Use the fact that all 
groups of order :S4 are abelian to show that the series S4 ;::;? A4 ;::;? H'2 (1) satisfies 
the definition of solvability. 

7. (a) ±1 (c) ±1, ± i (e) ± 1, 1/2 ± i'V3/2, -1/2 ± iv'3/2. 

13. If K is the splitting field of a cubic polynomial, then [K:F] is divisible by 3 
(Why?) and :S6 by Theorem 11.13. Hence, the Galois group is a subgroup of S3 

(Corollary 12.5) of order 3 or 6. 
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17. (a) x6 
- 4x3 + 4 = (x3 

- 2 f a( 0, w) is a splitting field, where w is a complex 
cube root of 1. G = S3• (c) x 5 + 6x3 + 9x = x(x2 + 3f O(tv'3) is a splitting 
field. G = Z2. (e) G = S5. 

Chapter 13 

Chapter 13 (page 441) 

1. If ka = 0 (mod p), then pIka. But (p, k) = 1 (Why?). Hence, pI a by Theorem 1.5, 
which is a contradiction. 

3. (a) 0107 0512 2421 1479. 

Chapter 14 

Section 14.1 (page 448) 

3. If there is a solution, then 0, I, or 2 is a solution by Exercise 2. Verify that this is 
not the case. 

9. x = -30 (mod 187). 

11. x = -18 (mod 210). 

13. x = 204 (mod 204,204). 

19. (~)If b- a= dk and mu + nv = d, then muk + nvk = b- a. Proceed as in the 
proof of Lemma 14.1. 

Section 14.2 (page 452) 

3. 7 is (1, 2) and 8 is (2, 3) in Z.3 X Z.5• So the product is (1 · 2, 2 · 3) = (2, 1). 

5. (==?)If f(r) = f(s), then both rands are solutions of the system x = r (mod m1), 

x = r (mod m2), .•• , x = r (mod m,). 

Section 14.3 (page 456) 

1. (a) Repeated use of Corollary 14.6 shows that both are isomorphic to 
Z3 X Z4 X Z5 and, hence, to each other. 

Chapter 15 

Chapter 15 (page 469) 

3. (a) Begin as in the construction of the coordinate plane. Place the compass 
point on (1, 0) and make a circle whose radius is the segment from (1, 0) to 
(3, 0). It intersects the vertical axis at Q. The right triangle with vertices (0, 0), Q, 
(1, 0) has hypotenuse of length 2 and one side of length 1. Hence the angle at Q 

(opposite the side of length I) is a 30° angle, because sin- 1 (~) = 30°. 

(c) Part (a) shows that a 90° angle can be trisected. Since a 30° angle can be 
bisected, a 45° angle can be trisected. 

5. cos 3t::, cos(t + 2t) =cost cos 2t- sin t sin 2t =cos t(2 cos2t- I)
sin t(2 sin t cos t) = 2 cos3t - cos t - 2 sin2t cos t = 2 cos3t - cost -
2(1 - cos2t)cos t = 4 cos3t - 3 cos t. 
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7. No. To prove this, show that x must be the root of a cubic polynomial in Q[x] 
that has no rational roots. 

9. No. 

15. If Vk E F, then F( Vk) = F. If Vk 9£ F, then the multiplicative inverse of a 
nonzero element a + bVk of F(Vk) is c + dVk, where c = aj(a2 

- kb2
) and 

d = -b/(ci - kb2). 

Chapter 18 

Section 16.1 (page 480) 

1. Verify that Cis closed under addition and, hence, is a subgroup by Theorem 7.12. 

3. (a) 1 (c) 4. 

5. (a) 0000, 1000, 0111, 1111 (c) 0000, 0010, 0101, 0111, 1001, 1011, 1100, 1110. 

11. (c) If the ith coordinate is denoted by a subscript, then (u + w)i = ui + wi and 
(v + w)i =vi+ wi. Hence, (u + v\ = (v + w)i if and only if ui =vi. 

17. Many correct answers, including 00000, 11100, 00111, 11011. 

21. n = 5. 

25. Verify that an element of B(n) has even Hamming weight if and only if it is the 
sum of an even number of elements of Hamming weight 1 (for instance, 110 = 

100 + 010). Use this to show that the set of elements of even Hamming weight is 
closed under addition. 

27. (a) .96059601 (c) .00058806 (e) . 00000001. 

Section 16.2 (page 490} 

1. 

(a) (I ~) 
(e) (D 

3. 5. Several possible answers, including 0 0 1 

0 0 1 

0 0 

0 1 

0 0 1 
0 0 

0 1 
0 0 

0 1 

0 

1 1 
0 0 0 

0 1 0 0 

0 0 0 

0 0 0 

13. An error is detected if and only if w is not a codeword. Note that w = u + e and 
that the set of codewords is closed under addition. 
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Section 16.3 (page 497} 

1. (a) If f(x) = a"X' + · · · + a;xi + · · · + a0, thenf(x) + f(x) = (a11 + a11)X' + · · · + 
(a;+ a;)x; + · · · + (a0 + a0) = Ox"+ · · · + Oxi + · · · + 0 because ai + ai = 0 for 
every a; E 7/+ 

3. Verify that 1 + x + x4 has no roots in 7L2 and, hence, no first- or third-degree 
factors. If there is a quadratic factor, it is either the product of two linear factors 
or irreducible. Use long division to show that the only irreducible quadratic 
(Exercise 2) is not a factor. 

5. (a) Use the table to show that a 3 is a root of f(x) = 1 + x + _xZ + x3 + x4
• It 

then suffices to show thatf(x) is irreducible. Use the method of Exercise 3. 

7. (c) Ifj([a0 + a1x + · · · + a11 _ 1X'- 1D = (0, 0, ... , 0), then [ao + a1x + · · · + a11 _ 1X'- 1] 

· = [0], so that the kernel of fis the identity subgroup. Apply Theorem 8.17. 

9. (a) D(x) = _xZ + a 4x + a has roots 1 = a0 and a = a 1
• Hence, the correct word 

is 000000000000000. (c) D(x) = _xZ + a 13x + a 4 has roots a9 and a 10• Hence, 
the correct word is 101010010110000. 

Appendix 8 

Appendix B (page 519} 

1. (a) { -2, - 1, 0, 1, 2, 3, 4, 5, 6, 7, 8} (c) {1, 2}. 

3. (a) Empty since V2 is irrational (c) Empty. 

7. (a, 0), (a, 1), (a, c), (b, 0), (b, 1), (b, c), (c, 0), (c, 1), (c, c). 

11. (a) yes (c) yes. 

13. (a) Many correct answers, including the functions/, g, h, k given by f(l) =a, 
f(2) = b,f(3) = c,/(4) =a; g(1) = c, g(2) = b, g(3) =a, g(4) = b; h(l) = b, 
h(2) = a, h(3) = c, h(4) = c; k(1) = c, k(2) = a, k(3) = a, k(4) = b. (c) There 
are six bijections from C to C. 

19. If (a, d) EA X (B U C), then aEA and dEB or dE C. Therefore, (a, d) EA X B 
or (a, d)EA X C, and, hence, (a, d) E(A X B) U (A X C). Thus A X (B U C)~ 

(A X B) U (A X C). Conversely, suppose (r, s) E (A X B) U (A X C). Then (r, s) E 

A X B or (r, s) EA X C. If (r, s) EA X B, then rEA and sEB (and, hence, 
sEB U C), so that (r, s) EA X (B U C). Similarly, if (r, s) EA XC, then (r, s) E 

A X (B U C). Therefore, (A X B) U (A X C) ~A X (B U C), and, hence, the two 
sets are equal. 

23. No; why not? 

25. (a) If f(a) = f (b), then 2a = 2b. Dividing both sides by 2 shows that a = b. 
Therefore,fis injective. (c) Ifj(a) = f(b), then a/7 = b/7, which implies 
that a= b. 

27. (a) If (go f)( a)= (go f)( b), then g(f(a)) = g(f(b)). Since g is injective,!( a)= 
f(b). This implies that a= b because/is injective. Therefore, go fis injective. 

29. (a) Let dE D. Since·g o fis surjective, there exists b EB such that (go f)(b) =d. 
Let c = f(b) E C. Then g(c) = g(f(b)) = (go f)( b)= d. Hence, g is surjective. 
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Appendix G 

Appendix C (page 528) 

1. P(O) is true since 0 = 0(0 + 1)/2. IfP(k) is true, then 1 + 2 + · · · + k = k(k + 1)/2. 
Add k + 1 to both sides and show that the right side is (k + l)(k + 2)/2. This 
says that P(k + 1) is true. 

3. Let P(n) be the statement 2"-1 :5 n!. Verify that P(O) and P(1) are true. If P(k) is 
true and k 2: 1, then 2k-I ::s k! and 2 ::s k + 1. Hence, (2k- 1)2 ::s k!(k + 1), that is, 
2k ::s (k + 1)!. Thus P(k + 1) is true. 

7. Verify that the statement is true when n = 1. Suppose the statement is true fork, that 
is, that 3 is a factor of 22k+I + 1. Then 22k+I + 1 = 3t, and, hence, 22k+I = 3t- 1. To 
show that the statement is true fork+ 1, note that 22(k+I)+I = 221<+2+1 = 22k+ 122 = 
(3t- 1)4 = 12t- 4 = 3(4t- 1) - 1, and, hence, 22(k+I)+I + 1 = 3(4t- 1). 

11. Verify that the statement is true when n = 1. Let B = { bh b2, ••• , bn}. In defining 
an injective function from B to B, there are n possible choices for the image of b~> 
n - 1 choices for the image of b2 (because b2 can't have the same im:age as b1), 

n - 3 choices for the image of b3, and so on. 

13. (a) Verify that the statement is true when n = 2. Assume that a set of k elements 
has k(k - 1)/2 two-element subsets and that B has k + 1 elements. Choose bE B 
and let C = B - { b}. Every two-element subset of B consists either of two 
elements of Cor of b and one element of C. There are k(k - 1)/2 subsets of the 
first type by the induction hypothesis. 

Appendix D 

Appendix D (page 534) 

3. (a) a~ a since cos a= cos a. If a- b, then cos a= cos band, by the symmetric 
property of=, cos b =cos a; hence, b- a. If a-band b- c, then cos a= cos b 
and cos b = cos c. Hence, cos a = cos c, and, therefore, a - c. 

5. (b) The equivalence class of (r, s) is the vertical line through (r, s). 

9. (a) Transitive (c) Symmetric. 

19. (b) Consider the subgroup K = {r0, v} of D4. 

Appendix E 

Appendix E (page 539) 

1. 4032. 

3. (n) n! n! ( n ) 
r = r!(n- r)! = (n- (n- r))!(n- r)! = n- r · 
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Appendix F 

Appendix F (page 543) 

1 (a) A + B = (91 - 65 0 4) . 11 12 . 

3. (a) The entry in position i-j of A + B is au + bu. But au + bu = bu + au, which is 
the entry in position i-j of B + A. Hence, A + B = B + A. 

Appendix G 

Appendix G (page 551) 

1. (a) x + x3 + x 5 (c) ( -11, 7.5, -3, 12, -5, 0, 3, 0, 0, 0, ... ). 

3. (a) ((a0, ab ... ) (£) (b0, bb ... )] (£) (c0, cb ... ) 

= (a0 + b0, a1 + bb ... ) (£) (c0, cb ... ) 

= ((a0 + b0) + c0, (a1 + b1) + cb ... ) 

= (a0 + (b0 + c0), a1 + (b1 + c1), ... ) 

= (a0, ab .•. ) (£) (b0 + c 0, b1 + CJ. ... ) 

= (a0, a~> ... ) (£) [(b0, b~> ... ) (£)(co, c1,. .. )]. 
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monic polynomial, 96 
multiconditional statement, 508 

proof of, 507 
multiple root, Ill 
multiplication 

congruence class, 32, 130 
polynomial, 88, 546 
scalar, 366 
inZ, 35 
inZ., 32 

multiplicative 
identity, 35, 44 
inverse, 63 
notation, 196, 198, 238, 289 

N, 513, 516, 523 
natural homomorphism, 156 
nearest-neighbor decoding, 

475 
negation, 50 I 
negative, 60 
nilpotent 

element, 70 
group, 303 

norm, 346 
normal 

extension, 391 
subgroup, 213, 248 

normalizer, 213, 308 
notation 

additive, 198, 207, 238,289 
congruence,25,238 
multiplicative, 196, 198, 

238,289 
set -builder, 509 
translating between, 198, 207, 

238,289 
nth root, 423, 426 

of unity, 426 
null set, 510 

number(s) 
algebraic, 386 
complex, 49, 178, 191 
constructible, 461 

odd permutation, 231 
one-to-one 

correspondence, 517 
function, 515 

onto function, 516 
operation, 511, 514 
Oprea, John, xi 
order 

of element, 198,401 
of group, 172, 186 
maximal, 291 
inZ., 3 

p-group, 291,312 
parity-check 

code,473 
matrix, 484 
matrix decoding, 489 

partition, 534 
Pascal's triangle, 539 
permutation(s), 169, 184, 222 

of a set T, 170, 184 
even, 231 
odd,231 

PID, 332 
point, constructible, 460, 461 
polygon, regular, 314 
polynomial(s), 85, 545 

addition, 88, 546 
associate, 100 
constant, 89 
degree of, 88 
derivative of, 395 
divisibility, 95 
division algorithm for, 90 
equal, 546 
equations of fifth degree, 428 
error-locator, 495 
function, 105 
Galois group of, 426 
generator, 494 
irreducible, 100, 101, 135 
leading coefficient, 88 
minimal, 378 
monic, 96 
multiplication, 88, 546 
primitive, 360 
reducible, 10 I 
relatively prime, 99 
ring, 125, 545 
root of, 106, Ill, 394,461,466 
separable, 394 

positive common divisor, 326 
premise, 503 
preserved by isomorphism, 79 

primality testing, 21 
prime, 17 

·ideal, 162 
integer, 17 
relatively, 10, 99, 328 
subfield, 40 I 

primitive 
nth root of unity, 426 
polynomial, 360 
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principal ideal(s), 144, 150 
ascending chain condition on, 334 
domain, 332 

principle 
of complete induction, 525 
of mathematical induction, 524 

product 
Cartesian, 51, 180, 195, 281, 512 
direct, 281 
of ideals, !50 
infinite direct, 288 
of matrices, 542 
semidirect, 288 

proof, 504 
for beginners, ix 
completion symbol for, 7 
by contradiction, 506 
impossibility, 461,467 
methods of, 505 
techniques, 39 

proper 
subgroup, 203 
subset, 510 

public-key cryptography, 437 
public-key system, 438 

IQ, 49, 178, 191-192 
Q, 181, 316 
IQ/Z, 259 
Q[x], 112 
0 2 [x], 336 
quadratic 

equation in Z, 36 
extension chain, 465 
extension field, 464 
formula, 114 
integer, 344, 351 

quantifiers, 502 
quaternion(s) 

division ring of, 58 
group, 181, 316 
real, 58 

quotients, field of, 353, 358 
quotient groups, 255, 263 

subgroups of, 267 
quotient rings, !52, 154, 162 

~,45,49, 178,191,263 
Rll, 154, 162 
~[x], 120 
R[x],86 
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radical(s) 
extension, 424 
solvability by, 423 

range, 512 
rational 

function, 358 
numbers, 178, 191 
root test, 113 

real numbers, 178, 191, 263 
real quaternions, 58 
received word, 472, 473 
reducible polynomial, 101 
reflexive, 26, 126, 146, 

239, 531 
relation, 531 

equivalence, 531 
relative complement, 511 
relatively prime, 10, 99, 328 
remainder, 4 

theorem, I 07 
repeated root, 394 
representation, 222 

left regular, 222 
right regular, 226 

residue 
class, 126 
least, 439 

right 
annihilator of a, 57 
congruence modulo a 

subgroup, 238 
coset, 239, 255 
ideal, 148 
regular representation, 226 

ring(s), 44 
arithmetic in, 59 
basic properties, 59 
Boolean, 69 
Cartesian product of, 51 
center, 57 
characteristic of, 70, 399 
Chinese Remainder Theorem 

for, 453 
commutative, 44, 162 
congruence-class, 125 
division, 58 
extension, 550 
of Gaussian integers, 322 
homomorphism, 75, 154 
with identity, 44 
isomorphic, 70 
local, 167 
matrix, 46, 543 
polynomial, 86, 545 
quaternion, 58 
quotient, 152, 162 
subtraction in, 60 
units, 63 
zero divisors, 64 

Rivest, R., 438 
root, 106 

adjoining a, 379 
field, 388 
multiple, 111 
nth, 423, 426 
rational, 87, 113 
rational root test, 113 
repeated, 394 
of unity, 426 

row vector, 541 
RSA code system, 438 
Ruffini, P., 407, 423 
ruler and compass, 459 

sm 172 
scalar matrix, 57 
scalar multiplication, 366 
Second Isomorphism Theorem 

for groups, 267, 272 
for rings, 161 

Second Sylow Theorem, 
300, 309 

semidirect product, 288 
separable/separability, 394 
set(s), 509 

-builder notation, 509 
Cartesian product of, 512 
describing, 509 
disjoint, 511 
elements/members of, 509 
empty, 510 
equal, 510 
index, 511 
intersection, 511 
nonempty, 510 
null,510 
operations on, 511, 514 
partition, 534 
spanning, 367 
subset, 510 
union, 511 

Shamir, A., 438 
simple 

extension, 376 
group, 268 , 

smallest elemeU:t, 3, 11, 523 
solution algorithm for linear 

congruences, 444 
solvable 

group, 424 
by radicals, 423 

spanning sets, 367 
spans, 367 
special linear group, 182 
splits, 388 
splitting field, 388 
square-free integer, 330, 346 
squaring the circle, 459, 470 

standard 
array decoding, 483 
generator matrix, 478 

statement(s), 500 
biconditional, 504 
compound, 500 
conditional, 503 
equivalent, 504 
if and only if, 504 
multiconditional, 507 
negation of, 501 
quantifiers, 502 

straightedge, 459 
student, to the, xiv-xv 
subfield( s ), 51 

conjugate, 422 
prime, 401 

subgroup(s), 203, 237 
characteristic, 253 
commutator, 262 
conjugate, 304 
cyclic,209,259 
generated by a set, 210 
index of, 240 
normal, 237, 248 
normalizer of, 213, 308 
proper, 203 
of quotient groups, 267 
Sylow p-, 299 
torsion, 211, 298 
trivial, 203 

subring, 51 
ideal, 142 

subset, 510 
image of, 517 
proper, 510 

subtraction in rings, 60 
sum 

direct, 281, 293 
of ideals, 149 
infinite direct, 288 
of matrices, 541 

summands, 62 
surjective function, 516 
Swords, Raymond J., iii 
Sylow 

p-subgroup, 299 
Theorems, 298 
Theorems, applications 

of, 301 
Theorems, proof of, 307 

symmetric, 26, 126, 146, 
239,531 

binary channel, 472 
group, 173, 187, 

227,314 
symmetries of the square, 

176, 190 
symmetry of polygon, 314 
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decoding, 487 

system of linear congruences, 443 
systematic code, 477 

Technology Tip, 12, 19,448 
thematic table of contents, 

xvi-xvii 
theorem, 504 
Third Isomorphism Theorem 

for groups, 267 
for rings, 161 

Third Sylow Theorem, 301, 310 
torsion group/subgroup, 

211,298 
transcendental element, 

376,550 
transitive, 26, 126, 146,239, 531 
transposition, 230 
trisection of angle, 459, 468 
trivial subgroup, 203 

u., 179 
UFD, 337, 359 

union of sets, 511 
unique factorization 

domain, 326, 336 
inF[x], 100 
of ideals, 349 
in polynomial domains, 359 
in£:, 17 

unit, 40, 63, 322 
unity, nth root of, 426 
universal quantifier, 502 

vector 
column, 541 
row, 541 

vector space, 365 
basis, 369 
dimension, 371 
finite dimensional, 371 
infinite dimensional, 371 

Virginia, 267 

website, x 
weight, Hamming, 474 
Well-Ordering Axiom, 3, 523 

Wiles, A., 345 
word 

code, 437 
size, 450 

Wt(u), 474 

£:, 3, 25, 34, 191 
l:[VdJ, 344, 347 
Z(G), 205 
l:[z], 322 
l:[x], 87, 177 
£:., 30, 32, 191 

elements of, 30 
structure of, 39 

l:P (p prime), 37 
l:p[x]/(f(x)), 136 
zero 
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characteristic, 70, 396, 399 
divisor, 41, 64 
element, 44 
ideal, 142 
map, 75 
matrix, 47, 540 
of polynomial, 106 
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IGI 

GL(2, ~) 

GL(2, Z2) 

Q 
SL(2, ~) 

a-I 

Ia I 
Z(G) 

(a) 

(S) 

C(a) 

N(H) 

G==H 

~G:G--+G 

AutG 

Inn G 

detA 

An 

a== b (modK) 

Ka 

[G:H] 

aK 

GjN 

G' 

2:Gi 
iEf 

G(p) 

Groups 

Identity element, 172, 186 

Order of the group G, 172, 186 

Symmetric group on n symbols, 172---173, 186---187 

Group of permutations of the set T, 173, 187 

Dihedral group of degree 4 [symmetries of the square], 173---176, 187-190 

Dihedral group of degree n, 17 6, 190 

Multiplicative group of units in Z"' 179, 193 

General linear group of degree 2 over~' 179, 194 

General linear group of degree 2 over Z2, 179, 195 

Quaternion group, 181 

Special linear group of degree 2 over ~' 182 

Inverse of a, 197 

Order of a, 198-199 

Center of the group G, 205 

Cyclic (sub )group generated by a, 206 

(Sub)group generated by the subsetS, 209-210 

Centralizer of a, 212, 305 

Normalizer of the subgroup H, 213, 308 

Group G is isomorphic to group H, 216 

Identity automorphism of the group G, 218 

Group of automorphisms of the group G, 225 

Group of inner automorphisms of the group G, 225 

Determinant of matrix A, 225 

Alternating group of degree n, 233 

a is congruent to b modulo the subgroup K, 238 

Right coset [congruence class] of a modulo the subgroup K, 239 

Index of the subgroup H in the group G, 240 

Left coset of a modulo the subgroup K, 248 

Quotient group [or factor group] of the group G by the normal 
subgroup N, 255 

Commutator subgroup of the group G, 262 

Infinite direct product of the groups G; with i E I and I infinite, 288 

Infinite direct sum of the groups Gi with i E I and I infinite, 288 

Subgroup consisting of the elements in the abelian group G whose 
orders are powers of the prime p, 290 



Fields and Galois Theory 

pn F X F X · · · X F (n copies), where F is a field, 366 

[V:F] Dimension of the vector space V over the field F; special case: [K:F], 
where K is an extension field of F considered as a vector space 
over F, 371 

F(u) Simple extension field of the field F; smallest subfield containing F and 
u, where K is an extension field of F and u E K, 3 7 6 

F(ub u2, ••• , un) Finitely generated extension field of the field F; smallest subfield 
containing F and u" u2, ... , um where K is an extension field ofF 
and each u;EK, 383 

f'(x) Derivative of the polynomialf(x), 395 

GalFK Galois group of Kover F, where K is an extension field ofF, 408 

EH Fixed field of the subgroup H of GalFK, 412 

~ Primitive nth root of unity in a field, 426 

Algebraic Coding Theory 

B(n) 7l.2 X 7l.2 X 7l.2 X · · · X 7l.2 (n copies of 7l.2), 473 

Wt(u) Hamming weight of uEB(n), 474 

d(u, v) Hamming distance between elements u and v of B(n), 474 

eb e2, ••. , en The elements of weight 1 in B(n), 488 

The Greek Alphabet 

Alpha a A Nu 7J N 

Beta f3 B Xi g -,..., -
Gamma y r Omicron 0 0 

Delta 8 Ll Pi 1T II 

Epsilon e,E E Rho p p 

Zeta ~ z Sigma (T ~ 

Eta YJ H Tau T T 

Theta () ® Upsilon v y 

Iota I Phi cp,</J <I> 

Kappa K K Chi X X 

Lambda A A Psi 

"' 
'¥ 

Mu f.L M Omega w n 



This list contains all the books and articles referred to in the text, as well as a number 
of other books suitable for collateral reading, reference, and deeper study of particular 
topics. The list is far from complete. For the most part readability by students has been 
the chief selection criterion. 

Abstract Algebra in General (Undergraduate Level) 

These books contain approximately the same material as Chapters 1-12 of this text, 
but each of them provides a slightly different viewpoint and emphasis. Only [3] has a 
significant overlap with Chapters 13-16. 

1. Beachy, J., and W Blair, Abstract Algebra, 3rd edition. Prospect Heights, IL: Waveland 
Press, 2006. 

2. Fraleigh, J., A First Course in Abstract Algebra, 7th edition. Boston: Pearson, 2003. 

3. Gall\an, J., Contemporary Abstract Algebra, 8th edition. Belmont, CA: Cengage, 2013. 

4. Herstein, I. N., Abstract Algebra, 3rd edition. New York: Wiley, 1996. 

Abstract Algebra in General (Graduate Level) 

These books have much deeper and more detailed coverage of the material in 
Chapters 1-12, as well as a large number of topics not discussed in the text. 

5. Hungerford, T. W, Algebra. New York: Springer, 1980. 

6. Dummit, D., and R. Foote, Abstract Algebra, 3rd edition. New York: Wiley, 2004. 

Logic, Proof, and Set Theory 

7. Galovich, S., Doing Mathematics: An Introduction to Proofs and Problem Solving, 
2nd edition. Belmont, CA: Cengage, 2007. 

8. Goldrei, D., Classic Set Theory for Guided Independent Study. Boca Raton, FL: Chapman & 
Hall/CRC, 1996. 

9. Halmos, P., Naive Set Theory. New York: Springer, 1974. 

10. Smith, D., M. Eggen, and R. St. Andre. A Transition to Advanced Mathematics, 7th edition. 
Belmont, CA: Cengage, 20ll. 

11. Solow, D., How to Read and Do Proofs, 5th edition. New York: Wiley, 2009. 
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