

Learning C# Programming
with Unity 3D

http://taylorandfrancis.com

Learning C# Programming
with Unity 3D

Second Edition

Alex Okita

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-33681-0 (paperback)
978-1-138-33682-7 (hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future
reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Okita, Alex, author.
Title: Learning C# programming with Unity 3D / Alex Okita.
Description: Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis
Group, 2019.
Identifiers: LCCN 2019010020 | ISBN 9781138336810 (pbk. : acid-free paper) |
ISBN 9781138336827 (hardback : acid-free paper)
Subjects: LCSH: Computer games--Programming. | C# (Computer program language)
| Unity (Electronic resource) | Three-dimensional display systems.
Classification: LCC QA76.76.C672 O43 2019 | DDC 794.8/1526--dc23
LC record available at https://lccn.loc.gov/2019010020

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

v

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-33681-0 (paperback)
978-1-138-33682-7 (hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future
reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Okita, Alex, author.
Title: Learning C# programming with Unity 3D / Alex Okita.
Description: Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis
Group, 2019.
Identifiers: LCCN 2019010020 | ISBN 9781138336810 (pbk. : acid-free paper) |
ISBN 9781138336827 (hardback : acid-free paper)
Subjects: LCSH: Computer games--Programming. | C# (Computer program language)
| Unity (Electronic resource) | Three-dimensional display systems.
Classification: LCC QA76.76.C672 O43 2019 | DDC 794.8/1526--dc23
LC record available at https://lccn.loc.gov/2019010020

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

 1. Introduction: What This Book Is About .. 1
1.1 Why Read a Book: Why This Book May or May Not Be for You ... 1

1.1.1 Do I Need to Know Math? .. 2
1.1.2 Programming as a Form of Expression .. 2
1.1.3 Games as a Stage with Lights ... 2

1.2 Personal Information .. 2
1.3 A Brief History of Computer Programming: How Programming Came to Be 3

1.3.1 Mechanical Computers ... 3
1.3.2 Logic ... 3
1.3.3 Computer Science ... 3
1.3.4 The Origin of Software ... 4
1.3.5 Modern Computer Language .. 4
1.3.6 The Future of Computer Languages ... 4

1.4 C#: A Flexible Programming Language .. 4
1.4.1 C# Paradigm ... 5
1.4.2 Unity 3D: A Brief History of Game Engines ... 5
1.4.3 Why Use Unity 3D to Learn? ... 6
1.4.4 How Does Unity 3D Use C#? ... 6

1.4.4.1 How to Tell Unity 3D What to Do .. 7
1.5 What Is Programming? ... 7

1.5.1 What Does C# Look Like? ... 8
1.5.2 Learning to Copy and Paste .. 9
1.5.3 Iteration ... 9

1.6 Compiling: Turning Words into Computer Instruction .. 9
1.7 What We’ve Learned .. 10
1.8 Leveling Up: The Path Ahead .. 10

 2. Before You Begin ...11
2.1 What Will Be Covered in This Chapter ..11
2.2 Unity 3D Installation .. 13

2.2.1 Visual Studio Installation ... 15
2.2.2 Unity Version Numbering ..16

2.3 Git SCM Installation ..17
2.3.1 Git-SCM.com Git Software (Optional) ..17
2.3.2 GitHub.com Sign Up! (Also Optional) ..18
2.3.3 Git: The Basics .. 20
2.3.4 Your First Repo ... 22
2.3.5 Before Moving On .. 25

2.4 Unity General Overview ... 26
2.4.1 The Main Window .. 27

2.4.1.1 Toolbar .. 27
2.4.1.2 Scene, Game View, and Asset Store ... 28
2.4.1.3 Hierarchy Panel .. 28

vi Contents

2.4.1.4 Inspector Panel ... 29
2.4.1.5 Project and Console Panel .. 29
2.4.1.6 Assets Directory ..31
2.4.1.7 Project Settings Directory .. 32
2.4.1.8 Packages Directory ... 32

2.4.2 Git Ignore .. 32
2.4.3 What We’ve Learned .. 32

2.5 Sample Code ... 33
2.5.1 Code Fragments .. 33
2.5.2 Are Errors Bad? .. 34

2.5.2.1 Compile-Time and Run-Time Errors .. 34
2.5.3 How to Follow Along .. 35
2.5.4 Comments: A First Look .. 36
2.5.5 What We’ve Learned .. 37

2.6 Working with C#: Game Engines ... 37
2.6.1 Creating and Assigning a New C# File: Now It’s Your Turn 40
2.6.2 Naming Your New File ... 42
2.6.3 Using Your New File ... 43
2.6.4 Additional Unity 3D Tools .. 48
2.6.5 Working in a Live Scene ... 50
2.6.6 Saving a Scene .. 50
2.6.7 Opening a Scene ... 50
2.6.8 What We’ve Learned ...51

2.7 Leveling Up: The Journey Has Just Begun ..51

 3. First Steps: Just Getting Started .. 53
3.1 What Will Be Covered in This Chapter ... 53
3.2 Review ... 54

3.2.1 Submitting Changes to Git .. 54
3.3 Let’s Build a Game—Part 1 ... 56

3.3.1 Movement Experiments .. 57
3.3.2 Reading Programmer Documentation .. 58

3.4 Tokens ..61
3.4.1 Writing C# ... 62
3.4.2 Comments a First Look... 63
3.4.3 Separator Tokens ... 64
3.4.4 Operator Tokens .. 65
3.4.5 Literals .. 66
3.4.6 Transitive and Non-Transitive Operations .. 67
3.4.7 Putting It All Together .. 67
3.4.8 What We’ve Learned .. 69

3.5 Statements and Expressions .. 69
3.5.1 Expressions ... 70
3.5.2 How Unity 3D Executes Your Code ... 70
3.5.3 Thinking in Algorithms .. 70

3.5.3.1 Wash, Rinse, Repeat ... 73
3.5.4 What We’ve Learned .. 73

3.6 Keywords .. 73
3.6.1 The Class Keyword ... 74
3.6.2 What We’ve Learned .. 76

3.7 White Space .. 76
3.7.1 Code Style ... 78
3.7.2 What We’ve Learned .. 79

viiContents

3.8 Code Blocks .. 79
3.8.1 What We’ve Learned .. 81

3.9 Classes: A First Look.. 81
3.9.1 Objects .. 82
3.9.2 What We’ve Learned .. 86

3.10 Variables ... 86
3.10.1 Identifiers .. 87
3.10.2 Data ... 88
3.10.3 Variable Manipulation .. 89

3.10.3.1 Declaration Placement Examples ... 90
3.10.4 Dynamic Initialization .. 90
3.10.5 What We’ve Learned .. 91

3.11 Variable Names ... 91
3.11.1 Useful Variables in Unity 3D .. 94
3.11.2 Variable Assignment ... 96
3.11.3 Putting It Together: Using the Variables ... 98
3.11.4 What We’ve Learned .. 100

3.12 Types: A First Look .. 100
3.12.1 Value and Reference Types ... 100
3.12.2 What We’ve Learned ...101

3.13 Strong Typing.. 102
3.13.1 Dynamic Typing ... 102
3.13.2 What We’ve Learned .. 103

3.14 Type Casting, Numbers .. 103
3.14.1 Explicit versus Implicit Casting .. 104

3.14.1.1 A Basic Example ... 105
3.14.2 What We’ve Learned .. 107

3.15 Comments ... 108
3.15.1 Line Numbers...111
3.15.2 Code Folding ..111
3.15.3 Summary Comments ...113
3.15.4 Navigating in Code ..114
3.15.5 What We’ve Learned ...115

3.16 Leveling Up: Moving on to Basics ..115
3.16.1 Git Revision History ..115

 4. Basics: The Building Blocks of Code ...117
4.1 What Will Be Covered in This Chapter ..117
4.2 Review ...117
4.3 Building a Game—Part 1 ..118

4.3.1 Mouse Point ...119
4.3.2 Move to Point .. 120
4.3.3 What We’ve Learned ...121

4.4 Class Construction ...121
4.4.1 Class Declaration .. 123

4.4.1.1 A Basic Example ... 123
4.4.1.2 Value and Reference Types ... 124

4.4.2 Adding Data Fields ... 125
4.4.3 Access Modifiers and the Dot Operator ... 125
4.4.4 Class Scope ... 127
4.4.5 Class Members .. 128
4.4.6 What We’ve Learned .. 128

viii Contents

4.5 Directives .. 129
4.5.1 Libraries .. 130
4.5.2 Ambiguous NameSpaces ...133
4.5.3 What We’ve Learned .. 134

4.6 Functions ... 134
4.6.1 What Are Functions? ...135
4.6.2 Unity 3D Entry Points .. 136
4.6.3 Writing a Function .. 137
4.6.4 More on White Space and Tabs .. 139
4.6.5 What We’ve Learned .. 140

4.7 Order of Operation: What Is Calculated and When ... 140
4.7.1 Evaluating Numbers ..141

4.7.1.1 Math ...141
4.7.1.2 Operator Evaluation .. 144

4.7.2 What We’ve Learned ...145
4.8 Scope: A First Look .. 146

4.8.1 Class Scope ... 146
4.8.2 Function Scope ..149
4.8.3 Blank Scope ...151
4.8.4 What We’ve Learned ...152

4.9 This ..152
4.9.1 A Basic Example ...152
4.9.2 When This Is Necessary ..153
4.9.3 What We’ve Learned .. 154

4.10 Building a Game—Part 2 ..155
4.10.1 Additional Components ...155
4.10.2 The Projectile ... 158
4.10.3 The Target ... 160
4.10.4 What We’ve Learned ...161

4.11 Logic and Operators ..162
4.11.1 Booleans ..162
4.11.2 Equality Operators ..163
4.11.3 Logical Not! ...165
4.11.4 Greater and Less than Operators .. 166
4.11.5 Logical And and Or Operators ..168
4.11.6 If and Branching ..169
4.11.7 What We’ve Learned ...173

4.12 Loops ...173
4.12.1 Unary Operators ..173
4.12.2 While ...174
4.12.3 For ..175
4.12.4 Do-While ...177
4.12.5 Postfix and Prefix Notation..178
4.12.6 Using Loops ...179
4.12.7 Loops within Loops ...182
4.12.8 Runaway Loops ...183
4.12.9 Breakpoints: A First Look ...185
4.12.10 What We’ve Learned ...186

4.13 ScopeAgain ..187
4.13.1 Visibility or Accessibility ..187

4.13.1.1 A Basic Example ...187
4.13.2 Global Scope ..188
4.13.3 What We’ve Learned .. 190

ixContents

4.14 Warnings versus Errors .. 190
4.14.1 Warnings ... 190
4.14.2 Errors ...191
4.14.3 Understanding the Debugger .. 192
4.14.4 What We’ve Learned .. 194

4.15 Leveling Up: Fundamentals .. 194
4.15.1 Style Guides .. 194

 5. Fundamentals: Building a Foundation .. 195
5.1 What Will Be Covered in This Chapter ... 195
5.2 Review .. 196

5.2.1 Modular Code ... 199
5.3 Inheritance: A First Look ... 202

5.3.1 Class Members .. 204
5.3.1.1 Inheriting Members .. 205
5.3.1.2 Is-A and Has-A ... 206

5.3.2 Instancing .. 206
5.3.3 Parent Child .. 208
5.3.4 Object .. 209

5.3.4.1 A Type Is Not an Object ..212
5.3.5 != null ..213
5.3.6 What We’ve Learned ...214

5.4 Instancing...214
5.4.1 Class Initialization ...215
5.4.2 New ..215
5.4.3 Constructors ...216
5.4.4 What We’ve Learned ...219

5.5 Static ... 220
5.5.1 A Basic Example ... 220
5.5.2 Static Variables ... 222

5.5.2.1 A Basic Example ... 222
5.5.3 Static Functions ... 224
5.5.4 Putting It All Together .. 225
5.5.5 What We’ve Learned .. 228

5.6 Building A Game—Part 3 .. 228
5.6.1 The Player ... 228
5.6.2 The Mover ... 229
5.6.3 The Shooter ... 230
5.6.4 Physics Settings ... 232
5.6.5 What We’ve Learned .. 233

5.7 Jump Statements and Return .. 233
5.7.1 Return .. 234

5.7.1.1 A Basic Example ... 235
5.7.2 Returning Objects ... 235
5.7.3 A Class Is a Type .. 236
5.7.4 Tuples .. 238
5.7.5 Null Is Not Void .. 240
5.7.6 What We’ve Learned .. 240

5.8 Arrays: A First Look ... 241
5.8.1 Fixed-Sized Arrays ... 241

5.8.1.1 A Basic Example ... 241
5.8.2 Foreach .. 246

5.8.2.1 A Basic Example ... 246

x Contents

5.8.3 Dynamic Initialization .. 246
5.8.4 Using the While Loop with Arrays... 247

5.8.4.1 Setting Array Values ... 247
5.8.4.2 Getting Array Values .. 248

5.8.5 What We’ve Learned .. 248
5.9 Jump Statements: Break and Continue ... 248

5.9.1 A Basic Example ... 249
5.9.1.1 Continue .. 249

5.9.2 ZombieData ... 249
5.9.3 Foreach Again ..251
5.9.4 What We’ve Learned .. 252

5.10 Multidimensional Arrays .. 252
5.10.1 Columns and Rows ... 253

5.10.1.1 A Basic Example ... 254
5.10.2 A Puzzle Board ... 255
5.10.3 Camera and Screen Setup ... 257
5.10.4 Checking Range .. 259
5.10.5 What We’ve Learned ...261

5.11 Array List .. 262
5.11.1 A Basic Example ... 263
5.11.2 ArrayList.Contains() ... 265
5.11.3 Remove .. 266
5.11.4 Sort and Reverse ... 267
5.11.5 What We’ve Learned .. 268

5.12 Strings ... 268
5.12.1 Declaring a String ... 268

5.12.1.1 A Basic Example ... 269
5.12.2 Escape Sequences ... 270
5.12.3 Verbatim Strings: @.. 271
5.12.4 What We’ve Learned .. 272

5.13 Combining What We’ve Learned ... 272
5.13.1 Timers ... 273
5.13.2 What We’ve Learned .. 278

5.14 Leveling Up: On to the Cool Stuff.. 278

 6. Intermediate: The Tricks of the Trade .. 281
6.1 What Will Be Covered in This Chapter ... 281
6.2 Review .. 281

6.2.1 Class Members .. 282
6.2.1.1 A Basic Example ... 282
6.2.1.2 Thinking Like a Programmer ... 283

6.2.2 Return .. 286
6.2.2.1 A Basic Example ... 286

6.2.3 Arguments aka “Args” (Not Related to Pirates) ... 287
6.2.3.1 The Basic Example ... 287
6.2.3.2 Multiple Args .. 288
6.2.3.3 Using Args .. 290

6.2.4 Assignment Operators... 292
6.2.4.1 A Basic Example ... 292

6.2.5 What We’ve Learned .. 294

xiContents

6.3 Building a Game—Part 4 ... 294
6.3.1 ChaseCamera .. 294
6.3.2 Tile Floor Generator ... 295
6.3.3 What We’ve Learned .. 297

6.4 Class Constructors .. 298
6.4.1 A Basic Example ... 299
6.4.2 What We’ve Learned .. 301

6.5 Arrays Revisited ... 302
6.5.1 Using Arrays in Unity 3D ... 302

6.5.1.1 Starting with 0 .. 304
6.5.1.2 Mathf... 306
6.5.1.3 Time .. 307

6.5.2 Instancing with AddComponent(); .. 307
6.5.3 Type Casting Unity 3D Objects .. 309
6.5.4 What We’ve Learned ...311

6.6 Enums ..311
6.6.1 Using Enums ..312
6.6.2 Combining What We’ve Learned ..315
6.6.3 What We’ve Learned ...317

6.7 Switch ..317
6.7.1 A Basic Example ..318
6.7.2 Default ..319
6.7.3 More On Cases .. 322
6.7.4 Fall Through ... 326
6.7.5 goto Case ... 327
6.7.6 Finite State Machine ... 328
6.7.7 What We’ve Learned .. 330

6.8 Structs ... 330
6.8.1 Building a Struct ..331
6.8.2 Struct versus Class ...332
6.8.3 Without Structs ... 334
6.8.4 Handling Structs ..335
6.8.5 Accessing Structs .. 336
6.8.6 Global Access ... 337
6.8.7 What We’ve Learned .. 337

6.9 Class Data ... 338
6.9.1 Character Base Class .. 339
6.9.2 Const ... 340
6.9.3 Readonly ..341
6.9.4 What We’ve Learned .. 342

6.10 Namespaces .. 342
6.10.1 A Basic Example ... 342
6.10.2 Directives in Namespaces ... 344
6.10.3 Ambiguous References ... 345
6.10.4 Alias Directives... 345
6.10.5 What We’ve Learned .. 346

6.11 Functions Again .. 346
6.11.1 Parameter Lists ... 346
6.11.2 Side Effects ... 347
6.11.3 Multiple Arguments .. 348

xii Contents

6.11.4 Useful Parameters ... 348
6.11.4.1 The Rule of Three ... 349

6.11.5 Foreach versus For .. 350
6.11.6 What We’ve Learned ...351

6.12 Unity 3D Execution Order ...351
6.12.1 A Basic Example ..353
6.12.2 Component Execution Order .. 356
6.12.3 What We’ve Learned .. 358

6.13 Inheritance Again ... 358
6.13.1 Function Overrides ... 359

6.13.1.1 A Basic Example ... 359
6.13.2 Class Inheritance... 362

6.13.2.1 Sharing Common Attributes ... 362
6.13.3 Object .. 364
6.13.4 What We’ve Learned .. 367

6.14 Type Casting Again .. 368
6.14.1 (<Type>) versus “as” ... 368
6.14.2 User-Defined Type Conversion ... 370
6.14.3 Implicit versus Explicit Type Conversion ... 372
6.14.4 What We’ve Learned .. 373

6.15 Working with Vectors ..374
6.15.1 Vectors Are Objects ...374
6.15.2 Stepping through MonsterGenerator ...375
6.15.3 Gizmos .. 377

6.15.3.1 A Basic Example ... 377
6.15.3.2 DrawRay .. 379

6.15.4 Using Gizmos .. 380
6.15.5 What We’ve Learned ...381

6.16 goto Labels ...381
6.16.1 Skipping Down ... 383
6.16.2 Zombie State Machine .. 383
6.16.3 This as a Reference to Yourself .. 386
6.16.4 Just for Zombies .. 386
6.16.5 What We’ve Learned .. 388

6.17 More on Arrays ... 389
6.17.1 Length and Count.. 389

6.17.1.1 A Basic Example ... 389
6.17.2 Foreach: A Reminder .. 390
6.17.3 Discovery .. 393
6.17.4 Putting It Together .. 394

6.17.4.1 Breakpoint, Observing Inheritance .. 395
6.17.5 What We’ve Learned .. 399

6.18 Out Parameter ... 399
6.18.1 A Basic Example ... 401
6.18.2 Simple Sort (Bubble Sort) ... 403
6.18.3 Simple Sort Proof .. 405
6.18.4 What We’ve Learned .. 406

6.19 Ref Parameter ... 407
6.19.1 A Basic Example ... 407
6.19.2 Code Portability Side Effects .. 408
6.19.3 What We’ve Learned ...410

xiiiContents

6.20 Type Casting Numbers ..411
6.20.1 Number Types ..413
6.20.2 Integers ...413

6.20.2.1 Signed Numbers ...414
6.20.3 Floating Point ...414
6.20.4 What We’ve Learned ...415

6.21 Types and Operators ..415
6.21.1 GetType() ...416
6.21.2 More Type Casting ...417
6.21.3 Type Aliasing .. 420
6.21.4 Boxing and Unboxing ... 420

6.22 Operator Overloading ... 422
6.22.1 A Basic Example ... 423
6.22.2 Overloading* ... 424
6.22.3 Overloading < and > ... 426
6.22.4 What We’ve Learned .. 427

6.23 Controlling Inheritance .. 427
6.23.1 Sealed .. 428

6.23.1.1 A Basic Example ... 428
6.23.2 Extension Functions .. 429
6.23.3 Abstract ... 430

6.23.3.1 A Basic Example ... 430
6.23.4 Abstract: Abstract ..432
6.23.5 Putting This to Use ... 434
6.23.6 What We’ve Learned ...435

6.24 Building A Game—Part 5 .. 436
6.24.1 Generating Rooms .. 436
6.24.2 What We’ve Learned .. 439

6.25 Leveling Up .. 440

 7. Advanced ... 441
7.1 What Will Be Covered in This Chapter ... 441
7.2 Review .. 442

7.2.1 Moving Forward ... 442
7.3 Visual Studio .. 442

7.3.1 The Debugger .. 443
7.3.2 Mono History .. 443

7.4 Function Overloading ... 444
7.4.1 A Closer Look at Functions .. 444

7.4.1.1 A Basic Example ... 445
7.4.2 Function Signature .. 446
7.4.3 Different Signatures .. 447
7.4.4 Putting It Together .. 448
7.4.5 Not Quite Recursion.. 449
7.4.6 DrawWords.. 450
7.4.7 What We’ve Learned ...453

7.5 Accessors (or Properties) ...453
7.5.1 Value ... 454

7.5.1.1 A Basic Example ..455
7.5.2 Set Event...455
7.5.3 Read-Only Accessor ... 457
7.5.4 Simplification .. 458
7.5.5 What We’ve Learned .. 459

xiv Contents

7.6 Base Classes: Another Look ... 459
7.6.1 Generalization—Base Classes .. 459
7.6.2 Specialization .. 461
7.6.3 Base ... 461
7.6.4 Partial .. 463
7.6.5 Protected, Private, and Public ... 466
7.6.6 What We’ve Learned .. 467

7.7 Optional Parameters ... 467
7.7.1 Using Optionals... 468

7.7.1.1 A Basic Example ... 469
7.7.2 Optional Arguments ... 470
7.7.3 Named Parameters ...471

7.7.3.1 A Basic Example ... 472
7.7.4 Combining What We’ve Learned ... 473
7.7.5 What We’ve Learned ...474

7.8 Delegate Functions ..474
7.8.1 Delegates ..474

7.8.1.1 A Basic Example ..474
7.8.2 Delegate Signatures..476
7.8.3 Stacking Delegates ...476
7.8.4 Using Delegates... 477
7.8.5 Updating Delegates ..478
7.8.6 What We’ve Learned .. 480

7.9 Interface .. 480
7.9.1 Early Planning .. 480

7.9.1.1 A Basic Example ... 481
7.9.1.2 Using Accessors .. 483

7.9.2 Multiple Interfaces .. 486
7.9.3 IComparer ... 488
7.9.4 Using IComparer ... 490
7.9.5 What We’ve Learned ...491

7.10 Class Constructors Revisited ...491
7.10.1 A Basic Example ... 492
7.10.2 When to Create a New Class .. 495
7.10.3 What We’ve Learned .. 498

7.11 Preprocessor Directives .. 498
7.11.1 A Basic Example ... 499
7.11.2 UNITY_EDITOR ... 500
7.11.3 Mobile Development ... 502
7.11.4 Warning ... 504
7.11.5 Organizing .. 505
7.11.6 What We’ve Learned .. 506

7.12 Try Catch Finally .. 506
7.12.1 A Basic Example ... 506
7.12.2 Exception Messages .. 508
7.12.3 Custom Exceptions ..510
7.12.4 Finally ..512
7.12.5 Try-Catch and Finally in Use ...513
7.12.6 What We’ve Learned ...513

7.13 IEnumerator ...514
7.13.1 Enumeration ...515

7.13.1.1 A Basic Example ..515
7.13.1.2 What Doesn’t Work ..517

xvContents

7.13.2 Implementing IEnumerator ..517
7.13.3 What We’ve Learned ...521

7.14 Generics ...521
7.14.1 Generic Functions ... 522

7.14.1.1 A Basic Example ... 522
7.14.1.2 Why T? .. 523

7.14.2 Making Use of Generic Functions .. 523
7.14.3 Generic Types ... 526
7.14.4 Var ... 527
7.14.5 Multiple Generic Values ... 529
7.14.6 Anonymous Objects .. 530
7.14.7 What We’ve Learned ...533

7.15 Events ...533
7.15.1 A Basic Example ... 534
7.15.2 A Proper Event .. 536
7.15.3 EventArgs ...537
7.15.4 Generic EventArgs ...539
7.15.5 What We’ve Learned .. 540

7.16 Extension Functions .. 540
7.16.1 Extensions ..541
7.16.2 A Basic Example ..541
7.16.3 Overloading with Extensions .. 543
7.16.4 Magic Mirror .. 544
7.16.5 What We’ve Learned .. 546

7.17 Destructors .. 546
7.17.1 A Basic Example ... 547
7.17.2 Clearing Events or Delegates .. 549
7.17.3 OnDestroy ... 550
7.17.4 The Ugly Truth ...552
7.17.5 What We’ve Learned .. 554

7.18 Concurrency or Co-Routines ...555
7.18.1 Yield ...555

7.18.1.1 A Basic Example ..557
7.18.2 Setting Up Timers ..558
7.18.3 Arrays of Delegates ..561
7.18.4 Stopping a Co-Routine .. 562
7.18.5 What We’ve Learned .. 565

7.19 Dictionary, Stacks, and Queues .. 565
7.19.1 A Basic Example ... 565
7.19.2 ContainsKey .. 567
7.19.3 Stacks .. 568

7.19.3.1 A Basic Example ... 568
7.19.4 Movement Stack .. 569
7.19.5 Queues ..571
7.19.6 What We’ve Learned .. 573

7.20 Lambda Expressions ... 573
7.20.1 Anonymous Expressions ..574

7.20.1.1 A Basic Example—Action Func and Expression575
7.20.2 Lambda Expressions ... 577
7.20.3 A Queue of Lambdas .. 577
7.20.4 What We’ve Learned .. 578

7.21 Leveling Up .. 578

xvi Contents

 8. Extended .. 579
8.1 What We’ll Be Covering in This Chapter .. 579
8.2 Review .. 579
8.3 Readability ...581

8.3.1 ?: Notation ..581
8.3.2 If .. 582
8.3.3 Smell ... 583

8.3.3.1 Comments ... 583
8.3.3.2 One Responsibility Rule ... 583
8.3.3.3 Duplicated Code ... 584
8.3.3.4 Naming ... 584

8.3.4 What We’ve Learned .. 584
8.4 Git Revisited ... 584

8.4.1 Git Branch and Merge ... 585
8.4.2 Merge Conflicts ... 588
8.4.3 What We’ve Learned ...591

8.5 Recursion ...591
8.5.1 A Basic Example ... 593
8.5.2 Understanding Recursion .. 593
8.5.3 In Practice ... 594
8.5.4 What We’ve Learned .. 601

8.6 LINQ ... 601
8.6.1 Lambdas and Arrays ... 601

8.6.1.1 A Basic Example .. 601
8.6.2 Var ... 602
8.6.3 LINQ From ... 603
8.6.4 Strange Behaviors in LINQ .. 604
8.6.5 LINQ on Lists ... 605
8.6.6 Monsters Linq ... 608
8.6.7 What We’ve Learned ...611

8.7 Reflection ...613
8.7.1 A Basic Example ..615
8.7.2 Reflection MethodInfo ...615
8.7.3 What We’ve Learned ...618

8.8 Dynamic.. 620
8.8.1 ExpandoObject ...621
8.8.2 Expando Reader .. 622
8.8.3 What We’ve Learned .. 623

8.9 Bitwise Operators ... 624
8.9.1 Big Endian and Little Endian ... 624
8.9.2 Signed or Unsigned ... 625
8.9.3 Bitwise Or | ... 627
8.9.4 Enums and Numbers ... 627
8.9.5 Bitwise And & .. 628
8.9.6 Bitwise Exclusive Or ^ (xor) ... 629
8.9.7 Setting Bitwise Flags .. 630
8.9.8 Bitwise Shortcuts | = and ^ = ...631
8.9.9 Bits in Numbers .. 632
8.9.10 Bit Shifting >> and << ... 632
8.9.11 What We’ve Learned .. 634

8.10 Attributes .. 635
8.10.1 A Basic Example ... 635
8.10.2 Custom Attributes ... 639

xviiContents

8.10.3 Custom Attributes for Default Values ... 639
8.10.4 Multiple Attributes .. 641
8.10.5 Putting Attributes to Work .. 642
8.10.6 Attribute Flags .. 644
8.10.7 What We’ve Learned .. 645

8.11 Bitwise Math ... 646
8.11.1 Two’s Complement Unary Operator ~ .. 647
8.11.2 Bitwise Addition and Subtraction ... 648
8.11.3 Bitwise Multiplication ... 650
8.11.4 Bitwise Tricks ..651
8.11.5 What We’ve Learned .. 652

8.12 Architectures and Organization ... 653
8.12.1 Planning Structure: Namespaces and Directories .. 653
8.12.2 Divide and Conquer .. 654
8.12.3 Refactoring .. 655
8.12.4 What We’ve Learned .. 656

8.13 Design Patterns ... 656
8.13.1 Creational Design Patterns ... 657

8.13.1.1 Singleton Pattern ... 657
8.13.2 Structural Design Patterns .. 657
8.13.3 Behavioral Design Patterns ... 658
8.13.4 What We’ve Learned .. 658

8.14 Continuing on Your Own .. 658

 9. Stuff We Couldn’t Cover ..661
9.1 The Extern Keyword..661

 10. Good Luck ... 663

Index .. 665

http://taylorandfrancis.com

1

1
Introduction: What This Book Is About

This book was written as an answer for anyone to pick up a modern programming language and be pro-
ductive. You will be able to start a simple game in Unity 3D from scratch. By the end of this book, you
will have the basic skills to eventually become a capable unity game programmer, or at least know what
is involved with how to read and write some code.

You should have general computer skills before you get started. Come prepared; you’ll need a modern
Windows or OSX computer capable of running modern software with an internet connection. After this
book, you should be armed with the knowledge required to feel confident in learning more.

Each chapter has example code organized by chapter and section. We’ll try to make a fun project start-
ing with the basic functions of a typical game and we’ll see how the basic game can be expanded upon
and we’ll learn a bit about what’s involved with a larger project.

1.1 Why Read a Book: Why This Book May or May Not Be for You

You could go online and find videos and tutorials to learn; however, there is a disadvantage when it
comes to learning things in order and in one place. Most internet video or tutorial websites may gloss
over or dwell on a subject. You could skip ahead, but then what are you paying for?

Online content is often brief and doesn’t go into much depth on any given topic. It is incomplete or still
a work in progress. You’ll often find yourself waiting weeks for another video or tutorial to come out.

Just so you know, you should find the act of learning exciting. If not, then you’ll have a hard time con-
tinuing through to the end of this book. To learn any new skill, a lot of patience is required.

I remember asking an expert programmer how I’d learn to program. He told me to write a compiler.
At that time, it seemed rather unfair, but now I understand why he said that. It is like telling someone
who wants to learn how to drive Formula 1 cars to go compete in a race. In both cases, the “learning”
part was left out of the process.

It is very difficult to tell someone who wants to learn to write code where to begin. However, it all
really does start with your preparedness to learn. Your motivation must extend beyond the content of
this book.

You may also have some preconceived notions about what programming is. I can’t change that, but
you should be willing to change your thoughts on the topic if you make discoveries contrary to your
knowledge. Keep an open mind.

As a game developer, you should find the act of making a game, or simply learning how to make a
game, is just as fun as playing a game. If your primary goal is only to make that game that you’ve had in
your head for years, then you might have a problem. You may find this book a tedious chore if learning
C# is just something in the way of making your game.

Computer artists often believe that programming is a technical subject that is incompatible with
art. I find the contrary to be true. Programming is an art, much as literature and design are an art.
Programming just has a lot of obscure rules that need to be understood for anything to work.

No, programming is not too hard to learn. Writing a massive multiplayer online role-playing game
is quite hard. Learning how to write a simple behavior isn’t hard; like drawing, you start off with the
basics drawing spheres and cubes. After plenty of practice, you’ll be able to create a real work of art.
This applies to writing code, that is, you start off with basic calculations and then move on to the logic
that drives a complex game.

2 Learning C# Programming with Unity 3D

1.1.1 Do I Need to Know Math?

With complex rules in mind, does programming require the knowledge of complex mathematics? Unless
you are writing mathematical software, only a bit of geometry is required. Most of the examples here
use only a tiny bit of math to accomplish their purpose. Mathematics and programming do overlap quite
a lot in their methodology.

Math taught in schools provides a “best” solution. Programming results tend to behave a bit like a
math proof, but the proof isn’t just another bit of math. Rather, the proof of your code means that your
zombies chase after humans. A considerable amount of math required has been done for you by the com-
puter. It is just up to you to know what math to use, and then plug in the right variables.

1.1.2 Programming as a Form of Expression

There is a deeper connection between words and meaning in programming. This connection is more
mechanical, but flexible at the same time. In relation to a programming language, programmers like to
call this “expressiveness.”

When you write words in literature, you infer most if not all of the meaning. When programming
inference isn’t implied, then you’re free to define your own meanings for words and invent words freely.

One common merging of art and code appears within a video game. Anytime characters can react to
each other and react to user interaction conveys a greater experience. An artist, an animator, or an envi-
ronment designer should have some ability to convey a richer experience to the audience. A character
artist can show a monster to his or her audience; but to really experience the creature, the monster should
glare, grunt, and attack in reaction to the audience.

1.1.3 Games as a Stage with Lights

To do this, we’re going to use Unity 3D, a game engine. If you were to write a play, you would not have to
build the auditorium for your performance. Building lights and generating electricity to run them would
distract you from writing your play. Playwrights don’t often build lights and auditoriums from scratch,
and there are plenty of venues you could use as your stage, which is where game engines come in.

Game engines such as Unity 3D, Unreal Engine, Crytek, and even Game Maker, or Godot have a lot
of the basic game and math-related functions built for you. They are ready-built stages that allow you
to focus on making your game. The necessary code for rendering and physics have been done for you.

1.2 Personal Information

I started in the 1990s cleaning up sprites for Atari. Back then the job qualifications were basically having
Photoshop and a Wacom tablet. Oh, how times have changed!

I’ve worked for many different game studios, in both 2D and 3D, as an artist. I was exposed to many dif-
ferent software packages including Strata 3D on the Mac and Alias (PowerAnimator) on the SGI (Silicon
Graphics International), among many others. I loved learning new 3D modeling, rendering, and animation
applications. During my work as an artist, I used Maya, a popular 3D modeling package. While using
Maya, I was introduced to the Maya Embedded Language (MEL) script. Today I use Modo with Python.

After working as a character rigger and technical artist, I learned many programming languages
including MAXScript, MEL, and Python, which helped me to write tools for my fellow artists to use for
speeding up production.

I eventually moved into the job of programmer as my primary job function. I wrote prototypes for
Microsoft in Unreal using UnrealScript, a programming language much like JavaScript. This game studio
was run by John Gaeta and Peter Oberdorfer, who are award-winning movie special effects directors.

I began my career path as an artist, then became a technical artist, and finally a programmer.
This seems to be a common trend among a small variety of 3D artists like myself. I know quite a few
folks who have followed the same career path.

3Introduction: What This Book Is About

During my transition from artist to programmer, I found that there was very little by way of help, docu-
mentation, web pages, or similar to complete the transition from an artist to a programmer. Many people
assumed that you were either a programmer to begin with, or not interested in making that transition.
After a long discussion, with my then girlfriend—now wife, about what a variable is, I decided it was
time to write a book.

1.3 A Brief History of Computer Programming:
How Programming Came to Be

Basic insight into the inner workings of your computer may help understand why and how some text gets
converted into computer instruction. The words that make up C#, or any other programming language
get converted into what is called byte code.

Skilled programmers tend to know more about the inner workings of their computer. Like any trade
or learned skill, the more you know about how your tools work, the better understanding of the entire
process you’ll have.

To understand why programming tools work as they now do stems from knowing how they used to
work. To understand how the current tools came about means knowing a bit of computer history and how
computers used to work.

1.3.1 Mechanical Computers

The first programmable computer is arguably the Babbage machine built by Charles Babbage in the
1820s. Made of tens of thousands of moving parts and weighing several tons, it was a gigantic mechani-
cal calculator that could display a 31-digit number. It was called the Difference Engine. in 1824 Babbage
won a gold medal from the British Astronomical Society, by using his gigantic calculator, for correcting
a set of tables used to chart the movement of planets through the sky.

In 1833, a countess named Augusta Ada King of Lovelace, commonly known as Ada Lovelace, met
Babbage at a party where she was introduced to the Difference Engine. Several years later, it became
evident that she understood the machine better than Charles himself. Despite being a housewife to the
Earl of Lovelace, she wrote several documents on the operation of the Difference Engine as well as its
upgraded version, the Analytical Engine. She is often considered to be the first computer programmer
for her work with the Difference Engine and its documentation.

1.3.2 Logic

In 1848, George Boole gave us Boolean logic. It would take nearly a century between the Difference
Engine and the first general programmable computer to make its appearance. Thanks to George, today
our computers count in binary (1s and 0s), and our software thinks in terms of true or false.

In 1887, Dorr Eugene Felt built a computing machine with buttons; thanks to him, our computers have
keyboards. In the 1890s, a tabulating machine used paper with holes punched in it representing 1s and 0s
to record the US census. Back then it saved US$2 million and 6 years of work.

There was a moment in time where a trinary computer existed. In 1840, Thomas Fowler created a compet-
ing mechanical computer which worked with −1, 0, and +1. Even as late as 1958 an electronic version was
created in the Soviet Union, but its usefulness lost out to binary which was easier to build and used less power.

In the 1900s, between Nicola Tesla and Alexander Graham Bell, modern computers were imminent
with the invention of the transistor. In 1936, Konrad Zuse made the Z1 computer, another mechanical
computer like that of Babbage, but this time it used a tape with holes punched in it like the tabulating
machine. He’d later move on to make the Z3 in 1941.

1.3.3 Computer Science

In the 1940s, Alan Turing, a British computer scientist, designed and built an encrypted message decoder
called the Bombe that used electromechanical switches for helping the Allied forces during World War II.

4 Learning C# Programming with Unity 3D

Between the 1930s and the 1950s, Turing informed the computer scientists that computers can, in theory,
solve anything calculable, calling this concept Turing completeness. All of these components were lead-
ing toward our modern computer.

In the mid-1940s, John Von Neumann demonstrated, with the help of his theory, that the computer
can be built using simple components. In this way, the software that controls the hardware can add the
complex behavior. Thanks to Tesla and Bell, the Z3 was made completely of electronic parts. It included
the first use of logic while doing calculations, making it the first complete Turing-complete computer.
In 1954, Gordon Teal at Texas Instruments introduced the silicon-based transistor, a key component for
building solid-state electronics that are used today in every computer.

1.3.4 The Origin of Software

The Z3 was programmed using Plankalkül, the first high-level programming language, invented by Zuse
shortly after he finished building the machine. In 1952, Grace Hopper created the first compiler software
that could translate human-readable words into machine operations. For the first time, the programmer
didn’t need to know how the transistors operated in the hardware to build software for the computer to
run. This opened computer programming to a whole new audience.

Between the 1950s and 1970s, computers and computer languages were growing in terms of complex-
ity and capability. In 1958, John McCarthy invented LISP (for LISt Processor) at the Massachusetts
Institute of Technology (MIT). Object-oriented programming appeared in Simula 67 in 1967. Imperative
and procedural programming made its appearance in Pascal in 1970.

1.3.5 Modern Computer Language

Bell Labs, started by Bell in the 1920s, hired Dennis Ritchie in 1967. In 1974, Ritchie published the
C programming language that has become the most popular computer programming language. In 1983,
Bjarne Stroustrup introduced C++ as “C with Classes.”

In 2001, Microsoft released C#, a combination of several programming language paradigms taking the
concepts from C, C++, LISP, Haskell, and others, and incorporating the ideas and concepts into a single
language. Today, C# is in its seventh major revision, whereas C++ is in its seventeenth revision. C# is
an evolving language having new features and concepts. Each revision makes the language more flexible
and most important, more expressive.

1.3.6 The Future of Computer Languages

The International Business Machines Corporation (IBM), a US company founded in the 1920s, is cur-
rently engineering new technology using particle physics discovered nearly a century ago. Modern spin-
tronics derived from the work of German physicists in the late 1920s.

Without particle physics and physicists such as Friedrich Hermann Hund, we wouldn’t understand
quantum tunneling, and the solid-state storage or universal serial bus (USB) thumb drive wouldn’t exist.
After the discovery and confirmation of the Higgs boson, you might ask “Why bother?” This question
might not get a good answer for another hundred years, but it’ll be worth it.

C# is not the last computer language; many others have been introduced just recently. Google has intro-
duced Kotlin specifically for developing apps for Android and Apple has introduced Swift for their iOS
platform. Microsoft, not to be outdone, introduced Q# for the future of quantum computing.

Using Q# for game development isn’t likely, at least for now. Programming languages have advantages
and disadvantages in different disciplines. The purpose of programming languages is to allow human
readable text to be converted into instructions that run on a computer’s CPU.

1.4 C#: A Flexible Programming Language

There are plenty of programming languages and each language was created to fulfill different roles.
Modern programming languages in use today are often described by their paradigms. A paradigm can
be explained as a sort of writing style; each style follows a different set of rules.

5Introduction: What This Book Is About

1.4.1 C# Paradigm

In poetry, a haiku follows a 5-7-5 syllable tempo. A sonnet follows an iambic pentameter with 10 syl-
lables per line and rhymes in a specific pattern. Not all prose needs to end in rhyme like haiku, but many
do. Rhyming and tempo are paradigms used in poetry.

Modern programming paradigms include object oriented, functional, imperative, and logic program-
ming. Some programming languages use one or more of these paradigms together. For instance, F# is an
imperative, object oriented, and functional language. However, Haskell is purely functional.

C# (pronounced “see sharp”) is a combination of many different paradigms. As the name infers, C#
is a C-style language and primarily expressed using the object-oriented paradigm. How C# expresses its
different paradigms, and how you choose to write with it, is greatly up to you. Due to this flexibility, C#
offers a variety of uses reaching far beyond game development.

You may have heard of C++, another multiparadigm language. It is often used by programmers
who need detailed control over memory management and many other aspects of their final product.
This attention to detail and design is required to produce a refined final product.

C# is an imperative language, that is to say, it carries out operations in order. It is also object oriented,
so each object is allowed to do things on its own. Finally, it is also memory managed, aka garbage col-
lected, so your computer’s memory is organized for you. However, it does provide the flexibility to man-
age memory if you require that level of control. Just as well, C++ has recently added garbage collection
features to match C#.

1.4.2 Unity 3D: A Brief History of Game Engines

A game engine is basically software that provides many of the basic functions that are commonly used
to build a video game. Most game engines allow for rendering either 2D or 3D shapes by importing files
generated in a third-party software such as Blender, or 3D Studio Max or Maya, if you can afford them.
Another function often found in a game engine is the ability to write software for the game engine to run.
Unity 3D allows you to write software to run your game in C#.

3D game engines have a relatively short history in general computing. Their evolution has been hot
and fast. Starting around the 1990s, the 486 processor finally made its way into the general populace as
a processor fast enough to allow for everyone to play 3D games. Or at least pseudo-3D, 2D images drawn
in the shape of three-dimensional geometry. The technology for true 3D polygons would take a few more
years to make it onto the average person’s desktop.

Pseudo-3D was used to describe skewing and scaling flat sprites or 2D images to appear as though they
were in 3D space. True vertex transformation wouldn’t appear in popular video game engines on the PC
with games such as Quake 1 until 1995. This was greatly with the help of faster and enhanced graphics
processors. The modding community took Quake 1 and created many new additions and full conversions.

When powerful graphics processing units (GPUs) were introduced, it opened the floodgates for many
more 3D games to make their appearance. At first, these games functioned only on million-dollar com-
puters, but thanks to 3dfx, nVidia, Maxtrox, and ATi in the late 1990s, the GPU quickly took over being
a requirement for any 3D game. At that time, id Software, run by John Carmack, quickly came to the
forefront of the 3D gaming engine technologies that introduced many concepts such as spline surfaces,
complex shadows, and lighting with Quake 2.

Around 1998, Epic Games’ Unreal Engine and Valve Software’s Source Engine took off with the
launch of Unreal Tournament and Half-Life. More modding and conversions exploded onto the scene.
Many successful game modifications including Counter-Strike would go on to be one of the most played
online multiplayer games Valve Software would publish for years to come.

Before the availability of dedicated GPU and cheap RAM, computers didn’t have enough free resources
to support a game engine with editing tools. Often the game itself required so much of the computer that
there was little room left for any extras, such as particle editors or just-in-time compiling.

The modding community influenced business, making Unreal 2 and Source more modder friendly.
Garry’s Mod and Unreal Editor changed how game engines were made by adding tons of user-friendly
tools. Many users bought games specifically to “mod,” or modify, and create new games.

6 Learning C# Programming with Unity 3D

It’s no surprise that at this time many game engines would show up on the scene to cater to the mod-
ding community and the independent game developer. The large game engines found themselves top
heavy by focusing on large publishers. Companies such as RenderWare and Gamebryo found themselves
poorly positioned to compete against newcomers who focused on the independent developers such as
Unity 3D.

With the independent game developer in mind, many game engines focused on affordability and cross-
platform development. Tools such as Game Maker, Unreal Engine, and of course Unity 3D allowed
for many more people to learn and build games without the multimillion-dollar investment formerly
required for game production.

1.4.3 Why Use Unity 3D to Learn?

Making a game is more fun than making accounting software.

Having fun learning is more important as getting high test scores. After a test, you pretty much forget
the anguish of studying all night and what it was for. So there is no reason to make learning menial work
because studying should not be boring.

Once learning becomes entertainment, the lessons become something you want to remember. As a fun
experience, you remember the experience longer. I’ve found that learning how to write game artificial
intelligence (AI) and behavior is the best way to retain programming experience.

Programming lessons are often taught using stiff diagrams and simple math problems with little or no
immediate or obvious applicable use. How often have you actually needed to know where trains would
meet leaving two different cities at two different speeds? Experience shows that readers lose interest in
any example involving grade-point averages or a train leaving from New York.

Unity 3D offers examples by blowing things up. Calculus and vector examples are usually explained
using grids and lines. These concepts are lost by abstract pictures that lack meaning or application.
In this case, we’ll use math to solve for where a bad guy needs to throw a grenade in order to hit a mov-
ing target.

Finally, we’ll end up with both the knowledge that will help build a game and the skills needed to write
software outside of Unity 3D. With any luck, we’ll also have fun while learning. Some of these examples
may even help with your math classes.

Unity 3D also provides us with a complete set of tools we can use in our code quickly and easily. These
tools are a part of the Unity 3D application programming interface (API). The Unity 3D API is filled
with useful things such as commonly used routines, data structures, and classes. These parts of the API
are often called a library. We’ll learn what all that means in the remaining chapters.

1.4.4 How Does Unity 3D Use C#?

Not that long ago, Unity 3D supported three programming languages. First there was Boo, which
was given an accompaniment with JavaScript followed by C#. As of the latest version of Unity 3D,
C# is considered the primary, or first-class programming language. Both JavaScript and Boo have
been phased out.

In general, C# is gaining more support across many open source projects and has a growing user base.
The Dot Net Foundation which maintains .NET Core, is an open source project supported on multiple
platforms.

You might be surprised to learn that programming languages have version numbers. With each new
version of a language comes new features. As of the writing of this book, Unity 2018 and newer sup-
ports. NET 4.7 which is C# version 7.0. What does that mean? It’s not so simple, actually. Microsoft
created .NET (dot net): a framework or a standardized environment in which code can accomplish
common tasks with fewer commands. Using software without a framework often means reinventing
code that’s been written many times. The framework is also intended to be easily extended. Unity 3D
includes many game-related additions to help make building games easier.

7Introduction: What This Book Is About

The progression looks something like this table:

January 2002 C# 1.0 .NET 1.0
April 2003 C# 1.2 .NET 1.1
November 2005 C# 2.0 .NET 2.0 Unity 3D 4.1
November 2007 C# 3.0 .NET 3.5
April 2010 C# 4.0 .NET 4.0 Unity 3D 5.6
August 2012 C# 5.0 .NET 4.5
July 2015 C# 6.0 .NET 4.6 Unity 3D 2017.1
March 2017 C# 7.0 .NET 4.7 Unity 3D 2018.1
August 2017 C# 7.1 .NET 4.7.1

As new versions of .NET were introduced, the language that went along with it was also upgraded,
though with different version numbers. Confusing? Yes. Unfortunately, to add to the confusion there’s
also three versions of .NET that include .NET Standard, .NET Framework, and .NET Core. The differ-
ences between these have no effect on what we’ll be learning in this book, so I’ll leave that research up to
you to do on your own. For now, we’re not so concerned with the version of either so long as the features
we learn about the C# language work within the context of Unity.

C# is used by a large community of general application programmers, not just game engineers. Unity
3D is also a cross-platform game engine, and a developer working on either OSX or Windows can both
share and use files for Unity 3D. C# is the same on both Mac and PC as well as Android and iOS for
mobile, so there is no concern over what operating system you’re going to use.

1.4.4.1 How to Tell Unity 3D What to Do

Unity 3D and Microsoft Visual Studio are going to be our integrated development environment (IDE).
IDEs come in many different forms. Many professional Windows programmers use Visual Studio, and
Apple developers usually use Xcode in OSX. Microsoft has also made Visual Studio available for OSX.
An IDE provides many tools that make programming easier by highlighting the lines of code and auto-
matically completing many commonly repeated tasks.

When it comes to learning about the nuts and bolts of programming, you’re basically learning about
how your computer thinks, or in more general terms, how your computer does what it is told. Somewhere
along the way you’ll realize how unintelligent your computer is and how smart good programmers are.

Programming is basically writing detailed instructions on what to do and when. In short, get data then
do something with the data. A big part of programming is figuring out where to get information; we’ll
call this data management. Then you use logic to determine what to do with the data once you have it.
Programming logic is organized into algorithms found in statements organized into functions.

Unity 3D provides tools to move characters and objects with your code. These assets all live in the
project directory as separate files or entities that you can control through code. Unity 3D provides scenes
to give structure to your assets—3D models particle systems for explosions, fire, and other special
effects—and tools to create and edit all these things. It is largely up to you to learn these different sys-
tems on your own, but this book covers the code part of things.

Unity doesn’t provide a set of 3D modeling or 2D image editing tools. For this you’ll want to find
something like Blender 3D which is free or use another 3D modeling and texturing tools set. You’ll also
want to look into Gimp or Dogwaffle to paint 2D images to import into Unity.

1.5 What Is Programming?

It’s all about writing code.

Programming is a process in which we organize data and use logic to do something with the data.
The data is everything a computer can store; they can range from numbers to zombie characters in a
video game. You do this by writing text into many files called source code. Source code written into text
files replaces punch cards used by the computing machines half a century ago.

8 Learning C# Programming with Unity 3D

When data is combined with logic and then written into a single file, it’s called a class. Classes are also
data and, as such, can be managed with more logic. Classes are used to create objects in the computer’s
memory and can be duplicated to have a life of their own.

Classes are used to build objects. Each piece of data within the class becomes a part of that object.
Different chunks of data inside of a class are called class members. Class members can also be chunks
of logic called functions or methods. If that is not clear right now, don’t worry we’ll go into detail on that
in Chapter 2.

Objects created from a class are called instances. In a game with a horde of zombies, each zombie is
duplicated or instanced from a zombie class. Each zombie has unique values for each attribute or data
element in the class. This means hit points and positions are unique for each duplicate zombie object.

Similar to families, objects can inherit properties from one another. The child, sometimes called a
subclass, inherits attributes from its parent. For instance, the child created from a zombie may inherit
the parent’s hunger for brains. To be useful, the child zombie can also add new objects and change the
objects it inherited from its parent class. As a result, now the child zombie might have tentacles that the
parent didn’t have.

Objects talk to each other through events and messages. Shooting at zombies can create an event, or
in programmer terms, it “raises” an event. The bullet impact event tells the zombie class to then take
necessary steps when hit by a bullet. Events command the class to take actions on its data, which is where
functions come in.

Functions, also known as methods, are sections of logic that act on data. They allow your class to cre-
ate additional events and talk to yet more objects. As the player presses the trigger and moves the joystick
around, yet more events can be raised and messages can be sent. Events and messages allow the player
to interact with your world; logic events and objects together build your game.

1.5.1 What Does C# Look Like?

A game in Unity 3D is made up of many different C# files. Each file can be referred to as a “class” and
ends with the .cs file extension (which stands for C Sharp). This isn’t a class like those that are taught. It is
more akin to biology in which classes are categories that define different groups of organisms.

9Introduction: What This Book Is About

A basic game might have several different classes, each one named according to its purpose. Each one of
these classes contains the text that is your actual C# code. Just so you know, by default Windows will hide
the extensions of your files. As a result, if classes appear as simply Weapon or Monster and there is no exten-
sion.cs, then you should go into the Tools menu, select Folder Options/View, and enable file extensions.

As an exercise, we’ll be building a simple game involving monsters and shooting. We’ll start with a
basic skeleton with simple object classes and simple movement behaviors. From this we’ll build on some
basic events when the player presses keys, moves the mouse, and shoots at targets.

1.5.2 Learning to Copy and Paste

A good artist creates, a great artist steals.

Code examples exist for you to copy and paste into your project. The content for this book and all down-
loadable content are no different. You’ll have to understand what the code does and fit it to your needs.

Every programmer copies code habitually. Whether it is from code written in a previous project, or
code found on the internet. Programmers copy code to learn. Of course, it’s still important to know how
to write new code from scratch; most programming classes in school will prefer that you do this for all
your assignments. With practice, being able to recognize what to copy and where to paste is something
you’ll only know from writing code to begin with.

Programming is a constant learning process. It is a language to command computers. Anytime you
learn a new language, there will be plenty of words which you’ll have to look up. Add to this the fact that
every programmer gets to make up new words, and you’ve got a language that always needs a dictionary.

This is one reason why programmers are usually fast typists. This is also cause for programmers to be
picky about what keyboard they prefer.

In most cases, the projects in this book will be in some state where you can read text that is already
in place. Most of the projects are in a more complete state where you’ll be able to run them and see an
intended result.

As a programmer, I’ve gotten used to searching the internet for example code. Once I’ve discovered
something that looks useful, I copy that code and paste it into a simple test case. After I’ve wrapped my
head around what the code is doing, I rewrite it in a form that is more suited for my specific case.

Even if the code involves some fun trick, I’ll learn from that code. As I learn new tricks, I grow as a
programmer. The only way to learn new tricks is finding the necessity to solve a new problem for which
I haven’t already figured out a solution. Finding solutions to problems is a fundamental part of being a
programmer.

1.5.3 Iteration

Programming is an iterative process. It’s irregular to write an entire class or function without test-
ing it many times. The general flow is to write a part of a function, test it, add a bit more, test again,
and repeat until the function accomplishes its goal. Even then, many functions often work together in
sequence. Often, you’ll write a function, verify that it’s working, write another function, and verify some
more. Then you’ll have them work with one another and test again, all the while you’ll be changing and
re-arranging your code to fix mistakes.

Most of the time you’ll start off with a bunch of placeholders until you get around to finishing your
code. As you’re adding features and finishing code, you’ll have chunks of work that aren’t finished.
This is a part of game development and a part of learning as well.

1.6 Compiling: Turning Words into Computer Instruction

To test and use your code, it is time to compile. Compiling is the process of taking all of your source
files and building bytecode. Unity 3D uses .NET, as it is a compiler to generate the bytecode, but Unity
3D does this automatically. Mono is an open-source compiler that runs on many different processors and
operating systems.

10 Learning C# Programming with Unity 3D

The combination of the central processing unit (CPU) and operating system is often called a platform.
Each platform requires a unique native machine code to execute or run. Building code for each platform
is called a target. Unity 3D converts the bytecode into a native machine code and can target Mac, PC,
Android, and iOS.

Native machine code is the set of instructions that directly talk to the CPU and operating system (think
of the holes punched into a card and fed to a machine). Unity 3D is a simple way to generate the complex
set of instructions for your computer to run. Code that talks directly to the hardware is referred to as
“low-level” programming.

There are layers of software between you and the computer’s hardware. When writing C# for games
using Unity 3D, your code is compiled by .NET. Unity 3D then takes the bytecode from .NET and com-
piles a target platform into a native machine code.

Both Unity 3D and .NET are the layers underneath your code and the computer’s hardware, putting
you on a higher level. This is often referred to as a computer layer abstraction. That is why C# is usually
considered a high-level programming language.

Programming at a lower level requires much more knowledge of memory management and a wide
variety of other APIs that might include graphic cards, physics, sound, and everything else that runs a
game. Writing for a layer involves an in-depth knowledge of both the layers below and above the one
you’re writing for.

The computer hardware, such as CPU, graphics card, memory, and storage, live on the lowest level.
Above them is the basic input/output system (BIOS) and software that starts the hardware when you
press the Power button. Above that is your computer’s operating system and drivers that talk to the hard-
ware. Finally, Unity 3D lives above the operating system and your code lives above Unity 3D.

That is why we’re going to use Unity 3D to write games and not start from scratch in raw C++.
Otherwise, we’ll have to spend a few years learning about physics, rendering, and assembly language or
the instruction set that your CPU uses to operate.

1.7 What We’ve Learned

We should have an idea of what C# is, and what is required of you to learn it. If you haven’t done so
already, download and install the required software.

Unity 3D is free; there are no fees or royalties that need to be paid to the Unity 3D developers so long
as you’re not building any commercial product. Git is also free to use and you’ll need that to follow the
chapters on Git.

You’re even allowed to deploy your projects on anything Unity can target. Until you’re ready for a
commercial launch, the free license is all you’ll need for learning and sharing your game with your peers
on your computer.

Optionally, you may also want to setup an account on the Unity 3D site if you want to download and
use any of the assets from their Asset Store. A Visual Studio Community account and a GitHub account
may also come in useful later.

1.8 Leveling Up: The Path Ahead

The computer systems in place today have evolved from machines with moving parts. Telling these
machines what to do involved setting knobs and switches. Today, we use text organized into statements
and logic.

It is difficult to imagine a time when computers were so slow that simple calculations involved waiting
for clattering switches to finish moving around to produce an answer. Today, computers complete many
billions of calculations in a single second. All too often, we take for granted that computers rely on the
same concepts and systems engineered nearly a century ago.

Understanding how computers work puts into context how we write software. It is possible to write
software without this understanding, but it is harder to appreciate how it works.

11

2
Before You Begin

This book focuses on learning C# and the fundamentals involved with programming a computer
 language. This book does not necessarily focus on the use of Unity 3D to complete a specific game.
You’re not required to make any purchases, since this book assumes that you’re using the free version of
Unity 3D and other software.

You will need an internet connection to download software. There are also some cases where you’ll
want to create an account for some websites. This is optional and not required. The services suggested
are free and popular among game developers, so it’s probably something a new game developer should
learn how to use regardless.

Throughout the tutorials in the book are useful building blocks of code for game development. By no
means will the final product be a finished game; at least one that’s ready to ship. Access to free assets are
included with this book. You’re free to use them for any project you have in mind.

Along with Unity 3D you’ll need to work with Git SCM, commonly known simply as “Git.” Git is a
source code manager, sometimes referred to as a Version Control System. This means you’ll be able to
store different versions of your project with revisions kept in history. Changes to files need to be orga-
nized to prevent the loss of effort. To coordinate, developers use git merged changes and track the history
of every source file in a project.

As a new software developer, you’ll be happy to have learned to use Git. Many millions of software
developers rely on sites like GitHub.com or BitBucket.org to manage and share their code with both
their team members and the rest of the world. Even as a solo developer, you’ll see the benefits of source
control indispensable.

2.1 What Will Be Covered in This Chapter

Before we get to know C#, we’re going to need to make sure that you’re ready with Unity Git and Visual
Studio; otherwise you’re not going to be able to follow along with the content of the rest of this book.

If you are already familiar with Unity and Git, then this chapter might be a review. If you think you
already understand how a scene works and how to attach scripts to objects, then you can skip ahead to
the next chapter. To ensure you’ve installed everything necessary, let’s preview what we’ll be covering
in this chapter:

• Installing the Unity Editor

• What Git SCM aka “Git” is, and how it is used for this book

• Getting around in Unity Editor

• How to read C#

• GitHub and how to save code

• How to make use of C# within Unity 3D

The chapters that discuss Unity 3D will remain focused on how the code works and interacts with soft-
ware that usually involves C#. There are plenty of books that focus on Unity 3D’s game development
tools for effects and art. It is recommended that you also obtain some reading materials to help you learn
the rest of the Unity 3D tool set.

http://www.BitBucket.org
http://www.GitHub.com

12 Learning C# Programming with Unity 3D

Microsoft Visual Studio is installed along with Unity 3D. Both the free and professional versions of
Unity 3D use the same version. Visual Studio is commonly referred to as an integrated development
environment, or IDE. You could use another text editor such as Notepad; examples found in later chap-
ters will require Visual Studio for a complete experience.

Most of the elements of the Unity 3D tools such as particle systems, animation systems, and other
components, such as lighting and sound, are not covered in this book. However, this book enables you
to add any interactivity with those systems in the engine. By the time you finish this book, you should
be able to intuitively know how to look up what’s involved with playing a sound when the player clicks
buttons and fires weapons.

We will be looking at a lot of source code. Source code is the term given to the text that is entered into
a file by programmers. Fragments of source code, and in many cases a complete source, are provided as
a part of completing the Git SCM tutorials. A sample of source code will look like the following:

If the sample makes no sense at all, don’t worry; after just a few chapters you’ll be more comfortable
looking at the new punctuation and formatting. Each character, space, color, and words have a special
meaning. To programmers, this formatting of characters is called syntax. If you’ve written something
like HTML or even JavaScript, some of this might be familiar.

Unity calls the source code a script. Much like an actor in a play follows a script, the objects in Unity
follow a script assigned to them. Web programmers write in JavaScript; before Unreal Engine 4, Unreal
Engine used UnrealScript. Unity simply uses C# as its scripting language.

Don’t make the mistake that C# is merely a scripting language and not a programming language. C#
is used to write plenty of desktop and mobile apps from scratch. Unity calls C# a scripting language but
it doesn’t mean you’re not programming.

It is important that you take care to notice the syntax—the placement of words and punctuation. Each
curly brace, colon, and period is important. Forgetting a single period or a semicolon will stop all code
from working.

The syntax is colored by Visual Studio with what is called syntax highlighting. The colors are chosen
automatically based on the context in which the word or special character is used. The colors can also
be customized to your personal preferences with settings found in Visual Studio. So, if you prefer a dark
theme, that option can be found in the preferences.

We will spend a lot of time writing code and inspecting each line to understand what is going on.
More importantly, we’ll be thinking about why the code works and the alternate methods of accom-
plishing the same task. One important topic we’ll also be looking at is how a line of code can break
and how to fix it. There are many common mistakes all programmers make, which we may also get
used to them early on.

13Before You Begin

Just as important, we’ll look at how the code misbehaves and what common mistakes can take place.
Error messages are not a problem, they are clues that inform where you need to fix your code. You can
expect a lot of errors when you first get started; in many cases, a single line may have more than one
error, so there might be multiple fixes before you’re able to move on.

Alternate methods are important, you know that each task you approach isn’t solved with a single solu-
tion. Approaching a problem is more important than memorizing and regurgitating the same solution
when you see a similar problem again. In the real world, no two situations will be exactly alike. Each
time you need to solve a problem, you’ll need to invent a unique solution.

Programming is a creative process that allows for any number of different methods to accomplish
a single task. Each variation of code has pros and cons. Each line of code may vary depending on the
programmer; in this case, you may feel differently about what code to use and why you prefer it. Always
use the version which you find easier to read and understand.

No doubt, if you’re really going to get into making games with Unity 3D, you’ll want to get an addi-
tional book that focuses on building assets, scenes, and effects. If you don’t already know your way
around Unity 3D, we should have a brief introduction to the Unity 3D interface that we’re most concerned
about when it comes to writing scripts.

2.2 Unity 3D Installation

There’s a lot of software to install, so hopefully this won’t take too long. Sometimes there are a lot of
options, so it’s best to double check with the book to make sure you don’t miss something.

If you haven’t already, download Unity 3D from https://store.unity.com/

This will present a menu of options. Pick the free version on the following page then select the
Download button, Unity Hub, for your operating system.

Unity Hub is a helper app that lists the latest builds of Unity. The list includes beta releases as well as dif-
ferent versions of Unity. Depending on your download speed, this might take a while to finish downloading.
It is worth getting the latest version, as many features and options are always added with every new update.

https://store.unity.com/

14 Learning C# Programming with Unity 3D

Once the Unity Hub has finished installing, it’s time to install Unity from the Unity Hub. When the Hub
opens it will ask if you would like to sign into an existing account or if you’d like to create a new Unity
ID. A third option exists if you’re not connected to the internet. Follow any steps necessary to log into the
Unity Hub. There’s no fee required to install Unity, just a valid email address.

The License management panel will ask what version of Unity you will be using; select Unity Personal
unless you’ve purchased a license. You’ll be prompted with a dialog where you’ll need to promise you are
not using Unity in a professional capacity. You’re allowed to download Unity once the personal license
is activated. Under the Installs tab, you’ll see options for “On My Machine,” “Official Releases,” and
“Beta Releases.”

Teams often settle on a specific version of Unity for compatibility. Some custom tools or plug-ins are
targeted to a specific version of the Editor. So, upgrading the Editor may also mean upgrading plug-ins
and fixing bugs between versions. To avoid forcing users to upgrade, Unity continues to support past ver-
sions of the Editor for developers who can’t upgrade easily.

As a newcomer, you’ll want all the latest features and that means picking the most recent version from
the list of official releases. Aside from the Editor itself, you’ll want to install the Dev tools: Microsoft
Visual Studio Community as well as the official documentation. Be patient, we’re just getting started.

15Before You Begin

If you’re on OSX you’ll see the following:

To continue, allow the various installation pop-ups and agree to additional license agreements. Eventually,
you’ll see a progress bar replace the download button and the Unity Installation is officially underway.
After the installation of the Unity Editor, the Visual Studio Install will automatically launch.

2.2.1 Visual Studio Installation

Visual Studio Installer opens on its own. When it’s complete, the Unity 3D installer pops back to the
front. With Visual Studio Community you’ll also be able to write and build applications outside of Unity
3D! Visual Studio is not just an editor for Unity 3D alone. You’ll be able to create practically any app
from scratch for Windows, Android, and much more!

16 Learning C# Programming with Unity 3D

If your machine has problems with the installation, you’ll be able to select one of the installations from
the Hub and try again. There’s also an “Add Component” option to try re-installing Visual Studio from
the Hub as well.

Once the installation is complete, start Unity 3D. If your splash screen looks different from the one below
it’s only because a newer version has been released and they updated the splash screen image. Don’t
worry, it’s just cosmetic.

2.2.2 Unity Version Numbering

You might be wondering why there are so many different versions of Unity to download. The company
keeps past versions around for various reasons. The latest version of Unity in the Official Releases list
is going to be the recommended version. Older versions don’t all support the same version of C# and
the .NET framework, so some example code shown in this book might not work in older versions of
Unity.

The Unity versions are numbered by year followed by a major and minor update version. You’ll also
see either a letter “a,” “b,” or “f” in the last part of the minor version number. This represents either an
alpha, beta, or final release. Some versions are suffixed as LTS for Long Term Support; these are versions
that are known to be the most stable.

17Before You Begin

Major updates often include engine changes that could interfere with custom plugins or may require
some C# code changes between major versions. Minor updates usually don’t include engine changes, but
fix behaviors that might not have been working as expected by some users.

Alpha releases mean that the version is a work in progress or feature incomplete. Not all Alpha releases
are available through the Hub. Unity often releases previews in their forums. Beta releases mean that
the features require more testing before final release. Unity relies testing by their users to fully vet the
functionality of their Editor before final release.

Final release updates mean bug fixes have been integrated, but no new features have been added.
A new LTS version is released when most of the known bugs have been fixed. Of course, nothing is per-
fect, so as new bugs are found and fixed a new LTS version will be updated and released.

For the best experience it’s a good idea to use the latest LTS version from the Official Releases list. Though
for the most current features the newest final release in the Official Releases list is also safe. For all the cool-
est bleeding-edge tech, go for the Beta Releases. Upgrade notes and release notes accompany each release.
In some cases, old features are removed as new ones take their place. In 2018, the MonoDevelop tool that used
to be included is no longer supported as well as old programming features like Javascript and Boo support.

2.3 Git SCM Installation

For clarity, it’s not necessary to download and install Git. Git is a stand-alone source code manager and it’s
great. GitHub, not to be confused with Git, is a free web service that facilitates sharing and storing a Git code
repository. Signing up for a GitHub account is also not required. Both the Git software and the GitHub.com
web service are fantastic resources and you’re welcome to try them out, but neither are necessary.

Eventually, you will need to know your way around Git as a programmer. To the detriment of the cur-
riculum, source code management is rarely, if ever, taught in a classroom setting. It’s impossible to say
how often source code management has saved a project. You will want Git if you write code.

Given a chance, I hope you’ll follow along and learn a little Git. Some form of code management is
used in every setting where programmers work together. At least some exposure to Git will help. Both
personal and cooperative projects can leverage the power of Git.

If you want to skip out on Git, simply go to the “BookContents” URL and download the Zip file.

https://github.com/CSharpWithUnity/BookContents

Click the “Clone or Download” button, and then select Download ZIP from the following pop-up.
This contains the Content, Unity projects and assets for each Chapter in this book. Unzip to somewhere
on your computer and carry on.

2.3.1 Git-SCM.com Git Software (Optional)

If you’re interested in joining the millions of programmers who do use Git, download the Git SCM soft-
ware. Navigate to:

https://git-scm.com/downloads

https://git-scm.com/
https://github.com/
http://www.GitHub.com

18 Learning C# Programming with Unity 3D

Download and install the software. No account is necessary to download and install the software.
Just a few dialogs during the installation need to be clicked through with default settings and you’re
done.

Git changes how you’ll want to save files. Without Git you’ll often resort to saving a file as
Character1.cs followed by Character2.cs and eventually Character2Final_Final_Final2.cs, hardly
optimal. Also consider that the contents of the file can interfere with one another. Using Git you’ll
leave the file’s name unchanged, but Git will retain the content history of each file. At any time,
you’ll be able to retrieve any version of any file.

2.3.2 GitHub.com Sign Up! (Also Optional)

To fully leverage the power of Git you’ll want to start your own GitHub.com account. If for some rea-
son you don’t need GitHub, then you can skip to the next section and just get into the basics of the Git
software.

GitHub is an independent service that integrates with Git. It’s an on-line storage system that makes
source code available on the internet and can act as a back-up for your projects. It’s also a resource
used by many programmers to share example code and open-source projects with the world. You’ll
find tens of thousands of Unity and C# projects on GitHub, the contents of this book are just some
of them.

Visit https://github.com/ and fill in the new account form.

Make sure to write down your information since we’ll need to match this up with the Git software we
just installed in the previous chapter.

https://github.com/
http://www.GitHub.com

19Before You Begin

To start, select the Free option; this will give you unlimited private repos. Then, select Continue. You
may need to wait for an email from GitHub to verify your humanity. After doing this, you’ll be able to
make a clone of the book contents to your own GitHub account.

Fill in the questionnaire with any response you feel comfortable with. These aren’t going to change
your interaction with the software, so the step is optional.

Next, you’ll want to find the repo for this book. While you’re logged in your new GitHub account,
visit https://github.com/CSharpWithUnity/BookContents to find the contents for this book. On that page
you’ll have several options; the one we’re looking for is called fork.

Clicking on this button will tell GitHub that you want to make a personal copy of the BookContents on
the GitHub site. This means you’ll have your own version, which you’ll be able to edit and make changes
to without disturbing the original.

https://github.com/

20 Learning C# Programming with Unity 3D

The above image indicates that GitHub is busy making a copy. Once complete, you’ll have a new URL
which points to your own copy of the contents for this book. This is your version; a completely indepen-
dent copy of the contents of the book you’re free to play with, modify, and share.

2.3.3 Git: The Basics

Git runs in what’s called a console. A console is sometimes called a command line or, in OSX, a Terminal.
The console looks like a text window, but it’s a tool that uses text commands, which are usually referred
to as shell commands, to carry out operations. Git Bash is a console window that uses Unix-like shell
commands on a Windows machine. Examples of these commands will be following soon.

Mac users have the built-in Terminal. Windows users can also use the native Windows console or
the Power Shell. For this book, we’ll be using the Git Bash since the commands are the same in OSX’s
Terminal software.

A new window should pop up once Git has finished installing. There should also be a shortcut to Git Bash
located either in your start menu, or desktop. This new window is a shell, or sometimes folks refer to it
as a Terminal. The “$” symbol is called a “Prompt” and indicates the shell is ready for a shell command
to execute. Our first command will be asking Git what version is running.

21Before You Begin

In the window type the following:

git --version

The start of the line “git” calls on the Git software. The double dash or perhaps minus-minus indicates
the start of a command for Git to run. The enter key at the end tells Git to execute the command. When
run, Git should reply with something like the following:

git version 2.18.0.windows.1

Git should reply with whatever version was installed. No doubt a newer version has come out since the
writing of this chapter. Git gets updated often so expect a higher number than shown here.

Simply entering the following:

git

starts the Git software without any commands. Git replies with a list of commands it’s able to run. In this
list is “clone,” which we will use to make a copy of the contents of the book.

Enter the shell command:

git clone

This will reveal the help text for the Git clone command. The first line is “fatal : You must spec-
ify a repository to clone.” Don’t worry, nothing died; “fatal” is just a dramatic word Git uses
when it stops doing something unexpectedly. From here you should also type in:

pwd

The “pwd” command is a regular shell command used to print out in what directory you’re currently
performing operations. When you want to know where you are in your computer the “pwd” command
will tell you. For me I get “/c/Users/alexokita” indicating I’m in my user home directory. If you
open your file browser, you can also find the same directory. Next, move into our Documents directory
by using this command:

cd Documents

The letters “cd” is another regular Unix shell command that means “change directory” the fol-
lowing word is the directory you want to change to. This command also changes the prompt we’ve

22 Learning C# Programming with Unity 3D

been seeing above the command prompt. You’ll see your user name @ computer name followed by
“~/Documents” this tells you that you’re now running commands in your Documents directory.
To get a list of what is in the Documents directory use the shell command:

ls

This will print out in text the names of the directories and files visible in the Documents directory. If there’s
nothing named BookContents then we’ll make a clone of the Contents for the book here. If you have
somewhere else that you’d prefer the “BookContents” go, then you can navigate there using the cd or
change directory command. To go back a directory use cd.. or cd followed by a space and two dots.

git clone https://github.com/CSharpWithUnity/BookContents.git

This command begins downloading the repository to a directory in Documents and automatically cre-
ates a directory called “BookContents” named after the repo from Git.

Your results might look a bit different, but you’ll get the contents so long as you’re connected to the
internet and can reach GitHub.

2.3.4 Your First Repo

On your GitHub account with the book contents repo open, look for the Clone or Download button
located to the right of the contents. This is how Git will locate the online version of your code. If you
didn’t create your own account and skipped creating a fork, you can clone directly from this URL
instead: https://github.com/CSharpWithUnity/BookContents.

Copy the URL that’s in the pop-up box. This works the same from your own fork as it does from the
original repo you may have forked. You can do this by clicking on the clipboard icon on the right.

Now back to that Git Bash window.

https://github.com/
https://github.com/

23Before You Begin

If you’re not in your ~/Documents directory, cd back to it. This is where we will create a clone of the
contents for this book. This directory is the same as if you were to open your Documents folder in the
Windows file explorer. If you’re familiar with using the command line, then you’re free to clone your
GitHub repo to another directory if you like using the cd command.

When we copy the URL from the pop-up dialog, we can’t use CTRL+V to paste that into Git Bash;
instead we use the mouse middle click. This may seem unusual, yes, but that’s just how Git Bash
works.

Enter the command in the bash window:
git clone followed by the middle click which should look a bit like the following:

git clone https://github.com/NewUnityUser/BookContents.git

The NewUnityUser should be replaced with your own user name on GitHub.

This will make a copy of the data from the remote data source on GitHub from your fork to your
Documents directory. A new folder called BookContents stores all the files and project directories
you’ll need for this book. With your own GitHub account, you’ll also be able to save your work on
GitHub. If you’ve already cloned BookContents you should delete it before cloning your own repo.

https://github.com/

24 Learning C# Programming with Unity 3D

The Git Bash is going to be our interface into GitHub. There are a lot of new useful GUI versions of
Git and they all have their pros and cons. The command-line tool is the only version that’s consistent
and doesn’t have different names and icons for each possible button. For consistency, we’ll stick to the
command-line version of Git.

That’s enough for now; done with all the setup!
A fork is a copy of the contents that has split away from the original content. You’ve created a unique

and original version of the original contents of the book. You’re free to make changes and modify the code
in any way. None of the changes you make will accidentally get made to the original source of your fork.

This also means that if the original source gets updated, you’ll need to “pull” those changes into your
version to get the latest updates. Use the following command:

git add remote add upstream http://github.com/CSharpWithUnity/BookContents

This makes a connection from your fork of your repo to the original source that you originally split off
from. As the command implies, there’s a remote repo, something distant from your repo. You’re adding
something that’s upstream of it. Upstream means that the remote source has updates that you may need
to catch up with. The URL you’re adding to is the source you want to make a remote connection.

To see if the remote has make progress, you use the following command:

git fetch upstream

This tells Git to collect the data that might be updated on the remote repository. This doesn’t yet combine
or update your local data to the remote version. This saves a local hidden preview of what’s updated. To
match your local data to the remote version use:

git merge upstream/master

This merges the data that’s been updated on the remote repository into your local copy. If there have been
a lot of updates, you might have a new text window pop open asking if you want to make a comment on
what’s been merged. Save and close the window, and the merge will proceed.

http://github.com/

25Before You Begin

If all goes well, then your local stream has caught up to the upstream repo. Your local copy on your
computer has updated, but your fork on Github is still behind. To update your fork on GitHub use the
following:

git push

This sends your local data up to GitHub for safe keeping. Now, you’ve updated your repo!

2.3.5 Before Moving On

Visual Studio, like Unity and Git, sees regular updates. Like the Unity Hub, the Visual Studio Installer
is a stand-alone app that checks for updates. In addition, when Visual Studio is open there’s a little flag
on the top right.

If you ever see the flag light up, it’s time to upgrade or at least look at what upgrades are available by
clicking on it. Built into Visual Studio is a list of updates and changes that are available.

Before getting too far ahead we should review what we have installed. We should also write down the
user names and passwords for the new accounts we created. Here’s a checklist of where you should be
at before moving on:

• Unity 3D has been installed

• Visual Studio Community was installed with Unity 3D

• Git SCM with the Git-Bash shell has been installed (Optional)

• Your Github.com account has been created (Optional)

• You’ve obtained the BookContents by either:

• A fork of https://github.com/CSharpWithUnity/BookContents to your Github account (Optional)

• Cloned your fork of the BookContents to your local Documents directory

• Or you downloaded the Zip and decompressed it to BookContents

With a copy of the contents of the book source code and all the examples on your disk, and Unity 3D
and Visual Studio installed, you’re ready to continue. There’s still a bunch of stuff to learn about Git, but
we’ll save that for later.

In case you wanted somewhere handy to keep this information, here’s a place for you to write your
information.

Unity 3D Account Info

User Name: _____________________

Password: ______________________

GitHub Account Info (Optional)

User Name: _____________________

Password: ______________________

Visual Studio Account Info (Optional)

User Name: _____________________

Password: ______________________

https://github.com/
http://www.Github.com

26 Learning C# Programming with Unity 3D

2.4 Unity General Overview

Let’s start with a brief overview of the user interface (UI) for the Unity Editor. For each chapter there’s a
prepared Unity Project with C# files and scenes named after each chapter. The personal and professional
versions of Unity interact with C# in the same way.

When you’re starting the Unity Hub for the first time, you may be asked to sign in with your Unity User
account. If you got through the previous chapter, then you should already have your login and password.
Hopefully you wrote down your login information.

Across the top you’ll see the menu tabs Projects, Learn, and Installs. These are the major tabs; on the
right you’ll also find New, Open, a gears icon, and an account icon. The Projects icon shows you a list of
any local project, or if you’re using the Unity Cloud project service, you’ll see the projects listed there.
The Learn tab will show some of the official Unity tutorials instructing you on how to use different tools
that have been added to the Unity Editor. The Installs tab shows installers for different versions of Unity.

To get started Click on the Open Project icon and navigate to BookContents/Chapters/Chapter2 and
select the folder.

27Before You Begin

Upon opening a project, you may be asked if you want to upgrade. Specify the latest version of Unity and
use the Current Build Target. Press Open and upgrade the project to the newer version of Unity. Unity
updates the project and generates a few new directories with temp files used to build the game. Assets
like textures, meshes, and sounds are all prepared for building a game. Once this is complete the main
Editor view opens.

2.4.1 The Main Window

The default Unity Editor interface is divided into five major parts: (1) toolbar, (2) Hierarchy panel, (3)
Scene and Game view, (4) Inspector panel, and (5) Project and Console panel.

The tabs for any view can be dragged out and re-arranged in the Editor. Pulling a tab off detaches it from
the main UI. The free tabs can remain a separate window, or they can be re-attached or grouped with
other tabs. To restore the default layout, select Windows→Layouts→Default.

2.4.1.1 Toolbar

Label 1 in figure shows us the toolbar. The icons to the left are the navigation and manipulation tools.
Toward the center of the tool bar are the Play, Pause, and Step Forward buttons. We will be using the
Play-in-Editor button to test our code. On the right are various logins and view filters to help identify
specific objects in the scene.

28 Learning C# Programming with Unity 3D

When the Play-in-Editor button is pressed, the Game view panel automatically comes to the front.
Scripts attached to game objects in the open scene are executed and output is written to the Console
panel. The contents of this book depend on opening a scene, examining code in the scene, and press-
ing the Play button to see what the code does. This pattern persists throughout the content of this
book.

2.4.1.2 Scene, Game View, and Asset Store

Label 2 shows us the Scene and Game view just mentioned. As the scene updates, the view from the
Main Camera is shown through the Game view. The Scene tab falls to the background when the Game
view comes forward. Clicking on the Scene tab allows us to see what’s going on behind the scenes as
the game updates. You’re also able to move Game objects around using tools in the toolbar while the
game is running. There are some exercises in this book which may require you to move game objects
around as the game is being played.

The scene is more like a construction view of the game. The Game panel is the view of the game
through the Main Camera. The difference here is that the Scene panel cannot be seen by the player, only
you as the creator of the game can access the Scene view. With this view, you’ll be able to arrange any
object, light, or zombie the way you want.

2.4.1.3 Hierarchy Panel

Label 3 shows us the Hierarchy panel. In a new scene, you’ll have a Main Camera and a Directional Light.
The Hierarchy shows you all the Game objects that make your game scene. Any zombies, environments,
cameras, lights, and sounds can be found in this panel after you add them. When any object is parented
to another, it can be found by expanding the parent object with the triangle. In the following example,
you’ll find a piggy parented to a house.

29Before You Begin

The hierarchy of the scene contains the Game objects in the currently open scene.

2.4.1.4 Inspector Panel

Label 4 shows us the Inspector panel. By selecting an object in either the Hierarchy or the Scene view,
you’ll be able to look at their various properties such as a Transform, which shows the object’s position,
rotation, and scale in the scene. Objects in the scene are updated with the Inspector.

Take note of the Add Component button in this panel. This is one of the many ways in which we can
assign a C# file to an object in the scene. If this seems a bit confusing, don’t worry, we’ll get back to what
Components and Game objects are in a moment.

2.4.1.5 Project and Console Panel

Finally, label 5 shows us the Project and Console panels. The Project view shows us all the assets in the
project. When we save a scene, it then turns into an asset for us to open from the Project view. As new C#
files are added, they are shown here. To read the names of the files in the Project window use the slider
located to the lower right of the window. Move the slider to the left to make the file names clearly readable.

30 Learning C# Programming with Unity 3D

The last but most important part is the Console panel. By clicking on the Console tab, the Console view
will be brought forward. This view displays the output text that is created by the C# code we write. Any
problems, warnings, and errors will also be presented in the Console panel.

31Before You Begin

The Unity 3D installer also installed Visual Studio Community, the IDE used to edit code. We haven’t
written any C# yet, so we haven’t gotten to Visual Studio, but that will come soon enough. Before that,
we’ll want to make sure that we’re not too surprised by what we’re about to get into.

2.4.1.6 Assets Directory

A Unity Project is a collection of many files and directories that store settings and assets used to build a
game. Programming projects are made of many small text files called source files. In addition to these
files, Unity includes 3D models, textures, sounds, and other resources used to build a game.

The primary location for all your C# files and assets is in the Assets directory. If you add a file outside
this directory, your game will not be able to access it. When a project gets bigger, subdirectories in the
Assets directory help keep your game organized. How you organize is up to you and your team; however,
when you move or rename files it’s best to do that from inside Unity 3D.

Living next to every file in the Assets directory is a .meta file. This meta file helps Unity 3D identify
the file, as well as keep track of any settings related to that file. For instance, the SampleScene.unity
generated with a new Unity Project has a neighboring .meta file that looks like the following:

Open that meta file in Visual Studio and you’ll see something like the following:

You should never need to directly edit a meta file, but it’s important to know why it’s there. When you
share your game project, you’ll want to include all the generated .meta files. Otherwise, your settings for
each object in the scene might get lost!

32 Learning C# Programming with Unity 3D

When starting your own projects double check that the Editor has the Visible Meta Files mode selected
for Version Control in the Project Settings dialog. This will ensure that the files maintain their links
between scenes and assets.

2.4.1.7 Project Settings Directory

The Editor itself has a lot of settings stored to prepare the environment to build to different platforms,
Windows versus Android for instance. Global settings like those used by plugins, editor extensions,
licenses, etc. are all stored in the Project Settings directory. Since many things like quality settings should
be shared with your team, you should include the Project Settings directory when sharing your project.

2.4.1.8 Packages Directory

Next to the Assets directory in the computer’s file browser is the Library directory. This contains the
glue which Unity 3D uses to tie assets and logic together behind the scenes. Your editor preferences,
platform settings, and many other bits that game engines need are placed here. It is very rare any user
will need to go in here to make any modifications, so it is best to avoid messing with the contents of
this directory.

2.4.2 Git Ignore

Several directories are created when Unity opens a project. When using Git, the generated files need to
be left out when checking for changes to add. Git uses a text file called .gitignore as a template to
filter out files to ignore.

The file uses patterns in text, if a file name or directory matches a pattern in the .gitignore file then
it’ll skip the file when searching for changes. If the .gitignore file contains log.txt then all files,
anywhere, which the repo named log.txt will be ignored.

Thankfully, there are plenty of Unity users who also use Git and .gitignore examples are readily
available. A quick search on the internet reveals something on GitHub called the Unity.gitignore.
With a couple dozen contributors, it’s promising, and it’s also what I’ve included in the Git repo for the
BookContents.

To inspect the .gitignore file use a text editor—Visual Studio would be good—and navigate to the
root of the BookContents directory. Open the .gitignore and you’ll see about 40 lines of text.

2.4.3 What We’ve Learned

Unity 3D has a diverse set of tools, all of which are useful once you’ve decided to go ahead and build a
game. The engine has been used to create everything from 2D side-scrolling games to 3D first-person
shooters. Fantasy role-playing games and top-down strategy games have all been produced and pub-
lished using the Unity 3D game engine.

It is best for you to look around online for additional information on the Editor itself. There’s plenty
of cool stuff you can do once you follow some of the online tutorials that cover the basics of the Editor.

Topics on materials, particles, and animation will not be covered in this book. It’s a good idea to
get into the different aspects of the Editor to understand the most out of Unity 3D, once you’ve gotten
through a portion of this book.

The Unity Project is a directory. In this directory are a few subdirectories generated by Unity when it’s
launched. Only the Assets, Project Settings, and Packages ever need to be backed up. New directories
generated by Visual Studio and Unity when launched may include a hidden “.vs” directory, “.obj”, and
various other files, but they’re updated when Unity or Visual Studio are launched, and these don’t need
to be backed up.

To be an independent game developer, you’ll have to cover the breadth of skills that are usually taken
on by different team members in a larger game production cycle. As a “lone-wolf” game developer, you
must take on a variety of tasks, not just the code.

33Before You Begin

If you’re an artist looking to add programming on top of your current skill list, then the rest of the
Editor’s functions will come more easily. It is still a good idea to know your way around Unity 3D if
you’re new to this game engine.

2.5 Sample Code

Throughout this book, samples of code will be shown in what is called a code fragment. Fragments,
as the word infers, are small parts of a whole code sample. Complete code samples will be given when
it is necessary to show how a completed source file will look like. If only one or two lines change in a
complete file, only the changed lines will be shown as a code fragment. Here’s an example of a complete
source file:

The above example shows a new C# file generated by Unity 3D. We’ll observe how it is created in a
moment. What’s important is that you could copy the text carefully into a new file named Example.cs
and use it as is. First, let’s see what a fragment will look like and then we’ll go into how this is done.

2.5.1 Code Fragments

The following example shows a fragment of code taken from the completed source file:

You should be able to identify where the code was taken from, line numbers seen to the left of the code
should help indicate where in the file to look. After identifying where its original is, you should be able
to see what’s changed or added. This means you should make the same changes in your version of the
source code.

34 Learning C# Programming with Unity 3D

A fragment is intended to showcase smaller, more important components of a complete code sample.
Rather than reading through the completed source file and looking for the change, a fragment will help
you find the important differences when a new concept is shown.

Not all examples in the book will start with a complete source file. Often, the code fragment
will require only one line to represent the concept being explained. The context of the code sample
and your ability to understand the context should be sufficient by the time you begin to see those
examples.

Most of the programming fragments will not make a visual impact in the scene inside of Unity 3D.
There isn’t a single command to make monsters appear or dragons breathe fire. Programming is the
manipulation of data with logic, not magic.

If the changes are added correctly, your version will function the same way as described by the tutorial
you’re reading. A code fragment cannot function on its own. The rest of the code is required by Unity
3D to run without errors.

Once a concept has been introduced, you’ll be required to remember how it is used. Later lessons will
again reinforce the concept that learning how to program is a skill-building process. To program a com-
plete game, you need to combine the different ideas taught here and write your own code. Building upon
your own skill will not only expand your understanding of C#, but once concepts have been learned,
you’ll be able to apply them to other programming languages.

Occasionally, I’ll refer to how C# differs from other programming languages. I’ll leave it up to you to
investigate what the other languages look like on your own. This provides a context as to why C# looks
or acts in a particular way and how other programming languages solve the same problem. In most cases,
you may find that many programming languages look and behave quite similar.

2.5.2 Are Errors Bad?

No, errors and warnings are there to help you. Don’t be afraid to make mistakes. The code you write
cannot break Unity 3D or your computer. At least nothing you’ll learn from this book will enable you
to do so.

As a matter of fact, it is often good to produce errors. The errors tell us what we can and cannot
do. Programmers often ask themselves, “Will the compiler let me do this?,” which may produce an
error. If not, then the programmer will continue his thought with “Huh, I guess it will, so that means
I can ….”

Creating and fixing errors tells us what the code expects from us. It is a sort of a conversation
between the programmer and the computer; for example, the programmer asking questions in the form
of a code statement and the computer replying with an error to the programmer who asks for things the
computer can’t do.

Many years ago, programming magazines used to share code in print. This meant that you’d have
to copy word for word what was written in an article to get a program to run. Back then the compiler
wouldn’t tell you where the error was.

Hidden in your code could be a 1 (one) in place of an l (lower case L) and you’d have to find it yourself
after typing in a few hundred lines of text. Be thankful for the modern IDE that tells you not only that
there’s an error, but often where the error is.

2.5.2.1 Compile-Time and Run-Time Errors

There are two general cases of errors: compile-time and run-time errors. Compile-time errors often
include syntactical errors that are usually found right away by Unity 3D before the code is even run.
These are shown in the Console panel which we saw in a previous chapter.

An error where specific words may be misspelled, or an incorrect character is placed in the code will
result in an error in the syntax in your code.

35Before You Begin

There are many cases in which compile-time errors can pop up, far too many to list here. However,
compile-time errors (sometimes called parsers) occur when the code itself is written incorrectly.

Run-time errors happen while the game is running and the code is executed. These errors are usually
created by a misunderstanding of what the code can do. When Unity 3D comes across a statement that
contains unexpected data or tries to do something mathematically impossible, for example, divide by
zero, we get a run-time error. Such errors are usually a bit harder to fix as they only show up when there
are specific conditions in the game. For these, we can mark the statement in Visual Studio and tell Unity
3D to stop when it gets there. Once that happens, we can inspect every bit of data and its value. This will
help find and fix any problems that exist.

Errors simply stop Unity 3D from running your code. Some properly written code may follow correct
syntax, but might require you to force Unity 3D to close using the task manager. However, this is rare and
often easy to fix. Read the code samples carefully as you enter them into Visual Studio.

To fix the error, you find what character was mistyped and replace it with a correction. To test if the
error is fixed, go back to Unity 3D from Visual Studio. If no errors or warnings are produced, then your
code is clear of syntactical errors.

2.5.3 How to Follow Along

Many examples will require that you use both Visual Studio and read Unity 3D’s console window. We’ll
be switching back and forth often for each section. When working in Unity 3D, you might need to have
the Editor take up a lot of screen space to have access to all the different parts of the Unity 3D interface.
Primarily we’ll need to see both the Console and the Inspector panels. This is often why programmers
like having multiple monitors. One monitor with their code and the other monitor with an editor open,
showing them the resulting behaviors.

Each section may have a corresponding Unity 3D scene. Open the Unity Hub to open the different
chapter exercises.

The Hub is a separate app from the Unity 3D Editor. It’s used to install new and beta releases of Unity as
well as create and open projects. From here, select the Open icon to the top right of the Hub app.

36 Learning C# Programming with Unity 3D

Select the directory of the chapter you’re currently reading about and click on Select Folder. An addi-
tional window may open asking which version of Unity to use; select the latest version and continue.
Select continue if any additional windows open asking about upgrading the project to the version of
Unity you’re using.

In each project for each chapter are Unity Scenes, each named by section. I’d suggest taking in a single
chapter at a time and then letting the information sink in a bit. You should also conduct experiments on
your own to gain a better understanding of what you just learned. If you can make assumptions about
something you’ve learned and step beyond what was taught in the chapter, then I’d say you have a usable
grasp of the chapter.

Without following each chapter and skipping around, you might find yourself reading terms that are
unfamiliar. I try my best to build up from one chapter to the next. So, try not to skip too far ahead of
yourself, unless you find yourself being bored and unchallenged; in that case, you skim through each
chapter until you find something you’re not already familiar with.

2.5.4 Comments: A First Look

In the code you’ll see some marks that precede text in the IDE. Usually you’ll see either // or /* with
some text followed by */ at the end. These indicate what is called a Comment. A Comment makes the
text invisible to the compiler.

If the compiler doesn’t know the text is there, then what is it good for? Throughout the examples pro-
vided for this book comments are placed in the project near the example code. It’s with the comments
that additional help and information is presented.

37Before You Begin

Even the engineers at Unity leave helpful breadcrumbs in the code hinting at what the code in the file
does. The image above shows the comment “// Use this for initialization” to indicate what
the following code is used for. Comments are useful, and you should remember to use them to keep notes
for yourself as you learn.

Comments are used like breadcrumbs in a deep forest. Comments help leave behind some of the
thought process in why your code is written the way it is.

2.5.5 What We’ve Learned

We’re going to have to do a lot of reading and writing. Sorry, that’s just the case when it comes to code.
If this doesn’t detract from the experience of learning, then great! Otherwise you’re going to have to just
get over the fact that programming involves a lot of typing and thinking at the same time. If you’re used
to doing that sort of thing, then great!

2.6 Working with C#: Game Engines

Unity 3D is a game engine. You will be writing code that runs inside of this game engine. So, you’re writ-
ing software that’s run inside of another piece of software. What this means is that your code operates a
layer further from your computer’s hardware resources.

NOT E: What do I mean by further from the computer hardware resources? This is where the term “high-
level programming” comes from. At the lowest level is the actual computer hardware. Programmers at
this level are building silicon chips.

38 Learning C# Programming with Unity 3D

At one level above the silicon are things such as bus and motherboard where everything is either plugged
into or soldered on. At another level above those are components that tell the motherboard what to do
when power is turned on, how to look for data storage to launch operating systems, and just about every-
thing else that happens when the computer is turned on.

Once this level finds an operating system, it hands over the tasks to the lowest level of your computer
operating system where drivers and other hardware-to-software interfaces come into play to get your
computer running. Once the computer gets booted and your operating system is properly talking to all
the hardware components, it is ready for software applications to start running. At this level your soft-
ware is usually not talking to any computer hardware directly, but it is talking to the software that runs
the operating system.

Unity 3D is a software that talks to the operating system. When you write your game software your
code usually talks directly to Unity 3D, but not to the operating system or computer hardware. Your code
is being run with many other layers of software between you and the hardware. Similar to so many mat-
tresses between you and the floor, there is more padding between you and any of the complexities that
run your computer.

When your code is compiled, it turns into a machine language. The details here are simplified as
there’s a bit more going on under the hood than what we can explain here. The game code is made up of
many different objects called classes. Classes are composed of data (also known as variables), logic (also
known as functions or methods), and a name (also known as an identifier).

Functions and data work together inside of Unity 3D to make your game experience come to life.
This coordinated effort can be packaged and turned into a new program that you can publish to any
number of computer platforms including browsers, game consoles, and mobile devices.

C# has a few simple parts that we’ll be studying later in this chapter. As a part of an exercise, we’ll
have to learn how to read a bit of code. Open the LineNumbers.cs class by double clicking on it in the
Assets directory of the BookContents/Chapters/Chapter2 project.

An underappreciated part of reading code is the line number. These numbers are found to the left of the
code.

39Before You Begin

Each line of code is numbered starting with 1 at the top and ascending as you scroll down. Here we can
see that lines 1–3 of the code are required to access libraries or software that has already been written by
many engineers to empower your code with a vast wealth of software.

At line 5, you’ll find what is called a class declaration. This serves as a good overview of what to
expect in the remaining chapters, so don’t worry if this seems like a lot of unfamiliar information.

Continuing down you’ll find some public variables at lines 7 and 8. At line 10, you’ll find a comment
describing the use of void Start(), which is the first line of code declaring a function. Inside the
function at line 12, you’ll find a statement that will be executed when the Start() function is called.

At lines 16–18, you’ll find another function named Update() that doesn’t do anything right now, and
at line 20, you’ll find another function named MyFunction(). At line 24, you’ll find the closing curly
brace that closes the LineNumbers class.

When Visual Studio comes across an error, the error list indicates both the type and the line the error
appears. Place a random letter in the code and Visual Studio will be quick to indicate something is out
of place.

40 Learning C# Programming with Unity 3D

2.6.1 Creating and Assigning a New C# File: Now It’s Your Turn

Let’s start with the BookContents/Chapters/Chapter2 project we’ve been working with.
C# files are basic text files. It is possible to open Notepad or any other simple text editor and create a

new file from scratch, but it is better to have Unity 3D create a clean, error-free starting file to work from.
Right click on the Project panel and select Create→C# Script from the pop-up menu.

This will create a new C# file in the Assets directory in your project. We’ll go into organizing these files
with a bit more logic later, but for now we’ll just leave it in the Assets directory. Alternatively, you can use
the menu and select Assets→Create→C# Script to create a script in the Assets directory.

NOT E: You can resize the file display with the slider on the lower right. This will make longer file
names easier to read.

This will create a file called NewBehaviourScript, which needs to be renamed as MyScript
to follow along. If you unselect the file, it’ll be created as NewBehaviourScript. This means you’ll
need to change the file name both in the Assets directory and in the class once it is opened in Visual
Studio. We will cover how this is done in a moment. It’s not necessary to add the .cs at the end of the file
name when using the Asset Panel in Unity 3D; the Editor will keep track of the file types and add the
correct file extensions.

To the right in the Inspector panel, you’ll notice some code shown in the panel. This is a preview of the
content in your new file. Selecting different objects both in the Assets panel and in the game scene will
prompt different options to appear in the Inspector panel.

41Before You Begin

The Inspector panel will be useful for many different things, so we’ll be using this quite a lot.
Don’t bother trying to edit your code in the Inspector panel. This only serves as a preview to your code,

so you might get a clue as to what the code is for. Editing the code is best done in an IDE which we’ll
jump into next.

Double click on the C# Example file in the Project panel to open Visual Studio.

42 Learning C# Programming with Unity 3D

This is where we will be spending most of our time. An IDE is a software made specifically for editing
code. Visual Studio is a popular IDE that has many modern features such as automatic code completion
and syntax highlighting, and most importantly, the debugger. We’ll get to know how to use these features
as we read on.

2.6.2 Naming Your New File

Just to make sure we’re off to a good start, the name of the C# file should match the name of the class.
For example, if the file name was called PeanutButter.cs, you need to make sure that the class name
matches.

Observe the line that reads as “public class Chocolate : MonoBehaviour {.” When I mean
the file name, I do mean the actual file located on the disk in your operating system. To get to these files,
right click on the object in Unity 3D’s Project panel to get to additional options. In Windows, select Show
in Explorer from the right-click window.

If the name of the file doesn’t match the name of the class, you’ll get a class definition error when the
script is used in the game. Also, you can simply click on the name of the file in the Unity 3D’s Project
panel to rename it.

43Before You Begin

If the name of the file matches the name of the class, we’re in a good position to get started. Keep
this file around as we’re going to be using it in Chapter 3. Once the class name and the file name
match up, you can move on. If the file is named NewMonoBehaviour, change its name to match the
class name.

2.6.3 Using Your New File

To assign the C# file to an object in the scene, you can drag it from the Project panel onto an object in
the scene. This seems to be simple, but the object might not be in view, or it might be too small to easily
select.

You can also drop it on an object in the Hierarchy panel. Everything in the scene is found in the Hierarchy
panel.

44 Learning C# Programming with Unity 3D

With a selected object in the scene, the Inspector panel will update its properties.

Dropping the Chocolate.cs file anywhere under the other properties in the Inspector panel will also add
it to the selected object. If that’s not enough, then you can press the Add Component button on a selected
object in the scene and pick Scripts to select any scripts available in your project.

45Before You Begin

Using the Add Component button, you can even create, name, and add a script all at once! This has
become my preferred system of creating and adding scripts to objects in a scene. It does everything all at
once. After this it is just a matter of moving the script from the root of the Assets directory into a more
organized directory.

There are plenty of ways to use the Editor, but any one of the methods of assigning a script to an object
in the scene will work just fine. The end result is that our script will be attached to an object in the scene.
As soon as the Start Game button is pressed, your code will go live.

46 Learning C# Programming with Unity 3D

Press the button again to stop the game and your code from running.
After a script has been added to an object in the scene, it becomes a component of that object. All of

the components of the object appear as additional rollouts in the Inspector panel. To edit a script compo-
nent added to the object in the scene, you can double click on the component.

As an alternative you can click on the gear icon and select Edit Script from the pop-up menu.

47Before You Begin

And finally, by clicking on the script attached to the component, the file in the Assets directory will
highlight pointing out where the script lives in the project.

If a script becomes detached from a script component, the script can be replaced or changed by clicking
on the little circle to the right of the script name.

Clicking on this little interface widget will open the following dialog showing you all of the available
scripts in the project.

48 Learning C# Programming with Unity 3D

Selecting a script in the panel by double clicking will assign the script to the missing slot in the Inspector
panel. To remove an unwanted script or script component, right click on the title of the component and
select Remove Component.

2.6.4 Additional Unity 3D Tools

To get an idea of what to expect in the remaining chapters, we can drop in a few simple shapes into the
scene. Select GameObject→Create Other→Cube to drop a cube into the scene viewport. To pan around in
the scene, press the Q button. Use the left mouse button in the scene viewport to pan around. The mouse
wheel zooms the cube, and the right mouse button enables common “first person shooter style” navigation
with WASD keyboard keys and mouse-look mode.

The W key enables the object translation mode. Select any tool aside from the View tool and you’ll be
able to box select or directly click on an object in the scene. Shift + Box select adds to your selection.
Press the CTRL key while making a selection and you will unselect the next selected item.

49Before You Begin

The Transform tool allows you to pick and drag the object around in the scene. Dragging left and right
on a property in the Inspector will change the individual value.

You can watch the Position values change under the Transform tab in the Inspector panel as you manipu-
late the cube. The numbers can also be entered directly into the X, Y, and Z fields of the Inspector panel
if you want to have a precise control over an object’s placement.

The E key will turn on the Rotation tool. Like the Transform tool, you can watch the object’s rotation
update in the Inspector panel as you manipulate the object in the scene.

50 Learning C# Programming with Unity 3D

The R key activates the Scale tool and you can change the size of an object or enter the values in the Inspector
panel. All three of these tools allow you to pick and drag on various parts of the Manipulation tool in the
scene. This changes the manipulation’s behavior by constraining the action to one or two axes of freedom.

On the top right of the Scene viewport is a little widget that allows you to switch between various views
of your scene. Top, front, and side views can be accessed quickly by clicking on one of the cones on the
widget’s cube. To change between a perspective and a parallel camera view, click on the Persp/Iso icon
to toggle how the scene is rendered.

2.6.5 Working in a Live Scene

While the game is running, you’re allowed to reach into the game through the Scene panel. You can
select and move objects while the code is being updated. You can also use the Inspector panel to manipu-
late a selected object’s parameters and variables.

Once you stop the game, any changes you made to anything in the scene are immediately reverted to
whatever settings they had just before you started the game. This might mean losing some settings which
you have tuned while playing the game.

If the settings were saved every time you stopped the scene, then testing a scene would be more trou-
blesome. Going through a level shooting all of the zombies means that the next time you start the level
again, everything would already be dead.

2.6.6 Saving a Scene

All the changes we’ve been doing have been created and applied to objects in a scene. After adding
objects to a scene such as lights, cameras, and other objects, it is time to save the scene. The standard
Save dialog instructs you to save and name the scene. The default location for a scene is the Assets
directory in the project. It is possible to create a sub-directory in the Assets directory called Scenes
or something similar; however, for our use, we’ll save the scene in the Assets directory of the project.

2.6.7 Opening a Scene

51Before You Begin

While working with each and every tutorial of this book, there’s always going to be a scene file named
Scene. Throughout the book, the tutorials will begin with the Scene file found in the downloaded project.
To open the scene simply double click on the scene icon located in the Project panel under the Assets
directory. You can also select File→Open Scene to open any scene in the project.

2.6.8 What We’ve Learned

Creating and assigning a new C# file to an object doesn’t require so much work. There are plenty of ways
to do this within the Unity 3D Editor. Once we add some code to the new C# file we’re just a button press
away from seeing our code in action. With some of the tutorials in this book, you’ll be expected to create
a new project, create new scripts, and assign the scripts to an object in a scene. With some of the more
detailed tutorials, a completed version of the scene will be provided for you.

Amazingly enough, other professional tools for building things for Windows, Linux, or OSX all
involve a similar process for creating desktop software. There’s generally a lot more footwork involved
with getting started. Templates, frameworks, and other IDE setup processes are required before even
being able to get something to print out to a Console panel.

Learning C# with Unity 3D is one of the shortest routes from typing to execution that I can think of
that has the most interactive results. The Editor itself allows you to interact with variables and values
in real time. Selecting an object in the Scene editor and changing numbers in the Inspector panel allow
you to have a direct connection to your code and see the changes in behavior in real time. This kind of
interaction is only possible in the real-time nature of a game engine.

So far, we’ve gotten to do a bit of setup and preparation. Getting Unity 3D up and running is necessary,
and if you’ve gotten stuck somewhere, make sure that you check the internet for any solutions. Naming
files and classes correctly is also necessary to get your code to work. A single spelling error can break
your code and nothing will work. Also remember that the upper- and lowercase letters matter a great
deal. Naming your file the same as the contained class is also important, as a mismatch will also break
your code and produce errors.

Programming is a highly rewarding endeavor. Don’t let a small hitch bring you down. As you accu-
mulate knowledge, writing code will only get easier. After you’ve learned one programming language,
it is much easier to learn another.

I hope that after you’ve managed to wrap your head around C#, you’ll be able to take the knowledge
earned here, look at other programming languages, and feel a need to learn more. If you’re an artist, add-
ing the cool tricks that programming can offer to your palette of skills will only make you richer. And I
mean richer in more than just the depth of skill.

2.7 Leveling Up: The Journey Has Just Begun

Get ready for some new concepts. Telling computers what to do and how to do it takes a lot of work.
Computers aren’t very bright; they’re actually downright dumb. They do exactly what you tell them to
do. If you get unexpected behaviors, it is up to you to make yourself clearer.

Of course, this all involves talking to a computer in its language, something that we should be able to
do part way into this book. Once we’ve gone through the basics, we should be able to tell the computer
simple commands and get expected results.

If you feel that you’ve gotten to a saturation point while reading this book, put this book aside for a bit
and practice some of the concepts you’ve just learned. If you feel that you’ve explored all you can on your
own, it is time to come back and pick up where you left off.

http://taylorandfrancis.com

53

3
First Steps: Just Getting Started

This section will cover many basic terms and some of the basic ideas behind writing code. C# is among
the many programming languages which share words and concepts to convey instructions to the com-
puter. Once we get through the first few chapters you’ll be introduced to some more of the basics which
are directly related to reading and writing code.

Before we can get to that, we’ll need to cover some terms and concepts that hold true for many dif-
ferent programming languages, not just C#. The methods and systems that allow converting words into
executable code require strict rules.

When writing English or chatting online we tend to ignore formatting and punctuation. The brevity
allows for faster communication; though only because we as humans have learned many new words and
can use context to better interpret the contractions and acronyms in the written form of English used
online or in text messages. Computers aren’t so smart as to be able to interpret intent precisely.

Unity 3D is a 3D game engine. By 3D we mean three dimensions, which means we have an x, y, and
z coordinate space. 2D or two-dimensional game engines like Game Maker only use x and y. This is the
difference between a cube and a square. One has depth to each shape and the other does not.

Later, we will be working with three-dimensional vectors. Unity 3D uses Euclidian vectors to describe
where objects are positioned in a 3D scene. When a position is described in terms of x = 1, y = 2, and
z = 3, you should understand that this describes a position in 3D space. Unity 3D isn’t limited to 3D
space. Plenty of games use the x and y coordinates to make plenty of 2D games, but Unity 3D is by
default a 3D game engine.

3.1 What Will Be Covered in This Chapter

We’ll go over the specifics of the most basic concepts behind the C# programming language. C# has a
great deal in common with other programming languages, so much of the knowledge here is transferable
to many other programming languages. To get started on our journey toward an understading of C#,
we’ll investigate the following:

• Tokens, the smallest elements of C#

• How statements, give tokens meaning

• Keywords in C# with specific meaning

• How to use white space and proper formatting

• How statements are grouped together into a code block

• How classes are organized and what they’re used for

• What a variable is and how it’s used

• Types and how they behave when converted between one another

• Commenting on code and leaving messages to yourself and others within the code

Each section of this chapter will cover each new term in detail with some examples. There is a lot of
vocabulary to learn. If you speak to a programmer, it may sound like they’re speaking in a different lan-
guage. The words they use have specific meaning in relation to programming. To continue through the
rest of the book you’ll need to learn what these new words mean in relation to writing code.

54 Learning C# Programming with Unity 3D

3.2 Review

In Chapter 2 we looked at what code looks like. Before going too much further, we want to make sure
that we are able to open each of the different projects in Unity 3D to follow along.

Near the start of Chapter 2 you may have created a new GitHub account. In GitHub a fork of the book’s
repo was created to your account. From the fork the contents were pulled to your computer.

Your fork of the repo is visible to the public. You’re the only one with access rights to make changes to
your fork. If you discover a typo or any errors or “bugs,” feel free to post a comment on the original repo.

If you didn’t create a GitHub account and just downloaded a zip of the contents, that’s fine too. Just be
aware that there are a few chapters covering Git which you should still look at, since Git is indispensable
even if you’re not using it right now.

Before continuing you should be able to run Unity 3D, create and open C# files, and attach and remove
the C# files to an object in a scene. You should also have the BookContents repo on your computer.
Once all of this is done, you should be able to open a project from any of the chapters, then open a scene
from the project. Finally, test the scene with the Play-in-Editor button and read the output in the Console
window.

Double check by opening the BookContents/Chapters/Chapter2 project. Open the Sample Scene and
press the Play-In-Editor button to make sure you’ve got everything working by looking for the output in
the Console window.

If any of this seems unfamiliar, go back and review Chapter 2; we’ll be doing quite a lot here which
depends on your being able to move objects and create and edit C# files. It’s time to get into what code
is, so keep calm and carry on!

3.2.1 Submitting Changes to Git

To make the most of Git you’ll want to make some changes to files and submit them for safe keeping.
At the root of BookContents is a README.md or markdown file. This is basically a text file with some
clever formatting. Open this with Visual Studio and add in some information.

In the first line I’ve added the above two lines. Make sure you’re more original than I am with your
welcome message. Once you’re done with your welcome message open Git Bash. Enter the following
command:

55First Steps: Just Getting Started

git status

The status command asks Git to show you what’s changed. The changes shown reflect any file modified
throughout all the content in the BookContent repo. The line “Changes not staged for commit” show you
which files have been modified, added, or deleted.

In the changes you’ll see modified : README.md as well as instruction to discard changes if you
would like to reset the file. To keep the changes, enter the command:

git add README.md

This adds the README.md to a list of files that will be included with a checkpoint of changes. In git
terms this “stages” the file for commit. Think of this as a save point in a game. You can load your game
from a checkpoint and start over if you mess up. Git grants your code with the same ability. To save the
checkpoint we need to commit the changes with the following command:

git commit -m “adding changes to readme”

The git commit command has two parts: the -m which indicates we’ll add a note to our save point
and the “Adding changes to README.md,” which is the message to identify what the commit
was created for.

This turns into a save point which we can come back to. You’ll also notice the section that says
[master 58a4fb7]; this is the code name for the save point. This is how Git remembers everything
you’ve added to the repo. These numbers and letters are called hash codes. Your commit will have a dif-
ferent hash, so don’t worry if it looks different. Every commit will be unique.

GitHub comes into play once you want to save your changes on your GitHub account. To upload the
commit, use the command:

56 Learning C# Programming with Unity 3D

git push

Depending on how you’ve set your security settings you may need to enter a user name and password.
Once that’s done your commit will be pushed into GitHub. This means that even if your computer gets
eaten by zombies, your work is safe on GitHub.

The pattern that we repeat is Add Commit Push. Every time you want to create a save point for your
work, remember “Add, Commit, Push” to create a checkpoint.

To inspect your work, go to your GitHub page in a web browser.

The changes you’ve made to your README.md will appear in your fork of the repo.

3.3 Let’s Build a Game—Part 1

An additional resource for you is a Unity “SampleGame” found in the SampleGame directory in the
BookContents Git repo. A small set of free to use assets are ready for you to use in your own projects.
This project also contains many helper objects that will show you how games are built.

Often, small game studios store their art assets in the Git repo along with the source code for the game.
I’ve stored some asset files in the Art Assets directory next to the Unity Project. Feel free to inspect the
3D models in Blender and the 2D assets in Gimp. Both Blender and Git are open source and free to use
for noncommercial use.

In the Unity Project directory called Unity-SampleGame you’ll find that Assets has various direc-
tories to keep the Assets directory relatively organized. All the assets used specifically for the
sample game are under the SampleGame sub-directory. In there, you’ll find that Meshes, Prefabs,
Materials, Textures, Scripts, and others have their own homes. Starting many projects in Unity 3D
has formed a habit of organization. Your projects don’t need to follow the same pattern, but anything
similar will help in the future.

When an asset from the Unity asset store is downloaded, you’ll usually find that it will live in its own
directory, not unlike the one created for SampleGame. This convention of creating a directory in Assets
for your own work is standard and should be followed to avoid conflicting files.

To get started with a new Unity 3D project you’ll want to look at a checklist of a few settings before using
source control. First are the meta files. Unity 3D creates additional text files that help link different assets to

57First Steps: Just Getting Started

one another. To remember these associations in Git, you’ll want to make them visible. Meta files allow the
editor to restore the associations when a project is opened. Select Edit → Project Settings → Editor and find
the drop-down menu with the Version Control section and set the Mode to Visible Meta Files.

A game development cycle starts with a game design document. This includes what the player does and
concept art as to what the game looks like as the player experiences your game. Often game designs also
include some story and a world description. Assuming all of that is done, the engineering begins.

Programmers begin with the Unity Project and sometimes start some sort of technical document.
A large game would often involve specific programming goals like database management for inventory,
automatic loot box generation, or a multi-player match-making strategy. Before all of that comes proto-
typing and experimentation.

It’s common for the experimentation to change the game design. Through experimentation unexpected
game play experiences can emerge. New game play elements appear as code is written and unexpected
results often appear either by accident or inspiration. Experimentation in Unity 3D means reading what
Unity 3D has in its tool kit. Documentation available online often gives a general description of each
Unity 3D function, but that hardly has meaning without seeing how the function works or what it does.

3.3.1 Movement Experiments

In the SampleGame Unity Project open the Assets/SampleGame/Scenes/Chapter3 Unity scene. A strange
little object made of colored arrows should sit in the middle of the scene. This was created with a box
collider and a rigid body attached. This gives the object physics properties that will make it fall and land
on the ground under it without falling over.

58 Learning C# Programming with Unity 3D

This object has been named TransformPrimitive to denote that we’re going to use this to show us how
to use the Transform Component of the Game Object. This little object has arrows pointing in each
coordinate direction with a + sign pointing in the positive direction of that axis. Attached to this object is
a script called MovementExperiment.cs which we’ll open in Visual Studio to inspect. This can be found
in the Assets/SampleGame/Scripts directory in the project.

The Start function contains a single line:

This line tells the object to set the GameObject’s transform.position to a new Vector3 with the
values for x and y set to 0 and z set to 1. As a hint, since we’re new to Unity 3D most objects in a scene
hierarchy are GameObjects. The GameObject is the fundamental type of “thing” that makes up the different
elements that can interact within the game’s scene. This is discovered by reading the Unity Documentation.

3.3.2 Reading Programmer Documentation

Programming documentation has become roughly standardized, to some extent programmers have come
to use a similar format when it comes to sharing how their code is used. Unfortunately, it’s still written
by programmers, so for the uninitiated, definitions are obtuse.

Most of the time there’s some type of outline with entries describing everything available in the API,
or Application Program Interface. You can open the web page directly from Unity with the Help →
Scripting Reference menu selection.

The following page is the Unity Scripting Reference. A column on the left shows you everything that the
Unity 3D engineers have written anticipating what you might want to do in your game. This assumes you
know what to do with the information.

Under the UnityEngine are most of the different systems that you’ll eventually find useful for your
game. In UnityEngine/Classes/GameObject you’ll find an entry describing the GameObject.

59First Steps: Just Getting Started

After the description you’ll see the different things accessible inside of the object, or the object’s mem-
bers. Each one of the members is something that you can access, read, or ask the object to do. The mem-
bers are separated as Properties, Constructors, Public Methods, etc.

Clicking on a member of the object will usually show you a similar page with the name of the func-
tion, sometimes followed by some example for using the member in question. The documentation for
GameObject tells us that Transform is always added to a GameObject when created.

In addition to online documentation, Visual Studio has useful information built-in. Open the
SampleGame/Chapter3/Scripts/MovementExperiment.cs script and Right click on the word position
in Visual Studio and select Peek Definition Alt+F12 from the pop-up menu. In Visual Studio
for Mac you’ll select Go To Declaration ⌘D to see a similar description.

In Visual Studio for Mac

60 Learning C# Programming with Unity 3D

A new window, or part of a window appears beneath the line of code we’re looking at. This window
allows us to scroll through different members of the Transform class that position shares a relation with.
As you scroll through the different listings you’ll see a get; and a set; by some of the members and
just get; listed under others. The members with set; mean this is a property you can change, ones with
just get; you’re only able to read.

Scrolling down even further you’ll see some listings which end with (); some of these have additional
code in the parenthesis, these are called function members. Clicking on the small box with the + sign
in the left margin expands a comment left by the programmer with a summary of what the function or
property member is used for.

Expanding the comment next to Position reveals the summary: The position of the transform
in world space. The name of the member is preceded by Vector3 indicating the type the property
represents. With this you have the start of how to navigate around in Visual Studio just enough to begin
experimenting. Press Escape to close the window or click on the close icon on the top right of the tab.

If we wanted to experiment with rotation, we might look at localEulerAngles see if we can
change the transform primitive’s rotation when the game starts. Pressing Play shows the transform primi-
tive tipped up for a moment before falling. As we learn more vocabulary, the different sections in the
documentation will have more meaning. The headings Static Methods, Inherited Members, and some
others may not mean much right now, but as you read on they will.

The scripts you create for your game should live together in their own directory. When you download addi-
tional Unity Packages from the Asset store they will usually also live in their own respective project directo-
ries. Assets like your Materials, Prefabs, Scenes etc. should all live in their own directories to stay organized.

61First Steps: Just Getting Started

Unity 3D also has included a few of their own built-in packages for in-app purchases and analytics
which live in their own sub-directories in the Packages directory in your projects next to the Assets
directory.

When you feel more confident, continue some experiments on your own. If you can’t get things work-
ing immediately don’t let that put you off. As you learn more about C# you’ll also have more knowledge
to experiment with. As you feel more comfortable with the language, you’ll also learn to read and under-
stand what the comments left by the Unity 3D programmers mean.

For now, at least, we have a project setup in which we’ll be able to construct our sample game.

3.4 Tokens

To get started open the BookContents/Chapters/Chapter3 Unity Project. To see the example code, look in
the Assets and open the C# files named after each section. To follow along with this chapter you should
open the Tokens.cs file in Visual Studio to see what the code looks like.

In written English the smallest elements of the language are letters, numbers, and punctuation.
Individually, most letters and numbers lack specific meaning. The next larger element after the letter
is the word. Each word has more meaning, but complex thoughts are difficult to convey in a single
word.

To communicate a thought, we use sentences. The words in a sentence each have a specific contribu-
tion to the intent, as seen in the diagram below. To convey a concept, we use a collection of sentences
grouped into a paragraph. And to convey a story we use a collection of many paragraphs organized into
chapters and integrated into a book.

Programming has similar organizational mechanisms. The smallest meaningful element is a token, fol-
lowed by statements, code blocks, and functions, followed by classes and namespaces, and eventually a
program, or in our case the program is a game. Every file created in the process of writing C# is called
a Compilation Unit, or source file.

We will begin with the smallest element and work our way up to writing our own classes. However,
it’s important to know the very smallest element to understand how all the parts fit together before we
start writing complex code.

62 Learning C# Programming with Unity 3D

3.4.1 Writing C#

C# is an English-based programming language; like any other C-like programming language, it can
be broken into tokens, the smallest meaningful fragment of text that the computer can understand.
In a mechanical way of thinking, writing a story is the process of arranging words to convey meaning.
In much the same way, writing code is arranging tokens to instruct the computer to carry out a process.

A token is made of a single character or a series of characters. For instance, in a simple statement like
the following there are five tokens.

Tokens can be categorized as a keyword, identifier, literal, assignment operator, and separator.
The above statement contains five tokens with spacing between each provided by white space. Together
these tokens create an assignment statement.

The keyword int is followed by the identifier i. This is followed by an operator = which assigns the
identifier on the left of the operator and the value of the literal 0 on the right. The last token ; is a sepa-
rator which ends the statement. White spaces and comments, which we have yet to cover, are not con-
sidered tokens, although they can act as separators. This is a lot to take in at once, but each one of these
words will be further explained as we continue.

The code shown above is two statements, the separator keeps the computer from misreading the code
as a single statement. However, there are humans involved with writing code, and thus code needs to be
readable by humans, or any other life form which might read your code. Proper code means following a
specific formatting style. We’ll dive into more about proper code style later in this chapter.

Each group of characters, or text, is converted by a lexical analyzer, sometimes called a lexer, in the
computer and turned a symbol. This process is called tokenization, or as a computer scientist would say,
a lexer tokenizes your code into symbols. Once tokenized, the symbols are parsed; this process organizes
the tokens into instructions for the computer to follow. This unique vocabulary does frame programmers
as a strange group of alien beings with a language all to themselves; I promise, however, conversations
about lexical analyzers don’t come up very often when talking with most programmers.

This may seem like a great deal of work and we are jumping ahead into more complex computer sci-
ence topics, but all of this happens behind the scenes, so you don’t need to see any of this taking place.
It’s important to understand what a compiler does and how it works, so you can write code in a way that
the computer can understand. Therefore, a simple typo will stop the lexer from building code.

63First Steps: Just Getting Started

A computer can’t interpret or guess at what it is you’re trying to do. Therefore, if you mistype int
i = 0: and not int i = 0; the last token cannot be converted by the lexer into a proper symbol,
and thus this statement will not be parsed at all. This code results in an error before the code is even
compiled.

3.4.2 Comments a First Look

In the Assets directory open the Comments script. One of the first types of tokens we’ll want to
investigate is the comment. Each section in the code will have a corresponding comment like the one
below.

We’ll go into more detail on various types of comments and how they’re used in Section 3.14, but it’s
important to know what they look like before moving on. In each C# source file, you’ll see various with
// at the beginning of the line. This tells the lexical analyzer to ignore anything appearing after the //
on that line.

Comments allow the author of the C# script to inform other readers of any information not included in
the code itself. In addition to the // comment is the /* comment */ where anything between the start of
the /* comment and the ending */ will also be invisible from the lexical analyzer.

Both types of comments are used extensively through all the code samples provided with each chapter.

In some cases, working code will be hiding behind a comment. To see how the code works, delete the //
at the start of the line of code to reveal the statement to the lexical analyzer for compiling. To hide the
code, simply put the // back at the beginning of the line. Programmers often leave code they’re working
on in comments to keep work in progress knowing that the code isn’t fully functioning.

64 Learning C# Programming with Unity 3D

Single line comments that use // are used extensively throughout the code with the intent for you to
uncomment them to see how code works. Uncommenting one line and commenting out another is a com-
mon strategy to test out various ways to solve a problem.

In a clean code base the code itself will speak clearly as to what it’s doing. Comments would be kept
to a minimum. If a function requires comments to explain how it works, then the function could be
re-written to be easier to understand.

3.4.3 Separator Tokens

The most common separator is the semicolon (;). This mark of punctuation is used to end a code state-
ment. Other separator tokens come in pairs. Curly braces are used in pairs to separate groups of code
statements. The opening curly brace is the { with the pointy end pointed to the outside of the group; this
is paired with the } which closes the curly brace pair.

Parentheses start with the (and end with the) while square brackets start with [and end with]. The dif-
ferent opening and closing braces, brackets, and parentheses have specific purposes that are used to help
identify what they are being used for. There are angle brackets < and > as well; these are used to surround
data types. And don’t forget both single quotes ‘ and double quotes ”, which are used in pairs as well to sur-
round symbols called strings.

NOTE: In many word processors a beginning and an ending quote (“ and ”) are often used. The lexical
analyzer doesn’t recognize these smart quotes, so the text editor for programming uses straight quote marks
(") instead. These subtle changes aren’t so subtle once you realize that letters, numbers, and every other
character used in programming are all parsed as American Standard Code for Information Interchange
(ASCII) or unicode transformation format (UTF)-8, -16, or -32. Both ASCII and UTF are names given to
the database of characters that the computer uses to read text. Computers don’t use eyes to read. Rather,
they use a database of numbers to look up each character being used. Therefore, to a computer “ looks
more like 0×201C and “ like 0×0022 (the expected quotation mark), if we were using UTF-16.

65First Steps: Just Getting Started

Curly braces are used in code to separate statements. Parentheses are usually used to accept data.
Square brackets are often used to help identify arrays. We’ll get into arrays later; imagine something like
a spreadsheet or a graph paper until we get to their explanation.

The above statement assigns three numbers to an array. The curly braces contain a pair of statements
separated by a comma. The second statement in the curly braces is converting a number with a dot (.)
into a number without a dot in it. This will take a bit of explanation, but it’s good to get used to seeing
this sort of thing. We’ll get to what an array is soon enough, as well as a dot operator.

Often, when learning to program you’ll see many strange tokens which might not seem to have any
meaning. It’s up to you to observe every token you come across and try to understand what it does. If
none of the statements makes sense that’s fine. At this point you’re not expected to know what all this
means yet, but you soon will.

3.4.4 Operator Tokens

Operators are like keywords but use only a few non-word characters. The colon or semi-colon is an
operator; unlike keywords, operators change what they do based on where they appear, or how they are
used. This behavior shifting is called operator overloading, and it’s a complex subject that we’ll get into
later. It’s also important to know that you can make up your own operators when you need to.

Commas in C# have a different meaning. A comma is used to separate different data values. Another
special operator token is the semi-colon.

Here, the : was used following the name of the class to inform the compiler we’re going to be adding
to a pre-existing class called MonoBehaviour. In this case, : will tell our class to add new behaviors to
MonoBehaviour. This means to build upon a class which already exists. We’re creating a new child
object related to MonoBehaviour; this is a class that was created by the developers at Unity 3D.

Here’s a list of the various math related operators you can expect to find in C#.

66 Learning C# Programming with Unity 3D

Operators provide our basic ability to do math in code. Operators are special characters that take care
of specific operations between variables. Notation or the order in which operators and variables appear
is normally taught with the following notation or mathematic grammar: a + b = c. However, in pro-
gramming the following is preferred: c = a + b; the change is made because the = operator in C#
works differently from its function commonly taught in math class.

The left side of the = operator is the assignment side, and the right side is the operation side. This puts
the emphasis on the value assigned rather than how it’s assigned. The result is more important than how
the problem is solved since the computer is doing the math. In programming the above example should
be read as “c is assigned a plus b.”

3.4.5 Literals

Literals are values which come in many different forms. Literals are things you assign to variables, or
compare variables to. Literals can be considered tokens used in a literal manner. Numbers can be called
numeric literals. Words like “This is a string” is also considered a literal.

Numbers are literals as well. The int or integer is a hole number like 1 or 100. We are used to seeing
large numbers like 10,000 or ten thousand with a comma separating every thousand. However, commas
have a different meaning in C#. To the compiler, 10,000 is a value 10 followed by a different value 000,
a second number. This causes problems so large numbers need to be written without the comma. So, ten
thousand in C# needs to be written as 10000 without the comma.

67First Steps: Just Getting Started

When assigning values to variables we often use literals to set a value for something specific. For example,
if we wanted to convert radians to degrees we use the equation degrees = (radians × π) / 180
to get an answer. In C# that would look like the following:

The example shows float radians = 3.14159f; where 3.14159f is the literal assigned to
radians. Later Mathf.PI is not a literal but a different type of number called a const; more on that
later. radians which is a variable that was assigned a literal. Then we divide that by 180 which is a
literal.

When values like 180 are used in code directly it’s sometimes called a “hard-coded” value. In cases
where the math isn’t going to change, like in the radian to degree conversion, this isn’t a bad practice.
However, in some cases like screen resolution a hard-coded value might work against you.

If you wanted to check where a mouse pointer was in relation to the center of a screen you might use
half the screen width and half the screen height to get the center of the screen. Assuming you’re on a
computer with a 1920 pixel wide screen that’s 1080 pixels tall you might use x = 960 y = 540 as the
center of the screen. This would be wrong if the screen resolution were to change. You can’t change a
hard-coded value once you’ve built your project into a game to distribute.

When something is put into quotes, as in “I’m a literal,” you are writing a string literal. Literals are
common throughout nearly all programming languages and form the base of C#’s data types. Right now,
we’re dealing with only a few different types of literals, but there are many more we will be aware of soon.

3.4.6 Transitive and Non-Transitive Operations

In math class it’s sometimes taught how some operations are transitive and others not. For instance,
2 + 3 + 4 and 4 + 3 + 2 result in the same values. Where each number appears between the operators
doesn’t matter, so the + operator is considered transitive. This concept holds true in C#. Results change
when we start to mix operators.

This code fragment shows two different results using the same operators but with different number
placement. We’ll see how to overcome these problems later when we start using them in our game.
Operator order is something to be aware of, and it’s important to test each step as we build up our calcula-
tions to make sure our results end up with values we expect.

To ensure that the operations happen as you expect, either you can use parentheses to contain operands
or you can do each calculation. We’ll dive further into more detail with a second look at operators later,
but this will have to wait until we have a much better understanding of the basics of C#.

3.4.7 Putting It All Together

The Unity 3D engineers have prepared many data types, functions, objects, and classes tailored specifi-
cally for game development. Classes often work together to share and manipulate data. There are excep-
tions to this rule, but C# allows for many different writing styles and paradigms.

68 Learning C# Programming with Unity 3D

Creating data produces components of an object. In general, you’ve created something that can be reused
many times. Once you have created a zombie by adding brain-seeking logic and how many bullets are
required to stop him, it’s only a matter of duplicating that zombie to create a mob to terrorize your player.

As we proceed we’ll become more familiar with what it means to use classes as objects; the tutorials
will be aimed at making sure that this is all clear.

In the Assets directory for Chapter 3 you’ll find a Tokens_Scene Unity scene. Open this and press the
Play-in-Editor button. Open the Console window and you’ll see the following output.

Let’s break this code sample down. The first word is public, which is a keyword followed by void
another keyword token. Start() is an identifier. A Tokens game object in the Unity scene has the
Tokens.cs script attached and Unity executes the Start() function when the game begins.

The parentheses after the Start are operators used when we need parameters for our function.
The parameters are discussed in Section 3.3.2. For now, take in the fact that both opening (and closing)
parentheses are necessary after function identifiers. They’re useful; trust me.

To begin the contents of the function we start with curly braces, the opening { and closing } curly
braces. Everything that the function will do must be contained between the two braces. Any text appear-
ing outside of them will not be part of the Start() function. The code contained in the curly braces
becomes the function block of code, or code block.

69First Steps: Just Getting Started

The first statement in the function’s code block is int i = 0; this is an assignment statement, where
we declare int i and then use the = to assign i a literal value of 0. This is then separated from the next
statement with the ; operator.

The assignment statement is followed by while (i < 10), which is called a looping condition.
We’ll read more on looping conditions later in Section 4.12. This looping statement is followed by an
opening { curly brace. This indicates a code block specifically written for the while loop.

The code block contains the statement Debug.Log(i);, which is a function call using i as a param-
eter or argument. After the print function call is i++;, which applies the post-increment operator ++ to
the variable i. This code block is ended with the closing } curly brace.

The while code block and the int = 0; are both within the Start() code block. To make the
code more readable, tabs are added to indicate a separation between each section of code. Now bask
in the knowledge that we’ve got words to describe everything presented in the above code sample. We
may not understand everything that has been written, but we’ve got some vocabulary where we can get
started.

3.4.8 What We’ve Learned

Programmers are meticulous about syntax. They have to be. The following two statements are very dif-
ferent: int myint0 = -1; and Int my 0int = – 1:. The first one will compile; the second one
has at least five errors. You may not be able to spot the problems in the second statement, but by the end
of the next section you will.

Internet forums are a great source for getting help when learning how to write code. When asking pro-
grammers for help it’s best to limit your subject and consider your words carefully. Asking “How would
I write a video game where you shoot zombies with a flame thrower” involves so many different concepts
it’s impossible for anyone to tell you where to start. At best you might get a link to a book on Amazon.
In a single post, you’re asking for too much.

If you formulate a smaller question like, “How do I attach flames to a zombie after it’s been hit by a
projectile?” you’re more likely to get an answer. When talking to a programmer, using proper syntax, and
providing context as to what you’re code looks like and asking why it doesn’t work, you are more likely
you’ll get the answer you were looking for.

3.5 Statements and Expressions

To continue, open the StatementsAndExpressions.cs file to follow along. When reading a book
or story, you extract meaning from an ordered chain of words. In a similar way, computers extract com-
mands from a chain of ordered instructions. In English we call this a sentence; programmers call this
a statement. A statement is considered to be any chunk of code which accomplishes some sort of task
separated by a semicolon.

At the center of any given task is the algorithm, not to be confused with a logarithm. An algorithm is
a systematic process that accomplishes a task. In many ways you can think of it as a recipe, or rather a
recipe is an algorithm for making food.

It could take one or two statements to accomplish a task, or it could take many hundreds of statements.
This all depends on the difficulty of a given task. Each individual statement is a step toward a goal.
This is the difference between spending a few minutes frying an egg, or spending an hour baking a souf-
flé. Each individual step is usually fairly simple; it’s the final result that matters.

Like sentences, statements have different forms. Statements can declare and assign values to variables.
These are called declaration and assignment statements. These statements are used to set up various
types of data and give them names.

70 Learning C# Programming with Unity 3D

3.5.1 Expressions

The subjects of your statements are called identifiers. An assignment statement is used to give an identi-
fier a value. When you read “The menu has kale for lunch and broccoli for dinner.” The C# version might
look a bit like the following:

Assignment statements often incorporate some sort of operation. These are called expressive statements.
Different from expressing an emotion, expressions in code look more like “x + y.” Expressions process
data. After processing, the result of an expression can be assigned to a variable. We’ll learn more about
variables and assignments in Section 3.10.2. Literals can also be used in an expression, for example
myInt = x + 1; where 1 is a literal, but x may be a variable assigned before this expression. Together,
x + 1; is an expressive statement, but x and 1 alone are not.

A collection of statements is called a code block, like a building block, something that’s used to build.
When writing a story, we call a collection of sentences a paragraph. The statements in a block of code
work with each other to accomplish a task. An expression can also ask a block of code to execute. This is
called an invocation expression or an expression that invokes a method.

3.5.2 How Unity 3D Executes Your Code

When a class is created, the contained instructions are not carried out at the same time. As it’s been
explained, each collection of parts in a class is made up of lines of text called statements. Each statement
is carried out in order. Where the computer starts is usually dependent on which collection of statements
it’s told to start with. You’re in charge of how the code is started.

Unity 3D provides us with a function called Start(), which we’ll go into later. However, this is the
preferred place to begin our code using Unity 3D. Once Start() is called, the computer goes to the
first line in Start() and begins to carry out the instructions written there. As the computer gets to
each statement the computer starts on the left of the statement and works its way to the right. Basically,
a computer reads code like you’re reading this sentence. In our examples we’ll add code to the Start()
method provided by Unity to run code when a scene is first started. If we want to repeat our code with
every frame then we’ll use the Update() method.

This is different from other development environments which often use Main() as their first place to
begin running the code. When you start writing software in other environments you’ll most likely start with
Main(). We don’t have to get into that right now, but it’s good to know once you’re done with this book.

3.5.3 Thinking in Algorithms

An algorithm is a step-by-step process. This lends itself to being written in an imperative programming
language like C#, which executes operations one at a time and in order. Algorithms are written with
statements starting at a beginning statement and finishing that statement before moving on to the next.

Just because we know what an algorithm is doesn’t mean it’s any easier to create one. Therefore, how
do we go about writing the all-important algorithm? The first thing should be how you might accomplish
any given task by hand.

As an example, say we’re a computer surrounded by a mob of zombies. Thankfully, computers are
very fast so we can do a lot before the zombies can get to us. With this in mind, we’re going to want to

71First Steps: Just Getting Started

focus on the zombie closest to us. Unfortunately, computers are also very dumb, so there’s nothing which
allows us to just guess at which one is the closest.

First, we’re going to need to know how far away every zombie is from our point of view. Therefore,
the computer would probably start with measuring the distance from itself to every zombie available to
make a measurement to. After that we’re going to have to compare zombies and distances, so we’ll start
with the first zombie we found and compare its distance to the next zombie we found.

If the next zombie is closer, we’ll have to remember that one as being the closest one we’ve come
across. Otherwise, if the next one is farther away, then we can forget about him and move on to the next
zombie and compare numbers again. Once we’ve gone through all the zombies, we should have identified
the zombie who is the closest one to us.

The process which we just thought through is an algorithm for finding the zombie closest to us. It’s
not complex, but we had to do a few steps to get to it. First, we needed to get a list of all the zombies
we needed to sort through. After that it was an iterative process, by which we needed to remember one
zombie as the closest one, then compare others against him to decide whether he would retain the status
of being the zombie nearest to us. We’ll be going over many of these problem-solving thought processes
as we learn how to program.

This algorithm would look something like the following code block:

72 Learning C# Programming with Unity 3D

We won’t cover the entirety of how this code works, as we are yet to discuss the bulk of what’s
going on here, but in short, we gather data, then process data. We repeat the pattern of gathering
data, then processing it. At the beginning, we gather data; a starting distance, a close game object
and all the game objects in the scene. Then we process it with foreach(GameObject g in
allGameObjects). This happens again once in the foreach loop. You can see the pattern in this
example, but this pattern exists throughout most programming tasks. Gather the data you need,
then process it.

Just for a proof of concept we draw a line from the object. Because the script is attached to the
object, we draw a line from the object the script is attached to toward the object selected as the closest.
The scene will look something like this:

To view this open the StatementsAndExpression_Scene in the Editor and press the Play-in-Editor
button, then switch over to the Scene panel. The Debug.DrawLine is not visible in the Game view and
is only visible in the Scene editor. You can move some of the objects around the sphere to see the red line
switch to different objects as they change distances. We put the code in the Update() method to make
sure that the line is always visible, and the closest object can change if you move the objects around.

Programming is a lot more about a thought process than it is about processing. In other words,
programming is less about how to do multiplication as it is about what to do with the result of a mul-
tiplication. In your everyday life we take for granted the everyday things we do on a regular basis.
However, take a moment and really consider the complexity involved with something as simple as
breathing.

73First Steps: Just Getting Started

Your diaphragm is receiving signals from your autonomic nervous system, causing several chemi-
cal reactions in the diaphragms muscle tissue, which then pull proteins toward one another causing
it to contract. This in turn creates a lowered air pressure in your lungs, which pulls in air. A number
of chemical processes allow the oxygen in the atmosphere to enter your blood stream. Thankfully,
all of this happens without our thinking of it because of chemistry and physics. In programming,
nothing is so automatic.

3.5.3.1 Wash, Rinse, Repeat

In our everyday life we see instructions written everywhere. However, if we follow instructions too
closely we’d run into problems. If you interpreted, for example, the instructions on most shampoo labels
like a computer we’d run out of shampoo the first time we used it.

To interpret the “wash, rinse, repeat” instructions like a computer we’d wash our hair, rinse it, then
wash our hair, then rinse it, then wash our hair, then rinse it, ...; you get the picture. You’d continue the
process until you run out of shampoo. Because there are no further instructions, once the shampoo has
run out, a computer would send out an error of some kind. There wasn’t a number given for how many
times the instructions should be followed; there was no way to terminate the process, as a programmer
would say. A computer would need to have the “shampooing” process killed to stop washing its hair.
Simply put, computers lack common sense.

Here’s a simple scenario: A spouse tells the programmer to go to the grocery store and says “Get some
bacon, if there’s milk get three.” The programmer comes home with three packs of bacon, and no milk.
If this makes sense, then you’re thinking like a programmer. There are conditions to tell the programmer
to get three packs of bacon if milk was available; just the fact that there was milk meant bringing home
3 × bacon.

3.5.4 What We’ve Learned

Programmers are often a group of literal thinkers. A programmer uses a different thought process from
the artist. In terms of order of operation, programmers take things one step at a time. An artist tends to
start with a broad picture, then refines detail where necessary. This process in programming terms is an
imperative procedure, a step-by-step process where operations are carried out in a linear fashion.

As an artist or newcomer to programming, this imperative process can be a bit out of the ordinary. With
some time and practice, however, this paradigm of thinking will become second nature. The approaches
a programmer and an artist would take to solve a problem often diverge.

To learn how to write code is to learn how to think like a programmer. This may sound a bit awkward,
but perhaps after some work, you’ll understand why some programmers seem to think differently than
everyone else.

3.6 Keywords

Keywords are special words, or symbols, that tell the compiler to do specific things. For instance, the
keyword class at the beginning of a line tells the compiler you are creating a class. A class declaration
is the line of code that tells the compiler you’re about to create a new class.

The order in which words appear is important. English requires sentences and grammar to properly con-
vey our thoughts to the reader. In code, C# or otherwise, programming requires statements and syntax to
properly convey instructions to the computer.

74 Learning C# Programming with Unity 3D

Every class needs a name; in the above example we named our class ClassName, although we
could have easily named the class Charles. When a new class is named the name becomes a new
identifier. This also holds true for every variable’s name, though scope limits how long and where the
variable’s identifier exists. We’ll learn more about variables and scope soon.

You can’t use keywords for anything other than what C# expects them to be used for. These are called
reserved keywords. Some keywords are only used in context with other keywords. There are excep-
tions, but in general, keywords inform the lexical analyzer of specific commands. Because keywords
are reserved for a specific reason, you can’t use them for anything other than the intended purpose.
Altogether in C# there are roughly 80 keywords you should be aware of. We don’t need to go over all of
them now, so instead we’ll learn them as we come across them.

Because the word abstract is a reserved keyword, you can’t use it as a variable name. The above class
contains an error informing you on proper use of the abstract keyword.

3.6.1 The Class Keyword

To create a class named Charles we used the keyword class. The keyword commands C# to
expect a word to identify the new class. The following word becomes a new identifier for the class.
In this case Charles is used to name the class. Keywords often precede a word, and the computer
uses the word following as its identifier.

The contents of Charles are defined between curly braces. After the class definition, the opening
curly brace { is followed by any statements that Charles needs to be a proper Charles. When you’re
finished defining the contents of Charles, you use the closing curly brace } to indicate you’re done with
defining the Charles class.

It’s important to note that keywords start with lowercase letters. C# is a case-sensitive programming lan-
guage, and as such, Class and class are two different things. In C# there is no keyword Class; only
class starting with a lowercase c can be used. The same goes for every keyword in C#.

However, programming works this way: class Charles {} begins with the start of the class indi-
cated with the open curly brace { and the end of the class indicated by the closing curly brace }, after
which we go back and add the body later. Not everything works in this way, and it takes a bit of getting
used to before you understand the flow. Certainly, however, this will come naturally after some practice.

Now we have a new class called Charles, which has no data and does nothing. This is to be
expected since we haven’t added any data or functions yet. You can also use the terminology this class
is identified as Charles.

75First Steps: Just Getting Started

This class can’t be used directly by Unity 3D. It lacks some of the necessary additions needed by the
Unity 3D game engine to directly interact with this class. To be specific, this class doesn’t have enough
information to allow Unity 3D to know what to do with it. However, there are methods which make a
minimal class, such as Charles, quite useful inside of Unity 3D, but we need to cover a great deal of
ground before we can do that.

In Section 2.4 we looked at a complete source file, Example.cs, which is ready for use in Unity 3D.
However, it’s important to know what creates a minimal class before adding all the rest of the keywords
and declarations which make it do anything in Unity 3D, our game engine.

Keep in mind, no two classes can share the same name. We’ll go further into detail about class names
and what’s called a namespace later. The contents of the class are contained in the following pair of curly
braces. All of the variables and functions that live between the opening curly brace { and the closing
brace } become the contents of the class object.

Other keywords that we’ll come across in this chapter include those that indicate a variables type.
Some variable keywords which will be covered in the next few chapters are as follows:

int

float

string

These keywords indicate a type of variable. There are many more, but we’re just going to look at these
as an example. An int variable looks something like the following:

A float looks like this:

A string is used to store words like this:

If int and float seem similar, it’s because they both deal with numbers, but as we will see, numbers
behave quite differently when computers use them. Keywords are used quite often and they are case
sensitive. Therefore, int and Int are different things, and thus using Int i = 0; will not work.
Only int is recognized as a keyword, and there has been no definition written to tell C# what Int is.
Keywords are also used to indicate special changes in code behavior. The keyword if is what is used to
control code execution based on a conditional statement.

As you are introduced to more and more keywords, you’ll be expanding your ability to create new code
as well. Keywords make up the complex vocabulary that is required to use C#.

76 Learning C# Programming with Unity 3D

3.6.2 What We’ve Learned

This was a short section, but it covered a fundamental component of a C# construct. Classes are both con-
struction instructions and rules for objects to obey. Writing a complex class takes a step-by-step approach.

Keywords are an important component of any programming language. Some languages have very few
keywords. LISP has a mere 18 keywords, C# has about 76, and COBOL has over 400 words reserved for
special purposes.

Most programming languages use the same keywords for similar purposes. The var keyword is often
used to indicate that a variable is being declared. Because of the similarities between programming lan-
guages, once you’ve learned one language, it’s often easy to pick up and learn new languages.

3.7 White Space

Open the WhiteSpace.cs script found in the Assets of the Chapter3 Unity Project. White Space refers to the
spaces between words and lines. When typewriters were still in fashion, new lines were entered by pushing on
a lever which pushed the roller that held onto the paper to reposition the hammers with letters on them back to
the beginning of the next line. This is the origin of the term “Carriage return character” where the mechanism
holding the paper was referred to as the carriage. Now, these are called line feed character, next line character
line separator, or paragraph separator. It’s also interesting to note that these are unique Unicode characters.
On Windows you’ll find the option under Edit → Advanced → View White Space

In OSX with Visual Studio Community you’ll find the option in the Preferences → Markers and
Rulers → Show Invisible characters: and select Always

77First Steps: Just Getting Started

Like letters and numbers, white spaces are also characters entered in your code. In the editor you’ll see
faint dots arrows and on OSX you’ll see \n marks spaced throughout your code.

In many cases the new lines and spaces and tabs are there only to help make the code more readable. And
depending on what a programmer was taught, the white spaces will be used differently. For instance,
adding white space after a function declaration is unnecessary, and the location of the curly braces can
pretty much be moved anywhere before or after the contents of the function itself. Leaving the white
spaces showing isn’t necessary, but it’s good to know what white space means when talking to a pro-
grammer. If none of this makes sense right now, it will later.

The placement of curly braces is easy to change; these decisions often lead to debates on standards
among programmers. There’s little difference either way. However, keeping your own code consistent
helps you read your code and find errors faster.

78 Learning C# Programming with Unity 3D

It’s important to remember that if you’re going to be working with more classically trained
 programmers, they might get a headache when reading poorly formatted code. It’s best to copy your
programmer friends’ style before coming up with your own way to format your classes and functions. No
doubt, before the end of this book you will have formed opinions of your own when it comes to the use
of white space and formatting your own code.

Normally, code might look a bit like the following:

This looks like a readable collection of statements. However, the compiler could care less about how
you use white space. Therefore, here is what would this code sample look like without the unnecessary
white space:

There are still some necessary white space characters used to separate the different tokens in the
function. There is the space between void and MyOtherFunction, and the space between int
and i. In any case the white space is required after the use of a keyword. Keywords are unique words
reserved for C#. If we used voidMyFunction() then there would be an error stating something about
not knowing what a voidMyFunction() is. White space is also used to make code more readable.
Without the white space the code becomes more difficult to interpret.

imagineforamomentwhatenglishwouldlooklikewithoutanyspacesorpunctuation

White space should also be used as needed. I once worked with a programmer who would put a few
pages of white space between different functions. He said it made it easier to focus on what he was look-
ing at when there was only one line of code on the screen at a time. Of course, this drove other program-
mers nuts. It’s hardly a common practice.

Although he had a point, being able to focus on one code block at a time is important, but there’s a
thing called code folding that we’ll learn about later on to help make your code more easy to organize.

3.7.1 Code Style

Between programmers there’s often a discussion of code style. Many heated debates might flare up based
on the use of white space. The differences are entirely based on style and in most cases have no effect on
the efficacy of the code. In the following fragments the { is placed in different places.

79First Steps: Just Getting Started

The execution of the two functions will perform equally, but the placement of the first curly brace { can
make the code more or less readable depending on what you’re comfortable with. Unity’s developers
offer us the first version, but for clarity we’ll stick to the second version.

The finer points on where variables appear in a statement or how many statements can appear on a
single line are usually dictated by how a programmer has learned to write code. Old school program-
mers prefer no line of code extending beyond 80 characters. This limit formed in 1928, when IBM punch
cards had only 80 columns to poke holes in the paper. Though it’s unlikely you’ll have to work with an
old curmudgeon, at least now you know why they might be grumpy.

Today, there’s no physical limit other than what would make a statement difficult to read. If a single
line of code spans several widths of your screen it’s probably unreadable. In these cases it’s better to
break apart your statement into a few smaller statements. This will help keep the code more readable.
Within the confines of this book we’re somewhat more limited by space, so we too will be limiting the
length of our statements based on the width of the margins of the book.

Likewise, if you’ve got a lovely 4k monitor you might be comfortable reading mile-long lines, but if
you’re stuck on a low-res laptop then you might hate having to scroll left and right just to read a single
statement. Consider the fact that not everyone has a giant monitor.

Interpreting your own code several days or weeks after you’ve written it is just as important as handing
your code off to someone else, with that person being able to read it. There are many times when I’ve
come back to a project written several weeks ago and needed to spend a few minutes trying to figure out
what I was thinking when I wrote the code. Sometimes, it takes only a few days for me to forget about the
code I’ve written. Worse yet, if I write the code half asleep then I might forget what I was doing before
I’ve even reached the end of a statement.

In the end it’s up to you to pick what you’ll stick to. However, it’s considered rude to pick through
someone else’s code and reformat it. Code can sometimes become quite personal, and reformatting
code might end up feeling like someone sneaking into your bedroom and reorganizing your sock
drawer.

Another common debate rises between the use of tabs or spaces. In your IDE (integrated development
environment) you can tell the editor how many spaces a tab is to represent, usually this number is either
4 or 2 spaces. Style guides often bring this up, and in large corporate environments some preference is
usually enforced. This isn’t something you need to immediately concern yourself with, but it’s good to
be aware that there are programmers out there with a strong opinion on what works best.

3.7.2 What We’ve Learned

White space and formatting are important to creating a clean easy-to-read class. Every large company
will have a set of rules for their programmers to follow. These coding standards, as they are called, are
usually maintained by a lead programmer and can vary from company to company.

Smaller teams of engineers can have a less restrictive set of rules, but this often leads to some confu-
sion and large bodies of unreadable code. Everyone has his or her own coding style and preferences. If
there is an established set of coding standards, then it’s best to follow it.

So far as this book is concerned, it’s best that you learn how to make your code work before concern-
ing yourself with strict coding rules. Code formatting and style are important. How you express yourself
through code is up to you, so long as it works. Getting your code to work is a big enough challenge; style
and proper formatting will come naturally with time as you see the benefits of different code styles, and
how they contribute to your code’s readability.

3.8 Code Blocks

To follow along, open the CodeBlocks.cs file in the Chapter3 Unity Project. Code blocks, or a “block of
code,” are collections of statements grouped together. The block, or chunk is separated by a starting curly
brace { then ended with a closing curly brace }. C# programmers often use tabs to indent the contents
of a code block.

80 Learning C# Programming with Unity 3D

This makes the different blocks more readable. This becomes more apparent when we have blocks
within blocks. Some languages like python rely on the tabs to indicate separate blocks of code. Code
blocks help organize statements together in a continuous set of steps.

Getting used to how spacing is essential for writing readable code. Next, we’ll use a logic control state-
ment followed by a block of code. The block for this if statement is indented to the right to indicate it’s
confined within the logic control statement.

If we take a look at a more complex section of code we can see why it’s important to differentiate code
by using tabs. When looking at code it might not be apparent, but programmers are very fastidious about
text layout. Each programmer has a preferred style, but it’s safe to say that most, if not all, programmers
hate seeing badly formatted code.

In the above example we can clearly see int j being set twice. What isn’t obvious is why it’s declared
twice. All the lines start at the same position and look crowded. Programming tools offer many text
layout options, so white space is used to separate different blocks of code.

By adding in some white space, we can make the if statement more visible. Adding white space
around our blocks of code is important to maintain readability. There are also blocks of code that
can live within another block of code. In general, it’s all related to the same block. Blocks inside of a
block are called nested code blocks. White space is used to separate the nested code from the block
it’s found in.

81First Steps: Just Getting Started

The block of code following the second if statement is considered to be nested inside of the first block
of code. This is because of the placement of the first opening curly brace { and the related closing curly
brace }. You form hierarchies by placing the different curly braces within one another.

Poorly indented curly braces make for confusing code; the above code is still valid, but it’s less readable
compared to the previous version. Most code-editing tools will automatically add in the proper number
of indents for you. It’s something you’ll have to get used to when writing your own code.

We’ll go into further detail as to what this all means later. Just gather from this discussion that a bunch
of statements appearing between a pair of curly braces is considered a block of code.

3.8.1 What We’ve Learned

Much of programming involves proper use of style and a great deal of white space to accomplish that
style. So far we’ve just been covering vocabulary; yet, without that vocabulary we can’t have a proper
conversation about programming. This includes talking to other programmer friends, who will have a
hard time understanding you if you can’t speak their language.

3.9 Classes: A First Look

To follow along open the Classes.cs file found in the Chapter3 Unity Project. The most important
part of any C# program is the class. Classes here are not the sort that students go to; rather, they are
classes in terms of classification. Classes in C# appear in several different forms. Some are called
partial classes, and some classes can even appear inside of another class; these classes are called
nested classes.

A class is a collection of data and instructions. The instructions can be referred to as functions methods
or, sometimes, procedures. The data stored in a class is called a field or property. Everything in a class
together are members of the class. All the naming aside, what’s important is what classes do and how
they’re used.

82 Learning C# Programming with Unity 3D

Classes are flexible and easily changed, but this flexibility is not without some complexity. As we’ve seen
before, the class declaration can contain a lot more than the following example. However, much of the
complexity comes later in this book, when needed.

When you approach a game or any sort of programming task first gather data; then figure use of the
data; last, act on the data. In most programming paradigms it’s best to start off with variables at the
beginning of your new class. For instance, in this pseudo code we might want to know what day it is
before going out:

We start off with getting a day, and then deciding what to do tonight based on the day. We should refrain
from partying based on what the day is, unless we want to show up for work late. Almost every operation
follows that pattern, get data, check data, set data. We’ll go into more detail on this topic later, after we’ve
learned about how to use a variable in a class properly.

3.9.1 Objects

Object oriented programming (OOP) was invented to associate data and logic into nicely packaged bun-
dles of code. When you write a class in C# you’re creating blueprints and instructions for a new object.
Any number of objects can then be constructed based on your blueprints. Programmers use the term
instantiate when talking about creating an object from the class blueprint.

Each instantiated object is an instance of the class from which it was constructed. The class is not itself
one of the instances created by it. The newly created object contains all the functions and data written
into the class.

83First Steps: Just Getting Started

To make this clear, a class in of itself is not an object, just a plan for making objects. We start with a C#
class which contains instructions to build an instance of itself. Unity 3D hides a bit of this instantiation
from you when you’ve attached a script to an object in the scene. A script attached to a GameObject in
the scene tells Unity to instantiate the class at the start of the game.

A class might be nothing more than a container for some data. As an example, our zombie shooter could
have a hypothetical ammunition pick-up class. In the ammunition pick-up, we could store a type of
ammo, along with how many rounds are stored in it. When a player discovers a stock-pile of ammunition,
the variety and count can be randomized for any number of pick-ups.

On the other hand, a class can also contain behaviors for a complex boss who plans to crash a comet into
the earth, or any other instruction for world domination. The contents of which are a bit out of reach for
this book.

84 Learning C# Programming with Unity 3D

Just as important, a class can create more than one instance of an object. This process is called
 instancing. Each instance is created from the same blueprint and thus behaves the same as all the other
instances of the same class. Each instance can have unique values. In Unity 3D, each instance of an
object can have unique positions in 3D space.

OOP is particularly useful for video games. Individual classes can address different aspects of your
game. A zombie class can be instanced many times to create a mob of mindless zombies. Likewise, a
solitary class can be written to manage how to move your player’s character around when keys or buttons
are pressed. A separate class can manage inventory and how to deal with items.

Monsters, bullets, cameras, and lights all have classes from which they are created. Almost every object
you see in any level in Unity 3D can be instanced from a class. An instance of an object communicates
to another object through messages and events.

When people in the real-world deal with household items they are rarely concerned with how they
function. Knowing how a toaster works has little effect on the toaster’s performance. We put bread in a
toaster, push down on a button, and wait for a delicious toast.

A toaster, however, is more than a button and a receptacle for bread. It’s a collection of wires, heat-
ing elements, transformers, and other electrical components which are hidden under a shiny cover. We
interact with an abstraction of a toaster, never dealing with the insides ourselves.

Abstraction presents only the parts we need to accomplish a given task and hides the rest. To make
toast we need a place to put bread and a button to start the machine. The toaster does its work and toast
happens, or at least it should.

85First Steps: Just Getting Started

Messing with the insides of the toaster class isn’t recommended; that’s why there are labels telling us to
keep forks out of the toaster. To protect a human class from fumbling around with the insides of a toaster
class the toaster is protected by encapsulation.

Encapsulation is the term used to define to how classes hide data and functions from the outside world.
To interact with the toaster we must use the toaster’s interface, but there are other objects in the kitchen
which have buttons, and the human class is very good at pushing buttons.

When you put bread into a blender and press a button you will get a very different result from the toaster,
but they are both kitchen appliances and use the same power outlet. They’re both made of metal and run
on the same electricity, but they do different things.

When and where it’s possible, a programmer will reuse as much code as possible. A blender and a toaster
could share similar components, only the operation carried out on a slice of bread is different when they
are used. The capability to change the contents of an operation is described as polymorphism.

86 Learning C# Programming with Unity 3D

A generic kitchen appliance would be a place to put food and a button to press to process food. Each
version of a kitchen appliance does different things to food. A wise programmer would make sure that
all the appliances inherit from the generic kitchen appliance.

Inheritance allows many classes to share common attributes and behaviors. If you wanted a toaster
with more than one slot and a knob to adjust the darkness of your toast you would want to inherit the
original toaster’s functions first. This means that the base of both toaster and blender is a kitchen appli-
ance. A dual slot toaster inherits from toaster, which inherits from kitchen appliance. This in turn means
that if any changes are made to kitchen appliance that change or addition is inherited by all of the sub-
classes inheriting from kitchen appliance.

This would mean inheriting the original toaster’s electronic systems, casing, and original button. All
of these components may also be made from other classes. This would mean only changing one elec-
tronic part to adapt a toaster for sale, say, in Europe.

Aggregating many different classes into a single class allows another layer of flexibility. By aggregat-
ing many separate components or classes into a single useful toaster or blender means you can more
easily swap individual parts for new behaviors. A toaster is the aggregate total of many smaller parts.

You may find yourself writing code for a zombie or a toaster and see some similarities between those
things and other objects in your game. When your player attacks a zombie or a toaster, they may both
break apart. Both the zombie and toaster can share functions related to getting attacked.

As far as your code may be concerned, one object chases after you trying to eat your brains, and the
other object turns bread into delicious toast. Keep this in mind when you start writing your own code.
Even though some things may seem unrelated, maybe even humans and zombies can both enjoy toast.

3.9.2 What We’ve Learned

I’ll let this sink in a little bit. Being new to programming is usually a very intimidating experience.
Having to learn any new language is a daunting task. Because much of programming is taught in
English we’ve got a slight advantage. At least the mentioned 80 keywords aren’t written in a foreign
language.

The main take away from this chapter is the fact that OOP is the process of building objects, instanc-
ing them, and then using them. Using objects involves reading data, using logic on the data, and then
carrying out tasks based on the logic.

As we move on, feel free to jump back between chapters to refresh your memory if there are concepts
which you might have forgotten. It’s important to proceed at your own pace; jumping ahead before you’re
clear on a topic leads to confusion, then frustration, and leading to quitting altogether.

We’re here to learn and have fun while learning. Building a game for modern gaming platforms is easy
once you’ve got your head wrapped around this whole C# thing, so stick to it and you’ll reap the rewards.
Not only will you be able to write your own games from scratch, you’ll also be able to write plenty of
other apps using other development tools which use C#.

We’ve also come across a great deal of vocabulary related to classes. If you’re not completely clear as
to what these words mean we’ll be covering chapters dedicated to these more complex concepts. When
you’re ready, it’s time to continue learning and getting ready to make some games.

3.10 Variables

To follow along open the Variables.cs script from the Chapter3 Unity Project. Programming is only able
to accomplish a task once it’s able to read, manipulate and create data. Variables are the little bits of data
or information which make up the game world. Everything you see in a game scene, and even things that
are implicitly assumed, like gravity, can be interpreted as data that can be stored into a variable. Logic
behavior can be controlled by comparing values stored in variables.

The concept of a variable is something we might take for granted in day-to-day life. When you save a
contact in your phone you’ve assigned values to a name; you added “Mom” with a phone number to your
address book.

87First Steps: Just Getting Started

A variable can be either something that’s constantly changing or something you’ve set once and
shouldn’t change. For instance, an object’s location should be updating if it’s falling or getting pushed on
by other forces in the world. This object’s location is a variable, which the programmers at Unity have
named transform.position. The Position value has three parts, an x, y, and z component.

Various numbers used in common math operations have been named with easy to remember identifiers.
A value like PI, which doesn’t need to change, lives in Unity 3D’s API. It can be found as UnityEngine.
Mathf.PI.

3.10.1 Identifiers

Identifiers, which are considered symbols or tokens, are words that you invent and then assign a meaning.
Identifiers can be as simple as the letter i or as complex as @OhHAICanIHasIdentifier01. We’ll
get into properly creating names later, but identifier is the word that’s used to name any function, vari-
able, or type of data you create. From the address book example above, the entry “Mom” is the identifier
and its value is the phone number you assigned.

With a GameObject or a Camera in a Unity Scene, a collection of variables can be seen in the Inspector
panel. The Camera has a Transform Component, the Transform has a Position, Rotation, and Scale.
Inside of each of these are X, Y and Z variables. The Camera component has a longer list of variables
starting with Clear Flags and ending with Target Display. Each of the Identifiers name a different type of
data you’re able to modify and save in the scene.

88 Learning C# Programming with Unity 3D

3.10.2 Data

Data, in a general sense, is sort of like a noun. Like nouns, data can be a person, place, or thing.
Programmers refer to these nouns as objects, and these objects are stored in memory as variables.
The word variable infers something that might change, but this isn’t always the case. It’s better to think
of a variable as a space in your computer’s memory to put information.

When you play word games like MadLibs you might ask for someone’s name, an object, an adverb,
and a place. Your result could turn out like “Garth ate a jacket, and studiously played at the laundrymat.”
In this case the name, object, adverb, and place are variable types. The data is the word you use to assign
the variable with.

Programmers use the word type to denote what kind of data is going to be stored. Computers aren’t
fluent in English and don’t usually know the difference between the English types noun and adjective, but
they do know the difference between letters and a whole variety of numbers. There are many predefined
types that Unity 3D is aware of. If you add that to the ability to create new types of data, the kinds of data
we can store is practically unlimited.

The C# built-in types are sometimes called POD, or plain old data. The term POD came from the
original C++ standard which finds its origin dating back to 1979. POD types have not fundamentally
changed from their original implementation.

Programmers define the word type to describe the variety of data to be stored. Variables are created
using declarations. Declaration is defined as a formal statement or announcement.

Each set of words a programmer writes is called a statement. In English we’d use the word sentence,
but programmers like to use their own vocabulary. Declaration statements for variables define both the
type and the identifier for a variable.

The Unity Inspector panel allows us to see variables in action. With the Variables GameObject in the
Variables_Scene selected, the Inspector panel reveals three variables declared as seen in the example
code below.

89First Steps: Just Getting Started

The Three identifiers InputValue, MultiplyBy, and Result are declared and made visible to the
Editor. In the Update() function we assign Result by multiplying InputValue by MultiplyBy.
If you change either InputValue or MultiplyBy you’ll see the Result automatically Update the
value seen to the right of the Identifier.

You may have noticed the keyword public before the float; we’ll explain that later in Chapter 4
where we discuss access modifiers. In this case, this tells Unity 3D to show that variable in the Inspector
panel with the attached script. By placing the Result calculation in the Update() function we ensure
that the calculation is updated every frame.

3.10.3 Variable Manipulation

Declaring a variable creates space in the computer’s memory for a value. The manifestation of this can
be seen by the box to the right of the declared identifier in the Inspector panel in Unity 3D. In the previ-
ous example, we made space for three values. Unity 3D took the first two values and modified the value
stored for Result.

Now that we know what parts are required to make a variable declaration, what can we do with them?
Once a variable has been declared and assigned it can be reassigned at any time.

On the second line the variable i is no longer 0; it’s 1 now. If we check what value is being stored at i
we’d find a 1. So long as i is not assigned again, i will retain its value.

90 Learning C# Programming with Unity 3D

To create another declaration of i in the same block of code will produce an error as we’re trying to cre-
ate a declaration for i twice. A declaration for i has already been made the identifier cannot be declared
more than once.

3.10.3.1 Declaration Placement Examples

A valid variable declaration can only appear in a few places in your code. Some of the conditions for
valid placement of a variable declaration are related to something called scope which will be covered
in further detail in Chapter 4. To ease into variable declaration, we’ll confine our attention to declaring
a variable to a single class. A declaration for someInt should appear between the opening and closing
curly braces of a class.

The code above shows a problem with the first outterInt declaration happening above the definition
of class SomeClass. The declaration of int innerInt inside of SomeClass is allowed, as we
have seen demonstrated before.

One common mistake many new and old programmers make is forgetting to add the semicolon to the
end of a statement. Visual Studio helps a great deal with pop-ups like the one above. The red squiggle
lines underline problems and highlight errors which keep Unity from running your code.

We’ve now completed two important tasks. We created a variable identifier giving the variable a way
to access the contents of the variable. C# under the hood gave that variable some space in your com-
puter’s memory to put an integer. The int variable is now defined as SomeNumber, an object we can
fill with a number with practically any int value.

When variables are declared for the first time, or initialized, in C# they are usually immediately given
a value. This is not true with all types of variables, but number values are assigned 0 when they are cre-
ated. For more complex data types their default value is null when they are initialized. This initialization
behavior will become useful later when we start inspecting the values of variables.

3.10.4 Dynamic Initialization

When we both define and assign a variable we use the term dynamic initialization. Some data types auto-
matically give themselves a default value when they are initialized without an assignment. For instance,
a Boolean automatically assumes it’s false when it’s created.

91First Steps: Just Getting Started

In this case, if we were to use SomeBool before assigning it then the result would act as though it
were initialized false. In the above example both SomeBool and AnotherBool have the same value.
Likewise, most numbers are initialized to 0 (zero).

So in this case both SomeInt and AnotherInt have the same value. However, this changes when we
dynamically assign a value to a variable when initializing.

When we assign a value to an int when it’s initialized we skip the default initialization, and the value
assumes its assignment when it’s created.

3.10.5 What We’ve Learned

Variables are stored in your computer’s memory. By defining a variable by its type, you instruct the com-
puter to set aside a block of memory in the computer’s RAM (Random Access Memory) to store data. To
access the data you give it a name, or an identifier.

Once the identifier has been defined you can assign or read the data stored in memory through its
identifier. In many cases the identifier needs to be unique. Depending on when it was created an identifier
might have the same name as one created before it.

When this happens you get an error telling you that a variable has already been defined with that
identifier. Changing one or the other’s name solves the problem. When creating identifiers we need to
consider what they’re used for and how to name them.

Some code standards place rules on how an identifier should be named. For instance, a bool might always
start with is to indicate how it’s used. Therefore, a zombie might have isWalking or isRunning,
indicating what it’s doing. Other standards might use a prefix b for bools, so bWalking or bRunning
could be used to indicate the same thing. How you decide to name variables is up to you, but it’s good to
know what we’re about to get into so far as naming variables, which we’ll be covering next.

3.11 Variable Names

Continuing in the Variables_Scene open the VariableNames.cs script in the Assets directory of the
Chapter3 Unity 3D Project. It’s important to know that variable identifiers and class identifiers can be
pretty much anything. There are some rules to naming anything when programming. Here are some
guidelines to help. Long names are more prone to typos, so keep identifiers short. A naming convention
for variables should consider the following points:

• Short and easy to remember

• Succinct and to the point

• Meaningful but not long

• Unique

• Avoid special characters

• Describes what it’s used for

92 Learning C# Programming with Unity 3D

The variable name should indicate what it’s used for, or at least what you’re going to do with it. This should
be obvious, but a variable name shouldn’t be misleading. Or rather, if you’re using a variable named radius,
you shouldn’t be using it as a character’s velocity. It’s also helpful if you can pronounce the variable’s
name; otherwise, you’re likely to have issues when trying to explain your code to another programmer.

If you were to use a long complex hard to remember variable name, Unity 3D wouldn’t be able to show
you the entire name in the Inspector panel.

There is an advantage to keeping names as short as possible, but still quite clear. Your computer screen,
and most computers for that matter, can only fit so many characters on a single line. You could make the
font smaller, but then you run into readability issues when letters get too small.

Consider the following function, which requires more than one variable to work.

The code above uses many long variable names. Because of the length of each variable, the statement
takes up multiple lines making a single statement harder to read. We could shorten the variable names,
but it’s easy to shorten them too much.

Variable names should be descriptive, so you know what you’re going to be using them for; too short and
they might lose their meaning.

While short and easy to remember, it’s hard for anyone else coming in to read your code and know what
you’re using the variable a for. This becomes especially difficult when working with other programmers.
Variable naming isn’t completely without rules.

A variable name can’t be a number. This is bad; numbers have a special place in programming as much
of it has other uses for them. MonoDevelop will try to help you spot problems. A squiggly red line will
appear under any problems it spots. And speaking of variable names with numbers, you can use a num-
ber as part of a variable name.

The above name is perfectly valid, and can be useful, but conversely consider the following.

93First Steps: Just Getting Started

Variable names can’t start with any numbers. To be perfectly honest, I’m not sure why this case breaks
the compiler, but it does seem to be related to why numbers alone can’t be used as variable names.

Most special characters also have meanings, and are reserved for other uses. For instance, in C# the
minus or dash character (-) is used for subtraction; in this case C# may think you’re trying to subtract
that from this. Keywords, you should remember, are also invalid variable names as they already have a
special meaning for C#. In MonoDevelop, you might notice that the word this is highlighted, indicating
that it’s a keyword. Spaces in the middle of a variable are also invalid.

Most likely, adding characters that aren’t letters will break the compiler. Only the underscore and letters
can be used for identifier names. As fun as it might be to use emoticons for a variable, it would be quite
difficult to read when in use with the rest of the code.

The two variables here are different. Case-sensitive languages like C# do pay attention to the case of a
character; this goes for everything else when calling things by name. Considering this: A is different from a.

NOT E: Trained programmers are often taught a variation of naming conventions, which yields easier-
to-read code. Much of this is dependent on scope, which we will discuss in Section 4.4.4. There are also
conventions which always prefix variable names with an indication of what sort of data is stored by that
variable.

As a programmer, you need to consider what a variable should be named. It must be clear to you and
anyone else with whom you’ll be sharing your work with. You’ll also be typing your variable name many
times, so they should be short and easy to remember and type.

The last character we discuss here is the little strange @ or at. The @ can be used only if it’s the first
character in a variable’s name.

In the second variable declared here we’ll get an error. Some of these less regular characters are easy to
spot in your code. When you have a long list of variables it’s sometimes best to make them stand out visu-
ally. Some classically trained programmers like to use an underscore to indicate a class scope variable.
The underscore is omitted in variables which exist only within a function.

You would find the reason for the odd rule regarding @ when you use int, which is reserved as a key-
word. You’re allowed to use int @int, after which you can assign @int any integer value. However, many
programmers tend to use MyInt, mint, or _int instead of @int based on their programming upbringing.

94 Learning C# Programming with Unity 3D

Good programmers will spend a great deal of time coming up with useful names for their variables
and functions. Coming up with short descriptive names takes some getting used to, but here are some
useful tips. Variables are often named using nouns or adjectives as they describe an attribute related to
what they’re used for.

A human character can often have a health attribute. Naming this HealthPoints or
NumberOfHealthPoints is sometimes considered too wordy, or even redundant. However, if
you and your friends are accustomed to paper role-playing games, then perhaps HitPoints would be
preferred.

In the end, once you start using the name of the variable throughout the rest of your code, it becomes
harder to change it as it will need to be changed everywhere it’s used. Making a global change like this is
known as refactoring. Visual Studio can help change the name of a class, variable, or function throughout
a project by refactoring your code.

NOT E: You may also notice the pattern in which uppercase and lowercase letters are used. This is
referred to as either BumpyCase or CamelCase. Sometimes, the leading letter is lowercase, in which case
it will look like headlessCamelCase rather than NormalCamelCase.

Many long debates arise between programmers as to which is correct, but in the end either one will do.
Because C# is case sensitive, you and anyone helping you should agree whether or not to use a leading
uppercase letter.

These differences usually come from where a person learned how to write software or who taught
that person. The use of intermixed uppercase and lowercase is a part of programming style. Style also
includes how white space is used.

When you name variables in Unity 3D the use of CamelCase or BumpyCase will automatically sepa-
rate the different words indicated by an uppercase letter in the Inspector panel. This doesn’t actually
affect how the declaration was written. This will only change how your variable’s name appears in the
Unity 3D Editor.

3.11.1 Useful Variables in Unity 3D

Open the UsefulVariables_Scene in Chapter3/Assets. Open the UsefulVariables.cs script attached to the
game object of the same name in the scene.

Unity 3D is a great way to demonstrate what variables look like and how they act. When variables of
different types are added to a script the Inspector represents the data type in various different ways.

Adding the keyword public before the type and the identifier informs the Unity 3D Editor to expose the
variable to the Inspector panel. The different types change how the variable is represented in the Inspector.
You may also notice that MyBool has a space added to show “My Bool” next to the checkbox. Unity 3D
formats bumpy text into different words for readability, but it doesn’t actually change the text in your code.

95First Steps: Just Getting Started

By setting values in the Inspector panel, we tell the script what values to start with when the script is run.
The Int and Float we declared are by default initialized to 0 when they appear in the Inspector.

Dragging on the My Float item left and right adjusts the value stored on the object in the scene. Many
variable types are initialized with a default value if nothing is provided when they are declared.

Initialization is the process by which variables and other chunks of data are created and stored
for the first time in a class object. Initialization can be either automatically declared, like MyInt
or MyFloat, or declared as variables are initialized. Or they can be dynamically assigned like
MyOtherInt where we assigned 700. The default values will be overwritten when they are edited
in the Inspector panel.

96 Learning C# Programming with Unity 3D

If you make changes to the default values and save the scene, the changes will be saved to the scene
where the script is used. To bring the defaults back, right click on the script’s component title bar and
select Reset to revert the values to those declared in the script.

Integers or int are whole numbers. Numbers which have a decimal in them are not integer values.
Such numbers, having values with fractions, have several different names, for example, float, or dou-
ble. We’ll go into some more depth as to what number types mean in Chapter 4. You’ll notice you’re
not able to change MyInt to 0.1 or any number with a decimal point in it. The fields provided for
each parameter is limited to the type of value that’s allowed to be entered. We’ll study why this is in
the next chapter.

3.11.2 Variable Assignment

We stepped through some basic guidelines regarding assignment of variables, but what happens when
we change the assignment? The variables’ assignment happens one line at a time. The computer starts at
the top of the code and works its way down one line at a time. What this means is, the value of a variable
shows its changes only after the assignment is made.

For instance, in the following code sample we’ll start off with one variable and change its assignment
several times and print the results.

With the code included in a new C# script named Variables assigned to the GameObject in the scene of
the same name, we’ll get the following output in the Console panel.

97First Steps: Just Getting Started

Using the same variable named MyVariable and after assigning it different values, we get different
numbers printed to the Console panel. This is because the identifier MyVariable is nothing more than
its value; it’s just a number. In other words, we could use the following code fragment and get the same
result from both print outputs.

If we want to mix variables together, we can do that too. Because MyVariable is an integer value, we
can treat it like any other integer, or whole number. This can be demonstrated best with another int
variable.

Here we’ll get an expected 21 printed out to the Console panel from both Debug.Log functions. To
be clear, MyVariable * MyOtherVariable and MyVariable * 3 are equivalent. Next, let’s
consider what happens when we assign a variable to another variable:

98 Learning C# Programming with Unity 3D

Now we have MyVariable being assigned the value that is MyOtherVariable. Therefore, let’s think
through this logic. MyOtherVariable is assigned a value of 3, so if we assign MyVariable a value
of 3 the second print function will return MyVariable * MyOtherVariable. This means it’s actu-
ally just 3 * 3, which means 9 will be printed out to the Console panel.

3.11.3 Putting It Together: Using the Variables

We’ve named variables and given them assignments. It’s about time we start to consider how to apply
these new concepts to something useful in Unity 3D. Open the UsingTheVariables_Scene in the Chapter3
Unity Project.

We’ll start off with a basic scene with a handy TransformPrimitive; we’ll be seeing this gizmo quite
often. Next, open the UsingTheVariables script attached to the TransformPrimitive in Visual
Studio. To start with, we’re going to add in a public variable at the class level. We will be getting to
what this all means in Section 4.4.3, but for now what we’re doing is making this variable available to the
rest of the functions as well as the Editor.

Your code should look like the one above. Now, hopping back into Unity 3D you should see both
RotationSpeed and Rotation in the Inspector panel.

This little thing has a 0 in it; that’s what we want. We’ll be making use of this variable in the Update()
function found in the class. Let’s add the following code to the Update() function and see how it works.

The Time.deltaTime object is a useful value. The calculation of the value comes from the amount
of time that passes between updates. The Update() method is run once per frame. Slow computers
struggle to update as often as faster computers.

More time passes between updates on a slow machine. If you want a value to update at the same
speed on both slow and fast machines Time.deltaTime is a good way to regulate how much a value is

99First Steps: Just Getting Started

changed when it’s updated. As an example, if you have a machine that runs at 100 frames per second then
1/100th of a second passes between Update() calls. On a machine that runs at 10 frames per second
1/10th of a second passes between frames. You can’t rely on Update() to increment a value at the same
speed in both situations.

When the Play-in-Editor button is pressed we see the Rotation value increment up based on
Rotation Speed values.

With this we can plug the Rotation value into the object’s rotation with the following code:

Small values in RotationSpeed will rotate the object very slowly. In the Inspector you can watch the
Y of the Rotation in the Transform component update with the same value as seen in Rotation.
Also try assigning negative values to rotate the transform primitive the other way.

Play with this for a little bit; just make sure RotationSpeed is a value other than 0.
To make this more interesting, we’ll add public float ForwardSpeed; after the Rotation

Speed and the Rotation variables.

With this we could modify the position of the Transform primitive object.

The line above should appear after the transform.localEulerAngles are updated. With three
lines of code and two inputs, a ForwardSpeed and a RotationSpeed variable we’ve created a small
sort of steerable object.

We haven’t quite created a driving simulator, but we’ve only written three lines of code to move around
a funny looking colored arrow mesh. Altogether, there is actually quite a lot of interesting things to play
with here.

100 Learning C# Programming with Unity 3D

3.11.4 What We’ve Learned

We’re taking very small steps to start off. There’s a great deal of new concepts for you to absorb and
many questions to be asked. If there is anything unclear then take a moment to go back and review.

So far, we’ve mostly covered terms related to writing C#. Learning about programming is somewhat
about learning new vocabulary, and we’ve covered keywords and a few operators and variables. We just
wrote variables to a C# class object and added it to an object in our Unity 3D scene.

C# is an OOP paradigm. Every class is an object. Once we learn how to write our own objects, we’ll
learn how to read other objects and possibly even begin to understand the complexity laid out in Unity
3D’s library.

3.12 Types: A First Look

For this chapter we’ll look at the Types script found in Chapter3 Project Assets directory. When we
assign a variable a value such as int i = 1; we’re making an interesting assumption. We assume
using 1 automatically infers a value type that matches the variable type. Computers use a wide variety
of different types of data for storing numbers.

We’ve been seeing the keyword int being thrown around as though you know what an int is. In our
everyday lives we hardly think there’s any difference between numbers 1 and 1.0 or even the word
one. As humans we can easily conceptualize numbers as units of measure and converting between them.
The conversion between the word one and the number 1 isn’t so easy for a computer.

The keyword int is short for integer. Integers are whole number values. The integer is a C# built-in
type, as mentioned before it’s considered plain old data. Basically, this means that integers are a funda-
mental part of C#. Other built-in types include float, double, string, bool, and object. Less
commonly used built-in types are char, short, and byte. Altogether, there are 15 different built-in
types. All of these, except object and string, are value types.

Every type of data you’re able to build must be based on built-in types. The system which creates
floats, doubles, and bools is rooted in the origin of computing. Remember the punch tapes and
pieces of paper with holes in them? Those were records of 1s and 0s which were fed into computers
for storing in the form of mechanical switches, either on or off. The patterns represented numbers or
instructions and logic.

Today, we still use the same system of 1s and 0s, or binary, only we don’t need to punch holes in paper
to tell the computer what to do. The methods of creating and storing the instructions have become many
times more complex, but nonetheless the principle of the 1 and 0 are the same. These are called bits;
one possible origin for that name is the little bits of paper that were left over from punching holes in the
paper cards.

3.12.1 Value and Reference Types

The int, float, double, and bool are commonly used value types. The basics of this usage pattern
relate to the system that stores and organizes the computer’s memory. When you talk about computer
storage you use the word megabyte or gigabyte. Value types are stored with a very specific purpose in
mind: to keep track of a numeric value.

NOT E: The word mega refers to how many millions of bytes a component in your computer can store.
Giga indicates how every many billions of bytes are being stored. Have you ever thought about what a
byte actually is?

A byte is what’s called an 8-bit unsigned integer, or a system of using 8 bits to form a number. What
this means is, it’s a whole number like 0, 7, or 32,767. The word unsigned indicates that the number can-
not be negative, like –512.

A 1 or 0 in computer terms is called a bit. We won’t go into detail on how computers use bits to
count, and it’s a rather fun thing to learn on your own. However, it’s important to know that a byte

101First Steps: Just Getting Started

has a limited range, from 0 to 255. I’ll just leave you with the idea that you could count up to 1023
on your 10 fingers if you used binary rather than decimal. Your fingers can be used to represent a
10-bit unsigned integer. The computer’s calculation capabilities used to be far more limited than they
are today. An 8-bit game console made in the 1980s had a limited number of colors, 256 to be exact.
This limitation was based on the number of bits that the processor could handle. The processor had
a limited number of transistors which could be used at any one time. Shortly after, floating point
co-processors were introduced, which had a much larger numeric range allowed, by having closer to
32 bits to work with.

In all of these cases, when you use a value type, that number is actually stored as 1s and 0s in your
computer’s RAM. This should be considered remarkable. In the past you’d have to go through flaming
hoops to store a value. Now you just type in float f = 3.1415926535; and you can measure the
circumference of the galaxy accurately to within the width of a single atom.

What all these types have in common is that they are stored as a single element. Large values like
double gigawatts = 1210000000.0 and double mint = 2.0 use the same amount of
memory.

Your computer doesn’t assign one double or the other more space in memory. These types are referred
to as primitive types. The only difference between an int and a float is the number of bits they use at
a time, 8 and 32 respectively; doubles use 64 bits.

The string and object types differ a bit in how they are stored. These types are a composite of
any number smaller elements. The bigger a string or object the bigger chunk of memory the computer
opens to place that object or string. These are called reference types or sometimes called nullable types
because C# doesn’t look to a single element in memory to get data from it.

We will explain nullable types in Section 4.4.1.2, but in short, a nullable type is a space in memory
which is reserved for data that has yet to be fulfilled. Primitive or value types are commonly reserved
and assigned at the same time. There are systems which allow this to be changed, but we’re getting ahead
of ourselves for now.

In Unity 3D, a commonly used type is the Vector3. Vectors, in the math world, are directions in x, y,
and z with a length. Unity 3D uses vectors to keep track of a position in 3D space. The Vector3 type is
a composite of three float variables. This means that a Vector3 is made up of different components.
From this, we may infer that a Vector3 is a nullable type. Each float is labeled x, y, and z. However,
unlike the primitive types the Vector3 needs to be instanced. This means that you can’t simply use the
following syntax.

Nullable types need to be initialized; that is, they need some form of initial value. We’ll go into further
detail on this later. It’s important to remember there are differences between types when they are being
initialized. Later on, as you begin to create and use objects and variables it’ll be important to remember
how to initialize the different variable types.

3.12.2 What We’ve Learned

There are many different forms which data can take. Each form is called a type. The different forms
depend on how they are organized and how they are initialized. Reference or nullable types require some
form of initial parameters before they can be used. Value or primitive types usually have an initial value
when they are created.

When variables are declared, they are assigned a type. The type changes how the variable behaves and
what values it’s allowed to store. As we move forward, remembering how types behave is important. C#,
and many other C-like programming languages, has specific rules with how to deal with data of differ-
ing types.

102 Learning C# Programming with Unity 3D

3.13 Strong Typing

Continue with the same Types script from the previous chapter. Strong typing has nothing to do with
how hard you type on the keyboard! C# sees a difference between numbers in how they are written.
A whole number like 1 is different from 1.0, even though we can think of them as having the same
value. Some of these differences can be added by adding a letter. Therefore, 1.0 and 1.0f are different
numbers as well.

C# is a strongly typed programming language. When a programming language uses strong types,
you’re expected to keep the different types separated. This means that a 1 + 1.0f can create a problem.
Because the two numbers are actually different types of numbers we must convert one of them to match
the other before the operation can take place.

To convert from one type to another we must tell C# that we intend to make that conversion from a 1 to
a 1.0 by using what’s called a cast operator. Thus, 1 + 1.0 will either become 1 + 1 or 1.0 + 1.0
depending on what operation you choose. Aside from changing how memory is used, types also limit any
problems which might come about when working in a team of programmers.

If one programmer is new to your game and has made assumptions about hit points being in floating
point values, he’d quickly find out as soon as he looked that you’re using integer values and change how
he intends to use those numbers. Value types not only store a value assigned to them but also provide a
great deal of information to be inferred by the programmer reading the code.

In Unity, the statement Vector3 vec = new Vector3(1.0, 1.0, 1.0) will throw an error.
The number 1.0 is called a double, which uses 64 bits, whereas 1.0f, which is a float, uses 32 bits.
The difference means float 1.0f is half the size of the double 1.0 in memory. A Vector3 is made up
of three float values, not three doubles.

Therefore, in terms of declaring a variable and assigning it float f = 1.0f and double d = 1.0;
the same type problems exist as with assigning a Vector3 (), which is made of three different float
values. To properly tell C# you mean a 32-bit version of 1.0 would be to add an f after the number: 1.0f
means you want to use the 32-bit version of 1.0 and not the 64-bit version of 1.0. Therefore, to declare
Vector3 vec = new Vector3 (1.0f, 1.0f, 1.0f); is the correct way to assign a proper
Vector3().

Confused? I’d imagine so; we’ll clear things up in a bit. Just hang in there.
For our purposes of learning how to code, knowing anything about bits may not mean a lot. However,

if you ever talk to a programmer it’ll be very important that you know the difference. Before getting
too far ahead we should know that Unity 3D uses floats and ints quite often. There is also a dif-
ference between the different data types in that they cannot be simply used interchangeably without
consequence.

3.13.1 Dynamic Typing

Not all programming languages are so strict with types, but it’s a good idea to get used to working with
strict types before learning more lazily typed programming languages, like Lua (http://www.lua.org/).
These are sometimes called “Duck”-typed languages; this refers to the proverb “if it looks like a duck
and it sounds like a duck, it’s probably a duck.” Type conversion is important for learning more complex
languages like C, or C++. These languages offer a wider number of platforms and a more detailed level
of control.

http://www.lua.org/

103First Steps: Just Getting Started

With dynamically typed languages like Lua or UnrealScript, you can run into strange hard-to-
track-down bugs. However, when it comes to a type we might see something like this:

In the above it’s not clear what the variable i is supposed to be, is it a bool or an int or a double? When
var above starts off as an integer, but we use it as a bool and then multiply it by a floating point value, what
is i? What have we turned it into if we want to use it as something else, or how do we turn it back?

As we will see in Section 7.14.4, we are allowed to make some exceptions to the type of a variable.
The keywords var and dynamic do mean you’re expecting an unexpected type to be coming, but once
it’s there, you had better know what to do with it.

3.13.2 What We’ve Learned

We have glossed over the specifics of how numbers work in the computer’s memory, but we’ll get into
that in Section 6.20.2. Superficially, we should know that not all numbers are the same. A byte is 8 bits, a
nibble is 4. An int is 32 bits, and an int64 is 64 bits, but that’s not all. A float is also 32 bits and a double
is 64 bits, but these can’t hold the same values as an int or int64.

The float and double use some of their bits called a mantissa to hold the numbers after the decimal.
Therefore, 1.01 requires some of the bits to represent the 1, and these are called the significant digits.
The mantissa uses some bits to represent the other 1 in the number. Then there are more bits set aside to
tell C# where the dot (.) goes in the number, and these bits are called the exponent. Therefore, with 1.02,
the exponent tells the mantissa 2 to move an extra zero after the dot, so 1.02 is the final result.

We take for granted the work going on under the hood to store a simple number. All of this happens
thanks to many computer scientists who have worked in the last several decades. Konrad Zuse and John
von Neumann introduced a system of floating point representation to computing in the 1940s, with the
Z1 and later the Z3. Their system is roughly the same system in use today.

3.14 Type Casting, Numbers

Continue with the Types script from the previous chapter. Data in C# comes in various forms. Not just
number type, but a class or any object for that matter becomes a new type of data. At least, numbers can
be thought of as having comparable value. Casting is a tricky topic which we’ll come back to a few more
times.

The following is a simple exercise, but an important one nonetheless. When you start to deal with
keeping score, or recording injuries to a monster, it’s important that behaviors are predictable. Many
problems begin to show up if the math you’re using involves mixing numbers with decimal values like
floats or doubles, or with integers which have no fractional value.

Decimals are not allowed on an int value. In this case, 100.2 is not an int data type.

Decimals are allowed for both float and double. The only caveat is that a float requires an f post
fixed to the number when it’s assigned.

104 Learning C# Programming with Unity 3D

Converting types between one another is simple when you need to deal with numbers. When we start
creating our own classes the task of casting becomes a bit more detailed, but not necessarily more dif-
ficult; there’s just a bit more work involved. We’ll get to that soon enough.

When we go between number types or the built-in value types (POD), we work with things which
seem to come with C#. So far we’ve seen things like int and float. Integer values like 1, 7, and 19 are
useful for counting. We use these for counting numbers of items in an array, or how many zombies are
in a scene, for instance. Integers are whole numbers, even though we might be counting zombies whole
or not.

Once we start needing numbers with fractions we need to use float values. To get an object’s speed
or x, y, and z coordinates in space we need to use values like 12.612f, or x = 13.33f, to accurately
place an object in space. If not, objects would move around in a scene as though they were chess pieces
locked to a grid.

When a float value exists as 0.9f we lose some values after the decimal when converting the floating
point value to an integer.

If we observe the above code in the Types_Scene in Unity 3D running by pressing the Play-in-Editor
button, we’ll see the following output in the Console panel.

Without the cast operator int b = a; we get an error telling us we need to cast the value before assign-
ing it.

Assets/Types.cs(75,17): error CS0266: Cannot implicitly convert type `float’
to `int’. An explicit conversion exists (are you missing a cast?)

The first part of the error message says “Cannot implicitly convert type,” which has a very
specific meaning that we’ll get to before the end of this chapter, but first let’s cover explicit type casting.

3.14.1 Explicit versus Implicit Casting

As we have seen, in the Start () function where we declared float a = 0.9f; a was converted
to 0. Even though we were only 0.1f away from 1f to 0.9f away from 0 we’re left with a 0 instead
assigned to int b. To do these conversions we use the explicit casting method, as shown with (int) a;,
which explicitly tells C# to convert the value stored at a to a float value. When we are required to use an
explicit cast, we’re also warned that there may be some data lost in the conversion.

Casting is a process by which C# changes the type of a variable to another type. This may or may
not involve a loss of information. In some cases, the conversion doesn’t require the explicit cast operator.
The following code casts an int to a float.

int c = 3;

float d = c;

Debug.Log(d);

105First Steps: Just Getting Started

With the above code we get a 3 printed out to the Console panel. We didn’t need to use an explicit casting
operator. This is because when we cast from an int, in this case 3, there would be no data loss when it’s
cast to a float. This is possible through an implicit cast. Implicit casts are allowed only when there is no
data lost in the process of converting from one type to another.

There are no integer values which will result in a loss of any value when it’s converted to a float.
Technically, there are more float numbers between 0 and 1 than there are integer numbers between 0
and 1, or any other sequence of two numbers for that matter.

3.14.1.1 A Basic Example

Continuing on with the Types script we’ve been using for the last few chapters.

If we look at what is going on here we’ll want to think for a moment about what it means. The integer
mInt is assigned 1 and double mDub has 0.9 assigned. We should assume that 0.9 will be assigned
to c after the multiplication, but this assignment is stopped by a type conversion error. C# usually gives
us pretty clear reasons for its errors. In this case we know there’s a cast missing between an int and a
double. We get the “Cannot implicitly convert type ‘double’ to ‘int’.” error.

The error states we can’t implicitly convert a double to an int. Why not? 1 certainly looks like 1.0,
or so it seems. However, 0.9 can’t be turned into an integer. There’s no integer between 0 and 1. Even
though 0.9 is very close to being 1, it’s not.

We use type conversion to tell C# to explicitly change b from a double to an int by preceding the
b with (int). What value is going to be assigned to c if it can’t be 0.9? The (int) operator is an
explicit cast. Casting with the explicit operator works by using the destined type surrounded by the
() operators.

If we read the cast value for (int)mDub is 0, which means we’ve lost data going from the double
value to an integer value. Even though 0.9 is almost a 1, the first int value is 0, followed by values that
are cut off by the type conversion. Now we see why type conversion matters.

106 Learning C# Programming with Unity 3D

In a simple case, observe the type double 1.0 preceded by the (float) operator. The type assigned to the
operator matches the destination float f. We will find other casts which look like this in Sections 6.14
and 6.20, but we’re introducing the concept early on as it’s a very common problem to come across.
The syntax (int) turns a number following this operator into an int. Likewise int i = 0; double
d = (double) i; is a way to cast an int into a double. However, this isn’t always necessary.

Some conversions take place automatically as an implicit cast. In the above example we can use the
following code without any problems.

Here we assign double d = a; where a is int 1, which we know isn’t a double. This produces no
errors. The same goes if we add another line float f = a;. In this case f is a float. These are called
implicit casts. An integer value doesn’t have a mantissa or an exponent. Both the double and float do have
these two possibly large and important values. These two terms were explained at the end of Chapter 2.

When mashing a double into an int we lose the mantissa and exponent. By using an explicit cast, we
tell C# that we don’t mind losing the data. This doesn’t mean that an implicit cast will not lose any data
either. An int can hold more significant values than a float. We can observe this with the following lines
of code added to the Start () function.

This code produces the following console output, after a bit of cleaning up:

When we start with the value 2147483647 assigned to int we’re at one extreme of the integer value.
This is the biggest number the int can hold, for reasons discussed in Section 3.11.1, but in short, it’s
because it’s using only 32 bits to store this number.

If we cast this into largeFloat we can use an implicit cast, which converts the value from int to
float. In this case, we see only 2.147484 followed by the exponent E+09, which tells us that the dot (.)
is actually nine places over to the right.

107First Steps: Just Getting Started

When we convert the float back into an int with an explicit cast we get a –2147483648, which is cer-
tainly not what we started with. This tells that there’s some significant information lost in the conversion
from float to int, but there were also numbers lost in the implicit cast from int to float.

This still happens if we remove a digit from the end.

This sends the following numbers to the Console:

The last digit is changed from 1 to 8. The 8 is coming from some strange conversion when we go from
int into float. Even if we look at the numbers being stored in the float value we can tell that there’s
already a change in value. This tells us that in general, we need to be very careful when converting from
one type into another.

Logically, another difficult problem is converting from a string to a number value. When you use
string s = “1”; you’re not able to use (int)s to convert from a string to an int. The types of data
are very different since strings can also contain letters and symbols. The conversion of (int) “five”
has no meaning to the computer. There’s no dictionary which is built into C# to make this conversion.
This doesn’t mean that there are no options.

The code added to the Start () function will produce the following number:

There are plenty of options when faced with dealing with significantly different types. The int.Parse()
function is an option that we can use to convert one value into another. Again, we might be getting a bit
ahead of ourselves, but it’s important to see that there are different ways to convert between different types.

3.14.2 What We’ve Learned

In this chapter we used some syntax which has not been formerly introduced. For the sake of seeing what
happens to numbers between casting we needed to do this. In Section 6.20, we will cover the details of what
happened in this chapter, so don’t worry. Everything in this chapter will be explained in detail soon enough.

108 Learning C# Programming with Unity 3D

We’ve still got a lot to cover about types. It’s a bit early to see how they relate to one another and why
there is a difference. Once we move into evaluating numbers we’ll start to see how the different types
interact. Accuracy is one place where we begin to see the effects of type conversion. A float with the
value of 0.9 turns into 0 when it’s converted to an int.

This chapter is just a cursory look at types. There’s a lot more to conversion than just losing some
numbers. Later on we’ll see what happens when we need to convert between different game play char-
acters like zombies and humans. Many attributes need to have specific conversions but then they’re both
bipedal creatures.

3.15 Comments

We’ve already been seeing plenty of comments in the code. All of the text between /* and */ are com-
ments as well as text following // are comments. Comments are left as breadcrumbs to help keep notes
in your code. Once a new line is started the // no longer applies and the next line is becomes visible to
the lexical analyzer.

//these are not the lines you are looking for...

Programmers use comments for many reasons. Mostly, comments are used to describe what a function
is used for. Quite often, comments are left as notes for both the person who wrote the code and for others.
Sometimes, when a function is confusing, or isn’t always working, a comment can be left as a “to do” list.

To facilitate the programmer, Visual Studio even has a window that reads comments and looks for the
notation //TODO: and adds them to a list of tasks. You can find this in the View → Task List window.
Where you might see the following:

If you check in the window, you’ll be able to jump to the line in the highlighted file by double clicking on
the Task List item. Whatever text appears on that line will show up in the Task List.

Once we start writing our own functions, we’ll want to leave comments to help remember what we
were thinking when we wrote them. Sometimes, if we need help, we can indicate to our friends our inten-
tions. You can leave comments like //I’m still working on this, I’ll get back to it
tomorrow... if you’re still working on some code.

Or you can ask for help: //help, I can’t figure out how to rotate the player,
can someone else do this?! is a simple short comment. Even professional programmers leave
comments for their co-workers, letting everyone who may be looking at their work a clue as to what was
going on in their code.

In more than one case, the comments in a large code base needed to be cleaned up before releasing to
the public. The engineers responsible needed to remove foul language from the comments to avoid any
public ridicule. In some instances, the comments in the code were also defaming competing game engines.

When a comment requires more than a single line, use the following notation:

There are various styles which you can follow with multi-line comments.

109First Steps: Just Getting Started

Anything between the /* and the */ will be ignored by the C# compiler. It’s often a good habit for a pro-
grammer to introduce a class by leaving a comment at the top of the file. For instance, it’s common to see
the following in a class written for other people to edit.

The use of comments isn’t limited to simple statements. They are often decorated by extra elements to
help them stand out.

Comments have several other uses which will come in handy; for instance, when testing code you can
comment a section of code that you know works and test out new code next to the code commented out.
If your test doesn’t work you can always clear it out and un-comment the code that does work. We’ll play
with this idea later in this chapter.

Using comments on the same line of code is also a regular practice.

We can inform anyone reading our code what a specific statement is doing. Although we want to be smart
with how our comments are written, if we add too many comments in our code the actual statements that
matter get lost between a bunch of words that don’t matter.

Comments are also useful for testing different collections of code. When you’re learning about how
different behaviors affect the results of your functions it’s often useful to keep different versions of your
code around. This is often the case when trying to debug a problem and eliminate lines of code without
having to completely get rid of them.

110 Learning C# Programming with Unity 3D

It’s possible to test out various test cases using comments to allow you to pick and choose between
different statements. In the above code fragment, we’ve got someInt declared three different ways.
Depending on which line is left un-commented we can choose between different values.

We can leave another comment on the line after the statement, reminding us what the result was.
For covering an entire section of code it’s easier to use the /* */ form of commenting.

In the above code, we’ve commented out the while loop following the for loop which accomplishes the
same task. In this way we can easily switch between the two different loops by switching which loop
is commented out. Programmers often leave sections of code in their functions commented out so they
verify the validity of the new code they’ve added in.

The /* */ notation for comments can also be used in smaller places. Anytime the // notation appears
everything on the same line is commented out. Using the /* */ notation we can hide a segment of a
line of code.

For instance, we can hide the 10 in the while loop and replace it with another number altogether.
The /*10*/ is hidden from the computer so the 100 is the only part of the condition that’s seen by the com-
puter. This can easily get a bit uglier as a single statement can begin to stretch out and become unreadable.

Although the above code is perfectly valid, it’s not recommended that something like this appear in your
code. When mixing in too many comments a simple declaration can get ugly.

111First Steps: Just Getting Started

3.15.1 Line Numbers

Each line of code in Visual Studio is indicated in the margin of the Editor to the left. When Unity 3D or
Visual Studio comes across a typo or some unexpected character it’s indicated in the Console panel or
the Visual Studio Error List.

The Error List in Visual Studio tells us where an error may have occurred in our code. There’s an
expected } at line 95. Right after the line with the red squiggle you’ll see a lonely ? in the middle of the
function. Unity shows us a similar error.

The error tells us: Comments.cs(96,8): error CS1525: Unexpected symbol ‘?’.
The (96,8) tells us the position where the error is occurring. The first number is the line number. In the
source code mentioned, we added in the ? on the 96th line. The 8 tells us that the character is on column
8, or the 8th character position from the left. If you were to count the number of spaces from the left you’d
reach 8 and find the ?, which Unity 3D is erroring on.

This is a more precise example of an error, but we may not always be so fortunate. In general, the line
number indicated is more or less a starting place where to start looking for an error. It’s difficult to say
when and how various errors take place in code, but in general, syntax errors tend to be fairly easy to
fix. Difficulties arise when the code itself is using proper syntax but the result is erroneous or deviates
from expected behavior.

When this happens we’ll have to use other techniques to track down the bugs. We’ll save those tech-
niques for when we’re ready for them. For now we’ll just stick to learning proper syntax and comments.

3.15.2 Code Folding

When you add in a long comment using the /* */ notation, MonoDevelop recognizes your comment.

112 Learning C# Programming with Unity 3D

Clicking on the little box in the number column will collapse the comment into a single line. This fea-
ture comes in most of the modern IDEs meant for writing in C#. This feature is also handy when you’re
rewriting large segments of code, in that it reduces any distractions.

We can collapse many blocks of code into a single line. If you look at the line numbering following the
Update () function you’ll see the numbers jump from 79 to 93. This process of collapsing has hidden
three lines of code; moreover, this feature will be particularly handy when you need to see two different
functions which might have a great deal of code between them.

This also works for any instance where the opening curly brace { is followed by the closing curly brace }.
This folds the for statement into a more compact form, so we don’t have to look at what it’s doing.
This allows us to focus on the code block we’re most interested in focusing on.

A special type of comment is the region. This uses the # character followed by the word region to cre-
ate a foldable area of text. The words following the start of a region indicate a starting point of a foldable
area of text.

The end of the region is indicated by #endregion to close off the foldable text area. When the region
is folded the first line of text remains visible to identify the folded region’s content.

Regions can also have other regions within them. Visual Studio will help highlight hierarchies of regions
when you leave the cursor on one of the beginnings or ends of the region.

113First Steps: Just Getting Started

A large C# file can be made a bit easier to navigate by adding regions. These are intended to help
collapse groups of functions or variables to make other parts of the same file easier to read. To focus
on a smaller section of code it’s often useful to create regions to hide away sections you’re less inter-
ested in.

Often regions are setup around parts of a class that serve a specific function. This affords the engineer a
clever and elegant way to help organize code. In a way, the fussy organizational skills of a good program-
mer are expressed through comments, regions and function grouping.

The code examples for this book have regions to delineate sections of code for each chapter.

3.15.3 Summary Comments

114 Learning C# Programming with Unity 3D

If you type in three slashes (/s) over a function, Visual Studio will automatically add in a summary com-
ment. Like the other comments the summary comments are also collapsible. Visual Studio also recog-
nizes many different forms of comment tags.

When you add in a < the above automatic code completion pop-up dialog appears. You can add in
description examples and other tags. This feature of Visual Studio demonstrates how important com-
ments are in a well-written source file. Comments and comment tags have many different options. To
avoid writing the rest of this book about comments I’ll leave experimenting with the comment tags to
you. They are important, but not essential, to learning how C# works.

3.15.4 Navigating in Code

There are also clever ways to get around in a source file. Up at the top of the panel in Visual Studio is a
handy drop-down menu which has a list item for every function in the class. You’ll also notice an icon
next to each listing.

Add in a public keyword before the void MyPublicMethod() function and the lock icon goes
away. This indicates that the CleverComments() function is public. Selecting the item jumps the
cursor to the beginning of the function. This comes in particularly handy when dealing with large source
files which might have many different functions in them.

115First Steps: Just Getting Started

3.15.5 What We’ve Learned

Comments are a necessary part of any good source file. Available online tools will parse your source files,
find summary comments, and generate an entire website documenting your code. Organized code and
comments are parts of your code style. The more organized your code is the more readable it becomes.

When you’ve written several dozen different C# files you’ll find that code written months ago might look
alien. I often find myself thinking to myself “What was I thinking when I wrote this?” when I open a file
from many months before.

In these cases, I hope I wrote in detailed comments, leaving myself at least some clue as to what was
going on to lead to the code that has been written;. Usually, however, I haven’t and I need to read through
the rest of my code to come up with an understanding of what was going on.

It’s time to get back to Unity 3D and start writing something more interesting than comments. We
spent a great deal of time in this chapter writing things that are ignored by the computer. It’s time to get
to writing code that matters.

3.16 Leveling Up: Moving on to Basics

At this point we’ve looked at the components that make up C#. We should be able to look at code and
identify the different tokens and roughly what they do. The ; is a separator token which ends a code
statement. Likewise, we should understand that a : and a ; have different roles in code and cannot be
used interchangeably.

Variables have a type, and this type determines how the variable can be used. We should also know
that different types cannot interact without explicit conversions between them. Converting between dif-
ferent types can result in loss of data, and thus we should be mindful when doing so.

When we look at a statement, we should be able to identify the different tokens which the statement is
composed of. In a statement like int a = 6; we should be able to see that we’re using five different tokens.

What the different tokens are used for may not be clear, but that information will be presented as we
continue. Learning a programming language is just as involved as learning any other language. Just like
any language has grammar and vocabulary, C# has syntax, keywords, and structure.

3.16.1 Git Revision History

Using Git to save the history of a file is its main strength. With every commit and push you create a new
checkpoint for the files updated with the commit. The changes don’t need to include every file affected
in the commit.

With the Git Bash open you can browse the history of each file. The revisions for the README.md
file can be seen with

116 Learning C# Programming with Unity 3D

git log README.md

The command prints out a commit followed by a long hash value followed by the author, date, and com-
ment from the commit. If there are a lot of commits then using:

git log --oneline README.md

will produce an easier to read history of the file. The shorter hash also makes it easier to pick a version
of the file.

git checkout 38cd1c9 README.md

This will revert the README.md to its initial commit version. Open the file in a text file to confirm.

git status

This will show the status of the README.md as modified. To get the latest version of the README.md
file again use:

git checkout HEAD README.md

The file will be back to the latest version checked in. Git log and checkout are simple commands to
remember. With the add commit and push commands you’ll be able to keep track of your files and see
what’s changed between revisions. Git is great!

117

4
Basics: The Building Blocks of Code

After covering the small parts that make up code, it’s time to start learning how all the parts come
together to create a behavior. Creating data is easy; keeping the data organized is harder. Adding logic
to do something with the data is harder still. That said, it’s not impossible; otherwise, no one would
write code.

This chapter covers how a statement of code works and where the power that drives the code
originates. Programming is much less enigmatic when you understand the mechanisms that drive it.
To understand why code behaves the way it does, it’s important to know your way around the language.

4.1 What Will Be Covered in This Chapter

This chapter is about getting past the simple details and going into the structure of code. This process is
somewhat comparable to learning the grammar of the C# programming language. We’ll cover the basics
about the different types of logic statements and looping statements.

Logic allows you to pick different actions based on the result of a calculation. If you want to tell a
human to run away from a zombie or run to a human for help, you’ll need logic, to control that human’s
behavior. Logic takes data, makes a comparison, and chooses which section of code to execute.

Looping statements can read and react to more than one data set. If you’re in a room with any number
of zombies, you’ll want to take them into account all at once. Looping statements are an integral part
of any programming language. We’ll see why they’re so useful in this chapter, in which we discuss the
following topics:

• Building a game starting with input

• Creating a new class

• Directives: The keyword using

• Functions

• Order of operation

• Scope

• Keyword This

• Logic and operators

• Loops

• Warnings and errors

4.2 Review

Before getting ahead of yourself, it’s important to remember some of what we just covered. We will be
learning many new tokens in this chapter. A token, as we know, is the smallest element that makes up a
statement.

118 Learning C# Programming with Unity 3D

Statements are tokens organized to accomplish a task. Tokens can be keywords, or words reserved
by C# for special purposes. Some tokens are used to separate statements, and others are used to assign
values to variables.

A keyword cannot be used for anything other than what it has been reserved for. Some keywords can
be used only in a specific context. Several keywords are used only if you’ve defined a specific library,
where they have been defined; we’ll discuss some of these topics later in this chapter.

When you create a variable, you’ve created a new token. Some variables exist only in the context they
were created in; the control of this existence is called scope, something which is coming up in this sec-
tion as well. As a reminder, when you invent a word to identify a variable that word becomes a new token.

Once created, the token can be used in many ways; you can apply an operation to a token and use
it to assign values to other variables. These operations all happen in a very specific order. Create a
variable, execute an operation or an expression, assign the value. This is what makes C# an imperative
language.

4.3 Building a Game—Part 1

Building an entire game is a large undertaking, to say the least. Creating a core game play mechanic
is something that should be prototyped in different forms. In short when you’re learning, it’s better to
make many simple small games or test cases that explore a single mechanic. Then the classes you write
for Input, navigation, inventory, score etc. It’s best to write code that can be copied to a larger project.

Designing a complete game with backstory, character development can be done in parallel with the
core functionality of what the player does from moment to moment. Often, what you’re able to accom-
plish as an engineer influences the kind of story you’re able to convey. A vast open world with many
different stories would take hundreds of hours to build content. Narrowing the scope of your project is
important.

At the beginning of almost every game development project, the input. It’s also quite interesting since
Unity 3D has a lot of options on how to deal with getting Input. Keyboards, Game Controllers, the
Mouse, Touch Screens, and any number of alternative systems count as “Input” in a broad sense. But let’s
just get something simple working first.

In the Unity-SampleGame project, open the Scenes/Section 4.3 unity scene. In the hierarchy, find
the game object called TransformPrimitive with a DirectMousePosition script attached. Open the
DirectMousePosition.cs in Visual Studio to follow along. This is about as simple as it can get.

This may not be the most useful of input systems, but it’s useful to see what Input.mousePosition
is doing. After pressing the Play-In-Editor button you might be able to observe the TransformPrimitive
in the unity scene moving around rather quickly as the mouse moves around over the Game window.
Select the game object and take a look at the Inspector panel’s transform values. The x and y values
increase as the mouse gets further away from the lower left corner of the game window.

The lower left of the Game window puts lower numbers into the Transform of the GameObject, the
top right puts larger numbers in there. If the game camera is only looking at what is near the center of the
world, then you’ll rarely see the TransformPrimitive in view unless your mouse is near the lower left of
the game view; truly not a useful input system.

We learned something, you can move an object with the mouse, though erratically. Mouse X and Y
turn into game object X and Y. The game view’s origin or x = 0 y = 0 coordinate is at the lower left and
the maximum values are at the top right.

119Basics: The Building Blocks of Code

The above image shows some values assigned to the Transform of the TransformPrimitive in the
Inspector. The cursor moved toward the middle of the view of the game while being played in the editor
shows values in the hundreds taken from the mouse coordinates. As to be expected, the X and Y values
change as the mouse moves around on the game view. The Z is left at 0 since the screen is a 2D image.

4.3.1 Mouse Point

To make better use of the input values we’ll want to use the mousePosition data. Open the Section 4.3.1
unity scene to observe a better way to use the mouse position. Selecting objects, pointing at a position,
and drawing lines need mouse positions translated into world coordinates to work. Many common tasks
have starting points built into Unity 3D.

Our Unity scene to follow has a MousePointController object with MousePoint.cs script
attached. To start, the code gets the camera used to see the game. One quick way is to use the
Main Camera, or in this case the code myCamera = Camera.main; does this for us. To move
the transform primitive to where the mouse cursor is pointing, we use myTransformObject =
GameObject.Find("TransformPrimitive"); to find the object in the scene.

Now that we have a reference to the two objects being updated in each frame; we’ll start to use them in
the Update() function provided by Unity. In the Update() function we’ll use what’s called a ray, a
mathematic type that is basically a starting point in 3D space with a direction. That ray will start with
the Main Camera in the scene, and point at the mouse point in the screen to the world.

Once the ray is cast, Unity provides a physics system that takes the ray and checks if it collides with
anything in the world. That method is called Physics.RayCast(); and that updates what is called a
RaycastHit with the outcome from the Physics.RayCast();. Physics uses the mousePosition to
create a line from the center of the game camera through the mousePosition on the screen and into the game
world. If Physics tells is we’ve intersected with something, then we put the TransformPrimitive at
the location where the hit occurs.

120 Learning C# Programming with Unity 3D

The position of the transform primitive is assigned to the hit.point when updated by Physics.
Raycast();. This happens on every frame; when we run the game at this point we’ll see the transform
primitive act like a cursor under the mouse as it’s move around in the Game view.

Games don’t usually move a character around in the scene as quickly as you can move a mouse. But the
world position is important. If we want a character to move to the cursor we will need to know where in
the world the mouse is pointed.

4.3.2 Move to Point

The Unity scene Section 4.3.2 has the same setup as the previous section with the addition of a little
character with a MoveToPoint.cs script attached. This will point the little robot to the point in the world
where the transform primitive is. When we click the left mouse button the robot will move to the trans-
form primitive’s position.

First we’ll need a Vector3 that represents the direction that we need to point the robot in. This is done
by subtracting the position of the robot from the position of the transform primitive.

With this Vector3 we need to get a rotation value. Rotations in Unity are stored as Quaternion, a type
of math that stores angles of directions. Quaternions can be tricky, but the engineers at Unity have pro-
vided us with a way to calculate the proper quaternion values with Quaternion.LookRotation();.
This is calculated with the look target’s position and the upward angle of the robot. The upward direction
comes from transform.up so we know what axis to rotate the robot around and the lookTarget
gives us what direction to rotate to.

To use the direction value we want to rotate the robot with Quaternion.Slerp() which means
Smooth Linear-interpolate. Interpolation means we’ll use time to step with small values from one value,
the transform.rotation of the robot to a goal rotation, in this case the direction we got from the
LookRotation() function.

This rotation is updated on every frame by virtue of being in the Update() function. Now we’ll
use the Input. GetMouseButton(0) to let us know when the left mouse button is pressed.
GetMouseButton(1) would be the right mouse button. With use of an if() statement to update the
movement target called moveToPosition.

When the left mouse button is down we set the value of the moveToPosition to the position of the
transform primitive with myTransformObject.transform.position; as seen in the code.

121Basics: The Building Blocks of Code

This now updates so long as the left mouse button is down. To get the robot to actually move to that
position we’ll assign the robots transform.position to the result of another interpolation position
with Vecter3.Lerp() where we use the current position and the target position as values.

Now when we run the game we’ll have a robot that faces the position of the mouse in the world and
will move to it so long as the left mouse button is pressed.

This counts as a very simple system of navigation for a character to move in a scene. This acts as our
starting point. As we come across new systems we’ll be able to understand more about the functions we
just used and add new systems to make the robot navigate a more complex environment.

4.3.3 What We’ve Learned

We’re just getting started. Our road toward zombie destruction needs a great deal of footwork and
studying. Some of what we’re about to get into might seem a bit mundane, but it’s only the beginning.

We’re learning a new language with new words and concepts. With the help of Unity 3D we’re going
to have a foundation on which pretty much any game can be built. Stick to it and you’ll be writing lots
of code in no time.

The intent of the direct input experiment is to discover how data is presented to you. In a similar fash-
ion, systems like touch and gyro from mobile devices may present data in an unexpected format. You
can’t necessarily change how data is given to you, but you can change how to use the data.

4.4 Class Construction

The class object is the focus as a new Unity C# engineer. In the previous chapter we saw a MousePoint
and MoveToPoint class, but how were these classes created? As a Unity 3D engineer all of work goes
into building the contents of a class. This was mentioned in Section 3.8, but we didn’t look at what’s
involved with writing a new class. To see the creation of a class in action, The ClassConstruction_Scene
and the ClassConstruction script in the scene on the object of the same name.

To get our heads around what a class is, we’re going to write a class declaration inside of a class. This is
what is called a nested class. To write a class you start with a class declaration.

A class declaration is basically the keyword class followed by an identifier. As a reminder, an iden-
tifier is simply a word you use to name any data you’ve created. Once a class has been declared, it’s a
matter of filling it with all the useful things that classes can do.

122 Learning C# Programming with Unity 3D

Where did ClassConstruction.cs come from? Much of this work is done for you by the Unity 3D Editor when
you have Unity create a C# script for you. Alternatively, you can have Visual Studio create a script for you.

The right-click popup from the Assembly-CSharp item in the Solution Explorer window will bring up a
menu to select Add→Class… item. This opens the following Dialog:

123Basics: The Building Blocks of Code

From here you can select a new CSharp MonoBehaviour or Editor script to build new scripts on. By
default a file is called NewBehaviourScript.cs. In here, Unity 3D wrote some directives, declares a class
called NewBehaviourScript, then adds in some base functions to get started. We’ll go through the same
steps to understand why the file is written like it is. And we’ll start with the class declaration. Compare
the NewBehaviourScript with the ClassConstruction script to see what the differences are.

4.4.1 Class Declaration

A “class declaration” makes an announcement to tell Unity 3D that your object exists. In the preceding
example we the MyNewClass object with the keyword class followed by the identifier MyNewClass.
Together the class MyNewClass{} declared to your entire project that there’s an object called
MyNewClass. This declaration also means that MyNewClass as an identifier is special, and if you
were to reuse the name for another object you’ll create an error.

Classes are objects that could contain more objects called members, or class members. Often words like
attributes, fields, properties, and components can also be used to describe a member of a class. In all
cases each member of the class is given identifiers as well.

When you add a contact to your phone, you add a name, number, and email address into empty boxes;
programmers often refer to these as fields. They are open spaces in your computer’s memory into which
you put data.

The sections of a class that contain logic and code statements are called function members. These are
also accessed by their identifiers. Depending on what a function does for the class, it can be categorized
as a method, constructor, destructor, indexer, operator, property, or event. How these functions differ
from one another will be discussed in Sections 4.7.1.1, 5.4.3, 7.5, 7.13, and 7.15.

Classes need to talk to one another for any number of reasons. Zombies need to know where humans
are, and bullets need to take chunks out of zombies. Suppose a zombie has several chunks left before
slain, and the human has a position in the world where the zombie needs to chase him; this information
needs to be shared. The availability of the information is called accessibility.

Data and function members can be made accessible to each other using the public keyword. We’ll
observe how this works in a moment. In a class that inherits from MonoBehaviour, making a variable
public makes an identifier visible to the Inspector panel in the Editor. Inheritance is something coming
in Section 5.3, so there’s a bit to cover until then. However, it’s important to know that accessibility has
various effects with how classes interact with one another.

4.4.1.1 A Basic Example

Consider the class declaration shown for MyNewClass(). This is a nested class inside of the
ClassConstruction class. A nested class encapsulates the purpose of the declaration for a specific pur-
pose within its parent class. A Zombie and a Player class may have independent nested inventory classes.
This would allow the inventory in each to behave differently.

124 Learning C# Programming with Unity 3D

Look just below that and you’ll find a line that has the statement void Start(); this statement
creates a function that is a member of the Example class. To create an instance of this class we add
MyNewClass mClass = new MyNewClass(); to the Start() function.

Let’s examine the first two words, or tokens. The first token MyNewClass indicates the type of object
we intend to create. The class we created is now a new type of data. Once MyNewClass has been
declared as a class, it becomes an instruction to create a new type of data known by its identifier.

We know a variable is declared by a keyword followed by an identifier like int i; a class variable is
declared in a similar way: MyNewClass mClass. However, unlike an int a class cannot be assigned
with plain old data.

What differentiates an int from a class is how the type is created and then assigned. We’ll have to
go into detail a bit later when we would have a deeper understanding about data types, but for now, we’ll
consider an int as a fundamental type.

In practice, nearly every new behavior you create will begin with a new class. At the start of your proj-
ect you’ll likely create a unique classes for each game item, character, effect, etc. That’s not to say you’ll
create a different class for similar items. For instance, a blue key and a red key might act in a similar way
with their only distinction being color. In cases like this your class can contain options to be any color
required.

4.4.1.2 Value and Reference Types

Although we declared class MyNewClass we have yet to give it anything to do. For now, there’s nothing
written in MyNewClass. Once we start adding features to MyNewClass the task of assigning a value
to the class becomes ambiguous. In context:

What would that mean if MyNewClass was a zombie? Is the 1 his name? How many hit points does he
have? or what is his armor rating? Because C# can’t be sure, the computer has no hope of making a guess.

This differentiates a value type, like an int, over a reference type, such as MyClass. However, before
we go into a chapter about types we need to know more about classes, so we’ll get back to the topic at hand.

Therefore, when creating a new instance of a reference type we need to use the form new
MyNewClass(); to assign a variable of type MyNewClass. Thus, MyNewClass newClass = new
MyNewClass(); is used to create a variable for MyNewClass and assign the variable newClass a
new instance of the correct class.

125Basics: The Building Blocks of Code

To make things clear, int i can be assigned in the exact same way we assign newClass.

We can use the above statement if we want to make our int declarations look the same as our class decla-
rations. This is unorthodox and unnecessary, but it’s possible. It’s important to know that things like this
do exist and that C# is flexible enough to allow us to do this.

4.4.2 Adding Data Fields

A data field is any type of information that lives inside of a class. We’ll cover what data type really means
in Section 6.5.3 but for now we’ll assume that data can be pretty much anything, including a number. When
a class has data fields added to it, we’re giving the class a place that holds onto information and allows the
class to remember, or store, some data. For instance, were we to write a zombie for a game we’d need the
zombie to know, or store, how many brains it has eaten, or how many whacks it has taken from the player.

To add a data field to a DataFields class we use the same declaration as we would for any other vari-
able. This should be obvious, but since we’re writing a class inside of a class this might be a bit confusing.
However, when this is declared as int myNumbers; we’re not allowed to use it yet.

4.4.3 Access Modifiers and the Dot Operator

To see to members of a class we use the dot operator (.) to tell C# we want to access a member of a class.
When a new data field is added to a class it’s assigned a type and an identifier. The identifier turns into
the word we use after the dot to request access to that data or function.

If we try to find the myNumber data field when using Visual Studio we won’t see the myNumber data
field in the list of members. To make the int myNumber accessible we need the public keyword. The
public keyword is like several other keywords that change the accessibility of a variable within a class;
such keywords are called access modifiers. There are several access modifiers we’ll come to use, but for
now we’ll just get familiar with the public access modifier.

126 Learning C# Programming with Unity 3D

Adding the keyword public before the int myNumber changes the accessibility to the classes
outside of DataFields and allow for other objects to see the data field. The data fields that can be
changed this way are called instance variables that are unique to each instance of the class.

An instance is a unique version, or object, based on the class from which it was created from. Each
instance stands on its own as a new object created from the class it’s based on. All the class members
are unique to each instance. There are systems that circumvent this behavior, but we’ll get to that in
Section 5.5.

To observe this point, we’ll create a few instances of the class and set the data fields to different
values.

Here, we created three instances of DataFields. Each one has its own myNumber data field and each
one can be assigned a unique value. To check this, we use A Unity Debug.Log to print out the value of
each instance of DataFields myNumbers field.

Add in these three lines after dataThree.myNumber is assigned. We could do something useful by
adding a function into the class that does this for us. Class members can include more than variables.
Functions as members are accessible through the dot operator.

127Basics: The Building Blocks of Code

A function to print with Debug.Log(myNumber); added into the PrintMyNymber() function, is
made public in the same way as myNumber. We’ll get a better look at functions in Chapter 5, but this
example serves as a quick and dirty introduction come back to a simple function nonetheless.

The PrintMyNymber function and the myNumber field both live together in the DataFields
class and share the same scope. The dot operator is only necessary to access members inside of an object.
The members of DataFields are next to one another inside of the class.

The instance of firstData, in the example above contains the myNumber and PrintMyNumber()
members. To access the members inside of firstData you do need the dot operator. The dot opera-
tor allows you to use the specific member of a specific object. Each instance of the object is unique.
This allows you to specify what happens to each unique instance of a DataFields object.

4.4.4 Class Scope

Members of a class may appear in any order within the class definition. The arrangement of data and
function depends on style and practice. One practice might be to keep data fields next to the functions
that use them.

128 Learning C# Programming with Unity 3D

With the above example we can see that MyCounter lives next to UseMyCounter(), and likewise for
MyFloat and UseMyFloat(). Here we see the data and function are grouped together.

C# allows for functions and variables to appear in any order within the class definition. C# ignores how
the different members are arranged. This doesn’t always hold true, especially once we get into how code
itself is executed, but at the class level, or at the class scope, as programmers like to say, the ordering
isn’t as important.

Not all programming languages will allow this. UnrealScript, for example, enforces all variables live
at the beginning of a function. Declaring them anywhere else raises an error. C# understands that format-
ting is less important than clarity. Declaring variables close to where they are used, however, is important
for readability.

4.4.5 Class Members

As we add functions and variables to a class, we’re adding members to the class. In the previous example,
num is a member of MyClass. So too are PrintNum() and any other functions or variables included
in the class. We can refer to some of the members as public, which means that other classes can access
them, while the inaccessible members are private.

In most cases, if public is not used then you can assume the member belongs to private. Private mem-
bers cannot be accessed from outside of the class, at least not directly. However, functions on the inside
or local to the class can modify them freely.

4.4.6 What We’ve Learned

We just covered some of the very basic concepts of what makes up a class. There are plenty of other
keywords and some complex concepts that we have yet to touch on. Later, we’ll get into some additional
clever tricks that classes allow for.

On your own, you should practice creating different data fields and add more functions to your class to
get a feel for how they work. As you learn how to use more keywords, you should add them to your own
classes to check that you understand how the keywords work.

129Basics: The Building Blocks of Code

In this chapter, we created MyNewClass as well as a few others inside of the ClassConstruction
class. MyNewClass is an example of a nested class, or a class inside of a class. Multiple nested classes are
allowed in C#, and nested classes are allowed inside of nested classes, should you really want to go there.

Using the dot operator we gain access to fields and functions inside of a class. C# relies on the features
of classes and class members. We’ll see how to access the many functions available to us in Chapter 5.

We’ve been working in a nested class all this time. To show how this works in another class, we can go
back to Unity 3D and create a new class next to ClassConstruction.cs called DifferentClass.cs.

The above class is the automatically visible to ClassConstruction in Visual Studio. The
AccessOtherClass() function in the ClassConstruction script sees the DifferentClass
and can access it just like a nested class.

With these basic concepts we’ll want to explore the different classes which Unity 3D and Microsoft
have created to allow us to access the various abilities that are contained in the Unity 3D game engine.
Accessing the classes and fields which Unity 3D has provided is quite simple, as we will see in Chapter 5.

4.5 Directives

Let’s open the Directives.cs script in the Chapter 4 project. When you start writing code in Unity 3D, or
any other programming environment, you consider the tools you must have to begin with. For instance,
with the .NET (read as “dot net”) framework we get things like int, bool, float, and double. These
tools are given to us by adding using System; to our code.

We also have been taking for granted the use of using UnityEngine; this function gives us
another massive set of tools to work with including a ton of work that allows us to use functions and
events that are triggered by the Unity 3D game engine itself.

All these classes, functions, and events are stored in the library software. Basically, this is code
that has been written to enable your code to communicate with Unity 3D. These resources provide a
gigantic foundation to build your game on. Much of the difficult math and data management functions in
relation to Unity 3D has been written for you.

Knowing what they are and how they are used is important. It’s like knowing what tools you have in
your toolbox. In Chapter 5, we’ll go over their basic use and how to find out more about what they offer.

Directives provide the connection between your class and a selected library. Many hundreds of classes,
written by the programmers who created Unity 3D, allow you to communicate between the player, the
characters, and every other object in the game. In short, a library is software for your software. When we
have Unity 3D create a new C# class the generated file has several blocks of code.

130 Learning C# Programming with Unity 3D

In the first three lines of the class we had Unity 3D prepare for us are the directives we needed to get
started. The connection between Unity 3D and your code is made, in part, by using directives. A direc-
tive makes a connection to outside or external resources called libraries.

Directives are required to appear at the beginning of a file before the class they’re to be used in. This is
different from how a variable can be used inside the scope of a class. Though there are some ways to bend
the rules a little bit, but we’ll leave that for Section 6.10 where we cover namespaces in a bit more detail.

The libraries that the directives call upon are connected to compiled code. Unity 3D is also connected
to the libraries that your code uses. The connection is made by identifying the name of the library after
the keyword using is entered.

Libraries live in paths, like a file in a folder on your computer, only they are compiled into a few tightly
bundled binary files.

NOT E: The initialism DLL refers to dynamically linked library, which is a complete set of software
compiled ahead of time for your use. Pretty much every software released these days include many dif-
ferent DLLs that allow the software to be updated and modified by only updating the DLLs they come
with. Often some DLLs are located in your computer’s operating system’s directory, but depending on
the software involved it too will bring along its own DLLs.

The first line, using UnityEngine;, pulls all of the resources that deal with specific Unity 3D func-
tion calls. For instance, moving an object, playing sounds, and activating particle systems are found
inside of the UnityEngine library. The functions necessary for making bullets and magic spells work
are built into UnityEngine.

As the resources that make up your game are imported into Unity 3D, they’re made available to your
code. The libraries provided by Unity 3D expose all the imported assets in such a way that they can be
found like files on your computer.

The programmers at Unity 3D have taken on the bulk of these complex tasks for you so you don’t
have to deal with all the physics and PhD-level science of rendering 3D graphics. The keyword using
is how we tell C# that we’re going to ask for a specific library to access.

Many other programming languages do the same thing; for instance, Python uses the statement
import module to do the same thing; JavaScript is more wordy, by requiring a path like src =
"otherScripts/externalLibrary.js" to access external code.

C++ and C both do the same as C# with the keyword using to access external libraries. In the end,
your code can work with pre-existing code stored in nicely packaged libraries. For Unity 3D, this is
pretty much necessary.

4.5.1 Libraries

Libraries are collections of classes and data that have been bundled into a convenient package with Unity
3D. You can consider them to be like a compiled application. A library contains classes that are all acces-
sible through the dot operator, like the classes we wrote in Chapter 3. Inside of Visual Studio you can
look at some of the other libraries we can use.

131Basics: The Building Blocks of Code

Inside of MonoDevelop, expand the References icon in the Solution Explorer. In case the Solution
Explorer panel isn’t open, then use the following menu to show the panel: View → Solution Explorer.

Scroll through the list to read the numerous entries listed. These are the tools written into Unity 3D at
your disposal. In the Directives.cs class, entering the using UnityEngine. will prompt a pop-up.
The pop-up window shows you the many different libraries available to Unity 3D.

We won’t go too far into how to use these other functions. We are just now getting to know the func-
tions we already have. Between both UnityEngine and System.Collections we’ve got quite a
large set of tools already. Later, we’ll be able to create our own libraries. Within our own libraries, we’ll
be able to write useful functions that can be used like anything found in UnityEngine.

In our Directives.cs class, we’ll use the Start() function and look for a StreamWriter function.
A StreamWriter is a class that will help us write some text to a new text file. However, the auto-complete
pop-up shows “No Completions Found” as we start to enter the class we’re looking for.

Click on the helper icon to the left will expand some options to fix the problem. Select the second option
where we have Visual Studio write System.IO.StreamWriter in place of StreamWriter.

Optionally we can have Visual Studio add the using Stream.IO; at the beginning of our class definition.

132 Learning C# Programming with Unity 3D

Adding using SystemIO; to our class provides us with a connection to all of the contents of the
System.IO libraries. StreamWriter is used to write to a text file.

Using the StreamWriter we create a new object called writer. When the StreamWriter is
instanced we pass a parameter with a string used for the file name; in this case, “MyFile.txt” is given
to the new writer object.

With the object instanced as writer, we use the object and call upon the WriteLine member function
and give it some text to write into the new file. The text “This is a new file…” will appear in the
MyFile.txt file that Unity 3D will write for us. After that we need to use the Flush(); call to tell the
writer to finish its work.

Press the Play button with Directives_Scene open to execute the Start() function in the C# class.
To find the file, right click on the Assets directory in the Project view and select Show in Explorer from the
pop-up menu.

This action should bring up the directory where the new MyFile.txt has been written.

133Basics: The Building Blocks of Code

Opening the MyFile.txt will open the file in your usual text editor; in my case, it was Notepad. You
could imagine writing various bits of information in this, or even begin to read from a text file into your
game! This might make writing dialog for an RPG (role-playing game) game a bit easier. You wouldn’t
have to write all of the text into each object or even code in your game. Reading from a text file would
make more sense.

Of course, we’ll have to do more work to get the most out of reading and writing to text files, but this
is just the beginning. We’ll move on to more sophisticated tricks later on. This is just a glimpse into what
we can do by accessing the different parts of the libraries available to us.

4.5.2 Ambiguous NameSpaces

The names of functions from libraries, should have unique names for each function. However, what hap-
pens if Unity 3D and System used the same name?

One of the many tools is a simple random number generator. The Random.Range(); function was
written by the Unity 3D programmers and requires a minimum and a maximum number. There’s also a
Random provided inside of System written by Microsoft which does a similar thing.

However, if we add using System; to the list of directives, as in the above code sample, we’ll get an
error telling is there’s an ambiguous reference between UnityEngine.Random and System.Random.

134 Learning C# Programming with Unity 3D

This means that there’s an identically named Random function in System as well as UnityEngine. To
resolve this error, we need to be more specific when we use Random. Since we might need to use other parts
of the System; library, we’ll want to keep this included; otherwise, we wouldn’t have this problem at all.

If we change Random.Range() to UnityEngine.Random.Range(), we’ll fix the problem of con-
flicting functions. There will be many times where you might have to change the names of a specific
library as well.

A Namespace is a system of creating reserved spaces for the names of variables and functions. The sys-
tem doesn’t always work, but you’re still able to work around conflicting names by writing out the full
path to a name you’re want to use.

By expanding the References tab in the Assembly-CSharp project in the Solution Explorer in Visual
Studio you can read a long list of namespaces that are included with a Unity Project.

Only a few of these are ever included with a new MonoBehaviour script generated by Unity. Dozens of
tools ranging from networking to file systems, diagnostics to security are included in the .NET frame-
work alone. Unity also includes tools from Sprites path finding and terrain to vehicle physics lighting
and particles.

Keeping a class specified to a single purpose means to use digression when picking what tools to
use to accomplish a task. The available tools are separated into different categories to avoid including
unrelated code.

4.5.3 What We’ve Learned

Knowing where to look for these functions is something that can be done only by having an investigative
hunch. Usually, a quick search on the Internet can drum up a few clues as to what function you need to
search for to get a specific task done.

Different libraries provide us with systems which help us add additional functionality to our classes.
By default, we’re given a rich set of tools to build into our game. It’s also possible to write your own DLLs
creating libraries for your game. This might allow you to add in platform-specific functions to accelerate
various aspects of the game outside of the abilities of the built-in Unity 3D tools or engine.

The .NET frameworks as a whole have a number of namespaces that section off different sets of tools.

4.6 Functions

To follow along open the Functions_Scene and the corresponding Functions.cs script. Functions, some-
times called methods, contain statements which can process data. The statements can or cannot process
data. Methods can be accessed by other statements. This action is referred to as calling a function or
making a function call. In this chapter we touch on the Start(), but we’ve yet to figure out why the
Start() functions work.

135Basics: The Building Blocks of Code

So far we’ve created a class and we gave the class some places to store data. We’ve even used some of
those variables in Unity 3D. Then we exposed some variables to the editor to update when manipulated
in the Inspector panel. We also wrote a simple function to print a number, but we really didn’t get into
how that worked or why the syntax looked the way it did.

To add useful behavior to our game, we’ll need to add in logic. The logic needs to process data for
anything in the game to happen. To coordinate this merging of data and logic, we’ll need to write some
functions.

4.6.1 What Are Functions?

In Chapter 3, we talked about the process of shampooing. A second look at the idea of a function is to
comprehend the words wash, rinse, and repeat in more depth. If you’ve never heard of the word wash
before then you’re probably dirty, or a computer. Computers need every word defined for them before
they understand it.

On a superficial level, we’ve used the above code to define the three words used to shampoo hair.
However, none of the definitions contains any actions. They define the words or identifiers, but when
they’re used nothing will happen. However, the computer will be able to Wash(); Rinse(); Repeat();
without any problems now.

In the previous chapter we wrote in DataFields:

PrintMyNumber() which is a simple function. Now that we can write some functions for use in Unity
3D let’s get to some real coding.

NOT E: Functions may look different in different programming languages, but the way they work is
mostly the same. The usual pattern is taking in data and using logic to manipulate that data. Functions
may also be referred to by other names, for example, methods.

The major differences come from the different ways the languages use syntax. Syntax is basically the
use of spaces or tabs, operators, or keywords. In the end, all you’re doing is telling the compiler how to
convert your instructions into computer-interpreted commands.

Variables and functions make up the bulk of programming. Any bit of data you want to remember is
stored in a variable. Variables are manipulated by your functions. In general, when you group variables
and functions together in one place, you call that a class.

In Chapter 3, we discussed a bit about writing a class starting with a declaration and the opening and
closing curly braces that make up the body. Functions are written in a similar fashion.

136 Learning C# Programming with Unity 3D

We start with the declaration void MyFunction; then we add in both parentheses () and the curly
braces {}, indicating to ourselves that we may or may not fill this in later. The first pair of parentheses
(), doesn’t necessarily always require anything to be added. However, the curly braces {}, or the body
of the function, do need code added for the function to have any purpose.

When writing a new function, it’s good practice to fill in the entirety of the function’s layout before con-
tinuing to another task. This puts the compiler at ease; leaving a function in the form void MyFunction
and then moving on to another function leaves the compiler confused as to what you’re planning on doing.

The integrated development environment, in this case Visual Studio, is constantly reading and inter-
preting what you are writing, somewhat like a spell checker in a word processor. When it comes across
a statement that has no conclusive form, like a variable, function, or class definition, its interpretation
of the code you’re writing will raise a warning or an error. Visual Studio might seem a bit fussy, but it’s
doing its best to help.

4.6.2 Unity 3D Entry Points

The Unity 3D developers provided us with MonoBehaviour which is a class that grants our C# classes
to have direct access to the inner workings of the Unity 3D game scene. The MonoBehaviour class is
a collection of every function and data type available to Unity 3D. We’ll learn how to use these parts of
Unity 3D in the following tutorials.

NOT E: It’s also important to know that when learning the specifics of Unity 3D, you should be aware
that these Unity 3D-specific lessons can be applied to other development environments. When you use
C# with Windows or OSX, you’ll be able to write applications for other operating systems for software
other than Unity 3D.

Think of MonoBehaviour as a set of tools for talking to Unity 3D. Other systems have different sets of
tools for making apps for other purposes. Learning how to use the other systems should be much easier
after reading this book and learning how to talk to Unity 3D.

When dealing with most other C# applications, you’ll need to use Main() as the starting point for
your C# application. This is like many other development environments using C++ and C.

When Unity 3D creates a class it automatically added in void Start() and void Update() to
the body of the class. These two functions are called entry points. Basically, the base MonoBehaviour
class has several functions, that include Start() and Update(), which are called based on events that
happen when your game is running.

There are other functions that are also automatically called when MonoBehaviour is used:
Awake(), OnEnable(), Start(), OnApplicationPause(), Update(), FixedUpdate(), and
LateUpdate(); these functions are commonly called when the object is created and your game is run-
ning. When the object is destroyed, OnDestroy() is called. There are also various rendering functions
that can be called, but we don’t need to go over them here.

To better understand what happens during each frame of the game it’s best to imagine the game oper-
ating a bit like a movie. At the very beginning of the game, when the player presses Start, every actor in
the scene with a script based on MonoBehaviour has its Start() function called.

Calling a function basically executes the lines of code that live inside of the curly braces that follow
the function’s declaration. Before the end of the first frame, the Update() functions of each script in the
scene are called in no particular order.

At the beginning of the next frame, if there are no new scripts in the scene, the Start() functions are
not called. Only Update() functions are called from that point on. Only if new scripts are introduced to
the scene are Start() functions called on scripts new to the scene. If there is no code in the Start()
function or if there is no Start() function in the script, then nothing happens.

To benefit from anything happening on each frame you’ll need to put code into the Update()
 function. When a class is first introduced into the game world you need to add code into the Start()
function. There are several other entry points that we’ll be working with. And you’ll be able to make
use of them all as you see fit. It’s important to know that without these entry points your class will be
functioning on its own.

137Basics: The Building Blocks of Code

Functions all have specific names or identifiers. So far we’ve seen Start() and Update(), but there
are many more functions which we’ll make use of throughout this book. The first function we’ll make
use of the Log();, which is a function found inside of the Debug class. We’ll return in a moment to how
this function is used, but first we’ll demonstrate how it’s used.

If Debug is a class, this means that Log() is a member of Debug. The dot operator allows us to
access the Log() function found in the Debug class.

Inside of the Start() function add in Debug.Log("Start");, as seen in the example above. When
the game is started, the class will execute the code found inside of the Start() function. This means
that the Debug.Log("Start"); statement is executed.

Continuing in the Functions_Scene, click on the Play button and then click on the Console panel to
bring it to the top. You should see the following lines of text in the Console panel.

The first line says Start, followed by UnityEngine.Debug:Log(Object), which is the expected
result. If not, then double check a few different things. First check that the line of code you wrote ends with
a semicolon (;) and is not left empty. Next, make sure that you’re using quotes around the word: "Start."

Then, check that your spelling and case are correct: Debug and Log. Also make sure you didn’t forget
the dot operator (.) between Debug and Log. The punctuation matters a great deal. Missing any one of
these changes the outcome of the code. Syntax is important for programming. Missing one detail breaks
everything.

There are a few important things happening here, though many details left out for now. By the end of
this chapter everything should be clear.

4.6.3 Writing a Function

A function consists of a declaration and a body. Some programmers like to call these methods, but
semantics aside, a function is basically a container for a collection of statements. Let’s continue with the
Functions.cs script in the Chapter 4 Assets directory.

138 Learning C# Programming with Unity 3D

Here is a basic function called MyFunction. We can add in additional keywords to modify the func-
tion’s visibility. One common modifier we’ll be seeing soon is public. We’ll get further into the
 public keyword in Section 4.13 on accessibility.

The public keyword needs to appear before the return type of the function. In this case, it’s void,
which means that the function doesn’t return anything. Return types are something else that we’ll get
into in Section 6.3.3, but functions can act as a value in a few different ways. For reference, a function
that returns an int would look like this. A return statement of some kind must always be present in
a function that has a return type.

The public modifier isn’t always necessary, unless you need to make this function available to other
classes. If this point doesn’t make sense, it will soon. The last part of the function that is always required
is the parameter list. It’s valid to leave it empty, but to get a feeling for what an arg, or argument in the
parameter list, looks like, move on to the next example.

For the moment, we’ll hold off on using the parameter list, but it’s important to know what you’re look-
ing at later so it doesn’t come as a surprise. Parameter lists are used to pass information from outside of
the function to the inside of the function. This is how classes can pass information between one another.

We’ve been passing an argument for a while now using the Debug class. The Log member function
of the Debug class takes a single argument. In Debug.Log("start"); the "start" is an argument
we’ve been passing to the Log function. The Debug class is in the UnityEngine library and made
available because of the using UnityEngine; statement.

We’ll see how all these different parts of a function work as we get to them. Functions are versatile but
require to be set up. Luckily, code is easy to build up one line at a time. It’s good to know that very few
people are capable of writing more than a few lines of code at a time before testing them.

To use a function, you simply enter the identifier followed by its argument list.

139Basics: The Building Blocks of Code

The placement of SimpleFunction() in the class has no effect on how it’s called. For the sake of
argument we can use SimpleFunction() anywhere in the class as long as it’s been declared at the
class scope.

For a function to work, we need to give it some instructions. If we declare an int a and set it to
0, we’ll have some data to start with. In a function called SetAtoThree(), we set a to 3. If we call
CheckOnA() a in the Start() function we’ll get 0, the value which a was set to in the beginning. Then
the function SetAtoThree() is called, which sets a to 3, so when a is logged again its new output is 3.

4.6.4 More on White Space and Tabs

Tabs are used to delineate the contents of a function. So far, we’ve been seeing each function written with
its contents tabbed to the right with a single tab.

The contents of the function are tabbed over once. The contents of the while statement inside of the
function are tabbed over twice, as indicated by more spaces. This presentation helps to clarify that the
contents of the while statement are executed differently from the rest of the function.

To help understand how the previous code fragment is read by the computer, we will step through
the code one line at a time. This emulates how the function is run when it’s called upon. Of course, a
computer does this very quickly, but it’s necessary for us to understand what the computer is doing many
millions, if not billions, of times faster than we can comprehend.

NOT E: For a moment imagine your central processing unit (CPU) was made of gears spinning more
than 2 billion times per second. The 2.4 GHz means 2,400,000,000 cps. A cycle is an update of every
transistor in the silicon on the chip: over 2 billion pulses of electrons running through the silicon, every
second turning on and off various transistors based on your instructions. Of course, not all the updates
are dedicated to your game; many of the cycles are taken up by the operating system running Unity 3D,
so performance isn’t always what it should be.

The first line void MoreTabs() is identified by the computer and is used to locate the code to execute.
Once the function is started the contents of the code begin at the first statement. In this case we reach //
tabbed over once!, which is a comment and ignored.

Next we reach int i = 0;, which is a declaration and assignment of a variable that is identified as
i, an identifier commonly used for integers. This declaration tells the computer to create a small place in
memory for an integer value and it’s told that we’re going to use i to locate that data.

Following the variable declaration, we get to another comment that is also ignored by the computer.
The while (i < 10) line of code follows the comment and this opens another space in memory for

140 Learning C# Programming with Unity 3D

some operations. This also creates a connection to the i variable to check if the while statement will
execute. If i is a value less than 10 then the statements in the following {curly braces} will be executed;
otherwise, the contents of the while statement are ignored.

Another important character the computer finds is the opening curly brace ({) that tells it to recognize
a new context for execution. The computer will read and execute each line in the while statement till
it finds a closing curly brace (}). In this new context we’ll return to the first curly brace until the while
statement’s condition is false.

Because i is less than 10, the while statement’s condition is true, so we will proceed to the first line of
the while statement. In this case, it’s a comment that is ignored. This is followed by a Debug.Log() func-
tion, which also has a connection to the i variable. Therefore, this line prints to the console the value which is
being stored at i. Once the value has been printed to the console the computer moves to the next line down.

The i++; statement tells the computer to look at the contents of i, add 1 to that value, and assign that
new value back to i. This means that the new value for i is 1 since we started at 0. Once the computer
reaches the closing curly brace, we jump back to the top of the while statement.

The contents of the curly braces are repeated until the value for i reaches 10; once the iteration returns
11, the condition of the while statement changes from true to false. Because 11 is not less than 10, the
statements found between the curly braces will not be read. Therefore, the code in the while statement
will be skipped. Once the computer reaches the closing curly brace of MoreTabs(), the computer stops
running the function.

Computers do exactly what they’re told and nothing more. The compiler runs using very explicit rules
which it adheres to adamantly. Because of this, any strange behavior, which you might attribute to a
bug, should point to how you’ve written your code. In many cases, small syntactical errors lead to errors
which the computer will not be able to interpret.

It’s greatly up to you to ensure that all of your code adheres to a format the computer can understand.
When you write in English, a great deal of the sentiment and thought you put into words can be inter-
preted by each reader differently. For a computer there’s only one way to interpret your code, so either
it works or it doesn’t.

4.6.5 What We’ve Learned

Function declaration is a bit like class declaration. Functions are the meat of where logic is done to
handle variables. How variables make their way into and out of a function is covered in Section 6.18.
There are many different ways to handle this, but we’ll have to handle them one at a time.

On your own experiment with functions like the following:

You might want to set int a to a value other than 0 or 1 to get anything interesting out of this. Later, we’ll
be able to see how logic and loops can be used to make functions more powerful.

4.7 Order of Operation: What Is Calculated and When

Variables and functions work together to make your class operate as a part of your game. As an example,
we’re going to move an object through space using some simple math. To use numbers correctly, we need
to be very specific. Remember, computers do exactly what they’re told and nothing more.

Code is executed only when the function the code lives in is called. If the function is never called then
nothing in the function will run. Once a function is called, the operation starts with evaluating the code
at the top and works its way down to the end of the function one line at a time.

141Basics: The Building Blocks of Code

The first order which we’ve been working with so far is by line number. When code is evaluated each line
is processed starting at the top; then it works its way down. In the following example, we start off with
an integer variable and perform simple math operations and print the result.

As you might expect the first line prints 1, followed by 4, and then by 28. This is a rather long-handed
method to get to a final result. However, things get a bit strange if we try to shorten this to a single line,
as math operators work in a different order than we just used them.

After shortening the code to a single line like in this example, we get a different result, 22, which means
3 and 7 were multiplied before the 1 was added. Math operators have a priority when being evaluated,
which follows the order of precedence. The multiply and divide operators have a higher precedence than
add and subtract.

When evaluating int a, C# looked at the math operators first, and then did the math in the following
order. Because the * is more important than the +; 3 * 7 was computed, turning the line into 1 + 21;
then, the remaining numbers around + were evaluated, resulting a being assigned to 22, and then ulti-
mately printing that to the Console output.

We’ll observe the other behaviors and learn to control how math is evaluated. This section might
not be so exciting, but it’s worth the while to have this section as a reference. When your calculations
begin to have unexpected results, it’s usually because of order of operation coming into play and evaluat-
ing numbers differently from what you expected.

4.7.1 Evaluating Numbers

Calculation of variables is called evaluation. As we had mentioned before, each object added to the
scene in Unity 3D’s Editor has several components automatically added when it’s first created. To make
use of these components, you simply use their name in your code. The first component we’ll be using is
transform attribute. Transform contains the position rotation and scale of the object. You can see how
these are changed when you select the object in the scene and move it around.

You can also enter numbers using the Inspector panel, or even click on the variable name and drag left
and right as a slider to modify the data in the field. Moving objects around with code works in a similar
manner as entering values in the Inspector panel. The position of the object is stored as three float values
called a Vector3.

Operators in C# are the tools that do all of the work in your code. The first set of operators we’ll dis-
cuss is arithmetic operators.

4.7.1.1 Math

+ –/* and %
The + and – do pretty much what you might expect them to: 1 + 3 = 4 and 1 – 3 = –2; this

doesn’t come as a surprise. Divide uses the /, putting the first number over the second number. However,
the number type is important to sort out before we get too much further.

142 Learning C# Programming with Unity 3D

The first line above is a 10/3, which might not return what you would expect. Writing a number without
any decimal tells the compiler you’re using integers, which will give you an integer result. Therefore, the
result is simply 3, with the remaining one-third cut off since it’s rounded down. The second line has an f
after the number, indicating we want a float value. The third line without the f indicates a double value.
This has twice the number of digits as a float.

The result here shows the different number of trailing 3s after the decimal. We mentioned in Section 4.4.1.2
that there are different types of numbers. Here is an example of what that really means. An integer is a
whole number without any decimal values. A float is a decimal type with only 7 digits in the number; a
double is quite a lot bigger, having a total of 15 digits in the number.

Doing this experiment again with larger numbers exposes how our numbers have some limitations.

143Basics: The Building Blocks of Code

Like the integer, the large doubles and floats only have so many places where the decimal can appear.
The number for the double is huge to begin with, but we should have more 3s after the number than are
shown with a decimal. Where did they go? Keep in mind there should be an indefinite number of trailing
3s, but computers aren’t good with indefinite numbers.

NOT E: Computers without special software can’t deal with numbers with an unlimited number of dig-
its. To show bigger numbers, computers use scientific notation like E+15 to indicate where significant
numbers begin from the decimal point. Games, in particular, rarely ever need to deal with such large
numbers. And to keep processes running fast, numbers are limited.

Software applications designed to deal with particularly huge numbers tend to work more slowly as they
need to run with the same limitations, but instead perform operations on the first part of a number and
then another operation on the second half of a number. This process can be repeated as many times as
necessary if the number is even bigger. Scientific computing often does this and they have special num-
ber types to compensate. There are some additional number types, as well as other data types that aren’t
numbers. We’ll leave the other data types for later (Section 5.3.4). The operators we’re dealing with here
are mainly for numbers.

Next up is the multiply operator (*). All the limitations that apply to the divide operator apply to the
multiply operator as well. One important thing to consider here is that multiplication is technically faster
than division. Therefore, in cases where you want to do 1000/4, the computer is going to be faster if you
use 1000 * 0.25 instead.

This difference is a result of how the computer’s hardware was designed. To be honest, modern
CPUs are so much faster than they used to be, so using a / versus a * will usually make no noticeable
difference. Old school programmers will beg to differ, but today we’re not going to need to worry
about this technicality, though I feel every classically trained programmer wants to scratch out my
eyes right now.

Last up is the %, which in programming is called modulo, not percent as you might have guessed.
This operator is used in what is sometimes called clock math. An analog clock has 12 hours around it.
Therefore, a clock’s hours can be considered %12, or modulo twelve, as a programmer might say.

To use this operator, consider what happens when you count 13 hours on a 12-hour clock and want to
know where the hour hand will be on the 13th hour. This can be calculated by using the following term:
13%12; this operation produces the value 1 when calculated. Modulo is far easier to observe in opera-
tion than it is to describe.

The output from the code below here repeats from 0 to 11 repeatedly. Clocks don’t start at 0, but com-
puters do. Therefore, even though i is not being reset and continues to increase in value. On each update
i is not being reset to 0, instead it continues to increment until you stop the game. A programmer would
say “int i mod twelve” to describe i%12 shown here.

Programmers are particular about their vocabulary and syntax, so it’s best to understand how to think
and talk like one. Programmers will usually assume you already know something like this, but it is
worthwhile elaborating on the topic. Compilers, however, don’t all think in the same way. Therefore,
if you’re curious and feel like learning other programming languages in the future, you might find that
other languages will behave differently.

144 Learning C# Programming with Unity 3D

4.7.1.2 Operator Evaluation

As we saw before with 1 + 3 * 7 you may end up with different results, depending on the order
in which you evaluated your numbers. To prevent any human misinterpretation of a calculation
you can reduce the preceding numbers to 4 * 7 or 1 + 21. To make our intent clear we can use
parentheses.

To gain control, we use the open and close parentheses to change the order of evaluation. For example,
we can do this: 1 – 2 – (3 + 4), which turns into 1 – 2 – 7; a whole different result: –1 – 7
yields –8. A simple change in the order of operation can result in a completely different number when
evaluated. This sort of thing becomes more important once we start shooting at zombies and dealing out
damage. Some monsters might have thicker skin, and you’ll want to reduce the damage done by a specific
amount based on where he was shot.

4.7.1.2.1 A Basic Example

As we saw before, 1 + 3 * 7 will result in 22. We could use the long-winded version and start with
a, then add 1 to it, then add 3 to that, and then multiply that by 7 to get 24. There’s an easier way.

By surrounding a pair of numbers with parentheses, we can tell the compiler to evaluate the pair within
the parentheses before the multiplication. This results in 28, like the long-handed version of the same
math. To elaborate we can add in another step to our math to see more interesting results.

The code above results in 31 printed to the Console panel. We can change the result to 49 by surrounding
the 7 + 9 with parentheses, like in the following.

The complier computes the 7 + 9 before the rest of the math is computed. Parentheses take precedence
over multiplication, regardless of where they appear. It doesn’t matter where the parentheses appear,
either at the beginning or at the end of the numbers: The parentheses are computed first.

Adding another set of parentheses can change the order of computation as well. Parentheses
within parentheses tell the computer to start with the innermost pair before moving on. For instance
(11 * ((9 * 3) * 2)) starts with 9 * 3; this turns into (11 * ((27) * 2), which then yields 27
* 2, which turns into (11 * (54)); 11 * 54 turns into 594. This can be switched round by shifting
the placements of the parentheses to a different number. Try it out!

At this point, you will need to be very careful about the placement of the parentheses. For each opening
parenthesis, there needs to be a corresponding closing parenthesis. If you’re missing one, then Unity 3D
will let you know. It’s important to have a sense of what sort of math to use and when to use it.

In this case, where the parentheses encapsulate the entire expression their presence is redundant. Taking
out the first and last parentheses will have no effect on the final result. This is true for most operations,

145Basics: The Building Blocks of Code

but for clarity it’s useful to know that they are indeed optional. To be clear about this, we can add any
number of extra parentheses to the operation and there will be no other effect to the result, though it may
look a bit strange.

To make things clearer, we can rearrange this expression to be a lot more readable by setting up different
variables. For each set of operations, we can create a new variable. The operations begin with the first
variable; then, after the value is stored, the value is carried to the next time it’s used. Just remember, a
variable cannot be used until it’s been created.

In this example, we’ve created a different variable for each part of the math operation. First, we created
a 9 * 3 variable assigned to h. After that we multiplied h by 2 and assigned that to i. Finally, we mul-
tiplied i by 11 and assigned that result to j. To view the result, we printed out j to get 594, the same
result as the long, fairly obscure operation we started with. This example shows a simple use of variables
to make your code more readable.

This seems like we’re back to where we started with, at the beginning of this section. To be honest,
both methods are perfectly valid. The decision to choose one system over another is completely depen-
dent on which you find easier to understand.

What we should take away from this is the order in which the lines are read. The operations start at the
top and work their way line by line to the bottom of the function. As variables are assigned new values,
they are kept until they are reassigned.

It’s important to note that by creating more than one variable, you’re asking the computer to use more
space in your computer’s memory. At this point we’re talking about very small amounts of memory.
A classically trained programmer might want to fix this code upon reading it, and then convert it to a
single line. To be honest, it does take up more space and not only visually.

When starting a new set of operations, it’s sometimes helpful to use a more drawn-out set of instruc-
tions, using more variables. When you’re more comfortable that your code is doing what you expect it to,
you can take the time to reduce the number of lines required and do a bit of optimization. There’s nothing
wrong with making things work first and cleaning them up later.

4.7.2 What We’ve Learned

Therefore, you’ve been introduced to variables and you’ve learned about functions, two big components
of programming needed to make a game. Directives will allow your code to talk with Unity 3D and put
meaning behind your variables and functions.

We’re using C# and .NET, which is an object-oriented programming environment. We just learned
objects are all the little bits of information that make up your different C# classes. When we’re done with
writing some code, Unity 3D will automatically interpret your code for your game.

At this point, we’ve got a pretty strong grasp of the basics of what code looks like and the different
parts of how code is written. We’ve yet to make use of any logic in our functions, but we should be able
to read code and know what is and isn’t in a function.

It would be a good idea, by way of review, to make a few other classes and get used to the process
of starting new projects, creating classes, and adding them to objects in a Unity 3D Scene. Once you’re
comfortable with creating and using new classes in Unity 3D you’ll be ready to move on.

146 Learning C# Programming with Unity 3D

4.8 Scope: A First Look

Encapsulation is the term given to where data can be accessed from. The amount of accessibility is
called scope. The visibility of a variable to your logic changes depending on where it appears.

Encapsulation can hide, or change the accessibility of data between statements, functions, and classes.
Another way to think about it is keeping data on a need-to-know basis. This invisibility is intended for
several reasons. One reason is to reduce the chances of reusing variable names.

4.8.1 Class Scope

To get a better look at how scope and encapsulation work together, Open the Scope_Scene in the
Chapter 4 Unity Project. Attached to the Scope GameObject is the Scope script. When the scene is run,
the code attached to the Scope GameObject will run as normal.

The MyInt variable exists at the class scope level. MyInt can be used in any function that lives in the
class scope. The example code you’re looking at will produce the following Console output:

Both Start() and Update() live in the class scope so both can see the MyInt variable. Therefore,
the following code will send a 1 to the console. Both Start() and the Update() functions will keep
sending 1s to the Console window.

147Basics: The Building Blocks of Code

Placement of a variable at the class scope has little effect on where it’s used. The code above can be rear-
ranged easily. The code below will behave the same as the code above.

The functions and variables act in the same way, irrespective of where they appear in the class. However,
class scope is easy to override with other variables of the same name. This is called variable collision,
the effects of which you should be aware of, as discussed in Section 7.4.

If we declare a variable of the same name in more than one place then it will be overridden by the newest
version of our variable. If you were to run this script in your scene, you’d have the Console printout 2
because of the line that preceded the print function call.

There are problems with how variables can collide with one another. And the best way to avoid this
problem would be to come up with good names for your variables. What happens if we try to use both
versions of myInt?

148 Learning C# Programming with Unity 3D

The scope in which the new myInt declaration appears wipes out the existence of myInt defined at the
class scope. The result of such a declaration will be an error: “A local variable myInt cannot be used
before it is declared.” You may have expected the first print function to print out the class scope version
of myInt, but this isn’t the case.

Variables named at the class scope still exist even if you reuse the name with new variables named
in a function. The word "this" is a keyword. If "this" preceeds a variable, C# understands to use the
variable named in the class scope and not the variable named in the function scope.

By creating an int myInt inside of the Start() function in your class you have effectively hidden
the class scoped myInt from the function. Although it can be accessed as this.myInt, the function
scoped version of myInt in the function takes precedent.

This example should also highlight that a variable can be used only after it’s been initialized. This is a sit-
uation best avoided, so it’s good to remember what variable names you’ve used so you don’t use them again.

To elaborate, a function starts from the first curly brace ({) and computes one line at a time, working
its way from the top, moving toward the bottom until it hits the closing curly brace (}). An error occurs
if a variable is used in a statement before the variable is declared.

Something that might be obvious but should be mentioned is the fact that you can’t reuse a variable name.
Even if the second variable is a different type, we’ll get the following error in MonoDevelop explaining
our error.

Another effect of creating a variable inside of a function is the fact that another function can’t see
what’s going on. In the following code we declare a StartInt in the Start() function. After that we
try to use it again in the Update() function, which results in an error.

C# is telling us that we can’t use a variable before it’s declared. Of course, we did declare it once, but that
was in a different function. The Update() function can’t see inside of the Start() function to find the
declatedInStart variable declared in the Start() function.

You’ll have to keep this in mind once you start writing your own functions. There are two common
ways to work with declaring variables. The first is to place all your variables at the top of the function.

149Basics: The Building Blocks of Code

This way you ensure that everything you may need to use is already declared before you need them.
The second method is to declare the variable just before it’s needed.

In this case, we’re being very clear inside of this function about what variables we may use. For short
functions this can sometimes be a lot easier to deal with. You can easily sort your variables and change
their values in one place. It’s also easier to check if you’re accidentally reusing a variable’s name.

In this second case, we’re using the variable only after it’s created. When writing long functions you
may find the second method a bit more clear as you can group your variables together near the logic and
functions that will be using them.

This is a small example of code style. When reading someone else’s code, you’ll have to figure out how
they think. In some cases, it’s best to try to match the style of existing code. However, when you’re writing
everything on your own, it’s best to keep to your own style and decide how you want to arrange your code.

If we declare a variable at the class scope, all functions inside of the class can see, and access, that
variable. Once inside of a function, any new variables that are declared are visible only to that function.
Some statements can declare variables as well, and those variables are visible only inside of the state-
ment they are declared. Once we get to know about more statements, we’ll see how they work, but we’ll
need to keep scope in mind when we get there.

4.8.2 Function Scope

Variables often live an ephemeral life. Some variables exist only over a few lines of code. Variables may come
into existence only for the moment a function starts and then disappear when the function is done. Variables
in the class scope exist for as long as the class exists. The life of the variable depends on where it’s created.

In a previous exercise, we focused on declaring variables and showing them in the Unity 3D’s Inspector
panel. Then we observed when variables need to be declared to be used without any errors. The place-
ment and public keywords were necessary to expose the variables to the Unity 3D editor.

The public keyword can be used only at the class scope. This is called class scope as the variable is
visible to all of the functions found within the class. Making the variable public means that any other
class that can see this class can then also have access to the variable as well. We’ll go into more detail on
what this means and how it’s used in a bit.

Adding the public int within the a function will produce an error. You’re not allowed to elevate a
variable to the class scope from inside of a function. Visual Studio will not give you the most informative

150 Learning C# Programming with Unity 3D

error message, but Unity will have a different message for you. Unexpected symbol “public”;
the reason is that variables within a function cannot be made accessible outside of the function.

There are systems in C# to make data within a function accessible, but using the keyword public is
not it. We’ll look into how that’s done in Section 6.1. A variable declared inside of a function exists only
as the function is used. The functions declared in the class are also a part of the class scope, and at the
same level as the variables declared at the class scope level. If a function in a class is preceded by the
public keyword, it’s accessible by name, just like a variable. Without the public keyword the func-
tion will remain hidden. We’ll make use of public functions in Section 6.3.2, but it’s important to know
that a function can be made publicly available, like variables.

Referring to the Scope script created for this chapter, we’re going to make use of the functions given
to us by the programmers at Unity 3D. The location of a variable in code changes where it can be seen
from and how it can be used.

As noted, limiting accessibility of any variable is called encapsulation. The curly braces, {}, and
parentheses, (), have a specific context. This context can keep their contents hidden from other sec-
tions of code. This means that Start() can have one value for myInt, and if you a different myInt in
Update(), it will not be affected by the myInt in Start().

If we look at the above figure we can visualize how scope is divided. The outer box represents who
can see ClassInt. Within the Start() function we have a StartInt that only exists within the
Start() function. The same is repeated for the UpdateInt, found only in the Update() function.
This means that Start() can use both ClassInt and StartInt but not UpdateInt. Likewise,
Update() can see ClassInt and UpdateInt but not StartInt.

In the diagram below the boxes represent different levels of scope.

151Basics: The Building Blocks of Code

Within the Start() function is a while loop. The while() loop can use both ClassInt and myInt.
The following Update() function can see ClassInt but not myInt, which exists in the Start()
function. The variable ClassInt was declared in the class scope, whereas the myInt variable was only
declared inside of the Start() function's scope and isn't accessible outside of the Start() function.

4.8.3 Blank Scope

Blank Scope is obscure and not often used, but worth mentioning. Curly braces are used to encapsulate
code, we’ve observed plenty of how that works with classes and functions. However, a pair of curly
braces can encapsulate code without a specific reason.

In the code above, we have a function named BlankScope but there’s also a pair of curly braces where
int b; has been declared. This is called a blank scope. The Debug.Log(b); cannot see int b outside
of the blank scope. This does help in cases where working on a particularly tricky code might require
some isolation.

With blank scope you can declare variables with identifiers that were already used elsewhere in the code.
If you were testing out different algorithms you might want to use blank scope to isolate different ideas.

If you’re using blank scope you’re also able to fold code bracketed by the curly braces.

152 Learning C# Programming with Unity 3D

One clever trick is to put a comment at the bottom of the curly braces.

With the comment at the bottom, when your code is folded it will have a title so you can identify what the
code does. Organizing your code is something that comes after quite a lot of practice. Eventually you’ll
end up coming up with schemes of your own to help keep your code organized. No suggestions on how
to organize code have been made. Tools and systems have been introduced, but no style has been recom-
mended. I’ll leave the specific style up to you to make your own decisions on.

4.8.4 What We’ve Learned

Encapsulation describes a system by which a variable’s scope is defined. Depending on where a variable
is declared, the scope of the variable changes. Encapsulation prevents variables from overlapping when
they’re used. Encapsulation, therefore, allows one function to operate independently from another func-
tion without our needing to worry about a variable’s name being reused.

We’ll cover more situations where scope becomes a useful tool to help classes message one another.
Encapsulation and scope define a major principle of object oriented programming, and understanding
this concept is important to learning how to write C#.

4.9 This

What happens when a class needs to refer to objects in itself? In most cases, a class can use its own prop-
erties and fields and not get confused what variable is being referred to. For instance, we can take a look
at a basic class that has the following.

Here, we have someInt defined at the class scope. We’ve have a function that assigns the someInt
to i. There are no problems with this setup. On the other hand, should the AssignInt be modified to
look like the following:

4.9.1 A Basic Example

In the KeywordThis_Scene open the KeywordThis script found on the KeywordThis object.
Looking at the AssignInt function, there’s no confusion with the assignment of someInt. The situa-
tion changes when the parameter name in AssignInt changes to someInt.

153Basics: The Building Blocks of Code

The AssignSomeInt(int someInt) function has no errors, and the project builds. The expectation
is that someInt will be assigned the value that was coming into the function through the parameter.
However, we get a different result.

If we use this to assign someInt in the Start() function we get the Log output of 0 both before and
after using the function. Hover over the assignment in the AssignSomeInt function and you’ll observe
the message “Assignment made to same variable; did you mean to assign something else?” To solve this
problem, we’ll look at the simple solution.

This assigns the class scoped someInt the value of the incoming parameter someInt. This is because
in the function AssignThisSomeInt, where we assign the parameter someInt variable this.
someInt. Without the keyword this, the local scope of the function overrides the class scope use of
someInt.

4.9.2 When This Is Necessary

With the addition of the keyword this to the function above, we can specify which version of the
someInt variable we’re talking about. It’s easy to avoid the requirement of the this keyword.
Simply use unique parameter names from the class’s variables and you won’t need to use the this
keyword.

There is no unexpected behavior if we superfluously use the this keyword anytime we want to.

The use of this can help make the code more readable. In a complex class where we have many differ-
ent variables and functions, it sometimes helps to clarify if the variable being assigned is something local
to the function we’re reading or if the variable is a class scoped variable. Using this we can be sure that
the variable is assigned to a class variable, and not something only in the function.

Getting into something somewhat obscure, but worth mentioning is self-referencing. In some cases,
an object may need to look to itself as a variable. To do this you’d have an object store itself as a
variable.

154 Learning C# Programming with Unity 3D

The example above shows a class called ThisThing. Inside of it there’s a variable declaration called
myThing that’s the same type as itself. To assign the class itself to the myThing variable there’s a func-
tion called AssignThing() where the contents of that function assigns this to myThing.

The function AssignAThingToItself() executes the code and creates a thing and has it assign
itself to the myThing variable. With some data types where objects need to reference to both themselves
and similar components you’ll create what’s called a linked list. One of the components of a linked list
is being able to reference itself among other objects it might be linked to.

We may be jumping ahead into some complex data structures, so we’ll hold off more complex
subjects for now. It’s not too common for an object needing to reference itself in this way, but C# lets
you do it.

4.9.3 What We’ve Learned

In general, this is a somewhat awkward keyword. The necessity of using the keyword this arises in
very few use cases.

When naming variables and functions, it’s best to keep to a consistent pattern. In general, many people
use longer names at the class scope. For instance, the following code uses a pattern of shorter and shorter
variable names depending on the variable’s scope:

155Basics: The Building Blocks of Code

At the scope of the entire class the int is MyInt. Within the function MyFunction in MyClass
a local variable visible to MyFunction in the argument list is called mInt. The variable defined
inside of the function is simply m.

There are obvious limitations to using a convention like shortening variable names. It’s very easy to
run out of letters and end up with unclear variable names, but it’s a simple place to get started.

This isn’t a common practice convention by any means; it’s one that I’ve personally become used to
using. These sorts of personal conventions are something that everyone needs to invent for his or her
individual use. I’d expect you to find your own convention for naming variables.

The flexibility of C# allows everyone to have a personal style of writing code. Identifiers aren’t the
only place where one can find self-expression through code. Another way to express one’s self through
code is deciding to use a for-while or do-while loop. Both can be used for the very similar tasks,
but the decision is ultimately left to the programmer writing the code.

For any reason should you feel like you prefer one method over another you should follow your own
intuition and write how you like to. Programming is a creative process and writing expressive code is a
process just like any other form of art.

4.10 Building a Game—Part 2

Previously we worked to get at a little robot character moving with a point and click system. Unity 3D
allows us to attach more than one script to a GameObject in a scene. The additional components attached
to the game object append additional behaviors.

An entity with behaviors is a conceptual relationship or Entity Component Model. Programmers, like
scientists, use categorization to classify work. Words like Domain Driven Design (DDD), or Model-
View-ViewModel (MVVM), or Component Object Model (COM) are techniques. Design patterns are
intended to help organize what classes contain what functions and where to store data.

Most game engines, Unity 3D included, follow the Entity Component Model where an object in
the scene has various components attached to it. The components include sounds, particle effects,
3d models, and so forth. Each component can in turn, also have more components attached to them.
Weapons can have sounds effects and models which are then attached to a character. Where the divi-
sion of work splits a component into multiple parts is dependent on the engineer coming up with the
systems that drive the game. Split things up too small and you’ve got numerous classes with different
interfaces and functions that can be confusing. Too few components and classes can grow into large
masses of complex code.

Decisions like when to split a class into multiple components only comes with experience. After writ-
ing a few different games, the natural lines of delineation between components becomes more apparent.
We have yet to write one game, though, so let’s get back to that.

If we want to add some shooting behavior to our character, we should use the right mouse button.
The previous exercise used the left mouse button to tell the character to move toward the mouse position.
Lots of projectiles are more fun than one so right click down should start spraying a bunch of projectiles
at the mouse point and when we release the shooting stops.

We should also have some targets to shoot at, so we’ll also want to have a system to pop up something
to shoot at. When the targets take enough hits, we’ll have them explode and go away. This means we’ll
need to build some sort of target damage system.

4.10.1 Additional Components

Layers of behaviors added to an entity in a scene makes creating complex behavior easier. The alterna-
tive is to create a single script that manages every entity in the scene at once. Let’s avoid that and write a
system to allow our little guy some target practice.

156 Learning C# Programming with Unity 3D

Continuing with the Unity-SampleGame, open the Section 4.10 scene to review what’s going on.
The process begins with needing to fire projectiles from the character. Projectiles will originate from

the Robo character, so the script should start there.
Following the logic we’ll want a way to determine how and when the projectiles should be created.

Weapons in games often have a rate of fire, or how many projectiles are created per minute.

To use this in Unity we need to convert rounds per minute into tenths of seconds. The conversion in the
example takes a supposed 600 rpm and converts that into 0.1f seconds with some basic math.

157Basics: The Building Blocks of Code

In the Update function we check for GetMouseButton(1) for the right mouse button. We use the
NextShot function to set NextTime to regulate how often the weapon will fire. To give ourselves a
bullet to create we use GameObject ProjectileObject and assign a Prefab of a projectile to the
Robo in the scene. Prefabs are assemblies of game objects that have been stored in the Assets directory.
These are GameObjects that have components added so they can function on their own.

The projectiles need to have a transform to be instantiated with. An instantiated object without a posi-
tion and orientation to start with will appear at the origin of the scene. To provide the projectile with
a position in front of Robo, an empty GameObject named “ProjectileStart” has been added. This gets
assigned to the ProjectileWeapon script. Last is a SoundClip that will play when the weapon is fired.
To play the audio, the Robo has an AudioSource component attached, so the audio clip has a something
to play from.

158 Learning C# Programming with Unity 3D

Now the rest of the Update() function can be filled in.

We get a Vector3 and a Quaternion from the ProjectileStart object and assign it to the
Instantiate function that uses the “Original” as a template to create a new projectile. Once the object is
created we play a “Pew!” sound. So what is the projectile?

4.10.2 The Projectile

The projectile has three features. First, it has a travel speed; second, it’s got a life time; and last, it’s got
a damage value. To ensure that the world doesn’t get populated with too many bullets that never hit any-
thing we assign a number to terminate a projectile after a time limit.

In the Start() function we use the Life Time’s value to both Get and Set a time limit.

Here, imagine that if time was 3, it’s just assigned 3 + the Current Time which might be 21 seconds into
the game. With that math, Life Time of 3 becomes Current Time 21 + Life Time 3. This sets the end of
life to 24. So in Update we check the following:

When the current time is past the Life Time of the Projectile GameObject, the projectile destroys itself.
The speed value is used to set its initial Velocity when it’s created.

159Basics: The Building Blocks of Code

When the projectile is instantiated, it’s given a position and orientation to start with. Velocity of
transform.forward multiplied by its speed will simply shove the projectile forward. Making the
physics in Unity a bit easier to work with, we turn off gravity on the rigid body attached to the Projectile
GameObject.

Features like Interpolate and Collision Detection are set to Extrapolate and Continuous Speculative, as
recommended by the Unity documentation for fast moving projectiles. This ensures that the projectile
doesn’t pass through stationary objects without collision detection. If an object is moving fast enough
the Update() function might miss a collision. Our projectile also has a colorful contrail attached to it
for added visual effect.

160 Learning C# Programming with Unity 3D

4.10.3 The Target

We need something to shoot at. The large red boxes populating the scene have a DamageSystem script
attached. This has three values as well, a damage number, and Two GameObjects that are spawned when
it’s hit with a projectile.

The first explosion is instantiated when we record a hit, but the target is not destroyed. The second
explosion will be instantiated when the target is destroyed. The damage value is decremented by the
projectile.

To record collision events we use the MonoBehaviour OnCollisionEnter event delegate. To
check what collided with the target we use ProjectileShape other. Everything that touches the
target will trigger the OnCollisionEnter delegate. By using GetComponent() on anything
touching the target, we can check if the colliding object is a projectile. The statement if (other
!= null) is true when the collision occurs with an object that has the ProjectileShape script
attached.

We reduce the target damage by the projectile’s damage value and check if the value is less than or
equal to 0. If we are not at or below 0, we create a small explosion, otherwise we create a large explosion

161Basics: The Building Blocks of Code

and destroy the target game object. The large and small explosions are particle systems with the sound
source attached to them to play the explosion sound. When the particle system is finished, the object is
set to destroy itself.

You might ask why the target doesn’t play the sound. The audio source component needs to be in the
scene for the audio to be heard. If the target destroys itself, it takes the audio source away with it. An
audio clip never gets played on an object that doesn’t exist.

4.10.4 What We’ve Learned

Here’s where we get a tad philosophical. With the idea in mind that the explosion object plays the explo-
sion sound, does that mean that the projectiles should play the blaster shot sound? The current setup has
the weapon playing the blaster shot sound, but we could easily change the responsibility of the audio
source. To change things completely, we could have a third object in the scene that plays all the sounds.
A sound management object could be marked to not be destroyed, so this ensures that all the sounds will
be played when objects are destroyed.

Quite a lot has been accomplished with very simple behaviors. We rely on events and options Unity
3D has built. Unity 3D is a game engine after all, so we should leverage all the features prepared for
making games.

We’ve invested some time in seeing how to pool together simple language features to make complex behav-
ior, so let’s continue to see how C# works to understand more about what we just looked at in this chapter.

162 Learning C# Programming with Unity 3D

4.11 Logic and Operators

Logic allows you to control what part of a function is evaluated based on changes to variables. Using
logic, you’ll be able to change which statements in your code will run. Simply put, everything you write
must cover each situation you plan to cover. Logic is controlled through a few simple systems, primarily
the if keyword and variations of “if.”

4.11.1 Booleans

Open the LogicAndOperators.cs script in Visual Studio along with the LogicAndOpetarors_
Scene in the Unity Editor. Using George Boole’s logic is a basic tool in nearly every programming
paradigm. This is a rather detailed section, since there’s a lot to cover. So let’s dig in!

In programming booleans, or bools for short, are values that represent either true or false, in some
cases 1 or 0. It’s easiest to think of these as switches in either on or off position. To declare a variable
as a bool, you use something like the following.

By using public you’ll expose the boolean variable to Unity 3D’s Editor. This declaration will make
the variable appear in the Inspector panel. The boolean needs to appear here to be seen by the rest of the
class in Unity 3D. We’ll learn why this is so in Section 4.13 on scope, but we’ll digress for now.

163Basics: The Building Blocks of Code

The value for Some Bool appears in the Inspector as an empty check box. This means that you can set
the bool as either true or false by checking it on or off, checked or unchecked. Your code can also set
your public variables by running the game.

NOT E: C# does a pretty good job of automatically initializing many of its built-in types. Number values
are always initialized to 0 when they are not given a value. Bools are initialized as false when not given
a value. This is handy to know since not all languages do this.

For instance, Lua, another commonly used game programming language, assumes nothing about the
value until it’s given one. Therefore, when any variable is first declared, it’s initialized as nil, which is
like C#’s behavior when creating a variable of a more complex data type. Though C# calls this uninitial-
ized state null, this means the same as nothing. For good measure, UnrealScript uses the keyword none
to mean the same as null.

Changes made before the game is run will be saved on that object. For making a game, for example,
you can place treasure chests throughout a dungeon and set the amount of gold in each one. This is great
since you will not need to make a different script for each treasure chest.

For instance, setting a number for gold in the treasure chest will allow you to change the gold in each
instance placed in a scene.

4.11.2 Equality Operators

Equality operators create boolean conditions. There are many ways to set a boolean variable. For instance,
comparisons between values are a useful means to set variables. The most basic method to determine
equality is using the following operator: ==.

There’s a difference between use of a single and a double equal symbol. = is used to assign a value,
whereas == is used to compare values. Another way to read the == is to say the left value “is equivalent
to” the right value.

When you need to compare two values you can use the following concept. You’ll need to remember
that these operators are called equality operators, if you need to talk to a programmer. The syntax here
may look a bit confusing at first, but there are ways around that.

164 Learning C# Programming with Unity 3D

There are other operators to be aware of. You will be introduced to the other logical operators later in the
chapter. In this case, we are asking if two number values are the same. When the game is started, you’ll
be able to watch the someBool check itself to true if not then the operator returns false. This is the
same as the following.

To explain how this works, we’ll need to look at the order of operation that just happened. First, the right
side of the first single = was calculated. 1 == 1 is a simple comparison, asking if 1 is the same as 1,
which results with a true value. Test this out and check for the result in Unity 3D.

To make this a clearer, we can break out the code into more lines. Now, we’re looking at a versus b.
Clearly, they don’t look the same; they are different letters after all. However, they do contain the same
integer value, and that’s what’s really being compared here.

Evaluations have a left and a right side. The single equal to operator (=) separates the different sides.
The left side of the = is calculated and looks to the value to the right to get its assignment. Because
1 == 1, that is to say, 1 is equivalent to 1, the final result of the statement is that someBool is true.
The check box is turned on and the evaluated statement is done.

As you might expect, changing the value in one of the variables will change the outcome of this equality
test. someBool will be clicked off because the statement is no longer true. Or in plain language, Is a
equal to b? The answer is no, or as far as someBool is concerned, false.

165Basics: The Building Blocks of Code

4.11.3 Logical Not!

If we compare values that are equal, we get a value that’s true. If we need a value that’s false the ! symbol
flips the result. As we saw with the above statement, 1 is 3 is false, we can also use 1 is not 3 to be true.

The operator != means not equal. In the (1 != 3), we get true since 1 is not equal to 3. Logically this
also means that 1 != 1 is false. It is not true that 1 is not equal to 1.

The not operator ! can also be assigned to a value after it’s been calculated. After an evaluation comes
in as either true or false, the ! can be applied to the value to flip the result from true to false.

166 Learning C# Programming with Unity 3D

In the above, the 1 == 1 value returns true. Before it’s assigned to not_a_isNot_b the ! is applied
to the true resulting in not_a_isNot_b set to false. This can be applied to any other value as well.

The logic of 1 is not 1 evaluates as false, then not is applied so false becomes true. Applying the not !
operator to a not equals operation makes the statement hard to read. It’s important to simplify how and
when the operators are used. The fewer operators you can use the better.

4.11.4 Greater and Less than Operators

To further empower the comparisons, we can use the > and < operators. These are the greater than and
less than operators. This operator compares values. In the statement (3 > 0) we ask if 3 is greater than
0 which evaluates true.

The order around the operator is important and evaluates as you would expect. If you reverse the terms
of the operation where we ask if (0 > 3) zero is greater than 3, we get false.

167Basics: The Building Blocks of Code

This can be modified by the ! not operator as with the previous == operations. This does the same thing
to the operation as before.

In contrast we can also use the < operator to see if the left operand is less than the right operand.

As with the greater than operator the less than functions in the same way with the left value compared to
the right value. What may be less expected is if the values are the same.

Both (3 < 3) and (3 > 3) are false. The result of the evaluations only checks if the values are
greater or less than when making a comparison. If the values are equal, then the value of the operation
is false. To check for greater than or equal to or for less than and equal to we use the >= and <=
operators.

By changing the < and > to <= and >= the same check of 3 versus 3 returns true since the value evalu-
ates as equal to. The <= and >= operators combine the > or < and the == operators into a single operator.
There are operators that enable further logical combinations.

168 Learning C# Programming with Unity 3D

4.11.5 Logical And and Or Operators

When we use the <= and the >= operators we are asking is less than or equal to. This is an abbreviation
of using a < || == where || is the logical “or” operator. This can also be read as “double bar” but,
“or operator” is preferable.

The logical or operator returns true if any one of the operands returns true. The above shows that
the left 3 > 3 is false, but the 3 == 3 is true. The assignment of lessThanOrEqual is true
since the right side of the || operator is true. This is clearer if we use a combination of true false
statements.

The evaluation of a logical or requires at least one true value in the statement to return a true evalu-
ation. In the second statement shown you can see four different values where only the far right one
is true, but the logicalOrs value is assigned true. Any number of || operators can be used in a
statement.

169Basics: The Building Blocks of Code

The logical && and operator requires all values of a statement to be true to return true. If any one value
in the statement is false then the final evaluation is false. Using the logical operators in practice is usually
for comparing a range of values.

Using a statement like “−3 is less than x and x is less than 3” we can create a range from −2 to 2 to
return true and every other number to return false. The while loop also uses the < operator to control
the termination of the statement. We’ll get into loop statements in more detail in the next chapter. In any
case, there’s no restriction on how the values can be checked.

The above statement returns the same values as the previous form. The range is a bit harder to
read, but the same result comes out. Each one of the variations on checking the range between −2
and 2 as True.

4.11.6 If and Branching

The boolean values allow functions to make decisions based on a true false condition. The “if”
statement controls when a block of code is invoked based on the contained condition.

170 Learning C# Programming with Unity 3D

The condition in the parameter for the “if” statement controls whether the code following the statement
is invoked. This also shows us that unreachable code can result if a statement is never true. To use what
we had just seen in action we’ll generate a grid of cubes. Then we’ll use an “if” statement to set the color
of each cube based on its distance from the LogicAndOperators game object.

The above statement uses an “if” statement to set the color of the cube to red when the distance to the
cube is more than 2 and less than 4. The else statement changes the color to white where the “if”
statement isn’t true.

171Basics: The Building Blocks of Code

The if-else statement is used often. The else case occurs where the if statement is not true.
We can expand this to include additional “if” statements. Checking the position of the cube’s x value
against the LogicAndOperators.position.x we set the color to blue.

If the cube’s x value is greater than myPos.x then the cube is blue, otherwise the previous statements
values are left alone.

As the game object orbits around the center of the world, the blue divide can be seen traveling across the
white cube objects. The else statement cannot stand alone, it can only appear after a valid if statement.
Adding if-else-if after the blue creates another pattern.

172 Learning C# Programming with Unity 3D

The above changes the coloring of the cubes to yet another pattern:

Experimenting with different values in the “if” statements dramatically changes the colors of the cube
array. Unreachable code can easily creep into nested if-else statements.

If you look closely, in the second “else” statement we have a condition if(cubePos.x > myPos.x)
where we also ask inside of that else if(cubePos.x < myPos.x). The second statement will never
be true. The second statement is excluded by the first. Unfortunately, this isn’t caught by Visual Studio,
and isn’t flagged as unreachable code.

173Basics: The Building Blocks of Code

Playing with different combinations of the if-else statements for the colored cubes can be fun and
interesting. The results turn into color patterns revolving around the LogicAndOperators game object.
An interesting challenge would be to split the colors into red blue green and white with the red circle.
Think that’s something you can do?

4.11.7 What We’ve Learned

Thinking through logic is one of the most difficult parts of programming in general. For now, the logic
has been straightforward, but logic can get quickly very fast. Once things get more difficult, it may be
easier to set and calculate values ahead of when they’re used. Rather than chain long if-else statements
it’s sometimes easier to use one at a time and layer the effects rather than multiple embedded if-else
statements.

4.12 Loops

To follow along, we’ll be using the Loops script found on the object of the same name in the Loops_
Scene in the Chapter 4 Unity Project.

This section is something you may need to return to several times for reference. Learning these dif-
ferent loops is all very different. Most of them accomplish the same thing, but with subtle differences.
In general, the for(;;) loop is the easiest to use, and sometimes the fastest.

The Update() function is run once every frame. Within that function, our logic is evaluated, start-
ing at the top moving toward the bottom. Once the function is complete, the next frame begins, and the
Update() function is called again to restart the evaluation at the top. This process is then repeated for
every frame while the game is running.

To further understand how this process affects our code, we should be able to count the number of
frames and thus the number of times the Update() function has been called. To do this, we’ll simply
create a public int to count the number of times the Update() function has been called.

4.12.1 Unary Operators

The term unary operator means there’s only one operation required. In C#, and many other program-
ming languages, unary operators work only on integers. Integers are best at counting whole values.
In this case, we’re going to keep track of how many times the Update() function has been called.

Integers are whole numbers, like 1, 2, and 1234. Unlike how numbers are commonly used in written
English, in code, no commas are used: “1,234,” for example, should be written “1234.” Commas are
special characters in C#, so the computer will look at 1,234 as a 1 followed by a different number 234.
We’ll go further into the differences between numbers, but we need to know a bit about integers before
proceeding. In a new project in Unity 3D start with the Loops project.

To start, we should look at how the process looks like in long hand. Adding counter = counter
+ 1 means we’re going to take the previous value of counter and add 1 to it. Some programming
languages require this counting method. Lua, for example, needs to increment variables in this manner.

More complex languages like C# can shorten this to a single statement with the use of a unary operator.

174 Learning C# Programming with Unity 3D

The unary operator ++ works the same as the long-hand version from the previous statement. When you
run the game you can watch the counter value update in the Inspector panel in Unity 3D. After only a
few seconds, you can see the counter running up very quickly. Each time the Update() function is
called, the counter is incremented by 1.

Another unary operator is the --, which decrements a value rather than increments. Replace ++
with -- and you can watch the counter running down into negative numbers. Each one of these has
important uses.

4.12.2 While

If we want to run a specific statement more than once in a loop, we need another method. To do this,
C# comes with another couple of keywords, while and for. The while() statement is somewhat
easier to use. It needs only one bool argument to determine if it should continue to execute.

This statement is somewhat like the if() statement, only that Unity 3D returns to the start of the
while() statement checks if the contained statement is true and repeats the code block again.

We start again with public int counter. The while() loop checks if the counter is less
than 10. While the counter is less than 10, then we run the contents of the while statement that
increments the counter. Once the counter is larger than 10, the while statement doesn’t evaluate
its contents. As a programmer might say, the while loop’s code block will not be executed.

There is one danger using while statements. If the while statement remains true, it will not stop.
In this case, it means that the Update() function will not finish and the game will freeze on the frame
until while(false). This also means that any input into Unity 3D will respond very slowly as it’s
still waiting for the Update() function to end. We’ll observe how runaway loops behave later in this
chapter.

One important observation to make is that counter++ lives inside the while with the above code
sample. This means that the Update() no longer increments the counter value. The while loop incre-
ments the value.

175Basics: The Building Blocks of Code

The form above creates an int i = 0; just before the while() statement. Inside of the while()
statement the value of i is incremented as before. After the loop the counter value is printed to the Unity
Console. The output for the above sends a string of numbers 0 to 9, then a number from counter.
This means that counter is incremented with the start of the Update() function, the while() loop
executes 10 times, then the counter is incremented.

4.12.3 For

To gain a bit more control over the execution of a loop, we have another option. The for() loop requires
three different statements to operate. The first statement is called an initialization, the second is a condi-
tion, and the third is an operation.

The first argument allows us to set up an integer. After that, we need to have some sort of boolean
condition to inform the for loop when to stop. The last argument is something that operates on the ini-
tialized variable from the first statement in the for loop. The following code block is a typical example
of the for() loop statement.

Inside of the Update() loop, the for() statement contains int i = 0; restricted to its own scope.
The three arguments, are separated by a semicolon (;). The first part, int i = 0, is the initialization.
The condition checks if i < 10 to return true or false. The operation of the for() loop uses a unary
operator and increments the value for i.

176 Learning C# Programming with Unity 3D

The variable i we wrote into the for loop is gone once you leave the for loop. The attempt to Debug.
Log(i); after the for() statement fails since i no longer exists outside of the context of the for()
statement.

At the same time, you’re not going to want to declare an int i before using one in the for loop.

The second part of the for loop is i < 10, the condition letting the for loop know when to stop run-
ning. This is similar to the while loop we just took a look at. The for loop offers alternative uses of its
arguments, some uses may seem awkward. This is unorthodox, but you can leave out the initialization
section if an int value has been declared before the loop.

There’s not much of a reason for this but it’s not going to break anything. The last argument of the for
loop is an operation which runs after the first two arguments are evaluated. If the second part of the for
loop is true, then the contents of the curly braces are evaluated. The last part of the expression is i++
that can also be moved around.

Unlike the while loop that relies on an external variable, the for loop contains everything it needs
to operate, although, as we’ve just seen, we can still move the parts of the for loop around. If only the
condition argument of the for loop is used then the for loop acts the same as a while loop. Although
rearranging the parts of a for loop like this is not recommended, this does serve as a way to show how
flexible C# can be.

177Basics: The Building Blocks of Code

Just so you know, a classically trained programmer might have a migraine after looking at this for()
statement, so give him or her a break and just do things normally.

The while loop runs only once after the counter reaches 10 after the first time it’s evaluated. Each
time the Update() function is called, the for loop starts over again. We can use a slight variation of this
using float values, though this isn’t any different from using integers. Again, it’s best to use integer
values in a for loop, and this is only to show how C# can be changed around freely.

Try not to be too clever with your loops. Yes, you can do quite a lot and C# is very lenient and will let
you get away with the code above. I would never recommend you use float values in a for() statement.
However, I will not tell you to never use a float in a for() loop. I would just be curious as to why.

4.12.4 Do-While

Do-while is another loop to add to our toolbox. We saw the for() and the while() looping state-
ments in Section 4.12.3. The for() and while() loops are the most common and the simple to use.
There are, however, variations on the same theme that might come in handy.

The great majority of the tasks can be handled by the simple for() loop. However, variations in
looping statements are created either to support different programming styles or to conform to changing
requirements in different programming styles or to allow for different conditions to terminate the loop.

The while() and the for() loops both check various conditions within their parameter list before
executing the contents of the loop. If we need to check after the loop’s execution, then we need to reverse
how the loop operates.

178 Learning C# Programming with Unity 3D

The do-while loop has some subtle differences. For most programmers, the syntax change has little
meaning and, for the most part, do-while can be rewritten as a simple while loop.

It’s worth noting that most programming languages use the same keywords for the same sort of task.
Lua, for instance, uses for in a similar fashion:

However, Lua likes to shorten the conditions of the for loop by assuming a few different things in the
condition and the operation of i. Other languages like Java, or JavaScript, use for and while more like
C#. Things get really strange only if you look at something like F#:

for I = 1 to 10 do
printfn “%d” i

Syntax aside, once you know one version of the for loop, it’s easier to figure out how another language
does the same thing. The more basic concepts like booleans and operators also behave the same across
languages. Therefore, you won’t have to relearn how to use operators now that you know how they’re
used in C#.

4.12.5 Postfix and Prefix Notation

The placement of a unary operator influences when the operation takes place. Placement, therefore, has
an important effect on how the operator is best used. This is a difficult concept to explain without seeing
in use, so we’ll skip right to some sample code.

For various reasons, the i++ is the more standard use of the unary operator. When this code is executed,
the first Debug.Log(i);, before the while() loop, will produce a 0, just as when i was first initial-
ized. The first time the Debug.Log(i++); inside of the while loop is called, another 0 is produced
in the Unity 3D Console panel. Where things become interesting is at the third Debug.Log(i); state-
ment, where we have a different number.

The statement where i++ appears will use the value which i held before it was incremented. After the
statement where i++ appears, the value of i will have been incremented. This is the difference between
postfix and prefix, where i++ is a postfix notation and ++i is prefix notation. To illustrate this differ-
ence, observe the change when we use a prefix notation:

179Basics: The Building Blocks of Code

The first version, with postfix notation, produces two 0s and a single 1 before the while loop terminates.
The second version produces one 0 and two 1s before the while loop terminates. The choice of which
notation to use depends mostly on what value you need i to take when you use it. The syntax difference
is subtle, but once it’s understood, the effects can be controlled. To make the difference more drastic, we
can move the placement of where the unary operation occurs.

The above statement will produce a single 0 in the Unity 3D’s Console panel. The condition to execute the
while loop begins as false, where the value for i is not less than 1, thus the Debug.Log() statement
is never called. However, if we change things around, we’ll get a 0 and a 1 printed to the Console panel.

This code block means that the while loop started off true, since the value of i was 0 when evaluated,
and only after the evaluation was complete was i incremented. Using the while loop in this way is
unconventional, and it might be best avoided even though it’s clever.

4.12.6 Using Loops

To continue to follow along, we’ll open the UsingLoops_Scene In the Chapter 4 Unity Project. In the
scene open the UsingLoops script. Loops are used to complete repetitive tasks. In the following use of the
while loop, we count up the number of cubes. To see results from the while loop, we’ll create a new
cube for each execution of the while loop. To do this, we’ll create a new GameObject named box.

To initialize the box, we start with GameObject.CreatePrimitive(PrimitiveType.Cube).
This initialization has a couple of new concepts. The first is the GameObject.CreatePrimitive()
function. CreatePrimitive()is a function found inside of the GameObject class.

180 Learning C# Programming with Unity 3D

To let CreatePrimitive know what to make, we’re using the PrimitiveType.Cube, which is
of PrimitiveType; technically, it’s an enum, but more on that later. Then, as we’ve seen before in
the while loop, we’re incrementing the numCubes variable to make sure that the while loop doesn’t
run uncontrolled.

To tell where each cube is created, we move each cube to a new position by setting the box to new
Vector3. In Vector3(), we’ll take the value of numCubes and multiply it by 2.0f, making sure that
each cube is moved to a different x location. Logically, each iteration of numCubes will increment by 1.
Therefore, on the first execution, we’ll have 0 * 2.0f that ends with 0. Then, the second time through
the while loop, the result will be 1 * 2.0f, then 2 * 2.0f, and so on, until numCubes is larger
than 10.

Each time the while loop is evaluated, the box points to a new instance of a cube primitive. The pre-
vious iteration of the while loop forgets about the previous instance of the box, which instance box is
referencing becomes very important as we don’t necessarily want to deal with every instance of the box
game object we’re thinking about.

Running the code in the scene results in a long chain of 10 cubes.

181Basics: The Building Blocks of Code

An inquisitive person should be asking, “Where did CreatePrimitive come from?” The answer
to that is found inside of the UnityEngine.dll.GameObject is going to be the primary focus
of creating any object in the game, as the name might suggest. Peek at the definition by right click-
ing on the GameObject found inside of the Solution Explorer in Visual Studio, we find a promising
CreatePrimitive() function. This is related to how we found Vector3() in an earlier section.

The CreatePrimitive() function expects a PrimitiveType as an argument. Clicking on the
PrimitiveType found in the Assembly Browser window, you are presented with the following set of
code.

Here is an enum called PrimitiveType. Inside this is Sphere, Capsule, Cylinder, Cube,
and Plane. Each one is a value inside of the PrimitiveType. Enums are another generic type that
C# makes extensive use of, which we’ll introduce in Section 6.6.1. The CreatePrimitive func-
tion inside of the GameObject class is followed by: GameObject. This means that it’s creating a
GameObject for you to access. We’ll learn about this once we start writing our own classes and func-
tions with return types.

NOT E: Looking things up on the internet is also a huge help. There are many people asking the same
questions as you. If you don’t find what you’re looking for, then you might just be asking the wrong
question, or phrasing it in an obscure way. To find information on CreatePrimitive, search Google using
“CreatePrimitive Unity” to get some quick possible answers.

In most cases, the answers are going to be brief and obscure, but they at least serve as an example for
what you might need to look for in your own code to complete the task you’re trying to complete.

This discussion might be a bit much to swallow right now, so we’ll stick with the small bite we started
with and get back to the deeper picture later. For now, let’s get back to figuring out more on loops.

182 Learning C# Programming with Unity 3D

4.12.7 Loops within Loops

We’ve created a line of cubes, but how would we go about making a grid of cubes?
We’ll write two for loops, one within the other. The first for loop will use int i = 0 and the second

will use int j = 0 as their initialization arguments. Then we’ll leave the numCubes as a public int
we can change in the editor. If we set the numCubes in the inspector to 10, then each for loop will
iterate 10 times.

Only in the second for loop do we need to create a box; then, in the x and y values of the Vector3,
we will do some of the same math we did before. This time we’ll use the int i variable for x and j for y
to create a grid. This declaration creates a row and column relation between the two for loops. As one
iterates through the row, the other inside of the row fills in the column with cubes.

Hop to the Scene panel in the Unity 3D Editor to look at the grid of cubes that was produced when you
pressed the Play button. When the first for loop begins, it gets to the second for loop inside of it. Only
after the second for loop is done with its statements of creating 10 boxes will it go back to the first for
loop that moves on to the next iteration. Also since we changed numBoxes to 10, the first while() loop
we wrote will get skipped run since numCubes is not less than 10. Also worth noting, the numCubes++
that appears in the while() loop isn’t in the for() loop. The line in the for() loop would create a
runaway loop since the condition for loop termination would never be met.

183Basics: The Building Blocks of Code

4.12.8 Runaway Loops

Loops can often lead to runaway functions. A while loop without any condition to stop it will make
Unity 3D freeze. The following shows some conditions that will immediately make Unity 3D stop on the
line and never finish the frame. Adding any of these will halt Unity 3D, and you’ll have to kill the Unity
3D app though the Task Manager.

In some cases, these conditions are used by some programmers for specific reasons, but they always have
some way to break out of the function. Using either return or break can stop the loop from running
on forever. These keywords are referred to as Jump Statements. It’s worth mentioning that the keyword
return is usually used to send data to another function. If there isn’t a function waiting for data, it’s
better to use break.

There is a specific behavioral difference between return and break. With return you’re stopping
the entire function. With break you’re stopping only the block of code the break is in.

184 Learning C# Programming with Unity 3D

First of all, we’d get a couple of warnings informing us of some unreachable code. However, that doesn’t
keep us from testing out the results printed on the Console panel.

We do get the first line of the just before the for() loop function as well as the line before the break
command. However, the line following break is not reached. This behavior changes if we replace
break with return.

We get only one warning of unreachable code, but we do get a third line printed to the Console window.

We do not to see “Ending” printed to the Console. We’ll go into more detail on the specifics of how these
functions are used later, which provides a very short example for break; For instance, we can use the fol-
lowing code to see how a while (true) can be stopped with a specific instruction.

185Basics: The Building Blocks of Code

The counter builds up while we’re trapped in the while loop. Once the counter is above 10, we break
out of the while loop with the break keyword.

4.12.9 Breakpoints: A First Look

To have a better understanding on what we’re seeing here, we’re going to use a very important feature of
an IDE. With the code we just entered in the previous Update() function, we have a while (true)
and a counter++ incrementing away inside of it.

There’s a narrow margin to the left of the numbers. The margin is for adding breakpoints. Breakpoints
are small bookmarks that help you see exactly what’s going on inside of your code. Click in the margin
on the line with the counter++; and you’ll see the line highlight.

In Visual Studio select Debug→Attach Unity Debugger. This action will open a dialog box with a list
of Unity 3D game engines you might have open. In most cases, you would have only one.

Select Unity in the following dialog and click on OK. Back in Unity press the Play-in-Editor button and
wait for Visual Studio to hit the breakpoint.

186 Learning C# Programming with Unity 3D

You’ll see that the line in Visual Studio is now highlighted, and a new set of windows has appeared at the
bottom of the panel. Select the Locals panel and take a look at the counter. There are three columns:
Name, Value, and Type, which tell you the counter is at 0, which will tell you the value for counter
and that it’s an int.

Press F5 to release the break and you’ll see the count increment by 1. As soon as the code gets
back to the breakpoint, it will stop again. What you’re looking at is your code being updated only when
you press the F11 key. This is called stepping through code. And it’s a very important reason why Visual
Studio is to be used with Unity 3D, and not something like Notepad.

By tapping F11 a few times you can watch the code execute one line at a time. You can hover over each
value with the cursor and watch their values change.

Debugging code is a major part of observing how your code is actually working. Breakpoints, and
debugging tools like this and tools like the Locals tab are indispensable when it comes to writing com-
plex code.

To stop debugging the code, and let Unity 3D go about its normal work, press the Stop button.

Pressing the little Stop icon will unlink Visual Studio from Unity 3D and the information that we were
watching will stop updating. Unity 3D will also return to regular working order.

4.12.10 What We’ve Learned

The for loop is a tight self-contained method to iterate using a number. The while loop may be shorter,
and use fewer parameters, but its simplicity requires more external variables to control. When faced with
different programming tasks, it can be difficult to choose between the two loops.

In the end, each loop can be used to do the same thing using various techniques we have yet to be
introduced to. Don’t worry; we’ll get to them soon enough. At this point, though, we have learned enough
to start thinking about what we’ve learned in a different way.

The last major concept we learned was the breakpoint, used to inspect what’s going on inside of a loop.
Breakpoints can be set anywhere and bits of information can be picked out and inspected while your
code is running.

Debugging code is a part of the day-to-day routine of the programmer. Using a debugger that allows
you to step through your code’s execution allows for a greater understanding of what your code’s activity
involves. The debugger shows you what your code is actually doing.

187Basics: The Building Blocks of Code

4.13 ScopeAgain

Scope was explored for a bit in Section 4.8, but there is some explaining left to do. We know that some
variables exist only for the scope they were declared in. Other variables end up being shown in the Unity
3D Properties editor. This point doesn’t explain how one class can talk to another class through a vari-
able, or even whether this was even possible.

4.13.1 Visibility or Accessibility

Normally, variables and class definitions are considered private. This is usually implied and if you don’t
tell C# otherwise, it will assume you mean every variable to be private information.

There are only four keywords used to change the accessibility of a variable. Each one has a specific
use and reason for being. For now, we’ll examine the first two keywords in more depth. The keywords
private and public are the two most-simple-to-understand ways to change a variable’s accessibility.

We’ve used public before when we wanted a bool to show up in the Inspector panel in Unity 3D.

We have a public bool SomeBool; declared at the beginning of this ScopeAgain script. Because
private is assumed, we can hide this by simply removing the public keyword. At the same time, we
can be very explicit about hiding this bool by adding the private keyword.

To the editor, there’s no real difference between hiddenBool and alsoHidden. The differences will
come in later when we look at inheritance. It’s important to know about the other keywords that can
precede both class and variable statements.

4.13.1.1 A Basic Example

For a better observation of a variable’s scope, we’re going to want to start with a scope project different
from before. This time, we’ll start with the MoreScope project. In this project, we have a scene file where
our Main Camera has the MoreScope component added. On a cube in the same scene, we have another
script component added called OtherScope.

Here’s where things get interesting. From the camera, we’re able to see the OtherScope class. This is
indicated by MonoDevelop allowing us to access the OtherScope class as we type.

188 Learning C# Programming with Unity 3D

As we begin to type Other, the class OtherScope appears in the Autocomplete pop-up. This tells
us that there are accessible objects, which we can access from class to class. This is referred to as the
global scope.

4.13.2 Global Scope

When each class is created in Unity 3D, C# is used to make additions to the global scope of the project.
This means that throughout the project, each class will be able to see every other class. This also means
we can’t have two class files with the same name. If we manage to create two scripts with the same name,
we’ll get the following error.
Assets/OtherScripts/OtherScope.cs(4,14): error CS0101: The namespace

“global::” already contains a definition for “OtherScope”
By creating two classes with the same name each class is added to the global namespace. This would

happen should we define two variables with the same name in a class. Changing the name of one of the
classes resolves the problem. There are other work arounds involving namespace, but we’ll get to that
later in Section 6.10.

Going back to the ScopeAgain script form the beginning of the tutorial we added an OtherScope
other; variable. Next we want to assign a variable within other a value. In the game scene assign the
OtherScope.cs class to a new Cube GameObject before running the game. In the MoreScope’s
Start() function, use the following statement.

Unity’s GameObject class has a function called FindObjectOfType() that will search the scene
for any object of the type we’re requesting. The statement following the assignment to other is Debug.
Log(other.gameObject.name);, which prints the name of the gameObject that the component
is attached to in the Console panel. When the game is run, we get the following output.

This output indicates that we’ve correctly found and assigned the variable other to the component
attached to the cube object in the scene. Now let’s add some meaningful variables to OtherScope.

189Basics: The Building Blocks of Code

In the OtherScope class, we’ll create two variables, one public float named Size and a Vector3
called mScale. The “m” notation is commonly used by programmers as a short version of “my.” Thus
“mScale” refers to “MyScale.” In the Update() function of the OtherScope class, we’ll add the
following statements:

This will set the size of the cube object’s transform.localScale to the public Size vari-
able on the x, y, and z axes. In the a new public variable called otherScale is used to update
the size in.

Because the size variable in the OtherScope class was made public, it’s now accessible through the
dot operator. When the scene is run, the size of the cube is controlled by the otherScale variable
assigned to ScopeAgain class in the Inspector panel.

You can click-drag on the otherScale variable that has been exposed to the Inspector panel with
the ScopeAgain game object selected. This action directly affects the size of the cube in the scene. Even
though there’s no visible connection between the two objects, their variables have been connected to one
another through a global connection.

Accessing a variable is not the only way a class can manipulate another class. Functions can also be
accessed by another class, if they’ve been made public.

The importance here is that ScopeAgain can see properties in OtherScope. Once they can see
each other, the variables inside one another are accessible if they’re made public. Could it be possible to
declare variables that are accessible globally?

190 Learning C# Programming with Unity 3D

We could try to put a variable outside of a class. This might make it visible to any class that might
want to access it. This, unfortunately, won’t work. However, it doesn’t mean that there are no systems
that can make a variable globally accessible. However, we’ll have to leave off here for now. The systems
that allow for globally accessible variables require some steps along the way to fully understand, so we’ll
get to that stuff soon enough.

4.13.3 What We’ve Learned

Defining public variables allows for interobject communication, which is one of the principles
behind object-oriented programming. This enables objects to communicate to one another in many
unique ways.

Scope and object-oriented programming are related. Variable scope is related to object-oriented
programming. By defining and maintaining scope, you’re better able to control how other objects can
communicate.

When working with a team of programmers, it’s important to inform all on how your code behaves.
You should communicate which variables in your class can be modified by how they are defined. Making
variables public informs everyone that these are the variables allowed to be altered.

By protecting them, you’re able to tell others which variables they are not allowed to touch. Much of
the time, it’s simple to leave things public while testing and making decisions on what needs to be made
public. Once you’ve isolated what can and cannot be altered, it’s best to hide variables that shouldn’t be
changed by outside objects.

4.14 Warnings versus Errors

There are two basic events that we will encounter early on in C#. The first are errors, and then we will
get to the many warnings. Compile-time errors will stop all your classes from compiling. Because one
class can look at and interact with another class, we need to make sure that every class is free from errors
before our code can be compiled.

Most of these compile-time errors occurs from typos or trying to do something with the code that
can’t be interpreted by the lexer. Most of these errors deal with syntax or type-casting errors, which
will prevent the rest of the code from working, so it’s best to fix these errors before moving on.

At the same time, we’ll get many warnings. Some of these warnings can be considered somewhat
harmless. If you declare a variable and don’t do anything to either assign something to it or use it in any
way, then the lexer will decide that you’re wasting resources on the variable. This produces a simple
unused variable warning.

In some cases, code can still be compiled, but there will be some minor warnings. Warnings usually
inform us that we’ve either written unused code, or perhaps we’ve done something unexpected. Code
with a few warnings will not stop the compilation process, but it will let us know we’ve done something
that might not necessarily work with Unity 3D.

4.14.1 Warnings

Open up the Warnings_Scene and find the Warnings script attached to the Warnings GameObject in the
scene. The most common warning is an alert bringing to your attention a variable declaration without
any use. This is something you may have been seeing from the previous projects. The Visual Studio
IDE is quite good at reading your code and interpreting how it’s used. A function like the following will
produce a warning:

191Basics: The Building Blocks of Code

Visual Studio even gives you a helper to remove the unused variables. This simply states that i is unused,
which is true. Nothing is doing anything with it, so is it necessary? Often, while you code, you’ll be
gathering and preparing data for later use. When we do this, we might forget that we created some data
that might have been useful but never did anything with it.

In this case, we might do something with it later, so it’s sometimes useful to comment it out.

This leaves the variable around in case we need to use it, but it also clears out the warning. Most warn-
ings don’t lead to any serious problems.

4.14.2 Errors

One most common error occurs when we are dealing with missing variables or incorrect types. These
errors show up often when we first start off writing our own functions and aren’t used to working with
different data types or know how they interact.

This is a commonly written statement that produces the following error:

The fix for the error is included in the error message. The message includes “Add suffix ‘f’ to
create a literal of this type,” which means we need to do the following.

192 Learning C# Programming with Unity 3D

This fixes the error. Many of the error messages give a clue as to what’s going on and how to fix the error.
Many of these errors show up before the game is run. These are called compile-time errors. Errors that
show up while the game is running are called run-time errors.

Run-time errors are harder to track down. Often, this requires a debugging session to figure out where
and why an error is happening.

4.14.3 Understanding the Debugger

Writing code that works is hard enough. To make sure that the code works, it’s often easier to make it
readable. To understand how the code works, we often need to add in additional statements to make it
easier to debug as well.

We haven’t covered declaration of multiple variables in one line; this is because it’s bad form, but it’s
not illegal. We can declare both a and b in one statement. In the above, a remains unassigned, and b is
now storing 0.

This now produces an error, where a is used before it’s assigned; however, the error might not be clear
because in the line there certainly is a declaration and an assignment. The assignment is harder to read
since it’s all happening on one line.

This is also valid, but we’ve done nothing for readability or debugging.

Setting a breakpoint on this line highlights both the first variable, but doesn’t help if we want to high-
light the second declaration on the same line. This creates a problem if we’re trying to find a problem
with just one of the variables. This also highlights why we need to change our writing style to help
debug our code.

Breaking up the declaration across multiple lines allows for setting a breakpoint on a specific statement
rather than a multiple declaration statement. Likewise, debugging a statement like the following is no better.

This line has two statements, but does not have a line break between them. This creates the problem of
both readability and debuggability. When you’re trying to isolate a problem, it’s important to keep each
statement on its own line so a breakpoint can be applied to it.

If we continue this exercise, we can take a look at an ArrayList that contains different types of data.

193Basics: The Building Blocks of Code

In the list, we have an int of 1, a string this, a float 1.0f, and a double 1.0 and a string "1".
The foreach loop assumes int and this works fine with the first iteration. Setting a breakpoint here
shows in the Locals panel an int i with a value of 1. So far so good. When we step through the code by
pressing F11 to get to the next item in the list, we get an error.

InvalidCastException shows up in the Unity Console panel. Since float this isn’t int, we get
an error telling us what error was raised and in what line the error occurred on. This sort of debugging
is only a contrived example setup to fail in a known location.

In most instances, problems like this aren’t so easy to spot. The warnings and errors are often described
with a line number, but it’s not always easy to know why the exception was raised. Stepping into the code
and checking out values is the only tool we really have to search for problems. To make things easier on
yourself, it’s sometimes better to break things out even more.

To get a better look at each variable in play, highlight the i in the foreach loop. This “pins” the vari-
able to the window. If we step into each step of the code Visual Studio will open the following pop-up.

194 Learning C# Programming with Unity 3D

We can see that i is storing the value this that cannot be cast to an int. Stepping through code in the
debugger should be a regular practice. Anytime anything remotely confusing comes up your first move
past re-reading your code should be to start the debugger.

4.14.4 What We’ve Learned

Working through problems takes a step-by-step approach. Setting your code up for debugging requires
some formatting changes to your code to help the debugger do its work. Once the code has been laid out
for debugging, it’s sometimes easier to read but our code can lose some efficiency.

It’s always a good idea to keep your code clean and readable, but it’s just as important to help your
debugger do its work as well. Seeing the debugger step through your code also helps you understand how
your own functions do their work.

When you have a chance to observe your code in operation, it’s sometimes easier to see where code can
be optimized—for example, when you see the same data being used over and over again. Passing values
between variables in a visual sense can help reveal patterns. Once the patterns are seen, it can be easier
to produce code that creates and reuses the same value less often.

4.15 Leveling Up: Fundamentals

At this point, I can say that you’ve gained enough of the basic skills to feel confident in your ability to
read code and begin to ask the right questions. Just as important, the basics we’ve covered are shared
among most programming languages.

Coming up with clever systems to control data is only a part of the task of programming. A great deal
of work is coming up. It’s also important to think of clear and concise names for variables. One thing
is for sure: There have been plenty of pages written by people trying to wrangle in rampant names for
identifiers.

At worst, you might have a situation where humans use health points, zombies hit points, vampires
blood units, werewolves silver damage, and each one is simply a record of how many times they take
damage before going down. It would be unfortunate for you to have to write functions for each human to
shoot at every other type of monster and vice versa.

If someone offers help with your game, looks at your code, and you never hear back from that person
again, it’s surely due to the confused mess of code he or she got to look at. Some simple guidelines to
help with naming have been outlined a number of times by various groups.

4.15.1 Style Guides

When faced with the fact that your code will have to eventually be seen by other programmers, it’s best
to try to avoid some of the embarrassment of explaining every identifier you’ve written. Furthermore, as
a beginner, it’s important that you gain some insight into the common practices that classically trained
programmers have used throughout their careers. With any luck, books will help you keep up.

A style guide is a reference that often involves preferences involving everything from the placement of
white space to naming conventions of identifiers. Official Microsoft style guides for C# provide details
on how to name every different type of identifier. This enables us to tell identifiers apart from one another
based on their use for variables, functions, or any other construct that C# uses.

As we learn about the different things that identifiers are used for, we’ll also want to know how to best
name the construct we’re creating. A simple internet search for “C# style guide” will bring up various
links, for example, coding standards, guidelines, and coding guidelines.

Once you start working with any number of programmers, it’s best to come to some agreement on the
practices you’ll choose to follow. Everyone learned slightly different methods and ideologies when he or
she was introduced to a programming language, even if C# wasn’t the first programming language that
person learned. This leads to many different styles and conventions.

195

5
Fundamentals: Building a Foundation

We’ve covered many of the basic concepts and terms that are commonly taught to new programmers.
It’s time to learn some of the fundamental concepts that are required for functioning code. By now, you
should know what code looks like; now it’s time to start writing it.

It is important that you compare C# to other programming languages. This comparison helps to con-
trast C# against languages that might do a similar task in a slightly different way. With such compari-
son results in mind, we’re better able to understand why C# looks the way it does, and we’ll be better
prepared to understand a concept if we look something up on the Internet exemplified in a different
language. Examples found on the Internet may be in another language. Armed with a bit of knowledge,
you’ll have a better chance of translating the discovery into C#.

A few assets available on the Unity 3D Asset Store are might still be written in JavaScript. This might
be a good indication that it’s not seen an update in a long time. When necessary, you might want to read
the code to understand how to use one of the downloaded assets. If you’ve never seen JavaScript before,
you might notice how some of the code will seem familiar, but you might also find much of it to be quite
alien.

The internet provides us example code in many languages. A search for “how do I sort a list” would
show examples in many programming languages. It’s not a bad idea to be able to read all sorts of
programming languages, get the gist of what it’s trying to do and then translate that into C# for your
own use.

5.1 What Will Be Covered in This Chapter

Learning how to add complexity to your code takes time. We’ll cover how to make classes communicate
with one another on a more global scope. Then we’ll learn how to control the flow of our data in more
comprehensive ways. Finally, we’ll want to understand one of the more useful constructs in C#, the array,
and all its related forms. To make use of the concepts we’ve learned so far, we’ll want to investigate the
following points:

• Review of classes

• Class inheritance

• The keyword static

• Jump statements, return, continue, break

• Conditional operators

• Arrays of various types, array lists, jagged arrays, dictionaries

• Strings

Some of the specifics in this chapter will require using the latest version of the .NET set up in Unity.
To avoid compatibility issues with built-in packages, the player settings and packages directories are
not included with each chapter. When a project is opened for the first time the Unity Editor creates

196 Learning C# Programming with Unity 3D

new directories. When Visual Studio is launched after that, even more directories are created. To change
the .NET version in Unity, open the Player Settings panel found in Edit -> Project Settings.

In here change API (application programming interface) Compatibility Level to .NET 4.x to enable the
use of the latest features of the C# programming language. If there are errors in a project this may be one
of the causes. Just make sure to double check this before continuing in each chapter.

It’s likely that support for older versions of .NET will be phased out and this won’t be an issue. Unity
will eventually deprecate or exclude the option all together. Until then, you’ll need to check on the
Project Settings option to make sure you’re using the correct version of the .NET API.

5.2 Review

For review open the Chapter 5 Unity Project, find the Review script in the Review_Scene attached to the
Review game object. The topics covered thus far have a lot in common with programming languages like
JavaScript, UnrealScript, Lua, and Java, to name a few. Some of the syntax might look different, but the
basic operation of how variables are created and assigned mechanically works the same. For instance, in
C#, we understand assigning a variable to look like the following statement.

In Lua, another commonly used game programming language, you might see something more like

In JavaScript, we might see something like the following:

A language might not use some of the tokens we’re used to seeing in C#, but use of a keyword, an identi-
fier, and an assignment operator with a value is the same. This rule also goes for something like a for
loop. In C#, and many other C-style languages, we’re used to using the following:

197Fundamentals: Building a Foundation

Javascript changes the above statement, using var in place of int, but the rest remains the same. However,
in Lua, again, we would see something more like the following:

Some programming languages like Lua tend to omit many of the tokens used to help show how code
statements are encapsulated; some prefer the brevity of the language. For a C-style language, the use of
curly braces helps visually separate the statements more clearly.

Often, getting to this point is a difficult and unforgiving task. I hope you had some classmates,
coworkers, friends, or family members to help you work out some of the exercises. If you’re still a
bit foggy on some of the concepts, you may want to go back and review. We’ve covered many cool
things so far. For instance, you should be able to identify what the following code is. To follow along
with this section open the SomeNewClass script attached to the SomeNewClass GameObject in the
Review_Scene.

If you understood this to be a class declaration for SomeNewClass, then you’d be right. We should also
know that for a class to be useful to Unity 3D, we need to add some directives that will look like the fol-
lowing. To add in directives, we start before the class declaration. We use the keyword using followed by
a library path and add in both UnityEngine and System.Collections.

Directives allow our class to have access to the tools that .NET has to offer. For an app to have access to
data storage on disk, you need to use similar directives. If you wanted to open an internet connection to
a server and ask for a web page, you would include System.Net.Sockets. Once you get some data if
you wanted to save it to a file on disk you’d add System.IO.

We’re still a couple keywords away from a usable class in Unity 3D, though. First, we need to make this
class visible to the rest of Unity 3D. To change a class’s visibility, we need to add some accessibility
keywords.

198 Learning C# Programming with Unity 3D

We’re almost there, and now we get to a part that might be confusing.

What is this: MonoBehaviour stuff that’s coming in after our class identifier? You should be asking
questions like this. We’ll get around to answering this in mode depth in Chapter 6. MonoBehaviour is
another class that the programmers at Unity 3D have written. SomeNewClass is now inheriting from
the class MonoBehaviour; we’ll dive into what this all means in Chapter 6.

A class is the fundamental system for C#. You’re allowed to write classes with nothing in them; for
instance, class NothingClass{} is a complete class structure. You can add a single type of data in
a class and give it an identifier. In this case, class MyData{int SomeNumber;} is an entire object
with one integer value called SomeNumber in it. On the other hand, a file without anything other than
int NothingInParticular; is meaningless.

A class can also be a complex monster, with many different behaviors. It’s not uncommon for a class
to contain several hundred or even a few thousand lines of code. The general practice is for a class to be
as small as possible. Once a class grows past a few hundred lines, it’s often time to consider breaking the
class into several smaller classes of reusable code.

The intent is to reduce the amount of code that could cause an error. Complex code means difficult
code to debug.

What all of this means in relation to Unity 3D is that we need to write several short classes and add
them to the same GameObject. The same goes for any other programming project. The more modular
your code is, the easier it is to create complex behavior by creating different combinations of code.

A search on Microsoft’s .NET Framework API Reference will help you look for functionality you
would like to add to a class. The using UnityEngine; directive gives you access to Unity specific
functions. The using System.IO; gives you access to reading and writing data to local storage.
The online reference will show you many hundreds of namespaces you can include in your Unity project.
The API Browser is located at:

https://docs.microsoft.com/en-us/dotnet/api/
You’ll want to navigate to the latest .NET Framework to see what tools are available, it’s a long list!

https://docs.microsoft.com/

199Fundamentals: Building a Foundation

5.2.1 Modular Code

Many different game types use a game controller to move around a character on the screen. You might
want to re-use some of that code to move around the player’s foes. A more modular approach provides a
chance to reduce the amount of code you need to re-write.

The same goes for functions. Rather than having a long algorithm operating in the Update() func-
tion, it’s better to modularize the algorithm itself. First, you might have some sort of initialization where
you obtain the character’s mesh and animation system. This should be done in a separate function call
rather than being repeated at the beginning of every frame. We’ll look at a better way to do this later in
Section 7.18.

For now, we’re reviewing all the different things we’ve learned. Next, we are going to want to add in the
an entry point created by the Unity 3D programmers called Start() and to do this, we’ll simply add
them into the class code block.

200 Learning C# Programming with Unity 3D

The UnityEngine library has within it an EventSystem that is a part of the MonoBehaviour
class you’re inheriting from. That EventSystem then sends messages at appropriate times to every
class instance of MonoBehavior to invoke various methods, so long as they are named correctly.
In this case, Start() is the method we can rely on being invoked as a child of MonoBehaviour.

To review our understanding of the functions that will be called by the MonoBehaviour
EventSystem, let’s look at what void Start() {} means. The keyword void implies that the
function returns no values when it is done being invoked. You should note that the Start() begins with an
upper case letter, the letter case matters as C# is case sensitive thus start and Start are different. The ()
open and closed parenthesis mean that Start() requires no arguments to be provided to be invoked.

If we examine the function we added, we would find we created a new function called MyFunction.
This function returns an int, and accepts an arg or argument with type int. In our Start() function,
we’re using a Debug.Log() function that comes from the Debug class in the UnityEngine library.
The Start() function then passes an int 7 to MyFunction() argument list. The MyFunction
returns a value inPut, which is then sent back up to the Debug.Log(), which sends 7 to the Console
panel in Unity 3D.

If any of the return and argument list information is confusing we’ll be going into further detail on
that in Section 5.7.

Before moving on, we’ll add in one last for loop. If you can guess that this code will print out a 0
through 10 in the Console output panel in Unity 3D, then you’re doing great. If you were able to follow
along with this example, then you’ve come quite a long way in understanding the basics behind C#.

Now that we’ve got most of the basics under our belt, it’s time to move onto more interesting things that
make C# a powerful language. What differentiates C# from older programming paradigms is the fact
that it’s an object oriented programming language. Objects make programming powerful, and—if you’re
not fully informed—confusing.

Modularity refers to the ability of code to be reused, or shared between objects. This means that you
could have a generalized helper class where functions exist that you intend to use elsewhere. Going back
to the Review script we can use the from there as well.

201Fundamentals: Building a Foundation

There are a few strategies to make this modularity more formal, but we’ve just got started with the basics.
Each MonoBehaviour could also take on a more direct approach to modularity.

The three scripts above, attached to the same object, would effect the rotation of an object each in their
own way.

The object would tumble as though all three were applied in one script. This means you can layer
multiple effects with multiple scripts. Each one can make modifications to the same GameObject in
the scene.

From here on out, you’re going to get into the more interesting capabilities behind C#. The basics
we’ve covered have similar utility in most programming languages. Declaring functions and

202 Learning C# Programming with Unity 3D

variables will look the same in many different languages. Order of operation and logic both behave
similarly in most modern programming languages.

Try not to limit yourself to learning a single programming language. The science of computers is
always changing. New languages are being written, and new business models rely on people who know
about the latest developments.

5.3 Inheritance: A First Look

Once we’ve written a new class, we should be thinking toward generalizing what a class can do. When we
started our class declarations, we always had the following “: MonoBehaviour” added after the class
name. This means that our class is inheriting from another class named MonoBehaviour.

A pop-up with some interesting options appears over the word. Selecting “Go To Definition,” opens the
MonoBehavior assembly file. The word declaration is used here with the same meaning as when we
use a declaration statement to create a new identifier. A declaration statement is used to assign a variable
a new identifier.

203Fundamentals: Building a Foundation

This indicates that MonoBehaviour is a class that programmers at Unity 3D wrote for us to use. A closer
look into MonoBehavior you’ll see it inherits from Behavior. We can dive even deeper.

Seeing Behavior we can see that it too is inheriting from another object called Component. Component
then inherits from Object. And Object doesn’t inherit anything. Programmers like to call classes who
form the foundation for many other classes a base class.

You’ll also see that in each class there are functions described in each one. For instance, in Behavior,
you’ll see two functions called enabled and isActiveAndEnabled. These are things that Behaviour
does that Component doesn’t.

This might be a bit too much information right now, but this is showing you all the public members
that you can access within the class MonoBehaviour. More interestingly, everything that Behavior,
Component, and Object do MonoBehaviour also has. Each new child class inherits the important
functions of its parent, this includes all of its ancestors.
MonoBehaviour is a class that is tucked away in a DLL (dynamically linked library). A DLL is a

container of referenceable code shared between Unity 3D and you. In this case, the code was written by
the engineers at Unity.

204 Learning C# Programming with Unity 3D

The keyword using allows us access to the contents of the library where MonoDevelop is living
inside of. To allow us to inherit from MonoBehaviour, we need to add in the UnityEngine library with
the statement using UnityEngine;.

In Visual Studio open the Solution Explorer under View -> Solution Explorer.

Then expand the References hierarchy, and select UnityEngine by double clicking it. An Object Viewer
panel opens with a long list of objects living in the UnityEngine library. Change to the NameSpaces view
of the object viewer by right clicking on the UnityEngine object and expand the UnityEngine object to
reveal all of the different object types contained in UnityEngine.

To summarize, UnityEngine is a library written by Unity’s programmers. This library contains
MonoBehaviour, a class that is required for our C# code to communicate with Unity’s game object
related functions. To use the MonoBehaviour functions, we tell our class to inherit from it.

The gameObject with your behavior will then connect to the rest of Unity through the code in the
MonoBehaviour class.

5.3.1 Class Members

To see how classes and inheritance works together to make something useful, we’ll look at building
a simple character class. One important reason to create a base class for a character is to reduce the
necessity of writing redundant code. If all characters will have a name, then it’s certainly useful for all
characters to use the same string variable to store their names.

To use programmer nomenclature, start with a “BaseCharacter.cs” to store attributes common among
all the characters in the game. You’ll find this in the Assets directory of the Chapter 5 Unity Project.

This BaseCharacter.cs is now an object. When you declare a class, its identifier is an important name
to identify the class by. The keyword class tells the computer to hold onto the following word as a new
type of data. Each class’s identifier basically becomes a new reserved word, much like a keyword, with
special meaning.

205Fundamentals: Building a Foundation

In addition to the name of the class, all contained variables and functions should be considered special
components of that new object. Encapsulation and accessibility determine how easily these contained
objects can be used.

One interesting system that is offered by Visual Studio is in the Project view. You can display the
members of the class you are writing.

Members of a class are not restricted to its functions. Any public variable or function becomes an
accessible member of that class. To see how all of this works, we’ll need to write some really simple
classes in Visual Studio. We’ll come back to this in a moment.

5.3.1.1 Inheriting Members

To begin open the InheritingMembers script in the Chapter5 Unity Project.

The PianoCat class that inherits from Cat. In programming terms, PianoCat inherits from the base
class Cat. So far, nothing interesting is happening, at least anything worthy of posting to the Internet.

To see what it means to inherit properties, we need to add some properties to Cat. Let’s give our base
Cat the ability to meow. Start with Debug.Log("Meow"); in our Cat class. Since this is happening
as a nested class in InheritingMembers class Cat and PianoCat are both able to reference the
libraries that are declared at the beginning of this file.

So while PianoCat plays piano in a new function, he can also meow Meow();, which is a function inher-
ited from Cat. Both PianoCat and any other class inheriting from Cat are Cats. PianoCat is a Cat.

The terms “is-a” and “has-a” relate to component model and inheritance model object-oriented pro-
gramming. The PianoCat object “is-a” Cat. In Unity you can observe a game object in the scene has a
“Transform” component. So you can say a GameObject “has-a” Transform component.

The PianoCat objects can do things that Cat can do like Meow().

206 Learning C# Programming with Unity 3D

5.3.1.2 Is-A and Has-A

In the creation of a class you create a new Object. Objects can inherit from another object. An object can
have any number members. Each member counts as something the Class has, but they do not count as
something the class is.

The is keyword allows you to check if a PianoCat is a Cat.

The above shows that bool can be set by checking if an instance of a pianoCat is Cat. This doesn’t
mean that a PianoCat object is a ComputerCat which returns false. Visual Studio also flags this knowing
that a pianoCat will never be a ComputerCat.

Checking if a Cat has various properties is possible, but we’ll need to wait for a chapter on reflection
to comb through the members of a class.

5.3.2 Instancing

To make use of these two classes, we’re going to need to do something useful with them. In the first part
of our IneritingMembers.cs class, we’ve still got our void Start() that we can begin to add code to.
When we start to enter PianoCat, the auto complete pop-up provides us with a PianoCat option.

To make use of a class, we need to create an instantiation of the class. Instancing a class means to con-
struct it from a blueprint. Each instance is a new object created from the class; any changes you do to the
instanced version is unique to that instance.

We’ve created a famousCat with the properties of a PianoCat. To make this new cat (famous-
Cat) play piano, we call on the member function found in the PianoCat class. famousCat.

207Fundamentals: Building a Foundation

PlayPiano(); is easily added through the handy pop-ups that Visual Studio gives us. As soon as we
add in the dot operator after famousCat, we’re given several options, one of which is PlayPiano, but
we also get Meow() function which originated in Cat.

The Meow() is a member function of PianoCat because PianoCat inherited from Cat. Likewise, if
we made a NyanCat or HipsterCat based on Cat, they would also inherit the Meow() function from
Cat. Running the code in Unity 3D returns an expected meow in the Console panel.

We also had a number of paws on Cat; we can access that value through famousCat. In our Start()
function, in the first class we started with, we can use Debug.Log() to show how many paws the
famousCat inherited from Cat. However, we forgot to add something.

Change the accessibility of the paws value in Cat to public. And the Debug.Log will be able to
access the paws value from the Start() function in the IneritingMembers script.

In our Start() function, in the InheritingMembers class we started with, we can use Debug.
Log() to show how many paws the famousCat inherited from Cat.

When any class you create has the notation : MonoBehaviour added to the class declaration you
inherit a great number of functions and properties. This inheritance works in the same way PianoCat
inherited paws and Meow() from Cat with the:Cat notation.

We’ve gotten to a point where we’d like to search the entire scene for a specific object. In this case, we
should look for every player in the scene. Useful functions definitions are found in the GameObject class.

We can find an object using its name or tag. If we want to find any object that happens to have a player.
cs component, we need to know which GameObject it’s attached to first. It’s hard to know the name of
the object we’re looking for if we only know one thing about it. However, there is a more general way to
find things.

208 Learning C# Programming with Unity 3D

Of course, we could just use Unity 3D’s Editor and assign tags, but we wouldn’t learn how to do things
with code alone. In a more realistic situation, we could just have our game designers assign tags to every-
thing, use the FindWithTag() function, and be done with it.

To give ourselves a better understanding of objects and types, we should go through this process
without tags. This way, we will gain a bit more understanding as to what defines objects and types,
and how to use null. The null keyword basically means “nothing”; we’ll see how that’s used in a
moment.

5.3.3 Parent Child

To see an example of how object types work, we’ll inspect two classes. The first is ObjectParent.cs and
the second is ObjectChild.cs. Both of these are in the Assets directory of the Chapter5 Unity Project and
found together in the ParentChild_Scene.

Both scripts are attached to GameObjects in the ParentChild_Scene. The class declaration in the
ObjectChild.cs should look like the following.

Observe that the usual MonoBehaviour following the colon (:) is replaced with ObjectParent.
Now to prove that the Child inherits the functions found in its Parent, we should add a function for the
Child to use. This code appears in the Parent class.

To see that the function can be used by Child.cs, we’ll use it in the Start() function in the ObjectChild.cs,
as follows.

ParentAbility() is a public function found in the Parent class, not in the Child class. Running this
script when it’s attached to an object in the game produces the expected inheritable function printout
in the Console panel. Remember, there’s nothing inside of the Child class that has yet to have any new
member functions or variables added. If we keep adding new public functions to Parent, Child will
always be able to use them.

To confirm this, the ObjectChild class has the following.

209Fundamentals: Building a Foundation

Then, check if the Parent class can use that function. The ChildAbility() function in the
ObjectParent’s Start() function produces an error.

As it turns out, parent’s can’t inherit from their children. The ChildAbility does not exist in the current
context.

Even though the function is public, the parent doesn’t have access to the functions that the Child
class has. This is an important difference. The other main takeaway from this tutorial is to remem-
ber that Parent inherited from MonoBehaviour, as did all the other scripts we’ve been working with
to this point.

The significance behind this discussion is that Child.cs has all of the functions found not only in
Parent.cs but also in MonoBehaviour. One more thing should be noted:

Adding a public int to the Parent class will also allow the Child class to use the ParentInt variable.
This includes what is visible to the Inspector Panel in the Editor.

ParentInt is available as though it were declared as a part of Child, because it is. It’s important to know
that changing anything in the Child class will never affect the Parent class. Inheritance only works one
way: The children of a parent can never change the functions in a parent. Such an occurrence rarely hap-
pens in real life as well as in C#.

5.3.4 Object

GameObject, is a class that inherits from Object. Then GameObject adds new functions to on
top of anything that already existed in Object. As we have just observed from our simple inheritance
example, if we find a function in Object, we can use it in GameObject.

What this means to us is that we may use any interesting functions inside of the Object in the Assembly
Browser in Object as well. To view all the different classes available to you in Visual Studio, select
View→Object Browser Ctrl + Alt J. Then in the Options select NameSpaces. In the left column are
all sorts of items. In there is an entry for UnityEngine, expanding that opens hundreds more objects.
In that list is the Object, or rather UnityEngine.Object. Selecting the Object found under
UnityEngine you’ll see the right panel populate with the members found in Object.

210 Learning C# Programming with Unity 3D

The members of Object are also numerous and many seem to do similar things with slight differences in
how they are used. In the list is a group of FindObjectsOfType members.

Highlighting that populates the panel below with some additional information. The text here was gener-
ated by the comments the original programmer left in their code as they wrote the function.

211Fundamentals: Building a Foundation

It’s important to get used to searching through the libraries for useful functions. Very often you’ll find
some solution hidden in the vast resources of Unity 3D. Many common game related tasks have code
already in place waiting for you to use in your project.

Stepping through that thought process, we begin with “I’d like to find an object in the scene, but
I might not know what it’s called.” From that, I would likely look for something called FindObjects.
The objects I need to find are going to be GameObjects, so that does narrow things down a bit. Inside
of Object, we find a function called FindObjectsOfType(), which is probably what we’re looking
for. The summary for that reads “returns a list of all active loaded object of Type.” This continues with
some parameters and returns.

Parameters are arguments that go into the parenthesis (). The returns mean the function can be
assigned to a variable. We haven’t covered everything necessary to completely understand what all that
means yet, but we’ll show how the function is used assuming you’ll come up to speed soon enough.

Continuing with the ParentChild_Scene from the previous chapter, open the ObjectFinder
script attached to the ObjectFinder GameObject in the scene. In the Start() function, we need to set
up an array for every Object in the scene. Use Object[]; the square brackets tell the variable it’s an
array. We’ll cover arrays in more depth in Section 5.9. Then we name it something short, like objects.
Then we can have Object run its FindObjectsOfType function to fill in our array with every Object in
the scene.

FindObjectsOfType() works just as Object.FindGameObjectsOfType(), which should be
interesting. Inheritance in C# makes things complex and clever. Keep this behavior in mind in the fol-
lowing example. Unfortunately, System includes type object which is different from the UnityEngine
type Object with an upper case O. Keyword typeof() informs the parameter with the type of
Object, rather than Object itself. This part is a bit confusing, but we’ll cover this in more detail again in
Section 6.5.3.

The function assigns the objects variable an array of all the objects in the scene. The foreach. To do
this, we’re going to reuse the foreach loop prints out everything it finds, which is quite a lot.

Altogether over 30 Objects have been found in the scene. This includes each component of each
GameObject in the scene. The Camera, light, transform components, etc are all listed. So how do we
find a specific Object like a Parent or Child?

212 Learning C# Programming with Unity 3D

The addition to the loop will now look for all Parents in the scene. This oddly includes the ObjectChild
since it inherited from ObjectParent, so it’s counted as a ParentType. The first line Object parent
= o as ObjectParent; is what is called a cast. We’ll learn more about that in Section 6.5.3 again,
but it’s important to know how Object is the base class for all Unity Objects, and Parent is the base from
which Child inherits.

NOT E: You could enter Component.FindObjectsOfType(), and this will work the same as
though it were called from Object or GameObject. Inheritance is a complex topic, and right now,
we’re only observing how functions can be shared from the parent to children, but there’s a problem
when children try to share. We’ve used GameObject.CreatePrimitive() to make cubes and
spheres. And we know Object has FindObjectsOfType, which both GameObject and Component can use
because of inheritance. Therefore, does that mean Object.CreatePrimitive will work?

Actually, no; Object doesn’t inherit functions of variables from its children. In programming, parents don’t
learn from their kids. Suppose GameObject.CreatePrimitive() is a function found in GameObject, and
GameObject and Component both inherit from Object; does that mean Component.CreatePrimitive()
will work? Again, no; in C#, children don’t like to share. C# is a pretty tough family, but rules are rules.

Now we have a handle on getting an ObjectChild or ObjectParent if they’re in the scene. So
for instance, we could add in a ParentObject parent; and when we find one in the scene we assign
the Object o to the parent.

5.3.4.1 A Type Is Not an Object

Type, as we’ve mentioned, is the name given to a class of an object. Like a vowel, or noun, type refers
to the classification of a thing, not the actual thing itself. Semantics is important when dealing with pro-
gramming, and it’s very easy to miss the meanings behind how words are used. For instance, if we need
to tell a function the type of a class, we can’t simply use the class’s name.

If the function expected the type Object and not the object of Object, you’d get an error. There’s a subtle
difference here. The type of an object is not the object itself. However, it’s difficult to say “this is the
type Child” and not the “Child” class object. The two things use the same word, so it’s easy to confuse.

There is a function that will get the type of an object and satisfy functions that need types and not objects.
And that’s where typeof(Object) comes in. If we have the object Object typeof(Object), we can
put Object into the typeof() function and use that function as the type of an Object and not the
class Object.

Give the FindObjectsOfType() function a typeof(Object) and it returns an array with
every instance of Object in the scene. We can give the ObjectFinder.cs a Player to chase after. Just so we
don’t get confused what version of the word Player we’re looking for, we should make it tremendously
clear what we’re looking for.

213Fundamentals: Building a Foundation

5.3.5 != null

To look for a GameObject with the ObjectChild script Add in a GameObject variable for the
ObjectFinder at the class scope. The not null check is important. We’ll find out why in Section 5.7.4,
but for now we’ll just observe how it’s used.

When the game is started foundObject starts off without anything assigned. Since it’s not POD or
Plain Old Data, the initialization of the GameObject is null. This is important since we’ll check on
this assignment in the Update() function in the ObjectFinder script.

Like the previous code, we use FindObjectsOfType, but we use the GameObject as the type. We
follow that with the same foreach, but we use GameObject o to list each object in the array. Then we
use ObjectChild child = o.GetComponent(typeof(ObjectChild)) as ObjectChild
to find individual components attached to the GameObject o.

Last and most important we use if(child != null) to assign the foundObject to the o in the
foreach loop. The child != null statement is true if child is assigned. When a GameObject doesn’t
have a component that matches the GetComponent statement child is assigned null, or rather the
child remains null.

214 Learning C# Programming with Unity 3D

We can run the game, and check the foundObject variable. We’ll see that it’s ObjectChild, the gameOb-
ject in the scene Hierarchy.

The statement (thing != null) is commonly used to know when something has been found.
When the something is not empty, you’ve found what it is you’re looking for. This is a useful trick to
apply for many different purposes. The statement (null != thing) can also be used. In some lan-
guages this might execute faster, but it’s not as commonly used so it might look awkward.

5.3.6 What We’ve Learned

Using data to find data is a commonplace task in programming. With Unity 3D, we have plenty of func-
tions available which make finding objects in a scene quite easy. When monsters go chasing after players,
we need to have a simple system for allowing them to find one another.

Computers don’t use senses like we do. They have another view of the game that can’t be compared to
how we, as players, perceive the world. By searching through data, and using algorithms, the computer-
controlled characters require a different set of parameters to operate.

In one sense, the computer has complete knowledge over the game world. How that world is perceived
by the computer requires our instruction. A monster’s ability to understand its environment depends on
our code.

5.4 Instancing

In the Instancing_Scene open the Instancing script attached to the game object of the same name.
An important feature of C# and many C-like programming paradigms is the use of a class as a
variable. When we use a class as a variable, it’s created as a new object. Some of these classes are
values, which means that the function itself can be used to assign to variables, and many classes are
used as values. Using a class as an object which is itself a value is at the heart of object-oriented
programming.

To make use of a class, or object, we often need to create a new instance of the class. Instancing is
basically creating space in memory for a class of a more complex data type. We do this in the same way
we create a variable for a simple data type. However, when assigning a value to the variable of this sort,
we need to change things up a bit.

The Vector3 class is located in the guts of the UnityEngine library. Open the Object Browser. Inside
there, and change the option to view namespaces and find the Vector3 object.

215Fundamentals: Building a Foundation

Selecting the Vector3 object you will find that the contents are arranged alphabetically to make things
easier to find.

Don’t let this cacophony of information bewilder you. We only need to deal with a small portion of
these objects to get started. Later, we’ll be able to browse the classes in each one of these DLLs and look
for classes we can include in our code.

5.4.1 Class Initialization

The reason why we don’t need to create an instance for an int or a bool is that they are built-in types
found in the system library. We also create our own types every time we write a new class. for our own
game. Yes, we get to invent new types of data. For instance, you’ll need a player type and a monster type.

For these new types, we’ll want to store the status of their health and possibly their ammunition. These
bits of information can be any value; however, they are usually ints or floats. Of course, to store a player’s
location in the world, we’ll want to include a Vector3, inferring that a type can contain many other non-
primitive types. Eventually, everything in the game will have a class and a type of its own.

In C#, the built-in types do not need a constructor. We’ll get into constructors when we start instancing
objects later in this chapter. Plain old data types (PODs) include not only the built-in types but structures
and arrays as well. The term came from the C++ standards committee, and was used to describe data types
that were similar between C and C++. This term can be extended to C# that shares the same POD types.

5.4.2 New

The new keyword is used to create a new instance of an object. Some data types that are assigned to a vari-
able, do not need the new keyword. For example, when you declare an int, you simply need to set it to a
number, as in int i = 7;. This declaration creates space in memory for an int named i, and then sets the
value for i to 7. However, for more complex data types, like a Vector3, you may need to give three different
float values. Unity 3D calls a 3D vector a Vector3, because there are three values stored in it: x, y, and z.

216 Learning C# Programming with Unity 3D

The MonoBehaviour acts a bit differently. There are several constructs that are constructed with the
new keyword within the MonoBehaviour, but MonoBehaviours are components that are added with a
different method.

A MonoBehaviour related script is something attached to a gameObject in the scene. The Instancing.
cs script attached to the gameObject in the Instancing_Scene is attached to a game object. The following
attaches an example to the same game object the Instancing script is already attached to:

The notation seen is not regular usage of C# scripting conventions for instancing an object, but that’s
okay. C# allows for a lot of flexibility and the Unity conventions use this to its advantage. The explana-
tion for the above will have to wait until a few other concepts have been discussed. It’s important to
understand that there’s more than one system to create an instance of a class.

NOT E: Unity 3D also has a Vector2 and a Vector4 type. These are instanced in the same way as a
Vector3, but have more specific uses. Vector2 only has an x and y value; Vector4 has an additional vec-
tor, w, after x, y, and z.

Normally, in 3D space, you’d need only a Vector3, but when dealing with something called quaternions,
you’ll need the extra fourth number in a vector; we’ll get into this a bit later on.

Remember, declaring a variable starts with the type followed by the name we’re assigning to the vari-
able. Normally, you’d start with something like Vector3 SomeVector;. The difference comes in when
assigning a value to the variable. To do this, we start with the new keyword, followed by the Vector3’s
initialization.

5.4.3 Constructors

Constructors add an extra, but necessary, step when using a variable type that’s derived from an object
class. With many classes, there are different ways in which they can be initialized with a constructor.
Most initializations can be done without any parameters, as in the following example.

The use of a pair of parentheses after the type refers to a constructor, or a set of parameters that
can be used to build the instance when it’s created. Peek at the Vector3 object and you’ll see some

217Fundamentals: Building a Foundation

definitions called public Vector3(float x, float y); and public Vector3(float
x, float y, float z); in the opened window.

Constructors are named the same as the class. There’s always going to be an assumed () version, with no
parameters for construction. There can be any number of alternative constructors. In this case, there are
two additional constructors created for Vector3().

We should also note that float is another name for single, as seen in the Assembly Browser. The word
double, which we’ve mentioned in Section 4.5, has twice the amount of space in memory to store a value
than a single; a single is a 32-bit floating point, and a double is a 64-bit floating point value.

We can add information, or parameters, when initializing a new Vector3 type variable. Parameters,
also known as arguments, the values added to the parenthesis of a function. The different parameters
are setting variables within the class we’re instancing. Inside of a Vector3, there is an x, y, and z vari-
able. Like the variables we’ve been using. When using parameters, we can get some guides from our
integrated development environment (IDE).

Hover over the Vector3() as you type in Visual Studio you’ll see the following helper dialog.

The pop-up indicates alternative constructors for the Vector3 are available. To use the vector we created,
we’ll assign the object in Unity’s Transform, in the Position component, to the vector variable we just
assigned. This assignment will move the object to the assigned Vector3 position. We’ll go into further
detail on how to know what a component expects when assigning a variable when we start to explore the
classes that Unity 3D has written for us.

When this class is attached to the Main Camera in the scene and the Play-in-Editor button is pressed, we
will see the following in Unity 3D. Notice entries for Position in Transform roll out in Inspector.

218 Learning C# Programming with Unity 3D

The declaration and initialization of a new vector requires an extra step. For instance, this situation can
be translated into English as follows: “I’m making a new Vector3, and I’m naming it to vector. Then I’m
assigning the x, y, and z to 1.0f, 2.0f, and 3.0f. Then, I’m setting the position in the Transform compo-
nent to vector.” Likewise, the shorter version could simply be “I’m setting the Position in the Transform
component to a Vector3, with x, y, and z set to 1.0f, 2.0f, and 3.0f.”

NOT E: Natural language programming, like the English translation above, has been tried before.
However, the compiler’s job would be to both interpret and translate English into byte code, and this has
proven to be quite tricky. Interpretation of English is part intuition and part assumption. Neither of these
abilities can be easily programmed into software to work consistently and perfectly predictably.

Various ways to program computers using different formatting options to make code more humanly
readable have been tried many times. In the end, the formatting almost always ends up using more and
more keywords, which restrains the programmer by taking away the options and freedoms that are
allowed when fewer rules are applied.

You can also use an initialized vector without assigning it to a variable name first. This is perfectly
valid; when Position in the object’s Transform component is set, it’s automatically assigned a Vector3
that’s created just for the position.

Once a new class has been initialized, you can modify the individual variables found inside of the
Vector3 class. A variable found in a class is referred to as a member variable of the class. We’ll go into
more detail in Section 6.3.2 about what sort of variables and functions can be found in a class that Unity
3D has written for your benefit. To change one of these variables inside of a class, you simply need to
assign it a value like any other variable.

219Fundamentals: Building a Foundation

There’s an interesting difference here. An f has been used: the 3.0f is assigned to the x member of vec-
tor. This informs the compiler that we’re assigning a float type number to vector.x and not a double. By
default, any number with a decimal with no special designation is assumed to be a double number type.

Some parameters for constructors could be expanded into their own scope. For some clarity, you’re
able to add a scope for the constructor of the Vector3() instantiation. In the scope live the parameter
names that are used in the object being instanced.

To tell Unity 3D we’re assigning a float to the x member of vector, we need to add the suffix f after the
number. This changes the number’s type to float. This is related to type casting, which we will cover in
Section 6.5.3. It’s also worth noting that you’re allowed to omit some initializations using this notation.
In this form, x and y are left at 0.

We can also assign POD as an object.

Adding this after the previous code block, we’ll get 0 sent to the Unity 3D Console panel. We don’t need
to do things like this for all data types, but it’s interesting to see that it’s possible. Most data types can be
initialized in this way. There are some tricky constructors, like string, which need some additional work
for us, to understand the parameter list. The details here will have to wait till Section 6.4 in the book.

5.4.4 What We’ve Learned

The examples in this section created Vector3s in various ways. Setting variables in an object is controlled
by how that object was written. The visibility of the variables in the Vector3 class is determined in the
same fashion as we have declared variables in the objects that we have been writing. We can make
changes to the x, y, and z float variables in the Vector3 class because of their public declaration.

Each nuance and use of the C# language takes some time to get used to. When certain tasks are short-
ened into easier-to-write code, the code ends up being harder to read. However, most of the harder tasks
often have a commonly used format. These shorthand formats are sometimes called idioms.

Idioms in English do not often make the most sense when logically analyzed, but they do have specific
meanings. Much like in English, programming idioms might not make sense when you look at them,

220 Learning C# Programming with Unity 3D

but they do have a specific meaning when in use. As we make further progress, you’ll be introduced to
some of the more commonly used idioms in C#.

Complex objects like MonoBehaviours require several steps for the Editor and Game to come together.
For this reason, MonoBehaviours do several things behind the scenes that take care of special case con-
structors. When you drag a script onto a game object in the scene it’s not simply calling on a Constructor
to attach the script. Updating the UI (user interface), creating meta files, and the like also need to take
place. None of this is required of the scripts you’re going to be writing, but it’s important to know why
we don’t use new when instancing a MonoBehaviour derived class.

5.5 Static

Open the Chapter5 Unity Project’s Static_Scene and open the Static script on the game object of the
same name. The static keyword is a keyword that ties all instances of a class together. This allows all
instances of a class to share a common variable or function. When you see static next to a function,
this means you don’t need to make a new instance of the class to use it. Because static functions and
variables are class-wide, we access them in a slightly different way than an instance of a variable or
function.

There is a static function found inside of Input called GetKey(), which we will use. The last key-
word is bool, after public and static. We’ve seen bool before, but this is used as a return type. When
we write our own functions, we’ll also include our own return type, but just so you know, return
types are not limited to bool. Functions can return any data type, and now we’ll take a look at how
this all works.

5.5.1 A Basic Example

Let’s start with the Static_Scene in Chapter 5 Unity Project and open the Static script attached to the
Static Game Object in the scene. The code here will send the following to the Console panel in Unity 3D.

The KeyCode object has a public variable for each key on your computer’s keyboard. The Input.
GetKey() function returns the bool value based on which the key is checked in the KeyCode
object. We assign the bool aKey to the returned value from the Input.GetKey(KeyCode.A)
function.

The statement for if (aKey) executes the Debug.Log("aKey"); which then prints out “aKey” to
the Unity Console window. The GetKey() function is a member of the Input class and is accessed by
using the dot operator (.). Now that we’re reading libraries we need to know how to get to the members
of the classes we’re looking at. Peek at the definition and you’ll see other static accessible members in
the Input class.

221Fundamentals: Building a Foundation

We’re shown public static bool GetKey(KeyCode key) as the function’s definition.
You’ll notice that we never made an instance of Input. To use the Input class, we didn’t need to create
an Instance of the Input object first. The static members of a class don’t need to be initialized before
they’re used.

This process provides us with the beginnings of a player controller script. Filling in the rest of the
WASD keys on the keyboard will allow you to log the rest of the most common movement keys on
your keyboard. The Input class is found in UnityEngine that was included in this class with the using
UnityEngine directive at the top of the class.

From previous chapter lessons, you might imagine that we’d need to create an instance of Input to
make use of its member functions or fields. This might look like the following:

While this syntactically makes sense, and the practice so far has been to make an instance to use its
members. The GetKey() function is static, so we get an error when we try to use a static function.
This will make more sense once we write our own static function later in this chapter.

When we check for any functions in the input object after it’s been instanced, we won’t find much.
The only things available are universal among all things inheriting from the object class.

The lack of functions or variables is because all the functions and variables have been marked as static,
so they’re inaccessible through an instance of Input. Statically marked functions and variables become
inaccessible through an instance. This inaccessibility is related to an object’s interface and encapsula-
tion. This doesn’t mean that they are completely inaccessible, however; but to see them, we’ll need to
write our own class with our own functions and variables.

222 Learning C# Programming with Unity 3D

5.5.2 Static Variables

Let’s start off with a simple concept: a static variable. Using our previous analogy of toasters, each new
toaster built in a factory has a unique identity. Each unit built would have a different serial number. Once
in someone’s house, the number of times the toasters have been used, when they are turned on and begin
to toast, and their location in the world are all unique to each toaster. What they all share is the total num-
ber of toasters that exist.

The static keyword means that the function or variable is global to the class it’s declared in. Let’s make
this clear; by declaring a variable as static, as in static int i;, you’re indicating that you want to use
the int i without needing to make an instance of the class that the variable is found in. Variables that are
unique to each instance of a class are called instance variables. All instances of the class will share the
static variable’s value regardless of their instanced values.

If we create a mob of zombies, we might find it important to maintain a certain number of zombies.
Too many and the computer will have problems keeping up. Too few and the player will go around with
nothing to shoot at. To give ourselves an easier time, we can give each zombie a telepathic connection
with all other zombies. A programmer would call this a static variable or a static function.

As we’ve seen, variables usually live a short and isolated life. For instance, the variable used in the
ever-powerful for loop exists only within the for loop’s code block. Once the loop is done, the variable in
the for loop is no longer used and can’t be accessed outside of the loop.

Now that we’re creating objects based on classes, we need to make those classes interact with one another
in a more convenient way. To keep track of the number of undead zombies in a scene, we could have the
player keep track; as each zombie is created or destroyed, a message could be sent to the player.

The Player class keeping track of important zombie data is awkward. Zombie-related data should
remain in the zombie class, unrelated classes should not depend on one another in this way. The more
spread out your code gets, the more problems you’ll have debugging the code. Creating self-contained
classes is important, and prevents a web of interdependent code, sometimes referred to as spaghetti code.

Remember that when an object is created it’s instanced from a single original blueprint, which can
include some variables that are shared between each instance of the class. With static variables instanced
cases can talk to the blueprint for a common connection between any new instances made from it.

5.5.2.1 A Basic Example

223Fundamentals: Building a Foundation

Here, in a pretty simple-looking zombie class, we’ve got a static keyword placed before an int identi-
fied as numZombies. This statement turns int numZombies, which would normally be confined to
this class alone, to an int that’s shared among all zombies. As Unity 3D creates more zombies, each zom-
bie has its Start() function called once the class has been instanced: numZombies increments by 1.

With the above code attached to a collection of different capsules, we’ll be better able to see how many
zombies there are in the scene through code. Just be sure that each capsule has the zombie script attached.

The Debug.Log() function in each Zombie’s Start() function prints out the numZombies value.
Each new instance of a Zombie increments the same numZombies variable.

224 Learning C# Programming with Unity 3D

By knowing how many zombies are around, you can change a zombie’s behavior, making them
more aggressive, perhaps. Maybe only after five zombies have been spawned, they’ll join one
another and perform a dance routine. Having a shared property makes keeping track of a similar
variable much easier.

When the same code is run without static before the numZombies variable, the following output is the
result:

The numZombies value is independent to each instance of the zombie class. When each new Zombie
instance is created it’s numZombies int is initialized independently to 0. When the Start() function is
called in each zombie instance the numZombies value is incremented independently from 0 to 1. Therefore
when white, rob and stubbs call their own Start() function their own instance of the numZombies int is
incremented, numZombies doesn’t get incremented for all zombies because it’s not static.

This is an interesting concept here. Up to this point, we’ve been thinking of classes as encapsulated
independent entities. With the static keyword, there’s a way to keep the separated objects connected to
one another through a variable. This raises the question: Can this be done with functions?

5.5.3 Static Functions

Static functions act on behalf of all instances of the class they are a member of. They work only with
static variables of the class. If we extend our zombie class with a new static function, we can use the
zombie class to call a static function that can read static variables. To make the static function accessible
to other classes we need to make the static function public as well.

Then we’ll add a call to Zombie.CountZombies(); to find out how many zombies have been created
in the Update() function of the static class, by adding it to the if (AKey) code block.

225Fundamentals: Building a Foundation

Now when the A key on the keyboard is pressed, we’ll get a count printed to the Console panel indicating
the number of zombies in the scene along with the Debug.Log("aKey"); Console log.

The number being printed out comes from the public static void CountZombies(); function
call being made to Zombie, not from any of the instances of the zombie class attached to the capsules in
the scene.

To call static functions, you use the class name, not the name of an instanced object made from the
zombie class. As you can see, there’s more than one way the class identifier is used. Up to this point,
we’ve been using the class name mostly to create an instance of that class. With a static function or vari-
able, the class identifier is used to access that static member of the class.

5.5.4 Putting It All Together

To build a simple example with our Zombie we’ll want him to chase after a player in the scene. To do that
we’ll open the Zombie_Scene in the Chapter5 project and add to the zombie script we’ve been working
with. Attached to the Robo character in the scene is a Player script. To find the player we’ll use the same
technique as before where we use FindObjectsOfType().

Once we have a handle on the script attached to the Player GameObject we can now add in a method to
Move our Zombie to the player. To make use of the MoveToPlayer function we’ll add the following to
the Update().

By checking that the player is not null we make sure that the reference to the player object is there and
not null. And to start, our MoveToPlayer will look like the following:

226 Learning C# Programming with Unity 3D

If you remember the system we used for the MoveToPoint script, we’ll do the same again here.

At this point pressing the Play-in-Editor button should have a group of zombies marching at the player.

Now that the zombies are moving, it’s time to get the player moving. For this we’ll use a simple WASD
to move the robot around.

Next, we a value is created for the x and y axis of input. These are used to add to the position of the
character.

227Fundamentals: Building a Foundation

Next we’ll use the Booleans we created for the input and use them to add or subtract from each axis.

Then finally we apply the new values to the direction we want to move in. The transform component has a for-
ward value as well as a right value. Multiply these values by either +1 or −1 when a key is down. If no keys are
down then we multiply the forward or right value by 0, which means we add no new value to the current direction.

Once we have a vector which represents where we want to go, we can apply it to where we are.

Next, to get the robot to rotate using Q and E:

We handle the rotation much like we handled the positioning.

228 Learning C# Programming with Unity 3D

5.5.5 What We’ve Learned

Using static functions certainly layers a distinctive level of complexity on an already complex under-
standing of what a class is. Not only do classes have functions talking to one another, they can also share
information.

You should use a static variable only if all the classes of the same type need to share a common
parameter. This goes the same for a static function. We’ll go further into how static functions can
help in Section 6.11, when we get back to some of the more complex behaviors, but for now, we’ll
leave off here.

Moving forward, we’ll want to keep in mind that C# has static variables and functions for a specific
reason. There are efficiency and optimization considerations to keep in mind as well. For instance, the
player’s transform.position is the same for each zombie. Each zombie doesn’t need to have its
own instance variable for the player. We could have easily converted the Vector3 position; in the
player class to a static value.

The static Vector3 position; variable could then be used by the zombies in the following
manner.

This certainly works, and it might be considered easier to read. This would even make the GameObject
player; obsolete since Player.position is a static value, and you don’t need to use GameObject.
Find() to begin with. This type of optimization should be thought of as you look at your code and dis-
cover new ways to make it more efficient and easier to read.

5.6 Building A Game—Part 3

In the previous game-building chapter, we first looked at moving around a character Section 4.3. Then
we looked at shooting projectiles in Section 4.10. Immobile red blocks don’t stand a chance against a
rapid-fire missile launcher. To add challenge, the targets should move and shoot back.

To start off we’ll want a system for our bad guys to be able to find the player. We just covered static
which is a great way to store a variable for anyone to access.

5.6.1 The Player

229Fundamentals: Building a Foundation

The static variables become accessible to any other object. This works to enable the bad guys to find the
player. The Start() functions in the scene finishes before the first Update() is called by any other
object in the scene.

5.6.2 The Mover

In the Mover.cs script we’ll use the Player.ThePlayer variable and keep it around as a local vari-
able. To limit problems, an accessor is used where the set statement is excluded.

To stop pursuing a Target after the player is gone, or is null, we stop our Update() with a null
check. So long as the Target isn’t null we get a TargetDirection, then MoveTo() and LookAt()
the TargetDirection.

The GetDirection() function returns the Vector3 pointing at a given GameObject. This value
is used by the following MoveTo() and LookAt() functions. The direction is likely to change during
each update, so it’s refreshed at the start of the Update() function.

230 Learning C# Programming with Unity 3D

The MoveTo() function applies a force in the direction of the target. Get the rigid body component
attached to the player and give it a push in that direction. The rigid body has a few settings to look at to
make sure that this works out well.

The Capsule Collider and the RigidBody work together. The collider gives the rigid body a shape, then
the rigid body gives the Collider physical properties like mass and drag. Here the drag has been set to
1 to make sure that the bad guy doesn’t skate around like it’s on ice.

The last thing we do is turn the bad guy around so he’s looking at the player. The LookRotation() func-
tion in Quaternion gives us a rotation value. We then plug the look direction into the RotateTowards()
function. The result is assigned to the bad guy’s rotation value.

5.6.3 The Shooter

Inheritance means we don’t need to copy too much code. Though we can see where some cross over can
come into place between very similar classes. The ProjectileWeapon class isn’t very complex. But
we should still observe some optimizations.

231Fundamentals: Building a Foundation

The Shooter inherits from Mover. We also see a few members that look like they were copied out of
the ProjectileWeapon class. That’s because they were. Regardless, we inherit from Mover for a
more specific reason.

In Mover, the Update() function a protected virtual function. This doesn’t change the fact
that it’s called by MonoBehaviour during the Update() cycle of the game. We take advantage of this by
using the base.Update() from the Mover. Shooter inherits the MoveTo() and LookAt() func-
tions. After the base.Update() is called we then call the ShootAt() function.

A minor change here includes the ShootAt() has the same setup as the Update() loop from the
ProjectileWeapon class. We exclude the critical Input.GetMouseButton() check to see if the
right mouse button is being pressed.

The Shooter’s script component has a greatly reduced Rate Of Fire. Once there is more than one weapon
in the scene the game comes to an end much faster. This is especially true if all the projectiles are aimed
at the player.

232 Learning C# Programming with Unity 3D

5.6.4 Physics Settings

To keep things all in check on the physics, the colliders that are on both the Bad Guys and the Player
are set to the Target tag. The projectiles are set to the Projectile tag. Tags allow a filter to enable the
physics certain leeway to enable specific objects to pass through some colliders and hit others. In the
grid above the Projectile/Target box is checked. This means that the projectiles can only contact a
target. The Target/Target checkbox is also checked to prevent the characters from passing through
one another.

The start point is placed away from the character. This is to ensure that the projectile doesn’t contact the
BadGuy or the Player as the projectile is instantiated. The z axis (the blue arrow) indicates the forward
direction of the starting point.

233Fundamentals: Building a Foundation

Once there are more than a few shooters in the scene we get a lot of friendly fire. We could add a few
more physics filters to prevent this, but it’s better to enjoy the crazy explosions for a few moments before
the player is also obliterated.

5.6.5 What We’ve Learned

Physics layers, inheritance, and simple small classes are the key to quickly building a fun game. It may
be worthwhile to make ProjectileWeapon more modular and reusable, but code is easily copied and
pasted between classes anyway.

Monolithic classes which handle a multitude of responsibilities are cumbersome. Making small classes
with few responsibilities allows us to attach multiple behaviors to GameObjects. Small classes make add-
ing new layers of behavior much easier.

We saw a lot of terminology here that’s yet to be covered more formally. It’s important to understand
how the code works in more situations than what we’ve seen here. This project only serves as one
example of infinite possibilities.

5.7 Jump Statements and Return

Follow along with the JumpStatements_Scene Unity 3D scene in the Chapter5 Unity Project. Then open
the JumpStatements script found in the scene on the JumpStatements game object. Suppose you’re in
the process of looking for a specific color of crayon in a large assortment of art tools. After grabbing

234 Learning C# Programming with Unity 3D

handfuls of different pencils and pens, you find the crayon you want and stop looking through the rest of
your bin. You’ve just used a jump statement and returned to your work with the colored crayon of your
desire.

The keywords break and continue come in particularly handy when sorting through a list of
objects. Like return, these keywords stop the function from further execution or they jump to a differ-
ent part of the same function. return has the additional feature of coming out of a function with a value.
We have looked at these keywords briefly before, but it’s important to get a better understanding of break,
continue, and return in use.

The keyword continue restarts a loop from the top and then continues the function again, whereas
break stops the block of code it’s in altogether.

5.7.1 Return

We need to love the return keyword. This keyword turns a function into data. There are a couple
of conditions that need to be met before this will work. So far, we’ve been using the keyword void to
declare the return type of a function. This looks like the following code fragment.

In this case, using return will be simple.

This function returns void. This statement has a deeper meaning. Returning a value makes a lot more
sense when a real value, something other than a void, is actually returned. Let’s look at a function that
has more meaning.

The keyword void at the beginning of the function declaration means that this function does not have
a return type. If we change the declaration, we need to ensure that there is a returned value that matches
the declaration. This can be as simple as the following code fragment.

This function returns int 1. Declaring a function with a return value requires that the return type and
the declaration match. When the function is used, it should be treated like a data type that matches the
function’s return type.

235Fundamentals: Building a Foundation

5.7.1.1 A Basic Example

Here is a quick review class that has a function declared as int MyNumber() in the Start() function.

When this code block is executed in the scene, 7 is printed to the Console panel. The function
MyNumber() returned 7 when it was called. When we add some parameters to the function, we can
make the return statement much more useful.

In this fragment, we have int MyAdd(int a, int b), which we then assign to int a in the Start()
function. This prints 13 to the Console when run. We can skip a step to make the code a bit shorter.

This code produces the same 13 being printed to the Console panel and should make it clear that the
function can easily be used as a value.

5.7.2 Returning Objects

We can get something more interesting out of a function once it begins to return something more sub-
stantial than a simple number—this would be a more significant uses of return.

236 Learning C# Programming with Unity 3D

In the JumpStatements_Scene in the Chapter5 Unity Project we have a single Zombie. In the
JumpStatements script on the JumpStatements game object we’ll add a function that returns type
Zombie.

Adding a Debug.Log(GetZombie()); to the Start() function and we’ll have the following text sent
to the Console panel in Unity 3D.

5.7.3 A Class Is a Type

Our function that returns a Zombie, is at the end of our Unity 3D C# default template. We’ve called
our function GetZombie(), and we’re using a simple function provided in GameObject called
FindObjectOfType();, which requires a type to return. The different classes we create become
a new type. Much as an int is a type, a Zombie is now a type that we created in a new class called
Zombie. This goes the same for every class we’ve created, which are all types.

To inform the FindObjectOfType() function of the type, we use the function typeof(Zombie),
which tells the function that we’re looking for a type Zombie, not an actual zombie. There’s a subtle
difference between telling someone we’d like a thing that is a kind of zombie, not a specific zombie.
We’ll get into the specifics of types in Section 6.5.3 that focuses on dealing with types, but we’re more
interested in return, so we’ll get back to that.

237Fundamentals: Building a Foundation

We’ll leave a variable in the class for myZombie, and in the Update() we’ll draw a line from the
transform.position to the myZombie.transform.position. Debug.DrawLine() starts at
one position and goes to another position. The second position is a function’s transform.position.

In the Start() function the GetZombie() function assigns the myZombie variable. When the
scene is played in the editor look into the Scene panel, you’ll see a white line being drawn between
the push pin and the Zombie Primitive with the Zombie component added to it.

Another possible method to use would be to inquire how many zombies exist in the scene. If there are
zombies then get one to draw a line. With the following method we use the static numZombies to count
how many zombies are in the scene. Then we use GetZombie() as an object to draw a line to the posi-
tion of the Zombie it returns.

238 Learning C# Programming with Unity 3D

This remarkably means that the GetZombie().transform.position is returning the value as
though the function is the Zombie itself, which has some interesting consequences. Having classes, or
rather objects, communicate between one another is a particularly important feature of any program-
ming language. Accessing members of another class through a function is just one way our objects can
talk to one another.

This reliance on the function breaks if there are no zombies in the scene. What would happen if we
were to deactivate the Zombie by checking it off in the Inspector panel while the code is running?

Unchecking here while the game is running will immediately bring up an error.

A Null Reference Exception is caused when the return type of the function has nothing to return. Errors
aren’t good for performance and we should handle the problem more effectively. We need to make our
use of the function more robust. Likewise, if you delete the ZombiePrimitive while the game is playing
we’ll get this error.

If we need to add a check to see if Zombie is null, doing so will avoid giving the Debug.DrawLine()
function nonexistent data. We could hold onto a Zombie variable, and check each frame if the variable is
not null. Better yet, we can add the following code to the Zombie script.

The code above decrements the numZombies static value. This means that a check to see if the
number of zombies is greater than 0 will be false and we’ll stop drawing lines when the last zombie
is gone.

5.7.4 Tuples

Various languages like Lua allowed for more than one thing to be returned from a function. For C# to
return a zombie and a number you’d need to create a struct which contained a zombie and a number.

239Fundamentals: Building a Foundation

To create a struct and populate it every time a variety of information was required to come from a func-
tion would be cumbersome. The eventual population of numerous structs would get messy; each struct
becomes a new type. The above does return the desired result:

The extra structs required for returning more than one value can be avoided using a tuple or “too-ple.”
A tuple is a system to organize data with names much like a struct. The return value of the function
changes quite a lot when returning a tuple.

Rather than void or a type, the tuple value looks a lot like a parameter signature for the function. The syn-
tax works the same with a type followed by an identifier. The tuple above is a (Zombie zombie, int
number) which means a Zombie and an int will be returned when the function is called.

When the function is invoked the data is stored as a var. The var type is a just-in-time type, so var
can accept practically any type value. Once it’s assigned, its type becomes set. In the case var zn =
ReturnsTuple(); the var zn is now a type that contains the zombie and number from the
ReturnsTuple() function.

240 Learning C# Programming with Unity 3D

Visual studio will help fill in the tuple as you type it out.

The tuple requires you to fill in the output labels with the colon. These act a bit like optional arguments,
something that will be covered in a later chapter. The value stored in a tuple can be decomposed from
the var, but the data contained is recognized when printed as the following:

Tuples have a variety of uses by combining data into an impromptu type. The simple return value use of
the tuple is just one of the several uses of a tuple. We’ll have to come back to that once we get into Linq
in Section 8.8 since complex tricks are involved.

5.7.5 Null Is Not Void

There is conceptual difference between void, which is nothing, and null, which is more like not
something. The word void means there is no intention of anything to be presented, whereas null implies
that there can be something. We may add if (target != null) and can say that target can be empty or it can
be Zombie. When target isn’t a zombie, target is null; when it is there, it’s Zombie.

We may add if(target != null)—in more readable English, “if the target is not null”—and then
conditionally execute the following code block. In the case where we have a target, we can draw a line
from the camera’s transform.position to the target’s transform.position. This code allevi-
ates the error, and thus we don’t have to worry about sending Draw.DebugLine an error-inducing
null reference.

5.7.6 What We’ve Learned

Functions that return class objects are quite useful. The properties that are associated with the class are
accessible through the function that returns it. There are various jump statements that have different
results.

The return statement has a clear purpose when it comes to jumping out of a function. Not all return
jump statements need to be followed by a value. If the function is declared as void MyFunction(), the
return statement only needs to be return; without any value following it.

We’ll cover more jump statements in a following chapter.

241Fundamentals: Building a Foundation

5.8 Arrays: A First Look

Open the ArraysAFirstLoop_Scene and open the ArraysAFirstLoop script in the scene. Arrays are
nicely organized lists of data. Think of a numbered list that starts at zero and extends one line every time
you add something to the list. Arrays are useful for any number of situations because they’re treated as
a single hunk of data.

For instance, if you wanted to store a bunch of high scores, you’d want to do that with an array. Initially,
you might want to have a list of 10 items. You could in theory use the following code to store each score.

To make matters worse, if you needed to process each value, you’d need to create a set of code that deals
with each variable by name. To check if score2 is higher than scorel, you’d need to write a function
specifically to check those two variables before switching them. Thank goodness for arrays.

5.8.1 Fixed-Sized Arrays

An array can be initialized as a fixed-sized array, or an array can be created to be a resizable; we’ll
get to these types of arrays in Section 5.12. A fixed-sized array is easier to create, so we’ll cover that
first. Dynamic arrays require a more interesting step, where an array object is instantiated before
it’s used.

Arrays are a fundamental part of computer programming, in general. Without arrays, computers
wouldn’t be able to do what they’re best at: repeating a simple task quickly and consistently. We’ll be
covering a few different types of arrays in Sections 5.11 and 5.12, and we’ll be starting with the simplest
type of array: the fixed-sized array.

5.8.1.1 A Basic Example

Let’s start with the Arrays project and open the scene. The concept is simple in theory, but it’s so much
easier to see what’s going on if you use the following code and check out what’s going on in the Unity
3D Inspector panel. Attach this script to the Main Camera in an empty scene, and then take a look at
what shows up.

242 Learning C# Programming with Unity 3D

The inclusion of the square brackets tells the compiler you’re creating an array of ints and naming it
scores. Because we’re working with a built-in type of an int, each value stored in the array is initialized
to 0. A new int[] array needs to be created before it’s assigned to the scores array.

The best part is that the scores array is handled as a single object; we’ll get into what that means in a
moment. Rather than write a function to process one number value at a time we can write a function to
deal with the array and process all the number values at once. We’ll look at a simple sorting method in
Section 7.9.4.

Assigning scores to int[10] creates an array with 10 items. As you might imagine, you can make
larger or smaller arrays by changing the number in the square brackets. There aren’t any limitations to
the size you can assign to an array. Some common sense should apply, however; an array with many tril-
lions of values might not be so useful.

Each chunk of data in the array is located by what is called an index. The index number is an integer
value since it’s not useful to ask for a value between the first and second entry in the array. Arrays can be
created from something other than ints as well.

Both these statements create valid types of arrays. You are also allowed to create new data types and
make arrays of those as well. An array can be created for any type, not just numbers and strings. This isn’t
necessarily a requirement. We can use any valid identifier to use for an array.

243Fundamentals: Building a Foundation

It’s important to notice the difference between types. Floats, ints, and numbers in general will have 0 as
the default value in the array when they are created. Strings, on the other hand, are initialized with noth-
ing in the array; they are null, or, rather, they have no value assigned. You’ll need to remember that an
array can contain only a single type across all its entries. Therefore, an array of strings can contain only
strings, an array of ints can contain only ints, and so on.

The convention of using a plural does make for a more easily read variable name, but by no means is it
necessary for identifying an array. Again, it’s up to you to come up with readable variable names, and it’s
nice to use plurals for identifying an array.

This creates a new class called MyClass, which for this example is a class of nothing. It’s important
that both sides of the MyClasses statement match. In the example above an array was created for

244 Learning C# Programming with Unity 3D

the MyClass type. Unfortunately, because Unity isn’t aware of what to do with MyClass, the array
doesn’t show up in the Inspector panel. Later, we’ll figure out some ways to make this sort of information
show up in Unity.

What makes an array in Unity more interesting is when we do not assign a number to set the size of the
array. We can add the following statement to the list of other variables we’ve already added.

If we simply leave an array unassigned, we’re free to set the size afterward. Select the Main Camera and
click on the lock icon at the top right of the Inspector panel. This will prevent the Inspector from chang-
ing when you select something else in the scene. Then, select the other objects in the scene and drag them
down to the GameObjects variable in the Inspector.

This action sets the size of the array once objects have been dragged into the array. However, this doesn’t
mean that the code is aware of the size of the array. The size of an array cannot easily be changed once
it’s been created. Therefore, how do we know how many objects are in an array? This can be accessed
by the.Length property of the array type.

In the Start() function, we can use the following statement:

245Fundamentals: Building a Foundation

Click the play icon and observe the Console panel. The Debug.Log() command will print out how
many objects had been dragged into the array.

The number should reflect what is being observed in the Inspector panel, where we dragged objects into
the array.

So far so good, but how do we use this? Now that we have an array of game objects from the scene, we’re
able to manipulate them in a for loop.

This code changes the names of the game objects in the array to a number. The property of the array
.Length returns an integer value which we can use for a few different reasons, the most practical use
being to set the number of iterations in a for loop.

246 Learning C# Programming with Unity 3D

5.8.2 Foreach

This loop also happens to reflect how the objects are organized in the array. As we had experimented
before with loops, we can use the array in a multitude of ways. We can also iterate over an array using the
foreach loop. Once we’ve changed the names of each object, we can tell one from the other by its name.

5.8.2.1 A Basic Example

The foreach statement is dependent on the type of data found on the inside of the array. Therefore,
we use GameObject go to set up a place to hold each member of the GameObjects array while
in the foreach loop. If we wanted to iterate over an array of a different type, we’d have to change
the parameters of the foreach loop. Therefore, to iterate over an array of ints which was declared
int[] MyInts;, we’d need to use foreach(int i in MyInts) to iterate over each member
of that array.

Of course, the variable’s name can be anything, but it’s easier to keep it short. To use foreach(int
anIntegerMemberFromAnArray in MyInts), for example, would be a bit of work to key in
if we wanted to do a number of operations on each int found in the array. Then again, there’s noth-
ing preventing us from spending time being verbose. We’ll cover the foreach loop in more detail in
Section 6.11.5.

5.8.3 Dynamic Initialization

We can also initialize a new array in a function. This means that the array exists only while in the scope
of the function and can’t be accessed from outside of that function. It’s important to know that the size
of an array is determined ahead of its use. When the array is declared in this way, the size or rather the
number of objects the array can contain is set.

Here, we split the initialization into two statements. The first line tells C# we are creating a float[]
variable identified as dynamicFloats. Then, we need to populate this floats array with a new array.
The array floats is then assigned a new float array of 10 indices. We cannot switch this assignment to a
different type.

Changing the type creates an error, which we’ll have to fix. There are clever ways to avoid this, but we’ll
get into that in Section 6.14.

We can also use a variable to set the length of the array.

247Fundamentals: Building a Foundation

This code sets the length of the dynamically defined array. This can be helpful once we need to make
our code more flexible to change for various game design settings. On the other hand, we can populate
an array with predetermined information.

The above statement declares and sets an array that has seven members and assigns each number to a low
prime number value. These even show up in the Inspector panel in Unity 3D.

5.8.4 Using the While Loop with Arrays

Iterating through our array is pretty simple. We’ve covered some basic loops that handle arrays quite
well. If we use a simple while loop, we can process each value stored in a fixed array.

At this point, all of the values are indeed zero, so we get 10 zeros printed to our Console panel. However,
there are a few interesting things to point out here. First of all, int i is initialized to 0 ahead of the while
loop. We’ll get into what this means later on, but remember for now that arrays start at zero. The next
interesting thing is how the numbers stored in scores[] are accessed.

5.8.4.1 Setting Array Values

We can set the value of each index of scores to a specific value by accessing the scores by their index.
When the scores array was initialized as int[10], scores now has 10 different int number spaces. To access
each value, we use a number 0 through 9 in square brackets to get and set each value. The while loop
starts at 0 because we started with an int i = 0; before entering the while loop.

248 Learning C# Programming with Unity 3D

With this code, we’re using a function called Random and using its member function Range, which we’re
setting to a value between 0 and 100. The index is picked by using the i that was set to 0 before the loop
started. The loop starts with scores[0] being set to a random number between 0 and 100.

At the end of the while block, the i is incremented by 1 and the while loop begins again. The next time,
though, we are setting scores[1] to a random number between 0 and 100.

5.8.4.2 Getting Array Values

Each time, we’re getting the value from scores[i] to print. We can make this a bit more clear with the
following example.

If we add in the line int score = scores[i];, we’ll get the score to the value found in scores[i].
Each value remains independent of the other values stored in the array. Because we’re able to use the
entirety of scores[] as a single object with index values, we’re able to accomplish a great deal of work
with fewer lines of code.

Arrays are simple objects with lots of uses. We’ll get into a pretty interesting use in Section 5.11.3, but
for now, we’ll have to settle on playing with some numbers in the array.

5.8.5 What We’ve Learned

Arrays are useful for more than just storing scores. Arrays for every monster in the scene will make it easier
to find the closest one to the player. Rather than dealing with many separate variables, it’s easier to group
them together. Arrays are used so often as to have special loops that make dealing with arrays very simple.

5.9 Jump Statements: Break and Continue

Open the JumpStatementsBreakAndContinue_Scene and open the corresponding script in the scene.
Loops are often used to iterate through a series of matching data. In many cases, we’re looking for
specific patterns in the data, and we’ll change what we want to do depending on the data we’re sifting

249Fundamentals: Building a Foundation

through. In most cases, a regular if statement is the easiest to use. When our logic gets more detailed
and we need to add more complex behaviors to our code, we need to start adding in special keywords.

When we come across the one thing we’re looking for, or maybe the first thing we’re looking for, we
might want to stop the for loop that might change our result. In this case we use the break; keyword.

5.9.1 A Basic Example

The following code added to the BreakAndContinue() function in the script demonstrates a basic
effect of the break keyword.

When we run this code, we’ll get a printout from 1 to 11, and since 11 is greater than 10, the for loop
will stop. In the for loop’s second argument, we’ve got i < 100, because we assume that the Debug.
Log(i); would work till we hit 99 before the for loop exits normally. However, since we have the if
statement that breaks us out of the for loop before i reaches 100, we only get 1–11 printed to the console.
Of course, there are reasons for using break other than cutting for loops short.

5.9.1.1 Continue

The keyword continue changes when a loop begins on it's next iteration. Where the break terminates a
loop the continue keyword tells the loop to skip the rest of the code and continue as normal. In the loop
above the Debug.Log("Got Past Continue."); only appears for the first 10 iterations of the loop.
Once i is greater than 10, the continue keyword interupts the loop execution and skips the rest of the code in
the for loop.

The continue allows the for loop to finish iterating, break escapes the for loop before it's finished iterating.

5.9.2 ZombieData

The keyword break is often used to stop a process. Often, when we go through a group of data, we might
be looking for something specific; when we find it, we would need to process it. If we create an array of
zombies, we’ll need to assign them some specific zombie behaviors. Therefore, we might create a new
ZombieData.cs class that could include some zombie information.

250 Learning C# Programming with Unity 3D

Here’s a very simple zombie class that has nothing more than some HitPoints. I’ll leave the rest
up to your game design to fill in. Then, in a new JumpStatementsBreakAndContinue.cs script in the
UseZombieData() function, gameObjects are created and placed. Some of them have Zombie data,
some don’t.

The for loop in Start() creates 10 new game objects temporarily stored as go. This is done with
GameObject go = GameObject.CreatePrimitive(PrimitiveType.Cube); we’re cre-
ating 10 cube primitives. Then, we create a new Vector3() with Vector3 position = new
Vector3();. Once position is created, we give x and z a new value between –10 and 10 using
Random. Range (-10, 10); and then assign the position to the new game object go with go.
transform.position = position. For clarity, we give each go a new name after its iterative
number from the for loop by using go.name = i.ToString();. Once the new game object go is cre-
ated, we assign it to an array at the class level called gameObjects.

Then, we get to if(i % 2 == 0) {go.AddComponent(typeof(Zombie));, which assigns a
new Zombie object to each go if i % 2 is 0. The i%2 is a clever way to check if a number is even or
odd. Therefore, in this case, if the number is even, then we assign a new Zombie; otherwise, no Zombie
is assigned. This means half of the cubes are not zombies. After creating a zombie we assign it a random
value for hitPoints.

251Fundamentals: Building a Foundation

5.9.3 Foreach Again

In a normal game setting, you might have many different types of objects in a scene. Some objects might
be zombies, whereas others might be innocent humans running away from the zombies. We’re creating
a number of game objects to simulate a more normal game setting.

Now, just for the sake of using both continue and break in some logical fashion, we use the array to
check through our list of game objects using foreach (GameObject go in gameobjects). The first line,
Zombie z = (Zombie)go.GetComponent(typeof(Zombie));, assigns a Zombie to the vari-
able z. The next line does something interesting.

Here, null is useful; in this case, if the object in the array has no Zombie, then z will not be assigned
anything. When z is not assigned anything, its data remains null. Therefore, in this case, if there’s no
zombie data assigned to the object in the array, we’re looking at then continue, or in this case, go back to
the top of the loop, and move on to the next item in the array. Continue means stay in the loop, but skip
to the next item in the array.

If Zombie z exists, then we move to the next line down and we don’t hit continue. Therefore, we can
check if z.hitpoints is greater than 10; if it is, then we’ll stop the loop altogether. This lets us know there’s
at least one Zombie that’s got more than 10 hit points.

The result of this loop prints out the even-numbered named game objects and stops naming them if it
comes across one that’s got more than 10 hit points.

For an AI (artificial intelligence) character, it would be useful to know what objects in the scene are
zombies. And your zombies should know what objects in the scenes are players. In your zombie behavior
code, you might use something like the following.

252 Learning C# Programming with Unity 3D

This code is used to skip on to the next object in the scene, which might be a player. Likewise, you could
do the following with null.

This statement would be just as useful. Likewise, you can do things before using continue. If your zombie
needed a list of characters in the scene, you would want to add them to an array list, which is different
from an array, and you would want to add them to an array first.

In the above example, we’d check the go if it’s got a Player component. If it does, add it to an array list
called players, and then continue; to the next object in the list.

5.9.4 What We’ve Learned

The previous section was a simple use of break and continue. As more complex situations arise, then
using jump statements come in handy. The jump statements are often used while searching through an
array of many kinds of objects.

When reading through other people’s code, it’s often useful to do a search for various keywords when
you’re interested in seeing how they are used. By searching for continue; or break;, you might find
several different uses that might have not come to your mind immediately.

Discovering the different ways code can be used comes with experience, and it is something that can-
not be taught in a single volume of text. The process of learning different programming features is like
looking at a tool box and knowing what a screw driver looks like. It’s an entirely different process to
understand how it’s best used.

5.10 Multidimensional Arrays

Open the MultidimensionalArrays_Scene and the corresponding MultidimensionalArrays script
found in the scene. An array is a single list of objects. Each entry is identified in the array by an
index. By adding an additional index, we’re allowed to create an additional depth to the array. When
working with a single-dimensional array, we can get several simple attributes about the contents of
that array.

253Fundamentals: Building a Foundation

With the above statement, we get 10 objects printed to the Console panel in Unity 3D. Using oneDimen-
sion.Length, we get a value representing the number of items in the array. At the moment, though, we
have not added anything to the contents of each index. This situation is altered with the following change
to the array’s declaration.

With the above statement, we get 0–5 printed to the Console panel in Unity 3D. The Array.Length
parameter simply returns the total number of items in the array, but we’re not able to get any specific
information on how the indices are arranged. To get a better feel for the contents of the array, we might
consider the TwoDimensionalArray; a grid of two columns by three rows.

5.10.1 Columns and Rows

As shown in the below image, we have a 2 by 3 grid as a representation of the GameObject[2, 3] array.
Each box holds onto a GameObject. A multidimensional array has its place in programming, though it
is rare, and the coding is usually better handled using a couple of single-dimensional arrays. However,
it’s more convenient to pass a single multidimensional array to a function than it is to pass two different
single-dimensional arrays.

To utilize this array, we’ll want to populate the array with some GameObjects.

254 Learning C# Programming with Unity 3D

5.10.1.1 A Basic Example

Let’s begin with the MultiDimensionalArray project in Unity 3D and open the scene.

Notice how the array is assigned. There are two sets of curly braces, a pair of curly braces in a set of curly
braces. We group three items into two subgroups, and assign them to the 2D array. The notation {{}, {}}
is used to assign a 2 by 3 array with 6 GameObjects.

Next, we’ll add a function to sift through the 2D array.

With this code, we’ll get an idea of what types of loops will work best with a 2D array. First off, we have a
function with one argument. The function InspectArray(GameObject[,] gameObjects) takes
in a 2D array of any size. Therefore, a GameObject[37,41] would fit just as well as the GameObject[2, 3]
that we are using for this tutorial.

We’re then using GameObjects (gos).GetLength(0); to assign our columns count. The GetLength()
array function takes a look at the dimensions of the array. At index 0 in [2, 3], we have 2, which is
assigned to columns. Next, we use GetLength(1); to get the number of rows in the 2D array.

Using two for loops, one inside of the other, we’re able to iterate through each one of the objects in
the 2D array in a more orderly manner. Without a system like this, we’re in a more difficult situation,
not knowing where in the array we are.

255Fundamentals: Building a Foundation

At the end of the Start() function, we can make use of the InspectArray() function and get a log
of the items in each position in the 2D array.

5.10.2 A Puzzle Board

In the same MultiDimensionalArrays_Scene is a Grid2D game object in the Hierarchy. Attached is the
Grid2D script to follow along with. Puzzle games often require a great deal of 2D array manipulation.
To start a project, we can use the Grid2D project. The code in the Grid2D.cs class will begin with the
following:

A few public variables that will allow us to make changes in the editor. We can make various sizes for
the grid and we’ll also be able to change the puzzle piece that’s used in the puzzle.

256 Learning C# Programming with Unity 3D

The PuzzlePiece on the script will need an object assigned to it. This means you’ll have to drag the
puzzle piece object in the Project under the Meshes directory to the Puzzle Piece variable in the
Inspector panel.

In the Grid2D.cs class, the first variables we’re going to look at is the public int Width and
public int Height. These two variables are made visible to the Inspector in the Unity 3D
Editor. I’ve set both of these to 8 in the Inspector panel. This is followed by a GameObject, which
we’ll fill the grid with. The last variable is a 2D array, which we will fill with the GameObject
PuzzlePiece.

In the Start() function, we’ll add an initialization for the grid with Grid = new GameObject[Width,
Height]; to set up the 2D array so we can use it. Every fixed-sized array, whether 1D, like a
GameObject[], or 2D, which looks like the above GameObject[,], needs to be initialized before it’s
used. Before being initialized, the array is null, which means it’s lacking any size or any place for us to
put anything into the array.

To fill in the array, we use the following code block added to the Start() function.

This code has two functions; the first for loop iterates through each position along the x; inside
of each x position, we make a column for y with another for loop. At each position, we create a
new GameObject.Instantiate(PuzzlePiece) as GameObject; to assign to
GameObject go. When GameObject.Instantiate() is used, an object of type object is
created. To be used as a GameObject type it must be cast. Without the cast, you’ll get the following
warning in the Unity 3D Console panel:

Assets/Grid2D.cs(14,28): error CS0266: Cannot implicitly convert type
“UnityEngine.Object” to “UnityEngine.GameObject.” An explicit conversion exists (are you missing

a cast?)
This error is telling us we need to cast from Object to GameObject, quite a simple fix even if you

forget to do this ahead of time.
After making a new instance, we need to use the x and y to create a new Vector3 to set the posi-

tion of each puzzle piece. Use Vector3 position = new Vector3(x, y, 0); to create a new

257Fundamentals: Building a Foundation

Vector3 for each position. Once the new Vector3 position has been created and assigned,
we can tell the GameObject go where it should be in the world. This is done with the statement that
follows: go.transform.position = position;.

Once the GameObject has been created and positioned, we can assign it to the GameObject[,]
array with Grid[x, y] = go;, where we use x and y to pick which index in the 2D array the
GameObject is to be assigned to. Once this is done, we can use the Grid[x, y] to get a reference to
the puzzle piece.

5.10.3 Camera and Screen Setup

To pick a puzzle piece with the mouse, we’re going to need to modify the camera’s settings.

Three changes are required; the first is Projection, which we’ll change from Perspective to Orthographic.
This will mean that lines will not converge to a point in space. Orthographic projection means that the
line where the mouse appears over the game will be parallel with what the camera is looking at. We’ll
also want to resize the camera to match the grid.

258 Learning C# Programming with Unity 3D

Then the position of the camera is set to match the center of the puzzle grid. We use half the width for
x and half the height for y. Then a half a unit is taken off of each to position the camera to look at the
middle of a puzzle piece rather than the top right corner of a grid square.

To catch the mouse pointer position in the world a collider of some kind needs to be added to the grid as
well. This will allow us to find where the mouse is hovering over when the game is playing.

The Plane primitive is 10 units wide and 10 units deep. To modify it to match our grid size we use Width
and Height multiplied by 0.1f to change its size. Then it’s rotated up to match the grid orientation and
then we move its center to match the center of the grid reusing xPos and yPos.

In the Update() function on the Grid2D.cs class, we can use the same ray cast to the mouse position
we did in the Sample Game.

This gives us an x and y coordinate that will roughly match up to a puzzle piece. To get a better match,
we’ll need to convert the position from a float value into an int value, but we’ll need to remember that
values are rounded to 0 even if the value is above 0.5.

259Fundamentals: Building a Foundation

With a rough evaluation we can check that the x and y are within the bounds of the width and height
values used to build the grid. To store the values an xGrid and yGrid are created to help us visualize
what the values are being set to.

With the float value of x and y converted to an int that corresponds to a grid value, we can change the
color of the puzzle piece in the grid based on where the mouse is positioned.

GameObject go = Grid[x, y]; works, but only when the cursor is over a puzzle piece. When the
cursor is over a puzzle piece, we turn its material color to red. When the cursor is no longer over a puzzle
piece, we get a bunch of warnings informing us we’re selecting an index that is out of range.

5.10.4 Checking Range

IndexOutOfRangeException: Array index is out of range.
Grid2D.Update () (at Assets/Grid2D.cs:27)

This is true when the cursor is at −4, 7; there is no assigned object to the Grid[−4,7]; we’ve only assigned
from 0 to 6 on the x and 0 to 6 on the y. These errors should be resolved before we move on. This can be
done with an if statement or two.

260 Learning C# Programming with Unity 3D

This code checks first that x is at least 0, and then does the same for y. After that, we check that x is less
than the width we chose initially, and do the same for y. However, this is a messy bit of code. It works
but we can clean this up. There’s nothing happening if only x < = 0; none of the if statements require
any special actions to occur. They all contribute to the same assignment and color change statements at
the end. That’s how we know they can be reduced to one if statement.

The reduced statement looks like the following:

However, with so many && in a single statement, the clarity of the values being checked and assigned
should be separated.

Much better. Therefore, this code works to highlight every game object we touch, but the objects remain
colored red. The puzzle piece should return to white when the mouse is no longer hovering over them; How
would we do that? The logic isn’t so simple. We could pick every other object and set it to white, but that’s
impractical. Strangely, the solution is to set all of the objects to white, and then color the current object red.

Iterate through all of the game objects in a similar way to how we instantiated them. Because this code
is sharing a function with x and y, where we converted the float to an int, we need to make new versions
of x and y for this function; therefore, we’ll use _x and _y to create a new variable for the for loops. With
this, we set them all to white. After resetting all of the puzzle pieces to white, we move to the next func-
tion that sets them to red.

261Fundamentals: Building a Foundation

We’re not so interested in what our scene looks like in the middle of the Update() function, just how
the scene looks like at the end. None of the intermediate steps appears in the scene, until the Update()
function has finished. This means we can do all sorts of unintuitive actions during the course of the
Update() function, so long as the final result looks like what we need.

Now, we have a very simple way to detect and pick which puzzle piece is selected in a grid of objects
using a 2D array and a Vector3. Of course, the strategy used here may not fit all situations. In addition,
applying various offsets for changing the spacing between each object might be useful to make differ-
ently proportioned grids. Later on, you will want to add in additional systems to check for color to deter-
mine matches, but that will have to wait for Section 5.11.4.

With the code moved into its own function, our Update() loop is easier to read. We’re very specific
about what is required to update the picked piece. We just need to remember to rename mousePosition
to a position inside of the new function. We can also extend the new function to return the piece that has
been picked. By breaking apart a long string of code into smaller, more simplified functions, we’re able
to gain more flexibility and allow for changes more easily.

5.10.5 What We’ve Learned

Back in the MultidimensionalArrays script arrays can be a bit of a pain to work with, but after some
practice, the logic becomes more intuitive. Puzzle games that use a grid of colored objects to match up
often use a 2D array to check for patterns.

262 Learning C# Programming with Unity 3D

We could expand the concept to more than two dimensions as well. Using the previously defined
GameObjects, we could make a 3D array that looks like the following:

Something like this is easier to produce using code to fill in each value, but it’s important to be able to
visualize what a [4,3,2] array actually looks like. Though a bit impractical, these sorts of data structures
are important to computing, in general. Outside of video game development, multidimensional arrays
become more important to data analysis.

Large database systems often have internal functions that accelerate sorting through arrays of data in
more logical ways. Of course, if you’re thinking about building a complex RPG, then multidimensional
arrays might play a role in how your character’s items and stats are related to one another.

5.11 Array List

Fixed-sized arrays are great. When you create an array with 10 indices, adding an 11th score or more
will be cause for some rethinking. You’d have to go back and fix your code to include another index.
This would be very inefficient, to say the least. This is where an array list comes in handy. An ArrayList
is initialized a bit differently from a more common fixed-sized array.

An ArrayList is a C# class that has special functions for building lists that allow for changes in the
number of values stored. An ArrayList is not set to a specific size. Rather than having to pick an index
to put a value into, we merely use the ArrayList function Add(); to increase the number of objects in the
ArrayList. In addition, an array has a type associated with it.

An array like int[] numbers can store only a bunch of ints. An ArrayList can store any variety of object
types. Another feature which we’ll find out later is that an array, not an ArrayList, can have multiple
dimensions, for instance, int[,] grid = new int[8,8];, which creates an 8 by 8 array. An ArrayList cannot
be used like this.

The drawback with an ArrayList is the fact that we’re not able to populate the list ahead of time. With
the fixed-sized array we’ve been getting to know, we’re able to assign each index a value ahead of time;
for instance, consider the following:

We know that this statement will appear in the Inspector panel with seven numbers in a nice UI roll-
out. An array list doesn’t allow for this behavior, as it needs to be created and then populated after its
creation. The reason why Unity 3D allows us to assign values to objects in a scene is the scene file.
The scene itself has had special data or metadata added to the scene. The scene now has specific bindings
created to tie the data you’ve created to the class attached to an object.

To simulate this in a more common Windows app, you’d have to create a secondary file that stores spe-
cific settings. When the app is started, the settings need to be read in and then assigned to the classes as
they are instanced into the scene. Unity 3D has done much of the specific bindings for you, which allows
your game to have scenes with arranged objects and unique settings for each object.

263Fundamentals: Building a Foundation

The identifier inherits the ArrayList member methods. The Add method is used to append a value to the
end of the ArrayList object. The arrayList from the above code fragment is now an ArrayList type with
one item. With this, we’re able to use the arrayList as an object.

This statement will send 3 to the Console panel, as you might expect. In practice, the ArrayList type is
often used to collect an unknown number of objects into something more manageable. Once we’ve gath-
ered the objects we’re looking for, it’s easier to deal with the multitude of objects. Therefore, if there are
between 0 and 100 zombies in a room, we can have different behaviors based on the number of zombies
found. If we want to convert the ArrayList into a regular array, we’d need to do some copying from the
ArrayList to the array.

In addition to allowing for any number of objects, we can also consume any variety of types in the
array.

5.11.1 A Basic Example

To observe how an ArrayList is used, it’s best to see it all in action; therefore, we’ll start with the
ArrayLists project in Unity 3D. In the scene, we can have any number of cube game objects. Should the
number of objects be something that can’t be predetermined, we’d want to use an ArrayList to store a
list of them.

The code above is attached to the ArrayLists game object. This behavior adds everything in the scene
to an array. If it’s an object, then we add it to the array. Afterward, we iterate through the array using

264 Learning C# Programming with Unity 3D

foreach(Object o in AllObjects), which allows us to check if the object in the allObjects
array is a GameObject. This check is done using GameObject go = o as GameObject;, and
the following line checks if the cast is valid. If the cast is valid, then we add the object to our array list
arrayList. This is done using the same arrayList.Add(go) function we used before.

After the iteration through the list, we end up with a final pair of steps. The first is to initialize a regular
GameObject array to the size of the ArrayList. Then, we need to copy the arrayList to the freshly
initialized GameObject array with arrayList.CopyTo().

The final result is an ArrayList of each game object in the scene. If we skip the cast checking of whether
Object o is a GameObject, then we get an invalid cast error. This happens only when we try to copy the
arrayList to the GameObject array. We can do the following in the iteration to populate the arrayList
without any problems.

This code simply adds everything that FindObjectsOfType() finds to the arrayList. This tells
us that arrayList ignores the type that it’s being filled with. To see what this foreach loop is doing, we
can use the following modification:

Here, we log each o to the console. We get many more objects than you might have guessed. In the scene
I’ve created, there are 76 different lines printed to the Console panel. The list includes the game objects
as well as dozens of other objects that are added to the ArrayList; too many to spell out in this case.
A regular array can accommodate only one type at a time. And a GameObject[] array can have only
GameObjects assigned to each index.

265Fundamentals: Building a Foundation

Since we might not necessarily know how many GameObjects reside in the final list, we need
to dynamically add each one to the ArrayList, and wait till we stop finding new GameObjects to add. Once
the list is done with iteration, we can then use the final count of the arrayList, using arrayList.Count,
to initialize the GameObject array. The ArrayList has a function called CopyTo, which is designed to copy
its contents to a fixed-sized array; therefore, we use it to do just that, with the last two statements:

5.11.2 ArrayList.Contains()

ArrayList.Contains() is a static function of ArrayList. The ArrayList type has several useful
functions aside from just copying to an array. Say, we add a public GameObject SpecificObject; to the
ArrayLists class. Then we can drag one of the cubes in the scene to the variable in the Inspector panel.

266 Learning C# Programming with Unity 3D

Now, we have an object and a populated array list. This allows us to search the array list for the object.

We can use two different array list functions. The first is Contains() and the second is IndexOf().
The Contains() function searches through the array list and returns true if it finds the object and false
if the object isn’t in the list. The IndexOf() function returns the index where the SpecificObject is
found. Therefore, if the array list has the specificObject at index 5, the Debug.Log above returns 5.

5.11.3 Remove

The object that the script is a component of is found by this.gameObject, or simply, gameObject.
Therefore, we may remove the object doing the searching from the list with the Remove() function.
The statement that effects this behavior would look like the following:

This statement reduces the size of the array list and takes out the Main Camera, which has the array list’s
component attached. With the camera removed, the copied array now has only cubes in it.

If the goal is to filter the scene for specific objects, then the array list serves as a great net to fill with
the types of data you need. If you don’t know ahead of time how many objects you are going to find,

267Fundamentals: Building a Foundation

then an array list is a useful utility class that allows for some interesting tricks. Therefore, we’ve looked
at removing and finding an object in an array list, but we don’t need to stop there.

5.11.4 Sort and Reverse

Let’s add public int[] messyInts = {12,14,6,1,0,123,92,8}; to the class scope. This should appear in
the Inspector panel, where we can see that messyInts is indeed a collection of messy ints. To copy the
messyInts into a new ArrayList, we use AddRange();

With the above code added to the Start() function, we get the following result once the game is run.

The elements of the array have been sorted, starting at the lowest and ending with the highest. The sort
function is a nicely optimized sort function. You might expect this from the experienced computer sci-
entists working on the C# library we’ve been using. If we want to reverse the order in which the numbers
are sorted, then we can use the sorted Reverse(); function.

268 Learning C# Programming with Unity 3D

Having some numbers rearranged is great, but there’s little inherent value to the numbers if there are no
associated objects in the scene that relate to the numeric values. The Sort() function is good for simple
matters where the data that’s sorted has no association with anything in particular outside of the array.
However, should we want to compare GameObjects in the scene, we might need to do something more
useful.

5.11.5 What We’ve Learned

Making a custom sorting system requires some new concepts, which we have yet to get to. A specific
type of class called an interface is required to create our own system of sorting. We could use this class
in many different ways and take advantage of the power behind C#’s library.

A performance issue comes up with array lists. We may add objects to an ArrayList by simply using
MyArrayList.Add(someObject);, which is easy. When we need to see what’s in that array list, we
begin to have a few problems.

As this was mentioned at the beginning of this chapter we didn’t find out what happens if we use the
following.

We have an issue with the above code fragment. If we assumed the ArrayList would only contain num-
bers; multiplying 123 by “strings” would result in an error. Of course we can’t multiply these two very
different types. We’d need to do a few tricks to check if we’re allowed to multiply two objects from the
ArrayList. First, we’d check if both are indeed numbers, if they are then we can proceed with a multi-
plication statement. If not, then we’d have to find another two objects which are numbers or we’d get an
error.

This process takes time, and if the array list is big, then we’d be spending a great deal of time on check-
ing object types. If we use a regular array, we can be sure that each object in the array is the same type,
or possibly null. Checking against null for each object in the list is an extra step in the process. Reducing
the number of steps your function need to work will speed up your functions and code will run faster.

When dealing with arrays, we might need to stuff an array into an array. Each array inside of an array
can be of a different size. Imagine array A to be 10 items long. At A[0], you can create another array B
that is, for example, 3 items long. If each index of A is of a different size, you’ve created what is called
a jagged array.

5.12 Strings

Strings are collections of letters. C# has no concept of what words are, so a string is nothing more than a
collection of meaningless letters. When you use a string, it’s important to remember that the data stored
in it is not like words.

5.12.1 Declaring a String

Basically, strings are presented to the computer by using the " or ' operator. Strings act somewhat like
an array, so we’ve held off until after we looked at arrays before getting to strings. Later on, strings will
become a bit more useful, once we start naming GameObjects.

269Fundamentals: Building a Foundation

Strings can be used as user names and will be useful if you wanted to use them for dialog windows
when talking to characters in a role-playing game. Being able to process strings is a useful skill to have
for many general purpose programming tasks.

5.12.1.1 A Basic Example

Let’s start with the Strings_Scene in the Chapter5 Unity Project. And open the Strings.cs script attached
to the Strings game object in the scene.

This statement creates a string with the identifier s and then assigns Something in quotes to s. Strings
have several additional functions that are important. Be careful to not use smart quotes, which word
processors like to use. Quotes that have directions are not the same as the quotes a compiler is expecting.
Words in special quotes (“words”) actually use different characters when written in a word processor.

The compiler expects a different character. The character set that most word processors use is different
from what C# uses to compile. For instance, if you hold down the ALT key and enter four numbers on
the number pad, you’ll get a special character.

Printing the s results in a predictable output to the Console panel.

There’s not a whole lot unexpected happening here. However, we can do something with strings that
might unexpected.

We can add this statement just before the print (s); and get a different result. When we run the game, we
get the following Console output:

We forgot to add in a space before the more in “more words,” so it ran into the word quotes. White space is
important to how we use strings. There’s no logic to what’s happening when we add more words to a string.
To correct this, we need to add a space before more and we’ll get a more expected result: “more words.”

Strings do have some tricks that make them very useful. The string class has many member functions
we can use, like Contains.

270 Learning C# Programming with Unity 3D

This returns true; the word "Something" is contained in the string stored in s. Use any other set of
letters which doesn’t appear in our string and the console will print false.

We can also do the following.

The reassignment of s prints out what you might expect.

For argument’s sake, we’ll try another operator in the string declaration.

Here, we’re going to try to subtract “Second word” from the first. Of course, this doesn’t work and we
get the following error.

So why does the + work and not the − in our declaration? The answer is operator overloading. Operators
change their meaning depending on the context in which they appear. When the + is placed between
two strings, we get a different result than when we put the + between two numbers. However, strings are
rather particular. It’s rather difficult to say for sure what it would mean to subtract one word from another.
Computers are horrible at guessing.

5.12.2 Escape Sequences

Strings in C# need to be handled very differently from a regular word processor. Formatting strings can
be somewhat confusing if you treat C# like any other text format.

If you want to add in a line return, you might end up with a mess as in the above image. Sometimes called
line feeds, or carriage returns, these line returns tend to break C# in unexpected ways. To add in line
feeds into the string, you’ll have to use a special character instead.

Escape sequences work to convert two regular text characters into more specialized characters without
needing to mess up your code’s formatting. The \n creates a “new line” where it appears in the string.
A \t adds a tab wherever it appears.

271Fundamentals: Building a Foundation

Unity 3D diverges a bit from most C# libraries as it doesn’t implement all of the different escape
sequences that are generally included. For instance, \r is carriage return, as is \f that are generally
included in other common .NET development environments. The \n, which creates new line sequence,
is more commonly known.

In old mechanical type writers, a carriage return is a lever that would both push a roll of paper and add
in a new line at the same time; hardly something you see around today, unless you’re a street poet. Not all
these escape characters work, but there are several others which you’ll find useful.

So, if you want quotes:

You get quotes. To get double quotes to print in your console, you’ll use the \" escape sequence. Here’s a
list of regular escape sequences.

In addition to these escape sequences, we have an additional three types that are used less often but are
just as important. C# and Unity 3D will recognize some hexadecimal characters that are accessed with
\x followed by two hexadecimal values. We’ll find out more about these hex values and other escape
sequences in a later chapter. Using hexadecimals is another way to get the more particular characters
often found in other languages.

5.12.3 Verbatim Strings: @

In some cases, it’s useful to use the @ operator before a string. This tells C# that we’re really not interested in
formatting or not being able to make modifications to our string, like string s = "This\nThat";, as
opposed to the @ operator string s = @"This\nThat";

272 Learning C# Programming with Unity 3D

This code produces the following:

This also means something as strange looking as:

prints to the console

Notice that the console output includes exactly what was used in Visual Studio. If the words lined up
using the indents, the white space would be included in the verbatim string. This is allowed because of
the verbatim operator. When using Debug.Log(), the verbatim operator can be used to format your
strings to include new lines wherever you may need them.

Strings that contain information can easily be created; it’s often the case when trying to track the
behavior of a creature in the scene.

5.12.4 What We’ve Learned

We’re not going to be building any word-processing software within Unity 3D. It’s not something that
sounds all that fun, and there are better environments for doing that. As far as strings are concerned,
we’re better off using them as seldom as possible.

Very few game engines dwell on their text-editing features, Unity 3D included. If you’re planning on
having your player do a great deal of writing and formatting to play your game, then you might have a
tough time. For most purposes, like entering character names or setting up a clan name, the string class
provided will have you covered.

5.13 Combining What We’ve Learned

We just covered some basic uses of loops. The for and the while loop have similar uses, but the for loop
has some additional parameters that can make it more versatile. We also covered some relational, unary,
and conditional operators.

273Fundamentals: Building a Foundation

Together with if, else if, and else, we’ve got enough parts together to do some interesting logic tests.
We can start to give some interesting behavior to our statements. For instance, we could build a cityscape
using cubes that grows over time.

5.13.1 Timers

In the Timers_Scene project in the Chapter5 Unity Project, we’ll start with the Timers.cs script attached
to the Timers game object in the scene. Let’s say we want to create a number of towers, but we want to
create them one at a time. To do this, we should use a timer; therefore, we should start with that first.

If we start with Time.fixedTime, we should see how that behaves by itself. We get a printout to the
console starting with 0, which then counts up at one unit per second. Therefore, if we want some sort of
action 3 seconds later, we can set a timer to 3 seconds from 0.

If Time.fixedTime is greater than 3, “Times Up” is repeatedly printed to the console. However, we
want that to print only once, since we want only one thing to happen when our if statement is executed.
To do this, we should add in some way to increment the number we’re comparing Time.fixedTime to.

With a class scoped variable called NextTime, we can store our next “Times Up” time and update
it when it is reached. Running this code prints “Times Up” once the game starts. If NextTime was
declared to 3, then we’d have to wait 3 seconds before the first Times Up is printed to the console.

Therefore, now, we have a timer. We should next add some sort of counter, so we know how many times
the if statement was executed.

274 Learning C# Programming with Unity 3D

First, add in int Counter = 10 to store how many times we want to run our if statement. If the
Counter is greater than 0, then we need to check our Time.fixedTime if statement. Once the timer
is reset, we need to decrement our Counter by 1. Once the counter is no longer greater than 0, we stop.
There’s a cleaner way to do this.

We can reduce the extra if statement checking the counter value. To merge if statements, use the &&
 conditional operator. If either side of the && is false, then the if statement is not evaluated. Because
there’s no code in the if statement checking the counter, there’s no reason why it can’t be combined with
the if statement it’s containing.

Now, we have a timer and a counter. We can make this more useful by exposing some of the variables
to the editor.

Add in public before some of the existing variables, and for good measure, let’s get rid of the 3 that we’re
adding to Time.fixedTime and make that into a variable as well. This is common practice; use some
numbers to test a feature, and then once the feature roughly works, change some of the numbers into
editable parameters that may be handed off to designers.

275Fundamentals: Building a Foundation

Now we can replace print (“Time Up”); with a more useful function. Once we’ve got the chops, we’ll
start replacing boxes with building pieces, but we’ll leave that to the artists, the code below serves as a
good example for now.

This little block of code will slowly pop a new cube into existence around the scene origin. We’re using
Counter to multiply against 2 so each box object will appear in a different place along the x coordinate.

You can speed up the process by lowering the Delay value we just added. What if we wanted to have
more than one box created at each counter interval? This objective can be accomplished using either a
while or a for statement being run inside the if statement.

Adding in the for loop is the easiest way to do this. UnityEngine.Random.Range(); is a new func-
tion that returns a number between the first argument and the second argument. We’re just testing this so
we can use any number to start with.

276 Learning C# Programming with Unity 3D

Okay, looks like everything is working as we might have expected. We should take out the numbers
we’re using in the Random.Range() and make them into more public parameters for use in the editor.

Adding more variables to control spacing will also make this more interesting.

By tweaking some of the parameters, you can build something that looks like this with code alone! The rea-
son why we should be exposing so many of these variables to the editor is to allow for creative freedom.
The more parametric we make any system, the more exploration we can do with what the numbers mean.

277Fundamentals: Building a Foundation

If you feel adventurous, then you can add in a second dimension to the stack of cubes.

Look at that. What started off as some cube-generating system turned into some 3D pixel art city
generator.

278 Learning C# Programming with Unity 3D

If we spend more time on this, then we can even start to add little cubes onto the big cubes by setting
scale and position around each of the cubes as they are generated. We won’t go into that right now; I’ll
leave that on to you to play with.

5.13.2 What We’ve Learned

We’re starting to build more complex systems. Adding functions to classes and using them in for loops is a
fairly flexible and reusable setup. What’s important here is to understand a bit of the thought process of writing
a complex system. We started off with one line, made sure that the line of code worked, then added another
line or two. After several iterations we went from a simple timer to a small cube shaped pixel like city scape.

We should be a bit more comfortable reading complex algorithms in the functions we read on forums
and in downloaded assets. If we come across something new, then we should be able to come up with
some search terms to find out what we’re looking at.

5.14 Leveling Up: On to the Cool Stuff

We’ve come further along than most people who set out to learn how to program. By now, you should
be able to read through some code and get some idea of how it’s working. We’ve gotten through some
of the tough beginnings of learning how to write in C#, but things are just about to get more interesting.

The clever tricks that programmers use to save time are about to start to come into play. If you take the time,
you should review Chapters 1 through 4 to strengthen your grasp of the core concepts we’ve been studying.

There’s an interesting topic that hasn’t found a place in any chapters yet. If you open the MagicComponent
project in Unity 3D, you’ll be able to see some interesting behavior. Say we have an object in the scene with a
component attached. We’ll look at something called FirstComponent.cs attached to a cube.

If the Main Camera has a component attached that has a couple of variables that are set for
FirstComponent and SecondComponent, how do we add the GameObject’s component to that
slot in the Inspector panel? We drag it, of course!

279Fundamentals: Building a Foundation

Therefore, even though the variable isn’t GameObject, you can still drag the object from the scene
into the Inspector panel. Unity 3D is clever enough to find a component of the same type as the slot in
the Inspector.

This feature also means that any variable changed on the object in the scene will have a direct connec-
tion to the Magic.cs class that is holding onto the variable. This means a couple of strange things. First,
the objects in the scene are instances, but they are acting in a rather weird limbo. Second, the connection
between variables is stored in some magic data stored in the scene file.

The weird limbo infers that when you drag a class onto an object in the editor, it is immediately instanced.
This behavior is unusual in that this only happens in the Unity 3D Editor, your player and the finished
game never has any behavior like this. The class instances an object and attaches it to the GameObject
in the scene, as though you used GameObject.Instance() or even new FirstComponent();, or
perhaps Component.Add();, and added it to the GameObject in the scene.

The fact that the Start() and Update() functions aren’t called means that the game isn’t running.
However, the class is still an instanced object created by the .cs file in the Assets directory. There are
editor scripts that do run while the game might not be playing. Editor scripts are often used to help game
designers.

Editor scripts can be used to create tools and other fun interfaces specifically for the Unity 3D
Editor. These are often not running while the game is playing. We shouldn’t venture too far into Unity
3D-specific tricks as this distracts us from learning more about C#, but it’s fun to know what to look for
if we want to build our own C# tools for Unity 3D.

The strange fact that the variable in Magic.cs has a handle on an object in the scene without having to
run GameObject.Find(); or Transform.Find(); means that there’s a lot going on in the scene
file. All of this is actually stored in the meta files that seem to be appearing as you work with others on
Unity 3D projects.

These meta files are required for these magic data connections between objects in a Unity 3D Scene
file. Of course, other file settings and project settings are also stored in these meta files. If you open one,
you’ll find many things called GUIDs, which stands for globally unique identifiers, and they’re used in
meta files to find a specific object in the scene and apply settings to them.

It wasn’t long ago when game engines referenced everything in the scene by their GUID alone. Today,
they’re at least hidden from view, but they still affect our lives as game programmers. We can’t reference
a specific object by name alone. If you’ve got several objects named GameObject, then you’re going to
have a rough time remembering which one actually has the data you’re looking for. Because of this,
everything is assigned a GUID and that’s just the way it’s gotta be.

http://taylorandfrancis.com

281

6
Intermediate: The Tricks of the Trade

The coming chapters are big, dense, and exciting. Getting into a programming language means discovering
many cool tricks. The basics of most programming languages have already been covered.

From here on out, you’ll be learning some of the more clever systems that make the C# language elegant
and concise. Rather than having long chains of if-else statements, you can use a switch statement. Rather
than having a large uncontrolled nest of different variables, you can group them together in a struct.

Don’t worry about not making rapid progress; learning is more about the journey than it is about the
goal. Of course, if you do have a goal of making a featured mobile game, then by all means, speed forth
toward your goal. Just try not to skip around too much; there’s much stuff that is explained for a reason.

6.1 What Will Be Covered in This Chapter

The long journey begins. We’re going to cover some important concepts here, including the following:

• Classes as objects

• Class constructors

• Arrays

• Enums

• Switch statement

• Structures

• Namespaces

• More on functions

• More on inheritance

• More on type casting

• Some work on vectors

• Goto

• Out parameter

• Ref parameter

• Operator overloading

This chapter discusses a few concepts more than once, or rather, we look at different aspects of type
casting, for instance, but we divide the concept over more than one chapter. In between the chapters, we
cover a few other concepts that do relate back to the topic. Learning a single concept can mean taking in
a few separate concepts before coming back to the original topic.

6.2 Review

By now you’ve been equipped with quite a vocabulary of terms and a useful set of tools to take care of nearly
any basic task. Moving forward, you’ll only extend your ability and come to grips that you’ve still got a
long way to go. Even after years of engineering software, there’s always more to learn. Even once you think
you’ve covered a programming language, a new version is released then you need to learn more features.

282 Learning C# Programming with Unity 3D

Aside from learning one language, most companies will eventually toss in a task that involves learning
another programming language. In a modern setting, it’s likely you’ll need to learn some of the program-
ming languages while on the job. This might involve knowing something like Scala or PHP, yet another
programming language you’ll have to learn.

Learning additional programming languages isn’t as daunting as you might think. Once you know one
language, it’s far easier to learn another. The keyword var is used in many other programming languages
in the exact same context. It’s a keyword used to store a variable. In C#, we see var v = "things";,
which is similar to JavaScript where var v = "things";.

So far, the principles that have been covered in this book are general enough such that almost every
other programming language has similar concepts. Nearly all languages have conditions and operators.
Most languages use tokens and white space in the same way as well.

6.2.1 Class Members

Classes provided by Unity 3D become accessible when you add using UnityEngine at the top of your
C# code. All the classes found inside of that library have names which you can use directly in your own
code. This includes Input, and all the members of Input are imported into your code.

6.2.1.1 A Basic Example

Follow along with the ClassMembers_Scene and the ClassMembers script found in the Chapter 6 Unity
3D project. Let’s start off with a new class that will have some functions in it. We’ve done this before by
creating a new C# class in the Project panel.

Create a new class called Members.cs because we’re going to use members of the Members class. Then
we’ll add public void FirstFunction() with Debug.Log(“First Function”); to print to the
Console panel when it’s invoked.

There are two classifications for the stuff that classes are made of: data members and function mem-
bers. As you might imagine, function members are the lines of code that execute and run logic on data.
Data members are the variables that are accessible within the class.

In our Example class we’ve been abusing a lot, we’ll add in the following line to the Start() function:

This creates what’s called an instance. We’re assigning the identifier m to being a new copy or instance
of the Members class. The keyword new is used to create new instances. Members(); is used to tell the
new keyword what class we’re using. It seems like we’re using the class as a function, and to a limited
extent we are, but we’ll have to leave those details for Section 6.3.3.1.

283Intermediate: The Tricks of the Trade

The m variable that is an instance of the Members class is now a thing we can use in the function.
When we use m, we can access its members.

Type “m.” and a new pop-up will appear in Visual Studio showing a list of things that m can do.
FirstFunction, as well as a few other items, is in the list. These other items were things that Object was
able to do. Accessing the different functions within a class is a simple matter of using the dot operator.

Finish off the m. by adding FirstFunction();. Running the script when it’s attached to a cube or
something in the scene will produce the following Console output. Objects and its members have many
uses; though, this might not be clear from this one example.

6.2.1.2 Thinking Like a Programmer

A peek into a programmer’s thinking process reveals a step-by-step process of evaluating a situation and
finding a solution for each step. The plan begins with an overall goal but finding the small incremental
steps to reach the goal are just as important.

Gathering data and then doing something with the data follows. Then logic takes the front seat in this
case, as the programmer needs to not only investigate each function, he or she must use but also clean up
the thinking process as he or she writes code.

Intuition and deduction are a huge part of programming. The programmer needs to guess what
sort of functions he or she should be looking for. With each new development environment, the pro-
grammer needs to learn the software’s application programming interface, the interface between you
(the programmer) and the application you’re working with, in this case, Unity 3D.

At this point, we have some basic tools to do something interesting with our game scene. However,
to make a game, we’re going to read input from the keyboard, mouse, and any other input device that
the player might want to use. An appropriate place to start would be looking up the word “input” in the
Solution Explorer in Visual Studio.

284 Learning C# Programming with Unity 3D

Dig into the UnityEngine.dll and expand the UnityEngine library. You should find an Input class that
looks very promising. From here, we can start hunting for a function inside of input that might be useful
for us. At this point, I should mention that programmers all seem to use a unique vocabulary.

The words “Get,” and “Set” are often used by programmers for getting and setting values. For getting
a keyboard command, we should look for a function that gets things for us. We can find “GetKey” in the
numerous functions found in Input.

There seems to be a string name and KeyCode key for each one of the functions. We did mention that
reusing names for things means erasing a previously used name. However, this doesn’t always hold true.
In the case of functions, when you duplicate a name, you’re allowed to share the name, as long as you do
something different with the arguments found in parentheses. This is called overriding, and we’ll learn
more about that in Section 6.13.1. It’s just good to know what you’re looking at so you don’t get too lost.

So now that we’ve found something that looks useful, how do we use it? The “GetKey” function looks like
its public function, which is good. Functions with the keyword public are functions that we’re allowed to use.

The context when using the dot operator in numbers changes an int to a double or float if you add in an
f at the end of the number. When you add the dot operator after the name of a class found in UnityEngine,
you’re asking to gain access to a class member. In this case, we found GetKey inside of Input, so to talk
to that function we use the dot operator after Input to get to that function.

There were two GetKey functions: The first had “KeyCode key” and the second had “string name”
written in the arguments for the function. This means we have two options we can use.

When you add the first parenthesis, MonoDevelop pops up some helpers.

These help you fill in the blanks. There are many KeyCode options to choose from. You can see them
all by scrolling through the pop-up. I picked the KeyCode.A to test this out. I’m guessing that pressing
the A key on the keyboard is going to change something. In the Example.cs file, add in the following:

We’re setting the bool AKey to this function; why a bool and why even do this? Remember that the func-
tion was designated as a public static bool. The last word is the reason why we’re using a bool AKey.
The variable type we’re setting matches the return type of the function.

285Intermediate: The Tricks of the Trade

Finally, we’re printing out the value of AKey. Run the game and press the A key on your keyboard and
read the Console output from Unity 3D.

When the A key is down, we get True; when it’s not down, we get False. It looks like our hunch was
correct. Our AKey bool is now being controlled by the Input class’ member function GetKey. We
know the return type of GetKey because of the bool that was written just before the name of the func-
tion. We also know how to access the function inside of Input through the dot operator.

Let’s keep this going. Make a bool for WKey, SKey, and DKey. This will allow us to use the clas-
sic WASD keyboard input found in many different games. Then we’ll make them set to the different
GetKeys that we’re going to use from Input.

Now we’re going to make our cube move around, so we’re going to look at the Transform class. To
move our cube around, we’re going to keep track of our current position. To do this, we’re going to make
a Vector 3 called pos as a class scoped variable.

The first thing we want to do is set the pos to the object’s current position when the game starts.
This means we can place the cube anywhere in the scene at the beginning of the game and the pos will
know where we’re starting.

In the function named Update(), we’re going to set the transform.position of the cube to pos in each frame.
This means that if we change the x, y, or z of the pos Vector3 variable, the cube will go to that Vector3.
Now all we need to do is change the position.x and position.z when we press one of the keys.

286 Learning C# Programming with Unity 3D

I’ve added an if statement controlled by each bool we created at the beginning of the Update()
function. Then we changed the position.x and position.z according to the direction I wanted
the cube to move in by adding or subtracting a small value. Try this out and experiment with some
different values.

This is not the only solution, nor is it the best. This is a simple solution and rather restricted. The speed
is constant, and the rotation of the cube is also fixed. If we want to improve on this solution, we’re going
to need a better way to deal with many variables.

A big part of programming is starting with something basic and then refining it later. You start with
the things you know and add to it stuff you figure out. Once you learn more, you go back and make
changes. It’s a process that never ends. As programmers learn more and figure out more clever tricks,
their new code gets written with more clever tricks.

6.2.2 Return

The return keyword is powerful and it’s a very clever trick. It’s used in a couple of different ways, but
certainly the most useful is turning a function into data. If a function doesn’t give out data, it’s given the
return type void. For instance, we’ve been using void Start() and void Update().

void indicates that the function doesn’t need to return any data; using the keyword return in a function
like this returns a void or a nothing. Any keywords that precede the return type modify how the function
operates; for instance, if we wanted to make a function available to other classes, we need to precede the
return type with the keyword public.

6.2.2.1 A Basic Example

Using the return keyword gives a function a value. You’re allowed to use the function name as though it
were the function’s return value.

287Intermediate: The Tricks of the Trade

In the Start() function the following sends 3 to the console.

When you run this basic example, you’ll see a 3 printed out in the Console panel. To prove that
ImANumber() is just a 3, you can even perform math with the function. In the following example,
you’ll get many 6 s being printed out to the Console panel.

Most often when we want to reduce complexity within a single function, we need to separate our code
into other smaller functions. Doing so makes our work less cluttered and easier to manage. Once the code
has been separated into different smaller functions, they become individual commands that can contain
their own complexity.

We’re going to reduce the number of lines required in the Update loop. To do this, we’ll write our own
function with a return type Vector3. Reducing the number of lines of code you have to muddle through
is sometimes the goal of clean code.
ImANumber() isn’t a variable; it’s a function; more so, it’s a function that returns a value. In other

words, you will not be able to assign something to ImANumber() as in the following example:

There are ways to do something like this. We’ll need to use the contents in parentheses to assign
ImANumber() a value for it to return.

6.2.3 Arguments aka “Args” (Not Related to Pirates)

We’ve seen the use of arguments (also known as args) earlier when we initialized a “Vector3 (x, y, z);”
with three parameters. Review with a function that’s very simple and takes one arg.

6.2.3.1 The Basic Example

This function takes a number and returns it.

The function int INeedANumber (int number) is used in our Start() function. The argument
field is populated with int number, indicating two things. First is the type that we expect to be in our
function’s argument list as well as a name or an identifier for the int argument. The identifier number
from the argument list exists throughout the scope of the function.

288 Learning C# Programming with Unity 3D

In this second example, we use the INeedANumber() function as a number. It just so happens to be
the same number we’re using in its argument list. When we print out val from this, we get 10 printed to
the Console panel. However, this doesn’t have to be the case.

If we were to modify the return value to number +1 and run the previous example, we’d have 12 printed
out to the Console panel. This would be the same as adding 4 and 8, or what is happening inside of the
function 3 + 1 and 7 + 1.

6.2.3.2 Multiple Args

When you see functions without anything in parentheses, programmers say that the function takes no
args. Or rather, the function doesn’t need any arguments to do its work. We can expand upon this by add-
ing another argument to our function. To tell C# what your two arguments are, you separate them with a
comma and follow the same convention of type followed by identifier.

This is used in the Start() function which looks like the following:

The function takes two arguments, adds them together, and then prints out the result to the Unity 3D’s
Console panel. Just for the sake of clarity, you’re allowed to use any variety of types for your args.
The only condition is that the final result needs to match the same type as the return value. In more
simple terms, when the function is declared, its return type is set by the keyword used when it’s declared.

This also includes data types which you’ve written. We’ll take a look at that in a bit, but for now we’ll
use some data types we’ve already seen.

Mixing different types together can create some interesting effects, some of which might not be
expected. We’ll study the consequences of mixing types later on as we start to learn about type casting,
but for now just observe how this behaves on your own and take some notes. To convert a float value
to an int value, you precede the float with the number type you want to convert it to with (ToType)
DifferentType, but we’ll get into type conversions again later.

So far we’ve been returning the same data types going into the function; this doesn’t have to be the
case. A function that returns a boolean value doesn’t need to accept booleans in its argument list.

289Intermediate: The Tricks of the Trade

In this case, if both a and b are the same number, then the function returns true. If the two numbers are
different, then the function returns false. This works well, but we can also shorten this code by a couple
of lines if we use more than one return.

The return keyword can appear in more than one place. However, this can cause some problems. If we
return a value based on only a limited case, then the compiler will catch this problem.

290 Learning C# Programming with Unity 3D

This example will cause an error stating the following:

Assets/Example.cs(16,6): error CS0161: “Example. NumbersAreTheSame(int,
int)”: not all code paths return a value

The most simple form of the above returns on a single line.

The rest of the possibilities need to have a return value. In terms of what Unity 3D expects, all paths of
the code need to return a valid bool. The return value always needs to be fulfilled, otherwise the code
will not compile.

6.2.3.3 Using Args

Doing these little changes repeatedly becomes troublesome, so they leave some things up to other people
to change until they like the results. Each function in the Input class returns a unique value. We can
observe these by looking at the results of Input.GetKey().

Once you type in Input, a pop-up with the members of the Input class is shown. Among them is GetKey.
Once you enter GetKey and add in the first parenthesis, another pop-up with a list of various inputs is
shown. Choose the KeyCode.A. Many other input options are available, so feel free to experiment with
them on your own.

To test this code out, run the game and watch the output in the Console panel. Hold down the “a”
key on the keyboard and watch the false printout replaced with true when the key is down. Using the
print() function to test things out one at a time is a simple way to check out what various functions do.
Test out the various other keys found in the Input.GetKey() function.

291Intermediate: The Tricks of the Trade

We should add an argument to the Movement() function. With this we’ll add in a simple way to change
a variable inside of the Movement() function and maintain the function’s portability. Replace the 0.1f
value with the name of the argument. This means that anything put into the function’s argument list will
be duplicated across each statement that uses it.

This means we need to pass in a parameter to the argument list in the Movement() function. We can
test by entering a simple float, which is what the Movement() argument list expects.

This means we’re just reducing the number of places a number is being typed. We want to make this
number easier to edit and something that can be modified in the editor.

Add in a public float so that the Inspector panel can see it. Then add the variable to the Movement()’s
parameter list.

292 Learning C# Programming with Unity 3D

Change the value for Delta in the Inspector panel and run the game. Now the WASD keys will move the
cube around at a different speed, thanks to the use of a public variable. There are a few different ways
to do the same thing. For instance, we could have ignored using the arguments and used Delta in place
of Dist. However, this means that the function would rely on a line of code outside of the function to
work. Everywhere you want to use the function, you’d have to write in a public float Delta statement at
the class level.

6.2.4 Assignment Operators

Operators that fill variables with data are called assignment operators. We’ve been using = to assign a
variable a value in the previous chapters. There are different types of assignment operators that have
added functionality.

Introduce the += operator to the Vector3. When operators are used in pairs there are no spaces between
them. The + operator adds two values together. The = operator assigns a value to a variable. If there
was white space between the + and the =, this would raise a syntax error. The += operator allows you to
add two vectors together without having to use the original variable name again. This also works with
single numbers. An int MyInt += 1; works just as well. Rather than having to use position.z =
position.z + 0.1f, you can use position.z += 0.1f, which is less typing. If you run the code
up above, then you’ll see your cube scooting off in the positive x direction.

6.2.4.1 A Basic Example

The example uses a function called in the Update() function in the ClassMembers script. As we have
seen with the ++ and the −− unary operators, the += operator and its negative version, the –=, work in
a similar way. One important and easy-to-forget difference is the fact that the ++ and –– works only on
integer data types. The += and –= work on both integer and floating point data types.

In this example, the f variable will be incremented 0.25f with each update call. In the code fragment above,
this increase is something that cannot be done with an integer. This is like using f = f + 0.25f;
though the += is a bit cleaner looking, or “less verbose” as a programmer might say. The change is primarily
aesthetic, and programmers are a fussy bunch, so the += is the preferred method to increment values.

A part of learning how to program is by decoding the meaning behind cryptic operators, and this is
just one example. We’re sure to come across more mysterious operators, but if you take them in slowly
and practice using them, you’ll learn them quickly.

293Intermediate: The Tricks of the Trade

Rather than using a new Vector3 to add to the transform.position, we want to use a function. To make
this work, the function has to have a Vector3 return type. For a function to return the type, we need to
include the keyword return in the function.

This function is now a Vector3 value. Based on any external changes, the value returned can also
change. This makes our function very flexible and much more practical. Again, the cube will scoot
off to the x if you run this code. This and the previous examples are doing the exact same thing.
Don’t forget that C# is case sensitive, so make sure the vector is named the same throughout the
function.

If += works to add a number to a value, then –= subtracts a value from the number. There are some more
variations on this, but they’re going to have to wait for Section 8.9.

294 Learning C# Programming with Unity 3D

The Movement() function is portable. If you copy the function into another class, you have made
reusable code. As any programmer will tell you, you should always write reusable code. The function
operates mostly on its own. It relies on very few lines of code outside of the function. There are no
class scoped variables it’s depending on, so you need to only copy the lines of code existing in the
function.

This function is not completely without any external dependencies. The Input.GetKey function
does rely on the UnityEngine library, but there are ways to reduce this even further. To figure out other
ways to reduce complexity and dependencies, we need to learn more tricks.

Wherever you need to read input and return a Vector3 to move something, you can use this function.
Copy and paste the function in any class, and then add the transform.position += Movement ();
into the Update() function of that object, and it will move when you press the WASD keys.

6.2.5 What We’ve Learned

The earlier discussion was an introduction to arguments and return values. We started to learn a bit
about how to use members of classes and how to find them. There’s still a lot more to learn, but I think
we have a pretty good start and enough of a foundation to build on by playing with things in the game
engine.

It’s time to start having functions talk to other functions, and to do this, we’re going to start writing
some more classes that can talk to one another. Accessing other classes is going to require some more
interesting tricks, and with everything we learn, we expand the tools that we can build with.

6.3 Building a Game—Part 4

What the player sees while playing is an important part of how the game is played. Camera control is
just as important as Player control. We created a simple input system to move and shoot for the player.
Adding some basic camera behavior should follow.

6.3.1 ChaseCamera

If the goal is to simply have the camera follow the player we can do this with a simple script that uses
the player’s x and z coordinates and adds that to the camera. There are a few tricks that we need to look
at to get something that works as we expect. To start we’ll begin with a script that looks like the Mover
script from Chapter 5.

295Intermediate: The Tricks of the Trade

A camera that follows the player should keep its relative position away from the Player. The difference
between the target position between frames can be used to move the camera.

As the player moves and updates are called, we calculate that movement by maintaining a Vector3
Offset. As the Player object moves around the Target.transform.position changes.
We track that difference as the player’s position - Offset. Once calculated we add that to the cam-
era’s position. After the camera’s position is updated, the Offset is updated with the current position
of the Target.

6.3.2 Tile Floor Generator

So that was a simple example of a camera following system. But what about the environment? Running
around on a plain white floor isn’t exciting. A procedurally generated floor plane might be more interesting.

Various systems in the script can be updated in the Editor before the game begins. These are added with
what is called an Attribute. The Attribute called [ExecuteInEditMode] can be added to a script

296 Learning C# Programming with Unity 3D

to enable it’s execution before the game has started. We’ll cover this in more detail in Section 8.10.
The short story is that this specific Attribute allows the Update() to be computed while we are setting
up the Scene.

To control how often we generate the tiles we use a bool GenerateTiles. This keeps the Update()
from generating new tiles every frame. An array is used to keep a reference to a couple of prefabs that we’ll
use to generate the tile floor from. In this case we have a light and a dark tile. A List<GameObject>
named TileObjectList is used to store the generated tiles. With this we can store the tiles that are
generated. This is used to remember the generated tiles, so we can clear them before generating new ones.
The list is used to iterate through all the generated tile objects.

Width and Depth parameters are used to store the TileObjects in a 2D array. A simple system to
alternate through the different tiles is used to pick which original tile to make an instance of.

The value int o = (z + x) % TileOriginals.Length; will increment with each object.
This then returns a value that’s incremented up through each tile. The value is limited to the number
of tiles in the originals list. The position of each tile instance is then positioned with x –(Width/2)
and z – (Depth/2). This makes the tiles generated around the origin. Without this, the tiles begin
at the origin but only expand in the positive quadrant away from the origin. As the tiles are created
they’re added to the List to easily delete them when the size is changed and a new set of tiles is
created.

297Intermediate: The Tricks of the Trade

Once the tiles are generated, a list copies them to the TileObjects array so we can delete them
before making a new set.

Now a small array or a large array of tiles can be generated. Change the Width and Depth parameters
and click on the GenerateTiles bool check box to change the size of the grid.

Using a script to generate results in the editing of a Scene is useful. When the generated data is saved in
the scene it’s not generated again unless the editor is run. Manually duplicating and placing tiles would
be tedius. It’s better to spend time coming up with new game play elements rather than placing tiles.

There are some considerations when it comes to using a system to generate tiles. The first is that we
need to keep a list of things that were created. When a checkbox triggers the creation of many objects,
we should delete the ones that are already in the scene.

6.3.3 What We’ve Learned

Plenty of new syntax was seen in this chapter. Your familiarity with how the keywords and variable types
are created and used will catch up to what was just seen in the coming chapters. This project should serve
as a starting point to dismantle and experiment with.

The code here is purposely written in small easily digested chunks. Each class has a clear and focused
purpose. In practice, code should be written in small easily separated components. This makes editing
and changing how each component works easier. Keep that in mind when you begin work on your own
project.

298 Learning C# Programming with Unity 3D

6.4 Class Constructors

Follow along with the ClassConstructors script found in the ClassConstructors_Scene on the
ClassConstructors object in the Chapter6 Unity 3D project. In the script is written the following example:

We start off with very little information. As we assign member fields and member functions, we create
places for the class to store data and provide the class with capability.

The use of these parameters is inferred by their name and use. When we create a new Zombie() in
the game, we could spend the next few lines initializing his parameters. Of course, we can add as many
parameters as needed, but for this example, we’re going to limit ourselves to just a few different objects.

One simple method provided in C# is to add the parameters of the classes in a set of curly braces. Each
field in Zombie is accessible through this method. Each one is separated by a comma, not a semicolon.

Note the trailing “;” after the closing curly brace. This system doesn’t do much to shorten the amount of
work involved. With each public data field provided in the Zombie class, we need to use the name of the
field and assign it. Doing this for every new zombie might seem like a bit of extra work.

299Intermediate: The Tricks of the Trade

While building prototypes and quickly jamming code together, shortcuts like these can inform how we
intend to use the class object. Rather than coming up with all possibilities and attempting to predict how
a class is going to be used, it’s usually better to use a class, try things out, and then make changes later.

6.4.1 A Basic Example

A class constructor would save a bit of extra work. You might have noticed that the statement Zombie
rob = new Zombie() has a pair of parentheses after the class it’s instancing. When a class Zombie()
is instanced, we could provide additional information to this line. To enable this, we need to add in a
constructor to the Zombie()’s class. This looks like the following:

To give this example more meaning, we’ll use the following code:

300 Learning C# Programming with Unity 3D

After the data fields, we create a new function named after the class. This function is called a class con-
structor. The function public Zombie() contains assignment statements that do the same thing as the
previous class instantiation code we were using.

This statement Zombie rob = new Zombie(); invokes the Zombie() constructor function in the
Zombie class. When the Constructor function is called, Name, BrainsEaten, and HitPoints are all
assigned at the same time. However, this will assume that every zombie is named “Zombie,” has eaten
no brains, and has 10 HitPoints. This is not likely the case with all zombies. Therefore, we’d want to
provide some parameters to the class constructor function.

By adding in a few parameters to the interface, we’re allowed to take in some data as the class is instanced.

When we create a new zombie, we’re allowed to name it and assign its hit points at the same time without
needing to remember the identifiers of the data fields of the classes. When the constructor is invoked, the first
field corresponds to a string name, which is then assigned to Name with the Name = name; statement.

Assume a new zombie has not had a chance to eat any brains just yet, so we can assign it to 0 when
it’s instanced. Finally, we can use the second argument int hitPoints and use that to assign to the
instance’s HitPoints with the HitPoints = hitPoints; statement in the constructor.

Class constructors allow us to instantiate classes with unique data every time a new class is instanced.
Putting this into use involves a few extra steps.

301Intermediate: The Tricks of the Trade

By adding a mesh to each zombie, we can more directly observe the instantiation of a new zombie in a
scene. To make this more clear, we create a vector with a random x and a random z position so that they
can appear in different places.

To make use of the different parameters, we create a new list of zombie names. Then in a for loop, we
create a new zombie for each name in the list. For good measure, we assign a random number of hit
points for each one with Random.Range(10, 15) which assigns a random number to each zombie
between 10 and 15.

6.4.2 What We’ve Learned

A class constructor is very useful and should almost always be created when you create a new class.
We are also allowed to create multiple systems to use a constructor. We’ll get around to covering that in
Section 6.13.1 on function overrides, but we’ll have to leave off here for now.

When building a class, it’s important to think in terms of what might change between each object.
This turns into options that can be built into the constructor. Giving each object the ability to be created
with different options allows for more variations in game play and appearance. Setting initial colors,
behaviors, and starting variables is easier with a constructor. The alternative would be to create the new
object and then change its values after the object is already in the scene.

302 Learning C# Programming with Unity 3D

6.5 Arrays Revisited

By now, we’re familiar with the bits of knowledge that we’ll need to start writing code. In Chapter 7,
we’ll become more familiar with the integrated development environment known as Visual Studio, and
we’ll go deeper into variables and functions.

Let’s start off with a task. Programmers usually need something specific to do, so to stretch our knowl-
edge and to force ourselves to learn more, we’re going to do something simple that requires some new
tricks to accomplish. If we’re going to make a game with a bunch of characters, we’re going to make and
keep track of many different bits of information such as location, size, and type.

6.5.1 Using Arrays in Unity 3D

To follow along open the Chapter 6 Unity Project and open the ArraysRevisited_Scene and open the
ArraysRevisited script attached to the game object of the same name.

So far, we’ve dealt with variables that hold a single value. For instance, int i = 0; in which the vari-
able i holds only a single value. This works out fine when dealing with one thing at a time. However, if we
want a whole number of objects to work together, we’re going to have them grouped together in memory.

If we needed to, we could have a single variable for each box GameObject that would look like the
following:

While this does work, this will give a programmer a headache in about 3 seconds, not to mention if you
want to do something to one box, you’d have to repeat your code for every other box. This is horrible, and
programming is supposed to make things easier, not harder on you. This is where arrays come to the rescue.

Ah yes, much better, 10 lines turn into one. There’s one very important difference here. There’s a pair
of square brackets after the GameObject to indicate that we’re making an array of game objects. Square
brackets are used to tell a variable that we’re making the singular form of a variable into a plural form of
the variable. This works the same for any other type of data.

303Intermediate: The Tricks of the Trade

To tell the boxes variable how many it’s going to be holding, we need to initialize the array with its
size before we start stuffing it full of data. This will look a bit like the Vector 3 we initialized in
Section 3.10.2. We have a couple of options. We can right out tell the boxes how many it’s going to
be holding.

Or we can initialize the number of boxes using the Start() function and a public int variable.

In the above code, we’re going to add a numBoxes variable and then move the initialization of the boxes
variable to the Start() function using the numBoxes to satisfy the array size. In the Unity Inspector
panel you’ll see a field “Num Boxes” appear rather than numBoxes. Unity automatically changes vari-
able names to be more human readable, but it’s the same variable.

In the editor, we can pick any number of boxes we need without needing to change any code. Game
designers like this sort of stuff. Once you run the game, the boxes array is initialized. To see what
is contained in the array, you can expand the boxes variable in the Inspector panel and get the
following:

304 Learning C# Programming with Unity 3D

We’ve got an array filled with a great deal of nothing, sure. However, it’s the right number of nothing.
Since we haven’t put anything into the array of GameObjects we shouldn’t be surprised. So far every-
thing is going as planned. Testing as we write is important. With nearly every statement we write, we
should confirm that it’s doing what we think it should be doing. Next, we should put a new cube primitive
into each one of the parts of this array.

6.5.1.1 Starting with 0

Zeroth. Some older programming languages start with 1. This is a carryover from FORTRAN that
was created in 1957. Some programming languages mimic this behavior. Lua, for example, is a
more modern programming language that starts with 1. C# is not like these older languages. Here
we start with 0 and then count to 1; we do not start at 1. Thus, an array of 10 items is numbered 0
through 9.

Now we have an empty array, and we know how many things need to be in it. This is perfect for using
a for loop. Numbering in C# may seem a bit strange, but a part of numbering in programming is the fact
that 0 is usually the first number when counting.

We get accustomed to counting starting at 1, but in many programming paradigms, counting starts
with the first number, 0. You might just consider the fact that 0 was there before you even started count-
ing. Therefore, the first item in the boxes array is the 0th or zeroth item, not the first. It’s important to
notice that when dealing with arrays, you use square brackets.

Right after we initialize the boxes array, we should write the for loop. Then we’ll create a new box game
object and assign it to the boxes.

Notice the notation being used for boxes. The SomeBoxes[i] indicates the slot in the array we’re
assigning the box we just made. When the i = 0, we’re putting a box into SomeBoxes[0]; when i = 1,
we’re assigning the box to SomeBoxes[1] and so on.

Items in the array are accessed by using an int value in the square brackets. To check that we’re doing
everything right, let’s run the code and check if the array is populated with a bunch of cube primitives
just as we asked. Therefore, if you want to get some information on the fourth cube, you should use
SomeBoxes[3]; again the 0th, pronounced “zeroth,” item makes it easy to forget the index in the array
we’re referring to.

305Intermediate: The Tricks of the Trade

So far this is promising. We created an array called boxes with 10 items. Then we wrote a for loop that
creates a box on every iteration and then adds that box into a numbered slot in the boxes array. This is
working well. Arrays lend themselves very well for iterating through.

We need to match the variable type with the type that’s inside of the array. Because the array boxes[]
is filled with type GameObject, we need to use GameObject on the left of the in keyword. To the right of
the in keyword is the array we’re going to iterate through.

We’re accessing all of the array, not just a single item in it, so we don’t need to use something like
foreach(GameObject g in boxes[0]) which would infer that at index 0 of boxes, there’s an
array for us to iterate through. Though arrays of arrays are possible, it’s not our goal here.

Iterating through arrays with the foreach doesn’t give us the benefit of a counter like in the for loop, so
we need to do the same thing as if we were using a while loop or a heavily rearranged for loop by setting
up a counter ahead of time.

Let’s check our Console panel in the editor to make sure that this is working. It looks like the loop is repeat-
ing like one would expect. At the beginning of the Update() function, int i is set to 0; then while the
foreach loop is iterating, it’s incrementing the value up by 1 until each item in boxes has been iterated through.

306 Learning C# Programming with Unity 3D

Put the i to some use within the foreach() loop statement by multiplying the x of the vector by
i * 1.0f to move each cube to a different x location. Note that multiplying any number against 1 is
all that interesting, but this is just a simple part of this demonstration. Again, check in the editor to make
sure that each cube is getting put in a different x location by running the game.

So far everything should be working well. You can change the offset by changing the value that the i is
being multiplied by. Or, better yet, we should create a public variable to multiply the i variable by.

If you create a new public float spacing in the class scope, you can use it in your foreach loop.

By adding this here, you can now edit spacing and watch the cubes spread apart in real time. This is start-
ing to get more interesting! Next let’s play with some math, or more specifically Mathf.

6.5.1.2 Mathf

The Mathf class is filled with many commonly used math helpers. Mathf contains many functions
such as abs for absolute value, and Sin and Cos for sine and cosine. To start with, we’re going to create
a float called wave and we’ll assign that to Mathf.Sin(i); which produces a sine wave when we put
wave in place of y in the Vector3.

307Intermediate: The Tricks of the Trade

To make this animated, we can use another useful trick from the Time class. Let’s take a moment to thank
all the busy programmers who know how to implement the math functions we’re using here. There’s more to
these functions than just knowing the mathematics behind the simple concept of something like Sin. There’s
also a great deal of optimization that went into making the function work. This sort of optimization comes
only from years of computer science experience and lots of know-how and practice. The mechanics behind
this stuff is far beyond the scope of this book, so we’ll just take advantage of their knowledge by using Mathf.

6.5.1.3 Time

Time.fixedTime is a clock that starts running at the beginning of the game. All it’s doing is counting
up. Check what it’s doing by printing it out using Debug.Log(Time.fixedTime); and you’ll just see
a timer counting seconds. The seconds will be the same for all of the cubes, but by adding int i to each
cube’s version of wave, each one will have a different value for the wave.

We could have had a public double 1.0 and incremented this with a small value, 0.01, for instance.
This will have a similar effect to Time.fixedTime. The difference here is that fixedTime is tied to the
computer’s clock. Any slowdowns or frame rate issues will result in your Sin function slowing down as well.

What you should have is a slowly undulating row of cubes. This is also a pretty cool example of some
basic math principles in action. We could continue to add more and more behaviors to each cube in the
array using this method of extending the foreach statement, but this will only get us so far.

Once we want each cube to have its own individual sets of logic to control itself, it’s time to start a
new class. With the new class, it’s important that we can communicate with it properly. Eventually, these
other cubes will end up being zombies attacking the player, so we’re on the right track.

6.5.2 Instancing with AddComponent();

The project contains a script named Monster which is added to the array using the AddComponent()
function found in the GameObject class. The GameObject is a class written to handle everything
related to how Unity 3D manages characters, items, and environments in a scene. Should you leave this
comfortable game development tool and move on to some other application development, you will have
to most likely use a different function to perform a similar task.

When you have a GameObject selected in the game editor, you have an option to add component
near the bottom of the Inspector panel. We used this to add the ArraysRevisited script to our first cube.
This should lead you to thinking that you can also add component with code. Looking into GameObject,
you can find an AddComponent() function with a few different options.

308 Learning C# Programming with Unity 3D

You can use box.AddComponent(typeof(Monster)); to tell the box to add in the script of the
same name. If there wasn’t a Monster script you get an error but Visual Studio can fix the problem by
generating a class.

After generating a class add using UnityEngine and : MonoBehaviour; change internal to
public and you’ve converted the generic class to a Unity 3D component for use in the scene.

To prove that the script is behaving correctly, add in a print function to the Start() function of the
Monster.cs file.

When the game starts, the ArraysRevisited.cs will create a bunch of new instances of the Monster.cs
attached to each cube. When the script is instanced, ArraysRevisited executes the Start() function.
The Console should reflect the fact that the Start() function was called when the Monster script was
instanced.

309Intermediate: The Tricks of the Trade

This reduces the amount of work a single script needs to do. Each object should manage its own move-
ment. To do this, each object will need its own script. In the Monster.cs file, we need to replicate some of
the variables that we created in the ArraysRevisited.cs file.

Remember that we need to make these public, otherwise another script cannot find them. MonoDevelop
is already aware of these variables.

After the box is created, we need to add in the “Monster” class to it. However, that’s just half
of the task necessary to get our script up and running. We added an ID and a spacing value to
Monster.cs, but we have yet to initialize them. We need to get a connection to the component we
just added to the box object. To do this, we need to use GetComponent(), but there’s a bit more
than just that.

6.5.3 Type Casting Unity 3D Objects

GetComponent() returns a component type, but it’s unaware of the specific type we’re looking for. We
use some type casting to convert one type to another. Remember from before, we can turn an int 1 to
a float 1.0f through type casting.

When type casting between objects or reference types, things get tricky. A component is about as
general as Unity 3D will get. However, we want a type Monster when we get that component back.
Therefore, we need to say, “I want this component from the box as a type monster.” To do this, C# has
the keyword as for some basic type casting.

310 Learning C# Programming with Unity 3D

After adding the component, we need to get access to it. Therefore, we create a Monster variable named
m. Then we use the GetComponent(); function to get a type of Monster, and we ask that we get it
as a type Monster by adding as Monster after we ask for it.

This cast is necessary because GetComponent() doesn’t necessarily know what it’s getting; other
than it’s some component type, you have to tell it what it’s getting. Monster and typeof Monster
appear in different places. This is the difference between the word “Monster” and the actual class object
called Monster. The object is what is used after the as keyword because we’re referring to the type,
not what it’s called. This might be a little bit confusing, but GetComponent() is expecting a type
and not an object for an argument.

When you enter the m., a dialog box pops up in Visual Studio. This is a handy helper that shows you all
members in the object. This also shows you any of the public variables you may have added to the class.
Now that we have a connection to the Monster script that’s attached to the box, we can set a couple of
parameters.

We use the dot notation to access the members of the Monster class found in m. Therefore, m.ID is i
that increments with each new box made. Then the spacing will be the spacing we set in the Example.
cs file.

Add a very similar line of code to the Update() in the Monster.cs file and then remove it from the
Update() in the ArraysRevisited.cs file. The spacing was only set once when the object was created,
which you can’t update it by sliding on the ArraysRevisited.cs file. However, each object is acting on its
own, running its own script.

There are a few different ways to use GetComponent(), but we’ll look at those in Section 6.14 when
we need to do more type casting. Not all casting operations work the same. We’re going to change a few
other things we’re doing to make the movement behavior more interesting as well, but we will need to
learn a few more tricks before we get to that.

311Intermediate: The Tricks of the Trade

Alternatively, we can assign and get the Monster m variable at the same time with the following notation:

This automatically assigns m as it’s assigned to the box component. The component assignment and the
variable assignment save a step.

6.5.4 What We’ve Learned

This was a pretty heavy chapter. The new array type was used to store a bunch of game objects, but it
could have easily been used to store a bunch of numbers, or anything for that matter. We learned about a
foreach loop that is handy for dealing with arrays.

In this chapter, we also made use of some math and found a nice timer function in the Time class.
Afterthat, we figured out how to attach script components through code, and then we were able to gain access
to that component by GetComponent() and a type cast to make sure it wasn’t just a generic component.

There are still a few different data types we need to study. Now that we’re dealing with so many types,
we’re going to learn more about type casting as well.

6.6 Enums

Start with the Chapter6 Unity Project’s Enum_Scene and open the Enum script on the object of the same
name. We’ve got two classes, an Example.cs and a Monster.cs, we’ve got the Example.cs creating and
assigning objects, effectively spawning a Monster. We could take the older version of the Example.cs we
wrote and turn it into Player.cs, which would give us a total of three objects.

312 Learning C# Programming with Unity 3D

Therefore, here’s the Player.cs I’m using for this chapter; we’re going to use this to move the little box
around in the scene. We’ll pretend that the box is a pretty cool-looking monster hunter armed with a
sword, shotgun, or double-barreled shotgun.

We may want to rename the Example.cs to something like MonsterSpawner.cs or MonsterGenerator.cs,
but I’ll leave that up to you. Just remember to rename the class declaration to match the file name. This will
spill out monsters to chase the player around. Then the Monster.cs attached to each of the objects that the
MonsterSpawner creates will then seek out the player and chase him around. At least that’s the plan.

NOT E: Prototyping game play using primitive shapes is a regular part of game development. This is
somewhat related to what has become to be known as “programmer art.” Changes to code often mean
changes to art. It’s difficult to build a game keeping art and code parallel. Often a simple change in code
means days of changes to art. It’s quite often easier to prototype a game making no requests of an artist.
Most of the time, the programmer doesn’t even know himself what to ask of an artist.

6.6.1 Using Enums

The keyword “enum” is short for enumeration. A programmer might say that an enum is a list of named
constants. The meaning may seem obtuse. Translated, an enumeration is a list of words that you pick.
For our Monster to have a better set of functions for its behavior, we’re going to create a new enum type
called MonsterState.

We’ve already interacted with the PrimitiveType enum.

An enum replaces an ambiguous value with a human readable value. You technically don’t need to use
an enum to compare values to control logical statements.

An enum with two values is not necessarily more clear than bool yesNoBool since both only have
two values. In practice you’d look at something like

313Intermediate: The Tricks of the Trade

And if you saw if(primitiveInt == 0){Debug.Log(“Sphere”);} you’d be able to react in
a similar way only using integer values, but you’d have to remember what each value was supposed
to represent. This ends up being prone to error if you thought primitiveInt == 2 might be
Capsule.

Conversely an enum with many hundreds of values is also not necessarily clearer than something
more usable like a string as a name. Though we have seen that enums can store many different names.
For instance, the InputType enum had a different enumeration for every key on the keyboard and each
input for your mouse or trackpad and controller.

Enumerating through a long list of defined objects is to help name every possibility with some-
thing more useful than a simple numeric index. It’s important to remember that enumerations
don’t need to follow any pattern. It’s up to you to decide on any organization to keep your enums
organized.

At the top of the Enums class there’s a public PrimitiveType MyPrimitiveType;

In the editor, you’ll see the availability of a new pop-up of the different PrimitiveTypes. In the Start()
function, we use the CreatePrimitive member function in GameObject to create a new object of the
selected type.

314 Learning C# Programming with Unity 3D

We can extend this more to get a better feel of how enums work for us by creating our own enums. A new
enum is a new type of data. New data types are easy to create, especially for enums.

In this case, we use the public keyword followed by enum to tell the compiler we’re creating a new
enum which can be made accessible to other classes. We follow the declaration with a name. In this case,
MyColors is the name of our new enum. Following the name of the enum, we need to start a new code
block with any number of words separated by commas. Just don’t add a comma after the last word in
the list.

To be clear, declaring an enum doesn’t require the line breaks between each word. White space has no
effect on how an enum, or practically any variable for that matter, is declared. After the new data type is
created, we need to create a variable that uses that data type.

A public MyColors with the name MyColor follows the declaration of the enum. In the editor,
we’ll be able to pick the enum we want from our new list of words we added to the enum MyColors.

315Intermediate: The Tricks of the Trade

To make use of the enum, we can use several different methods. The system we might already be familiar
with is using a bunch of different if statements.

This setup is clumsy; after the object is created, we check for what word MyColor is set to. Compare it
against the MyColors’s options and act when you’ve got a match. A slightly cleaner solution is to use a
switch() statement.

Just as a note, if you look at the scene and all you see is a black sphere, you might need to add in a
directional light. Without any lights, every object in the scene will appear dark since there’s no light to
illuminate them. You can add in a light by selecting GameObject → Create Other → Directional Light.
This will drop in a light that will lighten up any objects in your scene.

6.6.2 Combining What We’ve Learned

We’ve been using PrimitiveType.Cube to generate our example monsters. We could just as easily
change that to a sphere or anything else in the PrimitiveType enum. As we’ve seen, the PrimitiveType
has some words that reflect what type of Primitive we can choose from. Likewise, we’re going to make
a list of states for the monster to pick.

Enums are declared at the class scope level of visibility. MonsterState is now another new data
type. When setting up enum names, it’s really important to come up with a convention that’s easy to
remember.

If you make both the enum MonsterState and mState public, you’ll be able to pick the state using a
menu in the Unity’s Inspector panel. You should consider using enums for setting various things such as
weapon pickup types or selecting types of traps.

316 Learning C# Programming with Unity 3D

Then, just as we define any other variable, we declare a variable type and give type a name. This is
done with the line MonsterState mState; which gives us mState to use throughout the rest of the
Monster class. mState is a variable with type MonsterState. In some instances, we may need to ignore
what was set in the editor. To set an enum in code rather than a pop-up, we can use the following code.
To use the mState, we need to set it when the Monster.cs is started.

mState is set to MonsterStates.standing; this allows us to use mState in the Update() function
to determine what actions we should take. Like before, we could use a series of if statements to pick the
actions we could take. For instance, we could execute the following code:

This will work just fine, but it’s rather messy. If we add more enums to the MonsterState, we will
need more if statements. However, there’s an easier way to deal with an enum, so it’s time to learn
a new trick.

317Intermediate: The Tricks of the Trade

6.6.3 What We’ve Learned

So far enums have been made to make a list of options. Normally, enumerations are limited to a single
option, but this doesn’t always have to be the case. Enums are capable of multiple options, which has been
discussed throughout this section.

Using an enum means to take action based on a selection. An enum is actually based on a number. You
can cast from an enum to an int and get a usable value. When this is done, the first name in an enum
is 0 and anything following is an increment up in value based on its position in the list of enumerations.

Therefore, based on the following code, the logged value is 3 since the first state is 0 and the fourth
state is 3.

There are other ways in which the enum can be manipulated, but to understand how and why this works,
we’ll want to cover a few other topics before getting to that.

6.7 Switch

To follow along open the Switch_Scene and begin with the Switch script attached to the switch game
object. The switch comes into play often once we have reached more than one condition at a time.
For instance, we could come across a situation where we are looking at a lengthy ladder of if-else
statements.

318 Learning C# Programming with Unity 3D

There should be something awkward about this block of code. There is in fact a system in place called a
switch statement that was made to alleviate the awkwardness of this long chain of if-else statements.
The switch starts with the keyword switch followed by a parameter () that controls a block of code
encapsulated by a pair of curly braces {}.

The contents of the switch statement use the keyword case. Each case is fulfilled by an expected option
that matches the argument in the switch parameter.

6.7.1 A Basic Example

A switch can be used with any number of types in the parameter. The awkward if-else ladder we saw just
before can be replaced with a much more simple switch() statement.

This is a basic switch with a case. The case is followed by 1 or 2 ending with a colon. Before another
case, there’s a couple of statements, with the last statement being break; that ends the case:
statement. The first case 1: is executed because i == 1; or in more plain English, i is 1 that fulfills
the condition to execute the code following the case. The break; following the statements jumps
the computer out of the switch statement and stops any further execution from happening inside of
the switch statement.

319Intermediate: The Tricks of the Trade

When you deal with short case statements, it’s sometimes easier to remove the extra white space and use
something a bit more compact. Each case is called a label; we can use labels outside of a switch state-
ment, but we will have to find out more about that in Section 6.7.5.

The switch statement is a much better way to manage a set of different situations. Upon looking
at the switch statement for the first time, it might be a bit confusing. There are a few new things
going on here. The general case of the switch is basically taking in a variable, pretty much of any
type of POD (Plain Old Data). The code then picks the case statement to start. The main condition
is that all of the cases must use the type that is used in the switch() argument. For instance, if
the switch statement sees an enum argument, you can’t use a case where the enum is compared
to an int.

The advantage of switch may not be obvious when looking at the block of code that was written here.
The important reason why switch is useful is speed. To step through many different if statements, the
contents of each argument needs to be computed.

Having a dozen “if” statements means that each one needs to be tested even though the contents of
the statement are to be skipped. When using a switch, the statement needs to have only one test before
evaluating the contents of the case.

The switch statement can use a few different data types, specifically integral types. Integral types,
or data that can be converted into an integer, include booleans or bools, chars, strings, and enums. In a
simple boolean example, we can use the following:

With integers where int i = 1; switch(i) {} is used to pick the case which will be used. Using integers
allows for a long list of cases when using a switch statement.

With a switch statement, if the argument matches the case then code is executed until break; jumps
out of the switch. Each appearance of the keyword case is called a case label. Cases are built by using
the keyword case followed by the value we are looking for from the variable used in the switch. After
the case label is declared, any number of statements can be added. The code following the colon after the
case statement is evaluated until the break; statement that stops the switch. The break statement must
appear before another case label is added.

6.7.2 Default

What if there’s a case that’s not included in the switch statement? It would be difficult to cover every
case for an integer. You’d have to write a case for every and any number. That’s where the default: case
comes in. When dealing with any of the switch statements, a default condition can be added when a case
appears that isn’t handled.

320 Learning C# Programming with Unity 3D

With the default added, any conditions that aren’t taken care of can be handled. If the default isn’t
added, then any unhandled case will be ignored and the switch will skip any code from any of the cases.
The default case is an optional condition when working with the switch statement.

Of course, a switch statement seems to be most at home when in use with an enum. A slightly different
variation on the appearance of the enum itself is that we need to use the dot operator to compare the
incoming value against one of the enum values.

321Intermediate: The Tricks of the Trade

Here we have an elaborate array of cases, each one falling in order based on the enum values for Cases.
Writing all of the cases might feel tedius, so Visual Studio has some short cuts for you. Highlight the
MyCase in the switch statement and click on the lightbulb waiting in the left margin. From here you can
select adding just the missing cases, a default case or both.

Select the “Add both” option from the popup to fill in the switch case cases with all possible case labels
for the enum automatically. From here it’s just a matter of filling in what happens in each case. Inside
of the Unity 3D Editor, the C# class provides a useful roll-out in the Inspector panel when assigned to a
GameObject.

322 Learning C# Programming with Unity 3D

This conveniently gives us the opportunity to pick an enum and watch the Debug.Log() send different
strings to the Console panel. It’s important that you note what variable is being used in the switch state-
ment’s argument. It’s often mistaken to use switch(Cases) with the type in the argument. This of
course doesn’t work as expected. Here we get the following error:

Assets/SwitchStatements.cs(21,25): error CS0119: Expression denotes a “type,” where a “variable,”
“value” or “method group” was expected

Each case statement must have a break; statement before the next case appears. You can have any
number of statements between case and break, but you must break at the end. This prevents each case
from flowing into one another. If you forget to add break after the first case statement, then you get the
following warning:

Assets/SwitchStatements.cs(21,17): error CS0163: Control cannot fall through from one case label to another
It’s easy to forget to add these breaks, but at least we are informed that we’re missing one. However,

we’re directed to the beginning of the switch statement. It’s up to you to make sure that there’s a break
statement at the end of each case. It’s also required after the default case.

Normally, the default label is the last case at the end of the series of case labels. However, this isn’t
a requirement. You can write the default label anywhere in the switch statement. Style guides usually
require that you put the default at the very end of the switch. Not doing so might invoke some harsh words
from a fellow programmer if he or she finds a misplaced default label.

As a convenience, C# can decode each case as a string. This may seem like an obvious feature, but it’s
something that has yet to come to older more established languages like C++.

The case above will simply print the following to the Console window:

6.7.3 More On Cases

Switch statements are a common combination. Each label is clear and the parameter for the switch is also
quite clear. We know what we’re expecting and its obvious what conditions each case needs to be written for.

323Intermediate: The Tricks of the Trade

The above enum might be quite contrived, but we know how many labels we need if we use this case in a
switch. It should be obvious that our first case label should look like case cases.firstCase: and we
should fill in the rest of the case statements in order.

switch statements are limited to a select different types of data.

The above code might look valid, but we’ll get the following error:

Assets/Test.cs(15,1): error CS0151: A switch expression of type “float”
cannot be converted to an integral type, bool, char, string, enum or nullable
type

A switch is only allowed “integral, bool, char, string, enum, or nullable” types
of data. We have yet to cover some of these different data types, but at least we know what a data
type is. We do know that we can use ints and enums. In most cases, this should be enough.
Switch statements should be used when one and only one thing needs to happen based on a single
parameter.

324 Learning C# Programming with Unity 3D

Having a switch statement nested in one of the cases of another switch statement isn’t common. There’s
nothing really stopping you from being able to do this, but it’s probably better to look for a more elegant
solution.

Each case can simply call on a more complex function.

Using a function in each case is a simple way to keep things tidy, though it’s not always clear what’s going
on. Anyone reading the code will be forced to jump back and forth between the switch and the different
functions. However, this does mean that you might be able to make more switch cases within each func-
tion in the switch statement.

Once a case is entered, the switch() statement is finished. The parameter in the case of the switch
statement is no longer evaluated once in a case. This also means that the parameter can be manipulated
before it’s used in the case.

325Intermediate: The Tricks of the Trade

When we enter the case 0: we set the value that entered into the case to 1. This means that the data going
into the function after that change gets a new value for a.

Because a = 1; appears after we’ve entered the case and is followed by a break;, case 1: is not trig-
gered, and we don’t skip to the second case. The logic might seem cloudy, but it’s important that we really
understand what’s going on here.

Inside of the switch statement, the switch cannot change our destination once we’ve arrived at a
label. After we’ve got to the label, we can change the data that got us there. Once we get to the break;
at the end of the case, we leave the switch and move to any statements that follow the switch statement
code block.

326 Learning C# Programming with Unity 3D

A switch is not a loop, so we can’t go back to the beginning of the switch by using continue; actually this
is just an error telling you that there’s no loop to continue to. A switch statement isn’t meant to be looped;
there are systems that allow this, but in general, these sorts of statements are one-way logic controls.
A switch can work only with a single argument.

Something like switch (a, b) could make sense, but this isn’t the case. Keeping things simple is not only your
goal, but you’re also limited by what is allowed. In some cases, the language can force simplicity. In practice,
it’s best to keep things as simple as possible if only for the sake of anyone else having to understand your work.

6.7.4 Fall Through

Using the break; statement jumps us out of the switch. Therefore, something like the following will
execute one or the other statements after the condition and jump out of the switch.

If we want to, a case can be left empty, and without a break; included, anything in the case will “fall
through” to the next case until the code is executed and a break; statement is found.

In the above example, if we get to case first condition:, we’ll simply find the next case afterward and
run the code there until we hit the next break; statement. It’s rare to use this in practice as the condi-
tions included act the same; in this case, both the first and second conditions do the same thing. However,
things get a bit more awkward if we need to do something like the following:

327Intermediate: The Tricks of the Trade

Here we have two different behaviors based on five different conditions. The first two and the next three
cases can result in two different behaviors. Although you might not use this behavior immediately, it’s
important to know what you’re looking at if you see it. There are some catches to how this can be used.

In the above example, our first condition might have some added code before the second condition.
This might visually make sense; go to the first condition, execute some instructions, fall through to the
next case, do more instructions, and break. However, this behavior isn’t allowed in C#.

In order to accomplish what was described, we need to be more explicit.

6.7.5 goto Case

Using the goto keyword allows us to hop from one case in the switch statement to another. This allows
for an expected fall through-like behavior, but also gives us an added functionality of going to any other
case once inside of the switch statement.

328 Learning C# Programming with Unity 3D

The utility of the above statement is questionable. Although the statement is valid, it’s hardly something
that any programmer would want to read. Bad habits aside, should you see this in someone else’s code,
it’s most likely written as a work-around by someone unfamiliar with the original case.

Aside from being awkward and strange looking, it’s important that the switch case finally lead to a
break, otherwise we’re caught in the switch statement indefinitely. Debugging a situation like this is
difficult, so it’s best to avoid getting caught in a switch statement longer than necessary.

Strange and unusual code practices when working inside of a switch statement aren’t common, as the
regular use of a switch statement is quite simple. If you need to do something more clever, it’s better to
have a switch statement that points toward a function with additional logic to handle a more specific set
of conditions.

6.7.6 Finite State Machine

A finite state machine is a system used to control the flow of processes in a complex system. In some
ways, Unity has provided us with various ways to control when and how objects are started and updated
with the Start() and Update() methods in MonoBehaviour. Enums will help keep track of specific
character update states “Updateing Idle” “Updating walk” etc. A lot of this might sounds familiar if
you’ve used Unity 3D’s animation system.

A simple system to manage transitions between states is the FiniteStateMachine script attached to the
object of the same name in the Switch_Scene. Each step of a process, or state of mind for a character, can
be represented as a “state” to enter and exit. The character or object can only be in one state at a time.
This is where finite state comes from. The machine infers there’s some mechanism that’s controlling the
state transitions.

For our cylinder the finite states are waiting, changing colors, picking colors, and color changed. These
are represented in an enum:

The variable is stored as MyState which is public so it’s visible in the Inspector panel in the editor. We
also have setup some additional variables to store colors and time.

These are setup at and used while the states are updated. To change color we set the NextColor by
picking random values for a color to transition to. The PickColor() function creates a new color and
stores the value in the NextColor variable.

329Intermediate: The Tricks of the Trade

This is called once the state decides it’s time to pick a color, then the finite state changes to a color chang-
ing state where we use a ChangeColor() function to smoothly change from the previous color to the
next color:

After the color blend has finished we set a moment of time to admire the selected color in an idle state
called Waiting:

The states can be seen updated in the Update() function with a switch statement:

330 Learning C# Programming with Unity 3D

The different states Waiting, PickingColor, ChangingColor and ColorChanged are called
sequentially. When the switch statement enters a case, settings are updated, and the MyState is set to
the next state to enter. This pattern works for many different situations. Characters talking, walking,
stopping and running can all have similar finite states to enter and leave.

This is a simple form of a finite state machine and works linearly. A common variation is to store a
“previous” state. This allows us to react to the state we’re entering knowing what state we left. For char-
acters to enter an Idle state from a hit reaction means we can pick a different animation to blend between
the two states. A simple but powerful design pattern.

6.7.7 What We’ve Learned

The switch statement is powerful and flexible. Using special case conditions where we use either the
fall-through behavior or goto case statement, we’re able to find additional utility within the switch
statement.

Just because we can doesn’t mean we should use fall-through or goto case. Often, this leads to con-
fusing and difficult-to-read code. The bizarre and incomprehensible fall-through or goto case should be
reserved for only the most bizarre and incomprehensible conditions. To avoid bad habits from forming,
it might be better to forget that you even saw the goto case statement.

Now that warnings have been issued, experimenting and playing with code is still fun. Finding and
solving problems with unique parameters is a part of the skill of programming. Using weird and strange-
looking structures helps in many ways. If we’re able to comprehend a strange set of code, we’re better
equipped to deal with more regular syntax.

switch statements can be used with any number of different parameters. Strings, ints, and other types
are easily used in a switch statement.

6.8 Structs

Data structures specific and concise organization of information. By themselves floats, ints, and Vector3
are useful. However, copying and moving around each variable individually can look rather ugly.
This lack of organization leaves more opportunity for errors.

331Intermediate: The Tricks of the Trade

When having to deal with a complex character or monster type, collections of data should be organized
together. The best way to do this is by using a struct, or structure. A Vector3 is a basic collection of three
similar data types: a float for X, Y, and Z. This is by no means the limitation of what a structure can do.

6.8.1 Building a Struct

Begin with the Structs_Scene in the Chapter6 Unity Project. In the scene open, the Structs script on
the Structs game object in the scene. Structures for a player character could include the location, health
points, ammunition, weapon in hand, and weapons in inventory and armor, and other related things that
should be included in the player.cs, not excluded. To build a struct, you use the keyword struct followed
by an identifier. This is very similar to how an enum is declared. What makes a structure different is that
we can declare each variable in the struct to different data types.

332 Learning C# Programming with Unity 3D

After a structure is built to access any of the public components of the structure, you use dot notation.
For example, playerDataStruct.HitPoints allows you to access the int value stored in the struc-
ture for HitPoints. PlayerData now contains the vital values that relate to the player.

When you first look at declaring and using a struct, there might seem a few redundant items. First, there’s
a public struct PlayerData, then declare a PlayerData to be called playerData, and notice the lowercase
lettering on the identifier versus the type. The first time PlayerData appears, you’re creating a new type
of data and writing its description.

6.8.2 Struct versus Class

At the same time, the struct may look a lot like a class and in many ways it is. The principal differences
between the struct and the class is where in the computer’s memory they live and how they are created.
We’ll discuss more on this in a moment.

You fill in some variables inside of the new data type and name the data inside of the new type.
This new data type needs to have a name assigned so we know how to recognize the new form of pack-
aged data. Therefore, PlayerDataStruct is the name we’ve given to this new form of data. This is
the same as with a class.

The second appearance of the word PlayerDataStruct is required if we want to use our newly
written form of data. To use the data, we write a statement for a variable like any other variable state-
ment. Start with the data type—in this case, PlayerDataStruct is our type—then give a name, or
identifier, to call a variable of the stated type. In this case, we’re using playerDataStruct with a
lowercase p to hold a variable of type PlayerDataStruct.

A struct is a data type with various types of data within it. It’s convenient to packaging up all kinds of infor-
mation into a single object. This means that when using the struct, you’re able to pass along and get a breadth
of information with a single parameter. This matters most when having to pass this information around.

This system of using a struct as data means that a struct is a value type, whereas a class is a reference type.
You might ask what the difference between a value type and a reference type is. In short, when you create a
struct and assign a value to it, a new copy is made of that struct. For instance, consider the following:

In this case, otherPlayerStruct is a new struct, where we make another version of playerStruct
and copy the contents into otherPlayerStruct. Therefore, if we make PlayerDataStruct pd2
and assign playerStruct to it, or even otherPlayerStruct, we’ll have yet another copy of that
same data in a new variable. Each variable otherPlayerStruct, pd2, and playerDataStruct
now all have unique versions of the data.

However, should we change struct to class, we’d have a different arrangement.

333Intermediate: The Tricks of the Trade

The only change to the above code is changing struct to class. This is still a perfectly valid C# class and
appears to be the same as a struct, but the similarities cease once a variable is assigned. The differences
can be seen in the following simple example.

In the above code, we use both the PlayerDataStruct and PlayerDataClass. Both have a pub-
lic field called int HitPoints; once in the Start() function a new PlayerDataStruct() and
a new PlayerDataClass() are created. As soon as these classes are created, we assign 1 to the
.HitPoints fields in both the struct and the class.

After this, we have an interesting change. Using the PlayerDataStruct otherPlayer-
Struct = playerStruct, we create a copy of the PlayerDataStruct from playerStruct
and assign that copy to otherPlayerStruct. Doing the same thing to PlayerDataClass
otherPlayerClass, we assign playerClass to otherPlayerClass. If we check the
value of playerClass.HitPoints and otherPlayerClass.HitPoints, we get 1 and 3,
respectively.

334 Learning C# Programming with Unity 3D

Doing the same thing to playerClass.HitPoints and otherPlayerClass.HitPoints, we
get 3 and 3, respectively. How did this happen and why is mc.a changing the value of mClass.a? When
a class is assigned to a variable, only a reference to the class is assigned. A new copy is not made and
assigned to the variable mc.

In the statement PlayerDataClass otherPlayerClass = playerClass;, we assign other-
PlayerClass a reference to playerClass. This contrasts to PlayerDataStruct otherPlay-
erStruct = playerStruct, where ms gets a copy of the value stored in playerStruct. After a
struct is assigned, it becomes an independent copy of the struct that was assigned to it. To break the refer-
ence, we cannot use mc = mClass, otherwise a reference will be created.

By making a new instance of PlayerDataClass called anotherPlayerClass, we can assign the
value from playerClass.HitPoints to anotherPlayerClass.HitPoints, which will avoid
a reference from being created between anotherPlayerClass and playerClass. The above code
prints out the following output:

Even though we assigned the .HitPoints field of anotherPlayerClass to playerClass.
HitPoints, we lose the reference between anotherPlayerClass and playerClass. When
we change anotherPlayerClass.HitPoints to 7, it has no effect on otherPlayerClass.
HitPoints and playerClass.HitPoints. The differences between the struct and the class is
subtle but distinct.

The values of structs are copied when assigned in the otherPlayerStruct = playerStruct
fashion. To accomplish the same behavior with a class, we need to assign each field separately with
anotherPlayerClass.HitPoints = playerClass.HitPoints;. Only in this fashion can we
actually a copy of the value to anotherPlayerClass.HitPoints from playerClass.HitPoints,
not a reference.

6.8.3 Without Structs

The alternative to the struct is to use another form of data containment like the array. Each object in the
array can hold a different data type, but it must be addressed by its index number in the array. It would
be up to you to remember if the walk speed was at index 4 or 3 in the array. Organizational issues make
this far too easy to mess up and forget which index holds what data.

Once you start adding new types of data to this method of record keeping, chances are you’ll forget
something and your code will break. There are languages out there that don’t have structs, and this is the
only way to manage a collection of data types. Be thankful for structs.

335Intermediate: The Tricks of the Trade

An array of objects allows for different types of data to be mixed together. In the case where we copy
one array into another, we get a reference. So in the above we check playerDataArray[1] and get 10
reflecting how the array was initialized. When we make a new array and set copyOfPlayerDataArray
to playerDataArray and change the copy’s second value to 1, this changes the original as well.

When another creature contacts the player, it should be given a copy of the entire PlayerData stored.
This confines all the data into a single object and reduces the need for making separate operations to
carry over different data. To do the same to a class, we’d have to use the same idea of copying each
parameter one at a time because of the earlier mentioned behavior between a class and struct assignment.

6.8.4 Handling Structs

Structs are best used to contain a collection of data for an object. If we wanted to make a simple set of
parameters for a box, we might use the following struct:

With this added to a new class attached to a box in the scene in Unity 3D, we have a system of storing
and moving a collection of data using a single object. Within this object, we’ve assigned public variables
for width, height, depth, and color.

To make use of this, we can adjust each one of the parameters individually within the structure using the
dot operator.

336 Learning C# Programming with Unity 3D

We can access the box variables and assign them values. Once usable values are assigned to the
BoxParams box, we can use them as a variable passed to a function.

The function can access the BoxParams passed to it using the same dot accessor and expose values
that were assigned to it; the dot is an operator, and not exclusive to just accessors, but properties, func-
tions, and all struct and class members. The first statement creates a new Vector 3 size. The size is then
assigned a new Vector3(), where we extract the width, height, and depth and assign those values
to the Vector3’s x, y, and z parameters.

Once the Vector3() is created, we assign the values to the gameObject.transform.localS-
cale. After this, we’re also able to change the gameObject material’s color by assigning the renderer.
material.color to the b.color from the BoxParams values.

6.8.5 Accessing Structs

If a structure is limited to the class where it was created, then it becomes less useful to other classes that
might need to see it. By creating another class to control the camera, we can better understand why other
classes need access to the cube’s BoxParams.

By moving the struct outside of the class, we break out of the encapsulation of the classes.

337Intermediate: The Tricks of the Trade

A new struct called PublicBoxParams lives outside of the Structs class scope. This changes the
PublicBoxParams into a globally accessible struct.

When a class is made, its contents are encapsulated within curly braces. The variables or functions
created inside of the class contents are members of that class. Should any new enum or struct be moved
outside of that class, it becomes a globally declared object.

6.8.6 Global Access

In practice, it’s a good idea to have a more central location for your globally accessible structs and enums.
The term global just means to be accessible to the entire project. An additional class in the project called
Globals.cs can contain the following code:

With something as simple as this, we’re able to create a central location for all globally accessible infor-
mation. Starting with simple things such as public struct BoxParameters, we can then continually add
more and more useful information to our globally accessible data. Each C# script file need not declare
a class. Although it’s common, it’s not restrictively enforced that a C# script file contains a class. Utility
files like a Globals.cs are handy and can provide a clean system in which each programmer on a team can
find handy structures that can be shared between different objects in the scene.

6.8.7 What We’ve Learned

In Section 6.8.6, we talked about global access. This concept is not that new. When you write a class,
in this case Structs, it’s accessible by any other class. Therefore, when we assigned Structs to the Struct
game object in the scene, it’s able to use the global version of BoxParameters.

338 Learning C# Programming with Unity 3D

6.9 Class Data

Open the ClassData_Scene find the ClassData script in the hierarchy attached to the ClassData game
object to follow along. Using a struct is preferred over a class due to how the computer manages memory.
Without going into detail, one type of memory is called the heap and the other is the stack. In general, the
stack is a smaller, more organized, faster part of the memory allocated to your game. The heap is usually
larger and can take longer to access than the stack.

Values can be allocated to the stack, and a struct is a value type; thus, a stack can be accessed faster than
a class. Though often structs and other value types are used in ways that disallow their allocation to the
stack, they go into the heap instead. Classes and other reference data types end up in the heap regardless.

In a simple function call, the variables that appear in it are all pushed into the stack. As soon as the
function is complete, any of the temporary values created and used inside of the function are immedi-
ately destroyed once the function is done executing.

The DoThings() function does pretty much nothing, but makes an array of ints that are added to the
stack. As soon as this function is done, the array of ints is cleared out. In general, the stack grows and
shrinks very fast. The second object that’s added to the stack is the int i, which is being used inside
the for loop.

The primary advantage a class has over a struct is the addition of a constructor and class inheritance.
Aside from that, you’re able to add assignments to each variable in a class as it’s created.

A struct cannot have a parameterless constructor. Also, a struct cannot have variables initialized as they
are declared.

339Intermediate: The Tricks of the Trade

On the other hand, as we’ve seen before, a class does allow this.

In a struct, you’re not allowed to assign values to the fields. Therefore, public a = 0; is allowed only
in a class. Default values are allowed only in classes. Likewise, the constructor public MyStruct()
isn’t allowed, but it is in a class. In addition we’re structs cannot inherit properties from another struct.

We could easily declare a class that has nothing more than data in it; this will look much like any struct.

This would do the same things as a struct of the same complexity is concerned. However, a struct has the
chance to be a bit faster than a class to access. A struct is also a step up from an enum. The declaration might
look somewhat similar, but an enum doesn’t allow any values to be assigned to its constituent declarations.

6.9.1 Character Base Class

For all the monsters and players to have an equal understanding of one another, they need to share a common
base class. This means that simply they all need to share the same parent class that holds data structures,
which all of them are aware of. This concept is called inheritance, and it’s something that only a class can do.

340 Learning C# Programming with Unity 3D

The Zombie uses the : BaseMonster statement to tell C# that the Zombie is inheriting from
BaseMonster. We will go into this again in Sections 6.13 and 6.23, but it’s important that we’re used
to seeing this notation and what it’s for.

Once each type of character shares the same parent class, it can use the same data. This is important
so that zombies can understand what data makes up a human, and vampires can know to avoid zombie
blood. To do this, the zombies need to know how to deal with the player’s data structure and the player
needs to know how to deal with zombies and vampires.

When we start our game, we’re going to have a starting point for the player and for each monster.
Classes are a clean way to store data when a game is started. Starting data can include basic chunks of
information that don’t change, such as minimum and maximum values.

Structs don’t allow you to declare values for variables when they are created. Classes, on the other
hand, do allow you to assign values. More important, we can make them unchangeable.

6.9.2 Const

The const keyword is used to tell anyone reading the class that the value assigned cannot change during the
game. The keyword is short for constant, and it means that you shouldn’t try to change it either. There are
a few different ways which you can assign a value to behave the same as a const, but just by looking at
the code, you should know that the following code has a value that shouldn’t be changed while playing.

If a value is declared to be const, then you should keep in mind how it’s used. These are good for compari-
sons, if a value is greater than MaxHitPoints, then you have a very clear reason for why this value is set.

When you’ve declared a class and set several const values, this gives the class purposeful location to store
all kinds of “set in stone” numbers. One problem with giving a class const values is that they cannot be changed
after they have been set. So make sure that these values shouldn’t need to change once the game is running.

This allows you to create a constant value for the class. To make the value accessible, we need to change
the declaration. In addition, a const value must be initialized. This means const int MaxHitPoints;
isn’t valid. Visual Studio will warn:

The proper declaration will look like the following:

The accessor must come before the readability of the variable. Likewise, this can also be made private
const int MaxHitPoints =10;. This allows you to set the value when writing the code for the
classes. However, if you want to make a variable have a limited availability to set, then we can use a
different declaration.

341Intermediate: The Tricks of the Trade

6.9.3 Readonly

The readonly declaration allows you to change the variable only when a class is declared or as it’s written
when it was initialized.

This means that a readonly variable can only be set in a variable, an initializer, or a constructor.
This means that the only way to set MaxHitPoints can be with the following code:

By using a constructor, we can set the MaxMagicPoints once, or we can use the value when the
variable is declared. Therefore, the first way MaxMagicPoints can be set is when we use the initial-
ization line public readonly int MaxMagicPoints = 10; where we set MaxMagicPoints
to 10, or in the constructor where we set the value to the (int maxMP) in the argument list. This
differs from the const keyword, where we can use the initializer only to set the value of the variable
MaxMagicPoints.

When you add in constructors to a base class, or a class that you’re expecting other classes to
inherit from, it’s important to remember that each child class needs to build corresponding inheriting
functions.

A quick fix for this is to allow Visual Studio to write the required functions for you.

You’ll notive a very similar use of: base(maxMP) following the Zombie() constructor.

342 Learning C# Programming with Unity 3D

There are other consequences to the inheriting from different classes. There will be more in-depth study
of these effects in a later chapter when we look at functions again in Section 6.11.

These are only simple uses of the const and readonly variable declarators. Once you begin reading
other programmer’s code you’ve downloaded online or observed from team members, you’ll get a better idea
of the various reasons for using these keywords. It’s impossible to cover every context in a single chapter.

The primary reason for these keywords is to prevent misunderstanding between engineers. If you have a
good reason for setting a value that should never change then you’ll use const. If you have a reason to make
a value only change when an object is first created, then you’ll use readonly. If you write code that depends
on the value and assumes it’s never going to change then it’s good to prevent anyone from changing it.

6.9.4 What We’ve Learned

Using these keywords is quite simple, and it makes quite clear what you’re allowed to do with them.
Understanding what keywords mean to the accessibility of the variable, you’ll gain insight into how the
value is intended to be used.

Keywords const and readonly mean that the variable cannot be changed either outside of an
initial declaration or as the code is written. This means that the value needs to remain unchanged for a
reason. Of course, knowing that reason requires a great deal of context, so it’s impossible to lay out every
reason here. However, it’s safe to assume someone added the declaratory keyword for a reason.

6.10 Namespaces

Follow along with the Namespaces_Scene and open the NameSpaces script on the game object of the
same name. Classes are organized by their namespace. A namespace is a system used to sort classes and
their contained functions into named groups. This helps isolate classes with the same name which would
conflict without a namespace.

It will be problematic if programmers in the world come up with unique names for their classes and
functions. Namespaces are used to control scope. By encapsulating functions and variables within a
namespace, you’re allowed to use names within the namespace that might already be in use in other
namespaces.

6.10.1 A Basic Example

A namespace is basically an identifier for a group of classes and everything contained in the classes.
The same rules as variable naming applies to namespace identifiers. Within that namespace,
we can declare any number of classes. Starting in the Chapter6 Unity Project, we’ll look at the
NameSpaces_Scene and the NameSpaces.cs class in the scene on the object of the same name.

343Intermediate: The Tricks of the Trade

A namespace is declared as seen above. This assigns the identifier following the keyword to a new namespace.
A namespace gives us a way to group objects under a unique identifier. In this case, MyNamespace.

A namespace doesn’t collide with another namespace in the same scope. Instead, the contents of a
namespace can collide with one another. A namespace only expands the scope of an exsisting namespace.
Inside of a second MyNamespace, we can add in a new class with its own functions. However, to make
the class available to anyone who wants to use the class in the namespace, we need to make it public.

The using directives haven’t been added to any of the namespaces in the file. In the above MyNamespace
SomeClass exists without access to UnityEngine functions like Debug.Log(). To enable this a
directive needs to be added to the namespace.

The directives can exist at the beginning of any namespace. The scope of each directive added to a
namespace is limited to the scope where it was declared. In this case, MyClass has access to Debug.Log
where as the previous SomeClass does not.

As was said in an earlier chapter, we can slightly bend the rules for directives always appearing at the
top of a file. The objects written in a file exists in a global unnamed namespace. The class and directives
appear in the unnamed namespace and can be access globally without a directive.

344 Learning C# Programming with Unity 3D

NOT E: Not that this is commonly used, but global:: can be prefixed ahead of a function or type in
a declaration. This only really matters if you want to use a namespace that’s already in use in a library
like System, for instance. This means that if you create your own namespace System, to use libraries in
the .NET system then you’d need to prefix global:: to access them.

6.10.2 Directives in Namespaces

As a namespace is created the contents become accessible through directives. The previous chapter cre-
ated a namespace called MyNamespace inside of a Chapter6_10_1 namespace. To access the objects
in that namespace the using MyNamespace can be added to any other namespace like adding using
UnityEngine.

In the Chapter6_10_2 namespace we use a SecondNamespace to declare a new scope. This
allows UniqueClass to access the directives present in the SecondNamespace. Here, both
UnityEngine and the previous chapter’s MyNamespace are accessible.

The UseOtherNamespace() function in UniqueClass is allowed to instantiate a new MyClass
from the Chapter6_10_1.MyNamespace scope. It should also be noted that the lighter shading of
some of the directives indicate that they are not necessary. Visual Studio knows where MyClass comes
from and indicates the use of unnecessary keywords by shading them lighter.

By wrapping the NameSpaces: MonoBehaviour in the SecondNamespace the UniqueClass()
is accessible without adding a directive. Within a namespace the objects are accessible without adding
any directives.

345Intermediate: The Tricks of the Trade

This shows where the function was called and what namespace the function originated in. In most
cases, you’ll create a new namespace for the classes in your new game. This becomes particularly impor-
tant when you need to use third-party libraries. You might have a function called Random(), but another
library might also have a function with the same name.

6.10.3 Ambiguous References

Coming up with unique names for every variable, class, or function can be difficult. Another class might
already use commonly used words like speed, radius, or vector. Namespaces offer a system to help sepa-
rate your class member names from another class that might already be using the same names. In the
same Namespaces_Scene open the AmbiguousNamespaces.cs script on the NameSpaces game object.

This will involve duplicates for the UniqueClass, which is cause for some problems. Then Unity 3D will
show you the following error:

Ambiguous references become a common problem when we include many different namespaces. We could
possibly fix this by changing the name of the classes in one of the functions, but that wouldn’t be pos-
sible if the reference came from a dynamic linking library (DLL) or another author’s code. We could also
change namespaces which we’re using, but again, that would be a work around and not a solution.

If we hover over the class with the cursor in Visual Studio, we’ll get a pop-up telling us which ver-
sion is currently being used. Of course, this is just a guess, and a bad one at that. This can be resolved
by expanding the declaration using the Namespace dot operator and picking the to uniquely identify the
UniqueClass we want from the other namespace.

Of course, it’s not the most pretty, but this is the most correct method to fix the namespace we’re request-
ing a UniqueClass() object from. Things can get too long if we need to nest more namespaces inside
of a namespace.

Long namespaces represent a little bit of a style problem. It’s cleaner to use short statements. So how
would we avoid needing to use dot operators to access directives with shorter names?

6.10.4 Alias Directives

Attached to the same NameSpaces game object is also a script called UsingAliasDirectives. Open
this to follow along. Sometimes namespaces can get quite long. Often when you need to refer to a namespace
directly you may want to shorten the name into something easier to type. Alias directives make this easier.

346 Learning C# Programming with Unity 3D

A directive is aliased using the syntax using x = UnityEngine; for instance. When we have
a namespace nested in another namespace, we can assign that to an identifier as well. To shorten
AnotherNamespace.SubSpace to Sub, we use a statement that looks like using Sub =
AnotherNamespace.SubSpace; to reduce how much typing we need to use to express which
namespace we’re using.

Now we can reduce the declaration to a shorter statement. Of course, unless we have an ambiguous name
to worry about, there’s no need for being so explicit with the function we’re specifically trying to call.
With descriptive function and variable names, we can avoid directive aliases.

6.10.5 What We’ve Learned

This is a simple way to allow multiple classes to work together by sharing a class through a namespace.
Decisions around how you organize the code for your game should include how to separate classes
by namespace. In a practical sense, namespaces follow function. A Utilities namespace would include
classes you use as tools for your game. A game title is a good root namespace.

A Utilities namespace for your game would be a member of the game namespace. The namespace
should also contain common structs that every class will need to make use of. So a game.dataTypes
namespace would help organize where those are stored. These are just some example of the sorts of
namespaces that would be useful to help organize your game.

6.11 Functions Again

So far, we’ve been working in either the Start() function or the Update() function because they
are entry points. Because of this, they are automatically called by the engine. In a non-Unity 3D Engine
program, the default entry point would be something like public static void Main().

6.11.1 Parameter Lists

When a function is called, its identifier followed by its parameter list is added to code. Parameters are like
little mail slots on the front door of a house. There might be a slot for integers, floats, and arrays. Each
slot on the door, or argument in the parameter list, is a type followed by an identifier.

If we look at a basic example, we’ll see how all this works.

347Intermediate: The Tricks of the Trade

The function declaration void SetA (int i) takes in one parameter of type int. This is a simple
example of a value parameter; there are other types of parameters which we’ll go into next. The value param-
eter declares the type and an identifier whose scope is limited to the contents of the function it’s declared with.

To use our function, add in the preceding lines of code to the Start() function in Unity 3D. When you
start the game, you’ll see a 0 followed by a 3. We can do this any number of times, and each time we’re
allowed to change what value we set A to. Of course, it’s easier to use a = 3 in the Start() function, but
then we wouldn’t be learning anything.

6.11.2 Side Effects

When a function directly sets a variable in the class the function lives in, programmers like to call this
a side effect. Side effects are usually things that programmers try to avoid, but it’s not always practical.
Writing functions with side effects tend to prevent the function from being useful in other classes. We’ll
find other systems that allow us to avoid using side effects, but in some cases, it’s necessary.

The above SetBtoFive() function sets int b to 5. The SetBtoFive() function does have a clear
purpose, setting b to 5, but there’s nothing in the function that indicates where the variable it’s setting
lives. If the variable lived in another class which FunctionsAgain inherited from, then you wouldn’t
even see the variable in this class.

Once the complexity in a class grows, where and when a variable gets changed or read becomes
more obscure. If a function remains self-contained, testing and fixing that function becomes far easier.
Reading what a function does should not involve jumping around to find what variable it’s making
changes to. This brings us back to the topic of scope. Limiting the scope or reach of a function helps limit
the number of places where things can go wrong.

348 Learning C# Programming with Unity 3D

The more functions that have a side effect, the more strange behaviors might occur. If an Update()
function is expecting one value but gets something else entirely, you can start to get unexpected behaviors.
Worse yet, if SetBAgain() is called from another class and you were expecting a to be 5, you’re going
to run into more strange behaviors.

6.11.3 Multiple Arguments

There aren’t any limits to the number of parameters that a function can accept. Some languages limit you
to no more than 16 arguments, which seems acceptable. If your logic requires more than 16 parameters,
it’s probably going to be easier to separate your function into different parts. However, if we’re going to
be doing something simple, we might want to use more than one parameter anyway.

We can add a second parameter to SetCtoLeftPlusRight(). A comma token tells the function to
accept another variable in the parameter list. For this example, we’re using two ints to add to one another
and assign a value to c. There isn’t anything limiting the types we’re allowed to use in the parameter list.

The function with multiple parameters can do more. Value parameters are helpful ways to get data into
a function to accomplish some sort of simple task. We’ll elaborate more on this by creating something
useful in Unity 3D.

6.11.4 Useful Parameters

Often, we need to test things out before using them. Let’s say we want to create a new primitive cube in the scene,
give it a useful name, and then set its position. This is a simple task, and our code might look like the following:

Our cube is given a name, and it’s assigned a place in the world. Next, let’s say we want to make a bunch
of different cubes in the same way. We could do something like the following:

349Intermediate: The Tricks of the Trade

If this code looks horrible, then you’re learning. It’s accomplishing a task properly, but in terms of pro-
gramming, it’s horrible. When you intend to do a simple task more than a few times, it’s a good idea to
turn it into a function. This is sometimes referred to as the “Rule of Three,” a term coined in an early
programming book on refactoring code.

6.11.4.1 The Rule of Three

The Rule of Three is a simple idea that any time you need to do any given task more than three
times manually, it would be better served by creating a new single procedure to accomplish the task.
This reduces the chance of error in writing the same code more than three times. This also means that
changing the procedure can be done in one place.

We take the code that’s repeated and move it into a function. We then take the values that change between
each iteration and change it into a parameter. In general, it’s best to put the parameters in the same order
in which they’re used. This isn’t required, but it looks more acceptable to a programmer’s eyes.

We then test the function at least once before writing any more code than we need to. If this works out,
then we’re free to duplicate the line of code to accomplish what we started off doing.

Again, though, we’re seeing a great deal of duplicated work. We’ve used arrays earlier, and this is as
good a time as any to use them. By observation, the main thing that is changing here is the name.
Therefore, we’ll need to add each name to an array.

The variable declaration needs to change a little bit for an array. First of all, rather than using type identi-
fier;, a pair of square brackets are used after the type. The statement starts with string[] rather than
string. This is followed by the usual identifier we’re going to use to store the array of strings.

Unlike an integer type, there’s no default value that can be added in for this array of strings. To
complete the statement, we need to add in the data before the end of the statement. The new keyword
is used to indicate that a new array is going to be used. The array is a special class that is built into C#.
Therefore, it has some special abilities that we’ll get into later.

Now that we’ve declared an array of names, we’ll need to use them.

350 Learning C# Programming with Unity 3D

6.11.5 Foreach versus For

The foreach loop is often our goto loop for iterating through any number of objects.

The parameters for the foreach also introduce the keyword in that tells the foreach iterator what array to
look into. The first parameter before the in keyword indicates what we’re expecting to find inside of the
array. Therefore, for this use of the foreach iterator, we get the output in the following page.

As expected, we get a list of the names found in the array we added. As we add in new functions and
variables, it’s important to test them out one at a time. This helps make sure that you’re headed in the
right direction one step at a time. Now we can switch out the print function for the clever function we
wrote now.

The foreach loop in some respects operates in the same way as a while loop.

It’s simple to add in a variable outside of the loop that can be incremented within the loop.

351Intermediate: The Tricks of the Trade

It’s time to admire our clever function. The foreach means we can add in any number of names to the
array and the tower of cubes will get taller with named boxes.

6.11.6 What We’ve Learned

The foreach loop is useful in many ways, but it’s also somewhat limited. If we had more than one array
to iterate through at the same time, we’d have some difficulties. In some cases, it’s easier to use a regular
for loop. Arrays are lists of objects, but they’re also numbered.

Arrays are used everywhere. On your own, experiment by adding more parameters to the function
and more names to the list. We’ll look at how to use other loops with multidimensional arrays and even
jagged arrays in Chapter 7.

6.12 Unity 3D Execution Order

C# is an imperative language, which means that operations are executed in order, first one thing and then
another. When Unity 3D makes an instance of a new gameObject with MonoBehaviour components,
each component will have at least five functions called on it before the end of the frame where it was
created. Additional rendering calls can be called as well.

352 Learning C# Programming with Unity 3D

Specifically, the Start() and Update() functions in Unity 3D are called in each MonoBehaviour in
a specific order. Several other functions are also used by Unity 3D, and they each have specific moments
when they are called. In Visual Studio the key-combo: CTRL+Shift+M will open the Implement Unity
Messages dialog box:

Of the 69 messages that all MonoBehaviours will receive in game, here are 8 used most often:

Awake()

OnEnable()

Start()

FixedUpdate()

Update()

LateUpdate()

OnDisable()

OnDestroy()

The order of this should make sense, considering that C# will execute statements in order. However, what
happens when another class is instanced in the Awake() function and it too will have its own Awake(),
OnEnable(), and Start() functions?

353Intermediate: The Tricks of the Trade

6.12.1 A Basic Example

Begin by examining the ExecutionOrder project; the ExecutionOrderFirst.cs class will look a bit like the
following:

354 Learning C# Programming with Unity 3D

This prints out the following:

The Console shows that the code is executed in the same order in which we laid them out in the class.
When the LateUpdate() function is called, we use Destroy(this); to begin deleting the class
from the scene. When the class begins to delete itself, it’s first disabled and then deleted.

When a new instance of a MonoBehaviour is created, it will also call its Awake(), OnEnabled(),
and Start() functions. Intuitively, it would make sense if you create an object in the Awake() func-
tion; the new object might wait till the end of Awake() before it begins its Awake() function. However,
this isn’t always the case.

Say we create a new class called Second.cs and have it log its Awake() and Start() functions as well.
Then, in the Second.cs class we have the following code:

355Intermediate: The Tricks of the Trade

This produces the following output:

Before the First class was created, the Second was able to get its Awake() done and move on to
OnEnable() without interruption. First waited for Second to finish its Awake() and OnEnable()
functions before First finished its own Awake() function. Afterward, OnEnable() of the First was
finally called, even if Second took its own time to finish its Awake() function.

356 Learning C# Programming with Unity 3D

The ExecutionOrderFirst.cs class finishes its Awake() function, then the ExecutionOrderSecond.cs
class finishes its Awake() function and starts its OnEnable(). After, ExecutionOrderFirst finishes its
Awake() and starts its OnEnable() function. The First and Second being their Start() function. Notice
that “First Awake Done” doesn’t appear until after “Second OnEnable.” The “Second OnEnable” is only
printed once the “Second Awake Done” is printed, indicating that the for loop was able to finish.

When more objects are being created, the order in which these functions are called becomes more dif-
ficult to sort out. If you created several different objects, some of them might take even longer or shorter
to finish their Awake(), OnEnable(), and Start() functions. Figuring all of this out takes a bit of
thinking things through.

6.12.2 Component Execution Order

The execution of classes becomes a bit more confusing when they’re attached to a gameObject as a prefab.
In the scene, adding Second and Third classes to the Main Camera will show us some unexpected results.

Once all three MonoBehaviours have been attached to the Main Camera, we can observe the execution
order of the functions found in each class.

357Intermediate: The Tricks of the Trade

The Third Awake() and OnEnable() are called before the Second and the First even though the
components look like they’ve been reordered in the opposite order on the game object they are attached
to. However, this isn’t always the case.

In the above screenshot, we swapped the First component with the Second. Even after changing the order
in which they appear in the components list, we get no change in the Console’s log output. This tells us that
there’s no specific order in which the objects are created and how they are ordered in the gameObject’s
components list. However, there is a simple system in which we can change the execution order manually.

Select the ExecutionOrderFirst.cs file in the Project Assets directory. To the top right is a button
labeled Execution Order…

After your classes have been added to the list, you can make any changes by altering the number in the
box to the right. Clicking on the—icon removes them from the list. Press Apply once you’ve added all
your classes to the list.

Once the scripts have been added to this list, they are guaranteed to be called in this order, ignoring how
they are ordered in the components list on the gameObject they’ve been added to. Playing the scene with
the components attached to the Main Camera in any order will always result in the following output:

358 Learning C# Programming with Unity 3D

After the scripts order is set, the Console panel shows us a more expected result. You could use a sin-
gle GameController.cs class that operates as a central dispatch of updates. This would be a monolithic
update system which every other class waits for an update from.

For now it’s important that we observe how the functions operate and how to best use these behaviors
to our advantage. From observation, we know that we can maintain when each function is called.

6.12.3 What We’ve Learned

In this chapter, we looked at how to manage execution order between multiple classes. For simple
projects, this execution ordering system should suffice. However, when you’re not inheriting from
MonoBehaviour, this management system will no longer work.

Once we get into more complex systems that do not inherit from MonoBehaviour, we’ll build our own
system for managing the execution order. There are systems that allow you to better control what func-
tions are called and when, but we’ll have to learn a few other things before getting to that.

Unity 3D expects many different things of your classes when you inherit from MonoBehaviour. If you
include an Update() function, it will automatically be called on every frame. However, when there are
too many Update() functions on too many classes running in a scene, Unity’s frame rate can suffer.

Once a game gets moving along and creatures and characters are spawning and dying, it’s impossible
to know when and in what order each function is executed. Each object in the scene should be able to
operate on its own. If an object depends on a variable, the value of which needs to be updated before it’s
used, then you may run into problems reading stale data.

6.13 Inheritance Again

Inheriting members of a parent class is only one facet of what inheritance does for your code. The behav-
iors of the functions also carry on in the child classes. If the parent has functions that it uses to find
objects in the world, then so do the children. If the parent can change its behavior based on its proximity
to other objects, then so do the children.

359Intermediate: The Tricks of the Trade

The key difference is that the children can decide what happens based on those behaviors. The data
that is collected can be used in any way. A child class inherits the functions of its parent class. When the
child’s function is executed, it operates the same way as its parent. It can be more interesting to have the
child’s function behave differently from the inherited version of the function.

6.13.1 Function Overrides

The override keyword following the public keyword in a function declaration tells the child version of the
function to clear out the old behavior and implement a new version. We’ve seen how member functions work
when they’re used by another class. Now we’re going to see how to effect the operation of inherited functions.

6.13.1.1 A Basic Example

Revisiting the Parent–Child relation again in the Chapter 6 Unity Project in the InheritanceAgain_Scene.
We find the following code to the ParentClass:

When the ParentFunction() is called in the Start() function of the InheritanceAgain script in
the InheritanceAgain_Scene, this will produce the expected “Parent says Hello.” followed by
“Parent Function A says Hello.” and then “Parent Function B says Hello.” in
the Console panel.
ChildClass is based on ParentClass, and we have an opportunity to make modifications by adding

layers of code. To make see this modification, we need to reuse the code from the ParentClass class in
the ChildClass. The ParentFunction() is called from the ChildFunction() of the Child class.

360 Learning C# Programming with Unity 3D

Running this will produce the same output to the Console panel as the Parent class. Right now, there is
no function overriding going on. If we intend to inherit a function and add modifications to it, we should
make the Parent class allow for functions to be overridden by adding the virtual keyword to the function
we plan to override.

Adding the virtual keyword after the public declaration and before the return data type, we can tell
the function it’s allowed to be overridden by any class inheriting its functions. Back in the ChildClass,
we have the option to override the virtual function.

This has an added instruction for FunctionA(). As you might expect, the output to the Console panel
has a new addition. The Child class will send new data to the Console that should read:

Without the keywords override and virtual, we get the following warning:

We can see this in the ChildClass FunctionB() and watch the resulting output. In the ChildClass,
we’ll add in the new keyword. However, the output will remain the same as though the Parent class’ ver-
sion of FunctionB() was being used. This is because the FunctionB() living in the ChildClass
is a new one, and not the one being used by the ParentFunction().

To explain a bit more about what happened when ParentFunction() is called.

361Intermediate: The Tricks of the Trade

The ChildClass has a new FunctionB() this breaks the relation with the ParentClass version
of FunctionB(). So when ParentFunction is called, the Parent’s version of FunctionA and
FunctionB are called. By using the override on a virtual function we add new behaviors to the
FunctionA that’s called in the ParentClass.

362 Learning C# Programming with Unity 3D

So when ChildFunction() is calling on ParentFunction() to run FunctionA() we get the
added behavior that was created in the ChildClass version of FunctionA(). The difference between
override and new when inheriting a function or variable from a parent create very different behaviors.

6.13.1.1.1 Base

The Child class’ version of the FunctionB hides the inherited member from its ParentClass.
Hiding means that the parent version of FunctionB cannot be directly called by the ChildClass.
When the child calls the new FunctionB(), only the ChildClass version is visible.

On the other hand, we have overridden FunctionA() from the ParentClass. To use the original
version, we can add the keyword base version in FunctionA which was overridden.

This produces the expected “Parent Says Hello.” to be printed out in the Console panel. For the
ChildClass to take over the FunctionA() and create its own version of the function, omit the base
FunctionA() and the contents of the parent version of FunctionA() will be skipped.

Therefore, when the InheritanceAgain script Start() function calls on the ParentClasses
ParentFunction(), the ParentClass version of FunctionA() is called printing “Parent Function
A Says Hello.” When the ChildClasses ChildFunction() calls on ParentFunction() the
overridden FunctionA() is called, but the new FunctionB() isn’t called.

6.13.2 Class Inheritance

We’ve seen a bit about how a function can inherit some members from a parent version of a class. To see
how this works lets investigate some nested classes for some new Monsters.

In the InheritanceAgain script, we’ve added BaseMonsterClass and ZombieClass as well as
VampireClass. Both ZombieClass and VampireClass are followed with: BaseMonsterClass
to indicate that they are both inheriting functions and fields from BaseMonsterClass.

6.13.2.1 Sharing Common Attributes

The whole point of inheritance is the ability to create a general class of object from which child objects
can inherit the same properties. If all the characters in a game are going to share a system for taking

363Intermediate: The Tricks of the Trade

damage, then they should all use the same system. Games use “mechanics” as a generalized term for
game rules. Often used like “this game’s mechanics are fun.” Recovering health, taking damage, and
interacting with objects should all be added to what is called a base class.

Consider building base classes for things such as destructible objects and monsters. Base classes allow
for the multitude of objects in your game to have a shared attribute for something obvious like hitpoints
and share the ability of the player to interact with them. Breaking down a door and basting away a zombie
shouldn’t require a different set of code to accomplish the same thing.

By adding public int HitPoints to BaseMonsterClass, we’ve given both Zombie and
Vampire a HitPoints variable. This is a main strength of why we need to use inheritance. Objects that
share common attributes should be able to share that data. We need to make this public so that when the
class is used, you can access the HitPoints variable from outside of the class. To demonstrate, we’ll
need to make some instances of both the zombie and the vampire.

Now Vampires and Zombies have HitPoints. In the Start() function, we’ll create a new Zombie and
a new Vampire. Then we’ll give them some starting HitPoints by using the identifier and adding
.HitPoints = 10; to make the assignment.

However, if we add in a constructor, we can put the HitPoints = 10; into the constructor for the
Monster instead! While we’re at it, extend the Monster by adding a capsule to its presence. We’ll also
make him announce himself when he’s created.

To make use of the HitPoints variable, we will create a function that will deal with damage done to
the Monster. Adding in a new public function that returns an int called TakeDamage will be a good
start.

In the TakeDamage() argument list is (int damage) that will return the HitPoints – damage
to let us know how many HitPoints the monster has after taking damage. Now both the Zombie and
the Vampire can take damage. To allow the Zombie and Vampire to reuse the function and override its
behavior, we add in virtual after the public keyword.

364 Learning C# Programming with Unity 3D

Perhaps we’ve decided vampires are more durable than zombies, we’ll make the vampire take half the
damage that is dealt to him. Using public override tells the function to take over the original use of
the Monster.TakeDamage() function. This allows us to reuse the same function call on both zombies
and vampires. For the Zombie, we’ll return the default result of the Monster.TakeDamage() function
by using return base. TakeDamage(damage);. Remember, the keyword base allows us to refer the
original implementation of the code. The following appears in the Zombie:

In the Start() function, we’ll make the following uses of zombie and vampire. The following code
produces 5 and 8:

This looks useful, though remember that we’re dealing with int values and not float. When we divide int
5 by int 2, we get 3, not 2.5. When building new objects, the goal is to reuse as much code as possible.
Likewise, we can leave the TakeDamage() out of the zombie altogether if we don’t need to make any
changes.

However, it’s sometimes unclear what’s going on and might end up being less obvious when damage is
dealt to the two monsters. In the end though, it’s up to you to choose how to set up any functions that are
inherited from your base monster class.

This should serve as a fair example as to what objects and classes are created in the way they are.
When functions and variables are separated in classes, they allow you to compartmentalize for very
specific purposes. When you design your classes, it’s important to keep object-oriented concepts
in mind.

6.13.3 Object

Changing behaviors of previously implemented functions is fundamental to object-oriented program-
ming (OOP). The base class from which all classes in Unity 3D inherit is object. The .Net Framework
provides object as a foundation for any other class being created. This allows every new object a common
ground to communicate between one another.

365Intermediate: The Tricks of the Trade

In Visual Studio the Solution Explorer panel is a regular fixture in the default layout. From here the a
class diagram can be created from a each file in the solution. Selecting View Class Diagram shows a view
which allows you to further edit your work in a more visual manner.

366 Learning C# Programming with Unity 3D

There have been many attempts to make a more visual system to build code. Viewing the class diagram
for the InheritanceAgain.cs class you get a view similar to the following: Clicking on the icon on the
top right of each box expands the object showing its contents. Using this view you’re able to add new
functions, aka methods, properties, fields, events, constructors, destructors, and constants. Further in
the Class Details panel you’re able to add type, parameters, and more to each added feature. It’s a fun
feature, and something which might help quickly build a useful start for your next game object.

In addition to this view you’ll also want to concern yourself with the Class View found in the View→Class View
CTRL+Shift+C. This will allow you to expand each class to view the base types an object is inheriting from.

From here you can double click on the lowest class which InheritanceAgain is based on. The following
Object Browser view is opened to reveal public class Object Member of System.

367Intermediate: The Tricks of the Trade

Object reveals several functions available to every class inheriting from it. The function ToString() is
used every time we use values which are not strings in the Debug.Log() function in Unity 3D. In the
ZombieClass we could add an override for ToString() with a custom value.

Using the override we get to see the following printed out to the Unity Editor’s console panel:

In your own project you may want to add more useful information to the ToString() override, but this
should work as a starting point.

It’s useful to find functions that are already in use and update them to fit our current class.
The object class was created with ToString(), which provides every object in C# to have some
sort of ToString() behavior. This also means that we can override ToString() with pretty
much any class we create.

6.13.4 What We’ve Learned

At this point, we’ve got a great deal of the basics down. We can write classes and we know how the
basics of inheritance work. This is important, as we proceed to use inheriting properties and methods
more and more. We’ve studied a bit of flow control systems using if and switch, which are indispensable
statements.

We’ve created several classes already, but we’ve yet to really use classes as objects. In Chapters 7 and 8,
we’re going to learn the core of what OOP is all about.

368 Learning C# Programming with Unity 3D

6.14 Type Casting Again

Type casting is the process of converting one data type into another. To follow along open the Chapter 6
Unity Project’s CastingAgain_Scene and open the CastingAgain script on the CastingAgain game object
in the scene. When programmers use the word integral type, they mean things that can be numbered.

As we can see, we’ve written an enum with three options. With simpleEnums.SecondValue we try to
change it into an int.

As we try to cast simpleEnum as int; we get an error!

The as operator can’t be used for this because an int is not actually an enum. Therefore, we get a conflict
here. We’re trying to use the enum as though it were already an int, which it’s not. There is a way to
convert different types from one to another.

The line int convertedEnum = (int)simpleEnum; uses the explicit cast (int) to convert the
SimpleEnums value into an int value. This isn’t always possible, but in some cases, this will work when
an explicit cast has been defined. Explicit casting requires the type’s destination to have been expected.
When the programmer creates a new data type, they may expect a conversion to another type. In this
case, enum to int, the C# developers created a definition to enable that type conversion explicitly. Thus
the naming: explicit type cast operator.

So why is “convertedEnum: 1” in the Console when we run the game? Remember that numbering
lists in C# starts at 0, so the second item in a list will be indexed at 1. Of course, not all explicit conversions
work. For instance, you can’t turn a Monster GameObject into a float value. Zombies aren’t just numbers!

6.14.1 (<Type>) versus “as”

We’re starting to see the difference in type casting methods. The difference between (<Type>) cast
and the as cast can come up during an interview process if you’re trying to get a job as a programmer.

369Intermediate: The Tricks of the Trade

We should also note that some casting is also going on when we use float f = 1; where 1 is an int value,
but it’s accepted into a float f without any question. This is an implicit cast, or rather this is a cast that is
accepted without any explicit cast operation. This also works for a double d = 1.0f; where 1.0f is a float
value and d is a double.

The two different methods we can use are called prefix casting and as casting. Prefix casting is what
the (int) syntax is called; this is also referred to as an explicit cast operator. The as operator works a
bit differently than the explicit cast operator.

Here we have three classes: Humanoid, Zombie, and Person. The Zombie and Person inherit
from the Humanoid class. Discovering the differences with as and (Type) is significant only once we
start getting into the nitty-gritty of doing something with the results of the type casting.

In the CastingAgain script the Start() function calls CastngHumanoids() where we per-
form the cast as seen above using the as-casting method. A new Humanoid h, instantiates a new
Humanoid type object identified as h. Then a Zombie identified as z is assigned h as Zombie.
This assumes that the Humanoid is a Zombie type convertable. When we use Debug.Log(z), we
get Null.

Compare this result to the following explicit cast operator. If we use the prefix system as in the following
example code:

370 Learning C# Programming with Unity 3D

We get a different result, this time an error:

This tells us that a type Humanoid cannot be converted to a type Zombie. This doesn’t change when
converting between a Person and a Zombie. To create an explicit cast, we need to implement a function
to allow the cast to work.

As before, we get a similar error.

The last part of the error indicates some built-in conversion. We need to add some lines of code to allow
us to build in a cast between Zombie and Person.

You can imagine that this would happen quite a lot when playing a zombie game. C# is trying to make
changes to the data to conform it so that it matches the type we’re asking for it to be converted to. In some
cases, the as operator is more appropriate than the prefix operator. A Null is much easier to deal with than
an error. This conversion makes sense only when the types are incompatible if there is no conversion
possible.

We can cast between ints and floats, no problem aside from losing numbers after a decimal. There are
conversions available through C#, but no effort has been made to convert a Humanoid to a Zombie.
A method should be made available to do so. The conversion work has been written for the built-in
data types. The work has not yet been done to convert between a Person and a Zombie, so we shall
do this.

6.14.2 User-Defined Type Conversion

Continuing, observe the code for the CastableHumanoid, which has some HitPoints.

This way we can have some significant meaning for converting between a Person and a Zombie. For this
example, assume zombies use negative hitpoints and a person has a positive number for hitpoints. Thanks
to inheritance, we can safely assume that both the Person and the Zombie will have a HitPoints prop-
erty when they derive from the CastableHumanoid class.

Now we’ll create a new function in the CastablePerson, so we can convert him into a
CastableZombie.

371Intermediate: The Tricks of the Trade

With this we can see that we’ll need to add a few new keywords. The keywords implicit and operator
work together to allow us to use the CastableZombie cast when working with a CastablePerson
type object. Now we can check what the hitpoints of a Person is if it was to be treated as a Zombie type
object.

Through the implicit keyword, we can quite nicely assign the Zombie z to the Person type. We’re also
allowed to do something very simple like the following code sample:

This automatically assigns personZombie a new CastablePerson() that is then implicitly con-
verted to a CastableZombie upon assignment. Likewise, we can use a prefix conversion and get the
same result by using an as operator.

Should you want to get the average health in a scene—zombies, vampires, mummies, and humans
together—you’d want to iterate through a single data type. Get all gameObjects in the scene, then cast
every component to humanoid. You’ll have a humanoid for every zombie, vampire, mummy, and human
in the scene. If you can’t cast it to a humanoid, you’ll get a null object. Null objects can be ignored and
skipped. All that’s left to do is calculate the average health.

372 Learning C# Programming with Unity 3D

6.14.3 Implicit versus Explicit Type Conversion

Explicit casts are used if there is a conversion that might end with some loss of data. Implicit casts
assume that no data is lost while converting from one type to another. Explicit implies you understand
that the conversion isn’t going to be perfect.

For instance, if a zombie has a regeneration ability, the functions for that will be lost when you’ve
cast a zombie to humanoid through the explicit type cast. You can cast a humanoid to as a zombie
since it’s assumed all attributes of a humanoid are still present in the zombie. Consider the following:

An array of humanoids is populated with zombies humanoids and persons. Each one of these is indeed a type
of CastableHumanoid. They all share the same attributes as a CastableHumanoid. Adding a public
bool isZombie; to the zombie makes the CastableZombie unique from the CastablePerson.

A variable which appears in a derived class but not in its base class is new data. This addition isn’t
something that the CastableHumanoid has available. Thus if you were to try to access the
CastableZombie’s isZombie bool from the CastableHumanoid type you’ll get an error:

373Intermediate: The Tricks of the Trade

The variable isZombie could not be found in CastableHumanoid. The process of going up and
down in the relationship between base classes and derived classes is called Upcasting and Downcasting.
The fancy view class diagram could reveal that both CastablePerson and CastableZombie
can be “Upcast” to a CastableHuman and a CastableHuman can be “Downcast” to either a
CastablePerson or a CastableZombie.

This upcasting and downcasting can also be seen when casting an int to a float. The int value 1 is the
same as a float value 1.0, an implicit cast infers that nothing is lost. In some edge cases, there can be data
lost, so implicit casts are not perfect, though they are generally reliable.

It also just so happens that all of this is the effect of what is called “Polymorphism”; a programming
term that covers the topic of casting between types and type conversion. The roots of the word “Poly” is
Greek for “many”; the second root is “morph” or “shape.”

6.14.4 What We’ve Learned

Using the explicit and implicit type casts requires a bit of thought. When dealing with a large number
of different types, we need to keep in mind what we’re trying to accomplish by casting between types.
In many cases, we should avoid unnecessary cast operations.

If data needs to be shared between different classes, it’s better to create a parent class, or base class
from which child classes inherit. Rather than requiring specific casts between people and zombies, a new
version should be instanced between the two without using a cast.

Most casts should only be between specific data types. It should also be noted that casting is allowed
between structs.

374 Learning C# Programming with Unity 3D

Here we can make an explicit cast from a to b and back again. Though there’s nothing really going on
here, a struct is somewhat different from a class, but offers many of the same functionality. Defining
explicit cast operators is one of the shared abilities between a class and a struct.

6.15 Working with Vectors

Vector math is something that was taught in some high school math classes. Don’t worry, you’re
not expected to remember much of that. Vector math is easily calculated in C# using the Unity 3D
libraries, as vector math is often used in video games to move objects around.

Adding, subtracting, and multiplying vectors is easy in Unity 3D. We’ll look at how simple vector math
is in Unity 3D in this section using the Vector3() object.

There are also many tools added into the MonoBehaviour class we’ve been inheriting for most of
the classes we’ve been writing. Only Start() and Update() have been added to our prebuilt class
we’ve been starting with, but there are many others which we haven’t seen yet.

6.15.1 Vectors Are Objects

Start with the WorkingWithVectors script attached to the game object of the same name in the
WorkingWithVectors_Scene in the Chapter6 Unity Project. From this same Chapter 6 project in
Section 6.5 Arrays Revisited, we worked on a Monster: MonoBehaviour where we made some
simple floating cubes.

Random.Range(); is a new function. Random is an class located in the UnityEngine namespace.
We use this to give us a number between -10 and 10. The two arguments are separated by a comma.
The first argument is the minimum value and the second number is the maximum value we want. Then
Random sets the x and z to a number between these two values.

375Intermediate: The Tricks of the Trade

Assuming that NumMonsters is set to 10 or so, play the game and MonsterGenerator creates a field
of sphere monsters placed randomly in the x and z directions. As an alternative, we could have put the
positioning information inside of the monster himself using the Start() function.

6.15.2 Stepping through MonsterGenerator

We introduced breakpoints in Section 4.12.9, but this is a good point to come back to how breakpoints
are used to see how your code is working. Why does each monster appear at a different place? Let’s add
in a breakpoint near the first line within the “for” statement.

Here, I have the breakpoint added on line where the Monster component is added. Press the Run button
and attach Visual Studio to Unity 3D.

376 Learning C# Programming with Unity 3D

In MonoDevelop, select Run → Start Debugging and then select Unity 3D in the following pop-up panel.
Go back to the Unity 3D editor and press the Play button. You may notice not much happening in Unity
3D, which means that MonoDevelop grabbed Unity 3D’s thread and is holding it at the breakpoint.

Start stepping through the code. Pressing the F10 key on the keyboard will push the arrow one line at a
time through the “for” statement. After pressing it once, you’ll notice that the highlighted line will begin
to move over your code. Also notice the data populating the Callstack and the Locals windows that open
below the code.

Click on the word “sphere.” Each instance of the word will highlight and a new dialog box will open
up with specifics on the new sphere object. Hover the cursor over “sphere” to invoke a pop-up with infor-
mation on the sphere object.

Step again and we’ll get details on the new Vector3 called pos, which I’m using as an abbreviation of
“position.” Press F10 to step over once to move to the next line.

It’s important to understand that data isn’t fulfilled on the line it’s created on. Only after stepping one
more line with F10 does the data become fulfilled.

377Intermediate: The Tricks of the Trade

Step through a few more times, and allow a few monsters to be created. With each iteration the values for
pos will have changed to different values.

Keep on pressing F10 and you’ll be able to follow the flow of the code as each line highlights again. Each
time the line is executed, the values coming from the Random.Range() function will be different.
Therefore, the code will scatter the monsters around the MonsterGenerator.

Unity and Visual Studio are rather locked together. Unity is stuck in debug mode and Visual Studio is
holding onto Unity’s activity. To release Unity from Visual Studio’s hold, press the “stop debugging” button.

This releases Unity from Visual Studio’s debugger and the two apps will act independently again.
Connecting Visual Studio to Unity allows you to thoroughly inspect how your code is updated as the
game is played, a powerful tool for finding bugs and figuring out where they originate from.

The option of where to set the initial position of an object is up to the programmer. It’s up to you to
decide who and where the position of a new object is set. This flexibility allows you to decide how and
when code is executed.

6.15.3 Gizmos

While stepping through code helps a great deal with understanding how our code is being executed,
visualizing things as they move can be more helpful. That’s where Unity 3D has provided us with a great
deal of tools for doing just that.

Unity 3D calls its helper objects “Gizmos.” Visualizing data is carried out by using Gizmos to
draw lines and shapes in the scene. In other game engines, this may be called DrawDebugLine or
DrawDebugBox. In Unity 3D, the engineers added the Gizmos class. The members of this class include
DrawLine and DrawBox.

Colored lines, boxes, spheres, and other things can be constructed from the code. If we want to draw
a line from the monster to a target, we might use a line between the two, so we know that the monster
can “see” its next meal. It’s difficult to mentally visualize what the vectors are doing. Having Unity 3D
display them in the scene makes the vector math easier to understand.

6.15.3.1 A Basic Example

Open the Gizmo script attached to the game object of the same name in the in the Working
With Vectors_Scene. project is the DrawLine(); function that requires two arguments or parameters.
The first argument is a start vector followed by an end vector. In the Gizmo script is the OnDrawGizmos()
after the Start() and Update() functions. The OnDrawGizmos() can be placed before or after the
Start() or Update() function, but to keep organized we’ll add it after the preconstructed functions.

378 Learning C# Programming with Unity 3D

To see what’s going on, create a new Sphere GameObject Object using the GameObject → Create
Other → Sphere menu, and then add the Gizmos.cs component in the Inspector panel.

To draw a Gizmo, we’ll need to pick the Gizmo we want to use.

When we start with “Gizmos.” we are presented with quite a list of things we can try out. Thanks to
MonoDevelop, it’s quite easy to figure out how these are used. Each function has some pretty clear clues
as to what data types are used and what they are for.

379Intermediate: The Tricks of the Trade

Starting with “DrawCube,” we’ll be prompted with a Vector3 for the cube’s center and another
Vector3 for the cube’s size. To fulfill the DrawCube member function in Gizmos, enter the following
arguments:

The Gizmo will be drawn with the center point at Vector3.zero which is the scene’s origin, and the
size will be Vector3 (1, 2, 3), making the object 1 unit wide, 2 units tall, and 3 units deep. Gizmos
are interesting as they represent some very useful debugging tools. Gizmos do not draw in the game,
they’re only visible in the Scene view in the editor.

6.15.3.2 DrawRay

Some of the other Gizmo functions require data types we haven’t encountered yet, such as rectangles
and rays. With a little bit of detection, we can figure out how these work. Let’s start off with a DrawRay
we’re presented with (Ray r) as its argument. We can start with a new Ray (and we’ll be given a (Vector3
origin, Vector3 direction)).

We can fulfill this with Gizmos.DrawRay(new Ray(new Vector3 (0, 0, 0), new Vector3
(0, 1, 0)));. This might seem like a bit of a convoluted line to read, so we can make this more easy
to read by breaking out one of the arguments.

380 Learning C# Programming with Unity 3D

This code will produce a simple white line that starts at the origin and points up in the y-axis 1 unit. Rays
are useful tools that show an object’s direction or angle of movement. We’ll take a closer look once we
get more used to how Gizmos are used. Assuming the object with the script applied is a cube at the origin
of the scene, you’ll have a similar effect to the following figure:

6.15.4 Using Gizmos

The Gizmos DrawLine() from transform.position to Vector3.zero traces a line from the
object’s center to the scene origin. The appearance of the Gizmos class cannot function outside of the
OnDrawGizmos() function. Using the Gizmos class in an Update() function will not produce any results.

381Intermediate: The Tricks of the Trade

Now we’re drawing a bunch of white lines from the center of the Gizmo game objects to the center of
the world. To make use of this we can attach a Player class to an object in the scene and have the spheres
draw a line to it

Gizmos are intended to help debug a scene and provide various visual aids to the game designer to
help setup a scene.

6.15.5 What We’ve Learned

Unity 3D has many tools built in for doing vector math functions. It’s a good idea to figure out how
they’re used. We’ll explore as many different uses of these tools as we can, but we’re going to be hard
pressed to see all of them.

A Gizmo is a handy tool to help see what your code is trying to do. Gizmos draw lines, boxes, and
other shapes. You can even have text printed into your 3D scene for debugging purposes. Again, we’ll try
to use as many of the different Gizmos as we can.

The sort of optimization we did here is in the reduction of lines of code only. There was no actual
change to the speed at which the code here was executed. There are some cases in which a line or two
should be added to speed things up.

For now, we’re going to focus on keeping our code clear and readable. Later, we’ll learn some basic
programming idioms. Programming idioms are little tricks that programmers often use to reduce
complex tasks to just a line or two. They’re sometimes rather cryptic, but once you understand them,
they’re quite useful.

6.16 goto Labels

We’ve gone through several of the usually employed logical controls in Section 4.11.3. This time we have
the goto keyword. It is a commonly misused control statement, and it’s about time we learned about how
it’s used.

The goto keyword allows you to jump around in a statement. The non-linear behavior is one of the
reasons why most programmers would tell you to avoid using goto if it’s unnecessary. When using many
goto statements, you end up making your code difficult to read as you need to jump around to follow the
flow. It’s still important to understand how goto works if you come across it so lets go ahead and learn
how goto works.

A goto statement is the keyword goto followed by an identifier, which is referred to as a label.
This looks like goto MyLabel; which tells C# which label to go to, in this case as MyLabel; which
is the identifier followed by a colon.

To follow along, open the GotoLabels_Scene in the Chapter6 Unity Project, then open the GotoLabels
script found on the GotoLabels game object in the scene. A goto statement should be encapsulated by
some sort of logical statement. It’s very easy to get caught in a loop with a goto statement. This has a
similar behavior to for(;;) and while (true) which will hold Unity 3D in an endless loop forcing
you to kill the process from the Task Manager.

Using a label and a goto in this way will create an infinite loop that will require you to kill Unity 3D
from the Task Manager.

382 Learning C# Programming with Unity 3D

The statement StartOver: acts as bookmark. Initially the bookmark has no effect on how code is
executed. Anything after the identified label is executed as normal. When the goto is reached execution
jumps to the bookmark and continues executing code from that point on. There’s nothing wrong with
the above statemen syntactically, and it’s just not very useful. The flow of execution can be controlled by
other means between the label and the goto statement.

This code runs until num has incremented to more than 3. Then the goto Stop: is reached and we
skip over the Debug.Log(); and goto StartOver; statements and continue after the Stop: label.
The console in Unity 3D has the following output. In this case the goto Stop; acts as our escape from
the repeating loop.

383Intermediate: The Tricks of the Trade

This is the same as for(int i = 0; i < 3; i++); only some might find it a bit harder to read.
Of course, it’s up to you to choose when to use a goto statement, but there are some useful cases. Finding
a good reason to use the goto statement comes with experience in spotting when it might be useful.
Because they’re tricky to use and to read, most programmers shy away from using them at all. We’re
learning as much as we can in this book, so we may also learn how it’s used.

6.16.1 Skipping Down

In a very simple form a goto label can be used to skip code based on a condition.

By adding in a public int num to the class, we’re able to pick the goto label we’re using. If we set num to 0,
then both print statements will be executed. If the number is greater than 0, then only the second “After
FirstLabel:” print function will be executed.

When we started off with the switch statement, we looked at the keyword case. The case keyword set
up conditions which the statement would skip through till a case fits the statement. It then executed the
code that followed the case.

switch and goto statements share the colon (:) notation for labels. However, goto lets you set up labels
anywhere in a code block, whereas the switch statement allows labels only within the switch statement.
When goto is used, it sends the software to the line following the label it was told to jump to.

6.16.2 Zombie State Machine

In the GoToLabels_Scene are some ZombieWithStates game objects. On these is a ZombieWithStates
script. The script has an enum MovementStates where we’ve defined an Idleing, Wandering, Looking,
Chasing, and Feeding.

For this project we’ll create a zombie which stands around for a moment. After some time, the zombie
may decide to look for a meal or just wander before standing around again. If the zombie encounters a
meal they’ll pursue for a moment, then eat or give up and go back to standing around.

384 Learning C# Programming with Unity 3D

Labels can allow us to group statements together in a single function. The intent would be to allow us to
quickly prototype different behaviors. After a state change check we use a switch statement to jump our execu-
tion to different labels later in the same function. This acts as a hub to determine where in the function to go to.

The labels live at the bottom of the Update() function waiting to be filled in with their behaviors.
For now, we’ve just added a Debug.Log() in place to update which state the Zombie is in.

385Intermediate: The Tricks of the Trade

After spending time in each mode, the statement jumps to an UpdateTimer: label. Under the
UpdateTimer label of the same function we’re checking the StateTimer. Once the game time
has past the StateTimer, we pick a new length of time for the StateTimer and pick a new
MovementState.

In the UpdateTimer: label we decide that if zombie is in Idle, then we’re able to pick a different state,
either continue to Idle, change to Looking, or change to Wandering. This provides us with some
opportunity for variations in behavior.

After the game time has run past the StateTimer we return to Idle. The first label to inspect is the
Look: label. This is a basic function that we’ll want to use to update what direction the zombie is facing.

To rotate the character, we create a targetRotation value. The direction of we want to face the character.
To smoothly rotate the character toward the targetRotation we call RotateTowards().

To check when RotateTowards() is finished rotating the character, we check the angle between
the character’s current facing and the target using Quaternion.Angle(). Once the angle is less than
a fraction of a degree we pick a new targetRotation value.

386 Learning C# Programming with Unity 3D

If we then look at the Wander: label we see the Zombie move in its forward direction. Then the code
jumps back to the Look: label to continue picking new directions to look in.

By adding a single line of code and jumping back into the Look: label we’re able to add a new layer of
behavior quickly and easily. Without too much effort we’re able to add additional layers of behavior with
simple jump statements using goto. The jump statements can also be used within loops.

If we come across a human, the zombie should chase after him. To accomplish this there are
HumanWithStates scripts attached to the Human objects in the scene. The HumanWithStates script
is based on the ZombieWithStates class. This means that it will inherit the Update() function with
the chase and feed behaviors as well.

6.16.3 This as a Reference to Yourself

This can be skipped by checking if the class is a HumanWithStates, jumping out of the update look,
and going to the UpdateTimer label early.

The above does two things. The first part of the statement is this. GetType() the type of data were
it to be a ZombieWithStates would return the type ZombieWithStates. Then it compares it to a
typeof(HumanWithStates). The inherited version of the script is HumanWithStates and the if
statement returns true, the zombie does not.

When true, the goto jumps the execution of the script to the UpdateTimer label. The zombie will
continue to execute past the jump statement and continue to update its behavior for seeking out humans
to prey on.

The this keyword behaves as though it’s the class it’s in. In many ways the keyword is redundant, but
it does serve as a visual reminder to the programmer as to what we’re checking on. The statement could
have easily been GetType() == typeof(HumanWithStates). By using the this keyword ahead
of GetType() we make it more clear as to what object we’re getting the type of.

6.16.4 Just for Zombies

With a type check we can block the human from accessing Zombie actions. For the zombie to do zombie
like things we should sort through the scene, find humans, and chase after the closest one in range.

387Intermediate: The Tricks of the Trade

At the first block of code at the start of each Update() loop, we populate a list with all-
GameObjects. To check only humans in the scene we use GetComponent<HumansWithS
tates>() to check if the object has a human script attached. If the object is a human, then we
calculate the distance to it.

By storing the closest distance, we can check if there’s a closer human than the previous human
checked. As we update the values we keep a record of the shortest distance the closest human, and the
direction that human is in.

In the section of the code the Zombie is allowed access, we check if any humans are within 5 units away.
If there are then we use the stored direction and update the targetRotation toward the human. Once
we’ve taken aim at a human, we change to MovementState.Chasing.

Once we jump down to the Chase: label we check if the closest human is within feeding range. If not,
we continue to move toward the target.

Once we’re in range to feed we take care that there’s a human to eat with a null check. Finally, we swap
in a ZombieWithStates component as well as the character mesh.

388 Learning C# Programming with Unity 3D

6.16.5 What We’ve Learned

Goto labels don’t have to be cumbersome to be useful. As a simple divider to a long Update() function,
they can work for you and remain clear so long as the mechanism that switches between labels is clear
and contained in one place such as a switch statement.

You can easily make an argument to leave all the logic within the switch statement and avoid
the labels altogether, but this can easily make the switch statement larger and bulkier than neces-
sary as well. In the end, the only difference is readability. If by using labels you make your code
easier to follow, then using labels is fine. If your switch statement begins to overflow with differ-
ent cases, then you might want to try another system outside of the switch, and labels might be a
nice option.

On your own it’s a good idea to see what this code would look like by adding different states. Perhaps
when a zombie gets close enough to a human, that human could turn into a zombie. When a pair of
humans gets close to a zombie, then the zombie might turn into a human. Simple mechanics like this
can quickly add a very unpredictable level of behavior and emerge into a game mechanic simply through
experimentation with the code itself.

389Intermediate: The Tricks of the Trade

6.17 More on Arrays

In the previous chapter we generated an array by using the FindAllObjectsOfType() function.
This returned an array filled with everything in the scene, cameras and lights included. To iterate through
the array we used the foreach() function and searched every game object for a human component.
Using that array we were also able to find the closest human to the zombie.

Arrays have a few different descriptions. Your standard array is called a single-dimensional array.
The Array of game objects from the previous example is a single dimensional array. Other array types
include multidimensional and jagged. Arrays can store any data type; this includes other arrays.

6.17.1 Length and Count

Declaring an array is simple and uses a different operator than a class or function to contain its data.
The square brackets [and] are used to tell the compiler that your identifier is going to be used for an
array. The following statement declares an array of integers:

We can dynamically declare an array of ints using the following notation. Use curly braces { } to con-
tain the contents of the array assigned to primes.

Arrays have several functions associated with them, which we can use with different loops. To get the
number of items in an array, we use the Length property of the array.

6.17.1.1 A Basic Example

In the MoreOnArrays scene start with the MoreOnArrays.cs script attached to the MoreOnArrays game
object in the scene.

In this example, we assign primeLength to the Length of the primes array. We’ll see why this is
more useful than creating an array of a set length ahead of time in a moment. To use this in a for loop, we
use the following syntax shown in the following code fragment added to the Start() function:

390 Learning C# Programming with Unity 3D

This code prints out a new line for each number stored in the array. Each time the for loop iterates, the
int i moves to the next item in the array starting with the zeroth index. Once the end of the list is reached,
the for loop exits. We could also use a while loop to do the same thing.

This produces the same output with the brevity of the while syntax, but the counter j required for the
while loop needs to live outside of the while statement’s code block. Something to consider for why we’d
store the Length property is performance.

Consider the Length property of an array needs to be looked up may take several nano seconds. Each
iteration of a for loop and a while loop would need ask the array for the Length property. By storing an
arrayLength by request the Length property once you’ve shaved off a few nano seconds of compute time.

Yet another option, and one that’s slightly tailored for an array, is foreach.

6.17.2 Foreach: A Reminder

With an array of ints in our primes variable, we can use the following syntax to print out each item in the array:

This syntax is quite short, simple, and easy to use. The keyword in assigns the int p variable to each
element in the primes array it’s given. Using a foreach loop we lose a counter to keep track of the number
of iterations we’ve looped through the statement.

Which form you use is up to you, but it’s important to know that you have more than one option. Of course,
you can use any identifier for counting indexes; int j could just as easily be int index or anything else that
makes sense. Though the common convention is to use the for (int i = 0; i < items; i++)
form for iterating through an array, the int i variable initialized in the parameter list of the for loop can be
used for various things related to the element we’re stepping through in the array. We often need to know
where we are in the array. If this information isn’t necessary, then it’s easier to stick to the foreach iterator
when using an array.

We can declare arrays of different lengths by using different bits of data. Each one is of a different
length. Using the Length property of each array, it’s easier for us to print out each array without know-
ing how many items are stored in each one.

391Intermediate: The Tricks of the Trade

Of course, these aren’t complete sets of numbers, but that’s not the point. They are different lengths, and
we don’t need to keep track of how many items are stored in each array to print out their contents.

In the above code fragment, we’ve added in three different arrays of integers. After that we declare a new
ArrayList called numbers fulfilled with a new ArrayList {primes, fibonacci, power-
sOfTwo};. This fills the new ArrayList with the three different int[] arrays, where each int[]
has a different Length property.

ArrayLists differ from a regular array in that its Length property is called Count. Therefore, to get
the number of items stored in the ArrayList, we use numbers.Count rather than Length. This is
assigned to an int numArrays for use in a for loop.

To learn about the difference, we could post on a forum, “How do I get the size of an ArrayList?”
Alternatively, we could right click on the ArrayList type and select Go To Definition F12 from the
following pop-up:

This brings us to the declaration of classes and all of the things that the ArrayList allows us to do.
Scroll through the options till we find something we can use.

392 Learning C# Programming with Unity 3D

In the Assembly Browser, we’ll find a Count property that sounds reasonably usable. It’s possible to do
many different things with the other options found in the ArrayList class, so we’ll experiment with
them next.

It’s important to remember the Go To Definition function in Visual Studio to be a self-sufficient pro-
grammer. If it’s late at night and you have a final or dead-line due in the morning, you may not have
enough time to wait for an answer on a forum.

Unfortunately, there aren’t so many options with the int[] as this brings you to only what an
int32 is defined as. Luckily, most of the questions have been asked about how to deal with an array in
C#. There is, however, a class definition for Array. This can be found by using the Search field in the
Assembly Browser.

From here, you can find all the functions and properties available to use with the Array type.
The ArrayList’s count can be used as a condition to stop the for loop. Once we have the ArrayList’s
count, it’s used in the following for loop as the condition to stop the loop.

This code will allow us to iterate through each array stored in the numbers array list. Next, we need to
get the int[] array stored at the current index of the array list. This is done by using the for loop’s ini-
tializer’s int i variable and a cast. ArrayList stores each item as a generic object type. This means
that the item at numbers[i] is an undeclared type of object. In this case, the object stored at the
index is an int[] type.

Casting the object to an int[] is as simple as numbers[i] as int[];. Without this cast, we get the
following error:

This assumes that an object is trying to be used as an int[], as indicated by the declaration int[]
nums, and to do so, we need to use the as int[] cast. Once nums is an int[] array, we can use it as a
regular array. This means we can get the nums.Length to start another for loop.

This loop will begin the next loop printing out each item stored in the nums integer array. As we
did earlier, we use the following fragment:

393Intermediate: The Tricks of the Trade

This fragment is inside of the first for loop. Using this, we’ll get each item of each array stored
at each index of the numbers array list. This seems like a great deal of work, but in truth it’s all
necessary and this will become second nature once you’re used to the steps involved in dealing
with arrays.
ArrayLists allow you to store any variety of object. To store an array of arrays, you need to use an

ArrayList. What might seem correct to start off with might be something like the following:

In fact, this is syntactically correct, and intuition might tell you that there’s no problem with this.
However, the Array type isn’t defined as it is without any type assigned to it. However, we can use the
following:

This turns each int[] into an object, and numbers is now an array of objects. To an effect we’ve created
the same thing as before with the ArrayList; only we’ve defined the length of the Numbers array by
entering three elements between the curly braces.

For clarification, we can use the foreach iterator with both the ArrayList and the int [] array.

This produces the same output to the Console panel in Unity 3D as the previous version; only it’s a lot
shorter. It’s important to recognize the first foreach statement contains int[] nums in obj_numbers
as each element in the obj_numbers array is an int[] array type.

6.17.3 Discovery

Learning what a class has to offer involves a great deal testing. For instance, we saw many other func-
tions in ArrayList which we didn’t use. We saw Count that returned an integer value. This was indi-
cated when the listing showed us Count: int in the Assembly Browser.

However, it’s good to learn about the other functions found in ArrayList. Let’s pick the
ToArray(): object[] function; this sounds useful, but what does it do? More important, how do
we find out? The steps here begin with testing various features one at a time.

The return type indicates that it’s giving us an object, so let’s start there.

This sends the following output to the Console panel:

394 Learning C# Programming with Unity 3D

The thing is apparently a System.object[] that was sent to the Console output panel. From this, we
learned that thing is, indeed, an object[], or rather it’s an array of objects. What can we do with this?
Let’s change this to match what we’ve observed.

Now that we know it’s an array, let’s cast it to being a proper array by adding in a cast. Now the thing
returns a length. We get 3 sent to the Console panel of Unity 3D when we press the Play game button.
But what’s going on here? Remember that earlier we had to use numbers.Count to get the size of the
ArrayList. Now we’re dealing with a regular Array, not an ArrayList. Therefore, should we need to use
an Array and not an ArrayList, this function could come in handy! Good to know.

This little exercise is important; a part of learning any new language is testing the code that you
discover when browsing through a class’ functions. Anything listed in the Assembly Browser is there for
a reason. At some point, somebody thought the function was necessary, so he or she added it.

6.17.4 Putting It Together

Arrays are used for storing many objects and commanding them in a coordinated manner. We did this
earlier by making a line of undulating cubes. However, what if we want to keep track of a multitude of
monsters approaching the player?

You’re likely to have a situation where a designer makes a feature request: A weapon to shoot the zombies
with; a self-operated gun turret. The turret has two features. First it should only shoot at the nearest zombie.
Second, it will only shoot zombies not near any humans as to not accidentally hit the human with a projectile.

This project begins in the MoreOnArrays _ Continued _ Scene in the Chapter6 Unity Projects.
In this scene is a new GunTurret game object. On this is a GunTurretController and a GunTurretLogic
script. The logic used to pick targets is what we’re going to focus on, so we’ll open the GunTurretLogic
script and see how arrays are used there.

The first thing we’d need to do is figure out how to find the zombies and humans. We’ll start with a
couple of arrays.

These three arrays are arranged so we have allObjects which finds all GameObjects in the scene.
After this we have an empty ArrayList setup for zombies and another for humans. As you might
expect we will need to search through the allObjects array to find humans and zombies.

395Intermediate: The Tricks of the Trade

With our first block of code we’ll use a check to see if there is a human or a zombie component
attached to the game object in the allObjects array. To confirm the component, use a null check
for isHuman and isZombie. We’ve used this method to find specific game objects before where we
had zombies searching for humans. However, we have to check how they are different, yet actually
quite similar.

6.17.4.1 Breakpoint, Observing Inheritance

To observe how class inheritance and casting behaves add a breakpoint. To look at what was added to
the zombies ArrayList we’ll have to add a break point to the point after it’s been filled. The impor-
tance of learning how to use breakpoints to debug code is difficult to fully express. Hours can be wasted
searching for a bug that could easily be found by stepping through code.

To observe something easily overlooked, we’ll add the breakpoint to where zombie array list is used.
For the debugger in Visual Studio to work, have Unity up and running in the background where Scene
has the script with the added breakpoint.

Click the Attach to Unity button and wait for Visual Studio to make the connection to Unity. After a
moment, Visual Studio will build the source code and indicate it’s ready for the Scene to start playing
in editor. In the Unity Editor, press the Pause button before pressing the Play button. Starting the game
paused will ensure that we catch the first update loop of the scene. If we haven’t hit the breakpoint, then
Unity will wait for the step button to be pressed.

The third button will step Unity a single update cycle at a time. Visual Studio’s debugger should catch
the update of the zombie ArrayList.

396 Learning C# Programming with Unity 3D

In the array list you’ll notice Humans were added. The gate catching isZombie must be true
for the humans to be added to the zombie list. The HumansWithStates class inherited from
ZombieWithStates, so in a sense, they are zombies with added or modified features. In the state-
ments where humans and zombies get their components from the game object both prove true with
humans. A cast from zombie to human gets inferred so isZombie is always true.

The isHuman is only true when the component is a Human since it’s an evolution of the Zombie.
If you were to use object instead of ZombieWithStates then you’d add every type of component and
object in the scene, transforms, lights, cameras, etc. The object class is the base class of every construct
in the scene. The HumanWithStates class is based on ZombieWithStates so the isZombie gate
adds humans to the zombies ArrayList. So, after the first update, you get an array of 22 objects on the
first Update with both humans and zombies.

To avoid that you can add a continue; jump statement to finish the loop early and skip any following state-
ments in the foreach loop. As an alternative you could also use the following condition to add the game
object to the zombies ArrayList.

The statement can be read as: if value isHuman is false and value isZombie is true; add go to the
zombies list. Running the code again in the debugger will need a re-build of the code.

397Intermediate: The Tricks of the Trade

Press Stop Debugging (Shift+F5) to release the breakpoint. Make your code changes, press Attach to
Unity again to check your changes press Play in Unity. This time around rather than all humans and
zombies, the zombies ArrayList should only contain 11 objects exclusively of zombies. The Autos view
in Visual Studio will also show you the variables involved with BreakPoint.

Once you’re satisfied with the results of the debugging session, you can delete the breakpoint by selecting
the highlighted line and from the right-click menu select Delete Breakpoint.

398 Learning C# Programming with Unity 3D

Now that we have a clean list of zombies, we’re able to parse through them and check each zombie’s
proximity to the humans.

To start, we’ve decided arbitrarily that 1.0f units is what we’ll consider too close for a human
to be near a zombie to be considered a valid target for the turret to aim at. The statement
dist < tooCloseToZombie will remove the zombie game object from the ArrayList of
zombies. With the reduced list we then search through them for the closest remaining zombie
to the turret.

The use of the ArrayList affords the Remove() object function. With a fixed sized array like
GameObject[] theZombies, there is no Remove feature. You can take an object out of a fixes sized array,
but the empty spot would still exist as a null. Finally with the reduced ArrayList we’re able to search for
the closest zombie to the turret.

Once we’re done finding the closest one, we assign it to the GameObject closestTarget. And hand
that off to the GunTurretController.

The controller object here has a ShootAtTarget(GameObject target) function that performs the actions
necessary to aim the turret at the target and launch a projectile.

399Intermediate: The Tricks of the Trade

After completing the features requested by the designer it may seem unfortunate that the zombies stand-
ing next to humans are not targeted. Perhaps this is something that should be brought to the attention of
the designer.

6.17.5 What We’ve Learned

We’ll leave off here for now and move on to a different topic next. Arrays are a fundamental part of program-
ming in general. A database is not much more than a complex array of different types of data. The principal
difference is that a database has some relational connections between one element and another. Arrays
without this relational data mean you’ll have to keep track of the different relations.

Sorting through objects is an important part of general computing that many algorithms do
nothing more than sort and organize values. Computer scientists spend years trying to speed up
these sorting processes. We can’t necessarily spend too much time on comparing these different
methods of sorting in this book, as the field of study has filled countless volumes of text. If it
were not for this importance, companies wouldn’t base their entire business on storing, sorting,
and organizing data.

You could imagine dealing with a few dozen monster types; each one with different sets of data, stats,
and members can quickly become cumbersome to deal with. There are ways to maintain some control;
that’s where data structures come into play.

6.18 Out Parameter

We have been thinking that functions return a single value. Another method to get more than one value
from a function is to use the out keyword in the parameters. The out keyword is usable in most situa-
tions even if you need only one return value though its use is different from how return is used.

400 Learning C# Programming with Unity 3D

The above is a function that simply returns 7. In use, you might see something like the following code
fragment:

What limits us is the ability to return multiple values. What we’d like to be able to do is something like
Lua that looks like the following:

Lua has some clever tricks like returning multiple values. With some extra work in C# we can simulate
various work arounds, or a tuple as we have seen in Section 5.7.4. This is not elegant to say the least, and
this does not mention the performance issues that will creep up if something like this is used too often.

From the above example, we created a function called GetSevenEleven() that returned a 7.
return which is used to provide a system to turn the function into some sort of value, which can be
an array, but then we start to lose what sort of data is inside of the array. Because of this, we will run
into type safety issues. For instance, we could modify the statement in sevenEleven() to look
like the following:

401Intermediate: The Tricks of the Trade

The parser will not catch the error, until the game starts running and the GetSevenEleven() function is
called and the int eleven tries to get data from the array. You will get this printed out to the Console panel.

This type of error is not something we’d like to track down when you’re using an array for use with num-
bers. Vague errors are rarely fun to figure out. It’s best to avoid using anything like the code mentioned
above.

The advantage of the tuple is knowing the parameters that went into the return value. However, tuples
can often add to the complexity of a function’s signature. Ultimately, the reason for using any one system
over another is readability. The out parameter flows nicely, the value goes into the function and can be
used immediately. Tuples need to get assigned to a var and then the var’s members can be used after.

6.18.1 A Basic Example

In the OutParameter script, The parameter seven is defined in the argument in the GetSevenOut()
function. In the body of the function the int 7 is assigned to the seven parameter which is then sent to
the out parameter. Values used for the out parameter need to be created in the body of the function.
Incoming values are ignored and new values are assigned to the variable. The out parameter works in
one direction—out.

When the function is used you’ll see something like the following:

You need to do a couple of things before the out keyword is used. First, you need to create a new variable
to assign to the function. Then to use the function, you need to put that variable into the parameters list pre-
ceded by the same out keyword. When the function is executed, it looks at the variable’s value inside of it
and sends it back up to the parameters list with its new value. Of course, we can add more than one out value.

402 Learning C# Programming with Unity 3D

Using more than one out parameter allows you to create multiple values.

The above code produces the following in the Console:

Using the function in this way allows you to produce many useful operations on incoming values as well.
The additional benefit is the fact that the function can act as a pure function. This means that as long as
none of the variables inside of the function rely on anything at the class level, the code can be copied and
pasted or moved to any other class quite easily.

The outValue can be based on incoming parameters.

This example shows an incoming parameter that is multiplied by 2 before it’s assigned to the outValue
parameter. The out keyword is handy and allows for more tidy functions. A simple function in Unity is
called the Physics.Raycast(); function.

403Intermediate: The Tricks of the Trade

The function returns a bool, true if the raycast hits something, and false if it doesn’t. In the scene, the
OutParameters object is aimed at a lower area of a sphere.

When we play the scene the AimPoint object jumps to the point on the sphere where the ray intersects
with a physics object.

Compare the out parameter with how a tuple works. The readability doesn’t indicate what values are
contained in var abc. The values are masked, and you’d need to have the function close by to read
what’s hidden in the abc variable before it’s assigned.

This shouldn’t diminish the usability of a tuple by any means, it’s just something to keep in mind when
choosing between out parameters or a tuple return value. The tuple requires unboxing from a var, out is
explicit.

6.18.2 Simple Sort (Bubble Sort)

In the scene are plenty more Spheres to deal with. Lists of monsters and values make for an important
part of any list of data when making decisions on what to do in an environment.

404 Learning C# Programming with Unity 3D

Around our OutParameter object we have several other game objects duplicated from the sphere where
we cast a ray. We’re going to create a simple ArrayList that will have all the objects in the scene added
to it. Then we’re going to create a new GameObject[] array that will be sorted based on the distance
to the capsule.

Sorting algorithms have a long history in computer programming. Many thesis papers have been writ-
ten on the topic. However, we’re going to make use of a simple sort algorithm to order an array of game
objects from the shortest distance to the longest distance.

We’ll start with a simple system to get an ArrayList of objects in the scene.

The allObjects GameObject[] array gathers all of the GameObjects in the scene. Then an
ArrayList called sphereList is created to store any object with “sphere” in its name.

After the sphereList is populated, a new GameObject[] array is created to store the unsorted
sphereList.

405Intermediate: The Tricks of the Trade

Now we’re ready to sort through the sphereList based on distance by plugging in the target gameObject,
the unsorted array and the sorted array into the SortDistanceFromObject function.

The first outer loop for(int i = 0; i < len; i++) starts with the first object in the unsorted
list. The inner loop for(int j = 0; j < len – i – 1; j++) iterates through the rest of
the array.

To clarify, assume we might have an array with 4 items. The outer loop starts with item 1, then the
inner loop compares the first item against the second. The second to the third, and the third item to the
fourth. The outer loop counts up 1, then the inner loop compares first to second, and second to third.
Then the last iteration compares the first and second again. Each time swapping the lower value toward
the first value in the array.

The unsorted array is now sorted so we can assign the array to the out parameter’s sorted
GameObject[] array.

6.18.3 Simple Sort Proof

To test our sort, we’ll use a for loop. Each higher value in the array will hold onto a different model.
The furthest model will be the last in the array and thus have the highest index in the array. The closest
object will be at GameObjectArray[0], and the furthest one will be at the end of the array. Therefore,
if there are 10 objects in the scene, the furthest object will be at GameObjectArray[9]. Remember
that arrays start at 0, not 1.

406 Learning C# Programming with Unity 3D

To help visualize how the objects are arranged in the array we’ll draw a longer line based on the position
the object is in the array. The first item will have a short red line, and the last item will have the longest
line drawn up from the game object.

As you move the OutParameter game object around in the scene, you’ll notice the length of the lines
changing based on the distance away from the capsule. This means that you can use this sort algorithm to
place a priority on which object is closest and which is the furthest away based on its index in the array.

6.18.4 What We’ve Learned

We should leave off here for now; sorting is a very deep topic that leads into the very messy guts of com-
puter science. The algorithm isn’t complete and lacks any efficiency. It’s effective, but only superficially.
The only reason why this works at all is the fact that Update() is called many times per second.

Bubble sorting is slow. For just the hand full of items we have in the scene, it’s performance will
not hinder your computers frame rate. However with many more objects the performance will get worse.

Most of the commonly used sorting algorithms have names such as bubble sort, heap sort, or quick
sort. This means we looked at the first two elements in the array, and if one had some greater value than
the other, we swap them.

For games such as tower defense, or anything where a character needs to shoot at the closest target and
then move on to the next closest, we can use sorting to help provide the character with some more interesting
behaviors. Perhaps he can target more than one object with different weapons at the same time. Maybe the
character can simply shoot at the closest three objects. The great thing about writing your own game is that
you can explore behaviors like this freely, but only once you understand how to use the code you’re writing.

In the end, we’re required to keep our code as simple as possible. The out keyword is best used when
we can’t return a single value. In the case with a single return value, the later version of sortObjects
where we simply return the sorted array is more readable.

407Intermediate: The Tricks of the Trade

6.19 Ref Parameter

The ref keyword, which is short for reference, works with variables in a slightly less intuitive way than
we have experienced to this point. This is related to how we’ve been thinking about variables. In the
usual case, we use the statement int x = 1;, and now when we use x, we can assume we’re dealing
with the value it’s storing.

The difference with ref enters when we start to manipulate the data stored under an identifier. If we
use a statement like x = 1; y = x;, we aren’t actually taking x and putting it into y. What’s really
going on is that y is looking at the value that x is holding onto and changes its own value to match what
x is storing.

In memory, y is storing a 1 and x is storing a different 1. However, functions can use the ref in its
parameter list. This maintains a link to the original variable.

This may seem hard to understand, and to be honest, it is. This concept is one that takes a while to get
used to and that is why some programming languages are more difficult to learn than others. However,
the concept becomes more apparent when we see the code in action.

6.19.1 A Basic Example

The ref keyword acts somewhat like the out keyword. In practice we’ll see how they differ with the
following example code fragment.

The code above takes in the ref of x which is assigned in by the parameters of the function. The in argu-
ment now has a direct connection to the contents of x. When refValue++; is executed, the value that
x was holding is incremented. A link to the original value is maintained. After the function is completed,
the value of the original x has been modified.

408 Learning C# Programming with Unity 3D

The y value on the other hand, is handled like a regular variable in the RefManipulateValue()
function. The notRefValue++; is run, but the increment doesn’t change the value stored in y. Without
the ref keyword, the link to the original variable isn’t maintained.

The difference between ref and out can become obvious when you see them together. When using ref you
can assume that the value is already initialized before being used in the function. Using the out keyword, it’s
necessary to initialize a value within the body of the function before assigning the value for the out parameter.

To get a similar effect with ref using out you’d need to provide an in as well. The following example
shows the first refValue incremented, the second value is then manipulated in the body of the
function before being assigned to the outValue.

6.19.2 Code Portability Side Effects

A side effect is the result of a function manipulating values that are not directly within the scope of the function.

409Intermediate: The Tricks of the Trade

When the IncrementX() function is used, the publicX variable in the class scope is incremented.

There is no problem with using a function like this. The fact that the Increment function works only on
the publicX variable means that you know exactly what it’s allowed to do, and what it’s limited to.

Reusing code can help speed along your own development. Often, you’ll find simple tricks that help with
various tasks. When we talk of reusing code, we need to think about how a function interacts with its input
and output to consider portability. If a function relies on the class it was written in, then it becomes less
portable. When a function can operate on its own, it becomes more utilitarian and more portable.

Consider the SortDistanceFromObject code from the previous chapter. We replaced the in and
out parameters with ref. This reduces the amount of work going into the parameters.

This version is considerably more portable; you only need to give it a gameObject to sort distances from
and an array of game objects to sort. To copy and paste code from place to place is much easier than
re-typing. Most programming tools even come with built-in code snippet management tools. Visual
Studio has it’s code snippets manager under Tools→Code Snippets Manager…

410 Learning C# Programming with Unity 3D

6.19.3 What We’ve Learned

In Section 6.18, we covered the out keyword, and here we learned the ref keyword. Values coming in
to a parameter using the out keyword are not initialized with any value.

In much the same way you’re not able to increment an int that has no assigned value.

With no value to increment in the int, you’re not able to add 1 to nothing. That being the case though
you’re able to assign a value to the outValue and pass that along to the variable given to that parameter.
Assuming of course that the types match.

411Intermediate: The Tricks of the Trade

The ref keyword on the other hand assumes that the incoming data has already been initialized.

If the variable given to a ref has no value, then you’ll get the same error of using an unassigned local
variable. The difference here is that the error occurs before getting to the body of the RefFunction().
To allow either of these to work, the variable in use needs to have a value before it’s used.

There are plenty of options and each has a purpose. It’s important to know how to accomplish a task
using different methods. Readable, easy to understand code should always be the goal.

Ultimately, your skill dictates how complex your own code will be. Your ability to read your own
code may even help others who encounter your work. You express your ideas and methods through code.
Different programming languages have different levels of expressiveness or expressivity. Basically, some
languages are stricter, while others allow for more than one way to carry out any given task.

The expressivity of C# is high, allowing you to try out many different methods to do the same thing.
There are more commonly used systems, but by no means should you feel limited to a commonly used
syntax. If you feel that a less commonly used syntax is more helpful, use it.

6.20 Type Casting Numbers

We need to know more about a variety of different data types and how they’re used before we can begin
to understand how and why type casting is important. At this point, we need more casting from one type
of data into another. Now that we’ve had a chance to use a wide variety of different data types, it’s time
we started learning why converting from one type to another is necessary.

412 Learning C# Programming with Unity 3D

From the array exercises we used cast from object to float, but why is this required? C# is a type-safe
programming language. What this means is that your code is checked for mixed types before it’s compiled
into machine-readable code. This is done to prevent any errors that show up while the code is running.
When converting between types that are similar, we don’t usually see too many errors. In the following
code sample, we demonstrate why we don’t want to use an integer for setting an object’s position or rotation.

In the TypeCastingNumbers_Scene is a rotation indication game object. The script in control is attached
to the TypeCastingNumbers game object. The white pointer has its rotation controlled with a float value
that’s incremented with Time.deltaTime. The red pointer is controlled with an int value that’s cast from
the value driving the white pointer.

413Intermediate: The Tricks of the Trade

As time passes, the white pointer smoothly rotates, the red pointer ticks, skipping directly to the next
degree marker on the rotation indicator.

Simply put, an integer is a whole number such as 1, 2, and 3. A fraction can have a value between 1
and 2, for example, 1.5625. Therefore, if we change from an int to a float, we’ll get a smooth movement.
This becomes more apparent when we look at the values in the Inspector panel in the editor.

Going in the other direction, from int to float, we don’t need to use a cast operator. This is because there
are no values being lost.

A cast from int to float is still being done, it’s just an implicit cast operation.

6.20.1 Number Types

This leads us to numbers having a size. In fact, so far we’ve used int and float, and there was even mention
of a double. However, why do these have a size related to them and how is an int smaller than a float?
This is a computer science question, and to explain this, we need to remember how computers count.

In the old days, when computers had moving parts, instructions were fed to them using a flat piece of
physical media with holes punched into it. Each hole in the media represented either a 0 or a 1, which
was then converted back into decimal numbers which we use in our everyday life. The primary limita-
tion in these old computers was size, and to hold big numbers, computers needed to be physically bigger.

Each number was stored in a series of switches. In 1946, the Electronic Numerical Integrator and
Computer (ENIAC) used flip-flop switches to store a number; imagine a light switch, with on being a 1
and off being a 0. Each group of switches was called an accumulator and it could store a single 10-digit
number for use in a calculation. Altogether with 18,000 vacuum tubes and weighing over 25 tons, the
ENIAC could store a maximum of 20 numbers at a time.

Because programming languages have such a deep-rooted history with limited data space, numbers
today still have similar limitations. On your PC, you might have the memory to store many hundreds of
billions of numbers, but this doesn’t hold true for every device. Every year new smaller, more portable
devices show up on the market, so it’s good to be aware that forming bad habits of wasting data space
will limit the platforms you can write software for.

6.20.2 Integers

It’s important to know how computers convert 1s and 0s into decimal numbers. To explain, let’s start with
a 4-bit number. This would be a series of four 1s or 0s. A zero would be as simple as 0000. Each place in
the number is a different value. The first place is either a 1 or a 0, the second 2 or 0, the third 4 or 0, and
the fourth 8 or 0. Each whole number between 0 and 15 can be represented with these 4 bits.

To demonstrate 0101 means 2 + 8 or 10. An interesting change is to shift both 1s to the left to get 1010
that translates to 1 + 4 or 5. This is called a bit shift, or in this case a shift left. The number 15 looks like
1111. It just so happens that a 4-bit number is called a nibble. A nibble also happens to easily represent
a single hex number.

Hex numbers are used often when dealing with assigning colors on a web page. Hex numbers range
from 0 to 9 and include an additional A through F to fill in the last six digits. A color is denoted by three

414 Learning C# Programming with Unity 3D

8-bit numbers for red, blue, and green. An 8-bit number is called a byte. Each color gets a range from 0
to 255. This turns into a two-digit hex number. Therefore, 0 is 00 and 255 is FF in hex.

6.20.2.1 Signed Numbers

Today C# uses numbers starting with the sbyte up to the decimal. The sbyte is a number from –127 to
127, and the byte is a number from 0 to 255. The s in the sbyte is an abbreviation of the word signed.
Therefore, you can actually call an sbyte a signed byte.

This is an important difference: Signing a number means it can be either positive or negative. However,
you lose half the maximum range of the number since one of the 1s and 0s is used to tell the computer if
the number is positive or negative. If we use the first bit to represent the signedness of a number in terms
of our nibble, this turns 0100 into positive 1, while 1100 turns into negative 1. Negative 3 is 1110 and
negative 7 is 1111, or “negative + 1 + 2 + 4.”

The above table represents most of the useful varieties of integer numbers. None of these have a decimal
point in them to represent a fraction. Numbers that do have a decimal are called floating point numbers.
We’ve used float and double as well; only that it hasn’t been so obvious.

6.20.3 Floating Point

Floating point numbers have been a focus of computers for many years. Gaining floating point accuracy
was the goal of many early computer scientists. Because there are an infinite possibilities of how many
numbers can follow a decimal point, it’s impossible to truly represent any fraction completely using
binary computing.

A common example is π, which we call pi. It’s assumed that there are an endless number of digits fol-
lowing 3.14. Even today computers are set loose to calculate the hundreds of billions of digits beyond the
decimal point. Computers set aside some of the bits of a floating point number aside to represent where
the decimal appears in the number, but even this is limited.

The first bit is usually the sign bit, setting the negative or positive range of the number. The following
8 bits is the exponent for the number called a mantissa. The remaining bits are the rest of the number
appearing around the decimal point. A float value can move the decimal 38 digits in either direction, but
it’s limited to the values it’s able to store.

We will go further into how numbers are actually stored in terms of 1s and 0s in Section 8.9. For now
just understand that numbers can represent only a limited number of digits. Without special consider-
ations, computers are not able to handle arbitrarily large numbers.

To cast a float into an int, you need to be more explicit. That’s why C# requires you to use the cast
and you need to add the (int) in int IntYRotation = (int)FloatYRotation;. The (int)
is a cast operator; or rather (type) acts as a converter from the type on the right to the type needed
on the left.

415Intermediate: The Tricks of the Trade

6.20.4 What We’ve Learned

There’s still a bit left to go over with numbers, but we’ll leave off here for now. A CPU is a collection of
transistors. The computer interprets the signal coming from each transistor as a switch which is either
on or off.

Computers collect these transistors into groups to accomplish common tasks. A floating point unit
(FPU) is a collection of transistors grouped together to assist in floating point number processing.
A graphics processing unit (GPU) is a variety of different groups of transistors specifically used to com-
pute computer graphics.

These groups of transistors are built with highly complex designs. Their organization was designed
by software to accomplish their task quickly. Software was used to build the hardware designed to run
more software. It all sounds a bit of catch-22, but at least we have some historic reference where all of
this comes from.

6.21 Types and Operators

Most of the operators we’ve been using compare equally. This works just fine when dealing with
numbers. However, we can use operators on types that are not numbers, but which comparative operators
can we use?

For number types, we can use relational operators. This affords us the ability to set booleans by using
greater than >, less than <, greater than or equal to ≥, and less than or equal to ≤. All of these operators
produce a boolean result.

As you might imagine, math operators such as add +, subtract –, multiply X, divide /, and modulo % work
on any number type data. However, we can also use the + on the string type.

In the fragment shown string c is assigned a + b. When sent to the Unity console we get “hello,
world.” Printed from the Debug.Log() function. Some other things we can do with strings are
comparisons.

416 Learning C# Programming with Unity 3D

where c is assigned (a == b), we get false. Likewise, we can use numbers and compare their values
as well. We can also use the not equal != operator on strings in the assignment for f. The comparative
operator !=, or not equal operator, works on strings as well as numbers. Knowing which operators takes
a bit of intuition, but it’s important to experiment and learn how types interact with one another.

Another system in which a string could be used is in a switch statement.

In a switch statement the input value is compared against each case. In the code fragment before we
used d = a == “hello,”; where d was assigned true. In a switch statement the value that proves
true will get executed. In the switch statement here we’ll get Debug.Log(“a was hello”); to
execute.

6.21.1 GetType()

We can also compare data types. This becomes more important later when we start creating our own data
types. To know how this works, we can use the data types that are already available in C#.

The built-in types in C# have a function called GetType() which allows us to check against what type of
data each variable is. In this case, int a is a System.Int32 which is not the same as a System.String.

Even though we have two different types here, we can convert an int to a string by using the ToString()
function in the Int32 data class. Here we’ve got an int 7 and we’re comparing it to the string “7”;
when the int is converted to a string, the comparison results in True.

417Intermediate: The Tricks of the Trade

Dissimilar numeric values can also be compared so long as there’s no imprecision of the value with a
decimal point. An int 7 and a float 7.0f are still equal.

6.21.2 More Type Casting

We can compare ints and floats without conversion. This works because C# will convert the int to a float
implicitly before the comparison is made. However, C# does know that they are different types.

We can force the cast using the (int) on b that was assigned 7.9f, which we know is clearly greater
than 7. However, when we cast float 7.9f to an int, we lose the numbers following the decimal.
This makes the cast version of the comparison true.

Can we cast a string to a number data type?

418 Learning C# Programming with Unity 3D

No, there’s no built-in method to allow us to change a string data type into an int or any other number
type. Therefore, type conversion has limitations. However, don’t let this get in your way. Comparing
values should used with like types to begin with. What else can we compare?

What is being compared here? Well, these are two different objects in the scene. Even though they share
a good number of attributes, they are not the same object. A clear way to compare two instances of a
game object is to use the following fragment:

Here we’re being more specific as to what we’re comparing. If every object in the scene has a unique
instance ID, then we’re going to more clearly debug and test what’s being compared when we need
to check objects in the scene for matches. When we compare objects in the scene, which don’t have a
clear comparison, there’s usually a method to allow us to make a more readable difference between
objects.

In this case, yes, they are the same object, so the behavior is correct. However, again we should do the
following to ensure that we’re comparing something more easily debugged.

419Intermediate: The Tricks of the Trade

It’s always important to understand what our code is doing. Comparing types between one another is use-
ful for a multitude of situations. Checking for projectile types on targets, puzzle pieces types, or specific
environment props.

In the case where we are looking to see if they are GameObjects, we’d need to check for type.
This means that we can make sure that we’re looking for GameObjects. To do this, we need to check if
one object’s type matches another object’s type.

There is a very important difference here. We’re starting with two GameObjects. This allows us many
more options than an int type. GameObjects may have many components or scripts attached for more
specific comparisons.

Using AddComponent() we attach a ZombieComponent: Monobehaviour to the instance
of a GameObject when the game is started. To follow up we then ask the GameObject if it has a
ZombieComponent attached using the GetComponent() function. Then we check the type of the
component and compare it to the typeof(ZombieComponent) and we get True.

In Unity 3D when collisions occur between game objects that have physics components attached,
the OnCollisionEnter() event will provide the GameObjects that are involved in the collision. To
discover what hit the GameObject you use the same GetComponent() and take action based on the
presence of specific attached scripts. The significant take-away here is the fact that the type of data in
memory has a type, rather, a form or shape that each data has in the computer’s memory.

We’ve come to expect the names of some objects are what we have written them as. When we write
the type of an int to the console with Debug.

The fragment is showing that the System.Int32 and int are equivalent types. So too are the
System.Single and the float. These certainly act the same, but how are they being created with dif-
ferent names to define the same type?

420 Learning C# Programming with Unity 3D

6.21.3 Type Aliasing

We could use the above code in place of float, but float is the naming convention that started with C#.
Therefore, we’ll give in to convention and use float rather than System.Single, even though both are
acceptable by C#. The word float came from someone early on in C# who decided to add a type alias.
We can add our own type aliases with a using statement.

Along with the directives at the top of the TypesAndOperatives.cs file, we can add in another using
directive. Adding using MyOwnType, we can assign it to System.Int16; which turns our identifier
MyOwnType into a System.Int16.

Using the above fragment tells us that the type of a is a System.Int16.
Therefore, the float was assigned to System.Single somewhere in the depths of Unity 3D. It’s

unlikely that we’re going to find out where the convention of using float is a Single, but it’s important
to know how the keyword was assigned. The fact is that the float keyword, even though it has become
superfluous in programming, is still just the alias given to a System.Single.

Likewise, int or double, and some other keywords we commonly use are just aliases to simplify our
code. Other systems have aliased the system types with words such as bigint, smallint, and tinyint as
mappings to different numbers of bytes held for the integer value.

Therefore, now that we know a bit where types come from and how to convert one type into another,
it’s time to put this to some use.

6.21.4 Boxing and Unboxing

Boxing is the term that programmers use when a generic container is used to assign a multitude
of types. Once it’s discovered what has been “put in a box,” we can decide what to do next. When
the data is pulled from the variable, you “unbox” the data once you know what it is and what to
do with it.

Back when we created the HumanWithStates we had it inherit from the ZombieWithStates. It’s
possible to describe the HumanWithStates as a ZombieWithStates with new features. Because of
this we can assign any child of a type to its parent.

421Intermediate: The Tricks of the Trade

Like the HumanWithStates inherited from ZombieWithStates, the ZombieWithStates
inherited from MonoBehaviour. And so, a ZombieWithStates can be assigned to a
MonoBehaviour type object.

This also means that since everything we’ve been seeing so far inherit from object, we can assign any-
thing to an object.

In this case we have e d c b and a being the objects we’ve been using in the previous two code
fragments as well as an int 1 and a float 1.0f. Notice the last line. We’ve assigned object h to an
array object[]. If we think carefully about what’s going on here object[] and object should be
different types.

The Debug.Log tells us that object h is actually a System.Object[], so it is indeed an array “boxed”
in object. To unbox the array from object we use the as object[] operator.

422 Learning C# Programming with Unity 3D

To discover the type hidden in the box we need to check the type assigned as an object.

The use of the is operator can be used to compare the type of object. In the case here we check if object
o in the objArray is GameObject. If the statement is true then we print “got a GameObject!” and we
get that printed to the console three times. Since e c and a are GameObjects, this is correct. Something
that might surprise you are the things in the Scene you might not know about.

The fragment above exposes the hidden objects lurking in the scene. Objects like the NavMeshSettings,
LightMapSettings, RenderSettings, StreamingManager, and ResourceManagers are all working in the
shadows of your scene. It’s also important to note that object and Object are not the same thing. System.
object and UnityEngine.Object do conflict on some level. The UnityEngine version has more to
do with the actual game engine itself.

The system version has more to do with data types that even UnityEngine.Object inherit from.
Unfortunately, the function FindObjectsOfType() comes from the UnityEngine. Because of this
it’s a feature that doesn’t exist in System.object. The features you’re allowed to do with boxing are
limited to the eldest parent.

6.22 Operator Overloading

With all of the work we did discovering types and seeing how they can be interchanged it’s important to
see how they can be used a bit more definitively. In cases like ints floats and the like, we can apply math
operators. Both int and float are types that inherit from object.

What happens if you’d like to do something specific when you add one zombie to another? Operators,
like anything else it seems in C#, can have additional functionality added to them. When it comes to
dealing with new classes, we need to manage data using methods which we feel fit. In most cases, opera-
tor overloading should be considered a bit like voodoo.

423Intermediate: The Tricks of the Trade

In a more practical sense, a puzzle game could have a special class used to handle each puzzle piece. To
facilitate how the puzzle combines points and position, the class could store an x and y position as well
as a point value.

Operator overloading of a non-numerical value can result in a loss of readability. For purposes of learn-
ing how to do this, we’ll ignore this. In most cases math operations should be deployed on the number
values in a class. When it makes sense, math operations can be used on a new class with a reasonable
outcome.

6.22.1 A Basic Example

With the Operator Over loading script in the Operator Over loading_Scene from the Operator Over load-
ing Game Object, lets skip down to the public class Puzzle. In the class we have a new function signature.

In the class structure, a new function to add Puzzle pieces together requires a new syntax. The impor-
tant new parts is the operator + section of the function. The function parameters are the operands to be
added. The keywords public and static relate to the accessibility of the function and the Puzzle keyword
indicates the return type of the function.

To create a Puzzle object to return we add the members of each parameter argument together to cre-
ate the new Puzzle object.

424 Learning C# Programming with Unity 3D

When we add Puzzle a to Puzzle b we get Puzzle c, the result as indicated by the operation
when Puzzle p was created in the operator override function. Conceptually there are now three
Puzzle objects in existence, one for each operand, a and b, and one for the result of the addition, c.
After they’re used and the addition is finished, unless you store the result, all three are deleted once
the function they are used in is complete.

By including a + override we should also include the − override as well. Just because a + was created
for the class doesn’t necessarily dictate that a − override should exist. The string class has a + but
no − because it’s not as obvious as what to do when you subtract a string from another string.

6.22.2 Overloading*

We’re not restricted to overloading a class by a class. We can overload our Puzzle operator * with
a number. To double a Puzzle piece we could conceptually use the following:

425Intermediate: The Tricks of the Trade

In the above example, we take Puzzle a and multiply it by int b. To make use of the new operator,
our code would have to look something like the following:

In this case, c = a * b; takes the original and then multiplies it by 3 and assigns the new value to c.
Another effect of using the * with an int in the override is the ability to use the *= operator.

This might bring up the question, can we use += as well?

Using a different set of parameters we can add the ability to add an int to the values of the Puzzle.

The result of adding 1 to all the values in the Puzzle has the effect you might guess when used.
The utility of adding 1 to all three members of Puzzle might be questionable, but certainly it could
be used for only the points. The problem with this becomes more apparent once we start using them.
If we assumed c += 1 was only to be used to add value to the points we could do such a thing. We
could also assume that adding puzzle c += a Vector2Int could just modify two of the parameters in
the Puzzle object.

426 Learning C# Programming with Unity 3D

We can omit adding a value to a.points, but we do need to include a.points in new Puzzle p
before returning it. Otherwise the new value after the + operation will have 0 points. A revised version
of the + overload should look like the following as well.

With the modifications to the code, we’re now able to move puzzle objects around with a Vector2Int
and adjust the values with a single int. Conceptually keeping track of what’s going on can be difficult.
Adding, multiplying, and incrementing in different ways with different values is confusing. This means
that we’ve lost some readability; not always the best option. However, in light of this, does this mean we
should never use operator overloading? The readability of the code is the only thing we need to question.

Up until recently there wasn’t a Vector2Int object available in Unity 3D, there was only Vector2
which uses float values for x and y. Puzzle game authors often created their own version of Vector2Int
to help facilitate keeping objects in a grid. This meant replicating the available operator overrides in
Vector2 for their own integer version of the same function. Perhaps if you were to require a specific
type for your own game it’s important to understand how to write operator overrides.

In addition to the previous examples using + and *, we can also overload the true and false keywords.
For operators such as > and <, we can test if one puzzle object is more valuable than another.

6.22.3 Overloading < and >

Rather than returning a new Puzzle, operators return a bool value. The operators < and > can be
overridden to return a true or false value. The code fragment that accomplishes this is as follows:

Before we can use this, Unity 3D will likely remind us that we’re forgetting something with the following
error message: “The operator ‘OperatorOverloading.Puzzle.operator <(OperatorOverloading.Puzzle,
OperatorOverloading.Puzzle)’ requires a matching operator ‘>’ to also be defined.”

To comply, we’ll add in the opposite version of the less than < operator overload. A quick copy/paste and
a replacement of less than < to greater than > is all it takes to allow us to use the less than < and greater
than > overload.

427Intermediate: The Tricks of the Trade

To continue with our example, we can use the following few statements to check if our overload is
working.

The initialization of the Puzzle sets points for a to 1 and b to 7. Then Puzzle object a does indeed have
fewer points than Puzzle b. In this if statement, we do get a is not greater than b, and a is less than b.

However, you decide to use overloaded operators is left to how you’ve decided to work with your
classes. In many cases, if you find yourself comparing a few variables between two objects of the same
class to execute some block of code, then you should consider using an operator overload. Likewise, if
you find yourself adding multiple things together using the + for multiple attributes, then that’s another
candidate for an overload.

6.22.4 What We’ve Learned

With all of what we just learned, you should be able to see how overriding less than < and greater than
> can be useful in terms of sorting. You’d be able to make a sort based on specific properties between
classes. Comparing distances and threat levels can be a very interesting behavior.

Some of what we’re doing here is a bit awkward and mostly contrived. In general, greater than > and
less than < should be used to compare more numeric values. In the above code, comparing two zombies
directly is misleading. Are we comparing size, armor, and number of brains eaten? It’s impossible to
know with the operator alone. In this case, a.armor > b.armor would make far more sense.

It’s important to always leave the code in a readable state. Simply comparing two classes against one
another makes it impossible to know exactly what it is we’re comparing. This also goes for any other
math operator. In general, math operations are best suited for numbers, not zombies.

6.23 Controlling Inheritance

Understanding the details of inheritance is key to using any object-oriented programming (OOP).
Polymorphism, specialization, and encapsulation are considered the three pillars of OOP. Polymorphism
is related to how classes inherit traits from one another. To be fair, some consider inheritance as a pillar
on its own.

If someone needs to add behaviors to a class, but you require something like movement to remain
consistent between all characters in your game, then you’ll have to implement various systems to keep
people from breaking your code. A sealed class, often referred to as a final class, cannot be inherited
from. This sort of data ends the line as far as inheritance is concerned. This class is used when you want
to finalize a class and prevent any further inheritance.

The common metaphor used to describe inheritance is a family tree; however, what more closely
describes class inheritance is biological classification or scientific taxonomy. This is a system to orga-
nize and categorize organisms into groups such as species, family, and class. Each category is a taxo-
nomic rank.

428 Learning C# Programming with Unity 3D

To biologists the species Agaricus bisporus, the average button mushroom, belongs to the genus
Agaricus of the family Agaricaceae of the order Agaricales in the phylum Basidiomycota in the kingdom
Fungi. That’s quite a mouthful, even if you don’t like them on pizza.

In a very similar way, when you create a Zombie: MonoBehaviour, you are creating a class Zombie
based on MonoBehaviour, Behaviour, Component, Object, and object. Notice that Object with an upper-
case O is based on object with a lowercase o.

In this ranking and categorizing of mushrooms and zombies, the hierarchy that is formed means there
are common traits shared among objects. A death cap mushroom is a fungus like a button mushroom.
Both share common traits, reproduce by spreading spores, and have similar structures made of chitin.
One of these makes pizza deadly, and the other just makes pizza yummy.

In a similar way, all of the classes we’ve written based on MonoBehaviour share common features,
for example, Start() and Update(). From Behavior, they are inherit enabled. From Component, they
inherit various messaging and component properties. UnityEngine.Object gives them the ability to
instantiate or destroy themselves and find one another. Finally, System.object gives them all ToString().

Nature might take eons to create a new class of life. For a programmer, a new class in Unity 3D just
takes a few mouse clicks. Programmers also have the ability to override how inherited functions behave.
However, unexpected behaviors usually result in bugs. To control this, it’s best to put preventative mea-
sures around inherited functions through encapsulation and special controls.

6.23.1 Sealed

The sealed prefix to a function is one of the systems that allows you to control how a function is inherited.
Once you’ve written a well-constructed class, it’s a good idea to go back and prevent anyone from break-
ing it. The sealed keyword prevents a class member from being misused by a child inheriting the member.

One commonly written class is a timer. The timer should have some features such as setting the length
of time for the timer, asking for how much time is left, pausing and restarting the timer, and events for
when the timer ends and starts.

If you want all of the timers to behave exactly the same, then you’ll have to prevent anyone from mak-
ing any unnecessary modifications to the timer class. This is why they need to be sealed. A sealed class
is meant to prevent any further modifications from the point where it has been sealed.

6.23.1.1 A Basic Example

Adding in the sealed keyword before the class keyword does the trick. Once this is added, no class can
inherit from the class. In the ControllingInheritance_Scene open the ControllingInheritance script on
the appropriately named game object.

Once in place, you can create another class in an attempt to inherit from it. The following class tries to
inherit from the sealed class. It would be easy to remove the sealed keyword from the class and open it
up for basing more classes on it. However, this does inform you that you are indeed making a change that
isn’t intended. This behavior is meant to limit the amount of tampering of a class written to do something
specific. Usually, classes written with sealed are for very basic and very widely available functions that
shouldn’t require any other class to inherit from it.

We do have one option open to us in order to add additional functionality to a sealed class.

429Intermediate: The Tricks of the Trade

6.23.2 Extension Functions

An Extension is a secondary class that contains a function that we intend to use to add to a sealed class.

A static class means that the class members are available globally. This is required such that the
ExtensionFunction is available to any FinalizedObject. The first argument to the ExtensionFunction
is this FinalizedObject finalObj where this indicates that the function relates to the
FinalizedObject identified as finalObj. To use the ExtensionFunction as a member of the sealed
class use the regular dot operator as though it were a member of the FinalizedObject.

The instance of the FinalizedObject identified as finalizedObject has access to the new
ExtensionFunction() which was written in the static class FinalizedObjectExtension. To
add parameters to the function you’d add them after the first argument.

In the above, someArg takes an int and adds it to the end of the Debug.Log output. To make things more
interesting, it’s possible to add extensions to other classes in the same FinalizedObjectExtension
static class.

With the addition of AnotherSealedClass, we’ve also added a function which prints out an
input argument. An extension can access the members of the class in the body of the extended
function.

430 Learning C# Programming with Unity 3D

The second version of AnotherExtension just changes the type for the first argument. In technical
terms it’s the same function with a different signature, this is allowed since it’s now a regular function
override.

In the same FinalizedObjectExtension static class the ExtendingAnotherSealedClass
function uses a different signature. This allows for both the first example of the finalized object and
the anotherSealedClass to have access to a similarly named AnotherExtension() extension
function.

The key notion is that a class that is widely available should be stable and unchanging. Reliability is
key for preventing too many bugs from creeping into your code. The different accessibility modifications
such as sealed are intended to help prevent unexpected behavior. Of course, this doesn’t by any stretch of
the imagination mean that it prevents bugs completely.

6.23.3 Abstract

If a sealed class means it’s not intended to be extended upon, an abstract is the opposite. An abstract is a
class which is required to be extended. The abstract keyword is used to tell inheriting classes that there’s
a function they need to implement. If you forget to implement a function that was marked as abstract,
Unity 3D will remind you and throw an error.

6.23.3.1 A Basic Example

To inform another programmer or yourself that you need to implement a specific function, the abstract
keyword is used. Setting up a class to inherit from helps you plan your classes and how the classes are
intended to be used.

431Intermediate: The Tricks of the Trade

An abstract BaseCounter class has a defined abstract void IncrementCounter(); cre-
ated. As a class implements the BaseCoutner, Visual Studio immediately warns you to Implement
Abstract Class.

The implementation uses override to indicate it’s implementing the abstract function. If you add a
body to the abstract function another error comes up to tell you a body for an abstract function is
not allowed.

The abstract keyword implies that the function declared is to be implemented by its inheriting class.
The programmer implementing from the BaseClass there are important functions which must be
filled in. The implementation, however, is left up to the author of the inheriting class.

This only means to inform you that you cannot implement an abstract function. You must rely on a
child class making the implementation. The intent here is to provide a clear and specific structure for
all classes inheriting from the BaseClass. This assumes there is a common structure between all the
classes using the abstract class.

To continue, we should make a sibling class similar to ChildClass with a different implementation of
the IncrementCounter() call.

With this we increment Counter by 1 each time the function is called. The UseCounter() function
is called in Start(), and we get some numbers going up.

432 Learning C# Programming with Unity 3D

This results in the following Console output:

If the classes are considered final, they can be sealed.

This means that the IncrementsCounter can no longer be derived from. However, this doesn’t apply
any sibling that hasn’t been sealed. A sibling is considered a branch from BaseClass. C# is informing us
that it cannot create an instance of the abstract class or interface BaseClass. An interface works in a simi-
lar way to an abstract class, but with a few more restrictions. All these mechanisms are there to prevent
problematic issues that have come up with different languages. We’ll get into the hows and whys of the
interface in Section 7.6.4.

6.23.4 Abstract: Abstract

The Abstract topic should be expanded to look at additional abstract classes inheriting from
abstract classes. These can be used to add more diversity to a simple base class. By creating a
branch that is also abstract, you can add more data fields and functions to provide a variation on
the first idea.

433Intermediate: The Tricks of the Trade

The key function behind using abstract classes is to create a commonality between all the deriving classes.
They’ll all use the same IncrementCounter() function. BaseLimitCounter implements the
IncrementCounter() function the same as any other class based on the BaseCounter abstract class.

Organizationally, LimitCounter only has two new functions. A check to see if we’re at the limit and
a function to set the limit. By breaking up the classes into separate files we’ve kept the amount of code
contained in each class to a minimum. This prevents a single class from becoming overly complex and
allows for focus of purpose. In a team of programmers, separating files also provides a means of isolating
work. When multiple people are working on a single file work changes can collide, and work can be lost.

Additional fields and functions are added in the abstract class BaseLimitCounter that is based on
the abstract class BaseCounter. This avoids making modifications to the BaseCounter, as there
might be other classes relying on its stability. Keeping code in use intact is necessary to avoid conflict.
Modifications to a base could cause problems to ripple through the rest of the project.

The implementation the abstract member AtLimit(); and SetLimit(int) means that we get to keep
our current implementation of IncrementCounter() and we need to add only the missing functions.

434 Learning C# Programming with Unity 3D

6.23.5 Putting This to Use

We’ll start with a construct that’s used often for many different game systems.

An abstract BaseTimer gives us a few abstract members to work with. The three functions will set
when the timer will end, when it begins and whether or not it’s ended. Also in the BaseTimer class is
a float variable for the Timer and the EndTime values.

The implementation of this abstract class is called GameTimer, in which we can set a number of
seconds and check for the Ended() boolean to become true.

The GameTimer can make use of Visual Studio’s handy auto complete tools which create the appropri-
ate overrides.

435Intermediate: The Tricks of the Trade

Each function requires thought as to how best implement each function. The intent of each function can
be interpreted by the engineer. What’s important is that the class works as expected, not necessarily how
it works.

The SetTime assigns the argument time to the Timer value. This value doesn’t change unless
SetTime is used again to change the Timer’s value. The BeginTimer function sets the EndTime
to the current time with the addition of the Timer’s value. So if the Timer was set to 3 seconds the
EndTime becomes now + three seconds, or Three seconds from now. Finally the Ended() function
checks if the current time is equal or exceeded the EndTime value. The function returns false so long as
the current time is less than the EndTime value.

To use the new class it’s instanced when the game begins using a Start() in a MonoBehaviour
script in the scene. A gameTimer object is stored in the script and is assigned a new instance of the
GameTimer class.

The Update() then checks on every frame for the timer’s Ended() function. By opting to
not inherit from MonoBehaviour, GameTimer class doesn’t need to rely on its own Update()
function. As the class it’s used in checks with an Update() the GameTimer ultimately gets updated
every frame.

Once the gameTime.Ended() returns true we log “GameTimer Ended.” Running the scene will
instance the GameTimer as soon as the scene starts. Three seconds later the GameTimer Ended will
repeat in the Console window.

6.23.6 What We’ve Learned

We can continue to make variations on the BaseTimer class easily. We could make an implementa-
tion which returns true until the timer has ended. All we’d have to do is switch one operator in the
Ended().

436 Learning C# Programming with Unity 3D

The only function that we need to override in NotGameTimer is the Ended() function. When
NotGameTimer inherits from GameTimer, both the BeginTimer and SetTime functions are already in
place.

The Update() function in the script in use in the scene checks with a very similar if statement.

As soon as the BeginTimer() function is called, the notGameTimer.Ended() is true until the time
ends. Making minor changes to a class built around inheriting functions makes testing and creating new
behaviors much easier. Any individual change on a base can have wide-reaching problems if unchecked.
C# in general is built to allow for these sorts of behaviors, for better or worse.

6.24 Building A Game—Part 5

As we layer more and more behaviors onto the environment or characters in the scene we can begin to
see a game take shape. Adding the Damage System to a wall tile makes for instant doors. Monsters can
still get in, but it takes longer. Finding what makes a game fun is in part the job of the designer. As a
programmer you’re integral to finding something interesting and making it into something fun.

6.24.1 Generating Rooms

After building a system to generate a floor it’s time to setup a system to build rooms with walls. The floor
tile 2D array gives us a grid in which we can cut out rooms. Various systems to build a dungeon level
exist, and many examples are available in C#. As a starting point we’ll go into some of the basic steps to
build a set of room walls.

We start with the [ExecuteInEditMode] tag. This allows us to build the rooms and save them in
the scene. Tags like this will enable faster testing of the code as well, since we don’t need to wait for the
game to play to test out the code. Having the editor open while we edit code narrows the iteration time.

437Intermediate: The Tricks of the Trade

In the Update() loop a similar bool is used to prevent continuous iterations. We’re also creating a list of
wall objects that need to be cleared when the generation is redone. DestroyImmediate() is a editor
specific function that’s used outside of the game play cycle. This skips over the objects OnDestroy()
function that might play a particle effect when the object is destroyed. After the objects are cleared, we
create a fresh list to populate later in the function.

A bit of the logic to picking where to create rooms is diagrammed in the code in the form of a com-
ment. We want to have a max width provided for the room so Something like 7×7 is easy to work
with. Next, we’ll want to know that each room is started at the same corner. In the diagram it’s the
top left. This means that we’ll want to acknowledge that there’s a safe space in which we can create
a room.

438 Learning C# Programming with Unity 3D

Collect the data required to calculate the safe area. The generator object is the FloorGenerator
used in the last chapter to create the floor tiles. This provides us with our maximum size minus the
maximum size for a room.

Using the maximum sizes we can populate the scene with the number of rooms requested. The function
MakeRoom takes a random position in the safe area and creates a random position in the safe area.

The MakeRoom function takes the starting point and generates a randomly sized room with a minimum
of 5 to the maximum specified in the editor. The size value is then used in an imbedded for loop.
The logic starts with the following:

A for loop to iterate across and for each step across we step down the Z axis. A check for either the north
south edge or the east west edge is made to generate a wall.

439Intermediate: The Tricks of the Trade

The logic for this appears in a long chain of || statements. We check if x is the starting edge or the ending
edge. This can also be read as “is left or is top or is bottom or is right”; create wall.

Clicking on the GenerateRooms check box a few times will create overlapping rooms. Fairly often
though a random set of rooms that aren’t touching can be generated.

More sophisticated systems that do this overlap check can also be created. A system can look at
each corner and compare them to other corners to check that the rooms aren’t covering the same space.
I’ll leave that up to you to experiment with.

6.24.2 What We’ve Learned

Rogue like dungeon generators have plenty of code resources available. Generating rooms with walls is
one of the first steps toward a complete dungeon. Next comes adding hallways and doors. Starting with
a center point of each room then drawing a line from room to room creates an array for a hallway to be
generated from.

The logic required for figure out where to place the walls can be worked out on paper first. The dia-
grams here are intended to help visualize what the code is going to do. Truth be told, the code here
started off as a diagram as what needed to be done before the logic was created to carry out the steps
necessary to create the rooms.

440 Learning C# Programming with Unity 3D

6.25 Leveling Up

Building up some skills. We’re getting deep into C#. This section contains a great deal of the things that
make C# powerful and flexible. A great deal of the code we’ve learned up to this point allow us to get
functional and get some basic work done. Even some of the more complex tasks can be completed with
what we already know.

We had a short introduction to the more interesting constructs that make up C#. It’s about time we
had a short review of constructors, namespaces, and inheritance. We’ll also look at more uses of arrays,
enums, and goto labels. All these systems make up a part of the skills that every C# programmer uses.

441

7
Advanced

Chapter 6 was complex and covered many interesting topics. No doubt if you’ve gotten this far you’re
willing to find out more about what C# can do. With the content of Chapters 1 through 5, you would be
capable of quite a lot. Continue to learn more clever tricks.

Most game logic and control systems need only the fundamentals that have been provided in Chapters 3
through 6. Once the behaviors need more coordinated events and simultaneous actions, you’ll need to
learn a few more tricks.

To make your work more predictable and to prevent bugs, you’ll need practice; there are also some
features that make C# more precise. This is to say that you would be able to enforce your own structure
to how you allow others to work with your code in the ways you intended.

Since programming is just reading and writing text, there are many things that can go wrong. A simple
misspelling or misplaced dot operator can break everything. There are many systems which you can use to
help your fellow programmers follow your instructions through how they interact with what you’ve written.

7.1 What Will Be Covered in This Chapter

Many layers of simple code with layers of basic logic create a complex behavior. C# allows for different
ways to keep your code contained in simple classes and functions. Simple classes and functions are easier
to write and debug. Complex behaviors required for game interactions come about when you combine
many simple behaviors with interesting logic.

We’ll look at the following features in this chapter:

• Visual Studio’s user interface (UI) and navigation of some of their interface widgets

• Further exploration into comments

• More function overloading

• More on base classes

• Optional parameters in functions’ argument lists

• Delegate functions and events

• Class interfaces

• Class constructors again

• Basic preprocessor directives

• Exceptions

• Generics

• Events

• Unity 3D-friendly classes

• Destructors

• Concurrency and coroutines and even threads!

• Dictionary, stack, and queue types

• Callbacks

• Lambda expressions

• Accessors or properties

442 Learning C# Programming with Unity 3D

7.2 Review

In the previous chapter, we looked at some interesting material. We were able to overload the regular +
and – with some new functionality. We looked at a few new ways to use the argument list in a function
and write a loop.

There are some additional concepts worth mentioning. There are several online articles on the alloca-
tion of objects to either the stack or the heap. The heap is built up in order, but isn’t rearranged too often.

When objects are added to the heap, the size of the heap grows. When objects are destroyed, they
leave holes in the heap. This leaves gaps between the objects that were not deleted. Suppose we have 100
spaces in memory and object A takes up addresses from 1 to 20, B takes up from 21 to 40, and C takes up
from 40 to 60. When object B is removed, spaces 21 to 40 are empty, between A and C. If a new object D
is only a bit bigger than 20 spaces, say 22, it needs to find the next biggest place at the end, so D uses 61
to 82. If another object D is created, we’re out of luck and the game stops running due to lack of memory.

The stack, however, is more organized based on how your code is executed. When a for loop is started,
the int i = 0; parameter is always tossed into the top of the stack; as soon as it’s no longer needed, it’s
chopped off, leaving room for the next object to be added to the stack.

In the end, memory management is a result of how you’ve arranged your data. So long as you use structs
to move around large amounts of complex data, you’ll most likely be allocating them to the stack. By
instancing too many classes, you’re leaving yourself to the heap that can eventually lead to memory prob-
lems. There is a problem if a stack is passed around in a class, in which case you’re still working in the heap.

7.2.1 Moving Forward

We don’t want to limit our experiences to the lessons we’ve just managed to get through. There’s still
plenty left to learn when it comes to the interesting parts of C#. In this chapter, we’ll learn how to make
C# bend to our will. Or at the very least, we’ll come to understand what some of the more complex con-
cepts look like.

We’ll find out more about how functions can have different numbers of arguments. We’ll even learn
how a variable can be a function. Interfaces are special chunks of classes that serve as a template for
other classes to follow. Then we’ll look at some more interesting uses of those interfaces.

Later, we’ll explore some more possibilities of how arrays can be handled and some simple tricks to
make those arrays more manageable. Interfaces come into play again when dealing with arrays. After
all, much of what computers are good at is iterating through long lists of data.

Speaking of data, because not all data is the same, we’ll need to learn how to make functions more
accepting of different types of data and still do what we expect them to. We can generalize functions to
operate on practically any type of data.

After this, we’ll finish some of the functionality of how C# works and then move on to how to use C#
to its fullest. Many of the lessons in the following chapters are transferable to other languages. Modern
features such as delegates and lambda functions are common among many other languages. Learning
the principles of how modern programming features work in C# is useful in any other modern program-
ming language.

Programming languages are as much about communicating to the computer as they are about convey-
ing your thought process to another programmer reading your code.

7.3 Visual Studio

Visual Studio Community is a free version of the Visual Studio Software which has been in development
by Microsoft for a few decades. Previous versions of Unity 3D were bundled with MonoDevelop, which
is still an option if you’d like to try it out.

The Visual Studio the Installation app helps install plugins and components. One of the components
is the Game development with Unity add-on. In addition to Unity, plenty of other add-ons are available.

443Advanced

Individual components enable development with C++, Python, and F#. This enables web, machine learn-
ing, and database software development as well.

Visual Studio has the advantage of being a wide audience and allows you to create software for much
more than Unity 3D. Another option is Visual Studio Code, a light weight version of Visual Studio
intended initially for Web Development. It’s possible to have several integrated development environ-
ments (IDEs) installed side-by-side on your computer. To select which IDE is launched from Unity open
the Preferences panel:

From here select the editor installed, if it’s not in the list then you’ll need to Select Browse and find the
app you intend on using for editing scripts.

The main advantage of using an IDE software like Visual Studio over a plain text editor is a feature
called the debugger. Aside from that are other features like syntax highlighting, auto completion, and
syntax error checking. The debugger allows you to watch variables update with live values from the
game and walk, line at a time, through your code to watch for errors as they happen.

In the coming chapters we’ll cover some of the more useful features of your IDE as it’s an important
part of becoming a skilled game developer. The debugger is also very helpful to learn what your code is
doing in a more visual manner.

7.3.1 The Debugger

When your code compiles, your game runs in the editor and you still get unexpected results; what are you
to do? The debugger is there to let you see your code in action. Visual Studio has the ability to connect
directly to the Unity 3D Editor while your game is running and pause your game as it executes each line
of code you’ve written.

Let’s look at how this works.

7.3.2 Mono History

Mono is open-source, free-to-use software. Mono is an implementation of the .NET Framework.
Microsoft based their .NET Framework for C# language on the European Association for Standardizing
Information and Communication Systems (ECMA). Like many European acronyms, because of lan-
guage translation, the letters are unrelated to the words in the acronym.

444 Learning C# Programming with Unity 3D

The parts that come together to help build games in Unity are the C# language version and the .NET
run time version. Both the language and .NET have different update schedules and version numbers. As
of October 2018, .NET was up to version 4.7.2, thus Unity supports version 4.x keeping up with the latest
features. C# at the same time saw a release on May 2018, bringing it up to version 7.3 to match features
supported in the latest .NET.

As confusing as this might seem, the engineers at Unity are now trying to keep their version of the
Unity.NET run-time up to date. Before 2017, this wasn’t the case. Unity was using the Mono Runtime,
which was behind the official standard, so for several years Unity was stuck on .NET version 2 and many
features of the programming language were left out. Thankfully, this is no longer the case.

The Mono compiler was first developed by Miguel de Icaza, Ravi Pratap, Martin Baulig, and Raja
Harinath. The compiler had many other contributors that helped improve and standardize how the inter-
nals work. Many improvements are continuously added every year.

Unity uses its own .NET run time. The latest version of Unity is compatible with the latest features of
the C# language. There are a few things to keep in mind when looking at compatibility across different
platforms. Now that you’re learning C#, you’ll be able to use your new language skills to build apps for
practically every modern platform, with caviots.

In an effort to maintain cross-platform compatibility, Unity 3D utilizes Mono 4.x, though this is a
recent addition. It’s this broad platform compatibility that enables Unity 3D to support practically every
form of distribution, including browsers, phones, and the most common PC operating systems.

Another commonly used framework is Oracle Systems’ Java. Java has taken on many different forms
and supports many different devices, including Blue-ray players and other more specific embedded sys-
tems. Because of Apple’s strict platform requirements, Java has been greatly barred from iOS. Because
of this restriction, C# is a better choice for developing mobile games. If you intend to write programs
specifically for iOS, you would need to learn Objective-C or Swift. These languages are exclusive to
Apple products.

After you write code, a compiler interprets the code and converts it into machine-readable language.
The compiler first parses or converts your human-readable code into a computer-readable format called
an intermediate language.

When your code is parsed, it’s scanned for errors and syntax. Once this passes, various optimizations
are applied. Extraneous comments, unreachable code, and unused variables are omitted during this
conversion. Finally, the intermediate language is generated, which is then converted into machine code
specific to the central processing unit (CPU) and operating system.

In the case with Unity 3D, the C# compiler eventually builds a file that is compiled just before the
game begins. This library works similar to the libraries that you include in your own C# code. Because
the code written for Unity 3D is based on MonoBehaviour, Unity 3D is able to make its connections into
your code.

You may have become used to the fact that one operating system cannot normally run an application
built for another operating system. For instance, you can’t natively run an application built for Android on
your PC. Even more difficult is emulating another CPU architecture altogether. This is because the binary
executable that is produced by a compiler needs to know what to convert your language into ahead of time.

7.4 Function Overloading

Overloading, in the programming sense, means use of the same function name with different parameter
values. Functions, so far, have had a single purpose once they’re written. This most directly relates to the
parameters which we give them. For example, consider the following.

7.4.1 A Closer Look at Functions

Open the FunctionOverloading_Scene and find the script attached to the FunctionOverloading Game
Object. If we consider the following code for a moment, it looks like we’re trying to write a function that
returns half the value of a number fed into the parameter.

445Advanced

The function HalfInt() accepts an int and returns that int value divided by 2. HalfFloat() accepts
a float value and returns a float that’s half the value fed into its parameter.

What if we wanted to use the same function name for both? This would certainly make remembering
the function’s name a lot easier. The function name HalfValue() would be a lot easier than remember-
ing HalfInt(), HalfFloat(), HalfDouble(), and anything else we might want to divide into two.
We’re actually allowed to do this quite easily using function overloading.

7.4.1.1 A Basic Example

This code might seem a bit awkward, given in our learning that once an identifier has been used, it can’t
be used again for a different purpose. In C# we’re allowed to do this with functions. This is one of the few
places this is allowed. In many cases the return value would be the same as to avoid unexpected return
types from a similarly named function.

446 Learning C# Programming with Unity 3D

In this case the two functions match both input parameters and return values. The only difference is how
the value is calculated. In this case, C# will complain that there is no difference between the two functions.

7.4.2 Function Signature

Here, we have the same function written twice, but we get an error this time that the function is already
defined! And, as a matter of fact, yes, it has already been defined once before. A function is defined by
not only its identifier but also its parameters. The function name and its parameter list together are called
a signature.

The return type is not a part of a function’s signature. What this means is best illustrated by the fol-
lowing code fragment.

Unfortunately, C# isn’t smart enough to understand that we’re asking for one of two different functions
here. Because the return type is not included when looking at a function signature, the two functions look
the same to C#. The code fragment above results in an error.

447Advanced

7.4.3 Different Signatures

So far, we’ve used a single parameter for the above examples. This doesn’t need to be the case. We’re
allowed to use as many different parameters as we require.

The above code uses no parameters in the first version of the function Overloaded(); this is followed
by a single int, and then we’re using an int and a float. However, all three of these have return
 values. Can we do the same with the ref and out as well? Let’s add the following code to the versions of
the above-mentioned functions and see what happens next.

It’s important to remember that there are two Overloaded functions that start with int and use a float.

An int followed by a float will use a different version of the Overloaded function than an int and a ref float.

448 Learning C# Programming with Unity 3D

Again, it’s important to remember that the use of a 9.0 without the f means a double 9.0 not float 9.0f. So
when you use the following:

We get an expected result of a function that’s overloaded to use a double and not a float. A function’s
signature is a function name and a list of parameters. For a function overload to work, we can use
the same function name, but overloads require that each function have the same name but a different
parameter list.

Why is this so important; wouldn’t using the same name with different results end up being confus-
ing? If the intent remains the same, this is easy to reconcile; we’ll see how this works before the end of
the chapter.

7.4.4 Putting It Together

By creating functions with overloads, we’re allowed to give ourselves some options when using the same
function name. Making our code more flexible without adding complexity is possible with very few
changes to the function.

449Advanced

This code sample was created for an Example.cs assigned to an object in the scene. I assigned it to the Main
Camera in an empty new scene in the Unity 3D editor. There are three versions of CreateObject(),
each one having a different signature. In the UseCreateObject() function, each version is used to
demonstrate going from no parameters to two parameters. Of course, you can add as many parameters
as you think are manageable.

The objects in the image above would be made in the scene based on the three functions we just wrote.
We have access to the three objects assigned as a, b, and c in the Start() function, so we can make
additional changes to them in the Start() function.

7.4.5 Not Quite Recursion

Where function overloading becomes interesting is when a function refers to an overloaded version of
itself. The logic here is that a function can be accessed in one of two different forms without needing to
write another function. The scenario arises when you have a simple function, say, drawing a word to the
screen with some debug lines.

The task starts off with drawing a letter, so first we’ll want to build a system for storing letters. We’ll
also want to create some system to give the collection of array points of a letter to whoever is asking
for it. We’ll start off with two letters; I’ll let you figure out the rest on your own.

450 Learning C# Programming with Unity 3D

7.4.6 DrawWords

This DrawWord project example is available with the full alphabet available in the Unity 3D projects
downloaded from GitHub along with the rest of the content for this book, but here we’ll look at a shorter
fragments of the code taken from the DrawWords C# class.

Here, we are looking at two letters A and B stored in the form of 3D points in space. The Vector3[] is
an array of Vector3s and the A or B identifies the array. They are rather boxy since they’re made of only
a few points each.

In the same class is the ToVectorArray returns which set of points based on an incoming type char.
We’ll look at what a char is in a moment.

451Advanced

In the above code, the function DrawWord() accepts a char c, as well as a scale, position, and
color. This then asks for the lines to draw using the ToVectorArray function. Once the vectors are
assigned to the array called lines, the for() loop iterates through each line segment.

The char type is short for character. A char is a single character in a string. Rather, a string is an
array of chars. Chars can be only letters, numbers, or symbols; when we use “hello,” we are assembling
chars to make a word.

For readability, we create a start and an end Vector3 in the for loop. This takes the previous Vector3
and assigns that to start. An important, yet somewhat not-so-obvious, step here is to start the for loop
with int i = 1; rather than 0. The start of the line begins with lines [i−1] that means that if the loop
begins with i = 0;, the first line point will be lines [−1] that would give us an index out of range error.
Remember that an array always starts at 0.

This function isn’t only meant to draw a single letter. Instead, we’ll write another version of the exact
same function with the following code:

This version of the same function does a couple of things. First, we change the function’s signature, which
means that rather than char c as the first parameter, we use string word instead. This changes
the signature in such a way that this DrawWord() function is now an overloaded version of the first
DrawWord() function. We should convert string word into upper case. This conversion to upper case

452 Learning C# Programming with Unity 3D

is necessary to convert any lower case letters to allow the ToVectorArray() function to convert each
letter to an array of vectors. Once we have the string converted from something like “abba” to “ABBA”
by using string uLetters = word.ToUpper();, we’re ready for the next step.

To convert this string to an array of chars, we use the statement char[] letters = uLetters.
ToCharArray();, where the ToCharArray() function in string returns an array of uppercase chars.
So long as the array comes back with at least one result, we continue to the next for loop.

In this for loop, we start at the beginning of the char array. To keep the letters from piling up on top
of one another, we create an offset, so each letter can start at a new location. This is done with float
offset = (i * scale);, which we then use to create a new offsetPosition Vector3. The x
of the offsetPosition is the only place where we need this offset + position.x; the y and z
will just use the parameter at the beginning of the function.

When we use the overloaded version of the function in the function, we use the char parameter
DrawWord(letters [i], scale, offsetPosition, color);, where letters [i] is passing a
char to the function rather than a string. The overloaded version is automatically used.

To see our code in action, add the DrawWords.cs class as a component to the Main Camera in a new
scene in the Unity Editor.

In the Update() function we call UseDrawWords(). In that function we call DrawWord() word at
the origin by using Vector3.zero, with scale of 1, Color.red;, so they’re easier to see.

The Letters class is added after the DrawWords class in the same file. Make sure that the Gizmos
button on the top right of the Game view port is turned on; otherwise, the Debug.DrawLines() func-
tion will not be visible in the Game view panel.

453Advanced

7.4.7 What We’ve Learned

The above discussion also works as an interesting example of code portability. The Letters class is
self-contained and doesn’t depend on anything other than UnityEngine for the Vector3 data type
and the Debug.DrawLine() function. Overloading a function should come naturally when you want
to use the same function in different ways. This also means that you can simply use DrawWord('A',
1.0f, new Vector3.zero, Color.red); to draw a single character.

7.5 Accessors (or Properties)

Encapsulation is an important property of any class. Keeping a class protected from misuse is critical
if you want to keep your sanity when the time to debug anything comes. Consider the following class:

The public int PositiveNumbersOnly is open to anyone who wants to make changes. For the
most part, this is just fine. Any objects can go in and make changes to the PositiveNumbersOnly
value stored in the MyNumberProperty class anytime. This includes changing the positive number
to a negative one. If having a positive number is critical for any of MyNumberProperty’s functions, we
might start to run into problems. To protect this number, you could have the access to the following:

This statement changes the read/write ability of PositiveNumbersOnly to read only. This also means
that the class where the value lives in cannot freely change that value. Changing the value isn’t allowed
from outside of the class either. The only time this value can be set is on creation in the constructor.

454 Learning C# Programming with Unity 3D

This example shows the three ways in which a readonly value can be set. The first is ReadOnlyOne
which is assigned in its initialization. This becomes a hardcoded value, something that’s not allowed
to change after it’s written in code. The second value SetByParamOnCreation is set by a value in
the parameter when you instance the class. Once the class is instanced, that value cannot be changed.
The last is SetOnCreation, which is assigned in the constructor as a hardcoded value. This cannot be
changed again once it’s assigned.

Should we want to protect a value internally, we should make it private, and then make a publiclly
available version which has some checks to block values we don’t want.

Here we have a private value called privatePositiveNumber and a public value called public-
PositiveNumber. We’ll plan on using one of them inside of the class, whereas we’ll make the other
publiclly available. Presume the value for a positive number should never be negative. To prevent the
privatePositiveNumber from ever getting incorrectly set to a negative number, accessors allow
logic in the set parameter for publicPositiveNumber to keep valid values.

7.5.1 Value

The placement of privatePositiveNumber = value; in our code is important. The value key-
word is the input where privatePositiveNumber gets assigned. Where we use the get{} set{}
notation, value is a catcher’s mitt to snag incoming data. This accounts for any value entering the vari-
able. This could be a struct, a string, or anything at all, so long as the type matches up.

455Advanced

7.5.1.1 A Basic Example

In its most simple form, the get;set; notation can be as simple as follows:

At this point, there’s no difference between public in myInt; and public int myInt{get;set;};
the two operate essentially the same. What we’re starting to produce here is a simple system where we’re
allowed to add in some logic to how a value is assigned.

To make full use of the accessor, we need to have two versions of a variable: the public accessor and a
value that remains private within the confines of the class. This ensures a certain level of encapsulation
that defines what object-oriented programming is all about.

The above code has a private int privateInt and public int publicInt with an acces-
sor. This is a standard notation that should be used to define a variable for a cleanly encapsulated class.
This too operates the same as the previous {get;set;}, only with the idea that it’s redirecting an incom-
ing data value from a public variable to a private variable hidden inside of the class.

7.5.2 Set Event

One of the advantages of an accessor is the ability to add logic to how a number is set. In addition to
logic is the ability to raise an event. As in Section 7.5.1 from before, we’ll want to add the delegate and
the event to the GetSet class. Inside of the set element of the accessor, we’ll make a check to see if there
are functions delegated to the handler and then raise an event.

456 Learning C# Programming with Unity 3D

The above code instances the new class and then adds the OnIntSet() function to the getset.
IntSetEvent inside of the GetSetWithEvent class. Once the value is set on the following line, we
get the following output from the Console:

This is a very useful result of setting a value. Looking closer at how the event is raised brings us some
ideas about what this event can be used for.

457Advanced

When the event is raised, we’re passing in the value of the privateInt. This means that anytime pri-
vateInt is set, we’re passing the new value to the event. Therefore, if privateInt is set to 7, the event
is raised knowing the new value 7. If the value is set to a negative value, then the event is raised again
with a value of 0. Once a proper accessor to a protected variable has been created, we’re able to do a few
more tricks with our new setup.

7.5.3 Read-Only Accessor

When writing a class, it’s often a good idea to prevent some values from getting set inadvertently. It’s
not possible to set a variable if its value has been calculated by a function. In these cases, we need to
make that variable a read only accessor.

The above code in the GetSetReadOnly class has a simple system to get a value that’s two times the
Int value. Notice too that there’s no set; included in the accessor. If we try to set doublelnt with
something like doubleInt = 2;, we get the following error:

By omitting set, we’ve turned doubleInt into a read-only variable. This has a similar effect to the
variable as the readonly accessor. The difference is that the class can still make changes internally to
the value after the class has been initialized.

458 Learning C# Programming with Unity 3D

This set of code produces the following output:

These examples with get;set; should expand to quite a variety of useful tricks. We can guard the
internal value from bad values. We can raise events when a value is changed. And we can make the value
read-only by omitting set; from the accessor.

7.5.4 Simplification

We have several options for getting information from a class. With accessors, we are spared the use of
parentheses when we ask for a value from a class or struct.

We have a couple of options here with the above struct. We can set the value of the privateInt vari-
able in the struct by the accessor or a pair of functions. We can set the value of privateInt to 3 with
SetInt(3); or publicInt = 3.

How does this look in practice?

459Advanced

The simplicity of publicInt = 3; means quite a lot. It’s a notation that we’re used to seeing; how-
ever, by the nature of the accessor, we have a great deal of control over what can be done in the acces-
sor’s logic.

7.5.5 What We’ve Learned

Accessors are useful for so many reasons. They provide functionality that has already been covered
quite a lot, though in a simpler system. There are many powers which the accessor provides us. We’ll be
exploring some of the other tricks that make coding easier.

Many tricks in C# are made to make your work easier. Convenience offers more than just simplicity. If
a trick makes things easier, then you’re allowed to make more important decisions. Rather than dwelling
on function names and parameters, you’re allowed to focus on game play. After all, if you’re making a
game, the last thing you want to do is spend all your time rewriting code.

7.6 Base Classes: Another Look

When we begin to use inheritance and add keywords such as virtual and override onto functions,
we begin to add many new layers of complexity onto the use of a class. How we write these class mem-
bers greatly depends on how we want them to be used.

Depending on who you work with, you might find yourself seeing your code being used in unexpected
ways. Often this is the case when you’ve written functions that have similar-sounding identifiers. Perhaps
even misleading function names can be the cause for a great deal of confusion.

It’s up to you to keep your code organized to begin with; however, given tight deadlines and poor
sleeping habits, this can’t always be the case. You can add descriptive comments, but these are all too
often ignored. Your best option is to just disallow other code from seeing the variables and functions at
all and prevent bugs from sneaking in.

This topic brings into question why any of these techniques is necessary. Inheritance is a system in
which you can write a base class and have variations of that class extend functionality. The intent is to
make a system that allows for a common set of base-level functions sharable. Based on what’s been writ-
ten, you make additions to, or variations of, that functionality.

To begin we’ll look at building up some classes not derived or based on MonoBehaviour. This makes
them regular C# classes outside of the influence of the normal Update() and Start() behaviors
which we commonly see in most C# classes in Unity 3D.

The Unity 3D MonoBehaviour is not an abstract class, which means that we cannot make an
abstract class based on it. An abstract class determines the necessary collections of data that every
derived class will need to implement and use. To see how a base class can be used to do some work for
us, we’ll look at the BaseClassesAnotherLook script in the BaseClassesAnotherLook_Scene attached to
the game object of the same name.

7.6.1 Generalization—Base Classes

Generalization allows us to make some wide-use cases for a class and then allow for more specific cases
later. In general, if you were working on a game with a compendium of monsters there would still be
plenty of shared attributes. If our behavior was nothing more than moving forward and turning left or
right, we can add some variables that allow for this and name them appropriately.

A good base class will include some primitive variables, but at the same time provide a system for
building up the types of behaviors we’ll want. This is almost like writing code before it’s written, but
at least you can jump between classes and make changes when necessary. For our next behavior, we
want some generic shapes driven by two numbers: a forward speed and a turn speed. Aside from that,
the objects should have a very minimal set of instructions to prevent any unnecessary meddling in
their activity.

460 Learning C# Programming with Unity 3D

The BaseClassesAnotherLook.cs script is a detailed class. This data was necessary since we didn’t have
the usual objects inherited from MonoBehaviour. You can see its completion in the source code, col-
lapsed here. Since we had to generate a great deal of this information from scratch, we needed to add in
some accessors and other protections around the different data members to ensure that nothing unex-
pected might happen.

As an abstract class, nothing has been implemented. We have one function called Speak(), which says
"Base Hello." Everything else has been stubbed in to ensure that any class inheriting from BaseClass
will have a great deal of work to do. The first region has been set up for many protected and private
variables.

In the above class, we use the abstract keyword as well as virtual. In many cases, we might add
many variables in anticipation of what we might need. These can be declared as we need or we might
just leave in a bunch of place holders, thinking that we might need them later. Often, it’s far better to cre-
ate them as they are needed and decide if it’s specific to a child class and move them into a parent class
afterward. However, in this example, it’s good to see that any number of variables can be added to this
class for later use even if they’re not necessary for all child classes to use them.

By making accessors for these variables, we’ve created a barrier between how the variables are set and
who can set them. The protected variables are accessible only to siblings of the class. Other classes that
might be trying to change these classes’ movement patterns have to go through functions to change these
variables. They won’t be able to access them directly through a dot operator.

Following the base class, we have a ChildA class that inherits from the base class. Shown here in brief:

This class has two important functions: MoveForward() and ChildUpdate(). Since we have
bypassed the MonoBehaviour class, we don’t get to have either of these. Just as important, we have
the Initialize() function that replaces the Start() functionality.

461Advanced

7.6.2 Specialization

The Initialize() function has two arguments: meshFilter and material. These are then
applied to a new GameObject Me. Here is where the ChildA starts to add layers of specialization on
top of the BaseClass. The term specialization comes in whenever we add new properties or behaviors
that were not present in the base class. The base class should be as generalized as possible. In our case,
our base class is called BaseClass, just so we don’t forget.

When we add additional behavior to a second ChildB, we have another opportunity to add another
layer of specialization. In the following case, we add a color to the Material property.

7.6.3 Base

As new classes derive from each other, they require only smaller and smaller adjustments to gain added
functionality. The specialization adds only thin layers of additional code on top of the base class and any
class below. There are some important changes that need to be noted when deriving from a class that has
some important functions already in place.

462 Learning C# Programming with Unity 3D

The first line in the override void Initialize() function is base.Initialize(mesh,
material);. Here we have some important new tricks to inspect. When the keyword base is invoked
within a function, it’s an indication that we’re informing C# that we want to do what’s already been
done in the previous layer of that code. We can explore what the code looks like with what base.
Initialize() is doing.

The base keyword tells C# to execute the parent classes’ version of the function after the dot operator.
The above code is what the function would look like to Unity 3D. Thanks to the base. Initialize, we’ve
done the equivalent of this work without having to worry about any typos. Without invoking base.
Initialize() we’d lose the mesh material and gameObject creation and setup process.
ChildB is based on ChildA and ChildA is based on BaseClass. This means that both ChildB

and ChildA are related to one another because they both are also derived from BaseClass. This means
that we can address them both as BaseClass objects. If we look at the ManageChildren.cs class, we’ll
have the following code:

This class is derived from MonoBehavior and we have the benefit of the Start() and Update()
functions to use. It’s worth noting that this is the only class based on MonoBehavior active in the
scene in which we’ve added any code to. In ManageChildren class, we have a BaseClass[]
array and an identifier children. This means that the array can accept any number of BaseClass type
objects.

In the Start() function, we instantiate ChildA() and ChildB() and assign both of them to
the BaseClass[] array. This is valid since they both derive BaseClass. Because BaseClass
had the abstract functions MoveForward() and ChildUpdate(), they can be called in the
Update() function in the Manager. This for loop provides some motivation to make the two little
guys move around.

This also provides a system for them to speak. What’s important here is how both the ChildA() and
ChildB() classes are locked down. Only the exposed functions are available to outside classes.

463Advanced

Inside the Manager, they have just a few exposed functions or variables. Aside from Child-Update(),
Initialize(), MoveForward(), and Speak(), the rest of the functions derive from the object.
This is great for a few different reasons. The first is the fact that once the code starts working, it’s
hard to break.

Code turns into spaghetti when variables are accessed by many too many objects. Because options are
now limited, your code must make changes to the internals of a class and therefore it’s less likely your
code will fall apart. Should we not have a BaseClass for the two child objects, we’d have to write our
code more like the following:

Each one would have to be initialized and updated separately. This defeats the purpose of the base class
entirely. There are still clever and dangerous tricks that we can use to add functionality to ChildA with-
out needing to expand how much bigger that class might want to be.

7.6.4 Partial

If we’re expanding on a class enough that our functions begin to feel crowded, we can split the
work into different partial classes. One possible reason is to store all the accessors and properties
in one partial class. Another partial class can store protected functions. Yet another could store the

464 Learning C# Programming with Unity 3D

Unity specific functions. Each partial class can live in a different .cs script. When working with a
team, complex code merges can cause minor problems. One way to avoid this is splitting the work
across multiple files.

In the ChildC class, we could go in and extend ChildA: BaseClass with the prefix partial
before class so that we have public partial class ChildA: BaseClass. This gives us the ability to
tack on last-minute functionality to the ChildA class.

Therefore, say we needed a system for ChildB to set its scale to some arbitrary new size, we can do that
by adding the code locally to ChildB, or we can make sure that anything else deriving from ChildA will
also have this ability. This also means that ChildA has that new ability as well.

The result of using partial classes like this tends to scatter code all over the place. This quickly leads
to angry nights debugging code. Although there are some cases in which this can be quite helpful, it’s
best to start with the best use case for partial in mind.

465Advanced

To facilitate separation of duty the BaseShape has been split into different partial classes. The concept
here would be to store properties in one abstract class and the abstract functions in another class. When the
partial classes are implemented the separation is invisible to the class inheriting from the abstract partial class.

Setting up both the base class and the immediate child at the same time reduces the number of places you
might have to go in order to find any problem areas in the code. This still isn’t the best use case; however,
when implementing various interfaces, you can have a different class as a helper for each interface being
implemented. This certainly helps separate the different tasks. Suppose, for instance, that the BaseClass
looked something like the following:

466 Learning C# Programming with Unity 3D

Both the IEnumerator and the ICollection interfaces are rather complicated. Having
ShapeIEnumerator.cs and ShapeICollection.cs would help. Each one would start the same
as Shape, but the contents of each would be related to the interface they are implementing. Thanks to
Visual Studio, we have a quick way to generate the code we need.

To the left of the function in the margins is a little lightbulb icon, this is a code helper where we can select var-
ious menu options to write in the required placeholders or abstract functions required to fulfill the interface.

By adding the different partial classes to each one of these different files, the Shape is already getting
to be quite big. However, the original file has not increased in complexity. Each partial addition has only
added complexity to its own portion of the class. The new behaviors we’ve been adding are all being
inherited by ChildA and ChildB. This is a remarkable amount of work that can be done with less effort,
thanks to our simplifying how classes can be merged as needed.

Normally, Unity 3D would complain that the class name doesn’t match the file name. This exception
is made for classes not deriving from MonoBehaviour. By avoiding MonoBehaviour, we’re more able to
take some liberties with the C# language. The partial, abstract, and virtual functions and classes offer a
great deal of flexibility not allowed when deriving from MonoBehaviour.

7.6.5 Protected, Private, and Public

The accessibility keywords include protected to help shield your code from influence from other
classes. The only classes allowed to see a protected member are related classes. Below we show a
Base class that has a private protected and public string. The Child class inheriting from
Base can only see the protected and public string,

467Advanced

For a class to hide any properties from any other class the private keyword is used to shield a member
from outside influence. The protected accessibility attribute ensures that only inheriting members
can see the variable. Once a property is made public anyone can see the variable.

A partial class can see private members of the other portions of themselves. A partial class is still
the same class, so private members are members of all parts of a partial class. The private public
and protected accessor attributes can be applied to variables and functions of a class.

7.6.6 What We’ve Learned

It’s difficult to set strict rules for breaking a class apart into base and child members. The reasons for
this design behavior are three-fold. The first is to enable faster development by reducing the necessity for
rewriting code. The second is for maintenance. If you fix code in one place you’ve fixed it for everyone
inheriting the fix. The third is for reusing code. Working code should be used everywhere.

If you find a situation where multiple classes are looking for a specific object, make a base class that
finds the object, then every child of that base class will inherit that code. Splitting a class into multiple
parts can take a while as you’ll re-write several functions to suit multiple specializations. Each class may
need to inherit code differently.

This is often painful, but it’s worth it. The second time, though, is almost always faster than the
first time. Organizing everything into a clean simple group and branching with more reliable behaviors
always comes once you’ve got a better understanding of what you wanted to do to begin with.

7.7 Optional Parameters

We’ve been putting a great deal of thought into how functions work and how we can make them more
flexible through inheritance and overrides. The different features are not to add complications; they are
meant to add flexibility. Once you get used to how the features work, you’re allowed to do more things
with less work. It’s just a matter of understanding how the features work.

Hopefully, you’re able to keep up with the break-neck speed at which we’ve been adding these features.
If not, then it’s time to practice what you know before going on. This is a pretty simple chapter that adds a
pretty simple feature to our C# toolbox. Adding optional features is a pretty simple trick to our functions
that often comes up. Normally, when we declare a function, we use syntax like the following:

468 Learning C# Programming with Unity 3D

Therefore, we’ve used a few different variations on how to manipulate the argument list of a function
to get a few different uses out of a single function. We’re allowed to use a few other tricks that can help
make things a bit easier to deal with when making many changes. When the process of writing code gets
to a fevered pitch, you’re going to be needing to write a great deal of code fast and finding yourself going
back to fix things quite a lot.

Say for a moment that you’ve written a function that appears in many different places but you want
to change it. This would mean spending the time to fix it everywhere it’s used, and this can be a boring
time-consuming chore.

Therefore, you wrote a function that might look something like the following:

In use you might do something like this to use the function:

For a moment, let’s pretend that the function making use of CreateACube() is far too much work
to change and we are incredibly lazy. What happens when we need to make some changes to the argu-
ment list, but we don’t feel like making many changes everywhere the function appears? For a moment,
we want all of the current uses of the function to use the same code, which means that an override will
not work.

Suppose there is a request to make a fundamental change to the CreateACube() function, which
tells us that we need to make a third parameter set the scale of the cube; we have a few options that we’ve
been introduced to. The simple option is to simply make a new function with a new name. We’re missing
the point of using C#’s features if we do that.

The better option is to make a second version of the CreateACube() function with a different sig-
nature that might look like the following:

This would mean that we have two different versions of the same function, only the second one has some
additional statements, to take care of the third parameter. This should bring up the question, Isn’t there a
cleaner way to take care of any additional parameters without making more than one version of the same
function? The answer is an optional parameter.

7.7.1 Using Optionals

When a function is used the parameter list allows for default values. There are some simple rules to fol-
low if you want to make some of the arguments in the parameter list optional.

469Advanced

The third parameter is float scale = 1.0f. The addition of the = 1.0f predefines the incoming
value unless it’s overridden by a third parameter’s value. In short, if there’s no third parameter given,
then the float scale parameter is defaulted at 1.0f, and fulfilling all three parameters is not necessary.
The same goes for the first and second parameter so long as they have a default assignment set in the
parameter list.

Without any modifications to the Start() function’s use of CreateACube, we’ve added a simple
override that handles both cases with little additional work. There are, however, some restrictions to how
optional parameters are used.

Setting variables in case they’re not used in the argument list is an easy way to skip writing several
versions of the same function; in case there are different ways, you intend the function to be used. Even
with one loss with a predefined parameter, they will retain their order and value types.

For instance, we should remember that using two different signatures altogether can be used without any
additional fuss.

This would result with two different types being used with predictable results. This works for situ-
ations in which this was expected and different types were used from the beginning since there was a
predefined reason for the behavior of function’s differences. However, does this mean we can add an
optional parameter to either of these functions?

7.7.1.1 A Basic Example

Let’s start with the OptionalParameters scene in the Chapter7 Unity Project and look at the
OptionalParameters script of the game object with the same name.

470 Learning C# Programming with Unity 3D

The option exists only because the parameter has an assignment in the parameter list. This does not mean
that we cannot use regular overrides along with the regular use of the function. You’re not actually
required to write an override of any kind to begin with, though we’re adding one just to show that it is
possible to do so without any adverse or unexpected results.

The two functions above show a behavior which comes with the use of the optionalFloat parameter
being given the default value. The override will never be called.

The function without the second parameter will be preferred over the override with the optional param-
eter. The most suitable version will take priority. In all cases where the second parameter is given a value,
the default value for the optionalFloat will never be used.

7.7.2 Optional Arguments

We should check to see if the optional parameter can be made unoptional in a different version of the
same function; this would look something like the following:

Unity 3D gives us the following error:

The signature combination for the function (int, float) is the same with both versions of the function.
Therefore, no, we are not allowed to redefine the function with one using an optional parameter
and another using a required parameter of the same type. This should make sense: When you’re
using the function, the appearance of the use would look the same. Why stop with just one optional
parameter?

We can set all of the parameters in a version of the function with defined values, which means that we’re
allowed to do the following in the Start() function:

471Advanced

The first use has no arguments, the second has an int for the first int, the third has an int and a float.
The last two uses of the function are not valid. There is no version of the UsingOptionals() function
that has one float argument. The empty int space followed by a float is also invalid since all parameter
fields require some form of input before the list is usable.

To prevent further complication, use of the prefixes ref and out as we’ve used before in a parameter
are also disallowed when assigning a default value to a parameter. The behavior of requiring a value in
each parameter from left to right also means default values can only be assigned after required values
are assigned.

7.7.3 Named Parameters

Naming the arguments can be an easy way to make the parameters easier to read. In the case of
CreateACube (string name, vector3 position), it’s pretty clear what the two parameters are for. And
thanks to helpful pop-ups in MonoDevelop, we can get useful reminders telling us what each parameter
is for.

A less commonly used feature which gives us additional flexibility is the named parameter. If we con-
sider a function that might have several different parameters, some of which might be optional, it’s easy
to forget the order in which they are expected. Furthermore, if you want to use only one of the optional
parameters but don’t necessarily want to override any of the others, then we’d have a problem trying to
express this.

472 Learning C# Programming with Unity 3D

Consider the following function’s signature:

All the parameters are optional, and not using any of them prints the following line of output to the
Console.

This should be expected, but if we simply want b to be 99 and leave the rest of the parameters set to the
provided default value, what then?

From this result, we infer that a isn’t an optional argument. Unfortunately, LotsOfParams(null,99);
isn’t even an option. We are missing out by not using named parameters. If the parameters from
LotsOfParams had names, in this case a, b, c, and d, we can use them in the following manner.

7.7.3.1 A Basic Example

Named parameters follow a bit of a different look. Once there are a great deal of parameters, it’s easy
to forget which is which. By using a named parameter, it’s more clear what the value is for and what the
assignment is.

Just use the name of the argument you want to assign a value to followed by a: and the value you want
to assign to it. The order is also ignored so long as the identifiers are used.

The b followed by a and then d before c should look rather confusing, and in practice, it’s not the best
form to mix arguments so badly. However, there’s nothing preventing you from confusing anyone else
when reading your code. From the previous CreateACube example, we’re allowed to do the following:

Furthermore, the named parameters also work in the Unity 3D’s own data types like Vector3 where
we name z and y out of order.

473Advanced

Starting off with named parameters, we’re going to have to use the rest of the names. They can be in
any order, but once we start off with naming parameters before assigning them, we’re stuck with naming
all of them before finishing the function. Once the order is messed up, we’re unable to tell the function
our intent for the data going into the different slots in the argument list. For instance, consider the fol-
lowing three statements:

We created a cube named Bob in the first statement, as we have before; we didn’t use the name in the
second parameter. When we created Henry, we didn’t use a name in the first parameter where the string
is expected.

This works fine since the order has been retained. However, if we use position: as the first parameter
but then use "Jack" to assign the string to an out-of-order position, we get the following error:

Basically, the position or order of the unnamed arguments must line up with the function’s signature.
After that names can be used for any remaining arguments in the list.

7.7.4 Combining What We’ve Learned

We’ve looked at the out and ref parameters, and now we’ve covered both optional and named parameters
in relation to the arguments and functions. We should know a bit about how they should be used together.

If we write a strange combination of out, ref, and some optional parameters, we might come up with
something like the following:

There are a couple of important notes about this: First is the fact that ref cannot have a default value.
It might look something like the following:

The logic that results in this error is simple. The ref keyword is reserved to tell the parameter that it’s
going to assume the place of another variable that already exists. This means that the value that’s in the
argument list can’t be defined as the ref tells the value that it must be modifying something that exists
outside of the function.

474 Learning C# Programming with Unity 3D

7.7.5 What We’ve Learned

We’ve got many options. At this point, there are very few things which you might come across in a func-
tion’s parameter list that will come as a surprise. Keeping your code under control is largely dependent
on your discretion and your team’s decision making. Coming up with standards may or may not include
using named or optional arguments, which are not too common.

Optional arguments are certainly clever, and when used properly, they’re readable and easy to under-
stand. Life can continue with or without these types of parameters appearing in your code. There’s cer-
tainly nothing you can’t do without them.

Optional parameters alleviate the necessity of writing additional overloaded functions, which saves
some time. This is possibly best suited for a longer function that spans a heavy number of lines of code.
In these cases, a repeated block of code is more likely to have errors.

Any time you need to write code again is another chance for a bug to creep in. Overloaded functions,
in which one version works and another version doesn’t, can lead to long nights searching for which ver-
sion is being called and why it’s broken.

Even in bug fixing, we learn how to write better code. Often having others check your work is a good
practice to keep you in line with the rest of the team. Code reviews are a common practice among large
companies, especially on high-profile projects in which a small bug can cause big problems.

7.8 Delegate Functions

A delegate acts like a data type; just like how both int and double are number types, a delegate is a type
of function. The idea of a delegate is a bit weird. So far we’ve been thinking of functions as a construct
that processes data.

A delegate allows us to use a function in a variable. If you’re able to assign a variable to a function,
you can use it like data. This means passing it between functions, structs, or classes through a parameter
or assignment.

7.8.1 Delegates

A clever trick that C# has the ability to do is to store a function into a variable just like it was data.
There are a few rules for doing this. The first important step is to ensure that the signature of the variable
you’re storing a function in and the function you’re about to delegate match.

7.8.1.1 A Basic Example

Starting with the Delegates project, we’ll look at the DelegateFunctions.cs class. First we need to write
a new delegate function, which is a sort of a template signature for any function that is to be delegated.
This is easier to see in code than to explain. At the class level, add in the following code statement:

We’ve defined a delegate, which is pretty simple; but if you look at the signature, there’s not a whole lot
going on. We defined the MyDelegate() with return type void and assigned no arguments in the
parentheses. However, we’ll go with this as a basic example and look at more complex delegates in a
moment.

Now that we have a defined delegate, we need to make some functions that match the signature.

475Advanced

It’s important that any functions that are going to be used with MyDelegate() have matching signa-
tures. If not, then you’ll get an error before the code compiles. To make use of a delegate, you need to
make an instance of the function like you would if it were a class object.

Looking at the statement added to UseDelegates(), you should notice a couple of things.
MyDelegate() is the name of the delegate we defined at the class scope. This defines not only the
signature we’re going to be matching but also the identifier of the delegate we’re going to be using. To
make an instance of that delegate, we use it’s defined name.

This is followed by an identifier that is defined like any other variable. In this we’re using a short iden-
tifier del to identify the MyDelegate function. This is then followed by an assignment. We use the new
keyword to create an instance of the delegate function MyDelegate(), but then we add in a parameter
to a set of parentheses.

We wrote two functions with matching signatures: FirstDelegate() and SecondDelegate().
Choose FirstDelegate() and add its name to the delegate parameter. This is a bit weird, but it’s an
overloaded use of parentheses for delegates. After the assignment, del is now a FirstDelegate(). To
use it, simply add the following statement:

When the computer runs myDelegate();, we get "First Delegate Called." printed to our
Console. Now here comes the interesting part.

We can give myDelegate a new assignment. To do this, we add myDelegate = SecondDelegate;
to change what function has been assigned to the delegate myDelegate. When myDelegate(); is
used again, we’ll get "Second Delegate Called." printed to the Console of Unity 3D.

476 Learning C# Programming with Unity 3D

7.8.2 Delegate Signatures

Now for a more interesting example, let’s add a delegate with a more interesting signature.

Here we have assigned a return value and two arguments to the delegate MyDelegate(). To make use
of this signature, we wrote two different functions using the same signature: The first function returns
a + b and the second function returns a − b, as you might expect.

When del is assigned the duty of being the delegate to a function, it should be treated like a function. The clever
trick is that now we’re allowed to change which function myDelegate is delegating. There’s a more impor-
tant underlying use for delegates, but it’s important to understand the basic setup and use of a delegate first.

The use of delegates involves first matching up all the signatures to ensure type safety. Once this is
done, you’re allowed some leeway to make changes, but only under some strict rules. We’ll come back to
that in a later chapter. We’ve got plenty to work with before we get there.

So far we’ve used del = SecondDelegate to assign a delegate that was created within the Start()
function. There’s a much more interesting way to assign and use a delegate function.

7.8.3 Stacking Delegates

When the delegate is first declared, it’s useful to add a variable to store it in at the class scope. This allows
other objects in the scene to have access to the delegate.

477Advanced

The default initialization of a delegate is null. The first assignment can be done as we have before
with stacked = FifthDelegate; syntax. You can use the += notation to assign more than one
function to the delegate. When the stack is called, the assigned functions are called. As we write
more functions that fit the delegates’ signature, we can chain more functions for del to execute when
called.

This code stacks more functions onto our delegate. When this code is run, we get FifthDelegate: 5
followed by FifthDelegate: 6 twice then SixthDelegate twice printed to the Console panel in
Unity 3D. The feature sounds cool, but when is it used? More importantly, how does this feature
make C# more useful?

Once we get into events and event management, we’ll get a clearer picture of what delegate functions
are really used for, but it’s important to understand how to create and assign delegates before we get to
events. Events are basically functions that call other functions when something specific is triggered.
Usually collision events and input events need to trigger user-defined events.

This is where delegates become important. The event that was initially written by the Unity 3D
programmers doesn’t have a specific task, because they don’t know what you have in mind when a
key is pressed or a collision occurs on a game object. They leave the definition of what to do on the
event up to you to define in your own function. To use the event, we need to match the signature of the
event with our own function. Then we assign the function we wrote to the event written by the Unity
3D programmers.

7.8.4 Using Delegates

A delegate is basically a type, like any other int or float. The functions GetSeven and GetThree do differ-
ent things, but they both match the signature provided with IntDelegate(); as both return an integer
value with no parameters.

478 Learning C# Programming with Unity 3D

This also means we’re allowed to pass them to functions as though they were variables as well.
UseDelegate ignores the contents of the IntDelegate so long as they return an int.

When GetSeven or GetThree are passed into UseDelegate they return a value and it’s printed out.

The log produces the following results:

7.8.5 Updating Delegates

Delegates are often used to update multiple objects from a central function. In a basic form a Counter
class would get an update from a single function. Given a class Counter as in the following:

479Advanced

We have a function called UpdateCount() where we increment the internal Count value and check if
it’s reached a limit, then we report that the limit has been reached. Without a delegate function we could
use the following notation to call the update on a number of counters.

Delegates give us an option to update them with a single call to a delegate of the function:

480 Learning C# Programming with Unity 3D

After the Counter is created with a random number to count up to, we assign the Counter’s
UpdateCount() function to a CounterUpdate() delegate. Then when the CounterUpdate()
delegate is called every assigned Counter.UpdateCount() function is called at once.

The function CreateAndUpdateCounters() is called in the script’s Update() method called
once per frame. This effectively becomes a system where we get a Debug.Log(); called after a random
count has been reached.

7.8.6 What We’ve Learned

In Unity 3D, delegates are often used to update the state of an object that has been created in the scene.
Unity 3D as a framework often leads to MonoBehaviour objects, getting Start() and Update()
called in a non-specified order.

This means you can’t rely on a specific function before or after another function as you might expect.
To be more specific, you could check on a value during an update and make decisions that will effect the
game on the following update. You can’t ensure you can check a value at the start of an update and expect
to effect the scene before the end of the update.

This is best done via events. We’ll find out more about that in a few chapters. I’ll leave you to play with
some delegates for now; using events is going to take up a chapter, so we’ll leave that for later.

7.9 Interface

An interface is a promise that your new class will implement a function from its base class. The imple-
mentation of an interface can be made for any method, event, or delegate. Anything that has a signature
with an identifier and argument list can be turned into an interface for a base class. This promise of a new
class implementing an interface is not unlike that of a class implementing an abstract class.

C# does not support multiple inheritance to avoid confusion with how behaviors may overlap. Consider
the above two classes, if you were to implement both at the same time then which version of DoAThing()
would be inherited?

The structure of your code depends on having a plan. With every new function and every new data
structure, you’re adding to the overall complexity of your game or software. The more people you col-
laborate with, the more complex it will get, necessitating some way to stay organized and maintain some
sort of consistency. Your game’s chance of success is based on your code remaining consistent and stable.

An interface provides a framework for derived classes to implement. An interface is an organizational
tool that helps us when sweeping changes are made. Say you decide that all your zombies now need to
have a new feature, for example, their arms needing to be cut off; it will help out in the end if you made
an interface for building the body of the zombie when you started.

7.9.1 Early Planning

Using an interface could be considered early on. Creating them after many classes have already been
written can turn into a nightmare if your different monsters took on a wide variety of implementations,
but therein lies the strength of the interface.

481Advanced

An interface is a construct that helps other programmers understand what you’ve written. These tools
are intended to provide a basis for understanding without needing to hover around the rest of your team
to explain what your code does. Interfaces provide a system for constructing a class that implements
your code.

When we consider why object-oriented programming helps us rather than hinders us, we need to
remember a few things. First, we need to think of each new class as a progressive evolutionary pro-
cess to a previous class. Every fundamental change we make to our game has to be reflected on as
wide a scale as possible. Second, we need to remember that every object should share as much data
as possible. Finally, we need to make sure that all our objects interact with one another as closely
as possible.

To communicate this interaction and to solidify this unity between characters and properties in our
game world, you need to set up some base rules. These rules are best communicated by using an inter-
face. For an interface to make sense, we should create a class that the rest of the objects in our game
should follow as their base, a common foundation for all objects in our game to share. Once we begin
with some basic design patterns, we’ll really understand why interfaces are important, but for now, we’ll
just look at a basic implementation.

7.9.1.1 A Basic Example

We’ll start with the Interface_scene, in which we have an Interfaces.cs attached to the similarly named
game object. Unlike many other classes, an interface isn’t directly used in Unity 3D. The naming con-
vention always starts with an I to indicate that the class is an interface and not necessarily an object for
use in the game.

As a common practice, we prefix the interface with an uppercase I, though it’s not necessary. Inside
our interface we added an arbitrary string called ThisName as well as a function ThisFunction.
Everything needs a name, doesn’t it? Of course, you can use any type inside the interface as an example,
but a string is something easy to test, so we’ll start with string ThisName in our example.

The new syntax we’re seeing is called an interface property, and the format we’re seeing is how a
property is created in an interface. Interface properties are consistent identifiers, which all classes that
implement the interface will have. Often you might see this done with the following style:

This looks cleaner, so we should get used to seeing the get; set; syntax, as in the above statement.
The interface property is used as a system to allow each implementation of the interface to change how
the property is used. We can change how the get and set work, depending on the goal for each implemen-
tation. Interface implementations need to be made public.

Until we fully implement the IThis interface, Unity 3D will be telling us that there are some errors
because it doesn’t implement all of IThing. This is corrected by adding in members of the interface.

482 Learning C# Programming with Unity 3D

This can automatically be stubbed out by using the helper icon in VisualStudio. Selecting Implement
interface will generate the following code:

This shouldn’t be the final code, but it’s telling us what we need to provide to complete the implementation.

483Advanced

We need a private local variable specific to the class to store in the class that holds onto string ThisName,
which was supplied in the interface. In this case, we use thisName in the Toaster class. This isolates
the local data, but uses the interface property for the variable ThisName that was created in the IThis
interface.

How do we know what ThisFunction() is supposed to do? In most cases the naming of the func-
tion should be more clear. In many cases the name can’t describe enough what the intent of the function
is. In most cases a base implementation is provided as an example as to what is expected from the inter-
face. With the class ImplementsThis, we could consider this to be an example of how IThis is to
be implemented.

7.9.1.2 Using Accessors

The keyword value is used in the get; set; {} function to access the interface’s variable. The get;
set; statement is called an accessor statement and is used for interface implementation. The appearance
of get; set; in a class implementing the interface now requires code to be complete. Finally, we can
use an interface of the object in the Start() function of the Interfaces.cs script in the Interfaces scene.

As an example, we create a new Toaster T, assign its name to “Talkie,” and then print out the name to
double check that the accessor is correctly implemented. Notice that we’re not using ToasterName that
was made private in the Toaster class. The use of This Name and not ToasterName is the key reason for
why interfaces are important. For every class that implements the IThis interface, we must have a system
to set a ThisName.

If you have programmers adding new monsters, they should be instructed to implement the IThis
interface. With this rule, their code will not work unless their monster has a ThisName. If you make a
rule to never check-in code that’s broken, you should always confirm your code works before checking
it in. Needing to implement an interface to every new object ensures that every object has a ThisName.
Therefore, if we were to create a new zombie with the same interface, we’d need to do something like in
the following example:

484 Learning C# Programming with Unity 3D

This is a new zombie class that is based on MonoBehaviour. This means that we’re creating a new
ZombieGame object since we’re inheriting from MonoBehaviour. We’ve also implemented the name
accessor to follow the IThis interface. Without public string ThisName{get;set;} defined, we
get the following error:

A programmer needs to know quickly when an error has occurred. I’ve heard people say “fail fast and
fail often” to describe rapid development in small game studios. There are many reasons for this, and
finding bugs in your code is one of them. Interfaces ensure that new game objects follow the proper
setup you might want to use in your game. We should be careful when instancing a class that is based on
MonoBehaviour. Using the following code fragment will give us an error:

The error looks like the following:

UnityEngine.MonoBehaviour:.ctor()
Zombie:.ctor()
Example:Start () (at Assets/Example.cs:11)

485Advanced

To remedy the error that this produces, we’ll have to use gameObject.AddComponent();. Therefore,
the code should look a bit more like the following:

Now with the Zombie MonoBehaviour added to the gameObject, we can also fill in the Zombie’s
ThisFunction().”

Now we’ve created a gameObject that uses the IThis interface. Both Toaster and Zombie implement
the same interface. Therefore, we can assign both a name and get that name to print. If you check the
Unity attribute editor while running the code, you’ll notice that a new component has been added to the
Interfaces game object.

486 Learning C# Programming with Unity 3D

7.9.2 Multiple Interfaces

In C# we do not have the ability to inherit from multiple classes. We can however implement more than
one interface.

A special case appears when multiple interfaces use a function with the same name. Both interfaces sug-
gest a SameFunction() needs to be implemented, but how to we tell which is which?

The explicit declaration of the interface is required to inform the class which of the two interface you’re
implementing.

487Advanced

The explicit declaration is used by the interface name followed by the dot operator and the function name
in the function declaration. To follow this up, each interface function needs to be called.

The non-explicit implementation needs to call the explicit forms of the function call by casting to the
interface within the class implementing them. The reference to the class itself is done with the this
keyword. A cast from the class itself is done to the specific interface using the (FirstInterface) or
(SecondInterface) syntax. This provides the connection to the specific interface in the class imple-
menting that interface. The dot operator is used to call the function from the specific interface after the cast.

When the implementing class marks the SameFunction() as virtual, any implementing class will
then call all three versions of the function.

488 Learning C# Programming with Unity 3D

The ImplementsBoth class inherits from ImplementsFirstAndSecond. This becomes a class
which brings the two interfaces into a single implementation.

Calling on the SameFunction() from the class which implements the two interfaces which were called
in the SameFunction() from the previous class produces the following output in the Unity 3D Console:

We call every version of the SameFunction() when we inherit from a class which implements the
SameFunction() and then references two more functions, one from each interface. It’s uncommon,
but it’s an edge case you should be aware of.

Most interfaces are written as a system to comply with various systems already implemented. Often
an interface can be used to allow commonly used C# constructs to work with your custom script classes.

7.9.3 IComparer

Building a collection of interfaces makes sense so long as the interfaces provide necessary functionality.
The interfaces provided by C# offer more interesting possibilities in that they can be customized for any
suited purpose.

The System.Collections library built into C# has a class called the ArrayList. Starting with a list
populated with int values ranging from 0 to 1000.

To show this list we simply read them out one at a time to the Unity 3D Console with a Debug.Log() command.

The fragment here prints out a hundred random numbers between 0 and 1000. The ArrayList has a
function to rearrange the values stored in it called Sort(). After the Sort() function is used in the
ArrayList, the values are rearranged from lowest to highest.

489Advanced

The ArrayList isn’t complete without having our own object to sort. The sort requires a customized
version of the IComparer interface. The ArrayList has a built in comparison to sort the integer type.
To enable sorting of a new type we need to create one.

In this interface, the public int Compare() function takes two objects.
We can extend this CompareDistance class with another object to compare against. We’ve added

a third term called Target. This can be assigned after the DistanceComparer has been instanced.
Therefore, after DistanceComparer dc; has been created with the new keyword, we assign the
Target to another GameObject in the scene.

490 Learning C# Programming with Unity 3D

The above code has the added Target GameObject and some math to check the distance from object x
to the Target and the distance to object y. Once these two values are found, we compare them. If the
distance to the first object is greater, then we return 1; if the value is less, we return −1. If neither of these
two cases is fulfilled, then we return 0, inferring that x and y are equal.

The ArrayList.Sort() function uses the different 1, −1, and 0 values to move the objects it’s com-
paring. 1 means to move the x object up one in the array, −1 down one in the array, and finally 0 means
don’t move any objects. Depending on the length of the list, the Sort() uses what is often referred to
as a quicksort algorithm.

7.9.4 Using IComparer

In the scene we have several cubes placed around our game object with the Interfaces script. The first
fragment of code collects an array and adds them to an ArrayList.

This is followed by creating an instance of the DistanceComparer class which implements the
IComparer interface.

We then copy the sorted list to a public GameObject array we can observe in the editor.

By adding the code to the Update() in the Interfaces script we can watch the SortedByDistance array
change as we move the GameObject with the script attached.

491Advanced

The SortedByDistance array is now rearranged not by the order in the scene but by distance! Very quick
and easy.

7.9.5 What We’ve Learned

There has already been a great deal of material in this chapter. Interfaces are sort of like promises to
reuse both the same identifier and the same signature that were created in the interface.

This ensures that you always get the same implementation for each class that uses the same interface.
It would be a good idea to have as few interfaces as necessary. You shouldn’t implement a IMedPack
interface and an IShieldPowerup interface. What should be implemented is an IPickup interface. An
IPickup would cover anything that your player could pick up. An interface should be less specific,
not more specific.

Likewise, an IWeapon would be fine to cover anything that shoots, needs to hold ammo, and does
anything that a weapon is used for. The IPickup could hold information for incrementing ammo, health,
armor, or anything else. Classes implementing the IPickup interface could decide which they are incre-
menting, allowing for one or all of the stats to be adjusted when the item is picked up.

We’ll get into a few common-looking setups later on when we look at game design patterns. For now
try to think on your own what sort of interfaces you’ll be implementing.

7.10 Class Constructors Revisited

Interfaces provide a system to ensure that a class is talked to in a specific way. When we start building
more complex classes, we need to use an apparatus to ensure a consistent creation of the class. When
starting a game where zombies are spawned and chase after the player, we might begin with a single
zombie type. Later, we’d want to change this up for more variety. Modifying the amount of damage to
destroy a zombie or change its size, shape, and model would all need to be modified according to specific
parameters.

When working with a team, you’re going to be needing to make sure that the class you’re writing is
created consistently. If you allow one programmer to directly set the hit points and another one to modify
its armor instead, then you might get some unexpected behavior between the two monsters. This could
be mitigated by enforcing a specific interface. You set up a specific set of parameters that must be used
to properly modify a zombie.

492 Learning C# Programming with Unity 3D

A class constructor is used to set up an initial set of parameters required to instance a new
object. The constructor can include several parameters, including references to the object creating
them.

7.10.1 A Basic Example

In the following code sample in the ClassConstructors_Scene in the Chapter 7 Unity Project, find the
class ClassConstructors script on the game object of the same name. Within the ClassConstructor class
is a nested class used to create a treadmill; a system useful for an endless runner style game.

493Advanced

The TreadmillSegment constructor takes three parameters. The first is a float used to designate
how quickly the treadmill moves. The second is an enum to pick which shape the treadmill will use, and
the last is a reference to a delegate.

A Closer look at the ObstacleType enum shows four options. These coincide with the names of four
prefabs found in the Resources directory of the Unity 3D project. Objects found in the Resources direc-
tory can be loaded by Unity 3D at run-time. This means after the game has started, a file located on disk
can be loaded into the scene through script.

494 Learning C# Programming with Unity 3D

The last parameter is the reference to the TreadmillUpdate delegate. The delegate lives in the
MonoBehaviour script that gets the Update() function called on every frame.

This is used to ensure that classes, like the TreadmillSegment will be able to receive an Update()
call even though they are not inheriting from MonoBehaviour.

To use the TreadmillSegment class we create an arbitrary number of segments, in this
case 7. This value could be anything. An ObstacleType is necessary to assign to the
TreadMillSegment in the constructor. Using the i from the for loop cast from int to the
ObstacleType enum. This approach is used to create a simple pattern quickly. More interest-
ing logic aside, the cast from int to enum is possible since C# understands that an enum is a clever
use of an int. Modulo 4 is used since there are only 4 values in the ObstacleType. The last ref
UpdateTreadmill makes a reference to the delegate. The ref is necessary so the value of the
delegate going in can retain an assignment.

A closer look at the constructor of the TreadmillSegment shows we store the Speed value. The enum
is converted to a string. The string is then used to load a resource from disk with the same name as
the enum’s value. We cast from an int to enum to string to load a file from disk. Then the incoming
ref to the delegate TreadmillUpdate is assigned TreadmillUpdated function found inside of
the TreadmillSegment class. After that we make and store a calculation for how much the segment
will move on each update, where the treadmill starts, and how many treadmill segments there are in total.

The update function that gets assigned to the ClassConstructors delegate looks at how many
steps there are in total. This is calculated by how many segments there are by how far they move per
update. The Step value is incremented with every call. The position is reset to 0 by Step modulo

495Advanced

totalSteps value. An integer value is used to keep track of the position since floating point values can
begin to multiply small rounding errors over time.

The last thing to do to update the segments is call the UpdateTreadmill() delegate in the Update()
function of the ClassConstuctors class. There are only points in code in contact with the
TreadmillSegment. The only contact with the TreadmillSegment is made through the constructor.

7.10.2 When to Create a New Class

Now that we’ve been working with classes for a few chapters, you might begin to wonder how often you’ll
need to write a new class. It’s a good idea to separate groups of related functions into separate class.
The pattern in which the treadmill appears should be something we can have more control over. Comment
out the use of the first Treadmill system and uncomment the UseTreadmillManager() function.

This deactivates the first test of the treadmill setup to allow us to inspect how a file can be used to store
the pattern of our treadmill. We start at the beginning of the TreadmillManager class.

A readonly static string with the ProjectPath ensures that we cannot change this value
once the game has started. The static keyword here also allows us to access the value more globally.

496 Learning C# Programming with Unity 3D

Also included in the header of this class is using System.IO, one of the many useful C# libraries
that have been included with .NET giving Unity 3D plenty of tools to work with. This provides us with
StreamWriter, a file utility that can write a file to disk so long as it’s got a file path. In this case we used
ProjectPath and added a file name. The ProjectPath leads to the directory where the Project is stored on
your computer so your path may differ from the one indicated in the comment.

We then take a long string with '\n' between each value. This will allow us to break the string into
usable parts later. Then we give the StringWriter the defaultPattern string to write to disk. The writer
needs to be closed to finish writing the file.

We see a very similar pattern with reading that file. A StreamReader is given the same path. Then
ReadToEnd() is used to consume the contents of the file into a string. Once that’s done then we close
the reader before returning the string.

To break the string into an array we look for the "\n" characters to break the string into smaller parts.
This does a few things at once. First we have a bunch of smaller strings to work with, each object in the
string[] array is one of the values written in the string. Second we know how many segments were
written to the string.

497Advanced

To use this we read the pattern from the TreadmillManager.ReadPattern() which returns the contents
of the pattern.txt file. Then we convert that into an array with TreadmillManager.PatternToArray()
which returns a string[] array. We know how many segments to create so a for loop using the num-
Segments value allows us to check each object in the array for a string. The switch statement uses case
“Treadmill _ Empty,” “Treadmill _ Center,” “Treadmill _ Left” and “Treadmill _
Right” to supply the TreadmillSegment() constructor with its proper ObstacleType.

498 Learning C# Programming with Unity 3D

To make things more interesting, we can add additional functions to the TreadmillManager like
a system to append more obstacles to the text file. Here we convert the ObstacleType into a string
preceded by a '\n' character to create each appended object on a new line.

When we use the TreadmillManager in the following manner:

The text file generated appears as such:

Tools that allow you to read and write to disk will need to use some additional tricks to avoid interrupting
your game while it’s playing. Large files can cause your game to stall or glitch and you’ll lose a frame or
two. We’ll learn a few tricks in Section 7.18 when we cover a system where your game can continue to
run with new tasks running in the background.

7.10.3 What We’ve Learned

As we add new tricks to our bag, we need to consider how to use them. Even though the tricks are no more than
organizational or even for practice, it’s important that we use them. Practice is the only way we will get better
at the craft of code. With each new tool we learn we should use it.

This might not always work out for the better. In many cases, inappropriate uses of some of these tricks
can cause problems for other programmers when they come across your use of some interesting new pro-
gramming trick. Only after some experience will you be more able to deploy these tricks in an appropri-
ate manner. Until then, use them often until you find a case where you’re in need of using a different trick.

7.11 Preprocessor Directives

We live in a computer-diverse age where PCs and mobile devices share code. More important to our
everyday lives as a game developer, we must consider the differences between the Unity 3D Editor and the
game that the editor produces on Windows, OSX, iOS and Android. To further complicate the develop-
ment process, each platform may include many differences with how to address local storage or graphics.

499Advanced

The system in place to enable or disable blocks of code is called a preprocessor directive, which acts
somewhat like a comment that can use logic to bypass or enable blocks of code. Many directives are
already defined by the Unity 3D Editor; these include directives that are enabled specifically when tar-
geting specific platforms like mobile or console.

7.11.1 A Basic Example

To follow along use the Chapter 7 unity Project, open the PreprocessorDirectives_Scene and find the
PreprocessorDirectives script attached to the like-named game object. Preprocessors are placed above
the usual header of the file. PreprocessorDirectives are created by using the hash tag define (#define)
followed by an identifier.

The definition of the directive comes before the using UnityEngine and other usings that are included in
your new C# file. This also provides the use of the preprocessor directives to define whether or not usings
are included in the file.

This means we could include a diagnostics library from the dot net libraries just for testing. To keep
specific blocks of code limited to specific tasks or scope the definition of TESTING is used by #if and
#endif to create a scope of enabled code where TESTING allows. To make things a bit more simple to
use, System.Diagnostics is renamed DOTNET to

Looking further down, we see the #if TESTING in the Start() function followed by the DOTNET.
Debug.Log("DOT NET TEST");, which is followed by #endif to end the statements scoped by the
directive. The result of this code allows us to easily pick chunks of code to switch on and off. In Visual
Studio click on the Attach to Unity button, or go into the Debug menu and select Start Debugging. Then
go back to Unity to start the game.

500 Learning C# Programming with Unity 3D

We see the above output in the Unity Console. In the Visual Studio Output we get the following output:

The System.Diagnostics version of Debug will send output exclusively to the Visual Studio output
window and the Unity’s version of Debug will send output to the Unity Console window.

The above code is enabled with #define TESTING located at the top of the class. If we comment out
//#define TESTING and leave the rest of the code alone, The Visual Studio output is excluded.

When the code is run, the second “Not using TESTING” log will not be sent to the console as TESTING
is defined. Once TESTING is commented out, the directive #if !TESTING or “if not testing” enables
the Debug.Log() with Not using TESTING and we’ll get Unity’s output with the second log.
Preprocessors like this can be used to completely omit code from compiling, depending on whether or
not the code it’s around is needed. This is why it’s called a preprocessor directive. Based on how the
directives are set up, you can have entire sections of code omitted from various versions of the code. It’s
worth noting that you have to put all of your #define directive statements before any other token appears
in the class, so all of the #define statements must appear at the top of the class file.

Using the #if preprocessor is a clever way to manage what code gets executed based on the program-
mer adding in or taking out various #define directives. In Unity 3D, however, we get a very useful pre-
defined set of directives.

7.11.2 UNITY_EDITOR

Continuing in PreprocessorDirectives.cs file, take a look at the line where #if UNITY_EDITOR appears.

The UNITY_EDITOR directive is defined only when the code is being run in the editor. A complete
listing of the different symbols that have been defined can be found on the Unity 3D website. The other
defined symbols include Unity 3D version number and the platform that the game is running on.

It’s important to remember that you cannot define a new directive in the body of the code.
When the game is run in stand-alone mode or on a mobile device, the UNITY_EDITOR directive

doesn’t exist, so any code inside of any #if UNITY_EDITOR preprocessor directives will skip being
compiled into the game. It’s often useful to have specific behaviors when running in the editor. This can
speed up testing if you find yourself changing numbers while testing in the editor.

501Advanced

With something like this, we can easily just skip over changing the numbers every time we start the game
in the editor. This also prevents us from accidentally checking in code that might affect the final release
of the game. We can add on some layers of complexity onto the use of directives.

Here we can comment in and out the directive definition at the top and switch between Low_Health
and Unity_Editor testing. The first preprocessor statement #if UNITY_EDITOR && START_LOW_
HEALTH only sets when we’re running in the editor and we’ve uncommented out the //#define
LOWHEALTH directive at the beginning of the class. The && operator works the same as though we
were using it in an if statement.

To make things more clear, we can use parentheses around the preprocessor’s condition #if (UNITY_
EDITOR && START_LOW_HEALTH), which will produce the same result. This isn’t required; however,
programming style might dictate that you use parentheses anyway. To switch between the two statements,
we use #elif, which is a preprocessor version of else if normally found in the rest of your code.

The difference comes from an old habit that originated from an older less integrated system. An external
text editing software went through each file and deleted text before it was compiled. Each # command had
to be one word for the macro to work properly. The macro has been incorporated into the parser now, but the
formatting hasn’t changed. We’re also looking at #endif rather than a closing parenthesis or curly brace.

It’s a whole different language, and to that there are some benefits. It’s much more obvious that there’s a
secondary set of actions taking place on the code. Rather than using something that looks like the following:

502 Learning C# Programming with Unity 3D

Here it’s not so clear if these are directives. The real problem here is that this code will be compiled into
the shipping game and it’s more likely someone might accidentally leave a check box turned on before
checking in. Of course, the real issue is the fact that there is extra code being checked into the shipping
version of the game that doesn’t need to be there.

Of course, we could actually leave these check boxes on or off based on how they are being used.
However, the automation provided by simply adding #if UNITY_EDITOR is preferable, and also
less prone to mistakes. Before moving on, it should be mentioned that along with #define there’s also
#undef.

This immediately undefines the UNITY_EDITOR directive and anything relying on this will deactivate.

7.11.3 Mobile Development

In a previous exercise we wrote a file to the project directory. In the code a StreamWriter was used
to create and write text to a file.

We use the System.IO.Directory.GetCurrentDirectory() function to find where the Assets
directory is located that Unity is currently using. With this the Unity 3D Editor is able to locate and write
to the file, in this case we’re writing “Editor File Data.” However, if we used this in a mobile device we’d
run into a few problems.

Unfortunately, iOS requires several hurdles to jump to become a developer and some of them are
financial. Android doesn’t offer as many blockades to development, so if you are an Android phone user,
you’ll be able to try this out yourself.

If you don’t have access to an Android device don’t worry, we’ll cover the most important parts, which
include how directives work in a mobile platform.

If you’re not an Android developer, follow the link below to switch your phone over to enable developer
options. Every phone is a bit different, so it’s best to get the how to from the creators of Android—Google.

https://developer.android.com/studio/debug/dev-options#enable
Android is included in the different target platforms that Unity can produce a build. In short you’ll

need to do the following:

 1. Open Settings

 2. Scroll down to System, (Android 8 or newer)

 3. Scroll down to Build number and tap on it 7 times.

 4. Go back one screen and you’ll see the Developer Options

 5. Select that and enable USB Debugging.

Now you’re officially an Android Developer. Plug your phone into your computer’s USB port and allow
your computer to talk to your phone.

https://developer.android.com/

503Advanced

The list for building projects is extensive. Android, iOS, Xbox and web browsers are all targets for
Unity 3D. Selecting Android and pressing the Switching Platform button changes which directives are
enabled.

Once switched the preprocessor logic changes which blocks of code are enabled. Simply adding #if
UNITY_ANDROID will not be enough to include code for that platform.

Running this code on an Android device will not work. Running the Android development tools and
peeking at the log from the Console will show that GetCurrentDirectory() function doesn’t do
what we’d expect.

The debug outout from the device looks a bit like the above. The file path looks like "/\fileData.
txt" and lacks any directory structure. To get the proper directory path we need to use a different
approach. This is followed by the StreamWriter running into problems as well.

504 Learning C# Programming with Unity 3D

The path to the fileData.txt leads to nowhere, so there’s nowhere for the file to be written.

Including && !UNITY_EDITOR will hide the code when running in the editor, but the code will be
included when running on Android.

Once the proper directives separate the editor’s version of the function from the Android version of the
function, both can operate as expected.

On Android the path assigned using Application.persistentDataPath looks quite different.
The same path assignment works in the editor, but leads to a hidden directory in your user’s folder, far
less convenient than the project directory.

In some ways, the preprocessor directives means supporting multiple codebases. A block of code
working in the editor, and another for your target platform. Imagine for a moment having to support
multiple code projects, one in Objective-C or Swift, which is what iOS natively runs in XCode, another
project written in Kotlin in Android Studio, and possibly something like C++ for Windows, etc. The list
can go on and on for every platform.

Using preprocessor directives in Unity 3D can certainly add some complexity. Without preprocessor
directives, you would use if else statements in your code for each operating system you might target.
Preprocessor directives are a preferable alternative.

7.11.4 Warning

When using #define for debug purposes, it’s often important to remind yourself that some directives
are enabled. It’s useful to add a reminder that a directive is active. In Unity the UNITY_EDITOR direc-
tive is useful; however, if you find it necessary it’s possible to hide it in the class you’re working in.

As a self-serving reminder, #warning can be added after an #if as a reminder in Unity 3D that there
are modifications going on with your directives.

505Advanced

After adding this to the code, you’ll get a warning once the script has been interpreted by Unity 3D that
‘TESTING MODE ACTIVE’:

This text can be anything you like, so long as the warning message you’re giving to yourself makes sense.
The warning message has no special formatting. Whatever appears on the line after the #warning is
what will appear in the Unity 3D Console.

So your messages need to stay on the line where the #warning appears. The same goes for the rest of
the #define preprocessor directives. As a rule of thumb, these should be short and in all caps. The all
caps notation isn’t enforced, although it is common practice. This helps point out where any of these
special case definitions are happening in the code.

7.11.5 Organizing

Organization is a constant struggle. In a Visual Studio, you have little boxes for folding code. #region
NAME is a useful directive that is used to help keep your development environment sane.

Adding regions to your code can help collapse sections of code. Adding too many different #ifdef and
#region tags might work against you. Having more hash tags in your code than actual functions defeats
the purpose of why these are used to begin with.

Though used wisely in a long class, a few regions can help. A #region can be nested inside of another
region. Once inside of a region you’re able to collapse sections of a long function to help you observe
relations between variables that might be far apart.

506 Learning C# Programming with Unity 3D

7.11.6 What We’ve Learned

We will be coming back to some of the preprocessor directives again once we’ve covered some error
handling concepts. In general, preprocessors work on the code in a manner closer to how comments
work. Because of this, we can use preprocessor directives to manage different chunks of code based on
a single #define at the beginning of a class.

Directives are used for many different things: One of the most common is to manage work with mul-
tiple platforms. Using preprocessor directives, you can set different settings for screen resolutions based
on make or model.

7.12 Try Catch Finally

Working with a few warnings such as unused variables is simple enough; having too many of these can
create situations where an important warning might be missed. In general, it’s best to keep your warn-
ings to an absolute minimum, or at least, no unexpected warnings at all.

There are situations where we might want to get specific warnings. In situations where we try to read
a uniform resource locator (URL) from a web page and the server is down, we don’t want our game to
simply crash or freeze.

There are also situations where you might expect some values to be incorrect. When dealing with a
user, you might expect a numeric value and get a letter instead. Rather than freeze and crash the game,
you can ignore the input until a correction is made.

7.12.1 A Basic Example

Starting in the TryCatchFinally_Scene in the Chapter 7 Unity Project, open the TryCatchFinally script
on the like-named game object. In the function DontUseTryCatch(), int.Parse() is used to read
a string and extract an integer value.

In the first block of code we parse a string containing "1" and the int i is assigned an int 1. In the
second block of code we parse the string "One" and Unity, or rather C# errors and the game stops.

Your game, mobile or otherwise, would have crashed. To keep Unity 3D from crashing, using the try-
catch pattern will help prevent bad input from crashing the game.

507Advanced

With the above we get "i is 1" printed to the Console. The attempt to parse the string "One" to a 1
failed, but we didn’t error, and the game didn’t stop. The code assigned 1 to i using the catch which only
executes if the try block fails. How do we know it failed? There wasn’t any warning, debug log, or any
indication that the Parse("One") failed.

Adding (Exception e) to the catch block leaves an input variable for try to assign an exception.
The Exception type comes from using System, a core .NET library. The output from e.Message
can inform us as to what didn’t work with the Parse function when reading the string.

The try{} statement makes an attempt to process to the input value. If it succeeds i is assigned a valid
number. If it fails the catch{} statement picks up what failed. From here you can make a decision as to
how to work around the error.

508 Learning C# Programming with Unity 3D

From a given object we can try to cast to int to unbox a value. In the above we have four objects, none of
which are int, and each one may or may not be able to be converted to an int by C#. We can give ourselves
more information about what is going wrong with some parameters going into the catch{}. To start,
we’ll want to add a new directive at the beginning of the class. This means that we know not only that
try{} failed, but why it failed. We can create a specific response to the failure. When the failure occurs
for different reasons, we can create different catches for each situation.

7.12.2 Exception Messages

The Exception is a generic catch all for all varieties of exception types. The more specific
NullReferenceException and InvalidCastException are the two that are brought up with
the above example.

509Advanced

The CheckExceptionType() function can check for different types of input problems from object.
When casting the different types to an int we usually get an InvalidCastException. In the case
where we catch the null in the array we get the NullReferenceException. In all the cases, the
cast doesn’t halt the game as it usually would. This provides a bit of a safety net if we’re dealing with an
unreliable data source. Something like a text input field to be filled in by the player or calling a web URL
could return an unexpected data type. Because we were able to catch this problem and make a decision
on how to handle it, we can save our game from an execution error. In the Scene an InputText field sits
centered in the Game view.

The field is connected to a function called TextInputChanged() where the field’s text is sent to the
functions parameter for evaluation. The text is then sent to a function to parse into an int value.

The first try{} block uses int.Parse() to check the string for an integer value. If that fails then we
try to look for a float value, something like 1.0. The nested try catch try catch will give us two ways to
convert the string to an integer value.

510 Learning C# Programming with Unity 3D

Even if the input isn’t a numeric value we’ll get an exception not a crash. We could simply ask the
player to try to provide a numeric input if that’s what we’re expecting. Rather than using Debug.Log, we
could open an information pop-up and ask for a different input and have the player try again.

7.12.3 Custom Exceptions

Working with many different conditions complicates debugging. Finding and dealing with a specific
error condition is best dealt with by using custom exception code.

Classes like int and float have a Parse() function. This function tries to read a string and interpret
the characters in the string as a number value. If this fails, it creates a new exception and throws it. In a
simple range example we’ll do the following to check an array of numbers for integer values between 0
and 100 with a ValidateRange() function.

The above function checks the incoming value for a number higher than 100 or a value below 0. If either case
is true a new MyException is created and the keyword throw is followed by the created MyException.
Visually, there’s no connection between the ValidateRange() function and the catch{} block.

511Advanced

In some of the C# syntax we’ve seen before we might expect that the Exception needs to go into a func-
tion before it comes out. When we use throw, the Exception appears without any visible variable to
acknowledge its presence before it’s used in the catch parameter. In addition, the only catch block that
will execute is the one with the matching Exception type.

If the value throws an exception then the try{} block exits and we jump to the catch{} block. Once
in the catch{} block we read back the message and the value that was passed by the input value. If the
ValidateRange doesn’t throw any Exceptions, then we get the Debug.Log() in the try block indicating
that the input value passes the validation.

512 Learning C# Programming with Unity 3D

We could add any number of possible catches to an Exception. However we can throw differ-
ent types of Exceptions, not just MyException. For validating scene objects we could throw a
NullReferenceException if an object provided isn’t a gameObject.

Now once the Exception is caught, we can check what situation threw the message, and then react
appropriately. In cases where we can’t possibly come up with every imaginable situation, we have one
last keyword to help us.

7.12.4 Finally

To complete our try{}-catch{} statement, we can add a finally{} statement. Since we’re not doing
anything complex here, all we need is the following:

In this situation, the finally{} statement is unnecessary. Where finally comes in handy is with func-
tions that require some clean up afterward. After parsing player input we might want to clear lock the
input field, or perhaps switch UI (user interface) panels to a new screen. The finally{} block only runs
once try and catch have finished their tasks.

513Advanced

7.12.5 Try-Catch and Finally in Use

When working with System.IO and the StreamWriter function we often get a few
UnauthorizedAccessExceptions. This is often because we’ve got the path wrong.

With this in mind, we use the try{} to create a new file called FinalFile.txt in our project directory. Once it’s
created, we open it for writing, and then add in a bunch of characters with file.WriteByte(). If we’re
not allowed to write to this directory, we catch that problem with UnauthorizedAccessException
and have Unity 3D let us know if there was a problem. If the file has been written, it’s closed with the
finally{} block.

7.12.6 What We’ve Learned

The notation used here creates a clean and tidy way to create a file, check for problems, and finish the file
writing process. The blocks are clear and the proper procedures are followed. We also get an interesting
look at all of the different characters in a font.

514 Learning C# Programming with Unity 3D

In the file.txt, we get many weird characters before we start to see letters and numbers. Aside from unusual
characters, it’s important to know how the try-catch-finally process works for using network connections.

When setting up a connection through hypertext transfer protocol (HTTP) to get an image from the
internet or models from a web server, we’ll want to make sure that the connection didn’t disconnect
halfway through. Possibly a user name or password was incorrect. All of these situations will need to be
caught before we reach a finally{} block and pretend that everything went as expected.

After the file.txt was written, you can get properties on the file and change it to read only. This will
throw the exception and you’ll get the following error:

Access to the path “C:\file.txt” is denied.

UnityEngine. Debug:LogWarning(Object)

Warnings:Start () (at Assets/Warnings.cs:26)

This means that the try{} block failed and the catch{} block was activated. When the finally{}
block is reached, the file is null and doesn’t need to be closed.

There are many different types of exceptions that Unity 3D will often be throwing. It’s likely that you
might need to move an object and want to catch if a number gets out of hand or you suspect a divide by
zero exception might be thrown. These situations are easier to work with if you use try{} and catch{}.

7.13 IEnumerator

C# has several built-in interfaces, IEnumerator is just one of them. We used the IComparer interface to
sort through distances to gameObjects. The utility of an interface is a means to reduce work. Any task
coming up more than a few times should lead toward simplification of work.

An enumerator is a system that is used to iterate through an array. The prefixed letter is an I, so it’s
an interface, but what does that even mean? An IEnumerator is something that we use on an array of an
object with an enumerator interface.

The problem begins as a long list of items. The usual for(int i = 0; i < array.Length;
i++) works fine for most situations, and in fact you can get by with just that. There are cases in which
some data is not presented as an array but as an IEnumerator. Extended markup language, which looks a
lot like a web page for data, doesn’t always present its data to you in the form of an array. We’ll find out
more about that in a later chapter about reading and writing data.

515Advanced

With cases like this, we are forced to use either a foreach or a while loop. However, the way these loops
are used aren’t as simple as you might expect. Once you understand how it works, you will find that a
large array is really easy to iterate through.

7.13.1 Enumeration

Before we make our own enumerator, it’s easier to see how it’s used. The IEnumerator is an interface
with one property and two methods. The only property is called Current, and the two methods we can
use are called Reset and MoveNext.

7.13.1.1 A Basic Example

Let’s find the Enums class in the Assets directory of the Enums project.

This is a pretty short example of what an IEnumerator does. First we get an array of integers, though the
array can be of anything. We’re calling the array intArray, just to keep things simple. Arrays have
a method called GetEnumerator() that returns a type IEnumerator. To use this we can assign a
variable, in this case o as a type IEnumerator to intArray.GetEnumerator();.

The variable intEnumerator is an IEnumerator, has a few simple functions. Peeking at the
IEnumerator in Visual Studio will reveal the following:

516 Learning C# Programming with Unity 3D

It’s important to note that the IEnumerator intEnumerator is an object. To use it for something else, we’ll
need to cast it to whatever it is we’re expecting. We will need to remember this later on. We can use the
IEnumerator o outside of a while loop.

This might not be the most efficient way to use an IEnumerator, but this is a good approximation of
what’s happening inside of the while loop. The intEnumerator.MoveNext(); function call tells
intEnumerator to change the value of intEnumerator.Current. To make this more clear, we’ll
add in why the while loop works.

517Advanced

After shortening the array of ints to only three items, we’ll see what happens if we use if
 intEnumerator.MoveNext() past the length of the array. Does intEnumerator.Current
have a value? The array is three items long, so the fourth if statement returns false, and a fourth Current
value won’t be printed. The IEnumerator function of an array returns a useful little trick to use for
tasks involving arrays.

7.13.1.2 What Doesn’t Work

For many of the basic tasks involving arrays, you might use the foreach statement. The following code
fragment could work on its own if you didn’t use a foreach statement.

With a foreach statement, we might expect the IEstring to contain something useful as though it were a
simple array. However, this is not the case. The IEumerator type doesn’t actually give access to its con-
tents without providing it though Current. Just as interestingly enough, if you were to ask for IEString.
Current, the first value found has nothing in it.

Try doing the above code sample and you’ll get a run-time error message:

The enumeration process has not started, it seems. This requires at least one use of MoveNext() before
the IEnumerator variable’s. Current object has a value of some kind. As we’ve seen, there are various
ways to use MoveNext() to get a value from the Current property in the IEnumerable data type.

Take a moment to think about what’s going on. The IEnumerator is an interface class written by C#
programmers. It was created to provide you, the programmer, a method to make a consistent interface
that can be incorporated into your code smoothly. Once implemented, other programmers can use your
class as they would use any other IEnumerator. You can think of it as adding a handy feature to your
class. However, to fully implement the feature and make sure that it does what you want it to, you’ll need
to understand how it’s expected to work.

7.13.2 Implementing IEnumerator

The implementation of an enumerator comes in two new additions to your starting class. This means
you can take any existing class and add an enumerator to it. So you could take any zombie, and make an
array of that zombie enumerable. In this example we’ll look at AZombie class which is simply a wrapper
for a zombie’s name.

518 Learning C# Programming with Unity 3D

To enumerate through the AZombie class we’ll need the two additional classes. A ZombieEnumerator
which inherits from the IEnumerator and an interfacing class that inherits from IEnumerable.
The IEnumerable provides the GetEnumerator() function through an array of AZombie objects.

We’re starting in the ZombieEnumerator class that implements the IEnumerator interface.
This is an interface that is found in the System.Collections .NET library. We store two things in
the ZombieEnumerator: a reference to the array that’s going to be enumerated and an int that keeps
track of where we are in the array.

To instantiate the IEnumerator object we assign it an array.

The locally stored array is assigned in the constructor. This is followed by the three functions that are
required in the IEnumerator interface. The MoveNext(), Reset(), and the Current accessor.

519Advanced

The MoveNext() increments the index value and returns true so long as the index is either less than or
equal to the length of the stored array of enumerable objects. The Reset() function simply sets the index
value to −1 so when MoveNext() is called after a reset it returns the 0th, or zeroth, object in the stored
array. The object IEnumerable.Current explicitly implements the IEnumerable’s interface for the
Current value. This only provides get{} since we don’t want anything to change what is stored in the array.

When implementing an interface or any class inheriting from another class, you can use an explicit
declarator. We will see this again when implementing the IEnumerable interface.

The Zombies class acts as the generator to the ZombieEnumerator class we just looked at.
The IEnumerator IEnumerable.GetEnumerator() is the explicit declaration to fulfill the
IEnumerable interface. The class stores an array of AZombie so it can assign it to the created
ZombieEnumerator.

520 Learning C# Programming with Unity 3D

To more clearly see how the chain of calls is made to GetEnumerator(), we start with the first
interface version of IEnumerator IEnumerable.GetEnumerator(). This is how the first call
is made; this then looks for the local GetEnumerator, which is a public ZombieEnumerator
GetEnumerator(). The second function returns the populated ZombieEnumerator().

To use the new Enumerator, an array of different AZombie objects is created and a new IEnumerator
is made from the array.

The new IEnumerator works as we created from the array of strings or ints. To enumerate through the
zombieEnumerator we use the same syntax with the while loop.

The catch here is that we need to cast or unbox the contained object in the Current value.

Before using the zombieEnumerator again we need to Reset() the object. This sets the Current
value of the Enumerator to −1 so the next time we see MoveNext() in a while loop there will be an
object to assign to Current.

Take care to notice how Enumerator and Enumerable are used. It’s easy to get mixed up between the
two interfaces.

521Advanced

7.13.3 What We’ve Learned

This has been a pretty heavy chapter about implementing the IEnumerator and IEnumerable inter-
face. It’s great practice and it’s important to know how to go about implementing an interface from
the C# library.

There are many cool tricks that can be added to your classes to make them more feature complete.
This does require more thought and time, but in the end your classes will be more useful to the rest of the
team of programmers you might be working with.

When to decide to implement one of these programming features is up to you and your team.
Sometimes adding a feature might make a simple class too complex. If you’re fine with using simple
code to avoid the complexity, then you’re free to do so. Thankfully, C# allows you to do pretty much
anything that’s allowed within the language. There aren’t any hard and fast rules in the language that
limit how it’s used.

Interfaces not only tell you what is expected out of your class but also how to get it done. You’re
allowed to provide the data in any way you feel fit, but it’s important to not provide something to start
testing with.

On your own you should figure out how to add and remove items in a dynamic array in the
IZombieEnumerator. You’ve implemented the required functions and properties to make the IEnumerator
interface happy, but there’s nothing limiting you from adding more features to the class beyond the
IEnumerator interface.

7.14 Generics

When you create a new data structure, you’re creating a strict organization and naming of your new
data. This begins to run into problems when you need to make small modifications to that structure
to suit multiple tasks. As your project gets more complex, your data will become more complex
as well.

Thankfully as of C# version 2.0, generics were included to make data flow a bit more easily. In Unity
3D, we get used to doing casts with the following syntax where (float) takes the int 1 and converts it into
the expected type to assign to f.

Of course, this can be avoided if we start off with the correct type to assign by using 1.0f to indicate that
we’re using 1.0d as a float and not a double. Although many conversions are automatic between int and
float, for example, not all conversions can be done for you.

When faced with making different data structures for different needs, you’ll end up with more and
more new data types. This leads to more and more mismatching of data. New data types diminish your
object’s ability to inherit from other objects; therefore, we lose the power of an object oriented program-
ming language.

All forms of data we create are based on the Object class, and as such we’re able to use Object as a com-
mon ground to cast them from. However, we run into problems when casting incorrectly or not knowing
what to cast a value to. This is the problem with type-safe programming languages; using an object is
an unfortunate work-around to which we should have a better method, to ensure that we don’t run into
mismatching data.

There is a way to make your data more flexible, and to do this we need generic types.

522 Learning C# Programming with Unity 3D

7.14.1 Generic Functions

Generics finally make sense now that we’ve looked at and used delegates and lambda expressions.
Generics allow a function to adhere to the type-safe nature of C# but also allow you to pretend that it
matters a little less. In the case of building a game involving a variety of monsters, we could quite readily
use a system to organize various items we’re using in our game. If we were to think in a world without
generics, we’d have to make a few different systems for storing and categorizing items and monsters.

Generics are indicated by a function followed by an identifier to be used to indicate the type expected
in the function.

7.14.1.1 A Basic Example

The following code produces a debug output of what was put into it.

To indicate the use of a generic, the <T> follows the identifier for the function where T is used again in
the parameter list. With this we are able to use an int a GameObject or Vector3 in the log<T>
function. Rather, we can use any object that has a ToString() function and a type. The function
log<T> (T thing), where T indicates a placeholder for a type, accepts both ints and GameObjects.
Without the <T>, how would this work for various other data types? Let’s look at a simple alteration that
would instantly create a great deal of additional work.

523Advanced

Suppose we wrote a LogInt for the int type; it might look something like the above code. The func-
tion won’t work even if we cast GameObject to int first. Zombies aren’t just numbers after all.

Okay, so LogInt doesn’t like GameObjects mixed in with its ints; that’s fair enough. We should
know not to mix types by now. Without generics we’d have to write a different function for every type
that can be converted to a string and logged to the Console panel. To attempt this would be a huge waste
of time, impractical at best. Thanks to <T> we don’t need to.

7.14.1.2 Why T?

We use the identifier T to denote a use of the type expected to be reused elsewhere in the function. This is
just a convention and not a strict rule. We could break the convention and traditionally trained program-
mers’ brains by writing the same function again with another type identifier.

This works just fine, but it’s hardly appropriate. The T is purely a convention that has stuck around since
it was first implemented. This is somewhat like how the for loop is always taught with for (int i; i
< 10; i++); in this case, int i just seemed appropriate. My best guess is i is either from integer or
possibly index, which can be defined as a list of items.

Therefore, in this case, generic type T seemed to match well. Unlike so much of mathematics, the let-
ters we use in programming have much less intrinsic meaning. If this were not the case, then we’d need a
whole lot more letters. Therefore, in the end, sticking to the convention T will make any other program-
mer more easily understand what you’re trying to do.

The applied cases often require specific reasons in which no other solution could be found. Creating
and assigning delegates like this are often avoided due to the uncommon nature of needing to write spe-
cific code for the same function call. However, that is the entire reason for the anonymous expressions
for being in use.

On occasion, when you have several classes inheriting behaviors from one another, you’ll want one class
to react differently than other classes when a function is called. Shoving a wooden stake through the heart
of a vampire has a very different effect on a zombie. Calling the same OnStakedThroughHeart()
function on both should result in different code being executed.

Normally, you’d just want to have both zombie and vampire use an interface which includes an
OnStakedThroughHeart event; however, your player’s character might not necessarily care into
what monster he’s pushing the pointy end of the stake, through. This is where the problem begins.

The code running the player will probably not want to check for each type and decide what to do based
on the different types encountered.

7.14.2 Making Use of Generic Functions

One benefit of a generic type is the fact that you can write your own types of data, vampires or zombies,
to use as generic types. To begin with a simple example, we’ll build a simple zombie class. After that
we’ll look at using a generic function to swap data between two variables. What should be a simple task

524 Learning C# Programming with Unity 3D

will prove to be an interesting use of what we’ve learned so far. We’ll start with the generic function and
then observe how it can be used for more than one type of data.

Create a simple generic function in your code that looks like the above. We have a function called
Swap<T>, where T can be any sort of data. We use the ref T to indicate that we’re making a reference
to the data stored in the variable that’s being used in the argument list directly, rather than making a
copy of it. Then we make a T temp that holds onto the value of second. After that we tell second to
take on the value stored at first. Then we tell first to take on the value that was stored locally in temp.
Here’s what the function looks like when in use.

This prints out 7 and 13, followed by 13 and then 7 after the swap has been applied. Then we apply
Swap(ref first, ref second); that swaps the values stored in the array. Without making any
additional changes to the swap generic function, we’re allowed to pass in an array of strings. This sends
First and Second followed by Second and First in the Console, as you might expect. To make this
more interesting, we’ll create our own form of data.

525Advanced

Using a GenericHumanoid class that stores a Name variable we’ll want a constructor with a string
argument to accept a name. Then, to make the class return a more useful value when it’s translated to a
string, the ToString() function is overridden to return A Zombie or Vampire named Name.

The UseSwapGenerics() function, as in the above code, will print out A Vampire named D and
A Zombie named Stubbs. This brings up a few questions about how the <T> works. What happens
when we mix data types?

526 Learning C# Programming with Unity 3D

For instance, if we try to use the above code with a string and a GenericZombie, we’ll get an error.
The type arguments for method ‘Generics.Swap<T>(ref T, ref T)’ cannot be inferred from the
usage. Try specifying the type arguments explicitly.

When we try to mix different types, we won’t be able to infer what we want to happen. When we tell a
zombie that it’s now a word, it’s not likely to turn into anything comprehensible. This is very important
for a C# to be able to parse your code. In the end there’s no simple way to convert between different types
that have very little in common. It’s up to you to keep things organized in such a ways you won’t have to
worry about swapping types that don’t match.

7.14.3 Generic Types

Speaking of types, a generic type can be created. You can make a data type that has no specific type to
start off with. In particular, these come in handy when we want to organize data in a particular fashion.
For instance, if we wanted to create a short list of three zombies, we might want to create new data, that
is, three zombies, but why restrict this data type to just zombies?

Start off with a new class with a constructor for holding onto three different things of the same type.
The declaration of ThreeThings<T> infers that we’re going to have an object that has objects of a
single generic type. We’ll be able to create a new class ThreeThings to hold three ints, floats,
strings, or even GenericZombies.

Next we’ll want to create a new ThreeThings object in our Start() function and assign three differ-
ent zombies to it using its constructor.

But wait; we’re getting an error! So using the class constructor for a generic type involves a type argument.
What does this mean? A <GenericsZombie> is required to declare the type of generic. This means

527Advanced

that when we deal with generic types, we need to inform ThreeThings what it’s going to be. Therefore,
to fix this, we need to tell <T> what it is.

We need to tell ThreeThings that it’s going to be dealing with <GenericZombie> as the generic type.
However, there’s a more clever trick to dealing with generic types.

7.14.4 Var

Normally, when we use types, we’d create a type by assigning it explicitly. For instance, zombie first-
Zombie = new zombie("stubbs") is an explicit type. It’s a zombie and we knew that as it was
created because it’s a zombie class object. This is the same int a = 10;, which means that a is an int
and it’s assigned 10 as a value. This changes when the type can be anything and we don’t necessarily
know what it’s going to be ahead of time.

To the computer, it’s saying “The thing that SomeThings might turn into is going to be a generic of
what ThreeThings is about to be assigned.” We have to remind ourselves that computers aren’t clever
enough to figure this out. However, we can work with generics in a more straightforward way with the
var keyword.

Here we use var someThings to tell the computer to expect any data type to store into someThings.
That’s right, any data type. There are some limitations, as one might expect with anything to do with
computers, but var is a very open keyword. The var keyword means to implicitly get a type once it’s been
assigned. Only after the actual object is created and assigned to the identifier that was created with var
will the identifier turn into a type. For instance, we can test this with a simple integer.

Every object has a GetType() function that returns the data type of the variable in question. Therefore,
when we create var whatAmI and assign it 1, which is an integer, we get the following output to the
Unity’s Console panel:

As it turns out, System.Int32 is the integer that we’ve been using all this time. What happens when
we do the same with someThings?

528 Learning C# Programming with Unity 3D

Well, it’s a bit less clear, but we do know that it involves a Generics class, ThreeThings, and a 1, which
indicates how many different types are involved along with a Zombie. Quite informative. Therefore, if
var allows us to deal with any different type, why don’t we use it more often? To be honest, the best rea-
son is not because of code efficiency. The main reason why we don’t want to use var so often is because
of clarity. For instance, we can use the following code and give horrible nightmares to any programmer
trying to follow our code.

This sends 11 to the Console panel; 11.8f is certainly not 11, and as such the var imAFloat is
indeed telling lies. Were we to tell the truth from the beginning and use int imAFloat, we might have
a clue right away that something is amiss with the naming of the integer imAFloat. This should prompt
a meeting with the programmer concerned about naming variables clearly.

This can get a bit murky with generic classes, which don’t have a specific constructor, but luckily the
compiler will catch things for us.

Here we can start with a generic class called Stuff<T>, that holds onto T thing. Then we make an avail-
able function afterward to assign T thing after the class has been instanced.

If we try the following assignment to assign a float value 1.0f to the Stuff<int>, we get an appropri-
ate error telling us that we can’t assign a float to an int.

529Advanced

This is a good thing as we’d be losing any numbers when converting a float to an int value. Therefore,
there are some limitations indeed when it comes to dealing with generic types. They start off being
generic, but once assigned they change into the assigned type and must be used accordingly. When
Stuff or any generic class is created, it’s referred to as an open type. Once it’s been assigned with
<type>, it’s then considered a closed type. Once a generic has been assigned, it can’t be reassigned.

7.14.5 Multiple Generic Values

This is all fine and dandy, but what if we have more than one type that might be assigned later on?

As a good programmer, flexibility and forthought should anticipate using more than a single type in a
generic class. The above code uses <T, U> to assign the first and second types. You might consider a
zombie followed by its rank in the zombie army or a glass of water and its percentage of fullness. These
tasks can be completed in any way you feel needed.

Once one instance of TwoThings has been assigned; you’re able to assign the next instance of TwoThings
to two different types. Each one stands on its own, but after they have been assigned, they can’t neces-
sarily interact with one another in any expected way. This feature should not detract from the overall
usefulness of a generic type or function.

This works in a similar way for a generic function.

The function shown simply takes two of any time and then prints them out to the Console log.

530 Learning C# Programming with Unity 3D

The first argument takes on the type of T and the second is assigned to the type of U. We can combine the
examples in this chapter to fully demonstrate how generics can avoid type confusion.

Here we use T and U as return values for the GetTwoThings<T, U> class. We can also see that
inheriting from TwoThings we need to include the <T, U> type declarations. The public T
GetFirstThing() returns the FirstThing, and public U GetSecondThing() returns the
value stored in SecondThing. We can use LogTwoThings<T, U> to log the types of the objects that
were used in the GetTwoThings class.

We should get used to where the T appears throughout the function or class in which it makes its appear-
ance. Once the type for T is assigned in the declaration of the class or function, T becomes whatever type
it was assigned.

It might be tempting to use var as a return type. The convenience of being inspecific when passing data
around could be used to get data from a function. However, C# has other mechanisms in place that allow
for this and var isn’t one of them.

7.14.6 Anonymous Objects

In a practical sense, you should always know the data types you’re working with. When bundling data to
pass between objects it’s sometimes easier to skip the work of writing a struct or class and use something
more convenient.

531Advanced

An anonymous object can be assigned to a var with the notation new {}; syntax. Objects in the var
are named with identifiers without a type. From the example seen above someInt = 3 skips it’s type
declaration.

Any sort of data can be packed into an anonymous object. This includes other anonymous objects.

The anonymous object can be passed to a function through a system.object type. Not knowing what
each type in the anonymous object can lead to errors when unboxing the data. Aside from the name,
it’s easy to handle the anonymous data with functions that don’t necessarily know what the variable
is. Using a function in this way is unrecommended and may lead to bad habits, but it’s interesting
to know.

532 Learning C# Programming with Unity 3D

This may lead you to think that you can use object as a return type. This is possible and there isn’t any-
thing that disallows this abuse of object. In practice this should be avoided; strong typing is one of the
strengths of C# and abusing object acts as a work around. It’s preferable to avoid awkward code like the
above, but again, it’s interesting to know it’s possible.

The anonymous object might seem to have a lot of flexibility, however the properties in the anonymous
object are read-only and cannot be changed once the object has been created. Not all properties in the
anonymous object are read-only.

The queue can be used as usual. Only POD (plain old data) types become read-only. Reference type
objects are usable as expected.

533Advanced

The float and int type values cannot be modified once assigned. Anonymous objects have a place in very
limited situations where a declared type may be cumbersome. When a multitude of data needs to be passed
between two functions near one another an anonymous object may prove to be more convenient. Just make
sure to leave clear comments when using one to enlighten others as to why the object was necessary.

7.14.7 What We’ve Learned

This chapter has covered a great deal about generics. In short, “generic” is the term given to a type that
can be assigned once the function or the class it appears in is used.

We can change the order in the signature from the declaration of the generic identifiers. Of course, this
leads to confusion, so it’s best to use them in order, although technically there are no adverse behaviors.
The var keyword is handy, but mainly when dealing with generic types. It’s important to try to use explicitly
typed variables where possible. Generics should only be used when there are no other alternatives. It’s good
to know that you have options available to you when you find yourself cornered by your own data types.

Making collections of data by writing classes for each type is inefficient and excludes the ability to
reuse code. When you need to make different functions for different situations that seem to behave in prac-
tically the same way, it’s a good opportunity to look at a generic method to take care of the task at hand.

The main drawback of the generic methods is that once you start using them, it’s difficult to break the
habit. If your code begins with too many generic types, you’ll end up writing code that depends on var
and <T> in a myriad of different places.

This leads to type conflicts that are hard to track down. Debugging code with many generic classes
and methods is difficult and can lead to a great deal of wasted time. In short, use them only when you
have to.

Unity’s GameObject describes a function as GetComponent<T>();, where <T> is a generic type.

We might use the GetComponent function in a script to get a component in the game object our
script is attached to. After we get the Transform component, it can be set. The alternative use is
GetComponent(typeof (Transform));, which is a bit more verbose, but does the same thing.

7.15 Events

For many simple tasks, Unity 3D has provided some useful functions that update objects and execute
when the object is first created in a world. There are event handlers in place ready for any mouse clicks
which take place in the UI.

When an object receives a condition to act upon, any actions are usually limited to that object. With
the tools we already know, we can probably find some way to spread out a message pretty easily, but
they’d be awkward and use various static functions. This leads to spaghetti code: interdependent function
calls leading to difficult debugging and long nights wondering why everything is broken.

534 Learning C# Programming with Unity 3D

Having a single large set of code that acts as the central switching board for the entire game becomes
very cumbersome very quickly.

Delegates allow for many different cool tricks. Delegates with generic types allow for even more cool
things, most notably, the event. An event acts as a container or a handy place to put any number of func-
tions. When the event is called, all of the functions assigned to it are then called. It’s a great system to
notify another function that something has occurred that you were waiting for.

We identify a function using a declaration such as public void functionName() {//code
statements}, something we’ve been doing already. Delegates are declared using delegate void
delegateName(); depending on what you’re trying to accomplish. First we’ll start with the minimal
parts to explain what’s required, and then we’ll go into an example of why it’s useful.

7.15.1 A Basic Example

Starting the Events_Scene in unity, locate the Events script on the like-named game object.
Normally the EventHandler is named based on what sort of event it will be handling. We’ll decide on

better names after we know how they’re used.

535Advanced

The statement public delegate void Handler(); is a type declaration. After creating the type,
the variable HandleDelegate is created. To wait for the delegate to be handled we’ll create a new
Listener class that has a function that will be assigned to the HandleDelegate variable. The event is
declared using similar syntax to the delegate with the addition of the event keyword.

In many cases we assumed we can only assign data to a variable. Delegates have functions assigned
to them. When the delegate is called, the functions assigned are called. The assignment comes with one
condition: the signatures must match. Both the delegate’s declaration and the function assigned to the
delegate must have matching signatures. Let’s create another new class called Listener, which should
look like the following:

When Listener is created, we assign the OnDelegateHandled() event to the Dispatcher’s
HandleDelegate and HandleEvent variables.

Once the dispatcher and the listeners are created, we can assign delegates in one of two ways. The first is
using the += operator, the other is with a new Dispatcher.Handler() function initializer. However,
something interesting happens with the second assignment.

Only Frasier’s Delegate Was Handled, Sigmond didn’t have his OnDelegateHandled func-
tion called when the dispatcher has its CallHandlers() function invoked. The HandleDelegate
lost any previous assignments when new Dispatcher.Handler() was called. Clearing out a del-
egate is something allowed.

536 Learning C# Programming with Unity 3D

We can assign null to the HandleDelegate handler, and when CallHandlers() is invoked,
nothing happens. The HandleDelegate has been cleared of any functions to call. By marking the
HandleEvent handler with the event keyword we prevent misuse of the HandleEvent variable.

The error tells us we can only use the += or -= operators when making assignments to an event. So the
event keyword is more like a special case accessor keyword for delegates. We see the same error when
trying to set the HandleEvent to null.

The event protected delegate can only have += or –= used to assign functions.

This protects the variable from mishandling or accidentally clearing anything already assigned to the
event handler. To remove a function from the handler, the –= operator is used.

By removing Frasier.OnDelegateHandled from the HandleEvent with -=, only Sigmund’s
delegate handler is called. Delegates and events operate in essentially the same way. The main difference
is related to the protection level at which delegates and events are allowed.

7.15.2 A Proper Event

The .NET Framework has many conformant procedures to which your code needs to comply. Microsoft
has described many different best practices that cover everything from variable names to events.
Therefore, it’s somewhat necessitated by Microsoft that we look at how we should be writing our events
should we want to comply with proper code procedures.

public delegate void ProperEventHandler(object sender, EventArgs args);

Let’s add the above delegate to our EventDispatcher class just after the old EventHandler.
This has the addition of object sender and EventArgs args. We’ll get into what these are in a moment.

537Advanced

After the delegate has been declared outside of the class scope, add in a handler for the delegate in the
scope of the class.

public event ProperEventHandler ProperEvent;

The above code should follow our MyEvent; just for sake of consistency. Next we’ll want to make our
event more useful by adding EventArgs, or rather Event Arguments, so our new event can have some
additional functionality. EventArgs are used to pass parameters to anyone listening to the event. Before
we can create a custom EventArg, we need to add in a new directive.

The arguments object and EventArgs are a part of a conformant .NET event, but what are we supposed
to do with them?

7.15.3 EventArgs

The system directive gives us access to a new class called an EventArg.

The EventArg type comes from System, so to make a class based in it, we need to add the using
System; at the class scope. Once this is done, we’ll want to create a new class at the global scope of
the EventDispatcher.

538 Learning C# Programming with Unity 3D

This is a pretty simple class. Once the new MessageEventArgs class is created or instanced, we
should assign string message in the constructor. It’s important to note here is that the customized event
arguments allow for specific event information to be passed to anyone who is listening for the event.

To dispatch an event with the new MessageEventArgs object we change the delegate signature to
emit the MessageEventArgs type.

Inside of the ProperEventArgListener class, the OnProperEvent function called by the event
must match the signature of the ProperEventHandler.

Now dispatcher has MyEvent calling the EventListeners CallMeMaybe function and ProperEvent calls
the CallMePlease function. Finally, in the EventDispatcher, we need to add the ProperEvent to the if
statement that makes calls.

The MessageEventArgs() object is a class, so it needs to be instanced with new before it’s used.
In the ProperEvent argument list, we use this as the sender and new MessageEventArgs() as
the second argument. These two values are passed to the listener.

We’ve got some interesting concepts here that we can use. The best situation is to have a clean event-
driven game. Rather than wait for conditions to be met and perform some sort of task, it’s better to do
nothing until an event happens. This approach ensures we avoid having too many scripts updating all at
once. On a PC this might not be an issue; however, you’ll have a much lower processor ceiling once you
want to put your game on a mobile device.

539Advanced

7.15.4 Generic EventArgs

We can have multiple events derive from the single delegate type. To do this we need to use a generic
type to declare the delegate.

Once the EventHandler delegate is created with <TEventArgs> in the description we use the generic
type in place of a strong type for the arguments list. This means a MessageEvent and a NumberEvent
can both derive from the delegate EventHandler. Each one replaces the TEventArgs with its own
specific EventArg type. But why stop there?

Using a generic value in the GenericEventArgs allows us to interface with the delegate
EventHandler with a GenericEventArg. A type does need to be specified when the event is cre-
ated. The matching type must also be included when creating the argument.

Likewise, the listener for the generic types must also include event listeners with matching signatures.

540 Learning C# Programming with Unity 3D

When using the events we get quite a lot of flexibility from just a few type definitions.

The sigmund.OnGenericEvent is assigned to both IntEvent and StringEvent. Proper over-
loaded functions are provided for each. The GenericEventArgs<int> and GenericEventArgs
<string> allow the assignment to find which function is invoked when the different events are called.

7.15.5 What We’ve Learned

It’s important to use events in an intuitive manner. Generics add flexibility when we create an event based
on a flexible delegate declaration. The use of the event over a delegate is two main reasons. First events
add a level of protection, the second is to allow multiple derivatives from a single delegate type.

7.16 Extension Functions

When writing new classes, a classic programmer’s mentality would be to write a single monolithic class
that handles many different tasks in a single complex algorithm. As a programmer, you might approach
many different problems with a single complex solution. The better, more Unity-friendly approach is
quite the opposite.

When we think about building a solution for a complex problem, it’s sometimes easier to start with a
generalized solution. For instance, should we want to build a complex behavior for managing a group of
zombies and humans chasing and eating one another, the first thought might be to write a crowd man-
ager class that keeps track of each zombie and human, and then moves each one around based on a set
of parameters.

This approach leads to what might be a single solution, since we know everything about everyone in
a scene. Writing this might be a difficult task, but getting it right would be quite an accomplishment;
unfortunately, there are a few drawbacks. First off, now you have a single complex algorithm to debug,
should small problems arise.

Next you run into an inflexibility problem. Rewriting anything to gain different behaviors turns into
adding additional layers of complexity. Additional layers in an already complex class easily introduces
more bugs and makes fixing those bugs more and more difficult.

The worst part of the monolithic approach comes when someone else needs to open your class and
interpret what’s going on. The more complex your code is, the more difficult it is to explain. What makes

541Advanced

things worse, the longer your algorithm, the more the explanation that is required. Usually nobody likes
to read every little comment, even if you wrote detailed comments throughout your code.

7.16.1 Extensions

When we’re working with the built-in Unity 3D types such as GameObject, we’re unable to extend those
classes. If we try to use the following code, we’ll get an interesting error:

This produces the following output: 'MyGameObject': cannot derive from sealed type 'GameObject'
A sealed class means that its final, and no one is allowed to extend or make further modifications

to the GameObject class. However, it doesn’t mean that we can’t give the GameObject new functions.
For instance, if we wanted gameObject.NewTrick();, we’re able to do this through Extensions
methods.

7.16.2 A Basic Example

Let’s start with the ExtensionFunctions_Scene and open the ExtensionFunctions.cs script on the object
of the same name class.

At the top we add using Tricks; to enable the ExtensionFunctions: MonoBehaviour
class to use the contents of the namespace tacked to the bottom of this class. In a more regular case, you
should put the namespace into another file, but for clarity we’re just going to merge these two objects
together in this file.

In the namespace, we need to add a new class where we’re going to be making use of our
GameObject class.

Here we use static class GameObjectExtensions, but this could be anything. So
long as the name is descriptive as to what it’s going to be doing. The namespace Tricks indi-
cates a new group of functions or objects. The .NET library contains many namespaces already:
System, System.Collections, and Unity 3D’s UnityEngine namespace. Inside of the static
GameObjectExtensions class, we add a new static function that will extend the sealed
GameObject class.

542 Learning C# Programming with Unity 3D

The public static void NewTrick() is our extension function. To extend the GameObject, we use
the argument this GameObject gameObject where the this keyword informs C# that we’re
writing an extension method. In the argument list, we use the identifier gameObject that appears in
the function as gameObject.name. This NewTrick() simply prints the name of the gameObject and
"has a new trick!" to the Console.

Back in the MonoBehaviour attached to the ExtensionFunctions game object in the
ExtensionFunctions_Scene we are shown (Extension) void NewTrick() in the list of functions avail-
able to the gameObject type. Perhaps NewTrick() is not the most exciting trick for gameObject to
have, but it is a good beginning. Selecting the NewTrick(); and running the game prints "Penn has
a new trick!" to the Console.

Any additional arguments must come after the argument where the keyword this is used. Depending
on the type that follows this in the first argument, you can change the function to extend a different
sealed class.

Adding Vector3 position as a second parameter and then using gameObject.transform.
position = position; will tell the gameObject to update its position. In use, we can use the
following code to move gameObject to Vector3(0, 1, 0); when the Move() extension function is
used. Even though the first parameter is the gameObject itself, it doesn’t show up when it’s used. The syn-
tax using the first parameter referring to the object changes the function into an extension function for
the object following the keyword this in the first parameter of the function.

Extension functions can be applied to any sealed class. When working with third-party libraries, it’s
often useful to add your own functions to classes which you don’t have source code for.

The static keyword is necessary to make the function appear in any context. The same goes for the
class in which the Extension function appears. The static class that the function is written in is a side
effect of a function not being able live on its own. A function is always a member of a class, even though
it might not be related to the class in which it’s written in.

An extension function can technically be written into any static class, though it would be confusing if
they appeared in an unrelated class. Clear naming practices are just as important as ever, when naming
functions unrelated to the class they exist in.

Because of extensions, it’s easy to keep adding to a sealed class. Often if you’re able to do, it’s far better
to add the functions to the class itself. This sidesteps the necessity of writing any number of extension
functions. This doesn’t just have to work on a gameObject.

543Advanced

In the above example, we can use gameObject.transform.Reset(); to move the gameObject or
any other object in the scene that has a transform to the origin as well as reset it’s rotation and scale.
However, this does highlight the fact that Reset() should probably appear in a different class called
TransformExtensions, or should it?

Functions can be overloaded, so we can have more than one Reset() extension function in the class.

Here we have a Reset() function that works on both the GameObject and the Transform types.
Perhaps we should rename GameObjectExtension to something more like GameExtensions.
Naming classes and functions is such a big part of writing code. Going back into your code only to
rename a class or function is called refactoring.

7.16.3 Overloading with Extensions

In addition to adding new functions to the Transform or gameObject through extensions, you’re also able
to create new overloads to functions already in place. When the new Reset() extension is invoked, the
gameObject moves to the origin of the scene. This includes if it’s parented to an object that’s moved away
from the origin.

The Transform object has a SetParent() function which has a few overloads in place. The first option
sets the parent, but retains the child’s local position rotation and scale. The second set parent retains the
world position after parenting. The function shown above sets the child to the origin of the scene after
the parent is set.

544 Learning C# Programming with Unity 3D

The code fragment above shows a new Child gameObject created at the origin. After it’s created, it’s
repositioned to 1.0 1.0 1.0. Now the object is no longer at the scene’s origin. A “Parent” object is created
then moved to 0,0,1, a single unit above the origin. When we set the parent we use our overloaded version
of SetParent on the Transform and write out resetToWorldPosition: true as the second
parameter. When we check the local position of the child it reports 0.0 0.0 −1.0, which is −1 from the
position of the parent putting the child back at the origin of the scene.

There are two overloads that use the signature (Transform, bool) pattern. The built-in version uses
the bool to indicate whether or not the child will retain its relative world position. Using that option will
report 1.0, 1.0, 0.0 for its localPosition after parenting. By writing out the name of the bool parameter
name resetToWorldPosition:true we tell C# that we want to use our extension function instead
of the built-in version.

7.16.4 Magic Mirror

A lot of what programmers do is write code to write less code. Seems paradoxical, but most program-
ming time is spent writing large functions that are called by short functions. In the ultimate goal of
reduced complexity, complexity is unavoidable.

Here we use an extension function on GameObject that’s called Mirror, which takes a Vector3 value to
give it an axis of mirroring. In this case, we’re reflecting the x axis.

The Mirror function takes the original object and creates a clone. The clone is then set to the size and
position of the original. A mirrored scale is calculated and then it’s applied to the mirrored object. Then a
system to update the mirrored object is created which is assigned the original object, the mirrored object
and the reflection value used to create the mirror.

545Advanced

The UpdateReflection class keeps track of two things, the mirrored object and the reflection
vector. When it’s created it adds a component called UpdatesReflected to the original object.
The UpdatesReflected object has an update event which calls on the OnReflectionUpdated
function. The updates set the mirrored object’s position and rotation based on the reflection axis value.

The original object gets the MonoBehaviour UpdatesReflected attached to it where the Reflection-
UpdateEvent calls the OnReflectionUpdated function in the UpdateReflection class.
The event sends along the originals transform so the mirrored object can know what the original’s trans-
forms have updated to.

546 Learning C# Programming with Unity 3D

As update events are sent to the Mirror object through the UpdateReflection class, we get an object
that mirrors the originals position and rotation.

A simplified gameObject.Mirror() function call performs quite a lot of steps behind the scene to
create what seems like a simple task. The reality of this means that what might seem like a simple task
hides a large scope of complexity.

7.16.5 What We’ve Learned

Other interesting tricks that often come up in a small C# class in Unity 3D is limiting how much of a
library is used. When you add directives such as using System;, you’re including a heavy amount of
memory that needs to be accessed. This memory isn’t necessarily used when you’re running the game;
however, this is used when your code is compiled.

For ease of use, it’s a simple matter to have a simple case like the following:

using Vect3 = UnityEngine.Vector3;

This shortens Vector3 into Vect3. Doing so helps to reduce namespace conflicts as well as speeds up picking
names in the Autocomplete feature in MonoDevelop. The normal behavior always has Vector2 above Vector3
in the pop-up list. After a while, this behavior can easily be replaced if you get used to using Vect3 instead.

The usual practice is to use the regular name, in case the rest of the library is needed. However, it’s
good to know that tricks like this are possible, in case you come across something strange. Working in
Unity 3D places specific constraints around what code will and will not work when it comes to the full
feature set that the .NET Foundation has to offer.

The developers at Unity 3D are hard set on supporting many different platforms, and the lowest common
denominator sets the height of the bar. Getting to know a language with a focus is great; this is why Unity 3D is
a great stage for learning C#. Once you’ve gotten into how the language works, it’s a good idea to explore other
development environments where you can make games with the full .NET Framework. Never limit yourself.

7.17 Destructors

While you’re busy creating objects, Unity 3D is busy cleaning them up. If you clean them up quickly, you
limit how often and how long it takes Unity 3D to do this for you.

547Advanced

We’ve looked at the constructor in Chapters 5 and 6. Destructors are the opposite construct from the
constructor. C# is a garbage-collected language, so in most instances, you’re not in need of a specific
cleanup of your own data when your object is no longer referenced. However, when you begin to use
unsafe code, some cleanup might be more necessary.

Unity 3D provides the OnDestroy() event after any object based on MonoBehaviour has been
destroyed. If you want to destroy an object that isn’t based on MonoBehaviour, you don’t have an
OnDestroy() event. Therefore, what else is there to do?

7.17.1 A Basic Example

In the Destructors project, open the Example.cs component attached to the Main Camera and also open
the DestroyMe.cs file. The DestroyMe has both a constructor and a destructor.

The destructor can be identified by the ~, or tilde, preceding the class identifier. Somewhat like a very
simple-looking constructor, the destructor is called any time the object is garbage collected. C# is a
garbage-collected environment. Specific destructors aren’t specifically written into the language. If sev-
eral seconds pass and there’s nothing going on in the class and there’s nothing accessing the class, the
unused class is destroyed automatically.

In the Destructors.cs attached to the Destructors game object in the Destructors_Scene, we create an
instance of the SelfDestructor() class. When we create a new SelfDestructor we give it a name
so we can know what is being cleaned out and when. If we run the game scene, we see “Bob-omb says
hello.” printed to the Console when the game starts.

Several seconds later we see “Bob-omb says goodbye.” There are other ways to destroy objects.

548 Learning C# Programming with Unity 3D

In this code function we assign and destroy the SelfDestructor Bomber. The log shows the hello and
goodbye immediately.

Bomber inherits from Object, so we can store a variable Bomber as UnityEngine.Object. A strange side
effect of creating class wide variables is that they are sometimes created while the editor is running.
This can be observed when the Bomber variable is changed to a SelfDestructor type.

A mysterious “says goodbye.” appears in the first line and again after the “Bomber says hello.”
lines. The general practice with Unity is to let Unity, or rather .NET, run its own garbage-collection (GC)
cycles in the background untouched.

In general, GC in C# works automatically. For objects such as a struct, GC should be done very
quickly. Only when you need to work with many class objects do you need to pay close attention to the
number of objects that are being created.

The automatic GC is done in random intervals. Usually there is little consequence of the GC on a PC.
The memory and CPU are running so fast that it’s imperceptible when the GC takes place.

On a mobile device, the GC can lead to a sudden loss in frame rate once every few seconds. The inter-
val between GC cycles can be longer or shorter depending on how often objects are created. Because of
this, it’s important to build some sort of scheme to track and destroy objects on your own. Forcing gar-
bage collection is generally shunned upon. In the above log, does this mean we had three SelfDestructor
objects in memory? It’s hard to say for sure, but it certainly seems that way. Because of these weird
behaviors in the editor, it’s difficult to say exactly how things will react when garbage collection is forced.

For reasons of unpredictability, it’s better to create an object pool, this avoids the issue with creating
and destroying many dozens or even hundreds of objects in the scene.

549Advanced

7.17.2 Clearing Events or Delegates

One important function the destructor does have a purpose for when being cleared is to clear an event or
a delegate. With a simple delegate and event dispatcher we’ll add in a couple of Debug.Log functions
to announce when the dispatcher class is created and destroyed.

Then to make use of the function, we’ll create a class which accepts the dispatcher as an argument in its
constructor.

550 Learning C# Programming with Unity 3D

In this class, the dispatcher’s event gets assigned in the constructor, in the destructor we use the −=
operator to remove the reference from the SelfCleaning class to the event dispatcher.

The Cleaner class is updated for a count of three, then the variable is set to null. The dispatcher runs
the event till the Cleaner’s CountDown value reaches 0, so we’ve called the event which connects both
the cleaner and the dispatcher.

In the log we see the dispatcher is created followed by the cleaner being created and connecting itself
to the dispatcher. We see the CountDown decrement, and then the logging stops for a moment. A few
seconds later, the cleaner says Goodbye where it also removes its function from the dispatcher’s event.
After that, we see the dispatcher say Goodbye as well.

So this works well with very simple classes, but how do we handle GameObjects and MonoBehaviours?

7.17.3 OnDestroy

Classes which derive from MonoBehaviour use a slightly different function to destroy themselves.
With a similar setup to a class which doesn’t derive from MonoBehaviour, a class which does uses
void OnDestroy() and not ~ClassName() to clean its own memory.

In a very simple example, we’ll have the OnDestroy() function in the MonoBehaviour derived class.

551Advanced

As soon as the MonoBehaviour is destroyed the OnDestroy() function is called and "I’ve been
destroyed." is printed to the Console. With a similar setup as before, we store a variable for the event
dispatcher. Instead of a constructor assigning the dispatcher’s event to a function, we use a separate func-
tion where we assign the event dispatcher.

552 Learning C# Programming with Unity 3D

When we call the event dispatcher’s event we send the listeners events until they are ready to destroy
themselves.

The class that sends the MonoBehaviour holds, calls the event a few times to make the MonoBehaviour
decrement the CountDown value.

A cube primitive is created and the MonoBehaviour is attached to the cube gameObject. Following the
creation of the class, an event dispatcher is created. The MonoBehaviour derived class gets the assign-
ment to the dispatcher where it assigns the event listener to the dispatcher’s event.

We call the dispatcher’s event which then raises the event enough times to trigger the UsesOnDestroy
self destruction call Destroy(this). The final product is a scene with a cube with scale of −1 on the x, y,
and z axis without any scripts attached to it. The only evidence that there was a script attached is the scale
and the "OnDestroy Called." printed to the Console.

7.17.4 The Ugly Truth

The unfortunate, or maybe fortunate truth to how garbage collection really works is a bit murky.

553Advanced

So with a different system to call the event the UsesOnDestroy class we call it 100 times.

In theory, this should not actually get a response from the object listening to it, after the CountDown is
less than 0 the object should destroy itself.

The UsesOnDestroy gets the call to destroy itself 96 more times after it should have destroyed itself.
Then we call the event again after removing it from the dispatcher. So it doesn’t get any additional calls.

554 Learning C# Programming with Unity 3D

So disconnecting the listener from the dispatcher is working, but the script hasn’t destroyed itself. It’s
not until after the function is finished that the OnDestroy is called.

It’s important to be aware that garbage collection is lazy. Objects are usually still resident in memory
for a few seconds after they’ve been destroyed. For this reason, after many objects are instanced it’s
unclear as to when memory will freed up. Once it does, it’s usually all at once, and quite often causes a
frame or two to be lost.

7.17.5 What We’ve Learned

Destructors are used when manual clean up of a class is needed. When using classes based on any of
the Unity 3D class objects, it’s not recommended you use the OnDetroy() function to clear any extra
data created by the class. It’s recommended that any class not based on a Unity 3D class use a destructor,
though it’s not a common practice to create classes not based on Unity 3D.

When classes add a delegate to an event, the destructor can be used to remove the delegate.
Unfortunately, we can’t use the −= operator to remove the reference to the event listener. This still
leaves behind some traces to the created class in the memory and prevents GC from cleaning out
the object.

Garbage collection happens in regular intervals, usually about a second between each pass through the
heap. The heap is a pile of memory that can become disorganized. When an object is removed, it leaves
behind a gap. After many hundreds of objects are created and destroyed, the heap can become a cube
of Swiss cheese of usable and unusable spaces. Garbage collection tries to mitigate and clean the heap
as often as it can. If the heap were processed any more, then performance in maintaining clean memory
would take over your CPU cycles.

The balance between performance and memory management isn’t always to your benefit. As improve-
ments are made, there may be speed gains, but it’s up to you to keep your use of memory as slim as pos-
sible to allow for quick GC passes.

This is one of the reasons why a struct is preferable over a class. Structs are allocated to a different
section of memory for your game and, thus, don’t need to be garbage collected at all. This isn’t true if a
struct is stored as a part of a class. A struct doesn’t have a ~Destroy() function, so any clean-up needs
to be done before clearing a struct.

555Advanced

In the end, C# allows for so many different ways to use the language; the benefit far outreaches the limi-
tation of memory management. Your task of creating a game shouldn’t be hindered by the nitty-gritty of
poking holes in memory and trying to fill them in manually. This sort of stuff isn’t fun and should be left
to the folks writing C# to figure out for you.

7.18 Concurrency or Co-Routines

So far, everything that has been talked about has been for writing code that is executed in order. As the
code is executed, each statement must wait until the preceding statement has completed its task. For the
most part, this is done exceedingly fast.

7.18.1 Yield

We’ve gone over the use of IEnumerator earlier; it’s a handy interface for more than one reason.
The IEnumerator type is notable for iterating over an array; in addition, in Unity 3D it also allows the use
of yield. The primary reason for the yield keyword was to allow a computer to continue with a function
and allow something like our Update() loop to come back to the function using the yield statement.

For instance, if we had a task that might take more than a single update frame to complete, we could
use a function with a yield; this works only with a function that is an IEnumerator. This means that the
function starts when it’s called, but then allows us to come back to it again and check on how it’s doing.

For instance, a really slow function, which fills the scene with 40,000 randomly placed cubes, might
take a long time to complete.

556 Learning C# Programming with Unity 3D

Unity 3D will lock up for a few seconds waiting for this function to finish before the game begins. To
measure the time passed, we’ll have a log in the script’s Start and we’ll run another log once the function
finishes in the first Update() loop.

Depending on the speed of your computer, the time elapsed from the Start() of the script to the end of the
FillUpObjects script will be different.

One way to get around this is to use a co-routine. In the System.Collections library is the IEnumerator.
This is the same sort of class that enables the foreach(thing in stuff) enumerator type.

557Advanced

Rather than void, IEnumerator is used, then at the end of the for loop, and add yield return null; so
that the IEnumerator interface has something to return. The new sort function is called differently
from a regular function as we see in the following call:

StartCoroutine() calls the IEnumerator as a co-routine. When the game is started, we don’t
experience a lock, but we do get to watch cubes fill in the world. This is a simple example on how a
co-routine is usually used. It’s a great method to start an unusually long function and not have to wait for
its completion before the rest of some code is executed. There’s one drawback to using this method. To
generate merely 1000 objects it takes considerably longer to create the field of cubes.

When using a co-routine, the Update() loop continues to run.

The Debug.Log(count++); after the start of the co-routine continues to print out numbers even with
the FillWithYield() running. Contrast this with the same function without using a coroutine. You’d
simply wait until the function is finished before the Debug.Log() gets called.

7.18.1.1 A Basic Example

In terms of a usable function in a game, there are more interesting uses for the co-routine. To see how this
works, we’ll start a Unity 3D Scene with a new script called Concurrent attached to the Main Camera.

558 Learning C# Programming with Unity 3D

With the above, we can see the statement StartCoroutine(DelayAStatement());. This starts the
IEnumerator function. Functions defined with the IEnumerator return type and is identified must
have a yield return somewhere in the body of the function.

In the DelayAStatement code block, we see that it starts with Debug.Log("Started at:"
+ Time.fixedTime); followed by the yield statement.

The yield statement return new WaitForSeconds(); creates a concurrent task that then
pauses the DelayAStatement code block at the yield. Once the yield is done, it releases the function’s
operation and allows it to move to the next statement. It’s also worth looking at starting multiple
Concurrent co-routines.

With the above code, we have the following output. Note that we’re changing the Debug.Log() to
include an index to identify each of the MultiDelayAStatement() functions as they are executed.

The three concurrent tasks 0, 1, and 2 started in order. After their WaitForSeconds(), they finish in the
same order. Concurrent co-routines are useful for a good number of tasks including setup with events
and timings.

7.18.2 Setting Up Timers

So as a game play engineer, you’re going to write a lot of code. Writing a timing function should be some-
thing you do once. With that in mind, you’ll want it to be flexible; what you write should be easy to reuse.
A good timing function should be something you can use to time explosions in a game, separate waves
of monsters, or even just count down some numbers on screen. What each of these have in common, is a
flexible amount of time, so we’ll use a float for that. And some sort of action when the time has run out.

559Advanced

The UseTimedAction() is called in the Start() of the script in the scene. A function named
TheAction() which does a thing, is assigned as a variable to the TimedAction() function in the
Coroutine. The Action type comes from System, as do many useful base types. In this case TheAction
just prints out “Doing the thing!” to the Unity 3D debug Console. However, this could just as easy call
on a script to set off an explosion, start a race, or let loose a horde of zombies.

560 Learning C# Programming with Unity 3D

We can make our timers more useful by adding a repeated event to a loop within the coroutine. A Mathf.
Lerp takes two values and interprets a value between them using a value from 0 to 1. For instance, you
can use the function to quickly get the value half way between 6 and 9 and see it’s 7.5.

We call our lerp co-routine using the same StartCoroutine() function calling the value updater.

The GetUpdateValue function starts with 6 and increments toward 9 in 3 seconds. A linear interpola-
tion, or Lerp, isn’t the only option. There’s also LerpAngle, SmoothStep, and LerpUnclamped
available in the Mathf library. These share similar parameters with Lerp and can be interchanged
quite easily.

Containing a timer within a single function keeps the work contained. A co-routine encapsulates the
work in a single function. With the following code, you can have a repeating timer that uses a co-routine
instead:

This uses a while loop in IEnumerator RepeatTimer(). The WaitForSeconds() uses an incom-
ing parameter delay to give us some flexibility to decide how long to wait till the RepeatTimer()
restarts. When this while loop is restarted, the first statement Debug.Log("Starting timer"); is
executed immediately.

Any code found before the yield return new WaitForSeconds(); statement will be executed
normally. This means that you can set up new GameObjects, add components, and build any number of
systems before the yield. Once the WaitForSeconds() statement is finished, all the following lines
are then executed normally. Therefore, anything that needs to happen before the timer is reset should
happen here.

A Coroutine can control another co-routine as well. A variable visible to both can be setup as a kill
switch. A co-routine checks if the live bool is true to continue executing the while loop. Another co-routine
is set to set that bool to false.

561Advanced

7.18.3 Arrays of Delegates

Timers that call a function when they’re finished are useful in many ways. We could make a modification
to the co-routine to accept an array of delegates. In addition, the delegates can also have a return type to
change the behavior of the coroutine.

In this IEnumerator called DoingTheThings() we have a parameter which is an array of
ThingsToDo. As we’ve seen before, delegate functions can be useful in many different situations.
For this we’ll use them to some very basic tasks. A delegate is simply a redirection of a function as a
variable.

562 Learning C# Programming with Unity 3D

We could have more variations, but in this case two different functions that match the signature of the
ThingsToDo delegate are FirstThing and SecondThing. The functions themselves are not very
complex, but this doesn’t mean your functions couldn’t do much more.

The delegate ThingsToDo as a type can be used as an array. In this example we’re populating the some-
Things variable with the two functions matching the delegate signature. Then we start the co-routine
DoingTheThings with the ThingsToDo array.

When the co-routine is started we get the FirstThing and SecondThing functions are invoked by
the same co-routine. The functions are invoked in the order they were added to the delegate array. Each
returns a float value which is used to delay calling any following delegate. The system here allows you to
set up a queue of actions. Each action can provide its own time before the next function is called.

7.18.4 Stopping a Co-Routine

To terminate all co-routines, the StopAllCoroutines(); function will terminate any co-routine in
process. In some cases where co-routines aren’t used often, stopping anything in process might not have
any unexpected side effects.

563Advanced

With the above example, we start a co-routine which will log "Stopped." after 10 seconds. Before that
is printed we start another co-routine that uses the StopAllCoroutines() function after 2 seconds.
When the co-routine is interrupted "Stopped." is never printed to the Console.

We can also pass an IEnumerator variable to start and stop a specific co-routine. The Counter() func-
tion is used to print a number to the Console every second.

564 Learning C# Programming with Unity 3D

This co-routine will continue to count so long as StopAllCoroutines() is not called. To stop this
specific co-routine without stopping any others, we need to pass the IEnumerator counter to the
StopCoroutine() function. The second co-routine started in the above example calls on the following:

This stops the counter after 3 seconds. The StopCoroutine can stop a specific co-routine given it’s able
to access as a variable. In some cases, it’s not always convenient to stop a co-routine with this method.
In some cases, it’s easier for a co-routine to check a variable to see if it should continue to execute.

A simple bool can be used in the co-routine to allow it to continue to execute. The condition to allow a
co-routine to continue is checked before any yield return values are calculated.

565Advanced

To use the co-routine we start both co-routines at the same time. The first one checks a bool value to
continue. If the value is true it waits for a second before printing out how many times it’s run. The second
co-routine sets the bool value the first co-routine used to continue to false.

If you read the log carefully you’ll see there was a 4th log printed to the Console after the dependent
bool was set to false. In the ChecksToKeepGoing co-routine notice that the while loop only checks at the
beginning to see if it should keep going. The co-routine continues through the while statements until the
while loop checks the bool again to repeat.

7.18.5 What We’ve Learned

Co-routines are useful in games to manage various aspects of timing. Complex behaviors often involve
movement, logic, and awareness. Creatures in general do not continuously move without pause. It’s pos-
sible to use regular Update ()–style timers, but this gets cumbersome.

With co-routines, we’re free to make interesting combinations of behaviors with interesting decisions.
The co-routines we looked at earlier could execute maneuvers and strategic behaviors. A co-routine can
also call other functions, so it doesn’t have to contain all of the logic in one block.

It’s also possible for an IEnumerator to start its own co-routine. This can create overlapping behaviors,
each one with its own timing. Combined with event handlers, you could trigger functions when a co-
routine is started and when it is complete. If the event is raised before or after the yield, you can trigger
an event when the co-routine begins or ends.

7.19 Dictionary, Stacks, and Queues

A dictionary type is an interesting version of an array. One basic use is setting up a list of items, say,
zombies, vampires, and werewolves. Then we can give each one a value: 10 zombies, 13 vampires, and 7
werewolves. If we want to know the number of zombies, we can ask the dictionary what “Zombies?” and
we’ll get the value stored at “Zombies” as 10.

The system works in a fairly similar way to an ArrayList, only we’ll want to assign some specific
types. The Dictionary data type is found under System.Collections.Generic;. We’ll start a new
Dictionary project. We’ll assign a simple Dictionaries.cs component to the Main Camera in the scene.

7.19.1 A Basic Example

This example starts with the DictionariesStacksAndQueues scene and the corresponding script in the scene.

566 Learning C# Programming with Unity 3D

The directive named Systems.Collections.Generic has the Dictionary data type in it. We
can use it any number of ways, but one of the most common is the Dictionary<string,int>
combination. This allows us to use a string to find a value in the dictionary. Similar to an array of int[],
you can recall a value in the array by its index in the array. Rather than using a number to recall a stored
value, you use a string as a name for the value. Dictionaries are organized as Key and Value. The string
“Zombie” is the key, it’s value is 10 as assigned in the example above.

The structure of the declaration of a Dictionary is <first type, second type>, where the first type you
use is called a key and the second type is the value that is associated with that key. The key, or the first
value, must all be unique throughout the dictionary.

If we try to use the above code, we’ll get an error that the same key has already been added.
When a dictionary is used, the key is the value that is used to find the association to the second type.

Therefore, in the above code, if you asked for “Zombies,” the dictionary would not be able to tell you 10 or 7.
To add dictionary entries to the dictionary, we use the MyDictionary.Add("Zombies",10); to

push strings with associated values into the variable. To retrieve them, we use what looks like addressing
an array.
MyDictionary["Zombies"] acts as though it were the value assigned when using the .Add()

statement. We can use different types in the dictionary as well.

The above code will print out every Object found in the scene. The specific line obs[i] is all it takes
to extract an object found in the scene by using an int. To make this a bit more clear, we can use the
following three statements:

567Advanced

Using an <int, object> key value pair isn’t very different from using a regular array. Dictionaries
use generics to help make any combination of types to map from one type to another, not just referenc-
ing objects by a number. These can be used for any number of data systems. Usually, when addressing a
number of similar associations, we can use dictionaries to a great degree.

With this sort of data structure, we’re allowed to ask how many zombies there are in the scene, with
int numZombies = MyDictionary["zombies"];. Using a dictionary in this way adds a simple
interface for storing an arbitrary number of values and things in the scene.

7.19.2 ContainsKey

To put a Dictionary to some use, we’ll count how many GameObjects have the same name in the scene.

A dictionary called objectIntPair stores a string for the name of an object and an int to count
how many objects have that name. Then we get an array of all the GameObjects in the scene called
allObjects.

A foreach loop iterates through each object in the allObjects array. A check is made with
ContainsKey() on the objectIntPair. The ContainsKey() function checks the dictionary if
the string passed to it has already been added to the dictionary.

The if-else statement uses objectIntPair.Add(name, 1); to both add a new key to the dic-
tionary and increment the value for that key to 1. If the name is already in use the value store there is
incremented.

568 Learning C# Programming with Unity 3D

The scene reveals that there are 5 cubes in the scene and one Main Camera, one Directional Light and
one DictionariesStacksAndQueues object.

7.19.3 Stacks

A stack is basically an array with some added features. You get a Push(), a Pop(), and a Peek() func-
tion when you use a stack. The names of the functions might not mean a lot, but they can act as a clue
as to what they do.

A stack is basically an array which you can mentally imagine as an actual stack of books. The top of
the stack is where all of the functions perform their operations. Pushing an object onto the stack loads
another book on the top of the stack. Peeking at it means to look at the contents of the book on the top of
the stack. Popping the stack means to take the top item on the stack off, not that popping a book makes
all that much sense.

7.19.3.1 A Basic Example

A stack is an array with a specific order. To maintain the order of the stack you’re only able to use three
commands to access the contents of the stack. The first function is Push() which adds a new object to
the top of the stack. To see what’s on the top of the stack you use Peek(). To take the top object from
the stack you use Pop().

569Advanced

Push() makes the size of the stack longer. Objects down in the stack are not accessible using Peek() or
Pop(). This enforces the fact that the Stack is meant to be accessed in a specific manner. This behavior
is called “Last in first out” ordering. Peek() will return the value of the object on the top of the stack,
but will not remove it.

To get the value of the object at the top of the stack and remove it use Pop(). By popping the stack you
shorten the stack and the item before the top is promoted.

7.19.4 Movement Stack

Movement systems are often best managed by abstracting how something moves from asking it to move.
This is best illustrated with the following:

You should limit your tasks to basic parameters. Let complex behavior do its work on its own. With a
short set of Moves in the enum above we could move an object around with a short set of commands
using a stack.

570 Learning C# Programming with Unity 3D

A MonoBehaviour called MoveStack has the above two statements. The public function Move() simply
looks at a stack of IEnumerators called Movements and Starts the co-routine at the top of the stack.
The Movement stack has a property called Count which is greater than 0 so long as there’s something to
Pop from the top of the stack.

The MoveTo co-routine it starts is the same sort of co-routine we saw in the previous chapter. At the
end of the co-routine we call on Move again to check if there’s another object in the stack to execute.

571Advanced

To add movements to the MonoBehaviour MoveStack, we have the AddMove() function which
accepts the Moves enum. The switch statement pushes the IEnumerator MoveTo() with different
Vector3 values based on the incoming Moves enum into the Movements stack.

This simplifies moving around a game object. Simply AddMove() and then tell the script to
Move(). In the scene a capsule appears and begins moving around based on the stack of Movement
commands.

Stacks aren’t as intuitive since the ordering is “last in first out.” The last command you add to the
stack is the first command to be executed. An undo list is often a stack, since you want to keep the
most recent command at the top of the stack. To have a better sense of execution order a Queue is more
often used.

7.19.5 Queues

A Queue is first in first out. So by adding objects at the start of the queue, they’re the first go come
back out of a queue. So in the code fragment below we add first second and third in that order to the
queue.

When we dequeue we get first second and third in the same order we added them. Rather than
Push() and Pop() to add and remove from a stack we use Enqueue() and Dequeue() to add
and remove from the Queue type. The Peek() function remains the same between the Stack and
Queue types.

A modification to the MoveStack MonoBehaviour to a MoveQueue MonoBehaviour swaps the
Stack for a Queue. Likewise, the commands in the AddMove() function change from Push() to
Enqueue().

572 Learning C# Programming with Unity 3D

The co-routine is also changed from Pop() to Dequeue() to execute the IEnumerator co-routine from
the queue of Movements.

The Movements.Count works the same on both the Queue and Stack.
The MoveQueue can be used in the same way as the MoveStack, only we might have a better idea on

how it will move using a Queue rather than a Stack.

573Advanced

7.19.6 What We’ve Learned

Organizing and referencing data is an important part of programming. Therefore, much of programming
is collecting, organizing, and reorganizing data; there are already many mechanisms in place for use in
your own code.

Learning every system in C# isn’t our goal. What is important is remembering that there is a system
that might be useful for many different situations. As you begin to remember them, you can look them
up later to see how they’re used.

The most important part of learning any language is the fact that there are words such as queue, stack,
and dictionary, which all manage data differently. When you come across something that looks like a
list of things that need to be handled, then you should look up what system might best suit your needs
at the time.

It’s impossible to learn everything at once. It’s difficult to remember even half of the features that any
programming language has. What’s not difficult is looking things up on the Internet and remembering
how they’re used by reading some examples.

The best thing to do is observing how these constructs have been used here. When you’re working on
your own and come across something that seems familiar, it’s a good idea to go looking around and try
to remember what you learned here as a refresher. Then apply the discovery to your current task.

7.20 Lambda Expressions

Now that we’re iterating through arrays, it’s time to put those arrays to some work for you. Lambda
expressions are relatively new to C#. The concept finds its origin in lambda calculus, an invention of the
1930s. The calculus form uses arrows with notation that looks a bit like the following:

 ()x x x→ ⋅

Unity 3D now updates with the latest version of C#. Lambda expressions were first introduced with C#
3.5. Lambda expressions were an upgrade from what is called an anonymous function. Anonymous func-
tions were basically clips of code that could be stored as a variable. This sounds a bit like a delegate, and
in some ways it is.

To clarify, we’ve made some uses of delegates with some basic uses in previous chapters. When we
create a delegate, we need to do a bit of setup ahead of time to use them. We can use a delegate only if
it’s been created and a variable defined to hold onto the delegated tasks. Lambda expressions allow for
creating and using a delegate in a single line.

The major difference is that an anonymous function can appear in the middle of your Start() or
Update() function. Then be set to a variable before being used. After the anonymous function is
declared, its arguments are assigned in the same statement where it’s used. Because anonymous expres-
sions still work in C#, it’s good to know how they work and why lambdas replaced them.

One strange syntactical situation that needs to be seen is the fact you can declare a function inside of
a function.

574 Learning C# Programming with Unity 3D

The immediate utility of something like this might not be readily apparent, but when it comes to keeping
code portable this might come into play. A complex situation where you’re able to protect and hide the inner
workings of a function might benefit from using a complex function as a base for abstract classes to inherit.

Where these weird situations do come up are where delegates and events might require a special case.

7.20.1 Anonymous Expressions

Anonymous expressions are basically short functions that can appear in the middle of a function.
This seems a bit weird, but this will make more sense once we see what the code looks like.

In most cases you’ll declare a delegate as a template to follow. In this case a very simple delegate
called SomeDelegate() returns void and has no parameters. As delegates can accept more than
one function assigned to them, the above code shows del being assigned a Debug.Log() call as
assigned through the = () => Debug.Log(); syntax. This is followed by the more common
+= NamedExpression() syntax as we’ve seen before. When the Invoke() function is called
on the delegate both the anonymous assignment and the named function are called in the order in which
they were assigned.

Depending on the complexity of the delegate definition, the anonymous expression would look differ-
ent. The above delegate returns an int value and accepts two parameters. In the body of the function we
assign m the values (a, b) => a * b; where the debut prints out the result of the math. This of course
doesn’t mean we must follow any rules when making the assignment.

The name of the delegate is Multiply, but we can fib, and assign any use of the delegate we want.
This allows quite a lot of flexibility, though we should keep in mind what’s expected from a delegate
named Multiply to do what it says.

575Advanced

The syntax involves two main parts, a set of input parameters indicated with () the => operator followed
by an expression. The expression can be encapsulated with a set of curly braces, or if it’s simple enough
the expression can appear in the same line with the => operator. Lambda expressions are intended to be
short quick statements so in most cases a single line is often used without curly braces.

These are called anonymous expressions since the expression section of the assignment has no name.
With a delegate assigned to a function we use a name pointing at a function. Something like void
SomeDelegatedTask() can be assigned to a delegate. When using an anonymous expression there’s
no named function assigned, it’s just the code without a named function around it.

7.20.1.1 A Basic Example—Action Func and Expression

Functions are meant to be reused. In many cases, writing a delegate type that’s used once can feel a bit
verbose. In the same way, functions written to assign to a delegate that’s called once may also feel over-
written. To avoid unnecessary code being written lambda functions can reduce the amount of excess
code to accomplish a complex behavior.

576 Learning C# Programming with Unity 3D

The unusual use of an inner function can also be used to create an IEnumerator function to use as a
co-routine. This can allow this one function to remain self contained. In previous examples the functions
used in a coroutine were all separate functions.

The parameter of the delayedCall is an Action which is a type of Delegate. To start the corou-
tine, we assign a lambda function in the delayedCall parameter in the StartCoroutine() func-
tion. An Action is a type of Delegate. Remember that we normally have to define a delegates signature
before we can use it. An Action is basically a collection of predefined delegate functions.

Some of the fun here is the reusing of code inside of a function. Three specific Actions are used in the above
example: a mult, add, and sub. These print out a result after a delay provided by a co-routine. Without writ-
ing any additional code the above could continue to print many more lines of math once a second.

The Action has many pre-defined variations for incomint parameters. Func is another type of delegate
that has a return value. The Func is an Action with a return value. When defining a Func you may notice
that the auto-complete provided by Visual Studio has some additional notation.

One of the options includes out TResult as one of the many provided overrides.

577Advanced

Assigning the Func the above code returns the value to int result after processing 3. The Func uses
generic types for both input and output. Generics allow for a great deal of flexibility.

7.20.2 Lambda Expressions

Lambda expressions are best recognized by the => operator. This is sometimes called either the becomes
or the points to operator. This wording is used because the left side becomes the expression to the right
side of the => operator. This works the same as the assignment operator =, only we’re assigning a vari-
able the result of an expression. The following code sample simply takes out some of the extra syntax
used by the anonymous expression.

7.20.3 A Queue of Lambdas

Lambdas expand your ability to create different uses for events from within your code. Without writing
many dozens of class functions you’re able to assign unique behaviors to an object without needing to
write hard-coded functions.

In a previous exercise we wrote a function that would start a co-routine based on a Movement enum.
We’d then push different vectors into a queue to move an object around in the scene. Rather than a queue
of co-routines, we can also create a queue of Lambdas expressions.

In the function where we start doing the things we include an inner function. The innerfunction is a
simple IEnumerator that’s called immediately after it’s defined. The ThingsToDo Queue is a collection
of delegates where we use DynamicInvoke() to call the code contained in the Queue.

578 Learning C# Programming with Unity 3D

The Action<int> is added to the ThingsToDo Queue. The Lambda here is static, but it’s possible
to pick different Lambda functions to assign to the queue in the MonoBehaviour attached to the capsule.
Running the code above will execute doing #1 to #6 as the functions in the queue are invoked.

7.20.4 What We’ve Learned

Lambda expressions are more useful than simply printing to the Console; they’re often used to sort
through arrays of data. The same goes for anonymous expressions, but it’s more important that we use a
lambda expression to do this.

7.21 Leveling Up

We’ve reached the end of a very difficult chapter. One of the most important topics that have been covered
more than once is inheritance. We looked at several different systems about controlling the inheritance of
a class. Special classes such as the abstract class and the interface control how inheritance is managed.

We’ve been working to become a functional programmer, or at least being able to talk to one. At this
point, it should be plausible that you would be able to build some interesting behaviors and write some-
thing compelling.

When talking about special programming tricks and learning new idioms and patterns, a great deal
of work can be done by reading code. Finding interesting projects on GitHub or any other open-source
code sharing site is a good place to start.

Studying code is more than trying to just understand what each statement is trying to do. The hard part
is to interpret what an entire function is doing, determine how it works, and check if it’s doing something
you haven’t seen before.

If the code contains a new trick, learn how it works. If the structure looks interesting, try to understand
why it was built in that way. If there is new syntax, look it up and figure out how it works. The more code
you read, the more you’ll learn.

In Chapter 8, we’ll look at some more interesting tricks and some common patterns, and syntax that
is often used by more skilled programmers. Of course, not everything will be covered in as much depth
as it deserves, but it’s a starting point.

579

8
Extended

8.1 What We’ll Be Covering in This Chapter

If we’ve got this far together, we’re in a good position to learn some of the more interesting aspects of
the C# language. Not everything in this chapter is common in everyday programming, but it’s all good
to know, or at least know about.

We’ll cover a few new tricks that include some style, some interesting syntax with LINQ, and more
obscure number of tricks. A few design patterns and structure ideas will also be introduced. It’s easy to
get carried away with the new tricks and use them everywhere. It’s important to remember when these
tricks are useful and to use them in moderation.

• Readability

• Source control, revisited

• Debugging techniques

• Recursion

• Reflection

• LINQ

• Bitwise operations

• Attributes

• Architectures

• Design patterns

This chapter is relatively short in comparison to the Chapters 2 through 7. At this point, it should only
act as a launch pad to start you on your own into further study. Many of the basic concepts that will be
covered have a wider scope into themselves than can be covered in this book.

Concepts like architecture and their related systems often cover entire volumes of text that dive deep
into topics about optimizations and use cases. In this chapter, we’ll cover the topics only in a very super-
ficial way.

There are some important tricks here: Bitwise operations are useful for enums and dealing with what
are called flags. We’ll also be covering some of the trickier topics of attributes and reflection. We’ll also
cover the last looping system called recursion in which a function calls itself.

8.2 Review

Previously we looked over the topics of events and some interfaces. There are hundreds of other common
interfaces, but thanks to implementing a few of them and making our own interfaces, we should be able
to understand what interfaces are and how they’re used.

Delegate functions and anonymous functions are useful abbreviations of a named function. When you
need to deal with delays and call backs, delegates and concurrent functions work together to wait for data
without holding up your other functions.

580 Learning C# Programming with Unity 3D

Accessors, also known as properties, are also very useful to catch bugs early on. As a creative engineer
you can decide how your code communicates. You decide to use MyClass.property = data; or
MyClass.SetProperty(data);. Because properties can be so flexible, it’s good to know a bit about
how to best think about them.

In the above code, we have a IHasFloat and IHasHalfFloat exposed to the public. We can get and
set either one and get predictable values set by using either one. The Debug.Log() files return half and
can set them at half. Whether or not these values make sense is determined by how you intend them to
be used. Should setting IHasHalfFloat mean that you are giving a half value or giving it a value to
be halved?

Like so many things, how the accessors are implemented is up to you; they’re flexible in that you’re
allowed to write any form of logic into them. This power also opens the opportunity for problems.
Expecting one thing and getting another means only a miscommunication or a bug in the code.

Like so many things, writing code that makes sense means communication not only by your code to
the reader but also between engineers. When you are working on your projects alone at home, you might
be moving between different side projects. The systems you write should be portable and usable between
your projects.

If you write a useful character controller, it’s a shame to have to write another one for a different
project that has a similar behavior. Any time you can reuse good code, you’re saving time and effort and

581Extended

making advancements in your game’s progress. Make enough parts for a game; eventually you’ll be able
to assemble an entire game by copying and pasting code from your other projects!

8.3 Readability

Reducing complexity and keeping the notation short is a simple way to make your code easier to read.
Some of these notations follow specific patterns. For example, the foreach() loop is a more simple
version of the for(;;) loop without an internally scoped int. There are other optimizations that you can
use to make your code more brief, but in some cases the code becomes a bit less clear.

Some of these optimizations have become common enough to be called idioms, or commonly used
programming patterns. C# idioms have been inherited from other programming languages like C and
C++, which have had a longer history and more time to develop common patterns.

8.3.1 ?: Notation

A simple system to change a value based on a single comparison is the ?: notation.

var result = condition ? true: false;

The above notation is a truncation of the following code:

The first notation might be confusing the first time you see it; however, its compactness is its advantage.
There are many cases where keeping a simple “if true do this, else do that” to a single line makes sense.

582 Learning C# Programming with Unity 3D

The ternary is made of three parts a condition followed by a true statement then a false statement. In
practice a ternary is usually used for short statements.

The above code simply returns the value of which int is greater than the other; it’s simple and has
only one line of code. If a is greater than b, return a; otherwise return b. The code is very simple
and elegant and, more important, very hard to break. The above notation becomes less clear if you
nest conditions.

The above code compares all three values and returns the greatest, though from looking at the code it’s
not clear that this will do. The parentheses help, but they’re not necessary. The above code could look
like the following:

Even though the above code is perfectly valid, it’s less readable.

8.3.2 If

Another common strategy to keep code clean is to ignore curly braces {} when an if statement controls
only one line of code.

The above code uses only tabs to determine the execution of each line. You’re allowed to omit curly
braces {} if each statement is only one line long. This works for a single if statement as well.

583Extended

The above code shows other statements without the regular curly braces. The readability of each form
changes with the exclusion of the formatting afforded by the curly brace placements.

8.3.3 Smell

Programming style is sometimes referred to as either flavor or smell. As such there are good smells and
bad smells. A bad smell doesn’t necessarily mean that the code is broken and buggy. However, bad smell-
ing code usually leads to problems later.

This programming style is categorized into several groups.

8.3.3.1 Comments

Comments are descriptive but useless. They make up a part of your code as much as functions and vari-
ables. They’re used to inform fellow programmers as to what a function or code block is used for. Poorly
commented code smells bad, and such bad smells cause many headaches.

The real problems begin once any major overhaul of the code is required. Poorly formatted or orga-
nized code can become more problematic when finding and replacing field names or function names.
Code that conforms to an expected formatting can more quickly and easily be updated, whereas bad
smelling code will often result in botched renaming and replacing in a process called refactoring that
will be covered in Section 8.12.5.

8.3.3.2 One Responsibility Rule

Long extremely complex functions often exude a certain bad smell. When a function gets too long, it’s
often a source for many different problems. Here, bad smell means that finding a problem in the function
can take a long time to fix. Short functions are easier to debug as there are only fewer lines of code to fix.

The problem usually comes about when a single function tries to do too many different tasks. In other
words, a function should have enough statements to complete a specific task and nothing more. Once
a function completes more than necessary, it’s time to split the function into two or more different
functions.

A function should ever take care of only a single task. If there’s a repeated task that needs to happen,
then another new function should be written to take on that responsibility. This means that many differ-
ent functions can also make use of a function that has that one task.

584 Learning C# Programming with Unity 3D

8.3.3.3 Duplicated Code

Long functions often have many repeated sections of code, leading to more problems. If one block of
code needs a fix, the same fix will need to be applied to every other block that looks and acts in a similar
fashion. Repeated code means repeated effort in fixing bugs.

Long functions often use too many parameters; more than two or three arguments in a function’s list
can also lead to bad smelling code. Often these long parameter lists can feed into longer logical chains.

A long ladder of if-else statements can become very difficult to decode and interpret. Too many condi-
tions in a single if statement also lead to bad smelling code. In some cases, they’re difficult to avoid, but
they will leave a bad smell even if the code works.

There are always more simple and clever ways to solve problems like too many arguments and condi-
tions. Clever solutions come once you’ve accumulated experience. To gain this experience, you need to
expose yourself to a lot of clever code and read and understand how it all works.

We’re not seeing many clever examples in this book, only pragmatic examples to explain basic con-
cepts. There are programmers who are quite clever and willing to share their wisdom on the internet.
Forums are a great way to seek clever solutions to complex problems.

8.3.3.4 Naming

Both variables and functions should follow a simple naming convention. When a name becomes too long
and cumbersome, it’s difficult to read statements that use long identifiers. Programming shouldn’t feel
like a restrictive set of rules that confine what you’re allowed to do. However, there are some general
concepts that help keep code readable and easy to understand.

For true false data types like bools, it’s often useful to prefix the variable with “is” such as bool isAc-
tive; or bool isEnabled. If the prefixing is consistent throughout your own code, you’ll be able to identify
a variable as a bool simply by its name.

Classes and structs should be named as nouns. A Zombie class is a perfect example. A classZombie is
a horrible name for a Zombie class. If it’s a noun, you already know it’s a class object, and having a type
in the name of the variable is redundant.

Classes that inherit from certain interfaces should start with an uppercase I, so, for example, a
Graveyard which inherits from IEnumerable should be an IGraveyard. In most cases, a naming standard
should be followed. Usually, when you join a company or group of programmers, you’ll want to come to
agree on a shared set of coding standards.

8.3.4 What We’ve Learned

Coding standards are commonly thought about and shared, so there are many references on the internet.
General concepts can easily be followed to avoid bad smelling code and inconsistent identifier names.
It’s important to discover on your own why these rules have been written. This comes about only through
practice and reading code on your own.

8.4 Git Revisited

Working in a team means more than one person might modify a file. When changes overlap, picking how
the changes come together is called merging. In the best case your change will modify code in a different
part of a file from someone else’s change.

In the general case when you get started at the beginning of your day, you start with coffee, maybe a
doughnut, boot up your computer and open Unity. However, if you’re working with a team you missed a
step. The first thing before opening Unity is Git. Since Git serves as a repository for everyone’s work the
first thing is to catch up with the work anyone else has contributed.

585Extended

8.4.1 Git Branch and Merge

In the Git Bash shell start by creating what’s called a branch. A Branch in Git is a system to isolate
changes you’re about to make. When a branch is created you’ve created a special save point. This can be
better visualized with a graph created in the Git Bash console. Open the Git Bash and enter the command:

git log

This displays in text the last several check-ins with the most recent at the top. You can scroll through the log
with the up and down arrow keys. The Q key quits the log view and you’re free to type commands again.

Another way to check out what’s going on is with the following command:

git log --graph

That’s two dashes followed by “graph.”

This shows the most detail for the log command. The string of numbers and letters after the commit is a
unique hash creating an identifier for the check-in. To the right of the hash is the branch on which the check-
in was made. The comment, date, and the author are also included with the check-in information. Another
way to more clearly see the dots and lines is to hide the added information leaving only the comments with:

git log --graph --oneline

The above is git log space, followed by dash dash graph space, dash dash oneline.

586 Learning C# Programming with Unity 3D

The --oneline command tells the graph to hide extra information making the dots and lines more visible.
Each dot in the vertical time line is a check-in of changes. Not to a single file, but to everything that was com-
mitted and pushed. Each vertical line is a branch, imagine the branches as timelines with unique events. When
branches come back together, they merge combining the changes from each timeline. When starting out you’ll
be working in the master branch. To observe how branches work, we’ll make one with the command:

git branch NewReadme

This creates a branch called NewReadme. After this we’ll need to jump to the branch we made. This is
done with the command:

git checkout NewReadme

The name of the branch you’re in is indicated at the end of the line in the parenthesis (NewReadme)
changes, based on the branch you’re working in. Now the changes we make will take place in the
NewReadme branch. The changes we make here are now in a new timeline. So when we add the follow-
ing to a README.md text file in Chapter 8 we only effect the NewReadme timeline.

A regular text file called README.md is added with the text seen above. The command:
git status shows the following:

587Extended

With the new README.md file created we should check it. As we had done before we add

So we enter the command it suggests and we can push the new branch to our fork on GitHub.

So now the content is pushed and saved. We can continue to make changes on this branch without
fear of losing work, or interfering with other people work. Branches are often used to add features
or fix bugs.

Once everything works, we can then merge the work into the master branch. The idea here is to save
work in progress, and when the feature is done, we can contribute our work to the main timeline and
not break the build.

To merge the new README.md into the master branch we first jump back into the master branch
with the command:

git checkout master

This is followed by the git merge command:

git merge NewReadme

To see the work, we can read the log. In this case, we didn’t do a whole lot of changes, so the log
doesn’t look very interesting. In a case where multiple check-ins occurred, the log would have more
interesting details. Our goal shouldn’t be to make interesting looking git graphs, perhaps not in this
chapter anyway.

Branches can be managed as a feature/NewMonster or perhaps bugfix/
FixingScoreChart. Adding a slash makes the branches easier to differentiate. To facilitate this,
an add on to Git called Git flow was created. Release versions and development branches are used
to separate work.

588 Learning C# Programming with Unity 3D

It’s not always necessary to merge branches. This is an important feature of Git. Branches can be
used as an experimental divergence from the main timeline. You could for instance test a concept which
might not work. This means that you can very easily check in work, test, and fail. Should your experi-
ment not bear fruit, that’s okay. You can checkout master and your experiment will have never touched
the master branch.

8.4.2 Merge Conflicts

Not everything goes as planned. Merging code can often result in a merge conflict. A conflict occurs
when changes from one branch do not match changes in another branch.

In the above we see a line changed in both Branch A and Branch B. When we are working in
Branch A and we merge changes in from Branch B we’d get the following conflict:

The changes you’re working on are at the HEAD or the latest you have. When merging, the changes
appear after yours. From here you’ll need to determine which line to keep and which to discard. For this
you’ll want to try out which version works better or is more important, or maybe you’ll keep both lines.
The result is your decision.

Before pushing your code, always check that everything works. After you finish your changes commit
and push. To use Unity as an example we’ll look at the following:

589Extended

Simple and to the point. This gets added this to a check-in and you commit the code. Then you merge
from Git and get this message.

Git has changed the branch title from (develop) to (develop|MERGING) just to remind you there
are conflicts that need resolution before you can push your code. At least we know what file needs merge.
The CONFLICT points to the file where the content needs attention.

To help you see the conflict, you get some characters which will not let your C# compile. There is also
text indicating where and what changed. The HEAD indicates what you’ve changed, the text below
indicates the branch from which the code conflict came from. In most cases it might be easy to talk to
the author of the conflicting code. Discuss which change to keep, clean up the code, and check it all in.

This is a simple case, and there are sure to be larger, more severe conflicts in the real world. To help
resolve these issues it’s often useful to find a stand-alone diff-merge app. These won’t be covered in this
book since there are so many to choose from. However, the tools do the same thing, they look for the
<<<<<<< and >>>>>>> to identify where the conflict came from. Then the ======= is used to find
which block came from what source.

After the conflict is resolved, add, commit, and push as usual. There are times when you may have
changed a file and forgot to add and commit before pulling. This results in the following:

This tells you that you need to commit changes or stash them before merging. Git aborts the pull and you
can choose to do either.

Stashing is a way to temporarily undo the changes to a file. To do this enter:

git stash

This creates a local check-in with a hash id. Now you’re able to pull or merge as though none of the files
you were working on had any changes. To un-stash the changes enter:

git stash pop

590 Learning C# Programming with Unity 3D

The pop command after stash infers a stack. And yes, stashes can be stacked. And as you pop stashed changes,
the changes come out in order. However, if you pull and pop a stash you may still run into merge conflicts.

When you pop a stash after a pull you’ll get a hash rather than a branch indicating where the conflict came
from. After all this branching, merging, and stashing, the git graph is starting to look a bit more interesting:

If something seems to have changed and you remember a line acting differently from a different check-
in, you’re able to checkout a file from a specific hash. Each node in the graph is preceded by a 7-digit
hash. This helps identify specific check-ins in the git repos history.

git checkout <hash> <path to file>

The command above takes the version of the file indicated from that point in time and checks it out
to your directory. The file replaces the one currently in the directory. The checkout also ignores any
changes that are currently in progress. To read the history related to a specific file use:

git log --oneline <file name>

591Extended

This shows the hash IDs for the file at each change. This will help when you want to pick a specific ver-
sion of a file knowing the specific hash to use to check out the file will help.

8.4.3 What We’ve Learned

Once all the merges have been made and you’ve tested your code to make sure that everything still
works as intended, it’s time to push your changes back up to the server. At this point, it’s a good idea
to remind your fellow programmers to get the latest version before they make too many more changes.

Communication remains the best form of code conflict resolution. Making sure that your code inte-
grates well involves talking to everyone to make sure your changes don’t stomp on something others
have been working on. Everyone has his or her own coding style. C# is flexible enough to allow different
philosophies to work together.

Knowing your way around git is important. Even when working independently, using Git helps a great
deal every step of the way. All too often the phrase, “This was working a few minutes ago; what did I break?”
will be saved by reverting a file to a previous version. Using checkout with a hash can save a lot of time.

Git diff can show you what changed between check-ins, so if you checkout a specific file at a spe-
cific hash:

You can see what’s different between that version and another with the following git diff command:

In your Console, the + indicates added lines and the – indicates removed lines. Lines above and below
the change are visible to help identify the context where the changes were made. You can also use git
diff at any time to see what your current changes are.

The scenarios here are basic, but the commands are the same. There are still plenty of git commands
that have not been revealed, but to do so would require an entire new book. Git is popular enough, that
most questions have several answers findable through a quick internet search.

8.5 Recursion

“To understand recursion, you must first understand recursion.”

—James Teal

We’ve studied most of the basic iteration loops. The for, while, do while, foreach, and even goto can
be used to iterate through a task. Of all these options, we’re left to adding them to the body of a function.

592 Learning C# Programming with Unity 3D

The for loop:

The while loop:

The do loop:

The foreach:

Enumerators:

593Extended

And the unlikely goto:

Each one of these loops will count from 0 to 9, and all of them operate within the UseLoops() func-
tion. However, if we wanted to create a self-contained function, we might want to consider a recursive
function. A recursive function, or method, is any method that calls upon itself.

Recursion is often used to deal with complex sets of data. If we’re not sure how many layers of
data are buried within a set of parameters, we need to have a flexible system to deal with what
we’re given.

8.5.1 A Basic Example

In the Recursion_Scene the Recursion script attached to the game object of the same name has the
following:

8.5.2 Understanding Recursion

Using a recursive function can be a bit mind-bending at first. It’s all too easy to set yourself up
for a loop that never breaks. It’s important that we understand why recursion works in order to use
it more effectively. The first rule for a recursive function is to have a clear condition where the

594 Learning C# Programming with Unity 3D

function returns without calling on itself. This is how the function breaks out of itself. If we look
at the above example, the if statement has a clear escape condition where the recurse function will
not call on itself.

This statement does not call on the recurse() function again, so the recursion stops here. The reason
recursion repeats itself is that the function calls on itself at some point. Once the function stops calling
itself, the recursion terminates. To observe this with another example consider the following:

Here we can see that int i is decremented just before recurring. Once i is no longer greater than 0, the
function doesn’t call on itself. Once the function stops calling on itself, the function ends, we’ve reached
the end of the recursive loop.

8.5.3 In Practice

When dealing with a set of data with many child objects, we might have to use for loops within for loops
to get through all the data. If there’s another tier of data underneath that, then we might pass over it with-
out even knowing. To get started, building a simple blob of game objects will be our first goal. This way
we’ll have something to sort through.

595Extended

The above code will produce a hierarchy of game objects in the scene. Some of the game objects were
left collapsed. The above code is a recursive function to create a number of objects under a parent object.
Each iteration is one less than the previous iteration. Once in the scene they’re parented in such a way
that they create the nested game object you see in the following hierarchy:

Now we’ll want to make our recursive function that calls on itself to iterate through the whole lot of the
game objects with a single call. After the recursive function is added, we just need to call it after the
hierarchy of objects has been created.

596 Learning C# Programming with Unity 3D

With a complex hierarchy in the scene, we want to see each one of the game object’s names printed to the
Console panel with the recursive function LogObjects() by passing it a game object. It looks pretty
simple, but there’s a very interesting behavior that’s going on with this simple function LogObjects();
in the Console panel.

If you look at the log, you’ll notice a single function is listed more than once! The first part of this log
Recursion: indicates the class where the call is originating. It tells us what file is sending the Console
output command.

After that we get the function name where a call is being made, UseHierarchy, which indicates
what function has created the Debug:Log, highlighted in the Console panel.

The function has called several times! This is proof that the recursion is calling itself correctly. Also, it’s
quite interesting to see this behavior in action in the Console panel. Rather than just printing out the names
of each game object in the hierarchy, we’d make something more useful with the information we’re iterating
through.

597Extended

To build something more interesting to look at, we’ll add in some GameObject primitives that spawned
rather empty GameObjects with a name in the hierarchy. We’ll add in some simple transforms and rota-
tions to some primitives. To set a goal, we’re going to build a set of objects parented to one another; like
in the hierarchy, we’re going to have them orbit around one another.

598 Learning C# Programming with Unity 3D

The above example will clearly show us a rotational relationship connected through the hierarchy. We’ll
start off with the following GameObject:

599Extended

The GameObject hub is used at the class scope to begin. From here we’ll try to stick to the same opera-
tion as we did before. However, after this we’ll want to set some local offsets and rotations.

The above code takes over the construction of the hierarchy that we created before. Notice here that the
parent object from the previous for loop has its localEulerAngles set before the child is parented.
This makes it critical to get the rotation to affect the child. Without this function the child object rotates
in place rather than having an orbit set.

In addition, I’ve also created each set of objects to different PrimitiveTypes; this gives some
variety to the final solution to make different levels of hierarchy more clear. Then we’ll add in a simple
recursive function that rotates objects in the hierarchy.

Rather than Debug.Log(), we’ll use transform.Rotate and slowly rotate each object’s y axis.
Using the first command go.transform.Rotate(new Vector3(0, 0.5f, 0));, we’ll simply
grab the object and add some rotation to it. Now it’s only a matter of adding the RotateHierarchy()
function to the Update() function.

As programmers have a knack for giving clever names for systems, we’ve experienced what is com-
monly called linear recursion or sometimes single recursion. This is a recursive function that calls itself
only once as a condition is met.

600 Learning C# Programming with Unity 3D

Linear recursion is the simplest type of recursive function. Basically, if we need to recurse then we do;
otherwise we end the recursion. Because the linear recursion we wrote has the call to itself at the end of
the function, it’s in a subcategory of linear recursion functions called tail recursion.

Another common type of recursion is called indirect recursion. This occurs when two or more func-
tions call on one another before ending. Indirect recursion is often useful for one function to be called
that returns a completed set of data from the recursive function.

The first function called GetList() calls the recursive function and gives it a list to fill in. This func-
tion is commonly referred to as a wrapper function. The task in the recursive function adds the incoming
game object to the list given by the wrapper function. Then if there are children, it repeats the process for
every child. Once it’s done, the recursion ends and the function which called it gets the completed list.
For instance, can use these two functions with the following call:

The above code fragment creates a list, then iterates through the list, and logs the names of each object in
the arrayList that was returned from the GetList() function. There are similarities between simple
iterative loops like the one that created the original hierarchy of primitives and the recursive systems that
look through them.

601Extended

However, there are more differences at play than the superficial appearance of the code. In many
cases, recursion functions often operate faster in the computer’s memory than iterative functions. With
increased complexity, the iterative function will slowdown more. Without going too far into how a com-
puter’s memory is managed, it’s good to know that by using a recursive function you might be speeding
things up, even if just by a tiny bit.

8.5.4 What We’ve Learned

As you might have guessed, there’s a lot of information on recursion out on the vast sea of the internet.
It’s one of those topics that people tend to write about to prove their competence. Aside from the some-
what confusing nature of a function calling on itself, the more important part of the recursion function is
when the function doesn’t call on itself.
The programmers writing Unity must know that recursion is a tricky topic. Many functions provided like
GetComponentsInChildren() do some recursion to iterate through all of the components in the
gameObject’s hierarchy. These functions supplant the necessity of writing your own function to do the
same thing. That being said, at least now you know how the inner workings of the GetComponent()
functions work.

8.6 LINQ

LINQ (language-integrated query) sorts objects and data.
Let’s think for a moment about a data driven game in Unity 3D. A game where statistics, like hit

points, magic, abilities, skills and the like are tracked and updated. You’ll likely store a mass of data
in either a spreadsheet, XML, Json file or database. This generates a long list of items with respec-
tive stats.

How then will we need to find and organize the items? One simple method is using LINQ, pronounced
“link.” LINQ stands for language-integrated query, something Microsoft introduced to C# and the .NET
Framework several years ago. LINQ draws techniques created for database query systems like SQL.
A database is a collection of information grouped and organized for searching and retrieval.

8.6.1 Lambdas and Arrays

Wading through a vast database of information can be intimidating. Writing a loop to search through an
array and acting on each bit of data could be a verbose long-winded task. LINQ to the rescue. Instead of
what might have been a rather tedious manual task of sifting through a scene with a bunch of monsters
looking for the ones with the most hit points, you can now use the Linq library to sift through that data
for you.

8.6.1.1 A Basic Example

We’ll start with a simple way to find even numbers in an array of ints. This is found in the Chapter 8
Unity Project in the Linq_Scene in the Linq script on the game object of the same name.

602 Learning C# Programming with Unity 3D

The above code will produce the even numbers output when the game is run. The syntax involves the
from keyword. The following n becomes a reused variable. Much like a foreach statement. Syntax in a
Linq statement appears different, but the more it’s seen the more sense it makes.

The value n represents each element in an array. Operations follow the extraction of each element.
The where statement is a Boolean operation, if the statement is true, n is added to the result output array.

8.6.2 Var

The System.Linq library introduces many new keywords, the depth to which Linq can be used may
actually surpass the scope of this book. We will cover the basics and a few cases in which Linq can be
applied.

If we look at the variable we created called evenNums, we’ll see that it’s an IEnumerable<int>
of values. Though the var can be different everywhere, it’s used in your code as the type is assigned
dynamically depending on how it’s used.

603Extended

Hovering over each variable in Visual Studio can reveal quite a lot, especially when working with Linq
where the result output type might not always be obvious. For instance, if we create a few different things
assigned to var, we can see how C# sees the types being assigned to var.

The first is seen as int, the second as an object, and the third as a float. The var type is fine with any type
of assignment, even arrays. The GetType is assigned based on the value it is first assigned. Once var has
a type, it cannot change.

In the above, someThing has become an int. The other value anotherThing is a GameObject
type. Once assigned, the int type someThing cannot accept GameObject type anotherThing.

8.6.3 LINQ From

For a more informative use for Linq, we’ll add more detail to the operation of the Linq expression in a
manner which might actually come up in use.

A nested class called zombie has some hit points that will be randomly assigned between 1 and 100 when
a new Zombie is instanced. Then in we create a hundred zombie objects with the following block of code:

604 Learning C# Programming with Unity 3D

After the array is populated with some Zombie objects, we can find zombies with less than 50 hit points,
with the following Linq expression.

Then to prove that we’ve got a list of zombies with less than 50 hit points, we’ll print out the hitPoints
of each zombie in the new weakZombies var.

From this little exercise, we’ll get the following output to the Console panel.

The multitude of tricks you can deploy using Linq can fill a book on its own. When dealing with a large
number of objects to sort through, Linq is often the most flexible option. Another bonus is that it’s sur-
prisingly fast.

8.6.4 Strange Behaviors in LINQ

When a Linq query is created, it’s not immediately executed. We can see the numbers array that we
started with and observe some interesting behaviors by adding to the list after the Linq statement is
used.

605Extended

After the divisibleByThree Linq query is created, we can change the numbers in the array to new val-
ues after the Linq operation. After the divisibleByThree var is created, it’s source data can be modi-
fied. It’s only when the foreach statement uses the var from the Linq statement the actual query is made.

The above code prints out 30 and 300 values which were not in the numbers array when the Linq
query was applied to the array. The operation applied to the variable assigned by the Linq operation
remains alive.

Even after the first foreach statement we can make changes to the numbers array again, log the items in
the array, and get the new values in the output.

8.6.5 LINQ on Lists

The Linq statements offer additional functionality through the dot operator as well. Here we have an
array of numbers where the .Where() function can be used with a lambda instead of the previous
where select statement. After the statement an additional function can be applied to change the
result to an array.

606 Learning C# Programming with Unity 3D

The last ToArray() function avoids the strange behaviors by converting the query into an array by
using what is called a greedy operator. If we encapsulate the Linq statement in () and add.ToList() after-
ward, we can force the Linq statement to fulfill the var into an array.

This tells us that the divisibleByThree query is set before the numbers array is modified.
This becomes a very important change to the operation of this query. The var type is important to the
query, but not to how it’s used. Because var is flexible, we don’t have to figure out what we’re getting
back from the query.

In the case were we used different lambda statements, we can also use a Func type to assign to the
Where() function on the array. The Func<int, bool> even can be used to satisfy the Where()
function. In addition to Where we can also use a function called Distinct() on an array.

The Distinct() function removes repeated values. Adding the ToList(), rather than ToArray()
function at the end creates a List<int>. So what else can we use Linq to do?

607Extended

Here we take two arrays and use Union() to merge them together. The values 3 and 4 are repeated. To
remove repeated values we chain Distinct() and then finally ToArray() at the end. The result is a
single array with all of the unique values of both arrays.

Functions like Except can take values seen in one array from the other. This can show you what was
added or what values were taken away.

608 Learning C# Programming with Unity 3D

8.6.6 Monsters Linq

Starting with some definitions of a monster class we begin with an Alignment enum. We also give the
monster class a few attributes for a name, Alignment, HP, and Position. Each monster is likely to be
unique when it’s created. Functions like Distinct() will take into consideration all attributes when
filtering an array of these objects.

To customize how Linq is used we have several options. Linq and C# are very flexible in that regard.
Lambda functions interface classes and Linq all diverge the C# syntax for better or for worse. Not to get
too confused, we can still pick a syntax that’s comfortable, however it’s also important to be able to read
code if someone else writes in a different style than you are accustomed to.

609Extended

In this array of monsters, we have 100 objects. Using the default Distinct() parameter, we find that
there have been no monsters taken out of the array. We can use an IEqualityComparer interface for
the Monster type object and write a custom parameter for the Distinct() function.

To take two monster objects and only use the name to qualify the two objects are equal we name the class
a MonsterNameEqualityComparer. This allows us to use the Distinct() function using only
names as a comparison rather than all properties of each monster.

The nameEqualer object is given to the Distinct() function and now about a third of the objects
in the array have been removed. No two monsters have the same name in the array. We can also make a
custom sort. We could rearrange the array in alphabetical order based on the name.

The name is isolated from each monster to make the comparison rather than equality check. A list that’s
both ordered alphabetically and only contains unique names can be generated.

610 Learning C# Programming with Unity 3D

To get here we had to write two classes, one to compare name equality and another to compare name
ordering. We can avoid extra code by using a lambda function instead.

With the function OrderBy we can arrange an array of monsters alphabetically. Follow this with
GroupBy unique names are selected. The last statement .Select() uses group which is a keyword
for the values inside of the Linq statement. This might seem to appear out of nowhere, and to be honest,
it kind of does. But this behavior is similar to how value appears in a get set property. The .First()
function on the group selects the isolated group we just created using the GroupBy() function.

611Extended

Another form of the same function is using only Linq commands. This last version uses a few more key-
words unique to Linq. We have orderby as a keyword and not a function. We see group monster
by and into appear as well.

The into keyword creates a new group of objects and again we see .First() appear on the
uniqueNames object. This should raise the question, Is there a .Second() function as well?

So what else is hiding in the Linq statement?

The value uniqueNames without the .First() function returns a group of items with a Key, much
like a Dictionary. Then each object in the new group can be accessed like a dictionary. What’s going on
here is that all 100 objects are still in the uniqueNames object, but the .First() gives you the unique
names and not the whole array.

8.6.7 What We’ve Learned

The Linq library is a powerful tool made available through System.Linq. For sorting through and finding
bits of information, we are able to use Linq to find and use data quickly and easily. Rather than using for
loops and complex foreach loops for inspecting each object in an array, we’re better able to use Linq to
find what we’re looking for.

Practically any data type can be sorted out with a Linq expression, even if it’s a list of zombies, weap-
ons, or colors. A Linq expression can use an external function to provide additional logic or a lambda or
even some built in functions.

612 Learning C# Programming with Unity 3D

The flexibility of C# really begins to show when we start to use lambdas mixed in with other function
types with Linq.

We can continue to explore many different variations of the same thing with the Monsters Linq experiment.

One of the most important lessons here is the use of a local lambda and LINQ allow for capturing local
variables.

613Extended

When using the open natural version of Linq, you’re more able to integrate local variables into the func-
tion statement easily. The above function shows a local variable ComparedTo being used to against
monster.HP in the where statement. The topic of Linq allows for a fun variety of uses when it comes
to sorting through data. We could spend more time on the subject, but it’s time to move on!

8.7 Reflection

A type like int or string is a clearly defined type of data. To that point, when you create your own
class, you’re also define a new type. While you’re busy writing new classes, it’s often the case that you’ll
want to check for attributes of an object.

It’s important to start with clearly defined sets of parameters. All classes of characters should have
matching parameters. Constraining parameters with a base class can help. Making changes to different
parameters depending on different combinations can mean writing a function for every possible combi-
nation. This could end up a cumbersome process. One way to avoid writing many special case functions,
inspecting properties and making decisions based on what a class has can vastly improve the flexibility
of the code you write.

614 Learning C# Programming with Unity 3D

Code can read code. You’re able to make decisions based on the members of a class. Reflection
enables you to see into a class and read the variables it contains. When you look at a class, you can
normally get its name; from its name, you might be able to assume what it contains. Something like
MyZombieMonster() might be fairly clear, but what does the zombie monster do?

With System.Reflection MemberInfo allows you to read the public contents of a class. In this
case, the Type Stuff has a float an int and two public functions.

Along with Object’s inherited functions like ToString() or GetType() the AFunction()
IntFunction() and PubFloat and PubInt are printed out to the console. These members are all
publicly visible. Private functions, if present, will not be presented as MemberInfo properties.

615Extended

8.7.1 A Basic Example

In the Reflection_Scene the Reflection script attached to the game object of the same name has a very
simple string comparison to find a function:

This simply searches for a function with a name we’re looking for. As a superficial example, this doesn’t
accomplish much if we already knew what the function was named. If we knew that much, we could just
call it. However, this does illustrate the use of the type of object and not the object itself. Reflection uses
the type definition of an object to discover the object’s properties.

8.7.2 Reflection MethodInfo

Aside from the fields found in a class, it’s also possible to inspect a function. The complexity of
a class grows over time. With that growth comes added a growing number of functions to act on
the class.

If your game has powerups which all act in a specific manner, it’s often cumbersome to write into a
character functions like “ActivateExtraDamage” or “EnableHealthRecovery”, etc. In cases where you
want the powerup.

In a MonoBehaviour we have an enumerator that processes a queue of delegate tasks.

616 Learning C# Programming with Unity 3D

The delegate pulls out a task from the queue and gets its name. Then we pull out the method’s information
with GetMethodInfo(). This returns everything we’d ever want to know about the method assigned
in the queue. One of the values in the MethodInfo is a list of names in the parameters of the function.

For this exercise we can assume that every function assigned to the queue has at least one parameter
and it’s named either life or money. The Person : MonoBheaviour has three parameters,

Life, Money, and ThingsToDo, reflecting on this Person reveals a very simple existence. When
Person is created it initializes a Queue of things to do. This person is unaware of what will become of its

617Extended

life or money. One thing is for sure, with each loop through the switch statement we wait for a second,
then we check if life is <= 0 and we destroy the gameObject.

When we look at the parameter of the incoming delegate function we check the name and assign the
function either Life or Money. This could be expanded to any number of properties your class might have.

Person has instore the above functions. Each one acts on the parameter as you might expect. The differ-
ent functions are assigned to Persons ToDo list using enqueue.

618 Learning C# Programming with Unity 3D

Once the person’s queue is populated, the Function DoTheThings() is called and the queue begins its
invocation process.

With each process of the queue we step through the short and dismal life of Person. As unassuming as
what’s happened here, we can take for granted we know what happens to life and money, aside from
death and taxes. Person had no idea what the function was going to do. We only had the information of
what the incoming parameter was asking for, and Person assigned its life and money to the incoming
function not knowing what it would do.

The outcome is still clear, we saw the name of the incoming function and that’s something we could
have processed. But if we didn’t know ahead of time what to expect then that wouldn’t have mattered.
The important take away is that we only knew the name of the parameter of the function.

Additional parameters named in the function can be assigned to change how a function can be discov-
ered and used from the assigned function.

8.7.3 What We’ve Learned

To explore the idea that a class might have a list of properties and a delegate coming in might want to
modify those properties we could do so by reflection alone.

619Extended

In the HasStuff class we have a few class members, a number position, and a gameObject. These
are names of members which reflection can find. To match this, a delegate is setup that mirrors the
property names.

The input parameters number position and gameObject can also be seen through reflection. We can iter-
ate through the properties of the class and compare them to the properties of the delegate.

A small touch of magic here seems to happen. The array object[] pars gets populated through
getting the classes property by name. The class properties are turned into an object in an array. The
 threeIns delegate is assigned the array of parameters in the DynamicInvoke call. The fields in the
class that match the names of the parameters in the delegate are assembled and called.

620 Learning C# Programming with Unity 3D

The values of hasStuff get set to something unique. Then the delegate gets assigned. The delegate’s
values are name checked against the fields of the class. When matching string names are found the
values are added to an array. The delegate is called with the object array populated with the classes
properties.

By using Reflection, the class was able to identify parameters and assign a function values from its own
members. Add this functionality to incoming delegates and you’ll be able to assign any variety of modi-
fications to a game character or object.

8.8 Dynamic

C# is a strong typed language, usually. As we’ve seen with var, the type of data that can be stored in a
variable isn’t always clearly defined. The var type gets defined after it receives a value. This is useful
when the value assigned is assumed to be changing, as with the case with Linq values. The dynamic type
is a bit different.

Opening the Dynamic_Scene find the Dynamic script attached to the game object of the same name.
The dynamic type, unlike var can be reassigned at any time to anything. This defies what it means to be
a string typed language. Especially since the GetType() function returns no clue that the variable is
being stored in a type that isn’t set.

The dynamic isn’t commonly used, and for clarity it shouldn’t be used very often. The practice of
defining a type is important. Type definition and use restricts a variable from changing accidentally.
Even with generic types, the <T> becomes a type when it’s assigned and after assignment the type
can’t change.

621Extended

Variables in most cases remain static or unchanged once assigned or created. The dynamic type can
change. The chaos this may introduce allows for errors Visual Studio might have been able to catch.
Compile-time error checks are skipped on the dynamic variables; use with caution.

In some cases, the dynamic can change types even without a specific assignment. By dividing an int by a
float, the type gets reassigned. The type mutation occurs without error or warning. This behavior mimics
that of other languages like LUA or Python where a variable’s type changes as the assignment changes.

Where the dynamic type causes problems is when the variable is used in an unexpected way. The data
stored in the dynamic variable still functions as a specific type, so operations like ++ cannot function on a
string. Though in most cases the error would have been caught in Visual Studio before the game is played.

8.8.1 ExpandoObject

The unique ability of dynamic to change type can be expanded upon. The System.Dynamic name
space includes a strange object called the ExpandoObject.

622 Learning C# Programming with Unity 3D

The dot operator allows a new ExpandoObject() to create add name and define a type of a member
dynamically. The near magic powers of the ExpandoObject() should be used with caution. Once
assigned, the type and function of each member of an ExpandoObject cannot be debugged before it’s
used.

The expando object can reference itself, as we can see in the Action assigned to the expando.gizmo
object. And a value in the ExpandoObject can be a delegate of some kind as well, not just a plain old data
type. The ExpandoObject can also be used as different types.

8.8.2 Expando Reader

Data is quite often stored as text. Properties for game objects are parsed from string values into an
expected data type for use elsewhere in the Scene of the game. A Zombie could have a name, some hit
points, and a position in the world. These would be stored as a string, int, and a Vector3, but in text form
there’s no type other than string.

The data could originate from anywhere, but we begin with a few lines of data separated with the \n
character and put together with a + character. We’ll forgoe reading and writing a text file to disk since
we’ve already done that before.

To make the ExpandoObject into a type we can dynamically add new members to convert the
ExpandoObject() into an IDictionary<string, object>. In this form we can use the
Dictionary’s interface member Add() to create new members.

The data string gets turned into three strings when it’s split with the \n char. The result is Name:Rob,
HP:10, and Position:1.23,4.56,7.89. These three strings are then split at the : character into a
string object key value pair. Each key value pair is added to the expandoAsDictionary var.

623Extended

The expando value is then assigned the expandoAsDictionary to convert the dictionary back into an
ExpandoObject. The expando object now has a Name, HP, and Position property. For the first pair
Name we didn’t have to convert the value. So expando.Name is the string Rob.

The values of a ExpandoObject object are also dynamic, so the string “10” can be parsed and to itself
and become an int. Now expando.HP is an int 10 after the Parse function has been applied to itself.

The expando.Position gets converted with a split and more parsing. This also shows that dynamic
can be assigned types from Unity as well.

The example shown here has no error checking. There’s no guarantee that a text file from disk won’t
have an unexpected character or an extra space. The interesting effect though is converting a string to an
int without jumping through any tricky conversions or type assignments. The dynamic type is suited for
situations like the one shown.

8.8.3 What We’ve Learned

The dynamic type was added to C# to add compatibility with languages like LUA or Python. In LUA vari-
ables were all just names. The only definition added to a LUA variable was it’s scope, either Local or
Global. Python did the same thing were you simply wrote “bob = 10” and now bob is a value of 10.

By using dynamic you can use variables in a similar fashion. This does open more opportunity for
unexpected behavior with fewer safeguards in place. The dynamic is also useful for parsing more com-
plex types like Json or XML. With C# on a web server, dynamic is often used to read and build complex
HTML web pages. Each <ELEMENT> becomes a new expando.object with values.

It doesn’t stop there. Each object in an ExpandoObject can have members with values with members and
more values as well. ExpandoObject lives up to it’s name and it’s quite expansive.

624 Learning C# Programming with Unity 3D

8.9 Bitwise Operators

When you are taught to count, you’re learning the decimal system. The decimal system is a base-10
numeral system, but there are many other systems as well. Your computer uses binary or a base-2
numeral system. The transistors in your computer have only two states; they are either on or off. To be
more technically correct, they are in either a charged state or a ground state.

Manipulating individual bits seems a bit low level for the common game-building tasks, but once you
get the hang of flipping individual bits, they can be used for many different tricks. Going back to the
basics, we’ll review about how numbers are stored in the computer’s memory.

A byte is a collection of eight 1s and 0s. Therefore, the binary 0000 0000 represents the decimal 0.
The binary representation is what is stored in the computer’s memory. A decimal 1 is stored as binary
1000 0000, and a computer represents decimal 2 as 0100 0000. The second place is a decimal 2.
Therefore, decimal 128 is binary 0000 0001.

8.9.1 Big Endian and Little Endian

The arrangement of the digits we’re looking at is called little endian. The name comes from the position
in the line of 1s and 0s where the biggest value is stored at the far end of the stream of ones and zeros.
Since the lowest value is stored at the start of the number, it’s called little endian. If we were to represent
128 in binary as 10000000, where the largest values are stored first, then we’re looking at a big-endian
number.

Each digit is a value of a power of 2. The first number is either 0 or 1; the first value is either 0 or 1 to
the power of 0. The second digit is either 0 or 2 to the power of 1, which is 2. The third digit is 0 or 2 to
the power of 2, which is 4. The pattern repeats for each digit in the binary number.

To explain how binary works and what the 1s and 0s represent, consider first that binary is made up of
1s and 0s. If each represents a power of 2, then 1, 2, 4, 8, and then 16, 32, 64, 128 are what each digit in
a byte means. With these we’re able to represent each number between 0 and 255.

As a simplified example, we’ll look at a 2-bit number. To count to 3, we’d start with 00, 10, 01, and
then 11. The first digit is 0 or 1 followed by 0 or 2. To count 0, we use 00. The combination 10 counts 1.
To count to 2, we use 01. Last, the number 3 is indicated with a 10 and a 01, added together as 11. If you
add 1 and 2, you get 3. This is how your computer counts.

This arrangement comes from backward compatibility with older processors that go back to the 8008
made by Intel in 1972. This was a tiny processor which used little endian byte storage to more easily

625Extended

communicate with a serial bus, a computer interface to send bytes between systems. This dictated that
the lower values needed to be calculated first.

Today most modern CPUs are big endian since, as humans, we read the largest values first, not last.
A million one hundred eleven thousand one hundred and eleven begins with the large value and works
down to the smallest value. Modern assembly is organized in the same way.

8.9.2 Signed or Unsigned

The same system as above works for a byte that is eight 1s and 0s. An int stores 32 1s and 0s, but there’s
a catch. The words signed and unsigned indicate if a number is allowed to have negative values. If the
number is signed, then you lose a bit to indicate a plus + or minus – sign; though you don’t usually see a
plus + symbol in front of a positive number, it is inferred.

To go back to our 2-bit number, we’d only be able to count to three values again. To begin we can start
with 10 that would translate into −1. When the first bit represents a value, the second bit indicates a sign.

We can use 00 to indicate a 0 and 11 to indicate a +1. We still have three usable values: −1, 0, and +1.
Whether or not a bit is used to indicate a plus + or minus – sign is called signed or unsigned. When we
have only positive values, we consider that an unsigned number; if we can show both positive and nega-
tive numbers, programmers call this signed.

A signed byte or sbyte is a number from -127 to +127. Using little endian bits, the last bit is 1 if the
value is negative and 0 if the value is positive. In the case with -1 we get a lot of 1s. The reason for this
is that with negative numbers we change how we use the value of the bits. The system is more like, what
value do you subtract from 128 to reach the value in the signed byte?

626 Learning C# Programming with Unity 3D

An int is a number between −2,147,483,648 and 2,147,483,647. Notice that the number reaches one more
negative than positive; we will see why in a moment. A uint or an unsigned int is a number from 0 to
4,294,967,295. To get these numbers, the last bit is the only one that controls the sign of the number.

So the regular math operators work as we’d expect, but we get an interesting behavior when we reach
the limit of these numbers.

Normally, you might expect c to print out 2147483648; however, we get -2147483648, a negative num-
ber. There’s also an unsigned version of int called the uint where the u means unsigned.

The increment of 1 on the unsigned int starting at 4294967295 results with 0. When umax is assigned
4294967295, you can imagine 32 1s filling up the 32-bit number. When we add 1, they’re rolled over and
the result turns into 32 0s instead. Therefore, the numbers in the computer, because they are binary, act
weird. This is a simple awkward fact of computing. In a small example, rather than looking at 32 num-
bers, we’ll look at just a few digits.

A 4-bit number, 0000, sometimes called a nibble, starts off as a collection of four digits. If we add
1, we get the following result 0001, which is then pushed to the left; when we add another 1, we get 0010
to get 2. Remember that the second digit is 21.

Adding another 1, we get 0011 to get 1 + 2 or 20 + 21, so we have 3. By adding another 1, we get
0100; the first two numbers are reset and the 1 is pushed to the left again, so we have 4. Adding another
1, we get 0101 to get 1 + 4. To continue we add another 1 and we get 0110; then we add another 1
and we get 0111 or 1 + 2 + 4 to get 7.

Finally, by adding another 1, we get 1000, which is the last digit for 8. The process continues until
we have 1111, and following the pattern of adding another 1 will push the 1 to the right, but there’s no
space left, so we get 0000. The 4-bit number has rolled over. With a 4-bit number, we get a range from
0 to 15. If we have a signed 4-bit number, we get a range from –7 to 7.

This whole business of counting with 20 + 21 + 22 +... was invented in 1679. A mathematician named
Gottfried Wilhelm von Leibniz concocted the system. He also happened to invent calculus, so if you’re
having trouble in math class, you can blame Gottfried.

Though without him we wouldn’t have computers. After he created the system, he said, “When num-
bers are reduced to 0 and 1, a beautiful order prevails everywhere.” Indeed, computers have led to many
beautiful things.

The system works for larger numbers. In the case of a 32-bit number, we’d be counting till we hit
the 4294967296 number before we roll the number. When we use a signed number, we lose either
the first or last digit to store the sign, either + or –. Technically, it’s a 31-bit number with a sign whose

627Extended

range is either +231(–1 for holding a 0) or –231, which means 2147483647 to -2147483648. Even
though computers are limited by the bits per number, we can work with this, so long as we keep these
limitations in mind.

8.9.3 Bitwise Or |

The bitwise operators |, &, ,̂ and ~ are used to manipulate numbers on the bit level rather than on the
math level. These are referred to as “Bar” where we assume 1 + 2 = 3. We can also use 1 | 2 = 3, though
this is not working in the way you might think it is. The or operator | is used to merge bits together.
Looking at the previous 4-bit number, we can use the following notation:

Or in C# we can use the following notation:

The above example looks at the 1s, and if either bit is 1, then the resulting bit is set to 1. If both numbers
are 1s, then the result is only another 1. Therefore, in the above example, we get the result 7, not 11 as
you might imagine.

At first glance, we might not immediately see the advantage of using numbers by the bits that they are
made of. However, programmers like to think in strange ways, and to learn how to write code is to think
like a programmer, which is never an easy task.

8.9.4 Enums and Numbers

If we use an enum, we can set each value to a number.

If we use the above enum, you can see some assignments to number values. You should also notice that
they are being assigned the same values that are used when counting in binary. Therefore, if 0000 is a
farmer, then 0001 is a fighter. This means 0010 is a thief, 0100 is a wizard, and 1000 is the archer. What
should happen if we want to have a multiclass character who is a fighter wizard?

628 Learning C# Programming with Unity 3D

Therefore, we can use the statement multiClass = fighter | wizard; to merge both values
into the enum. Hidden on the inside of the multiclass value is a 01010000 from using 0001 | 0100
to combine the bits. This might seem strange, since the result is 5, and there is no numeric value in the
CharacterClasses enum assigned 5. However, that’s assuming we’re using the enums as numbers,
not bits, or in this case, we’re using them as flags. We’ll read more into what this means in the following
section.

8.9.5 Bitwise And &

To find out which bits are in use, we use the bitwise operator and, &. Therefore, to see if the bits match
up, we can use the & operator to compare two sets of bits.

This shows the value for each bit, then using the & operator we can see how the bits are modified in the
result of the operation. With an enum we get the following result.

629Extended

The above notation returns a 1 only when bits in both values match 1. To use this to check what classes
our character is, we can use the following fragment:

The multiclass has a 1 in the first and third place of the byte. Using & CharacterClasses.Fighter we can
see if multiClass has a value in the first place. The same works for checking if multiClass has a value in
the third place.

The check of multiClass is an Archer that we check with & CharacterClasses.Archer and we see that
there are no bits that match.

8.9.6 Bitwise Exclusive Or ^ (xor)

We can also see which bits are mismatching.

The ^ operator in the following fragment shows us where two sets of bits misaligned. The 0s are ignored,
but if there are 1s, then we take action. In this case, we get the first and second bits mismatching. The fol-
lowing bits are the same, so they are left at 0.

To go back to the enum we were just using, we have a multiclass fighter and wizard, but how do we take
the fighter out from the enum? This is what the xor operator is for. MultiClass is a combination of the bits

630 Learning C# Programming with Unity 3D

from the fighter and the bits from the wizard. The fighter was 10000000 and the wizard was 00100000,
so multiClass is 10100000. To remove the wizard, we want to end up with 10000000 again.

Using the ̂ on multiClass, we get remove the 10000000 from 10100000 and the result is 00100000.
To add bits we use the or operator |, to check for bits we use the and operator &, and to remove bits

we use the exclusive or operator .̂ In the above case, we’ll be looking at the multiClass and we get
fighter sent to the Console. This works with any number of classes.

The | operator can compound as many values as there are bits to work with. In the above code, the
 multiClass is now a fighter, a wizard, and thief. To check which of these classes multiClass is, we
use the same statement as we did earlier. To check if multiClass contains the bits required to be a thief,
we use the same statement:

Therefore, isThief in this case is true. However, now we’re starting to repeat ourselves, and as any
programmer should do, we should make our lives easier by writing a function to do all this stuff for us.
So where do we start? Logically, we’ll want to begin with the same processes. We started with adding
bits to a value, so we should begin there.

8.9.7 Setting Bitwise Flags

After assigning a characterClass, it’s time to add one. The enum isn’t something we can extend,
so we’ll want to use something like addClass(my current class, class im adding) that
would look like the following:

631Extended

Now newbie is a wizard. To continue, we can use the following.

By using newbie in the addClass() function, we’re adding a second value to the newbie enum. To
remove a class, we’ll want to do something similar.

This means that if we use removeClass(newbie, characterClass.archer);, we’ll take the
archer flags back out.

Of course, we could use a bool to check if a class contains a value with the following function:

This simply checks if the flag is present, and if it is then our return is true; otherwise it’s false. This can
be used to check if a character, given its characterClass, can be allowed to fire a bow or pick a lock.
This changes the nature of the enum that is usually intended to be fixed at a single value. Of course, it
would be easy to store these as boolean values, but where’s the fun in that?

8.9.8 Bitwise Shortcuts | = and ^ =

When assigning these enums, we can shorten some of the assignments by using the same operators. If
we want to assign a = a | b;, we can use a |= b;. Similar looking syntax appears when adding
a value to a where a = a + b; and a += b; from Section 5.6. The same goes for a = a ^ b;,
which can be replaced with a ^= b;.

632 Learning C# Programming with Unity 3D

8.9.9 Bits in Numbers

Remember that we’re still dealing with numbers, not just bits. Being numbers, we can use this to check
for odd or even numbers with a simple & operator. Odd numbers always have a 1 in them, but even num-
bers do not. What does that mean? We can use bool even = (number & 1) == 0; to check if
a value is odd or even.

This system has the same result as checking number % 2 == 0.

This returns true, quick and easy. In addition, performing checks like this happens very quickly on
most CPUs. We’ll want to keep this in mind for some later math tricks in C#.

8.9.10 Bit Shifting >> and <<

Our enum was written in the form farmer = 0×00, fighter = 0×01, through archer = 0×08,
and so on. However, if you had many different classes, we might easily miscalculate one of the numbers.
It’s not too easy to remember what 37^2 is; your higher numbers turn into—rather difficult to remember—
power of two values. Therefore, again bitwise operators can help here as well. We can add the >> and the
<< between numbers to indicate a movement of bits.

The above code is simply numbered 0–8, and if we need a ninth class, we simply add monk = 1<<9
at the end. What does the << do? It’s taking the value of 1 and moving it over to the right the number of
digits indicated by the number following the operator. Therefore, in the bits we start off as 1000, which
is 1. Then if we look at fighter, we shift the bits 0 places, and we still get 1.

The opposite works in a similar way: 0011 or 3 turns into something else altogether when shifted one
space. Looking at 3 or 0011 << 1 = 0110, which is 6. Then, 6 << 1 = 12 or 1100, so there is
a pattern! This is the same as multiplying by 2—altogether another useful math operation that can be
done by shifting bits!

Of course, we’re just looking at the little end of the value range of a 32-bit int; it’s just as simple as
writing out 0011 0000 0000 0000 0000 0000 0000 0000 to show 12. Shifting the values <<
can happen many times before we run out of digits.

633Extended

When using the bit shifted enum we can see how the bits are shifting around in the bits themselves.
Things are easy to understand, though conceptually the direction of the << and >> might seem a bit off.
It’s important that << is pushing into higher values and ignores the little or big endian direction. The bit
we’re pushing seems to be traveling to the right even though the arrows << point to the left to shift the
bits. The enum for Alignments has not been set to a specific type. It’s an enum. What happens when we
push the bit past the range of a byte?

The last unknown value in the enum has rolled the byte over and shows a 0 when printing out the bits as
a byte. The same enum for alignments given to ShowBits produces an int with a value of 256, with one
bit beyond the byte range.

634 Learning C# Programming with Unity 3D

An int is 32 bits long and we can still count the values in each position by using a bit mask. Shifting over
each value to check what bit is turned on in the number.

8.9.11 What We’ve Learned

Computers do math in a unique way, different from what we are accustomed to. Thinking in 1s and 0s
requires a fundamental restart in learning how to do math. Multiplication, addition, subtraction, and even
counting require a whole unique system.

Some of these systems have effects outside of math. Using the binary system as a collection of flags
or using them as enums allows for a greater ability to control a breadth of information in a single value.
A 64-bit integer allows for 64 unique boolean values to be stored.

So why study how bits work? In classic video games top scores are usually stored as some number form
where 65,575 was the maximal limit. Score one more point and the score was reset to 0 or “The score was
rolled.” Knowing the limitations of numbers will help avoid bugs or, at the very least, you’ll know what
to expect when using some number types.

Even today many pieces of hardware that communicate over Bluetooth use number types with very
limited ranges. Game controllers can often send analog joystick values using a single int with bits masked
for each axis.

635Extended

A wireless controller may send a single 16-bit value as an orientation. The first 5 bits are used as pitch,
the following 6 as yaw, then the last 5 as roll. Color can also be compressed into a single 16-bit number
using similar encoding for red blue and green.

Knowing how to mask values, shift bits, and decode a usable number can greatly extend your game
development beyond the built-in controllers and types in Unity. Devices like Arduinos can send custom
inputs to your game if you know what the bits are doing.

8.10 Attributes

When working with the editor, we can add new menu items, windows, and other useful tools for
helping with the level design. Many of the new menu items are done through Unity 3D-specific
attributes. Attributes is another layer added to the C# language that augment how the code is read
by the computer.

Attributes in some ways look out of place; like preprocessor directives, they have their own set of
rules and uses. They use the square brackets [] to indicate their use and function. Attributes allow your
code to read additional information about your code. Reflection occurs when your code can look up
additional information on a function or type. This includes any field in a class as well as any function
or the class itself.

Often in Unity 3D we use [Serializable] to indicate a field or value which you want to have saved
by the game. For instance, you’ve created custom data structures and other public settings that show up
in the editor; normally any form of plain old data (POD) will be automatically serialized. However, in
times where you’ve written your own data, you need to tell Unity 3D that your new data types must also
be serialized to be saved.

In many cases, you might be getting used to using a struct or class to store a complex assortment of
different types of data. This is fine; however, it’s better to consider using a class to hold data rather than
a struct.

This serves two purposes: first, you’re better able to handle data coming in and going out of each vari-
able, and second, you’re able to use the class in Unity 3D as a clever container for your variables which
you can edit in the Inspector panel.

8.10.1 A Basic Example

We’ll need to add the using System; directive to start. This will give us the [Serializable] attribute for use
in the editor. Our code will start off like the following:

This gives us a simple public class DataParameters to which we’ll add a some data fields. The public
int Players will serve as our basic example of serialization. After this is public DataParameters
ParameterData; where we can hold data we just set up in DataParameters class. Without the
[Serializable] attribute, the editor’s Inspector panel doesn’t show any new information.

636 Learning C# Programming with Unity 3D

To get the ParameterData to show up, we simply add a single attribute to the class, not the variable.

After the Serializable attribute was added to the DataParameters class, the public members of the
class become visible under the ParameterData object in the Unity 3D Inspector panel. The result in
the editor is our DataParameter information in the editor.

Adding the Serializable attribute makes the data stored inside of the class savable. Once we make
changes to the values in the serialized class, the editor can save them with the scene. The attribute tells
Unity 3D to look at the class as a chunk of information which it needs to both expose to the Inspector
panel and save with the scene.

The other attributes that System gives us are also useful for different reasons.
Should we add an int to the class outside of the nested class, we’d get what you’d normally expect to

see in the Inspector panel.

This shows up as an int value in the editor as we have seen earlier.

However, we can add an attribute to keep this out of the editor, but also maintain the variable’s public
accessor selling.

Adding the attribute magically hides the value from the Inspector panel. This has two effects: first, any
values assigned to the PlainOldInt variable will not be saved with the scene, and second, the value can-
not be set from the editor. The variable still acts as any normal public int, only that we’re not able to
manipulate it from within the editor.

Adding serialized attributes for the Inspector is handy, however for a game to have some additional
features it’s useful to enable the serialization of that data for saving to file.

637Extended

By adding the [Serializable] attribute to the CharacterData class you allow GameData to
save the Characters array. Let’s see how this works.

638 Learning C# Programming with Unity 3D

In the fragment we create a new set of data to save. In here we create a number of characters.
The ParameterData settings in the Inspector panel in the editor will make modifications to the data
being saved.

The data here turns into settings to be saved in the data.

Characters are saved and written to a Data.json file in the Chapter 8 Unity Project directory. When the
file is first opened it’ll be a long unbroken stream of text. In Visual Studio you can reformat the Json file
into what is seen above. If the [Serializable] tag is left out, then the array of characters gets omitted from
being written to the data file being saved.

639Extended

To read the data that was written to the Data.json file we simply use the JsonUtility.FromJson()
once the text from the data is read back. The combination of [Serializable] and writing data to Json
is a useful combination. With this it’s possible to save game data between sessions.

8.10.2 Custom Attributes

A custom attribute allows us to prepare information we’d like to apply to an object. The setup appears
quite simple, but allows us to create a tag of our own creation.

Once created and assigned over an object we can look for the specific attribute with Reflection.

The GetCustomAttributes() function returns any tag given to the class type. We can create cat-
egories of objects we’d like to process for any number of classes. This gives us a system to highlight
some objects as special. What makes the attribute usable on the class or any other specific type is that the
attribute tag is applied to the custom attribute. In this case, the AttributeTargets.All is provided.

8.10.3 Custom Attributes for Default Values

Setting default values for fields in Unity is usually something set up in a Prefab or setting values in the
Inspector. The values become difficult to retrieve in runtime.

640 Learning C# Programming with Unity 3D

Another example for Attributes is to hold a value for a class value. Attributes can only hold onto values
that inherit directly from object. This means that most of Unity’s specific data types like Vector3 and
GameObject cannot be stored in an attribute. Attribute constructors are limited to storing simple type
literals or POD types.

The field tagged by the attribute shows the constructor creating the attribute. The syntax reveals the
values the attribute will store when it’s created.

641Extended

The GetFields() function is provided by System.Reflection. The character type reveals a list
of the available fields in the class. A simple search through each field allows us to check and set values
if the tag exists.

As a human reading a function like int Addlnts(int a, int b);, you’re able to understand
that it’s a function with two arguments and an int return type. Reflection gives us the ability to read
the function’s arguments, return type, and its name. However, this might not be enough information to
work with.

Reflection allows your code to make decisions based on attributes assigned to struct or class members.
Once your code can read these attributes, you’re able to apply logic and make decisions on which func-
tion to use. If we were able to assign additional information to a function or field, we would be able to
better scheme up new ways to make our code smarter.

Attributes need to be prepared before they are used. A custom attribute is a class that inherits from
the System.Attributes class. The class itself is also labeled as a special class that is used to define custom
attributes.

8.10.4 Multiple Attributes

Each custom attribute should be specific. The special instructions or hint which you mark a field or func-
tion with should be for a specific use. If you need to add multiple attributes to a class member, then you
can stack them.

[AttributeUsage(AttributeTargets. All, AllowMultiple = true, Inherited = true)]
The addition of AllowMultiple = true tells the attribute that you can stack different attributes

over a class member. In addition, we can add the Inherited = true option to this attribute as well.
This code tells anything inspecting this attribute that any child class inheriting the member will also
have the accompanying attribute.

In use, the above BaseThing class has both Special and SuperficialAttributes tagged. The superficial
attribute has Inherited = false. This means that SuperThing, which inherits from BaseThing, will
not have the superficial attribute.

642 Learning C# Programming with Unity 3D

Logging the custom attributes on the BaseThing reveals both the Special and SuperficialAttributes.
The SuperThing only has the special attribute.

The attributes are also applied to the BaseThing as [Special, Superficial] where the
Attribute part of the name has been omitted. A simple feature of the Attribute class has allowed
trimming the end of the name of the attribute. You’re still allowed to use SpecialAttribute, but C#
has allowed the obvious part of the name to be used alone.

To make things simple, we can check the types of attributes and cast them as they are found. Once they
have been cast, we can extract the expected information and make use of it. In this example, we’re just
looking at simple casts to find the attributes. Once the attribute is found, we have both the information
from the attribute and the member of the class the attribute is associated with.

8.10.5 Putting Attributes to Work

To make an attribute useful, we can make special classes that don’t rely on an active Update() function.
The MonoBehavior base class makes them considerably more controllable. To make these classes
controllable we use a MonoBehaviour class to inspect and start co-routines for more simple classes.

643Extended

This attribute is named UpdateAttribute and it’s got a Delay float value. In a simple class we
can use this to tag functions for updating with a frequency.

A simple class named HasUpdates contains two tagged functions and one that’s not tagged. The first
has a frequency of 0.5f or an update every half a second. The second function has Update(3f),
which means to update every three seconds. To serve as a starting point we simply print out either Got
Updated or Also Got Updated when the functions are actually called.

To start we’ll make an instance of the class. The instance could occur anywhere as long as we can
find the variable referencing the object. After that, we need a list of methods based on the object type.
This contains the method names and if the method has the UpdateAttribute then we’ll add it to the
updateMethods from the Linq statement.

644 Learning C# Programming with Unity 3D

Once the LINQ statement has filtered out and selected the tagged methods, a new co-routine is
made for each one. The updater() inner function appears inside of the foreach loop. This means
that for each instance of an updateMethod in the class we create a new IEnumerator function.
A List<IEnumerator> stores each function after it’s been populated with the method info data.

To find the Delay value we use the method.GetCustomAttribute() function to get to the
Delay value in the attribute the function was tagged with. Then we add that value to the yield
return WaitForSeconds function in the while loop in the updater() function. Once that’s setup,
the Updater() is added to routineList.

Once we finish the updateMethods foreach loop we iterate through any items that were added to the
routineList and start the co-routine. The result makes Got Updated and Also Got Updated appear in
the Unity console window. Twice a second we get “Got Updated” and every three seconds we get “Also
Got Update” as expected.

By storing the routineList we can also go through the list and stop the co-routines. This makes the
system a bit more robust. By keeping the co-routine around we can start them up again if they’re needed.
This could be handy when switching scenes or pausing the game, etc.

8.10.6 Attribute Flags

Attributes can be applied to classes, functions, and variables. We should also consider keeping track of
what an attribute should be applied to, limiting where an attribute can be used to prevent an attribute
being applied to an object for which you don’t want to have a specific attribute assigned.

645Extended

When declaring the new attribute class, we’ve got several options we can apply.

Additional AttributeTargets can be added using the bitwise operator | to add multiple flags. Such
flags were covered in Section 8.9.

This changes the option to include both functions and variables. As we’ve just seen the bitwise operator
| in Section 8.9.3, we know that the AttributeTargets enum is set up for bitwise checks.

8.10.7 What We’ve Learned

With a custom attribute, we can simplify with many tasks. An Update attribute with a time
delay [UpdateAttribute (3.0f)] helps functions update at their own pace. Not all functions
need to be updated at the beginning of each frame.

Each monster could have a different parts of their behavior update at different time values. Smarter, faster
monsters can update more often than slower, dumber monsters that have long delays between updates.

If you revive a character, various stats may need to be reset to their default values. If each different charac-
ter had a different set of stats, the bookkeeping might get more difficult. A [DefaultAttribute(int
restoredAmount)] attribute would make the bookkeeping automatic. Just get all the fields that need
to be restored and restore them to the indicated restored amount.

Custom attributes provides an easy readable system to attach important information to a function or
variable.

646 Learning C# Programming with Unity 3D

8.11 Bitwise Math

The strange thing about bits is that they are numbers that operate with a system different from what
we’ve been taught in your usual math class. If you wanted to make 10 into -10, you might normally
think to simply multiply 10 by -1. However, the usual tricks don’t work in the context of the computer’s
binary world.

Remember what happens when we add 1 to a number at the limit of the binary range. For a nibble
of a 4-bit number, that would be 1111 or 15. However, the nibble we’re looking at is unsigned, or
rather the four digits are all used for counting. If we use a signed nibble, or perhaps a snibble, our
limit would be either -8 or 7, which is either 1000 or 0111. Maybe we’re talking about a unibble,
or unsigned nibble that can count to 15. In any case nibbles, snibbles, and unibbles don’t exist in C#
so let’s move on.

The interesting fact going on binary numbers is that it’s a range from 0 to a limit. Often we observe the
values as hexadecimal. You come across this term often when making colors for a web page.

When we’re in base 10, we start at 0 up to 9. To count to 10, we add another digit to fill in the 10s’
place. When we count past 99, we add another digit for hundreds, and so on. When computers count,
they use 16, or a nibble; we’ve come back to that again. To represent each hexadecimal, we use a few
letters to fill in the extra digits.

To count like a computer, we use the sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, before get-
ting to another digit. For the computer to count from 0 to 255, it uses eight binary digits, but if we
use two nibbles we can represent that with two digits. This is two nibbles, not one nibble, or a byte.
A byte is a specific number of bits in a computer’s memory. This can tell the computer to store a 1 in
decimal it actually thinks “0×01” in hexadecimal. Where the computer uses ff in hex we see 255
in decimal.

The above code prints "ff: 255" to the Console panel in Unity. Here the prefix 0x informs C# that we
are representing a byte followed by two digits in hexadecimal. The syntax is used to avoid something
like "byte b = 11111111;". If we want to use a signed byte or an sbyte, we can represent negative
numbers with the following:

This shows us -0×80 in hex is -128 in decimal. If we try to assign a value outside of the range of the
sbyte, we get an error reminding us that we can’t assign 255 to an sbyte. However, after a valid
assignment, anything can happen.

If we decrement sff by 1 from -0×80, we get 127 printed to the Unity’s Console panel, not -129. Again,
we roll numbers even though we’re using a different notation. The difference in notation hasn’t changed
the nature of how the data is stored or calculated. Not surprisingly, the int type has a larger range.

647Extended

The int is 8 nibbles long. Or rather 8 hexadecimal digits long. The max value of which is 0×7fffffff.
The max value is also stored in the int.MaxValue accessor. Smaller values, like 0xff will fit into an
int, so assignments using fewer hex digits are perfectly valid.

8.11.1 Two’s Complement Unary Operator ~

The unary operator ~ referred to as a tilde works on int values, and if you use byte b = 0 × 01;, then
~b; C# will automatically up-cast the byte to an int before performing the operation. In general, the int
type is the more universal of the different integer numbers used in C#. It’s just 8 nibbles long, or 4 bytes.

Aside from the casting implications of using the ~ operator, this operator does an interesting trick. If
we have 0001, the ~ operator applied to this nibble gives us 1110. This two’s complement is used for
many different things, including addition.

To change an int from 10 to -10 using binary operations, we use a method known as two’s comple-
ment. If we wanted to use multiplication, we could go that route; however, by using a bitwise operation,
we can speed up the process. Starting with a value, say an int –1 that would look like binary 32 1s.

With a slightly more interesting number like 10 which in hex is 0×0a have 0101 followed by a bunch
of 0s.

We can use the complement bitwise operator ~ to flip the bits. Therefore, if we look at the important
value after ~ we see the following:

Therefore, to get the correct value, add 1 to ~n and assign that to p.

648 Learning C# Programming with Unity 3D

In a very simple form rather than int a = 100; a = a*-1; we can instead use the following:

And we get the same as if we had used int p = –n; on the value. So why do things this way? In short,
bitwise operations are fast. Because bitwise operations are fast, we often see them in optimized code
seen in some C++ projects. The syntax looks unusual, and it is. By seeing this here, you’ll have a better
chance of reading code written by programmers in other fields.

8.11.2 Bitwise Addition and Subtraction

The computer’s CPU has no + and – circuits built into it. It’s a collection of these bitwise operators.
Because of this reason, it’s an interesting exercise to understand what is actually going on when you do
something simple like 7 + 3.

Looking at the nibble again, we have the decimal 7 represented as 1110 and 3 being 1100; adding
these together makes the bits look like 1010 or 10. There isn’t a direct process by which 0111 and 0011
can be added together in one operation. To add we need to move bits from one number into the other.

Where while (c != 0), we are done taking all of the bits from the carry c and adding them to the
result r. A breakdown of the code, one line at a time, shows what’s happening to the bits and their deci-
mal values. There are only three significant lines we need to observe. The first line int s = c << 1;
is temporary storage for clarity.

The loop begins by finding all the digits that match. This loop will tell us which digits need to be car-
ried over. The carried-over digits are the ones where 1s appear in both numbers. So, a & b shows us
where 1s appear in both numbers, and we get 0111 & 0011 = 0011. After this we need to find where
the digits are mismatched with 0111 ^ 0011 = 0100.

649Extended

In the first line where we begin adding the numbers, we start with a shifted digit.

We move the digits over by one space and find the next digit to carry over.

After shifting the digit and finding the one that needs to be carried over, we need to reassign r to the next
digit to carry.

We’ve reduced the number of carry digits by 1. However, we still have one digit to merge in, so we go
back to the beginning of the loop.

We have a digit carried over from the previous loop that needs to be merged back into the result. But we
need to check whether there are any digits overlapping to check if we need to do the loop again.

Here we see that 0010 & 1000 has no overlapping digits. Therefore, we can merge to our final result.

Now our result is a correct merging of 0100 and 0001, which is 0101 or decimal 10. Inside the com-
puter’s CPU, there is a section of circuits called an adder that does the same thing. When you have a com-
puter running several billion operations per second, this operation happens incredibly fast. However, if
you need to do this operation a hundred million times, then you’ll see a performance difference between
this operation and perhaps a more complex operation.

650 Learning C# Programming with Unity 3D

To turn the above code into a function, we’ll use the following:

Subtraction is an addition with a negative number. To get the negative number, we use the previous two’s
complement. So, in the case of the following

subtraction involves flipping the b into a negative number using two’s complement and then adding them
together. To use this feature, we can simply reuse the BitwiseAdd() function a couple of times. The first
one is basically two’s complement without using a + 1 to get the negative version of b, and then we use
BitwiseAdd() again to get a result.

8.11.3 Bitwise Multiplication

The bitshift operators can be used to multiply by 2: 4 << 1 = 8 or 0100 << 1 = 1000; this is
rather handy when finding a specific half or double of a value. However, when multiplying, we need to do
something like that of addition. We need to find out how many times we can multiply by 2, and then to
an odd number we add the last number. So, in the case of 7 * 3, we use (7 * 2) + 7; the code that
can do this operation is shown below.

651Extended

The above code shifts a << 1 for each multiple of 2 we find in b. Each time b is shifted >> 1, it’s
moved toward 0. When we check if b is odd using (b & 1) != 0, we add to int r whatever is at int a
before it’s shifted again. When we’re done shifting and thus done multiplying by 2, our while loop exits,
and we’re done.

Division can be simplified to the number of times b can be subtracted from a.

The above code is a very simple version of an integer division solution using our BitwiseAdd() and
BitwiseSub() functions. Multiplication can also be a simple addition of a to a by b times. Though
not as efficient as the system used in the multiplication function, the division system is a very rudi-
mentary example of how the most basic bitwise operators can be used to do mundane math functions.
The problem with an integer is that you’re not allowed any fractions, so division will end up with an
incorrect value unless a is evenly divided by b.

8.11.4 Bitwise Tricks

Now that we know how bits work on a more fundamental level, we can use them to our advantage to
perform quick operations. Rather than checking if an int is odd or even by using n % 2 == 0, we can

652 Learning C# Programming with Unity 3D

use the faster n & 1 == 1 to check for an odd number. We can tell if a number is negative using a bit;
if (someNumber & (1<<31)) != 0, then we have a positive number. This checks for the last digit,
which is at 1<<31 and looks to see if it’s a 1 or a 0. If it’s 1, then it’s negative; otherwise it’s positive.

Not all these tricks are necessarily faster than using more regular math functions. We can check the
l<<31 bit. But perhaps it’s just easier to check if someNumber > 0 to see if it’s positive or not.
However, knowing how bits work is interesting.

If you need to know whether two values are both negative, both positive, or different, then you can
check with the following:

If a and b are positive, the same is true; otherwise if a and b are different signs, then the same is false.
This condition works only when the bit at 1 holds a sign for positive or negative. Simple tricks like this
can be used in various situations.

The following function will help with the above examples by printing out each digit.

The above code uses int d, which is a check for a 1 or a 0 at the place in the given number. Each itera-
tion of the while loop increments the place and decrements which digit we’re looking at. If d is 0, then
we add a 0 to the char[] array; otherwise we add a 1. With the above code, we can check out the first
4 bits or all 32 bits of an int.

8.11.5 What We’ve Learned

These tutorials got into quite low-level concepts. Finding practical game play applications for these
concepts may not be readily evident. However, the concepts do provide an important foundation for your
understanding of C#.

653Extended

The ability to create complex algorithms means being able to create more complex and more interest-
ing game play scenarios. Adding in various logical parameters and making use of them in creative ways
means providing more interesting puzzles.

Outside of games, many of these concepts are also useful for processing data. A modern game requires
many different tasks, from collecting and analyzing data from users to sorting through databases for
building leader boards.

8.12 Architectures and Organization

So far in this book we’ve focused on writing individual classes or inheriting one class to another. This is
fine to learn the mechanics of the language, but it doesn’t help toward building a larger project. Take a
moment, step back, and think about how all your classes fit together to build an entire project. This takes
another frame of mind altogether.

When you’re building a structure for your game, it’s important to keep C# files separated by task.
Tasks can be added or merged as needed far easier when separated into different files. The more separa-
tion you keep, the less often files will have to be merged when working in a team of engineers.

If each class is limited in scope to just a few related tasks, you also decrease the number of places you
need to look to fix bugs. This also helps when using the debugger; if the file isn’t long and the scope is
limited, you can find a problem and fix it in a smaller file.

When you’re working by yourself, it’s easy to claim ownership over your code base. You know where
everything is, and you have a better idea of what it’s doing. However, when it comes to working in a team,
each person needs to focus on smaller, more specialized part of the code base. When you’re able to focus
on a specific task, you’re better able to limit your scope and build a more thoughtfully crafted class.

Once each task lives in its own file, it’s unlikely that too many people will have to touch the file while
you’re working on it. This reduces the number of merging you’ll need to do when using version control
systems like Git. If a single C# script file spans many different operations, then more and more people
will need to make changes to the file. When you check in the file, having to merge your changes with
many other changes can create problems if the merge isn’t done correctly.

Approaching a project with the intent to build a complex game involves a great amount of thought;
luckily, if you’ve written functions that have little or no side effects, then you’re better able to rearrange
and separate the classes and functions into different files much more easily.

The following work is seen in the GameCo directory in the Assets of the Chapter 8 unity Project.

8.12.1 Planning Structure: Namespaces and Directories

Even the smallest project can grow into a huge undertaking. There’s almost no such thing as overly
organized when it comes to programming. When programming is well organized, it also becomes much
easier to both read and write. Your specific tasks become precise and sometimes easier.

In the root of Assets should be a directory for either your game company or the game title. This serves
as a container for the most generic functions and classes for your project. We’ll come back to what sort
of classes should live in this namespace.

654 Learning C# Programming with Unity 3D

If you intend to make only one game ever, then a game-specific namespace may not be necessary, but I’m
sure that you’ve got bigger visions than that. After a broad namespace, a slightly more specific namespace
for your game should be considered. So we might be looking at AwesomeGameCo.ZombieGame that
would contain classes that are particularly useful for a zombie game.

Directories and namespaces should match. The scripts running in the game should live in your game
scripts ZombieGame. The GameCo.ZombieGame namespace should implement game behaviors.
This could be further divided into GameCo.ZombieGame.Player or GameCo.ZombieGame.
Monster to further isolate and encapsulate specific functions.

The purpose of a namespace and the following directory structure is to divide the different tasks in
your game. A namespace for the player, the environment, effects, monsters, and weapons will ensure
focus and specialization.

Tools that help debugging tasks can be fit into a GameCo.Utilities. Repeated functions and methods
can be moved into lower level base class functions so implementations further up the inheritance hierar-
chy can implement them.

In the ZombieGame directory lives the BasePlayer for implementation in the ZombieGame.
ZombiePlayer object. The specialization also divides how many files need to be checked into Git. By
separating classes, the engineer can also find a bug and fix it in relative isolation from other bugs.

8.12.2 Divide and Conquer

The use of partial comes into play when needing to extend a specific class with different Interface
classes. Consider something like a pick-up item. Various Interface classes like the IComparer and
IEnumerable allow for LINQ to compare items in the scene or in the player inventory.

The using partial in a class allows you to break up a single file across multiple appropriately named files.
This ensures that a bug in an Interface is contained to a specific file. Naming files also serves as a system
to divide work.

655Extended

You may have noticed that MonoBehaviour uses a particular spelling which isn’t common in
American English. If this bothers you, it can easily be fixed with a starting namespace for your own
game company. Here we can create a simple renaming of MonoBehaviour to Behavior.

8.12.3 Refactoring

When you’ve decided that a class or type name needs to change, the work to change it has multiplied once
the name has spread across many different files. Searching for every place that a specific name appears
isn’t always so easy.

A Find and Replace may find something like Damage in DamageType and DamageInfo. This means
inspecting each instance and deciding whether it should be changed. So long as the name only appears
in a few places, this might not be too bad. If the word were more common, then you might be looking at
many dozen instances that can easily lead to creating bugs.

656 Learning C# Programming with Unity 3D

The Rename tool in Visual Studio as well as many other IDEs was created to help this process.
The rename tool is aware of the name’s use and where it appears. In addition, conflicts will also be
pointed out as you change the name.

The Rename tool helps redefine identifiers throughout the project. It’s important to avoid conflicting with
names already in use. If the conflicts are ignored, Visual Studio will not remember how the classes were
separated. The tool is also aware of namespace and will not change identifiers in another namespace that
has the same identifier.

8.12.4 What We’ve Learned

Creating and using a structure for your game takes a lot of experience and practice. Coming to a final
decision on structure before you’ve started writing the code for your game is unlikely. By creating
namespaces and writing small classes in each one, you’re also giving yourself a much easier way to
reorganize the files into new namespaces and new directories.

Even after things get established, it’s not so difficult to make widespread changes. One of the best
ways for making these changes is by keeping categories and types clearly separated. Ensuring that the
crossover between classes is limited to only specific functions is difficult, but no less important.

The less each class needs to depend on another class to operate, the less chance you have of one object
causing a cascade of errors. If each function can act on its own, then you have a better chance of prevent-
ing bugs. If a class can be fragmented into many different parts, then assigning work to different team
members is easier.

By splitting off functions to different people, you’ve also made decisions that make the design more
clear. If the design is still undecided to make clear tasks for a given project, then it might be a good idea
to spend more time thinking about what you’re building before writing any code.

8.13 Design Patterns

We can’t get the feeling that we’ve learned how to speak the same language as a programmer unless
we’ve studied something called a design pattern. Computer programmers have been solving the same
problems time and again, so it should come as no surprise that some common solutions for similar prob-
lems have been discovered and shared.

The solutions to these re-occurring problems became known as design patterns. With the long his-
tory of programming, many complex problems are solved with known patterns. The more common the

657Extended

problem, the more likely there’s already a known pattern. These solutions are described by how the
problem has been solved.

Design patterns are reusable solutions. The patterns become established when they are reusable,
and they are proven to work. They are also general enough to be modified to suit the situation you
need it for.

Often the patterns have been tested enough and optimized to the smallest fastest code required for a
solution to the problem. When properly understood and applied, the pattern will often prevent edge cases
from escaping the solution. If a pattern stands the test of time, it becomes established and relied upon.

Learning patterns means you get to build up your vocabulary and overall ability as a programmer.
There are a great number of established design patterns. The list of design patterns is extensive and the
topic concerns many matters beyond the scope of this book. However, we can still talk to some of the
main points behind why the design patterns matter.

There are three categories of design patterns in computing: creational, structural, and behavioral.
When writing software for the first time, you’re going to be coming across tasks thinking that they’re all
new. In fact, they’re the same problems which everyone has had to solve many times before you.

8.13.1 Creational Design Patterns

Creational design patterns are named so because they relate to how an object is created and later used.
These systems are often used in games to instance new creatures and items. When you start a game, it’s
a good idea that you’re starting one game and referencing the one game that was started. Other patterns
are useful for creating a variety of similar objects.

Creational design patterns represent the idea of creating and setting up any object from a class using
a consistent system. To list a few common creational design patterns, we can start with the Factory,
Prototype, Singleton, and Builder.

8.13.1.1 Singleton Pattern

A singleton pattern is a creational pattern which limits the number of instanced objects to one instance. If
a problem comes up like “I’d like to make ensure there’s only one instance of an object,” then you might
look on the internet to how someone has solved this particular problem. After a few searches, you’ll
come across a “Singleton pattern” which ensures that only once instance of an object is ever created.

The first time the object is asked for like CommandCenter MyCommander = CommandCenter.
Commander;, you can use an accessor to create and return the commander. If the commander has
already been created, then you can pass him along, and not create a new one.

The Singleton pattern is useful to ensure that a game only has a single game state controller. If you
want to keep track of the player’s navigation through your menus and into your game, it’s better to have a
single class instructing the rest of your game to start, stop, and post results through one class.

The reason why we don’t simply use a lot of static fields and functions is more an effect to memory. If
everything was static, then they’re never be cleared out of memory. If you’re managing a lot of data, then
the static field storing them will never be freed, and your game’s memory will bloat and take up all the
room left for the rest of your game.

Like the “Singleton pattern,” many different patterns have a specific role and description. The “factory
pattern” uses a class whose only purpose is to instance and create objects. Much like a candy factory
produces various sweets. The “builder pattern” is similar to the “factory pattern,” but requires another
class called a director to control its activity. The “prototype pattern” is another variation on the factory
pattern, but copies from a pre-existing copy of a class to create a new object.

8.13.2 Structural Design Patterns

Structural design patterns help consolidate how data and functions are organized and arranged in a class.
In this category, we’ve got the Decorator, Facade, Flyweight, Adapter, and Proxy. Of these the Decorator
pattern comes up often in games.

658 Learning C# Programming with Unity 3D

The Decorator pattern is used when instancing objects into a scene. We use this pattern extensively in
Unity 3D. For each component you attach to a gameObject, you’re decorating it with new behaviors. See
that you’ve been using design patterns all this time and didn’t even know it.

When you create a template for creating a zombie or a vampire, you’re creating a system to decorate a
gameObject with the appropriate components. By keeping movement, armor, attack patterns, and other
behaviors separated into different components, you’re allowing yourself more freedom to create new
objects with different decorations.

Add a blood-sucking component to a Plymouth Fury and you’ve got a 1980s movie car. Add a talking
component to a toaster and you’ve got a British situation comedy in space. Various components allow for
unexpected and sometimes fun results.

8.13.3 Behavioral Design Patterns

Behavioral design patterns focus on communication between objects in a system. Some behavioral pat-
terns include Iterator, Mediator, Observer, and Visitor. In this section, we’ll take a close look at the
Iterator and Observer patterns.

The Observer pattern is a common system of behavioral design. Combine this with the Singleton, and
you’ve got a game state manager. Combine this with a character, and you’ve got a level boss. The Observer
pattern means that a single class orchestrates the behavior of many child classes.

The children are actually the observers; they watch a central class for changes in the game. Based
on the events in the game, a condition will change, and they’ll all change their behavior, or rather they
observe a state change and react accordingly.

When building your game, it’s often a good idea to make sure that data isn’t duplicated anywhere it’s
not necessary. If every child had a record of the player’s health, then you’re wasting space on redundant
data. The player’s health should only ever be located in the player object.

When new conditions are met, an event can be raised to tell the game state that the player’s health
is low. When this event is raised, anyone observing this change should be notified. Then the observing
objects can rush in to finish off the player.

8.13.4 What We’ve Learned

It’s unfortunate that we don’t have another few hundred pages for this book to go into more depth on the
different design patterns. Each one has not only benefits but also some interesting drawbacks. A Singleton
pattern is great for centralizing all of your object management. The main problem here is the fact that the
Singleton tends to get very big once it’s managing a lot of different things.

There’s no perfect answer for which pattern any situation should use. In the end, a blend of a few dif-
ferent patterns is usually how the final implementation ends up. Holding too close to any single pattern
will only accomplish slowing down overall development time and limit what your game can do.

The final product should be something fun for your player. Even if the code is a little bit awkward in
some places, your player isn’t reading your code. So long as the code runs fast, reliable, and is easy to
read, you’re on the right track.

8.14 Continuing on Your Own

Where to go from here? You’ll want to explore more of the different function calls that are found within
.NET and the Unity 3D application programming interfaces. Google and Bing are both great to help
search for answers. Also, now that you know a lot of different programmer jargons, you’re less likely to
be ignored when asking questions on forums.

One of the hardest lessons to learn is less about code and more about time management. The time
management I speak of is not the amount of work any given task is going to take. The amount of time
your work takes up of your life is more about what I’m speaking of.

659Extended

After talking to many vets in the games and software industry is the amount of time left after work and
dedicated to living away from your keyboard. When first getting into any new topic, it’s natural to want
to dedicate a large portion of your life to learning more and getting better. However, when this becomes
the majority of your life to the degradation of your health, it’s time to pull back.

Only after experience can one clearly see that overzealous dedication was a mistake. Of course, get-
ting to that point leads to the experience necessary to see where things went wrong, a horrible catch-22
if there ever was one. Because of this, I’ll just leave you with a final word of caution to not let your com-
puter take over your life.

Personally, I’ve realized that I don’t draw as often as I used to. I appreciate my weekends more, and I’m
learning a wider variety of things, trying not to focus so heavily on a single topic any more. This comes
after realizing that putting your life’s work into a single project can all too easily lead to disaster. Though
I haven’t really had any giant plans crushed by being over-focused, I have seen friends and co-workers
having family problems and personal issues grow due to lack of a life outside of work.

Anything can happen, and a project can get canceled before it sees the light of day. The end result can
be months or, worse yet, years invested into a lost cause. Nothing is worse than walking away from a
gigantic project with nothing to show for your work.

The games industry is volatile; it’s filled with politics and instability. The more you know, the easier
it is to remain relevant. The more skills you have, the wider your opportunities. Eventually, once you’ve
accumulated enough skill, it’s time to work on personal projects that mean more to you.

http://taylorandfrancis.com

661

9
Stuff We Couldn’t Cover

Writing in C# means being able to write software for many platforms. This includes embedded systems
like the Arduino. Although the C# for Arduino is limited to older versions of .NET and thus older fea-
tures of C#, a lot of the basic C# functionality is available. You can build software to drive little afford-
able processors for building robots or internet connected sensors.

You also can build stand alone software applications for the Windows Store, Linux, OSX. You can
build for both Android and iOS using Xamarin and Visual Studio. You can write stand-alone apps that
aren’t necessarily games. The boundaries for where C# has reached span far past the bounds of this book.

Really interesting bits like writing assembly with C# is also possible.

9.1 The Extern Keyword

We could inspect a simple dynamically linked library (DLL) project in Visual Studio. The included
project can also build an external library for osX and Linux as well. UnityEngine is a DLL. A DLL is a
pre-built binary file that contains any one of the constructs that were covered in this book.

Open the MyUnityLibrary.sln in Visual Studio. Until now, most of the projects in the BookContents
repository were created by Unity. This Visual Studio project was created in Visual Studio from a DLL
template.

The one C# file in the Solution Explorer has a static class and a static function. This is just a simple start-
ing point, but the project isn’t to serve as anything more than a simple example of how to import methods
from a DLL.

From looking at the content of the DLL you could imagine that you’re able to get a “Hello World.”
string from the MyString() function. To build the DLL, you’ll find the “Build” command in the Visual
Studio menu as Build -> Build Solution.

662 Learning C# Programming with Unity 3D

A DLL is created and stored in the project directory MyUnityLibrary\MyUnityLibrary\bin\Debug\,
where you’ll find MyUnityLibrary.dll. To use the library, copy the dll file into a Plugins directory in
Unity’s Assets directory.

Once Unity is aware that there’s a DLL in the Plugins directory, the project is updated with some addi-
tional files reflecting how the DLL is to be used. Cross platform compatibility is also allowed when writ-
ing a plugin with C#. A C# library built with .NET can conveniently run on any platform that runs Unity.

The classes in Unity need to know how to operate with an external library. The System.Runtime.
InteropServices enables the external library connection. The [DLLImport()] attribute searches
for a DLL with the MyUnityLibrary name. The MyString() function has an extern accessor
assigned telling C# to look outside of the class and into external sources for the MyString() function.
When the game is played, the “Hello World.” string is pulled from the DLL and printed to the Unity
console.

This is a very simplified example of an external Library. A DLL can also be written in C++, C, or any
other language, assuming that the target platform matches the target of your Unity game project. Special
optimizations can be built into a DLL that cannot be built in C# with Unity. This allows for heavy cal-
culations to be done with faster optimizations and packed into a DLL using C++ or assembly language.

If some code is special and you’re not willing or able to share the code with a project, this can also be
built into a DLL and only an interface to the code needs to be exposed in Unity.

663

10
Good Luck

If you’ve gotten this far, thank you. Even though you’ve read through miles of material, you’ve still got a
long way to go to be a full-fledged game engineer. However, don’t let this dull your motivation.

The most important advice I can give you is to remain focused on learning with your first few projects
rather than finishing that massively multiplayer online role-playing, first-person World War II zombie
shooter game. It’s important that you understand what you’re capable of, and to do this, you need to learn
your own limitations.

Your strengths aren’t just about what you’re able to do, but how long it takes to do them. Eventually,
you’ll be able to write a fairly complex multiplayer game. It might take a few years, but it’ll eventually
get done. If you think you’ll still be interested in working on one project for many thousands of hours,
then I commend your focus and dedication.

For many people, a weekend or an evening project should remain fairly simple and small. A puzzle
game, an endless runner, or a simple adventure game can still be done by one person. Once your game
requires several hundred assets, sounds, effects, and the like, you’re now looking at a product requiring
a large-scale effort.

Such efforts require teams of people simply because of the hours involved to finish the product. Even a
team of less than a dozen people means that there is several times more hours dedicated to a project than
you can dedicate alone. Even if you dedicate 2000 hours a month to a project, it would not be enough, as
many large-scale projects require tens of millions of hours to complete.

Finishing a project, even a small one, means you have something to show for your effort. You may well
start down the path of a super cool game that no one has ever seen before, but is it something you can stay
focused on for a few million hours? It’s likely that even after a few hundred hours into the project, you’ll
realize that you need to start over anyway.

Learning how to write code is an ongoing process. Halfway through a large project, you’ll learn that
the beginning of your project had many mistakes because of bad programming habits. Usually, fixing all
of the problems means throwing everything out and starting over. Don’t let this discourage you. You’ve
learned something, and you’ve become a better programmer!

http://taylorandfrancis.com

665

Index

A

accessibility, 123
accessing structs, 336–337
access modifiers, 125–127
accessors/properties

encapsulation, 453
MyNumberProperty class, 453
read-only, 457–458
set event, 455–457
simplification, 458–459
value, 454–455

Action func/expression, 575–577
AddComponent() function, 307–309
algorithms, 70–73
ambiguous namespaces, 133–134
anonymous expressions, 574–577
application programming interface (API), 6, 10, 58, 196
architectures and organization, 653

divide and conquer, 654–655
namespaces and directories, 653–654
refactoring, 655–656

arguments (args), 287–288
Input.GetKey() function, 290
Movement() function, 291
multiple, 288–290

ArrayList
ArrayList.Contains(), 265–266
drawback, 262
fixed-sized arrays, 262
GameObjects, 263–265
performance issue, 268
Remove(), 266–267
sort and reverse, 267–268

arrays
AddComponent() function, 307–309
breakpoint, class inheritance, 395–399
discovery, 393–394
dynamic initialization, 246–247
fixed-sized, 241–245
foreach loop, 246, 390–393
GameObject, 302–304
length and count, 389–390
Mathf, 306–307
multidimensional, 252–262
Time.fixedTime, 306–307
type casting, 309–311
while loop, 247–248
zeroth, 304–306
zombies and humans, 394–395

artificial intelligence (AI), 6, 251
Assets directory, 31–32
assignment operators, 292–294

attributes, 635–639
custom, 639–641
flags, 644–645
multiple, 641–642
to work, 642–644

B

BaseClass, 461–463
generalization, 459–460
partial, 463–466
protected, private and public, 466–467
specialization, 461
virtual and override, 459

behavioral design patterns, 658
big endian, 624
bitwise math, 646

addition/subtraction, 648–650
multiplication, 650–651
tricks, 651–652
unary operator ~ , 647–648

bitwise operators, 624
and &, 628–629
big/little endian, 624–625
bit shifting >> and <<, 632–634
bits in numbers, 632
enums and numbers, 627–628
exclusive or ^ (xor), 629–630
flags, 630–631
or |, 627
shortcuts |= and ^ =, 631
signed/unsigned, 625–627

blank scope, 151–152
Bombe, 3
BookContents, 22
Boolean logic, 3
booleans, 162–163
BreakAndContinue() function, 248–249

foreach loop, 251–252
ZombieData, 249–250

BumpyCase, 94
byte code, 3

C

cast operator, 102
central processing unit (CPU), 10
ChaseCamera, 294–295
ChildAbility() function, 209
class construction, 121–123

access modifiers/dot operator, 125–127
adding data fields, 125
declaration, 123–125

666 Index

class construction (Continued)
members, 128
scope, 127–128, 146–149
value/reference types, 124–125

class constructors, 491–492
TreadmillManager, 495–498
TreadmillSegment, 493–495
Zombie() function, 298–301

ClassData, 338–339
character base class, 339–340
const, 340
readonly, 341–342

classes, 74–75
complex code, 198
C-style languages, 196–197
definition, 81
inheritance, 362–364
modular code, 199–202
MonoBehaviour, 198
objects, 82–86
partial, 81
UnityEngine and System.Collections,

197–198
class members

data gathering, 283
FirstFunction(), 283
GetKey(), 284–285
Start(), 282
Update(), 285–286
void FirstFunction(), 282

clock math, 143
code

blocks, 70, 79–81
folding, 78, 111–113
fragment, 33–34
style, white space, 78–79

code smell
comments, 583
duplicated code, 584
naming, 584
responsibility rule, 583

code structure
class construction, 123–128
directives, 129–134
functions, 134–140
game building, 118–121
leveling up, 194
logic and operators, 162–173
loops, 173–186
operation order, 140–145
scope, 146–152
this, 152–155

command line, 20
comments, 108–110

code folding, 111–113
line numbers, 111
navigating code, 114
organized code, 115
summary, 113–114

compilation unit, 61

compile-time errors, 34–35, 192
compiling, 9–10
computer

languages, 4
layer abstraction, 10
science, 3–4

ComputerCat, 206
concurrency/co-routines

arrays of delegates, 561–562
setting up timers, 558–561
stopping, 562–565
yield keyword, 555–558

console, 20
const keyword, 340
ContainsKey(), 567–568
controlling inheritance

abstract classes, 430–433
Ended() function, 435–436
ExtensionFunction(), 429–430
GameTimer, 434–435
sealed, 128

creational design patterns, 657
C# paradigm, 5
cube-generating system, 277
custom attributes, 639–641

D

data, 88–89
debugger, 192–194, 443
debugging code, 186
Debug.Log(), 140, 200, 272, 322, 480, 574, 580
declaration/assignment statements, 69
delegates, 474–475

arrays of, 561–562
destructors, 549–550
signatures, 476
stacking, 476–477
updating, 478–480
UseDelegate, 477–478

design patterns, 656
behavioral, 658
creational, 657
structural, 657–658

destructors, 546–547
clearing events/delegates,

549–550
garbage collection, 552, 554
OnDestroy(), 550–552
SelfDestructor, 547–548
UsesOnDestroy, 553

Dictionary data type, 565–568
Difference Engine, 3
directives

ambiguous namespaces, 133–134
libraries, 130–133
using UnityEngine, 129–130

dot operator, 125–127
do-while loops, 177–178
DrawRay, 379–380

667Index

DrawWords, 450–452
Duck-typed languages, 102
dynamic, 620

ExpandoObject, 621–622
Expando Reader, 622–623

dynamically linked library (DLL), 130, 345,
661–662

dynamicFloats, 246–247
dynamic typing, 102–103

E

8-bit unsigned integer, 100
encapsulation, 85, 146
enumeration (enums), 311–312, 515–517

MonsterState, 315–316
options, 317
PrimitiveType, 312–315

equality operators, 163–164
escape sequences, 270–271
evaluation

math, 141–143
operator, 144–145

events, 533
delegates, 534–535
EventArgs, 537–538
GenericEventArgs, 539–540
HandleDelegate and HandleEvent variables,

535–536
Listener class, 535
proper, 536–537

ExpandoObject, 621–622
explicit vs. implicit casting, 104–108
expressive statements, 70
extension functions, 540–541

GameObject, 541
Mirror, 544–546
namespace Tricks, 541–542
overloading, 543–544
Reset(), 543
static keyword, 542

extern keyword, 661–662

F

FindObjectsOfType() function, 212
finite state machine, 328–330
fixed-sized arrays, 241–245
floating point numbers, 414
floating point unit (FPU), 415
floor generator, 295–297
foreach() loop, 246, 581
fork, 19
for() loop, 175–177
function overloading, 444–445

CreateObject(), 448–449
DrawWords, 450–452
HalfValue(), 445
signature, 446–448
UseCreateObject(), 448–449

functions
arguments, 348
call, 134
defined, 135–136
foreach vs. for loop, 350–351
members, 60, 123
overrides, 359–362
parameter lists, 346–350
scope, 149–151
side effects, 347–348
Unity 3D entry points, 136–137
white space/tabs, 139–140
writing, 137–139

G

game-building, 118–119
components, 155–158
mouse point, 119–120
mover, 229–230
move to point, 120–121
physics settings, 232–233
player, 228–229
projectile, 158–159
shooter, 230–231
target, 160–161

game engines, 2, 5–6
class declaration, 39
creating/assigning, C# file, 40–42
file naming, 42–43
high-level programming, 37
MyFunction(), 39
opening scene, 50
operating system, 38
saving scene, 50
Unity 3D tools, 48–50
Update(), 39
using new file, 43–48
working, live scene, 50

GenerateRooms, 436–439
GenericEventArgs, 539–540
generics, 521

anonymous objects, 530–533
identifier T, 522–523
types, 526–527
use of, 523–526
values, 529–530
var keyword, 527–529

GetComponent(), 309–311
GetKey(), 284–285, 290
GetMethodInfo(), 616
GetType(), 416–417
Git, 584

branch and merge, 585–588
flow, 587
merge conflicts, 588–591
submitting changes, 54–56

Git SCM installation, 11
basics, 20–22
first repo, 22–25

668 Index

Git SCM installation (Continued)
GitHub, 18–20
software download, 17–18
Unity Hub, 25

Gizmos, 377–379
DrawRay, 379–380
Gizmos DrawLine(), 380
sort optimization, 381

global access, structs, 337
global scope, 188–190
goto keyword, 327–328, 381–383

HumanWithStates, 386
skipping down, 383
Zombies, 386–388
ZombieWithStates, 383–386

graphics processing units (GPUs), 5, 415
greater/less than operators, 166–167
greedy operator, 606

H

handling structs, 335–336
hard-coded value, 67
hash codes, 55
high-level programming, 37

I

IComparer, 488–491
identifiers, 87
IEnumerator, 514

enumeration, 515–517
implementation, 517–520
interfaces, 521

if statement, 169–173
implicit vs. explicit casting, 104–108, 372–373
indirect recursion, 600
inheritance, 86

class, 362–364
Component, 203
function overrides, 359–362
InheritingMembers, 205
instancing, 206–208
Is-A and Has-A, 206
MonoBehaviour, 202–203
!= null, 213–214
object, 209–212, 364–367
parent child, 208–209
using UnityEngine, 204

instance variables, 126
instancing, 84, 214–215

class initialization, 215
constructors, 216–219
new keyword, 215–216

integrated development environment (IDE), 7, 12
interface

abstract class, 480
accessors, 483–485
IComparer, 488–491
IPickup, 491
IThis, 481–483

multiple, 486–488
naming convention, 481
object-oriented programming, 481
property, 481

International Business Machines Corporation (IBM), 4
interpolation, 120
invocation expression, 70
iteration, 9

J

JumpStatements
BreakAndContinue(), 248–252
return, 233–240

K

keywords, 73–76

L

Lambda expressions, 573
anonymous expressions, 574–577
queue of, 577–578

language-integrated query (LINQ), 601
Distinct(), 606–607
lambdas and arrays, 601–602
monsters, 608–611
strange behaviors, 604–605
ToArray(), 606
var type, 602–603
Where(), 605–606
zombie objects, 603–604

lexical analyzer, 62
libraries, 130–133
License management panel, 14
linear recursion, 599
line feed character, 76
line numbers, 111
LINQ, see language-integrated query (LINQ)
literals, 66–67
little endian, 624–625
logic and operators

and/or, 168–169
booleans, 162–163
equality operators, 163–164
greater/less than, 166–167
if/branching, 169–173
logical not!, 165–166

looping condition, 69
loops

breakpoints, 185–186
do-while, 177–178
for(), 175–177
within loops, 182
postfix/prefix notation, 178–179
return and break, 183–185
unary operators, 173–174
using, 179–181
while(), 174–175

low-level programming, 10

669Index

M

MagicComponent project, 278–279
mantissa, 103
math, 141–143
Mathf class, 306–307
mechanical computers, 3
megabyte, 100
mobile development, 502–504
modern computer language, 4
Mono history, 443–444
MonsterGenerator, 375–377
monsters LINQ, 608–611
mouse point, 119–120
movement

experiments, 57–58
stack, 569–571

multidimensional arrays, 252–253
camera and screen setup, 257–259
columns and rows, 253–255
GameObjects, 262
puzzle board, 255–257
range checking, 259–261

multiple attributes, 641
MyColors, 314–315

N

named parameters, 471–473
namespaces, 75, 342–344

alias directives, 345–346
ambiguous references, 345
directives, 344–345

native machine code, 10
nested class, 121
nested code blocks, 80
NewBehaviourScript, 40
NewUnityUser, 23
non-transitive operations, 67
nullable types, 101
numeric literals, 66

O

object oriented programming (OOP), 82–86
OnDestroy(), 550–552
operators, 422–423

overloading*, 424–426
overloading < and >, 65, 426–427
Puzzle object, 423–424
tokens, 65–66

optional parameters, 469–470
arguments, 470–471
CreateACube() function, 468
function declaration, syntax, 467
named parameters, 471–473
out and ref, 473

OutParameter
GetSevenEleven(), 400–401
GetSevenOut(), 401–403

simple sort (bubble sort), 403–405
simple sort proof, 405–406

override keyword, 359–362

P

ParentAbility() function, 208
parsers, 35
partial classes, 81, 463–466
PeanutButter.cs, 42
PianoCat, 205–207
Plankalkül, 4
POD (plain old data), 88, 215
polymorphism, 85, 373
postfix/prefix notation, 178–179
preprocessor directives

mobile development, 502–504
organizing, 505
TESTING, 499–500
UNITY_EDITOR, 500–502
warning, 504–505

primitive types, 101
programming, 7–8

classes, 8
computer science, 3–4
C# files, 8–9
documentation, 58–61
expression form, 2
iteration, 9
learning, copy/paste, 9
logic, 3
mechanical computers, 3
modern computer language, 4
software origin, 4
source code, 7
style, 583

projectile, 158–159
prompt, 20
proper event, 536–537

Q

queues, 571–572
of Lambdas expressions, 577–578

R

readability, 581
code smell, 583–584
if statement, 582–583
?: notation, 581–582

readonly keyword, 341–342, 457–458
recursion, 579

do/foreach/while loops, 592
enumerators, 592
GameObject, 594–601
goto loop, 593
for loop, 592
understanding, 593–594

refactoring process, 94, 583

670 Index

ref keyword, 410–411
code fragment, 407–408
code portability side effects, 408–410

reflection, 613–614
MethodInfo, 615–618

reserved keywords, 74
return keyword, 286–287

GetZombie(), 236–238
keyword void, 234
MyNumber(), 235
null is not void, 240
objects, 235–236
tuples, 238–240

Rule of Three, 349
run-time errors, 34–35

S

sample code, 33
code fragments, 33–34
comments, 36–37
compile-time/run-time errors, 34–35
Unity Hub, 35–36

SampleGame Unity Project, 56–57
movement experiments, 57–58
programming documentation, 58–61

scope
blank, 151–152
class, 127–128, 146–149
encapsulation, 146
function, 149–151
global, 188–190
visibility/accessibility, 187–188

separator tokens, 64–65
signed numbers, 414
single line comments, 64
Singleton pattern, 657
software origin, 4
source code, 7, 12
source files, 31, 61
stacking delegates, 476–477
stacks

movement, 569–571
Push(), Pop() and Peek(), 568–569

statements, 88
algorithms, 70–73
code execution, 70
declaration and assignment, 69
and expressions, 70

static, 220–221
functions, 224–225, 228
variables, 222–224
zombie script, 225–227

strings, 64
declaration, 268–270
escape sequences, 270–271
verbatim, 271–272

strong typing, 102–103
structs, 330–331

accessing, 336–337
vs. class, 332–334

global access, 337
handling, 335–336
PlayerData, 332
without, 334–335

structural design patterns, 657–658
style guides, 194
switch() statement

advantage, 319
data types, 323
default, 319–322
fall-through, 326–327
finite state machine, 328–330
goto, 327–328
if-else, 317
integral types, 319
nested, 324–325
parameters, 318, 330

T

tail recursion, 600
this keyword, 152–155
tile floor generator, 295–297
timers, 273–278
tokenization, 62
tokens, 61, 67–69

comments, 63–64
literals, 66–67
operator, 65–66
separator, 64–65
transitive/non-transitive operations, 67
writing C#, 62–63

ToString(), 367
transitive operations, 67
TreadmillManager, 495–498
TreadmillSegment, 493–495
try-catch-finally process, 506–508

custom exceptions, 510–512
exception messages, 508–510
file.txt, 514
finally{} statement, 512
UnauthorizedAccessExceptions, 513

turing completeness, 4
type casting, 103–104, 309–311, 411–413, 417–419

explicit vs. implicit, 104–108, 372–373
floating point numbers, 414
integers, 413–414
numbers, 413
user-defined type conversion, 370–371
(Type)vs. as cast, 368–370

types/operators, 415–416
boxing and unboxing, 420–422
GetType(), 416–417
type aliasing, 420
type casting, 417–419

U

unary operators ~, 173–174, 647–648
Unity 3D

code execution, 70
C#, 6–7

671Index

entry points, 136–137
game engines, 5–6
installation, 13–17
learning, 6
and Microsoft Visual Studio, 7
tools, 48–50
useful variables, 94–100

Unity 3D execution order
Awake() function, 354–356
component, 356–358
ExecutionOrderFirst.cs class, 353
Start() and Update() functions, 352

UNITY_EDITOR directive, 500–502
Unity Editor interface

Assets directory, 31–32
Git ignore, 32
Hierarchy panel, 28
Inspector panel, 29
Packages directory, 32
Project and Console panel, 29–31
Project Settings directory, 32
Scene and Game view, 28
toolbar, 27–28

Unity.gitignore, 32
Unity Hub, 13–14, 35–36
Unity version numbering, 16–17
Update() function, 285–286, 292, 406
user-defined type conversion, 370–371

V

value/reference types, 100–101
variables, 86–87

assignment, 96–98
collision, 147

data, 88–89
dynamic initialization, 90–91
identifiers, 87
manipulation, 89–90
names, 91–100

var keyword, 527–529
Vector3, 101, 141
vectors

Gizmos, 377–381
MonsterGenerator, 375–377
objects, 374–375

verbatim strings, 271–272
Version Control System, 11
Visual Studio, 442–443

debugger, 443
installation, 15–16
Mono, 443–444

W

warnings vs. errors, 190–194
wash/rinse/repeat, 73
while() loop, 174–175,

247–248
white space, 76–79

Y

yield keyword, 555–558

Z

Z1 computer, 3

http://taylorandfrancis.com

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents������������������������
	1: Introduction: What This Book Is About���
	1.1 Why Read a Book: Why This Book May or May Not Be for You���
	1.1.1 Do I Need to Know Math?������������������������������������
	1.1.2 Programming as a Form of Expression��
	1.1.3 Games as a Stage with Lights���

	1.2 Personal Information�������������������������������
	1.3 A Brief History of Computer Programming: How Programming Came to Be��
	1.3.1 Mechanical Computers���������������������������������
	1.3.2 Logic������������������
	1.3.3 Computer Science�����������������������������
	1.3.4 The Origin of Software�����������������������������������
	1.3.5 Modern Computer Language�������������������������������������
	1.3.6 The Future of Computer Languages���

	1.4 C#: A Flexible Programming Language��
	1.4.1 C# Paradigm������������������������
	1.4.2 Unity 3D: A Brief History of Game Engines��
	1.4.3 Why Use Unity 3D to Learn?���������������������������������������
	1.4.4 How Does Unity 3D Use C#?��������������������������������������
	1.4.4.1 How to Tell Unity 3D What to Do��

	1.5 What Is Programming?�������������������������������
	1.5.1 What Does C# Look Like?������������������������������������
	1.5.2 Learning to Copy and Paste���������������������������������������
	1.5.3 Iteration����������������������

	1.6 Compiling: Turning Words into Computer Instruction���
	1.7 What We’ve Learned�����������������������������
	1.8 Leveling Up: The Path Ahead��������������������������������������

	2: Before You Begin��������������������������
	2.1 What Will Be Covered in This Chapter���
	2.2 Unity 3D Installation��������������������������������
	2.2.1 Visual Studio Installation���������������������������������������
	2.2.2 Unity Version Numbering������������������������������������

	2.3 Git SCM Installation�������������������������������
	2.3.1 Git-SCM.com Git Software (Optional)��
	2.3.2 GitHub.com Sign Up! (Also Optional)��
	2.3.3 Git: The Basics����������������������������
	2.3.4 Your First Repo����������������������������
	2.3.5 Before Moving On�����������������������������

	2.4 Unity General Overview���������������������������������
	2.4.1 The Main Window����������������������������
	2.4.1.1 Toolbar����������������������
	2.4.1.2 Scene, Game View, and Asset Store��
	2.4.1.3 Hierarchy Panel������������������������������
	2.4.1.4 Inspector Panel������������������������������
	2.4.1.5 Project and Console Panel��
	2.4.1.6 Assets Directory�������������������������������
	2.4.1.7 Project Settings Directory���
	2.4.1.8 Packages Directory���������������������������������

	2.4.2 Git Ignore�����������������������
	2.4.3 What We’ve Learned�������������������������������

	2.5 Sample Code����������������������
	2.5.1 Code Fragments���������������������������
	2.5.2 Are Errors Bad?����������������������������
	2.5.2.1 Compile-Time and Run-Time Errors���

	2.5.3 How to Follow Along��������������������������������
	2.5.4 Comments: A First Look�����������������������������������
	2.5.5 What We’ve Learned�������������������������������

	2.6 Working with C#: Game Engines��
	2.6.1 Creating and Assigning a New C# File: Now It’s Your Turn���
	2.6.2 Naming Your New File���������������������������������
	2.6.3 Using Your New File��������������������������������
	2.6.4 Additional Unity 3D Tools��������������������������������������
	2.6.5 Working in a Live Scene������������������������������������
	2.6.6 Saving a Scene���������������������������
	2.6.7 Opening a Scene����������������������������
	2.6.8 What We’ve Learned�������������������������������

	2.7 Leveling Up: The Journey Has Just Begun��

	3: First Steps: Just Getting Started���
	3.1 What Will Be Covered in This Chapter���
	3.2 Review�����������������
	3.2.1 Submitting Changes to Git��������������������������������������

	3.3 Let’s Build a Game—Part 1������������������������������������
	3.3.1 Movement Experiments���������������������������������
	3.3.2 Reading Programmer Documentation���

	3.4 Tokens�����������������
	3.4.1 Writing C#�����������������������
	3.4.2 Comments a First Look����������������������������������
	3.4.3 Separator Tokens�����������������������������
	3.4.4 Operator Tokens����������������������������
	3.4.5 Literals���������������������
	3.4.6 Transitive and Non-Transitive Operations���
	3.4.7 Putting It All Together������������������������������������
	3.4.8 What We’ve Learned�������������������������������

	3.5 Statements and Expressions�������������������������������������
	3.5.1 Expressions������������������������
	3.5.2 How Unity 3D Executes Your Code��
	3.5.3 Thinking in Algorithms�����������������������������������
	3.5.3.1 Wash, Rinse, Repeat����������������������������������

	3.5.4 What We’ve Learned�������������������������������

	3.6 Keywords�������������������
	3.6.1 The Class Keyword������������������������������
	3.6.2 What We’ve Learned�������������������������������

	3.7 White Space����������������������
	3.7.1 Code Style�����������������������
	3.7.2 What We’ve Learned�������������������������������

	3.8 Code Blocks����������������������
	3.8.1 What We’ve Learned�������������������������������

	3.9 Classes: A First Look��������������������������������
	3.9.1 Objects��������������������
	3.9.2 What We’ve Learned�������������������������������

	3.10 Variables���������������������
	3.10.1 Identifiers�������������������������
	3.10.2 Data������������������
	3.10.3 Variable Manipulation�����������������������������������
	3.10.3.1 Declaration Placement Examples��

	3.10.4 Dynamic Initialization������������������������������������
	3.10.5 What We’ve Learned��������������������������������

	3.11 Variable Names��������������������������
	3.11.1 Useful Variables in Unity 3D��
	3.11.2 Variable Assignment���������������������������������
	3.11.3 Putting It Together: Using the Variables��
	3.11.4 What We’ve Learned��������������������������������

	3.12 Types: A First Look�������������������������������
	3.12.1 Value and Reference Types���������������������������������������
	3.12.2 What We’ve Learned��������������������������������

	3.13 Strong Typing�������������������������
	3.13.1 Dynamic Typing����������������������������
	3.13.2 What We’ve Learned��������������������������������

	3.14 Type Casting, Numbers���������������������������������
	3.14.1 Explicit versus Implicit Casting��
	3.14.1.1 A Basic Example�������������������������������

	3.14.2 What We’ve Learned��������������������������������

	3.15 Comments��������������������
	3.15.1 Line Numbers��������������������������
	3.15.2 Code Folding��������������������������
	3.15.3 Summary Comments������������������������������
	3.15.4 Navigating in Code��������������������������������
	3.15.5 What We’ve Learned��������������������������������

	3.16 Leveling Up: Moving on to Basics��
	3.16.1 Git Revision History����������������������������������

	4: Basics: The Building Blocks of Code���
	4.1 What Will Be Covered in This Chapter���
	4.2 Review�����������������
	4.3 Building a Game—Part 1���������������������������������
	4.3.1 Mouse Point������������������������
	4.3.2 Move to Point��������������������������
	4.3.3 What We’ve Learned�������������������������������

	4.4 Class Construction�����������������������������
	4.4.1 Class Declaration������������������������������
	4.4.1.1 A Basic Example������������������������������
	4.4.1.2 Value and Reference Types��

	4.4.2 Adding Data Fields�������������������������������
	4.4.3 Access Modifiers and the Dot Operator��
	4.4.4 Class Scope������������������������
	4.4.5 Class Members��������������������������
	4.4.6 What We’ve Learned�������������������������������

	4.5 Directives���������������������
	4.5.1 Libraries����������������������
	4.5.2 Ambiguous NameSpaces���������������������������������
	4.5.3 What We’ve Learned�������������������������������

	4.6 Functions��������������������
	4.6.1 What Are Functions?��������������������������������
	4.6.2 Unity 3D Entry Points����������������������������������
	4.6.3 Writing a Function�������������������������������
	4.6.4 More on White Space and Tabs���
	4.6.5 What We’ve Learned�������������������������������

	4.7 Order of Operation: What Is Calculated and When��
	4.7.1 Evaluating Numbers�������������������������������
	4.7.1.1 Math�������������������
	4.7.1.2 Operator Evaluation����������������������������������

	4.7.2 What We’ve Learned�������������������������������

	4.8 Scope: A First Look������������������������������
	4.8.1 Class Scope������������������������
	4.8.2 Function Scope���������������������������
	4.8.3 Blank Scope������������������������
	4.8.4 What We’ve Learned�������������������������������

	4.9 This���������������
	4.9.1 A Basic Example����������������������������
	4.9.2 When This Is Necessary�����������������������������������
	4.9.3 What We’ve Learned�������������������������������

	4.10 Building a Game—Part 2����������������������������������
	4.10.1 Additional Components�����������������������������������
	4.10.2 The Projectile����������������������������
	4.10.3 The Target������������������������
	4.10.4 What We’ve Learned��������������������������������

	4.11 Logic and Operators�������������������������������
	4.11.1 Booleans����������������������
	4.11.2 Equality Operators��������������������������������
	4.11.3 Logical Not!��������������������������
	4.11.4 Greater and Less than Operators���
	4.11.5 Logical And and Or Operators��
	4.11.6 If and Branching������������������������������
	4.11.7 What We’ve Learned��������������������������������

	4.12 Loops�����������������
	4.12.1 Unary Operators�����������������������������
	4.12.2 While�������������������
	4.12.3 For�����������������
	4.12.4 Do-While����������������������
	4.12.5 Postfix and Prefix Notation
	4.12.6 Using Loops�������������������������
	4.12.7 Loops within Loops��������������������������������
	4.12.8 Runaway Loops���������������������������
	4.12.9 Breakpoints: A First Look���������������������������������������
	4.12.10 What We’ve Learned���������������������������������

	4.13 ScopeAgain����������������������
	4.13.1 Visibility or Accessibility���
	4.13.1.1 A Basic Example�������������������������������

	4.13.2 Global Scope��������������������������
	4.13.3 What We’ve Learned��������������������������������

	4.14 Warnings versus Errors����������������������������������
	4.14.1 Warnings����������������������
	4.14.2 Errors��������������������
	4.14.3 Understanding the Debugger��
	4.14.4 What We’ve Learned��������������������������������

	4.15 Leveling Up: Fundamentals�������������������������������������
	4.15.1 Style Guides��������������������������

	5: Fundamentals: Building a Foundation���
	5.1 What Will Be Covered in This Chapter���
	5.2 Review�����������������
	5.2.1 Modular Code�������������������������

	5.3 Inheritance: A First Look������������������������������������
	5.3.1 Class Members��������������������������
	5.3.1.1 Inheriting Members���������������������������������
	5.3.1.2 Is-A and Has-A�����������������������������

	5.3.2 Instancing�����������������������
	5.3.3 Parent Child�������������������������
	5.3.4 Object�������������������
	5.3.4.1 A Type Is Not an Object��������������������������������������

	5.3.5 != null��������������������
	5.3.6 What We’ve Learned�������������������������������

	5.4 Instancing���������������������
	5.4.1 Class Initialization���������������������������������
	5.4.2 New����������������
	5.4.3 Constructors�������������������������
	5.4.4 What We’ve Learned�������������������������������

	5.5 Static�����������������
	5.5.1 A Basic Example����������������������������
	5.5.2 Static Variables�����������������������������
	5.5.2.1 A Basic Example������������������������������

	5.5.3 Static Functions�����������������������������
	5.5.4 Putting It All Together������������������������������������
	5.5.5 What We’ve Learned�������������������������������

	5.6 Building A Game—Part 3���������������������������������
	5.6.1 The Player�����������������������
	5.6.2 The Mover����������������������
	5.6.3 The Shooter������������������������
	5.6.4 Physics Settings�����������������������������
	5.6.5 What We’ve Learned�������������������������������

	5.7 Jump Statements and Return�������������������������������������
	5.7.1 Return�������������������
	5.7.1.1 A Basic Example������������������������������

	5.7.2 Returning Objects������������������������������
	5.7.3 A Class Is a Type������������������������������
	5.7.4 Tuples�������������������
	5.7.5 Null Is Not Void�����������������������������
	5.7.6 What We’ve Learned�������������������������������

	5.8 Arrays: A First Look�������������������������������
	5.8.1 Fixed-Sized Arrays�������������������������������
	5.8.1.1 A Basic Example������������������������������

	5.8.2 Foreach��������������������
	5.8.2.1 A Basic Example������������������������������

	5.8.3 Dynamic Initialization�����������������������������������
	5.8.4 Using the While Loop with Arrays
	5.8.4.1 Setting Array Values�����������������������������������
	5.8.4.2 Getting Array Values�����������������������������������

	5.8.5 What We’ve Learned�������������������������������

	5.9 Jump Statements: Break and Continue��
	5.9.1 A Basic Example����������������������������
	5.9.1.1 Continue�����������������������

	5.9.2 ZombieData�����������������������
	5.9.3 Foreach Again��������������������������
	5.9.4 What We’ve Learned�������������������������������

	5.10 Multidimensional Arrays�����������������������������������
	5.10.1 Columns and Rows������������������������������
	5.10.1.1 A Basic Example�������������������������������

	5.10.2 A Puzzle Board����������������������������
	5.10.3 Camera and Screen Setup�������������������������������������
	5.10.4 Checking Range����������������������������
	5.10.5 What We’ve Learned��������������������������������

	5.11 Array List����������������������
	5.11.1 A Basic Example�����������������������������
	5.11.2 ArrayList.Contains()����������������������������������
	5.11.3 Remove��������������������
	5.11.4 Sort and Reverse������������������������������
	5.11.5 What We’ve Learned��������������������������������

	5.12 Strings�������������������
	5.12.1 Declaring a String��������������������������������
	5.12.1.1 A Basic Example�������������������������������

	5.12.2 Escape Sequences������������������������������
	5.12.3 Verbatim Strings: @
	5.12.4 What We’ve Learned��������������������������������

	5.13 Combining What We’ve Learned��
	5.13.1 Timers��������������������
	5.13.2 What We’ve Learned��������������������������������

	5.14 Leveling Up: On to the Cool���������������������������������������

	6: Intermediate: The Tricks of the Trade���
	6.1 What Will Be Covered in This Chapter���
	6.2 Review�����������������
	6.2.1 Class Members��������������������������
	6.2.1.1 A Basic Example������������������������������
	6.2.1.2 Thinking Like a Programmer���

	6.2.2 Return�������������������
	6.2.2.1 A Basic Example������������������������������

	6.2.3 Arguments aka “Args” (Not Related to Pirates)��
	6.2.3.1 The Basic Example��������������������������������
	6.2.3.2 Multiple Args����������������������������
	6.2.3.3 Using Args�������������������������

	6.2.4 Assignment Operators���������������������������������
	6.2.4.1 A Basic Example������������������������������

	6.2.5 What We’ve Learned�������������������������������

	6.3 Building a Game—Part 4���������������������������������
	6.3.1 ChaseCamera������������������������
	6.3.2 Tile Floor Generator���������������������������������
	6.3.3 What We’ve Learned�������������������������������

	6.4 Class Constructors�����������������������������
	6.4.1 A Basic Example����������������������������
	6.4.2 What We’ve Learned�������������������������������

	6.5 Arrays Revisited���������������������������
	6.5.1 Using Arrays in Unity 3D�������������������������������������
	6.5.1.1 Starting with 0������������������������������
	6.5.1.2 Mathf��������������������
	6.5.1.3 Time�������������������

	6.5.2 Instancing with AddComponent();��
	6.5.3 Type Casting Unity 3D Objects��
	6.5.4 What We’ve Learned�������������������������������

	6.6 Enums����������������
	6.6.1 Using Enums������������������������
	6.6.2 Combining What We’ve Learned���
	6.6.3 What We’ve Learned�������������������������������

	6.7 Switch�����������������
	6.7.1 A Basic Example����������������������������
	6.7.2 Default��������������������
	6.7.3 More On Cases��������������������������
	6.7.4 Fall Through�������������������������
	6.7.5 goto Case����������������������
	6.7.6 Finite State Machine���������������������������������
	6.7.7 What We’ve Learned�������������������������������

	6.8 Structs������������������
	6.8.1 Building a Struct
	6.8.2 Struct versus Class��������������������������������
	6.8.3 Without Structs����������������������������
	6.8.4 Handling Structs�����������������������������
	6.8.5 Accessing Structs������������������������������
	6.8.6 Global Access��������������������������
	6.8.7 What We’ve Learned�������������������������������

	6.9 Class Data���������������������
	6.9.1 Character Base Class���������������������������������
	6.9.2 Const������������������
	6.9.3 Readonly���������������������
	6.9.4 What We’ve Learned�������������������������������

	6.10 Namespaces����������������������
	6.10.1 A Basic Example�����������������������������
	6.10.2 Directives in Namespaces��������������������������������������
	6.10.3 Ambiguous References����������������������������������
	6.10.4 Alias Directives������������������������������
	6.10.5 What We’ve Learned��������������������������������

	6.11 Functions Again���������������������������
	6.11.1 Parameter Lists�����������������������������
	6.11.2 Side Effects��������������������������
	6.11.3 Multiple Arguments��������������������������������
	6.11.4 Useful Parameters�������������������������������
	6.11.4.1 The Rule of Three���������������������������������

	6.11.5 Foreach versus For��������������������������������
	6.11.6 What We’ve Learned��������������������������������

	6.12 Unity 3D Execution Order������������������������������������
	6.12.1 A Basic Example�����������������������������
	6.12.2 Component Execution Order���������������������������������������
	6.12.3 What We’ve Learned��������������������������������

	6.13 Inheritance Again�����������������������������
	6.13.1 Function Overrides��������������������������������
	6.13.1.1 A Basic Example�������������������������������

	6.13.2 Class Inheritance�������������������������������
	6.13.2.1 Sharing Common Attributes���

	6.13.3 Object��������������������
	6.13.4 What We’ve Learned��������������������������������

	6.14 Type Casting Again������������������������������
	6.14.1 (<Type>) versus “as”����������������������������������
	6.14.2 User-Defined Type Conversion��
	6.14.3 Implicit versus Explicit Type Conversion��
	6.14.4 What We’ve Learned��������������������������������

	6.15 Working with Vectors��������������������������������
	6.15.1 Vectors Are Objects���������������������������������
	6.15.2 Stepping through MonsterGenerator���
	6.15.3 Gizmos��������������������
	6.15.3.1 A Basic Example�������������������������������
	6.15.3.2 DrawRay�����������������������

	6.15.4 Using Gizmos��������������������������
	6.15.5 What We’ve Learned��������������������������������

	6.16 goto Labels�����������������������
	6.16.1 Skipping Down���������������������������
	6.16.2 Zombie State Machine����������������������������������
	6.16.3 This as a Reference to Yourself���
	6.16.4 Just for Zombies������������������������������
	6.16.5 What We’ve Learned��������������������������������

	6.17 More on Arrays��������������������������
	6.17.1 Length and Count������������������������������
	6.17.1.1 A Basic Example�������������������������������

	6.17.2 Foreach: A Reminder���������������������������������
	6.17.3 Discovery�����������������������
	6.17.4 Putting It Together���������������������������������
	6.17.4.1 Breakpoint, Observing Inheritance���

	6.17.5 What We’ve Learned��������������������������������

	6.18 Out Parameter�������������������������
	6.18.1 A Basic Example�����������������������������
	6.18.2 Simple Sort (Bubble Sort)���������������������������������������
	6.18.3 Simple Sort Proof�������������������������������
	6.18.4 What We’ve Learned��������������������������������

	6.19 Ref Parameter�������������������������
	6.19.1 A Basic Example�����������������������������
	6.19.2 Code Portability Side Effects���
	6.19.3 What We’ve Learned��������������������������������

	6.20 Type Casting Numbers��������������������������������
	6.20.1 Number Types��������������������������
	6.20.2 Integers����������������������
	6.20.2.1 Signed Numbers������������������������������

	6.20.3 Floating Point����������������������������
	6.20.4 What We’ve Learned��������������������������������

	6.21 Types and Operators�������������������������������
	6.21.1 GetType()�����������������������
	6.21.2 More Type Casting�������������������������������
	6.21.3 Type Aliasing���������������������������
	6.21.4 Boxing and Unboxing���������������������������������

	6.22 Operator Overloading��������������������������������
	6.22.1 A Basic Example�����������������������������
	6.22.2 Overloading*��������������������������
	6.22.3 Overloading < and >���������������������������������
	6.22.4 What We’ve Learned��������������������������������

	6.23 Controlling Inheritance�����������������������������������
	6.23.1 Sealed��������������������
	6.23.1.1 A Basic Example�������������������������������

	6.23.2 Extension Functions���������������������������������
	6.23.3 Abstract����������������������
	6.23.3.1 A Basic Example�������������������������������

	6.23.4 Abstract: Abstract��������������������������������
	6.23.5 Putting This to Use���������������������������������
	6.23.6 What We’ve Learned��������������������������������

	6.24 Building A Game—Part 5����������������������������������
	6.24.1 Generating Rooms������������������������������
	6.24.2 What We’ve Learned��������������������������������

	6.25 Leveling Up�����������������������

	7: Advanced������������������
	7.1 What Will Be Covered in This Chapter���
	7.2 Review�����������������
	7.2.1 Moving Forward���������������������������

	7.3 Visual Studio������������������������
	7.3.1 The Debugger�������������������������
	7.3.2 Mono History�������������������������

	7.4 Function Overloading�������������������������������
	7.4.1 A Closer Look at Functions���������������������������������������
	7.4.1.1 A Basic Example������������������������������

	7.4.2 Function Signature�������������������������������
	7.4.3 Different Signatures���������������������������������
	7.4.4 Putting It Together��������������������������������
	7.4.5 Not Quite Recursion
	7.4.6 DrawWords����������������������
	7.4.7 What We’ve Learned�������������������������������

	7.5 Accessors (or Properties)������������������������������������
	7.5.1 Value������������������
	7.5.1.1 A Basic Example������������������������������

	7.5.2 Set Event����������������������
	7.5.3 Read-Only Accessor�������������������������������
	7.5.4 Simplification���������������������������
	7.5.5 What We’ve Learned�������������������������������

	7.6 Base Classes: Another Look�������������������������������������
	7.6.1 Generalization—Base Classes��
	7.6.2 Specialization���������������������������
	7.6.3 Base�����������������
	7.6.4 Partial��������������������
	7.6.5 Protected, Private, and Public���
	7.6.6 What We’ve Learned�������������������������������

	7.7 Optional Parameters������������������������������
	7.7.1 Using Optionals����������������������������
	7.7.1.1 A Basic Example������������������������������

	7.7.2 Optional Arguments�������������������������������
	7.7.3 Named Parameters�����������������������������
	7.7.3.1 A Basic Example������������������������������

	7.7.4 Combining What We’ve Learned���
	7.7.5 What We’ve Learned�������������������������������

	7.8 Delegate Functions�����������������������������
	7.8.1 Delegates����������������������
	7.8.1.1 A Basic Example������������������������������

	7.8.2 Delegate Signatures
	7.8.3 Stacking Delegates�������������������������������
	7.8.4 Using Delegates����������������������������
	7.8.5 Updating Delegates�������������������������������
	7.8.6 What We’ve Learned�������������������������������

	7.9 Interface��������������������
	7.9.1 Early Planning���������������������������
	7.9.1.1 A Basic Example������������������������������
	7.9.1.2 Using Accessors������������������������������

	7.9.2 Multiple Interfaces��������������������������������
	7.9.3 IComparer����������������������
	7.9.4 Using IComparer����������������������������
	7.9.5 What We’ve Learned�������������������������������

	7.10 Class Constructors Revisited��
	7.10.1 A Basic Example�����������������������������
	7.10.2 When to Create a New Class��
	7.10.3 What We’ve Learned��������������������������������

	7.11 Preprocessor Directives�����������������������������������
	7.11.1 A Basic Example�����������������������������
	7.11.2 UNITY_EDITOR��������������������������
	7.11.3 Mobile Development��������������������������������
	7.11.4 Warning���������������������
	7.11.5 Organizing������������������������
	7.11.6 What We’ve Learned��������������������������������

	7.12 Try Catch Finally�����������������������������
	7.12.1 A Basic Example�����������������������������
	7.12.2 Exception Messages��������������������������������
	7.12.3 Custom Exceptions�������������������������������
	7.12.4 Finally���������������������
	7.12.5 Try-Catch and Finally in Use��
	7.12.6 What We’ve Learned��������������������������������

	7.13 IEnumerator�����������������������
	7.13.1 Enumeration�������������������������
	7.13.1.1 A Basic Example�������������������������������
	7.13.1.2 What Doesn’t Work���������������������������������

	7.13.2 Implementing IEnumerator��������������������������������������
	7.13.3 What We’ve Learned��������������������������������

	7.14 Generics��������������������
	7.14.1 Generic Functions�������������������������������
	7.14.1.1 A Basic Example�������������������������������
	7.14.1.2 Why T?����������������������

	7.14.2 Making Use of Generic Functions���
	7.14.3 Generic Types���������������������������
	7.14.4 Var�����������������
	7.14.5 Multiple Generic Values�������������������������������������
	7.14.6 Anonymous Objects�������������������������������
	7.14.7 What We’ve Learned��������������������������������

	7.15 Events������������������
	7.15.1 A Basic Example�����������������������������
	7.15.2 A Proper Event����������������������������
	7.15.3 EventArgs�����������������������
	7.15.4 Generic EventArgs�������������������������������
	7.15.5 What We’ve Learned��������������������������������

	7.16 Extension Functions�������������������������������
	7.16.1 Extensions������������������������
	7.16.2 A Basic Example�����������������������������
	7.16.3 Overloading with Extensions���
	7.16.4 Magic Mirror��������������������������
	7.16.5 What We’ve Learned��������������������������������

	7.17 Destructors�����������������������
	7.17.1 A Basic Example�����������������������������
	7.17.2 Clearing Events or Delegates��
	7.17.3 OnDestroy�����������������������
	7.17.4 The Ugly Truth����������������������������
	7.17.5 What We’ve Learned��������������������������������

	7.18 Concurrency or Co-Routines��������������������������������������
	7.18.1 Yield�������������������
	7.18.1.1 A Basic Example�������������������������������

	7.18.2 Setting Up Timers�������������������������������
	7.18.3 Arrays of Delegates���������������������������������
	7.18.4 Stopping a Co-Routine�����������������������������������
	7.18.5 What We’ve Learned��������������������������������

	7.19 Dictionary, Stacks, and Queues��
	7.19.1 A Basic Example�����������������������������
	7.19.2 ContainsKey�������������������������
	7.19.3 Stacks��������������������
	7.19.3.1 A Basic Example�������������������������������

	7.19.4 Movement Stack����������������������������
	7.19.5 Queues��������������������
	7.19.6 What We’ve Learned��������������������������������

	7.20 Lambda Expressions������������������������������
	7.20.1 Anonymous Expressions�����������������������������������
	7.20.1.1 A Basic Example—Action Func and Expression��

	7.20.2 Lambda Expressions��������������������������������
	7.20.3 A Queue of Lambdas��������������������������������
	7.20.4 What We’ve Learned��������������������������������

	7.21 Leveling Up�����������������������

	8: Extended������������������
	8.1 What We’ll Be Covering in This Chapter���
	8.2 Review�����������������
	8.3 Readability����������������������
	8.3.1 ?: Notation������������������������
	8.3.2 If���������������
	8.3.3 Smell������������������
	8.3.3.1 Comments�����������������������
	8.3.3.2 One Responsibility Rule��������������������������������������
	8.3.3.3 Duplicated Code������������������������������
	8.3.3.4 Naming���������������������

	8.3.4 What We’ve Learned�������������������������������

	8.4 Git Revisited
	8.4.1 Git Branch and Merge
	8.4.2 Merge Conflicts
	8.4.3 What We’ve Learned�������������������������������

	8.5 Recursion��������������������
	8.5.1 A Basic Example����������������������������
	8.5.2 Understanding Recursion������������������������������������
	8.5.3 In Practice������������������������
	8.5.4 What We’ve Learned�������������������������������

	8.6 LINQ
	8.6.1 Lambdas and Arrays
	8.6.1.1 A Basic Example

	8.6.2 Var
	8.6.3 LINQ From
	8.6.4 Strange Behaviors in LINQ
	8.6.5 LINQ on Lists
	8.6.6 Monsters Linq
	8.6.7 What We’ve Learned

	8.7 Reflection
	8.7.1 A Basic Example
	8.7.2 Reflection MethodInfo
	8.7.3 What We’ve Learned

	8.8 Dynamic������������������
	8.8.1 ExpandoObject��������������������������
	8.8.2 Expando Reader���������������������������
	8.8.3 What We’ve Learned�������������������������������

	8.9 Bitwise Operators����������������������������
	8.9.1 Big Endian and Little Endian���
	8.9.2 Signed or Unsigned�������������������������������
	8.9.3 Bitwise Or |�������������������������
	8.9.4 Enums and Numbers������������������������������
	8.9.5 Bitwise And &��������������������������
	8.9.6 Bitwise Exclusive Or ^ (xor)���
	8.9.7 Setting Bitwise Flags����������������������������������
	8.9.8 Bitwise Shortcuts | = and ^ =��
	8.9.9 Bits in Numbers����������������������������
	8.9.10 Bit Shifting >> and <<������������������������������������
	8.9.11 What We’ve Learned��������������������������������

	8.10 Attributes����������������������
	8.10.1 A Basic Example�����������������������������
	8.10.2 Custom Attributes�������������������������������
	8.10.3 Custom Attributes for Default Values��
	8.10.4 Multiple Attributes���������������������������������
	8.10.5 Putting Attributes to Work��
	8.10.6 Attribute Flags�����������������������������
	8.10.7 What We’ve Learned��������������������������������

	8.11 Bitwise Math������������������������
	8.11.1 Two’s Complement Unary Operator ~���
	8.11.2 Bitwise Addition and Subtraction��
	8.11.3 Bitwise Multiplication������������������������������������
	8.11.4 Bitwise Tricks����������������������������
	8.11.5 What We’ve Learned��������������������������������

	8.12 Architectures and Organization��
	8.12.1 Planning Structure: Namespaces and Directories��
	8.12.2 Divide and Conquer��������������������������������
	8.12.3 Refactoring�������������������������
	8.12.4 What We’ve Learned��������������������������������

	8.13 Design Patterns���������������������������
	8.13.1 Creational Design Patterns��
	8.13.1.1 Singleton Pattern���������������������������������

	8.13.2 Structural Design Patterns��
	8.13.3 Behavioral Design Patterns��
	8.13.4 What We’ve Learned��������������������������������

	8.14 Continuing on Your Own����������������������������������

	9: Stuff We Couldn’t Cover���������������������������������
	9.1 The Extern Keyword�����������������������������

	10: Good Luck��������������������
	Index������������

