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Audience

Th is book is written for engineering students of all majors who are taking a fi rst or second 
course in fl uid mechanics. Students should have background knowledge in physics (mechanics), 
chemistry, statics, and calculus.

Why We Wrote This Book

Our mission is to equip people to do engineering skillfully. Th us, we wrote this book to explain 
the main ideas of fl uid mechanics at a level appropriate for a fi rst or second college course. In 
addition, we have included selected engineering skills (e.g., critical thinking, problem solving, 
and estimation) because we believe that practicing these skills will help all students learn fl uid 
mechanics better.

Approach

Knowledge. Each chapter begins with statements of what is important to learn. Th ese learning 
outcomes are formulated in terms of what students will be able to do. Th en, the chapter sections 
present the knowledge. Finally, the knowledge is summarized at the end of each chapter.

Practice with Feedback. Th e research of Dr. Anders Ericsson suggests that learning is 
brought about through deliberate practice. Deliberate practice involves doing something and 
then getting feedback. To provide opportunities for deliberate practice, we have provided two 
sets of resources:

1.  Th is text contains more than 1100 end-of-chapter problems. Th e answers to selected, 
even-numbered problems are provided in the back of the book. Professors can gain access 
to the solution manual by contacting their Wiley representative.

2.  WileyPlus provides a way for professors to assign end-of-chapter problems and to have the 
grading and the record keeping done by a computer system. Th is may be useful to profes-
sors with large classes or to professors who do not have a budget to pay a grader.

PREFACE
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Learning Outcomes. Each chapter begins with learning 
outcomes so that students can identify what knowledge they 
should gain by studying the chapter.

Rationale. Each section describes what content is presented 
and why this content is relevant.

Visual Approach. Th is text uses sketches and photographs 
to help students learn more eff ectively by connecting images 
to words and equations.

Foundational Concepts. Th is text presents major con-
cepts in a clear and concise format. Th ese concepts form 
building blocks for higher levels of learning.

Features of this Book
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Seminal Equations. Th is text emphasizes technical deri-
vations so that students can learn to do the derivations on 
their own, increasing their level of knowledge. Features 
include the following:

•  Derivations of main equations are presented in a step-by-
step fashion.

•  Th e holistic meaning of main equations is explained 
using words.

• Main equations are named and listed in Table F.2.
• Main equations are summarized in tables in the chapters.
•  A process for applying each main equation is presented 

in the relevant chapter.

Chapter Summaries. Each chapter concludes with a 
summary so that students can review the key knowledge in 
the chapter.

Online Problems. We have created many online prob-
lems that provide immediate feedback to students while also 
ensuring that students complete the assigned work on time. 
Th ese problems are available in WileyPLUS at instructor’s 
discretion.

Process Approach. A process is a method for getting 
results. A process approach involves fi guring out how experts 
do things and adapting this same approach. Th is textbook 
presents multiple processes.

Wales-Woods Model. Th e Wales-Woods Model repre-
sents how experts solve problems. Th is model is presented 
in Chapter 1 and used in example problems throughout the 
text.

Grid Method. Th is text presents a systematic process, 
called the grid method, for carrying and canceling units. 

Unit practice is emphasized because it helps engineers spot 
and fi x mistakes and because it helps engineers put meaning 
on concepts and equations.

Traditional and SI Units. Examples and homework 
problems are presented using both SI and traditional unit 
systems. Th is presentation helps students gain familiarity 
with units that are used in professional practice.

Example Problems. Each chapter has examples to show 
how the knowledge is used in context and to present essen-
tial details needed for application.

Solutions Manual. Th e text includes a detailed solutions 
manual for instructors. Many solutions are presented with 
the Wales-Woods Model.

Image Gallery. Th e fi gures from the text are available in 
PowerPoint format, for easy inclusion in lecture presenta-
tions. Th is resource is available only to instructors. To request 
access to this and all instructor resources, please contact your 
local Wiley sale representative.

Interdisciplinary Approach. Historically, this text was 
written for the civil engineer. We are retaining this approach 
while adding material so that the text is also appropriate for 
other engineering disciplines. For example, the text pres-
ents the Bernoulli equation using both head terms (civil 
engineering approach) and terms with units of pressure 
(the approach used by chemical and mechanical engi-
neers). We include problems that are relevant to product 
development as practiced by mechanical and electrical en-
gineers. Some problems feature other disciplines, such as 
exercise physiology. Th e reason for this interdisciplinary 
approach is that the world of today’s engineer is becoming 
more and more interdisciplinary.

What is New in the 11th Edition

 1.  Critical Th inking (CT) is introduced in Chapter 1. Rationale: When students apply CT, 
they learn fl uid mechanics better. Also, they become better engineers.

 2.  Learn outcomes are organized into categories. Rationale: Th e grouping of outcomes 
increases the clarity about what is important.

 3.  New material was added in Chapter 1 describing force, mass, weight, Newton’s law of 
universal gravitation, density, and specifi c weight. Rationale: We have seen many 
instances of student work indicating that these basic concepts are sometimes not in place. 
Also, introducing these topics in Chapter 1 provides a way to introduce engineering 
calculations earlier in the book.

 4.  We introduced the Voice of the Engineer in Chapter 1 as a way to present wisdom. 
Rationale: Th e Voice of the Engineer provides a structure for presenting an attitude 
that is widely shared in the professional engineering community.
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 5.  In Chapter 1, new material was added about the ideal gas law (IGL). Rationale: 
Th e IGL section now has the right level of technical detail for engineering problems.

 6.  In Chapter 1, the material on problem solving was rewritten. Also, the Wales-Woods 
Model is now summarized on one page. Rationale: Solving problems and building math 
models are fundamental skills for the engineer. Th e ideas in Chapter 1 represent the best 
ideas that we have seen in the literature.

 7.  Chapter 2 has a new section on fi nding fl uid properties. Th is new section, §2.2, contains 
the summary table that previously was situated at the end of the chapter. Rationale: 
Finding fl uid properties is an important learning outcome for Chapter 2. Th e new 
section puts an emphasis on this outcome and organizes the ideas in one place. 
Previously, the knowledge needed to fi nd fl uid properties was scattered throughout 
Chapter 2.

 8.  Chapter 2 has a new section on stress, how to relate stress to force, and on common 
forces. Rationale: Stress and force are seminal ideas in mechanics. Th is section defi nes 
the relevant terms and shows how they are related.

 9.  Th e Chapter 2 discussions on the shear stress equation were edited to increase clarity 
and concision. Rationale: Th e shear stress equation is one of the seminal fl uid mechanics 
equations.

10.  Th e end-of-chapter problems include over 300 new or revised problems. Rationale: 
Both learning and assessment of learning are made easier by having problems available.

11.  Chapter 9 was rewritten to make the chapter more suitable for students taking a fi rst 
course in fl uid mechanics.

Author Team

Th e book was originally written by Professor John Roberson, with Professor 
Clayton Crowe adding the material on compressible fl ow. Professor Roberson 
retired from active authorship aft er the 6th edition, Professor Donald Elger 
joined on the 7th edition, and Professor Barbara LeBret joined on the 9th 
edition. Professor Crowe retired from active authorship aft er the 9th edition. 
Professor Crowe passed away on February 5, 2012.
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TABLE F.1  Formulas for Unit Conversions*

Name, Symbol, Dimensions Conversion Formula

Length L L 1 m = 3.281 ft  = 1.094 yd = 39.37 in = km/1000 = 106 μm
1 ft  = 0.3048 m = 12 in = mile/5280 = km/3281
1 mm = m/1000 = in/25.4 = 39.37 mil = 1000 μm = 107Å

Speed V L/T 1 m/s = 3.600 km/hr = 3.281 ft /s = 2.237 mph = 1.944 knots
1 ft /s = 0.3048 m/s = 0.6818 mph = 1.097 km/hr = 0.5925 knots

Mass m M 1 kg = 2.205 lbm = 1000 g = slug/14.59 = (metric ton or tonne or Mg)/1000
1 lbm = lbf∙s2/(32.17 ft ) = kg/2.205 = slug/32.17 = 453.6 g
    = 16 oz = 7000 grains = short ton/2000 = metric ton (tonne)/2205

Density ρ M/L3 1000 kg/m3 = 62.43 lbm/ft 3 = 1.940 slug/ft 3 = 8.345 lbm/gal (US)

Force F ML/T 2 1 lbf = 4.448 N = 32.17 lbm∙ft /s2

1 N = kg∙m/s2 = 0.2248 lbf = 105 dyne

Pressure, shear 
stress

p, τ M/LT 2 1 Pa = N/m2 = kg/m∙s2 = 10–5 bar = 1.450 × 10–4 lbf/in2 = inch H2O/249.1
  = 0.007501 torr = 10.00 dyne/cm2

1 atm = 101.3 kPa = 2116 psf = 1.013 bar = 14.70 lbf/in2 = 33.90 ft  of water
   = 29.92 in of mercury = 10.33 m of water = 760 mm of mercury = 760 torr
1 psi = atm/14.70 = 6.895 kPa = 27.68 in H2O = 51.71 torr

Volume V L3 1 m3 = 35.31 ft 3 = 1000 L = 264.2 U.S. gal
1 ft 3 = 0.02832 m3 = 28.32 L = 7.481 U.S. gal = acre-ft /43,560
1 U.S. gal = 231 in3 = barrel (petroleum)/42 = 4 U.S. quarts = 8 U.S. pints
    = 3.785 L = 0.003785 m3

Volume fl ow 
rate (discharge)

Q L3/T 1 m3/s = 35.31 ft 3/s = 2119 cfm = 264.2 gal (US)/s = 15850 gal (US)/m
1 cfs = 1 ft 3/s = 28.32 L/s = 7.481 gal (US)/s = 448.8 gal (US)/m

Mass fl ow rate m· M/T 1 kg/s = 2.205 lbm/s = 0.06852 slug/s
Energy and 
work

E, W ML2/T2 1 J = kg∙m2/s2 = N∙m = W∙s = volt∙coulomb = 0.7376 ft ∙lbf
  = 9.478 × 10–4 Btu = 0.2388 cal = 0.0002388 Cal = 107 erg = kWh/3.600 × 106

Power P, E· , W· ML2/T 3 1 W = J/s = N∙m/s = kg∙m2/s3 = 1.341 × 10–3 hp
  = 0.7376 ft ∙lbf/s = 1.0 volt-ampere = 0.2388 cal/s = 9.478 × 10–4 Btu/s
1 hp = 0.7457 kW = 550 ft ∙lbf/s = 33,000 ft ∙lbf/min = 2544 Btu/h

Angular speed ω T –1 1.0 rad/s = 9.549 rpm = 0.1591 rev/s
Viscosity μ M/LT 1 Pa∙s = kg/m∙s = N∙s/m2 = 10 poise = 0.02089 lbf∙s/ft 2 = 0.6720 lbm/ft ∙s
Kinematic 
viscosity

ν L2/T 1 m2/s = 10.76 ft 2/s = 106 cSt

Temperature T Θ K = °C + 273.15 = °R/1.8
°C = (°F – 32)/1.8
°R = °F + 459.67 = 1.8 K
°F = 1.8°C + 32

*Visit www.onlineconversion.com for a useful online reference.

x   
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Continuity equation
d
dt ∫cv

ρdV + ∫
cs

ρV ∙ d A = 0 (Eq. 5.28)

d
dt

Mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (Eq. 5.29)

ρ2A2V2 = ρ1A1V1 (Eq. 5.33)

Momentum equation

∑ F =
d
dt ∫cv

vρ dV + ∫
cs

vρV ∙ d A (Eq. 6.7)

∑ F =
d(mcv vcv)

dt
+ ∑

cs
m· ovo − ∑

cs
m· ivi (Eq. 6.10)

Energy equation

(p1

γ
+ α1

V 2
1

2g
+ z1) +hp =(p2

γ
+ α2

V 2
2

2g
+ z2) + ht + hL

(Eq. 7.29)

Th e power equation
P = FV = Tω (Eq. 7.3)
P = m· gh = γQh (Eq. 7.31)

Effi  ciency of a machine

η =
Poutput

Pinput
 (Eq. 7.32)

Reynolds number (pipe)

ReD =
VD
v

=
ρVD

μ
=

4Q
πDv

=
4m·

πDμ
 (Eq. 10.1)

Combined head loss equation

hL = ∑
pipes

f
L
D

V 2

2g
+ ∑

components
K
V 2

2g
 (Eq. 10.45)

Friction factor f (Resistance coeffi  cient)

f =
64

ReD
  ReD ≤ 2000 (Eq. 10.34)

f =
0.25

[log10 ( ks
3.7D

+
5.74
ReD

0.9)]
2  (ReD ≥ 3000) (Eq. 10.39)

Drag force equation

FD = CDA(ρV 2
0

2 ) (Eq. 11.5)

Lift  force equation

FL = CLA(ρV 2
0

2 ) (Eq. 11.17)

Ideal gas law equations
p = ρRT
pV = mRT
pV = nRuT
M = m/n; R = Ru/M (§1.6)

Specifi c weight
γ = ρg  (Eq. 1.21)

Kinematic viscosity
ν = μ/ρ (Eq. 2.1)

Specifi c gravity

S =
ρ

ρH2O at 4°C
=

γ
γH2O at 4°C

 (Eq. 2.3)

Defi nition of viscosity

τ = μ
dV
dy

 (Eq. 2.15)

Pressure equations
pgage = pabs − patm (Eq. 3.3a)
pvacuum = patm − pabs (Eq. 3.3b)

Hydrostatic equation
p1

γ
+ z1 =

p2

γ
+ z2 = constant (Eq. 3.10a)

pz = p1 + γz1 = p2 + γz2 = constant (Eq. 3.10b)
Δp = −γΔz (Eq. 3.10c)

Manometer equations
p2 = p1 + ∑

down
γi hi − ∑

up
γi hi (Eq. 3.21)

h1 − h2 = Δh(γB/γA − 1) (Eq. 3.22)

Hydrostatic force equations (fl at panels)
FP = pA (Eq. 3.28)

ycp − y =
I
yA

 (Eq. 3.33)

Buoyant force (Archimedes equation)
FB = γVD (Eq. 3.41a)

Th e Bernoulli equation

(p1

γ
+

V 2
1

2g
+ z1) =(p2

γ
+

V 2
2

2g
+ z2) (Eq. 4.21b)

(p1 +
ρV 2

1

2
+ ρgz1) = (p2 +

ρV2
2

2
+ ρgz2) (Eq. 4.21a)

Volume fl ow rate equation

Q = VA =
m·

ρ
= ∫

A
VdA = ∫

A
V ∙ d A (Eq. 5.10)

Mass fl ow rate equation

m· = ρAV = ρQ = ∫
A

ρV dA = ∫
A

ρV ∙ d A (Eq. 5.11)

TABLE F.2  Commonly Used Equations



TABLE F.3  Useful Constants

Name of Constant Value

Acceleration of gravity  g = 9.81 m/s2 = 32.2 ft /s2

Universal gas constant  Ru = 8.314 kJ/kmol∙K = 1545 ft ∙lbf/lbmol∙°R
Standard atmospheric pressure patm = 1.0 atm = 101.3 kPa = 14.70 psi = 2116 psf = 33.90 ft  of water

patm = 10.33 m of water = 760 mm of Hg = 29.92 in of Hg = 760 torr = 1.013 bar

TABLE F.6  Properties of Water [T = 4°C (39°F), p = 1 atm]

Property SI Units Traditional Units

Density ρ = 1000 kg/m3 ρ = 62.4 lbm/ft 3 = 1.94 slug/ft 3

Specifi c weight γ = 9810 N/m3 γ = 62.4 lbf/ft 3

TABLE F.4  Properties of Air [T = 20°C (68°F), p = 1 atm]

Property SI Units Traditional Units

Specifi c gas constant Rair = 287.0 J/kg∙K Rair = 1716 ft ∙lbf/slug∙°R
Density  ρ = 1.20 kg/m3   ρ = 0.0752 lbm/ft 3 = 0.00234 slug/ft 3

Specifi c weight γ = 11.8 N/m3   γ = 0.0752 lbf/ft 3

Viscosity μ = 1.81 × 10–5 N∙s/m2   μ = 3.81 × 10–7 lbf∙s/ft 2

Kinematic viscosity ν = 1.51 × 10–5 m2/s   ν = 1.63 × 10–4 ft 2/s
Specifi c heat ratio k = cp/cv = 1.40   k = cp/cv = 1.40

Specifi c heat cp = 1004 J/kg∙K  cp = 0.241 Btu/lbm∙°R

Speed of sound  c = 343 m/s  c = 1130 ft /s

TABLE F.5  Properties of Water [T = 15°C (59°F), p = 1 atm]

Property SI Units Traditional Units

Density  ρ = 999 kg/m3  ρ = 62.4 lbm/ft 3 = 1.94 slug/ft 3

Specifi c weight  γ = 9800 N/m3  γ = 62.4 lbf/ft 3

Viscosity  μ = 1.14 × 10–3 N∙s/m2  μ = 2.38 × 10–5 lbf∙s/ft 2

Kinematic viscosity  ν = 1.14 × 10–6 m2/s  ν = 1.23 × 10–5 ft 2/s
Surface tension (water–air)  σ = 0.073 N/m  σ = 0.0050 lbf/ft 
Bulk modulus of elasticity Ev = 2.14 × 109 Pa Ev = 3.10 × 105 psi

xii   
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Introduction

CHAPTER ROAD MAP Our purpose is to equip you for success. Success means that you can do 
engineering skillfully. This chapter presents (a) fl uid mechanics topics and (b) engineering skills. The 
engineering skills are optional. We included these skills because we believe that applying these skills while 
you are learning fl uid mechanics will strengthen your fl uid mechanics knowledge while also making you a 
better engineer.

CHAPTERONE

FIGURE 1.1
As engineers, we get to design fascinating systems like 

this glider. This is exciting! (© Ben Blankenburg/Corbis 

RF/Age Fotostock America, Inc.)

LEARNING OUTCOMES

ENGINEERING FLUID MECHANICS (§1.1*). 

● Defi ne engineering. 
● Defi ne fl uid mechanics. 

MATERIAL SCIENCE TOPICS (§1.2).

●  Explain material behaviors using either a microscopic or a 

macroscopic approach or both. 
● Know the main characteristics of liquids, gases, and fl uids. 
●  Understand the concepts of body, material particle, 

body-as-a-particle, and the continuum assumption.

DENSITY AND SPECIFIC WEIGHT (§1.5).

● Know the main ideas about W = mg
● Know the main ideas about density and specifi c weight.

THE IDEAL GAS LAW (IGL) (§1.6). 
● Describe an ideal gas and a real gas. 
● Convert temperature, pressure, and mole/mass units. 
● Apply the IGL equations.

OPTIONAL ENGINEERING SKILLS (§1.1, §1.3, §1.4, §1.7, §1.8). 

● Apply critical thinking to fl uid mechanics problems. 
● Make estimates when solving fl uid mechanics problems. 
● Apply ideas from calculus to fl uid mechanics. 
● Carry and cancel units when doing calculations. 
● Check that an equation is DH (dimensionally homogeneous). 
● Apply problem solving methods to fl uid mechanics problems.

*Th e symbol § means “section”; e.g., the notation “§1.1” means Section 1.1.
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1.1 Engineering Fluid Mechanics

In this section, we explain what engineering fl uid mechanics means, and then we introduce 
critical thinking (CT), a method that is at the heart of doing engineering well.

About Engineering Fluid Mechanics

Why study engineering fluid mechanics? To answer this question, we’ll start with some 
examples:

• When people started living in cities, they faced problems involving water. Those people 
who solved these problems were the engineers. For example, engineers designed aque-
ducts to bring water to the people. Engineers innovated technologies to remove waste 
water from the cities, thereby keeping the towns clean and free from effluent. Engineers 
developed technologies for treating water to remove waterborne diseases and to remove 
hazards such as arsenic.

• At one time, people had no fl ying machines. So, the Wright Brothers applied the engi-
neering method to develop the world’s fi rst airplane. In the 1940s, engineers developed 
practical jet engines. More recently, the engineers at Th e Boeing Company developed the 
787 Dreamliner.

• People have access to electrical power because engineers have developed technologies such 
as the water turbine, the wind turbine, the electric generator, the motor, and the electric grid 
system.

Th e preceding examples reveal that engineers solve problems and innovate in ways that lead 
to the development or improvement of technology. How are engineers able to accomplish these 
diffi  cult feats? Why were the Wright brothers able to succeed? What was the secret sauce that 
Edison had? Th e answer is that engineers have developed a method for success that is called 
the engineering method, which is actually a collection of submethods such as building math 
models, designing and conducting experiments, and designing and building physical systems.

Based on the ideas just presented, engineering is the body of knowledge that is concerned 
with solving problems by creating, designing, applying, and improving technology. Engineering 
fluid mechanics is engineering when a project involves substantial knowledge from the 
discipline of fl uid mechanics.

Defi ning Mechanics

Mechanics is the branch of science that deals with motion and the forces that produce this 
motion. Mechanics is organized into two main categories: solid mechanics (materials in the 
solid state) and fluid mechanics (materials in the gas or liquid state). Note that many of the 
concepts of mechanics apply to both fl uid mechanics and solid mechanics.

Critical Thinking (CT)

Th is section introduces critical thinking. Rationale. (1) Th e heart of the engineering method 
is critical thinking (CT); thus, skill with CT will give you the ability to do engineering well. 
(2) Applying CT while you are learning fl uid mechanics will result in better learning. 

Examples of CT are common. One example is seen when a police detective uses physi-
cal evidence and deductive reasoning to reach a conclusion about who committed a crime. A 
second example occurs when a medical doctor uses diagnostic test data and evidence from 
a physical examination to reach a conclusion about why a patient is ill. A third example ex-
ists when an engineering researcher gathers experimental data about groundwater fl ow, then 
reaches some conclusions and publishes these conclusions in a scientifi c journal. A fourth 
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example arises when a practicing engineer uses experimental data and engineering calcula-
tions to conclude that Site ABC is a good choice for a wind turbine. Th ese examples reveal 
some facts about critical thinking:

• CT is used by professionals in most fi elds (e.g., detectives, medical doctors, scientists, and 
engineers).

• Professionals apply CT to avoid major mistakes. No competent detective wants an innocent 
person convicted of a crime. No competent physician wants to make an incorrect diagnosis. 
No competent engineer wants a bridge to fail.

• CT involves methods that are agreed upon by a professional community. For example, the 
method of fi ngerprinting is accepted within the law enforcement community. Similarly, en-
gineering has many agreed-upon methods (you can learn some of these methods in this 
book).

In summary, critical thinking is a collection of beliefs and methods that are accepted by a 
professional community for reaching a sound or strong conclusion. Some examples of the 
beliefs associated with CT are as follows.

• I want to fi nd out the best idea or what is most correct (I have no interest in being right; I 
want to fi nd out what is right).

• I want to make sure that my technical work is valid or correct (I don’t want major mistakes 
or fl aws; I bend over backwards to validate my fi ndings).

• I am open to new beliefs and ideas, especially when these ideas are aligned with the 
knowledge and the beliefs of the professional community (I don’t get stuck thinking that I 
am always right, my ideas are best, or that I know everything; by being open to new ideas, 
I open myself up to learning).

Regarding “how to do critical thinking,” we teach and we apply the Standard Structure of CT 
(Fig. 1.2), which involves three methods:

1. Issue. Defi ne the problem you are trying to solve so that is clear and unambiguous. Note 
that you will oft en need to rewrite or paraphrase the issue or question.

2. Reasoning. List the reasons that explain why professionals should accept your claim 
(i.e., your answer, your explanation, your conclusion, or your recommendation). To cre-
ate your reasoning, take actions such as stating facts, citing references, defi ning terms, 
applying deductive logic, applying inductive logic, and building subconclusions.

3. Conclusions. State your claim. Make sure your claim addresses the issue. Recognize that 
a claim can be presented in multiple ways, such as an answer, a recommendation, or your 
stance on a controversial issue.

1.2 How Materials are Idealized

To understand the behavior of materials, engineers apply a few simple ideas. Th is section pres-
ents some of these ideas.

 FIGURE 1.2

The Standard Structure of Critical Thinking (SSCT).

Reasoning. Give YOUR reasons and evidence that
explains why other professionals should accept

your claim as valid or accurate.

Issue. Summarize
the problem.

Conclusion. State
YOUR claim.
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The Microscopic and Macroscopic Descriptions

Engineers strive to understand things. For example, an engineer might ask, why does Steel 
Alloy #1 fail given that  Steel Alloy #2 does not fail in the same application? Or, an engineer 
might ask, why does water boil? Why does this boiling sometimes damage materials, as in 
cavitation*? To address questions about materials, engineers oft en apply the following ideas:

• Microscopic Description. Explain something about a material by describing what is 
happening at the atomic level (i.e., describing the atoms, molecules, electrons, etc.).

• Macroscopic Description. Explain something about a material without resorting to 
descriptions at the atomic level.

Forces between Molecules

One of the best ways to understand materials is to apply the idea that molecules attract one 
another if they are close together and repel if they are too close† (Fig. 1.3).

Defi ning the Liquid, Gas, and Fluid

In science, there are four states of matter: gas, liquid, solid, and plasma. A gas is a state of mat-
ter in which the molecules are on average far apart so that the forces between molecules (or 
atoms) is typically very small or zero. Consequently, a gas lacks a fi xed shape, and it also lacks 
a fi xed volume, because a gas will expand to fi ll its container.

A liquid is a state of matter in which the molecules are on average close together so that 
the forces between molecules (or atoms) are strong. In addition, the molecules are relatively 

*Cavitation is explained in §5.5.
†Dr. Richard Feynman, who won the Nobel Prize in Physics, calls this the single most important idea in science. See the 
Feynman Lectures on Physics, Vol. 1, p. 2.
‡For additional details about forces between molecules, consult an expert source, such as a chemistry text or a profes-
sor who teaches material science.

 FIGURE 1.3

A description‡ of the forces between molecules.

When two molecules are far apart (on average),
there is no force between them.
This is like the molecules in an ideal gas.

If  two molecules are close enough, there
is an attractive force (on average). This is
like the molecules in a gas that cannot be
modeled with the ideal gas law. 

At a certain distance, there is a maximum
attractive force between two molecules. This is like
the molecules in a liquid or solid. 

However, if  two molecules are too close, there is a
strong repulsive force between these molecules. This is
why both liquids and solids are difficult to compress.
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free to move around. In comparison, when a material is in the solid state, atoms tend to be 
fi xed in place—for example, in a crystalline lattice. Th us, a liquid fl ows easily as compared 
to a solid. Due to the strong forces between molecules, a liquid has a fi xed volume but not a 
fi xed shape.

Th e term fluid refers to both a liquid and a gas and is generally defi ned as a state of matter 
in which the material fl ows freely under the action of a shear stress*.

Table 1.1 provides additional facts about solids, liquids, and gases. Notice that many fea-
tures in this table can be explained by applying the ideas in Fig. 1.3. Example. Th e density of 
a liquid or a solid is much higher than the density of a gas because the strong attractive forces 
in a liquid or solid act to bring the molecules closer together. Example. A liquid is diffi  cult 
to compress because the molecules will have strong repulsive forces if they are brought close 
together. In contrast, a gas is easy to compress because there are no forces (on average) between 
the molecules.

*Shear stress is explained in §2.4.

TABLE 1.1 Comparison of Solids, Liquids, and Gases

Attribute Solid Liquid Gas

Typical Visualization

Description Solids hold their shape; no 
 need for a container

Liquids take the shape of the 
  container and will stay in an 

open container

Gases expand to fi ll a closed 
 container

Mobility of 

 Molecules

Molecules have low mobility 
  because they are bound in a 

structure by strong 
intermolecular forces

Molecules move around freely 
  even though there are strong 

intermolecular forces between 
the molecules

Molecules move around freely 
  with little interaction except 

during collisions; this is why 
gases expand to fi ll their 
container

Typical Density Oft en high; e.g., the density of 
 steel is 7700 kg/m3

Medium; e.g., the density of 
 water is 1000 kg/m3

Small; e.g., the density of air at 
 sea level is 1.2 kg/m3

Molecular Spacing Small—molecules are close 
 together

Small—molecules are held close 
  together by intermolecular 

forces

Large—on average, molecules 
 are far apart

Effect of Shear 

 Stress

Produces deformation Produces fl ow Produces fl ow

Effect of Normal 

 Stress

Produces deformation that may 
  associate with volume change; 

can cause failure

Produces deformation associated
  with volume change

Produces deformation associated 
 with volume change

Viscosity NA High; decreases as temperature 
 increases

Low; increases as temperature 
 increases

Compressibility Diffi  cult to compress; 
  bulk modulus of steel is 

160 × 109 Pa

Diffi  cult to compress; bulk 
  modulus of liquid water is 

2.2 × 109 Pa

Easy to compress; bulk modulus 
  of a gas at room conditions is 

about 1.0 × 105 Pa
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The Body, the Material Particle, the Body-as-a-Particle

Engineers have invented terms that can be used to describe any material. Learning this vocabu-
lary will help you learn engineering.

In engineering, the term “body” or “material body” has a special meaning Examples. A 
coff ee cup can be a body. Th e air inside a basketball can be a body. A jet airplane can be a body. 
Body or material body is a label to identify objects or matter that exists in the real world, 
without specifying any specifi c object. It is like applying the term “sports” to identify many 
activities (e.g., soccer, tennis, golf, or swimming) without specifying a particular sport.

A material particle is a small region of matter within a material body (Fig. 1.4). Some 
useful facts about material particles are as follows:

• A material particle is oft en imagined to be infi nitesimal in the calculus sense.
• A material particle can be selected or visualized so that it has any shape (e.g., spherical, cubi-

cal, cylindrical, or amorphous*).
• Th e term “fl uid particle” refers to a material particle that is comprised of a liquid or a gas.

Th ere is another way that engineers use the term “particle.” For example, to model the 
motion of an airplane, an engineer can idealize the airplane as a particle. A physics book might 
state that Newton’s second law of motion only applies to a particle. In this context, the term 
has a diff erent meaning than material particle. Th is alternative concept is that the particle (the 
body-as-a-particle) is a way to idealize a material body as if all the mass of the body is concen-
trated at a point and the dimensions of the body are negligible.

Summary. Th ere are two distinct concepts used in engineering: the material particle and 
the body-as-a-particle. However, it is common for the label “particle” to be used for both of 
these ideas. Engineers typically fi gure out which idea is meant by the context in which the 
term is being used.

The Continuum Assumption

Because a body of fl uid is comprised of molecules, properties are due to average molecular 
behavior. Th at is, a fl uid usually behaves as if it were comprised of continuous matter that is in-
fi nitely divisible into smaller and smaller parts. Th is idea is called the continuum assumption.

When the continuum assumption is valid, engineers can apply limit concepts from diff er-
ential calculus. A limit concept typically involves letting a length, an area, or a volume approach 
zero. Because of the continuum assumption, fl uid properties such as density and velocity can be 
considered continuous functions of position with a value at each point in space.

To gain insight into the validity of the continuum assumption, consider a hypothetical 
experiment to fi nd density. Fig. 1.5a shows a container of gas in which a volume Δ–V has been 

*“Amorphous” means without a clearly defi ned shape or form.

 FIGURE 1.4

To fi nd examples of material particles: (1) Select any body; 

for example, we selected a steel tank fi lled with water and 

air. (2) Select a small amount of matter and defi ne this 

small chunk of matter as a material particle. This fi gure 

shows a material particle comprised of air, a material 

particle comprised of water, and a material particle 

comprised of steel.

Air

Tank

Material
particle (air)

Material
particle (water)

Material
particle (steel)

H2O
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identifi ed. Th e idea is to fi nd the mass of the molecules Δm inside the volume and then to 
calculate density by

ρ =
Δm
ΔV

Th e calculated density is plotted in Fig. 1.5b. When the measuring volume ΔV is very small 
(approaching zero), the number of molecules in the volume will vary with time because of the 
random nature of molecular motion. Th us, the density will vary as shown by the wiggles in 
the blue line. As volume increases, the variations in calculated density will decrease until the 
calculated density is independent of the measuring volume. Th is condition corresponds to the 
vertical line at ΔV1. If the volume is too large, as shown by ΔV2, then the value of density may 
change due to spatial variations.

In most applications, the continuum assumption is valid, as shown by the next example.

EXAMPLE. Probability theory shows that including 106 molecules in a volume will allow 
the determination of density to within 1%. Th us, a cube that contains 106 molecules should 
be large enough to accurately estimate macroscopic properties such as density and velocity. 
Find the length of a cube that contains 106 molecules. Assume room conditions. Do calcula-
tions for (a) water and (b) air.

Solution. (a) Th e number of moles of water is 106/6.02 × 1023 = 1.66 × 10−18 mol. Th e 
mass of the water is (1.66 × 10−18 mol)(0.0180 kg/mol) = 2.99 × 10−20 kg. Th e volume of 
the cube is (2.99 × 10−20 kg)/(999 kg/m3) = 2.99 × 10−23 m3. Th us, the length of the side of 
a cube is 3.1 × 10−8 m. (b) Repeating this calculation with air gives a length of 3.5 × 10−7 m.

Review. For the continuum assumption to apply, the object being analyzed would need to 
be larger than the lengths calculated in the solution. If we select 100 times larger as our 
criteria, then the continuum assumption applies to objects with:
• Length (L) > 3.1 × 10−6 m (for liquid water at room conditions)
• Length (L) > 3.5 × 10−5 m (for air at room conditions)

Given the two length scales just calculated, it is apparent that the continuum assumption 
applies to most problems of engineering importance. However, there are a few situations where 
the problem length scales are too small.

EXAMPLE. When air is in motion at a very low density, such as when a spacecraft  enters 
the earth’s atmosphere, then the spacing between molecules is signifi cant in comparison to 
the size of the spacecraft .

EXAMPLE. When a fl uid fl ows through the tiny passages in nanotechnology devices, then 
the spacing between molecules is signifi cant compared to the size of these passageways.

FIGURE 1.5

When a measuring volume ΔV  is 

large enough for random molecular 

effects to average out, the 

continuum assumption is valid.

Gas

(a) (b)

Selected 
volume = ΔV

Continuum assumption
is valid.

ΔV2

Δm
ΔV

Volume ΔV

ΔV1

Gas molecules
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1.3 Weight, Mass, and Newton’s Law of Gravitation

Th is section reviews weight and mass and also introduce ideas (called the “voice of the engineer”) 
that will help you learn fl uid mechanics better. 

Voice of the Engineer. Build working knowledge in every subject that you learn. Working 
knowledge is defi ned as knowledge that you have fi rmly locked into your brain (no need to look 
up anything) that is useful for engineering tasks. Rationale. Working knowledge is essential 
for estimation and validation, and these two skills are essential for doing engineering well. 
Examples of working knowledge are as follows:

• 1.0 pound of force (i.e., 1.0 lbf) is about 4.5 newtons.
• 1.0 horsepower is about 750 watts.
• Th e weight of water at typical room conditions is about 10,000 newtons for each cubic 

meter.

Voice of the Engineer. Learn the meaning of main concepts such as mass and force. 
Rationale. Understanding concepts and the relationships between these concepts is needed if  
you want to apply your knowledge. 

Defi ning Mass

Th e mass of 1.0 liters of liquid water at room conditions is 1.0 kilograms. A body with a mass 
of 2.0 slugs has a mass of 29 kilograms. In Newton’s second law, the sum-of-forces-vector is 
exactly balanced by the product of the mass and the acceleration. Mass is a property of a body 
that provides a measure of the amount of matter in the body. For example, Body A, which has 
a mass of 20 grams, has more matter than Body B, which has a mass of 5 grams.

Recommended working knowledge. Know four mass units (kilograms, grams, slugs, 
and pounds mass) and be able to convert between these units without the need of a calcu-
lator*. Regarding conversion formulas, see Table F.1, which is located on the inside cover 
of this text.

Defi ning Force

When water falls in a waterfall, we can say that the earth is pulling on the water with a force 
that is called the gravity force. When wind blows on a stop sign, we can say that the air is exert-
ing a drag force on the sign. When water behind a dam pushes on the dam, we can say that the 
water is exerting a hydrostatic force on the face of the dam.

Some facts about force are as follows:

• Every force can be thought of a push or as a pull of one body on another.
• Force is a vector. In this text, we use a bold face roman font (e.g., F) to represent a vector. To 

represent the magnitude of a vector we use a italic font (e.g., F).
• Recommended working knowledge. Know two force units: pounds-force (lbf) and newtons 

(N). Be able to convert units (i.e., make estimates) without the need of a calculator.
• Forces classify into two categories:

• A surface force is any force that requires the two bodies to be touching. Most forces are 
surface forces. Some books use the term contact force.

*Your accuracy should be typical of an engineering estimate—for example, within 10% of the number you would get 
if you used a calculator.
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• A body force is any force that does not require the two bodies to be touching. Th ere are 
only a few types of body forces (e.g., the gravity force, the electrostatic force, and the mag-
netic force).

• Another way to describe forces is to talk about action forces (a force that acts to cause a body 
to accelerate) and reaction forces (a force that acts to prevent a body from accelerating; typi-
cally a force from a support). We do not use the concepts of action and reaction forces in this 
textbook.

In summary, a force is a push or pull between two bodies. A push or pull is an action that 
will cause a body to accelerate if the sum-of-forces vector in Newton’s Second Law of Motion 
is nonzero.

Equation Literacy

Voice of the Engineer. Build equation literacy in all your engineering subjects. Rationale. 
Equation literacy is essential for building math models, and building math models is arguably 
the most important skill of the engineering method.

You have equation literacy for equation XYZ if you can do the following tasks: (1) You 
can explain how the equation was derived or where the equation came from. (2) You can 
explain the main ideas—that is, the physical interpretation—of the equation. (3) You can list 
the common equational forms, defi ne each variable, and state the units and dimensions. (4) 
You can describe the assumptions and limitations of the equation and make correct choices 
about when to apply this equation or when to avoid applying this equation. (5) You have a 
systematic method for applying the equation correctly.

Newton’s Law of Universal Gravitation (NLUG)

Newton’s Law of Universal Gravitation (NLUG) reveals that any two bodies will attract each 
other with a force F, which is called the gravitational force (Fig. 1.6). Because this idea applies 
to any two bodies located anywhere in the universe, the equation is universal (hence the name).

Th e magnitude of the gravitational force F is given by

 F = G 
m1 m2

R2  (1.1)

where the term G = 6.674 × 10−11 N∙m2/kg2 is called the gravitational constant, m1 is the mass of 
Body #1, m2 is the mass of Body #2, and R is the distance between the center of mass of each body.

Th e law of gravity, like nearly all scientifi c laws, was developed by inductive reasoning. In 
particular, Newton examined data on planetary motion and found that the data were fi t by 
Eq. (1.1). Newton concluded that the equation must be true in general.

To apply Eq. (1.1) on earth, start with Fig. 1.6 and let Body #1 represent the earth and 
Body #2 represent a body that is on or near the surface of the earth. Now, G and m1 are constant 
and R is very nearly constant. Th us, defi ne a new constant g that is given by g ≡ GmE /R2

E, in 

FIGURE 1.6

Any two bodies will attract one another. The corresponding force 

is called the gravitational force. Note that the magnitude of 

the gravitational force on Body #1 equals the magnitude of the 

gravitational force on Body #2.

Body #1
Mass = m1 

Body #2
Mass = m2 

F
F

R
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which the subscript E denotes “earth.” Also, rename the gravitational force F to be the weight 
of the body W. Th en, Eq. (1.1) simplifi es to

 W =  mg (1.2)

where W is the weight of a body on a planet (typically Earth), m is the mass of the body, and 
g is a constant.

Useful Facts and Information

• Th e constant g is called gravitational acceleration. On earth, this parameter varies 
slightly with altitude; however, engineers commonly use the standard value, which is 
g = 9.80665 m/s2 = 32.1740 ft /s2.

• Gravitational acceleration (g) has a useful physical interpretation; g is the vertical component 
of acceleration that results when the vertical component of the sum-of-forces-vector in New-
ton’s Second Law of Motion is exactly equal to the weight vector.

• In general, a falling body will not accelerate at a rate g because of the presence of additional 
forces, such as the lift  force, the drag force, or the buoyant force.

• It is common for people to state that W = mg is derived from ΣF = ma. However, it is more 
correct to say that W = mg is derived from NLUG.

• Weight is the gravitational force acting on a body from a planet (typically Earth).
• Weight and mass are diff erent concepts. For example, the mass of a body is the same at 

any location whereas the weight can change with location. For example, if a body weighs 
60 newtons on Earth, the same body will weigh about 10 newtons on the moon. Also, recog-
nize that it is common (but incorrect) to report a weight using mass units. For example, to 
say that a body weighs 10 grams or that a body weighs 60 kg is incorrect.

Relating Force and Mass Units

We wrote this section because we have seen many mistakes involving force and mass units. 
Th ree useful ideas about units are (1) units were invented by people, (2) units are related to 
each other by equations, and (3) the defi nition of a given unit can be looked up.

Th e defi nition of a newton is “one newton of force is the quantity of force that will give one 
kilogram of mass an acceleration of one meter per second squared.”

To relate force and mass units, engineers start with Newton’s second law of motion 
(ΣF = ma). Next, apply the defi nition of the newton to conclude that it must be true that

 (1.0 N) ≡ (1.0 kg)(1.0 m/s2) (1.3)

Since Eq. (1.3) is true, it must also be true (by algebra) that

 1.0 = (kg ∙ m
N ∙ s2 ) (1.4)

Th us, the weight of a 2.0 kilogram body must be 19.6 N because of the analysis shown in 
Eq. (1.5).

 W = mg =
2.0 kg    9.81 m

              s2

   N ∙ s2

    kg ∙ m
= 19.6 N (1.5)

Do you see the logic? Eq. (1.5) must be true because it is based on correct facts that are applied 
in a correct way. Th e main issue that we want to address is that many people become confused 
with English units. However, with English units you can apply the same logic. In particular, start 
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with the defi nition of the pound-force (lbf). One pound of force is the amount of force that will 
accelerate one pound of mass (lbm) at a rate of 32.2 feet per second squared. Th us, it is true that

 (1.0 lbf ) ≡ (1.0 lbm)(32.2 ft/s2) (1.6)

Since Eq. (1.6) is true, it must also be true (by algebra) that

 1.0 = ( lbf ∙ s2

32.2 lbm ∙ ft) (1.7)

Th us, the weight of a 2.0 lbm body must be 2.0 lbf because of the analysis shown in Eq. (1.8).

 W = mg =
2.0 lbm     32.2 ft

                s2

   lbf ∙ s2

     32.2 lbm ∙ ft
= 2.0 lbf (1.8)

Eq. (1.8) shows that the magnitude of the weight (2.0) is the same as the magnitude of the mass 
(2.0). Th is occurs because of the way that English units are defi ned. It is correct to say that a body 
that has a mass of 2.0 lbm will have a weight of 2.0 lbf on earth. However, avoid generalizing this. 
For example, a body with a mass of 2.0 lbm will have a weight about 0.33 lbf on the moon. Also, 
avoid saying that 2.0 lbm equals 2.0 lbf, because mass and weight are diff erent concepts.

The General Equation

A general equation is an equation that applies to many or to all problems. A special-case 
equation is an equation that is derived from a general equation but is more limited in scope 
because there are assumptions that must to be met in order to apply the special-case equation.

Voice of the Engineer. Learn the general equations and then derive each special-case equa-
tion on an as needed basis. Rationale. (1) Given that there are only a few general equations, 
this approach will make your learning simpler. (2) You are less likely to make mistakes because 
general equations, by defi nition, apply more oft en than special-case equations. Examples of 
general and special case equations follow.

• NLUG is a general equation, and W = mg is a special-case equation that is derived from NLUG.
• Newton’s second law of motion, ΣF = ma, is general equation; note that this is a vec-

tor equation. Some special-case equations that can be derived from this equation are 
ΣFx = max (a scalar equation) and ΣFz = 0 (also a scalar equation).

• Th e general equation that defi nes mechanical work W is the line integral of the force vector 
dotted with the displacement vector W = ∮

x2

x1  
F∙dx. One associated special-case equation 

 is W = Fd, where W is work, F is force, and d is displacement.

1.4 Essential Math Topics

Estimates

Voice of the Engineer. Become skilled with pencil/paper estimates. A pencil/paper estimate 
is defi ned as an estimate that you can do using only your brain, a pencil, and a sheet of paper 
(i.e., no books, calculators, or computers needed). Rationale: (1) All engineering calculations 
are estimates anyway; learning pencil/paper estimation skills will give you great insight into the 
nature of engineering estimates. (2) In the process of learning how to do pencil/paper estimates, 
you will acquire a great deal of practical knowledge. (3) You will save yourself huge amounts of 
time because you will do calculations much faster. (4) You will have strong methods for validat-
ing your technical work. (5) It is fun to fi gure out clever ways to estimate things.
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Four Tips for Representing Numbers

To represent your numerical results in simple and eff ective ways, we have four recommendations:

1. Represent your result so that the digit term is between 0.1 and 1000; this makes your result 
easier to understand and remember. For example, 645798 can be represented as 646E3 or 
as 64.6E4 or as 6.46E5. 

2. Use scientifi c or engineering notation to represent large and small numbers.
3. Use metric prefi xes to represent numbers; for example, 142,711 pascals can be represented 

as 143 kPa.
4. Use a maximum of three signifi cant fi gures to represent your fi nal answers (unless you can 

justify more signifi cant fi gures).

Scientific notation is method of writing a number as a product of two numbers: a digit term and 
an exponential term. For example, the number 7600 is written as the product of 7.6 (the digit term) 
and 103 (the exponential term) to give 7.6 × 103. Fact. Th ere are three common forms of scientifi c 
notation, which are as follows: 7.6 × 103 = 7.6E3 (upper case “E”) = 7.6e3 (lower case “e”). Avoid 
mixing up the “e” that is used in scientifi c notation with Euler’s number, which is e = 2.718.

Engineering notation is a version of scientifi c notation in which the powers of 10 are 
written as multiples of three. Example. 0.000475 = 4.75E-4 (scientifi c notation) = 0.475E-3 
(engineering notation) = 475E-6 (engineering notation). Example. 692000 = 6.92E5 (scien-
tifi c notation) = 0.692e6 (engineering notation).

Unit Prefixes (Metric System). In the SI system, it is common to use prefi xes on units to 
multiply or divide by powers of ten. Example. 0.001 newtons =1.0 mN. Example. 0.000475 m = 
0.475 mm = 475 μm. Example. 1000 pascals = 1.0 kPa.

Significant Figures. When a number is reported with three signifi cant fi gures (e.g., 1.97), 
this means that two of the digits are known with precision (i.e., the 1 and the 9), and one of the 
digits (i.e., the 7) is an approximation. Th e rationale for signifi cant fi gures is that values in en-
gineering (e.g., the density of water is about 998 kg/m3) ultimately come from measurements, 
and measurements can only provide certain levels of precision. In this text, we report answers 
with three signifi cant fi gures. Of course, during intermediate calculations, you should carry 
more than three signifi cant digits to prevent rounding errors.

Thinking with the Derivative

We have seen many mistakes because the main idea of the derivative was not in place. Th us, we 
wrote this subsection to explain this idea in detail.

To describe a common mistake, we’ll give an example of this mistake. Suppose you were 
asked to answer the following true/false question. (T/F). If a car has traveled in a straight line 
for Δx = 10.0 meters during a time interval of Δt = 2.5 seconds, then its speed at the end of 
the time interval is (10.0 m)/(2.5 s) = 4.0 m/s.

It seems like one could answer this question as true, because V = (Δx)/(Δt) = (10.0 m)/
(2.5 s) = 4.0 m/s. However, this answer is only valid if the speed of the car was constant with 
time. A better answer is to say false, because there is not enough information to reach the 
conclusion that the car is traveling at 4 m/s at the end of the time interval. Th e problem we 
are illustrating is the diff erence between average speed and instantaneous speed. Th e best way 
to think about speed is to apply the defi nition of the derivative. In words, speed is the ratio 
of distance traveled to the amount of time in the limit as the amount of time goes to zero. In 
equation form (more compact), speed V is defi ned by

 V = lim
Δt→0

Δx
Δt

 (1.9)

If speed is constant, then Eq. (1.9) will automatically simplify to give the equation for average 
speed. If speed is varying with time, then Eq. (1.9) will give a correct value of speed. Of course, 
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Eq. (1.9) is based on the defi nition of the derivative. Regarding this defi nition, calculus books 
give the defi nition in three ways:

  
dy
dx

= lim
h→0

y(x + h) − y(x)

h
 (1.10)

  = lim
Δx→0

y(x + Δx) − y(x)

Δx
 (1.11)

  = lim
Δx→0

Δy
Δx

 (1.12)

We apply the last defi nition, Eq. (1.12), in multiple places in this text. Th is defi nition shows that 
the derivative means the ratio of Δy to Δx in the limit as Δx goes to zero. Note that the delta symbol 
(i.e., the triangle) preceding the variable y denotes an amount or quantity of the variable y.

Thinking with the Integral

Th e integral was invented to solve problems in which rates change with time. To build up the 
defi nition of the integral, we note that it is tempting to state that the distance a car travels (Δx) 
is given by Δx =VΔt, where V is the speed and Δt is the time that the car has been traveling. 
Th e problem with this formula is that it does not apply in general, because speed can be chang-
ing. To modify the formula so that it is more general, one can do the following:

 Δx =∑
N

i=1
Vi Δti (1.13)

where the motion has been divided into time intervals. Here, Δti is a small time interval, Vi is 
the speed during this time interval, and N is the number of time intervals. To make this for-
mula more accurate, we can let N → ∞, and we arrive at a general formula for distance traveled:

 Δx = lim
N→∞ ∑

N

i=1

Vi Δti (1.14)

Now, the summation on the right hand side of Eq. (1.14) can be modifi ed by applying the 
defi nition of the integral to give

 Δx = ∫
tf

0

V dt (1.15)

In calculus texts, you will fi nd the following defi nition of the integral:

 ∫
b

a
f(x)dx = lim

N→∞ ∑
N

i=1
f(xi) Δxi  (1.16)

Th us, the integral is an infi nite sum of small terms that is applied when a dependent variable f 
is changing in response to changes in the independent variable x.

1.5 Density and Specifi c Weight

Solving most problems in fl uids requires calculation of mass or weight. Th ese calculations 
involve the properties of density and specifi c weight, which are presented in this section.
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Defi ning Density

For a simple problem, density (ρ) can be found by taking the ratio of mass (Δm) to volume 
(ΔV) as in

 ρ =
Δm
ΔV

 (1.17)

For example, if you took 1.0 liter of water at room conditions and measured the mass, the 
amount of mass would be (Δm) ≈ 1000 grams, and so the density would be

ρ = Δm/ΔV = (1000 grams)/(1.0 liter) =  1.0 kg/L

EXAMPLE. What is the mass of 2.5 liters of water? Reasoning. (1) Th e mass is given by 
Δm = ρ(ΔV). (2) Th e density of water at room conditions is about 1.0 kg/L. (3) Th us, the 
mass is Δm = (1.0 kg/L)(2.5 L) = 2.5 kg.

Eq. (1.17) defi nes average density, not the density at a point. To build a more general defi nition 
of density, apply the concept of the derivative (see §1.4). In general, density is defi ned using the 
derivative as shown in Eq. (1.18).

 ρ ≡  lim
ΔV→0 

Δm
ΔV

 (1.18)

where ΔV denotes the volume of a tiny region of material surrounding a point (e.g., an x,y,z 
location) and Δm is the corresponding amount of mass that is contained within this region. 
Th us, density can be defi ned as the ratio of mass to volume at a point.

Some useful facts about density are as follows:

• You can look up density values in the front of the book (Tables F.4 to F.6) and in the appen-
dices (Tables A.2 to A.5).

• In general, the value of the density will vary with the pressure and temperature of the 
ma terial. For a liquid, the variation with pressure is usually negligible.

• Th e density of a gas is oft en calculated by applying the density form of the ideal gas law: 
p = ρRT.

• To calculate the amount of mass in a given volume, it is tempting to apply: Δm = ρΔV . 
However, this equation is a special-case equation, not a general equation. Th e general 
equation which accounts for the fact that density can vary with position is

 m =∫
V
ρdV (1.19)

• Recommended working knowledge. Know the density of liquid water at typical room con-
ditions in common units: ρ = 1000 kg/m3 = 1.0 gram/mL = 1.0 kg/L = 62.4 lbm/ft 3 = 
1.94 slug/ft 3. Know the density of air at atmospheric pressure and 20°C: ρ = 1.2 kg/m3 = 
1.2 g/L.

Defi ning Specifi c Weight

Specific weight is the ratio of weight to volume at a point:

 γ ≡  lim
ΔV→0 

ΔW
ΔV

 (1.20)
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where ΔV denotes the volume of a tiny region of material surrounding a point (e.g., an x,y,z 
location) and ΔW is the corresponding weight of the mass that is contained within this region. 
Specifi c weight and density are related by this equation:

 γ = ρg (1.21)

Th us, if you know one property, you can easily calculate the other. Example. Th e specifi c 
weight corresponding to a density of 800 kg/m3 is γ = (800 kg/m3)(9.81 m/s2) = 7.85 kN/m3.

Th e reasoning to show that Eq. (1.21) is true involves the following steps. (1) On Earth, 
NLUG simplifi es to W = mg. (2) Divide W = mg by volume to give (ΔW/ΔV) = (Δm/ΔV)g. 
(3) Take the limit as volume goes to zero. (4) Apply the defi nitions of γ and ρ to give γ = ρg.

Some useful facts about specifi c weight are as follows:

• You can look values of γ in the front of the book (Tables F.4 to F.6) and in the back of the 
book (Tables A.3 to A.5).

• Since ρ and γ are related via Eq. (1.21), γ varies with temperature and pressure in a similar 
fashion to density.

• Specifi c weight is commonly used for liquids, but not commonly used for gases.
• Recommended working knowledge. Know the specifi c weight of liquid water at typical room 

conditions: γ = 9800 N/m3 = 9.80 N/L = 62.4 lbf/ft 3.

1.6 The Ideal Gas Law (IGL)

Th e IGL is commonly applied in fl uid mechanics. For example, you will likely apply the IGL 
when you are designing products such as air bags, shock absorbers, combustion systems, and 
aircraft .

The IGL, the Ideal Gas, and the Real Gas

Th e IGL was developed by the logical method called induction. Induction involves making 
many experimental observations and then concluding that something is always true because 
every experiment indicates this truth. For example, if a person concludes that the sun will rise 
tomorrow because it has risen every day in the past, this is an example of inductive reasoning.

Th e IGL was developed by combining three empirical equations that had been discovered 
previously. Th e fi rst of these equations, called Boyle’s law, states that when temperature T is 
held constant, the pressure p and volume V of a fi xed quantity of gas are related by

 pV = constant         (Boyle’s law) (1.22)

Th e second equation, Charles’s law, states that when pressure is held constant, the temperature 
and volume V of a fi xed quantity of gas are related by

 
V
T

= constant       (Charles’s law) (1.23)

Th e third equation was derived by a hypothesis formulated by Avogadro: Equal volumes of gases 
at the same temperature and pressure contain equal number of molecules. When Boyle’s law, 
Charles’s law, and Avogadro’s law are combined, the result is the ideal gas equation in this form:

 pV = nRuT (1.24)

where n is the amount of gas measured in units of moles.
Eq. (1.24) is called the pVT form or the mole form of the IGL. Tip. Th ere is no need to 

remember Charles’ law, or Boyle’s law, because they are both special cases of the IGL.
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Th e ideal gas and the real gas can be defi ned as follows:

• An ideal gas refers to a gas which can be modeled using the ideal gas equation, Eq. (1.24), 
with an acceptable degree of accuracy; for example, calculations have less than a 5% devia-
tion from the true values. Another way to defi ne an ideal gas is to state that an ideal gas is 
any gas in which the molecules do not interact except during collisions.

• A real gas refers to a gas which cannot be modeled using the ideal gas equation, Eq. (1.24), 
with an acceptable degree of accuracy because the molecules are close enough together (on 
average) that there are forces between the molecules. Although real gas behavior can be 
modeled, the equations are more complex than the IGL. Th us, the IGL is the preferred model 
if it provides an acceptable level of accuracy.

For every problem that we (the authors) have solved, the IGL has provided a valid model 
for gas behavior; that is, we have never needed to apply the equations used to model real gas 
behavior. However, there are a few instances in which you should be careful about applying 
the IGL:

• When a gas is very cold or under very high pressure, then the molecules can move close 
enough together to invalidate the IGL.

• When both the liquid phase and the gas phase are present (e.g., propane in a tank used for a 
barbecue), you might want to be careful about applying the IGL to the gas phase.

• When a gas is very hot, such as the exhaust stream of a rocket, then the gas can ionize or 
disassociate. Both of these eff ects can invalidate the ideal gas law.

Also, the IGL works well for modeling a mixture of gases. Th e classic example is air, which is a 
mixture of nitrogen, oxygen, and other gases.

Units in the IGL

Because we have seen many mistakes with units, we wrote this subsection to give you the 
essential facts so that you can avoid most of these mistakes and also save time.

Temperature in the IGL must be expressed using absolute temperature. Absolute tem-
perature is measured relative to a temperature of absolute zero, which is the temperature 
at which (theoretically) all molecular motion ceases. The SI unit of absolute temperature is 
Kelvin (K with no degree symbol, as in 300 K). A temperature given in Celsius (°C) can be 
converted to Kelvin using this equation: T(K) = T(°C) + 273.15. For example, a temperature 
of 15°C will convert to 15°C + 273 = 288 K. The English unit of absolute temperature 
is Rankine; for example, a temperature of 70°F is the same as a temperature of 530°R. 
A temperature given in Fahrenheit (°F) may be converted to Rankine using this equa-
tion: T(°R) = T(°F) + 459.67 For example, a temperature of 65°F will convert to 65°F + 
460 = 525°R.

Pressure in the IGL must be expressed using absolute pressure. Absolute pressure is 
measured relative to a perfect vacuum, such as outer space. Now, it is common in engineer-
ing to give a value of pressure that is measured relative to local atmospheric pressure; this is 
called gage pressure. To convert a gage pressure to absolute pressure, add the value of local 
atmospheric pressure. For example, if the gage pressure is 20 kPa and the local atmospheric 
pressure is 100 kPa, then the absolute pressure will be 100 kPa + 20 kPa = 120 kPa. If 
the local atmospheric pressure is unavailable, then use the standard value of atmospheric 
pressure, which is 101.325 kPa (14.696 psi or 2116.2 psf). More details about pressure are 
presented in §3.1.

Th e IGL also uses the mole, defi ned as the amount of material that has the same number 
of “entities” (atoms, molecules, ions, etc.) as there are atoms in 12 grams of carbon 12 (C12). 
Th ink of the mole as a way to count how many. By analogy, the dozen is also a unit for counting 
how many; for example, three dozen donuts is a way of specifying 36 donuts. Th e number of 
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atoms in 12.0 grams of carbon 12 is equal to one mole of atoms. Th is number, called Avogadro’s 
number, is 6.022 × 1023 entities. Th ere are three diff erent mole units in use:

• A gram mole (mol) has 6.022 × 1023 entities (atoms, molecules, etc.).
• A kilogram mole (kg-mol) has (6.022E2)(1000 grams/kg) = 6.022E26 entities.
• A pound-mass mole (lbm-mol) has (454.3 g/lbm)(6.022 × 1023) = 2.732E26 entities.

Another unit issue arises because the amount of matter can characterized by using either 
moles or by using mass. Moles and mass units are be related by using the molar mass, which 
is defi ned by

 M =
amount of mass
number of moles

=
m
n  (1.25)

Values of molar mass can be looked up on the Internet. Some typical values are also listed 
in Table 1.2.

EXAMPLE. What is the mass (in kg) of 2.7 moles of air?

Solution. m = nM = (28.97E-3 kg/mol)(2.7 mol) = 78.2E-3 kg.

The Universal and Specifi c Gas Constant (Ru and R)

In the IGL, there are two gas constants: the universal gas constant and the specifi c gas constant. 
When you write the IGL like this, pV = nRuT, the term Ru is called the universal gas constant. 
Th e word “universal” means that this gas constant is the same for every gas. Th e value of Ru in 
SI units is Ru = 8.314 462 J/mol∙K. Th e value of Ru in traditional units is Ru = 1545.349 ft ∙lbf/
lbm-mol∙°R.

Oft en, engineers prefer to work with mass units instead of mole units. In this case, 
the IGL can be modifi ed like this: (1) Start with Eq. (1.24) and substitute n = m/M to give 
pV = m(Ru/M)T. (2) Defi ne the specifi c gas constant (R) using this equation: R ≡ Ru/M. 
Conclusion. An alternative way to write the IGL is pV = mRT, where R is the specifi c gas 
constant.

Summary. Anytime you are using the IGL, fi gure out whether you need to use R or Ru. As 
needed, you can relate R and Ru using this equation:

 R =
Ru

M
 (1.26)

Also, you can fi nd values of the specifi c gas constant (R) in Table A.2.

EXAMPLE. If 3.0 moles of a gas has a mass of 66 grams, what is the specifi c gas constant 
for this gas (SI units)?

TABLE 1.2 Selected Values of Molar Mass

Substance Molar Mass (grams/mole)

Hydrogen 1.0079
Helium 4.0026
Carbon 12.0107
Nitrogen N2 14.0067
Oxygen O2 15.9994
Dry Air 28.97
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Reasoning. (1) Since molar mass is the ratio of mass/moles, M = (0.066 kg)/(3 mol) = 
0.022 kg/mol. (2) Now that M is known, R = Ru/M = (8.314 J/mol∙K)/(0.022 kg/mol) = 
378 J/kg∙K. 

Conclusion. R = 378 J/kg∙K.

The IGL (Working Equations)

Th e purpose of this subsection is to (a) present three equations that are commonly used to 
represent the IGL, and (b) explain the meaning of a working equation. Before we do this, we 
want to share an idea that we have found to be useful.

Voice of the Engineer. Become skillful with the working equations in each engineering subject 
you study. A working equation is defi ned as an equation that is oft en used in application. Th e 
benefi t of using working equations is simplicity; in particular, each engineering subject has about 
15 working equations. If you know these equations well, then you know a great deal about the 
subject. It is true that most engineering textbooks have hundreds of equations in them. Th is is 
because the authors are using these equations to explain things, but you do not need to remem-
ber most of these equations. 

Th e working equations associated with the IGL are summarized in Table 1.3. Notice that 
there are three common IGL equations called the density form, the mass form, and the mole 
form. Th ese equations are equivalent because you can start with one of these equations and 
derive the other two. Notice that the last column in Table 1.3 provides SI units and tips for 
application.

1.7 Units and Dimensions

Because math involves abstraction, units are uncommon. In contrast, engineering is about do-
ing practical things, so units are essential because units make engineering calculations more 
concrete, understandable, and relevant. In addition, using units and dimensions will save you 

TABLE 1.3 The Ideal Gas Law (IGL) and Related Equations

Description Equation Variables

Density form of the IGL p = ρRT  p = pressure (Pa)
    (use absolute pressure, not gage or 

vacuum pressure)
   ρ = density (kg/m3)
   R =  specifi c gas constant (J/(kg∙K)) 

(look up R in Table A.2)
   T =  temperature (K) (use absolute 

temperature)
Mass form of the IGL pV = mRT  V  = volume (m3)
   m = mass (kg)
Mole form of the IGL, or  pV = nRuT  n = number of moles
 the pVT form   Ru = universal gas constant
   (Ru =  8.314 J/(mol∙K) = 1545 (ft ∙lbf)/

(lbmol∙°R))
Apply this equation to    M = molar mass (kg/mol)
 relate R and Ru R =

Ru

M
  

Apply this equation to 
 relate mass and moles M = m/n 
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abundant amounts of time because errors can be identifi ed and fi xed. Units are so helpful that 
we carry and cancel units 100% of the time, and we encourage this practice for all engineers 
that we teach.

Defi nition of a Unit

Nearly everyone is familiar with units; for example:

• Mass units include the gram, the kilogram, and the pound mass.
• Length units include the meter, the centimeter, the inch, and the foot.
• Time units include the second, the hour, the day, the week, and the year.

In general, a unit is a quantity that is chosen as a standard so that one can describe an amount 
or quantity. Th at is, units allow quantifi cation (i.e., describing “how much”); for example:

• If newtons are the standard (i.e., the unit) for force, then 5 N quantifi es how much push or 
pull is applied.

• If pounds-mass are the standard (i.e., the unit) for mass, then 50 lbm describes a specifi c 
amount of matter.

• If seconds are the standard (i.e., the unit) for time, then 500 s describes a specifi c amount of time.

Th e combination of a number plus an associated unit (e.g., 5 N, 50 lbm, or 500 s) is called a 
measurement or a value.

The Grid Method

Of the various methods for carrying and canceling units, the grid method (Fig. 1.7) is the best 
method that we have seen. To learn how to apply the grid method, see the method and ex-
amples presented in Table 1.4

Th e essence of the grid method is to multiply the right side of the equation by 1.0 (i.e., the 
multiplicative identity) over and over until the units cancel in a way that gives you the desired 
unit. For example, in Fig 1.7, the right side of the equation was multiplied by 1.0 three times:

 1.0 =
1.0 m/s

2.237 mph
 (first time)

 1.0 =
1.0 N

0.2248 lbf
 (second time)

 1.0 =
1.0 W ∙ s

N ∙ m
 (third time)

As shown in the above three examples, a conversion ratio is an equation involving numbers 
and units that can be arranged so that the number 1.0 appears on one side of the equation. 
Example. 100 cm = 1.0 m is a conversion ratio because this equation can be written as 1.0 = 
(100 cm)/(1.0 m).

4.0 lbf 20 mph 1.0 m/s

2.237 mph

1.0 N
0.2248 lbf

W � s

N � m
P = FV =

= 159 W

FIGURE 1.7

The grid method. This example shows a calculation 

of the power P required to ride a bicycle at a speed 

of V = 20 mph when the force to move against wind 

drag is F = 4.0 lbf.
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We recommend four methods for fi nding conversion ratios.

• Method #1. Derive the conversion ratio as shown in the following example:
1. Power is defi ned as

 power =
work
time

2. Substituting SI units shows that

 1.0 W =
1.0 N ∙ m

1.0 s

3. Algebra shows that

 1.0 =
W ∙ s
N ∙ m

• Method #2. Derive the conversion ratio using data from Table F.1 (front of book). Example. 
To relate the speed units of m/s and mph, fi nd the row labeled “Speed” in Table F.1 and 
extract the data that 1.0 m/s = 2.237 mph. Th en, do algebra to show that 1.0 = (1.0 m/s)/
(2.237 mph). Example. To relate the pressure units of kPa and torr, fi nd the row labeled 
“Pressure/Shear Stress” and extract the data that 6.895 kPa = 51.71 torr. Th en, do algebra to 
show that 1.0 = (6.895 kPa)/(51.71 torr) = (1.0 kPa)/(7.50 torr).

• Method #3. Apply a fact; for example, because there are 30.48 centimeters in 1.0 foot, the 
conversion ratio from meters to feet is 1.0 = (0.3048 m)/(1.0 ft ).

• Method #4. Use web resources. We recommend Google and www.onlineconversion.com. 
Example. A common way to measure the volume of water in hydrology is to use the unit of 
acre-feet. However, this unit is not in this textbook. Th us, go to Google, and type in “acre-
feet to cubic meters,” and Google will output “1 acre-feet = 1 233.48184 cubic meters.” Th en, 
do algebra to show that 1.0 = (1233 m3)/(1.0 acre-feet).

Consistent Units

Voice of the Engineer. Before you solve a problem, convert all your units to consistent units (SI 
preferred), do your analysis, and then report your answer in the units that are the most useful for 

TABLE 1.4 Applying the Grid Method (Two Examples)

Step  Example 1 Example 2

Problem Statement => Situation: Convert a pressure of  Situation: Find the force in newtons that is 
  2.00 psi to pascals.   needed to accelerate a mass of 10 g at a rate 

of 15 ft /s2.
Step 1. Write the equation down not applicable F = ma
Step 2. Insert numbers and units p = 2.00 psi F = ma = (0.01 kg)(15 ft /s2)

Step 3. Look up conversion ratios  1.0 =
1 Pa

1.45 × 10−4 psi
 1.0 =

1.0 m
3.281 ft

   1.0 =
N ∙ s2

kg ∙ m (see Table F.1)

Step 4. Multiply terms and cancel units. p = [2.00 psi] [
1 Pa

1.45 × 10−4 psi ]  F = [0.01 kg] [ 15 ft
s2 ][ 1.0 m

3.281 ft ][
N ∙ s2

kg ∙ m ]
Step 5. Do calculations. p = 13.8 kPa F = 0.0457 N
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your context. We call this idea the Consistent Unit Rule. Th e rationale is that this will save you 
a lot of time, keep your documentation shorter and neater, and eliminate mistakes.

Consistent units are defi ned as any set of units for which the conversion factors only 
contain the number 1.0. Th is means, for example, that

• (1.0 unit of force) = (1.0 unit of mass)(1.0 unit of acceleration),
• (1.0 unit of power) = (1.0 unit of work)/(1.0 unit of time), and
• (1.0 unit of speed) = (1.0 unit of distance)/(1.0 units of time).

EXAMPLE. If length is measured in millimeters and force in newtons, then what is the 
consistent unit of pressure? Reasoning. (1) Th e defi nition of consistent units means that 
(1.0 unit of pressure) = (1.0 unit of force)/(1.0 unit of area). (2) Th e unit of area in this case 
is millimeters squared. (3) Combining steps 1 and 2 gives (1.0 unit of pressure) = (1.0 N)/
(1.0 mm2) = N/mm2. (4) Because the unit of N/mm2 is uncommon, it is best to covert this 
to more familiar units like this: (1.0 N/mm2) = (1.0 N)/[(10−3)2(1.0 m)2] = 106 N/m2 = 1.0 MPa. 
Conclusion. Th e consistent unit of pressure for the given units is MPa (mega pascal).

EXAMPLE. Is the given set of units consistent (given set: force is in units of pounds-force 
(lbf), mass in lbm, and acceleration in ft /s2)? Reasoning. (1) By defi nition, (1.0 lbf) = (1.0 lbm)
(32.2 ft /s2). (2) By the defi nition of consistent units, the only number that can appear is the 
number 1.0. (3) Th e number 32.2 is not the number 1.0. (4) Th us, the given set of units can-
not be consistent. Conclusion. Th e given set of units is not consistent.

In principle, there are an infi nite number of sets of consistent units. Fortunately, people 
before us have fi gured out an optimum set—that is, the SI unit system. Th e best method for 
using consistent units is to convert all your units to SI units (Fig. 1.8).

We recommend that do all your technical work in SI units. However, we also recom-
mend that you become skilled with English units. Th is is like being able to speak two lan-
guages, as in I speak “SI units” and I speak “English units,” but making one of the languages 
(i.e., SI units) your language of choice. Regarding English units, there are actually two sys-
tems of units in use. In this text, we combine these two systems and call them “traditional 
units” or “English units.”

Consistent units for both the SI system and the English system are listed in Table 1.5. Th e 
way to use this table is to convert all variables in your problem so that they are expressed using 
only the units listed in Table 1.5. Example. Convert the following values so that they have consis-
tent units: ρ = 50 lbm/ft 3, V = 200 ft /min, D = 12 in. Reasoning. Th e method is to convert the 
given units so that they match the units specifi ed in Table 1.5. Th e conversions are straightfor-
ward, so we do not show these. Conclusion. Use ρ = 1.55 slug/ft 3, V = 3.33 ft /s, and D = 1.0 ft .

The Dimension: A Way to Organize Units

Because there are thousands of units, this section will show you a way to organize units into 
categories called dimensions. Dimensions will be used throughout this book and will be 

FIGURE 1.8

This example shows how 

to apply the Consistent 

Unit Rule.

Calculate the power P (in watts) required to ride a
bicycle at a speed of V = 20 mph when the force to
move against wind drag is F = 4.0 lbf.

To apply the consistent unit
rule to this problem, take
the three steps that follow.

First, convert the given
variables to consistent
units (SI units). 

Second, do your calculations
with consistent units.

Third, report your answer
with the most appropriate
units for your context.

17.8 N 8.94 m
s

W � s
N � m

P = FV = = 159 W

P = 159 W

4.45 N
lbf

20 mpn 0.447 m/s
10/b mp

V = = 8.94 m/s

� �F = (4.0 lbf) = 17.8 N
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featured in Chapter 8, in which a powerful method of analysis (called dimensional analysis) 
is introduced.

Mass is an example of a dimension. To describe the amount of mass, engineers apply vari-
ous units (e.g., slug, gram, kilogram, ounce, pound-mass, etc.) Time is an example of a dimen-
sion. To describe the amount of time, you can apply various  units (seconds, minutes, hours, days, 
weeks, months, years, centuries, etc.). Other examples of dimensions are speed, volume, 
and energy. Each dimension has associated with it many possible units, but the dimension itself 
does not have a specifi ed unit. As these examples show, a dimension is an entity that is measured 
using units. Th e relationship between dimensions and units is shown in Fig. 1.9. Notice that 
dimensions can be identifi ed by asking this question: What are we interested in measuring? For 
example, engineers are generally interested in measuring force, power, energy, and time. Each 
of these entities is a dimension.

EXAMPLE. Is temperature a dimension? Reasoning. (1) A dimension is an entity that is 
measured and quantifi ed with units. (2) Temperature is something (i.e., an entity) that is 
measured and quantifi ed with units such as Kelvin, Celsius, and Fahrenheit. (3) Th us, tem-
perature aligns with the defi nition of dimension. Conclusion. Temperature is a dimension.

Dimensions can be related by using equations. For example, Newton’s second law, F = ma, 
relates the dimensions of force, mass, and acceleration. Because dimensions can be related, 
engineers and scientists can express dimensions using a limited set of dimensions that are 
called primary dimensions (Table 1.6).

A secondary dimension is any dimension that can be expressed using primary dimen-
sions. For example, the secondary dimension “force” is expressed in primary dimensions by 
using ΣF = ma. Th e primary dimensions of acceleration are L/T 2, so

 [F] = [ma] = M
L

T 2 =
ML
T 2  (1.27)

TABLE 1.5 Consistent Units

Dimension SI system English (Traditional) Units

length meter (m) foot (ft )
mass kilogram (kg) slug (slug)
time second (s) second (s)
force newton (N) pounds-force (lbf)
pressure pascal (Pa) pounds-force per square foot (psf)
density kilogram per meter slug per foot cubed (slug/ft 3)
  cubed (kg/m3)
volume cubic meters (m3) cubic feet (ft 3)
power watt (W) foot pounds-force per second (ft ∙lbf/s)

Unit: A standard for measuring “how much”
(e.g., newtons can be applied to quantify
how much force).

Dimension: A category for measurement; what we want to measure.
One can visualize a dimension as a number line. 

newtons (N)
force

FIGURE 1.9

Dimensions describe what 

is measured. Units provide 

the method by which 

quantifi cation is possible.
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In Eq. (1.27), the square brackets means “dimensions of.” Th us [F] means “the dimension of 
force.” Similarly, [ma] means “the dimensions of mass times acceleration.” Notice that primary 
dimensions are not enclosed in brackets. For example, ML/T2 is not enclosed in brackets.

To fi nd the primary dimensions, we recommend two methods:
Method #1 (Primary Method). Figure out the primary dimensions by applying funda-

mental defi nitions on physical quantities.
Method #2 (Secondary Method). Look up the primary dimensions in Table F.1 (front of 

book) or in other engineering references. We recommend that you only use this method if you 
have not yet had enough practice to use Method #1.

EXAMPLE. If work is given the symbol W, what are [W]?

Reasoning.

1. Th e symbol [W] means “the primary dimensions of work.” Th us, the question is asking 
what are the primary dimensions of work?

2. Th e defi nition of mechanical work reveals that (work) = (force)(distance).
3. Th us, [W] = [F][d] = (ML/T2)(L) = ML2/T2.

Conclusion. [W] = ML2/T2.

Dimensional Homogeneity (DH)

Voice of the Engineer. Routinely check each equation you encounter for dimensional ho-
mogeneity. Reasoning. (1) You can recognize and fi x mistakes in equations. (2) Th is skill will 
help you make sense out of each equation you encounter and also make equations easier to 
remember.

An equation is dimensionally homogenous if each term in the equation has the same 
primary dimensions. Th e method for checking an equation for DH is to fi nd the primary dimen-
sions on each term and then check to see if each term has the same primary dimensions*. Th is 
method is illustrated in the next example.

EXAMPLE. Show that the IGL (density form) is DH.

Reasoning.

1. Th e density form of the IGL is p = ρRT.
2. Th e secondary dimensions of pressure are [p] = [force]/[area].
 Th us, the primary dimensions are [p] = M/LT 2.

TABLE 1.6 Primary Dimensions

Dimension Symbol Unit (SI)

Length L meter (m)
Mass M kilogram (kg)
Time T second (s)
Temperature θ kelvin (K)
Electric current i ampere (A)
Amount of light C candela (cd)
Amount of matter N mole (mol)

*Of course, one can also use secondary dimensions or units. However, we recommend using primary dimensions 
because this builds knowledge that is useful when you learn dimensional analysis in Chapter 8.
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3. Th e SI units of the specifi c gas constant R are J/kg∙K.
 Th us, the secondary dimensions are [R] = [energy]/([mass][temperature]).
 Th us, the primary dimensions are [R] = L2/T2θ.
4. Th e IGL can be analyzed as follows:

[p] = [ρ] [R] [T ]

M
LT 2

M
L3

L2

T 2θ
θ

1.0

Same primary
dimensions
∴ DH

M
LT 2

Conclusion. Th e density form of the IGL is dimensionally homogeneous, as shown by the 
analysis just presented.

The π-group (Dimensionless Group)

In fl uid mechanics, it is common to arrange variables so that the primary dimensions cancel 
out. Th is group of variables is called a dimensionless group or a π-group. Th e reason for the use 
of pi (i.e., π) in the label is that the main theorem used in analysis is called the Buckingham ∏ 
theorem. Th is topic is presented in Chapter 8.

A common example of a π-group is the Reynolds number (ReD). One equation for the 
Reynolds number is ReD = (ρVD)∕μ, where ρ = fl uid density, V = velocity, D is pipe diameter, 
and μ = fl uid viscosity. Analysis of the ReD (Fig. 1.10) shows that the primary dimensions 
cancel out.

1.8 Problem Solving

Although people solve problems every day, not everyone is equally skilled at problem solv-
ing. To illustrate this idea, consider the game of golf. Nearly anyone can strike a golf ball with 
a golf club, but only a tiny percentage of the population can do this well. Golfers who have a 
high level of skill owe their abilities to many years of practicing. Problem solving is like this as 
well, but the good news is that the number of skills you need to master is small. Th ese skills are 
explained in this section. We hope you practice these skills (they are fun!) and that over time 
you develop into a great problem solver.

Defi ning Problem Solving

A problem is a situation that you need to resolve, especially when you have no clear idea of 
how to eff ectively resolve the problem. Given that a problem is the situation that needs to be 

[ReD] = = 
VDρ

μ

M
L � T

L L
T

M
L3

L � T
M

The symbol [−] means
that the primary
dimensions cancel out.

∴ [ReD] = [−]

Note [μ] = 

FIGURE 1.10

This example shows how to analyze the Reynolds number to 

establish that the primary dimensions cancel out.
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resolved, then problem solving is a label for the methods that empower you to solve problems. 
A person who is skilled at problem solving can create great solutions with minimal amounts 
of time, eff ort, and cost while also greatly enjoying the experience. In addition, the process of 
problem solving nearly always results in meaningful learning.

Applying Problem Solving to Building Math Models

Th ere are general methods for solving problems. In this section, we will explain how to apply 
these methods in the context of engineering classes. Our logic can be explained by using an 
analogy: If you are going to spend a lot of time practicing the guitar, then you should apply 
methods that will help you develop as a great guitar player. In the same way, if you are going to 
spend a lot of time in engineering school doing calculation problems, then you should apply 
methods that will help you excel at problem solving in general and building math models in 
particular.

A math model (Fig. 1.11) is comprised of equations plus a method of solving these equa-
tions. Th e purpose of the math model is to help you predict variables that are useful for engi-
neering a system.

On most engineering problems, a math model is useful. For example, suppose you are 
designing a pump and the associated piping system to deliver water from a lake to a building 
located 100 meters higher than the lake. A math model gives you the ability to predict useful 
parameters such as the optimum pipe diameter as well as the size and power requirements 
for the pump. If you did not have a math model, you would have to take a guess on sizing, 
then build something and take data. Th en, you would repeat your steps until you had an ac-
ceptable design fi gured out. However, this guess, build, and repeat method is expensive and 
time-consuming.

In general, a math model can be defi ned as a collection of equations that you solve to give 
you values of parameters that are useful in the context of solving real-world problems. Th e 
main reason that a math model is useful is that it signifi cantly reduces the cost and time you 
need to solve your problem.

Th e method that we use and that we teach is called the Wales-Woods Model (WWM), 
because it is based on the research of Professor Charles Wales and his colleagues (Anni Nardi 
and Robert Stager) and also based on the research of Professor Donald Woods (1-9).

If you apply the WWM, then you will learn more eff ectively and you will grow your problem-
solving skills. Th ere are several reasons that we say this: (1) Th ese methods work for us and 
we can attest to their benefi ts, (2) we have observed many students become better problem 
solvers and have had many students report that these methods benefi ted them, and (3) the 
methods are backed up with research data* that show that the WWM is eff ective. In particular, 
Wales (3) analyzed fi ve years of data and found that when students were taught the methods as 

is idealized with
This is the 
math model

Gives useful
predictions, e.g.,

The Ideal Gas Law

The physical system

…

FIGURE 1.11

Example of a math model of a rocket.

*Th e gains reported in the literature are far above the gains reported for nearly any other educational methods that 
we know of.
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freshmen, the graduation rate increased by 32% and the average grade point average increased 
by 25%, as compared to the control group, the members of which were not taught these skills. 
Based on 20 years of data, Woods (9) reports that students taught problem-solving skills, as 
compared to control groups, showed signifi cant gains in confi dence, problem-solving ability, 
attitude toward lifetime learning, self-assessment, and recruiter response.

Th e WWM is explained in Table 1.7. Skills that are the most useful are marked with a one 
or more check marks (✓). Th e best way to learn the WWM is to practice one or two skills at a 
time until you become good at them. Th en, add a few more skills.

TABLE 1.7 The WWM for Problem Solving

Example. Th is column lists a sample problem and  Explanation. Th is column describes the actions you can
then shows how the Wales-Woods model of problem  take to apply the problem-solving model. Check marks
solving might be applied to this sample problem.  (✓) indicate how useful each action is in the context of an 

engineering course.
 More check marks means that an item is more useful.
Problem Statement Figure out what you are being asked (while reading the
Find the total weight of a 17 ft 3 tank of nitrogen if the  problem):
nitrogen is pressurized to 500 psia, the tank itself weighs  • (✓✓) Interpret the given problem statement.
50 lbf, and the temperature is 20°C. Work in SI units. • (✓) Look up unfamiliar terms.
 • (✓✓) Figure out how the given system works.
 • (✓✓) Visualize the system as it might exist in the real
    world.
 • (✓✓✓) Identify ideas or equations that might apply.
Defi ne the Situation Document your interpretation of the problem:
 • Summarize the situation in one to two sentences.
 • (✓✓✓) Sketch a system diagram.
 • (✓) List values of known variable with units.
 • (✓) Convert units to consistent units.
 • List main assumptions.
 • List properties and other relevant data.
 

State the Goal Describe your goal in a way that is unambiguous (the goal
WT(N) ← Weight total (nitrogen + tank)  should be so clear that there will be no question about 

whether or not the goal is attained).
Generate Ideas Apply the GENI method (from Wales et al. (1)):
1. Weight total 1. (✓✓✓✓✓) Identify an equation that contains your
 ? ✓ ?      goal. Mark your goal with a boxed question mark. Mark
 WT = Wtank + WN2

 (a)      known variables with a check mark and unknown variables

2. Newton’s Law of Universal Gravity (applied to Earth)      with a question mark (e.g., see line a).

 ? ? ✓ 
2. (✓✓✓✓✓) Make any unknown variable(s) your new

 
WN2

= (mN2
)g  (b)

      goal. Repeat the marking process using checks and

3. Th e IGL (mass form)
      question marks (e.g., see lines b and c).

 

✓ ✓ ?  ✓✓

 
3. (✓✓✓✓✓) Repeat steps 1 and 2 until the number of

 
pV = mN2

RT (c)
        equations is equal to the number of unknowns. At this

          point, the problem is solvable (we say that the problem is 
cracked, which means it is now fi gured out).

          In this example, the problem is cracked because there are 
three equations (a, b, and c) and three unknown variables 
(weight of nitrogen, mass of nitrogen, and total weight of 
the tank).
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A tank holds compressed N2

V = 17 ft3 = 0.481 m3

P = 500 psia = 3.45E6 Pa
T = 293 k  

Wtank = 50 lbf = 222 N

Assume: IGL applies
N2 (A2): RN2 = 297 J/kg·k  

N2
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Make a Plan:

1. Calculate the mass of nitrogen using Eq. (c).
2. Calculate the weight of nitrogen using Eq. (b).
3. Calculate the total weight using Eq. (a).

As needed, list the set of steps that you can follow to reach your 
goal state (most of the time, you can skip writing anything down).
In our examples, we oft en write out the plan steps so you can see 
what “making a plan” looks like.

Take Action (Execute the Plan)

1. IGL

 mN2
=

pV
RT

=
3.45 E6 N

m2  0.481 m3    kg ∙ k
297 N ∙ m

 
293 k

 = 19.1 kg

Build your solution:
• Do the calculations.
• (✓✓✓✓) Apply the grid method.
• Report your answer(s) with three signifi cant fi gures.
• Box or mark your answer(s).

2. NLUG

 WN2
= (mN2

)(g) = 19.1 kg 9.81 m
s2

N ∙ s2

kg ∙ m
 = 181 N

3. Total Weight

WT = Wtank + WN2
= (222 + 187) N

  =  409 N
Review the Solution and the Process Review your solution and your methods:
1.  When mass is the goal, the mass from of the IGL is the 

best equation to select.
2.  To check the IGL assumption, I calculated the com-

pressibility factor and found that the IGL was accurate to 
within about 98%.

4.  For this problem, the weight of the gas is signifi cant as 
compared to the weight of the tank.

• (✓✓) Validate your solution.
• Figure out what recommendations you might make.
• (✓✓✓) Review your problem solving methods:

• What actions worked well for you?
• What actions might you take in the future?

• Identify knowledge that was especially useful to you.
• Identify signifi cant aspects of the solution.
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Engineering Fluid Mechanics

• Engineering is the body of knowledge that equips in-
dividuals to solve problems by innovating, designing, 
applying, and improving technology.

• Th e engineering method is a label for the methods used 
to do engineering. Th e engineering method involves sub- 
methods such as critical thinking, building math models, 
the application of scientifi c experiments, and the applica-
tion of existing technologies.

• Mechanics is the branch of science that deals with motion 
and with the forces that produce this motion. Mechanics 
is organized into two main categories: solid mechanics
(materials in the solid state) and fl uid mechanics (materi-
als in the gas or liquid state).

• Engineering fl uid mechanics is engineering when the 
project involves substantial knowledge from the discipline 
of fl uid mechanics.

Fluids: Liquids and Gases

• Both liquids and gases are classifi ed as fl uids. A fl uid is 
defi ned as a material that deforms continuously under 
the action of a shear stress.

• A signifi cant diff erence between gases and liquids is 
that the molecules in a liquid experience strong inter-
molecular forces, whereas the molecules in a gas move 
about freely with little or no interactions except during 
collisions.

• Liquids and gases diff er in many important respects. 
Example #1: Gases expand to fi ll their containers, whereas 
liquids will occupy a fi xed volume. Example #2: Gases 
have much smaller values of density than liquids.

Ideas for Idealizing Materials

• A microscopic viewpoint involves understanding a mate-
rial by understanding what the molecules are doing. A 

1.9 Summarizing Key Knowledge
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macroscopic viewpoint involves understanding a material 
without the need to consider what the molecules are doing.

• Much of material behavior can be explained by under-
standing the forces between molecules. Molecules far 
apart do not attract one another, but molecules close to-
gether have strong attractive forces between them. How-
ever, when molecules are too close, there is a very strong 
repulsive force.

• “Body” is a label to identify objects or matter that exists 
in the real world, without specifying any specifi c object.

• Th e term “particle” is used in two ways:
• A material particle is a small chunk of a body.
• A body-as-a-particle involves idealizing a body as if all 

the mass is concentrated at a single point and the di-
mensions of the body are not relevant. For example, to 
analyze an airplane, we can idealize the airplane as a 
particle.

• In the continuum assumption, matter is idealized as con-
sisting of continuous material that can be broken into 
smaller and smaller parts. Th e continuum assumption 
applies to most problems that involve fl owing fl uids.

Weight and Mass

• Mass is a material property that characterizes the amount 
of matter of a body. Weight is a property that characterizes 
the gravitational force on a body from a nearby planet 
(e.g., Earth).

• Weight and mass are related to each other by Newton’s 
Law of Universal Gravitation (NLUG). Th is law tells us 
that any two bodies anywhere in the universe will attract 
each other. Th e force of attraction depends on the mass 
of each body and inversely on the distance squared be-
tween the centers of mass of each body. In equation form, 

NLUG is F = (G m1 m2)/R2. On Earth, NLUG simplifi es 
to W = mg.

Density and Specifi c Weight

• Density is a material property that characterizes the ratio 
of mass/volume at a point; for example, the density of 
liquid water at room conditions is about ρ = 1.0 kg/L = 
1000 kg/m3.

• Specifi c weight is a material property that character-
izes the ratio of weight/volume at a point; for example, 
the specifi c weight of liquid water at room conditions is 
about γ = 9.8 N/L = 9800 N/m3.

• In general, ρ and γ vary with temperature and pressure. 
For liquids, ρ and γ are usually assumed to be constant 
with pressure but variable with temperature.

The Ideal Gas Law (IGL)

• Most gases can be idealized as an ideal gas.
• To apply the IGL, use correct temperature and pressure 

units.
• Temperature must be in absolute temperature (Kelvin 

or Rankine), not Celsius or Fahrenheit.
• Pressure must be in absolute pressure, not gage or vac-

uum pressure.
• Moles and mass are related by m = nM; similarly, the 

specifi c gas constant and the universal gas constant are 
related by R = Ru/M. Th e molar mass M has dimensions 
of (mass)/(mole).

• Th ere are multiple ways to write equations that represent 
the IGL. Th ree of the most useful equations are p = ρRT,  
pV = mRT, and pV = nRuT.
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Engineering Fluid Mechanics (§1.1)

1.1 Apply critical thinking to an engineering-relevant issue that is 
important to you. Create a written document that lists the issue, 
your reasoning, and your conclusion.
1.2 Do research on the Internet, then create a written document 
in which you (a) defi ne what inductive reasoning means and give 
two concrete examples and (b) defi ne what deductive reason-
ing means and give two concrete examples. Use the CT (§1.1) 
process to justify your reasoning and your conclusions.
1.3 Pick an engineered system that really motivates you. From 
your favorite engineered system, draft  your own defi nition of 
engineering. Th en, see if your defi nition of engineering fi ts the 
defi nition of engineering in §1.1. How does this defi nition com-
pare with yours? What is similar? What is diff erent?
1.4 Select an engineered design (e.g., hydroelectric power as in a 
dam, an artifi cial heart) that involves fl uid mechanics and is also 
highly motivating to you. Write a one-page essay that addresses 
the following questions. Why is this application motivating to 
you? How does the system you selected work? What role do you 
suspect engineers played in the design and development of this 
system?

How Materials Are Idealized (§1.2)

1.5 (T/F) A fl uid is defi ned as a material that continuously 
deforms under the action of a normal stress.
1.6 Propose three new rows for Table 1.1, and fi ll them in.
1.7 Based on molecular mechanisms, explain why aluminum 
melts at 660°C, whereas ice melts at 0°C.
1.8 A fl uid particle

a. is defi ned as one molecule
b. is a small chunk of fl uid
c. is so small that the continuum assumption does not apply

1.9 Th e continuum assumption (select all that apply)
a. applies in a vacuum such as in outer space
b.  assumes that fl uids are infi nitely divisible into smaller and 

smaller parts
c.  is an invalid assumption when the length scale of the 

problem or design is similar to the spacing of the molecules
d.  means that density can idealized as a continuous function 

of position
e. only applies to gases

Weight, Mass and NLUG (§1.3)

1.10 A lift  force on an airfoil is caused by air fl owing over the 
airfoil, resulting in a higher pressure on the bottom of the wing 
than the top. Use the CT process (see §1.1) and the defi nitions of 
surface force and body force to answer whether lift  acting on an 
airfoil is a surface force or a body force.

1.11 Fill in the blanks. Show your work, using conversion factors 
found in Table F.1.

a. 900 g is _____ slugs
b. 27 lbm is ______ kg
c. 100 slugs is ______ kg
d. 14 lbm is _____ g
e. 5 slugs is _____ lbm

1.12 What is the approximate mass in units of slugs for
a. a 2-liter bottle of water?
b. a typical adult male?
c. a typical automobile?

1.13 Answer the following questions related to mass and weight. 
Show your work, and cancel and carry units.

a. What is the weight on Earth (in N) of a 100-kg body?
b. What is the mass (in lbm) of 20 lbf of water on Earth?
c. What is the mass (in slugs) of 20 lbf of water on Earth?
d. How many N are needed to accelerate 2 kg at 1 m/s²?
e. How many lbf are needed to accelerate 2 lbm at 1 ft /s²?
f. How many lbf are needed to accelerate 2 slugs at 1 ft /s²?

Essential Math Topics (§1.4)

1.14 Th e following sketch shows fl uid fl owing over a fl at surface. 
Show how to fi nd the value of the distance y where the derivative 
dV/dy is maximum.

Flat plate
Flow

y

Velocity Profile: V ( y)

5.0 cm

1.0 cm

Problem 1.14

1.15 An engineer measured the speed of a fl owing fl uid as a 
function of the distance y from a wall; the data are shown in the 
table. Show how to calculate the maximum value of dV/dy for 
this data set. Express your answer in SI units.

Problem 1.15

 y (mm) V (m/s)

 0.0 0.00
 1.0 1.00
 2.0 1.99
 3.0 2.97
 4.0 3.94

1.16 Th e plot shows data taken to measure the rate of water fl ow-
ing into a tank as a function of time. Show how to calculate the 
total amount of water (in kg, accurate to one or two signifi cant 
fi gures) that fl owed into the tank during the 100 s interval shown.

PROBLEMS
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Problem 1.16

Density and Specifi c Weight (§1.5)

1.17 How are density and specifi c weight related?
1.18 Density is (select all that apply)

a. weight/volume
b. mass/volume
c. volume/mass
d. mass/weight

1.19 Which of these are units of density? (select all that apply)
a. kg/m3

b. mg/cm3

c. lbm/ft 3

d. slug/ft 3

1.20 If a gas has γ = 14 N/m3, what is its density? State your 
answers in SI units and in traditional units.

Ideal Gas Law (IGL) (§1.6)

1.21 Calculate the number of molecules in
a. one cubic centimeter of liquid water at room conditions
b. one cubic centimeter of air at room conditions

1.22 Start with the mole form of the ideal gas law and show the 
steps to prove that the mass form is correct.
1.23 Start with the universal gas constant and show that 
RN2

= 297 J/(kg∙K).
1.24 A spherical tank holds CO2 at a pressure of 12 atmospheres 
and a temperature of 30°C. During a fi re, the temperature is 
increased by a factor of 3 to 90°C. Does the pressure also increase 
by a factor of 3? Justify your answer using equations.
1.25 An engineer living at a an elevation of 2500 ft  is conducting 
experiments to verify predictions of glider performance. To 
process data, density of ambient air is needed. Th e engineer 
measures temperature (74.3°F) and atmospheric pressure (27.3 
inches of mercury). Calculate density in units of kg/m3. Compare 
the calculated value with data from Table A.2 and make a 
recommendation about the eff ects of elevation on density; that is, 
are the eff ects of elevation signifi cant?
1.26 Calculate the density and specifi c weight of carbon dioxide 
at a pressure of 114 kN/m2 absolute and 90°C.

1.27 Determine the density of methane gas at a pressure of 
200 kN/m2 absolute and 80°C.
1.28 A spherical tank is being designed to hold 10 moles of 
methane gas at an absolute pressure of 5 bar and a temperature 
of 80°F. What diameter spherical tank should be used? Th e mo-
lecular weight of methane is 16 g/mole.
1.29 Natural gas is stored in a spherical tank at a temperature 
of 12°C. At a given initial time, the pressure in the tank is 108 
kPa gage, and the atmospheric pressure is 100 kPa. Some time 
later, aft er considerably more gas is pumped into the tank, the 
pressure in the tank is 204 kPa gage, and the temperature is 
still 12°C. What will be the ratio of the mass of natural gas in 
the tank when p = 204 kPa gage to that when the pressure was 
108 kPa gage?
1.30 At a temperature of 100°C and an absolute pressure of 
4 atmospheres, what is the ratio of the density of water to the 
density of air, ρw/ρa?
1.31 Find the total weight of a 18 ft 3 tank of oxygen if the oxygen 
is pressurized to 184 psia, the tank itself weighs 150 lbf, and the 
temperature is 95°F.
1.32 A 12 m3 oxygen tank is at 17°C and 850 kPa absolute. Th e 
valve is opened, and some oxygen is released until the pressure in 
the tank drops to 650 kPa. Calculate the mass of oxygen that has 
been released from the tank if the temperature in the tank does 
not change during the process.
1.33 What is the (a) specifi c weight and (b) density of air at an 
absolute pressure of 730 kPa and a temperature of 28°C?
1.34 Meteorologists oft en refer to air masses in forecasting the 
weather. Estimate the mass of 1.5 mi3 of air in slugs and kilograms. 
Make your own reasonable assumptions with respect to the 
conditions of the atmosphere.
1.35 A design team is developing a prototype CO2 cartridge for 
a manufacturer of rubber raft s. Th is cartridge will allow a user to 
quickly infl ate a raft . A typical raft  is shown in the sketch. 
Assume a raft  infl ation pressure of 3 psi (this means that the 
absolute pressure is 3 psi greater than local atmospheric 
pressure). Estimate the volume of the raft  and the mass of CO2 
in grams in the prototype cartridge.

d = 0.45 m

4 m

2.9 m

Problem 1.35

Units and Dimensions (§1.7)

1.36 For each variable given, list three common units.
a. Volume fl ow rate (Q), mass fl ow rate (m· ), and pressure (p)
b. Force, energy, power
c. Viscosity
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1.37 In your own words, describe what actions need to be taken 
in each step of the grid method.
1.38 Which of these is a correct conversion ratio? Select all that 
apply.

a. 1 = 1 hp/(550 ft ∙lbf/s)
b. 1 = 101.3 kPa/(14.7 lbf/in2)
c. 1 = 3.785 U.S. gal/(1.0 L)

1.39 If the local atmospheric pressure is 84 kPa, use the grid 
method to fi nd the pressure in units of

a. psi
b. psf
c. bar
d. atmospheres
e. feet of water
f. inches of mercury

1.40 Apply the grid method to calculate the density of an ideal 
gas using the formula ρ = p/RT. Express your answer in lbm/ft 3. 
Use the following data: absolute pressure is p = 60 psi, the gas 
constant is R = 1716 ft ∙lbf/slug∙°R, and the temperature is 
T = 180°F.
1.41 Th e pressure rise Δp associated with wind hitting a window 
of a building can be estimated using the formula Δp = ρ(V2/2), 
where ρ is density of air and V is the speed of the wind. Apply 
the grid method to calculate pressure rise for ρ = 1.2 kg/m3 and 
V = 60 mph.

a. Express your answer in pascals.
b. Express your answer in pounds-force per square inch (psi).
c. Express your answer in inches of water column (in-H2O).

1.42 Apply the grid method to calculate force using F = ma.
a. Find force in newtons for m = 10 kg and a = 10 m/s2.
b. Find force in pounds-force for m = 10 lbm and a = 10 ft /s2.
c. Find force in newtons for m = 10 slug and a = 10 ft /s2.

1.43 When a bicycle rider is traveling at a speed of V = 24 mph, the 
power P she needs to supply is given by P = FV, where F = 5 lbf 
is the force necessary to overcome aerodynamic drag. Apply the 
grid method to calculate:

a. power in watts.
b. energy in food calories to ride for 1 hour.

1.44 Apply the grid method to calculate the cost in U.S. dollars 
to operate a pump for one year. Th e pump power is 20 hp. Th e 
pump operates for 20 hr/day, and electricity costs $0.10 per kWh.

1.45 Of the three lists below, which sets of units are consistent? 
Select all that apply.

a. pounds-mass, pounds-force, feet, and seconds.
b. slugs, pounds-force, feet, and seconds
c. kilograms, newtons, meters, and seconds.

1.46 List the primary dimensions of each of the following units: kWh, 
poise, slug, cfm, cSt.
1.47 In Table F.2 (front of book), fi nd the hydrostatic equation. 
For each form of the equation that appears, list the name, symbol, 
and primary dimensions of each variable.
1.48 In the following list, identify which parameters are dimensions 
and which parameters are units: slug, mass, kg, energy/time, 
meters, horsepower, pressure, and pascals.
1.49 Th e hydrostatic equation is p/γ + z = C, where p is pressure, 
γ is specifi c weight, z is elevation, and C is a constant. Prove that 
the hydrostatic equation is dimensionally homogeneous.
1.50 Find the primary dimensions of each of the following terms.

a.  (ρV2)/2 (kinetic pressure), where ρ is fl uid density and V is 
velocity

b. T (torque)
c. P (power)
d.  (ρV2L)/σ (Weber number), where ρ is fl uid density, V is 

velocity, L is length, and σ is surface tension
1.51 Th e power provided by a centrifugal pump is given by 
P = m· gh, where m·  is mass fl ow rate, g is the gravitational 
constant, and h is pump head. Prove that this equation is 
dimensionally homogeneous.
1.52 Find the primary dimensions of each of the following terms.

a.  ∫
A

ρV 2 dA, where ρ is fl uid density, V is velocity, and A is area.

b.  
d
dt ∫

V
ρV dV , where 

d
dt

 is the derivative with respect to time, 

    ρ is density, V is velocity, and V  is volume.

Problem Solving (§1.8)

1.53 Apply the WWM and the grid method to fi nd the accelera-
tion for a force of 2 N acting on an object of mass 7 ounces. Th e 
relevant equation is Newton’s second law of motion, F = ma. 
Work in SI units, and provide the answer in meters per second 
squared (m/s2).



FIGURE 2.1
This photo shows engineers observing a fl ume, which 

is an artifi cial channel for conveying water. This fl ume 

is used to study sediment transport in rivers. (Photo 

courtesy of Professor Ralph Budwig of the Center for 

Ecohydraulics Research, University of Idaho.)

Fluid Properties

CHAPTER ROAD MAP This chapter introduces ideas for idealizing real-world problems, introduces 
fl uid properties, and presents the viscosity equation.

CHAPTERTWO

LEARNING OUTCOMES

SYSTEM, STATE, AND PROPERTY (§2.1).

●  Defi ne system, boundary, surroundings, state, steady state, 

process, and property.

FINDING FLUID PROPERTIES (§2.2).

●  Look up appropriate values of fl uid properties and document your 

work. 
●  Defi ne each of the eight common fl uid properties.

DENSITY TOPICS (§2.3). 

●  Know the main ideas about specifi c gravity. 
●   Explain the constant density assumption and make decisions 

about whether or not this assumption is valid. 
●   Determine changes in the density of water corresponding to a 

pressure change or a temperature change.

STRESS (§2.4). 

●  Defi ne stress, pressure, and shear stress.
●  Explain how to relate stress and force. 
●  Describe each of the seven common fl uid forces.

THE VISCOSITY EQUATION (§2.5).

●  Defi ne the velocity gradient and fi nd values of the velocity gradient. 
●  Describe the no-slip condition. 
●  Explain the main ideas of the viscosity equation.
●  Solve problems that involve the viscosity equation.
●  Describe a Newtonian and non-Newtonian fl uid.

SURFACE TENSION (§2.6).

●  Know the main ideas about surface tension.
●  Solve problems that involve surface tension.

VAPOR PRESSURE (§2.7).

●  Explain the main ideas of the vapor pressure curve.
●  Find the pressure at which water will boil.

32
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2.1 System, State, and Property

Th e vocabulary introduced in this section is useful for solving problems. In particular, these 
ideas allow engineers to describe problems in ways that are precise and concrete.

A system is the specifi c entity that is being studied or analyzed by the engineer. A system 
can be a collection of matter, or it can be a region in space. Anything that is not part of the 
system is considered to be part of the surroundings. Th e boundary is the imaginary surface 
that separates the system from its surroundings. For each problem you solve, it is your job as 
the engineer to select and identify the system that you are analyzing.

EXAMPLE. For the fl ume shown in Fig. 2.1, the water that is situated inside the fl ume 
could be defi ned as the system. For this system, the surroundings would be the fl ume walls, 
the air above the fl ume, and so on. Notice that engineers are specifi c about what the system 
is, what the surroundings are, and what boundary is.

EXAMPLE. Suppose an engineer is analyzing the air fl ow from a tank being used by a 
SCUBA diver. As shown in Fig. 2.2, the engineer might select a system comprised of the 
tank and the regulator. For this system, everything that is external to the tank and regulator 
is the surroundings. Notice that the system is defi ned with a sketch because this is sound 
professional practice.

If you make a wise choice when you select a system, you increase your probability of 
getting an accurate solution, and you minimize the amount of work you need to do. Although 
the choice of system must fi t the problem at hand, there are oft en multiple possibilities for 
which system to select. Th is topic will be revisited throughout this textbook as various kinds of 
systems are introduced and applied.

Systems are described by specifying numbers that characterize the system. Th e numbers 
are called properties. A property is a measurable characteristic of a system that depends only 
on the present conditions within the system.

EXAMPLE. In Fig. 2.2, some examples of properties (i.e., measurable characteristics) are 
as follows:
• Th e pressure of the air inside the tank
• Th e density of air inside the tank
• Th e weight of the system (tank plus air plus regulator)

Some parameters in engineering are measurable, yet they are not properties. For example, 
work is not a property because the quantity of work depends on how a system interacts with its 
surroundings. Similarly, neither force nor torque are properties because these parameters 
depend on the interaction between a system and its surroundings. Heat transfer is not a property. 
Mass fl ow rate is not a property.

Th e state of a system means the condition of the system as defi ned by specifying its prop-
erties. When a system changes from one state to another state, this is called a process. When 
the properties of a system are constant with time, the system is said to be at steady state.

FIGURE 2.2

Example of a system, its surroundings, and the 

boundary.

System: What the engineer 
selects for study (tank plus 
regulator in this example)

Surroundings: Everything that 
is not part of the system (in 
this example, the air bubbles, 
water, diver, etc.)Boundary: The surface

separating the system and the 
surroundings (shown by a dotted 
blue line in this example)
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EXAMPLE. Fig. 2.3 shows air being compressed by a piston in a cylinder. Th e air inside 
the cylinder is defi ned as the system. At state 1, the conditions of the system are defi ned by 
specifying properties such as pressure, temperature, and density. Similarly, state 2 is defi ned 
by specifying these same properties.

EXAMPLE. When air is compressed (Fig. 2.3), this is a process because the air (i.e., the 
system) has changed from one set of conditions (state 1) to another set of conditions (state 2). 
Engineers label processes that commonly occur. For example, an isothermal process is one 
in which the temperature of the system is held constant, and an adiabatic process is one in 
which there is no heat transfer between the system and the surroundings.

Properties are oft en classifi ed into categories. Two examples of categories are as follows:

• Kinematic properties. Th ese properties characterize the motion of your system. Examples 
include position, velocity, and acceleration.

• Material properties. Th ese properties characterize the nature of the materials in your system. 
Examples include viscosity, density, and specifi c weight.

2.2 Looking Up Fluid Properties

One of the most common tasks that engineers perform is to look up material properties. Th is 
section presents ideas that help you perform this task well.

Overview of Properties

Although there are many fl uid properties, there are only a few that you need oft en. Th ese prop-
erties are summarized in Table 2.1. Notice that the properties are organized into three groups.

Group #1: Weight and Mass Properties. Th ree properties (ρ, γ, and SG) are used to character-
ize weight or mass. In general, you can fi nd one of these properties and then calculate either 
of the other two using the following equations: γ = ρg and SG = ρ/ρH2O, (4°C)

= γ/γH2O, (4°C)

Group #2: Properties for Characterizing Viscosity. To characterize friction-like eff ects in 
fl owing fl uids, engineers use viscosity, μ. Viscosity has two common synonyms: dynamic vis-
cosity and absolute viscosity. In addition to viscosity, engineers use another term, kinematic 
viscosity, which is given the symbol ν. Kinematic viscosity is defi ned by

 ν =
μ
ρ  (2.1)

An easy way to distinguish between μ and ν is to check units or dimensions because 
[μ] = M/(L∙T) and [ν] = L2/T. Regarding viscosity, we recommend that you build a 
physical feel for this property by fi nding examples that make sense to you. In this spirit, 

FIGURE 2.3

Air in a cylinder being compressed by a piston. 

State 1 is a label for the conditions of the system 

prior to compression. State 2 is a label for the 

conditions of the system after compression.

State: The condition of a system as specified 
by giving values of properties

System: What the engineer 
selects for study (the air 
inside the cylinder in this 
example)

State 1. The pressure, 
temperature, volume, 
and so on of the air 
before compression

State 2. The pressure, 
temperature, volume, 
and so on of the air after 
compression
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TABLE 2.1 Summary of Fluid Properties

Property

Units 

(SI)

Temperature 

Effects

Pressure Effects 

(common trends) Notes

Density (ρ): Ratio of 
  mass to volume at a 

point

kg
m3

ρ↓ as T↑ if the 
  gas is free to 

expand

ρ↑ as p↑ if a gas is 
 compressed

• Air. Find ρ in Table F.4 or Table A.3.
• Other Gases. Find ρ in Table A.2.
•  Caution! Tables for gases are for p = 1 atm. For other 

pressures, fi nd ρ using the ideal gas law.

ρ↓ as T ↑ for 
 liquids

A liquid is usually 
  idealized with ρ 

independent of 
pressure

• Water. Find ρ in Table F.5 or Table A.5.
•  Note. For water, ρ↑ as T ↑ for temperatures from 0 to 

about 4°C. Maximum density of water is at 
T ≈ 4°C.

• Other Liquids. Find ρ in Table A.4.

Specifi c Weight (γ): 
  Ratio of weight to 

volume at a point

N
m3

γ↓ as T ↑ if fl uid 
 is free to expand

Gas: γ ↑ as p ↑ if a 
 gas is compressed
Liquid: a liquid is usually 
  idealized with γ inde-

pendent of pressure

• Use same tables as for density.
• ρ and γ can be related using γ = ρg.
•  Caution! Tables for gases are for p = 1 atm. For other 

pressures, fi nd γ using the ideal gas law and γ = ρg.
• Typically, γ is not used for gases.

Specifi c Gravity 
  (S or SG): Ratio of 

(density of a liquid) 
to (density of water 
at 4°C)

none SG↓ as T ↑ A liquid is usually 
  idealized with SG 

independent of 
pressure

• Find SG data in Table A.4.
• SG is used for liquids, not commonly used for gases.
• Density of water (at 4°C) is listed in Table F.6.
• SG = γ/γH2O, 4°C = ρ/ρH2O, 4°C.

Viscosity (μ): A 
  property that 

characterizes 
resistance to shear 
stress and fl uid friction

N ∙ s
m2

μ↑ as T ↑ for a 
 gas

A gas is usually 
  idealized with μ 

independent of 
pressure

• Air: Find μ in Table F.4, Table A.3, Fig. A.2.
• Other gases: Find properties in Table A.2, Fig. A.2.
•  Hint: Viscosity is also known as dynamic 

viscosity and absolute viscosity.
•  Caution! Avoid confusing viscosity and 

kinematic viscosity; these are diff erent properties.

μ↓ as T ↑ for a 
liquid

A liquid is usually 
idealized with μ 
independent of pressure

• Water: Find μ in Table F.5, Table A.5, Fig. A.2.
• Other Liquids. Find μ in Table A.4, Fig. A.2.

Kinematic 

  Viscosity (ν): A 
property that 
characterizes the mass 
and viscous properties 
of a fl uid

m2

s
ν↑ as T ↑ for 
 a gas

ν↑ as p↑ for a gas • Air: Find μ in Table F.4, Table A.3, Fig. A.3.
• Other gases: Find properties in Table A.2, Fig. A.3.
•  Caution! Avoid confusing viscosity and kinematic 

viscosity; these are diff erent properties.
•  Caution! Gas tables are for p = 1 atm. For other 

pressures, look up μ = μ(T), then fi nd ρ using the 
ideal gas law, and calculate ν using ν = μ/ρ.

ν↓ as T ↑ for a 
 liquid

A liquid is usually 
  idealized with ν 

independent of 
pressure

• Water: Find ν in Table F.5, Table A.5, Fig. A.3.
• Other liquids: Find ν in Table A.4, Fig. A.3.

Surface Tension 
  (σ): A property that 

characterizes the 
tendency of a liquid 
surface to behave as a 
stretched membrane

N
m

, 
J

m2
σ↓ as T ↑ for a 
 liquid

A liquid is usually 
  idealized with σ 

independent of 
pressure

• Water: Find σ in Fig. 2.18.
• Other liquids: Find σ in Table A.4.
• Surface tension is a property of liquids (not gases).
•  Surface tension is greatly reduced by contaminates or 

impurities.

Vapor Pressure pv: 
  Th e pressure at which 

a liquid will boil

Pa pv ↑ as T ↑ for 
 a liquid

Not applicable • Water: Find pv in Table A-5.

Bulk Modulus of 

  Elasticity Ev: A prop-
erty that characterizes 
the compressibility of 
a fl uid

Pa Not presented 
 here

Not presented here • Ideal gas (isothermal process): Ev = p = pressure.
• Ideal gas (adiabatic process): Ev = kp; k = cp/cv.
• Water: Ev ≈ 2.2 × 109 Pa.
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the following are two examples that we like: Example. Honey has a much higher value of 
viscosity than does liquid water. Th us, it is harder to push a spoon through a bowl of honey 
than it is to push a spoon through a bowl of water. Example. If you try to pour motor oil 
out of its container on a cold day, the oil will pour very slowly because the value of viscosity 
is high. If you heat the motor oil up, then the value of viscosity decreases and the motor oil 
is easier to pour.

Group #3: Miscellaneous Properties. Th e last three properties (σ, pv, and Ev) are used for 
specialized problems. Th ese properties are described later in this chapter.

Property Variation with Temperature and Pressure

In general, the value of a fl uid property varies with both temperature and pressure. Th ese varia-
tions are summarized in the third and fourth columns of Table 2.1. Th e notation ρ↓ as T ↑ is a 
shorthand for saying that density goes down as temperature rises. Th e blue shading is used to 
distinguish between gases and liquids. For example, in the row for viscosity, the text in the blue 
shaded region indicates that the viscosity of a liquid decreases with a temperature rise. Similarly, 
the text that is not shaded indicates that the viscosity of a gas increases with a temperature rise.

Notice that the values of many properties (e.g., density of a liquid, viscosity of a gas) can be 
idealized as being independent of pressure. However, every property varies with temperature.

Finding Fluid Properties

We built Table 2.1 to summarize the details needed for looking up fl uid properties. For example, 
the last column of Table 2.1 lists locations in the text where values of properties are tabulated. 
In the examples that follow, the key details used to solve the problems came from Table 2.1.

EXAMPLE. What is the density of kerosene (SI units) at room conditions? Reasoning. (1) 
At room conditions, kerosene is a liquid. (2) Liquid properties can be found in Table A.4. 
Conclusion. ρ = 814 kg/m3 (20°C and 1.0 atm).

EXAMPLE. In traditional units, what is the dynamic viscosity of gasoline at 150°F? 
Reasoning. (1) Gasoline is a liquid. (2) Because the goal is to fi nd “dynamic viscosity,” note 
that this property is also called “viscosity” and “absolute viscosity.” (3) Viscosity of liquids 
as a function of temperature can be found in Fig. A2.* (4) Read Fig. A.2†  to fi nd that μ is 
approximately 4E-6 lbf∙ft /s2. (5) Note: Given that the vertical scale on Fig. A.2 is hard to 
read, the value of μ was reported to one signifi cant fi gure. Conclusion. μ = 4E-6 lbf∙ft /s2.

EXAMPLE. What is the specifi c weight of air at 20°C and 3.0 atmospheres of pressure (gage)? 
Reasoning. (1) Specifi c weight is related to density via γ = ρg. (2) Density can be calculated 
with the IGL: ρ = p/RT = (4.053E5 Pa)/(287 J/kg∙K)(293.2K) = 4.817 kg/m3. (3) Th us, 
γ = ρg = (4.817 kg/m3

)(9.807 m/s2
) = 47.2 N/m3. Conclusion. γ = 47.2 N/m3.

Quality in Documentation

Voice of the Engineer. Document your technical work so well that you or a colleague could retrieve 
the work three years in the future and easily fi gure out what was done. Rationale. (1) When you 
build eff ective documentation, this provides you with a structure that promotes good thinking. 
(2) In professional practice, you can use your documentation to recall the technical details 

*Fig. A-2 has a semilog scale. As an engineer, you need to be skilled at reading data from a log scale and skilled at 
plotting on log scales. If you have not yet gained these skills, we recommend that you ask your teacher for assistance, 
or consult the Internet.
†We recommend using a ruler and drawing straight pencil lines whenever you are using a log scale. Th is allows you 
to read data more accurately.
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months or years aft er a project is completed. (3) Th orough documentation helps you protect 
your intellectual property and also helps protect your reputation (and your pocketbook) if you 
are involved in a legal confl ict.

Most people (including us) dislike documentation, but well-craft ed documentation saves 
abundant amounts of time and eff ort, so most professionals document their work well. We 
teach and practice a rule called the 5% rule, which is this: Document your technical work in real 
time (no rewriting allowed*) and do this so eff ectively that the maximum amount of extra time 
you need is 5% of your total time.

Regarding quality in the documentation of fl uid properties, we recommend six practices 
(Fig. 2.4):

1. List the name of the fl uid.
2. List the temperature and pressure at which the property was reported by the source. 

Rationale. In general, fl uid properties vary with both temperature and pressure, so these 
values need to be listed. Also, the state (gas, liquid, or solid) depends on temperature and 
pressure.

3. Cite the source of the fl uid property. Rationale. Property data are oft en inaccurate; thus, 
citing your source is a way to provide evidence that your technical work is trustworthy.

4. List relevant assumptions.
5. List the value of and the units of the fl uid property.
6. Be concise; write down the minimum amount of information required to get the job done.

2.3 Topics Related to Density

Th is section presents three topics (specifi c weight, the constant density assumption, and the 
bulk modulus) that are related to fl uid density. Th e fi rst two topics are very important; the last 
topic is of secondary importance.

Specifi c Gravity

Specifi c gravity is useful for characterizing the density or specifi c weight of a material. Specific 
gravity (represented by S or SG) is defi ned as the ratio of the density of a material to the den-
sity of a reference material. Th e reference material used in this text is liquid water at 4°C. Th us,

 SG =
ρ

ρH2O at 4°C
 (2.2)

*Th is is the goal; even the best of us need to rewrite our work every now and then. What you want to avoid is getting 
into the habit of being sloppy and then rewriting your work.

FIGURE 2.4

An example of how to document 

fl uid properties.

Assumption(s)

Fluid

Air is flowing from a large tank to ambient through a horizontal pipe.
Pipe is 1" Schedule 40. D = 1.049 in = 0.0266 m.
V = 10 m/s,  f = 0.015, L = 50 m.

SITUATION

Air
Tank

L

Air has constant density (look up properties at 1 atm).
KE correction factor is   2 = 1.0.

Assumptions:

GOAL

Symbol

Value with units

Source (where fluid property was found)Pressure

Temperature

Air (20°C, 1 atm, Table A.3): ρ = 1.20 kg/m3.
Properties:
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Because γ = ρg, Eq. (2.2) can be multiplied by g to give

 SG =
ρ

ρH2O at 4°C
=

γ
γH2O at 4°C

 (2.3)

Useful Facts
• If SG < 1, then the material will oft en fl oat on water (e.g., oil, gasoline, wood, and Styrofoam 

fl oat on water). If SG > 1, the material will generally sink (e.g., a piece of potato, concrete, 
or steel will generally sink in water).

• If you add oil (e.g., SG = 0.9) to water (SG = 1.0), the oil will fl oat on top of the water. Th is is 
because oil and water are immiscible, which means that they are not capable of being mixed. 
If you add alcohol (e.g., SG = 0.8) to water, the alcohol and water will mix; fl uids that are 
capable of mixing are miscible.

• Th e properties ρ, SG, and γ are related. If you know one of these properties, you can easily 
calculate the other two by applying Eq. (2.3).

• Values of ρ and γ for water at 4°C are listed in Table F.6 (front pages).
• Values of SG for liquids are listed in Table A.4 (appendix).
• SG is commonly used for solids and liquids but is rarely used for gases. Th is textbook does 

not use SG for gases.

Recommended working knowledge:
• SG (petroleum products; e.g., gasoline or oil) ≈ 0.7 to 0.9
• SG (seawater) ≈ 1.03; SG (mercury) ≈ 13.6
• SG (steel) ≈ 7.8; SG (aluminum) ≈ 2.6, SG (concrete) ≈ 2.2 to 2.4

The Constant Density Assumption

If you can justify the assumption that a fl uid has a constant density, this will make your analysis 
much simpler and faster. Th is section presents information about this assumption.

Th e constant density assumption means that you can idealize the fl uid involved in your 
problem as if the density was constant with both position and time. Another way to state the 
assumption is to say that the density can be assumed to be constant even though temperature, 
pressure, or both are changing. To say that the constant density assumption is a “sound” or 
“valid” assumption means that the numbers you calculate in your problem are only impacted 
in a small way (e.g., by less than 5%) by this assumption.

Useful facts:
• Most of the topics and problems in this textbook and other fl uid mechanics textbooks 

assume that density is constant. One notable exception is compressible fl ow (Chapter 12).
• To characterize a density change with respect to a pressure change, engineers oft en use the 

bulk modulus; this topic is presented in the next subsection.
• Th e variation of the density of liquid water with respect to temperature is given in Table A.5.
• When fl ow is steady,* engineers commonly make the following assumptions:

• Liquids. In general, liquids in steady fl ow are assumed to have constant density.
• Gas. For a gas in steady fl ow, the density is assumed to be constant if the Mach number† 

is less than about 0.3.

*Steady fl ow is defi ned in §4.3.
†Th e Mach number gives a ratio of the fl uid speed to the speed of sound; see Chapter 12.

Junyan
高亮

Junyan
高亮



  Pressure and Shear Stress        39

• When fl uid temperatures are changing, it is common to look up a density at an average 
temperature and then assume that the density is constant. Example. If water enters a heat 
exchanger at 10°C and exits at 90°C, assume that the density is constant and look up the 
value of density at 50°C in Table A.5.

The Bulk Modulus of Elasticity

In practice, liquids are nearly always treated as if they are incompressible,* which means that 
the volume of a liquid will not go down if the pressure acting on the liquid is increased; 
that is, the liquid cannot be compressed. However, as an engineer, you want to understand that 
liquids are compressible but that the incompressible assumption is nearly always justifi ed for 
liquids.

Th e fl uid property called bulk modulus gives engineers a way to quantify the degree to 
which a liquid is compressible. For a liquid, the bulk modulus can be described using Eq. (2.4):

 Ev =
−Δp

ΔV/V =
change in pressure

fractional change in volume
 (2.4)

Given that the bulk modulus of elasticity for liquid water at room conditions is 2.2 GN/m2, you 
can apply Eq. (2.4) to quantify the volume change of liquid water.

EXAMPLE. A 1.0 L volume of liquid water is subjected to an isothermal compression 
from atmospheric pressure to a pressure of 1.0 MPa absolute. What is the change in the 
volume of the water? Reasoning. (1) From Eq. (2.4), ΔV = V(−Δp)/Ev. (2) Substituting 
numbers into this equation gives (1E-3 m3)(–(1.0E6 – 1.0E5) Pa)/(2.2E9 Pa) = –4.5E-7 m3. 
Conclusion. Th e volume decreases by about 0.00045 liters, which is about 0.045%.

Summary. It is common but incorrect to say that a given liquid (e.g., water) is incom-
pressible. A better statement is that liquids can usually be assumed to be incompressible. For 
certain types of problems (e.g., water hammer and acoustics), the compressibility of liquids 
must be modeled to produce accurate predictions.

For an ideal gas, Ev for an isothermal compression or expansion is given by

 Ev = p (isothermal process) (2.5)

where p is pressure. To apply Eq. (2.4) to a gas, you would want to let Ev = p and then integrate 
the resulting equation because Ev is not a constant. In addition, Ev depends on the nature of the 
process. For example, if the compression or expansion were adiabatic, then

 Ev = kp (adiabatic process) (2.6)

where k, the specifi c heat ratio, is defi ned in §2.8.

2.4 Pressure and Shear Stress

When you understand stress, many topics in mechanics become easier. Th e big picture is that 
there are only two kinds of stress: normal stress and shear stress. In fl uid mechanics, the normal 
stress† is nearly always just the fl uid pressure; thus, the two kinds of stress are pressure and 
shear stress.

*Except for a few special types of problems, such as water hammer problems and modeling the fl uid in an ink-jet print 
head.
†Th ere is also a viscous component to the normal stress. However, this term is seldom important, and this topic is best 
left  to more advanced fl uids books.



40 CHAPTER 2  •  FLUID PROPERTIES

Defi nition of Stress

To defi ne stress, we begin by noting that stress acts on material particles. For example, if you 
bend a beam, the material particles are deformed by normal stress (Fig. 2.5).

Th us, stress is caused by a load acting on a body. An example for a fl uid body is shown in 
Fig. 2.6.

To build a defi nition of stress, we start by recognizing that the secondary dimensions of 
stress are force/area:

 stress =
force
area  (2.7)

Next, visualize the force on one face of a material particle. Resolve this force into a normal 
component of magnitude ΔFn and a tangential component of magnitude ΔFt (Fig. 2.7).

Th en, the pressure is defi ned as the ratio of normal force to area:

 p ≡  lim
ΔA→0

 
ΔFn

ΔA
 (2.8)

And shear stress is defi ned as the ratio of shear force to area:

 τ ≡  lim
ΔA→0

 
ΔFt

ΔA
 (2.9)

Normal
Stress

FIGURE 2.5

This fi gure shows our favorite way to visualize stress in a 

body. The method goes like this: (1) Select a body comprised 

of a beam made of foam. (2) Mark material particles; this 

example uses squares that are 25 mm on a side. (3) Load 

the beam; this example uses a clamp to exert a bending 

moment. (4) Observe how stress has deformed the material 

particles. (Photo by Donald Elger)

500 kg

This weight causes a load on 
the oil in the cylinder.

Piston

Oil

The load on the oil
causes stress to act on
each material particle.

FIGURE 2.6

In this example, a load (i.e., a weight situated on 

piston) causes stress to act on the oil in a cylinder.

Ft

The magnitude of the tangential component
of the force vector acting on this face of the
material particle is        .  Ft

Fn

Fn

The magnitude of the normal component
of the force vector acting on this
face of the material particle is         .  

A
The area of this face of
the material particle is       . 

�

�

�

�

�

FIGURE 2.7

This sketch shows how the force on one face of a 

material particle can be resolved into a normal force and 

a tangential force.
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Summary. In mechanics, stress is an entity that expresses the forces that material particles 
exert on each other. Stress is the ratio of force to area at a point and is resolved into two 
components:

• Pressure (normal stress). Th e ratio of normal force to area.
• Shear stress. Th e ratio of shear force to area.

More advanced textbooks will present additional ideas about stress. For example, stress is oft en 
represented mathematically as a second-order tensor. However, these topics are beyond the 
scope of this text.

Relating Stress to Force

A common problem is how to relate the stress acting on an area to the associated force on the 
same area. Th e solution is to integrate the stress distribution as follows. 
 defi nition of stress

 force =∫
Area

( force
area ) dA (2.10)

To build the details of the integration, we’ll start with a pressure distribution (Fig. 2.8). To rep-
resent force as a vector quantity, we select a small area and defi ne a unit vector (Fig. 2.9). Th e force 
on the small area is dF = −pn  dA. To obtain the force on the body, add up the small forces 
(F = ΣdF) while letting the size of the small area (i.e., dA) go towards zero. Th e summation 
of small terms is the defi nition of the integral (§1.4). Th us,

 Fp = ∫
A

− pn dA (2.11)

where Fp, called the pressure force, represents the net force on the area A due to the pressure 
distribution. Eq. (2.11) has an important special case:

 Fp = pA (2.12)

Th e reasoning to prove that Eq. (2.12) is true goes like this: (1) Assume that the area A in Eq. (2.11) 
represents a fl at surface. (2) Assume that the pressure in Eq. (2.11) is constant so that p comes out 
of the integral. (3) Th us, Eq. (2.11) can be simplifi ed like this: Fp = p∫A

dA = pA. Note that the 
unit vector was omitted because the direction of a pressure force on a fl at surface is normal to the 
surface and directed towards the surface.

̌

FIGURE 2.8

This fi gure shows the pressure distribution associated with fl uid 

fl owing over a body that has a circular shape. This can represent, 

for example, how pressure varies around the outside of a round 

pier submerged in a river.

Flow

Pressure distribution: How pressure varies 
from point-to-point along a surface (in this 
example, pressure is large in front and low 
in back)

dF is the force on 
a small area dA. 

small area dA
(shown in blue)

n is an unit vector that is 
outward from a surface. FIGURE 2.9

The pressure force on a small section of area on 

a cylinder.
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Summary. Th e pressure force is always given by the integral of pressure over area, which 
is Fp = ∫A

−pn dA. Only in the special case of uniform pressure acting on a fl at surface can you 
calculate the pressure force by using Fp = pA. As always, we recommend that you remember 
the general equation (i.e., the integral) and then derive Fp = pA whenever this equation is 
needed.

Now we can tackle the equation for the shear force, which is represented by the symbol Fs 
or sometimes by Fτ. To build an equation for Fs, we can apply the same logic that was used for 
the pressure force. Step 1 is to start with a stress distribution (Fig. 2.10). Step 2 is to defi ne a 
small area and an associated unit vector (Fig. 2.11). Step 3 is to represent the force on the small 
area as dF = τt dA and then to add up the small forces by using the integral. Th e fi nal result is

 Fτ =∫
A
τt dA (2.13)

where Fτ, the shear force, represents the net force on the area A due to the shear stress distri-
bution. If shear stress is constant and the area of integration is a fl at surface, then Eq. (2.13) 
reduces to

 Fs = τA (2.14)

Summary. Th e shear force is always given by the integral of shear stress over area, which 
is Fs = ∫Aτ t dA. Only in the special case of a uniform shear stress acting on a fl at surface can 
you calculate the shear force by using Fs = τA.

The Seven Common Fluid Forces

In fl uid mechanics, correct analysis of forces is sometimes diffi  cult. Th us, we’d like to share an 
idea that we have found to be helpful: When a force acts between Body #1 (comprised of a fl uid) 
and Body #2 (comprised of any material including another fl uid), there are seven common forces 
that arise. Six of the seven forces are associated with the pressure distribution, the shear stress 
distribution, or both.

Th e seven forces are summarized in Table 2.2. Notice the descriptions and tips presented 
in the third column. Notice in the fourth column that all of the forces are associated with the 
stress distribution except for the surface tension force.

2.5 The Viscosity Equation

Th e viscosity equation is used to represent viscous (i.e., frictional) eff ects in fl owing fl uids. Th is 
equation is important because viscous eff ects infl uence practical matters such as energy usage, 
pressure drop, and the fl uid dynamic drag force.

small area dA
(shown in blue)

dF is the tangential
component of force.

t is an unit vector that is
tangent to the surface.FIGURE 2.11

The shear force on a small section of area on a 

cylinder.

Flow

Shear stress distribution: How
shear stress varies from
point to point along a surface+

FIGURE 2.10

The image shows how shear stress varies for fl ow 

over a circular cylinder.
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The Viscosity Equation

Th e viscosity equation* is

 τ = μ
dV
dy

 (2.15)

Th e viscosity equation relates shear stress τ to viscosity μ and velocity gradient dV/dy. Th e 
viscosity equation is called Newton’s Law of Viscosity in many references.

The Velocity Gradient

Th e term (dV/dy) is called the velocity gradient.† Th e variable V represents the magnitude 
of the velocity vector. In mechanics, velocity is defi ned as the speed and direction of travel of 
a material particle. Th us, when a fl uid is fl owing, each material particle will have a diff erent 
velocity (Fig. 2.12).

Th e variable y in dV/dy represents position as measured from a wall. Because dV/dy is an 
ordinary derivative, you can analyze this term by applying your knowledge of calculus. Th ree 
methods that we recommend are as follows:

Method #1. If you have a plot of V(y), fi nd dV/dy by sketching a tangent line and then 
fi nding the slope of the tangent line by using rise over run.

Method #2. If you have a table of experimental data (e.g., V versus y data), make an esti-
mate based on the defi nition of the derivative from §1.4: dV/dy ≈ ΔV /Δy.

*Th ere is a more general form of this equation that involves partial derivatives. However, Eq. (2.15) applies to many 
fl ows of engineering interest; thus, we leave the more general form to advanced courses.
†Th is is called the velocity gradient because the gradient operator from calculus reduces to the ordinary derivative 
dV/dy for most simple fl ows.

TABLE 2.2 The Seven Common Fluid Forces

# Name Description and Tips Associated With

1 Pressure force Th e force caused by a pressure distribution. Use gage 
 pressure for most problems.

Pressure stress

2 Shear force 
  (viscous force)

Th e force caused by a shear stress distribution. Th is 
 force requires the fl uid to be fl owing.

Shear stress

3 Buoyant force Th e force on a submerged or partially submerged 
  body that is caused by the hydrostatic pressure 

distribution.

Pressure stress

4 Surface tension 
 force

Th e force caused by surface tension. Th e common 
 formula is F = σL.

Forces between molecules

5 Drag force When fl uid fl ows over a body, the drag force is the 
  component of the total force that is parallel to the 

fl uid velocity.

Both the pressure stress and the shear stress

6 Lift  force When fl uid fl ows over a body, the lift  force is the 
  component of the total force that is perpendicular 

to the fl uid velocity.

Both the pressure stress and the shear stress 
  (typically, the eff ect of shear stress is negligible 

as compared to the pressure stress)
7 Th rust force Th e force associated with propulsion; that is, the force 

 caused by a propeller, jet engine, rocket engine, etc.
Both the pressure stress and the shear stress 
  (typically, the eff ect of shear stress is negligible as 

compared to the pressure stress)
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Method #3. If you have an equation for V(y), diff erentiate the equation using methods 
from calculus.

In the context of analyzing the velocity gradient, you will oft en need to apply the no-slip 
condition, which is this: When fl uid is in contact with a solid body, the velocity of the fl uid at the 
point of contact is the same as the velocity of the solid body at the same point. Example. When 
water fl ows in a pipe, the fl uid velocity at the wall is equal to the velocity of the wall, which is 
zero. Example. When an airplane moves through the air, the fl uid velocity at a point situated 
on the wing equals the wing velocity at this same point.

You will oft en see the velocity gradient called the rate of strain because one can start with 
the defi nition of strain and prove that the rate of strain of a fl uid particle is given by the velocity 
gradient. However, this derivation is best left  to advanced texts.

Newtonian versus Non-Newtonian Fluids

As an engineer, you need to make decisions about whether or not an equation applies to a situ-
ation that you are analyzing. One issue in making this decision is whether or not a fl uid can be 
modeled as a Newtonian fl uid. To defi ne a Newtonian fl uid, imagine using air or water, setting 
up an experiment that involves measuring shear stress as a function of velocity gradient, and 
then plotting your data. You will get a straight line (Fig. 2.13) because both air and water are 
Newtonian fl uids.

If you were to select other fl uids, run experiments, and plot the data, you would fi nd that 
some of the datasets do not plot the same as a Newtonian fl uid (Fig. 2.14).

Fig. 2.14 shows three categories of non-Newtonian fl uids. For a shear-thinning fl uid, the 
viscosity of the fl uid decreases as the rate of shear strain (dV/dy) increases. Some common 
shear-thinning fl uids are ketchup, paints, and printer’s ink. For a shear-thickening fl uid, the vis-
cosity increases with shear rate. One example of a shear-thickening fl uid is a mixture of starch 
and water. A Bingham plastic acts like a solid for small values of shear stress and then behaves 
as a fl uid at higher shear stress. Some common fl uids that are idealized as Bingham plastics are 
mayonnaise, toothpaste, and certain muds.

FIGURE 2.12

This sketch shows water fl owing through a round pipe. A velocity 

profile is a sketch or an equation that shows how velocity varies 

with position. B

C  
V

B

 
V

CWater

A

VB     describes the speed of
the material particle that
is situated at point B.  

VA     describes the speed of
the material particle that
is situated at point A.
Because of the no-slip condition,  VA     = 0.0.

VC     describes the speed of
the material particle that
is situated at point C.  

dV
dy

slope = μ 
τ

FIGURE 2.13

A fl uid is defi ned as a Newtonian fluid when a plot of shear stress versus 

velocity gradient gives a straight line.* The slope will be equal to the value 

of the viscosity μ because the governing equation is τ = μ(dV/dy).

*Th e curve also needs to pass through the origin to distinguish a Newtonian fl uid from a Bingham plastic, which is a 
class of non-Newtonian fl uids.
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In general, non-Newtonian fl uids have molecules that are more complex than New-
tonian fl uids. Th us, if you are working with a fl uid that may be non-Newtonian, consider doing 
some research; many of the equations and math models presented in textbooks (including 
this one) only apply to Newtonian fl uids. To learn more about non-Newtonian fl uids, watch 
the fi lm entitled Rheological Behavior of Fluids (1) or see references (2) and (3).

Reasoning with the Viscosity Equation

Notice that the viscosity equation for a Newtonian fl uid is a linear equation. It is a linear equa-
tion because a plot of the equation (Fig. 2.13) is a straight line. In particular, the general equa-
tion for a straight line is y = mx + b, where m is the slope and b is the y intercept. Because the 
viscosity equation is τ = μ(dV/dy), you can see that τ is the dependent variable, μ is the slope, 
dV/dy is the independent variable, and 0.0 is the y intercept.

By using the viscosity equation, you can assess the magnitude of the velocity gradient (i.e., 
dV/dy) and fi gure out things about the magnitude of the shear stress τ (e.g., see Fig. 2.15). Th e 
reasoning can be represented by using arrows, like this:

 τ↑ = μ(dV
dy

↑) (2.16)

In words, Eq. (2.16) says that if the slope (i.e., magnitude of dV/dy) increases, then the shear 
stress must increase. Similarly, the viscosity equation tells us that if slope decreases, then the 
shear stress must decrease. And, if the slope is constant (e.g., Couette fl ow, which is our next 
topic), then the shear stress must be constant.

Shear thinning

Newtonian fluid

Bingham plastic

dV
dy

τ

Shear thickening

FIGURE 2.14

A non-Newtonian fluid (blue lines) is any fl uid that 

does not follow the relationship between shear stress 

and velocity gradient that is followed by a Newtonian 

fl uid.

FIGURE 2.15

This example shows the velocity profi le associated with laminar fl ow in a 

round pipe. Notice how information about shear stress can be deduced 

from a velocity profi le. Here, r is the radial position as measured from the 

centerline of the pipe.

Shear stress is zero at
centerline because 
slope  dV/dr  0.

r

Shear stress at any point
is proportional to dV/dr
(slope of velocity profile).

Shear stress is maximum 
at the wall because slope 
is maximum.
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Couette Flow

Couette fl ow is used as a model for a variety of fl ows that involve lubrication. In Couette fl ow 
(e.g., see Fig. 2.16), a moving surface causes fl uid to fl ow. Because of the no-slip condition, the 
velocity of the fl uid at y = H is equal to the velocity of the moving wall. Similarly, the velocity 
of the fl uid at y = 0 is zero because the bottom plate is stationary. In the region between the 
plates, the velocity profi le is linear.

When the viscosity equation is applied to Couette fl ow, the derivative can be replaced with 
a ratio because the velocity gradient is linear.

 τ = μ
dV
dy

= μ
ΔV
Δy

 (2.17)

Th e terms on the right side of Eq. (2.17) can be analyzed as follows:

τ = μ
ΔV
Δy

= μ
Vo − 0
H − 0

= μ
Vo

H
Th us,

 τ� Couette Flow = constant = μ
Vo

H
 (2.18)

Eq. (2.18) reveals that the shear stress at all points in a Couette fl ow is constant with a magni-
tude of μVo/H.

FIGURE 2.16

Couette fl ow is a fl ow that is driven by a 

moving wall. The velocity profi le in the fl uid is 

linear.

Moving wall

Stationary wall

V V
o

y

Linear velocity profile

H

EXAMPLE 2.1

Applying the Viscosity Equation to Calculate Shear 
Stress in a Poiseuille Flow

Problem Statement

A famous solution in fl uid mechanics, called Poiseuille fl ow, 
involves laminar fl ow in a round pipe (see Chapter 10 for 
details). Consider Poiseuille fl ow with a velocity profi le in the 
pipe given by

V(r) = Vo(1 − (r/ro)
2
)

where r is radial position as measured from the centerline, 
Vo is the velocity at the center of the pipe, and ro is the pipe 
radius. Find the shear stress at the center of the pipe, at the 
wall, and where r = 1 cm. Th e fl uid is water (15°C), the pipe 
diameter is 4 cm, and Vo = 1 m/s.

Defi ne the Situation

Water fl ows in a round pipe (Poiseuille fl ow).

Water
r

V(r) = V
o

1 (r/ro)
2)(

  
r

o
 = 0.02 m

  
V

o
= 1 m/s

Water (15°C, 1 atm, Table A.5): μ = 1.14 × 10–3 N∙s/m2.

State the Goal

Calculate the shear stress at three points:

τ(r = 0.00 m) (N/m2) ➡ pipe centerline
τ(r = 0.01 m) (N/m2) ➡ middle of the pipe
τ(r = 0.02 m) (N/m2) ➡ the wall

Generate Ideas and Make a Plan

Because the goal is τ, select the viscosity equation.
Let the position variable be r instead of y.
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 τ = −μ
dV
dr

 (a)

Regarding the minus sign in Eq. (a), the y in the viscosity 
equation is measured from the wall. Th e coordinate r is in the 
opposite direction. Th e sign change occurs when the variable 
is changed from y to r.

To fi nd the velocity gradient in Eq. (a), diff erentiate the given 
velocity profi le.

 
dV(r)

dr
=

d
dr

(Vo (1 − (r/ro)
2
)) =

−2Vor
r2

o
 (b)

Now, the goal can be found. Plan. Apply Eq. (b) to fi nd the 
velocity gradient. Th en, substitute into Eq. (a).

Take Action (Execute the Plan)

1. Viscosity equation (r = 0 m):

dV(r)
dr ⎸r=0 m

=
−2Vo(0 m)

r2
o

=
−2(1 m/s)(0 m)

(0.02 m)
2 = 0.0 s−1

 τ(r = 0 m) = −μ
dV(r)

dr ⎸r=0 m

 = (1.14 × 10−3 N ∙ s/m2
)(0.0 s−1

)

 =  0.0 N/m2

2. Viscosity equation (r = 0.01 m):

 
dV(r)

dr ⎸r=0.01 m
=

−2Vo(0.01 m)

r2
o

 
−2(1 m/s)(0.01 m)

(0.02 m)
2 = −50 s−1

Next, calculate shear stress:

 τ(r = 0.01 m) = −μ
dV(r)

dr ⎸r=0.01 m

 = (1.14 × 10−3 N ∙ s/m2
)(50 s−1

)

 =  0.0570 N/m2

3. Viscosity equation (r = 0.02 m):

 
dV(r)

dr ⎸r=0.02 m
=

−2Vo(0.02 m)

r2
o

 =
−2(1 m/s)(0.02 m)

(0.02 m)
2 = −100 s−1

Next, calculate shear stress:

 τ(r = 0.02 m) = −μ
dV(r)

dr ⎸r=0.02 m

 = (1.14 × 10−3 N ∙ s/m2
)(100 s−1

)

 =  0.114 N/m2

Review the Solution and the Process

1.  Tip. On most problems, including this example, carrying 
and canceling units is useful, if not critical.

2.  Notice. Shear stress varies with location. For this example, 
τ is zero on the centerline of the fl ow and nonzero 
everywhere else. Th e maximum value of shear stress 
occurs at the wall of the pipe.

3.  Notice. For fl ow in a round pipe, the viscosity equation 
has a minus sign and uses the position coordinate r.

τ = −μ
dV
dr

EXAMPLE 2.2

Applying the Viscosity Equation to Couette Flow

Problem Statement

A board 1 m by 1 m that weighs 25 N slides down an inclined 
ramp (slope = 20°) with a constant velocity of 2.0 cm/s. Th e 
board is separated from the ramp by a thin fi lm of oil with 
a viscosity of 0.05 N∙s/m2. Assuming that the oil can be 
modeled as a Couette fl ow, calculate the space between the 
board and the ramp.

Defi ne the Situation

A board slides down an oil fi lm on a inclined plane.

Board
   1.0 m � 1.0 m

W = 25 N Oil film
 = 0.05 N�s/m2

H = Thickness of oil film� = 20°
V

o
= 0.02 m/s

�

Assumptions. (1) Couette fl ow. (2) Board has constant speed.

State the Goal

H(mm) ➡ thickness of the fi lm of oil

Generate Ideas and Make a Plan

Because the goal is H, apply the viscosity equation (Eq. 2.18):

 H = μ
Vo

τ
 (a)

To fi nd the shear stress τ in Eq. (a), draw a Free Body Diagram 
(FBD) of the board. In the FBD, W is the weight, N is the normal 
force, and Fshear is shear force. Because shear stress is constant 
with x, the shear force can be expressed as Fshear = τA.

x

y

W

N

  
F

shear
= A

  = 20°

τ

θ
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2.6 Surface Tension*

Engineers need to be able to predict and characterize surface tension eff ects because they 
aff ect many industrial problems. Some examples of surface tension eff ects include the following:

• Wicking. Water will wick into a paper towel. Ink will wick into paper. Polypropylene, an 
excellent fi ber for cold-weather aerobic activity, wicks perspiration away from the body.

• Capillary rise. A liquid will rise in a small-diameter tube. Water will rise in soil.
• Capillary instability. A liquid jet will break up into drops.
• Drop and bubble formation. Water on a leaf beads up. A leaky faucet drips. Soap bubbles form.
• Excess pressure. Th e pressure inside a water drop is higher than ambient pressure. Th e pres-

sure inside a vapor bubble during boiling is higher than ambient pressure.
• Walking on water. Th e water strider, an insect, can walk on water. Similarly, a metal paper 

clip or a metal needle can be positioned to fl oat (through the action of surface tension) on 
the surface of water.

• Detergents. Soaps and detergents improve the cleaning of clothes because they lower the 
surface tension of water so that the water can more easily wick into the pores of the fabric.

Many experiments have shown that the surface of liquid behaves like a stretched membrane. 
Th e material property that characterizes this behavior is surface tension, σ (sigma). Surface 
tension can be expressed in terms of force:

 surface tension (σ) =
force along an interface
length of the interface

 (2.19)

Surface tension can also be expressed in terms of energy:

 surface tension (σ) =
energy required to increase the surface area of a liquid

unit area
 (2.20)

From Eq. (2.19), the unit of surface tension is the newton per meter (N/m). Surface tension 
typically has a magnitude ranging from 1 to 100 mN/m. Th e unit of surface tension can also be 
joule per meter squared (J/m2) because

N
m =

N ∙ m
m ∙ m =

J
m2

Because the board moves at constant speed, the forces are in 
balance. Th us, apply force equilibrium.

 ΣFx = 0 = W sin θ − τA (b)

Rewrite Eq. (b) as
 τ = (W sinθ)/A (c)

Eq. (c) can be solved for τ. Th e plan is as follows:
1. Calculate τ using force equilibrium (Eq. c).
2. Calculate H using the shear stress equation (Eq. a).

Take Action (Execute the Plan)

1. Force equilibrium:
τ = (W sinθ)/A = (25 N)(sin 20°)/(1.0 m2

) = 8.55 N/m2

2. Shear stress equation:

H = μ
Vo

τ
= (0.05 N ∙ s/m2

)

(0.02 m/s)

(8.55 N/m2
)

= 0.117 mm

Review the Solution and the Process

1. H is about 12% of a millimeter; this is quite small.
2.  Tip. Solving this problem involved drawing an FBD. 

The FBD is useful for most problems involving 
Couette flow.

*Th e authors acknowledge and thank Dr. Eric Aston for his feedback and inputs on this section. Dr. Aston is a chemical 
engineering professor at the University of Idaho.
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Th e physical mechanism of surface tension is based on cohesive force, which is the attrac-
tive force between like molecules. Because liquid molecules attract one another, molecules in 
the interior of a liquid (see Fig. 2.17) are attracted equally in all directions. In contrast, mol-
ecules at the surface are pulled toward the center because they have no liquid molecules above 
them. Th is pull on surface molecules draws the surface inward and causes the liquid to seek to 
minimize surface area. Th is is why a drop of water draws into a spherical shape.

Surface tension of water decreases with temperature (see Fig. 2.18) because thermal 
expansion moves the molecules farther apart, and this reduces the average attractive force 
between molecules (i.e., cohesive force goes down). Surface tension is strongly aff ected by 
the presence of contaminants or impurities. For example, adding soap to water decreases 
the surface tension. Th e reason is that impurities concentrate on the surface, and these mol-
ecules decrease the average attractive force between the water molecules. As shown in Fig. 
2.18, the surface tension of water at 20°C is σ = 0.0728 ≈ 0.073 N/m. Th is value is used in 
many of the calculations in this text.

In Fig. 2.18, surface tension is reported for an interface of air and water. It is common 
practice to report surface tension data based on the materials that were used during the mea-
surement of the surface tension data.

To learn more about surface tension, we recommend the online fi lm entitled Surface Tension 
in Fluid Mechanics (5) and Shaw’s book (6).

Example Problems

Most problems involving surface tension are solved by drawing an FBD and applying force 
equilibrium. Th e force due to surface tension, from Eq. (2.19), is

 force due to surface tension = Fσ = σL (2.21)

where L is the length of a line that lies along the surface of the liquid. Th e use of force equilib-
rium to solve problems is illustrated in Examples 2.3 and 2.4.

Adhesion and Capillary Action

When a drop of water is placed on glass, the water will wet the glass (see Fig. 2.19) because 
water is strongly attracted to glass. Th is attractive force pulls the water outward as shown. Th e 
force between dissimilar surfaces is called adhesion (see Fig. 2.19b). Water will “wet out” on a 
surface when adhesion is greater than cohesion.

FIGURE 2.17

Forces between molecules in a liquid.

A molecule at the 
surface is pulled 
toward the center.

A molecule in the 
interior is pulled 
equally in all directions.
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)

 = 0.0728 N/m at T = 20°Cσ FIGURE 2.18

Surface tension of water for a water/air 

interface. Property values are from White (7).
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On some surfaces, such as Tefl on and wax paper, a drop of water will bead up (Fig 2.20) 
because adhesion between the water and tefl on is less than cohesion of the water. A surface on 
which water beads up is called hydrophobic (water hating). Surfaces such as glass on which 
water drops spread out are called hydrophilic (water loving).

Capillary action describes the tendency of a liquid to rise in narrow tubes or to be drawn 
into small openings. Capillary action is responsible for water being drawn into the narrow 
openings in soil or into the narrow openings between the fi bers of a dry paper towel.

EXAMPLE 2.3

Applying Force Equilibrium to Calculate the Pressure 
Rise inside a Water Droplet

Problem Statement

Th e pressure inside a water drop is higher than the pressure 
of the surroundings. Derive a formula for this pressure rise. 
Th en, calculate the pressure rise for a 2 mm diameter water 
drop. Use σ = 73 mN/m.

Defi ne the Situation

Pressure inside a water drop is larger than ambient pressure.
d = 0.002 m, σ = 73 mN/m.

Water drop
pi = pressure inside the drop

d

State the Goal

1. Derive an equation for pi.
2. Calculate pi in pascals.

Generate Ideas and Make a Plan

Because pressure is involved in a force balance, draw an FBD 
of the drop.

Fp

F

Force due to pressure = Force due to surface tension
 Fp = Fσ (a)

From Eq. (2.19), the surface tension force is σ times the length 
of the interface:

 Fσ = σL = σπd (b)

Th e pressure force is pressure times area:

 Fp = pi
πd2

4
 (c)

Combine Eqs. (a) to (c):

 pi
πd2

4
= σπd (d)

Solve for pressure:

 pi =
4σ
d

 (e)

Th e fi rst goal (equation for pressure) has been attained. Th e 
next goal (value of pressure) can be found by substituting 
numbers into Eq. (e).

Take Action (Execute the Plan)

pi =
4σ
d

=
4(0.073 N/m)

(0.002 m)

= 146 Pa gage

Review the Results and the Process

1.  Notice. Th e answer is expressed as gage pressure.
Gage pressure in this context is the pressure rise above 
ambient.

2.  Physics. Th e pressure rise inside a liquid drop is a 
consequence of the membrane eff ect of surface tension. 
One way to visualize this is make an analogy with a 
balloon fi lled with air. Th e pressure inside the balloon 
pushes outward against the membrane force of the 
rubber skin. In the same way, the pressure inside a 
liquid drop pushes outward against the membrane like 
force of surface tension.

Water drop
Glass

Contact
angle

(a) (b)

Adhesion: Force between dissimilar materials
(water and glass in this example; stronger 
adhesive force pulls the water outward)  

Weaker
cohesive
force

�

FIGURE 2.19

Water wets glass because adhesion is greater than 

cohesion. Wetting is associated with a contact angle 

less than 90°.
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When a capillary tube is placed into a container of water, the water rises up the tube (Fig. 
2.21) because the adhesive force between the water and the glass pulls the water up the tube. 
Th is is called capillary rise. Notice how the contact angle for the water is the same in Figs. 2.19 
and 2.21. Alternatively, when a fl uid is nonwetting (such as mercury on glass), then the liquid 
will display capillary repulsion.

To derive an equation for capillary rise (see Fig. 2.21), defi ne a system comprised of the 
water inside the capillary tube. Th en, draw an FBD. As shown, the pull of surface tension lift s 
the column of water. Applying force equilibrium gives

 weight = surface tension force

  γ(πd 2

4 )Δh = σ π d cos θ  
(2.22)

Assume the contact angle is nearly zero so that cos θ ≈ 1.0. Note that this is a good assump-
tion for a water/glass interface. Eq. (2.22) simplifi es to

 Δh =
4σ
γd

 (2.23)

EXAMPLE. Calculate the capillary rise for water (20°C) in a glass tube of diameter 
d = 1.6 mm.

Solution. From Table A.5, γ = 9790 N/m3. From Fig. 2.18, σ = 0.0728 N/m. Now, calcu-
late capillary rise using Eq. (2.23):

Δh =
4(0.0728 N/m)

(9790 N/m3
)(1.6 × 10−3 m)

= 18.6 mm

Example 2.4 shows a case involving a nonwetting surface.

FIGURE 2.20

Water beads up a hydrophobic material such 

as Tefl on because adhesion is less than 

cohesion. A nonwetting surface is associated 

with a contact angle greater than 90°.

Water drop

Teflon
Contact
angle

(a) (b)

The stronger cohesive force
pulls the water into a spherical shape.

Weaker adhesive
force

Capillary rise
(water and glass)

Capillary repulsion
(mercury and glass)

Glass
tube FIGURE 2.21

Water will rise up a glass tube (capillary 

rise), whereas mercury will move downward 

(capillary repulsion).

System
h

W = d 2

4
h

F = d cos �( )

FBD

π

πγ

θ

σ σ

Δ

FIGURE 2.22

Sketches used for deriving an equation for capillary rise.
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2.7 Vapor Pressure

A liquid, even at a low temperature, can boil as it fl ows through a system. Th is boiling can 
reduce performance and damage equipment. Th us, engineers need to be able to predict when 
boiling will occur. Th is prediction is based on the vapor pressure.

Vapor pressure, pv (kPa), is the pressure at which the liquid phase and the vapor phase of 
a material will be in thermal equilibrium. Vapor pressure is also called saturation pressure, and 
the corresponding temperature is called saturation temperature.

Vapor pressure can be visualized on a phase diagram. A phase diagram for water is shown 
in Fig. 2.23. As shown, water will exist in the liquid phase for any combination of temperature 
and pressure that lies above the blue line. Similarly, the water will exist in the vapor phase for 
points below the blue line. Along the blue line, the liquid and vapor phases are in thermal 
equilibrium. When boiling occurs, the pressure and temperature of the water will be given by 
one of the points on the blue line. In addition to Fig. 2.23, data for vapor pressure of water are 
tabulated in Table A.5.

EXAMPLE 2.4

Applying Force Equilibrium to Determine the Size of 
a Sewing Needle that Can Be Supported by Surface 
Tension

Problem Statement

Th e Internet shows examples of sewing needles that appear to 
be “fl oating” on top of water. Th is eff ect is due to surface ten-
sion supporting the needle. Determine the largest diameter of 
sewing needle that can be supported by water. Assume that the 
needle material is stainless steel with SGss = 7.7.

Defi ne the Situation

A sewing needle is supported by the surface tension of a water 
surface.

Needle (stainless steel)

Water

Assumptions
• Assume the sewing needle is a cylinder.
• Neglect end eff ects.

Properties
• Water (20°C, 1 atm, Fig. 2.18): σ = 0.0728 N/m
• Water (4°C, 1 atm, Table F.6): γH2O = 9810 N/m3

• SS: γss = (7.7)(9810 N/m3) = 75.5 kN/m3

State the Goal

d(mm) ➡ diameter of the largest needle that can be supported 
by the water

Generate Ideas and Make a Plan

Because the weight of the needle is supported by the 
surface tension force, draw an FBD. Select a system 

comprised of the needle plus the surface layer of the water. 
Th e FBD is

Fσ F

W

θ

σ

Apply force equilibrium:
Force due to surface tension = Weight of needle

 Fσ = W (a)

From Eq. (2.21)

 Fσ = σ2Lcos θ (b)

where L is the length of the needle. Th e weight of the needle is

 W = ( weight
volume)[volume] = γss [ (πd 2

4 ) L ]  (c)

Combine Eqs. (a), (b), and (c). Also, assume the angle θ is zero 
because this gives the maximum possible diameter:

 σ2L = γss (πd2

4 ) L (d)

Plan. Solve Eq. (d) for d and then plug numbers in.

Take Action (Execute the Plan)

d = B
8σ

πγss
= B

8(0.0728 N/m)

π(75.5 × 103 N/m3
)

= 1.57 mm

Review the Solution and the Process

Notice. When applying specifi c gravity, look up water proper-
ties at the reference temperature of 4°C.
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EXAMPLE. Water at 20°C fl ows through a venturi nozzle and boils. Explain why. Also, 
give the value of pressure in the nozzle.

Solution. Th e water is boiling because the pressure has dropped to the vapor pressure. 
Table 2.1 indicates that pv can be looked up in Table A.5. Th us, the vapor pressure at 20°C 
(Table A.5) is pv = 2.34 kPa absolute. Th is value can be validated by using Fig. 2.23.

Review. Vapor pressure is commonly expressed using absolute pressure. Absolute pressure 
is the value of pressure as measured relative to a pressure of absolute zero.

2.8 Characterizing Thermal Energy in 

Flowing Gases

Engineers characterize thermal energy changes using properties introduced in this section. 
Thermal energy is the energy associated with molecules in motion. Th is means that thermal 
energy is associated with temperature change (sensible energy change) and phase change (la-
tent energy change). For most fl uid problems, thermal properties are not important. However, 
thermal properties are used for compressible fl ow of gases (Chapter 12).

Specifi c Heat, c

Specifi c heat characterizes the amount of thermal energy that must be transferred to a unit 
mass of substance to raise its temperature by one degree. Th e dimensions of specifi c heat are 
energy per unit mass per degree temperature change, and the corresponding units are J/kg∙K.

Th e magnitude of c depends on the process. For example, if a gas is heated at constant 
volume, less energy is required than if the gas is heated at constant pressure. Th is is because a 
gas that is heated at constant pressure must do work as it expands against its surroundings.

Th e constant volume specifi c heat, cv, applies to a process carried out at constant volume. 
Th e constant pressure specifi c heat, cp, applies to a process carried out at constant pressure. Th e 
ratio cp/cv is called the specific heat ratio and is given the symbol k. Values for cp and k for 
various gases are given in Table A.2.

Internal Energy

Internal energy includes all the energy in matter except for kinetic energy and potential energy. 
Th us, internal energy includes multiple forms of energy, such as chemical energy, electrical 
energy, and thermal energy. Specifi c internal energy, u, has dimensions of energy per unit mass. 
Th e units are J/kg.

Enthalpy

When a material is heated at constant pressure, the energy balance is

(Energy added) = (Energy to increase
thermal energy ) + ( Energy to do work

as the material expands)
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Liquid/vapor equilibrium
(along line)

FIGURE 2.23

A phase diagram for water.
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Th e work term is needed because the material is exerting a force over a distance as it pushes its 
surroundings away during the process of thermal expansion.

Enthalpy is a property that characterizes the amount of energy associated with a heating 
or cooling process. Enthalpy per unit mass is defi ned mathematically by

(enthalpy) = (internal energy) + (pressure/density)

h = u + p/ρ

Ideal Gas Behavior

For an ideal gas, the properties h, u, cp , and cv depend only on temperature, not on pressure.

Describing Your System

To describe what you are analyzing, apply three ideas:
• Th e system is the matter that you select for analysis.
• Th e surroundings are everything else that is not part of 

the system.
• Th e boundary is the surface that separates the system 

from its surroundings.

To describe the conditions of your system, apply four ideas:

• Th e state of a system is the condition of the system as 
specifi ed by values of the properties of the system.

• A property is a measurable characteristic of a system that 
depends only on the present state.

• Steady state means that all properties of the system are 
constant with time.

• A process is a change of a system from one state to an-
other state.

Finding Fluid Properties

• To characterize the weight or mass of a fl uid, use ρ, γ, or 
SG. If you know one of these properties, then you can 
calculate the other two using these equations: γ = ρg 
and SG = ρ/ρH2O, (4°C)

= γ/γH2O, (4°C)
.

• To characterize viscous eff ects (i.e., frictional eff ects), 
you can use viscosity μ, which is also called dynamic 
viscosity or absolute viscosity. You also will oft en use a 
diff erent property, called kinematic viscosity, which is de-
fi ned by ν = μ/ρ.

• When looking up properties, make sure that you account 
for the variation in the value of the property as a function 
of temperature and pressure.

• Quality in documentation involves listing the name of 
the property, the source of the property data, the units, 

the temperature and pressure, and any assumptions that 
you make.

Density Topics

• Modeling a fl uid as constant density means that you as-
sume the density is constant with position and time. 
Variable density means the density can change with posi-
tion, time, or both.

• A gas in steady fl ow can be idealized as a constant den-
sity if the Mach number is less than 0.3. Liquids for most 
fl ow situations can be idealized as constant density. Two 
notable exceptions are water hammer problems and 
acoustics problems.

• All fl uids, including liquids, will compress (i.e., decrease 
in volume) if the pressure is increased. Th e amount of 
volume change can be calculated by using the bulk mod-
ulus of elasticity.

• Specifi c gravity (S or SG) gives the ratio of the density of 
a material to the density of liquid water at 4°C.

Stress

In mechanics, stress is an entity that expresses the internal 
forces that material particles exert on each other. Stress is 
the ratio of force to area at a point and is resolved into two 
components:

• Pressure (normal stress) is the ratio of normal force to area
• Shear stress is the ratio of shear force to area

To relate force to stress integrate the stress over area.

• Th e general equation for the pressure force is Fp =
∫A−pn dA. For the special case of a uniform pres-
sure acting on a fl at surface, this equation simplifi es 
to Fp = pA.

2.9 Summarizing Key Knowledge
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• Th e general equation for the shear force is Fs = ∫Aτ t dA. 
For the special case of a uniform shear stress acting on a 
fl at surface, this equation simplifi es to Fs = τA.

• When a force acts between Body #1 (a fl uid body) and 
Body #2 (any other body), the force can usually be iden-
tifi ed as one of seven forces: (1) the pressure force, (2) 
the shear force, (3) the buoyant force, (4) the drag force, 
(5) the lift  force, (6) the surface tension force, or (7) the 
thrust force. Except for the surface tension force, each of 
these forces is associated with a pressure distribution, a 
shear stress distribution, or both.

The Viscosity Equation

• Th e viscosity equation is useful for calculating the shear 
stress in a fl owing fl uid. Th e equation is τ = μ (dV/dy). 
If μ is constant, then τ is linearly related to dV/dy.

• For many fl ows, the velocity gradient is the fi rst derivative 
of velocity with respect to distance (dV/dy).

• Th e no-slip condition means that the velocity of fl uid in 
contact with a solid surface will equal the velocity of the 
surface.

• A Newtonian fl uid is one in which a plot of τ versus dV/dy 
is a straight line. A non-Newtonian fl uid is one in which 
a plot of τ versus dV/dy is not a straight line. In general, 
non-Newtonian fl uids have more complex molecular 
structures than Newtonian fl uids. Examples of non-
Newtonian fl uids include paint, toothpaste, and molten 
plastics. Equations developed for Newtonian fl uids (i.e., 
many textbook equations) oft en do not apply to non-
Newtonian fl uids.

• Couette fl ow involves a fl ow through a narrow channel 
with the top plate moving at a speed of Vo. In Couette 
fl ow, the shear stress is constant at every point and is 
given by τo = (μVo)/H.

Surface Tension and Vapor Pressure

• A liquid fl owing in a system will boil when the pressure 
drops to the vapor pressure. Th is boiling oft en is detri-
mental to a design.

• Surface tension problems are usually solved by drawing 
an FBD and summing forces.

• Th e formula for capillary rise of water in a round glass 
tube is Δh = (4σ)/(γd).

1. Fluid Mechanics Films, downloaded 7/31/11 from http://web.
mit.edu/hml/ncfmf.html
2. Harris, J. Rheology and non-Newtonian Flow. New York: 
Longman, 1977.
3. Schowalter, W. R. Mechanics of Non-Newtonian Fluids. New 
York: Pergamon Press, 1978.

4. White, F. M. Fluid Mechanics, 7th ed. New York: McGraw-Hill, 
2011, p. 828.
5. Fluid Mechanics Films, downloaded 7/31/11 from http://web.
mit.edu/hml/ncfmf.html
6. Shaw, D. J. Introduction to Colloid and Surface Chemistry, 4e, 
Maryland Heights, MO: Butterworth-Heinemann, 1992.
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System, State and Property (§2.1)

2.1 A system is separated from its surrounding by a
a. border
b. divisor
c. boundary
d. fractionation line

Looking Up Fluid Properties (§2.2)

2.2 Where in this text can you fi nd:
a. density data for such liquids as oil and mercury?
b.  specifi c weight data for air (at standard atmospheric 

pressure) at diff erent temperatures?
c. specifi c gravity data for sea water and kerosene?

2.3 Regarding water and seawater:
a. Which is more dense, seawater or freshwater?
b. Find (SI units) the density of seawater (10°C, 3.3% salinity).
c. Find the same in traditional units.
d. What pressure is specifi ed for the values in (b) and (c)?

2.4 Where in this text can you fi nd:
a. values of surface tension (σ) for kerosene and mercury?
b.  values for the vapor pressure (pv) of water as a function of 

temperature?
2.5 An open vat in a food processing plant contains 500 L of 
water at 20°C and atmospheric pressure. If the water is heated to 
80°C, what will be the percentage change in its volume? If the vat 
has a diameter of 2 m, how much will the water level rise due to 
this temperature increase?

PROBLEMS
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2.6 If the density, ρ, of air increases by a factor of 1.4x due to a 
temperature change,

a. specifi c weight increases by 1.4x
b. specifi c weight increases by 13.7x
c. specifi c weight remains the same

2.7 Th e following questions relate to viscosity.
a.  What are the primary dimensions of viscosity? What are fi ve 

common units?
b.  What is the viscosity of SAE 10W-30 motor oil at 115°F (in 

traditional units)?
2.8 When looking up values for density, absolute viscosity, 
and kinematic viscosity, which statement is most true for both 
liquids and gases?

a. all three of these properties vary with temperature
b. all three of these properties vary with pressure
c.  all three of these properties vary with temperature and 

pressure
2.9 Kinematic viscosity (select all that apply)

a. is another name for absolute viscosity
b. is viscosity/density
c. is dimensionless because forces are canceled out
d. has dimensions of L2/T
e. is only used with compressible fl uids

2.10 What is the change in the viscosity and density of water 
between 10°C and 90°C? What is the change in the viscosity 
and density of air between 10°C and 90°C? Assume standard 
atmospheric pressure (p = 101 kN/m2).
2.11 Determine the change in the kinematic viscosity of air that 
is heated from 10°C to 50°C. Assume standard atmospheric 
pressure.
2.12 Find the dynamic and kinematic viscosities of kerosene, 
SAE 10W-30 motor oil, and water at a temperature of 50°C.
2.13 What is the ratio of the dynamic viscosity of air to that of 
water at standard atmospheric pressure and a temperature of 
20°C? What is the ratio of the kinematic viscosity of air to that of 
water for the same conditions?
2.14 Find the kinematic and dynamic viscosities of air and water 
at a temperature of 40°C and an absolute pressure of 
170 kPa.
2.15 Consider the ratio μ100/μ50, where μ is the viscosity of 
oxygen and the subscripts 100 and 50 are the temperatures of the 
oxygen in degrees Fahrenheit. Does this ratio have a value 
(a) less than 1, (b) equal to 1, or (c) greater than 1?

Topics Related to Density (§2.3)

2.16 Specifi c gravity (select all that apply)
a. can have units of N/m3

b. is dimensionless
c. increases with temperature
d. decreases with temperature

2.17 If a liquid has a specifi c gravity of 1.7, what is the density in 
slugs per cubic feet? What is the specifi c weight in pounds-force per 
cubic feet?
2.18 What are SG, γ, and ρ for mercury? State your answers in SI 
units and in traditional units.
2.19 If you have a bulk modulus of elasticity that is a very large 
number, then a small change in pressure would cause

a. a very large change in volume
b. a very small change in volume

2.20 Dimensions of the bulk modulus of elasticity are
a. the same as the dimensions of pressure/density
b. the same as the dimensions of pressure/volume
c. the same as the dimensions of pressure

2.21 Th e bulk modulus of elasticity of ethyl alcohol is 1.06 × 109 Pa. 
For water, it is 2.15 × 109 Pa. Which of these liquids is easier to 
compress?

a. ethyl alcohol
b. water

2.22 A pressure of 4 × 106 N/m2 is applied to mass of water that 
initially fi lled a 4300 cm3 volume. Estimate its volume aft er the 
pressure is applied.
2.23 Calculate the pressure increase that must be applied to 
liquid water to reduce its volume by 3%.

Pressure and Shear Stress (§2.4)

2.24 Shear stress has dimensions of
a. force/area
b. dimensionless

The Viscosity Equation (§2.5)

2.25 Th e term dV/dy, the velocity gradient
a. has dimensions of L/T
b. has dimensions of T –1

2.26 For the velocity gradient dV/dy
a. the coordinate axis for dy is parallel to velocity
b. the coordinate axis for dy is perpendicular to velocity

2.27 Th e no-slip condition
a. only applies to ideal fl ow
b. only applies to rough surfaces
c. means velocity, V, is zero at the wall
d. means velocity, V, is the velocity of the wall

2.28 Common Newtonian fl uids are
a. toothpaste, catsup, and paint
b. water, oil, and mercury
c. all of the above

2.29 Which of these materials will fl ow (deform) with even a 
small shear stress applied?

a. a Bingham plastic
b. a Newtonian fl uid
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2.30 At a point in a fl owing fl uid, the shear stress is 3 × 10–4 psi, 
and the velocity gradient is 1 s–1.

a. What is the viscosity in traditional units?
b. Convert this viscosity to SI units.
c. Is this fl uid more or less viscous than water?

2.31 SAE 10W-30 oil with viscosity 1 × 10–4 lbf∙s/ft 2 is used as a 
lubricant between two parts of a machine that slide past one an-
other with a velocity diff erence of 4 ft /s. What spacing, in inches, 
is required if you don’t want a shear stress of more than 2 lbf/ft 2? 
Assume Couette fl ow.
2.32 Th e velocity distribution for water (20°C) near a wall is 
given by u = a(y/b)1/6, where a = 10 m/s, b = 2 mm, and y is the 
distance from the wall in mm. Determine the shear stress in the 
water at y = 1 mm.
2.33 Th e velocity distribution for the fl ow of crude oil at 100°F 
(μ = 8 × 10–5 lbf∙s/ft 2) between two walls is shown and is given 
by u = 100y(0.1 – y) ft /s, where y is measured in feet and the 
space between the walls is B = 0.1 ft . Plot the velocity distribution 
and determine the shear stress at the walls.

Problems 2.33, 2.34, 2.35

B

y
u

x

2.34 A liquid fl ows between parallel boundaries as shown above. 
Th e velocity distribution near the lower wall is given in the 
following table:

 y (mm) V (m/s)

 0.0 0.00
 1.0 1.00
 2.0 1.99
 3.0 2.98

a.  If the viscosity of the liquid is 10–3 N∙s/m2, what is the 
maximum shear stress in the liquid?

b. Where will the minimum shear stress occur?
2.35 Suppose that glycerin is fl owing (T = 20°C) and that the 
pressure gradient dp/dx is –1.2 kPa/m. What are the velocity and 
shear stress at a distance of 11 mm from the wall if the space B 
between the walls is 5.0 cm? What are the shear stress and velocity 
at the wall? Th e velocity distribution for viscous fl ow between 
stationary plates is

u = −
1

2μ
 
dp
dx

 (By − y2
)

2.36 Two plates are separated by a 1/4 in. space. Th e lower plate 
is stationary; the upper plate moves at a velocity of 12 ft /s. Oil 
(SAE 10W-30, 150°F), which fi lls the space between the plates, 
has the same velocity as the plates at the surface of contact. Th e 

variation in velocity of the oil is linear. What is the shear stress 
in the oil?
2.37 Th e sliding plate viscometer shown below is used to measure 
the viscosity of a fl uid. Th e top plate is moving to the right with a 
constant velocity of V = 22 m/s in response to a force of F = 1 N. 
Th e bottom plate is stationary. What is the viscosity of the fl uid? 
Assume a linear velocity distribution.

VF

100 mm

1 mm

50 mm

Problem 2.37

2.38 A laminar fl ow occurs between two horizontal parallel 
plates under a pressure gradient dp/ds (dp/ds is a constant and 
the sign of dp/ds is negative.). Th e upper plate moves left  with a 
speed ut. Th e expression for local velocity u is given as

u = −
1

2μ
 
dp
ds

 (Hy − y2
) − ut 

y
H

a.  Is the magnitude of the shear stress greater at the moving 
plate (y = H) or at the stationary plate (y = 0)?

b. Derive an expression for the y position of zero shear stress.
c.  Derive an expression for the plate speed ut required to make 

the shear stress zero at y = 0.

H
u

ut

y

s

Problem 2.38

2.39 Th is problem involves a cylinder falling inside a pipe that is 
fi lled with oil, as depicted in the fi gure. Th e small space between 
the cylinder and the pipe is lubricated with an oil fi lm that has 
viscosity μ. Derive a formula for the steady rate of descent of a 
cylinder with weight W, diameter d, and length 𝓁 sliding inside 
a vertical smooth pipe that has inside diameter D. Assume that 
the cylinder is concentric with the pipe as it falls. Use the general 
formula to fi nd the rate of descent of a cylinder 100 mm in diam-
eter that slides inside a 100.5 mm pipe. Th e cylinder is 200 mm 
long and weighs 15 N. Th e lubricant is SAE 20W oil at 10°C.

Problem 2.39

D

d

�

Pipe

Oil film

Cylinder
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2.40 Th e device shown consists of a disk that is rotated by a shaft . 
Th e disk is positioned very close to a solid boundary. Between 
the disk and the boundary is viscous oil.

a.  If the disk is rotated at a rate of 1 rad/s, what will be the 
ratio of the shear stress in the oil at r = 2 cm to the shear 
stress at r = 3 cm?

b.  If the rate of rotation is 2 rad/s, what is the speed of the oil 
in contact with the disk at r = 3 cm?

c.  If the oil viscosity is 0.01 N∙s/m2 and the spacing y is 2 mm, 
what is the shear stress for the conditions noted in part (b)?

Problem 2.40

D

Oil r

Disk

y

2.41 Some instruments having angular motion are damped by 
means of a disk connected to the shaft . Th e disk, in turn, is im-
mersed in a container of oil, as shown. Derive a formula for the 
damping torque as a function of the disk diameter D, spacing S, 
rate of rotation ω, and oil viscosity μ.

Container

Oil

ShaftS

S

Problem 2.41

2.42 One type of viscometer involves the use of a rotating 
cylinder inside a fi xed cylinder. Th e gap between the cylinders 
must be very small to achieve a linear velocity distribution in 
the liquid. (Assume the maximum spacing for proper operation 
is 0.05 in.) Design a viscometer that will be used to measure the 
viscosity of motor oil from 50°F to 200°F.

Problem 2.42

Rotating cylinder

Oil

Fixed cylinder

Surface Tension (§2.6)

2.43 Surface tension (select all that apply)
a. only occurs at an interface, or surface
b. has dimensions of energy/area
c. has dimensions of force/area

d. has dimensions of force/length
e. depends on adhesion and cohesion
f. varies as a function of temperature

2.44 Which of the following is the formula for the gage pressure 
within a very small spherical droplet of water:

(a) p = σ/d, (b) p = 4σ/d, or (c) p = 8σ/d?

2.45 A spherical soap bubble has an inside radius R, a fi lm thick-
ness t, and a surface tension σ. Derive a formula for the pressure 
within the bubble relative to the outside atmospheric pressure. 
What is the pressure diff erence for a bubble with a 4 mm radius? 
Assume σ is the same as for pure water.
2.46 A water bug is suspended on the surface of a pond by surface 
tension (water does not wet the legs). Th e bug has six legs, and each 
leg is in contact with the water over a length of 3 mm. What is the 
maximum mass (in grams) of the bug if it is to avoid sinking?

3 mm 3 mm

Problem 2.46

2.47 A water column in a glass tube is used to measure the pres-
sure in a pipe. Th e tube is 1/2 in. in diameter. How much of the 
water column is due to surface-tension eff ects? What would be 
the surface-tension eff ects if the tube were 1/8 in. or 1/16 in. in 
diameter?
2.48 Calculate the maximum capillary rise of water between two 
vertical glass plates spaced 1 mm apart.

Problem 2.48

2.49 What is the pressure within a d = 0.75 mm spherical droplet 
of water, relative to the atmospheric pressure outside the droplet?
2.50 By measuring the capillary rise in a tube, one can calculate 
the surface tension. Th e surface tension of water varies linearly 
with temperature from 0.0756 N/m at 0°C to 0.0589 N/m at 
100°C. Size a tube (specify diameter and length) that uses capil-
lary rise of water to measure temperature in the range from 0°C 
to 100°C. Is this design for a thermometer a good idea?
2.51 Capillary rise can be used to describe how far water will rise 
above a water table because the interconnected pores in the soil 
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act like capillary tubes. Th is means that deep-rooted plants in the 
desert need only grow to the top of the “capillary fringe” in order 
to get water; they do not have to extend all the way down to the 
water table.

a.  Assuming that interconnected pores can be represented as a 
continuous capillary tube, how high is the capillary rise in a 
soil consisting of a silty soil, with a pore diameter of 10 μm?

b.  Is the capillary rise higher in fi ne sand (pore diam. approx. 0.1 
mm), or in fi ne gravel (pore diam. approx. 3 mm)?

c.  Root cells extract water from soil using capillarity. For root 
cells to extract water from the capillary zone, do the pores in 
a root need to be smaller than, or greater than, the pores in 
the soil? Ignore osmotic eff ects.

2.52 Consider a soap bubble 2 mm in diameter and a droplet of 
water, also 2 mm in diameter. If the value of the surface tension 
for the fi lm of the soap bubble is assumed to be the same as that 
for water, which has the greater pressure inside it? (a) the bubble, 
(b) the droplet, (c) neither—the pressure is the same for both.
2.53 A drop of water at 20°C is forming under a solid surface. 
Th e confi guration just before separating and falling as a drop is 
shown in the fi gure. Assume the forming drop has the volume of 
a hemisphere. What is the diameter of the hemisphere just before 
separating?

D

Problem 2.53

2.54 Th e surface tension of a liquid is being measured with a 
ring as shown. Th e ring has an outside diameter of 10 cm and 
an inside diameter of 9.5 cm. Th e mass of the ring is 10 g. Th e 
force required to pull the ring from the liquid is the weight 

corresponding to a mass of 16 g. What is the surface tension of 
the liquid (in N/m)?

Do
Ring

Di

F 

Problem 2.54

Vapor Pressure (§2.7)

2.55 If liquid water at 30°C is fl owing in a pipe and the pressure 
drops to the vapor pressure, what happens in the water?

a. the water begins condensing on the walls of the pipe
b. the water boils
c. the water fl ashes to vapor

2.56 How does vapor pressure change with increasing 
temperature?

a. it increases
b. it decreases
c. it stays the same

2.57 Water is at 30°C and the pressure is lowered until boiling is 
observed. What is the pressure?
2.58 A student in the laboratory plans to exert a vacuum in the air 
space above the surface of water in a closed tank. She plans for the 
absolute pressure in the air to be 12,300 Pa. Th e temperature in the 
lab is 20°C. Will water boil under these circumstances?
2.59 Th e vapor pressure of water at 100°C is 101 kN/m2. Th e 
vapor pressure of water decreases approximately linearly with 
decreasing temperature at a rate of 3.1 kN/m2/°C. Calculate the 
boiling temperature of water at an altitude of 3000 m, where the 
atmospheric pressure is 69 kN/m2 absolute.
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Fluid Statics

CHAPTER ROAD MAP This chapter introduces concepts related to pressure and describes how to calcu-
late forces associated with distributions of pressure. The emphasis is on fl uids in hydrostatic equilibrium.

CHAPTERTHREE

FIGURE 3.1
The fi rst man-made structure to exceed the masonry 

mass of the Great Pyramid of Giza was Hoover Dam. 

The design of dams involves calculations of hydrostatic 

forces. (U.S. Bureau of Reclamation)

LEARNING OUTCOMES

PRESSURE (§3.1). 

●  Defi ne pressure and convert pressure units. 
●  Describe atmospheric pressure and select an appropriate value. 
●  Defi ne and apply gage, absolute, vacuum, and differential 

pressure. 
●  Know the main ideas about hydraulic machines and solve relevant 

problems.

THE HYDROSTATIC EQUATIONS (§3.2). 

●  Defi ne hydrostatic equilibrium. 
●  Know the main ideas about the hydrostatic differential equation. 
●  Know the main ideas about the hydrostatic algebraic equation and 

solve relevant problems. 

PRESSURE MEASUREMENT (§3.3). 
●  Explain how common scientifi c instruments work and do relevant 

calculations (this LO applies to the mercury barometer, piezometer, 

manometer, and Bourdon tube gage). 

THE PRESSURE FORCE (§3.4). 

●  Defi ne the center of pressure. 
●  Sketch a pressure distribution. 
●  Explain or apply the gage pressure rule. 
●  Calculate the force due to a uniform pressure distribution. 
●  Know the main ideas about the panel equations and be able to 

apply these equations. 

CURVED SURFACES (§3.5). 

●  Solve problems that involve curved surfaces that are acted on by 

uniform or hydrostatic pressure distributions.

BUOYANCY (§3.6). 

●  Know the main ideas about buoyancy and be able to apply these 

ideas to solve problems.
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3.1 Describing Pressure

Because engineers use pressure in the solution of nearly all fl uid mechanics problems, this 
section introduces fundamental ideas about pressure.

Pressure

Pressure is the ratio of the normal force due to a fl uid to the area that this force acts on, in the 
limit as this area shrinks to zero.

 p =
magnitude of normal force

unit area ⎸at a point
 due to a fluid

= lim
ΔA→0

ΔFnormal

ΔA
 (3.1)

Pressure is defi ned at a point because pressure typically varies with each (x, y, z) location in a 
fl owing fl uid. 

Pressure is a scalar that produces a resultant force by its action on an area. Th e resultant 
force is normal to the area and acts in a direction toward the surface (compressive).

Pressure is caused by the molecules of the fl uid interacting with the surface. For example, 
when a soccer ball is infl ated, the internal pressure on the skin of the ball is caused by air mol-
ecules striking the wall.

Units of pressure can be organized into three categories:

• Force per area. Th e SI unit is the newtons per square meter or pascals (Pa). Th e traditional 
units include psi, which is pounds-force per square inch, and psf, which is pounds-force per 
square foot.

• Liquid column height. Sometimes pressure units give an equivalent height of a column 
of liquid. For example, pressure in a balloon will push a water column upward about 
8 inches (Fig. 3.2). Engineers state that the pressure in the balloon is 8 inches of water: p = 
8 in-H2O. When pressure is given in units of “height of a fl uid column,” the pressure value can 
be directly converted to other units using Table F.1. For example, the pressure in the balloon is

p = (8 in-H2O)(249.1 Pa/in-H2O) = 1.99 kPa

• Atmospheres. Sometimes pressure units are stated in terms of atmospheres where 1.0 atm is 
the air pressure at sea level at standard conditions. Another common unit is the bar, which 
is very nearly equal to 1.0 atm. (1.0 bar = 105 kPa) 

Atmospheric Pressure

Th is subsection explains how to select an accurate value of atmospheric pressure (patm) because 
a value of patm is oft en needed in calculations. 

Th e atmosphere of the earth is an extremely thin layer of air that extends from the surface 
of the earth to the edge of space. Th e atmosphere is held in place by gravitational force. 
According to NASA, “if the earth were the size of a basketball, a tightly held pillowcase would 
represent the thickness of the atmosphere.”*

If you look at data, it is evident that patm is strongly infl uenced by elevation:†

• At London (EL = 35 m): patm = 101 kPa
• At Denver, Colorado, USA (EL = 1650 m), patm = 83.4 kPa
• Near the summit of Mount Everest, Nepal (EL = 8000 m): patm = 35.6 kPa
• At a typical cruise altitude of a jetliner (EL = 12,190 m): patm = 18.8 kPa

Δh = 8 inches

FIGURE 3.2

Pressure in a balloon causing 

a column of water to rise 

8 inches.

*http://www.grc.nasa.gov/WWW/k-12/airplane/atmosmet.html.
†Th e value of atmospheric pressure is an absolute pressure. Th us, engineers commonly say that patm = 101 kPa instead 
of saying that patm = 101 kPa abs.
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Th e reason that patm changes with elevation is explained in Fig. 3.3.
In addition to elevation, other variables infl uence patm. As elevation increases, the average 

temperature of the atmosphere decreases. For example, in the Alps, the average temperature on 
the summit of a mountain is lower than the average temperature in a town situated in a valley. Local 
weather infl uences patm. Good weather is associated with higher values of atmospheric pressure 
and bad weather with lower values. As the atmosphere is heated during the day and cooled during 
the night, the atmospheric pressure varies in response to temperature changes. Fortunately, it is 
simple to select an appropriate value of patm. Th ree methods that we recommend are as follows:

Method #1. If you lack information about elevation, select the standard value of atmo-
spheric pressure at sea level,* which is

 patm(sea level) = 1.000 atm = 101.3 kPa = 14.70 psi = 2116 psf = 33.90 ft-H2O
 = 760.0 mm-Hg = 29.92 in-Hg = 1.013 bar

Method #2. If you have information about elevation, you can calculate a typical value of 
atmospheric pressure using the standard atmosphere. Th e U.S. standard atmosphere is a math 
model that gives values of parameters such as temperature, density, and pressure correspond-
ing to average conditions. Th e model, developed by NASA,†  is valid from the earth’s surface to 
an elevation of 1000 km. Regarding calculations, the equations of the math model are complex, 
so we recommend using the Digital Dutch online calculator.‡

Method #3. Th e most accurate way to fi nd atmospheric pressure is to measure the value using 
a barometer. Th is method might be needed, for example, if you are processing experimental data 
and you want to know the exact value of atmospheric pressure at the time your data were recorded. 
As an alternative to using a barometer, you can look up a locally measured value on the Internet. Be 
careful when using the Internet as a resource, however, because many sites adjust the local atmo-
spheric pressure to a value that the given location would have if it was situated at sea level.

EXAMPLE. What value of atmospheric pressure should be used for a project that will be 
built in Mexico City? Reasoning. (1) Th e elevation of Mexico City is 2250 m. (2) Using 
the U.S. standard atmosphere, as calculated with the Digital Dutch calculator,§  shows that 
patm = 77.1 kPa at an elevation of 2250 m. Conclusion. Use patm = 77 kPa.

Absolute Pressure, Gage Pressure, Vacuum Pressure, 

and Differential Pressure

Absolute pressure is referenced to regions such as outer space, where the pressure is essentially 
zero because the region is devoid of gas. Th e pressure in a perfect vacuum is called absolute 
zero, and pressure measured relative to this zero pressure is termed absolute pressure.

Edge of the atmosphere;
 p = 0 abs

Earth

W

pAA

Column 
of air

Atmosphere

FIGURE 3.3

Fact. Atmospheric pressure (patm) decreases as elevation increases. 

Reasoning. (1) Select a column of air that extends from the earth’s surface 

to the upper edge of the atmosphere. (2) Idealize this column as stationary. 

(3) Because the column is stationary, the forces must sum to zero. (4) Thus, 

statics shows that atmospheric pressure equals the weight of the column 

divided by the section area. (5) At a higher elevation, the fl uid column is 

shorter and thus has less weight. Conclusion. Elevation strongly infl uences 

the value of atmospheric pressure.

*We recommend that you add these values to your working knowledge. As always, memorize the approximate values 
not the exact values. We recommend memorizing to two to three signifi cant digits.
†Th e most recent version was published in 1976.
‡http://www.digitaldutch.com/atmoscalc.
§ibid.
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When pressure is measured relative to prevailing local atmospheric pressure, the pres-
sure value is called gage pressure.* For example, when a tire pressure gage gives a value of 
300 kPa (44 psi), this means that the absolute pressure in the tire is 300 kPa greater than local 
atmospheric pressure. To convert gage pressure to absolute pressure, add the local atmospheric 
pressure. For example, a gage pressure of 50 kPa recorded in a location where the atmospheric 
pressure is 100 kPa is expressed as either

 p = 50 kPa gage  or  p = 150 kPa abs (3.2)

In SI units, gage and absolute pressures are identifi ed aft er the unit as shown in Eq. (3.2). In 
traditional units, gage pressure is identifi ed by adding the letter g to the unit symbol. For 
example, a gage pressure of 10 pounds per square foot is designated as 10 psfg. Similarly, the 
letter a is used to denote absolute pressure. For example, an absolute pressure of 20 pounds 
force per square inch is designated as 20 psia. 

When pressure is less than atmospheric, the pressure can be described using vacuum 
pressure. Vacuum pressure is defi ned as the diff erence between atmospheric pressure and 
actual pressure. Vacuum pressure is a positive number and equals the absolute value of gage 
pressure (which will be negative). For example, if patm = 101 kPa and a gage connected to 
a tank indicates a vacuum pressure of 31.0 kPa, this can also be stated as 70.0 kPa abs, or 
–31.0 kPa gage.

Fig. 3.4 provides a visual description of the three pressure scales. Notice that pB = 7.45 psia 
is equivalent to –7.25 psig and +7.25 psi vacuum. Notice that pA = of 301 kPa abs is equivalent 
to 200 kPa gage. Gage, absolute, and vacuum pressure can be related using equations labeled 
as the “pressure equations.”

  pgage = pabs − patm (3.3a)

  pvacuum = patm − pabs (3.3b)

  pvacuum = −pgage  (3.3c)

EXAMPLE. Convert 5 psi vacuum to absolute pressure in SI units.

Solution. First, convert vacuum pressure to absolute pressure.

pabs = patm − pvacuum = 14.7 psi − 5 psi = 9.7 psia.

p = 0 Pa abs
( p = 0 psia)

p = pB

p = pA

p = 0 Pa gage = 101 kPa abs
( p = 0 psig = 14.7 psia)

Absolute zero (          )absolute
ref.

Local atmospheric pressure (gage ref.)

pA = 301 kPa abs
( pA = 43.6 psia)

pA = 200 kPa gage
( pA = 28.9 psig)

pB = –50 kPa gage
( pB = –7.25 psig or 7.25 psi vacuum)

patm = 101 kPa abs
( patm = 14.7 psia)

pB = 51.0 kPa abs
( pB = 7.45 psia)

FIGURE 3.4

Example of pressure relations.

*There are two correct spellings used in the literature: gage pressure and gauge pressure.
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Second, convert units by applying a conversion ratio from Table F.1.

p = (9.7 psi)(101.3 kPa
14.7 psi ) = 66,900 Pa absolute.

Recommendation. It is good practice, when writing pressure units, to specify whether 
the pressure is absolute, gage, or vacuum.

EXAMPLE. Suppose the pressure in a car tire is specifi ed as 3 bar. Find the absolute pres-
sure in units of kPa.

Solution. Recognize that tire pressure is commonly specifi ed in gage pressure. Th us, con-
vert the gage pressure to absolute pressure.

pabs = patm + pgage = (101.3 kPa) + (3 bar)
(101.3 kPa)
(1.013 bar)

= 401 kPa absolute

Another way to describe pressure is to use differential pressure, which is defi ned as the dif-
ference in pressure between two points and is given the symbol Δp (Fig. 3.5).

Some useful facts about diff erential pressure follow. 
• Th e points (A and B) are typically selected so that diff erential pressure is positive; that is, 

Δp > 0.
• Diff erential pressure refers to the diff erence in pressure between two points, not to a “diff er-

ential pressure” in the sense of a diff erential in calculus.
• Th e unit symbol psid stands for pounds-force per square inch diff erential. Similarly, psfd 

refers to a diff erential pressure. 

Hydraulic Machines

A hydraulic machine uses a fl uid to transmit forces or energy to assist in the performance of a 
human task. An example of a hydraulic machine is a hydraulic car jack in which a user can supply a 
small force to a handle and lift  an automobile. Other examples of hydraulic machines include brak-
ing systems in cars, forklift  trucks, power steering systems in cars, and airplane control systems.

The hydraulic machine provides a mechanical advantage (Fig. 3.6). Mechanical ad-
vantage is defi ned as the ratio of output force to input force:

 (mechanical advantage) ≡
(output force)
(input force)

 (3.4)

Mechanical advantage of a lever (Fig. 3.6) is found by summing moments about the fulcrum to 
give F1L1 = F2L2, where L denotes the length of the lever arm.

 (mechanical advantage; lever) ≡
(output force)
(input force)

=
F2

F1
=

L1

L2
 (3.5)

To fi nd mechanical advantage of the hydraulic machine, apply force equilibrium to each piston 
(Fig. 3.6) to give F1 = p1A1 and F2 = p2A2, where p is pressure in the cylinder and A is face area 
of the piston. Next, recognize that p1 = p2 and then solve for the mechanical advantage

 (mechanical advantage; hydraulic machine) ≡
(output force)
(input force)

=
F2

F1
=

A2

A1
=

D 2
2

D 2
1
 (3.6)

Th e hydraulic machine is oft en used to illusrate Pascal’s principle. Th is principle states that 
when there is an increase in pressure at any point in a confi ned fl uid, there is an equal increase 
at every other point in the container. Th is principle is evident when a balloon is infl ated be-
cause the balloon expands evenly in all directions. Th e principle is also evident in the hydraulic 
machine (Fig. 3.7).

Water

Δ p = pA −  pB 
A B

2.0 m

FIGURE 3.5

An example of differential 

pressure for fl ow in a pipe. 

Points A and B are located 

on the centerline. The 

differential pressure (Δp) 

is the magnitude of the 

pressure at point A minus the 

magnitude of the pressure at 

point B.

F1

F1

F2

F2

Hydraulic
fluid

Piston

FIGURE 3.6

Both the lever and hydraulic 

machine provide a 

mechanical advantage.
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Pascal’s principle. An applied 
force creates a pressure 
change that is transmitted to 
every point in the fluid and to 
the walls of the container

FIGURE 3.7

This fi gure shows how a hydraulic machine can be used to 

illustrate Pascal's principle.

EXAMPLE 3.1

Applying Force Equilibrium to a Hydraulic Jack

Problem Statement

A hydraulic jack has the dimensions shown. If one exerts a 
force F of 100 N on the handle of the jack, what load, F2, can 
the jack support? Neglect lift er weight.

30 cm

F

B C

3.0 cm

1.5 cm diameter

A1 A2

Check valve

5 cm diameter

Lifter

F2

Defi ne the Situation

A force of F = 100 N is applied to the handle of a jack.
Assumption: Th e weight of the lift er (see sketch) is negligible.

State the Goal

F2(N) ➡ load that the jack can lift

Generate Ideas and Make a Plan

Because the goal is F2, apply force equilibrium to the lift er. 
Th en, analyze the small piston and the handle. Th e plan is as 
follows:

1.  Calculate force acting on the small piston by applying 
moment equilibrium.

2.  Calculate pressure p1 in the hydraulic fl uid by applying 
force equilibrium.

3.  Calculate the load F2 by applying force equilibrium.

Take Action (Execute the Plan)

1. Moment equilibrium (handle):

 ∑ Mc = 0

 (0.33 m) × (100 N) − (0.03 m) F1 = 0

 F1 =
0.33 m × 100 N

0.03 m
= 1100 N

2. Force equilibrium (small piston):

 ∑ Fsmall piston = p1A1 − F1 = 0

 p1A1 = F1 = 1100 N
            Th us,

p1 =
F1

A1
=

1100 N
πd 2/4

= 6.22 × 106 N/m2

3. Force equilibrium (lift er):

∑ Flifter = F2 − p1A2 = 0

F2 = p1A2 = (6.22 × 106 N
m2 ) (π

4
× (0.05 m)2) =  12.2 kN

             Note that p1 = p2 because they are at the same elevation 
(this fact will be established in the next section).

Review the Results and the Process

1.  Discussion. Th e jack in this example, which combines a 
lever and a hydraulic machine, provides an output force 
of 12,200 N from an input force of 100 N. Th us, this 
jack provides a mechanical advantage of 122 to 1.

2.  Knowledge. Hydraulic machines are analyzed by applying 
force and moment equilibrium. Th e force of pressure is 
typically given by F = pA.
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3.2 The Hydrostatic Equations

Th is section explains how to calculate the pressure for problems in which a fl uid is in hydro-
static equilibrium. Th ere are two main results:

• Th e hydrostatic diff erential equation, which is applied to problems in which density varies
• Th e hydrostatic algebraic equation, which is applied to problems in which density is constant

The Hydrostatic Condition

Th e equations in this section apply only if the fl uid in your problem is in hydrostatic equilib-
rium. To tell if this condition applies, select a fl uid particle, select a coordinate direction, and 
draw a free body diagram (FBD) that shows only the forces in the coordinate direction that you 
selected. If the acceleration of the fl uid particle is zero in the coordinate direction you chose 
and if the only forces on the particle are the pressure force and the weight, then the hydrostatic 
condition applies on a plane that is parallel to your coordinate direction.

If a fl uid is stationary (e.g., water in a lake as in Fig. 3.8), then the hydrostatic equation 
will always apply. Th e reason is that the acceleration of any fl uid particle is zero and the only 
possible forces that can balance the weight of the fl uid particle are the pressure force and the 
viscous force. However, the viscous force must be zero because of the defi nition of a fl uid; that 
is, a fl uid will deform continuously under the action of a viscous stress. Th us, the only force 
available to balance the weight of the fl uid particle is the pressure force.

If a fl uid is fl owing, then the hydrostatic equation will sometimes apply (Fig 3.9). For situa-
tions similar to those shown in the fi gure, you can apply the hydrostatic equation Δp = −ρgΔz 
to points situated in a plane.

The Hydrostatic Differential Equation (Variable Density)

Th is subsection shows how to derive dp/dz = −γ. Th is equation is important for understanding 
theory and for solving problems that involve varying density. 

To begin the derivation, visualize any region of static fl uid (e.g., water behind a dam), isolate 
a cylindrical body, and then sketch an FBD, as shown in Fig. 3.10. Notice that the cylindrical 

Pressure
distribution

Weight

Weight

Fluid particle

Net force
of pressure

FIGURE 3.8

This example shows how to check to 

see if the hydrostatic condition applies. 

For this case, hydrostatic conditions 

do apply because the weight of the 

fl uid particle is exactly balanced by the 

pressure force.

FIGURE 3.9

This sketch shows examples of when hydrostatic 

conditions apply to a fl owing fl uid. The reason why is 

that the pressure force balances the weight force for 

each fl uid particle that is situated on one of the planes 

shown in the fi gure. 

Flow

Pipe

Piezometer
(open type)

Hydrostatic conditions
prevail on this plane

And also on this plane

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮

Junyan
高亮



  The Hydrostatic Equations        67

body is oriented so that its longitudinal axis is parallel to an arbitrary ℓ direction. Th e body is 
Δℓ long, ΔA in cross-sectional area, and inclined at an angle α with the horizontal. Apply force 
equilibrium in the ℓ direction:

 ∑ Fℓ = 0

 FPressure − FWeight = 0

 pΔA − (p + Δp) ΔA − γΔAΔℓsinα = 0

Simplify and divide by the volume of the body ΔℓΔA to give

Δp
Δℓ

= −γ sin α

From Fig. 3.10, the sine of the angle is given by

sin α =
Δz
Δℓ

Combining the previous two equations and letting Δz approach zero gives

lim
Δz→0

Δp
Δz

= −γ

Th e fi nal result is

 
dp
dz

= −γ    (hydrostatic differential equation) (3.7)

Eq. (3.7) means that changes in pressure correspond to changes in elevation. If one travels upward 
in the fl uid (positive z direction), the pressure decreases; if one goes downward (negative z), 
the pressure increases; if one moves along a horizontal plane, the pressure remains constant. 
Of course, these pressure variations are exactly what a diver experiences when ascending or 
descending in a lake or pool.

The Hydrostatic Algebraic Equation (Constant Density)

Because modeling a fl uid as if the density is constant is oft en well justifi ed, it is useful to solve 
the hydrostatic diff erential equation for the special case of constant density. Th e resulting equa-
tion is called the hydrostatic algebraic equation, and we shorten this name to the hydrostatic 
equation (HE). Th e hydrostatic equation is one of the most useful equations in fl uid mechan-
ics; thus, we recommend that you learn this equation well. To derive the equation, begin by 
integrating Eq. (3.7) for the case of constant density to give

 p + γz = pz = constant (3.8)

where the term z is the elevation (vertical distance) above a fi xed horizontal reference plane 
called a datum, and pz is piezometric pressure. Dividing Eq. (3.8) by γ gives

Weight = γ ΔAΔ�

Δ�

pΔA

( p + Δp)ΔA Δz

z

Δ� �
α

α

α

FIGURE 3.10

The system used to derive the 

hydrostatic differential equation.
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pz

γ = (p
γ + z) = h = constant (3.9)

where h is the piezometric head. Because h is constant, Eq. (3.9) can be written as

 
p1

γ + z1 =
p2

γ + z2 (3.10a)

where the subscripts 1 and 2 identify any two points in a static fl uid of constant density. 
Multiplying Eq. (3.10a) by γ gives

 p1 + γz1 = p2 + γz2 (3.10b)

In Eq. (3.10b), letting Δp = p2 – p1 and letting Δz = z2 – z1 gives

 Δp = −γΔz (3.10c)

Th e hydrostatic equation is given by Eq. (3.10a), (3.10b), or (3.10c). Th ese three equations 
are equivalent because any one of the equations can be used to derive the other two. Th e hydro-
static equation is valid for any constant density fl uid in hydrostatic equilibrium.

Notice that the hydrostatic equation involves

  piezometric head = h ≡ ( p
γ + z) (3.11)

  piezometric pressure = pz ≡ ( p + γz)  (3.12)

To calculate piezometric head or piezometric pressure, an engineer identifi es a specifi c loca-
tion in a body of fl uid and then uses the value of pressure and elevation at that location. Piezo-
metric pressure and head are related by

 pz = hγ (3.13)

Piezometric head, h, a property that is widely used in fl uid mechanics, characterizes hydro-
static equilibrium. When hydrostatic equilibrium prevails in a body of fl uid of constant den-
sity, then h will be constant at all locations. For example, Fig. 3.11 shows a container with oil 
fl oating on water. Because piezometric head is constant in the water, ha = hb = hc. Similarly, 
the piezometric head is constant in the oil: hd = he = hf. Notice that piezometric head is not 
constant when density changes. For example, hc ≠ hd because points c and d are in diff erent 
fl uids with diff erent values of density.

Hydrostatic Equation (Working Equations)

To apply the hydrostatic equation, fi rst check that the assumptions listed in Table 3.1 are valid. 
Th en, select the most useful form of the hydrostatic equation. We recommend using the head 
form or the diff erential pressure form. We also recommend that you learn the meaning of the 
variables given in the third column because these names are used throughout fl uid mechanics. 
For many problems, you will fi nd the following two rules useful: 

Th e fluid interface rule states that for a planar interface (e.g., Fig. 3.12) the pressure is con-
stant across the interface (i.e., p1 = p2 at the interface). Reasoning. (1) Th e fl uid interface is not 
moving, so ∑F = 0. (2) Select an infi nitesimally thin system so that the weight can be neglected. 
(3) Th us, the only forces on the interface are the pressure forces, and algebra shows that p1 = p2.

FIGURE 3.11

Oil fl oating on water.

b

c

d

e

f

a

Oil

Water

System

Fluid 1 ΣF = 0

Fluid 2

p
1

p
2

=

Ap
1

Ap
2

�

FIGURE 3.12

To prove the fl uid interface rule (1) select an infi nitesimally thin system 

on the interface and note that the weight of this system is negligible, 

(2) Apply ΣF = 0 to show that pressure is constant across the 

interface.
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TABLE 3.1 The Hydrostatic Equation (Working Equations and Assumptions)

Name (Physical 

Interpretation) Equation Variables in the Equation

Head form (the piezometric 
  head is constant at every 

point)

p1

γ
+ z1 =

p2

γ
+ z2 Eq. (3.10a) •  p = pressure (N/m2) (use absolute or gage pressure; 

not vacuum pressure)
• γ = specifi c weight (N/m3)
• p/γ = pressure head (m)
• z = elevation or elevation head (m)
• (p/γ + z) = piezometric head (m)

Diff erential pressure form 
  (the diff erential pressure 

is linear with elevation 
change)

Δp = γΔz Eq. (3.10b) • Δp = diff erential pressure (N/m2)
• Δz = diff erence in elevation (m)

Piezometric pressure form 
  (the piezometric pressure 

is constant at every point)

p1 + γz1 = p2 + γz2 Eq. (3.10c) • (p + γz) = piezometric pressure (Pa)

Assumptions to check before you apply the 
 hydrostatic equation

1.  You can only apply the HE to a single fl uid that has constant 
density. For problems that have multiple fl uids (e.g., oil fl oating 
on water), the HE is applied successively to each fl uid.

2.  You can only apply the HE if the hydrostatic condition applies.

EXAMPLE 3.2

Applying the Hydrostatic Equation to Find Pressure in 
a Tank

Problem Statement

What is the water pressure at a depth of 35 ft  in the tank shown?

2

1

Water
T = 50°F

Elevation = 200 ft

Elevation = 250 ft

35 ft

Defi ne the Situation

Water is contained in a tank that is 50 ft  deep.
Properties: Water (50 °F, 1 atm, Table A.5): γ = 62.4 lbf/ft 3

State the Goal

p2 (psig) ➡ water pressure at point 2

Generate Ideas and Make a Plan

Apply the idea that piezometric head is constant. Th e plan 
steps are as follows:

1.  Equate piezometric head at elevation 1 with piezometric 
head at elevation 2 (i.e., apply Eq. 3.10a).

2. Analyze each term in Eq. (3.10a).
3. Solve for the pressure at elevation 2.

Take Action (Execute the Plan)

1. Hydrostatic equation (Eq. 3.10a):

p1

γ
+ z1 =

p2

γ
+ z2

2. Term-by-term analysis of Eq. (3.10a) yields:
 • p1 = patm = 0 psig
 • z1 = 250 ft 
 • z2 = 215 ft 
3. Combine steps 1 and 2; solve for p2:

 
p1

γ
+ z1 =

p2

γ
+ z2

 0 + 250 ft =
p2

62.4 lbf/ft3 + 215 ft

 p2 = 2180 psfg =  15.2 psig

Review the Solution and the Process

1.  Validation. Th e calculated pressure change (15 psig) is 
slightly greater than 1 atm (14.7 psi). Because one atmo-
sphere corresponds to a water column of 33.9 ft  and this 
problem involves 35 feet of water column, the solution 
appears correct.

2.  Skill. Th is example shows how to write down a govern-
ing equation and then analyze each term. Th is skill is called 
term-by-term analysis.
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Th e gas pressure change rule states that the hydrostatic pressure change for a gas can 
usually be neglected. Reasoning. (1) Th e hydrostatic pressure change in a gas for a one-
meter change of elevation is given by Δp/Δz = ρg. (2) Th e given equation shows, for example, 
that the pressure change in air at room conditions is about 12 pascals/meter. (3) A pressure 
change of about 12 pascals/meter is typically negligible as compared to other relevant pres-
sure changes. Conclusion. Th e hydrostatic pressure change in a gas can usually be neglected.

Example 3.3 shows how to fi nd pressure by applying the idea of constant piezometric head 
to a problem involving several fl uids. Notice the application of the fl uid interface rule.

3.  Knowledge. Th e gage pressure at the free surface of a 
liquid in contact with the atmosphere is zero (p1 = 0 in 
this example).

4.  Skill. Label a pressure as absolute or gage or vacuum. 
For this example, the pressure unit (psig) denotes a gage 
pressure.

5.  Knowledge. Th e hydrostatic equation is valid when 
density is constant. Th is condition is met on this 
problem.

EXAMPLE 3.3

Applying the Hydrostatic Equation to Oil and 
Water in a Tank

Problem Statement

Oil with a specifi c gravity of 0.80 forms a layer 0.90 m deep in 
an open tank that is otherwise fi lled with water (10°C). Th e 
total depth of water and oil is 3 m. What is the gage pressure at 
the bottom of the tank?

Problem Defi nition

Oil and water are contained in a tank.

2

1

2.10 m

0.90 mOil

Water
T = 10°C

3

Properties:
• Water: (10°C, 1 atm, Table A.5): γwater = 9810 N/m3

• Oil: γoil = Sγwater, 4°C = 0.8(9810 N/m3) = 7850 N/m3

State the Goal

p3 (kPa gage) ➡ pressure at bottom of the tank

Generate Ideas and Make a Plan

Because the goal is p3, apply the hydrostatic equation to the 
water. Th en, analyze the oil. Th e plan steps are as follows:

1. Find p2 by applying the hydrostatic equation (3.10a).
2. Equate pressures across the oil–water interface.
3.  Find p3 by applying the hydrostatic equation given in 

Eq. (3.10a).

Solution

1. Hydrostatic equation (oil):

 
p1

γoil
+ z1 =

p2

γoil
+ z2

 
0 Pa
γoil

+ 3 m =
p2

0.8 × 9810 N/m3 + 2.1 m

 p2 = 7.063 kPa

2. Oil–water interface:
p2 �oil = p2 �water = 7.063 kPa

3. Hydrostatic equation (water):

 
p2

γwater
+ z2 =

p3

γwater
+ z3

 
7.063 × 103 Pa

9810 N/m3 + 2.1 m =
p3

9810 N/m3 + 0 m

 p3 = 27.7 kPa gage

Review

Validation: Because oil is less dense than water, the answer 
should be slightly smaller than the pressure corresponding 
to a water column of 3 m. From Table F.1, a water column of 
10 m ≈ 1 atm. Th us, a 3 m water column should produce a 
pressure of about 0.3 atm = 30 kPa. Th e calculated value 
appears correct.
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3.3 Measuring Pressure

When engineers design and conduct experiments, pressure nearly always needs to be measured. 
Th us, this section describes fi ve scientifi c instruments for measuring pressure.

Barometer

An instrument that is used to measure atmospheric pressure is called a barometer. Th e most 
common types are the mercury barometer and the aneroid barometer. A mercury barometer is 
made by inverting a mercury-fi lled tube in a container of mercury, as shown in Fig. 3.13. Th e 
pressure at the top of the mercury barometer will be the vapor pressure of mercury, which is 
very small: pv = 2.4 × 10–6 atm at 20°C. Th us, atmospheric pressure will push the mercury up 
the tube to a height h. Th e mercury barometer is analyzed by applying the hydrostatic equation:

 patm = γHg h + pv ≈ γHg h (3.20)

Th us, by measuring h, local atmospheric pressure can be determined using Eq. (3.20).
An aneroid barometer works mechanically. An aneroid is an elastic bellows that has been 

tightly sealed aft er some air was removed. When atmospheric pressure changes, this causes the 
aneroid to change size, and this mechanical change can be used to defl ect a needle to indicate 
local atmospheric pressure on a scale. An aneroid barometer has some advantages over a mer-
cury barometer because it is smaller and allows data recording over time.

Bourdon-Tube Gage

A Bourdon-tube gage,* Fig. 3.14, measures pressure by sensing the defl ection of a coiled tube. 
Th e tube has an elliptical cross section and is bent into a circular arc, as shown in Fig. 3.14b. When 
atmospheric pressure (zero gage pressure) prevails, the tube is undefl ected, and for this condition 
the gage pointer is calibrated to read zero pressure. When pressure is applied to the gage, the curved 
tube tends to straighten (much like blowing into a party favor to straighten it out), thereby actuating 
the pointer to read a positive gage pressure. Th e Bourdon-tube gage is common because it is low 
cost, reliable, easy to install, and available in many diff erent pressure ranges. Bourdon-tube gages 
have some disadvantages: dynamic pressures may not be measured accurately; accuracy of the gage 
can be lower than other instruments; and the gage can be damaged by excessive pressure pulsations.

Piezometer

A piezometer is a vertical tube, usually transparent, in which a liquid rises in response to a 
positive gage pressure. For example, Fig. 3.15 shows a piezometer attached to a pipe. Pressure 

Atmospheric
pressure
pushes
down.

Vapor
pressure
of Hg

Column of
mercury rises
to height h.

h

FIGURE 3.13

A mercury barometer.

Pointer

Bourdon-tube
springA

A

Pinion
Sector

Pivot

Socket

Section A-A
through tube

Link

(b)

(a)

FIGURE 3.14

Bourdon-tube gage. (a) View of a typical gage 

(photo by Donald Elger). (b) Internal mechanism 

(schematic).

*Gage in this context means a scientifi c instrument. Th is word can also be correctly spelled as gauge.
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in the pipe pushes the water column to a height h, and the gage pressure at the center of the 
pipe is p = γh, which follows directly from the hydrostatic equation (3.10c). Th e piezometer 
has several advantages: simplicity, direct measurement (no need for calibration), and accuracy. 
However, a piezometer cannot easily be used for measuring pressure in a gas, and a piezometer 
is limited to low pressures because the column height becomes too large at high pressures.

Manometer

A manometer (oft en shaped like the letter “U”) is a device for measuring pressure by raising 
or lowering a column of liquid. For example, Fig. 3.16 shows a U-tube manometer that is being 
used to measure pressure in a fl owing fl uid. In the case shown, positive gage pressure in the 
pipe pushes the manometer liquid up a height Δh. To use a manometer, engineers relate the 
height of the liquid in the manometer to pressure, as illustrated in Example 3.4.

Once one is familiar with the basic principle of manometry, it is straightforward to write a 
single equation rather than separate equations as was done in Example 3.4. Th e single equation 
for evaluation of the pressure in the pipe of Fig 3.16 is

0 + γmΔh − γℓ = p4

One can read the equation in this way: Zero pressure at the open end, plus the change 
in pressure from point 1 to 2, minus the change in pressure from point 3 to 4, equals the 

h

Flow

FIGURE 3.15

Piezometer attached to a 

pipe.

Δh

4

3

1

2

m(manometer liquid)γ

Flow

�

FIGURE 3.16

U-tube manometer.

EXAMPLE 3.4

Pressure Measurement (U-Tube Manometer)

Problem Statement

Water at 10°C is the fl uid in the pipe of Fig. 3.16, and mercury 
is the manometer fl uid. If the defl ection Δh is 60 cm and ℓ is 
180 cm, what is the gage pressure at the center of the pipe?

Defi ne the Situation

Pressure in a pipe is being measured using a U-tube manometer.

Properties:
• Water (10°C), Table A.5: γ = 9810 N/m3

• Mercury, Table A.4: γ = 133,000 N/m3

State the Goal

Calculate gage pressure (kPa) in the center of the pipe.

Generate Ideas and Make a Plan

Start at point 1 and work to point 4 using ideas from Eq. (3.10c). 
When fl uid depth increases, add a pressure change. When 
fl uid depth decreases, subtract a pressure change.

Take Action (Execute the Plan)

1.  Calculate the pressure at point 2 using the hydrostatic 
equation (3.10c):

 p2 = p1 + pressure increase between 1 and 2 = 0 + γmΔh12

 = γm(0.6 m) = (133,000 N/m3)(0.6 m)
 = 79.8 kPa
2. Find the pressure at point 3:
 • Th e hydrostatic equation with z3 = z2 gives

p3�water = p2�water = 79.8 kPa

 •  When a fl uid-fl uid interface is fl at, pressure is 
constant across the interface. Th us, at the oil–water 
interface

p3�mercury = p3�water = 79.8 kPa

3.  Find the pressure at point 4 using the hydrostatic 
equation given in Eq. (3.10c):

 p4 = p3 − pressure decrease between 3 and 4 = p3 − γw𝓁
 = 79,800 Pa − (9810 N/m3)(1.8 m)
 = 62.1 kPa gage
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pressure in the pipe. The main concept is that pressure increases as depth increases and 
decreases as depth decreases.

Th e general equation for the pressure diff erence measured by the manometer is

 p2 = p1 + ∑
down

γi hi − ∑
up

γi hi (3.21)

where γi and hi are the specifi c weight and defl ection in each leg of the manometer. It does not 
matter where one starts, that is, where one defi nes the initial point 1 and fi nal point 2. When liq-
uids and gases are both involved in a manometer problem, it is well within engineering accuracy 
to neglect the pressure changes due to the columns of gas. Th is is because γliquid ≫ γgas. Example 
3.5 shows how to apply Eq. (3.21) to perform an analysis of a manometer that uses multiple fl uids.

Because the manometer confi guration shown in Fig. 3.17 is common, it is useful to derive 
an equation specifi c to this application. To begin, apply the manometer equation (3.21) between 
points 1 and 2:

 p1 + ∑
down

γi hi − ∑
up

γi hi = p2

 p1 + γA(Δy + Δh) − γBΔh − γA(Δy + z2 − z1) = p2

EXAMPLE 3.5

Manometer Analysis

Problem Statement

What is the pressure of the air in the tank if ℓ1 = 40 cm, ℓ2 = 
100 cm, and ℓ3 = 80 cm?

Air

Air

�1

Oil

(S = 0.8)

Mercury
�2 �3

12

Defi ne the Situation

A tank is pressurized with air.
Assumptions: Neglect the pressure change in the air column.

Properties:
• Oil: γoil = Sγwater = 0.8 × 9810 N/m3 = 7850 N/m3

• Mercury, Table A.4: γ = 133,000 N/m3

State the Goal

Find the pressure (kPa gage) in the air.

Generate Ideas and Make a Plan

Apply the manometer equation (3.21) from location 1 to 
location 2.

Take Action (Execute the Plan)

Manometer equation:

p1 + ∑
down

γi hi − ∑
up

γi hi = p2

p1 + γmercuryℓ3 − γairℓ2 + γoilℓ1 = p2

0 + (133,000 N/m3)(0.8 m) − 0 + (7850 N/m3)(0.4 m) = p2

p2 = pair = 110 kPa gage

g

1

Flow

Fluid A

Fluid B

Δh

z2 – z1

Δy

2 FIGURE 3.17

Apparatus for determining change in piezometric 

head corresponding to fl ow in a pipe.
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Simplifying gives
(p1 + γAz1) − (p2 + γAz2) = Δh(γB − γA)

Dividing through by γA gives

( p1

γA
+ z1) − ( p2

γA
+ z2) = Δh(γB

γA
− 1)

Recognize that the terms on the left  side of the equation are piezometric head and rewrite to 
give the fi nal result:

 h1 − h2 = Δh(γB

γA
− 1) (3.22)

Equation (3.22) is valid when a manometer is used to measure diff erential pressure. Example 3.6 
shows how this equation is used.

Summary of the Manometer Equations

Th ese manometer equations are summarized in Table 3.2. Because the equations were derived 
from the hydrostatic equation, they have the same assumptions: constant fl uid density and 
hydrostatic conditions. Th e process for applying the manometer equations is as follows:

Step 1.  For measurement of pressure at a point, select Eq. (3.21). For measurement of pres-
sure or head change between two points in a pipe, select Eq. (3.22).

Step 2.  Select points 1 and 2 where you know information or where you want to fi nd 
information.

Step 3. Write the general form of the manometer equation.
Step 4. Perform a term-by-term analysis.

EXAMPLE 3.6

Change in Piezometric Head for Pipe Flow

Problem Statement

A diff erential mercury manometer is connected to two pressure 
taps in an inclined pipe as shown in Fig. 3.17. Water at 50°F 
is fl owing through the pipe. Th e defl ection of mercury in the 
manometer is 1 inch. Find the change in piezometric pressure 
and piezometric head between points 1 and 2.

Defi ne the Situation

Water is fl owing in a pipe.
Properties:

• Water (50 °F): Table A.5, γwater = 62.4 lbf/ft 3.
• Mercury: Table A.4, γHg = 847 lbf/ft 3.

State the Goal

Find the following:
• Change in piezometric head (ft ) between points 1 and 2
• Change in piezometric pressure (psfg) between 1 and 2

Generate Ideas and Make a Plan

1. Find diff erence in the piezometric head using Eq. (3.22).
2.  Relate piezometric head to piezometric pressure using 

Eq. (3.13).

Take Action (Execute the Plan)

1. Diff erence in piezometric head:

 h1 − h2 = Δh(
γHg

γwater
− 1) = ( 1

12
 ft)( 847 lbf/ft3

62.4 lbf/ft3 − 1)
 =  1.05 ft

2. Piezometric pressure:

 pz = hγwater

 = (1.05 ft)(62.4 lbf/ft3) =  65.5 psf
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The Pressure Transducer

A pressure transducer (PT) is a device that converts pressure to an electrical signal. For 
example, Fig. 3.18 shows a strain-gage pressure transducer. Pressure transducers have many 
advantages, such as the following:

• In general, PTs have high levels of accuracy as compared to other devices, such as Bourdon-
tube gages and manometers.

• A PT can be used to measure gage pressure, absolute pressure, vacuum pressure, or diff er-
ential pressure.

• Most PTs can measure pressure as a function of time and can be applied to electronic data 
logging.

• A PT is available for almost any pressure range you want to measure. 

Pressure transducers also have some disadvantages, such as the following:

• Higher costs. 
• Longer setup times because they are more complicated. 
• In general, PTs need to be calibrated and used carefully.

3.4 The Pressure Force on a Panel (Flat Surface)

Many problems require a calculation of the pressure force on a panel. Th us, this section 
explains how to do this calculation for two cases: 

• A uniform pressure distribution
• A hydrostatic pressure distribution

A panel is any surface that is fl at or that can be idealized as if it were fl at (e.g., face of a dam, a 
surface on an airplane wing, or the cross section inside a pressure vessel).

TABLE 3.2 Summary of the Manometer Equations

Description Equation Terms

Gage pressure analysis. Use this 
  equation for a manometer that is 

being applied to measure gage 
pressure (e.g., see Fig. 3.16).

p2 = p1 + ∑
down

γihi − ∑
up

γihi (3.21) p1 = pressure at point 1 (N/m2)
p2 = pressure at point 2 (N/m2)
γi =  specifi c weight of fl uid i (N/m3)
hi = defl ection of fl uid in leg i (m)

Diff erential pressure analysis. Use 
  this equation for a manometer 

that is being applied to measure 
diff erential pressure in a pipe with 
a fl owing fl uid (e.g., see Fig. 3.17).

h1 − h2 = Δh(γB

γA
− 1) (3.22)

h1 = p1/γA + z1 = piezometric head at point 1 (m)
h2 = p2/γA + z2 = piezometric head at point 2 (m) 
Δh = defl ection of the manometer fl uid (m)
γA = specifi c weight of the fl owing fl uid (N/m3)
γB = specifi c weight of the manometer fl uid (N/m3)

Pipe containing
water under pressure

Amplifier

PressureStrain gage Diaphragm

50.17 kPa

FIGURE 3.18

A strain gage pressure transducer operates as follows: 

(1) Pressure deforms a diaphragm. (2) The diaphragm 

defl ection is sensed with a strain gage. (3) The voltage 

from the strain gage is amplifi ed and then converted to 

a pressure value via software. (4) The pressure value is 

displayed.
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The Uniform Pressure Distribution

Fig. 3.19 shows a uniform pressure distribution and the associated pressure force Fp. Th e value 
of Fp is calculated using

 Fp = pA (3.23)

where p is the gage pressure and A is the surface area of the panel. Th e pressure force acts at 
a location called the center of pressure (CP). For a uniform pressure, the CP is located at the 
centroid of the panel. Th e direction of the pressure force is normal to the panel. Th e reason-
ing for why Eq. (3.23) is true is as follows: (1) Th e pressure force on any surface is given by 
Fp = ∫A − p n dA.  (2) Because the pressure is constant for a uniform pressure distribution, 
Fp = p∫A − n dA = pA(−n) . Conclusion: Th e magnitude of Fp is Fp = pA. Th e direction of 
Fp is the (−n) direction. Th us, Eq. (3.23) is true.

Some useful facts about pressure distributions follow.
• A uniform pressure distribution is commonly used to idealize the pressure distribution due 

to a gas and the pressure distribution due to a liquid when a panel is horizontal.
• Gage pressure (not absolute pressure) is used in Eq. (3.23) because of the gage pressure rule. 

Th is rule is explained in Fig 3.20.
• To analyze a pressure vessel, apply the pressure vessel force balance method. Th is method is 

explained in Fig. 3.21.

The Hydrostatic Pressure Distribution

A hydrostatic pressure distribution (Fig. 3.22) describes the distribution of pressure when 
pressure varies only with elevation z according to dp/dz = −γ. When hydrostatic conditions 
prevail, any panel that is not horizontal is subjected to a hydrostatic pressure distribution.

Uniform
pressure
distribution

(a) (b)

Line of action

Center of
pressure
(CP)

= Pressure forceF
p

FIGURE 3.19

This example shows (a) a uniform pressure distribution, and (b) the 

associated pressure force.

Body

A = the area on the outside
of the body

patm

A

Fp dApatmn == − 0

FIGURE 3.20

Gage pressure rule: When a uniform atmospheric pressure acts on a body, 

integrating this pressure over area shows that the net pressure force is zero. Thus, 

use gage pressure when analyzing the pressure force.
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A pressure force acts at a point called the center of pressure, which is calculated so that 
the torque due to the pressure force is exactly the same as the torque due to the pressure 
distribution. In other words, if you want to replace the pressure distribution with a statically 
equivalent force that acts at a point, the correct point is the center of pressure. In this text, the 
symbol for the CP is a circle with a plus symbol inside: ⊕.

Th e centroid of an area can be thought of as the balance point of an area (see Fig. 3.23). 
In general, the equations for fi nding the centroid are integrals such as xc = (∫ xdA)/A. For 
common shapes, the equations have been solved, and engineers look up the value. In this text, 
centroid formulas are presented in the appendix, Fig. A.1.

Sketching a Pressure Distribution

As an engineer, you should be able to sketch a pressure distribution. Some guidelines are as 
follows: (1) draw each arrow so that its length represents the magnitude of the pressure, (2) 
sketch gage pressure, not absolute pressure, (3) draw each arrow so that the arrow is normal to 
the surface, and (4) draw each arrow to represent compression.

Theory: Force Caused by a Hydrostatic 

Pressure Distribution

Next, we will show how to fi nd the force on one face of a panel that is acted on by a hydro-
static pressure distribution. To begin, sketch a panel of arbitrary shape submerged in a liquid 

Hydrostatic
pressure distribution

Line of action

Center of pressure
Centroid

(a) (b)

pressure forceFp =

FIGURE 3.22

An example showing (a) a hydrostatic pressure distribution 

on a rectangular panel and (b) the corresponding pressure 

force.

FIGURE 3.23

An example of the centroid for a triangular panel. The idea 

here is to (1) imagine making a model of the panel, then (2) the 

centroid is the point at which the model would balance on the 

tip of a pencil. This example assumes that the model has a 

uniform density and that the gravity fi eld is uniform.

A tank  filled with a fluid
at uniform pressure;

gage pressurepi =

Ac = Section area
Fc

Fp

Fc = =Fp piAc

=Fc piAc

FIGURE 3.21

The pressure vessel force balance is a 

method for analyzing the force (Fc) needed to 

clamp a pressure vessel together. To derive an 

equation, take the following steps: (1) Imagine 

cutting the tank where it is clamped. 

(2) Sketch an FBD of the cut portion of the 

tank. (3) Balance the pressure force with the 

clamping force to show that Fc = pi Ac.
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(Fig. 3.24). Line AB is the edge view of a panel. Th e plane of the panel intersects the horizontal 
liquid surface at axis 0-0 with an angle α. Th e distance from the axis 0-0 to the horizontal axis 
through the centroid of the area is given by y. Th e distance from 0-0 to the diff erential area 
dA is y.

Th e force due to pressure is given by

 Fp =  ∫
A

pdA (3.24)

In Eq. (3.24), the pressure can be found with the hydrostatic equation:

 p = −γΔz = γy sin α (3.25)

Combine Eqs. (3.24) and (3.25) to give

 Fp =∫
A

pdA =∫
A

γy  sin α dA = γ  sin α∫
A

ydA (3.26)

Because the integral on the right side of Eq. (3.26) is the fi rst moment of the area, replace the 
integral by its equivalent, yA. Th erefore

 Fp = γy A sin α = (γy sin  α)A (3.27)

Apply the hydrostatic equation to show that the variables within the parentheses on the right 
side of Eq. (3.27) are the pressure at the centroid of the area. Th us,

 Fp = pA (3.28)

Equation (3.28) shows that the hydrostatic force on a panel of arbitrary shape (e.g., rectangular, 
round, elliptical) is given by the product of the panel area and the pressure at the elevation of 
the centroid.

A

Centroid

Center of pressure

View C-C

BC

C

dA

F

p = γy sin α

x

y

y
ycp

0

0

α

FIGURE 3.24

Distribution of hydrostatic pressure on a plane surface.
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Theory: The Center of Pressure for a Hydrostatic 

Pressure Distribution

Th is subsection shows how to derive an equation for the vertical location of the CP. For the 
panel shown in Fig. 3.24 to be in moment equilibrium, the torque due to the resultant force Fp 
must balance the torque due to each diff erential force:

ycp 
Fp =∫ y dF

Note that ycp is the “slant” distance from the center of pressure to the surface of the liquid. Th e 
label “slant” denotes that the distance is measured in the plane that runs through the panel. Th e 
diff erential force dF is given by dF = p dA; therefore,

ycp 
F =∫

A
yp dA

Also, p = γy sin α, so

 ycp 
F =∫

A
γy2 sin α dA (3.29)

Because γ and sin α are constants,

 ycp 
F = γ sin α∫

A
y2 dA (3.30)

Th e integral on the right-hand side of Eq. (3.30) is the second moment of the area (oft en called 
the area moment of inertia). Th is shall be identifi ed as I0. However, for engineering applica-
tions it is convenient to express the second moment with respect to the horizontal centroidal 
axis of the area. Hence by the parallel-axis theorem,

 I0 = I + y 2A (3.31)

Substitute Eq. (3.31) into Eq. (3.30) to give

ycp F = γ sin α(I + y 2 A)

However, from Eq. (3.25), F = γy sin αA. Th erefore,

  ycp(γy sin α A) = γ sin  α(I + y 2A) (3.32)

 ycp = y +
I

yA

  ycp − y =
I

yA  (3.33)

In Eq. (3.33), the area moment of inertia I  is taken about a horizontal axis that passes 
through the centroid of area. Formulas for I  are presented in Fig. A.1. Th e slant distance y 
measures the length from the surface of the liquid to the centroid of the panel along an axis 
that is aligned with the “slant of the panel,” as shown in Fig. 3.24.

Equation (3.33) shows that the CP will be situated below the centroid. Th e distance be-
tween the CP and the centroid depends on the depth of submersion, which is characterized by 
y, and on the panel geometry, which is characterized by I /A.
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TABLE 3.3 Summary of the Panel Equations

Purpose of the Equation Equation Variables

Predict the magnitude of 
  the hydrostatic force

Fp = pA (3.28) Fp = pressure force (N)
p = gage pressure evaluated at the depth of the centroid (Pa)
A = surface area of the plate (m2)

Calculate the location of the 
  center of pressure (CP) ycp − y =

I
yA  (3.33) (ycp − y) = slant distance from the centroid to the CP (m)

I  = area moment of inertia of the panel about its centroidal 
 axis (m4; for formulas, see Fig. A.1 in the appendix)
y = slant distance from the centroid to the liquid surface (m)

Th is fi gure defi nes variables 

p = gage pressure
at the centroid

Fp y  slant distance
between centroid
and surface

( ycp – y)  slant distance between CP and centroid
                (this distance) 

Check these assumptions: 1.  Th e problem involves only one fl uid. Th is fl uid has a constant density.
 2.  Th e pressure distribution is hydrostatic.
 3.  Th e pressure at the free surface is zero gage.
 4.  Th e panel is symmetric about an axis parallel to the slant distance.

EXAMPLE 3.7

Hydrostatic Force Due to Concrete

Problem Statement

Determine the force acting on one side of a concrete form 
2.44 m high and 1.22 m wide (8 ft  by 4 ft ) that is used for 
pouring a basement wall. Th e specifi c weight of concrete is 
23.6 kN/m3 (150 lbf/ft 3).

Defi ne the Situation

Concrete in a liquid state acts on a vertical surface.
Th e vertical wall is 2.44 m high and 1.22 m wide
Assumptions: Freshly poured concrete can be represented as 
a liquid.
Properties: Concrete: γ = 23.6 kN/m3

State the Goal

Find the resultant force (kN) acting on the wall.

Plan

Apply the panel equation (3.28).

Solution

1. Panel equation:
F = pA

2. Term-by-term analysis:
• p = pressure at depth of the centroid

 p = (γconcrete)(zcentroid)= (23.6 kN/m3)(2.44/2 m)

 = 28.79 kPa
• A = area of panel

 A = (2.44 m)(1.22 m) = 2.977 m2

3. Resultant force:
F = pA = (28.79 kPa)(2.977 m2) =  85.7 kN

Due to assumptions in the derivations, Eqs. (3.28) and (3.33) have several limitations. 
First, they only apply to a single fl uid of constant density. Second, the pressure at the liquid 
surface needs to be p = 0 gage to correctly locate the CP. Th ird, Eq. (3.33) gives only the vertical 
location of the CP, not the lateral location.

Panel Force Working Equations (Summary)

In Table 3.3, we have summarized information that is useful for applying the panel equations. 
Notice that this table gives the equations, the variables, and the main assumptions. Th ese 
equations are applied in Examples 3.7 and 3.8.
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EXAMPLE 3.8

Force to Open an Elliptical Gate

Problem Statement

An elliptical gate covers the end of a pipe 4 m in diameter. If 
the gate is hinged at the top, what normal force F is required 
to open the gate when water is 8 m deep above the top of the 
pipe and the pipe is open to the atmosphere on the other side? 
Neglect the weight of the gate.

F

Water

Hinge

Atmospheric
pressure

5 m

8 m

4 m diameter

Defi ne the Situation

Water pressure is acting on an elliptical gate.
Properties: Water (10°C): Table A.5, γ = 9810 N/m3

Assumptions:
1. Neglect the weight of the gate.
2.  Neglect friction between the bottom on the gate and the 

pipe wall.

State the Goal

F(N) ➡ force needed to open gate

Generate Ideas and Make a Plan

1. Calculate resultant hydrostatic force using F = pA.
2.  Find the location of the center of pressure using 

Eq. (3.33).
3. Draw an FBD of the gate.
4. Apply moment equilibrium about the hinge.

Take Action (Execute the Plan)

1. Hydrostatic (resultant) force:
• p = pressure at depth of the centroid

p = (γwater)(zcentroid) = (9810 N/m3)(10 m) = 98.1 kPa
•  A = area of elliptical panel (using Fig. A.1 to fi nd 

formula)

 A = πab
 = π(2.5 m)(2 m) = 15.71 m2

• Calculate resultant force:

Fp = pA = (98.1 kPa)(15.71 m2) =  1.54 MN
2. Center of pressure:

•  y = 12.5 m, where y is the slant distance from the 
water surface to the centroid

•  Area moment of inertia I  of an elliptical panel using 
a formula from Fig. A.1:

I =
πa3b

4
=

π(2.5 m)3(2 m)
4

= 24.54 m4

•  Finding center of pressure:

ycp − y =
I

yA
=

25.54 m4

(12.5 m)(15.71 m2)
= 0.125 m

3. FBD of the gate:

2.625 m

Hinge

5 m

F

Hy

Fp
Hx

4. Moment equilibrium:

∑ Mhinge = 0

1.541 × 106 N × 2.625 m − F × 5 m = 0
F =  809 kN

3.5 Calculating the Pressure Force on a 

Curved Surface

As engineers, we calculate pressure forces on curved surfaces when we are designing compo-
nents such as tanks, pipes, and curved gates. Th us, this topic is described in this section.

Consider the curved surface AB in Fig. 3.25a. Th e goal is to represent the pressure dis-
tribution with a resultant force that passes through the center of pressure. One approach is to 
integrate the pressure force along the curved surface and fi nd the equivalent force. However, 
it is easier to sum forces for the free body shown in the upper part of Fig. 3.25b. Th e lower 
sketch in Fig. 3.25b shows how the force acting on the curved surface relates to the force 
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FIGURE 3.25

(a) Pressure distribution and equivalent force.

(b) Free body diagram and action-reaction 

force pair.

B
F

C B

B

FCB

FAC W
Free-body
diagram

A

F

F
A

A

(a) (b)

F acting on the free body. Using the FBD and summing forces in the horizontal direction 
shows that
 Fx = FAC (3.34)

Th e line of action for the force FAC is through the center of pressure for side AC.
Th e vertical component of the equivalent force is

 Fy = W + FCB (3.35)

where W is the weight of the fl uid in the free body and FCB is the force on the side CB.
Th e force FCB acts through the centroid of surface CB, and the weight acts through the 

center of gravity of the free body. Th e line of action for the vertical force may be found by sum-
ming the moments about any convenient axis.

Example 3.9 illustrates how curved surface problems can be solved by applying equilib-
rium concepts together with the panel force equations.

Th e central idea of this section is that forces on curved surfaces may be found by applying 
equilibrium concepts to systems comprised of the fl uid in contact with the curved surface. Notice 
how equilibrium concepts are used in each of the situations discussed ahead.

Consider a sphere holding a gas pressurized to a gage pressure pi, as shown in Fig. 3.26. 
Th e indicated forces act on the fl uid in volume ABC. Applying equilibrium in the vertical di-
rection gives

F = pi AAC + W

Because the specifi c weight for a gas is quite small, engineers usually neglect the weight of 
the gas:
 F = pi 

AAC (3.36)

Another example is fi nding the force on a curved surface submerged in a reservoir of liquid, 
as shown in Fig. 3.27a. If atmospheric pressure prevails above the free surface and on the outside 
of surface AB, then force caused by atmospheric pressure cancels out, and equilibrium gives

 F = γVABCD = W↓ (3.37)

Hence, the force on surface AB equals the weight of liquid above the surface, and the arrow 
indicates that the force acts downward.

Now consider the situation in which the pressure distribution on a thin, curved surface 
comes from the liquid underneath, as shown in Fig. 3.27b. If the region above the surface, vol-
ume abcd, were fi lled with the same liquid, then the pressure acting at each point on the upper 
surface of ab would equal the pressure acting at each point on the lower surface. In other words, 
there would be no net force on the surface. Th us, the equivalent force on surface ab is given by

 F = γVabcd = W↓ (3.38)

where W is the weight of liquid needed to fi ll a volume that extends from the curved surface 
to the free surface of the liquid.

FIGURE 3.26

Pressurized spherical tank 

showing forces that act on the 

fl uid inside the marked region.

B

F

C
W

A

piAAC
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EXAMPLE 3.9

Hydrostatic Force on a Curved Surface

Problem Statement

Surface AB is a circular arc with a radius of 2 m and a width 
of 1 m into the paper. Th e distance EB is 4 m. Th e fl uid above 
surface AB is water, and atmospheric pressure prevails on the 
free surface of the water and on the bottom side of surface AB. 
Find the magnitude and line of action of the hydrostatic force 
acting on surface AB.

B

ED

C

FV

FH

W

FA

2 m

4 m

Defi ne the Situation

Situation: A body of water is contained by a curved surface.
Properties: Water (10°C): Table A.5, γ = 9810 N/m3

State the Goal

Find:
1. Hydrostatic force (in newtons) on the curved surface AB
2. Line of action of the hydrostatic force

Generate Ideas and Make a Plan

Apply equilibrium concepts to the body of fl uid ABC:

1.  Find the horizontal component of F by applying 
Eq. (3.34).

2. Find the vertical component of F by applying Eq. (3.35).
3.  Find the line of action of F by fi nding the lines of action 

of components and then using a graphical solution.

Take Action (Execute the Plan)

1. Force in the horizontal direction:

 Fx = FH = pA = (5 m)(9810 N/m3)(2 × 1 m2)
 = 98.1 kN

2. Force in the vertical direction:
• Vertical force on side CB:

FV = p0 A = 9.81 kN/m3 × 4 m × 2 m × 1 m = 78.5 kN
• Weight of the water in volume ABC:

 W = γVABC = (γ)(14πr2)(w)
 = (9.81 kN/m3) × (0.25 × π × 4 m2)(1 m) = 30.8 kN
• Summing forces:

Fy = W + FV = 109.3 kN
3. Line of action (horizontal force):

ycp = y +
I

yA
= (5 m) + ( 1 × 23/12

5 × 2 × 1
m)

ycp = 5.067 m

4.  Th e line of action (xcp) for the vertical force is found by 
summing moments about point C: 

xcpFy = FV × 1 m + W × xw

Th e horizontal distance from point C to the centroid 
of the area ABC is found using Fig. A.1:  xW =
4r/3π = 0.849 m. Th us,

 xcp =
78.5 kN × 1 m + 30.8 kN × 0.849 m

109.3 kN
= 0.957 m

5.  Th e resultant force that acts on the curved surface is 
shown in the following fi gure:

0.957 m

1.067 m

98.1 kN

109.3 kN Fresult = 146.9 kN

tan θ = = 1.11

θ = 48°

109.3
98.1

θ

FIGURE 3.27

Curved surface with (a) liquid above and (b) liquid 

below. In (a), arrows represent forces acting on the 

liquid. In (b), arrows represent the pressure distribution 

on surface ab.
W

F

(a) (b)

A

a

B

b

CD cd



84 CHAPTER 3  •  FLUID STATICS

3.6 Calculating Buoyant Forces

Engineers calculate buoyant forces for applications such as the design of ships, sediment trans-
port in rivers, and fi sh migration. Buoyant forces are sometimes signifi cant in problems in-
volving gases (e.g., a weather balloon). Th is section describes how to calculate the buoyant 
force on an object.

A buoyant force is defi ned as an upward force (with respect to gravity) on a body that is 
totally or partially submerged in a fl uid, either a liquid or gas. Buoyant forces are caused by the 
hydrostatic pressure distribution.

The Buoyant Force Equation

To derive an equation, consider a body ABCD submerged in a liquid of specifi c weight γ 
(Fig. 3.28). Th e sketch on the left  shows the pressure distribution acting on the body. As shown 
by Eq. (3.38), pressures acting on the lower portion of the body create an upward force equal to 
the weight of liquid needed to fi ll the volume above surface ADC. Th e upward force is

Fup = γ(Vb + Va)

where Vb is the volume of the body (i.e., volume ABCD) and Va is the volume of liquid above 
the body (i.e., volume ABCFE). As shown by Eq. (3.37), pressures acting on the top surface of 
the body create a downward force equal to the weight of the liquid above the body:

Fdown = γVa

Subtracting the downward force from the upward force gives the net or buoyant force FB acting 
on the body:
 FB = Fup − Fdown = γVb (3.39)

Hence, the net force or buoyant force (FB) equals the weight of liquid that would be needed to 
occupy the volume of the body.

Consider a body that is fl oating as shown in Fig. 3.29. Th e marked portion of the object 
has a volume VD. Pressure acts on curved surface ADC, causing an upward force equal to the 
weight of liquid that would be needed to fi ll volume VD. Th e buoyant force is given by

 FB = Fup = γVD (3.40)

Hence, the buoyant force equals the weight of liquid that would be needed to occupy the volume 
VD. Th is volume is called the displaced volume. Comparison of Eqs. (3.39) and (3.40) shows 
that one can write a single equation for the buoyant force:

 FB = γVD (3.41a)

In Eq. (3.41a), VD is the volume that is displaced by the body. If the body is totally submerged, 
the displaced volume is the volume of the body. If a body is partially submerged, the displaced 
volume is the portion of the volume that is submerged.

FIGURE 3.28

Two views of a body immersed in a liquid.
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Eq. (3.41b) is only valid for a single fl uid of uniform density. Th e general principle of 
buoyancy is called Archimedes’ principle:

 (buoyant force) = FB = (weight of the displaced fluid) (3.41b)

Th e buoyant force acts at a point called the center of buoyancy, which is located at the center 
of gravity of the displaced fl uid.

The Hydrometer

A hydrometer (Fig. 3.30) is an instrument for measuring the specifi c gravity of liquids. It is 
typically made of a glass bulb that is weighted on one end so the hydrometer fl oats in an up-
right position. A stem of constant diameter is marked with a scale, and the specifi c weight of 
the liquid is determined by the depth at which the hydrometer fl oats. Th e operating principle 
of the hydrometer is buoyancy. In a heavy liquid (i.e., high γ), the hydrometer will fl oat more 
shallowly because a lesser volume of the liquid must be displaced to balance the weight of the 
hydrometer. In a light liquid, the hydrometer will fl oat deeper.

A
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FIGURE 3.29

A body partially submerged in a liquid.
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FIGURE 3.30

Hydrometer

EXAMPLE 3.10

Buoyant Force on a Metal Part

Problem Statement

A metal part (object 2) is hanging by a thin cord from a 
fl oating wood block (object 1). Th e wood block has a specifi c 
gravity S1 = 0.3 and dimensions of 50 × 50 × 10 mm. Th e 
metal part has a volume of 6600 mm3. Find the mass m2 of the 
metal part and the tension T in the cord.

Defi ne the Situation

A metal part is suspended from a fl oating block of wood.
Properties:

• Water (15°C): Table A.5, γ = 9800 N/m3

• Wood: S1 = 0.3

State the Goal

• Find the mass (in grams) of the metal part.
• Calculate the tension (in newtons) in the cord.

2.5 mm

H2O, 15°C

1

2

10 mm

Generate Ideas and Make a Plan

1. Draw FBDs of the block and the part.
2. Apply equilibrium to the block to fi nd the tension.

3.  Apply equilibrium to the part to fi nd the weight of the 
part.

4. Calculate the mass of the metal part using W = mg.
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3.7 Predicting Stability of Immersed 

and Floating Bodies

Engineers need to calculate whether an object will tip over or remain in an upright position 
when placed in a liquid (e.g., for the design of ships and buoys). Th us, stability is presented in 
this section.

Immersed Bodies

When a body is completely immersed in a liquid, its stability depends on the relative positions 
of the center of gravity of the body and the centroid of the displaced volume of fl uid, which is 
called the center of buoyancy. If the center of buoyancy is above the center of gravity (see Fig. 
3.31a), any tipping of the body produces a righting couple, and consequently the body is stable. 
Alternatively, if the center of gravity is above the center of buoyancy, any tipping produces 

Take Action (Execute the Plan)

1. FBDs:

FB1

T + W1

T + FB2

W2

2. Force equilibrium (vertical direction) applied to block:

T = FB1 − W1

•  Buoyant force FB1 = γVD1, where VD1 is the 
submerged volume:

 FB1 = γVD1

 = (9800 N/m3)(50 × 50 × 7.5 mm3)(10−9 m3/mm3)
 = 0.184 N

• Weight of the block:
 W1 = γS1V1

 = (9800 N/m3)(0.3)(50 × 50 × 10 mm3)(10−9 m3/mm3)

 = 0.0735 N
• Tension in the cord:

T = (0.184 − 0.0735) =  0.110 N
3.  Force equilibrium (vertical direction) applied to metal 

part:
• Buoyant force:

FB2 = γV2 = (9800 N/m3)(6600 mm3)(10−9) = 0.0647 N

• Equilibrium equation:

W2 = T + FB2 = (0.110 N) + (0.0647 N)

4. Mass of metal part:

m2 = W2/g =  17.8 g

Review the Solution and the Process

Discussion. Notice that tension in the cord (0.11 N) is less than 
the weight of the metal part (0.18 N). Th is result is consistent 
with the common observation that an object will weigh less in 
water than in air.
Tip. When solving problems that involve buoyancy, draw an 
FBD.

Center of
buoyancy

Weight

C
G

C G C
G

(a) (b) (c)

FIGURE 3.31

Conditions of stability for immersed bodies.

(a) Stable. (b) Neutral.

(c) Unstable.
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an overturning moment, thus causing the body to rotate through 180° (see Fig. 3.31c). If the 
center of buoyancy and center of gravity are coincident, the body is neutrally stable—that is, it 
lacks a tendency for righting itself or for overturning (see Fig. 3.31b).

Floating Bodies

Th e question of stability is more involved for fl oating bodies than for immersed bodies because 
the center of buoyancy may take diff erent positions with respect to the center of gravity, de-
pending on the shape of the body and the position in which it is fl oating. For example, consider 
the cross section of a ship shown in Fig. 3.32a. Here, the center of gravity G is above the center 
of buoyancy C. Th erefore, at fi rst glance it would appear that the ship is unstable and could fl ip 
over. However, notice the position of C and G aft er the ship has taken a small angle of heel. As 
shown in Fig. 3.32b, the center of gravity is in the same position, but the center of buoyancy has 
moved outward from the center of gravity, thus producing a righting moment. A ship having 
such characteristics is stable.

Th e reason for the change in the center of buoyancy for the ship is that part of the original 
buoyant volume, as shown by the wedge shape AOB, is transferred to a new buoyant volume 
EOD. Because the buoyant center is at the centroid of the displaced volume, it follows that 
for this case the buoyant center must move laterally to the right. Th e point of intersection of 
the lines of action of the buoyant force before and aft er heel is called the metacenter (M), and 
the distance GM is called the metacentric height. If GM is positive—that is, if M is above G—the 
ship is stable; however, if GM is negative, the ship is unstable. Quantitative relations involving 
these basic principles of stability are presented in the next paragraph.

Consider the ship shown in Fig. 3.33, which has taken a small angle of heel α. First, evalu-
ate the lateral displacement of the center of buoyancy, CC′; then, it will be easy by simple 
trigonometry to solve for the metacentric height GM or to evaluate the righting moment. Re-
call that the center of buoyancy is at the centroid of the displaced volume. Th erefore, resort 
to the fundamentals of centroids to evaluate the displacement CC′. From the defi nition of the 
centroid of a volume,

 x V = ΣxiΔVi (3.42)

where x = CC′, which is the distance from the plane about which moments are taken to the 
centroid of V; V is the total volume displaced; ΔVi is the volume increment; and xi is the mo-
ment arm of the increment of volume.

Take moments about the plane of symmetry of the ship. Recall from mechanics that 
volumes to the left  produce negative moments and volumes to the right produce positive 
moments. For the right side of Eq. (3.42), write terms for the moment of the submerged vol-
ume about the plane of symmetry. A convenient way to do this is to consider the moment of 
the volume before heel, subtract the moment of the volume represented by the wedge AOB, 
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FIGURE 3.32

Ship stability relations.
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and add the moment represented by the wedge EOD. In a general way, this is given by the 
following equation:

 x V = moment of V before heel − moment of VAOB + moment of VEOD (3.43)

Because the original buoyant volume is symmetrical with y-y, the moment for the fi rst term on 
the right is zero. Also, the sign of the moment of VAOB is negative; therefore, when this negative 
moment is subtracted from the right-hand side of Eq. (3.43), the result is

 x V =∑ xiΔViAOB +∑ xiΔViEOD (3.44)

Now, express Eq. (3.44) in integral form:

 x V = ∫
AOB

x dV +∫
EOD

x dV (3.45)

However, it may be seen from Fig. 3.33b that dV can be given as the product of the length of 
the diff erential volume, x tan α, and the diff erential area, dA. Consequently, Eq. (3.45) can be 
written as

x  V =∫
AOB

x2 tan α dA +∫
EOD

x2 tan α dA

Here, tan α is a constant with respect to the integration. Also, because the two terms on the 
right-hand side are identical except for the area over which integration is to be performed, 
combine them as follows:

 x V = tan α∫
Awaterline

x2 dA (3.46)

FIGURE 3.33

(a) A plan view of a ship. (b) Section A-A of the ship.
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Th e second moment, or moment of inertia of the area defi ned by the waterline, is given the 
symbol I00, and the following is obtained:

x V = I00 tan α

Next, replace x by CC′ and solve for CC′:

CC′ =
I00 tan α

V

From Fig. 3.33b,
CC′ = CM tan α

Th us, eliminating CC′ and tan α yields

CM =
I00

V
However,

GM = CM – CG
Th erefore, the metacentric height is

 GM =
I00

V
− CG (3.47)

Equation (3.47) is used to determine the stability of fl oating bodies. As already noted, if 
GM is positive, the body is stable; if GM is negative, the body is unstable.

Note that for small angles of heel α, the righting moment or overturning moment is given 
as follows:
 RM = γ VGMα (3.48)

However, for large angles of heel, direct methods of calculation based on these same principles 
would have to be employed to evaluate the righting or overturning moment.

EXAMPLE 3.11

Stability of a Floating Block

Problem Statement

A block of wood 30 cm square in cross section and 60 cm 
long weighs 318 N. Will the block fl oat with sides vertical as 
shown?

60 cm

30 cm

30 cm

Side view End view

Defi ne the Situation

A block of wood is fl oating in water.

State the Goal

Determine the stable confi guration of the block of wood.

Generate Ideas and Make a Plan

1.  Apply force equilibrium to fi nd the depth of 
submergence.

2.  Determine if the block is stable about the long axis 
by applying Eq. (3.47).

3. If the block is not stable, repeat steps 1 and 2.

Take Action (Execute the Plan)

1. Equilibrium (vertical direction):

∑ Fy = 0

–weight + buoyant force = 0
−318 N + 9810 N/m3 × 0.30 m × 0.60 m × d = 0

d = 0.18 m = 18 cm
2. Stability (longitudinal axis):

 GM =
I00

V
− CG =

1
12 × 60 × 303

18 × 60 × 30
− (15 − 9)

 = 4.167 − 6 = −1.833 cm
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Because the metacentric height is negative, the block is not 
stable about the longitudinal axis. Th us, a slight disturbance 
will make it tip to the orientation shown below. Note: calcula-
tions to fi nd the dimensions (2.26 and 5.73 cm) are not shown 
in this example.

2.26 cm

Center of gravity Center of buoyancy

Width = w

5.73 cm

3. Equilibrium (vertical direction):

−weight + buoyant force = 0

−(318 N) + (9810 N/m3)(VD) = 0
VD = 0.0324 m3

4. Find the dimension w:
     (Displaced volume) 
       = (Block volume) – (Volume above the waterline)

 VD = 0.0324 m3 = (0.32)(0.6) m3 −
w 2

4
 (0.6 m)

 w = 0.379 m

5. Moment of inertia at the waterline:

I00 =
bh3

12
=
(0.6 m)(0.379 m)3

12
= 0.00273 m4

6. Metacentric height:

GM =
I00

V
− CG =

0.00273 m4

0.0324 m3 − 0.0573 m = 0.027 m

Because the metacentric height is positive, the block will be 
stable in this position.

Pressure

• Pressure p is the ratio of (magnitude of normal force due 
to a fl uid) to (area) at a point.
• Pressure always acts to compress the material that is in 

contact with the fl uid exerting the pressure.
• Pressure is a scalar not a vector.

• Engineers express pressure with gage pressure, absolute 
pressure, vacuum pressure, and diff erential pressure.
• Absolute pressure is measured relative to absolute 

zero.
• Gage pressure gives the magnitude of pressure relative 

to atmospheric pressure.
pabs = patm + pgage

• Vacuum pressure gives the magnitude of the pressure 
below atmospheric pressure.

pvacuum = patm − pabs

• Diff erential pressure (Δp) gives the diff erence in pres-
sure between two points (e.g., A and B).

Hydrostatic Equilibrium

• A hydrostatic condition means that the weight of each 
fl uid particle is balanced by the net pressure force.

• Th e weight of a fl uid causes pressure to increase with 
increasing depth, giving the hydrostatic diff erential 
equation. Th e equations that are used in hydrostatics are 
derived from this equation. Th e hydrostatic diff erential 
equation is

dp
dz

= −γ = −ρg

• If density is constant, the hydrostatic diff erential equa-
tion can be integrated to give the hydrostatic equation. 
Th e meaning (i.e., physics) of the hydrostatic equation is 
that piezometric head (or piezometric pressure) is con-
stant everywhere in a static body of fl uid.

p
γ + z = constant

3.8 Summarizing Key Knowledge
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Pressure Distributions and Forces 

Due to Pressure

• A fl uid in contact with a surface produces a pressure dis-
tribution, which is a mathematical or visual description 
of how the pressure varies along the surface.

• A pressure distribution is oft en represented as a statically 
equivalent force Fp acting at the center of pressure (CP).

• A uniform pressure distribution means that the pressure 
is the same at every point on a surface. Pressure distribu-
tions due to gases are typically idealized as uniform pres-
sure distributions.

• A hydrostatic pressure distribution means that the pressure 
varies according to dp/dz = –γ.

Force on a Flat Surface

• For a panel subjected to a hydrostatic pressure distribu-
tion, the hydrostatic force is

Fp = pA

• Th is hydrostatic force
• Acts at the centroid of area for a uniform pressure 

distribution.
• Acts below the centroid of area for a hydrostatic pressure 

distribution. Th e slant distance between the center of 
pressure and the centroid of area is given by

ycp − y =
I

y A

Hydrostatic Forces on a Curved Surface

• When a surface is curved, one can fi nd the pressure force 
by applying force equilibrium to a free body comprised 
of the fl uid in contact with the surface.

The Buoyant Force

• Th e buoyant force is the pressure force on a body that is 
partially or totally submerged in a fl uid.

• Th e magnitude of the buoyant force is given by

Buoyant force = FB = weight of the displaced fluid

• Th e center of buoyancy is located at the center of gravity 
of the displaced fl uid. Th e direction of the buoyant force 
is opposite the gravity vector.

• When the buoyant force is due to a single fl uid with con-
stant density, the magnitude of the buoyant force is

FB = γVD

Hydrodynamic Stability

• Hydrodynamic stability means that if an object is dis-
placed from equilibrium, then there is a moment that 
causes the object to return to equilibrium.

• Th e criteria for stability are as follows:
• Immersed object. Th e body is stable if the center of 

gravity is below the center of buoyancy.
• Floating object. Th e body is stable if the metacentric 

height is positive.

Describing Pressure (§3.1)

3.1 Apply the grid method (§1.7) to each situation.
a.  If the pressure is 15 inches of water (vacuum), what is the 

gage pressure in kPa?
b.  If the pressure is 140 kPa abs, what is the gage pressure in psi?
c.  If a gage pressure is 0.55 bar, what is absolute pressure in psi?
d.  If a person’s blood pressure is 119 mm Hg gage, what is 

their blood pressure in kPa abs?
3.2 A 93 mm diameter sphere contains an ideal gas at 20°C. 
Apply the grid method (§1.7) to calculate the density in units 
of kg/m3.

a.  Th e gas is helium. Th e gage pressure is 36 in-H2O.
b.  Th e gas is methane. Th e vacuum pressure is 8.8 psi.

3.3 For the questions below, assume standard atmospheric pressure.
a.  For a vacuum pressure of 43 kPa, what is the absolute 

pressure? Gage pressure?
b.  For a pressure of 15.6 psig, what is the pressure in psia?

c.  For a pressure of 190 kPa gage, what is the absolute pressure 
in kPa?

d.  Give the pressure 100 psfg in psfa.
3.4 Th e local atmospheric pressure is 91 kPa. A gage on an oxy-
gen tank reads a pressure of 250 kPa gage. What is the pressure 
in the tank in kPa abs?
3.5 Th e gage tester shown in the fi gure is used to calibrate or to 
test pressure gages. When the weights and the piston together 
weigh 132 N, the gage being tested indicates 197 kPa. If the piston 
diameter is 30 mm, what percentage of error exists in the gage?

Weights

Piston

Air

Oil

Problem 3.5

PROBLEMS
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3.6 As shown, a mouse can use the mechanical advantage pro-
vided by a hydraulic machine to lift  up an elephant.

a.  Derive an algebraic equation that gives the mechanical 
advantage of the hydraulic machine shown. Assume the 
pistons are frictionless and massless.

b.  A mouse can have a mass of 25 g and an elephant a mass of 
7500 kg. Determine a value of D1 and D2 so that the mouse 
can support the elephant.

Hydraulic fluid

Piston (2 places)

Mouse with 
mass m1

Elephant with 
mass m2

D2
D1

Problem 3.6

3.7 Find a parked automobile for which you have information 
on tire pressure and weight. Measure the area of tire contact 
with the pavement. Next, using the weight information and tire 
pressure, use engineering principles to calculate the contact area. 
Compare your measurement with your calculation and discuss.

The Hydrostatic Equation (§3.2)

3.8 To derive the hydrostatic equation, which of the following 
must be assumed? Select all that are correct:

a. Th e specifi c weight is constant.
b. Th e fl uid has no charged particles.
c. Th e fl uid is at equilibrium.

3.9 Imagine two tanks. Tank A is fi lled to depth h with water. Tank 
B is fi lled to depth h with oil. Which tank has the largest pressure? 
Why? Where in the tank does the largest pressure occur?
3.10 Consider Figure 3.11.

a. Which fl uid has the larger density?
b.  If you graphed pressure as a function of z in these two lay-

ered liquids, in which fl uid does the pressure change more 
with each incremental change in z?

3.11 Apply the grid method (§1.7) with the hydrostatic equation 
(Δp = γΔz) to each of the following cases:

a.  Predict the pressure change Δp in kPa for an elevation 
change Δz of 6.8 ft  in a fl uid with a density of 90 lbm/ft 3.

b.  Predict the pressure change in psf for a fl uid with SG = 1.3 
and an elevation change of 22 m.

c.  Predict pressure change in inches of water for a fl uid with a 
density of 1.2 kg/m3 and an elevation change of 2500 ft .

d.  Predict the elevation change in millimeters for a fl uid with 
SG = 1.4 that corresponds to a change in pressure of 1/6 atm.

3.12 Using §3.2 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the eff ectiveness of your communication.

a.  What does hydrostatic mean? How do engineers identify 
whether a fl uid is hydrostatic?

b.  What are the common forms on the hydrostatic equation? 
Are the forms equivalent or are they diff erent?

c.  What is a datum? How do engineers establish a datum?
d.  What are the main ideas of Eq. (3.10)? Th at is, what is the 

meaning of this equation?
e.  What assumptions need to be satisfi ed to apply the hydro-

static equation?
3.13 Apply the grid method to each of the following situations:

a.  What is the change in air pressure in pascals between the 
fl oor and the ceiling of a room with walls that are 8 ft  tall?

b.  A diver in the ocean (SG = 1.03) records a pressure of 1.5 atm 
on her depth gage. How deep is she?

c.  A hiker starts a hike at an elevation where the air pressure 
is 960 mbar, and he ascends 1240 ft  to a mountain summit. 
Assuming the density of air is constant, what is the pressure 
in mbar at the summit?

d.  Lake Pend Oreille, in northern Idaho, is one of the deepest 
lakes in the world, with a depth of 370 m in some locations. 
Th is lake is used as a test facility for submarines. What is the 
maximum gage pressure that a submarine could experience 
in this lake?

e.  A 55 m tall standpipe (a vertical pipe that is fi lled with water 
and open to the atmosphere) is used to supply water for fi re-
fi ghting. What is the maximum gage pressure in the standpipe?

3.14 As shown, an air space above a long tube is pressurized to 
50 kPa vacuum. Water (20°C) from a reservoir fi lls the tube to 
a height h. If the pressure in the air space is changed to 25 kPa 
vacuum, will h increase or decrease, and by how much? Assume 
atmospheric pressure is 100 kPa.

Air space

Waterh

Problem 3.14

3.15 A fi eld test is used to measure the density of crude oil 
recovered during a fracking* operation. Th e crude oil recovered 
is mixed with brine. Th e oil and brine mixture are placed in an 

*Hydraulic fracturing (or “fracking”) is a method that is used to recover gas 
and oil. Fracking creates fractures in rocks by injecting high-pressure liquids 
containing particulate additives into smaller cracks and forcing the cracks to 
widen. Th e larger cracks allow more petroleum products to fl ow through the 
formation to the well. A density test as described here could be performed to 
make a preliminary determination of the approximate makeup of the oil. Th e 
brine must be disposed of aft er fracking.
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open tank and allowed to separate. Aft er separation, a 1.0 m layer 
of oil fl oats on top of 0.55 m of brine. Th e density of the brine is 
1030 kg/m3, and the pressure at the bottom of the tank is 14 kPa 
gage. Find the density of the oil.
3.16 For the closed tank with Bourdon-tube gages tapped into 
it, what is the specifi c gravity of the oil and the pressure reading 
on gage C?

0.5 m

1.0 m

Air

0.5 m

1.0 m

0.5 m

A

B

C

pA = 50.0 kPa

pB = 58.5 kPa

pC = ?

Oil

Water

T = 10°C

Problem 3.16

3.17 Th is manometer contains water at room temperature. Th e glass 
tube on the left  has an inside diameter of 1 mm (d = 1.0 mm). Th e 
glass tube on the right is three times as large. For these conditions, 
the water surface level in the left  tube will be (a) higher than the 
water surface level in the right tube, (b) equal to the water surface 
level in the right tube, or (c) less than the water surface level in the 
right tube. State your main reason or assumption for your choice.

d 3d

Problem 3.17

3.18 If a 390 N force F1 is applied to the piston with the 4 cm di-
ameter, what is the magnitude of the force F2 that can be resisted 
by the piston with the 10 cm diameter? Neglect the weights of 
the pistons.

4 cm diameter

F1

F2

2 m

2.2 m

Vertical

Oil (SG = 0.85)

10 cm diameter

Problem 3.18

3.19 Regarding the hydraulic jack in Problem 3.18, which ideas 
were used to analyze the jack? Select all that apply:

a.  pressure = (force)(area)
b.  pressure increases linearly with depth in a fl uid with a 

constant density
c.  the pressure at the bottom of the 4-cm chamber is larger 

than the pressure at the bottom of the 10-cm chamber
d.  when a body is stationary, the sum of forces on the body 

is zero
e.  when a body is stationary, the sum of moments on the 

body is zero
f.  diff erential pressure = (weight/volume)(change in elevation)

3.20 Some skin divers go as deep as 50 m. What is the gage 
pressure at this depth in fresh water, and what is the ratio of the 
absolute pressure at this depth to normal atmospheric pressure? 
Assume T = 20°C.
3.21 Water occupies the bottom 1.2 m of a cylindrical tank. 
On top of the water is 0.8 m of kerosene, which is open to the 
atmosphere. If the temperature is 20°C, what is the gage pressure 
at the bottom of the tank?
3.22 A tank with an attached manometer contains water at 20°C. 
Th e atmospheric pressure is 100 kPa. Th ere is a stopcock located 
1 m from the surface of the water in the manometer. Th e stop-
cock is closed, trapping the air in the manometer, and water is 
added to the tank to the level of the stopcock. Find the increase 
in elevation of the water in the manometer assuming the air in 
the manometer is compressed isothermally.

Open Closed

Δ� = ?

1 m

Initial Final

Problem 3.22

3.23 A tank is fi tted with a manometer on the side, as shown. 
Th e liquid in the bottom of the tank and in the manometer has a 
specifi c gravity (SG) of 3.0. Th e depth of this bottom liquid is 
20 cm. A 15 cm layer of water lies on top of the bottom liquid. 
Find the position of the liquid surface in the manometer.

15 cm

20 cm SG = 3.0

Water Δh = ?

Problem 3.23

3.24 As shown, a weight sits on a piston of diameter D1. Th e 
piston rides on a reservoir of oil of depth h1 and specifi c gravity 
SG. Th e reservoir is connected to a round tube of diameter D2 
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and oil rises in the tube to height h2. Th e oil in the tube is open to 
atmosphere. Derive an equation for the height h2 in terms of the 
weight W of the load and other relevant variables. Neglect the 
weight of the piston.
3.25 As shown, a weight of mass 5 kg is situated on a piston 
of diameter D1 = 120 mm. Th e piston rides on a reservoir of 
oil of depth h1 = 42 mm and specifi c gravity SG = 0.8. Th e 
reservoir is connected to a round tube of diameter D2 = 5 mm, 
and oil rises in the tube to height h2. Find h2. Assume the oil in 
the tube is open to atmosphere, and neglect the weight of the 
piston.

Weight
Oil

Piston

h2

h1

D1

W

Problems 3.24, 3.25

3.26 What is the maximum gage pressure in the odd tank shown 
in the fi gure? Where will the maximum pressure occur? What is 
the pressure force acting on the top (CD) of the last chamber on 
the right-hand side of the tank? Assume T = 10°C.

Air

Air

Liquid

Water

SG = 3.0

Open to atmosphere

DC

A B

EE

Elevation view

1 m

1 m

1 m

2 m

2 m

1 m

Closed topOpen to
atmosphere

Plan view (view E-E)

1 m

Problem 3.26

3.27 Th e steel pipe and steel chamber shown in the fi gure 
together weigh 700 lbf. What force will have to be exerted on the 
chamber by all the bolts to hold it in place? Th e dimension ℓ is 
equal to 4 ft . Note: Th ere is no bottom on the chamber—only a 
fl ange bolted to the fl oor.

Steel chamber

d =     

D = ��

4�

�1/4

Steel pipe

Liquid (SG = 1.2)

Problem 3.27

3.28 Th e piston shown weighs 8 lbf. In its initial position, the pis-
ton is restrained from moving towards the bottom of the cylinder 
by means of the metal stop. Assuming there is neither friction 
nor leakage between piston and cylinder, what volume of oil 
(SG = 0.85) would have to be added to the 1 in. tube to cause the 
piston to rise 1 in. from its initial position?

6 in

4 in 4 in

Piston

1 in (ID) tube

4 in (ID) cylinder

Oil (SG = 0.85)

Stop

Problem 3.28

3.29 Consider an air bubble rising from the bottom of a lake. 
Neglecting surface tension, determine the ratio of the density 
of the air in the bubble at a depth of 34 ft  to its density at a 
depth of 8 ft .
3.30 One means of determining the surface level of liquid in a tank 
is by discharging a small amount of air through a small tube, the 
end of which is submerged in the tank, and reading the pressure 
on the gage that is tapped into the tube. From this, the level of the 
liquid surface in the tank can be calculated. If the pressure on the 
gage is 15 kPa, what is the depth d of liquid in the tank?

Air supply

1 m

d
Liquid

(SG = 0.85)

Problem 3.30
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Measuring Pressure (§3.3)

3.31 Match the following pressure-measuring devices with the 
correct name. Th e device names are: barometer, Bourdon gage, 
piezometer, manometer, and pressure transducer.

a.  A U-shaped tube in which changes in pressure cause 
changes in relative elevation of a liquid that is usually denser 
than the fl uid in the system measured; can be used to mea-
sure vacuum.

b.  Typically contains a diaphragm, a strain gage, and conver-
sion to an electric signal.

c.  A round face with a scale to measure needle defl ection, in 
which the needle is defl ected by changes in extension of a 
coiled hollow tube.

d.  A vertical tube in which a liquid rises in response to a posi-
tive gage pressure.

e.  An instrument used to measure atmospheric pressure; can 
be of various designs.

Applying the Manometer Equations (§3.3)

3.32 Which is the more correct way to describe the two summa-
tion (Σ) terms of the manometer equation, Eq. (3.21)?

a.  Add the downs and subtract the ups.
b.  Subtract the downs and add the ups.

3.33 As shown, gas at pressure pg raises a column of liquid to a 
height h. Th e gage pressure in the gas is given by pg = γliquidh. 
Apply the grid method (§1.7) to each situation that 
follows.

a.  Th e manometer uses a liquid with SG = 1.4. Calculate 
pressure in psia for h = 2.3 ft .

b.  Th e manometer uses mercury. Calculate the column rise in 
mm for a gage pressure of 0.5 atm.

c.  Th e liquid has a density of 22 lbm/ft 3. Calculate pressure in 
psfg for h = 6 inches.

d.  Th e liquid has a density of 800 kg/m3. Calculate the gage 
pressure in bar for h = 2.3 m.

h

Gas at pressure pg

Problem 3.33

3.34 Is the gage pressure at the center of the pipe (a) negative, 
(b) zero, or (c) positive? Neglect surface tension eff ects and state 
your rationale.

30 in

12 in

6 in

Specific gravity = 1.00

Specific gravity = 2.00

Problem 3.34

3.35 Determine the gage pressure at the center of the pipe (point A) 
in pounds per square inch when the temperature is 70°F with 
h1 = 16 in. and h2 = 2 in.

Mercury

Water
h1

h2

A

Pipe (section view)

Problem 3.35

3.36 Considering the effects of surface tension, estimate 
the gage pressure at the center of pipe A for h = 120 mm 
and T = 20°C.

Glass tube (0.5 mm ID, 4 mm OD)

Water level in tube

A

h

Problem 3.36

3.37 What is the pressure at the center of pipe B?
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B

50 cm

50 cm10 cm

3
4

 = 10 kN/m3γ

γ = 20 kN/m3

Problem 3.37

3.38 Th e ratio of container diameter to tube diameter is 8. When 
air in the container is at atmospheric pressure, the free surface 
in the tube is at position 1. When the container is pressurized, 
the liquid in the tube moves 40 cm up the tube from position 
1 to position 2. What is the container pressure that causes this 
defl ection? Th e liquid density is 1200 kg/m3.
3.39 The ratio of container diameter to tube diameter is 10. 
When air in the container is at atmospheric pressure, the 
free surface in the tube is at position 1. When the container 
is pressurized, the liquid in the tube moves 3 ft up the tube 
from position 1 to position 2. What is the container pressure 
that causes this deflection? The specific weight of the liquid 
is 50 lbf/ft3.

2

1

Container

Air
Tube

10°

�

Liquid

Problems 3.38, 3.39

3.40 Determine the gage pressure at the center of pipe A in 
pounds per square inch and in kilopascals.

A

Water

Air

Mercury

40 cm 1.31 ft

100 cm 3.28 ft

Problem 3.40

3.41 A device for measuring the specifi c weight of a liquid 
consists of a U-tube manometer as shown. Th e manometer tube 
has an internal diameter of 0.5 cm and originally has water in 

it. Exactly 2 cm3 of unknown liquid is then poured into one 
leg of the manometer, and a displacement of 5 cm is measured 
between the surfaces as shown. What is the specifi c weight of the 
unknown liquid?

Water

0.5 cm

5 cm
Unknown liquid

Problem 3.41

3.42 Mercury is poured into the tube in the fi gure until the 
mercury occupies 375 mm of the tube’s length. An equal vol-
ume of water is then poured into the left  leg. Locate the water 
and mercury surfaces. Also determine the maximum pressure 
in the tube.

160 mm

Uniform
diameter tube

Problem 3.42

3.43 Find the pressure at the center of pipe A. T = 10°C.

A

Oil (SG = 0.8)

Water
Wate

Mercury
(SG = 13.6)

90 cm

30 cm

30 cm

150 cm

Problem 3.43

3.44 Determine (a) the diff erence in pressure and (b) the diff er-
ence in piezometric head between points A and B. Th e elevations 
zA and zB are 10 m and 11 m, respectively, ℓ1 = 1 m, and the 
manometer defl ection ℓ2 is 50 cm.
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Air

Oil (SG = 0.85)

Elevation = zB

Elevation = zA

A

B

�2

�1

Problem 3.44

3.45 Th e defl ection on the manometer is h meters when the 
pressure in the tank is 150 kPa absolute. If the absolute pres-
sure in the tank is doubled, what will the defl ection on the 
manometer be?

Manometer
liquid

Atmospheric
pressure = 100 kPa

Gas
p = 150 kPa abs

h

Problem 3.45

3.46 A vertical conduit is carrying oil (SG = 0.95). A diff erential 
mercury manometer is tapped into the conduit at points A and 
B. Determine the diff erence in pressure between A and B when 
h = 3 in. What is the diff erence in piezometric head between A 
and B?

Mercury

Oil
B

A

2 in

h = 3 in

18 in

Problem 3.46

3.47 Two water manometers are connected to a tank of air. One 
leg of the manometer is open to 100 kPa pressure (absolute) 
while the other leg is subjected to 90 kPa. Find the diff erence in 
defl ection between both manometers, Δha – Δhb.

0.9patm patm

Δha Δhb

Air

Problem 3.47

3.48 A novelty scale for measuring a person’s weight by having 
the person stand on a piston connected to a water reservoir and 
stand pipe is shown in the diagram. Th e level of the water in 
the stand pipe is to be calibrated to yield the person’s weight in 
pounds force. When the person stands on the scale, the height of 
the water in the stand pipe should be near eye level so the person 
can read it. Th ere is a seal around the piston that prevents leaks 
but does not cause a signifi cant frictional force. Th e scale should 
function for people who weigh between 60 and 250 lbf and are 
between 4 and 6 feet tall. Choose the piston size and standpipe 
diameter. Clearly state the design features you considered. Indi-
cate how you would calibrate the scale on the standpipe. Would 
the scale be linear?

Water

Piston

Problem 3.48

Pressure Forces on Panels (Flat Surfaces) (§3.4)

3.49 Using §3.4 and other resources, answer the questions below. 
Strive for depth, clarity, and accuracy while also combining 
sketches, words, and equations in ways that enhance the 
eff ectiveness of your communication.

a.  For hydrostatic conditions, what do typical pressure 
distributions on a panel look like? Sketch three examples 
that correspond to diff erent situations.

b.  What is a center of pressure (CP)? What is a centroid of 
area?

c.  In Eq. (3.28), what does p mean? What factors infl uence the 
value of p?

d.  What is the relationship between the pressure distribution 
on a panel and the resultant force?

e.  How far is the CP from the centroid of area? What factors 
infl uence this distance?
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3.50 Part 1. Consider the equation for the distance between the 
CP and the centroid of a submerged panel (Eq. (3.33)). In that 
equation, ycp is

a.  the vertical distance from the water surface to the CP.
b.  the slant distance from the water surface to the CP.

Part 2. Consider the fi gure shown. For case 1, the fl at 
viewing window on the front of a submersible exploration 
vehicle is at a depth of y1. For case 2, the submersible has 
moved deeper in the ocean, to y2. As a result of this increased 
overall depth of the submersible and its window, does the 
spacing between the CP and centroid (a) get larger, (b) stay the 
same, or (c) get smaller?

y1

Case 2Case 1

y2

Problem 3.50

3.51 Which of these assumptions and/or limitations must be 
known when using Eq. (3.33) for a submerged surface or panel to 
calculate the distance between the centroid of the panel and the 
center of pressure of the hydrostatic force (select all that apply):

a.  Th e equation only applies to a single fl uid of constant 
density.

b.  Th e pressure at the surface must be p = 0 gage.
c.  Th e panel must be vertical.
d.  Th e equation gives only the vertical location (as a slant 

distance) to the CP, not the lateral distance from the edge 
of the body.

3.52 Two cylindrical tanks have bottom areas A and 4A respec-
tively, and are fi lled with water to the depths shown.

a.  Which tank has the higher pressure at the bottom of the 
tank?

b.  Which tank has the greater force acting downward on the 
bottom circular surface?

h

h/2

Tank 1 Tank 2
Area A Area 4A

Problem 3.52

3.53 What is the force acting on the gate of an irrigation ditch if 
the ditch and gate are 2 ft  wide, 2 ft  deep, and the ditch is completely 
full of water? Th ere is no water on the other side of the gate. Th e 
weather has been hot for weeks, so the water is 70°F.
3.54 An irrigation ditch is full, with slack (V = 0 m/s) water 
(T = 5°C) restrained by a closed gate. Th e ditch and gate are 
both 2 m wide by 1.5 m deep. Find the force acting on the gate 
and the location of center of pressure on the gate as measured 
from the bottom of the ditch. Th ere is no water on the 
downstream side of the gate.
3.55 Consider the two rectangular gates shown in the fi gure. Th ey 
are both the same size, but gate A is held in place by a horizontal 
shaft  through its midpoint and gate B is cantilevered to a shaft  
at its top. Now consider the torque T required to hold the gates 
in place as H is increased. Choose the valid statement(s): (a) TA 
increases with H. (b) TB increases with H. (c) TA does not change 
with H. (d) TB does not change with H.
3.56 For gate A, choose the statements that are valid: (a) Th e 
hydrostatic force acting on the gate increases as H increases. 
(b) Th e distance between the CP on the gate and the centroid of 
the gate decreases as H increases. (c) Th e distance between the 
CP on the gate and the centroid of the gate remains constant as H 
increases. (d) Th e torque applied to the shaft  to prevent the gate 
from turning must be increased as H increases. (e) Th e torque 
applied to the shaft  to prevent the gate from turning remains 
constant as H increases.

Gate A
ShaftH

Water
Gate B

Atmospheric
pressure

Atmospheric
pressure

H

Water
Shaft

Problems 3.55, 3.56

3.57 As shown, water (15°C) is in contact with a square panel; 
d = 2.3 m and h = 2 m.

a.  Calculate the depth of the centroid.
b.  Calculate the resultant force on the panel.
c.  Calculate the distance from the centroid to the CP.

Panel

d

h

Problem 3.57

3.58 As shown, a round viewing window of diameter D = 
0.8 m is situated in a large tank of seawater (SG = 1.03). The 
top of the window is 2.0 m below the water surface, and the 
window is angled at 60° with respect to the horizontal. Find 
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the hydrostatic force acting on the window, and locate the 
corresponding CP.

h

D
Sea water

Window

60°

Problem 3.58

3.59 Find the force of the gate on the block as shown, where 
d = 12 m, h = 6 m, and w = 6 m.

Pivot

Block

h × w gate

h/2

h/2

Water

d

Problem 3.59

3.60 A rectangular gate is hinged at the water line, as shown. Th e 
gate has h = 4 ft  of its length below the waterline, L = 1 ft  above 
the waterline, and is 5.8 ft  wide. Th e specifi c weight of water is 
62.4 lbf/ft 3. Find the force (lbf) applied at the bottom of the gate 
necessary to keep the gate closed.
3.61 A rectangular gate is hinged at the water line as shown. Th e 
gate has h = 2 m of its length below the waterline, L = 0.3 m 
above the waterline, and is 2 m wide. Th e specifi c weight of water 
is 9810 N/m3. Find the necessary force (in N) applied at the 
bottom of the gate to keep it closed.

Hinge

Water

F

L

Water

h

Problems 3.60, 3.61

3.62 Th e gate shown is rectangular and has dimensions height 
h = 6 m by width b = 4 m. Th e hinge is d = 3 m below the 
water surface. What is the force at point A? Neglect the weight 
of the gate.

Hinge

Atmospheric
pressure

Stop30°

Water

A

h

d

Problem 3.62

3.63 Determine the force P necessary to just start opening the 
2 m wide gate.

Hinge

Water

2 m-wide gate

1 m

P

4 m

3 m

Problem 3.63

3.64 Th e square gate shown is eccentrically pivoted so that it 
automatically opens at a certain value of h. What is that value in 
terms of ℓ?

Pivot

Stop

Square gate

Water

0.40�

0.60�

h Atmospheric
pressure

Problem 3.64

3.65 Th is butterfl y valve (D = 12 ft ) is used to control the fl ow 
in a 12 ft  diameter outlet pipe in a dam. In the position shown, 
the valve is closed. Th e valve is supported by a horizontal shaft  
through its center. Th e shaft  is located H = 60 ft  below the water 
surface. What torque would have to be applied to the shaft  to 
hold the valve in the position shown?

30°

Shaft

Butterfly
valve

Atmospheric 
pressure

Diameter = D

Water

H

Problem 3.65
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3.66 For the gate shown, α = 45°, y1 = 1 m, and y2 = 4 m. Will 
the gate fall or stay in position under the action of the hydrostatic 
and gravity forces if the gate itself weighs 150 kN and is 1.0 m 
wide? Assume T = 10°C. Use calculations to justify your answer.
3.67 For this gate, α = 45°, y1 = 3 ft , and y2 = 6 ft . Will the gate 
fall or stay in position under the action of the hydrostatic and 
gravity forces if the gate itself weighs 18,000 lb and is 3 ft  wide? 
Assume T = 50°F. Use calculations to justify your answer.

Hinge

Gate

Water
Atmospheric

pressure

y1

y2

α

Problems 3.66, 3.67

3.68 Determine the hydrostatic force F on the triangular gate, 
which is hinged at the bottom edge and held by the reaction RT 
at the upper corner. Express F in terms of γ, h, and W. Also 
determine the ratio RT/F. Neglect the weight of the gate.

Hinge

View A-A

Hinge

Water

A

A

F
RT

W

h

h

60°

Problem 3.68

3.69 In constructing dams, the concrete is poured in lift s of ap-
proximately 1.8 m (y1 = 1.8 m). Th e forms for the face of the dam 
are reused from one lift  to the next. Th e fi gure shows one such 
form, which is bolted to the already cured concrete. For the new 
pour, what moment will occur at the base of the form per meter of 
length (normal to the page)? Assume that concrete acts as a liquid 
when it is fi rst poured and has a specifi c weight of 24 kN/m3.

New pour levelCantilevered
form

Old pour level

Cured
concrete

Bolts

60°
y1

Problem 3.69

3.70 Th e plane rectangular gate can pivot about the support at B. 
For the conditions given, is it stable or unstable? Neglect the 
weight of the gate. Justify your answer with calculations.

Gate

Water

B

A

45°3.5
 m

8 m

Problem 3.70

Pressure Force on a Curved Surface (§3.5)

3.71 Two hemispheric shells are perfectly sealed together, and 
the internal pressure is reduced to 25% of atmospheric pressure. 
Th e inner radius is 10.5 cm, and the outer radius is 10.75 cm. Th e 
seal is located halfway between the inner and outer radius. If the 
atmospheric pressure is 101.3 kPa, what force is required to pull 
the shells apart?
3.72 A plug in the shape of a hemisphere is inserted in a hole in 
the side of a tank as shown in the fi gure. Th e plug is sealed by an 
O-ring with a radius of 0.2 m. Th e radius of the hemispherical 
plug is 0.25 m. Th e depth of the center of the plug is 2 m in fresh 
water. Find the horizontal and vertical forces on the plug due to 
hydrostatic pressure.

0.2 m

2 m

0.25 m

O-ring

Problem 3.72

3.73 Th is dome (hemisphere) is located below the water surface 
as shown. Determine the magnitude and sign of the force com-
ponents needed to hold the dome in place and the line of action 
of the horizontal component of force. Here y1 = 1 m and y2 = 
2 m. Assume T = 10°C.

Water

Atmospheric
pressure

Hemi-
spherical

dome
y2

y1

Problem 3.73

Calculating Buoyant Forces (§3.6)

3.74 Th ree spheres of the same diameter are submerged in 
the same body of water. One sphere is steel, one is a spherical 
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balloon fi lled with water, and one is a spherical balloon fi lled 
with air.

a.  Which sphere has the largest buoyant force?
b.  If you move the steel sphere from a depth of 1 ft  to 10 ft , 

what happens to the magnitude of the buoyant force acting 
on that sphere?

c.  If all three spheres are released from a cage at a depth of 
1 m, what happens to the three spheres, and why?

3.75 A rock weighs 980 N in air and 609 N in water. Find its 
volume.
3.76 You are at an estate sale and trying to decide whether to 
bid on a gold pendant that is said to be 24-carat (pure) gold. Th e 
pendant looks like gold, but you would like to check. You are 
permitted to make some measurements, and collect the follow-
ing data: Th e pendant has a mass of 100 g in air and an apparent 
mass of 94.8 g when submerged in water. You know that the SG 
of 24-carat gold is 19.3, and the SG of 22-carat gold is 17.8; you 
decide to bid on anything that has SG > 19.0. Find the SG of the 
pendant, and decide whether you will bid.
3.77 As shown, a cube (L = 94 mm) suspended in carbon 
tetrachloride is exactly balanced by an object of mass m1 = 610 g. 
Find the mass m2 of the cube.

Block with 
mass m1

Cube with mass m2

Balance beam scale

Carbon tetrachloride

L

Problem 3.77

3.78 As shown, a uniform-diameter rod is weighted at one 
end and is floating in a liquid. The liquid (a) is lighter than 
water, (b) must be water, or (c) is heavier than water. Show 
your work.

L

2Lρ = ρwater

ρ = 2ρwater

Problem 3.78

3.79 An 800 ft  ship has a weight of 40,000 tons, and the area de-
fi ned by the waterline is 38,000 ft 2. Will the ship take more or less 
draft  when steaming from salt water to fresh water? How much 
will it settle or rise?
3.80 An 150 m long freighter weighs 300 × 106 N, and the area 
defi ned by its waterline is 2600 m2. Will the ship ride higher or 
deeper in the water when traveling from fresh water to salt water 
as it leaves the harbor for the open ocean? How much (in m) will 
it settle or rise?
3.81 A submerged spherical steel buoy that is 1.2 m in diameter 
and weighs 1800 N is to be anchored in salt water 50 m below 
the surface. Find the weight of scrap iron that should be sealed 
inside the buoy in order that the force on its anchor chain will 
not exceed 5 kN.
3.82 A block of material of unknown volume is submerged in 
water and found to weigh 390 N (in water). Th e same block 
weighs 700 N in air. Determine the specifi c weight and volume 
of the material.
3.83 A 1 ft  diameter cylindrical tank is fi lled with water to a 
depth of 2 ft . A cylinder of wood 5 in. in diameter and 6.0 in. 
long is set afl oat on the water. Th e weight of the wood cylinder is 
3.5 lbf. Determine the change (if any) in the depth of the water in 
the tank.
3.84 Th e fl oating platform shown is supported at each corner 
by a hollow sealed cylinder 1 m in diameter. Th e platform itself 
weighs 30 kN in air, and each cylinder weighs 1.0 kN per meter 
of length. What total cylinder length L is required for the plat-
form to fl oat 1 m above the water surface? Assume that the spe-
cifi c weight of the water (brackish) is 10,000 N/m3. Th e platform 
is square in plan view.

10 m
Floating
platform

Weight = 30 kN

L = ?

1 m

Diameter = 1 m

Problem 3.84

3.85 To what depth d will this rectangular block (with density 
0.75 times that of water) fl oat in the two-liquid reservoir?

y

SG = 1.2

3L
d = ?

6L

L SG = 1.0

ρ = 0.75ρwater

Problem 3.85

3.86 Determine the minimum volume of concrete (γ = 23.6 kN/m3) 
needed to keep the gate (1 m wide) in a closed position, with 
𝓁 = 3 m. Note the hinge at the bottom of the gate.
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Water Hinge

Submerged
concrete

block

�1/4

Stop

�

Problem 3.86

3.87 A cylindrical container 4 ft  high and 2 ft  in diameter holds 
water to a depth of 2 ft . How much does the level of the water 
in the tank change when a 5 lb block of ice is placed in the con-
tainer? Is there any change in the water level in the tank when 
the block of ice melts? Does it depend on the specifi c gravity of 
the ice? Explain all the processes.
3.88 Th e partially submerged wood pole is attached to the wall 
by a hinge as shown. Th e pole is in equilibrium under the action 
of the weight and buoyant forces. Determine the density of the 
wood.

Water

Hinge

Pole

30°

2/3L

1/3L

Problem 3.88

3.89 A gate with a circular cross section is held closed by a lever 
1 m long attached to a buoyant cylinder. Th e cylinder is 25 cm 
in diameter and weighs 200 N. Th e gate is attached to a horizon-
tal shaft  so it can pivot about its center. Th e liquid is water. Th e 
chain and lever attached to the gate have negligible weight. Find 
the length of the chain such that the gate is just on the verge of 
opening when the water depth above the gate hinge is 10 m.

Pivot

0.25 m

1 m

10 m

1 m

?

Problem 3.89

Measuring 𝛒, 𝛄, and SG with Hydrometers (§3.6)

3.90 Th e hydrometer shown weighs 0.015 N. If the stem sinks 7.2 
cm in oil (z = 7.2 cm), what is the specifi c gravity of the oil?

3.91 Th e hydrometer shown sinks 4.7 cm (z = 4.7 cm) in water 
(15°C). Th e bulb displaces 1.0 cm3, and the stem area is 0.1 cm2. 
Find the weight of the hydrometer.

A = 0.1 cm2

z 

V = 1.0 cm3

Problems 3.90, 3.91

3.92 A common commercial hydrometer for measuring the 
amount of antifreeze in the coolant system of an automobile 
engine consists of a chamber with diff erently colored balls. Th e 
system is calibrated to give the range of specifi c gravity by dis-
tinguishing between the balls that sink and those that fl oat. Th e 
specifi c gravity of an ethylene glycol-water mixture varies from 
1.012 to 1.065 for 10% to 50% by weight of ethylene glycol. As-
sume there are six balls, 1 cm in diameter each, in the chamber. 
What should the weight of each ball be to provide a range of 
specifi c gravities between 1.01 and 1.06 with 0.01 intervals?
3.93 A hydrometer with the confi guration shown has a bulb 
diameter of 2 cm, a bulb length of 8 cm, a stem diameter of 1 cm, 
a length of 8 cm, and a mass of 40 g. What is the range of specifi c 
gravities that can be measured with this hydrometer?
(Hint: Liquid levels range between bottom and top of stem.)

1 cm diameter

2 cm
diameter

8 cm

Problem 3.93

Predicting Stability (§3.7)

3.94 A barge 20 ft  wide and 40 ft  long is loaded with rocks as shown. 
Assume that the center of gravity of the rocks and barge is located 
along the centerline at the top surface of the barge. If the rocks and 
the barge weigh 400,000 lbf, will the barge fl oat upright or tip over?

8 ft

20 ft

G

Problem 3.94
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3.95 A fl oating body has a square cross section with side w as 
shown in the fi gure. Th e center of gravity is at the centroid of the 
cross section. Find the location of the water line, ℓ/w, where the 
body would be neutrally stable (GM = 0). If the body is fl oating 
in water, what would be the specifi c gravity of the body material?

w

�

Problem 3.95

3.96 A cylindrical block of wood 1 m in diameter and 1 m long 
has a specifi c weight of 7500 N/m3. Will it fl oat in water with its 
axis vertical?

3.97 A cylindrical block of wood 1 m in diameter and 1 m long 
has a specifi c weight of 5000 N/m3. Will it fl oat in water with the 
ends horizontal?
3.98 Is the block in this fi gure stable fl oating in the position 
shown? Show your calculations.

H

Water

W = 2H

L = 3H

H

Problem 3.98
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The Bernoulli Equation and 

Pressure Variation

CHAPTER ROAD MAP This chapter describes fl owing fl uids, introduces the Bernoulli equation, and 
describes pressure variations in fl owing fl uids.

CHAPTERFOUR

FIGURE 4.1
This photo shows fl ow over a model truck in a wind 

tunnel. The purpose of the study was to compare the 

drag force on various designs of tonneau covers. The 

study was done by Stephen Lyda while he was an 

undergraduate engineering student. (Photo by Stephen 

Lyda.)

LEARNING OUTCOMES

DESCRIBING FLOW (§4.1 to 4.3, §4.12).

●  Explain streamlines, streaklines, and pathlines. 
●  Explain the Eulerian and Lagrangian approaches. 
● Know the terms defi ned in Table 4.4.

KINEMATIC PROPERTIES (§4.2, §4.4).

●  Defi ne velocity and the velocity fi eld. 
●  Defi ne acceleration.

EULER’S EQUATION (§4.5). 
●  Explain how Euler’s equation is derived and the meaning of the 

terms that appear in the equation.

THE BERNOULLI EQUATION (§4.6). 

●  Know the main ideas about the Bernoulli equation. 
●  Solve problems that involve the Bernoulli equation.

VELOCITY MEASUREMENT (§4.7). 

●  Explain how the piezometer, the stagnation tube, and the Pitot-

static tube work; do calculations. 
●  Defi ne static pressure and kinetic pressure.

PRESSURE (§4.10, §4.12). 

●  Describe the pressure fi eld for fl ow past a circular cylinder. 
●  Explain the three causes of pressure variation.

4.1 Describing Streamlines, Streaklines, 

and Pathlines

To visualize and describe fl owing fl uids, engineers use the streamline, streakline, and pathline. 
Hence, these topics are introduced in this section.

Pathlines and Streaklines

Th e pathline is the path of a fl uid particle as it moves through a fl ow fi eld. For example, when 
the wind blows a leaf, this provides an idea about what the fl ow is doing. If we imagine that the 
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leaf is tiny and attached to a particle of air as this particle moves, then the motion of the leaf 
will reveal the motion of the particle. Another way to think of a pathline is to imagine attach-
ing a light to a fl uid particle. A time exposure photograph taken of the moving light would be 
the pathline. One way to reveal pathlines in a fl ow of water is to add tiny beads that are neu-
trally buoyant so that bead motion is the same as the motion of fl uid particles. Observing these 
beads as they move through the fl ow reveals the pathline of each particle.

Th e streakline is the line generated by a tracer fl uid, such as a dye, continuously injected 
into a fl ow fi eld at a starting point. For example, if smoke is introduced into a fl ow of air, the re-
sulting lines are streaklines. Streaklines are shown in Fig. 4.1. Th ese streaklines were produced 
by vaporizing mineral oil on a vertical wire that was heated by passing an electrical current 
through the wire.

Streamlines

Th e streamline is defi ned as a line that is tangent everywhere to the local velocity vector.

EXAMPLE. Th e fl ow pattern for water draining through an opening in a tank (Fig. 4.2a) 
can be visualized by examining streamlines. Notice that velocity vectors at points a, b, and 
c are tangent to the streamlines. Also, the streamlines adjacent to the wall follow the con-
tour of the wall because the fl uid velocity is parallel to the wall. Th e generation of a fl ow 
pattern is an eff ective way of illustrating the fl ow fi eld.

Streamlines for fl ow around an airfoil (Fig. 4.2b) reveal that part of the fl ow goes over the 
airfoil and part goes under. Th e fl ow is separated by the dividing streamline. At the location 
where the dividing streamline intersects the body, the velocity will be zero with respect to the 
body. Th is is called the stagnation point.

Streamlines for fl ow over a Volvo ECC prototype (Fig. 4.3) allow engineers to assess aero-
dynamic features of the fl ow and possibly change the shape to achieve better performance, 
such as reduced drag.

Comparing Streamlines, Streaklines, and Pathlines

When fl ow is steady, the pathline, streakline, and streamline look the same so long as they all 
pass through the same point. Th us, the streakline, which can be revealed by experimental 
means, will show what the streamline looks like. Similarly, a particle in the fl ow will follow a 
line traced out of a streakline.

(b)(a)

Dividing streamline

Stagnation point
a

b

c

FIGURE 4.2

(a) Flow through an opening 

in a tank. (b) Flow over an 

airfoil section.
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When fl ow is unsteady, then the streamline, streakline, and pathline look diff erent. A capti-
vating fi lm entitled Flow Visualization (1) shows how and why the streamline, streakline, and 
pathline diff er in unsteady fl ow.

EXAMPLE. To show how pathlines, streaklines, and streamlines diff er in unsteady fl ow, 
consider a two-dimensional fl ow that initially has horizontal streamlines (Fig. 4.4). At a 
given time, t0, the fl ow instantly changes direction, and the fl ow moves upward to the right 
at 45° with no further change. A fl uid particle is tracked from the starting point, and up to 
time t0, the pathline is the horizontal line segment shown on Fig. 4.4a. Aft er time t0, the 
particle continues to follow the streamline and moves up the right as shown in Fig. 4.4b. 
Both line segments constitute the pathline. Notice in Fig. 4.4b that the pathline (black dotted 
line) diff ers from a streamline for t < t0 and any streamline for t > t0. Th us, the pathline and 
the streamline are not the same.
 Next, consider the streakline by introducing black tracer fl uid, as shown in Figures 4.4c 
and 4.4d. As shown, the streakline in Fig. 4.4d diff ers from the pathline and from any 
streamline.

FIGURE 4.3

Predicted streamline pattern over the Volvo ECC prototype. 

(Courtesy of Analytical Methods, VSAERO software, Volvo Concept 

Center.)

(a)

Streamlines for t < t0

Streamlines for t > t0

Starting point

Pathline of t = t0

(b)

Pathline of t > t0

(c)

Streamlines for t < t0

Streamlines for t > t0

Starting point

Streakline of t = t0

(d)

Streakline of t > t0

FIGURE 4.4

Streamlines, pathlines, and streaklines for 

an unsteady fl ow fi eld.
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4.2 Characterizing Velocity of a Flowing Fluid

Th is section introduces velocity and the velocity fi eld. Th en, these ideas are used to introduce 
two alternative methods for describing motion:

• Lagrangian approach. Describe motion of matter.
• Eulerian approach. Describe motion at locations in space.

Describing Velocity

Velocity, a property of a fl uid particle, gives the speed and direction of travel of the particle at 
an instant in time. Th e mathematical defi nition of velocity is

 VA =
drA

dt
 (4.1)

where VA is the velocity of particle A, and rA is the position of particle A at time t.

EXAMPLE. When water drains from a tank (Fig. 4.5a), VA gives the speed and direction 
of travel of the particle at point A. Th e velocity VA is the time rate of change of the vector rA.

Velocity Field

A description of the velocity of each fl uid particle in a fl ow is called a velocity field. In general, 
each fl uid particle in a fl ow has a diff erent velocity. For example, particles A and B in Fig 4.5a 
have diff erent velocities. Th us, the velocity fi eld describes how the velocity varies with position 
(see Fig. 4.5b).

A velocity fi eld can be described visually (Fig. 4.5b) or mathematically. For example, a 
steady, two-dimensional velocity fi eld in a corner is given by

 V = (2x s−1)i − (2y s−1)j (4.2)

where x and y are position coordinates measured in meters, and i and j are unit vectors in the 
x and y directions, respectively.

When a velocity fi eld is given by an equation, a plot can help one visualize the fl ow. For 
example, select the location (x, y) = (1, 1) and then substitute x = 1.0 meter and y = 1.0 meter 
into Eq. (4.2) to give the velocity as

 V = (2 m/s)i − (2 m/s)j (4.3)

Plot this point and repeat this process at other points to create Fig. 4.6a. Finally, use the defi ni-
tion of the streamline (the line that is tangent everywhere to the velocity vector) to create a 
streamline pattern (Fig. 4.6b).

Summary. Th e velocity fi eld describes the velocity of each fl uid particle in a spatial region. 
Th e velocity fi eld can be shown visually, as in Figs. 4.5 and 4.6, or described mathematically, as 
in Eq. (4.2).

FIGURE 4.5

Water draining out of a tank. 

(a) The velocity of particle A 

is the time derivative of the 

position. (b) The velocity fi eld 

represents the velocity of 

each fl uid particle throughout 

the region of fl ow.

A

B

Velocity

Position
x

y

(a) (b)

rA
VA

Velocity field: Description 
of the velocity at each 
spatial location
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Th e concept of a fi eld can be generalized. A field is a mathematical or visual description 
of a variable as a function of position and time.

EXAMPLES. A pressure fi eld describes the distribution of pressure at various points in 
space and time. A temperature fi eld describes the distribution of temperature at various 
points in space and time.

A fi eld can be scalar valued (e.g., temperature fi eld, pressure fi eld) or vector valued (e.g., 
velocity fi eld, acceleration fi eld).

The Eulerian and Lagrangian Approaches

In solid mechanics, it is straightforward to describe the motion of a particle or a rigid body. In 
contrast, the particles in a fl owing fl uid move in more complicated ways, and it is not practical to 
track the motion of each particle. Th us, researchers invented a second way to describe motion.

Th e fi rst way to describe motion (called the Lagrangian approach) involves selecting 
a body and then describing the motion of this body. Th e second way (called the Eulerian 
approach) involves selecting a region in space and then describing the motion that is occur-
ring at points in space. In addition, the Eulerian approach allows properties to be evaluated at 
spatial locations as a function of time because the Eulerian approach uses fi elds.

EXAMPLE. Consider falling particles (Fig. 4.7). Th e Lagrangian approach uses equations 
that describe an individual particle. Th e Eulerian approach uses an equation for the velocity 
fi eld. Although the equations of the two approaches are diff erent, they predict the same 
values of velocity. Note that the equation v = √2g |z| in Fig. 4.7 was derived by letting the 
kinetic energy of the particle equal the change in gravitational potential energy.

When the ideas in Fig. 4.7 are generalized, the independent variables of the Lagrangian ap-
proach are initial position and time. Th e independent variables of the Eulerian approach are 
position in the fi eld and time. Table 4.1 compares the Lagrangian and the Eulerian approaches.

s

Lagrangian: Select a body and
describe its motion.

Eulerian: Describe the
motion at spatial locations. 

For example, for this
particle the equations are For example, at any location 

in space, the speed of a
particle is given by  

v g |z|

v =  speed at location z (m/s)

z  =  vertical location (m)

2=

z

y

=

v = gt

s
gt2

v = speed of particle (m/s)

t = time to fall a distance s (s)

g = gravitational constant (9.81 m/s2)

2

s  = position from origin (m) 

FIGURE 4.7

This fi gure shows small particles released from rest 

and falling under the action of gravity. Equations 

on the left side of the image show how motion is 

described using a Lagrangian approach. Equations 

on the right side show an Eulerian approach.

FIGURE 4.6

The velocity fi eld specifi ed by Eq. (4.2): (a) velocity vectors and 

(b) the streamline pattern.

1
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Streamlines
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Representing Velocity Using Components

When the velocity fi eld is represented in Cartesian components, the mathematical form is
 V = u(x, y, z, t) i + v (x, y, z, t) j + w (x, y, z, t)k (4.4)

where u = u(x, y, z, t) is the x-component of the velocity vector and i is a unit vector in the x 
direction. Th e coordinates (x, y, z) give the spatial location in the fi eld and t is time. Similarly, 
the components v and w give the y- and z-components of the velocity vector.

Another way to represent a velocity is to use normal and tangential components. In this 
approach (Fig. 4.8), unit vectors are attached to the particle and move with the particle. Th e 
tangential unit vector ut is tangent to the path of the particle, and the normal unit vector un is 
normal to the path and directed inward toward the center of curvature. Th e position coordi-
nate s measures distance traveled along the path. Th e velocity of a fl uid particle is represented 
as V = V(s, t)ut, where V is the speed of the particle and t is time.

4.3 Describing Flow

Engineers use many words to describe fl owing fl uids. Speaking and understanding this lan-
guage is seminal to professional practice. Th us, this section introduces concepts for describing 
fl owing fl uids. Because there are many ideas, a summary table is presented (see Table 4.4).

TABLE 4.1 Comparison of the Lagrangian and the Eulerian Approaches

Feature Lagrangian Approach Eulerian Approach

Basic idea Observe or describe the motion of matter of 
 fi xed identity.

Observe or describe the motion of matter at 
 spatial locations.

Solid mechanics (application) Used in dynamics. Used in elasticity. Can be used to model the 
 fl ow of materials.

Fluid mechanics (application) Fluid mechanics uses many Eulerian ideas 
  (e.g., fl uid particle, streakline, acceleration 

of a fl uid particle). Equations in fl uid 
mechanics are oft en derived from an 
Lagrangian viewpoint.

Nearly all mathematical equations in fl uid 
  mechanics are written using the Eulerian 

approach.

Independent variables Initial position (x0, y0, z0) and time (t). Spatial location (x, y, z) and time (t).

Mathematical complexity Simpler. More complex; for example, partial derivatives 
 and nonlinear terms appear.

Field concept Not used in the Lagrangian approach. Th e fi eld is an Eulerian concept. When fi elds 
  are used, the mathematics oft en includes the 

divergence, gradient, and curl.
Types of systems used Closed systems, particles, rigid bodies, 

 system of particles.
Control volumes.

1

2
s

ut

un
path

FIGURE 4.8

Describing the motion of a fl uid particle 

using normal and tangential components.



110 CHAPTER 4  •  THE BERNOULLI  EQUATION AND PRESSURE VARIATION

Uniform and Nonuniform Flow

To introduce uniform fl ow, consider a velocity fi eld of the form

V = V(s, t)

where s is distance traveled by a fl uid particle along a path and t is time (Fig. 4.9). Th is math-
ematical representation is called normal and tangential components. Th is approach is useful 
when the path of a particle is known.

In a uniform flow, the velocity is constant in magnitude and direction along a streamline 
at each instant in time. In uniform fl ow, the streamlines must be rectilinear, which means 
straight and parallel (see Fig. 4.10). Uniform fl ow can be described by an equation:

 ( 𝜕V
𝜕s )

t
=
𝜕V
𝜕s

= 0 (uniform fl ow) (4.5)

Regarding notation in this text, we omit the variables that are held constant when writing 
partial derivatives. For example, in Eq. (4.5), the left most terms show the formal way to write a 
partial derivative, and the middle term shows a simpler notation. Th e rationale for the simpler 
notation is that variables that are held constant can be inferred from the context.

In nonuniform flow, the velocity changes along a streamline in magnitude, direction, or 
both. It follows that any fl ow with streamline curvature is nonuniform. Any fl ow in which the 
speed of the fl ow is changing spatially is also nonuniform. Nonuniform fl ow can be described 
with an equation.

𝜕V
𝜕s

≠ 0  (nonuniform fl ow)

EXAMPLES. Nonuniform fl ow occurs in the converging duct in Fig. 4.11a because the 
speed increases as the duct converges. Nonuniform fl ow occurs in the vortex in Fig. 4.11b 
because the streamlines are curved.

(a) (b)

FIGURE 4.11

Flow patterns for nonuniform fl ow:

(a) converging fl ow, (b) vortex fl ow.

Fluid particle

Vs

Particle path

Initial point
(s = 0, t = 0)

FIGURE 4.9

A fl uid particle moving along a 

pathline.

FIGURE 4.10

Uniform fl ow in a pipe.
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Steady and Unsteady Flow

In general, a velocity fi eld V depends of position r and time t: V = V(r, t). However, in many 
situations, the velocity is constant with time, so V = V(r). Th is is called steady fl ow. Steady 
flow means that velocity at each location in space is constant with time. Th is idea can be writ-
ten mathematically as

𝜕V
𝜕t ⎸all points in velocity field

= 0

In an unsteady flow, the velocity is changing, at least at some points, in the velocity fi eld. 
Th is idea can be represented with an equation:

𝜕V
𝜕t

≠ 0

EXAMPLE. If the fl ow in a pipe changed with time due to a valve opening or closing, then 
the fl ow would be unsteady; that is, the velocity at locations in the velocity fi eld would be 
increasing or decreasing with time.

Laminar and Turbulent Flow

In a famous experiment, Osborne Reynolds showed that there are two diff erent kinds of fl ow 
that can occur in a pipe.* Th e fi rst type, called laminar flow, is a well-ordered state of fl ow in 
which adjacent fl uid layers move smoothly with respect to each other. Th e fl ow occurs in layers 
or laminae. An example of laminar fl ow is the fl ow of thick syrup (Fig. 4.12a).

Th e second type of fl ow identifi ed by Reynolds is called turbulent flow, which is an un-
steady fl ow characterized by eddies of various sizes and intense cross-stream mixing. Tur-
bulent fl ow can be observed in the wake of a ship. Also, turbulent fl ow can be observed for a 
smokestack (Fig. 4.12b). Notice that the mixing of the turbulent fl ow is apparent because the 
plume widens and disperses.

Laminar fl ow in a pipe (Fig. 4.13a) has a smooth parabolic velocity distribution. Turbulent 
fl ow (Fig. 4.13b) has a plug-shaped velocity distribution because eddies mix the fl ow, which 
tends to keep the distribution uniform. In both laminar and turbulent fl ow, the no-slip condi-
tion applies.

*Reynolds’ experiment is described in Chapter 10.

(a) (b)

FIGURE 4.12

Examples of laminar and 

turbulent fl ow: (a) The fl ow 

of maple syrup is laminar. 

(Lauri Patterson/The Agency 

Collection/Getty Images.) 

(b) The fl ow out of a 

smokestack is turbulent. 

(Photo by Donald Elger.)
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Time-Averaged Velocity

Turbulent fl ow is unsteady, so the standard approach is to represent the velocity as a time-
averaged velocity u plus a fl uctuating component u′. Th us, the velocity is expressed as 
u = u + u′ (see Fig. 4.13b). Th e fl uctuating component is defi ned as the diff erence between 
the local velocity and the time-averaged velocity. A turbulent fl ow is designated as “steady” if 
the time-averaged velocity is unchanging with time. For an interesting look at turbulent fl ows, 
see the fi lm entitled Turbulence (3). Table 4.2 compares laminar and turbulent fl ows.

(a) (b)

u

u

u

FIGURE 4.13

Laminar and turbulent fl ow in a straight pipe.

(a) Laminar fl ow.

(b) Turbulent fl ow.

Both sketches assume fully developed fl ow.

TABLE 4.2 Comparison of Laminar and Turbulent Flows

Feature Laminar Flow Turbulent Flow

Basic description Smooth fl ow in layers (laminae). Th e fl ow has many eddies of various sizes. 
  Th e fl ow appears random, chaotic, and 

unsteady.
Velocity profi le in a pipe Parabolic; ratio of mean velocity to centerline 

 velocity is 0.5 for fully developed fl ow.
Pluglike; ratio of mean velocity to centerline 
 velocity is between 0.8 and 0.9.

Mixing of materials added 
 to the fl ow

Low levels of mixing. Diffi  cult to get a 
 material to mix with a fl uid in laminar fl ow.

High levels of mixing. Easy to get a material 
  to mix; for example, visualize cream mixing 

with coff ee.
Variation with time Can be steady or unsteady. Always unsteady.

Dimensionality of fl ow Can be 1-D, 2-D, or 3-D. Always 3-D.
Availability of mathematical 
 solutions

In principle, any laminar fl ow can be solved 
  with an analytical or computer solution. 

Th ere are many existing analytical solutions. 
Solutions are very close to what would be 
measured with an experiment.

Th ere is no complete theory of turbulent 
  fl ow. Th ere are a limited number of 

semiempirical solution approaches. 
Many turbulent fl ows cannot be accurately 
predicted with computer models or 
analytical solutions. Engineers oft en rely on 
experiments to characterize turbulent fl ow.

Practical importance A small percentage of practical problems 
  involve laminar fl ow.

Th e majority of practical problems involve 
  turbulent fl ow. Typically, the fl ow of air and 

water in piping systems is turbulent. Most 
fl ows of water in open channels are turbulent.

Occurrence (Reynolds 
 number)

Occurs at lower values of Reynolds numbers. 
  (Th e Reynolds number is introduced in 

Chapter 8.)

Occurs at higher values of Reynolds numbers.
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One-Dimensional and Multidimensional Flows

Th e dimensionality of a fl ow fi eld can be illustrated by example. Fig. 4.14a shows the velocity 
distribution for an axisymmetric fl ow in a circular duct. Th e fl ow is uniform, or fully devel-
oped, so the velocity does not change in the fl ow direction (z). Th e velocity depends on only 
one spatial dimension, namely the radius r, so the fl ow is one-dimensional or 1-D. Fig. 4.14b 
shows the velocity distribution for uniform fl ow in a square duct. In this case, the velocity 
depends on two dimensions, namely x and y, so the fl ow is two-dimensional. Figure 4.14c also 
shows the velocity distribution for the fl ow in a square duct, but the duct cross-sectional area is 
expanding in the fl ow direction, so the velocity will be dependent on z as well as x and y. Th is 
fl ow is three-dimensional, or 3-D.

Turbulence is another good example of three-dimensional fl ow because the velocity com-
ponents at any one time depend on the three coordinate directions. For example, the velocity 
component u at a given time depends on x, y, and z; that is, u(x, y, z). Turbulent fl ow is un-
steady, so the velocity components also depend on time.

Another defi nition frequently used in fl uid mechanics is quasi-one-dimensional fl ow. By 
this defi nition, it is assumed that there is only one component of velocity in the fl ow direction 
and that the velocity profi les are uniformly distributed; there is constant velocity across the 
duct cross section.

Viscous and Inviscid Flow

In a viscous flow, the forces associated with viscous shear stresses are large enough to eff ect 
the dynamic motion of the particles that comprise the fl ow. For example, when a fl uid fl ows 
in a pipe as shown in Fig. 4.13, this is a viscous fl ow. Indeed, both laminar and turbulent fl ows 
are types of viscous fl ows.

In an inviscid flow, the forces associated with viscous shear stresses are small enough 
that they do not aff ect the dynamic motion of the particles that comprise the fl ow. Th us, in an 
inviscid fl ow, the viscous stresses can be neglected in the equations for motion.

x

z

(a)

(b)

(c)

u (x,y,z)

u (x,y)

u (r)

y

x

z

y

r

z

FIGURE 4.14

Flow dimensionality: (a) one-dimensional fl ow, 

(b) two-dimensional fl ow, and (c) three-dimensional 

fl ow.
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Boundary Layer, Wake, and Potential Flow Regions

To idealize many complex fl ows, engineers use ideas that can be illustrated by fl ow over a 
sphere (Fig. 4.15). As shown, the fl ow is divided into three regions: an inviscid fl ow region, a 
wake, and a boundary layer.

Flow Separation

Flow separation (Fig. 4.15) occurs when the fl uid particles adjacent to a body deviate from the 
contours of the body. Fig. 4.16 shows fl ow separation behind a square rod. Notice that the fl ow 
separates from the shoulders of the rod and that the wake region is large. In both Figs. 4.15 and 
4.16, the fl ow follows the contours of the body on the upstream sides of the objects. Th e region 
in which a fl ow follows the body contour is called attached flow.

When fl ow separates (Fig. 4.16), the drag force on the body is usually large. Th us, design-
ers strive to reduce or eliminate fl ow separation when designing products such as automobiles 
and airplanes. In addition, fl ow separation can lead to structural failure because the wake is 
unsteady due to vortex shedding, and this creates oscillatory forces. Th ese forces cause struc-
tural vibrations, which can lead to failure when the structure’s natural frequency is closely 
matched to the vortex-shedding frequency. In a famous example, vortex shedding associated 
with fl ow separation caused the Tacoma Narrows Bridge near Seattle, Washington, to oscillate 
wildly and to fail catastrophically.

Fig. 4.17 shows fl ow separation for an airfoil (an airfoil is a body with the cross-sectional 
shape of a wing). Flow separation occurs when the airfoil is rotated to an angle of attack that 
is too high. Flow separation in this context causes an airplane to stall, which means that the 
lift ing force drops dramatically and the wings can no longer keep the airplane in level fl ight. 
Stall is to be avoided.

Flow separation can occur inside pipes. For example, fl ow passing through an orifi ce in a 
pipe will separate (see Fig. 13.14). In this case, the zone of separated fl ow is usually called a re-
circulating zone. Separating fl ow within a pipe is usually undesirable because it causes energy 
losses, low-pressure zones that can lead to cavitation and vibrations.

FIGURE 4.16

Flow pattern past a square rod illustrating separation 

at the edges.

Inviscid flow: Region of flow in which
viscous forces can be neglected when
solving the equations of motion  

Boundary layer: A thin region
of viscous flow near a wall   

Wake: The region
of separated flow
behind a body 

Flow separation: Where the flow
moves away from the wall

FIGURE 4.15

Flow pattern around a sphere 

when the Reynolds number is 

high. The sketch shows the 

regions of fl ow.
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Summary. Attached fl ow means that fl ow is moving parallel to the walls of a body. Flow 
separation, which occurs in both internal and external fl ows, means the fl ow moves away from 
the wall. Flow separation is related to phenomenon of engineering interests such as drag, 
structural vibrations, and cavitation.

4.4 Acceleration

Predicting forces is important to the designer. Because forces are related to acceleration, this 
section describes what acceleration means in the context of a fl owing fl uid.

Defi nition of Acceleration

Acceleration is a property of a fl uid particle that characterizes the change in speed of the 
particle and the change in the direction of travel at an instant in time. Th e mathematical 
defi nition of acceleration is

 a =
dV
dt

 (4.6)

where V is the velocity of the particle and t is time.

Physical Interpretation of Acceleration

Acceleration occurs when a fl uid particle is changing its speed, changing its direction of travel, 
or both.

EXAMPLE. As a particle moves along the straight streamline in Fig 4.18, it is slowing 
down. Because the particle is changing speed, it is accelerating (actually, decelerating in this 
case). Whenever a particle is changing speed, there must be a component of the accelera-
tion vector tangent to the path. Th is component of acceleration is called the tangential com-
ponent of acceleration.

EXAMPLE. As a particle moves along a curved streamline (see Fig 4.19), the particle must 
have a component of acceleration directed inward as shown. Th is component is called the 
normal component of the acceleration vector. In addition, if the particle is changing speed, 
then the tangential component will also be present.

FIGURE 4.17

Separated fl ow behind an airfoil section at a large angle 

of attack.

Stagnation
streamline

Va

When a particle is changing speed,
there is a component of acceleration
tangent to the path.  

Flow

FIGURE 4.18

This fi gure shows fl ow over a sphere. The 

blue sphere is a fl uid particle that is moving 

along the stagnation streamline.
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Summary. Acceleration is a property of a fl uid particle. Th e tangential component of 
the acceleration vector is associated with a change in speed. Th e normal component is asso-
ciated with a change in direction. Th e normal component will be nonzero anytime a particle 
is moving on a curved streamline because the particle is continually changing its direction 
of travel.

Describing Acceleration Mathematically

Because the velocity of a fl owing fl uid is described with a velocity fi eld (i.e., an Eulerian 
approach), the mathematical representation of acceleration is diff erent from what is presented 
in courses on subjects such as physics and dynamics. Th is subsection develops the ideas about 
fl uid acceleration.

To begin, picture a fl uid particle on a streamline, as shown in Fig. 4.20. Write the velocity 
using normal-tangential components:

V = V(s, t)ut

In this equation, the speed of the particle V is a function of position s and time t. Th e 
direction of travel of the particle is given by the unit vector ut, which by defi nition is tangent 
to the streamline.

Use the defi nition of acceleration:

 a =
dV
dt

=(dV
dt )ut + V(dut

dt ) (4.7)

To evaluate the derivative of speed in Eq. (4.7), the chain rule for a function of two variables 
can be used:

 
dV(s, t)

dt
=( 𝜕V

𝜕s )(ds
dt)+

𝜕V
𝜕t

 (4.8)

In a time dt, the fl uid particle moves a distance ds, so the derivative ds/dt corresponds to the 
speed V of the particle, and Eq. (4.8) becomes

 
dV
dt

= V( 𝜕V
𝜕s )+

𝜕V
𝜕t

 (4.9)

(a)

pathline
an

a t

an

If a particle is moving on a curved 
pathline, there must be a component 
of acceleration inward toward the center
of curvature of the pathline at
that point.     

If a particle is also changing
speed, there must be a 
component of acceleration
tangent to the pathline.   

FIGURE 4.19

This fi gure shows a particle moving on a curved 

streamline.

(a)

at

an
(b)

pathline

V(s,t)ut

s

FIGURE 4.20

Particle moving on a pathline: (a) velocity, 

(b) acceleration.
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In Eq. (4.7), the derivative of the unit vector dut/dt is nonzero because the direction of the unit 
vector changes with time as the particle moves along the pathline. Th e derivative is

 
dut

dt
=

V
r un (4.10)

where ut is the unit vector perpendicular to the pathline and pointing inward toward the center 
of curvature (2).

Substituting Eqs. (4.9) and (4.10) into Eq. (4.7) gives the acceleration of the fl uid particle:

 a = (V
𝜕V
𝜕s

+
𝜕V
𝜕t )ut + (V 2

r )un (4.11)

Th e interpretation of this equation is as follows: Th e acceleration on the left  side is acceleration 
of the fl uid particle. Th e terms on the right side represent a way to evaluate this acceleration by 
using the velocity, the velocity gradient, and the velocity change with time.

Eq. (4.11) shows that the magnitude of the normal component of acceleration is V2/r. Th e 
direction of this acceleration component is normal to the streamline and inward toward the 
center of curvature of the streamline. Th is term is sometimes called the centripetal accelera-
tion, where “centripetal” means center seeking.

Convective and Local Acceleration

In Eq. (4.11), the term 𝜕V/𝜕t means the time rate of change of speed while holding position 
(x, y, z) constant. Time-derivative terms in Eulerian formulation for acceleration are called 
local acceleration because position is held constant. All other terms are called convective 
acceleration because they typically involve variables associated with fl uid motion.

EXAMPLE. Th e concepts of Eq. (4.11) can be illustrated by use of the cartoon in Fig. 4.21. 
Th e carriage represents the fl uid particle, and the track represents the pathline. A direct 
way to measure the acceleration is to ride on the carriage and read the acceleration off  an 
accelerometer. Th is gives the acceleration on the left  side of Eq. (4.11). Th e Eulerian ap-
proach is to record data so that terms on the right side of Eq. (4.11) can be calculated. One 
would measure the carriage velocity at two locations separated by a distance Δs and calcu-
late the convective term using

V
𝜕V
𝜕s

≈ V
ΔV
Δs

Next, one would measure V and r and then calculate V2/r. Th e local acceleration, for this 
example, would be zero. When one performs the calculations on the right side of Eq. (4.11), 
the calculated value will match the value recorded by the accelerometer.

FIGURE 4.21

Measuring convective acceleration by two 

different approaches. (Cartoon by Chad Crowe.)
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Summary. Th e physics of acceleration are described by considering changing speed and 
changing direction of a fl uid particle. Local and convective acceleration are labels for the math-
ematical terms that appear in the Eulerian formulation of acceleration.

When a velocity fi eld is specifi ed, this denotes an Eulerian approach, and one can calculate the 
acceleration by substituting numbers into the equation. Example 4.1 illustrates this method.

EXAMPLE 4.1

Calculating Acceleration when a Velocity Field is 
Specifi ed

Problem Statement

A nozzle is designed such that the velocity in the nozzle 
varies as

u (x) =
u0

1.0 − 0.5x/L

where the velocity u0 is the entrance velocity and L is the nozzle 
length. Th e entrance velocity is 10 m/s, and the length is 0.5 m. 
Th e velocity is uniform across each section. Find the accelera-
tion at the station halfway through the nozzle (x/L = 0.5).

Defi ne the Situation

A velocity distribution is specifi ed in a nozzle.

10 m/s 20 m/s

L

u

x

Assumptions: Flow fi eld is quasi-one-dimensional (negligible 
velocity normal to nozzle centerline).

State the Goal

Calculate the acceleration at the nozzle midpoint.

Generate Ideas and Make a Plan

1. Select the pathline along the centerline of the nozzle.
2. Evaluate the terms in Eq. (4.11).

Take Action (Execute the Plan)

Th e distance along the pathline is x, so s in Eq. (4.11) becomes 
x and V becomes u. Th e pathline is straight, so r →∞.

1. Term-by-term analysis:
• Convective acceleration:

 
𝜕u
𝜕x

= −
u0

(1 − 0.5x/L)2
× (−

0.5
L )

 =
1
L

 
0.5u0

(1 − 0.5x/L)2

 u 
𝜕u
𝜕x

= 0.5 
u2

0

L
 

1
(1 − 0.5x/L)3

 Evaluation at x/L = 0.5:

 u 
𝜕u
𝜕x

= 0.5 ×
102

0.5
×

1
0.753

 = 237 m/s2

• Local acceleration:

𝜕u
𝜕t

= 0

•  Centripetal acceleration (also a convective 
acceleration):

u2

r
= 0

2. Combine the terms:
 ax = 237 m/s2 + 0

 =  237 m/s2

 an (normal to pathline) =  0

Review the Solution and the Process

Knowledge. Because ax is positive, the direction of the 
acceleration is positive; that is, the velocity increases in the 
x direction, as expected. Even though the fl ow is steady, 
the fl uid particles still accelerate.

4.5 Applying Euler’s Equation to Understand 

Pressure Variation

Euler’s equation, the topic of this section, is used by engineers to understand pressure variation.

Derivation of Euler’s Equation

Euler’s equation is derived by applying ∑F = ma to a fl uid particle. Th e derivation is similar to 
the derivation of the hydrostatic diff erential equation (Chapter 3).
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To begin, select a fl uid particle (Fig. 4.22a) and orient the particle in an arbitrary direc-
tion ℓ and at an angle α with respect to the horizontal plane (Fig. 4.22b). Assume that viscous 
forces are zero. Assume the particle is in a fl ow and that the particle is accelerating. Now, apply 
Newton’s second law in the ℓ-direction:

  ∑ Fℓ = maℓ 
(4.12)

 Fpressure + Fgravity = maℓ

Th e mass of the particle is
m = ρΔAΔℓ

Th e net force due to pressure in the ℓ-direction is
Fpressure = pΔA − ( p +Δp)ΔA = −ΔpΔA

Th e force due to gravity is
 Fgravity = −ΔWℓ = −ΔW sin α (4.13)

From Fig. 4.22b, note that sin α = Δz/Δℓ. Th erefore, Eq. (4.13) becomes

Fgravity = −ΔW
Δz
Δℓ

Th e weight of the particle is ΔW = γΔℓΔA. Substituting the mass of the particle and the forces 
on the particle into Eq. (4.12) yields

−ΔpΔA − γΔℓΔA
Δz
Δℓ

= ρΔℓΔAaℓ

Dividing through by the volume of the particle ΔAΔℓ results in

−
Δp
Δℓ

− γ
Δz
Δℓ

= ρaℓ

Taking the limit as Δℓ approaches zero (reduce the particle to an infi nitesimal size) leads to

 −
𝜕p
𝜕ℓ

− γ
𝜕z
𝜕ℓ

= ρaℓ (4.14)

Assume a constant density fl ow, so γ is constant, and Eq. (4.14) reduces to

 −
𝜕
𝜕ℓ
(p + γz) = ρaℓ (4.15)

Equation (4.15) is a scalar form of Euler’s equation. Because this equation is true in any 
scalar direction, one can write it in an equivalent vector form:
 −∇pz = ρa (4.16)

where ∇pz is the gradient of the piezometric pressure, and a is the acceleration of the fl uid particle.

Δ�
�-direction

pΔA

(p + Δp)ΔA

ΔW

ΔW�

α

α

α
g

�

Δz
Δ�

z

(a) (b)

FIGURE 4.22

(a) Forces acting on a fl uid particle and (b) a sketch 

showing the geometry.
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Physical Interpretation of Euler’s Equation

Euler’s equation shows that the pressure gradient is colinear with the acceleration vector and 
opposite in direction.

−    p
*

−
⎛
⎝⎜

⎞
⎠⎟

=

=

⎛
⎝⎜

⎞
⎠⎟

a

gradient of the piezometric

pressure field

mass
volume

(acceleration of particle)

ρ

Th us, by using knowledge of acceleration, one can make inferences about the pressure varia-
tion. Th ree important cases are presented next. At this point, we recommend the fi lm entitled 
Pressure Fields and Fluid Acceleration (4), which illustrates fundamental concepts using labora-
tory experiments.

Case 1: Pressure Variation Due to Changing Speed of a Particle
When a fl uid particle is speeding up or slowing down as it moves along a streamline, pressure 
will vary in a direction tangent to the streamline. For example, Fig. 4.23 shows a fl uid particle 
moving along a stagnation streamline. Because the particle is slowing down, the acceleration 
vector points to the left . Th erefore, the pressure gradient must point to the right. Th us, the 
pressure is increasing along the streamline, and the direction of increasing pressure is to the 
right. Summary. When a particle is changing speed, pressure will vary in a direction that is 
tangent to the streamline.

Case 2: Pressure Variation Normal to Rectilinear Streamlines
When streamlines are straight and parallel (Fig. 4.24), then piezometric pressure will be con-
stant along a line that is normal to the streamlines. 

Case 3: Pressure Variation Normal to Curved Streamlines
When streamlines are curved (Fig. 4.25), then piezometric pressure will increase along a line 
that is normal to the streamlines. Th e direction of increasing pressure will be outward from the 
center of curvature of the streamlines. Fig. 4.25 shows why pressure will vary. A fl uid particle 

FIGURE 4.23

This fi gure shows fl ow over a sphere. The blue object is a fl uid 

particle moving along the stagnation streamline.

Stagnation
streamline

a ∇p

Because this particle is slowing down,
the acceleration vector must be tangent
to path and acting to the left.

Flow

Therefore, the pressure
must be increasing in
to the right.  

1. Draw a line normal to streamlines. 2. Recognize that the normal component of
acceleration for this particle must be zero.  

3. Because the acceleration is zero, the gradient
of the piezometric pressure along this line
must be zero.  

4. Conclude that the piezometric pressure must be
constant along this line. Therefore, the pressure
variation normal to rectilinear streamlines is
hydrostatic. 

Flow

FIGURE 4.24

Flow with rectilinear streamlines. 

The numbered steps give the logic 

to show that the pressure variation 

normal to rectilinear streamlines is 

hydrostatic.
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on a curved streamline must have a component of acceleration inward. Th erefore, the gradient 
of the pressure will point outward. Because the gradient points in the direction of increasing 
pressure, we conclude that pressure will increase along the line drawn normal to the stream-
lines. Summary. When streamlines are curved, pressure increases outward from the center of 
curvature* of the streamlines.

Calculations Involving Euler’s Equation

In most cases, calculations involving Euler’s equation are beyond the scope of this book. 
However, when a fl uid is accelerating as a rigid body, then Euler’s equation can be applied in 
a simple way. Examples 4.2 and 4.3 show how to do this.

a

Acceleration vector points inward
(toward center of curvature of the streamlines).    

Direction of increasing pressure is outward
(away from center of curvature of the streamlines). ∇p FIGURE 4.25

Flow with curved streamlines. Assume that the fl uid particle has 

constant speed. Thus, the acceleration vector points inward 

towards the center of curvature.

EXAMPLE 4.2

Applying Euler’s Equation to a Column of Fluid Being 
Accelerated Upward

Problem Statement

A column of water in a vertical tube is being accelerated by a 
piston in the vertical direction at 100 m/s2. Th e depth of the 
water column is 10 cm. Find the gage pressure on the piston. 
Th e water density is 103 kg/m3.

Defi ne the Situation

A column of water is being accelerated by a piston.

10 cm

z

az = 100 m/s2

g

2

1

Assumptions:
• Acceleration is constant.
• Viscous eff ects are unimportant.
• Water is incompressible.

Properties: ρ = 103 kg/m3

State the Goal

Find: Th e gage pressure on the piston.

Generate Ideas and Make a Plan

1. Apply Euler’s equation, Eq. (4.15), in the z direction.
2. Integrate between locations 1 and 2.
3. Set pressure equal to zero (gage pressure) at section 2.
4. Calculate the pressure on the piston.

Take Action (Execute the Plan)

1.  Because the acceleration is constant, there is no 
dependence on time, so the partial derivative in Euler’s 
equation can be replaced by an ordinary derivative. 
Euler’s equation becomes

d
dz
(p + γz) = −ρaz

*Each streamline has a center of curvature at each point along the streamline. Th ere is not a single center of curvature 
of a group of streamlines.
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2. Integration between sections 1 and 2:

 ∫ 2

1

d (p + γz) = ∫
2

1
(−ρaz)dz

 (p2 + γz2) − (p1 + γz1) = −ρaz (z2 − z1)

3. Algebra:
p1 = (γ + ρaz)Δz = ρ(g + az)Δz

4. Evaluation of pressure:
 p1 = 103 kg/m3 × (9.81 + 100) m/s2 × 0.1 m
 p1 = 10.9 × 103 Pa = 10.9 kPa, gage

EXAMPLE 4.3

Applying Euler’s Equation to Gasoline in a 
Decelerating Tanker

Problem Statement

Th e tank on a trailer truck is fi lled completely with gasoline, 
which has a specifi c weight of 42 lbf/ft 3 (6.60 kN/m3). Th e 
truck is decelerating at a rate of 10 ft /s2 (3.05 m/s2).

1.  If the tank on the trailer is 20 ft  (6.1 m) long and if the 
pressure at the top rear end of the tank is atmospheric, 
what is the pressure at the top front?

2.  If the tank is 6 ft  (1.83 m) high, what is the maximum 
pressure in the tank?

p = 0

20 ft
6 ft

�

Defi ne the Situation

A decelerating tank of gasoline has pressure equal to a zero 
gage at the top-rear end.

Assumptions:
1. Deceleration is constant.
2. Gasoline is incompressible.

Properties: γ = 42 lbf/ft 3 (6.60 kN/m3)

State the Goal

Find:
1.  Th e pressure (psfg and kPa, gage) at the top front of the 

tank.
2.  Th e maximum pressure (psfg and kPa, gage) in the 

tank.

Make a Plan

1.  Apply Euler’s equation, Eq. (4.15), along the top of the 
tank. Elevation, z, is constant.

2. Evaluate pressure at the top front.

3.  Maximum pressure will be at the front bottom. Apply 
Euler’s equation from top to bottom at the front of the 
tank.

4.  Using the result from step 2, evaluate the pressure at the 
front bottom.

Take Action (Execute the Plan)

1. Euler’s equation along the top of the tank:

dp
dℓ

= −ρaℓ

Integration from back (1) to front (2):

p2 − p1 = −ρaℓΔℓ = −
γ
g

aℓΔℓ

2. Evaluation of p2 with p1 = 0:

 p2 = −(42 lbf/ft3

32.2 ft/s2 ) × (−10 ft/s2) × 20 ft

 = 261 psfg
In SI units:

 p2 = −(6.60 kN/m3

9.81 m/s2 ) × (−3.05 m/s2) × 6.1 m

 = 12.5 (kPa gage)

3. Euler’s equation in the vertical direction:

d
dz
(p + γz) = −ρaz

4.  For the vertical direction, az = 0. Integration from the 
top of the tank (2) to the bottom (3):

 p2 + γz2 = p3 + γz3

 p3 = p2 + γ(z2 − z3)

 p3 = 261 lbf/ft2 + 42 lbf/ft3 × 6 ft = 513 psfg
In SI units:

 p3 = 12.5 kN/m2 + 6.6 kN/m3 × 1.83 m

 p3 =  24.6 kPa gage
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4.6 Applying the Bernoulli Equation along 

a Streamline

Th e Bernoulli equation is used frequently in fl uid mechanics; this section introduces this topic.

Derivation of the Bernoulli Equation

Select a particle on a streamline (Fig. 4.26). Th e position coordinate s gives the particle’s posi-
tion. Th e unit vector ut is tangent to the streamline, and the unit vector un is normal to the 
streamline. Assume steady fl ow so that the velocity of the particle depends on position only. 
Th at is, V = V(s).

Assume that viscous forces on the particle can be neglected. Th en, apply Euler’s equation 
(Eq. 4.15) to the particle in the ut direction:

 −
𝜕
𝜕s
( p + γz) = ρat (4.17)

Acceleration is given by Eq. (4.11). Because the fl ow is steady, 𝜕V/𝜕t = 0, and Eq. (4.11) gives

 at = V
𝜕V
𝜕s

+
𝜕V
𝜕t

= V
𝜕V
𝜕s

 (4.18)

Because p, z, and V in Eqs. (4.17) and (4.18) depend only on position s, the partial derivatives 
become ordinary derivatives (i.e., functions only of a single variable). Th us, write the these 
derivatives as ordinary derivatives, and combine Eqs. (4.17) and (4.18) to give

 −
d
ds
(p + γz) = ρV

dV
ds

= ρ 
d

ds(
V 2

2 ) (4.19)

Move all the terms to one side:

 
d
ds(p + γz + ρ

V 2

2 ) = 0 (4.20)

When the derivative of an expression is zero, the expression is equal to a constant. Th us, re-
write Eq. (4.20) as

 p + γz + ρ
V 2

2
= C (4.21a)

where C is a constant. Eq. (4.21a) is the pressure form of the Bernoulli equation. Th is is called 
the pressure form because all terms have units of pressure. Dividing Eq. (4.21a) by the specifi c 
weight yields the head form of the Bernoulli equation, which is given as Eq. (4.21b). In the head 
form, all terms have units of length.

 
p
γ + z +

V 2

2g
= C (4.21b)

FIGURE 4.26

Sketch used for the derivation of the 

Bernoulli equation.

s

ut

un

V(s)

Streamline
1

2
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Physical Interpretation #1 (Energy Is Conserved)

One way to interpret the Bernoulli equation leads to the idea that when the Bernoulli equation 
applies, the total head of the fl owing fl uid is a constant along a streamline. To develop this inter-
pretation, recall that the piezometric head, introduced in Chapter 3, is defi ned as

piezometric head = h ≡
p
γ + z (4.22)

Introduce Eq. (4.22) into Eq. (4.21b):

h +
V 2

2g
= Constant (4.23)

Now, the velocity head is defi ned by

velocity head ≡
V 2

2g
 (4.24)

Combine Eqs. (4.22) to (4.24) to give

(Piezometric
head ) + (Velocity

head ) = (Constant along
streamline ) (4.25)

Eq. (4.25) is shown visually in Fig. 4.27. Notice that the piezometric head (blue lines) and the 
velocity head (gray lines) are changing, but the sum of the piezometric head plus the velocity 
head is constant everywhere. Th us, the total head is constant for all points along a streamline 
when the Bernoulli equation applies.

Th e previous discussion introduced head. Head is a concept that is used to characterize 
the balance of work and energy in a fl owing fl uid. As shown in Fig. 4.27, head can be visual-
ized as the height of a column of liquid. Each type of head describes a work or energy term. 
Velocity head characterizes the kinetic energy in a fl owing fl uid, elevation head characterizes 
the gravitational potential energy of a fl uid, and pressure head is related to work done by the 
pressure force. As shown in Fig. 4.27, the total head is constant. Th is means that when the 
Bernoulli equation applies, the fl uid is not losing energy as it fl ows. Th e reason is that viscous 
eff ects are the cause of energy losses, and viscous eff ects are negligible when the Bernoulli 
equation applies.

Centerline
(streamline)

Flow

Datum (z = 0)

2

3

1

V3
2/2g

V2
2/2g

V1
2/2g

p3/γ

p2/γp1/γ

z2z1

z3

V3

V2

V1

Piezometric head

Velocity head

Total head = constant
FIGURE 4.27

Water fl owing through a Venturi nozzle. The 

piezometers show the piezometric head at 

locations 1, 2, and 3.
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Physical Interpretation #2 (Velocity and 

Pressure Vary Inversely)

A second way to interpret the Bernoulli equation leads to the idea that when velocity increases, 
then pressure will decrease. To develop this interpretation, recall that piezometric pressure, 
introduced in Chapter 3, is defi ned as

 piezometric pressure = pz ≡ p + γz (4.26)

Introduce Eq. (4.26) into Eq. (4.21a):

 pz +
ρV 2

2
= Constant (4.27)

For Eq. (4.27) to be true, piezometric pressure and velocity must vary inversely so that the sum 
of pz and (V2/2g) is a constant. Th us, the pressure form of the Bernoulli equation shows that 
piezometric pressure varies inversely with velocity. In regions of high velocity, piezometric pres-
sure will be low; in regions of low velocity, piezometric pressure will be high.

EXAMPLE. Fig. 4.28 shows a VinturiTM red wine aerator, which is a product that is used 
to add air to wine. When wine fl ows through the Vinturi, the shape of the device causes an 
increase in the wine’s velocity and a corresponding decrease in its pressure. At the throat, 
the pressure is below atmospheric pressure, so air fl ows inward through two inlet ports and 
mixes with the wine to create aerated wine, which tastes better to most people.

Working Equations and Process

Table 4.3 summarizes the Bernoulli equation. Example 4.4 shows how to apply the Bernoulli 
equation to a draining tank of water. A systematic method for applying the  Bernoulli equation 
is as follows.

Step 1:  Selection. Select the head form or the pressure form. Check that the assumptions are 
satisfi ed.

Step 2:  Sketch. Select a streamline. Th en, select points 1 and 2 where you know information 
or where you want to fi nd information. Annotate your documentation to show the 
streamline and points.

Step 3:  General equation. Write the general form of the Bernoulli equation. Perform a term-
by-term analysis to simplify the general equation to a reduced equation that applies to 
the problem at hand.

Step 4:  Validation. Check the reduced equation to ensure that it makes physical sense.

Air Air

Nonaerated wine

Aerated wine
Throat

(a) (b)

FIGURE 4.28

(a) The Vinturi wine aerator and (b) a sketch 

illustrating the operating principle. (Photo 

courtesy of Vinturi Inc.)
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TABLE 4.3 Summary of the Bernoulli Equation

Description Equation Terms

Bernoulli equation 
 (head form)

Recommended form 
 to use for liquids

(p1

γ
+

V 2
1

2g
+ z1) = (p2

γ
+

V 2
2

2g
+ z2) Eq. (4.21b)

p = static pressure (Pa) (use gage pressure 
  or abs pressure; avoid vacuum pressure)
γ = specifi c weight (N/m3)
V = speed (m/s)
g = gravitational constant = 9.81 m/s3

z = elevation or elevation head (m)
Bernoulli equation 
 (pressure form)

Recommended form 
 to use for gases

(p1 +
ρV 2

1

2
+ ρgz1) = (p2 +

ρV 2
2

2
+ ρgz2) Eq. (4.21a)

p
γ

= pressure head (m)

V 2

2g
= velocity head (m)

p
γ

+ z = piezometric head (m)

p + γz = piezometric pressure (Pa)
ρV 2

2
= kinetic pressure (Pa)

EXAMPLE 4.4

Applying the Bernoulli Equation to Water Draining out 
of a Tank

Problem Statement

Water in an open tank drains through a port at the bottom of 
the tank. Th e elevation of the water in the tank is 10 m above 
the drain. Find the velocity of the liquid in the drain port.

Defi ne the Situation

Water fl ows out of a tank.

1

2

Streamline
10 m

Datum

Assumptions:
• Steady fl ow.
• Viscous eff ects are negligible.

State the Goal

V2 (m/s) ➡ velocity at the exit port

Generate Ideas and Make a Plan

Selection: Select the head form of the Bernoulli equation 
because the fl uid is a liquid. Document assumptions (see above).

Sketching: Select point 1 where information is known and 
point 2 where information is desired. On the situation diagram 
(see above), sketch the streamline, label points 1 and 2, and 
label the datum.
General equation:

 (p1

γ
+

V 2
1

2g
+ z1) = (p2

γ
+

V 2
2

2g
+ z2) (a)

Term-by-term analysis:
• p1 = p2 = 0 kPa gage
• Let V1 = 0 because V1 ≪ V2

• Let z1 = 10 m and z2 = 0 m

Reduce Eq. (a) so that it applies to the problem at hand:

 (0 + 0 + 10 m) = (0 +
V 2

2

2g
+ 0) (b)

Simplify Eq. (b):

 V2 = √2g (10 m) (c)

Because Eq. (c) has only one unknown, the plan is to use this 
equation to solve for V2.

Take Action (Execute the Plan)

V2 = √2g (10 m)

V2 = √2(9.81 m/s2)(10 m)
V2 = 14.0 m/s



When the Bernoulli equation is applied to a gas, it is common to neglect the elevation terms 
because these terms are negligibly small as compared to the pressure and velocity terms. An 
example of applying the Bernoulli equation to a fl ow of air is presented in Example 4.5.

EXAMPLE 4.5

Applying the Bernoulli Equation to Air Flowing around a 
Bicycle Helmet

Problem Statement

Th e problem is to estimate the pressure at locations A and B 
so that these values can be used to estimate the ventilation 
in a bicycle helmet currently being designed. Assume an air 
density of ρ = 1.2 kg/m3 and an air speed of 12 m/s relative to 
the helmet. Point A is a stagnation point, and the velocity of 
air at point B is 18 m/s.

Air
V = 12 m/s

A

B

Defi ne the Situation

Idealize fl ow around a bike helmet as fl ow around the upper 
half of a sphere. Assume steady fl ow. Assume that point B is 
outside the boundary layer. Relabel the points as shown in 
the situation diagram; this makes application of the Bernoulli 
equation easier.

Air
V1 

= V3 = 12 m/s
ρ = 1.2 kg/m3

V4 = 18 m/s

1 2

3

4

State the Goal

p2(Pa gage) ➡ pressure at the forward stagnation point
p4(Pa gage) ➡ pressure at the shoulder

Generate Ideas and Make a Plan

Selection: Select the pressure form of the Bernoulli equation 
because the fl ow is air. Th en, write the Bernoulli equation 
along the stagnation streamline (i.e., from point 1 to point 2):

 (p1 +
ρV 2

1

2
+ ρgz1) = (p2 +

ρV 2
2

2
+ ρgz2) (a)

Term-by-term analysis:

•  p1 = 0 kPa gage because the external fl ow is at 
atmospheric pressure.

• V1 = 12 m/s.
•  let z1 = z2 = 0 because elevation terms are negligibly 

small for a gas fl ow such as a fl ow of air.
•  let V2 = 0 because this is a stagnation point.

Now, simplify Eq. (a):

 0 +
ρV 2

1

2
+ 0 = p2 + 0 + 0 (b)

Eq. (b) has only a single unknown (p2).

Next, apply the Bernoulli equation to the streamline that 
connects points 3 and 4:

 (p3 +
ρV 2

3

2
+ ρgz3) = (p4 +

ρV 2
4

2
+ ρgz4) (c)

Do a term-by-term analysis to give:

 (0 +
ρV 2

3

2
+ 0) = (p4 +

ρV 2
4

2
+ 0) (d)

Eq. (d) has only one unknown (p4). Th e plan is as follows:

1. Calculate p2 using Eq. (b).
2. Calculate p4 using Eq. (d).
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Review the Solution and the Process

1.  Knowledge. Notice that the same answer would be 
calculated for an object dropped from the same 
elevation as the water in the tank. Th is is because 
both problems involve equating gravitational potential 
energy at 1 with kinetic energy at 2.

2.  Validate. Th e assumption of the small velocity at the 
liquid surface is generally valid. It can be shown 

(Chapter 5) that

V1

V2
=

D2
2

D2
1

For example, a diameter ratio of 10 to 1 (D2/D1 = 0.1) 
results in the velocity ratio of 100 to 1 (V1/V2 = 1/100).
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Example 4.6 involves a venturi. A venturi (also called a venturi nozzle) is a constricted 
section, as shown in this example. As fl uid fl ows through a venturi, the pressure is reduced in 
the narrow area, called the throat. Th is drop in pressure is called the venturi eff ect.

Th e venturi can be used to entrain liquid drops into a fl ow of gas, as in a carburetor. Th e 
venturi can also be used to measure the fl ow rate. Th e venturi is commonly analyzed with the 
Bernoulli equation.

Take Action (Execute the Plan)

1. Bernoulli equation (point 1 to point 2):

 p2 =
ρV 2

1

2
=
(1.2 kg/m3)(12 m/s)2

2
 p2 = 86.4 Pa gage

2. Bernoulli equation (point 3 to point 4):

 p4 =
ρ(V 2

3 − V 2
4)

2
=
(1.2 kg/m3)(122 − 182)(m/s)2

2
 p4 = −108 Pa gage

Review the Solution and the Process

1.  Discussion. Notice that where the velocity is high (i.e., 
point 4), the pressure is low (negative gage pressure).

2.  Knowledge. Remember to specify pressure units in gage 
pressure or absolute pressure.

3.  Knowledge. Th eory shows that the velocity at the 
shoulder of a sphere is 3/2 times the velocity in the free 
stream.

EXAMPLE 4.6

Applying the Bernoulli Equation to Flow through a 
Venturi Nozzle

Problem Statement

Piezometric tubes are tapped into a venturi section as shown 
in the fi gure. Th e liquid is incompressible. Th e upstream 
piezometric head is 1 m, and the piezometric head at the 
throat is 0.5 m. Th e velocity in the throat section is twice 
as large as in the approach section. Find the velocity in the 
throat section.

1 m 0.5 m

Flow

Datum

Defi ne the Situation

A liquid fl ows through a venturi nozzle.

1 m 0.5 m

Flow

Streamline

Datum

V2

V1

1

2

State the Goal

V2(m/s) ➡ velocity at point 2

Generate Ideas and Make a Plan

Select the Bernoulli equation because the problem involves 
fl ow through a nozzle. Select the head form because a liquid is 
involved. Select a streamline and points 1 and 2.
Sketch these choices on the situation diagram.

Write the general form of the Bernoulli equation:

 
p1

γ
+ z1 +

V 2
1

2g
=

p2

γ
+ z2 +

V 2
2

2g
 (a)
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4.7 Measuring Velocity and Pressure

Th e piezometer, stagnation tube, and Pitot-static tube have long been used to measure pressure 
and velocity. Indeed, many concepts in measurement are based on these instruments. Th is sec-
tion describes these instruments.

Static Pressure

Static pressure is the pressure in a fl owing fl uid. A common way to measure static pressure is 
to drill a small hole in the wall of a pipe and then connect a piezometer or pressure gage to this 
port (see Fig. 4.29). Th is port is called a pressure tap. Th e reason that a pressure tap is useful is 
that it provides a way to measure static pressure that does not disturb the fl ow.

Stagnation Tube

A stagnation tube (also known as a total head tube) is an open-ended tube directed upstream 
in a fl ow (see Fig. 4.30). A stagnation tube measures the sum of static pressure and kinetic 
pressure.

Introduce piezometric head because this is what the piezom-
eter measures:

h1 +
V 2

1

2g
= h2 +

V 2
2

2g

(1.0 m) +
V 2

1

2g
= (0.5 m) +

V 2
2

2g

Let V1 = 0.5 V2

 (1.0 m) +
(0.5 V2)

2

2g
= (0.5 m) +

V 2
2

2g
 (b)

Plan: Use Eq. (b) to solve for V2.

Take Action (Execute the Plan)

Bernoulli equation (i.e., Eq. b):

(0.5 m) =
0.75 V 2

2

2g

Th us,

V2 = B
2g (0.5 m)

0.75

V2 = B
2(9.81 m/s2)(0.5 m)

0.75
V2 =  3.62 m/s

Review the Solution and the Process

1.  Knowledge. Notice how a piezometer is used to measure 
the piezometric head in the nozzle.

2.  Knowledge. A piezometer could not be used to measure 
the piezometric head if the pressure anywhere in the 
line were subatmospheric. In this case, pressure gages or 
manometers could be used.

Flow

Pressure tap: Small hole in
wall for attaching an instru-
ment for measuring pressure 

Piezometer applied to measure
static pressure at the pipe center-
line. For this case, the static
pressure is given by pA = γΔz.   

Δz

Static pressure: Pressure in a flowing fluid at any location
(measured in a way that does not alter the pressure value)

A

FIGURE 4.29

This fi gure defi nes a pressure 

port and shows how a 

piezometer is connected to 

a wall and used to measure 

static pressure.
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Kinetic pressure is defi ned at an arbitrary point A as:

(kinetic pressure
at point A ) =

ρV 2
A

2

Next, we will derive an equation for velocity in an open channel fl ow. For the stagnation tube in 
Fig. 4.30, select points 0 and 1 on the streamline, and let z0 = z1. Th e Bernoulli equation reduces to

 p1 +
ρV 2

1

2
= p0 +

ρV 2
0

2
 (4.28)

Th e velocity at point 1 is zero (stagnation point). Hence, Eq. (4.28) simplifi es to

 V 2
0 =

2
ρ ( p1 − p0) (4.29)

Next, apply the hydrostatic equation: p0 = γd and p1 = γ(l + d). Th erefore, Eq. (4.29) can be 
written as

V 2
0 =

2
ρ (γ(l + d) − γd)

which reduces to
 V0 = √2g l (4.30)

Pitot-Static Tube

Th e Pitot-static tube, named aft er the eighteenth-century French hydraulic engineer who in-
vented it, is based on the same principle as the stagnation tube, but it is much more versatile. 
Th e Pitot-static tube, shown in Fig. 4.31, has a pressure tap at the upstream end of the tube for 
sensing the kinetic pressure. Th ere are also ports located several tube diameters downstream 
of the front end of the tube for sensing the static pressure in the fl uid, in which the velocity is 

1

2

Stagnation pressure tap

Static pressure tap

V

Streamline

FIGURE 4.31

Pitot-static tube.

1

0

Stagnation
point

l

d

Streamline

FIGURE 4.30

Stagnation tube.
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essentially the same as the approach velocity. When the Bernoulli equation, Eq. (4.21a), is ap-
plied between points 1 and 2 along the streamline shown in Fig. 4.31, the result is

p1 + γz1 +
ρV 2

1

2
= p2 + γz2 +

ρV 2
2

2

However, V1 = 0, so solving that equation for V2 gives an equation for velocity:

 V2 = [ 2
ρ (pz, 1 − pz, 2)]

1/2
 (4.31)

Here V2 = V, where V is the velocity of the stream and pz,1 and pz,2 are the piezometric pres-
sures at points 1 and 2, respectively.

By connecting a pressure gage or manometer between the pressure taps shown in Fig. 4.31 
that lead to points 1 and 2, one can easily measure the fl ow velocity with the Pitot-static tube. 
A major advantage of the Pitot-static tube is that it can be used to measure velocity in a pres-
surized pipe; a stagnation tube is not convenient to use in such a situation.

If a diff erential pressure gage is connected across the taps, then the gage measures the 
diff erence in piezometric pressure directly. Th erefore, Eq. (4.31) simplifi es to

 V = √2Δp/ρ (4.32)

where Δp is the pressure diff erence measured by the gage.
More information on Pitot-static tubes and fl ow measurement is available in the Flow 

Measurement Engineering Handbook (5). Example 4.7 illustrates the application of the Pitot-
static tube with a manometer. Th en, Example 4.8 illustrates application with a pressure gage.

EXAMPLE 4.7

Applying a Pitot-Static Tube (Pressure Measured with a 
Manometer)

Problem Statement

A mercury manometer is connected to the Pitot-static tube in 
a pipe transporting kerosene as shown. If the defl ection on the 
manometer is 7 in., what is the kerosene velocity in the pipe? 
Assume that the specifi c gravity of the kerosene is 0.81.

1

2

z1 – z2

y

�

Defi ne the Situation

A Pitot-static tube is mounted in a pipe and connected to a 
manometer.
Assumptions: Pitot-static tube equation is applicable.
Properties:

• Skero = 0.81; from Table A.4
• SHg = 13.55

State the Goal

Find fl ow velocity (m/s).

Generate Ideas and Make a Plan

1.  Find diff erence in piezometric pressure using the 
manometer equation.

2. Substitute in the Pitot-static tube equation.
3. Evaluate velocity.

Take Action (Execute the Plan)

1.  Manometer equation between points 1 and 2 on 
Pitot-static tube:

p1 + (z1 − z2)γkero + ℓγkero − yγHg − (ℓ − y)γkero = p2

or
 p1 + γkero z1 − (p2 + γkero z2) = y(γHg − γkero)

 pz,1 − pz,2 = y(γHg − γkero)
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EXAMPLE 4.8

Applying a Pitot-Static Tube (Pressure Measured 
with a Pressure Gage)

Problem Statement

A diff erential pressure gage is connected across the taps of a 
Pitot-static tube. When this Pitot-static tube is used in a wind 
tunnel test, the gage indicates a Δp of 730 Pa. What is the air 
velocity in the tunnel? Th e pressure and temperature in the 
tunnel are 98 kPa absolute and 20°C, respectively.

Defi ne the Situation

A diff erential pressure gage is attached to a Pitot-static tube for 
velocity measurement in a wind tunnel.

p = 98 kPa

T = 20°C

V

ΔP

Assumptions:
• Airfl ow is steady.
• Th e Pitot-tube equation is applicable.

Properties: From Table A.2: Rair = 287 J/kg K.

State the Goal

Find the air velocity (in m/s).

Generate Ideas and Make a Plan

1. Using the ideal gas law, calculate air density.
2.  Using the Pitot-static tube equation, calculate the velocity.

Take Action (Execute the Plan)

1. Density calculation:

ρ =
p

RT
=

98 × 103 N/m2

(287 J/kg K) × (20 + 273 K)
= 1.17 kg/m3

2.  Pitot-static tube equation with diff erential pressure gage:

V =√2Δp/ρ

V =√(2 × 730 N/m2)/(1.17 kg/m3) =  35.3 m/s

4.8 Characterizing the Rotational 

Motion of a Flowing Fluid

In addition to velocity and acceleration, engineers also describe the rotation of a fl uid. Th is 
topic is introduced in this section. At this point, we recommend the online fi lm Vorticity (6) 
because it shows the concepts in this section using laboratory experiments.

Concept of Rotation

Rotation of a fl uid particle is defi ned as the average rotation of two initially mutually per-
pendicular faces of a fl uid particle. Th e test is to look at the rotation of the line that bisects 
both faces (a-a and b-b in Fig. 4.32). Th e angle between this line and the horizontal axis is 
the rotation, θ.

Th e general relationship between θ and the angles defi ning the sides is shown in Fig. 4.33, 
where θA is the angle of one side with the x-axis, and the angle θB is the angle of the other side 

2. Substitution into the Pitot-static tube equation:

 V = [ 2
ρkero

y (γHg − γkero)]
1/2

 = [ 2gy (
γHg

γkero
− 1)]

1/2

3. Velocity evaluation:

 V = [ 2 × 32.2 ft/s2 ×
7

12
 ft(13.55

0.81
− 1)]

1/2

 = [2 × 32.2 ×
7

12
(16.7 − 1) ft2/s2 ]

1/2

 =  24.3 ft/s

Review the Solution and the Process

Discussion. Th e –1 in the quantity (16.7 – 1) refl ects the eff ect 
of the column of kerosene in the right leg of the manometer, 
which tends to counterbalance the mercury in the left  leg. 
Th us, with a gas–liquid manometer, the counterbalancing 
eff ect is negligible.
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with the y-axis. Th e angle between the sides is β =
π
2

+ θB − θA, so the orientation of the 
particle with respect to the x-axis is

θ =
1
2

β + θA =
π
4

+
1
2
(θA + θB)

Th e rotational rate of the particle is

 θ· =
1
2
(θ·A + θ· B) (4.33)

If θ· = 0, then the fl ow is irrotational, which means that the rotation rate (as defi ned by 
Eq. 4.33) is zero for all points in the velocity fi eld.

Next, we derive an equation for θ·  in terms of the velocity fi eld. Consider the particle shown 
in Fig. 4.34. Th e sides of the particle are initially perpendicular, with lengths Δx and Δy. Th en, the 
particle moves with time and deforms as shown, with point 0 going to 0′, point 1 to 1′, and point 
2 to 2′. Th e lengths of the sides are unchanged. Aft er time Δt, the horizontal side has rotated 
counterclockwise by ΔθA and the vertical side clockwise (negative direction) by –ΔθB.

Th e y velocity component of point 1 is v + (𝜕v/𝜕x)Δx, and the x component of point 2 is 
u + (𝜕u/𝜕y)Δy. Th e net displacements of points 1 and 2 are*

 Δy1 ∼  [(v +
𝜕v
𝜕x
Δx)Δt − vΔt ] =

𝜕v
𝜕x
ΔxΔt

  Δx2 ∼ [(u +
𝜕u
𝜕y
Δy)Δt − uΔt] =

𝜕u
𝜕y
ΔyΔt 

(4.34)

Bisector

Fluid particle

θ

θA

θB

y

β

x

FIGURE 4.33

Orientation of a rotated fl uid particle.

*Th e symbol ~ means that the quantities are approximately equal but become exactly equal as the quantities approach zero.

(u + Δy)Δt∂u
∂y

(v + Δx)Δt∂v
∂x

y

2'

1'

0

2

u

v
0'

1

–ΔθB

ΔθA

Δy1

Δx2

Δy
Δy

vΔt

uΔt

Δx

Δx
x

Fluid particle
at time t + ΔtFluid particle

at time t

FIGURE 4.34

Translation and deformation of a 

fl uid particle.

a
� �

a

b b

b

aa

b

V

Particle at time t1 Particle at time t2 

FIGURE 4.32

Rotation of a fl uid particle in fl ow between moving and 

stationary parallel plates.
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Referring to Fig. 4.34, the angles ΔθA and ΔθB are given by

 ΔθA = asin(Δy1

Δx ) ∼
Δy1

Δx
∼
𝜕v
𝜕x
Δt

  −ΔθB = asin(Δx2

Δy ) ∼
Δx2

Δy
∼
𝜕u
𝜕y
Δt 

(4.35)

Dividing the angles by Δt and taking the limit as Δt→ 0,

θ·A = lim
Δt→0

ΔθA

Δt
=
𝜕v
𝜕x

 θ· B = lim
Δt→0

ΔθB

Δt
= −

𝜕u
𝜕y

 
(4.36)

Substituting these results into Eq. (4.33) gives the rotational rate of the particle about the z-axis 
(normal to the page):

θ· =
1
2( 𝜕v
𝜕x

−
𝜕u
𝜕y )

Th is component of rotational velocity is defi ned as Ωz, so

 Ωz =
1
2( 𝜕v
𝜕x

−
𝜕u
𝜕y ) (4.37a)

Likewise, the rotation rates about the other axes are

 Ωx =
1
2( 𝜕w
𝜕y

−
𝜕v
𝜕z) (4.37b)

 Ωy =
1
2( 𝜕u
𝜕z

−
𝜕w
𝜕x ) (4.37c)

Th e rate-of-rotation vector is

 Ω = Ωx i + Ωy j + Ωz k (4.38)

An irrotational fl ow (Ω = 0) requires that

 
𝜕v
𝜕x

=
𝜕u
𝜕y

 (4.39a)

 
𝜕w
𝜕y

=
𝜕v
𝜕z

 (4.39b)

 
𝜕u
𝜕z

=
𝜕w
𝜕x

 (4.39c)

Th e most extensive application of these equations is in ideal fl ow theory. An ideal fl ow is 
the fl ow of an irrotational, incompressible fl uid. Flow fi elds in which viscous eff ects are small 
can oft en be regarded as irrotational. In fact, if a fl ow of an incompressible, inviscid fl uid is 
initially irrotational, then it will remain irrotational.

Vorticity

Th e most common way to describe rotation is to use vorticity, which is a vector equal to twice 
the rate-of-rotation vector. Th e magnitude of the vorticity indicates the rotationality of a fl ow and 
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is very important in fl ows in which viscous eff ects dominate, such as boundary layer, separated, 
and wake fl ows. Th e vorticity equation is

 ω = 2Ω

  = ( 𝜕w
𝜕y

−
𝜕v
𝜕z)i + ( 𝜕u

𝜕z
−
𝜕w
𝜕x )j + ( 𝜕v

𝜕x
−
𝜕u
𝜕y )k (4.40)

 = ∇ × V

where ∇ × V is the curl of the velocity fi eld.
An irrotational fl ow signifi es that the vorticity vector is zero everywhere. Example 4.9 

illustrates how to evaluate the rotationality of a fl ow fi eld, and Example 4.10 evaluates the rota-
tion of a fl uid particle.

EXAMPLE 4.9

Evaluating Rotation

Problem Statement

Th e vector V = 10xi – 10yj represents a two-dimensional 
velocity fi eld. Is the fl ow irrotational?

Defi ne the Situation

Velocity fi eld is given.

State the Goal

Determine if the fl ow is irrotational.

Generate Ideas and Make a Plan

Because w = 0 and 
𝜕
𝜕z

= 0, apply Eq. (4.39a) to evaluate

rotationality.

Take Action (Execute the Plan)

Velocity components and derivatives:

 u = 10x   
𝜕u
𝜕y

= 0

 v = −10y  
𝜕v
𝜕x

= 0

Th us, fl ow is irrotational.

EXAMPLE 4.10

Rotation of a Fluid Particle

Problem Defi nition

A fl uid exists between stationary and moving parallel fl at 
plates, and the velocity is linear as shown. Th e distance 
between the plates is 1 cm, and the upper plate moves at 
2 cm/s. Find the amount of rotation that the fl uid particle 
located at 0.5 cm will undergo aft er it has traveled a distance 
of 1 cm.

y

V = 2 cm/s

1 cm

Defi ne the Situation

Th is problem involves Couette fl ow.

Assumptions: Planar fl ow (w = 0 and 
𝜕
𝜕z

= 0).

State the Goal

Find the rotation of a fl uid particle (in radians) at the 
midpoint aft er traveling 1 cm.

Generate Ideas and Make a Plan

1. Use Eq. (4.37a) to evaluate rotational rate with v = 0.
2. Find time for a particle to travel 1 cm.
3. Calculate the amount of rotation.

Take Action (Execute the Plan)

1. Velocity distribution:

u = 0.02 m/s ×
y

0.01 m
= 2y (l/s)

Rotational rate:

Ωz =
1
2 ( 𝜕v
𝜕x

−
𝜕u
𝜕y ) = −1 rad/s
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4.9 The Bernoulli Equation for Irrotational Flow

When fl ow is irrotational, the Bernoulli equation can be applied between any two points in 
this fl ow. Th at is, the points do not need to be on the same streamline. Th is irrotational form of 
the Bernoulli equation is used extensively in applications such as classical hydrodynamics, the 
aerodynamics of lift ing surfaces (wings), and atmospheric winds. Th us, this section describes 
how to derive the Bernoulli equation for an irrotational fl ow.

To begin the derivation, apply the Euler equation, Eq. (4.15), in the n direction (normal to 
the streamline):

 −
d

dn
 ( p + γz) = ρan (4.41)

where the partial derivative of n is replaced by the ordinary derivative because the fl ow is 
assumed to be steady (no time dependence). Two adjacent streamlines and the direction n is 
shown in Fig. 4.35. Th e local fl uid speed is V, and the local radius of curvature of the streamline 
is r. Th e acceleration normal to the streamline is the centripetal acceleration, so

 an = −
V 2

r  (4.42)

where the negative sign occurs because the direction n is outward from the center of curvature 
and the centripetal acceleration is toward the center of curvature. Using the irrotationality 
condition, the acceleration can be written as

 an = −
V 2

r = −V(V
r ) = V

dV
dr

=
d
dr (V 2

2 ) (4.43)

Also, the derivative with respect to r can be expressed as a derivative with respect to n by

d
dr(V 2

2 ) =
d

dn(V2

2 )dn
dr

=
d

dn (V 2

2 )
because the direction of n is the same as r, so dn/dr = 1. Eq. (4.43) can be rewritten as

 an =
d

dn (V 2

2 ) (4.44)

Substituting the expression for acceleration into Euler’s equation, Eq. (4.41), and assuming 
constant density results in

 
d

dn (p + γz + ρ
V 2

2 ) = 0 (4.45)

2. Time to travel 1 cm:
 u = 2 (l/s) × 0.005 m = 0.01 m/s

 Δt =
Δx
u

=
0.01 m

0.01 m/s = l s

3. Amount of rotation:
Δθ = Ωz × Δt = −1 × 1 = −1 rad

Review the Solution and the Process

Discussion. Note that the rotation is negative (in the clockwise 
direction).

n

V

Streamlines

r

FIGURE 4.35

Two adjacent streamlines 

showing direction n 

between lines.
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or

 p + γz + ρ
V 2

2
= C (4.46)

which is the Bernoulli equation, and C is constant in the n direction (across streamlines).
Summary. For an irrotational fl ow, the constant C in the Bernoulli equation is the same 

across streamlines as well as along streamlines, so it is the same everywhere in the fl ow fi eld. 
Th us, when applying the Bernoulli equation for irrotational fl ow, one can select points 1 and 2 at 
any locations, not just along a streamline.

4.10 Describing the Pressure Field 

for Flow over a Circular Cylinder

Flow over a circular cylinder is a paradigm (i.e., model) for external fl ow over many objects. 
Th is fl ow is described in this section.

The Pressure Coeffi cient

To describe the pressure fi eld, engineers oft en use a dimensionless group called the pressure 
coefficient:

 Cp =
pz − pzo

ρV 2
o/2

=
h − ho

V 2
o/(2g)

 (4.47)

Pressure Distribution for an Ideal Fluid

An ideal fluid is defi ned as a fl uid that is nonviscous and that has constant density. If we 
assume an irrotational fl ow of an ideal fl uid, then calculations reveal the results shown in 
Fig. 4.36a. Features to notice in this fi gure are as follows:

• Th e pressure distribution is symmetric on the front and back of the cylinder.
• Th e pressure coeffi  cient is sometimes negative (plotted outward), which corresponds to 

negative gage pressure.
• Th e pressure coeffi  cient is sometimes positive (plotted inward), which corresponds to positive 

gage pressure.

A

(a)

(b)

B D E

C

Note: Positive Cp is
plotted inward from
cylinder surface;
negative Cp is plotted
outward.

Cp

Cp = –3.0 Negative Cp

Cp = +1

Cp =
p – p0

V 0
2/2

FIGURE 4.36

Irrotational fl ow past a cylinder: 

(a) streamline pattern, (b) pressure 

distribution.
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• Th e maximum pressure (Cp = +1.0) occurs on the front and back of the cylinder at the 
stagnation points (points B and D).

• Th e minimum pressure (Cp = –3.0) occurs at the midsection, where the velocity is highest 
(point C).

Next, we introduce the concepts of favorable and adverse pressure gradients. To begin, apply 
Euler’s equation while neglecting gravitational eff ects:

ρat = −
𝜕p
𝜕s

Note that at > 0 if 𝜕p/𝜕s < 0; that is, the fl uid particle accelerates if the pressure decreases 
with distance along a pathline. Th is is a favorable pressure gradient. On the other hand, at < 0 
if 𝜕p/𝜕s > 0, so the fl uid particle decelerates if the pressure increases along a pathline. Th is is 
an adverse pressure gradient. Th e defi nitions of pressure gradient are summarized as follows.

Favorable pressure gradient  𝜕p/𝜕s < 0  at > 0 (acceleration)
Adverse pressure gradient   𝜕p/𝜕s > 0  at < 0 (deceleration)

Visualize the motion of a fl uid particle in Fig. 4.36a as it travels around the cylinder from 
A to B to C to D and fi nally to E. Notice that it fi rst decelerates from the free-stream velocity to 
zero velocity at the forward stagnation point as it travels in an adverse pressure gradient. Th en, 
as it passes from B to C, it is in a favorable pressure gradient, and it accelerates to its highest 
speed. From C to D, the pressure increases again toward the rearward stagnation point, and 
the particle decelerates but has enough momentum to reach D. Finally, the pressure decreases 
from D to E, and this favorable pressure gradient accelerates the particle back to the free-
stream velocity.

Pressure Distribution for a Viscous Flow

Consider the fl ow of a real (viscous) fl uid past a cylinder, as shown in Fig. 4.37. Th e fl ow pat-
tern upstream of the midsection is very similar to the pattern for an ideal fl uid. However, in a 
viscous fl uid the velocity at the surface is zero (no-slip condition), whereas with the fl ow of an 
inviscid fl uid the surface velocity need not be zero. Because of viscous eff ects, a boundary layer 
forms next to the surface. Th e velocity changes from zero at the surface to the free-stream ve-
locity across the boundary layer. Over the forward section of the cylinder, where the pressure 
gradient is favorable, the boundary layer is quite thin.

Downstream of the midsection, the pressure gradient is adverse, and the fl uid particles in 
the boundary layer, slowed by viscous eff ects, can only go so far and then are forced to detour 
away from the surface. Th e particle is pushed off  the wall by pressure force associated with the 
adverse pressure gradient. Th e point where the fl ow leaves the wall is called the separation point. 

Irrotational flow Separation point

WakeBoundary layer

Cp = –1.2V0

Cp = +1
(Stagnation point)

(a) (b)

Cp =
p – p0

V 0
2/2ρ

FIGURE 4.37

Flow of a real fl uid past a circular 

cylinder: (a) fl ow pattern, (b) pressure 

distribution.
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A recirculatory fl ow called a wake develops behind the cylinder. Th e fl ow in the wake region 
is called separated fl ow. Th e pressure distribution on the cylinder surface in the wake region is 
nearly constant, as shown in Fig. 4.37b. Th e reduced pressure in the wake leads to increased drag.

4.11 Calculating the Pressure Field 

for a Rotating Flow

Th is section describes how to relate pressure and velocity for a fl uid in a solid body rotation. 
To understand solid body rotation, consider a cylindrical container of water (Fig. 4.38a) that 
is stationary. Imagine that the container is placed into rotational motion about an axis (Fig. 
4.38b) and allowed to reach steady state with an angular speed of ω. At steady state, the fl uid 
particles will be at rest with respect to each other. Th at is, the distance between any two fl uid 
particles will be constant. Th is condition also describes the rotation of a rigid body; thus, this 
type of motion is defi ned as a fluid in a solid body rotation.

Situations in which a fl uid rotates as a solid body are found in many engineering appli-
cations. One common application is the centrifugal separator. Th e centripetal accelerations 
resulting from rotating a fl uid separate the heavier particles from the lighter particles as the 
heavier particles move toward the outside and the lighter particles are displaced toward the 
center. A milk separator operates in this fashion, as does a cyclone separator for removing 
particulates from an airstream.

Derivation of an Equation for a Fluid in Solid Body Rotation

To begin, apply Euler’s equation in the direction normal to the streamlines and outward from 
the center of rotation. In this case, the fl uid particles rotate as the spokes of a wheel, so the 
direction ℓ in Euler’s equation, Eq. (4.15), is replaced by r, giving

 −
d
dr
(p + γz) = ρar (4.48)

where the partial derivative has been replaced by an ordinary derivative because the fl ow is 
steady and a function only of the radius r. From Eq. (4.11), the acceleration in the radial direc-
tion (away from the center of curvature) is

ar = −
V 2

r

and Euler’s equation becomes

 −
d
dr
(p + γz) = −ρ

V 2

r  (4.49)

For solid body rotation about a fi xed axis,

V = ωr

FIGURE 4.38

Sketch used to defi ne a fl uid in solid 

body rotation.Water

Platform
(stationary)

Platform
(rotating)

(a) (b)

ω
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Substituting this velocity distribution into Euler’s equation results in

 
d
dr
(p + γz) = ρrω2 (4.50)

Integrating Eq. (4.50) with respect to r gives

 p + γz =
ρr 2ω2

2
+ const (4.51)

or

 
p
γ + z −

ω2r2

2g
= C (4.52a)

Th is equation can also be written as

 p + γz − ρ
ω2r 2

2
= C (4.52b)

Th ese equivalent equations describe the pressure variation in rotating fl ow. Example 4.11 shows 
how to apply the equations, and Example 4.12 illustrates the analysis of a rotating fl ow in a 
manometer.

EXAMPLE 4.11

Calculating the Surface Profi le of a Rotating Liquid

Problem Statement

A cylindrical tank of liquid shown in the fi gure is rotating as 
a solid body at a rate of 4 rad/s. Th e tank diameter is 0.5 m. 
Th e line AA depicts the liquid surface before rotation, and 
the line A′A′ shows the surface profi le aft er rotation has been 
established. Find the elevation diff erence between the liquid at 
the center and the wall during rotation.

z (vertical)

0.5.m

A'

A

A'

A

r

2

1

ω = 4 rad/s 

Defi ne the Situation

A liquid is rotating in a cylindrical tank.

State the Goal

Calculate the elevation diff erence (in meters) between liquid 
at the center and at the wall.

Generate Ideas and Make a Plan

1. Apply Eq. (4.52a), between points 1 and 2.
2. Calculate the elevation diff erence.

Take Action (Execute the Plan)

1. Equation (4.52a):

p1

γ
+ z1 −

ω2r2
1

2g
=

p2

γ
+ z2 −

ω2r 2
2

2g

Th e pressure at both points is atmospheric, so p1 = p2 
and the pressure terms cancel out. At point 1, r1 = 0, 
and at point 2, r = r2. Th e equation reduces to

 z2 −
ω2r 2

2

2g
= z1

 z2 − z1 =
ω2r2

2

2g

2. Elevation diff erence:

 z2 − z1 =
(4 rad/s)2 × (0.25 m)2

2 × 9.81 m/s2

 =  0.051 m or 5.1 cm

Review the Solution and the Process

Notice that the surface profi le is parabolic.
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EXAMPLE 4.12

Evaluating a Rotating Manometer Tube

Problem Statement

When the U-tube is not rotated, the water stands in the tube as 
shown. If the tube is rotated about the eccentric axis at a rate 
of 8 rad/s, what are the new levels of water in the tube?

Defi ne the Situation

A manometer tube is rotated around an eccentric axis.

8 rad/s

18 cm

18 cm 18 cm

36 cm

1 2

Assumptions: Liquid is incompressible.

State the Goal

Find the levels of water in each leg.

Generate Ideas and Make a Plan

Th e total length of the liquid in the manometer must be the 
same before and aft er rotation—namely, 90 cm. Assume, to 

start with, that liquid remains in the bottom leg. Th e pressure 
at the top of the liquid in each leg is atmospheric.

1.  Apply the equation for pressure variation in rotating 
fl ows, Eq. (4.52a), to evaluate the diff erence in elevation 
in each leg.

2.  Using the constraint of total liquid length, fi nd the level 
in each leg.

Take Action (Execute the Plan)

1.  Apply Eq. (4.52a) between the top of the leg on left  (1) 
and on the right (2):

 z1 −
r 2

1 ω2

2g
= z2 −

r 2
2 ω2

2g

 z2 − z1 =
ω2

2g
(r 2

2 − r 2
1)

 =
(8 rad/s)2

2 × 9.81 m/s2 (0.362 m2 − 0.182 m2) = 0.317 m

2. Th e sum of the heights in each leg is 36 cm.

z2 + z1 = 0.36 m
Solution for the leg heights:

z2 = 0.338 m
z1 = 0.022 m

Review the Solution and the Process

Discussion. If the result was a negative height in one leg, it 
would mean that one end of the liquid column would be in the 
horizontal leg, and the problem would have to be reworked to 
refl ect this confi guration.

Pathline, Streamlines, and Streaklines

• To visualize fl ow, engineers use the streamline, streak-
line, and the pathline:
• Th e streamline is a curve that is tangent everywhere to 

the local velocity vector.
• Th e streamline is a mathematical entity that cannot be 

observed in the physical world.
• Th e confi guration of streamlines in a fl ow fi eld is called 

the fl ow pattern.
• Th e pathline is the line (straight or curved) that a particle 

follows.
• A streakline is the line produced by a dye or other 

marker fl uid introduced at a point.

• In steady fl ow, pathlines, streaklines, and streamlines are 
coincident (i.e., on top of each other) if they share a com-
mon point.

• In unsteady fl ow, pathlines, streaklines, and streamlines 
are not coincident.

Velocity and the Velocity Field

• In a fl owing fl uid, velocity is defi ned as the speed and 
direction of travel of a fl uid particle.

• A velocity fi eld is a mathematical or graphical description 
that shows the velocity at each point (i.e., spatial loca-
tion) within a fl ow.

4.12 Summarizing Key Knowledge
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Eulerian and Lagrangian Descriptions

Th ere are two ways to describe motion (Lagrangian and 
Eulerian):

• In the Lagrangian approach, the engineer identifies a 
specified collection of matter and describes its mo-
tion. For example, when an engineer is describing the 
motion of a fluid particle, this is a Lagrangian-based 
description.

• In the Eulerian approach, the engineer identifies a 
region in space and describes the motion of matter that 
is passing by in terms of what is happening at various 
spatial locations. For example, the velocity fi eld is an 
Eulerian-based concept.

• Th e Eulerian approach uses fi elds. A fi eld is a math-
ematical or graphical description that shows how a 
variable is distributed spatially. A fi eld can be a scalar 
fi eld or a vector fi eld.

• Th e Eulerian approach uses the divergence, gradient, 
and curl operators.

• Th e Eulerian approach uses more complicated math-
ematics (e.g., partial derivatives) than the Lagrangian 
approach.

Describing Flow

Engineers describe fl owing fl uids using the ideas summa-
rized in Table 4.4.

TABLE 4.4 How Engineers Describe Flowing Fluids

Description Key Knowledge

Engineers classify fl ows as uniform 
 or nonuniform.

• Uniform and nonuniform fl ow describe how velocity varies spatially.
•  Uniform fl ow means that the velocity at each point on a given streamline is the same. 

Uniform fl ow requires rectilinear streamlines (straight and parallel).
•  Nonuniform fl ow means that velocity at various points on a given streamline diff ers.

Engineers classify fl ows as steady 
 or unsteady.

•  Steady fl ow means the velocity is constant with respect to time at every point in space.
•  Unsteady fl ow means the velocity is changing with time at some or all points in space.
•  Engineers oft en idealize unsteady fl ows as steady fl ow. For example, draining tank of water 

is commonly assumed to be a steady fl ow.
Engineers classify fl ows as laminar 
 or turbulent.

•  Laminar fl ow involves fl ow in smooth layers (laminae), with low levels of mixing between 
layers.

•  Turbulent fl ow involves fl ow that is dominated by eddies of various size. Flow is chaotic, 
unsteady, and 3-D. Th ere are high levels of mixing.

•  Occasionally, engineers describe a fl ow as transitional. Th is means that the fl ow is changing 
from a laminar fl ow to a turbulent fl ow.

Engineers classify fl ows 
 as 1-D, 2-D, or 3-D.

•  One-dimensional (1-D) fl ow means the velocity depends on one spatial variable; for 
example, velocity depends on radius r only.

•  Th ree-dimensional (3-D) fl ow means the velocity depends on three spatial variables; for 
example, velocity depends on three position coordinates: V = V(x, y, z).

Engineers classify fl ows as viscous 
 fl ow or inviscid fl ows.

•  In a viscous fl ow, the forces associated with viscous shear stresses are signifi cant. Th us, 
viscous terms are included when solving the equations of motion.

•  In an inviscid fl ow, the forces associated with viscous shear stresses are insignifi cant. Th us, 
viscous terms are neglected when solving the equations of motion. Th e fl uid behaves as if its 
viscosity were zero.

Engineers describe fl ows by 
  describing an inviscid fl ow 

region, a boundary layer, 
and a wake.

•  In the inviscid fl ow region, the streamlines are smooth, and the fl ow can be analyzed with 
Euler’s equation.

•  Th e boundary layer is a thin region of fl uid next to wall. Viscous eff ects are signifi cant in 
the boundary layer.

• Th e wake is the region of separated fl ow behind a body.
Engineers describe fl ows as 
 separated or attached.

• Flow separation occurs when fl uid particles move away from the wall.
•  Attached fl ow occurs when fl uid particles are moving along a wall or boundary.
• Th e region of separated fl ow inside a pipe or duct is oft en called a recirculation zone.
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Acceleration

• Acceleration is a property of a fl uid particle that charac-
terizes
• Th e change in speed of the particle or
• Th e change in direction of travel of the particle.

• Acceleration is defi ned mathematically as the derivative 
of the velocity vector.

• Acceleration of a fl uid particle can be described qualita-
tively. Guidelines:
• If a particle is traveling on a curved streamline, there 

will be a component of acceleration that is normal to 
the streamline and directed inwards toward the center 
of curvature.

• If the particle is changing speed, there will be a compo-
nent of acceleration that is tangent to the streamline.

• In an Eulerian representation of acceleration
• Terms that involve derivatives with respect to time are 

local acceleration terms and
• All other terms are convective acceleration terms. 

Most of these terms involve derivatives with respect 
to position.

Euler’s Equation

• Euler’s equation is Newton’s second law of motion applied 
to a fl uid particle when the fl ow is inviscid and incom-
pressible.

• Euler’s equation can be written as a vector equation:

−∇pz = ρa

• Th is vector form can be also be written as a scalar equa-
tion in an arbitrary ℓ direction:

−
𝜕
𝜕ℓ
(p + γz) = −( 𝜕pz

𝜕ℓ ) = ρaℓ

• Physics of Euler’s equation: Th e gradient of piezometric 
pressure is colinear with acceleration and opposite in 
direction. Th is reveals how pressure varies:
• When streamlines are curved, pressure will increase 

outward from the center of curvature.
• When a streamline is rectilinear and a particle on the 

streamline is changing speed, then the pressure will 
change in a direction tangent to the streamline. Th e 
direction of increasing pressure is opposite the accel-
eration vector.

• When streamlines are rectilinear, pressure variation 
normal to the streamlines is hydrostatic.

The Bernoulli Equation

• Th e Bernoulli equation is conservation of energy applied 
to a fl uid particle. It is derived by integrating Euler’s 
equation for steady, inviscid, and constant density fl ow.

• For the assumptions just stated, the Bernoulli equation is 
applied between any two points on the same streamline.

• Th e Bernoulli equations has two forms:
• Head form: p/γ + z + V2/(2g) = constant
• Pressure form: p + ρgz + (ρV2)/2 = constant

• Th ere are two equivalent ways to describe the physics of 
the Bernoulli equation:
• When speed increases, piezometric pressure decreases 

(along a streamline).
• Th e total head (velocity head plus piezometric head) is 

constant along a streamline. Th is means that energy is 
conserved as a fl uid particle moves along a streamline.

Measuring Velocity and Pressure

• When pressure is measured at a pressure tap on the wall 
of a pipe, this provides a measurement of static pressure. 
Th is same measurement can also be used to determine 
pressure head or piezometric head.

• Static pressure is defi ned as the pressure in a fl owing fl uid. 
Static pressure must be measured in a way that does not 
change the value of the measured pressure.

• Kinetic pressure is (ρV2)/2.
• A stagnation tube provides a measurement of (static 

pressure) + (kinetic pressure):

p + (ρV 2)/2

• Th e Pitot-static tube provides a method to measure both 
static pressure and kinetic pressure at a point in a fl owing 
fl uid and thus provides a way to measure fl uid velocity.

Fluid Rotation, Vorticity, and 

Irrotational Flow

• Rate of rotation Ω
• Is a property of a fl uid particle that describes how fast 

the particle is rotating,
• Is defi ned by placing two perpendicular lines on a 

fl uid particle and then averaging the rotational rate of 
these lines, and

• Is a vector quantity with the direction of the vector 
given by the right-hand rule.

• A common way to describe rotation is to use the vortic-
ity vector ω, which is twice the rotation vector: ω = 2Ω.
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• In Cartesian coordinates, the vorticity is given by

ω = ( 𝜕w
𝜕y

−
𝜕v
𝜕z)i +( 𝜕u

𝜕z
−
𝜕w
𝜕x )j +( 𝜕v

𝜕x
−
𝜕u
𝜕y )k

• An irrotational fl ow is one in which vorticity is zero 
everywhere.

• When applying the Bernoulli equation for irrotational 
fl ow, one can select points 1 and 2 at any locations, not 
just along a streamline.

Describing the Pressure Field

• Th e pressure fi eld is oft en described using a π-group 
called the pressure coeffi  cient.

• Th e pressure gradient near a body is related to fl ow 
separation:
• An adverse pressure gradient is associated with fl ow 

separation.
• A positive pressure gradient is associated with attached 

fl ow.

• Th e pressure fi eld for fl ow over a circular cylinder is a 
paradigm for understanding external fl ows. Th e pressure 
along the front of the cylinder is high, and the pressure 
in the wake is low.

• When fl ow is rotating as a solid body, the pressure fi eld 
p can be described using

p + γz − ρ
ω2r 2

2
= C

where ω is the rotational speed and r is the distance from 
the axis of rotation to the point in the fi eld.

Describing the Pressure Field 

(Summary)

Pressure variations in a fl owing fl uid are associated with 
three phenomenon:

• Weight. Due to the weight of a fl uid, pressure increases 
with increasing depth (i.e., decreasing elevation). Th is 
topic is presented in Chapter 3 (Hydrostatics).

• Acceleration. When fl uid particles are accelerating, there 
are usually pressure variations associated with the accel-
eration. In inviscid fl ow, the gradient of the pressure fi eld 
is aligned in a direction opposite the acceleration vector.

• Viscous eff ects. When viscous eff ects are signifi cant, there 
can be associated pressure changes. For example, there 
are pressure drops associated with fl ows in horizontal 
pipes and ducts. Th is topic is presented in Chapter 10 
(Conduit Flow).
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Streamlines, Streaklines, and Pathlines (§4.1)

4.1 If somehow you could attach a light to a fl uid particle and 
take a time exposure photo, would the image you photographed 
be a pathline or a streakline? Explain based on the defi nition of 
each.
4.2 Is the pattern produced by smoke rising from a chimney on a 
windy day analogous to a pathline or a streakline? Explain based 
on the defi nition of each.
4.3 A windsock is a sock-shaped device attached to a swivel on 
top of a pole. Windsocks at airports are used by pilots to see 
instantaneous shift s in the direction of the wind. If one drew a 
line colinear with a windsock’s orientation at any instant, the line 
would best approximate (a) a pathline, (b) a streakline, or 
(c) a streamline.

4.4 For streamlines, streaklines, and streamlines to all be 
colinear, the fl ow must be

a. dividing
b. stagnant
c. steady
d. a tracer

4.5 At time t = 0, dye was injected at point A in a fl ow fi eld of 
a liquid. When the dye had been injected for 4 s, a pathline for 
a particle of dye that was emitted at the 4 s instant was started. 
Th e streakline at the end of 10 s is shown ahead. Assume that the 
speed (but not the velocity) of fl ow is the same throughout the 
10 s period. Draw the pathline of the particle that was emitted at 
t = 4 s. Make your own assumptions for any missing information.

PROBLEMS
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Problem 4.5

Streakline

A

4.6 At time t = 0, a dye streak was started at point A in a fl ow 
fi eld of liquid. Th e speed of the fl ow is constant over a 10 s 
period, but the fl ow direction is not necessarily constant. At any 
particular instant, the velocity in the entire fi eld of fl ow is the 
same. Th e streakline produced by the dye is shown head. Draw 
(and label) a streamline for the fl ow fi eld at t = 8 s.

Draw (and label) a pathline that one would see at t = 10 s 
for a particle of dye that was emitted from point A at t = 2 s.

A

Problem 4.6

Velocity and the Velocity Field (§4.2)

4.7 A velocity fi eld is given mathematically as V = (2x + 3y)j. 
Th e velocity fi eld is

a. 1-D in x
b. 1-D in y
c. 2-D in x and y

The Eulerian and Lagrangian Approaches (§4.2)

4.8 Th ere is a gasoline spill in a major river. Th e mayor of a large 
downstream city demands an estimate of how many hours it 
will take for the spill to get to the water supply plant intake. Th e 
emergency responders measure the speed of the leading edge 
of the spill, eff ectively focusing on one particle of fl uid. Mean-
while, environmental engineers at the local university employ a 
computer model, which simulates the velocity fi eld for any stage 
of the river and for all locations (including steep narrow canyon 
sections with fast velocities and an extremely wide reach with 
slow velocities). To compare these two mathematical approaches, 
which of the following statements is most correct?

a.  Th e responders have an Eulerian approach, and the engi-
neers have a Lagrangian one.

b.  Th e responders have a Lagrangian approach, and the engi-
neers have an Eulerian one.

Describing Flow (§4.3)

4.9 Identify fi ve examples of an unsteady fl ow and explain what 
features classify them as an unsteady fl ow.
4.10 You are pouring a heavy syrup on your pancakes. As the 
syrup spreads over the pancakes, would the thin fi lm of syrup be 
a laminar or turbulent fl ow? Why?
4.11 A velocity fi eld is given by V = 10xyti. It is

a. 1-D and steady
b. 1-D and unsteady

c. 2-D and steady
d. 2-D and unsteady

4.12 Which is the most correct way to characterize turbulent 
fl ow?

a. 1-D
b. 2-D
c. 3-D

4.13 In the system in the fi gure, the valve at C is gradually 
opened in such a way that a constant rate of increase in discharge 
is produced. How would you classify the fl ow at B while the valve 
is being opened? How would you classify the fl ow at A?

A
B

C

Problem 4.13

4.14 Water fl ows in the passage shown. If the fl ow rate is decreas-
ing with time, the fl ow is classifi ed as (a) steady, (b) unsteady, 
(c) uniform, or (d) nonuniform. (Select all that apply.)

Problem 4.14

4.15 If a fl ow pattern has converging streamlines, how would you 
classify the fl ow?
4.16 Correctly match the items in column A with those in 
column B.

 A B

Steady fl ow 𝜕Vs/𝜕s = 0
Unsteady fl ow 𝜕Vs/𝜕s ≠ 0
Uniform fl ow 𝜕Vs/𝜕t ≠ 0
Nonuniform fl ow 𝜕Vs/𝜕t = 0

4.17 Classify each of the following as a one-dimensional, 
two–dimensional, or three-dimensional fl ow.

a. Water fl ow over the crest of a long spillway of a dam.
b. Flow in a straight horizontal pipe.
c.  Flow in a constant-diameter pipeline that follows the 

contour of the ground in hilly country.
d.  Airfl ow from a slit in a plate at the end of a large rectangular 

duct.
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e. Airfl ow past an automobile.
f. Airfl ow past a house.
g.  Water fl ow past a pipe that is laid normal to the fl ow across 

the bottom of a wide rectangular channel.

Acceleration (§4.4)

4.18 Acceleration is the rate of change of velocity with time. Is 
the acceleration vector always aligned with the velocity vector? 
Explain.
4.19 For a rotating body, is the acceleration toward the center of 
rotation a centripetal or centrifugal acceleration? Justify your answer. 
You may also want to look up word meanings and word roots.
4.20 In a fl owing fl uid, acceleration means that a fl uid particle is

a. changing direction
b. changing speed
c. changing both speed and direction
d. any of the above

4.21 Th e fl ow passing through a nozzle is steady. Th e speed 
of the fl uid increases between the entrance and the exit of the 
nozzle. Th e acceleration halfway between the entrance and the 
nozzle is

a. convective 
b. local 
c. both

4.22 Local acceleration
a. is close to the origin
b. occurs in unsteady fl ow
c. is always nonuniform

4.23 Th e velocity along a pathline is given by V (m/s) = s2t1/2 
where s is in meters and t is in seconds. Th e radius of curvature is 
0.5 m. Evaluate the acceleration tangent and normal to the path 
at s = 3 m and t = 0.5 seconds.
4.24 Tests on a sphere are conducted in a wind tunnel at an air 
speed of U0. Th e velocity of fl ow toward the sphere along the 
longitudinal axis is found to be u = –U0 (1 – r3

0/x3), where r0 is 
the radius of the sphere and x the distance from its center. Deter-
mine the acceleration of an air particle on the x-axis upstream of 
the sphere in terms of x, r0, and U0.

x
x

U0

r0

Problem 4.24

4.25 In this fl ow passage, the velocity is varying with time. Th e 
velocity varies with time at section A-A as

V = 4 m/s − 2.25
t

t0
m/s

At time t = 0.50 s, it is known that at section A-A the velocity 
gradient in the s direction is +2.1 m/s per meter. Given that t0 is 
0.6 s and assuming quasi-one-dimensional fl ow, answer the 
following questions for time t = 0.5 s:

a. What is the local acceleration at A-A?
b. What is the convective acceleration at A-A?

A

A

Diameter = 50 cm

s

Problem 4.25

4.26 Th e nozzle in the fi gure is shaped such that the velocity of the 
fl uid varies linearly from the base of the nozzle to its tip. Assuming 
quasi-one-dimensional fl ow, what is the convective acceleration 
midway between the base and the tip if the velocity is 2 ft /s at the 
base and 5 ft /s at the tip? Nozzle length is 23 inches.

D

d

L

Problems 4.26, 4.27

4.27 In Prob. 4.26 the velocity varies linearly with time 
throughout the nozzle. Th e velocity at the base is 1t (ft /s) and at 
the tip is 4t (ft /s). What is the local acceleration midway along 
the nozzle when t = 2 s?
4.28 Th e velocity of water fl ow in the nozzle shown is given 
by the following expression:

V = 2t/(1 − 0.5x/L)2,

where V = velocity in feet per second, t = time in seconds, 
x = distance along the nozzle, and L = length of nozzle = 4 ft . 
When x = 0.5L and t = 3 s, what is the local acceleration along 
the centerline? What is the convective acceleration? Assume that 
quasi-one-dimensional fl ow prevails.

1 ft diameter

Water

L = 4 ft

x

Problem 4.28

Euler’s Equation and Pressure Variation (§4.5)

4.29 State Newton’s second law of motion. What are the limita-
tions on the use of Newton’s second law? Explain.
4.30 What are the diff erences between a force due to weight and 
a force due to pressure? Explain.



  Problems        147

4.31 A pipe slopes upward in the direction of liquid fl ow at an 
angle of 30° with the horizontal. What is the pressure gradient in 
the fl ow direction along the pipe in terms of the specifi c weight 
of the liquid, γ, if the liquid is decelerating (accelerating opposite 
to fl ow direction) at a rate of 0.3 g?
4.32 What pressure gradient is required to accelerate kerosene 
(SG = 0.81) vertically upward in a vertical pipe at a rate of 0.4 g?
4.33 Th e hypothetical liquid in the tube shown in the fi gure 
has zero viscosity and a specifi c weight of 10 kN/m3. If pB – pA 
is equal to 8 kPa, one can conclude that the liquid in the tube 
is being accelerated (a) upward, (b) downward, or (c) neither: 
acceleration = 0.

Vertical

A

B

1 m

Problem 4.33

4.34 Water (ρ = 62.4 lbm/ft 3) stands at a depth of 6 ft  in a 
vertical pipe that is open at the top and closed at the bottom by 
a piston. What upward acceleration of the piston is necessary to 
create a pressure of 8 psig immediately above the piston?

6 ft

1 ft

Problem 4.34

4.35 What pressure gradient is required to accelerate water 
(ρ = 1000 kg/m3) in a horizontal pipe at a rate of 7.7 m/s2?
4.36 Water (ρ = 1000 kg/m3) is accelerated from rest in a 
horizontal pipe that is 80 m long and 30 cm in diameter. If the 
acceleration rate (toward the downstream end) is 5 m/s2, what 
is the pressure at the upstream end if the pressure at the 
downstream end is 90 kPa gage?
4.37 A liquid with a specifi c weight of 100 lbf/ft 3 is in the conduit. 
Th is is a special kind of liquid that has zero viscosity. Th e pressures 
at points A and B are 170 psf and 100 psf, respectively. Which one 
(or more) of the following conclusions can one draw with certainty? 
(a) Th e velocity is in the positive ℓ direction. (b) Th e velocity is in 
the negative ℓ direction. (c) Th e acceleration is in the positive ℓ 
direction. (d) Th e acceleration is in the negative ℓ direction.

Vertical

�

30°

2.0 ft

A

B

Horizontal

Problem 4.37

4.38 If the velocity varies linearly with distance through this 
water nozzle, what is the pressure gradient, dp/dx, halfway 
through the nozzle? Assume ρ = 62.4 lbm/ft 3.

30 ft/s
80 ft/s

1 ft

x

Problem 4.38

4.39 Th e closed tank shown, which is full of liquid, is accelerated 
downward at 1.5g and to the right at 0.9g. Here L = 3 ft , H = 4 ft , 
and the specifi c gravity of the liquid is 1.2. Determine pC – pA 
and pB – pA.
4.40 Th e closed tank shown, which is full of liquid, is accelerated 
downward at 23 g  and to the right at 1g. Here L = 2.5 m, H = 3 m, 
and the liquid has a specifi c gravity of 1.3. Determine pC – pA and 
pB – pA.

L

HLiquid

A

BC

Problems 4.39, 4.40

Applying the Bernoulli Equation (§4.6)

4.41 Describe in your own words how an aspirator works.
4.42 When the Bernoulli Equation applies to a venturi, such as in 
Fig. 4.27, which of the following are true? (Select all that apply.)

a.  If the velocity head and elevation head increase, then the 
pressure head must decrease.

b.  Pressure always decreases in the direction of fl ow along a 
streamline.

c.  Th e total head of the fl owing fl uid is constant along a 
streamline.

4.43 An engineer is designing a fountain, as shown, and will 
install a nozzle that can produce a vertical jet. How high (h) will 
the water in the fountain rise if Vn = 26 m/s at h = 0?

h

Vn

Problem 4.43
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4.44 Th e tank shown is used to pressurize a water-fertilizer 
solution for delivery from a sprayer. Th e tank is pressurized at 
p = 15 kPa gage. Height h is 0.8 m. What is the velocity (m/s) of 
the fertilizer at the outlet?

Pressure, p

h

Problem 4.44

4.45 Water fl ows through a vertical contraction (venturi) section. 
Piezometers are attached to the upstream pipe and minimum 
area section as shown. Th e mean velocity in the pipe is V = 5 ft /s. 
Th e diff erence in elevation between the two water levels in the 
piezometers is Δz = 6 inches. Th e water temperature is 68°F. 
What is the velocity (ft /s) at the minimum area?

V

Δz

Problem 4.45

4.46 Kerosene at 20°C fl ows through a contraction section as 
shown. A pressure gage connected between the upstream pipe 
and throat section shows a pressure diff erence of 25 kPa. Th e 
gasoline velocity in the throat section is 8.7 m/s. What is the 
velocity (m/s) in the upstream pipe?

8.7 m/s

Kerosene at 20° C
25 kPa

Problem 4.46

Stagnation Tubes and Pitot-Static Tubes (§4.7)

4.47 A stagnation tube placed in a river (select all that apply)
a. can be used to determine air pressure
b. can be used to determine water velocity
c. measures kinetic pressure + static pressure

4.48 A Pitot-static tube is mounted on an airplane to measure 
airspeed. At an altitude of 10,000 ft , where the temperature is 23°F 
and the pressure is 9 psia, a pressure diff erence corresponding to 
8 in. of water is measured. What is the airspeed?
4.49 A Pitot tube is placed in an open channel as shown. What is 
the velocity VA (m/s) when height h is 15 cm?
4.50 A glass tube is inserted into a fl owing stream of water with 
one opening directed upstream and the other end vertical. If the 
water velocity, VA is 6.6 m/s, how high will the water rise, h?

Water

VA

h

Problems 4.49, 4.50

4.51 To measure air velocity in a food-drying plant (T = 160°F, 
p = 14 psia), an air-water manometer is connected to a Pitot-static 
tube. When the manometer defl ects 4 in., what is the velocity?
4.52 Two Pitot-static tubes are shown. Th e one on the top is used 
to measure the velocity of air, and it is connected to an air-water 
manometer as shown. Th e one on the bottom is used to measure 
the velocity of water, and it too is connected to an air-water 
manometer as shown. If the defl ection h is the same for both 
manometers, then one can conclude that (a) VA = Vw, 
(b) VA > Vw, or (c) VA < Vw.

h

h

Air

Air

Water

VA

Vw

Problem 4.52

4.53 A Pitot-static tube is used to measure the velocity at the 
center of a 12 in. pipe. If kerosene at 68°F is fl owing and the 
defl ection on a mercury-kerosene manometer connected to the 
Pitot tube is 5.5 in., what is the velocity?
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4.54 A Pitot-static tube used to measure air velocity is connected 
to a pressure gage. If the air temperature is 10°C at standard 
atmospheric pressure at sea level, and if the gage reads a diff erential 
pressure of 3 kPa, what is the air velocity?
4.55 A Pitot-static tube used to measure air velocity is connected 
to a pressure gage. If the air temperature is 200°F at standard 
atmospheric pressure, and if the gage reads a diff erential pressure 
of 15 psf, what is the air velocity?
4.56 A Pitot-static tube is used to measure the gas velocity in a 
duct. A pressure transducer connected to the Pitot tube registers 
a pressure diff erence of 3.0 psi. Th e density of the gas in the duct 
is 0.19 lbm/ft 3. What is the gas velocity in the duct?
4.57 Th e fl ow-metering device shown consists of a stagnation 
probe at station 2 and a static pressure tap at station 1. Th e 
velocity at station 2 is 1.5 times that at station 1. Air with a 
density of 1.2 kg/m3 fl ows through the duct. A water manometer 
is connected between the stagnation probe and the pressure tap, 
and a defl ection of 10 cm is measured. What is the velocity at 
station 2?

Vertical

Water

21

10 cm

Problem 4.57

4.58 Th e “spherical” Pitot probe shown is used to measure the 
fl ow velocity in hot water (ρ = 965 kg/m3). Pressure taps are 
located at the forward stagnation point and at 90° from the for-
ward stagnation point. Th e speed of fl uid next to the surface of 
the sphere varies as 1.5 V0 sin θ, where V0 is the free-stream ve-
locity and θ is measured from the forward stagnation point. Th e 
pressure taps are at the same level; that is, they are in the same 
horizontal plane. Th e piezometric pressure diff erence between 
the two taps is 3 kPa. What is the free-stream velocity V0?

V = 1.5 V0

V0Δp
= 3 kPa

θ

Problem 4.58

4.59 A device used to measure the velocity of fl uid in a pipe 
consists of a cylinder, with a diameter much smaller than the 
pipe diameter, mounted in the pipe with pressure taps at the 
forward stagnation point and at the rearward side of the cylinder. 
Data show that the pressure coeffi  cient at the rearward pressure 
tap is –0.3. Water with a density of 1000 kg/m3 fl ows in the pipe. 
A pressure gage connected by lines to the pressure taps shows a 
pressure diff erence of 500 Pa. What is the velocity in the pipe?

Pressure taps

V0

Gage

1 2

Problem 4.59

4.60 Th is navy surveillance sphere is being tested for the pressure 
fi eld that will be induced in front of it as a function of velocity. 
Velocimeters in the test basin show that when VA = 14 m/s, the 
velocity at B is 8 m/s and at C is 1 m/s. What is pB – pC? 
(Velocities are measured with respect to a stationary, i.e., lab, 
reference frame.)

VA

VB VC
A

B C

Problem 4.60

4.61 Water in a fl ume is shown for two conditions. If the depth 
d is the same for each case, will gage A read greater or less than 
gage B? Explain.

A

BPressure gage

(a)

(b)

V = 3 m/s d

d

Pressure gage

Problem 4.61

4.62 A rugged instrument used frequently for monitoring gas 
velocity in smokestacks consists of two open tubes oriented to 
the fl ow direction as shown and connected to a manometer. Th e 
pressure coeffi  cient is 1.0 at A and –0.2 at B. Assume that water, 
at 20°C, is used in the manometer and that a 5 mm defl ection is 
noted. Th e pressure and temperature of the stack gases are 
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101 kPa abs and 250°C. Th e gas constant of the stack gases is 
200 J/kg∙K. Determine the velocity of the stack gases.

ΔhA

B

Flow
direction

Problem 4.62

4.63 A Pitot-static tube is used to measure the airspeed of an 
airplane. Th e Pitot tube is connected to a pressure-sensing 
device calibrated to indicate the correct airspeed when the 
temperature is 17°C and the pressure is 101 kPa. Th e airplane 
fl ies at an altitude of 3000 m, where the pressure and tempera-
ture are 70 kPa and –6.3°C. Th e indicated airspeed is 56 m/s. 
What is the true airspeed?
4.64 You need to measure air fl ow velocity. You order a commer-
cially available Pitot-static tube, and the accompanying instruc-
tions state that the airfl ow velocity is given by

V(ft/min) = 1096.7B
hv

d

where hv is the “velocity pressure” in inches of water and d is the 
density in pounds per cubic foot. Th e velocity pressure is the 
defl ection measured on a water manometer attached to the static 
and total pressure ports. Th e instructions also state the density d 
can be calculated using

d (lbm/ft3) = 1.325
pa

T

where pa is the barometric pressure in inches of mercury and T is 
the absolute temperature in degrees Rankine. Before you use the 
Pitot tube, you want to confi rm that the equations are correct. 
Determine if they are correct.
4.65 Consider the fl ow of water over the surfaces shown. For 
each case, the depth of water at section D-D is the same (1 ft ), 
and the mean velocity is the same and equal to 10 ft /s. Which of 
the following statements are valid?

a. pC > pB > pA

b. pB > pC > pA

c. pA = pB = pC

d. pB < pC < pA

e. pA < pB < pC

DD

D

D

D D

B

A

C

Problem 4.65

Characterizing Rotational Motion of a Fluid (§4.8)

4.66 What is meant by rotation of a fl uid particle? Use a sketch 
to explain.
4.67 Consider a spherical fl uid particle in an inviscid fl uid (no 
shear stresses). If pressure and gravitational forces are the only 
forces acting on the particle, can they cause the particle to rotate? 
Explain.
4.68 Th e vector V = 10xi – 10yj represents a two-dimensional 
velocity fi eld. Is the fl ow irrotational?
4.69 Th e u and v velocity components of a fl ow fi eld are given 
by u = –ωy and v = ωx. Determine the vorticity and the rate of 
rotation of fl ow fi eld.
4.70 Th e velocity components for a two-dimensional fl ow are

u =
Cx

(y2 + x2)
  v =

Cy
(x2 + y2)

where C is a constant. Is the fl ow irrotational?
4.71 A two-dimensional fl ow fi eld is defi ned by u = x2 – y2 and 
v = –2xy. Is the fl ow rotational or irrotational?

The Bernoulli Equation (Irrotational Flow) (§4.9)

4.72 Liquid flows with a free surface around a bend. The 
liquid is inviscid and incompressible, and the flow is steady 
and irrotational. The velocity varies with the radius across 
the flow as V = 1/r m/s, where r is in meters. Find the 
difference in depth of the liquid from the inside to the 
outside radius. The inside radius of the bend is 1 m and the 
outside radius is 3 m.
4.73 Th e velocity in the outlet pipe from this reservoir is 30 ft /s 
and h = 18 ft . Because of the rounded entrance to the pipe, the 
fl ow is assumed to be irrotational. Under these conditions, what 
is the pressure at A?

Water

V

A

h

Problems 4.73, 4.74

4.74 Th e velocity in the outlet pipe from this reservoir is 8 m/s 
and h = 19 m. Because of the rounded entrance to the pipe, the 
fl ow is assumed to be irrotational. Under these conditions, what 
is the pressure at A?
4.75 Th e maximum velocity of the fl ow past a circular cylinder, 
as shown, is twice the approach velocity. What is Δp between 
the point of highest pressure and the point of lowest pressure 
in a 40 m/s wind? Assume irrotational fl ow and standard 
atmospheric conditions.
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V0 = 40 m/s

2V0

Problem 4.75

4.76 Th e velocity and gage pressure are given at two points in the 
fl ow fi eld. Assume that the two points lie in a horizontal plane 
and that the fl uid density is uniform in the fl ow fi eld and is 
equal to 1000 kg/m3. Assume steady fl ow. Th en, given these data, 
determine which of the following statements is true. (a) Th e fl ow 
in the contraction is nonuniform and irrotational. (b) Th e fl ow 
in the contraction is uniform and irrotational. (c) Th e fl ow in 
the contraction is nonuniform and rotational. (d) Th e fl ow in the 
contraction is uniform and rotational.

V = 2 m/s
p = 7 kPa

V = 1 m/s
p = 10 kPa

Problem 4.76

4.77 Water (ρ = 62.4 lbm/ft 3) fl ows from the large orifi ce at the 
bottom of the tank as shown. Assume that the fl ow is irrotational. 
Point B is at zero elevation, and point A is at 1 ft  elevation. 
If VA = 4 ft /s at an angle of 45° with the horizontal and if 
VB = 12 ft /s vertically downward, what is the value of pA – pB?

Vertical

45°A

B

Problem 4.77

4.78 Ideal fl ow theory will yield a fl ow pattern past an airfoil 
similar to that shown. If the approach air velocity V0 is 80 m/s, 
what is the pressure diff erence between the bottom and the top 
of this airfoil at points where the velocities are V1 = 85 m/s and 
V2 = 75 m/s? Assume ρair is uniform at 1.2 kg/m3.

V
0

V1

V2

Problem 4.78

4.79 Consider the fl ow of water between two parallel plates in 
which one plate is fi xed as shown. Th e distance between the 
plates is h, and the speed of the moving plate is V. A person 
wishes to calculate the pressure diff erence between the plates and 
applies the Bernoulli equation between points 1 and 2,

z1 +
p1

γ
+

V 2
1

2g
= z2 +

p2

γ
+

V 2
2

2g

and concludes that

 p1 − p2 = γ(z2 − z1) + ρ
V 2

2

2

 = γh + ρ
V 2

2

Is this correct? Provide the reason for your answer.

z

V0

h

1

2

Problem 4.79

Pressure Field for a Circular Cylinder (§4.10)

4.80 A fl uid is fl owing around a cylinder as shown in Fig. 4.37. 
A favorable pressure gradient can be found

a. upstream of the stagnation point
b. at the stagnation point
c. between the stagnation point and separation point

4.81 Th e pressure in the wake of a bluff  body is approximately 
equal to the pressure at the point of separation. Th e velocity 
distribution for fl ow over a sphere is V = 1.5 V0 sin θ, where V0 
is the free-stream velocity and θ is the angle measured from the 
forward stagnation point. Th e fl ow separates at θ = 120°. If the 
free-stream velocity is 100 m/s and the fl uid is air (ρ = 1.2 kg/m3), 
fi nd the pressure coeffi  cient in the separated region next to 
the sphere. Also, what is the gage pressure in this region if the 
free-stream pressure is atmospheric?
4.82 Figure 4.36 shows irrotational fl ow past a circular cylinder. 
Assume that the approach velocity at A is constant (does not vary 
with time).

a. Is the fl ow past the cylinder steady or unsteady?
b.  Is this a case of one-dimensional, two-dimensional, or 

three-dimensional fl ow?
c.  Are there any regions of the fl ow where local acceleration is 

present? If so, show where they are and show vectors repre-
senting the local acceleration in the regions where it occurs.

d.  Are there any regions of fl ow where convective acceleration 
is present? If so, show vectors representing the convective 
acceleration in the regions where it occurs.

4.83 Knowing the speed at point 1 of a fl uid upstream of a sphere 
and the average speed at point 2 in the wake of in the sphere, can 
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one use the Bernoulli equation to fi nd the pressure diff erence 
between the two points? Provide the rationale for your decision.

1 2

Wake

Problem 4.83

Pressure Field for a Rotating Flow (§4.11)

4.84 Th is closed tank, which is 4 ft  in diameter, is fi lled with water 
(ρ = 62.4 lbm/ft 3) and is spun around its vertical axis at a rate of 
10 rad/s. An open piezometer is connected to the tank as shown 
so that it is also rotating with the tank. For these conditions, 
what is the pressure at the center of the bottom of the tank?

6 in

12 in

12 in

1 ft

p = ?

4 ft diameter

Problem 4.84

4.85 A tank of liquid (SG = 0.80) that is 1 ft  in diameter and 
1.0 ft  high (h = 1.0 ft ) is rigidly fi xed (as shown) to a rotating arm 
having a 2 ft  radius. Th e arm rotates such that the speed at point A 
is 20 ft /s. If the pressure at A is 25 psf, what is the pressure at B?

Diameter

A

B

h

r

Liquid

Problem 4.85

4.86 Separators are used to separate liquids of diff erent densities, 
such as cream from skim milk, by rotating the mixture at high 
speeds. In a cream separator, the skim milk goes to the outside 
while the cream migrates toward the middle. A factor of merit 
for the centrifuge is the centrifugal acceleration force (RCF), 
which is the radial acceleration divided by the acceleration due 
to gravity. A cream separator can operate at 9000 rpm (rev/min). 
If the bowl of the separator is 20 cm in diameter, what is the 
centripetal acceleration if the liquid rotates as a solid body, and 
what is the RCF?

4.87 A closed tank of liquid (SG = 1.2) is rotated about a vertical 
axis (see the fi gure), and at the same time the entire tank is accel-
erated upward at 4 m/s2. If the rate of rotation is 10 rad/s, what 
is the diff erence in pressure between points A and B (pB – pA)? 
Point B is at the bottom of the tank at a radius of 0.5 m from the 
axis of rotation, and point A is at the top on the axis of rotation.

A

B

2 m

ω

Problem 4.87

4.88 A U-tube is rotated about one leg, as shown. Before being 
rotated the liquid in the tube fi lls 0.25 m of each leg. Th e length 
of the base of the U-tube is 0.5 m, and each leg is 0.5 m long. 
What would be the maximum rotation rate (in rad/s) to ensure 
that no liquid is expelled from the outer leg?

0.25 m

0.5 m

0.5 m

Problem 4.88

4.89 An arm with a stagnation tube on the end is rotated at 
100 rad/s in a horizontal plane 10 cm below a liquid surface as 
shown. Th e arm is 20 cm long, and the tube at the center of rota-
tion extends above the liquid surface. Th e liquid in the tube is the 
same as that in the tank and has a specifi c weight of 10,000 N/m3. 
Find the location of the liquid surface in the central tube.

Open to air

Open to air

Elevation view Plan view

10 cm

20 cm

ω = 100 rad/s

ω

Problem 4.89

4.90 A manometer is rotated around one leg, as shown. Th e 
diff erence in elevation between the liquid surfaces in the legs is 
20 cm. Th e radius of the rotating arm is 10 cm. Th e liquid in the 
manometer is oil with a specifi c gravity of 0.8. Find the number 
of g’s of acceleration in the leg with greatest amount of oil.
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10 cm

20 cm

Problem 4.90

4.91 A fuel tank for a rocket in space under a zero-g environ-
ment is rotated to keep the fuel in one end of the tank. Th e 
system is rotated at 3 rev/min. Th e end of the tank (point A) is 
1.5 m from the axis of rotation, and the fuel level is 1 m from the 
rotation axis. Th e pressure in the nonliquid end of the tank is 
0.1 kPa, and the density of the fuel is 800 kg/m3. What is the 
pressure at the exit (point A)?

1.5 m

1 m

3 rpm

A

Problem 4.91

4.92 Water (ρ = 1000 kg/m3) fi lls a slender tube 1 cm in diam-
eter, 40 cm long, and closed at one end. When the tube is rotated 
in the horizontal plane about its open end at a constant speed of 
50 rad/s, what force is exerted on the closed end?
4.93 Water (ρ = 1000 kg/m3) stands in the closed-end U-tube 
as shown when there is no rotation. If ℓ = 2 cm and if the 
entire system is rotated about axis A-A, at what angular speed 
will water just begin to spill out of the open tube? Assume that 
the temperature for the system is the same before and aft er 
rotation and that the pressure in the closed end is initially 
atmospheric.

A

A

3�

6�

Closed end

Air

Water

Open end

3�

6�

6�

d = �

Problem 4.93

4.94 A simple centrifugal pump consists of a 10 cm disk with radial 
ports as shown. Water is pumped from a reservoir through a 
central tube on the axis. Th e wheel spins at 3000 rev/min, and the 
liquid discharges to atmospheric pressure. To establish the maxi-
mum height for operation of the pump, assume that the fl ow rate is 
zero and the pressure at the pump intake is atmospheric pressure. 
Calculate the maximum operational height z for the pump.

A a

patm

3000 rpm

10 cm

View A-A

z

Problem 4.94

4.95 A closed cylindrical tank of water (ρ = 1000 kg/m3) is 
rotated about its horizontal axis as shown. Th e water inside the 
tank rotates with the tank (V = rω). Derive an equation for dp/dz 
along a vertical-radial line through the center of rotation. What 
is dp/dz along this line for z = –1 m, z = 0, and z = +1 m when 
ω = 5 rad/s? Here, z = 0 at the axis.

z (vertical)

z = 0

End view Side view

r

Problem 4.95
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The Control Volume Approach 

and The Continuity Equation

CHAPTER ROAD MAP This chapter describes how conservation of mass can be applied to a fl owing 
fl uid. The resulting equation is called the continuity equation. The continuity equation is applied to a spatial 
region called a control volume, which is also introduced.

CHAPTERFIVE

FIGURE 5.1
The photo shows an evacuated-tube solar collector that 

is being tested to measure its effi ciency. This project 

was run by undergraduate engineering students. The 

team applied the control volume concept, the continuity 

equation, the fl ow rate equations, and knowledge from 

thermodynamics and heat transfer. (Photo by Donald 

Elger.)

LEARNING OUTCOMES

FLOW RATE (§5.1). 
●  Know the main ideas about mass and volume fl ow rate. 
●  Defi ne mean velocity and know typical values. 
●  Solve problems that involve the fl ow rate equations.

THE CONTROL VOLUME APPROACH (§5.2). 
●  Describe the six types of systems. 
●  Distinguish between intensive and extensive properties. 
●  Explain how to use the dot product to characterize net outfl ow. 
●  Know the main ideas of the Reynolds Transport Theorem.

THE CONTINUITY EQUATION (§5.3, §5.4). 
●  Know the main ideas about the continuity equation. 
●  Solve problems that involve the continuity equation.

CAVITATION (§5.7). 
●  Know the main ideas about cavitation—for example, why cavitation 

happens, why cavitation matters, how to spot potential cavitation 

sites, and how to design to reduce the possibility of cavitation.

5.1 Characterizing the Rate of Flow

Engineers characterize the rate of fl ow using the (a) mass fl ow rate, m· , and (b) the volume fl ow 
rate, Q. Th ese concepts and the associated equations are introduced in this section.

Volume Flow Rate (Discharge)

Volume fl ow rate Q is the ratio of volume to time at an instant in time. In equation form,

 Q = (volume of fluid passing through a cross-sectional area
interval of time )instant 

in time

= lim
Δt→0

ΔV
Δt

 (5.1)

EXAMPLE. To describe volume fl ow rate (Q) for a gas pump (Fig. 5.2a), select a cross-
sectional area. Th en, Q is the volume of gasoline that fl owed across the specifi ed section 
during a specifi ed time interval (say, one second) divided by the time interval. Th e units 
could be gallons per minute or liters per second.
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EXAMPLE. To describe volume fl ow rate (Q) for a person inhaling while doing yoga 
(Fig. 5.2b), select a cross-sectional area as shown. Th en, Q is the volume of air that fl owed 
across the specifi ed section during a specifi ed time interval (say, Δt = 0.01 s) divided by 
the time interval. Notice that the time interval should be short because the fl ow rate is 
continuously varying during breathing. Th e idea is to let Δt→ 0 so that the fl ow rate is 
characterized at an instant in time.

Volume fl ow rate is oft en called discharge. Because these two terms are synonyms, this text 
uses both terms interchangeably.

Th e SI units of discharge are cubic meters of volume per second (m3/s). In traditional 
units, the consistent unit is cubic feet of volume per second (ft 3/s). Oft en, this unit is written as 
cfs, which stands for cubic feet per second.

Deriving Equations for Volume Flow Rate (Discharge)

Th is subsection shows how to derive useful equations for discharge Q in terms of fl uid velocity 
and section area A.

To relate Q to velocity V, select a fl ow of fl uid (Fig. 5.3) in which velocity is assumed to be 
constant across the pipe cross section. Suppose a marker is injected over the cross section at 
section A-A for a period of time Δt. Th e fl uid that passes A-A in time Δt is represented by the 
marked volume. Th e length of the marked volume is VΔt, so the volume is ΔV = AVΔt. Apply 
the defi nition of Q:

 Q = lim
Δt→0

ΔV
Δt

= lim
Δt→0

AVΔt
Δt

= VA (5.2)

In Eq. (5.2), notice how the units work out:

 Q = VA
 flow rate (m3/s) = velocity (m/s) × area (m2)

Q = Volume/time
        of  gasoline 

Q = Volume/time
        of  air (instant in time)

Specified cross-
sectional area

Specified cross-
sectional area

(a) (b)

FIGURE 5.2

Sketches used to defi ne volume fl ow rate:

(a) gasoline fl owing out of a valve at a fi lling station, 

(b) air fl owing inward to a person during inhalation.

V

A

A

VΔt

Cross-sectional
area A

FIGURE 5.3

Volume of fl uid in fl ow, with uniform velocity distribution that passes 

section A-A in time Δt.
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Because Eq. (5.2) is based on a uniform velocity distribution, consider a fl ow in which the 
velocity varies across the section (see Fig. 5.4). Th e blue shaded region shows the volume of fl uid 
that passes across a diff erential area of the section. Using the idea of Eq. (5.2), let dQ = V dA. 
To obtain the total fl ow rate, add up the volume fl ow rate through each diff erential element and 
then apply the defi nition of the integral:

 Q = ∑
section

Vi dAi = ∫
A
V dA (5.3)

Eq. (5.3) means that velocity integrated over section area gives discharge. To develop another 
useful result, divide Eq. (5.3) by area A to give

 V =
Q
A

=
1
A ∫AV dA (5.4)

Eq. (5.4) provides a defi nition of V , which is called the mean velocity. As shown, the mean 
velocity is an area-weighted average velocity. For this reason, mean velocity is sometimes called 
area-averaged velocity. Th is label is useful for distinguishing an area-averaged velocity from a 
time-averaged velocity, which is used for characterizing turbulent fl ow (see §4.3). Some useful 
values of mean velocity are summarized in Table 5.1.

Eq. (5.4) can be generalized by using the concept of the dot product. Th e dot product is 
useful when the velocity vector is aligned at an angle with respect to the section area (Fig. 5.5). 
Th e only component of velocity that contributes to the fl ow through the diff erential area dA is 
the component normal to the area, Vn. Th e diff erential discharge through area dA is

dQ = Vn dA

V

V dA

dA

A

A

FIGURE 5.4

Volume of fl uid that passes section A-A in time Δt.

TABLE 5.1 Values of Mean Velocity

Situation Equation for Mean Velocity

Fully developed laminar fl ow in a round pipe. 
 For more information, see §10.5.

V/Vmax = 0.5 , where Vmax is the value of the 
  maximum velocity in the pipe. Note that 

Vmax is the value of the velocity at the center 
of the pipe.

Fully developed laminar fl ow in a rectangular 
 channel (channel has infi nite width).

V/Vmax = 2/3 = 0.667.

Fully developed turbulent fl ow in a round pipe. 
 For more information, see §10.6.

V/Vmax ≈ 0.79  to 0.86, where the ratio depends 
 on the Reynolds number.
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If the vector, dA, is defi ned with magnitude equal to the diff erential area, dA, and direction 
normal to the surface, then VndA = |V| cos θ dA = V ∙ dA, where V ∙ dA is the dot product of 
the two vectors. Th us, a more general equation for the discharge or volume fl ow rate through 
a surface A is

 Q = ∫
A

V ∙ dA (5.5)

If the velocity is constant over the area and the area is a planar surface, then the discharge is

Q = V ∙ A

If, in addition, the velocity and area vectors are aligned, then

Q = VA

which reverts to the original equation developed for discharge, Eq. (5.2).

Mass Flow Rate

Mass fl ow rate m·  is the ratio of mass to time at an instant in time. In equation form,

 m· = (mass of fluid passing through a cross sectional area
interval of time )instant 

in time

= lim
Δt→0

Δm
Δt

 (5.6)

Th e common units for mass fl ow rate are kg/s, lbm/s, and slugs/s.
Using the same approach as for volume fl ow rate, the mass of the fl uid in the marked 

volume in Fig. 5.3 is Δm = ρΔV, where ρ is the average density. Th us, one can derive several 
useful equations:

 m· = lim
Δt→0

Δm
Δt

= ρ lim
Δt→0

ΔV
Δt

= ρQ

  = ρAV  
(5.7)

Th e generalized form of the mass fl ow equation corresponding to Eq. (5.5) is

 m· = ∫
A

ρV ∙ dA (5.8)

where both the velocity and fl uid density can vary over the cross-sectional area. If the density is 
constant, then Eq. (5.7) is recovered. Also, if the velocity vector is aligned with the area vector, 
then Eq. (5.8) reduces to

 m· = ∫
A

ρV dA (5.9)

dA

V

VnVelocity component
normal to surface

Fluid velocity
vector

Differential
area, dA

Differential area
vector

FIGURE 5.5

Velocity vector oriented at angle θ with 

respect to normal.
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158 CHAPTER 5  •  THE CONTROL VOLUME APPROACH AND THE CONTINUITY EQUATION

Working Equations

Table 5.2 summarizes the fl ow rate equations. Notice that multiplying Eq. (5.10) by density 
gives Eq. (5.11).

Example Problems

For most problems, application of the fl ow rate equation involves substituting numbers into 
the appropriate equation; see Example 5.1 for this case.

TABLE 5.2 Summary of the Flow Rate Equations

Description Equation Terms

Volume fl ow rate 
 equation Q = VA = m·

ρ = ∫
A

V dA = ∫
A

V ∙ dA     (5.10)  Q = volume fl ow rate = discharge (m3/s)
 V = mean velocity = area averaged velocity (m/s)
 A = cross-sectional area (m2)
 m· = mass flow rate (kg/s)
 V = speed of a fl uid particle (m/s)
 dA = diff erential area (m2)
 V = velocity of a fl uid particle (m/s)
dA =  diff erential area vector (m2) 

(points outward from the control surface)
Mass fl ow rate 
 equation m· = ρAV = ρQ =∫

A
ρV dA = ∫

A
ρV ∙ dA   (5.11)  m· = mass flow rate (kg/s)

  ρ = mass density (kg/m3)

EXAMPLE 5.1

Applying the Flow Rate Equations to a Flow of 
Air in a Pipe

Problem Statement

Air that has a mass density of 1.24 kg/m3 (0.00241 slugs/ft 3) 
fl ows in a pipe with a diameter of 30 cm (0.984 ft ) at a mass 
rate of fl ow of 3 kg/s (0.206 slugs/s). What are the mean 
velocity and discharge in this pipe for both systems of units?

Defi ne the Situation

Air fl ows in a pipe.

Air

 = 1.24 kg/m3 = 0.00241 slug/ft3

m = 3 kg/s = 0.0206 slug/s 

 0.3 m = 0.984 ftφ

ρ

State the Goal

Q(m3/s and ft 3/s) ➡ volume fl ow rate (discharge)
V (m/s and ft /s) ➡ mean velocity

Generate Ideas and Make a Plan

Because Q is the goal and m·  and ρ are known, apply the mass 
fl ow rate equation (Eq. 5.11):

 m· = ρQ (a)

To fi nd the last goal (V ), apply the volume fl ow rate equation 
(Eq. 5.10):

 Q = VA  (b)

Th e plan is as follows:

1. Calculate Q using Eq. (a).
2. Calculate V  using Eq. (b).

Take Action (Execute the Plan)

1. Mass fl ow rate equation:

Q = m·
ρ =

3 kg/s
1.24 kg/m3 =  2.42 m3/s

Q = 2.42 m3/s × (35.31 ft3

1 m3 ) =  85.5 cfs

2. Volume fl ow rate equation:

V =
Q
A

=
2.42 m3/s

(14π) × (0.30 m)2
 =  34.2 m/s

V = 34.2 m/s × ( 1 ft
0.3048 m) =  112 ft/s
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When fl uid passes across a control surface and the velocity vector is at an angle with 
respect to the surface normal vector, use the dot product. Th is case is illustrated by Example 5.2.

Another important case is when velocity varies at diff erent points on the control surface. 
In this case, use an integral to determine fl ow rate, as specifi ed by Eq. (5.10):

Q = ∫
A

V dA

In this integral, the diff erential area dA depends on the geometry of the problem. Two common 
cases are shown in Table 5.3. Analyzing a variable velocity is illustrated by Example 5.3.

EXAMPLE 5.2

Calculating the Volume Flow Rate by Applying 
the Dot Product

Problem Statement

Water fl ows in a channel that has a slope of 30°. If the velocity 
is assumed to be constant, 12 m/s, and if a depth of 60 cm is 
measured along a vertical line, what is the discharge per meter 
of width of the channel?

A

V

30°

60 cm

Defi ne the Situation

Water fl ows in an open channel.

State the Goal

Q(m3/s) ➡ discharge per meter of width of the channel

Generate Ideas and Make a Plan

Because V and A are not at right angles, apply
Q = V ∙ A = VA cos θ. Because all variables are known except 
Q, the plan is to substitute in values.

Take Action (Execute the Plan)

 Q = V ∙ A = V(cos 30°)A
 = (12 m/s)(cos 30°)(0.6 m)

 =  6.24 m3/s per meter

Review the Solution and the Process

1.  Knowledge. Th is example involves a channel fl ow. A fl ow 
is a channel fl ow when a liquid (usually water) fl ows 
with an open surface exposed to air under the action of 
gravity.

2.  Knowledge. Th e discharge per unit width is usually 
designated as q.

TABLE 5.3 Differential Areas for Determining Flow Rate

Label Sketch Description

Channel fl ow dA = wdy

w

y

dy

Channel wall

When velocity varies as V = V(y) in a rectangular channel, use a 
  diff erential area dA, given by dA = wdy, where w is the width 

of the channel and dy is a diff erential height.

Pipe fl ow

r

  dA= 2 rdr

Pipe wall

π When velocity varies as V = V(r) in a round pipe, use a 
  diff erential area dA, given by dA = 2πrdr, where r is the 

radius of the diff erential area and dr is a diff erential radius.
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5.2 The Control Volume Approach

Engineers solve problems in fl uid mechanics using the control volume approach. Equations for 
this approach are derived using the Reynolds transport theorem. Th ese topics are presented in 
this section.

The Closed System and the Control Volume

As introduced in Section 2.1, a system is whatever the engineer selects for study. Th e surround-
ings are everything that is external to the system, and the boundary is the interface between the 
system and the surroundings. Systems can be classifi ed into two categories: the closed system 
and the open system (also known as a control volume).

Th e closed system (also known as a control mass) is a fi xed collection of matter that the 
engineer selects for analysis. By defi nition, mass cannot cross the boundary of a closed system. 
Th e boundary of a closed system can move and deform.

EXAMPLE. Consider air inside a cylinder (see Fig. 5.6). If the goal is to calculate the pres-
sure and temperature of the air during compression, then engineers select a closed system 
comprised of the air inside the cylinder. Th e system boundaries would deform as the piston 
moves so that the closed system always contains the same matter. Th is is an example of a 
closed system because the mass within the system is always the same.

EXAMPLE 5.3

Determining Flow Rate by Integration

Problem Statement

Th e water velocity in the channel shown in the accompanying 
fi gure has a velocity distribution across the vertical section 
equal to u/umax = (y/d)1/2. What is the discharge in the channel 
if the water is 2 m deep (d = 2 m), the channel is 5 m wide, 
and the maximum velocity is 3 m/s?

umax

u = umax
1/2y

d

y

d

Defi ne the Situation

Water fl ows in a channel.

  
u( y) = u

max
y/d( )

w = 5 m

dy

dA

y
dy d

1/2

State the Goal

Q(m3/s) ➡ discharge (volume fl ow rate)

Generate Ideas and Make a Plan

Because velocity is varying over the cross-sectional area, apply 
Eq. (5.10):

 Q = ∫
A

V dA (a)

Because Eq. (a) has two unknowns (V and dA), fi nd equations 
for these unknowns. Th e velocity is given:

 V = u ( y) = umax ( y/d)1/2 (b)

From Table 5.3, the diff erential area is
 dA = wdy (c)

Notice that the diff erential area is sketched in the situation 
diagram. Substitute Eqs. (b) and (c) into Eq. (a):

 Q = ∫
d

0

umax (y/d )1/2 w dy (d)

Th e plan is to integrate Eq. (d) and then plug numbers in.

Take Action (Execute the Plan)

 Q = ∫
d

0

umax (y/d)1/2 w dy

 =
wumax

d1/2 ∫
d

0

y1/2 dy

 =
wumax

d1/2  
2
3

 y3/2 ⎸0

d

=
wumax

d1/2  
2
3

 d3/2

 =
(5 m)(3 m/s)
(2 m)1/2 ×

2
3

× (2 m)3/2 =  20 m3/s
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Because the closed system involves selection and analysis of a specifi c collection of matter, 
the closed system is a Lagrangian concept.

Th e control volume (CV or cv; also known as an open system) is a specifi ed volumetric 
region in space that the engineer selects for analysis. Th e matter inside a control volume is 
usually changing with time because mass is fl owing across the boundaries. Because the control 
volume involves selection and analysis of a region in space, the CV is an Eulerian concept.

EXAMPLE. Suppose water is fl owing through a tank (Fig. 5.7) and the goal is to calculate 
the depth of water h as a function of time. A key to solving this problem is to select a system, 
and the best choice of a system is a CV surrounding the tank. Note that the CV is always 
three-dimensional because it is a volumetric region. However, CVs are usually drawn in 
two dimensions. Th e boundary surfaces of a CV are called the control surface. Th is is 
abbreviated as CS or cs.

A control volume can be defi ned so that it is deforming or fi xed. When a fixed CV is 
defi ned, this means that the shape of the CV and its volume are constant with time. When a 
deforming CV is defi ned, the shape of the CV and its volume change with time, typically to 
mimic the volume of a region of fl uid.

EXAMPLE. To model a rocket made from a balloon suspended on a string, one can defi ne 
a deforming CV that surrounds the defl ating balloon and follow the shape of the balloon 
during the process of defl ation.

Summary. When engineers analyze a problem, they select the type of system that is most 
useful (see Fig. 5.8). Th ere are two approaches. Using the control volume approach, the engi-
neer selects a region in space and analyzes fl ow through this region. Using the closed system 
approach, the engineer selects a body of matter of fi xed identity and analyzes this matter.

Table 5.4 compares the two approaches.

Intensive and Extensive Properties

Properties, which are measurable characteristics of a system, can be classifi ed into two catego-
ries. An extensive property is any property that depends on the amount of matter present. An 
intensive property is any property that is independent of the amount of matter present.

Closed system
(air inside the cylinder)

System boundary

Piston moving downward

FIGURE 5.6

Example of a closed system.

Control volume (CV): Volumetric
region surrounding the tank

Control surface (CS): Surface of
the control volume 

h

FIGURE 5.7

Water entering a tank through the top 

and exiting through the bottom.
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Examples (extensive). Mass, momentum, energy, and weight are extensive properties 
because each of these properties depends on the amount of matter present. Examples 
(intensive). Pressure, temperature, and density are intensive properties because each of these 
properties are independent on the amount of matter present.

Many intensive properties are obtained by taking the ratio of two extensive properties. 
For example, density is the ratio of mass to volume. Similarly, specifi c energy e is the ratio of 
energy to mass.

To develop a general equation to relate intensive and extensive properties, defi ne a generic 
extensive property, B. Also, defi ne a corresponding intensive property b.

b = ( B
mass)

point in space

Th e amount of extensive property B contained in a control volume at a given instant is

 Bcv = ∫
cv

bdm = ∫
cv

bρdV (5.12)

where dm and dV are the diff erential mass and diff erential volume, respectively, and the integral 
is carried out over the control volume.

can be

can be can be

System: Whatever the
engineer selects for study

Control volume:
Region in space

System of particles:
Collection of

many particles

Rigid body: 
Many particles with

fixed distance between

Isolated system:
No work or heat

transfer at boundaries

Particle: Small
quantity of matter

Deforming CV: Volume
changes with time

Fixed CV: Volume
constant with time

Control volume
approach
(Eulerian)

Closed system
approach

(Lagrangian)Closed system:
Collection of matter

of fixed identity

FIGURE 5.8

When engineers select a system, they choose 

either the control volume approach or the closed 

system approach. Then, they select the specifi c 

type of system from a choice of six possibilities.

TABLE 5.4 Comparison of the Control Volume and the Closed System Approaches

Feature Closed System Approach Control Volume Approach

Basic idea Analyze a body or a fi xed collection of matter. Analyze a spatial region.
Lagrangian vs. Eulerian Lagrangian approach. Eulerian approach.

Mass crossing the boundaries Mass cannot cross the boundaries. Mass is allowed to cross the boundaries.

Mass (quantity) Th e mass of the closed system must stay 
  constant with time; always the same 

number of kilograms.

Th e mass of the materials inside the CV can stay 
 constant or can change with time.

Mass (identity) Always contains the same matter. Can contain the same matter at all times, or the 
 identity of the matter can vary with time.

Application Solid mechanics, fl uid mechanics, 
  thermodynamics, and other thermal 

sciences.

Fluid mechanics, thermodynamics, and other 
 thermal sciences.
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Property Transport across the Control Surface

Because a fl owing fl uid transports mass, momentum, and energy across a control surface, the 
next step is to describe this transport. Consider fl ow through a duct (Fig. 5.9) and assume 
that the velocity is uniformly distributed across the control surface. Th en, the mass fl ow rate 
through each section is given by

m· 1 = ρ1 A1V1  m· 2 = ρ2 A2V2

Th e rate of outfl ow minus the rate of infl ow is

(outflow minus inflow) = (net mass outflow rate) = m· 2 − m· 1 = ρ2 A2V2 − ρ1 A1V1

Next, we’ll introduce velocity. Th e same control volume is shown in Fig. 5.10, with each control 
surface area represented by a vector A oriented outward from the control volume and with 
magnitude equal to the cross-sectional area. Th e velocity is represented by a vector V. Taking 
the dot product of the velocity and area vectors at both stations gives

V1 ∙ A1 = −V1 A1     V2 ∙ A2 = V2 A2

Th e negative value at station 1 occurs because the velocity and area vectors are in opposite 
directions. Similarly, the positive value at station 2 occurs because these vectors are in the same 
direction. Now, the net mass outfl ow rate can be written as

 Net mass outflow rate = ρ2V2 A2 − ρ1V1A1

  = ρ2V2 ∙ A2 + ρ1V1 ∙ A1 (5.13)

 = ∑cs
ρV ∙ A

Equation (5.13) states that if the dot product ρV ∙ A is summed for all fl ows into and out of the 
control volume, the result is the net mass fl ow rate out of the control volume, or the net mass 
effl  ux (effl  ux means outfl ow). If the summation is positive, then the net mass fl ow rate is out 
of the control volume. If it is negative, then the net mass fl ow rate is into the control volume. If 
the infl ow and outfl ow rates are equal, then

∑cs
ρV ∙ A = 0

To obtain the net rate of fl ow of an extensive property B across a section, write

 b         m·    =   B·

( B
mass) (mass

time ) = ( B
time)

{ { {

Control surface

V2A2

V1

A1

2

1
FIGURE 5.10

Control surfaces are represented by area 

vectors and velocities by velocity vectors.

2

1

Control volume
Control surface

V1

V2

FIGURE 5.9

Flow through a control volume in a duct.
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Next, include all inlet and outlet ports:

                       m·

 B·net = ∑cs
b ρV ∙ A (5.14)

Equation (5.14) is applicable for all fl ows in which the properties are uniformly distributed 
across the fl ow area. To account for property variation, replace the sum with an integral:

 B·net = ∫
cs

bρV ∙ dA (5.15)

Eq. (5.15) will be used in the derivation of the Reynolds transport theorem.

The Reynolds Transport Theorem

Th e Reynolds transport theorem is an equation that relates a derivative term for a closed system 
to the corresponding terms for a control volume. Th e reason for the theorem is that the conser-
vation laws of science were originally formulated for closed systems. Over time, researchers 
fi gured out how to modify the equations so that they apply to a control volume. Th e result is the 
Reynolds transport theorem.

To derive the Reynolds transport theorem, consider a fl owing fl uid; see Fig. 5.11. Th e 
darker shaded region is a closed system. As shown, the boundaries of the closed system change 
with time so that the system always contains the same matter. Also, defi ne a CV as identifi ed by 
the dashed line. At time t, the closed system consists of the material inside the control volume 
and the material going in, so the property B of the system at this time is

 Bclosed system(t) = Bcv(t) + ΔBin (5.16)

At time t + Δt, the closed system has moved and now consists of the material in the control 
volume and the material passing out, so B of the system is

 Bclosed system (t + Δt) = Bcv (t + Δt) + ΔBout (5.17)

Th e rate of change of the property B is

 
dBclosed system

dt
= lim
Δt→0

 [
Bclosed system (t + Δt) − Bclosed system (t)

Δt
 ]  (5.18)

Substituting in Eqs. (5.16) and (5.17) results in

 
dBclosed system

dt
= lim
Δt→0

 [
Bcv (t + Δt) − Bcv (t) + ΔBout − ΔBin

Δt ]  (5.19)

{

Control surface

ΔBin

ΔBout

Bcv(t) Bcv(t + Δt)

FlowFlow

System at time t
(dark shaded region) 

System at time t + Δt
(dark shaded region)

Control volume
(fixed volume)

FIGURE 5.11

Progression of a closed system through a control 

volume.
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Rearranging terms yields

 
dBclosed system

dt
= lim
Δt→0

 [ Bcv (t + Δt) − Bcv (t)
Δt ] + lim

Δt→0

ΔBout

Δt
− lim
Δt→0

ΔBin

Δt
 (5.20)

Th e fi rst term on the right side of Eq. (5.20) is the rate of change of the property B inside the 
control volume, or

 lim
Δt→0

 [ Bcv (t + Δt) − Bcv (t)
Δt ] =

dBcv

dt
 (5.21)

Th e remaining terms are

lim
Δt→0

ΔBout

Δt
= B· out  and  lim

Δt→0

ΔBin

Δt
= B· in

Th ese two terms can be combined to give

 B· net = B· out − B· in (5.22)

or the net effl  ux, or net outfl ow rate, of the property B through the control surface. Equation 
(5.20) can now be written as

dBclosed system

dt
=

d
dt

Bcv + B· net

Substituting in Eq. (5.15) for B· net and Eq. (5.12) for Bcv results in the general form of the 
Reynolds transport theorem:

 
dBclosed system

dt
=

d
dt ∫cv

bρdV + ∫
cs

bρV ∙ dA 
(5.23)

Lagrangian     Eulerian

Eq. (5.23) may be expressed in words as

Rate of change
of property B

in closed system
=

Rate of change
of property B

in control volume
+

Net outflow
of property B

through control surface

Th e left  side of the equation is the Lagrangian form—that is, the rate of change of property B 
for the closed system. Th e right side is the Eulerian form—that is, the change of property B 
evaluated in the control volume and the fl ux measured at the control surface. Th is equation 
applies at the instant the system occupies the control volume and provides the connection 
between the Lagrangian and Eulerian descriptions of fl uid fl ow. Th e velocity V is always mea-
sured with respect to the control surface because it relates to the mass fl ux across the surface.

A simplifi ed form of the Reynolds transport theorem can be written if the mass crossing 
the control surface occurs through a number of inlet and outlet ports, and the velocity, density 
and intensive property b are uniformly distributed (constant) across each port. Th en

 
dBclosed system

dt
=

d
dt ∫cv

bρdV + ∑
cs

ρbV ∙ A (5.24)

where the summation is carried out for each port crossing the control surface.

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩⎧ ⎪ ⎨ ⎪ ⎩

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩
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An alternative form can be written in terms of the mass fl ow rates:

 
dBclosed system

dt
=

d
dt

 ∫
cv

ρb dV + ∑
cs

m· obo − ∑
cs

m· i bi (5.25)

where the subscripts i and o refer to the inlet and outlet ports, respectively, located on the 
control surface. Th is form of the equation does not require that the velocity and density be 
uniformly distributed across each inlet and outlet port, but the property b must be.

5.3 The Continuity Equation (Theory)

Th e continuity equation is the law of conservation of mass applied to a control volume. Because 
this equation is commonly used by engineers, this section presents the relevant topics.

Derivation

Th e law of conservation of mass for a closed system can be written as

 
d(mass of a closed system)

dt
=

dmclosed system

dt
= 0 (5.26)

To transform (Eq. 5.26) into an equation for a control volume, apply the Reynolds transport 
theorem, Eq. (5.23). In Eq. (5.23), the extensive property is B = mass. Th e corresponding 
intensive property is

b =
B

mass =
mass
mass = 1.0

Substituting for B and b in Eq. (5.23) gives

 
dmclosed system

dt
 =

d
dt ∫cv

ρdV +∫
cs

ρV ∙ dA (5.27)

Combining Eq. (5.26) to Eq. (5.27) gives the general form of the continuity equation.

 
d
dt ∫cv

ρdV + ∫
cs

ρV ∙ dA = 0 (5.28)

If mass crosses the boundaries at a number of inlet and exit ports, then Eq. (5.28) reduces 
to give the simplifi ed form of the continuity equation:

 
d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (5.29)

Physical Interpretation of the Continuity Equation

Fig. 5.12 shows the meaning of the terms in the continuity equation. Th e top row gives the 
general form (Eq. 5.28), and the second row gives the simplifi ed form (Eq. 5.29). Th e arrows 
show which terms have the same conceptual meaning.

Th e accumulation term describes the changes in the quantity of mass inside the control 
volume (CV) with respect to time. Mass inside a CV can increase with time (accumulation is 
positive), decrease with time (accumulation is negative), or stay the same (accumulation is 
zero).
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Th e inflow and outflow terms describe the rates at which mass is fl owing across the surfaces 
of the control volume. Sometimes, infl ow and outfl ow are combined to give efflux, which 
is defi ned as the net positive rate at which is mass is fl owing out of a CV. Th at is, (effl  ux) = 
(outfl ow) – (infl ow). When effl  ux is positive, there is a net fl ow of mass out of the CV, and 
accumulation is negative. When effl  ux is negative, accumulation is positive.

As shown in Fig. 5.12, the physics of the continuity equation can be summarized as:

 accumulation = inflow − outflow (5.30)

where all terms in Eq. (5.30) are rates (see Fig. 5.12)
Eq. (5.30) is called a balance equation because the ideas relate to our everyday experiences 

with how things balance. For example, the accumulation of cash in a bank account equals the 
infl ows (deposits) minus the outfl ows (withdrawals). Because the continuity equation is a bal-
ance equation, it is sometimes called the mass balance equation.

Th e continuity equation is applied at an instant in time and the units are kg/s. Sometimes, 
the continuity equation is integrated with respect to time and the units are kg. To recognize a 
problem that will involve integration, look for a change in state during a time interval.

5.4 The Continuity Equation (Application)

Th is section describes how to apply the continuity equation and presents example problems.

Working Equations

Th ree useful forms of the continuity equations are summarized in Table 5.5.
Th e process for applying the continuity equation is as follows:

Step 1:  Selection. Select the continuity equation when fl ow rates, velocity, or mass accumula-
tion are involved in the problem.

Step 2:  Sketching. Select a CV by locating CSs that cut through where (a) you know informa-
tion or (b) you want information. Sketch the CV and label it appropriately. Note that 
it is common to label the inlet port as section 1 and the outlet port as section 2.

Step 3:  Analysis. Write the continuity equation and perform a term-by-term analysis to 
simplify the general equation to the reduced equation.

Step 4:  Validation. Check units. Check the basic physics; that is, check that (infl ow) minus 
(outfl ow) = (accumulation).

Example Problems

Th e fi rst example problem (Example 5.4) shows how continuity is applied to a problem that 
involves accumulation of mass.

= V • dA
cs

dm
cv

dt
= m

i
cs

m
o

cs

Rate of accumulation of
mass inside the CV (kg/s) = Rate at which mass 

enters the CV (kg/s)

=

Rate at which mass 
leaves the CV (kg/s)

General equation

Simplified equation

Main ideas
(mass balance)

Names of terms(Accumulation) (Inflow) (Outflow)

d

dt
d

cv

Vρ ρ FIGURE 5.12

This fi gure shows the conceptual meaning 

of the continuity equation.
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TABLE 5.5 Summary of the Continuity Equation

Description Equations Terms

General form. Valid for 
 any problem.

d
dt ∫cv

ρd V + ∫
cs

ρV ∙ dA = 0 (Eq. 5.28)   t = time (s)
  ρ = density (kg/m3)
 dV = diff erential volume (m3)
   V =  fl uid velocity vector (m/s) 

(reference frame is the control surface)
 dA =  diff erential area vector (m2) 

(positive direction of dA is outward from CS)
mcv = mass inside the control volume (kg) 
  m· = ρAV = mass/time crossing CS (kg/s)
   A = area of fl ow (m2)
   V = mean velocity (m/s)

Simplifi ed form. Useful when 
  there are well defi ned 

inlet and exit ports.

d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (Eq. 5.29)

Pipe fl ow form. Valid for 
 fl ow in a pipe.

For gases: Density can 
  vary but the density must 

be uniform across 
sections 1 and 2.

For liquids: Th e equation 
  reduces to A2V2 = A1V1 

for a constant density 
assumption.

ρ2 A2V2 = ρ1 A1V1 (Eq. 5.33)

EXAMPLE 5.4

Applying the Continuity Equation to a Tank with an 
Infl ow and an Outfl ow

Problem Statement

A stream of water fl ows into an open tank. Th e speed of 
the incoming water is V = 7 m/s, and the section area is 
A = 0.0025 m2. Water also fl ows out of the tank at a rate of 
Q = 0.003 m3/s. Water density is 1000 kg/m3. What is the rate 
at which water is being stored (or removed from) the tank?

Q = 0.003 m3/s

V = 7 m/s, A = 0.0025 m2

Defi ne the Situation

Water fl ows into a tank at the top and out at the bottom.

Q2 = 0.003 m3/s

V1 = 7 m/s, A1 = 0.0025 m2

CV
(fixed)

Water
= 1000 kg/m3

1

2

ρ

State the Goal

(dmcv/dt) (kg/s) ➡ rate of accumulation of water in tank

Generate Ideas and Make a Plan

Selection: Select the simplifi ed form of the continuity 
equation (Eq. 5.29).
Sketching: Modify the situation diagram to show the CV and 
sections 1 and 2. Notice that the CV in the upper left  corner is 
sketched so that it is at a right angle to the inlet fl ow.
Analysis: Write the continuity equation (simplifi ed form):

 
d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (a)

Analyze the outfl ow and infl ow terms:

 ∑
cs

m· o = ρQ2  (b)

 ∑
cs

m· i = ρA1V1 (c)

Combine Eqs. (a), (b), and (c):

 
d
dt

mcv = ρA1V1 − ρQ2 (d)

Validate: Each term has units of kilograms per second. 
Eq. (d) makes physical sense; (rate of accumulation of mass) = 
(rate of mass fl ow in) – (rate of mass fl ow out).
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Example 5.5 shows how to solve a problem that involves accumulation by using a 
fi xed CV.

Because variables on the right side of Eq. (d) are known, the 
problem can be solved. Th e plan is as follows:

1.  Calculate the fl ow rates on the right side of 
Eq. (d).

2. Apply Eq. (d) to calculate the rate of accumulation.

Take Action (Execute the Plan)

1. Mass fl ow rates (inlet and outlet):
 ρ A1V1 = (1000 kg/m3)(0.0025 m2)(7 m/s) = 17.5 kg/s

 ρQ2 = (1000 kg/m3)(0.003 m3/s) = 3 kg/s

2. Accumulation:

 
dmcv

dt
= 17.5 kg/s − 3 kg/s

 =  14.5 kg/s

Review the Solution and the Process

1.  Discussion. Because the accumulation is positive, the 
quantity of mass within the control volume is increasing 
with time.

2.  Discussion. Th e rising level of water in the tank causes 
air to fl ow out of the CV. Because air has a density that is 
about 1/1000 of the density of water, this eff ect is negligible.

EXAMPLE 5.5

Applying the Continuity Equation to Calculate the Rate 
of Water Rise in a Reservoir

Problem Statement

A river discharges into a reservoir at a rate of 400,000 ft 3/s 
(cfs), and the outfl ow rate from the reservoir through the fl ow 
passages in a dam is 250,000 cfs. If the reservoir surface area is 
40 mi2, what is the rate of rise of water in the reservoir?

River (400,000 cfs)
Water surface (A = 40 mi2)

Reservoir

Outlet
(250,000 cfs)

Defi ne the Situation

A reservoir is fi lling with water.

CV
(fixed)

Q1 = 400,000 cfs

  
Q2 = 250,000 cfs

  

V3

A3 = 40 mi2

1

2

3

State the Goal

V3(ft /h) ➡ speed at which the water surface is rising

Generate Ideas and Make a Plan

Selection: Select the continuity equation because the problem 
involves fl ow rates and accumulation of mass in a reservoir.

Sketching: Select a fi xed control volume and sketch this CV 
on the situation diagram. Th e control surface at section 3 is 
just below the water surface and is stationary. Mass passes 
through control surface 3 as the water level in the reservoir 
rises (or falls). Th e mass within the control volume is constant 
because the volume of the CV is constant.

Analysis: Write the continuity equation (simplifi ed form):

 
d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (a)

Next, analyze each term:

• Mass in the control volume is constant. Th us,

 dmcv/dt = 0. (b)

• Th ere are two outfl ows, at sections 2 and 3. Th us,

 ∑
cs

m· o = ρQ2 + ρA3V3 (c)

• Th ere is one infl ow, at section 1. Th us,

 ∑
cs

m· i = ρQ1. (d)

Substitute Eqs. (b), (c), and (d) into Eq. (a). Th en, divide each 
term by density:

 Q2 + A3V3 = Q1 (e)

Validation: Eq. (e) is dimensionally homogeneous because 
each term has dimensions of volume per time. Eq. (e) makes 
physical sense: (outfl ow through sections 2 and 3) equals 
(infl ow from section 1).
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Example 5.6 shows (a) how to use a deforming CV and (b) how to integrate the continuity 
equation.

Because Eq. (e) contains the problem goal and all other variables 
are known, the problem is cracked. Th e plan is as follows:

1. Use Eq. (e) to derive an equation for V3.
2. Solve for V3.

Take Action (Execute the Plan)

1. Continuity equation:

V3 =
Q1 − Q2

A3

2. Calculations:

 Vrise =
400, 000 cfs − 250, 000 cfs

40 mi2 × (5280 ft/mi)2

 = 1.34 × 10−4 ft/s =  0.482 ft/hr

EXAMPLE 5.6

Applying the Continuity Equation to Predict the Time 
for a Tank to Drain

Problem Statement

A 10 cm jet of water issues from a 1.0 m diameter tank. 
Assume the Bernoulli equation applies, so the velocity in the 
jet is √2gh m/s, where h is the elevation of the water surface 
above the outlet jet. How long will it take for the water surface 
in the tank to drop from ho = 2 m to hf = 0.50 m?

Water

Air

h

10 cm

1 m

Defi ne the Situation

Water is draining from a tank.

D = 1 m

d = 0.1 m

h

CV
(deforming)

  

Initial State: h = ho = 2 m
Final State: h = h

f
= 0.5 m

  
V1 = 2gh

1

State the Goal

tf(s) ➡ time for the tank to drain from ho to hf

Generate Ideas and Make a Plan

Selection: Select the continuity equation by recognizing that 
the problem involves outfl ow and accumulation of mass in a 
tank.

Also note that the continuity equation will need to be 
integrated because this problem involves time and a defi ned 
initial state and fi nal state.

Sketching: Select a deforming CV that is defi ned so that the 
top surface area is coincident with the surface level of the 
water. Sketch this CV in the situation diagram.

Analysis: Write the continuity equation:

 
d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0 (a)

Analyze each term in a step-by-step fashion:

• Mass in the control volume is given by*

 mcv = (density)(volume) = ρ(πD2

4 )h (b)

•  Diff erentiate Eq. (b) with respect to time. Note that the 
only variable that changes with time is water depth h, so 
the other variables can come out of the derivative.

 
dmcv

dt
=

d
dt (ρ (πD2

4 )h) = ρ (πD2

4 ) dh
dt

 (c)

• Th e infl ow is zero and the outfl ow is

 ∑
cs

m· o = ρA1V1 = ρ (πd2

4 )√2gh (d)

*Th e mass in the CV also includes the mass of the water below the outlet. However, when dmcv/dt is evaluated, this 
term will go to zero.
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Example 5.7 shows another instance in which the continuity equation is integrated with 
respect to time.

Substitute Eqs. (b), (c), and (d) into Eq. (a):

 ρ(πD 2

4 ) 
dh
dt

= −ρ (πd2

4 )√2gh (e)

Validation: In Eq. (e), each term has units of kg/s. Also, this 
equation makes physical sense; (accumulation rate) = (the 
negative of the outfl ow rate).

Integration: To begin, simplify Eq. (e)

 (D
d )

2dh
dt

= −√2gh (f)

Next, apply the method of separation of variables. Put the 
variables involving h on the left  side and the other variables 
on the right side. Integrate using defi nite integrals:

 −∫
hf

ho

dh
√2gh

=∫
tf

0
( d

D)
2

dt (g)

Perform the integration to give

 
2(√ho − √hf )

√2g
= ( d

D)
2

tf  (h)

Because Eq. (h) contains the problem goal (tf) and all other 
variables in this equation are known, the plan is to use Eq. (h) 
to calculate (tf).

Take Action (Execute the Plan)

 tf = (D
d )

2

(
2(√ho − √hf )

√2g )

 = ( 1 m
0.1 m)

2

(2(√(2 m) − √(0.5 m) )
√2(9.81 m/s2)

)
 tf = 31.9 s

EXAMPLE 5.7

Depressurization of Gas in Tank

Problem Defi nition

Methane escapes through a small (10–7 m2) hole in a 10 m3 
tank. Th e methane escapes so slowly that the temperature in 
the tank remains constant at 23°C. Th e mass fl ow rate of meth-
ane through the hole is given by m· = 0.66 pA/√RT , where p 
is the pressure in the tank, A is the area of the hole, R is the gas 
constant, and T is the temperature in the tank. Calculate the 
time required for the absolute pressure in the tank to decrease 
from 500 to 400 kPa.

V m·

Defi ne the Situation

Methane leaks through a 10–7 m2 hole in 10 m3 tank.
Assumptions:

1. Gas temperatures constant at 23°C during leakage.
2. Ideal gas law is applicable.

Properties: Table A.2: R = 518 J/kgK.

State the Goal

Find: Time (in seconds) for pressure to decrease from 500 kPa 
to 400 kPa.

Generate Ideas and Make a Plan

Select a CV that encloses the whole tank:

1. Apply the continuity equation, Eq. (5.29).
2. Analyze term by term.
3. Solve the equation for elapsed time.
4. Calculate time.

Take Action (Execute the Plan)

1. Continuity equation:

d
dt

mcv + ∑
cs

m· o − ∑
cs

m· i = 0

2. Term-by-term analysis:
•  Rate of accumulation term. Th e mass in the control 

volume is the sum of the mass of the tank shell, Mshell, 
and the mass of methane in the tank,

mcv = mshell + ρV
where V  is the internal volume of the tank, which is 
constant. Th e mass of the tank shell is constant, so

dmcv

dt
= V 

dρ
dt
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Continuity Equation for Flow in a Conduit

A conduit is a pipe or duct or channel that is completely fi lled with a fl owing fl uid. Because 
fl ow in conduits is common, it is useful to derive an equation that applies to this case. To begin 
the derivation, recognize that in a conduit (see Fig. 5.13), there is no place for mass to accumu-
late,* so Eq. (5.28) simplifi es to

 ∫
cs

ρV ∙ dA = 0 (5.31)

Mass is crossing the control surface at sections 1 and 2, so Eq. (5.31) simplifi es to

 ∫
section 2

ρVdA − ∫
section 1

ρVdA = 0 (5.32)

If density is assumed to be constant across each section, Eq. (5.32) simplifi es to

 ρ1A1V1 = ρ2A2V2 (5.33)

Eq. (5.33), which is called the pipe fl ow form of the continuity equation, is the fi nal result. Th e 
meaning of this equation is (rate of infl ow of mass at section 1) = (rate of outfl ow of mass at 
section 2).

• Th ere is no mass infl ow:

∑
cs

m· i = 0

• Mass out fl ow rate is

∑
cs

m· o = 0.66 
pA
√RT

Substituting terms into the continuity equation gives

V 
dρ
dt

= −0.66 
pA
√RT

3. Equation for elapsed time:
• Use ideal gas law for ρ:

V 
d
dt ( p

RT) = −0.66 
pA
√RT

• Because R and T are constant,

dp
dt

= −0.66 
pA√RT

V

• Next, separate variables:

dp
p = −0.66 

A√RTdt
V

•  Integrating the equation and substituting limits for 
initial and fi nal pressure gives

t =
1.52 V

A√RT
 ln 

p0

pf

4. Elapsed time:

t =
1.52 (10 m3)

(10−7 m2)(518 
J

kg ∙ K
×300 K)

1/2 ln 
500
400

= 8.6 ×104 s

Review the Solution and the Process

1.  Discussion. Th e time corresponds to approximately one 
day.

2.  Knowledge. Because the ideal gas law is used, the 
pressure and temperature have to be in absolute values.

Control
surface

V2

2

1

V1

FIGURE 5.13

Flow through a conduit.

*Th e mass accumulation term in a conduit can be nonzero for some unsteady fl ow problems, but this is rare. Th is topic 
is left  to advanced textbooks.
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Th ere are other useful ways of writing the continuity equation. For example, Eq. (5.33) can 
be written in several equivalent forms:

 ρ1Q1 = ρ2Q2 (5.34)

 m· 1 = m· 2 (5.35)

If density is assumed to be constant, then Eq. (5.34) reduces to

 Q2 = Q1 (5.36)

Eq. (5.34) is valid for both steady and unsteady incompressible fl ow in a pipe. If there are more 
than two ports and the accumulation term is zero, then Eq. (5.29) can be reduced to

 ∑cs
m· i = ∑cs

m· o (5.37)

If the fl ow is assumed to have constant density, Eq. (5.37) can be written in terms of discharge:

 ∑cs
Qi = ∑cs

Qo (5.38)

Summary. Depending on the assumptions of the problem, there are many ways to write 
the continuity equation. However, one can analyze any problem using the three equations 
summarized in Table 5.5. Th us, we recommend starting with one of these three equations 
because this is simpler than remembering many diff erent equations.

Example 5.8 shows how to apply continuity to fl ow in a pipe.

EXAMPLE 5.8

Applying the Continuity Equation to Flow in a Variable 
Area Pipe

Problem Statement

A 120 cm pipe is in series with a 60 cm pipe. Th e speed of the 
water in the 120 cm pipe is 2 m/s. What is the water speed in 
the 60 cm pipe?

V = 2 m/s
120 cm 60 cm

Defi ne the Situation

Water fl ows through a contraction in a pipe.

Water
V

1
= 2 m/s

D
1

= 1.2 m
D

2
= 0.6 m1
2

State the Goal

V2(m/s) ➡ mean velocity at section 2

Generate Ideas and Make a Plan

Selection: Select the continuity equation because the problem 
variables are velocity and pipe diameter.

Sketching: Select a fi xed CV. Sketch this CV on the situation 
diagram. Label the inlet as section 1 and outlet as section 2.

Analysis: Select the pipe fl ow form of continuity (i.e., Eq. 5.33) 
because the problem involves fl ow in a pipe:

 ρA1V1 = ρA2V2 (a)

Assume density is constant (this is standard practice for steady 
fl ow of a liquid). Th e continuity equation reduces to

 A1V1 = A2V2 (b)

Validate: To validate Eq. (b), notice that the primary dimensions 
of each term are L3/T. Also, this equation makes physical sense 
because it can be interpreted as (infl ow) = (outfl ow).

Plan: Eq. (b) contains the goal (V2), and all other variables 
are known. Th us, the plan is to substitute numbers into this 
equation.

Take Action (Execute the Plan)

Continuity equation:

 V2 = V1
A1

A2
= V1 (D1

D2
)

2

 V2 = (2 m/s)(1.2 m
0.6 m)

2

=  8 m/s
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Example 5.9 shows how the continuity equation can be applied together with the Bernoulli 
equation.

EXAMPLE 5.9

Applying the Bernoulli and Continuity Equations to Flow 
through a Venturi

Problem Statement

Water with a density of 1000 kg/m3 fl ows through a vertical 
venturimeter as shown. A pressure gage is connected across 
two taps in the pipe (station 1) and the throat (station 2). Th e 
area ratio Athroat/Apipe is 0.5. Th e velocity in the pipe is 10 m/s. 
Find the pressure diff erence recorded by the pressure gage. 
Assume the fl ow has a uniform velocity distribution and that 
viscous eff ects are not important.

1

z = 0

2

V2

V1

pg1

pg2
ΔP

Defi ne the Situation

Water fl ows in venturimeter. Area ratio = 0.5. V1 = 10 m/s.

Assumptions:
1. Velocity distribution is uniform.
2. Viscous eff ects are unimportant.

Properties: ρ = 1000 kg/m3.

State the Goal

Find: Pressure diff erence measured by gage.

Generate Ideas and Make a Plan

1.  Because viscous eff ects are unimportant, apply the 
Bernoulli equation between stations 1 and 2.

2.  Combine the continuity equation (5.33) with the results 
of step 1.

3.  Find the pressure on the gage by applying the hydrostatic 
equation.

Take Action (Execute the Plan)

1. Th e Bernoulli equation:

p1 + γz1 + ρ
V 2

1

2
= p2 + γz2 + ρ

V 2
2

2

Rewrite the equation in terms of piezometric pressure:

 pz1
− pz2

=
ρ
2
(V 2

2 − V 2
1)

 =
ρV 2

1

2 (V 2
2

V 2
1

− 1)
2. Continuity equation V2/V1 = A1/A2:

 pz1
− pz2

=
ρV 2

1

2 (A2
1

A2
2

− 1)
 =

1000 kg/m3

2
× (10 m/s)2 × (22 − 1)

 = 150 kPa

3.  Apply the hydrostatic equation between the gage 
attachment point where the pressure is pg1

 and station 1, 
where the gage line is tapped into the pipe:

pz1
= pg1

Also, pz2
= pg2

, so

Δpgage = pg1
− pg2

= pz1
− pz2

=  150 kPa

5.5 Predicting Cavitation

Designers can encounter a phenomenon called cavitation, in which a liquid starts to boil due 
to low pressure. Th is situation is benefi cial for some applications, but it is usually a problem 
that should be avoided by thoughtful design. Th is section describes cavitation and discusses 
how to design systems to minimize the possibility of harmful cavitation.

Description of Cavitation

Cavitation takes place when fl uid pressure at a given point in a system drops to the vapor 
pressure and boiling occurs.
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EXAMPLE. Consider water fl owing at 15°C in a piping system. If the pressure of the water 
drops to the vapor pressure, then the water will boil, and engineers will say that the system 
is cavitating. Because the vapor pressure of water at 15°C (which can be looked up in 
Appendix A.5) is pv = 1.7 kPa abs, the condition required for cavitation is known. To avoid 
cavitation, the designer can confi gure the system so that pressures at all locations are above 
1.7 kPa absolute.

Cavitation can damage equipment and degrade performance. Boiling causes vapor bub-
bles to form, grow, and then collapse, producing shock waves, noise, and dynamic eff ects that 
lead to decreased equipment performance and, frequently, equipment failure. Cavitation dam-
age to a propeller (see Fig. 5.14) occurs because the spinning propeller creates low pressures 
near the tips of the blades where the velocity is high. In 1983, cavitation caused major damage 
to spillway tunnels at the Glen Canyon Dam. Th us, engineers found a solution and imple-
mented this solution for several dams in the U.S.; see Fig. 5.15.

Cavitation degrades materials because of the high pressures associated with the collapse 
of vapor bubbles. Experimental studies reveal that very high intermittent pressure, as high as 
800 MPa (115,000 psi), develops in the vicinity of the bubbles when they collapse (1). Th ere-
fore, if bubbles collapse close to boundaries such as pipe walls, pump impellers, valve casings, 
and dam slipway fl oors, they can cause considerable damage. Usually this damage occurs in 
the form of fatigue failure brought about by the action of millions of bubbles impacting (in 
eff ect, imploding) against the material surface over a long period of time, thus producing a 
material pitting in the zone of cavitation.

In some applications, cavitation is benefi cial. Cavitation is responsible for the eff ective-
ness of ultrasonic cleaning. Supercavitating torpedoes have been developed in which a large 
bubble envelops the torpedo, signifi cantly reducing the contact area with the water and leading 
to signifi cantly faster speeds. Cavitation plays a medical role in shock wave lithotripsy for the 
destruction of kidney stones.

Th e world’s largest and most technically advanced water tunnel for studying cavitation is 
located in Memphis, Tennessee—the William P. Morgan Large Cavitation Tunnel. Th is facil-
ity is used to test large-scale models of submarine systems and full-scale torpedoes as well as 
applications in the maritime shipping industry. More detailed discussions of cavitation can be 
found in Brennen (2) and Young (3).

FIGURE 5.14

Cavitation damage to a propeller. (Photo by 

Erik Axdahl.)
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Identifying Cavitation Sites

To predict cavitation, engineers look for locations with low pressures. For example, when water 
fl ows through a pipe restriction (Fig. 5.16), the velocity increases according to the continuity 
equation, and the pressure decreases in turn, as dictated by the Bernoulli equation. For low 
fl ow rates, there is a relatively small drop in pressure at the restriction, so the water remains 
well above the vapor pressure and boiling does not occur. However, as the fl ow rate increases, 
the pressure at the restriction becomes progressively lower until a fl ow rate is reached at which 
the pressure is equal to the vapor pressure, as shown in Fig. 5.16. At this point, the liquid boils 
to form bubbles and cavitation ensues. Th e onset of cavitation can also be aff ected by the pres-
ence of contaminant gases, turbulence, and viscous eff ects.

Th e formation of vapor bubbles at the restriction in Fig. 5.16 is shown in Fig. 5.17a. Th e 
vapor bubbles form and then collapse as they move into a region of higher pressure and are 
swept downstream with the fl ow. When the fl ow velocity is increased further, the minimum 

FIGURE 5.15

This image shows the spillway for the 

Flaming Gorge Dam on the Green River 

in Utah. Professionals are entering 

the spillway to address problems 

associated with cavitation. (U.S. Bureau 

of Reclamation)

Low flow
rate

Vapor pressure

Cavitation

High flow
rate

p

pv

V

s

FIGURE 5.16

Flow through pipe restriction: variation of 

pressure for three different fl ow rates.
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pressure is still the local vapor pressure, but the zone of bubble formation is extended as shown 
in Fig. 5.17b. In this case, the entire vapor pocket may intermittently grow and collapse, pro-
ducing serious vibration problems.

Summary. Cavitation, which is caused by the boiling of liquids at low pressures, is usu-
ally problematic in an engineered system. Cavitation is most likely to occur at locations with 
low pressures, such as the following: 

• High elevation points
• Locations with high velocities (e.g., constrictions in pipes, tips of propeller blades)
• Th e suction (inlet) side of pumps

(a)

Vapor bubbles

(b)      

Vapor pocket

FIGURE 5.17

Formation of vapor bubbles in the process 

of cavitation: (a) cavitation, (b) cavitation—higher 

fl ow rate.

Characterizing Flow Rate (m
.
 and Q)

• Volume fl ow rate, Q (m3/s), is defi ned by

volume of fl uid passing through 
a cross-sectional area

interval of time
Q = ( )Instant 

in time
= lim
Δt→0

ΔV
Δt

• Volume fl ow rate is also called discharge.
• Q can be calculated with four equations:

Q = VA =
m·

ρ = ∫
A

V dA = ∫
A

V ∙ dA

• Mass fl ow rate, m·  (kg/s), is defi ned as

mass of fl uid passing through 
a cross-sectional area

interval of time
m· = ( ) Instant 

in time
= lim
Δt→0

Δm
Δt

• m·  can be calculated with four equations:

m· = ρAV = ρQ = ∫
A

ρV dA = ∫
A

ρV ∙ dA

• Mean velocity, V  or V, is the value of velocity averaged 
over the section area at an instant in time. Th is concept 
is diff erent than time-averaged velocity, which involves 
velocity averaged over time at a point in space.

• Typical values of mean velocity:
• V/Vmax = 0.5  for laminar fl ow in a round pipe
• V/Vmax = 2/3 = 0.667 for laminar fl ow in a rectangular 

conduit
• V/Vmax ≈ 0.79 to 0.86 for turbulent fl ow in a round 

pipe

• Problems solvable with the fl ow rate equations can be 
organized into three categories:
• Algebraic equations. Problems in this category are 

solved by straightforward application of the equations 
(see Example 5.1).

• Dot product. When the area is not aligned with the 
velocity vector, apply the dot product (V ∙ A; see 
Example 5.2).

• Integration. When velocity is given as a function of 
position, integrate velocity over area (see Example 5.3).

5.6 Summarizing Key Knowledge
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The Control Volume Approach and 

Reynolds Transport Theorem

• A system is what the engineer selects to analyze. Systems 
can be classifi ed into two categories: the closed system 
and the control volume.
• A closed system is a given quantity of matter of fi xed 

identity. Fixed identity means the closed system is 
always comprised of the same matter. Th us, mass 
cannot cross the boundary of a closed system.

• A control volume (cv or CV) is a geometric region 
defi ned in space and enclosed by a control surface 
(cs or CS).

• Th e Reynolds transport theorem is a mathematical 
tool for converting a derivative written for a closed 
system to terms that apply to a control volume.

The Continuity Equation

• Th e law of conservation of mass for a control volume is 
called the continuity equation.

• Th e physics of the continuity equation are

( rate of 
accumulation of mass) = ( rate of 

inflow of mass)
− ( rate of 

outflow of mass)
• Th e continuity equation can be applied at an instant in 

time and the units are kg/s. Also, the continuity equation 

can be integrated and applied over a fi nite time interval 
(e.g., 5 minutes), in which case the units are kg.

• Three useful forms of the continuity equation (see 
Table 5.5) are as follows:
• Th e general equation (always applies)
• Th e simplifi ed form (useful when there are well-defi ned 

inlet and outlet ports)
• Th e pipe fl ow form (applies to fl ow in a conduit)

Cavitation

• Cavitation occurs in a fl owing liquid when the pressure 
drops to the local vapor pressure of the liquid.

• Vapor pressure is discussed in Chapter 2. Data for water 
are presented in Table A.5.

• Cavitation is usually undesirable because it can reduce 
performance Cavitation can also cause erosion or pit-
ting of solid materials, noise, vibrations, and structural 
failures.

• Cavitation is most likely to occur in regions of high 
velocity, in inlet regions of centrifugal pumps, and at 
locations of high elevations.

• To reduce the probability of cavitation, designers can 
specify that components that are susceptible to cavita-
tion (e.g., valves and centrifugal pumps) be situated at 
low elevations.

1. Knapp, R. T., J. W. Daily, and F. G. Hammitt. Cavitation. New 
York: McGraw-Hill, 1970.
2. Brennen, C. E. Cavitation and Bubble Dynamics. New York: 
Oxford University Press, 1995.

3. Young, F. R. Cavitation. New York: McGraw-Hill, 1989.
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Characterizing Flow Rates (§5.1)

5.1 Th e average fl ow rate (release) through Grand Coulee Dam 
is 110,000 ft 3/s. Th e width of the river downstream of the dam 
is 100 yards. Making a reasonable estimate of the river velocity, 
estimate the river depth.
5.2 Taking a jar of known volume, fi ll with water from your 
household tap and measure the time to fi ll. Calculate the 
discharge from the tap. Estimate the cross-sectional area of the 
faucet outlet, and calculate the water velocity issuing from the tap.
5.3 Another name for the volume fl ow rate equation could be

a. the discharge equation

b. the mass fl ow rate equation
c. either a or b

5.4 A liquid fl ows through a pipe with a constant velocity. If a 
pipe twice the size is used with the same velocity, will the fl ow 
rate be (a) halved, (b) doubled, or (c) quadrupled? Explain.
5.5 For fl ow of a gas in a pipe, which form of the continuity 
equation is more general?

a. V1A1 = V2A2

b. ρ1V1A1 = ρ2V2A2

c. both are equally applicable

PROBLEMS
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5.6 Th e discharge of water in a 27-cm-diameter pipe is 
0.057 m3/s. What is the mean velocity?
5.7 A pipe with a 21 in. diameter carries water having a velocity 
of 10 ft /s. What is the discharge in cubic feet per second and in 
gallons per minute (1 cfs equals 449 gpm)?
5.8 A pipe with a 2 m diameter carries water having a velocity of 
4 m/s. What is the discharge in cubic meters per second and in 
cubic feet per second?
5.9 A pipe whose diameter is 10 cm transports air with a tem-
perature of 20°C and pressure of 253 kPa absolute at 50 m/s. 
Determine the mass fl ow rate.
5.10 Natural gas (methane) fl ows at 16 m/s through a pipe with a 
1.5 m diameter. Th e temperature of the methane is 15°C, and the 
pressure is 200 kPa gage. Determine the mass fl ow rate.
5.11 A heating and air-conditioning engineer is designing a 
system to move 1000 m3 of air per hour at 100 kPa abs, and 30°C. 
Th e duct is rectangular with cross-sectional dimensions of 1 m 
by 20 cm. What will be the air velocity in the duct?
5.12 Th e hypothetical velocity distribution in a circular duct is

V
V0

= 1 −
r
R

where r is the radial location in the duct, R is the duct radius, and 
V0 is the velocity on the axis. Find the ratio of the mean velocity 
to the velocity on the axis.

r

V0

R

Problem 5.12

5.13 Water fl ows in a two-dimensional channel of width W and 
depth D as shown in the diagram. Th e hypothetical velocity 
profi le for the water is

V(x, y) = Vs (1 −
4x2

W 2 )(1 −
y2

D2 )
where Vs is the velocity at the water surface midway between the 
channel walls. Th e coordinate system is as shown; x is measured 
from the center plane of the channel and y downward from the 
water surface. Find the discharge in the channel in terms of Vs, 
D, and W.

D

W

Vs

y
x

Problem 5.13

5.14 Water fl ows in a pipe that has a 4 ft  diameter and the 
following hypothetical velocity distribution: Th e velocity is 
maximum at the centerline and decreases linearly with r to a 

minimum at the pipe wall. If Vmax = 15 ft /s and Vmin = 9 ft /s, 
what is the discharge in cubic feet per second and in gallons per 
minute?
5.15 In Problem 5.14, if Vmax = 8 m/s, Vmin = 6 m/s, and 
D = 2 m, what is the discharge in cubic meters per second and 
the mean velocity?
5.16 Air enters this square duct at section 1 with the velocity 
distribution as shown. Note that the velocity varies in the y 
direction only (for a given value of y, the velocity is the same for 
all values of z).

a. What is the volume rate of fl ow?
b. What is the mean velocity in the duct?
c.  What is the mass rate of fl ow if the mass density of the air is 

1.9 kg/m3?

z

y

End view Elevation view

10 m/s

0.5 m

0.5 m

1

1.0 m

Problem 5.16

5.17 Th e velocity at section A-A is 15 ft /s, and the vertical depth 
y at the same section is 3 ft . If the width of the channel is 40 ft , 
what is the discharge in cubic feet per second?

A

A

V
y

30°

Problem 5.17

5.18 Th e rectangular channel shown is 1.2 m wide. What is the 
discharge in the channel?

y

Vertical depth = 1 m

u = y1/3 m/s
Water

30°

Problem 5.18

5.19 If the velocity in the channel of Problem 5.18 is given as 
u = 8[exp(y) – 1] m/s and the channel width is 2 m, what is the 
discharge in the channel and what is the mean velocity?
5.20 Water from a pipe is diverted into a weigh tank for exactly 
1 min. Th e increased weight in the tank is 80 kN. What is the 
discharge in cubic meters per second? Assume T = 20°C.
5.21 Engineers are developing a new design of a jet engine for 
an unmanned aerial vehicle (i.e., a drone). During testing, to 
simulate fl ight, air is supplied to the jet engine through an 
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attached round duct. In the duct, just upstream of the jet 
engine, the following specifi cations are required: V = 280 m/s, 
m·  = 180 kg/s, p = 60 kPa abs, and T = –17°C. What diameter 
pipe is needed to meet these specs?

Air

Duct Jet engine

D

Problem 5.21

5.22 Water enters the lock of a ship canal through 180 ports, each 
port having a 2 ft  by 2 ft  cross section. Th e lock is 900 ft  long and 
105 ft  wide. Th e lock is designed so that the water surface in it 
will rise at a maximum rate of 6 ft /min. For this condition, what 
will be the mean velocity in each port?
5.23 An empirical equation for the velocity distribution in a 
horizontal, rectangular, open channel is given by u = umax (y/d)n, 
where u is the velocity at a distance y meters above the fl oor of 
the channel. If the depth d of fl ow is 1.7 m, umax = 9 m/s, and 
n = 1/6, what is the discharge in cubic meters per second per 
meter of width of channel? What is the mean velocity?
5.24 Th e hypothetical water velocity in a V-shaped channel (see 
the accompanying fi gure) varies linearly with depth from zero 
at the bottom to maximum at the water surface. Determine the 
discharge if the maximum velocity is 6 ft /s.

12 in.

6 in.

Problem 5.24

5.25 Th e velocity of fl ow in a circular pipe varies according to the 
equation V/Vc = (1 – r2/r2

0)n, where Vc is the centerline velocity, r0 
is the pipe radius, and r is the radial distance from the centerline, 
and n is a dimensional coeffi  cient. Determine the mean velocity 
as a function of Vc and n.
5.26 Water fl ows through a 4.0 in. diameter pipeline at 75 lbm/min. 
Calculate the mean velocity. Assume T = 60°F.
5.27 Water fl ows through a 17 cm pipeline at 1022 kg/min. 
Calculate the mean velocity in meters per second if T = 20°C.
5.28 Water from a pipeline is diverted into a weigh tank for 15 min. 
Th e increased weight in the tank is 4765 lbf. What is the average 
fl ow rate in gallons per minute and in cubic feet per second? 
Assume T = 60°F.
5.29 A shell and tube heat exchanger consists of a one pipe inside 
another pipe as shown. Th e liquid fl ows in opposite directions 
in each pipe. If the speed and discharge of the liquid is the same 
in each pipe, what is the ratio of the outer pipe diameter to the 
inner pipe diameter?

V

V

Do Di +

Problem 5.29

5.30 Th e cross section of a heat exchanger consists of three circular 
pipes inside a larger pipe. Th e internal diameter of the three smaller 
pipes is DS = 1.5 cm, and their pipe wall thicknesses are each 3 mm. 
Th e inside diameter of the larger pipe is DL = 11 cm. If the velocity 
of the fl uid in the region between the smaller pipes and larger pipe 
is 13 m/s, what is the corresponding discharge in m3/s?

DL

DS

Problem 5.30

5.31 Th e mean velocity of water in a 5-in. pipe is 9 ft /s. Determine 
the fl ow rate in slugs per second, gallons per minute, and cubic 
feet per second if T = 60°F.

Lagrangian and Eulerian Approaches (§5.2)

5.32 Read §4.2 and §5.2 and use the Internet to fi nd answers to 
the following questions:

a.  What does the Lagrangian approach mean? What are three 
real-world examples that illustrate the Lagrangian 
approach? (Use examples that are not in the text.)

b.  What does the Eulerian approach mean? What are three 
real-world examples that illustrate the Eulerian approach? 
(Use examples that are not in the text.)

c.  What are three important diff erences between the Eulerian 
and the Lagrangian approaches?

d. Why use an Eulerian approach? What are the benefi ts?
e.  What is a fi eld? How is a fi eld related to the Eulerian approach?
f.  What are the shortcomings of describing a fl ow fi eld using 

the Lagrangian description?
5.33 What is the diff erence between an intensive and extensive 
property? Give an example of each.
5.34 State whether each of the following quantities is extensive or 
intensive:

a. mass
b. volume
c. density
d. energy
e. specifi c energy
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5.35 What type of property do you get when you divide an 
extensive property by another extensive property—extensive or 
intensive? Hint: Consider density.

The Control Volume Approach (§5.2)

5.36 What is a control surface and a control volume? Can mass 
pass through a control surface?
5.37 In Fig. 5.11, is

a. the CV passing through the system?
b. the system passing through the CV?

5.38 What is the purpose of the Reynolds transport theorem?
5.39 Gas fl ows into and out of the chamber as shown. For the 
conditions shown, which of the following statement(s) are true of 
the application of the control volume equation to the continuity 
principle?

a. Bsys = 0
b. dBsys/dt = 0

c. ∑cs
bρ V ∙ A = 0

d. 
d
dt ∫cv

ρ d V = 0

e. b = 0
Control surface

Control volume

21V1 = 10 m/s
A1 = 0.10 m2

  1 = 3.00 kg /m3ρ

V2 = 5 m/s
A2 = 0.20 m2

  2 = 2.00 kg/m3ρ

Problem 5.39

5.40 Th e piston in the cylinder is moving up. Assume that the 
control volume is the volume inside the cylinder above the 
piston (the control volume changes in size as the piston moves). 
A gaseous mixture exists in the control volume. For the given 
conditions, indicate which of the following statements are true.

a.  ∑cs
ρV ∙ A is equal to zero.

b.  
d
dt ∫cv

ρ dV  is equal to zero.

c.  Th e mass density of the gas in the control volume is increasing 
with time.

d.  Th e temperature of the gas in the control volume is increasing 
with time.

e. Th e fl ow inside the control volume is unsteady.

Control surface

Cylinder

Piston

Problem 5.40

5.41 For cases a and b shown in the fi gure, respond to the follow-
ing questions and statements concerning the application of the 
Reynolds transport theorem to the continuity equation.

a. What is the value of b?
b. Determine the value of dBsys/dt.

c.  Determine the value of ∑cs
bρV ∙ A.

d.  Determine the value of d/dt∫
cv

bρdV .

Control
surface

Control
surface

2

1
Closed tank

Air

V = 11 ft /s
A = 1.4 ft2

   = 2.1 slugs/ft3ρ

V1 = 1.8 ft /s
A1 = 3.3 ft2

  1 = 2 slugs/ft3ρ

V2 = 3.96 ft /s
A2 = 1.5 ft2

  
2 = 2 slugs/ft3ρ

(a) (b)

Problem 5.41

The Continuity Equation (Theory) (§5.3)

5.42 Th e law of conservation of mass for a closed system requires 
that the mass of the system is

a. constant
b. zero

Applying the Continuity Equation (§5.4)

5.43 Consider the simplifi ed form of the continuity equation, 
Eq. 5.29. An engineer is using this equation to fi nd the discharge 
QC of a creek at the confl uence with a large river because she has 
automatic electronic measurements of the river discharge 
upstream, QRu, and downstream, QRd, of the creek confl uence.

a.  Which of the three terms on the left -hand side of Eq. 5.29 
will the engineer assume is zero? Why?

b.  Sketch the creek and the river and sketch the CV you would 
select to solve this problem.

5.44 Water fl ows through a full pipe. Is it possible for the volume 
fl ow rate into the pipe to be diff erent than the fl ow rate out of the 
pipe? Explain.
5.45 Air is pumped into one end of a tube at a certain mass fl ow 
rate. Is it necessary that the same mass fl ow rate of air comes out 
the other end of the tube? Explain.
5.46 If an automobile tire develops a leak, how does the mass of 
air and the density change inside the tire with time? Assuming 
the temperature remains constant, how is the change in density 
related to the tire pressure?
5.47 Two pipes are connected together in series. Th e diameter of 
one pipe is three (3) times the diameter of the second pipe. With 
liquid fl owing in the pipes, the velocity in the large pipe is 4 m/s. 
What is the velocity in the smaller pipe?
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5.48 Both pistons are moving to the left , but piston A has a speed 
twice as great as that of piston B. Is the water level in the tank 
(a) rising, (b) not moving up or down, or (c) falling?

Diameter = 3 in.
Diameter = 6 in.

A
B

Problem 5.48

5.49 Two streams discharge into a pipe as shown. Th e fl ows are 
incompressible. Th e volume fl ow rate of stream A into the pipe 
is given by QA = 0.01t m3/s and that of stream B by QB = 
0.006 t2 m3/s, where t is in seconds. Th e exit area of the pipe 
is 0.01 m2. Find the velocity and acceleration of the fl uid at the 
exit at t = 1 s.

QB

QA

A = 0.01 m2

Problem 5.49

5.50 During the production of biodiesel, glycerin is a waste product 
and is collected by gravity separation because its SG (1.26) is much 
higher than that of biodiesel. Glycerin is withdrawn from the 
bottom of the separation tank through a pipe that has p1 = 350 kPa 
gage, where D = 70 cm and the fl owrate is 680 L/s. Find the 
pressure at section 2, which is 0.8 m higher and where the diameter 
has been reduced to d = 35 cm. Assume the fl ow is inviscid.

Glycerin

Biodiesel

2

1

d

D

Problem 5.50

5.51 In a food-drying facility, a constant-diameter heated pipe 
is used to raise the temperature of air. At the pipe entrance, 
the velocity is 12 m/s, the pressure is 100 kPa absolute, and 
the temperature is 20°C. At the outlet, the pressure is 90 kPa 
absolute and the temperature is 80°C. What is the velocity at 
the outlet? Can the Bernoulli equation be used to relate the 
pressure and velocity changes? Explain.
5.52 Air discharges downward in the pipe and then outward 
between the parallel disks. Assuming negligible density change 
in the air, derive a formula for the acceleration of air at point A, 
which is a distance r from the center of the disks. Express the 

acceleration in terms of the constant air discharge Q, the radial 
distance r, and the disk spacing h. If D = 10 cm, h = 0.6 cm, 
and Q = 0.380 m3/s, what are the velocity in the pipe and the 
acceleration at point A, where r = 20 cm?

V

D

h

r

A

Elevation view Plan view

Problems 5.52, 5.53

5.53 All the conditions of Prob. 5.52 are the same except that 
h = 1 cm and the discharge is given as Q = Q0(t/t0), where 
Q0 = 0.1 m3/s and t0 = 1 s. For the additional conditions, what 
will be the acceleration at point A when t = 2 s and t = 3 s?
5.54 A tank has a hole in the bottom with a cross-sectional area 
of 0.0025 m2 and an inlet line on the side with a cross-sectional 
area of 0.0025 m2, as shown. Th e cross-sectional area of the tank 
is 0.1 m2. Th e velocity of the liquid fl owing out the bottom hole is 
V = √2gh, where h is the height of the water surface in the tank 
above the outlet. At a certain time, the surface level in the tank is 
1 m and rising at the rate of 0.1 cm/s. Th e liquid is incompressible. 
Find the velocity of the liquid through the inlet.

V =    2gh
A = 0.0025 m2

A = 0.0025 m2

Vin = ?

h = 1 m

A = 0.1 m2

Problem 5.54

5.55 A mechanical pump is used to pressurize a bicycle tire. Th e 
infl ow to the pump is 0.4 cfm. Th e density of the air entering the 
pump is 0.075 lbm/ft 3. Th e infl ated volume of a bicycle tire is 
0.050 ft 3. Th e density of air in the infl ated tire is 0.4 lbm/ft 3. How 
many seconds does it take to pressurize the tire if there initially 
was no air in the tire?
5.56 Th is circular tank of water is being fi lled from a pipe as 
shown. Th e velocity of fl ow of water from the pipe is 10 ft /s. 
What will be the rate of rise of the water surface in the tank?

Diameter = 1 ft

V = 10 ft/s

4 ft

Problem 5.56
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5.57 A rectangular air duct 21 cm by 50 cm carries a fl ow of 
1.2 m3/s. Determine the velocity in the duct. If the duct tapers to 
9 cm by 39 cm, what is the velocity in the latter section? Assume 
constant air density.
5.58 A 30 cm pipe divides into a 20 cm branch and a 8 cm 
branch. If the total discharge is 0.45 m3/s and if the same mean 
velocity occurs in each branch, what is the discharge in each 
branch?
5.59 Water fl ows in a 12 in. pipe that is connected in series with 
a 4 in. pipe. If the rate of fl ow is 927 gpm (gallons per minute), 
what is the mean velocity in each pipe?
5.60 What is the velocity of the fl ow of water in leg B of the tee 
shown in the fi gure?

2 m diameter
V = 6 m/s

V = ?

4 m/s

4 m diameter

A B

C

Problem 5.60

5.61 For a steady fl ow of gas in the conduit shown, what is the 
mean velocity at section 2?

   2 = 1.8 kg/m3ρ

   1 = 2.0 kg/m3

V1 = 16 m/s
ρ

1.1 m diameter 56 cm diameter

2

1

Problem 5.61

5.62 Two pipes, A and B, are connected to an open water tank. 
Th e water is entering the bottom of the tank from pipe A at 10 cfm. 
Th e water level in the tank is rising at 1.0 in./min, and the surface 
area of the tank is 80 ft 2. Calculate the discharge in a second pipe, 
pipe B, that is also connected to the bottom of the tank. Is the 
fl ow entering or leaving the tank from pipe B?
5.63 Is the tank in the fi gure fi lling or emptying? At what rate is 
the water level rising or falling in the tank?

3 in. diameter
4 in. diameter

6 in. diameterV = 10 ft /s

V = 7 ft /s

V = 4 ft /s

6 ft diameter

Water

Problem 5.63

5.64 Given: Flow velocities as shown in the fi gure and water 
surface elevation (as shown) at t = 0 s. At the end of 22 s, will the 
water surface in the tank be rising or falling, and at what speed?

Tank

12 in. diameter

Water

12 in. diameter 6 in. diameter

2 ft /s1 ft /s

10 ft

2 ft diameter

Problem 5.64

5.65 A lake with no outlet is fed by a river with a constant fl ow of 
1800 ft 3/s. Water evaporates from the surface at a constant rate of 
12 ft 3/s per square mile surface area. Th e area varies with depth h 
(feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium 
depth of the lake? Below what river discharge will the lake dry up?
5.66 A stationary nozzle discharges water against a plate moving 
toward the nozzle at half the jet velocity. When the discharge 
from the nozzle is 5 cfs, at what rate will the plate defl ect water?
5.67 An open tank has a constant infl ow of 20 ft 3/s. A 1.0-ft -
diameter drain provides a variable outfl ow velocity Vout equal to 
√(2gh) ft /s. What is the equilibrium height heq of the liquid in 
the tank?
5.68 Assuming that complete mixing occurs between the two 
infl ows before the mixture discharges from the pipe at C, fi nd 
the mass rate of fl ow, the velocity, and the specifi c gravity of the 
mixture in the pipe at C.

Diameter  6 in.
Q  4 cfs

Closed tank

A

B

C

Diameter  6 in.

Diameter  4 in.

Q  3 cfs
SG  0.95

Q  1 cfs
SG  0.85

Problem 5.68

5.69 Oxygen and methane are mixed at 204 kPa absolute pressure 
and 100°C. Th e velocity of the gases into the mixer is 8 m/s. Th e 
density of the gas leaving the mixer is 2.2 kg/m3. Determine the exit 
velocity of the gas mixture.
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A = 3 cm2

CH4
A = 1 cm2

A = 3 cm2

O2

Problem 5.69

5.70 A pipe with a series of holes as shown in the fi gure is used 
in many engineering systems to distribute gas into a system. Th e 
volume fl ow rate through each hole depends on the pressure 
diff erence across the hole and is given by

Q = 0.67 Ao (2Δp
ρ )

1/2

where Ao is the area of the hole, Δp is the pressure diff erence across 
the hole, and ρ is the density of the gas in the pipe. If the pipe is 
suffi  ciently large, the pressure will be uniform along the pipe. A 
distribution pipe for air at 20° C is 0.5 meters in diameter and 8 m 
long. Th e gage pressure in the pipe is 100 Pa. Th e pressure outside 
the pipe is atmospheric at 1 bar. Th e hole diameter is 2.5 cm, and 
there are 40 holes per meter length of pipe. Th e pressure is con-
stant in the pipe. Find the velocity of the air entering the pipe.

8 m

V 0.5 m

Problem 5.70

5.71 Th e globe valve shown in the fi gure is a very common device 
to control fl ow rate. Th e fl ow comes through the pipe at the left  
and then passes through a minimum area formed by the disc and 
valve seat. As the valve is closed, the area for fl ow between the disc 
and valve is reduced. Th e fl ow area can be approximated by the 
annular region between the disc and the seat. Th e pressure drop 
across the valve can be estimated by application of the Bernoulli 
equation between the upstream pipe and the opening between the 
disc and valve seat. Assume there is a 10 gpm (gallons per minute) 
fl ow of water at 60°F through the valve. Th e inside diameter of the 
upstream pipe is 1 inch. Th e distance across the opening from the 
disc to the seat is 1/8th of an inch, and the diameter of the opening 
is 1/2 inch. What is the pressure drop across the valve in psid?1

Stem

Bonnet

Body

Seat

Flow

Disc

Packing

Problem 5.71

5.72 In the fl ow through an orifi ce shown in the diagram, the 
fl ow goes through a minimum area downstream of the orifi ce. 
Th is is called the “vena contracta.” Th e ratio of the fl ow area at 
the vena contracta to the area of the orifi ce is 0.64.

a.  Derive an equation for the discharge through the orifi ce 
in the form Q = CAo(2Δp/ρ)1/2, where Ao is the area of the 
orifi ce, Δp is the pressure diff erence between the upstream 
fl ow and the vena contracta, and ρ is the fl uid density. C is a 
dimensionless coeffi  cient.

b.  Evaluate the discharge for water at 1000 kg/m3 and a pressure 
diff erence of 10 kPa for a 1.5 cm orifi ce centered in a 2.5-cm-
diameter pipe.

2.5 cm 1.5 cm

Vena contracta

1 2

Problem 5.72

5.73 A compressor supplies gas to a 8 m3 tank. Th e inlet mass 
fl ow rate is given by m· = 0.5 ρ0/ρ (kg/s), where ρ is the density in 
the tank and ρ0 is the initial density. Find the time it would take 
to increase the density in the tank by a factor of 2 if the 
initial density is 1.8 kg/m3. Assume the density is uniform 
throughout the tank.

V  8 m3

m·

Problem 5.73

5.74 Oxygen leaks slowly through a small orifi ce in an oxygen 
bottle. Th e volume of the bottle is 0.1 m3, and the diameter of the 
orifi ce is 0.12 mm. Th e temperature in the tank remains constant at 
18°C, and the mass-fl ow rate is given by m· = 0.68 pA/√RT. How 
long will it take the absolute pressure to decrease from 10 to 5 MPa?
5.75 How long will it take the water surface in the tank shown to 
drop from h = 3 m to h = 50 cm?

V =    2gh

60 cm diameter

h

3 cm diameter

Problem 5.75
1Th e “d” in psid denotes a diff erential pressure—that is, neither absolute 
nor gage.
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5.76 Water is draining from a pressurized tank as shown in the 
fi gure. Th e exit velocity is given by

Ve = B
2p
ρ

+ 2gh

where p is the pressure in the tank, ρ is the water density, and h 
is the elevation of the water surface above the outlet. Th e depth 
of the water in the tank is 2 m. Th e tank has a cross-sectional 
area of 1.7 m2, and the exit area of the pipe is 9 cm2. Th e pressure 
in the tank is maintained at 10 kPa. Find the time required to 
empty the tank. Compare this value with the time required if the 
tank is not pressurized.

h = 2 m

Constant
pressure
supply

Ve

Problem 5.76

5.77 A spherical tank with a radius (R) of 0.5 m is half fi lled with 
water. A port at the bottom of the tank is opened to drain the 
tank. Th e hole diameter is 1 cm, and the velocity of the water 
draining from the hole is Ve = √2gh, where h is the elevation of 
the water surface above the hole. Find the time required for the 
tank to empty.

Ve

R

h

Problem 5.77

5.78 Rocket propulsion. To prepare for problems 5.79 and 5.80 
use the Internet or other resources and defi ne the following 
terms in the context of rocket propulsion: (a) solid fuel, (b) grain, 
and (c) surface regression. Also, explain how a solid-fuel rocket 
engine works.
5.79 An end-burning rocket motor has a chamber diameter of 
10 cm and a nozzle exit diameter of 8 cm. Th e density of the solid 
propellant is 1770 kg/m3, and the propellant surface regresses 

at the rate of 1.2 cm/s. Th e gases crossing the nozzle exit plane 
have a pressure of 10 kPa abs and a temperature of 2200°C. Th e 
gas constant of the exhaust gases is 415 J/kg K. Calculate the gas 
velocity at the nozzle exit plane.

10 cm 8 cm

Problem 5.79

5.80 A cylindrical-port rocket motor has a grain design consisting 
of a cylindrical shape as shown. Th e curved internal surface and 
both ends burn. Th e solid propellant surface regresses uniformly 
at 1 cm/s. The propellant density is 2000 kg/m3. The inside 
diameter of the motor is 20 cm. Th e propellant grain is 40 cm 
long and has an inside diameter of 12 cm. Th e diameter of the 
nozzle exit plane is 20 cm. Th e gas velocity at the exit plane is 
1800 m/s. Determine the gas density at the exit plane.

Problem 5.80

5.81 Gas is fl owing from Location 1 to 2 in the pipe expansion 
shown. Th e inlet density, diameter and velocity are ρ1, D1, and V1 
respectively. If D2 is 2D1 and V2 is half of V1, what is the magni-
tude of ρ2?

a. ρ2 = 4 ρ1

b. ρ2 = ½ ρ1

c. ρ2 = 2 ρ1

d. ρ2 = ρ1

5.82 Air is fl owing from a ventilation duct (cross section 1) as 
shown, and is expanding to be released into a room at cross 
section 2. Th e area at cross section 2, A2, is three times A1. 
Assume that the density is constant. Th e relation between 
Q1 and Q2 is

a. Q2 = 1⁄3 Q1

b. Q2 = Q1

c. Q2 = 3 Q1

d. Q2 = 9 Q1

5.83 Water is fl owing from Location 1 to 2 in this pipe expansion. 
D1 and V1 are known at the inlet. D2 and p2 are known at the 
outlet. What equation(s) do you need to solve for the inlet 
pressure p1? Neglect viscous eff ects.

a. Th e continuity equation.
b. Th e continuity equation and the fl ow rate equation.
c.  Th e continuity equation, the fl ow rate equation, and the 

Bernoulli equation.
d. Th ere is insuffi  cient information to solve the problem.
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1
2

Problems 5.81, 5.82, 5.83

5.84 Th e fl ow pattern through the pipe contraction is as shown, 
and the Q of water is 60 cfs. For d = 2 ft  and D = 6 ft , what is the 
pressure at point B if the pressure at point C is 3200 psf?

A

C

E
20°

d

BD

Problem 5.84

5.85 Th e annular venturimeter is useful for metering fl ows in 
pipe systems for which upstream calming distances are lim-
ited. Th e annular venturimeter consists of a cylindrical section 
mounted inside a pipe as shown. Th e pressure diff erence is 
measured between the upstream pipe and at the region adjacent 
to the cylindrical section. Air at standard conditions fl ows in 
the system. Th e pipe diameter is 6 in. Th e ratio of the cylindrical 
section diameter to the inside pipe diameter is 0.8. A pressure 
diff erence of 2 inches of water is measured. Find the volume fl ow 
rate. Assume the fl ow is incompressible, inviscid, and steady and 
that the velocity is uniformly distributed across the pipe.

2 in-H2O

dD
V

Problem 5.85

5.86 Venturi-type applicators are frequently used to spray liquid 
fertilizers. Water fl owing through the venturi creates a subatmo-
spheric pressure at the throat, which in turn causes the liquid 
fertilizer to fl ow up the feed tube and mix with the water in the 
throat region. Th e venturi applicator shown uses water at 20°C 
to spray a liquid fertilizer with the same density. Th e venturi 
exhausts to the atmosphere, and the exit diameter is 1 cm. Th e 
ratio of exit area to throat area (A2/A1) is 2. Th e fl ow rate of water 
through the venturi is 8 L/m (liters/min). Th e bottom of the feed 
tube in the reservoir is 5 cm below the liquid fertilizer surface 
and 10 cm below the centerline of the venturi. Th e pressure at the 
liquid fertilizer surface is atmospheric. Th e fl ow rate through the 
feed tube between the reservoir and venturi throat is

Q1(L/min) = 0.5√Δh

where Δh is the drop in piezometric head (in meters) between 
the feed tube entrance and the venturi centerline. Find the fl ow 

rate of liquid fertilizer in the feed tube, Ql. Also fi nd the concen-
tration of liquid fertilizer in the mixture, [Ql/(Ql + Qw)], at the 
end of the sprayer.

1

2

V

5 cm
1 cm

10 cm

Problem 5.86

5.87 Air with a density of 0.07 lbm/ft 3 is fl owing upward in 
the vertical duct, as shown. Th e velocity at the inlet (station 1) 
is 90 ft /s, and the area ratio between stations 1 and 2 is 0.3 
(A2/A1 = 0.3). Two pressure taps, 10 ft  apart, are connected to 
a manometer, as shown. Th e specifi c weight of the manometer 
liquid is 120 lbf/ft 3. Find the defl ection, Δh, of the manometer.

10 ft

Δh

V

2

1

Problem 5.87

5.88 An atomizer utilizes a constriction in an air duct as shown. 
Design an operable atomizer making your own assumptions 
regarding the air source.

Air source

Water

Problem 5.88

5.89 A suction device is being designed based on the venturi 
principle to lift  objects submerged in water. Th e operating water 
temperature is 15°C. Th e suction cup is located 1 m below the 
water surface, and the venturi throat is located 1 m above the 
water. Th e atmospheric pressure is 100 kPa. Th e ratio of the 
throat area to the exit area is 1/4, and the exit area is 0.001 m2. 
Th e area of the suction cup is 0.1 m2.

a.  Find the velocity of the water at the exit for maximum lift  
condition.

b.  Find the discharge through the system for maximum lift  
condition.

c. Find the maximum load the suction cup can support.
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Water

V

A = 10–3 m2

A = 0.1 m2

1 m

1 m

Problem 5.89

5.90 A design for a hovercraft  is shown in the fi gure. A fan brings 
air at 60°F into a chamber, and the air is exhausted between 
the skirts and the ground. Th e pressure inside the chamber is 
responsible for the lift . Th e hovercraft  is 15 ft  long and 7 ft  wide. 
Th e weight of the craft  including crew, fuel, and load is 2000 lbf. 
Assume that the pressure in the chamber is the stagnation pres-
sure (zero velocity) and the pressure where the air exits around 
the skirt is atmospheric. Assume the air is incompressible, the 
fl ow is steady, and viscous eff ects are negligible. Find the airfl ow 
rate necessary to maintain the skirts at a height of 3 in. above 
the ground.

Motor

Skirt

h

Problem 5.90

5.91 Water is forced out of this cylinder by the piston. If the 
piston is driven at a speed of 6 ft /s, what will be the speed of 
effl  ux of the water from the nozzle if d = 2 in. and D = 4 in.? 
Neglecting friction and assuming irrotational fl ow, determine the 
force F that will be required to drive the piston. Th e exit pressure 
is atmospheric pressure.

F

D

d

Piston

Water
T = 60�F

Problem 5.91

Predicting Cavitation (§5.5)

5.92 Sometimes, when driving your car on a hot day, you may 
encounter a problem with the fuel pump called pump cavita-
tion. What is happening to the gasoline? How does this aff ect the 
operation of the pump?

5.93 What is cavitation? Why does the tendency for cavitation in 
a liquid increase with increased temperatures?
5.94 Th e following questions have to do with cavitation.

a.  Is it more correct to say that cavitation has to do with 
(i) vacuum pressures, or (ii) vapor pressures?

b.  What does the word cavitation have to do with cavities, like 
the ones we get in our teeth? 

c.  When water goes over a waterfall and you can see lots of 
bubbles in the water, is that due to cavitation? Why or 
why not?

5.95 When gage A indicates a pressure of 130 kPa gage, then 
cavitation just starts to occur in the venturi meter. If D = 50 cm 
and d = 10 cm, what is the water discharge in the system for this 
condition of incipient cavitation? Th e atmospheric pressure is 
100 kPa abs and the water temperature is 10°C. Neglect 
gravitational eff ects.

D A

d

Problem 5.95

5.96 A sphere 1 ft  in diameter is moving horizontally at a depth 
of 12 ft  below a lake surface where the water temperature is 50°F. 
Relative to the sphere, the maximum water speed is Vmax = 1.5 Vo.
Here, Vmax occurs near the upper and lower parts of the sphere. 
Th e term Vo is the speed of the sphere. At what sphere speed will 
cavitation fi rst occur?
5.97 When the hydrofoil shown was tested, the minimum pressure 
on the surface of the foil was found to be 70 kPa absolute when 
the foil was submerged 1.80 m and towed at a speed of 8 m/s. At 
the same depth, at what speed will cavitation fi rst occur? Assume 
irrotational fl ow and T = 10°C.
5.98 When the hydrofoil shown was tested, the minimum pressure 
on the surface of the foil was found to be 2.7 psi vacuum when 
the foil was submerged 3.1 ft  and towed at a speed of 20 ft /s. At 
the same depth, at what speed will cavitation fi rst occur? Assume 
irrotational fl ow and T = 50°F.

V

Water = 10°C (50°F)d

Problems 5.97, 5.98
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The Momentum Equation

CHAPTER ROAD MAP This chapter presents (a) the linear momentum equation and (b) the angular 
momentum equation. Both equations are derived from Newton’s second law of motion.

CHAPTERSIX

FIGURE 6.1
Engineers design systems by using a small set of 

fundamental equations, such as the momentum 

equation. (Photo courtesy of NASA.)

LEARNING OUTCOMES

NEWTON’S SECOND LAW (§6.1). 

●  Know the main ideas about Newton’s second law of motion. 
●  Solve problems that involve Newton’s second law by applying the 

visual solution method.

THE LINEAR MOMENTUM EQUATION (§6.2 to §6.4). 

●  List the steps to derive the momentum equation and explain the 

physics. 
●  Draw a force diagram and a momentum diagram. 
●  Explain or calculate the momentum fl ow. 
●  Apply the linear momentum equation to solve problems.

MOVING CONTROL VOLUMES (§6.5). 

●  Distinguish between an inertial and noninertial reference frame. 
●  Solve problems that involve moving control volumes.

6.1 Understanding Newton’s Second Law of Motion

Because Newton’s second law is the theoretical foundation of the momentum equation, this 
section reviews relevant concepts.

Body and Surface Forces

A force is an interaction between two bodies that can be idealized as a push or pull of one body 
on another body. A push/pull interaction is one that can cause acceleration.

Newton’s third law tells us that forces must involve the interaction of two bodies and that 
forces occur in pairs. Th e two forces are equal in magnitude, opposite in direction, and colinear.

EXAMPLE. To give examples of force, consider an airplane that is fl ying in a straight path 
at constant speed (Fig. 6.2). Select the airplane as the system for analysis. Idealize the air-
plane as a particle. Newton’s fi rst law (i.e., force equilibrium) tells us that the sum of forces 
must balance. Th ere are four forces on the airplane:
• Th e lift  force is the net upward push of the air (body 1) on the airplane (body 2).
• Th e weight is the pull of the earth (body 1) on the airplane (body 2) through the action 

of gravity.
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• Th e drag force is the net resistive force of the air (body 1) on the airplane (body 2).
•  Th e thrust force is the net horizontal push of the air (body 1) on the surfaces of the 

propeller (body 2).

Notice that each of the four interactions just described can be classifi ed as a force because 
(a) they involve a push or pull and (b) they involve the interaction of two bodies of matter.

Forces can be classifi ed into two categories: body force and surface force. A surface force 
(also known as a contact force) is a force that requires physical contact or touching between 
the two interacting bodies. Th e lift  force (Fig. 6.2) is a surface force because the air (body 1) 
must touch the wing (body 2) to create the lift  force. Similarly, the thrust and drag forces are 
surface forces.

A body force is a force that can act without physical contact. For example, the weight force 
is a body force because the airplane (body 1) does not need to touch the earth (body 2) for the 
weight force to act.

A body force acts on every particle within a system. In contrast, a surface force acts only 
on the particles that are in physical contact with the other interacting body. For example, con-
sider a system comprised of a glass of water sitting on a table. Th e weight force is pulling on 
every particle within the system, and we represent this force as a vector that passes through the 
center of gravity of the system. In contrast, the normal force on the bottom of the cup acts only 
on the particles of glass that are touching the table.

Summary. Forces can be classifi ed in two categories: body forces and surface forces (see 
Fig. 6.3). Most forces are surface forces.

Newton’s Second Law of Motion

In words, Newton’s second law is this: Th e sum of forces on a particle is proportional to the ac-
celeration, and the constant of proportionality is the mass of the particle. Notice that this law 

FDrag

FLift

Weight

FThrust

FIGURE 6.2

When an airplane is fl ying in straight and level 

fl ight, the forces sum to zero.

Force

Examples:
Magnetic force
Electric force
Gravity force

Fluids Solids

Examples:
Frictional force
Tension 
Applied force
Spring force
Support force

Body force: A force that does
not require physical contact
between the interacting bodies

Surface force: A force that
requires physical contact 
between the interacting bodies

Examples:
Pressure force
Shear force
Buoyant force
Lift force
Drag force
Surface tension force
Thrust force

FIGURE 6.3

Forces can be classifi ed as body 

forces or surface forces.
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applies only to a particle. Th e second law asserts that acceleration and unbalanced forces are 
proportional. Th is means, for example, that

• If a particle is accelerating, then the sum of forces on the particle is nonzero, and
• If the sum of forces on a particle is nonzero, then the particle will be accelerating.

Newton’s second law can be written as an equation:

 (∑ F)
ext

= ma (6.1)

where the subscript “ext” is a reminder to sum only external forces.

EXAMPLE. To illustrate the relationship between unbalanced forces and acceleration, 
consider an airplane that is turning left  while fl ying at a constant speed in a horizontal plane 
(Fig. 6.4a). Select the airplane as a system. Idealize the airplane as a particle. Because the 
airplane is traveling in a circular path at constant speed, the acceleration vector must point 
inward. Fig. 6.4b shows the vectors that appear in Newton’s second law. For Newton’s sec-
ond law of motion to be satisfi ed, the sum of the force vectors (Fig. 6.4c) must be equal to 
the ma vector.

Th e airplane example illustrates a method for visualizing and solving a vector equation 
called the Visual Solution Method (VSM). Th is method was adapted from Hibbeler (1) and is 
presented in the next subsection.

Solving a Vector Equation with the Visual 

Solution Method (VSM)

Th e VSM is an approach for solving a vector equation that reveals the physics while also show-
ing visually how the equation can be solved. Th us, the VSM simplifi es problem solving. Th e 
VSM has three steps:

Step 1.  Identify the vector equation in its general form.
Step 2.  Draw a diagram that shows the vectors that appear in the left  side of the equation. 

Th en, draw a second diagram that shows the vectors that appear on the right side of 
the equation. Add an equal sign between the diagrams.

Step 3.  From the diagrams, apply the general equation and simplify the results to create the 
reduced equation(s). Th e reduced equation(s) can be written as a vector equation or 
as one or more scaler equations.

Front View

θ

Sum of Forces

FLift

W

man

(b)

Top View

(a)

Acceleration
(normal to path)

(c)

FLift
W

Sum of forces
(must equal man)

y

x

FIGURE 6.4

An airplane fl ying with a steady 

speed on curved path in a 

horizontal plane: (a) top view, 

(b) front view, (c) a sketch 

showing how the ∑F vector 

balances the ma vector.
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EXAMPLE. Th is example shows how to apply the VSM to the airplane problem (see Fig. 6.4).

Step 1.  Th e general equation is Newton’s second law (ΣF)ext = ma.
Step 2. Th e two diagrams separated by an equal sign are shown in Fig. 6.4b.
Step 3.  By looking at the diagrams, one can write the reduced equation using scalar 

equations:

(x direction)        Flift sin θ = man

 ( y direction)   −W + Flift cos θ = 0

Alternatively, you can look at the diagrams and then write the reduced equation using a 
vector equation:

FLift (sin θi + cos θj) − W j = (man)i

EXAMPLE. Th is example shows how to apply the VSM to a generic vector equation.

Step 1. Suppose the general equation is Σx = y2 – y1.
Step 2. Suppose the vectors are known. Th en, sketch the diagrams (Fig. 6.5).
Step 3.  By looking at the diagrams, write the reduced equations. To get the signs correct, 

notice that the general equation shows that vector y1 is subtracted. Th e reduced 
equations are

(x direction)   x2 + x3 − x4 cos30° = y2 cos30° − y1

 (y direction) x1 + x4 sin30° = −y2 sin30°

Newton’s Second Law (System of Particles)

Newton’s second law (Eq. 6.1) applies to one particle. Because a fl owing fl uid involves many 
particles, the next step is to modify the second law so that it applies to a system of parti-
cles. To begin the derivation, note that the mass of a particle must be constant. Th en, modify 
Eq. (6.1) to give

 (∑ F)
ext

=
d(mv)

dt
 (6.2)

where mv is the momentum of one particle.
To extend Eq. (6.2) to multiple particles, apply Newton’s second law to each particle, and 

then add the equations together. Internal forces, which are defi ned as forces between the 
particles of the system, cancel out; the result is

 (∑ F)
ext

=
d
dt ∑

N

i=1
(mi vi) (6.3)

yx1

x
x2

x3

30°
30°

=

x4

y1

y2

FIGURE 6.5

Vectors used to illustrate how to solve a 

vector equation.
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where mivi is the momentum of the ith particle and (∑F)ext are forces that are external to the 
system. Next, let

 (Total momentum of the system) ≡ M = ∑
N

i=1
(mi vi) (6.4)

Combine Eqs. (6.3) and (6.4):

 (∑ F)
ext

=
d(M)

dt ⎸closed system
 (6.5)

Th e subscript “closed system” reminds us that Eq. (6.5) is for a closed system.

6.2 The Linear Momentum Equation: Theory

Th is section shows how to derive the linear momentum equation and explains the physics.

Derivation

Start with Newton’s second law for a system of particles (Eq. 6.5). Next, apply the Reynolds 
transport theorem (Eq. 5.23) to the right side of the equation. Th e extensive property is mo-
mentum, and the corresponding intensive property is the momentum per unit mass, which 
ends up being the velocity. Th us, the Reynolds transport theorem gives

 
dM
dt ⎸closed system

=
d
dt ∫cv

vρ dV +∫
cs

vρV ∙ dA (6.6)

Combining Eqs. (6.5) and (6.6) gives the general form of the momentum equation,

 (∑ F)
ext

=
d
dt ∫cv

vρ dV +∫
cs

ρ v(V ∙ dA) (6.7)

where (∑F)ext is the sum of external forces acting on the matter in the control volume, v is fl uid 
velocity relative to an inertial reference frame, and V is velocity relative to the control surface.

Eq. (6.7) can be simplifi ed. To begin, assume that each particle inside the CV has the same 
velocity. Th us, the fi rst term on the right side of Eq. (6.7) can be written as

 
d
dt ∫cv

vρ dV =
d
dt [v ∫

cv
ρdV ] =

d(mcvvcv)

dt
 (6.8)

Next, assume that velocity is uniformly distributed as it crosses the control surface. Th en, the 
last term in Eq. (6.7) can be written as

 ∫
cs

vρ V ∙ dA = v∫
cs

ρV ∙ dA = ∑
cs

m· o vo − ∑
cs

m· i vi (6.9)

Combining Eqs. (6.7) to (6.9) gives the fi nal result,

 (∑ F)
ext

=
d(mcvvcv)

dt
+ ∑

cs
m· o vo − ∑

cs
m· i vi  (6.10)

where mcv is the mass of the matter that is inside the control volume. Th e subscripts o and i 
refer to the outlet and inlet ports, respectively. Eq. (6.10) is the simplifi ed form of the momen-
tum equation.
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Physical Interpretation of the Momentum Equation

Th e momentum equation asserts that the sum of forces is exactly balanced by the momentum 
terms; see Fig. 6.6.

Momentum Flow (Physical Interpretation)

To understand what momentum fl ow means, select a cylindrical fl uid particle passing across 
a CS (see Fig. 6.7). Let the particle be long enough that it travels across the CS during a time 
interval Δt. Th en, the particle’s length is

L = (length) = ( length
time )(time) = (speed)(time) = vΔt

and the particle’s volume is V = (vΔt)ΔA. Th e momentum of the particle is

momentum of one particle = (mass)(velocity) = (ρΔV)v = (ρvΔtΔA)v

Next, add up the momentum of all particles that are crossing the control surface through a 
given face:

 momentum of all particles = ∑
cs
(ρvΔtΔA)v (6.11)

Now, let the time interval Δt and the area ΔA approach zero, and replace the sum with the 
integral. Eq. (6.11) becomes

(momentum of all particles crossing the CS
interval of time )

instant in time
= ∫

cs

(ρv)v dA

Summary. Momentum fl ow describes the rate at which the fl owing fl uid transports mo-
mentum across the control surface.

Momentum Flow (Calculations)

When fl uid crosses the control surface, it transports momentum across the CS. At section 1 
(Fig. 6.8), momentum is transported into the CV. At section 2, momentum is transported out 
of the CV.

Time rate of change 
of the momentum of 
the matter inside CV

Net rate at which the
fluid flow transports 
momentum out of the CV

Sum of forces acting
on the matter that is 
inside the CV

Net force
Momentum 
accumulation

Net momentum  
flow

+=

General equation

Simplified equation

Main ideas

Names of terms

(ΣF)ext   =

(ΣF)ext    =

d
dt

(mcvvcv)

vρdV
d
dt cv

vρV·dA
cs

+

+

movo miv i
cscs

FIGURE 6.6

The conceptual meaning of the 

momentum equation.

Particle L = vΔt

Area = ΔA

Volume = ΔV = LΔA = vΔtΔA

FIGURE 6.7

A fl uid particle passing across the control 

surface during a time interval Δt.
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When the velocity is uniformly distributed across the CS, Eq. (6.10) indicates

 ( magnitude of
momentum flow) = m· v = ρAv 2 (6.12)

Th us, at section 1, the momentum fl ow has a magnitude of

m· v = (2 kg/s)(8 m/s) = 16 kg ∙ m/s2 = 16 N

and the direction of the vector is to the right. Similarly, at section 2, the momentum fl ow has 
a magnitude of 16 newtons and a direction of 45° below horizontal. From Eq. (6.10), the net 
momentum fl ow term is

m· v2 − m· v1 = {(16 N) cos (45°i − sin 45°j)} − {(16 N)i}

Summary. For uniform velocity, momentum fl ow terms have a magnitude m· v = ρAv 2 
and a direction parallel to the velocity vector. Th e net momentum fl ow is calculated by sub-
tracting the inlet momentum fl ow vector(s) from the outlet momentum fl ow vector(s).

Momentum Accumulation (Physical Interpretation)

To understand what accumulation means, consider a control volume around a nozzle (Fig. 6.9). 
Th en, divide the control volume into many small volumes. Pick one of these small volumes, 
and note that the momentum inside this volume is (ρΔV)v.

To fi nd the total momentum inside the CV, add up the momentum for all the small vol-
umes that comprise the CV. Th en, let ΔV→ 0 and use the fact that an integral is the sum of 
many small terms.

 (total momentum
inside the CV ) = ∑ (ρΔV)v = ∑ vρΔV = ∫

cv
v ρdV (6.13)

Taking the time derivative of Eq. (6.13) gives the fi nal result:

 ( momentum
accumulation) = (

rate of change of the
total momentum

inside the CV ) =
d
dt ∫cv

vρd V (6.14)

CV

1

2

v = 8 m/s
m = 2 kg/s

v = 8 m/s
m = 2 kg/s

45°

y

x

·

·
FIGURE 6.8

A fl uid jet striking a fl at vane.

Water

θ
Control
surface

The momentum of matter inside this small
volume is given by

       momentum = (mass)(velocity)
                           = ( V)(v)  

FIGURE 6.9

Water fl owing through a nozzle.
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Summary. Momentum accumulation describes the time rate of change of the momen-
tum inside the CV. For most problems, the accumulation term is zero or negligible. To analyze 
the momentum accumulation term, one can ask two questions: Is the momentum of the matter 
inside the CV changing with time? Is this change signifi cant? If the answers to both questions are 
yes, then the momentum accumulation term should be analyzed. Otherwise, the accumulation 
term can be set to zero.

6.3 The Linear Momentum Equation: Application

Working Equations

Table 6.1 summarizes the linear momentum equation.

Force and Momentum Diagram

Th e recommended method for applying the momentum equation, the VSM, is illustrated in 
the next example.

EXAMPLE. Th is example explains how to apply the VSM for water fl owing out of a nozzle 
(Fig. 6.10a). Th e water enters at section 1 and jets out at section 2.

Step 1.  Write the momentum equation (see Fig. 6.10b). Select a control volume that sur-
rounds the nozzle.

Step 2a.  To represent the force terms, sketch a force diagram (Fig. 6.10c). A force diagram 
illustrates the forces that are acting on the matter that is inside the CV. A force 
diagram is similar to a free body diagram in terms of how it is drawn and how it 
looks. However, a free body diagram is an Lagrangian idea, whereas a force dia-
gram is an Eulerian idea. Th is is why diff erent names are used.

  To draw the force diagram, sketch the CV, then sketch the external forces acting 
on the CV. In Fig. 6.10c, the weight vector, W, represents the weight of the water 
plus the weight of the nozzle material. Th e pressure vector, symbolized with p1A1, 
represents the water in the pipe pushing the water through the nozzle. Th e force 
vector, symbolized with Fx and Fy, represents the force of the support that is hold-
ing the nozzle stationary.

TABLE 6.1 Summary of the Linear Momentum Equation

Description Equation Terms

General equation
(∑ F)

ext
=

d
dt ∫cv

vρd V + ∫
cs

ρv (V ∙ dA)

  Eq. (6.7)

(∑F)ext = sum of external forces (N)
t = time (s)
v =  velocity measured from the selected ref. frame 

(m/s) (must select a reference frame that is inertial)
vcv = velocity of CV from selected ref. frame (m/s)
V =  velocity measured from the control surface (m/s)
ρ = density of fl uid (kg/m3)
mcv =  mass of the matter inside the control volume (kg)
m· o = mass flow rate out of the control volume (kg/s)
m· i = mass flow rate into the control volume (kg/s)

Simplifi ed equation

Use this equation 
for most problems. 
Assumptions: (a) All 
particles inside the CV 
have the same velocity, 
and (b) when fl ow 
crosses the CS, the 
velocity is uniformly 
distributed.

(∑ F)
ext

=
d(mcvvcv)

dt
+ ∑

cs
m· ovo − ∑

cs
m· i vi

  Eq. (6.10)
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Step 2b.  To represent the momentum terms, sketch a momentum diagram (Fig. 6.10c). 
Th is diagram shows the momentum terms from the right side of the momentum 
equation. Th e momentum outfl ow is represented with m· v2 and momentum in-
fl ow is represented with m· v1. Th e momentum accumulation term is zero because 
the total momentum inside the CV is constant with time.

Step 3. Using the diagrams, write the reduced equations (see Figs. 6.10d and 6.10e).

Summary. Th e force diagram shows forces on the CV, and the momentum diagram shows 
the momentum terms. We recommend drawing these diagrams and using the VSM.

A Process for Applying the Momentum Equation

Step 1:  Selection. Select the linear momentum equation when the problem involves forces 
and accelerating fl uid particles and torque does not need to be considered.

Step 2:  Sketching. Select a CV so that control surfaces cut through where (a) you know 
information or (b) you want information. Th en, sketch a force diagram and a momentum 
diagram.

Step 3:  Analysis. Write scalar or vector equations by using the VSM.
Step 4:  Validation. Check that all forces are external forces. Check the signs on vectors. 

Check the physics. For example, if accumulation is zero, then the sum of forces should 
balance the momentum fl ow out minus the momentum fl ow in.

A Road Map for Problem Solving

Fig. 6.11 shows a classifi cation scheme for problems. Like a road map, the purpose of this dia-
gram is to help navigate the terrain. Th e next two sections present the details of each category 
of problems.

Flange

θ

θ

Water

W

Force diagram Momentum diagram

(b)

(c)

(d)

(e)

(a)

y

x

Fx = mv2 cos

1

2

p1A1 + Fy − W = mv2sinθ − mv1

p1A1 mv1

Fx

Fy

mv2

θ

F = d
dt

mcvvcv( ) + movo mivi
cscs

· ·

·

·

·

· ·

FIGURE 6.10

The recommended way to apply the momentum equation is to sketch force and momentum diagrams and 

then to write the reduced form of the momentum equation in the x and y directions.
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6.4 The Linear Momentum Equation 

for a Stationary Control Volume

When a CV is stationary with respect to the earth, the accumulation term is nearly always zero 
or negligible. Th us, the momentum equation simplifi es to

(sum of forces) = (rate of momentum out) − (rate of momentum in)

Fluid Jets

Problems in the category of fluid jets involve a free jet leaving a nozzle. However, analysis of 
the nozzle itself is not part of the problem. An example of a fl uid jet problem is shown in 
Fig. 6.12. Th is problem involves a water cannon on a cart. Th e water leaves the nozzle with 
velocity V, and the goal is to fi nd the tension in the cable.

Each category of problems has certain facts that make problem solving easier. Th ese facts 
will be presented in the form of tips. Tips for fl uid jet problems are as follows:

• Tip 1. When a free jet crosses the control surface, the jet does not exert a force. Th us, do not 
draw a force on the force diagram. Th e reason is that the pressure in the jet is ambient pres-
sure, so there is no net force. Th is can be proven by applying Euler’s equation.

• Tip 2. Th e momentum fl ow of the fl uid jet is m· v.

Example 6.1 shows a problem in the fl uid jet category.

Moving CVs

Problems

Stationary CVs

Jets and 
vanes

Nozzles and
pipe bends

Variable
velocity AcceleratingConstant

velocity

FIGURE 6.11

A classifi cation scheme for problems that are solvable 

by application of the momentum equation.

V
cs

Cart

Fluid jet

Cable
FIGURE 6.12

A problem involving a fl uid jet.

EXAMPLE 6.1

Momentum Equation Applied to a Stationary Rocket

Problem Statement

Th e following sketch shows a 40 g rocket, of the type used for 
model rocketry, being fi red on a test stand to evaluate thrust. 
Th e exhaust jet from the rocket motor has a diameter of 
d = 1 cm, a speed of v = 450 m/s, and a density of ρ = 0.5 kg/m3. 
Assume the pressure in the exhaust jet equals ambient 
pressure. Find the force Fs acting on the support that holds the 
rocket stationary.

v
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Example 6.2 gives another problem in the fl uid jet category.

Defi ne the Situation

A small rocket is fi red on a test stand.

Support

d = 0.01 m

v = 450 m/s
ρ= 0.5 kg/m3

m = 0.04 kg

Assumptions: Pressure is 0.0 kPa gage at the nozzle exit 
plane.

State the Goal

Fs (N) ➡ force that acts on the support

Generate Ideas and Make a Plan

Selection: Select the momentum equation because fl uid 
particles are accelerating due to pressures generated by 
combustion and because force is the goal.
Sketching: Select a CV surrounding the rocket because the 
control surface cuts

• through the support (where we want information) and
• across the rocket nozzle (where information is known).

Th en, sketch a force diagram and a momentum diagram. Notice 
that the diagrams include an arrow to indicate the positive y 
direction. Th is is important because the momentum equation 
is a vector equation.

Fr

y

W
=
_

mvo
·

In the force diagram, the body force is the weight (W ). Th e 
force (Fr) represents the downward push of the support on 
the rocket. Th ere is no pressure force at the nozzle exit plane 
because pressure is atmospheric.

Analysis: Apply the momentum equation in the vertical direc-
tion by selecting terms off  the diagrams:

 Fr + W = m· vo (a)

In Eq. (a), the only unknown is Fr. Th us, the plan is as follows:

1. Calculate momentum fl ow: m· vo = ρAv2
o.

2. Calculate weight.
3. Solve for force Fr. Th en, apply Newton’s third law.

Take Action (Execute the Plan)

1. Momentum fl ow:

 ρAv2 = (0.5 kg/m3)(π × 0.012 m2/4)(4502 m2/s2)

 = 7.952 N

2. Weight:

W = mg = (0.04 kg)(9.81 m/s2) = 0.3924 N

3. Force on the rocket (from Eq. (a)):

Fr = ρAv 2
o −W = (7.952 N) − (0.3924 N) = 7.56 N

By Newton’s third law, the force on the support is equal in 
magnitude to Fr and opposite in direction.

Fs = 7.56 N (upward)

Review

1.  Knowledge. Notice that forces acting on the rocket do 
not sum to zero. Th is is because the fl uid is accelerating.

2.  Knowledge. For a rocket, the term m· v is sometimes 
called a “thrust force.” For this example, m· v = 7.95 N 
(1.79 lbf); this value is typical of a small motor used for 
model rocketry.

3.  Knowledge. Newton’s third law tells us that forces always 
occur in pairs, equal in magnitude and opposite in 
direction. In the sketch ahead, Fr and Fs are equal in 
magnitude and opposite in direction.

W

Fr

Fs
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EXAMPLE 6.2

Momentum Equation Applied to a Fluid Jet

Problem Statement

As shown in the sketch, concrete fl ows into a cart sitting on a 
scale. Th e stream of concrete has a density of ρ = 150 lbm/ft 3, 
an area of A = 1 ft 2, and a speed of v = 10 ft /s. At the instant 
shown, the weight of the cart plus the concrete is 800 lbf. 
Determine the tension in the cable and the weight recorded by 
the scale. Assume steady fl ow.

60°

Scale

Concrete

Defi ne the Situation

Concrete is fl owing into a cart that is being weighed.

A1 = 1 ft2, v = 10 ft /s

W = 800 lbf (concrete + cart)

scalecable

CV

Concrete,     = 150 lbm/ft3ρ

State the Goal

T(lbf) ➡ tension in cable
Ws(lbf) ➡ weight recorded by the scale

Generate Ideas and Make a Plan

Select the momentum equation. Th en, select a CV and sketch 
this in the situation diagram. Next, sketch a force diagram and 
momentum diagram.

z

x

N

T

W
60°

mv·

Notice in the force diagram that the liquid jet does not exert a 
force at the control surface. Th is is because the pressure in the 
jet equals atmospheric pressure.
To apply the momentum equation, use the force and momentum 
diagrams to visualize the vectors.

 ∑ F = m· ovo − m· ivi

 −T i + (N − W)k = −m· v ((cos 60°) i − (sin60°) j)

Next, write scalar equations:
  −T = −m· vcos 60° (a)
  (N − W) = m· v sin60°  (b)

Now, the goals can be solved for. Th e plan is as follows:
1. Calculate T using Eq. (a).
2. Calculate N using Eq. (b). Th en, let Ws = –N.

Take Action (Execute the Plan)

1. Momentum equation (horizontal direction):
 T = m· vcos 60° = ρAv2 cos 60°

 T = (150 lbm/ft3)( slugs
32.2 lbm) (1 ft2)(10 ft/s)2 cos60°

 =  233 lbf
2. Momentum equation (vertical direction):

 N − W = m· v sin60° = ρAv 2 sin60°
 N = W + ρAv 2 sin60°

 = 800 lbf + 403 lbf =  1200 lbf

Review

1.  Discussion. Th e weight recorded by the scale is larger 
than the weight of the cart because of the momentum 
carried by the fl uid jet.

2.  Discussion. Th e momentum accumulation term in this 
problem is nonzero. However, it was assumed to be 
small and was neglected.

Vanes

A vane is a structural component, typically thin, that is used to turn a fl uid jet (Fig. 6.13). A 
vane is used to idealize many components of engineering interest. Examples include a blade in 
a turbine, a sail on a ship, and a thrust reverser on an aircraft  engine.



200 CHAPTER 6  •  THE MOMENTUM EQUATION

To make solving vane problems easier, we off er the following tips:

• Tip 1. Assume that v1 = v2 = v3. Th is assumption can be justifi ed with the Bernoulli equa-
tion. In particular, assume inviscid fl ow and neglect elevation changes, and the Bernoulli 
equation can be used to prove that the velocity of the fl uid jet is constant.

• Tip 2. Let each momentum fl ow equal m· v. For example, in Fig. 6.13, the momentum infl ow 
is m· 1v1. Th e momentum outfl ows are m· 2v2 and m· 3v3.

• Tip 3. If the vane is fl at, as in Fig. 6.13, assume that the force to hold the vane stationary is 
normal to the vane because viscous stresses are small relative to pressure stresses. Th us, the 
load on the vane can assumed to be due to pressure, which acts normal to the vane.

• Tip 4. When the jet is a free jet, as in Fig. 6.13, recognize that the jet does not cause a net 
force at the control surface because the pressure in the jet is atmospheric. Only pressures 
diff erent than atmospheric cause a net force.

v2

v3

v1

CV

FIGURE 6.13

A fl uid jet striking a fl at vane.

EXAMPLE 6.3

Momentum Equation Applied to a Vane

Problem Statement

A water jet (ρ = 1.94 slug/ft 3) is defl ected 60° by a stationary 
vane as shown in the fi gure. Th e incoming jet has a speed of 
100 ft /s and a diameter of 1 in. Find the force exerted by the jet 
on the vane.

v2

v1

60°

Defi ne the Situation

A water jet is defl ected by a vane.

60°

v

v = 100 ft/s
d = 1/12 ft
   = 1.94 slug/ft3ρ

Assumptions:
• Jet velocity is constant: v1 = v2 = v.
• Jet diameter is constant: d1 = d2 = d.
• Neglect gravitational eff ects.

State the Goal

Fjet(N) ➡ force of the fl uid jet on the vane

Generate Ideas and Make a Plan

Select: Because force is a parameter and fl uid particles accelerate 
as the jet turns, select the linear momentum equation.

Sketch: Select a CV that cuts through support so that the force 
of the support can be found. Th en, sketch a force diagram and 
a momentum diagram.

Fx

Fy
y

x

60°

mv·

mv·

In the force and momentum diagrams, notice the following:

•  Pressure forces are zero because pressures in the water 
jet at the control surface are zero gage.

•  Each momentum fl ow is represented with m· v.
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Nozzles

Nozzles are fl ow devices used to accelerate a fl uid stream by reducing the cross-sectional area 
of the fl ow (Fig. 6.14). Problems in this category involve analysis of the nozzle itself, not analysis 
of the free jet.

To make solving nozzle problems easier, we off er the following tips:

• Tip 1. Let each momentum fl ow equal m· v. For the nozzle in Fig. 6.14, the momentum 
infl ow is m· vA and the outfl ow is m· vB.

• Tip 2. Include a pressure force where the nozzle connects to a pipe. For the nozzle in Fig. 
6.14, include a pressure force of magnitude pAAA on the force diagram. Th is pressure force, 
like all pressure forces, is compressive.

• Tip 3. To fi nd pA, apply the Bernoulli equation between A and B.
• Tip 4. To relate vA and vB, apply the continuity equation.
• Tip 5. When the CS cuts through a support structure (e.g., a pipe wall, a fl ange), represent 

the associated force on the force diagram. For the nozzle shown in Fig. 6.14, add a force FAx 
and FAy to the force diagram.

Flow

A B

CV
FIGURE 6.14

A fl uid jet exiting a nozzle.

Analysis: To apply the momentum equation, use the force and 
momentum diagrams to write a vector equation:

 ∑ F = m· ovo − m· ivi

 (−Fx) i + (−Fy)j = m· v (cos 60° i − sin 60° j) − m· v i

Now, write scalar equations:
 −Fx = m· v (cos 60° − 1) (a)
 −Fy = −m· v (sin60°)  (b)

Because there is enough information as follows: to solve Eqs. 
(a) and (b), the problem is cracked. Th e plan is

1. Calculate m· v.
2. Apply Eq. (a) to calculate Fx.
3. Apply Eq. (b) to calculate Fy.
4. Apply Newton’s third law to fi nd the force of the jet.

Take Action (Execute the Plan)

1. Momentum fl ow rate:

 m· v = (ρAv)v
 = (1.94 slug/ft3)(π × 0.04172 ft2)(100 ft/s)2

 = 105.8 lbf

2. Linear momentum equation (x direction):

 Fx = m· v (1 − cos 60°)
 = (105.8 lbf )(1 − cos 60°)

 Fx = 53.0 lbf

3. Linear momentum equation (y direction):

 Fy = m· v sin60°
 = (105.8 lbf )sin60°

 Fy = 91.8 lbf

4. Newton’s third law:
Th e force of the jet on the vane (Fjet) is opposite in 
direction to the force required to hold the vane 
stationary (F). Th erefore,

Fjet = (53.0 lbf )i + (91.8 lbf )j

Review

1.  Discussion. Notice that the problem goal was specifi ed 
as a vector. Th us, the answer was given as a vector.

2.  Skill. Notice how the common assumptions for a vane 
were applied in the “defi ne the situation” portion.
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EXAMPLE 6.4

Momentum Equation Applied to a Nozzle

Problem Statement

Th e sketch shows air fl owing through a nozzle. Th e inlet 
pressure is p1 = 105 kPa abs, and the air exhausts into the 
atmosphere, where the pressure is 101.3 kPa abs. Th e nozzle 
has an inlet diameter of 60 mm and an exit diameter of 
10 mm, and the nozzle is connected to the supply pipe by 
fl anges. Find the force required to hold the nozzle stationary. 
Assume the air has a constant density of 1.22 kg/m3. Neglect 
the weight of the nozzle.

Flow

1
2

Flanges

Defi ne the Situation

Air fl ows through a nozzle.

p1 = 3.7 kPa-gage
D1 = 0.06 m

p2 = 0.0 kPa-gage
D2 = 0.01 m

Air

1 2

Properties: ρ = 1.22 kg/m3

Assumptions:
• Th e weight of the nozzle is negligible.
• Steady fl ow, constant density fl ow, inviscid fl ow.

State the Goals

F(N) ➡ force required to hold nozzle stationary

Generate Ideas and Make a Plan

Select: Because force is a parameter and fl uid particles are 
accelerating in the nozzle, select the momentum equation.

Sketch: Sketch a force diagram (FD) and momentum diagram 
(MD):

F x

FD MD

p1A1 mv1
· mv2

·

2 2

11

Write the momentum equation (x direction):

 F + p1A1 = m· (v2 − v1) (a)

To solve for F, we need v2 and v1, which can be found using 
the Bernoulli equation. Th us, the plan is as follows:

1.  Derive an equation for v2 by applying the Bernoulli 
equation and the continuity equation.

2. Calculate v2 and v1.
3. Calculate F by applying Eq. (a).

Take Action (Execute the Plan)

1. Bernoulli equation (apply between 1 and 2):

p1 + γz1 +
1
2

ρv 2
1 = p2 + γz2 +

1
2

ρv2
2

Term-by-term analysis:

• z1 = z2 = 0
• p1 = 3.7 kPa; p2 = 0.0

Th e Bernoulli equation reduces to

p1 + ρv2
1/2 = ρv2

2/2

Continuity equation. Select a CV that cuts through 
sections 1 and 2. Neglect the mass accumulation terms. 
Continuity simplifi es to

v1A1 = v2 A2

 v1d 2
1 = v2d 2

2

Substitute into the Bernoulli equation and solve for v2:

v2 = B
2p1

ρ(1 − (d2/d1)
4)

2. Calculate v2 and v1:

 v2 = B
2 × 3.7 × 1000 Pa

(1.22 kg/m3)(1 − (10/60)4)
= 77.9 m/s

 v1 = v2 (d2

d1
)

2

 = 77.9 m/s × (1
6)

2

= 2.16 m/s
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3. Momentum equation:

 F + p1A1 = m· (v2 − v1)

 F = ρA1v1(v2 − v1) − p1A1

 = (1.22 kg/m3)(π
4 ) (0.06 m)2 (2.16 m/s)

 × (77.9 − 2.16)(m/s)

 −3.7 × 1000 N/m2 × (π
4 ) (0.06 m)2

 = 0.564 N − 10.46 N = −9.90 N

Because F is negative, the direction is opposite to the direction 
assumed on the force diagram. Th us,

Force to hold nozzle = 9.90 N (← direction)

Review

1.  Knowledge. Th e direction initially assumed for the force 
on a force diagram is arbitrary. If the answer for the 
force is negative, then the force acts in a direction 
opposite the chosen direction.

2.  Knowledge. Pressures were changed to gage pressure 
in the “defi ne the situation” operation because it is the 
pressures’ diff erences as compared to atmospheric 
pressure that cause net pressure forces.

Pipe Bends

A pipe bend is a structural component that is used to turn through an angle (Fig. 6.15). A pipe 
bend is oft en connected to straight runs of pipe by fl anges. A flange is a round disk with a hole 
in the center that slides over a pipe and is oft en welded in place. Flanges are bolted together to 
connect sections of pipe.

Th e following tips are useful for solving problems that involve pipe bends.

• Tip 1. Let each momentum fl ow equal m· v. For the bend in Fig. 6.15, the momentum infl ow 
is m· vA and the outfl ow is m· vB.

• Tip 2. Include pressure forces where the CS cuts through a pipe. In Fig. 6.15, there is a pres-
sure force at section A (FA = pAAA) and at section B (FB = pBAB). As always, both pressure 
forces are compressive.

• Tip 3. To relate pA and pB, it is most correct to apply the energy equation from Chapter 7 and 
include head loss. An alternative is to assume that pressure is constant or to assume inviscid 
fl ow and apply the Bernoulli equation.

• Tip 4. To relate vA and vB, apply the continuity equation.
• Tip 5. When the CS cuts through a support structure (pipe wall, fl ange), include the loads 

caused by the support on the force diagram.

EXAMPLE 6.5

Momentum Equation Applied to a Pipe Bend

Problem Statement

A 1 m diameter pipe bend shown in the diagram is carrying 
crude oil (S = 0.94) with a steady fl ow rate of 2 m3/s. Th e bend 

has an angle of 30° and lies in a horizontal plane. Th e volume 
of oil in the bend is 1.2 m3, and the empty weight of the bend 
is 4 kN. Assume the pressure along the centerline of the bend 
is constant with a value of 75 kPa gage. Find the force required 
to hold the bend in place.

FIGURE 6.15

Pipe bend.

Bolted flange
(two places)

Pipe bend

Flow

θA
B

CS
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Flow

Bolted flange

30°

Defi ne the Situation

Crude oil fl ows through a pipe bend:

• Th e bend lies in a horizontal plane.
• Voil = 1.2 m3 = volume of oil in bend.
• Wbend = 4000 N = empty weight of bend.
• p = 75 kPa-gage = pressure along the centerline.

Oil
S = 0.94
Q = 2 m3/s

D = 1 m

30°

1

2

State the Goal

F(N) ➡ force to hold the bend stationary.

Generate Ideas and Make a Plan

Select: Because force is a parameter and fl uid particles 
accelerate in the pipe bend, select the momentum equation.

Sketch: Select a CV that cuts through the support structure 
and through sections 1 and 2. Th en, sketch the force and 
momentum diagrams.

W

y
Fy

x

mv
Fx
pA

pA
30°

30°

·

mv·

Analysis: Using the diagrams as guides, write the momentum 
equation in each direction:

• x direction:

 Fx + p1A1 − p2 A2 cos 30° = m· v2 cos30° − m· v1 (a)

• y direction:

 Fy + p2 A2 sin30° = −m· v2 sin30° (b)

• z direction:

 Fz − Wtotal = 0 (c)

Review these equations; notice that there is enough informa-
tion to solve for the goals Fx, Fy, and Fz. Th us, create a plan:

1. Calculate the momentum fl ux m· v.
2. Calculate the pressure force pA.
3. Solve Eq. (a) for Fx.
4. Solve Eq. (b) for Fy.
5. Solve Eq. (c) for Fz.

Take Action (Execute the Plan)

1. Momentum fl ow:
• Apply the volume fl ow rate equation:

v = Q/A =
(2 m3/s)

(π × 0.52 m2)
= 2.55 m/s

• Next, calculate the momentum fl ow:

 m· v = ρQv = (0.94 × 1000 kg/m3)(2 m3/s)(2.55 m/s)
 = 4.79 kN

2. Pressure force:

pA = (75 kN/m2)(π × 0.52 m2) = 58.9 kN

3. Momentum equation (x direction):

Fx + p1A1 − p2 A2 cos 30° = m· v2 cos 30° − m· v1

 Fx = −pA(1 − cos 30°) − m· v (1 − cos 30°)

 = −(pA + m· v)(1 − cos 30°)

 = −(58.9 + 4.79)(kN)(1 − cos 30°)

 = −8.53 kN

4. Momentum equation (y direction):

Fy + p2 A2 sin30° = −m· v2 sin30°

 Fy = −(pA + m· v) sin 30°

 = −(58.9 + 4.79)(kN)(sin 30°) = −31.8 kN

5.  Momentum equation (z direction). (Th e bend weight 
includes the oil plus the empty pipe.)

−Fz − Wtotal = 0

 W = γV + 4 kN

 = (0.94 × 9.81 kN/m3)(1.2 m3) + 4 kN = 15.1 kN

6. Force to hold the bend:

F = (−8.53 kN) i + (−31.8 kN) j + (15.1 kN)k
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Variable Velocity Distribution

Th is subsection shows how to solve a problem when the momentum fl ow is evaluated by inte-
gration. Th is case is illustrated by Example 6.6.

EXAMPLE 6.6

Momentum Equation Applied with a Variable Velocity 
Distribution

Problem Statement

Th e drag force of a bullet-shaped device may be measured 
using a wind tunnel. Th e tunnel is round with a diameter 
of 1 m, the pressure at section 1 is 1.5 kPa gage, the 
pressure at section 2 is 1.0 kPa gage, and air density is 
1.0 kg/m3. At the inlet, the velocity is uniform with a 
magnitude of 30 m/s. At the exit, the velocity varies 
linearly as shown in the sketch. Determine the drag 
force on the device and support vanes. Neglect viscous 
resistance at the wall, and assume pressure is uniform 
across sections 1 and 2.

D

Support vanesp1 p2

x

21

Defi ne the Situation

Data is supplied for the wind tunnel test (see above).

Properties: Air: ρ = 1.0 kg/m3.

Assumptions: Steady fl ow.

State the Goal

Find: Drag force (in newtons) on the model

Make a Plan

1. Select a control volume that encloses the model.
2. Sketch the force diagram.
3. Sketch the momentum diagram.
4.  Th e downstream velocity profi le is not uniformly 

distributed. Apply the integral form of the momentum 
equation, Eq. (6.7).

5. Evaluate the sum of forces.

6.  Determine velocity profi le at section 2 by application 
of continuity equation.

7. Evaluate the momentum terms.
8. Calculate drag force on the model.

Take Action (Execute the Plan)

1.  Th e control volume selected is shown. Th e control 
volume is stationary.

x

FD MD

p1A p2A

Fs2

Fs1

mv1
A

2

ρv2
2dA 

·

2.  Th e forces consist of the pressure forces and the force 
on the model support struts cut by the control surface. 
Th e drag force on the model is equal and opposite to the 
force on the support struts: FD = Fs1 + Fs2.

Fs1

Fs2

FD

3. Th ere is inlet and outlet momentum fl ux.
4. Integral form of momentum equation in x direction:

∑ Fx =
d
dt ∫cv

ρvx dV + ∫
cs

ρvx (V ∙ dA)

On cross section 1, V∙dA = –vxdA, and on cross 
section 2, V∙dA = vxdA, so

∑ Fx =
d
dt ∫cv

ρvx dV − ∫
1

ρv2
x dA + ∫

2
ρv2

x dA

5. Evaluation of force terms:

 ∑ Fx = p1A − p2 A − (Fs1 + Fs2)

 = p1A − p2A − FD
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6. Velocity profi le at section 2:
Velocity is linear in radius, so choose v2 = v1K(r/ro), 
where ro is the tunnel radius and K is a proportionality 
factor to be determined.

 Q1 = Q2

 A1v1 = ∫
A2

v2(r)dA = ∫
ro

0

v1K(r/ro)2πr dr

 πr2
ov1 = 2πv1K

1
3

r 2
o

 K =
3
2

7. Evaluation of momentum terms:
• Accumulation term for steady fl ow is 

d
dt ∫cv

ρvx dV = 0

• Momentum at cross section 1 with vx = v1 is

∫
1

ρv 2
x dA = ρv 2

1 A = m· v1

• Momentum at cross section 2 is

∫
2

ρv 2
x dA = ∫

ro

0

ρ [
3
2

v1 ( r
ro

)]
2

2πrdr =
9
8

m· v1

8. Drag force:

 p1A − p2 A − FD = m· v1 (9
8

− 1)
 FD = (p1 − p2)A −

1
8

ρAv2
1

 = (π × 0.52 m2)(1.5 − 1.0)(103)N/m2

 −
1
8
(1 kg/m3)(π × 0.52 m2)(30 m/s)2

 FD =  304 N

6.5 Examples of the Linear Momentum 

Equation (Moving Objects)

Th is section describes how to apply the linear momentum equation to problems that in-
volve moving objects, such as carts in motion and rockets. When an object is moving, let 
the CV move with the object. As shown ahead (repeated from Fig. 6.11), problems that 
involve moving CVs classify into two categories: objects moving with constant velocity and 
objects that are accelerating. Both categories involve selection of a reference frame, which 
is the next topic.

Moving CVs

Problems

Stationary CVs

Jets and 
vanes

Nozzles and
pipe bends

Variable
velocity AcceleratingConstant

velocity

Reference Frame

When an object is moving, it is necessary to specify a reference frame. A reference frame is 
a three-dimensional framework from which an observer takes measurements. For example, 
Fig. 6.16 shows a rocket in fl ight. For this situation, one possible reference frame is fi xed to the 
earth. Another possible reference frame is fi xed to the rocket. Observers in these two frames of 
reference would report diff erent values of the rocket velocity VRocket and the velocity of the fl uid 
jet Vjet. Th e ground-based reference frame is inertial. An inertial reference frame is any refer-
ence frame that is stationary or moving with constant velocity with respect to the earth. Th us, 
an inertial reference frame is a nonaccelerating reference frame. Alternatively, a noninertial 
reference frame is any reference frame that is accelerating.
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Regarding the linear momentum equation as presented in this text, this equation is only 
valid for an inertial frame. Th us, when objects are moving, the engineer should specify an 
inertial reference frame.

Analyzing a Moving Body (Constant Velocity)

When an object is moving with constant velocity, the reference frame can be placed on the 
moving object or fi xed to the earth. However, most problems are simpler if the frame is fi xed 
to the moving object. Example 6.7 shows how to solve a problem involving an object moving 
with constant velocity.

Reference frame
fixed to the earth
(inertial)

Reference frame
fixed to accelerating rocket
(noninertial)

VRocket

VJet

FIGURE 6.16

EXAMPLE 6.7

Momentum Equation Applied to a Moving CV

Problem Statement

A stationary nozzle produces a water jet with a speed of 
50 m/s and a cross-sectional area of 5 cm2. Th e jet strikes a 
moving block and is defl ected 90° relative to the block. Th e 
block is sliding with a constant speed of 25 m/s on a surface 
with friction. Th e density of the water is 1000 kg/m3. Find the 
frictional force F acting on the block.

vb

vj

Flow

2
1

Defi ne the Situation

A block slides at constant velocity due to a fl uid jet.

H2O, = 1000 kg/m3

vBlock = vB = 25 m/s
(from fixed RF)vjet = 50 m/s

(from fixed RF)
Ajet = 5 � 10�4 m2

ρ

State the Goal

Ff(N) ➡ the frictional force on the block

Solution Method I (Moving RF)

When a body is moving at constant velocity, the easiest way to 
solve the problem is to put the RF on the moving body. Th is 
solution method is shown fi rst.
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Generate Ideas and Make a Plan

Select the linear momentum equation because force is the 
goal and fl uid particles accelerate as they interact with the 
block.

Select a moving CV that surrounds the block because this CV 
involves known parameters (i.e., the two fl uid jets) and the 
goal (frictional force).

Because the CV is moving at a constant velocity, select a 
reference frame (RF) that is fi xed to the moving block. Th is 
RF makes analysis of the problem simpler.

Sketch the force and momentum diagrams and the RF.

mv1

mv2

Ff

N

2
1

z

x

RF: Fixed
to block

W

·

·

To apply the momentum equation, use the force and 
momentum diagrams to visualize the vectors. Th e 
momentum equation in the x direction is

 −Ff = −m· v1 (a)

In Eq. (a), the mass fl ow rate describes the rate at which 
mass is crossing the control surface. Because the CS is 
moving away from the fl uid jet, the mass fl ow rate term 
becomes

 m· = ρAV = ρAjet(v jet − vblock) (b)

In Eq. (a), the velocity v1 is the velocity as measured from the 
selected reference frame. Th us,

 v1 = vjet − vblock (c)

Combining Eqs. (a), (b), and (c) gives

 Ff = m· v1 = ρAjet (vjet − vblock)
2 (d)

Because all variables on the right side of Eq. (d) are known, we 
can solve the problem. Th e plan is simple: plug numbers into 
Eq. (d).

Take Action (Execute the Plan)

Ff = ρAjet (vjet − vblock)
2

Ff = (1000 kg/m2)(5 × 10−4 m2)(50 − 25)2(m/s)2

Ff = 312 N

Solution Method II (Fixed RF)

Another way to solve this problem is to use a fi xed reference 
frame. To implement this approach, sketch the force diagram, 
the momentum diagram, and the selected RF.

Notice that m· v2 shows a vertical and horizontal component. 
Th is is because an observer in the selected RF would see these 
velocity components.

mv1

mv2

Ff

N

2
1

z

x

RF: Fixed
to ground

θW

·

·

From the diagrams, one can write the momentum equation in 
the x direction:

  −Ff = m· v2 cos θ − m· v1

  Ff = m· (v1 − v2 cosθ) 
(e)

In the momentum equation, the mass fl ow rate is measured 
relative to the control surface. Th us, m·  is independent of the 
RF, and one can use Eq. (b), which is repeated here:

 m· = ρAV = ρAjet (vjet − vblock) (f)

In Eq. (e), the velocity v1 is the velocity as measured from the 
selected reference frame. Th us,

 v1 = vjet (g)

To analyze v2, relate velocities by using a relative-velocity 
equation from a dynamics text:

 vjet = vblock + vjet/block (h)

where
•  v2 = vjet is the velocity of the jet at section 2 as measured 

from the fi xed RF,
•  vblock is the velocity of the moving block as measured 

from the fi xed RF, and
•  vjet/block is the velocity of the jet at section as measured 

from a RF fi xed to the moving block.
Substitute numbers into Eq. (h) to give

 v2 = (25 m/s)i + (25 m/s)j (i)

Th us,

 v2 cos θ = v2x = 25 m/s = vblock (j)
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Analyzing a Moving Body (Accelerating)

Th is section presents an example of an accelerating object—namely, the analysis of a rocket 
(Fig. 6.17). To begin, sketch a control volume around the rocket. Note that the reference frame 
cannot be fi xed to the rocket because the rocket is accelerating.

Assume the rocket is moving vertically upward with a speed vr measured with respect 
to the ground. Exhaust gases leave the engine nozzle (area Ae) at a speed Ve relative to the 
rocket nozzle with a gage pressure of pe. Th e goal is to obtain the equation of motion of the 
rocket.

Th e control volume is drawn around and accelerates with the rocket. Th e force and 
momentum diagrams are shown in Fig. 6.18. Th ere is a drag force of D and a weight of W 
acting downward. Th ere is a pressure force of peAe on the nozzle exit plane because the pres-
sure in a supersonic jet is greater than ambient pressure. Th e summation of the forces in the 
z direction is

 ∑ Fz = pe Ae − W − D (6.15)

Th ere is only one momentum fl ux out of the rocket nozzle, m· vo. Th e speed vo must be refer-
enced to an inertial reference frame, which in this case is chosen as the ground. Th e speed of 
the exit gases with respect to the ground is

 vo = (Ve − vr) (6.16)

because the rocket is moving upward with speed vr with respect to the ground, and the exit 
gases are moving downward at speed Ve with respect to the rocket.

Substitute Eqs. (f), (g), and (j) into Eq. (e):

  Ff = {m· }(v1 − v2 cosθ)
  = {ρAjet (vjet − vblock)}(vjet − vblock) (k)
  = ρAjet (vjet − vblock)

2

Eq. (k) is identical to Eq. (d). Th us, solution method I is 
equivalent to solution method II.

Review the Solution and the Process

1.  Knowledge. When an object moves with constant veloc-
ity, select an RF fi xed to the moving object because this 
is much easier than selecting an RF fi xed to the earth.

2.  Knowledge. Specifying the control volume and the refer-
ence frame are independent decisions.

FIGURE 6.18

Force and momentum diagrams for rocket.

z

W

D

pe Ae

FD MD

mvo = m(Ve – vr)

d
dt

(mrvr)

· ·

Ve

vr

FIGURE 6.17

Vertical launch of rocket.
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Th e momentum equation in the z direction is

∑ Fz =
d
dt ∫cv

vzρdV + ∑
cs

m· o voz − ∑
cs

m· i viz

Th e velocity inside the control volume is the speed of the rocket, vr , so the accumulation term 
becomes

d
dt (∫

cv

vzρdV) =
d
dt [vr∫

cv

ρdV] =
d
dt
(mr vr)

Substituting the sum of the forces and momentum terms into the momentum equation gives

 pe Ae − W − D =
d
dt
(mr vr) − m· (Ve − vr) (6.17)

Next, apply the product rule to the accumulation term. Th is gives

 pe Ae − W − D = mr
dvr

dt
+ vr (dmr

dt
+ m· ) − m· Ve (6.18)

Th e continuity equation can now be used to eliminate the second term on the right. Applying 
the continuity equation to the control surface around the rocket leads to

 
d
dt ∫cv

ρdV + ∑ m· o − ∑ m· i = 0

  
dmr

dt
+ m· = 0 

(6.19)

Substituting Eq. (6.19) into Eq. (6.18) yields

 m· Ve + pe Ae − W − D = mr
dvr

dt
 (6.20)

Th e sum of the momentum outfl ow and the pressure force at the nozzle exit is identifi ed as the 
thrust of the rocket

T = m·Ve + pe Ae = ρe AeV 2
e + pe Ae

so Eq. (6.20) simplifi es to

 mr
dvr

dt
= T − D − W (6.21)

which is the equation used to predict and analyze rocket performance.
Integration of Eq. (6.21) leads to one of the fundamental equations for rocketry: the 

burnout velocity or the velocity achieved when all the fuel is burned. Neglecting the drag and 
weight, the equation of motion reduces to

 T = mr
dvr

dt
 (6.22)
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Th e instantaneous mass of the rocket is given by mr = mi − m· t, where mi is the initial rocket 
mass and t is the time from ignition. Substituting the expression for mass into Eq. (6.22) and 
integrating with the initial condition vr(0) = 0 results in

 vbo =
T
m·

 ln 
mi

mf
 (6.23)

where vbo is the burnout velocity and mf is the fi nal (or payload) mass. Th e ratio T/m·  is known 
as the specifi c impulse, Isp , and has units of velocity.

6.6 The Angular Momentum Equation

Th is section presents the angular momentum equation, which is also called the moment-of-
momentum equation. Th e angular momentum equation is very useful for situations that in-
volve torques. Examples include analyses of rotating machinery such as pumps, turbines, fans, 
and blowers.

Derivation of the Equation

Newton’s second law of motion can be used to derive an equation for the rotational motion of 
a system of particles:

 ∑ M =
d(Hsys)

dt
 (6.24)

where M is a moment and Hsys is the total angular momentum of all mass forming the system.
To convert Eq. (6.24) to an Eulerian equation, apply the Reynolds transport theorem, 

Eq. (5.23). Th e extensive property Bsys becomes the angular momentum of the system: 
Bsys = Hsys. Th e intensive property b becomes the angular momentum per unit mass. Th e 
angular momentum of an element is r × mv, and so b = r × v. Substituting for Bsys and b 
in Eq. (5.23) gives

 
d(Hsys)

dt
=

d
dt ∫cv

(r × v)ρdV + ∫
cs

(r × v)ρV ∙ dA (6.25)

Combining Eqs. (6.24) and (6.25) gives the integral form of the moment-of-momentum 
equation:

 ∑ M =
d
dt ∫cv

(r × v)ρdV + ∫
cs

(r × v)ρV ∙ dA (6.26)

where r is a position vector that extends from the moment center, V is fl ow velocity relative to 
the control surface, and v is fl ow velocity relative to the inertial reference frame selected.

If the mass crosses the control surface through a series of inlet and outlet ports with 
uniformly distributed properties across each port, then the moment-of-momentum equation 
becomes

 ∑ M =
d
dt ∫cv

(r × v)ρdV + ∑
cs

ro × (m· ovo) − ∑
cs

ri × (m· i vi) (6.27)

Th e moment-of-momentum equation has the following physical interpretation:

( sum of
moments) = (angular momentum

accumulation ) + (angular momentum
outflow ) − (angular momentum

inflow )
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Application

Th e process for applying the angular momentum equation is similar to the process for applying 
the linear momentum equation. To illustrate this process, Example 6.8 shows how to apply the 
angular momentum equation to a pipe bend.

EXAMPLE 6.8

Applying the Angular Momentum Equation to Calculate 
the Moment on a Reducing Bend

Problem Statement

Th e reducing bend shown in the fi gure is supported on a 
horizontal axis through point A. Water (20°C) fl ows through 
the bend at 0.25 m3/s. Th e inlet pressure at cross section 1 is 
150 kPa gage, and the outlet pressure at section 2 is 59.3 kPa gage. 
A weight of 1420 N acts 20 cm to the right of point A. Find the 
moment the support system must resist. Th e diameters of the 
inlet and outlet pipes are 30 cm and 10 cm, respectively.

W

30 cm

20 cm
2

A
1

32.5 cm

15 cm

Defi ne the Situation

Water fl ows through a pipe bend.
Assumptions: Steady fl ow.
Properties: Water (Table A.5, 20°C, p = 1 atm): ρ = 998 kg/m3

0.15 m

0.325 m

0.3 m 0.2 m

1

2

A

D1 = 0.3 m
p1 =150 kPa gage

D2 = 0.1m
p2 = 59.3 kPa gage

W =1420 N

H2O
Q = 0.25 m3/s

State the Goal

MA(N) ➡ moment acting on the support structure

Generate Ideas and Make a Plan

Select the moment-of-momentum equation (Eq. 6.27) because 
(a) torque is a parameter and (b) fl uid particles are accelerating 
as they pass through the pipe bend.
Select a control volume surrounding the reducing bend. Th e 
reason is that this CV cuts through point A (where we want 
to know the moment) and also cuts through sections 1 and 2 
where information is known.
Sketch the force and momentum diagrams. Add dimensions 
to the sketches so that it is easier to evaluate cross products.

y

x 11
A

mv1

mv2

0.2 m

0.15 m

0.325 m

22

r2

r1

W 1420 N

p1A1

p2A2

Ax

Ay

MA

·

·

Select point “A” to sum moments about. Because the fl ow is 
steady, the accumulation of momentum term is zero. Also, 
there is one infl ow of angular momentum and one outfl ow. 
Th us, the angular momentum equation (Eq. 6.27) simplifi es to

 ∑ MA = {r2 × (m· v2)} − {r1 × (m· v1)} (a)

Sum moments in the z direction:

∑ MA, z = ( p1A1)(0.15 m) + ( p2 A2)(0.475 m)

 + MA − W(0.2 m) 
(b)

Next, analyze the momentum terms in Eq. (a):

{r2 × (m· v2)} − {r1 × (m· v1)}z = {−r2 m· v2} − {r1 m· v1} (c)

Substitute Eqs. (b) and (c) into Eq. (a):
( p1A1)(0.15 m) + ( p2 A2)(0.475 m) + MA − W(0.2 m)
 = {−r2 m· v2} − {r1m· v1} 

(d)

All the terms in Eq. (d) are known, so MA can be calculated. 
Th us, the plan is as follows:

1. Calculate torques to due to pressure: r1p1A1 and r2p2A2.
2. Calculate momentum fl ow terms: r2 m· v2 + r1 m· v1.
3. Calculate MA.
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EXAMPLE 6.9

Applying the Angular Momentum Equation to Predict 
the Power Delivered by a Francis Turbine

Problem Statement

A Francis turbine is shown in the diagram. Water is directed 
by guide vanes into the rotating wheel (runner) of the turbine. 
Th e guide vanes have a 70° angle from the radial direction. 
Th e water exits with only a radial component of velocity with 
respect to the environment. Th e outer diameter of the wheel is 
1 m, and the inner diameter is 0.5 m. Th e distance across the 
runner is 4 cm. Th e discharge is 0.5 m3/s, and the rotational 
rate of the wheel is 1200 rpm. Th e water density is 1000 kg/m3. 
Find the power (kW) produced by the turbine.

Outlet

4 cm

Guide vanes

Vout

Vin

70°

1 m

0.5 m

Defi ne the Situation

A Francis turbine generates power.

+

2

1

0

20°

D1 = 1.0 m
D2 = 0.5 m

=1200 rpm
= 125.7 rad/s

1.0 m

0.5 m

Q = 0.5 m3/s
= 1000 kg/m3ρω

State the Goal

P(W) ➡ power generated by the turbine

Generate Ideas and Make a Plan

Because power is the goal, select the power equation:
 P = Tω (a)

where T is torque acting on the turbine and ω is turbine 
angular speed. In Eq. (a), torque is unknown, so it becomes 
the new goal. Torque can be found using the angular 
momentum equation.

Example 6.9 illustrates how to apply the angular momentum equation to predict the 
power delivered by a turbine. Th is analysis can be applied to both power-producing machines 
(turbines) and power-absorbing machines (pumps and compressors). Additional information 
is presented in Chapter 14.

Take Action (Execute the Plan)

1. Torques due to pressure:
 r1 p1A1 = (0.15 m)(150 × 1000 N/m2)(π × 0.32/4 m2)

 = 1590 N ∙ m
 r2 p2 A2 = (0.475 m)(59.3 × 1000 N/m2)(π × 0.152/4 m2)

 = 498 N ∙ m
2. Momentum fl ow terms:

 m· = ρQ = (998 kg/m3)(0.25 m3/s)
 = 250 kg/s

 v1 =
Q
A1

=
0.25 m3/s

π × 0.152 m2 = 3.54 m/s

 v2 =
Q
A2

=
0.25 m3/s

π × 0.0752 m2 = 14.15 m/s

 m· (r2v2 + r1v1) = (250 kg/s)
 × (0.475 × 14.15 + 0.15 × 3.54)(m2/s)
 = 1813 N ∙ m

3. Moment exerted by support:

 MA = −0.15p1A1 − 0.475p2 A2 + 0.2W − m· (r2v2 + r1v1)

 = −(1590 N ∙ m) − (498 N ∙ m)
 + (0.2 m × 1420 N) − (1813 N ∙ m)

 MA = −3.62 kN ∙ m

Th us, a moment of 3.62 kN∙m acting in the clockwise 
direction is needed to hold the bend stationary.

By Newton’s third law, the moment acting on the support 
structure is MA = 3.62 kN∙m (counterclockwise).

Review the Solution and the Process

Tip. Use the “right-hand rule” to fi nd the correct direction 
of moments.



214 CHAPTER 6  •  THE MOMENTUM EQUATION

Sketch: To apply the angular momentum equation, select a 
control volume surrounding the turbine. Th en, sketch a force 
and momentum diagram:

+ +

T

20°

O
2

1

x

y

r1

mv1

mv2

·

·

In the force diagram, the torque T is the external torque from 
the generator. Because this torque opposes angular accelera-
tion, its direction is counterclockwise. Th e fl ow is idealized by 
using one inlet momentum fl ow at section 1 and one outlet 
momentum fl ow at section 2.

Select point “O” to sum moments about. Because the fl ow 
is steady, the accumulation of momentum is zero. Th us, the 
angular momentum equation (Eq. 6.26) simplifi es to

∑ MA = {r2 × (m· v2)} − {r1 × (m· v1)} (b)

Apply Eq. (b) in the z direction. Also, recognize that the 
fl ow at section 2 has no angular momentum. Th at is, 
{r2 × (m· v2)} = 0. Th us, Eq. (b) simplifi es to

T = 0 − {−r1m· v1 cos 20°}
which can be written as

T = r1m· v1 cos 20° (c)
In Eq. (c), the velocity v1 can be calculated using the fl ow rate 
equation. Because velocity is not perpendicular to area, use 
the dot product:

 Q1 = V1 ∙ A1

 Q = v1A1 sin20°

which can be rewritten as

v1 =
Q

A1 sin20°
 (d)

Now, the number of equations equals the number of 
unknowns. Th us, the plan is as follows:

1. Calculate inlet velocity v1 using Eq. (d).
2. Calculate mass fl ow rate using m· = ρQ.
3. Calculate torque using Eq. (c).
4. Calculate power using Eq. (a).

Take Action (Execute the Plan)

1. Volume fl ow rate equation:

v1 =
Q

A1 sin20°
=

(0.5 m3/s)
π(1.0 m)(0.04 m) sin20°

= 11.63 m/s

2. Mass fl ow rate equation:

m· = ρQ = (1000 kg/m3)(0.5 m3/s) = 500 kg/s

3. Angular momentum equation:

 T = r1m· v1 cos 20°
 = (0.5 m)(500 kg/s)(11.63 m/s)cos 20°
 = 2732 N ∙ m

4. Power equation:

 P = Tω = (2732 N ∙ m)(125.7 rad/s)
 P = 343 kW

Newton’s Second Law of Motion

• A force is a push or pull of one body on another. A push/
pull is an interaction that can cause a body to accelerate. 
A force always requires the interaction of two bodies.

• Forces can be classifi ed into two categories:
• Body forces. Forces in this category do not require that 

the interacting bodies be touching. Common body 
forces include weight, the magnetic force, and the 
electrostatic force.

• Surface forces. Forces in this category require that the 
two interacting bodies are touching. Most forces are 
surface forces.

• Newton’s second law ∑F = ma applies to a fl uid particle; 
other forms of this law are derived from this equation.

• Newton’s second law asserts that forces are related to 
accelerations:
• Th us, if ∑F > 0, the particle must accelerate.
• Th us, if a > 0, the sum of forces must be nonzero.

Solving Vector Equations

• A vector equation is one for which the terms are vectors.
• A vector equation can be written as one or more equiva-

lent scalar equations.

6.7 Summarizing Key Knowledge
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• Th e Visual Solution Method (VSM) is an approach for 
solving a vector equation that makes problem solving 
easier. Th e process for the VSM is as follows:
• Step 1. Identify the vector equation in its general form.
• Step 2. Sketch a diagram that shows the vectors on the 

left  side of the equation. Sketch an equal sign. Sketch a 
diagram that shows the vectors on the right side of the 
equation.

• Step 3. From the diagrams, apply the general equa-
tion, write the fi nal results, and simplify the results to 
create the reduced equation(s).

The Linear Momentum Equation

• Th e linear momentum equation is Newton’s second law 
in a form that is useful for solving problems in fl uid 
mechanics.

• To derive the momentum equation, proceed as follows:
• Begin with Newton’s second law for a single particle.
• Derive Newton’s second law for a system of particles.
• Apply the Reynolds transport theorem to give the fi nal 

result.
• Physical interpretation:

(sum of
forces ) = ( momentum

accumulation) + (momentum
outflow )

 − (momentum
inflow )

• Th e momentum accumulation term gives the rate at 
which the momentum inside the control volume is 
changing with time.

• The momentum flow terms give the rate at which 
momentum is being transported across the control 
surfaces.

The Angular Momentum Equation

• Th e angular momentum equation is the rotational analog 
to the linear momentum equation:
• Th is equation is useful for problems involving torques 

(i.e., moments).
• Th is equation is commonly applied to rotating ma-

chinery such as pumps, fans, and turbines.
• Th e physics of the angular momentum equation are

( sum of
moments) = (angular momentum

accumulation )
+ (angular momentum

outflow ) − (angular momentum
inflow )

• To apply the angular momentum equation, use the 
same process as that used for the linear momentum 
equation.

1. Hibbeler, R.C. Dynamics. Englewood Cliff s, NJ: Prentice Hall, 
1995.

REFERENCES

Newton’s Second Law of Motion (§6.1)

6.1 Identify the surface and body forces acting on a buoy in the 
ocean. Also, sketch a free body diagram and explain how 
Newton’s laws of motion apply.
6.2 Newton’s second law can be stated in this way: the force is 
equal to the rate of change of momentum, F = d(mv)/dt. 
Taking the derivative by parts yields F = m(dv/dt) + v(dm/dt). 
Th is does not correspond to F = ma. What is the source of the 
discrepancy?

The Linear Momentum Equation: Theory (§6.2)

6.3 Which are the following are correct with respect to the 
derivation of the momentum equation? (Select all that apply.)

a. Reynold’s transport theorem is applied to Fick’s law.
b. Th e extensive property is momentum.
c. Th e intensive property is mass.
d.  Th e velocity is assumed to be uniformly distributed across 

each inlet and outlet.
e. Th e net momentum fl ow is the “ins” minus the “outs.”
f.  Th e net force is the sum of forces acting on the matter inside 

the CV.

The Linear Momentum Equation: Application (§6.3)

6.4 When making a force diagram (FD) and its partner 
momentum diagram (MD) to set up the equations for a 

PROBLEMS
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momentum equation problem (see Fig. 6.10), which of the fol-
lowing elements should be in the FD and which should be in the 
MD? (Classify each of the following as either “FD” or “MD”.)

a.  Each mass stream with product m· o vo or product m· i vi crossing 
a control surface boundary

b.  Forces required to hold walls, vanes, or pipes in place
c. Weight of a tank that contains the fl uid
d. Weight of the fl uid
e.  Pressure force associated with a fl uid fl owing across a 

control surface boundary

Applying the Momentum Equation to Fluid Jets (§6.4)

6.5 Give fi ve examples of jets and how they occur in practice.
6.6 A “balloon rocket” is a balloon suspended from a taut wire by 
a hollow tube (drinking straw) and string. Th e nozzle is formed 
of a 1.6-cm-diameter tube, and an air jet exits the nozzle with 
a speed of 60 m/s and a density of 1.2 kg/m3. Find the force F 
needed to hold the balloon stationary. Neglect friction.
6.7 Th e balloon rocket is held in place by a force F. Th e pressure 
inside the balloon is 12 in-H2O, the nozzle diameter is 0.4 cm, and 
the air density is 1.2 kg/m3. Find the exit velocity v and the force F. 
Neglect friction and assume the air fl ow is inviscid and irrotational.

Problems 6.6, 6.7

Nozzle

F

6.8 For Example 6.2 in §6.4, the situation diagram shows 
concrete being “shot” at an angle into a cart that is tethered by 
a cable, and sitting on a scale. Determine whether the following 
two statements are true or false.

a. Mass is being accumulated in the cart.
b. Momentum is being accumulated in the cart.

6.9 A water jet of diameter 40 mm and speed v = 20 m/s is fi lling 
a tank. Th e tank has a mass of 23 kg and contains 28 liters of 
water at the instant shown. Th e water temperature is 15°C. Find 
the force acting on the bottom of the tank and the force acting on 
the stop block. Neglect friction.

v

70°
Stop
block

Problems 6.9, 6.10

6.10 A water jet of diameter 2 inches and speed v = 60 ft /s is 
fi lling a tank. Th e tank has a mass of 25 lbm and contains 
6 gallons of water at the instant shown. Th e water temperature is 
70°F. Find the minimum coeffi  cient of friction such that the force 
acting on the stop block is zero.
6.11 A design contest features a submarine that will travel at a 
steady speed of Vsub = 1 m/s in 15°C water. Th e sub is powered 
by a water jet. Th is jet is created by drawing water from an inlet of 
diameter 25 mm, passing this water through a pump and then ac-
celerating the water through a nozzle of diameter 5 mm to a speed 
of Vjet. Th e hydrodynamic drag force (FD) can be calculated using

FD = CD (ρV 2
sub

2 )Ap

where the coeffi  cient of drag is CD = 0.3 and the projected area 
is Ap = 0.28 m2. Specify an acceptable value of Vjet. See §6.5 for 
useful knowledge about moving CV’s.

Pump
VsubVjet

Problem 6.11

6.12 Th is tank provides a water jet (70°F) to cool a vertical metal 
surface during manufacturing. Calculate V when a horizontal force 
of 180 lbf is required to hold the metal surface in place. Q = 3 cfs.
6.13 A horizontal water jet at 70°F issues from a circular orifi ce 
in a large tank. Th e jet strikes a vertical plate that is normal to 
the axis of the jet. A force of 600 lbf is needed to hold the plate 
in place against the action of the jet. If the pressure in the 
tank is 25 psig at point A, what is the diameter of the jet just 
downstream of the orifi ce?

A

V

Problems 6.12, 6.13

6.14 An engineer, who is designing a water toy, is making 
preliminary calculations. A user of the product will apply a force 
F1 that moves a piston (D = 80 mm) at a speed of Vpiston = 300 mm/s. 
Water at 20°C jets out of a converging nozzle of diameter d = 
15 mm. To hold the toy stationary, the user applies a force F2 to 
the handle. Which force (F1 versus F2) is larger? Explain your 
answer using concepts of the momentum equation. Th en calculate 
F1 and F2. Neglect friction between the piston and the walls.
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D

d
Jet

VpistonF1

F2

Problem 6.14

6.15 A fi rehose on a boat is producing a 3-in.-diameter water jet 
with a speed of V = 65 mph. Th e boat is held stationary by a cable 
attached to a pier, and the water temperature is 50°F. Calculate 
the tension in the cable.
6.16 A boat is held stationary by a cable attached to a pier. A fi re-
hose directs a spray of 5°C water at a speed of V = 50 m/s. If the 
allowable load on the cable is 5 kN, calculate the mass fl ow rate of 
the water jet. What is the corresponding diameter of the water jet?

60°

Problems 6.15, 6.16

6.17 A group of friends regularly enjoys white-water raft ing, 
and they bring piston water guns to shoot water from one raft  
to another. One summer they notice that when on placid slack 
water (no current), aft er just a few volleys at each other, they are 
drift ing apart. Th ey wonder whether the jet being ejected out of a 
piston gun has enough momentum to force the shooter and raft  
backward. To answer this question,

a. Sketch a CV, an FD, and an MD for this system.
b.  Calculate the momentum fl ux (N) generated by ejecting 

water with a fl ow rate of 3 gal/s from a cross section of 1.7 in.
6.18 A tank of water (15°C) with a total weight of 200 N (water 
plus the container) is suspended by a vertical cable. Pressurized 
air drives a water jet (d = 12 mm) out the bottom of the tank 
such that the tension in the vertical cable is 10 N. If 
H = 425 mm, fi nd the required air pressure in units of 
atmospheres (gage). Assume the fl ow of water is irrotational.

Water

Vertical cable

Pressurized air

Jet diameter d

H

Problem 6.18

6.19 A jet of water (60°F) is discharging at a constant rate of 
2.0 cfs from the upper tank. If the jet diameter at section 1 is 4 in., 
what forces will be measured by scales A and B? Assume the 
empty tank weighs 300 lbf, the cross-sectional area of the tank is 
4 ft 2, h = 1 ft , and H = 9 ft .

1

d

h

H

A

B

Problem 6.19

6.20 A conveyor belt discharges gravel into a barge as shown at 
a rate of 40 yd3/min. If the gravel weighs 120 lbf/ft 3, what is the 
tension in the hawser that secures the barge to the dock?

Conveyor belt
V = 15 ft /s

Gravel

BargeHawser

20°

Dock

Problem 6.20

6.21 Th e semicircular nozzle sprays a sheet of liquid through 
180° of arc as shown. Th e velocity is V at the effl  ux section where 
the sheet thickness is t. Derive a formula for the external force F 
(in the y-direction) required to hold the nozzle system in place. 
Th is force should be a function of ρ, V, r, and t.

A A

r V

V

y

y

x

z

t

Section A-A

θ

Elevation view

Problem 6.21
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6.22 Th e expansion section of a rocket nozzle is oft en conical in 
shape, and because the fl ow diverges, the thrust derived from the 
nozzle is less than it would be if the exit velocity were everywhere 
parallel to the nozzle axis. By considering the fl ow through the 
spherical section suspended by the cone and assuming that the 
exit pressure is equal to the atmospheric pressure, show that the 
thrust is given by

T = m· Ve
(1 + cosα)

2

where m·  is the mass fl ow through the nozzle, Ve is the exit 
velocity, and α is the nozzle half-angle.

α
Ve

Problem 6.22

Applying the Momentum Equation to Vanes (§6.4)

6.23 Determine the forces in the x- and y-directions needed to 
hold this fi xed vane, which turns the oil jet (SG = 0.9) in a hori-
zontal plane. Here V1 = 29 m/s, V2 = 33 m/s, and 
Q = 0.9 m3/s.

Oil (SG = 0.90)

y

x

V1

V2

30°

Problems 6.23, 6.24

6.24 Solve Prob. 6.23 for V1 = 70 ft /s, V2 = 65 ft /s, and 
Q = 1.5 cfs.
6.25 Th is planar water jet (60°F) is defl ected by a fi xed vane. 
What are the x- and y-components of force per unit width 
needed to hold the vane stationary? Neglect gravity.

y

x

30°

60°
40 ft /s

0.2 ft

0.1 ft

Problem 6.25

6.26 A water jet with a speed of 60 ft /s and a mass fl ow rate of 
40 lbm/s is turned 30° by a fi xed vane. Find the force of the water 
jet on the vane. Neglect gravity.

30°

Problem 6.26

6.27 Water (ρ = 1000 kg/m3) strikes a block as shown and is 
defl ected 30°. Th e fl ow rate of the water is 15.1 kg/s, and the inlet 
velocity is V = 16 m/s. Th e mass of the block is 1 kg. Th e coef-
fi cient of static friction between the block and the surface is 0.1 
(friction force/normal force). If the force parallel to the surface 
exceeds the frictional force, the block will move. Determine the 
force on the block and whether the block will move. Neglect the 
weight of the water.

Vertical

Block

30°

V

Problems 6.27, 6.28

6.28 For the situation described in Prob. 6.27, fi nd the maximum 
inlet velocity (V) such that the block will not slip.
6.29 Plate A is 50 cm in diameter and has a sharp-edged orifi ce 
at its center. A water jet (at 10°C) strikes the plate concentri-
cally with a speed of 60 m/s. What external force is needed to 
hold the plate in place if the jet issuing from the orifi ce also has 
a speed of 60 m/s? Th e diameters of the jets are D = 15 cm and 
d = 0.5 cm.

D
d

V

V

A

Problem 6.29
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6.30 A cone that is held stable by a wire is free to move in the 
vertical direction and has a jet of water (at 10°C) striking it from 
below. Th e cone weighs 30 N. Th e initial speed of the jet as it 
comes from the orifi ce is 15 m/s, and the initial jet diameter is 
2 cm. Find the height to which the cone will rise and remain 
stationary. Note: Th e wire is only for stability and should not 
enter into your calculations.

d

V

60°

h = ?

Wire for
stability

Problem 6.30

6.31 A horizontal jet of water (at 10°C) that is 6 cm in diameter 
and has a velocity of 20 m/s is defl ected by the vane as shown. 
If the vane is moving at a rate of 7 m/s in the x-direction, what 
components of force are exerted on the vane by the water in the 
x- and y-directions? Assume negligible friction between the water 
and the vane. See §6.5 for useful knowledge about moving CV’s.

x

V1 Vv

45°

Problem 6.31

6.32 A vane on this moving cart defl ects a 15-cm-diameter water 
(ρ = 1000 kg/m3) jet as shown. Th e initial speed of the water in 
the jet is 50 m/s, and the cart moves at a speed of 3 m/s. If the 
vane splits the jet so that half goes one way and half the other, 
what force is exerted on the vane by the water? See §6.5 for 
useful knowledge about moving CV’s.
6.33 Refer to the cart of Prob. 6.32. If the cart speed is constant 
at 5 ft /s, and if the initial jet speed is 60 ft /s, and jet diameter = 
0.15 ft , what is the rolling resistance of the cart? (ρ = 62.4 lbm/ft 3.) 
See §6.5 for useful knowledge about moving CV’s.

50 m/s

50 m/s

Elevation view

Plan view

3 m/s

3 m/s

15 cm
diameter

Vane

45°

90°

Problems 6.32, 6.33

6.34 Th e water (ρ = 1000 kg/m3) in this jet has a speed of 
60 m/s to the right and is defl ected by a cone that is moving 
to the left  with a speed of 5 m/s. Th e diameter of the jet is 
10 cm. Determine the external horizontal force needed to move 
the cone. Assume negligible friction between the water and the 
vane. See §6.5 for useful knowledge about moving CV’s.

6.35 Th is two-dimensional water (at 50°F) jet is defl ected by the 
two-dimensional vane, which is moving to the right with a speed 
of 60 ft /s. Th e initial jet is 0.30 ft  thick (vertical dimension), and 
its speed is 100 ft /s. What power per foot of the jet (normal to the 
page) is transmitted to the vane? See §6.5 for useful knowledge 
about moving CV’s.

V1

50°

Problems 6.34, 6.35

6.36 Assume that the scoop shown, which is 20 cm wide, is 
used as a braking device for studying deceleration eff ects, such 
as those on space vehicles. If the scoop is attached to a 1000 kg 
sled that is initially traveling horizontally at the rate of 100 m/s, 
what will be the initial deceleration of the sled? Th e scoop dips 
into the water 8 cm (d = 8 cm). (T = 10°C.) See §6.5 for useful 
knowledge about moving CV’s.
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d

60°

Water

Problem 6.36

6.37 Th is snowplow clears a swath of snow (SG = 0.20) that is 
4 in. deep (d = 4 in.) and 2 ft  wide (B = 2 ft ). Th e snow leaves 
the blade in the direction indicated in the sketches. Neglecting 
friction between the snow and the blade, estimate the power 
required for just the snow removal if the speed of the snowplow 
is 40 ft /s. See §6.5 for useful knowledge about moving CV’s.

30°

30°

B

d

Snow (SG = 0.20)

Elevation view

Plan view

Problem 6.37

6.38 A fi nite span airfoil can be regarded as a vane as shown in 
the fi gure. Th e cross section of air aff ected is equal to the circle 
with the diameter of the wing span, b. Th e wing defl ects the air 
by an angle α and produces a force normal to the free-stream 
velocity, the lift  L, and in the free-stream direction, the drag D. 
Th e airspeed is unchanged. Calculate the lift  and drag for a 30 ft  
wing span in a 300 ft /s airstream at 14.7 psia and 60°F for fl ow 
defl ection of 2°.

Side view

V

V

b

L

D

α

Problem 6.38

Applying the Momentum Equation to Nozzles (§6.4)

6.39 High-speed water jets are used for speciality cutting applica-
tions. Th e pressure in the chamber is approximately 60,000 psig. 
Using the Bernoulli equation, estimate the water speed exiting 
the nozzle exhausting to atmospheric pressure. Neglect com-
pressibility eff ects and assume a water temperature of 60°F.
6.40 Water at 60°F fl ows through a nozzle that contracts from a 
diameter of 12 in. to 1 in. Th e pressure at section 1 is 2500 psfg, 
and atmospheric pressure prevails at the exit of the jet. Calculate 
the speed of the fl ow at the nozzle exit and the force required to 
hold the nozzle stationary. Neglect weight.
6.41 Water at 15°C fl ows through a nozzle that contracts from 
a diameter of 15 cm to 2 cm. Th e exit speed is v2 = 10 m/s, and 
atmospheric pressure prevails at the exit of the jet. Calculate the 
pressure at section 1 and the force required to hold the nozzle 
stationary. Neglect weight.

2

1

Problems 6.40, 6.41

6.42 Water (at 50°F) fl ows through this nozzle at a rate of 
25 cfs and discharges into the atmosphere. D1 = 20 in., and 
D2 = 9 in. Determine the force required at the fl ange to 
hold the nozzle in place. Assume irrotational fl ow. Neglect 
gravitational forces.
6.43 Solve Prob. 6.42 using the following values: Q = 0.30 m3/s, 
D1 = 30 cm, and D2 = 10 cm. (ρ = 1000 kg/m3.)

21

D2

D1

Problems 6.42, 6.43

6.44 Th is “double” nozzle discharges water (ρ = 62.4 lbm/ft 3) 
into the atmosphere at a rate of 16 cfs. If the nozzle is lying in a 
horizontal plane, what x-component of force acting through the 
fl ange bolts is required to hold the nozzle in place? Note: Assume 
irrotational fl ow, and assume the water speed in each jet to be the 
same. Jet A is 4 in. in diameter, jet B is 4.5 in. in diameter, and 
the pipe is 1.4 ft  in diameter.
6.45 Th is “double” nozzle discharges water (at 10°C) into the 
atmosphere at a rate of 0.65 m3/s. If the nozzle is lying in a 
horizontal plane, what x-component of force acting through the 
fl ange bolts is required to hold the nozzle in place? Note: Assume 
irrotational fl ow, and assume the water speed in each jet to be the 
same. Jet A is 8 cm in diameter, jet B is 9 cm in diameter, and the 
pipe is 30 cm in diameter.
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x

B

A

y

30°

Problems 6.44, 6.45

6.46 A rocket-nozzle designer is concerned about the force 
required to hold the nozzle section on the body of a rocket. Th e 
nozzle section is shaped as shown in the fi gure. Th e pressure and 
velocity at the entrance to the nozzle are 1.5 MPa and 100 m/s. 
Th e exit pressure and velocity are 80 kPa absolute and 2000 m/s. 
Th e mass fl ow through the nozzle is 220 kg/s. Th e atmospheric 
pressure is 100 kPa. Th e rocket is not accelerating. Calculate the 
force on the nozzle-chamber connection. 

u = 100 m/s

A = 1 m2

p = 1.5 MPa

m = 220 kg /s

Ve = 2000 m/s

Ae = 2 m2

pe = 80 kPa
Chamber Nozzle

p0 = 100 kPa

·

Problem 6.46

6.47 Water (ρ = 62.4 lbm/ft 3) is discharged from the two-
dimensional slot shown at the rate of 8 cfs per foot of slot. 
Determine the pressure p at the gage and the water force per foot 
on the vertical end plates A and C. Th e slot and jet dimensions B 
and b are 8 in. and 4 in., respectively.
6.48 Water (at 10°C) is discharged from the two-dimensional slot 
shown at the rate of 0.40 m3/s per meter of slot. Determine the 
pressure p at the gage and the water force per meter on the verti-
cal end plates A and C. Th e slot and jet dimensions B and b are 
20 cm and 7 cm, respectively.

p
C

b

A

B

Problems 6.47, 6.48

6.49 Th is spray head discharges water (ρ = 62.4 lbm/ft 3) at a 
rate of 4 ft 3/s. Assuming irrotational fl ow and an effl  ux speed of 

58 ft /s in the free jet, determine what force acting through the 
bolts of the fl ange is needed to keep the spray head on the 6 in. 
pipe. Neglect gravitational forces.

y

30° 30°

Problem 6.49

6.50 Two circular water (ρ = 62.4 lbm/ft 3) jets (d = 0.5 in.) issue 
from this unusual nozzle. If Vj = 80.2 ft /s, what force is required 
at the fl ange to hold the nozzle in place? Th e pressure in the 4 in. 
pipe (D = 3.5 in.) is 50 psig.

30°

pD

d

Vj

Vj

d

Problem 6.50

6.51 Liquid (SG = 1.2) enters the “black sphere” through a 2 in. 
pipe with velocity of 50 ft /s and a pressure of 60 psig. It leaves the 
sphere through two jets as shown. Th e velocity in the vertical jet 
is 100 ft /s, and its diameter is 1 in. Th e other jet’s diameter is also 
1 in. What force through the 2 in. pipe wall is required in the x- 
and y-directions to hold the sphere in place? Assume the sphere 
plus the liquid inside it weighs 200 lbf.
6.52 Liquid (SG = 1.5) enters the “black sphere” through a 5 cm 
pipe with a velocity of 10 m/s and a pressure of 400 kPa. It leaves 
the sphere through two jets as shown. Th e velocity in the vertical 
jet is 30 m/s, and its diameter is 25 mm. Th e other jet’s diameter 
is also 25 mm. What force through the 5 cm pipe wall is required 
in the x- and y-directions to hold the sphere in place? Assume 
the sphere plus the liquid inside it weighs 600 N.

x

y (vertical)

Pipe

“Black sphere”

Jet

Jet

30°

Problems 6.51, 6.52
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Applying the Momentum Equation to Pipe Bends (§6.4)

6.53 A hot gas stream enters a uniform-diameter return bend as 
shown. Th e entrance velocity is 100 ft /s, the gas density is 
0.02 lbm/ft 3, and the mass fl ow rate is 2 lbm/s. Water is sprayed 
into the duct to cool the gas down. Th e gas exits with a density of 
0.05 lbm/ft 3. Th e mass fl ow of water into the gas is negligible. Th e 
pressures at the entrance and exit are the same and equal to the 
atmospheric pressure. Find the force required to hold the bend.

100 ft /s
Water spray

x

Problem 6.53

6.54 Assume that the gage pressure p is the same at sections 1 
and 2 in the horizontal bend shown in the fi gure. Th e fl uid 
fl owing in the bend has density ρ, discharge Q, and velocity V. 
Th e cross-sectional area of the pipe is A. Th en the magnitude of 
the force (neglecting gravity) required at the fl anges to hold the 
bend in place will be (a) pA, (b) pA + ρQV, (c) 2pA + ρQV, or 
(d) 2pA + 2ρQV.
6.55 Th e pipe shown has a 180° vertical bend in it. Th e diameter 
D is 1.25 ft , and the pressure at the center of the upper pipe is 
15 psig. If the fl ow in the bend is 40 cfs, what external force will 
be required to hold the bend in place against the action of the 
water? Th e bend weighs 200 lbf, and the volume of the bend is 
2 ft 3. Assume the Bernoulli equation applies. (ρ = 62.4 lbm/ft 3.)
6.56 Th e pipe shown has a 180° horizontal bend in it as shown, 
and D is 20 cm. Th e discharge of water (ρ = 1000 kg/m3) in the 
pipe and bend is 0.35 m3/s, and the pressure in the pipe and bend 
is 100 kPa gage. If the bend volume is 0.10 m3, and the bend itself 
weighs 400 N, what force must be applied at the fl anges to hold 
the bend in place?
6.57 Solve Prob. 6.56, and answer the following questions:

a.  Do the two pressure forces from the inlet and exit act in the 
same direction, or in opposite directions?

b.  For the data given, which term has the larger magnitude 
(in N), the net pressure force term, or the net momentum 
fl ux term?

2

1

D

D

D

Problems 6.54, 6.55, 6.56, 6.57

6.58 Water (at 50°F) fl ows in the 90° horizontal bend at a rate of 
12 cfs and discharges into the atmosphere past the downstream 
fl ange. Th e pipe diameter is 1 ft . What force must be applied at 
the upstream fl ange to hold the bend in place? Assume that the 
volume of water downstream of the upstream fl ange is 3 ft 3 and 
that the bend and pipe weigh 100 lbf. Assume the pressure at the 
inlet section is 6 psig.
6.59 Th e gage pressure throughout the horizontal 90° pipe 
bend is 300 kPa. If the pipe diameter is 1.5 m and the water 
(at 10°C) fl ow rate is 10 m3/s, what x-component of force 
must be applied to the bend to hold it in place against the 
water action?

x

y

Problems 6.58, 6.59

6.60 Th is 30° vertical bend in a pipe with a 1.5 ft  diameter carries 
water (ρ = 62.4 lbm/ft 3) at a rate of 31.4 cfs. If the pressure p1 is 
10 psi at the lower end of the bend, where the elevation is 100 ft , 
and p2 is 8.5 psi at the upper end, where the elevation is 103 ft , 
what will be the vertical component of force that must be exerted 
by the “anchor” on the bend to hold it in position? Th e bend 
itself weighs 300 lb, and the length L is 5 ft .

30°

2

1

Expansion joints to
eliminate force transfer
between pipe and
bend

Flow direction

p1

p2

Bend anchor

L

Problem 6.60

6.61 This bend discharges water (ρ = 1000 kg/m3) into the 
atmosphere. Determine the force components at the flange 
required to hold the bend in place. The bend lies in a 
horizontal plane. Assume viscous forces are negligible. 
The interior volume of the bend is 0.25 m3, D1 = 60 cm, 
D2 = 10 cm, and V2 = 15 m/s. The mass of the bend 
material is 250 kg.
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60°

x

yD1

D2

p = 0 gage

V2

Problem 6.61

6.62 Th is nozzle bends the fl ow from vertically upward to 30° 
with the horizontal and discharges water (γ = 62.4 lbf/ft 3) at a 
speed of V = 130 ft /s. Th e volume within the nozzle itself is 
1.8 ft 3, and the weight of the nozzle is 100 lbf. For these 
conditions, what vertical force must be applied to the nozzle at 
the fl ange to hold it in place?

30°

A = 0.50 ft2

V

Volume = 1.8 ft3

Flange

A = 1.0 ft2

Vertical

2 ft

Problem 6.62

6.63 A pipe 1 ft  in diameter bends through an angle of 135°. Th e 
velocity of fl ow of gasoline (SG = 0.8) is 15 ft /s, and the pressure 
is 10 psig in the bend. What external force is required to hold the 
bend against the action of the gasoline? Neglect the gravitational 
force.
6.64 A 4-in. horizontal pipe has a 180° bend in it. If the rate of 
fl ow of water (60°F) in the bend is 8 cfs and the pressure therein 
is 20 psig, what external force in the original direction of fl ow is 
required to hold the bend in place?
6.65 A pipe 15 cm in diameter bends through 135°. Th e velocity 
of flow of gasoline (SG = 0.8) is 8 m/s, and the pressure is 
100 kPa gage throughout the bend. Neglecting gravitational 
force, determine the external force required to hold the bend 
against the action of the gasoline.
6.66 A horizontal reducing bend turns the fl ow of water 
(ρ = 1000 kg/m3) through 60°. Th e inlet area is 0.001 m2, and 
the outlet area is 0.0001 m2. Th e water from the outlet discharges 
into the atmosphere with a velocity of 55 m/s. What horizontal 
force (parallel to the initial fl ow direction) acting through the 
metal of the bend at the inlet is required to hold the bend in 
place?
6.67 Water (at 10°C) fl ows in a duct as shown. Th e inlet water 
velocity is V1 = 25 m/s. Th e cross-sectional area of the duct is 

0.1 m2. Water is injected normal to the duct wall at the rate of 
500 kg/s midway between stations 1 and 2. Neglect frictional 
forces on the duct wall. Calculate the diff erential pressure 
(p1 – p2) between stations 1 and 2.

21 Vertical

A = 0.10 m2

500 kg /s

V1

Problem 6.67

6.68 For this wye fi tting, which lies in a horizontal plane, the 
cross-sectional areas at sections 1, 2, and 3 are 1 ft 2, 1 ft 2, and 
0.25 ft 2, respectively. At these same respective sections the pres-
sures are 1000 psfg, 900 psfg, and 0 psfg, and the water discharges 
are Q1 = 25 cfs to the right, Q2 = 16 cfs to the right, and exits 
to atmosphere at Q3 = 9 cfs. What x-component of force would 
have to be applied to the wye to hold it in place?

x

30°

21

3

Problem 6.68

6.69 Water (ρ = 62.4 lbm/ft 3) fl ows through a horizontal bend 
and T section as shown. Th e mass fl ow rate entering at section a 
is 12 lbm/s, and those exiting at sections b and c are 6 lbm/s each. 
Th e pressure at section a is 5 psig. Th e pressure at the two outlets 
is atmospheric. Th e cross-sectional areas of the pipes are the 
same: 5 in.2. Find the x-component of force necessary to restrain 
the section.
6.70 Water (ρ = 1000 kg/m3) fl ows through a horizontal bend 
and T section as shown. At section a the fl ow enters with a veloc-
ity of 5 m/s, and the pressure is 4.8 kPa gage. At both sections b 
and c the fl ow exits the device with a velocity of 3 m/s, and the 
pressure at these sections is atmospheric (p = 0). Th e cross-
sectional areas at a, b, and c are all the same: 0.20 m2. Find the 
x- and y-components of force necessary to restrain the section.

a

b

c

y

x

Problems 6.69, 6.70

6.71 For this horizontal T through which water (ρ = 1000 kg/m3) 
is fl owing, the following data are given: Q1 = 40 m3/s, Q2 = 30 
m3/s, p1 = 100 kPa, p2 = 70 kPa, p3 = 80 kPa, D1 = 15 cm, 
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D2 = 7 cm, and D3 = 15 cm. Th e given pressure values are gage 
pressures. For these conditions, what external force in the x–y plane 
(through the bolts or other supporting devices) is needed to hold 
the T in place?

x

y
3

2

1

D2

D3

Q1 Q3

Q2

D1

Problem 6.71

The Momentum Equation: Other Situations (§6.4)

6.72 Firehoses can break windows. A 0.2 m diameter (D1) fi re-
hose is attached to a nozzle with a 0.08 m diameter (d2) outlet. 
Th e free jet from the nozzle is defl ected by 90° when it hits the 
window as shown. Find the force the window must withstand 
due to the impact of the jet when water fl ows through the fi re-
hose at a rate of 0.5 m3/s.
6.73 A fi reman is soaking a home that is dangerously close to a 
burning building. To prevent water damage to the inside of the 
neighboring home, he throttles down his fl ow rate so that it will 
not break windows. Assuming the typical window should be able 
to withstand a force up to 25 lbf, what is the largest volumetric 
fl ow rate he should allow (gal/min), given an 8-inch diameter 
(D1) fi rehose discharging through a nozzle with 4-inch diameter 
(d2) outlet. Th e free jet from the nozzle is defl ected by 90° when 
it hits the window as shown.

D1

d1

Window

nozzle

hose

Problems 6.72, 6.73

6.74 For laminar fl ow in a pipe, wall shear stress (τ0) causes the 
velocity distribution to change from uniform to parabolic as 
shown. At the fully developed section (section 2), the velocity 
profi le is u = umax[1 – (r/r0)2]. Derive a formula for the force on 
the wall due to shear stress, Fτ, between 1 and 2 as a function 
of U (the mean velocity in the pipe), ρ, p1, p2, and D (the pipe 
diameter).

21
r

r0
x

τ 0

Problem 6.74

6.75 Th e propeller on a swamp boat produces a slipstream 3 ft  in 
diameter with a velocity relative to the boat of 100 ft /s. If the air 
temperature is 80°F, what is the propulsive force when the boat 
is not moving and also when its forward speed is 30 ft /s? Hint: 
Assume that the pressure, except in the immediate vicinity of the 
propeller, is atmospheric.

D

Problem 6.75

6.76 A wind turbine is operating in a 12 m/s wind that has a den-
sity of 1.2 kg/m3. Th e diameter of the turbine silhouette is 4 m. 
Th e constant-pressure (atmospheric) streamline has a diameter 
of 3 m upstream of the windmill and 4.5 m downstream. Assume 
that the velocity distributions are uniform and the air is incom-
pressible. Determine the force on the wind turbine.

3 m

4 m 4.5 m

p = patm

Problem 6.76

6.77 Th e fi gure illustrates the principle of the jet pump. Derive a 
formula for p2 – p1 as a function of Dj, Vj, D0, V0, and ρ. Assume 
that the fl uid from the jet and the fl uid initially fl owing in the 
pipe are the same, and assume that they are completely mixed at 
section 2, so that the velocity is uniform across that section. Also 
assume that the pressures are uniform across both sections 1 and 
2. What is p2 – p1 if the fl uid is water, Aj/A0 = 1/3, Vj = 15 m/s, 
and V0 = 2 m/s? Neglect shear stress.

21

V0 D0

Dj Vj

Problem 6.77

6.78 Jet-type pumps are sometimes used to circulate the fl ow in 
basins in which fi sh are being reared. Th e use of a jet-type pump 
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eliminates the need for mechanical machinery that might be 
injurious to the fi sh. Th e accompanying fi gure shows the basic 
concept for this type of application. For this type of basin the jets 
would have to increase the water surface elevation by an amount 
equal to 6V2/2g, where V is the average velocity in the basin 
(1 ft /s as shown in this example). Propose a basic design for a jet 
system that would make such a recirculating system work for a 
channel 8 ft  wide and 4 ft  deep. Th at is, determine the speed, size, 
and number of jets.

6
V 2

2gAA
Nozzle and jet

8 ft 1 ft /s

Plan view View A-A

Nozzle

Jet Channel
floor

Pump

4 ft

Problem 6.78

6.79 A torpedo-like device is tested in a wind tunnel with an 
air density of 0.0026 slugs/ft 3. Th e tunnel is 3 ft  in diameter, the 
upstream pressure is 0.24 psig, and the downstream pressure is 
0.10 psig. If the mean air velocity is V = 120 ft /s, what are the 
mass rate of fl ow and the maximum velocity at the downstream 
section at C ? If the pressure is assumed to be uniform across the 
sections at A and C, what is the drag of the device and support 
vanes? Assume viscous resistance at the walls is negligible.

A
V

B C

pA pCSupport vanes

D

Problem 6.79

6.80 A ramjet operates by taking in air at the inlet, providing fuel 
for combustion, and exhausting the hot air through the exit. Th e 
mass fl ow at the inlet and outlet of the ramjet is 60 kg/s (the mass 
fl ow rate of fuel is negligible). Th e inlet velocity is 225 m/s. Th e 
density of the gases at the exit is 0.25 kg/m3, and the exit area is 
0.5 m2. Calculate the thrust delivered by the ramjet. Th e ramjet is 
not accelerating, and the fl ow within the ramjet is steady.

Fuel spray Combustion zone

Vin Vout

Problem 6.80

Applying the Momentum Equation to Moving CVs (§6.5)

6.81 Using the Internet or some other source as reference, defi ne 
in your own words the meaning of “inertial reference frame.”
6.82 Th e surface of the earth is not a true inertial reference frame 
because there is a centripetal acceleration due to the earth’s 
rotation. Th e earth rotates once every 24 hours and has a diameter 

of 8000 miles. What is the centripetal acceleration on the surface 
of the earth, and how does it compare to the gravitational 
acceleration?
6.83 Th e open water tank shown is resting on a frictionless plane. 
Th e capped orifi ce on the side has a 4 cm diameter exit pipe that 
is located 3 m below the surface of the water. Ignore all friction 
eff ects, and determine the force necessary to keep the tank from 
moving when the cap is removed.

Problem 6.83

6.84 A cart is moving along a railroad track at a constant velocity 
of 5 m/s as shown. Water (ρ = 1000 kg/m3) issues from a nozzle 
at 10 m/s and is defl ected through 180° by a vane on the cart. Th e 
cross-sectional area of the nozzle is 0.002 m2. Calculate the resis-
tive force on the cart.

Nozzle

5 m/s

10 m/s

Problem 6.84

6.85 A water jet is used to accelerate a cart as shown. Th e dis-
charge (Q) from the jet is 0.1 m3/s, and the velocity of the jet (Vj) 
is 10 m/s. When the water hits the cart, it is defl ected normally 
as shown. Th e mass of the cart (M) is 10 kg. Th e density of water 
(ρ) is 1000 kg/m3. Th ere is no resistance on the cart, and the 
initial velocity of the cart is zero. Th e mass of the water in the 
jet is much less than the mass of the cart. Derive an equation for 
the acceleration of the cart as a function of Q, ρ, Vc, M, and Vj. 
Evaluate the acceleration of the cart when the velocity is 5 m/s.
6.86 A water jet strikes a cart as shown. Aft er striking the cart, 
the water is defl ected vertically with respect to the cart. Th e cart 
is initially at rest and is accelerated by the water jet. Th e mass 
in the water jet is much less than that of the cart. Th ere is no 
resistance on the cart. Th e mass fl ow rate from the jet is 45 kg/s. 
Th e mass of the cart is 100 kg. Find the time required for the cart 
to achieve a speed one-half of the jet speed.

Vj

M Vc

Problems 6.85, 6.86
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6.87 A very popular toy on the market several years ago was the 
water rocket. Water (at 10°C) was loaded into a plastic rocket 
and pressurized with a hand pump. Th e rocket was released 
and would travel a considerable distance in the air. Assume that 
a water rocket has a mass of 50 g and is charged with 100 g of 
water. Th e pressure inside the rocket is 100 kPa gage. Th e exit 
area is one-tenth of the chamber cross-sectional area. Th e inside 
diameter of the rocket is 5 cm. Assume that Bernoulli’s equation 
is valid for the water fl ow inside the rocket. Neglecting air 
friction, calculate the maximum velocity of the rocket.

5 cm

10
0 

kP
a

Ve

Problem 6.87

The Angular Momentum Equation (§6.6)

6.88 Water (ρ = 1000 kg/m3) is discharged from the slot in the 
pipe as shown. If the resulting two-dimensional jet is 100 cm 
long and 15 mm thick, and if the pressure at section A-A is 30 kPa, 
what is the reaction at section A-A? In this calculation, do not 
consider the weight of the pipe.

Diameter = 8 cm

Diameter = 5 cm

100 cm

130 cm

Elevation view

z

y

x

7 m/s
4 m/s

Plan view

8 cm
AA

Problem 6.88

6.89 What is the force and moment reaction at section 1? Water 
(at 50°F) is fl owing in the system. Neglect gravitational forces.

1

V = 50 ft /s
A = 0.1 ft2

V = 50 ft /s
A = 0.2 ft2

30°

p = 20 psi

Pipe area
= 0.6 ft2

36 in.

Problem 6.89

6.90 What is the reaction at section 1? Water (ρ = 1000 kg/m3) 
is fl owing, and the axes of the two jets lie in a vertical plane. Th e 
pipe and nozzle system weighs 90 N.

y

x

1
   A = 0.01 m2

V = 20 m/s

  A = 0.02 m2

V = 20 m/s

p = 200 kPa

Pipe area
= 0.10 m2

100 cm

60°

Problem 6.90

6.91 A reducing pipe bend is held in place by a pedestal as 
shown. Th ere are expansion joints at sections 1 and 2, so no 
force is transmitted through the pipe past these sections. Th e 
pressure at section 1 is 20 psig, and the rate of fl ow of water 
(ρ = 62.4 lbm/ft 3) is 2 cfs. Find the force and moment that must 
be applied at section 3 to hold the bend stationary. Assume the 
fl ow is irrotational, and neglect the infl uence of gravity.

1

2
3

24 in.

6 in. diameter

4 in. diameter

24 in.

Problem 6.91

6.92 A centrifugal fan is used to pump air. Th e fan rotor is 1 ft  in 
diameter, and the blade spacing is 2 in. Th e air enters with no 
angular momentum and exits radially with respect to the fan 
rotor. Th e discharge is 1500 cfm. Th e rotor spins at 3600 rev/min. 
Th e air is at atmospheric pressure and a temperature of 60°F. 
Neglect the compressibility of the air. Calculate the power (hp) 
required to operate the fan.

2 in.

1 ft

ω = 3600 rpm

Problem 6.92
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CHAPTER ROAD MAP This chapter describes how conservation of energy can be applied to a fl owing 
fl uid. The resulting equation is called the energy equation.

CHAPTERSEVEN

LEARNING OUTCOMES

WORK AND ENERGY (§7.1). 

● Defi ne energy, work, and power.
● Defi ne a pump and a turbine.
● Classify energy into categories.
● Know common units.

CONSERVATION OF ENERGY FOR A CLOSED SYSTEM (§7.2). 

●  Know the main ideas about conservation of energy for a closed 

system. 
●  Apply the equation(s) to solve problems and answer questions.

THE ENERGY EQUATION (§7.3).

●  Know the most important ideas about the energy equation. 
● Calculate α. 
● Defi ne fl ow work and shaft work.
●  Defi ne head and know the various types of head. 
●  Apply the energy equation to solve problems.

THE POWER EQUATION (§7.4). 

●  Know the concepts associated with each of the power equations. 
●  Solve problems that involve the power equation.

EFFICIENCY (§7.4). 

● Defi ne mechanical effi ciency.
●  Solve problems that involve effi ciency of components such as 

pumps and turbines.

THE SUDDEN EXPANSION (§7.7).

● Calculate the head loss for a sudden expansion.

THE EGL/HGL (§7.8). 

●  Explain the main ideas about the EGL and HGL.
●  Sketch the EGL and HGL.
● Solve problems that involve the EGL and HGL.

FIGURE 7.1
The energy equation can be applied to hydroelectric 

power generation. In addition, the energy equation can 

be applied to thousands of other applications. It is one 

of the most useful equations in fl uid mechanics.

Penstock

Flow

Generator

Power
lines

Power
house

Turbine
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7.1 Technical Vocabulary: Work, Energy, and Power

Conservation of energy is perhaps the single most useful equation in all of engineering. Th e key to 
applying this equation is to have solid knowledge of the foundational concepts of energy, work, 
and power. In addition to reviewing these topics, this section also defi nes pumps and turbines.

Energy

Energy is the property of a system that characterizes the amount of work that this system can 
do on its environment. In simple terms, if matter (i.e., the system) can be used to lift  a weight, 
then that matter has energy.

Examples

• Water behind a dam has energy because the water can be directed through a pipe (i.e., a 
penstock), then used to rotate a wheel (i.e., a water turbine) that lift s a weight. Of course, this 
work can also rotate the shaft  of an electrical generator, which is used to produce electrical 
power.

• Wind has energy because the wind can pass across a set of blades (e.g., a windmill), rotate 
the blades, and lift  a weight that is attached to a rotating shaft . Th is shaft  can also do work to 
rotate the shaft  of an electrical generator.

• Gasoline has energy because it can be placed into a cylinder (e.g., a gas engine), burned, and 
expanded to move a piston in a cylinder. Th is moving cylinder can then be connected to a 
mechanism that is used to lift  a weight.

Th e SI unit of energy, the joule, is the energy associated with a force of one newton acting 
through a distance of one meter. For example, if a person with a weight of 700 newtons travels 
up a 10-meter fl ight of stairs, then their gravitational potential energy has changed by ΔPE = 
(700 N)(10 m) = 700 N∙m = 700 J. In traditional units, the unit of energy, the foot-pound force 
(lbf) is defi ned as energy associated with a force of 1.0 lbf moving through a distance of 1.0 foot.

Another way to defi ne a unit of energy is describe the heating of water. A small calorie 
(cal) is the approximate amount of energy required to increase the temperature of 1.0 gram of 
water by 1°C. Th e unit conversion between small calories and joules is 1.0 cal = 4.187 J.* Th e 
large calorie (Cal) is the amount of energy to raise 1.0 kg of water by 1°C. Th us, 1.0 Cal = 4187 J. 
Th e large calorie is used in the United States to characterize the energy in food. Th us, a food 
item with 100 calories has an energy content of 0.4187 MJ. Energy in the traditional system is 
oft en measured using the British thermal unit (Btu). One Btu is the amount of energy required 
to raise the temperature of 1.0 lbm of water by 1.0°F.

Energy can be classifi ed into categories:

• Mechanical energy. Th is is the energy associated with motion (i.e., kinetic energy) plus the 
energy associated with position in a fi eld. Regarding position in a fi eld, this refers to posi-
tion in a gravitational fi eld (i.e., gravitational potential energy) and to defl ection of an elastic 
object such as a spring (i.e., spring potential energy).

• Th ermal energy. Th is is energy associated with temperature changes and phase changes. For 
example, select a system comprised of 1 kg of ice (about 1 liter). Th e energy to melt the ice is 
334 kJ. Th e energy to raise the temperature of the liquid water from 0°C to 100°C is 419 kJ.

• Chemical energy. Th is is the energy associated with chemical bonds between elements. 
For example, when methane (CH4) is burned, there is a chemical reaction that involves the 
breaking of the bonds in the methane and formation of new bonds to produce CO2 and 

*Th ere are several diff erent defi nitions of a calorie in the literature. For example, you might fi nd a reference that states 
that 1.0 cal = 4.184 J.
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water. Th is chemical reaction releases heat, which is another way of saying that the chemical 
energy is converted to thermal energy during combustion.

• Electrical energy. Th is is the energy associated with electrical change. For example, a charged 
capacitor contains the amount of electrical energy ΔE = 1/2 CV 2, where C is capacitance 
and V is voltage.

• Nuclear energy. Th is is energy associated with the binding of the particles in the nucleus of 
an atom. For example, when the uranium atom divides into two other atoms during fi ssion, 
energy is released.

Work

Usually, students in college classes are taught the concept of mechanical work fi rst. Mechanical 
work occurs when a force acts through a distance. A better (i.e., more precise) defi nition is that 
work is given as the line integral of force F and displacement ds, as in

 W = ∫
s2

s1

F ∙ ds (7.1)

Th e units and dimensions of work are the same as the units and dimensions of energy. Fig. 7.2 
shows two examples of mechanical work.

To perform energy balances (i.e., apply the law of conservation of energy) for real-world 
problems, you need a more general defi nition of work.* Th e defi nition that we like best is this:† 
Work is any interaction at the boundary of a system that is not heat transfer or the transfer of 
matter. For example, when electrical power is supplied to a motor, the electric current is clas-
sifi ed as a work term.

Power

Power, which expresses a rate of work or energy, is defi ned by

 P ≡
quantity of work (or energy)

interval of time
= lim

Δt→0

ΔW
Δt

= W·  (7.2)

*Th is generalized kind of work is sometimes called thermodynamic work to distinguish it from mechanical work. In 
this text, we use the label work to represent all types of work, including mechanical work.
†Th is defi nition comes from chemical engineering professor and Nobel Prize winner John Fenn in his book Engines, 
Energy, and Entropy: A Th ermodynamics Primer, p. 5.

Return
spring

Closed
check
valve

Spray

(a)

Force

Piston

(b)

Torque

FIGURE 7.2

(a) For a spray bottle, the force acting 

through a distance is an example of 

mechanical work. (b) For the wind 

turbine, the pressure of the air causes 

a torque that acts through an angular 

displacement. This is also an example of 

mechanical work.
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Eq. (7.2) is defi ned at an instant in time because power can vary with time. To calculate power, 
engineers use several diff erent equations. For rectilinear motion, such as a car or bicycle, the 
amount of work is the product of force and displacement: ΔW = FΔx. Th en, power can be 
found using

 P = lim
Δt→0

FΔx
Δt

= FV (7.3a)

where V is the velocity of the moving body.
When a shaft  is rotating (Fig. 7.2b), the amount of work is given by the product of torque 

and angular displacement, ΔW = TΔθ. In this case, the power equation is

 P = lim
Δt→0

TΔθ
Δt

= Tω (7.3b)

where ω is the angular speed. Th e SI units of angular speed are rad/s.
Because power has units of energy per time, the SI unit is a joule/second, which is called a 

watt. Common units for power are the watt (W), horsepower (hp), and the ft -lbf/s. Some typi-
cal values of power include the following:

• An incandescent lightbulb can use 60 to 100 J/s of energy.
• A well-conditioned athlete can sustain a power output of about 300 J/s for an hour. Th is is 

about four-tenths of a horsepower. One horsepower is the approximate power that a draft  
horse can supply.

• A typical midsize car (a 2011 Toyota Camry) has a rated power of 126 kW (169 hp).
• A large hydroelectric facility (i.e., the Bonneville Dam on the Columbia River 40 miles east 

of Portland, Oregon) has a rated power of 1080 MW.

Pumps and Turbines

A turbine is a machine that is used to extract energy from a fl owing fl uid.* Examples of tur-
bines include the horizontal axis wind turbine, the gas turbine, the Kaplan turbine, the Francis 
turbine, and the Pelton wheel.

A pump is a machine that is used to provide energy to a fl owing fl uid. Examples of pumps 
include the piston pump, the centrifugal pump, the diaphragm pump, and the gear pump.

7.2 Conservation of Energy

When James Prescott Joule died, his obituary in Th e Electrical Engineer (1, p. 311) stated:

Very few indeed who read this announcement will realize how great of a man has passed 
away; and yet it must be admitted by those most competent to judge that his name must be 
classed among the greatest original workers in science.

Joule was a brewer who engaged in science as a hobby, yet he formulated one of the most 
important scientifi c laws ever developed. However, Joule’s theory of conservation of energy 
was so controversial that he could not get a scientifi c journal to publish it, so his theory fi rst 
appeared in a local Manchester newspaper (2). What a fi ne example of persistence! Nowadays, 
Joule’s ideas about work and energy are foundational to engineering. Th is section introduces 
Joule’s theory.

*Th e engine on a jet, which is called a gas turbine, is a notable exception. Th e jet engine adds energy to a fl owing fl uid, 
thereby increasing the momentum of a fl uid jet and producing thrust.
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Joule’s Theory of Energy Conservation

Joule recognized that the energy of a closed system can be changed in only two ways:

• Work. Th e energy of the system can be changed by work interactions at the boundary.
• Heat transfer. Th e energy of the system can change by heat transfer across the boundary. 

Heat transfer can be defi ned as the transfer of thermal energy from hot to cold by mecha-
nisms of conduction, convection, and radiation.

Joule’s idea of energy conservation is illustrated in Fig. 7.3. Th e system is represented by 
the blue box. Th e scale on the left  side of the fi gure represents the quantity of energy in the 
system. Th e arrows on the right side illustrate that energy can increase or decrease via work or 
heat transfer interactions. Note that energy is a property of a system, whereas work and heat 
transfer are interactions that occur on system boundaries.

Th e work and energy balance proposed by Joule is captured with an equation called the 
fi rst law of thermodynamics:

 ΔE = Q – W

 {
increase in

energy stored
in the system }  = {

amount of energy
that entered system

by heat transfer }  – {
amount of energy

that left system
due to work }  (7.4)

Th e terms in Eq. (7.4) have units of joules, and the equation is applied during a time interval 
when the system undergoes a process to move from state 1 to state 2. To modify Eq. (7.4) so 
that it applies at an instant in time, take the derivative to give

 
dE
dt

= Q· − W·  (7.5)

Eq. (7.5) applies at an instant in time and has units of joules per second or watts. Th e work 
and heat transfer terms have sign conventions:

• W and W·  are positive if work is done by the system on the surroundings.
• W and W·  are negative if work is done by the surroundings on the system.
• Q and Q·  are positive if heat (i.e., thermal energy) is transferred into the system.
• Q and Q·  are negative if heat (i.e., thermal energy) is transferred out of the system.

Control Volume (Open System)

Eq. (7.5) applies to a closed system. To extend it to a CV, apply the Reynolds transport theorem, 
Eq. (5.23). Let the extensive property be energy (Bsys = E) and let b = e to obtain

 Q· − W·
=

d
dt ∫

cv

eρdV + ∫
cs

eρV ∙ dA (7.6)

where e is energy per mass in the fl uid. Eq. (7.6) is the general form of conservation of energy 
for a control volume. However, most problems in fl uid mechanics can be solved with a simpler 
form of this equation. Th is simpler equation will be derived in the next section.

Energy into the system
(by work or by heat transfer)

Energy out of the system
(by work or by heat transfer)

Amount of energy 
in the system

FIGURE 7.3

The law of conservation of energy for a 

closed system.
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7.3 The Energy Equation

Th is section shows how to simplify Eq. (7.6) to a form that is convenient for problems that 
occur in fl uid mechanics.

Select Eq. (7.6). Th en, let e = ek + ep + u, where ek is the kinetic energy per unit mass, ep 
is the gravitational potential energy per unit mass, and u is the internal energy* per unit mass.

 Q· − W· =
d
dt ∫

cv

(ek + ep + u)ρdV + ∫
cs

(ek + ep + u)ρV ∙ dA (7.7)

Next, let†

 ek =
kinetic energy of a fluid particle

mass of this fluid particle
=

mV 2/2
m =

V2

2
 (7.8)

Similarly, let

 ep =
gravitational potential energy of a fluid particle

mass of this fluid particle
=

mgz
m = gz (7.9)

where z is the elevation measured relative to a datum. When Eqs. (7.8) and (7.9) are substituted 
into Eq. (7.7), the result is

 Q· − W· =
d
dt ∫

cv
(V 2

2
+ gz + u)ρdV + ∫

cs
(V 2

2
+ gz + u)ρV ∙ dA (7.10)

Shaft and Flow Work

To simplify the work term in Eq. (7.10), classify work into two categories:

(work) = (flow work) + (shaft work)

When the work is associated with a pressure force, then the work is called flow work. Alterna-
tively, shaft work is any work that is not associated with a pressure force. Shaft  work is usually 
done through a shaft  (from which the term originates) and is commonly associated with a 
pump or turbine. According to the sign convention for work, pump work is negative. Similarly, 
turbine work is positive. Th us,

 W·
shaft = W·

turbines − W·
pumps = W·

t − W·
p (7.11)

To derive an equation for fl ow work, use the idea that work equals force times distance. 
Begin the derivation by defi ning a control volume situated inside a converging pipe (Fig. 7.4). 
At section 2, the fl uid that is inside the control volume will push on the fl uid that is outside 
the control volume. Th e magnitude of the pushing force is p2A2. During a time interval Δt, the 
displacement of the fl uid at section 2 is Δx2 = V2Δt. Th us, the amount of work is

 ΔW2 = (F2)(Δx2) = (p2 A2)(V2 Δt) (7.12)

Convert the amount of work given by Eq. (7.12) into a rate of work:

 W·
2 = lim

Δt→0

ΔW2

Δt
= p2 A2V2 =(p2

ρ )(ρA2V2) = m· (p2

ρ ) (7.13)

*By defi nition, internal energy contains all forms of energy that are not kinetic energy or gravitational potential energy.
†It is assumed that the control surface is not accelerating, so V, which is referenced to the control surface, is also ref-
erenced to an inertial reference frame.



  The Energy Equation        233

Th is work is positive because the fl uid inside the control volume is doing work on the environ-
ment. In a similar manner, the fl ow work at section 1 is negative and is given by

W·
1 = −m· (p1

ρ )
Th e net fl ow work for the situation pictured in Fig. 7.4 is

 W·
flow = W·

2 + W·
1 = m· (p2

ρ ) − m·(p1

ρ ) (7.14)

Eq. (7.14) can be generalized to a situation involving multiple streams of fl uid passing across 
a control surface:

 W·
flow = ∑

outlets
m· out(pout

ρ ) − ∑
inlets

min
· (pin

ρ ) (7.15)

To develop a general equation for fl ow work, use integrals to account for velocity and pressure 
variations on the control surface. Also, use the dot product to account for fl ow direction. Th e 
general equation for fl ow work is

 W·
flow = ∫

cs
(p

ρ)ρV ∙ dA (7.16)

In summary, the work term is the sum of fl ow work, Eq. (7.16), and shaft  work, Eq. (7.11):

 W· = W·
flow + W·

shaft = (∫
cs

(p
ρ)ρV ∙ dA) + W·

shaft (7.17)

Introduce the work term from Eq. (7.17) into Eq. (7.10), and let W·
shaft = W·

s:

 Q· − W·
s − ∫

cs

p
ρ ρV ∙ dA

  =
d
dt ∫

cv
(V 2

2
+ gz + u)ρdV + ∫

cs
(V 2

2
+ gz + u)ρV ∙ dA 

(7.18)

In Eq. (7.18), combine the last term on the left  side with the last term on the right side:

 Q· − W·
s =

d
dt ∫

cv
(V 2

2
+ gz + u)ρd V + ∫

cs
(V 2

2
+ gz + u +

p
ρ)ρV ∙ dA (7.19)

Control surface

Flow

1

2
FIGURE 7.4

Sketch for deriving fl ow work.
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Replace p/ρ + u with the specifi c enthalpy, h. Th e integral form of the energy principle is

 Q· − W·
s =

d
dt ∫

cv
(V 2

2
+ gz + u)ρd V + ∫

cs
(V 2

2
+ gz + h)ρV ∙ dA (7.20)

Kinetic Energy Correction Factor

Th e next simplifi cation is to extract the velocity terms out of the integrals on the right side of 
Eq. (7.20). Th is is done by introducing the kinetic energy correction factor.

Figure 7.5 shows fl uid that is pumped through a pipe. At sections 1 and 2, kinetic energy 
is transported across the control surface by the fl owing fl uid. To derive an equation for this 
kinetic energy, start with the mass fl ow rate equation:

m· = ρAV = ∫
A

ρVdA

Th is integral can be conceptualized as adding up the mass of each fl uid particle that is crossing 
the section area and then dividing by the time interval associated with this crossing. To convert 
this integral to kinetic energy (KE), multiply the mass of each fl uid particle by (V2/2):

{
rate of KE

transported
across a section } = ∫

A
ρV(V 2

2 )dA = ∫
A

ρV 3dA
2

Th e kinetic energy correction factor is defi ned as

α =
actual KE/time that crosses a section

KE/time by assuming a uniform velocity distribution
=

∫
ρV 3dA

2A

V 3

2 ∫
A

ρdA

For a constant density fl uid, this equation simplifi es to

 α =
1
A ∫

A
( V

V )
3

dA (7.21)

Control
surface

Kinetic energy
transported
across the cs

1

2

Pump

FIGURE 7.5

Flow carries kinetic energy into and out of a 

control volume.
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For theoretical development, α is found by integrating the velocity profi le using Eq. (7.21). 
Th is approach, illustrated in Example 7.1, is a lot of work. Th us in application, engineers 
commonly estimate a value of α. Some guidelines are as follows:

• For fully developed laminar fl ow in a pipe, the velocity distribution is parabolic. Use α = 2.0 
because this is the correct value as shown by Example 7.1.

• For fully developed turbulent fl ow in a pipe, α ≈ 1.05 because the velocity profi le is plug-
like. Use α = 1.0 for this case.

• For fl ow at the exit of a nozzle or converging section, use α = 1.0 because converging fl ow 
leads to a uniform velocity profi le. Th is is why wind tunnels use converging sections.

• For a uniform fl ow (such as air fl ow in a wind tunnel or air fl ow incident on a wind turbine), 
use α = 1.0.

EXAMPLE 7.1

Calculating the Kinetic Energy Correction Factor 
for Laminar Flow

Problem Statement

Th e velocity distribution for laminar fl ow in a pipe is given by 
the equation

V(r) = Vmax[1 − ( r
r0

)
2

]
where Vmax is the velocity in the center of the pipe, r0 is the 
radius of the pipe, and r is the radial distance from the center. 
Find the KE correction factor α.

Defi ne the Situation

Th ere is laminar fl ow in a round pipe.

Flow
r

  
r

o

  

V(r) = Vmax 1
r
ro

2

Vmax

State the Goal

α ➡ fi nd the KE correction factor (no units)

Generate Ideas and Make a Plan

Because the goal is α, apply the defi nition given by Eq. (7.21).

 α =
1
A ∫

A
(V(r)

V )
3

dA (a)

Eq. (a) has one known (A) and two unknowns (dA, V ). To fi nd 
dA, see Chapter 5, Figure 5.3.

 dA = 2πrdr (b)

To fi nd V , apply the fl ow rate equation:

 V =
1
A ∫

A
V(r)dA =

1
πr 2

o
∫

r=ro

r=0

V(r)2πrdr (c)

Now, the problem is cracked. Th ere are three equations and 
three unknowns. Th e plan is as follows:

1. Find the mean velocity V  using Eq. (c).
2. Plug V  into Eq. (a) and integrate.

Take Action (Execute the Plan)

1. Flow rate equation (fi nd mean velocity):

 V =
1

πr 2
0

[ ∫
r0

0

Vmax(1 −
r 2

r 2
0
)2πr dr ]

 =
2Vmax

r 2
0

[ ∫
r0

0
(1 −

r 2

r 2
0
)r dr ] =

2Vmax

r 2
0

[ ∫
r0

0
(r −

r 3

r 2
0
)dr]

 =
2Vmax

r 2
0

[(r 2

2
−

r 4

4r 2
0
)⎸

r0

0
] =

2Vmax

r 2
0

[ r 2
0

2
−

r 2
0

4 ] = Vmax/2

2. Defi nition of α:

 α =
1
A [ ∫

A
(V(r)

V )
3

dA ] =
1

πr 2
0 V 3 [ ∫

r0

0

V(r)3 2πr dr ]
 =

1
πr 0

2(Vmax /2)3 [ ∫
ro

0
[ Vmax(1 −

r 2

r 0
2 )]

3

2πr dr ]

 =
16
r 2

0
[ ∫

r0

0
(1 −

r 2

r 2
0
)

3

r dr ]



236 CHAPTER 7  •  THE ENERGY EQUATION

Last Steps of the Derivation

Now that the KE correction factor is available, the derivation of the energy equation may be 
completed. Begin by applying Eq. (7.20) to the control volume shown in Fig. 7.5. Assume 
steady fl ow and that velocity is normal to the control surfaces. Th en, Eq. (7.20) simplifi es to

 Q· − W·
s + ∫

A1

(p1

ρ + gz1 + u1)ρV1 dA1 + ∫
A1

ρV 3
1

2
dA1

  = ∫
A2

(p2

ρ + gz2 + u2)ρV2 dA2 + ∫
A2

ρV 3
2

2
dA2 

(7.22)

Assume that piezometric head p/γ + z is constant across sections 1 and 2.* If tempera-
ture is also assumed constant across each section, then p/ρ + gz + u can be taken outside the 
integral to yield

 Q· − W·
s + (p1

ρ + gz1 + u1) ∫
A1

ρV1 dA1 + ∫
A1

ρ
V 3

1

2
dA1

  = (p2

ρ + gz2 + u2) ∫
A2

ρV2 dA2 + ∫
A2

ρ
V 3

2

2
dA2 

(7.23)

Next, factor out ∫ρV dA = ρVA =  m· from each term in Eq. (7.23). Because m·  does not appear 
as a factor of ∫ (ρV 3/2)dA, express ∫ (ρV 3/2)dA as α(ρV 3/2)A, where α is the kinetic energy 
correction factor:

 Q· − W·
s + (p1

ρ + gz1 + u1 + α1
V

2
1

2 )m· = (p2

ρ + gz2 + u2 + α2
V

2
2

2 )m·  (7.24)

Divide through by m· :

 
1
m·

(Q· − W·
s) +

p1

ρ + gz1 + u1 + α1
V

2
1

2
=

p2

ρ + gz2 + u2 + α2 
V 2

2

2
 (7.25)

Introduce Eq. (7.11) into Eq. (7.25):

 
W·

p

m· g
+

p1

γ + z1 + α1
V

2
1

2g
=

W·
t

m· g
+

p2

γ + z2 + α2
V

2
2

2g
+

u2 − u1

g −
Q·

m· g  (7.26)

To evaluate the integral, make a change of variable by letting 
u = (1 – r2/r 2

0). Th e integral becomes

 α = (16
r 2

0
) (−

r 2
0

2 ) ( ∫
0

1

u3 du) = 8( ∫
1

0

u3 du)

 = 8(u4

4 ⎸
1

0
) = 8(1

4)
 α = 2

Review the Solution and the Process

1.  Knowledge. Laminar fully developed fl ow in a round 
pipe is called Poiseuille fl ow. Useful facts:
• Th e velocity profi le is parabolic.
•  Th e mean velocity is one-half of the maximum 

(centerline) velocity: V = Vmax/2.
• Th e kinetic energy correction factor is α = 2.

2.  Knowledge. In practice, engineers commonly estimate α. 
Th e purpose of this example is to illustrate how to 
calculate α.

*Euler’s equation can be used to show that pressure variation normal to rectilinear streamlines is hydrostatic.
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Introduce pump head and turbine head:

 pump head = hp =
W·

p

mg· =
work/time done by pump on flow

weight/time of flowing fluid

  turbine head = ht =
W·

t

m· g
=

work/time done by flow on turbine
weight/time of flowing fluid

 

(7.27)

Equation (7.26) becomes

 
p1

γ + α1
V

2
1

2g
+ z1 + hp =

p2

γ + α2
V 2

2

2g
+ z2 + ht + [

1
g (u2 − u1) −

Q·

m· g ]  (7.28)

Eq. (7.28) is separated into terms that represent mechanical energy (nonbracketed terms) 
and terms that represent thermal energy (bracketed terms). A bracketed term is always posi-
tive because of the second law of thermodynamics. Th is term is called head loss and is repre-
sented by hL. Head loss is the conversion of useful mechanical energy to waste thermal energy 
through viscous action. Head loss is analogous to thermal energy (heat) that is produced by 
Coulomb friction. When the bracketed term is replaced by head loss hL, Eq. (7.28) becomes 
the energy equation:

 (p1

γ + α1
V 2

1

2g
+ z1) + hp = (p2

γ + α2
V 2

2

2g
+ z2) + ht + hL (7.29)

Physical Interpretation of the Energy Equation

Th e energy equation describes an energy balance for a control volume (Fig. 7.6). Th e infl ows 
of energy are balanced with the outfl ows of energy.* Regarding infl ows, energy can be trans-
ported across the control surface by the fl owing fl uid, or a pump can do work on the fl uid and 
thereby add energy to the fl uid. Regarding outfl ows, energy within the fl ow can be used to do 
work on a turbine, energy can be transported across the control surface by the fl owing fl uid, or 
mechanical energy can be converted to waste thermal heat via head loss.

Th e energy balance can also be expressed using head:

(p1

γ + α1
V 2

1

2g
+ z1) + hp = (p2

γ + α2
V 2

2

2g
+ z2) + ht + hL

(
pressure head
velocity head

elevation head )
1

 + (pump
head ) = (

pressure head
velocity head

elevation head )
2

 + (turbine
head ) + (head

loss )

Head can be thought of as the ratio of energy to weight for a fl uid particle, or head can describe the 
energy per time that is passing across a section because head and power are related by P = m· gh.

Working Equations

Table 7.1 summarizes the energy equation, its variables, and the main assumptions.

*Th e term E· flow includes a work term—namely, fl ow work. Remember that energy is a property of a system, whereas 
work and heat transfer are interactions that occur on system boundaries. Here, we are using the term “energy balance” 
to describe (energy terms) + (work terms) + (heat transfer terms).

CV Eflow 
Eflow 

Wpumps Wturbines

Ehead loss

Energy into 
CV by flow 
and pumps

=
Energy out of CV
by flow, turbines,
and head loss

FIGURE 7.6

The energy balance for a CV 

when the energy equation is 

applied.
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Th e process for applying the energy equation is as follows:

Step 1:  Selection. Select the energy equation when the problem involves a pump, a turbine, 
or head loss. Check to ensure that the assumptions used to derive the energy equa-
tion are satisfi ed. Th e assumptions are steady fl ow, one inlet port and one outlet port, 
constant density, and negligible thermal energy terms (except for head loss).

Step 2:  CV selection. Select and label section 1 (inlet port) and section 2 (outlet port). Locate 
sections 1 and 2 where (a) you know information or (b) where you want information. By 
convention, engineers usually do not sketch a CV when applying the energy equation.

Step 3:  Analysis. Write the general form of the energy equation. Conduct a term-by-term 
analysis. Simplify the general equation to the reduced equation.

Step 4:  Validation. Check units. Check the physics: (head in via fl uid fl ow and pump) = 
(head out via fl uid fl ow, turbine, and head loss).

TABLE 7.1 Summary of the Energy Equation

Description Equation Terms

Th e energy equation has 
 only one form.

Major assumptions:
•  Steady state; no energy 

accumulation in CV.
•  Th e CV has one inlet 

and one outlet.
• Constant density fl ow.
•  All thermal energy 

terms (except for head 
loss) can be neglected.

•  Streamlines are 
straight and parallel at 
each section.

•  Temperature is 
constant across each 
section.

( p
γ

+ α
V 2

2g
+ z) = (

energy/weight transported
into or out of cv

by fluid flow ) = total head

(p1

γ
+ α1

V 2
1

2g
+ z1) + hp =

(p2

γ
+ α2

V 2
2

2g
+ z2) + ht + hL

Eq. (7.29)

p/γ = pressure head at cs (m)

α
V 2

2g = velocity head at cs (m)

 (α = kinetic energy (KE) correction factor at cs)
 (α ≈ 1.0 for turbulent fl ow)
 (α ≈ 1.0 for nozzles)
 (α ≈ 2.0 for full-developed laminar fl ow in round pipe)
z = elevation head at cs (m)

hp = head added by a pump (m)
ht = head removed by a turbine (m)
hL =  head loss (m) 

(to predict head loss, apply Eq. (10.45))

EXAMPLE 7.2

Applying the Energy Equation to Predict the Speed 
of Water in a Pipe Connected to a Reservoir

Problem Statement

A horizontal pipe carries cooling water at 10°C for a thermal 
power plant. Th e head loss in the pipe is

hL =
0.02(L /D)V 2

2g

where L is the length of the pipe from the reservoir to the 
point in question, V is the mean velocity in the pipe, and D is 
the diameter of the pipe. If the pipe diameter is 20 cm and the 
rate of fl ow is 0.06 m3/s, what is the pressure in the pipe at 
L = 2000 m? Assume α2 = 1.

Elevation = 100 m

Elevation = 20 m

L = 2000 m

Defi ne the Situation

Water fl ows in a system.

D = 0.2 m

Datum

80 m

Q = 0.06 m3/s

L = 2000 m

1

2

hL = 0.02
L
D

V 2

2g
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7.4 The Power Equation

Depending on context, engineers use various equations for calculating power. Th is section 
shows how to calculate power associated with pumps and turbines. An equation for pump 
power follows from the defi nition of pump head given in Eq. (7.27):

 W·
p = γQhp = m· ghp (7.30a)

Similarly, the power delivered from a fl ow to a turbine is

 W·
t = γQht = m· ght (7.30b)

Equations (7.30a) and (7.30b) can be generalized to give an equation for calculating power 
associated with a pump or turbine:

 P = m· gh = γQh (7.31)

Equations for calculating power are summarized in Table 7.2.

Assumptions:
• α2 = 1.0
• Steady fl ow

Properties: Water (10°C, 1 atm, Table A.5): γ = 9810 N/m3

State the Goal

p2(kPa) ➡ pressure at section 2

Generate Ideas and Make a Plan

Select the energy equation because (a) the situation involves 
water fl owing through a pipe and (b) the energy equation 
contains the goal (p2). Locate section 1 at the surface and 
section 2 at the location where we want to know pressure.
Th e plan is as follows:

1. Write the general form of the energy equation (7.29).
2. Analyze each term in the energy equation.
3. Solve for p2.

Take Action (Execute the Plan)

1. Energy equation (general form):

p1

γ
+ α1

V 2
1

2g
+ z1 + hp =

p2

γ
+ α2

V 2
2

2g
+ z2 + ht + hL

2. Term-by-term analysis:
•  p1 = 0 because the pressure at top of a reservoir is 

patm = 0 gage.
•  V1 ≈ 0 because the level of the reservoir is constant 

or changing very slowly.
• z1 = 100 m; z2 = 20 m.
•  hp = ht = 0 because there are no pumps or turbines in 

the system.

• Find V2 using the fl ow rate equation (5.3).

V2 =
Q
A

=
0.06 m3/s

(π/4)(0.2 m)2 = 1.910 m/s

• Head loss is

 hL =
0.02(L/D)V 2

2g
=

0.02(2000 m/0.2 m)(1.910 m/s)2

2(9.81 m/s2)
 = 37.2 m

3. Combine steps 1 and 2:

(z1 − z2) =
p2

γ
+ α2

V 2
2

2g
+ hL

80 m =
p2

γ
+ 1.0

(1.910 m/s)2

2(9.81 m/s2)
+ 37.2 m

80 m =
p2

γ
+ (0.186 m) + (37.2 m)

p2 = γ(42.6 m) = (9810 N/m3)(42.6 m) =  418 kPa

Review the Solution and the Process

1.  Skill. Notice that section 1 was set at the free surface 
because properties are known there. Section 2 was set 
where we want to fi nd information.

2.  Knowledge. Regarding selection of an equation, we 
could have chosen the Bernoulli equation. However, 
it would have been an unwise choice because the 
Bernoulli equation assumes inviscid fl ow.
•  Key idea. Select the Bernoulli equation if viscous 

eff ects can be neglected; select the energy equation 
if viscous eff ects are signifi cant.

•  Rule of thumb. When fl uid is fl owing through a pipe 
that is more than about fi ve diameters long—that is, 
(L/D > 5)—viscous eff ects are signifi cant.
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TABLE 7.2 Summary of the Power Equation

Description Equation Terms

Rectilinear motion of an object such as an airplane, 
 a submarine, or a car

P = FV  (7.3a) P = power (W)
F = force doing work (N)
V = speed of object (m/s)

Rotational motion, such as a shaft  driving a pump 
 or an output shaft  from a turbine

P = Tω (7.3b) T = torque (N∙m)
ω = angular speed (rad/s)

Power supplied from a pump to a fl owing fl uid
Power supplied from a fl owing fl uid to a turbine

P = m· gh = γQh (7.31) m· = mass flow rate through machine (kg/s)
g = gravitational constant = 9.81 (m/s2)
h = head of pump or head of turbine (m)
γ = specifi c weight (N/m3)
Q = volume fl ow rate (m3/s)

EXAMPLE 7.3

Applying the Energy Equation to Calculate the Power 
Required by a Pump

Problem Statement

A pipe 50 cm in diameter carries water (10°C) at a rate of
 0.5 m3/s. A pump in the pipe is used to move the water from 
an elevation of 30 m to 40 m. Th e pressure at section 1 is 
70 kPa gage, and the pressure at section 2 is 350 kPa gage. 
What power in kilowatts and in horsepower must be supplied 
to the fl ow by the pump? Assume hL = 3 m of water and 
α1 = α2 = 1.

Defi ne the Situation

Water is being pumped through a system.

1

2

Pump

Water
Q = 0.5 m3/s

Pipe
D = 0.5 m
Head loss in pipe = 3 m

z2 = 40 m
p2 = 350 kPa gage
α2 = 1.0

z1 = 30 m
p1 = 70 kPa gage
α1 = 1.0

Properties: Water (10°C, 1 atm, Table A.5): γ = 9810 N/m3

State the Goal

P(W and hp) ➡ power the pump is supplying to the water in 
units of watts and horsepower

Generate Ideas and Make a Plan

Because this problem involves water being pumped through a 
system, it is an energy equation problem. However, the goal is 
to fi nd power, so the power equation will also be needed. Th e 
steps are as follows:

1.  Write the energy equation between section 1 and 
section 2.

2. Analyze each term in the energy equation.
3. Calculate the head of the pump hp.
4. Find the power by applying the power equation (7.30a).

Take Action (Execute the Plan)

1. Energy equation (general form):

p1

γ
+ α1

V
2
1

2g
+ z1 + hp =

p2

γ
+ α2

V
2
2

2g
+ z2 + ht + hL

2. Term-by-term analysis:
• Velocity head cancels because V1 = V2.
• ht = 0 because there are no turbines in the system.
• All other head terms are given.
• Inserting terms into the general equation gives

p1

γ
+ z1 + hp =

p2

γ
+ z2 + hL

3. Pump head (from step 2):

 hp = (p2 − p1

γ ) + (z2 − z1) + hL

 = ((350,000 − 70,000) N/m2

9810 N/m3 ) + (10 m) + (3 m)

 = (28.5 m) + (10 m) + (3 m) = 41.5 m
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7.5 Mechanical Effi ciency

Fig. 7.7 shows an electric motor connected to a centrifugal pump. Motors, pump, turbines, 
and similar devices have energy losses. In pumps and turbines, energy losses are due to factors 
such as mechanical friction, viscous dissipation, and leakage. Energy losses are accounted for 
by using effi  ciency.

Mechanical efficiency is defi ned as the ratio of power output to power input:

 η ≡
power output from a machine or system

power input to a machine or system
=

Poutput

Pinput
 (7.32)

Th e symbol for mechanical effi  ciency is the Greek letter η, which is pronounced as “eta.” In 
addition to mechanical effi  ciency, engineers also use thermal effi  ciency, which is defi ned using 
thermal energy input into a system. In this text, only mechanical effi  ciency is used, and we 
sometimes use the label “effi  ciency” instead of “mechanical effi  ciency.”

EXAMPLE. Suppose an electric motor like the one shown in Fig. 7.7 is drawing 1000 W of 
electrical power from a wall circuit. As shown in Fig. 7.8, the motor provides 750 J/s of 
power to its output shaft . Th is power drives the pump, and the pump supplies 450 J/s to the 
fl uid.

Physics: Th e head provided by the pump (41.5 m) is 
balanced by the increase in pressure head (28.5 m) plus the 
increase in elevation head (10 m) plus the head loss (3 m).

4. Power equation:
 P = γQhp

 = (9810 N/m3)(0.5 m3/s)(41.5 m)

 =  204 kW = (204 kW)( 1.0 hp
0.746 kW) =  273 hp

Review the Solution and the Process

Discussion. Th e calculated power represents the work/time 
being done by the pump impeller on the water. Th e electrical 
power supplied to the pump would need to be larger than this 
because of energy losses in the electrical motor and because 
the pump itself is not 100% effi  cient. Both of these factors can 
be accounted for using pump effi  ciency (ηpump) and motor 
effi  ciency (ηmotor), respectively.

FIGURE 7.7

CAD drawing of a centrifugal pump and electric motor. 

(Image courtesy of Ted Kyte; www.ted-kyte.com.)
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In this example, the effi  ciency of the electric motor is

ηmotor = (750 J/s)/(1000 J/s) = 0.75 = 75%

Similarly, the effi  ciency of the pump is

ηpump = (450 J/s)/(750 J/s) = 0.60 = 60%

and the combined effi  ciency is

ηcombined = (450 J/s)/(1000 J/s) = 0.45 = 45%

EXAMPLE. Suppose that wind incident on a wind turbine contains 1000 J/s of energy, 
as shown in Figure 7.9. Because a wind turbine cannot extract all the energy and because 
of losses, the work that the wind turbine does on its output shaft  is 360 J/s. Th is power 
drives an electric generator, and the generator produces 324 J/s of electrical power, which 
is supplied to the power grid. Calculate the system effi  ciency and the effi  ciency of the 
components.

Th e effi  ciency of the wind turbine is

ηwind turbine = (360 J/s)/(1000 J/s) = 0.36 = 36%

Th e effi  ciency of the electric generator is

ηelectric generator = (324 J/s)/(360 J/s) = 0.90 = 90%

Th e combined effi  ciency is

ηcombined = (324 J/s)/(1000 J/s) = 0.324 = 32.4%

We can generalize the results of the last two examples to summarize the effi  ciency equa-
tions (Table 7.3). Example 7.4 shows how effi  ciency enters into a calculation of power.

1000 J/s 750 J/s 450 J/sElectric
motor

Moving
fluid

Electric
grid

PumpFIGURE 7.8

The energy fl ow through a pump that is powered 

by an electric motor.

1000 J/s 360 J/s 324 J/sWind
turbine

Moving
air

Electric
grid

Electrical
generatorFIGURE 7.9

The energy fl ow associated with generating 

electrical power from a wind turbine.

TABLE 7.3 Summary of the Effi ciency Equation

Description Equation Terms

Pump Ppump = ηpumpPshaft 
 (7.33a)

Ppump = power that the pump supplies 
 to the fl uid (W) [Ppump = m· ghp = γQhp]
ηpump = effi  ciency of pump ()
Pshaft  = power that is supplied to the pump shaft  (W)

Turbine Pshaft  = ηturbine Pturbine
 (7.33b)

Pturbine = power that the fl uid supplies 
 to a turbine (W) [Pturbine = m· ght = γQht]
ηturbine = effi  ciency of turbine ()
Pshaft  = power that is supplied by the turbine shaft  (W)
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EXAMPLE 7.4

Applying the Energy Equation to Predict the Power 
Produced by a Turbine

Problem Statement

At the maximum rate of power generation, a small hydro-
electric power plant takes a discharge of 14.1 m3/s through 
an elevation drop of 61 m. Th e head loss through the intakes, 
penstock, and outlet works is 1.5 m. Th e combined effi  ciency 
of the turbine and electrical generator is 87%. What is the rate 
of power generation?

Elevation = 61 m

Elevation = 0

Powerhouse

Turbine

Penstock

Defi ne the Situation

A small hydroelectric plant is producing electrical power:
• Combined head loss: hL = 1.5 m
• Combined effi  ciency (turbine/generator): η = 0.87

Properties: Water (10°C, 1 atm, Table A.5): γ = 9810 N/m3

Q = 14.1 m3/s

Datum

Turbine/
generator

61 m

1

2

State the Goal

Poutput from generator (MW) ➡ power produced by generator

Generate Ideas and Make a Plan

Because this problem involves a fl uid system for producing 
power, select the energy equation. Because power is the goal, 
also select the power equation. Th e plan is as follows:

1.  Write the energy equation (7.29) between section 1 and 
section 2.

2.  Analyze each term in the energy equation.
3.  Solve for the head of the turbine ht.
4.  Find the input power to the turbine using the power 

equation (7.30b).
5.  Find the output power from the generator by using the 

effi  ciency equation (7.33b).

Take Action (Execute the Plan)

1. Energy equation (general form):

p1

γ
+ α1

V 2
1

2g
+ z1 + hp =

p2

γ
+ α2

V 2
2

2g
+ z2 + ht + hL

2. Term-by-term analysis:
•  Velocity heads are negligible because V1 ≈ 0 and 

V2 ≈ 0.
• Pressure heads are zero because p1 = p2 = 0 gage.
• hp = 0 because there is no pump in the system.
• Elevation head terms are given.

3. Combine steps 1 and 2:

 h1 = (z1 − z2) − hL

 = (61 m) − (1.5 m) = 59.5 m

Physics: Head supplied to the turbine (59.5 m) is equal 
to the net elevation change of the dam (61 m) minus the 
head loss (1.5 m).

4. Power equation:
 Pinput to turbine = γQht = (9810 N/m3)(14.1 m3/s)(59.5 m)

 = 8.23 MW
5. Effi  ciency equation:

 Poutput from generator = ηPinput to turbine = 0.87(8.23 MW)

 =  7.16 MW

Review the Solution and the Process

1.  Knowledge. Notice that sections 1 and 2 were located on 
the free surfaces. Th is is because information is known 
at these locations.

2.  Discussion. Th e maximum power that can be generated 
is a function of the elevation head and the fl ow rate. 
Th is maximum power is decreased by head loss and by 
energy losses in the turbine and the generator.
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7.6 Contrasting the Bernoulli Equation 

and the Energy Equation

Although the Bernoulli equation (Eq. 4.21b) and the energy equation (Eq. 7.29) have a similar 
form and several terms in common, they are not the same equation. Th is section explains the 
diff erences between these two equations. Th is information is important for conceptual under-
standing of these two important equations.

Th e Bernoulli equation and the energy equation are derived in diff erent ways. Th e Bernoulli 
equation was derived by applying Newton’s second law to a particle and then integrating the 
resulting equation along a streamline. Th e energy equation was derived by starting with the 
fi rst law of thermodynamics and then using the Reynolds transport theorem. Consequently, 
the Bernoulli equation involves only mechanical energy, whereas the energy equation includes 
both mechanical and thermal energy.

Th e two equations have diff erent methods of application. Th e Bernoulli equation is applied 
by selecting two points on a streamline and then equating terms at these points:

p1

γ +
V 2

1

2g
+ z1 =

p2

γ +
V 2

2

2g
+ z2

In addition, these two points can be anywhere in the fl ow fi eld for the special case of irrota-
tional fl ow. Th e energy equation is applied by selecting an inlet section and an outlet section 
and then equating terms as they apply to a control volume located between the inlet and outlet:

(p1

γ + α1
V 2

1

2g
+ z1) + hp = (p2

γ + α2
V 2

2

2g
+ z2) + ht + hL

Th e two equations have diff erent assumptions. Th e Bernoulli equation applies to steady, 
incompressible, and inviscid fl ow. Th e energy equation applies to steady, viscous, incompress-
ible fl ow in a pipe, with additional energy being added through a pump or extracted through 
a turbine.

Under special circumstances, the energy equation can be reduced to the Bernoulli equa-
tion. If the fl ow is inviscid, there is no head loss; that is, hL = 0. If the “pipe” is regarded as 
a small stream tube enclosing a streamline, then α = 1. Th ere is no pump or turbine along a 
streamline, so hp = ht = 0. In this case, the energy equation is identical to the Bernoulli equa-
tion. Note that the energy equation cannot be derived by starting with the Bernoulli equation.

Summary. Th e energy equation is not the Bernoulli equation. However, both equations 
can be related to the law of conservation of energy. Th us, similar terms appear in each equation.

7.7 Transitions

Th e purpose of this section is to illustrate how the energy, momentum, and continuity equa-
tions can be used together to analyze (a) head loss for an abrupt expansion and (b) forces on 
transitions. Th ese results are useful for designing systems, especially those with large pipes, 
such as the penstock in a dam.

Abrupt Expansion

An abrupt or sudden expansion in a pipe or duct is a change from a smaller section area, to a 
larger section area, as shown in Figure 7.10. Notice that a confi ned jet of fl uid from the smaller 
pipe discharges into the larger pipe and creates a zone of separated fl ow. Because the stream-
lines in the jet are initially straight and parallel, the piezometric pressure distribution across 
the jet at section 1 will be uniform.
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To analyze the transition, apply the energy equation between sections 1 and 2:

 
p1

γ + α1
V 2

1

2g
+ z1 =

p2

γ + α2
V 2

2

2g
+ z2 + hL (7.34)

Assume turbulent fl ow conditions, so α1 = α2 ≈ 1. Th e momentum equation is

∑ Fs = m· V2 − m· V1

Next, let m· = ρAV and then identify the forces. Note that the shear force can be neglected 
because it is small relative to the pressure force. Th e momentum equation becomes

p1A2 − p2 A2 − γA2 L sin α = ρV 2
2 A2 − ρV 2

1 A1

or

 
p1

γ −
p2

γ − (z2 − z1) =
V 2

2

g −
V 2

1

g  
A1

A2
 (7.35)

Th e continuity equation simplifi es to

 V1 A1 = V2 A2 (7.36)

Combining Eqs. (7.34) to (7.36) gives an equation for the head loss hL caused by a sudden 
expansion:

 hL =
(V1 − V2)

2

2g
 (7.37)

If a pipe discharges fl uid into a reservoir, then V2 = 0, and the head loss simplifi es to

hL =
V 2

2g

which is the velocity head in the pipe. Th is energy is dissipated by the viscous action of the 
fl uid in the reservoir.

Forces on Transitions

To fi nd forces on transitions in pipes, apply the momentum equation in combination with the 
energy equation, the fl ow rate equation, and the head loss equation. Th is approach is illustrated 
by Example 7.5.

z (vertical)

1

2

Zone of separation

D1

D2

L s

α

FIGURE 7.10

Flow through an abrupt expansion.
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EXAMPLE 7.5

Applying the Energy and Momentum Equations to Find 
Force on a Pipe Contraction

Problem Statement

A pipe 30 cm in diameter carries water (10°C, 250 kPa) at a 
rate of 0.707 m3/s. Th e pipe contracts to a diameter of 20 cm. 
Th e head loss through the contraction is given by

hL = 0.1
V 2

2

2g

where V2 is the velocity in the 20 cm pipe. What horizontal 
force is required to hold the transition in place? Assume the 
kinetic energy correction factor is 1.0 at both the inlet and exit.

Defi ne the Situation

Water fl ows through a contraction.

• α1 = α2 = 1.0
• hL = 0.1 (V 2

2/(2g))

H2O Q = 0.707 m3/s

D1 = 0.3 m
p1 = 250 kPa gage

D2 = 0.2 m
p2 = unknown

1 2

Properties: Water (10°C, 1 atm, Table A.5): γ = 9810 N/m3

State the Goal

Fx(N) ➡ horizontal force acting on the contraction

Generate Ideas and Make a Plan

Because force is the goal, start with the momentum equation. 
To solve the momentum equation, we need p2. Find this with 
the energy equation. Th e step-by-step plan is as follows:

1.  Derive an equation for Fx by applying the momentum 
equation.

2.  Derive an equation for p2 by applying the energy equation.
3. Calculate p2.
4. Calculate Fx.

Take Action (Execute the Plan)

1. Momentum equation:
• Sketch a force diagram and a momentum diagram:

1
2

CS

=
p1A1 p2A2

Fx

mV1
· mV2

·

• Write the x direction momentum equation:

p1A1 − p2 A2 + Fx = m· V2 − m· V1

• Rearrange to give

Fx = ρQ(V2 − V1) + p2 A2 − p1A1

2. Energy equation (from section 1 to section 2):
• Let α1 = α2 = 1, z1 = z2, and hp = ht = 0.
• Eq. (7.29) simplifi es to

p1

γ
+

V 2
1

2g
=

p2

γ
+

V 2
2

2g
+ hL

• Rearrange to give

p2 = p1 − γ(V 2
2

2g
−

V 2
1

2g
+ hL)

3. Pressure at section 2:
• Find velocities using the fl ow rate equation:

V1 =
Q
A1

=
0.707 m3/s

(π/4) × (0.3 m)2 = 10 m/s

V2 =
Q
A2

=
0.707 m3/s

(π/4) × (0.2 m)2 = 22.5 m/s

• Calculate head loss:

hL =
0.1 V 2

2

2g
=

0.1 × (22.5 m/s)2

2 × (9.81 m/s2)
= 2.58 m

• Calculate pressure:

 p2 = p1 − γ(V 2
2

2g
−

V 2
1

2g
+ hL)

 = 250 kPa − 9.81 kN/m3

 × ( (22.5 m/s)2

2(9.81 m/s2)
−

(10 m/s)2

2(9.81 m/s2)
+ 2.58 m)

 = 21.6 kPa
4. Calculate Fx:

 Fx = ρQ(V2 − V1) + p2 A2 − p1A1

 = (1000 kg/m3)(0.707 m3/s)(22.5 − 10)(m/s)

 + (21,600 Pa)(π(0.2 m)2

4 ) − (250,000 Pa)

 × (π(0.3 m)2

4 )
 = (8837 + 677 − 17,670)N = −8.16 kN

 Fx = 8.16 kN acting to the left
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7.8 The Hydraulic and Energy Grade Lines

Th is section introduces the hydraulic grade line (HGL) and the energy grade line (EGL), 
which are graphical representations that show head in a system. Th is visual approach pro-
vides insights and helps one locate and correct trouble spots in the system (usually points of 
low pressure).

Th e EGL, shown in Figure 7.11, is a line that indicates the total head at each location in a 
system. Th e EGL is related to terms in the energy equation by

 EGL = (velocity 
head ) + (pressure 

head ) + (elevation 
head ) = α

V 2

2g
+

p
γ + z = ( total

head) (7.38)

Notice that total head, which characterizes the energy that is carried by a fl owing fl uid, is 
the sum of velocity head, pressure head, and elevation head.

Th e HGL, shown in Figure 7.11, is a line that indicates the piezometric head at each loca-
tion in a system:

 HGL = (pressure
head ) + (elevation

head ) =
p
γ + z = (piezometric

head ) (7.39)

Because the HGL gives piezometric head, the HGL will be coincident with the liquid 
surface in a piezometer, as shown in Figure 7.11. Similarly, the EGL will be coincident with the 
liquid surface in a stagnation tube.

Tips for Drawing HGLs and EGLs

Th is section presents ten useful ideas for sketching valid diagrams.

1. In a lake or reservoir, the HGL and EGL will coincide with the liquid surface. Also, both 
the HGL and EGL will indicate piezometric head.

2. A pump causes an abrupt rise in the EGL and HGL by adding energy to the fl ow. For 
example, see Figure 7.12.

3. For steady fl ow in a pipe of constant diameter and wall roughness, the slope (ΔhL/ΔL) of 
the EGL and the HGL will be constant. For examples, see Figures 7.11 to 7.13.

4. Locate the HGL below the EGL by a distance of the velocity head (αV 2/2g).
5. Th e height of the EGL decreases in the fl ow direction unless a pump is present.

EGL

HGL

z1

z2

Datum

hL

p2

2g

V 2
2

Piezometer
Stagnation tube

α

γ

FIGURE 7.11

EGL and HGL in a straight pipe.
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6. A turbine causes an abrupt drop in the EGL and HGL by removing energy from the fl ow. 
For example, see Figure 7.13.

7. Power generated by a turbine can be increased by using a gradual expansion at the tur-
bine outlet. As shown in Figure 7.13, the expansion converts kinetic energy to pressure. 
If the outlet to a reservoir is an abrupt expansion, as in Figure 7.14, then this kinetic 
energy is lost.

EGL

HGL

Abrupt rise in
EGL equal

to hp hp

Pump

FIGURE 7.12

Rise in EGL and HGL due to pump.

HGL and EGL
EGL

HGL

z

ht, head given
up to turbine

p

2g

V 2

Gradual expansion of conduit allows
kinetic energy to be converted to pressure
head with much smaller hL at the outlet;
hence, the HGL approaches the EGL.

γ

FIGURE 7.13

Drop in EGL and HGL due to turbine.

FIGURE 7.14

Change in EGL and HGL due to 

change in diameter of pipe.

HGL and EGL

EGL and HGL

EGL

HGL

V2

2g
V 2

z

p

Head loss
at outlet

Steeper EGL and HGL
because greater hL
per length of pipe

Large       because

smaller pipe here

z = 0

2g

γ
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8. When a pipe discharges into the atmosphere, the HGL is coincident with the system 
because p/γ = 0 at these points. For example, in Figures 7.15 and 7.16, the HGL in the 
liquid jet is drawn through the centerline of the jet.

9. When a fl ow passage changes diameter, the distance between the EGL and the HGL will 
change (see Figures 7.14 and 7.15) because velocity changes. In addition, the slope on the 
EGL will change because the head loss per length will be larger in the conduit with the 
larger velocity (see Figure 7.14).

10.  If the HGL falls below the pipe, then p/γ is negative, indicating subatmospheric pressure 
(see Figure 7.16) and a potential location of cavitation.

Th e recommended procedure for drawing an EGL and HGL is shown in Example 7.6. 
Notice how the tips from the preceding section are applied.

EGL

HGL

HGL

2g
V 2

2g
V 2 increases because

diameter of conduit decreases,
causing V to increase.

FIGURE 7.15

Change in HGL and EGL due to fl ow through a nozzle.

HGL and EGL

2g
V2

z = 0

p

pp

z

NegativePositive γ

γ

γ
FIGURE 7.16

Subatmospheric pressure when pipe is 

above HGL.

EXAMPLE 7.6

Sketching the EGL and HGL for a Piping System

Problem Statement

A pump draws water (50°F) from a reservoir, where the water 
surface elevation is 520 ft , and forces the water through a pipe 
5000 ft  long and 1 ft  in diameter. Th is pipe then discharges the 
water into a reservoir with water surface elevation of 620 ft . Th e 
fl ow rate is 7.85 cfs, and the head loss in the pipe is given by

hL = 0.01( L
D)(V 2

2g )
Determine the head supplied by the pump, hp, and the power 
supplied to the fl ow, and draw the HGL and EGL for the 
system. Assume that the pipe is horizontal and is 510 ft  in 
elevation.

Defi ne the Situation

Water is pumped from a lower reservoir to a higher reservoir.

• hL = 0.01( L
D)(V 2

2g )
• Properties: Water (50°F, 1 atm, Table A.5): γ = 62.4 lbf/ft 3

z1 = 520 ft Pump

Pipe, D = 1 ft

Q = 7.85 cfs

L = 5000 ft

1

z2 = 620 ft2
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State the Goals

1. hp(ft ) ➡ pump head
2. P(hp) ➡ power supplied by the pump
3. Draw the HGL and the EGL.

Generate Ideas and Make a Plan

Because pump head and power are goals, apply the energy 
equation and the power equation, respectively. Th e step-by-
step plan is as follows:

1.  Locate section 1 and section 2 at the top of the reservoirs 
(see sketch). Th en, apply the energy equation (7.29).

2. Calculate terms in the energy equation.
3. Calculate power using the power equation (7.30a).
4. Draw the HGL and EGL.

Take Action (Execute the Plan)

1. Energy equation (general form):
p1

γ
+ α1

V 2
1

2g
+ z1 + hp =

p2

γ
+ α2

V 2
2

2g
+ z2 + ht + hL

•  Velocity heads are negligible because V1 ≈ 0 and 
V2 ≈ 0.

• Pressure heads are zero because p1 = p2 = 0 gage.
• ht = 0 because there are no turbines in the system.

hp = (z2 − z1) + hL

Interpretation: Head supplied by the pump provides 
the energy to lift  the fl uid to a higher elevation plus the 
energy to overcome head loss.

2. Calculations:
• Calculate V using the fl ow rate equation:

V =
Q
A

=
7.85 ft3/s

(π/4)(1 ft)2 = 10 ft/s

• Calculate head loss:

 hL = 0.01( L
D)(V2

2g) = 0.01(5000 ft
1.0 ft )( (10 ft/s)2

2 × (32.2 ft/s2))
 = 77.6 ft

• Calculate hp:
hp = (z2 − z1) + hL = (620 ft − 520 ft) + 77.6 ft =  178 ft

3. Power:

 W·
p = γQhp = (62.4 lbf

ft3 )(7.85 ft3

s )(178 ft)( hp ∙ s
550 ft ∙ lbf)

 =  159 hp

4. HGL and EGL:
•  From Tip 1 in the preceding section, locate the HGL 

and EGL along the reservoir surfaces.
•  From Tip 2, sketch in a head rise of 178 ft  

corresponding to the pump.
•  From Tip 3, sketch the EGL from the pump outlet to 

the reservoir surface. Use the fact that the head loss is 
77.6 ft . Also, sketch EGL from the reservoir on the left  
to the pump inlet. Show a small head loss.

•  From Tip 4, sketch the HGL below the EGL by a 
distance of V 2/2g ≈ 1.6 ft.

•  From Tip 5, check the sketches to ensure that EGL 
and HGL are decreasing in the direction of fl ow 
(except at the pump).

Th e sketch follows. Th e HGL is shown as a dashed black 
line. Th e EGL is shown as a solid blue line.

520 ft

hp = 178 ft

EGL

HGL

2g
V2

1

2

Foundational Concepts

• Energy is a property of a system that allows the system 
to do work on its surroundings. Energy can be classifi ed 
into fi ve categories: mechanical energy, thermal energy, 
chemical energy, electrical energy, and nuclear energy.

• Mechanical work is done by a force that acts through a 
distance. A more general defi nition of work is that work 
is any interaction at a system boundary that is not heat 
transfer or the transfer of matter.

• Power is the ratio of work to time or energy to time at an 
instant in time. Note the key diff erence between energy 
and power:
• Energy (and work) describes an amount (e.g., how 

many joules).
• Power describes an amount/time or rate (e.g., how 

many joules/second or watts).

7.9 Summarizing Key Knowledge



  Summarizing Key Knowledge        251

• Machines can be classifi ed into two categories:
• A pump is any machine that adds energy to a fl owing 

fl uid.
• A turbine is any machine that extracts energy from a 

fl owing fl uid.

Conservation of Energy and 

Derivation of the Energy Equation

• Th e law of conservation of energy asserts that work and 
energy balance.
• Th e balance for a closed system is (energy changes of 

the system) = (energy increases due to heat transfer) – 
(energy decreases due to the system doing work).

• Th e balance for a CV is (energy changes in the CV) = 
(energy increases in the CV due to heat transfer) – 
(energy out of CV via work done on the surroundings) + 
(energy transported into the CV by fl uid fl ow)

• Work can be classifi ed into two categories:
• Flow work is work that is done by the pressure force in 

a fl owing fl uid.
• Shaft  work is any work that is not fl ow work.

The Energy Equation

• Th e energy equation is the law of conservation of energy 
simplifi ed so that it applies to common situations that 
occur in fl uid mechanics. Some of the most important 
assumptions are steady state, one infl ow and one outfl ow 
port to the CV, constant density, and all thermal energy 
terms (except for head loss) are neglected.

• Th e energy equation describes an energy balance for a 
control volume (CV):

 (energy into CV) = (energy out of CV)

  (energy into CV by flow and pumps) =
(energy out by flow, turbines, and head loss)

• Th e energy equation, using math symbols, is

(p1

γ + α1
V 2

1

2g
+ z1) + hp = (p2

γ + α2
V 2

2

2g
+ z2) + ht + hL

(
pressure head
velocity head

elevation head)
1

 + (pump
head ) = (

pressure head
velocity head

elevation head)
2

 

+ (turbine
head ) + (head

loss )
• Regarding head:

• Head can be thought of as the ratio of energy to weight 
for a fl uid particle.

• Head can also describe the energy per time that is 
passing across a section because head and power are 
related by P = m· gh.

• Regarding head loss (hL):
• Head loss represents an irreversible conversion of 

mechanical energy to thermal energy through the 
action of viscosity.

• Head loss is always positive and is analogous to fric-
tional heating.

• Head loss for a sudden expansion is given by

hL =
(V1 − V2)

2

2g

• Regarding the kinetic energy correction factor α:
• Th is factor accounts for the distribution of kinetic 

energy in a fl owing fl uid. It is defi ned as the ratio of 
the actual KE/time that crosses a surface to the 
KE/time that would cross if the velocity was uniform.

• For most situations, engineers set α = 1. If the flow 
is known to be fully developed and laminar, then 
engineers use α = 2. In other cases, one can go 
back to the mathematical definition and calculate a 
value of α.

Power and Mechanical Effi ciency

• Mechanical effi  ciency is the ratio of (power output) to 
(power input) for a machine or system.

• Th ere are several equations that engineers use to calculate 
power.
• For translational motion such as a car or an airplane 

P = FV
• For rotational motion such as the shaft  on a pump 

P = Tω
• For the pump, the power added to the fl ow is: P = γQhp

• For a turbine, the power extracted from the fl ow is 
P = γQht

The HGL and EGL

• Th e hydraulic grade line (HGL) is a profi le of the piezo-
metric head, p/γ + z, along a pipe.

• Th e energy grade line (EGL) is a profi le of the total head, 
V 2/2g + p/γ + z, along a pipe.

• If the hydraulic grade line falls below the elevation of a 
pipe, subatmospheric pressure exists in the pipe at that 
location, giving rise to the possibility of cavitation.
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REFERENCES

Work, Energy and Power (§7.1)

7.1 Fill in the blanks. Show your work.
a. 1090 J = ________ Cal.
b.  ________ ft ∙lbf = energy to lift  a 13 N weight through an 

elevation diff erence of 115 m.
c. 17000 Btu = ________ kWh.
d. 71 ft ∙lbf/s = ________ hp.
e. [E] = [energy] = ________

7.2 Using Section 7.1 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy. Also, strive for 
eff ective use of sketches, words, and equations.

a.  What are the common forms of energy? Which of these 
forms are relevant to fl uid mechanics?

b.  What is work? Describe three example of work that are 
relevant to fl uid mechanics.

c. What are the most common units of power?
d. List three signifi cant diff erences between power and energy.

7.3 Apply the grid method to each situation.
a.  Calculate the energy in joules used by a 13 hp pump that is 

operating for 410 hours. Also, calculate the cost of electricity 
for this time period. Assume that electricity costs $0.20 per 
kWh.

b.  A motor is being used to turn the shaft  of a centrifugal 
pump. Apply Eq. (7.3b) to calculate the power in watts cor-
responding to a torque of 850 lbf∙in. and a rotation speed of 
1100 rpm.

c.  A turbine produces a power of 3500 ft ∙lbf/s. Calculate the 
power in hp and in watts.

7.4 Energy (select all that are correct):
a. has same units as work
b. has same units as power
c. has same units work/time
d. can have units of Joule
e. can have units of Watt
f. can have units of ft ∙lbf
g. can have units of calories

7.5 Power (select all that are correct)
a. has same units as energy
b. has same units as energy/time
c. has same units as work/time
d. can have units of Joule
e. can have units of Watt
f. can have units of horsepower
g. can have units of ft ∙lbf

7.6 Th e sketch shows a common consumer product called the 
Water Pik. Th is device uses a motor to drive a piston pump that 
produces a jet of water (d = 1 mm, T = 10°C) with a speed of 
27 m/s. Estimate the minimum electrical power in watts that is 
required by the device. Hints: (a) Assume that the power is used 
only to produce the kinetic energy of the water in the jet and 
(b) in a time interval Δt, the amount of mass that fl ows out the 
nozzle is Δm, and the corresponding amount of kinetic energy 
is (ΔmV 2/2).

Water reservoir

Motor and
pump

High-speed
water jet

Problem 7.6

7.7 An engineer is considering the development of a small wind 
turbine (D = 1.25 m) for home applications. Th e design wind 
speed is 15 mph at T = 10°C and p = 0.9 bar. Th e effi  ciency of 
the turbine is η = 20%, meaning that 20% of the kinetic energy 
in the wind can be extracted. Estimate the power in watts that 
can be produced by the turbine. Hint: In a time interval Δt, the 
amount of mass that fl ows through the rotor is Δm = m· Δt, 
and the corresponding amount of kinetic energy in this fl ow is 
(ΔmV 2/2).

PROBLEMS
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Air D

Problem 7.7

Conservation of Energy (§7.2)

7.8 Th e fi rst law of thermodynamics for a closed system can be 
characterized in words as

a.  (change in energy in a system) = (thermal energy in) – 
(work done on surroundings)

b.  (change in energy in a system) = (thermal energy out) – 
(work done by surroundings)

c. either of the above
7.9 Th e application of the Reynolds transport theorem to the fi rst 
law of thermodynamics (select all that are correct)

a. refers to the increase of energy stored in a closed system
b.  extends the applicability of the fi rst law from a closed 

system to an open system (control volume)
c. refers only to heat transfer, and not to work

The Kinetic Energy Correction Factor (§7.3)

7.10 Using Section 7.3 and other resources, answer the follow-
ing questions. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the eff ectiveness of your communication.

a.  What is the kinetic energy correction factor? Why do 
engineers use this term?

b.  What is the meaning of each variable (α, A, V, V) that 
appears in Eq. (7.21)?

c. What values of α are commonly used?
7.11 For this hypothetical velocity distribution in a wide rectan-
gular channel, evaluate the kinetic energy correction factor α.

Vmax

Problem 7.11

7.12 For these velocity distributions in a round pipe, indicate 
whether the kinetic energy correction factor α is greater than, 
equal to, or less than unity.
7.13 Calculate α for case (c).
7.14 Calculate α for case (d).

(a) Uniform (b) Parabolic

(c) Linear (d) Linear

Problems 7.12, 7.13, 7.14

The Energy Equation (§7.3)

7.15 Water fl ows at a steady rate in this vertical pipe. Th e pressure 
at A is 10 kPa, and at B it is 98.1 kPa. Th e fl ow in the pipe is 
(a) upward, (b) downward, or (c) no fl ow. (Hint: See problem 7.23.)

B

A

10 m

Problem 7.15

7.16 Determine the discharge in the pipe and the pressure at 
point B. Neglect head losses. Assume α = 1.0 at all locations.

Water
B

1.5 m

3.5 m

40 cm diameter

20 cm diameter nozzle

Problem 7.16

7.17 It is necessary to fi nd the head loss for the pipe reducer 
shown, installed in a system with 10°C water fl owing at 
0.040 m3/s. Th e diameter reduces from 20 cm to 12 cm across 
this fi tting (fl ow direction arrow shown), and the centerline 
pressure is measured to drop from 490 kPa to 470 kPa for the 
given fl ow rate. Assume the kinetic energy correction factor is 
1.05 at the reducer inlet and exit and that the reducer is horizontal.

(a) External view (b) Mid-section
cross-section view

Problem 7.17
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7.18 A pipe drains a tank as shown. If x = 11 ft , y = 7 ft , and 
head losses are neglected, what is the pressure at point A and 
what is the velocity at the exit? Assume α = 1.0 at all locations.
7.19 A pipe drains a tank as shown. If x = 2 m, y = 1 m, and 
head losses are neglected, what is the pressure at point A and 
what is the velocity at the exit? Assume α = 1.0 at all locations.

Water

x

y
A

Problems 7.18, 7.19

7.20 For this system, the discharge of water is 0.2 m3/s, x = 1.0 m, 
y = 1.5 m, z = 6.0 m, and the pipe diameter is 60 cm. Assuming 
a head loss of 0.5 m, what is the pressure head at point 2 if the 
jet from the nozzle is 10 cm in diameter? Assume α = 1.0 at all 
locations.
7.21 For this diagram of an industrial pressure washer system, 
x = 2 ft , y = 5 ft , z = 9 ft , Q = 3.4 ft 3/s, and the hose diameter is 
3 in. Assuming a head loss of 4 ft  is derived over the distance from 
point 2 to the jet, what is the pressure at point 2 if the jet from the 
nozzle is 1 in. in diameter? Assume α = 1.0 throughout.

2

x
y

z

Nozzle

Problems 7.20, 7.21

7.22 For this refi nery pipe, DA = 20 cm, DB = 14 cm, and 
L = 1 m. If crude oil (SG = 0.90) is fl owing at a rate of 0.05 m3/s, 
determine the diff erence in pressure between sections A and B. 
Neglect head losses.

z (vertical)

DB

DA A

B

L

Problem 7.22

7.23 Gasoline having a specifi c gravity of 0.8 is fl owing in the 
pipe shown at a rate of 5 cfs. What is the pressure at section 2 
when the pressure at section 1 is 18 psig and the head loss is 9 ft  
between the two sections? Assume α = 1.0 at all locations.

Vertical

2

1

A1 = 0.80 ft2

A2 = 0.20 ft2

12 ft

Problem 7.23

7.24 Water fl ows from a pressurized tank as shown. Th e pressure 
in the tank above the water surface is 100 kPa gage, and the water 
surface level is 8 m above the outlet. Th e water exit velocity is 
10 m/s. Th e head loss in the system varies as hL = KLV 2/2g, 
where KL is the minor-loss coeffi  cient. Find the value for KL. 
Assume α = 1.0 at all locations.
7.25 A reservoir with water is pressurized as shown. Th e pipe 
diameter is 1 in. Th e head loss in the system is given by 
hL = 5V 2/2g. Th e height between the water surface and the pipe 
outlet is 10 ft . A discharge of 0.10 ft 3/s is needed. What must the 
pressure in the tank be to achieve such a fl ow rate? Assume 
α = 1.0 at all locations.
7.26 In the fi gure shown, suppose that the reservoir is open to 
the atmosphere at the top. Th e valve is used to control the fl ow 
rate from the reservoir. Th e head loss across the valve is given 
as hL = 4V 2/2g, where V is the velocity in the pipe. Th e cross-
sectional area of the pipe is 8 cm2. Th e head loss due to friction 
in the pipe is negligible. Th e elevation of the water level in the 
reservoir above the pipe outlet is 9 m. Find the discharge in the 
pipe. Assume α = 1.0 at all locations.

Partly open valve

d

Air under
pressure

Water

Problems 7.24, 7.25, 7.26

7.27 A minor artery in the human arm, diameter D = 1 cm, tapers 
gradually over a distance of 10 cm to a diameter of d = 0.8 cm. 
Th e blood pressure (gage) at diameter D is 110 mm Hg, and at 
d is 85 mm Hg. What is the head loss (m) that occurs over this 
distance if the blood (SG = 1.06) is moving with a fl ow rate of 
20 cm3/s and the arm is being held horizontally? Idealize the fl ow 
in the artery as steady, α = 1, the fl uid as Newtonian, and the 
walls of the artery as rigid.
7.28 As shown, a microchannel is being designed to transfer fl uid 
in a MEMS (microelectrical mechanical system) application. 
Th e channel is 240 micrometers in diameter and is 8 cm long. 
Ethyl alcohol is driven through the system at the rate of 
0.1 microliters/s (μL/s) with a syringe pump, which is essentially 
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a moving piston. Th e pressure at the exit of the channel is 
atmospheric. Th e fl ow is laminar, so α = 2. Th e head loss in the 
channel is given by

hL =
32μLV

γD2

where L is the channel length, D the diameter, V the mean 
velocity, μ the viscosity of the fl uid, and γ the specifi c weight of 
the fl uid. Find the pressure in the syringe pump. Th e velocity head 
associated with the motion of the piston in the syringe pump is 
negligible.

8 cm

240 μm

Problem 7.28

7.29 Firefi ghting equipment requires that the exit velocity of the 
fi rehose be 30 m/s at an elevation of 45 m above the hydrant. 
Th e nozzle at the end of the hose has a contraction ratio of 4:1 
(Ae/Ahose = 1/4). Th e head loss in the hose is 8V 2/2g, where V is 
the velocity in the hose. What must the pressure be at the hydrant 
to meet this requirement? Th e pipe supplying the hydrant is 
much larger than the fi rehose.
7.30 Th e discharge in the siphon is 2.5 cfs, D = 7 in., L1 = 4 ft , 
and L2 = 5 ft . Determine the head loss between the reservoir 
surface and point C. Determine the pressure at point B if three-
quarters of the head loss (as found above) occurs between the 
reservoir surface and point B. Assume α = 1.0 at all locations.

Water

B

D

C

L2

L1

Problem 7.30

7.31 For this siphon the elevations at A, B, C, and D are 30 m, 
32 m, 27 m, and 26 m, respectively. Th e head loss between the inlet 
and point B is three-quarters of the velocity head, and the head 
loss in the pipe itself between point B and the end of the pipe is 
one-quarter of the velocity head. For these conditions, what is 
the discharge and what is the pressure at point B? Th e pipe 
diameter = 25 cm. Assume α = 1.0 at all locations.
7.32 For this system, point B is 10 m above the bottom of the 
upper reservoir. Th e head loss from A to B is 1.1V 2/2g, and the 
pipe area is 8 × 10–4 m2. Assume a constant discharge of 8 × 
10–4 m3/s. For these conditions, what will be the depth of water 
in the upper reservoir for which cavitation will begin at point B? 

Vapor pressure = 1.23 kPa and atmospheric pressure = 100 kPa. 
Assume α = 1.0 at all locations.

Water
T = 20°C

B

A

C
D

Discharge (submerged)
into lower reservoir

Problems 7.31, 7.32

7.33 In this system, d = 6 in., D = 12 in., Δz1 = 6 ft , and Δz2 = 12 ft . 
Th e discharge of water in the system is 10 cfs. Is the machine a 
pump or a turbine? What are the pressures at points A and B? 
Neglect head losses. Assume α = 1.0 at all locations.

Machine

Same
elevation

Water
T = 10°C

A

B

d

d

D

Δz2

Δz1

Problem 7.33

7.34 Th e pipe diameter D is 30 cm, d is 15 cm, and the atmo-
spheric pressure is 100 kPa. What is the maximum allowable 
discharge before cavitation occurs at the throat of the venturi 
meter if H = 5 m? Assume α = 1.0 at all locations.

Water
T = 20°C

D d
H

Problem 7.34

7.35 In this system, d = 15 cm, D = 35 cm, and the head loss 
from the venturi meter to the end of the pipe is given by 
hL = 1.5 V 2/2g, where V is the velocity in the pipe. Neglecting 
all other head losses, determine what head H will first initiate 
cavitation if the atmospheric pressure is 100 kPa absolute. 
What will be the discharge at incipient cavitation? Assume 
α = 1.0 at all locations.
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Water
T = 20°C

D dH

Problem 7.35

7.36 A pump is used to fi ll a tank 5 m in diameter from a river as 
shown. Th e water surface in the river is 2 m below the bottom of 
the tank. Th e pipe diameter is 5 cm, and the head loss in the pipe 
is given by hL = 10 V 2/2g, where V is the mean velocity in the 
pipe. Th e fl ow in the pipe is turbulent, so α = 1. Th e head pro-
vided by the pump varies with discharge through the pump as 
hp = 20 – 4 × 104 Q2, where the discharge is given in cubic 
meters per second (m3/s) and hp is in meters. How long will it 
take to fi ll the tank to a depth of 10 m?

5 m

5 cm
Pump

River

2 m

Problem 7.36

7.37 A pump is used to transfer SAE-30 oil from tank A to tank 
B as shown. Th e tanks have a diameter of 12 m. Th e initial depth 
of the oil in tank A is 20 m, and in tank B the depth is 1 m. Th e 
pump delivers a constant head of 60 m. Th e connecting pipe has 
a diameter of 20 cm, and the head loss due to friction in the pipe 
is 20 V 2/2g. Find the time required to transfer the oil from tank 
A to B; that is, the time required to fi ll tank B to 20 m depth.

Tank A Tank B

Pump

Problem 7.37

The Power Equation (§7.4)

7.38 As shown, water at 15°C is fl owing in a 15 cm diameter by 
60 m long run of pipe that is situated horizontally. Th e mean 
velocity is 2 m/s, and the head loss is 2 m. Determine the pres-
sure drop and the required pumping power to overcome head 
loss in the pipe.

Pump
Component

Water

1 2

60 m

Problem 7.38

7.39 Th e pump shown in the fi gure supplies energy to the fl ow 
such that the upstream pressure (12 in. pipe) is 5 psi and the 
downstream pressure (6 in. pipe) is 59 psi when the fl ow of water 
is 7 cfs. What horsepower is delivered by the pump to the fl ow? 
Assume α = 1.0 at all locations.

Pump

pA pB

Problem 7.39

7.40 A water discharge of 8 m3/s is to fl ow through this horizon-
tal pipe, which is 1 m in diameter. If the head loss is given as 
7 V 2/2g (V is velocity in the pipe), how much power will have to 
be supplied to the fl ow by the pump to produce this discharge? 
Assume α = 1.0 at all locations.

Water
Pump

Elevation = 40 m

Elevation = 20 m
Elevation = 10 m

1 m

300 m300 m

Problem 7.40

7.41 An engineer is designing a subsonic wind tunnel. Th e test 
section is to have a cross-sectional area of 4 m2 and an airspeed 
of 60 m/s. Th e air density is 1.2 kg/m3. Th e area of the tunnel 
exit is 10 m2. Th e head loss through the tunnel is given by 
hL = (0.025)(V2

T /2g), where VT is the airspeed in the test 
section. Calculate the power needed to operate the wind tunnel. 
Hint: Assume negligible energy loss for the fl ow approaching 
the tunnel in region A, and assume atmospheric pressure at the 
outlet section of the tunnel. Assume α = 1.0 at all locations.

A VT

Test section

Problem 7.41

7.42 Neglecting head losses, determine what horsepower the 
pump must deliver to produce the fl ow as shown. Here, the 
elevations at points A, B, C, and D are 124 ft , 161 ft , 110 ft , and 
90 ft , respectively. Th e nozzle area is 0.10 ft 2.
7.43 Neglecting head losses, determine what power the pump 
must deliver to produce the fl ow as shown. Here, the elevations 
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at points A, B, C, and D are 40 m, 64 m, 35 m, and 30 m, respec-
tively. Th e nozzle area is 11 cm2.

Nozzle

Water

A

B

C

D

Problems 7.42, 7.43

7.44 Water (10°C) is fl owing at a rate of 0.35 m3/s, and it is 
assumed that hL = 2 V 2/2g from the reservoir to the gage, where 
V is the velocity in the 30 cm pipe. What power must the pump 
supply? Assume α = 1.0 at all locations.

Elevation = 2 m

Elevation = 6 m

Elevation = 10 m

p = 100 kPa

D = 30 cm

40 cm diameter
Water

T = 10°C

Problem 7.44

7.45 In the pump test shown, the rate of fl ow is 6 cfs of oil 
(SG = 0.88). Calculate the horsepower that the pump supplies to 
the oil if there is a diff erential reading of 46 in. of mercury in the 
U-tube manometer. Assume α = 1.0 at all locations.

46 in.

D = 12 in.

D = 6 in.

Problem 7.45

7.46 If the discharge is 480 cfs, what power output may be 
expected from the turbine? Assume that the turbine effi  ciency 
is 85% and that the overall head loss is 1.3 V 2/2g, where V is the 
velocity in the 7 ft  penstock Assume α = 1.0 at all locations.

Turbine
D = 7 ft

30 ft

5 ft

Water

Problem 7.46

7.47 A small-scale hydraulic power system is shown. Th e eleva-
tion diff erence between the reservoir water surface and the 
pond water surface downstream of the reservoir, H, is 24 m. Th e 
velocity of the water exhausting into the pond is 7 m/s, and the 
discharge through the system is 4 m3/s. Th e head loss due to 
friction in the penstock (inlet pipe to turbine, under very high 
pressure) is negligible. Find the power produced by the turbine 
in kilowatts.

Turbine
H

Problem 7.47

Mechanical Effi ciency (§7.5)

7.48 A fan produces a pressure rise of 6 mm of water to move air 
through a hair dryer. Th e mean velocity of the air at the exit is 
10 m/s, and the exit diameter is 44 mm. Estimate the electrical 
power in watts that needs to be supplied to operate the fan. 
Assume that the fan/motor combination has an effi  ciency of 60%.

Problem 7.48 
(Photo by Donald Elger)

7.49 An engineer is making an estimate for a home owner. Th is 
owner has a small stream (Q = 1.4 cfs, T = 40°F) that is located 
at an elevation H = 34 ft  above the owner’s residence. Th e owner 
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is proposing to dam the stream, diverting the fl ow through a pipe 
(penstock). Th is fl ow will spin a hydraulic turbine, which in turn 
will drive a generator to produce electrical power. Estimate the 
maximum power in kilowatts that can be generated if there is no 
head loss and both the turbine and generator are 100% effi  cient. 
Also, estimate the power if the head loss is 5.5 ft , the turbine is 
70% effi  cient, and the generator is 90% effi  cient.

H
Penstock

Turbine and
generator

Problem 7.49

7.50 Th e pump shown draws water through an 8 in. suction pipe 
and discharges it through a 3 in. pipe in which the velocity is 
12 ft /s. Th e 6 in. pipe discharges horizontally into air at C. To 
what height h above the water surface at A can the water be 
raised if 14 hp is used by the pump? Th e pump operates at 60% 
effi  ciency and that the head loss in the pipe between A and C is 
equal to 2 V2

C/2g. Assume α = 1.0 throughout.
7.51 Th e pump shown draws water (20°C) through a 20 cm suction 
pipe and discharges it through a 11 cm pipe in which the velocity is 
3 m/s. Th e 10 cm pipe discharges horizontally into air at point C. To 
what height h above the water surface at A can the water be raised if 
28 kW is delivered to the pump? Assume that the pump operates at 
60% effi  ciency and that the head loss in the pipe between A and C 
is equal to 2 V2

C/2g. Assume α = 1.0 throughout.

Pump

A

Water

C

h

Problems 7.50, 7.51

7.52 A pumping system is to be designed to pump crude oil a 
distance of 1 mile in a 1 foot-diameter pipe at a rate of 3860 gpm. 
Th e pressures at the entrance and exit of the pipe are atmospheric, 
and the exit of the pipe is 210 feet higher than the entrance. Th e 
pressure loss in the system due to pipe friction is 60 psi. Th e 
specifi c weight of the oil is 53 lbf/ft 3. Find the power, in horse-
power, required for the pump.

Contrasting Bernoulli Eqn. to Energy Eqn. (§7.6)

7.53 How is the energy equation (7.29) in §7.3 similar to the 
Bernoulli equation? How is it diff erent? Give two important 
similarities and three important diff erences.

Transitions (§7.7)

7.54 What is the head loss at the outlet of the pipe that discharges 
water into the reservoir at a rate of 14 cfs if the diameter of the 
pipe is 18 in.?
7.55 What is the head loss at the outlet of the pipe that discharges 
water into the reservoir at a rate of 0.8 m3/s if the diameter of the 
pipe is 53 cm?

Problems 7.54, 7.55

7.56 A 7 cm pipe carries water with a mean velocity of 2 m/s. If 
this pipe abruptly expands to a 15 cm pipe, what will be the head 
loss due to the abrupt expansion?
7.57 A 6 in. pipe abruptly expands to a 12 in. size. If the dis-
charge of water in the pipes is 5 cfs, what is the head loss due to 
abrupt expansion?
7.58 Water is draining from tank A to tank B. Th e elevation 
diff erence between the two tanks is 10 m. Th e pipe connecting 
the two tanks has a sudden-expansion section as shown. Th e 
cross-sectional area of the pipe from A is 8 cm2, and the area of 
the pipe into B is 25 cm2. Assume the head loss in the system 
consists only of that due to the sudden-expansion section and 
the loss due to fl ow into tank B. Find the discharge between the 
two tanks.

10 m

A

B

Problem 7.58

7.59 A 40 cm pipe abruptly expands to a 60 cm size. Th ese pipes 
are horizontal, and the discharge of water from the smaller size 
to the larger is 1.0 m3/s. What horizontal force is required to 
hold the transition in place if the pressure in the 40 cm pipe is 
70 kPa gage? Also, what is the head loss? Assume α = 1.0 at all 
locations.
7.60 Water (γ = 62.4 lbf/ft 3) fl ows through a horizontal constant 
diameter pipe with a cross-sectional area of 9 in.2. Th e velocity 
in the pipe is 15 ft /s, and the water discharges to the atmosphere. 
Th e head loss between the pipe joint and the end of the pipe 
is 3 ft . Find the force on the joint to hold the pipe. Th e pipe is 
mounted on frictionless rollers. Assume α = 1.0 at all locations.

Problem 7.60

7.61 Th is abrupt expansion is to be used to dissipate the high-
energy fl ow of water in the 5 ft  diameter penstock. Assume 
α = 1.0 at all locations.
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a. What power (in horsepower) is lost through the expansion?
b.  If the pressure at section 1 is 5 psig, what is the pressure at 

section 2?
c. What force is needed to hold the expansion in place?

1
2

5 ft 10 ftV = 25 ft/s

Problem 7.61

7.62 Th is rough aluminum pipe is 6 in. in diameter. It weighs 
1.5 lb per foot of length, and the length L is 50 ft . If the discharge 
of water is 6 cfs and the head loss due to friction from section 
1 to the end of the pipe is 10 ft , what is the longitudinal force 
transmitted across section 1 through the pipe wall?

1

L
Vertical

D

Problem 7.62

7.63 Water fl ows in this bend at a rate of 5 m3/s, and the pressure 
at the inlet is 650 kPa. If the head loss in the bend is 10 m, what 
will the pressure be at the outlet of the bend? Also estimate the 
force of the anchor block on the bend in the x direction required 
to hold the bend in place. Assume α = 1.0 at all locations.

D = 80 cm

d = 50 cm

Expansion
joint

Plan view

Anchor
block

Elevation view

x

(vertical)

60°

Problems 7.63, 7.64

7.64 In a local water treatment plant, water fl ows in this bend 
at a rate of 7 m3/s, and the pressure at the inlet is 800 kPa. If the 
head loss in the bend is 13 m, what will the pressure be at the 
outlet of the bend? Also estimate the force of the anchor block 
on the bend in the x direction required to hold the bend in place. 
Assume α = 1.0 at all locations.

Hydraulic and Energy Grade Lines (§7.8)

7.65 Using Section 7.8 and other resources, answer the follow-
ing questions. Strive for depth, clarity, and accuracy while also 

combining sketches, words, and equations in ways that enhance 
the eff ectiveness of your communication.

a.  What are three important reasons that engineers use the 
HGL and the EGL?

b.  What factors infl uence the magnitude of the HGL? What 
factors infl uence the magnitude of the EGL?

c.  How are the EGL and HGL related to the piezometer? To 
the stagnation tube?

d. How is the EGL related to the energy equation?
e.  How can you use an HGL or an EGL to determine the 

direction of fl ow?
7.66 Th e energy grade line for steady fl ow in a uniform-diameter 
pipe is shown. Which of the following could be in the “black box”? 
(a) A pump, (b) a partially closed valve, (c) an abrupt expansion, or 
(d) a turbine? Choose all valid answer(s) and state your rationale.

EGL

EGL

Problem 7.66

7.67 If the pipe shown has constant diameter, is this type of HGL 
possible? If so, under what additional conditions? If not, why not?

HGL

Datum

p

z

γ

Problem 7.67

7.68 For the system shown:
a. What is the fl ow direction?
b. What kind of machine is at A?
c. Do you think both pipes, AB and CA, are the same diameter?
d. Sketch in the EGL for the system.
e.  Is there a vacuum at any point or region of the pipes? If so, 

identify the location.

HGL

C
A

B

Problem 7.68
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7.69 Th e HGL and the EGL are as shown for a certain fl ow 
system.

a. Is fl ow from A to E or from E to A?
b. Does it appear that a reservoir exists in the system?
c. Does the pipe at E have a uniform or a variable diameter?
d. Is there a pump in the system?
e.  Sketch the physical setup that could yield the conditions 

shown between C and D.
f. Is anything else revealed by the sketch?

A B C D

E

EGL and HGL

HGL

EGL

Problem 7.69

7.70 Sketch the HGL and the EGL for this conduit, which tapers 
uniformly from the left  end to the right end.

Water

Uniformly tapered pipe

Problem 7.70

7.71 Th e HGL and the EGL for a pipeline are shown in the 
fi gure.

a. Indicate which is the HGL and which is the EGL.
b. Are all pipes the same size? If not, which is the smallest?
c.  Is there any region in the pipes where the pressure is below 

atmospheric pressure? If so, where?
d. Where is the point of maximum pressure in the system?
e. Where is the point of minimum pressure in the system?
f.  What do you think is located at the end of the pipe at 

point E?
g.  Is the pressure in the air in the tank above or below 

atmospheric pressure?
h. What do you think is located at point B?

Air

Water
A B

C

D E

Problem 7.71

7.72 In the fi gure shown, the magnitude of the EGL changes 
from 14 m to 22 m. What is the pump head, hp?
7.73 Th e pump shown is supplied with 1.5 kW from the shaft  of 
a motor, to provide a mass fl ow rate of 20 kg/s. If the pump 
operates at 70% effi  ciency, what is the increase in the EGL?

EGL

HGL

Pump

Problems 7.72, 7.73

7.74 Assume that the head loss in the pipe is given by 
hL = 0.014(L/D)(V 2/2g), where L is the length of pipe and D is 
the pipe diameter. Assume α = 1.0 at all locations.

a. Determine the discharge of water through this system.
b. Draw the HGL and the EGL for the system.
c. Locate the point of maximum pressure.
d. Locate the point of minimum pressure.
e.  Calculate the maximum and minimum pressures in the 

system.

Water
T = 10°C

Elevation = 100 m

Elevation = 30 m

Elevation = 95 m

Elevation = 100 m

Nozzle

30 cm diameter jet

L = 100 m

D = 60 cm
L = 400 m

D = 60 cm

Problem 7.74

7.75 Sketch the HGL and the EGL for the reservoir and pipe of 
Example 7.2.
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7.76 Th e discharge of water through this turbine is 1000 cfs. 
What power is generated if the turbine effi  ciency is 85% and the 
total head loss is 4 ft ? H = 100 ft . Also, carefully sketch the EGL 
and the HGL.

Turbine
H

Problem 7.76

7.77 Water fl ows from the reservoir through a pipe and then 
discharges from a nozzle as shown. Th e head loss in the pipe 
itself is given as hL = 0.025(L/D)(V 2/2g), where L and D are the 
length and diameter of the pipe and V is the velocity in the pipe. 
What is the discharge of water? Also draw the HGL and EGL for 
the system. Assume α = 1.0 at all locations.

D = 1 ft

Elevation = 100 ft

Elevation = 60 ft

6 in. diameter jet
Water

T = 60°F

L = 1000 ft

Problem 7.77

7.78 Refer to Figure 7.14. Assume that the head loss in the pipes 
is given by hL = 0.02(L/D)(V 2/2g), where V is the mean velocity 
in the pipe, D is the pipe diameter, and L is the pipe length. Th e 
water surface elevations of the upper and lower reservoirs are 
100 m and 60 m, respectively. Th e respective dimensions for 
upstream and downstream pipes are Du = 32 cm, Lu = 190 m, 
Dd = 12 cm, and Ld = 110 m. Determine the discharge of water 
in the system.
7.79 What horsepower must be supplied to the water to pump 
3.0 cfs at 68°F from the lower to the upper reservoir? Assume 
that the head loss in the pipes is given by hL = 0.018(L/D)
(V 2/2g), where L is the length of the pipe in feet and D is the 
pipe diameter in feet. Sketch the HGL and the EGL.

Elevation = 90 ft

Elevation = 40 ft

Elevation = 140 ft

L = 1000 ft, D = 8 in.
L = 2000 ft,

 D
 = 8 in

.

Problem 7.79

7.80 Water fl ows from reservoir A to reservoir B. Th e water 
temperature in the system is 10°C, the pipe diameter D is 1 m, 
and the pipe length L is 300 m. If H = 16 m, h = 2 m, and the 
pipe head loss is given by hL = 0.01(L/D)(V 2/2g), where V is 
the velocity in the pipe, what will be the discharge in the pipe? 
In your solution, include the head loss at the pipe outlet, and 
sketch the HGL and the EGL. What will be the pressure at 
point P halfway between the two reservoirs? Assume α = 1.0 
at all locations.
7.81 Water flows from reservoir A to reservoir B in a desert 
retirement community. The water temperature in the system 
is 100°F, the pipe diameter D is 2 ft, and the pipe length L is 
160 ft. If H = 35 ft, h = 10 ft, and the pipe head loss is given 
by hL = 0.01(L/D)(V 2/2g), where V is the velocity in the pipe, 
what will be the discharge in the pipe? In your solution, 
include the head loss at the pipe outlet. What will be the 
pressure at point P halfway between the two reservoirs? 
Assume α = 1.0 at all locations.

Water

D

A
P

h

B
L

H

Problems 7.80, 7.81

7.82 Water fl ows from the reservoir on the left  to the reservoir 
on the right at a rate of 16 cfs. Th e formula for the head losses 
in the pipes is hL = 0.02(L/D)(V 2/2g). What elevation in the left  
reservoir is required to produce this fl ow? Also carefully sketch 
the HGL and the EGL for the system. Note: Assume the head-loss 
formula can be used for the smaller pipe as well as for the larger 
pipe. Assume α = 1.0 at all locations.

Elevation = ?

Elevation
= 110 ft

D2 = 1.596 ft
A2 = 2 ft2

D1 = 1.128 ft
A1 = 1 ft2

200 ft 300 ft

Problem 7.82

7.83 What power is required to pump water at a rate of 3 m3/s 
from the lower to the upper reservoir? Assume the pipe head 
loss is given by hL = 0.018(L/D)(V 2/2g), where L is the length 
of pipe, D is the pipe diameter, and V is the velocity in the pipe. 
Th e water temperature is 10°C, the water surface elevation in the 
lower reservoir is 150 m, and the surface elevation in the upper 
reservoir is 250 m. Th e pump elevation is 100 m, L1 = 100 m, 
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L2 = 1000 m, D1 = 1 m, and D2 = 50 cm. Assume the pump and 
motor effi  ciency is 74%. In your solution, include the head loss 
at the pipe outlet and sketch the HGL and the EGL. Assume 
α = 1.0 at all locations.

L1, D1

L2, D2

Problem 7.83

7.84 Refer to Figure 7.16. Assume that the head loss in the 
pipe is given by hL = 0.02(L/D)(V 2/2g), where V is the mean 
velocity in the pipe, D is the pipe diameter, and L is the pipe 
length. The elevations of the reservoir water surface, the 
highest point in the pipe, and the pipe outlet are 250 m, 250 m, 
and 210 m, respectively. The pipe diameter is 30 cm, and the 
pipe length is 200 m. Determine the water discharge in the 
pipe, and, assuming that the highest point in the pipe is halfway 
along the pipe, determine the pressure in the pipe at that 
point. Assume α = 1.0 at all locations.
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Dimensional Analysis 

and Similitude

CHAPTER ROAD MAP Because of the complexity of fl ows, designs are often based on experimental 
results, which are commonly done using scale models. The theoretical basis of experimental testing is called 
dimensional analysis, the topic of this chapter. This topic is also used to simplify analysis and to present 
results.

CHAPTEREIGHT

LEARNING OUTCOMES

DIMENSIONAL ANALYSIS (§8.1, §8.2). 

● Explain why dimensional analysis is useful to engineers. 
● Defi ne a π-group. 
● Explain or apply the Buckingham Π theorem.

METHODS (§8.3). 

● Apply the step-by-step method. 
● Apply the exponent method.

COMMON 𝛑-GROUPS (§8.4). 

● Defi ne and describe the common fl uids π-groups. 
●  Explain how a π-group can be understood as a ratio of physically 

signifi cant terms.

EXPERIMENTS (§8.5). 

● Defi ne model and prototype. 
● Explain what similitude means and how to achieve similitude. 
●  Relate physical variables between a model and a prototype by 

matching the π-groups.

FIGURE 8.1
The photo shows a model of a formula racing car that 

was built out of clay for testing in a small wind tunnel. 

The purpose of the testing was to assess the drag 

characteristics. The work was done by Josh Hartung 

while he was an undergraduate engineering student. 

(Photo courtesy of Josh Hartung.)

8.1 The Need for Dimensional Analysis

Fluid mechanics is more heavily involved with experimental testing than other disciplines be-
cause the analytical tools currently available to solve the momentum and energy equations are 
not capable of providing accurate results. Th is is particularly evident in turbulent, separating 
fl ows. Th e solutions obtained by utilizing techniques from computational fl uid dynamics with 
the largest computers available yield only fair approximations for turbulent fl ow problems—
hence the need for experimental evaluation and verifi cation.

For analyzing model studies and for correlating the results of experimental research, it is 
essential that researchers employ dimensionless groups. To appreciate the advantages of using 
dimensionless groups, consider the fl ow of water through the unusual orifi ce illustrated in 
Figure 8.2. Actually, this is much like a nozzle used for fl ow metering except that the fl ow is in 
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the opposite direction. An orifi ce operating in this fl ow condition will have a much diff erent 
performance than one operating in the normal mode. However, it is not unlikely that a fi rm or 
city water department might have such a situation in which the fl ow may occur the “right way” 
most of the time and the “wrong way” part of the time—hence the need for such knowledge.

Because of size and expense, it is not always feasible to carry out tests on a full-scale pro-
totype. Th us, engineers will test a subscale model and measure the pressure drop across the 
model. Th e test procedure may involve testing several orifi ces, each with a diff erent throat di-
ameter d0. For purposes of discussion, assume that three nozzles are to be tested. Th e Bernoulli 
equation, introduced in Chapter 4, suggests that the pressure drop will depend on fl ow velocity 
and fl uid density. It may also depend on the fl uid viscosity.

Th e test program may be carried out with a range of velocities and possibly with fl uids 
of diff erent density (and viscosity). Th e pressure drop, p1 – p2, is a function of the velocity V1, 
density ρ, and diameter d0. By carrying out numerous measurements at diff erent values of V1 
and ρ for the three diff erent nozzles, the data could be plotted as shown in Figure 8.3a for tests 
using water. In addition, further tests could be planned with diff erent fl uids at considerably 
more expense.

Th e material introduced in this chapter leads to a much better approach. Th rough dimen-
sional analysis, it can be shown that the pressure drop can be expressed as

 
p1 − p2

(ρV 2)/2
= f (d0

d1
, 

ρV1d 0

μ ) (8.1)

which means that the dimensionless group for pressure, (p1 – p2)/(ρV 2/2), is a function of the 
dimensionless throat/pipe diameter ratio d0/d1 and the dimensionless group (ρV1d0)/μ, which 
will be identifi ed later as the Reynolds number. Th e purpose of the experimental program is 
to establish the functional relationship. As will be shown later, if the Reynolds number is suf-
fi ciently large, the results are independent of the Reynolds number. Th en

 
p1 − p2

(ρV 2)/2
= f (d0

d1
) (8.2)

V1

p1

d0

p2d1

FIGURE 8.2

Flow through inverted fl ow nozzle.

p1–p2

V1

Diameter
ratio, d0/d1

d0,1 d0,2 d0,3

Fluid water

p1–p2

ρV2/2

(a) (b)

FIGURE 8.3

Relations for pressure, velocity, and diameter. (a) Using 

dimensional variables. (b) Using dimensionless groups.
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Th us, for any specifi c orifi ce design (the same d0/d1) the pressure drop, p1 – p2, divided by 
ρV2

1/2 for the model is same for the prototype. Th erefore, the data collected from the model 
tests can be applied directly to the prototype. Only one test is needed for each orifi ce design. 
Consequently, only three tests are needed, as shown in Figure 8.2b. Th e fewer tests result in 
considerable savings in eff ort and expense.

Th e identifi cation of dimensionless groups that provide correspondence between model 
and prototype data is carried out through dimensional analysis.

8.2 Buckingham Π Theorem

In 1915, Buckingham (1) showed that the number of independent dimensionless groups of 
variables (dimensionless parameters) needed to correlate the variables in a given process is 
equal to n – m, where n is the number of variables involved and m is the number of basic 
dimensions included in the variables.

Buckingham referred to the dimensionless groups as Π, which is the reason the theorem is 
called the Π theorem. Henceforth, dimensionless groups will be referred to as 𝛑-groups. If the 
equation describing a physical system has n dimensional variables and is expressed as

y1 = f ( y2 , y3 , … yn)

then it can be rearranged and expressed in terms of (n – m) π-groups as

π1 = φ(π2 , π3, … πn−m)

Th us, if the drag force F of a fl uid fl owing past a sphere is known to be a function of the velocity V, 
mass density ρ, viscosity μ, and diameter D, then fi ve variables (F, V, ρ, μ, and D) and three 
basic dimensions (L, M, and T) are involved.* By the Buckingham Π theorem, there will be 
5 – 3 = 2 π-groups that can be used to correlate experimental results in the form

π1 = φ(π2)

8.3 Dimensional Analysis

Dimensional analysis is the process for applying π-groups to analysis, experiment design, 
and the presentation of results. Th is section presents two methods for fi nding π-groups: the 
step-by-step method and the exponent method.

The Step-by-Step Method

Several methods may be used to carry out the process of fi nding the π-groups, but the step-by-
step approach, very clearly presented by Ipsen (2), is one of the easiest and reveals much about 
the process. Th e process for the step-by-step method is laid out in Table 8.1.

Th e fi nal result can be expressed as a functional relationship of the form

 π1 = f (π2 , π2 , … πn) (8.3)

Th e selection of the dependent and independent π-groups depends on the application. Also, 
the selection of variables used to eliminate dimensions is arbitrary.

*Note that only three basic dimensions will be considered here. Temperature will not be included.
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Example 8.1 shows how to use the step-by-step method to fi nd the π-groups for a body 
falling in a vacuum.

TABLE 8.1 The Step-by-Step Approach

Step Action Taken during This Step

1 Identify the signifi cant dimensional variables and write out the primary 
 dimensions of each.

2 Apply the Buckingham Π theorem to fi nd the number of π-groups.*

3 Set up a table with the number of rows equal to the number of dimensional variables and 
 the number of columns equal to the number of basic dimensions plus one (m + 1).

4 List all the dimensional variables in the fi rst column with primary dimensions.

5 Select a dimension to be eliminated, choose a variable with that dimension in the fi rst 
  column, and combine with remaining variables to eliminate the dimension. List 

combined variables in the second column with the remaining primary dimensions.
6 Select another dimension to be eliminated, choose from variables in the second column 

  that have that dimension, and combine with the remaining variables. List the new 
combinations with the remaining primary dimensions in the third column.

7 Repeat Step 6 until all dimensions are eliminated. Th e remaining dimensionless groups 
 are the π-groups. List the π-groups in the last column.

*Note that, in rare instances, the number of π-groups may be one more than predicted by the Buckingham Π 
theorem. Th is anomaly can occur because it is possible that two dimensional categories can be eliminated when 
dividing (or multiplying) by a given variable. See Ipsen (2) for an example of this.

EXAMPLE 8.1

Finding the π-Group for a Body Falling in a Vacuum

Problem Statement

Th ere are three signifi cant dimensional variables for a body 
falling in a vacuum (no viscous eff ects): the velocity, V; the 
acceleration due to gravity, g; and the distance through which 
the body falls, h. Find the π-groups using the step-by-step 
method.

Defi ne the Situation

A body is falling in a vacuum, V = f (g, h).

State the Goal

Find the π-groups.

Generate Ideas and Make a Plan

Apply the step-by-step method laid out in Table 8.1.

Take Action (Execute the Plan)

1. Signifi cant variables and dimensions:

 [V] = L/T
 [g] = L/T 2

 [h] = L

Th ere are only two dimensions, L and T.
2.  From the Buckingham Π theorem, there is only one 

(three variables; two dimensions) π-group.
3.  Set up a table with three rows (number of variables) and 

three (dimensions + 1) columns.
4. List variables and primary dimensions in fi rst column.

Variable [ ] Variable [ ] Variable [ ]

 V 
L
T

 
V
h

 
1
T

 
V
√gh

 0

 g 
L

T 2  
g
h

 
1

T 2

 h L

5.  Select h to eliminate L. Divide g by h and enter in the 
second column with dimension 1/T2. Divide V by h and 
enter in the second column with dimension 1/T.

6.  Select g/h to eliminate T. Divide V/h by √g/h and enter 
in the third column.
As expected, there is only one π-group:

π =
V
√g h
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Example 8.2 illustrates the application of the step-by-step method for fi nding π-groups 
for a problem with fi ve variables and three primary dimensions.

Th e fi nal functional form of the equation is

V
√g h

= C

Review the Solution and the Process

1. Knowledge. From physics, one can show that C = √2.

2. Knowledge. Th e proper relationship between V, h, and 
g was found with dimensionless analysis. If the value of C 
was not known, then it could be determined from 
experiment.

EXAMPLE 8.2

Finding π-Groups for Drag on a Sphere Using the 
Step-by-Step Method

Problem Statement

Th e drag FD of a sphere in a fl uid fl owing past the sphere is a 
function of the viscosity, μ, the mass density, ρ, the velocity 
of fl ow, V, and the diameter of the sphere, D. Use the 
step-by-step method to fi nd the π-groups.

Defi ne the Situation

Th e functional relationship is FD = f(V, ρ, μ, D).

State the Goal

Find the π-groups using the step-by-step method.

Generate Ideas and Make a Plan

Apply the step-by-step procedure from Table 8.1.

Take Action (Execute the Plan)

1. Dimensions of signifi cant variables:

F =
ML
T 2 , V =

L
T

, ρ =
M
L3 , μ =

M
LT

, D = L

2. Number of π-groups: 5 – 3 = 2.
3. Set up a table with fi ve rows and four columns.
4. Write variables and dimensions in the fi rst column.

Variable [ ] Variable [ ] Variable [ ] Variable [ ]

 FD 
ML
T 2  

FD

D
 

M
T 2  

FD

ρD4 
1

T 2  
FD

ρV 2D 2 0

 V 
L
T

 
V
D

 
1
T

 
V
D

 
1
T

 ρ 
M
L3

 ρD3 M

 μ 
M
LT

 μD 
M
T

 
μ

ρD 2 
1
T

 
μ

ρVD
 0

 D L

5.  Eliminate L using D and write new variable combinations 
with corresponding dimensions in the second column.

6.  Eliminate M using ρD3 and write new variable combi-
nations with dimensions in the third column.

7.  Eliminate T using V/D and write new combinations in 
the fourth column.
Th e fi nal two π-groups are

π1 =
FD

ρV 2D 2  and  π2 =
μ

ρVD

Th e functional equation can be written as

FD

ρV 2D 2 = f ( μ
ρVD)

Th e form of the π-groups obtained will depend on the variables selected to eliminate 
dimensions. For example, if in Example 8.2 μ/ρD2 had been used to eliminate the time dimen-
sion, then the two π-groups would have been

π1 =
ρFD

μ2   and  π2 =
μ

ρVD
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Th e result is still valid but may not be convenient to use. Th e form of any π-group can be al-
tered by multiplying or dividing by another π-group. Multiplying π1 by the square of π2 yields 
the original π1 in Example 8.2:

ρFD

μ2 × ( μ
ρVD)

2

=
FD

ρV 2D 2

By so doing, the two π-groups would be the same as in Example 8.2.

The Exponent Method

An alternative method for fi nding the π-groups is the exponent method. Th is method involves 
solving a set of algebraic equations to satisfy dimensional homogeneity. Th e process for the 
exponent method is listed in Table 8.2.

Example 8.3 illustrates how to apply the exponent method to fi nd the π-groups of the 
same problem addressed in Example 8.2.

TABLE 8.2 The Exponent Method

Step Action Taken During This Step

1 Identify the signifi cant dimensional variables, yi, and write out the primary dimensions 
 of each, [yi].

2 Apply the Buckingham Π theorem to fi nd the number of π-groups.

3 Write out the product of the primary dimensions in the form

[ y1] = [ y2]
a × [ y3]

b × … × [ yn]
k

where n is the number of dimensional variables and a, b, and so on are exponents.
4 Find the algebraic equations for the exponents that satisfy dimensional homogeneity 

 (same power for dimensions on each side of equation).
5 Solve the equations for the exponents.

6 Express the dimensional equation in the form y1 = ya
2 yb

3 … y k
n and identify the 

 π-groups.

EXAMPLE 8.3

Finding π-Groups for Drag on a Sphere Using the 
Exponent Method

Problem Statement

Th e drag of a sphere, FD, in a fl owing fl uid is a function of the 
velocity, V, the fl uid density, ρ, the fl uid viscosity, μ, and the 
sphere diameter, D. Find the π-groups using the exponent 
method.

Defi ne the Situation

Th e functional equation is FD = f (V, ρ, μ, D).

State the Goal

Find the π-groups using the exponent method.

Generate Ideas and Make a Plan

Apply the process for the exponent method from Table 8.2.

Take Action (Execute the Plan)

1. Dimensions of signifi cant variables are

[F] =
ML
T 2 , [V] =

L
T

, [ρ] =
M
L3 , [μ] =

M
LT

, [D] = L

2. Number of π-groups: 5 – 3 = 2.
3. Form product with dimensions:

 
ML
T 2 = [

L
T ]

a

× [
M
L3 ]

b

× [
M
LT]

c

× [L]d

 =
La−3b−c+d Mb+c

T a+c
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Selection of Signifi cant Variables

All the foregoing procedures deal with straightforward situations. However, some problems do 
occur. To apply dimensional analysis, one must fi rst decide which variables are signifi cant. If 
the problem is not suffi  ciently well understood to make a good choice of the signifi cant vari-
ables, then dimensional analysis seldom provides clarifi cation.

A serious shortcoming might be the omission of a signifi cant variable. If this is done, one 
of the signifi cant π-groups will likewise be missing. In this regard, it is oft en best to identify 
a list of variables that one regards as signifi cant to a problem and to determine if only one 
dimensional category (such as M or L or T) occurs. When this happens, it is likely that there 
is an error in choice of signifi cant variables because it is not possible to combine two variables 
to eliminate the lone dimension. Either the variable with the lone dimension should not have 
been included in the fi rst place (it is not signifi cant), or another variable should have been 
included.

How does one know if a variable is signifi cant for a given problem? Probably the truest 
answer is by experience. Aft er working in the fi eld of fl uid mechanics for several years, one de-
velops a feel for the signifi cance of variables to certain kinds of applications. However, even the 
inexperienced engineer will appreciate the fact that free-surface eff ects have no signifi cance 
in closed-conduit fl ow; consequently, surface tension, σ, would not be included as a variable. 
In closed-conduit fl ow, if the velocity is less than approximately one-third the speed of sound, 
compressibility eff ects are usually negligible. Such guidelines, which have been observed by 
previous experimenters, help the novice engineer develop confi dence in her or his application 
of dimensional analysis and similitude.

8.4 Common 𝛑-Groups

Th e most common π-groups can be found by applying dimensional analysis to the variables 
that might be signifi cant in a general fl ow situation. Th e purpose of this section is to develop 
these common π-groups and discuss their signifi cance.

4.  Dimensional homogeneity. Equate powers of dimensions 
on each side:

 L: a − 3b − c + d = 1
 M: b + c = 1
 T: a + c = 2

5. Solve for exponents a, b, and c in terms of d:

(
1 −3 −1
0 1 1
1 0 1 ) (

a
b
c ) = (

1 − d
1
2 )

Th e value of the determinant is –1, so a unique solution 
is achievable. Th e solution is a = d, b = d – 1, c = 2 – d.

6. Write the dimensional equation with exponents.

 F = V d ρ d−1μ2−d D d

 F =
μ2

ρ (ρVD
μ )

d

 
Fρ
μ2 = (ρVD

μ )
d

Th ere are two π-groups:

π1 =
Fρ
μ2  and  π2 =

ρVD
μ

By dividing π1 by the square of π2, the π1 group can 
be written as FD/(ρV2D2), so the functional form of the 
equation can be written as

F
ρV 2D 2 = f (ρVD

μ )

Review the Solution and the Process

Discussion. Th e functional relationship between the two 
π-groups can be obtained from experiments.
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Variables that have signifi cance in a general fl ow fi eld are the velocity, V, the density, 
ρ, the viscosity, μ, and the acceleration due to gravity, g. In addition, if fl uid compressibility 
were likely, then the bulk modulus of elasticity, Ev, should be included. If there is a liquid-gas 
interface, then the surface tension eff ects may also be signifi cant. Finally, the fl ow fi eld will be 
aff ected by a general length, L, such as the width of a building or the diameter of a pipe. Th ese 
variables will be regarded as the independent variables. Th e primary dimensions of the signifi -
cant independent variables are

[V] = L/T   [ρ] = M/L3   [μ] = M/LT

[ g] = L/T 2   [Ev] = M/LT 2   [σ] = M/T 2   [L] = L

Th ere are several other independent variables that could be identifi ed for thermal eff ects, 
such as temperature, specifi c heat, and thermal conductivity. Inclusion of these variables is 
beyond the scope of this text.

Products that result from a fl owing fl uid are pressure distributions (p), shear stress distri-
butions (τ), and forces on surfaces and objects (F) in the fl ow fi eld. Th ese will be identifi ed as 
the dependent variables. Th e primary dimensions of the dependent variables are

[ p] = M/LT 2   [τ] = [Δp] = M/LT 2   [F] = (ML)/T 2

Th ere are other dependent variables not included here, but they will be encountered and intro-
duced for specifi c applications.

Altogether, there are 10 signifi cant variables, which, by application of the Buckingham 
Π theorem, means there are seven π-groups. Utilizing either the step-by-step method or the 
exponent method yields

p
ρV 2   

τ
ρV 2   

F
ρV 2L 2

ρVL
μ    

V
√Ev/ρ

   
ρLV 2

σ    
V 2

gL

Th e fi rst three groups, the dependent π-groups, are identifi ed by specifi c names. For these 
groups, it is common practice to use the kinetic pressure, ρV2/2, instead of ρV2. In most ap-
plications, one is concerned with a pressure diff erence, so the pressure π-group is expressed as

Cp =
p − p0

1
2

ρV 2

where Cp is called the pressure coeffi  cient and p0 is a reference pressure. Th e pressure coeffi  -
cient was introduced earlier in Chapter 4 and discussed in Section 8.1. Th e π-group associated 
with shear stress is called the shear-stress coeffi  cient and defi ned as

cf =
τ

1
2

ρV 2

where the subscript f denotes “friction.” Th e π-group associated with force is referred to, here, 
as a force coeffi  cient and defi ned as

CF =
F

1
2

ρV 2L2
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Th is coeffi  cient will be used extensively in Chapter 11 for lift  and drag forces on airfoils and 
hydrofoils.

Th e independent π-groups are named aft er earlier contributors to fl uid mechanics. Th e 
π-group VLρ/μ is called the Reynolds number, aft er Osborne Reynolds, and designated by Re. 
Th e group V/(√Ev /ρ) is rewritten as (V/c) because √Ev /ρ is the speed of sound, c. Th is 
π-group is called the Mach number and designated by M. Th e π-group ρLV2/σ is called the 
Weber number and designated by We. Th e remaining π-group is usually expressed as V/√gL 
and identifi ed as the Froude (rhymes with “food”) number* and written as Fr.

Th e general functional form for all the π-groups is

 Cp , cf , CF = f (Re, M, We, Fr) (8.4)

which means that either of the three dependent π-groups are functions of the four inde-
pendent π-groups; that is, the pressure coeffi  cient, the shear-stress coeffi  cient, or the force 
coeffi  cient are functions of the Reynolds number, Mach number, Weber number, and Froude 
number.

Th e π-groups, their symbols, and their names are summarized in Table 8.3. Each inde-
pendent π-group has an important physical interpretation, as indicated by the Ratio column. 
Th e Reynolds number can be viewed as the ratio of kinetic to viscous forces. Th e kinetic forces 
are the forces associated with fl uid motion. Th e Bernoulli equation indicates that the pressure 
diff erence required to bring a moving fl uid to rest is the kinetic pressure, ρV2/2, so the kinetic 
forces,† Fk, should be proportional to

Fk ∝ ρV 2L2

Th e shear force due to viscous eff ects, Fv, is proportional to the shear stress and area

Fv ∝ τA ∝ τL2

*Sometimes, the Froude number is written as V/ √(ΔγgL)/γ and called the densimetric Froude number. It has 
application in studying the motion of fl uids in which there is density stratifi cation, such as between saltwater and 
freshwater in an estuary or heated-water effl  uents associated with thermal power plants.
†Traditionally, the kinetic force has been identifi ed as the “inertial” force.

TABLE 8.3 Common Π-Groups

𝛑-Group Symbol Name Ratio

p − p0

(ρV 2)/2
Cp Pressure coeffi  cient Pressure difference

Kinetic pressure
τ

(ρV 2)/2
cf Shear-stress coeffi  cient Shear stress

Kinetic pressure

F
(ρV 2L2)/2

CF Force coeffi  cient Force
Kinetic force

ρLV
μ

Re Reynolds number Kinetic force
Viscous force

V
c

M Mach number

B
Kinetic force

Compressive force

ρLV 2

σ

We Weber number Kinetic force
Surface-tension force

V
√gL

Fr Froude number

B
Kinetic force

Gravitational force
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and the shear stress is proportional to

τ ∝ μ
dV
dy

∝
μV
L

so Fv ∝ μVL. Taking the ratio of the kinetic to the viscous forces

Fk

Fv
∝

ρVL
μ = Re

yields the Reynolds number. Th e magnitude of the Reynolds number provides important 
information about the fl ow. A low Reynolds number implies that viscous eff ects are important; 
a high Reynolds number implies that kinetic forces predominate. Th e Reynolds number is one 
of the most widely used π-groups in fl uid mechanics. It is also oft en written using kinematic 
viscosity, Re = ρVL/μ = VL/ν.

Th e ratios of the other independent π-groups have similar signifi cance. Th e Mach num-
ber is an indicator of how important compressibility eff ects are in a fl uid fl ow. If the Mach 
number is small, then the kinetic force associated with the fl uid motion does not cause a sig-
nifi cant density change, and the fl ow can be treated as incompressible (constant density). On 
the other hand, if the Mach number is large, there are oft en appreciable density changes that 
must be considered in model studies.

Th e Weber number is an important parameter in liquid atomization. Th e surface tension 
of the liquid at the surface of a droplet is responsible for maintaining the droplet’s shape. If a 
droplet is subjected to an air jet and there is a relative velocity between the droplet and the gas, 
kinetic forces due to this relative velocity cause the droplet to deform. If the Weber number is 
too large, the kinetic force overcomes the surface-tension force to the point that the droplet 
shatters into even smaller droplets. Th us, a Weber number criterion can be useful in predicting 
the droplet size to be expected in liquid atomization. Th e size of the droplets resulting from 
liquid atomization is a very signifi cant parameter in gas turbine and rocket combustion.

Th e Froude number is unimportant when gravity causes only a hydrostatic pressure distri-
bution, such as in a closed conduit. However, if the gravitational force infl uences the pattern of 
fl ow, such as in fl ow over a spillway or in the formation of waves created by a ship as it cruises 
over the sea, then the Froude number is a most signifi cant parameter.

8.5 Similitude

Scope of Similitude

Similitude is the theory and art of predicting prototype performance from model observa-
tions. Whenever it is necessary to perform tests on a model to obtain information that cannot 
be obtained by analytical means alone, the rules of similitude must be applied. Th e theory of 
similitude involves the application of π-groups, such as the Reynolds number or the Froude 
number, to predict prototype performance from model tests. Th e art of similitude enters the 
problem when the engineer must make decisions about model design, model construction, 
performance of tests, or analysis of results that are not included in the basic theory.

Present engineering practice makes use of model tests more frequently than most people 
realize. For example, whenever a new airplane is being designed, tests are made not only on 
the general scale model of the prototype airplane but also on various components of the plane. 
Numerous tests are made on individual wing sections as well as on the engine pods and tail 
sections.

Models of automobiles and high-speed trains are also tested in wind tunnels to predict the 
drag and fl ow patterns for the prototype. Information derived from these model studies oft en 
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indicates potential problems that can be corrected before the prototype is built, thereby saving 
considerable time and expense in development of the prototype.

In civil engineering, model tests are always used to predict fl ow conditions for the spill-
ways of large dams. In addition, river models assist the engineer in the design of fl ood-control 
structures as well as in the analysis of sediment movement in the river. Marine engineers 
make extensive tests on model ship hulls to predict the drag of the ships. Much of this type of 
testing is done at the David Taylor Model Basin, Naval Surface Warfare Center, Carderock 
Division, near Washington, D.C. (see Figure 8.4). Tests are also regularly performed on models 
of tall buildings to help predict the wind loads on the buildings, the stability characteristics 
of the buildings, and the airfl ow patterns in their vicinity. Th e latter information is used by 
the architects to design walkways and passageways that are safer and more comfortable for 
pedestrians to use.

Geometric Similitude

Geometric similitude means that the model is an exact geometric replica of the prototype.* 
Consequently, if a 1:10 scale model is specifi ed, all linear dimensions of the model must be 
1/10 of those of the prototype. In Figure 8.5, if the model and prototype are geometrically 
similar, the following equalities hold:

 
ℓm

ℓp
=

wm

wp
=

cm

cp
= Lr (8.5)

Here, ℓ, w, and c are specifi c linear dimensions associated with the model and prototype, and 
Lr is the scale ratio between model and prototype. It follows that the ratio of corresponding 
areas between model and prototype will be the square of the length ratio: Ar = L2

r. Th e ratio of 
corresponding volumes will be given by Vm/Vp = L3

r.

FIGURE 8.4

Ship-model test at the David Taylor Model Basin, 

Naval Surface Warfare Center, Carderock Division.  

(U.S. Navy photo by John F. Williams/Released)

*For most model studies, this is a basic requirement. However, for certain types of problems, such as river models, 
distortion of the vertical scale is oft en necessary to obtain meaningful results.
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Dynamic Similitude

Dynamic similitude means that the forces that act on corresponding masses in the model and 
prototype are in the same ratio (Fm/Fp = constant) throughout the entire fl ow fi eld. For exam-
ple, the ratio of the kinetic to viscous forces must be the same for the model and the prototype. 
Because the forces acting on the fl uid elements control the motion of those elements, it follows 
that dynamic similarity will yield similarity of fl ow patterns. Consequently, the fl ow patterns for 
the model and the prototype will be the same if geometric similitude is satisfi ed and if the rela-
tive forces acting on the fl uid are the same in the model as in the prototype. Th is latter condition 
requires that the appropriate π-groups introduced in Section 8.4 be the same for the model and 
prototype because these π-groups are indicators of relative forces within the fl uid.

A more physical interpretation of the force ratios can be illustrated by considering the fl ow 
over the spillway shown in Figure 8.6a. Here, corresponding masses of fl uid in the model and 
prototype are acted on by corresponding forces. Th ese forces are the force of gravity Fg, the pres-
sure force Fp, and the viscous resistance force Fv. Th ese forces add vectorially, as shown in 
Figure 8.6, to yield a resultant force FR, which will in turn produce an acceleration of the volume 
of fl uid in accordance with Newton’s second law of motion. Hence, because the force polygons 
in the prototype and model are similar, the magnitudes of the forces in the prototype and model 
will be in the same ratio as the magnitude of the vectors representing mass times acceleration:

mm am

mp ap
=

Fgm

Fgp

or

ρm L3
m (Vm /tm)

ρp L3
p(Vp/tp)

=
γm L3

m

γp L3
p

which reduces to

Vm

gm tm
=

Vp

gp tp

But

tm

tp
=

Lm/Vm

Lp/Vp

so

 
V 2

m

gm Lm
=

V 2
p

gp Lp
 (8.6)

�p

�m

wp cp

cmwm

(a)

(b)

FIGURE 8.5

(a) Prototype. (b) Model.
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Taking the square root of each side of Eq. (8.6) gives

 
Vm

√gmLm
=

Vp

√gpLp
  or  Frm = Frp (8.7)

Th us, the Froude number for the model must be equal to the Froude number for the prototype 
to have the same ratio of forces on the model and the prototype.

Equating the ratio of the forces producing acceleration to the ratio of viscous forces,

 
mm am

mp ap
=

Fvm

Fvp
 (8.8)

where Fv ∝ μVL leads to

Rem = Rep

Th e same analysis can be carried out for the Mach number and the Weber number. To sum-
marize, if the independent π-groups for the model and prototype are equal, then the condition 
for dynamic similitude is satisfi ed.

Referring back to Eq. (8.4) for the general functional relationship,

Cp , cf , CF = f (Re, M, We, Fr)

(a)

(b)

Forces on
fluid element

Fp

Fv

Fg

Fpp

Fgp

Fvp

FRp = mpap

Prototype force polygon

Fpm
Fgm

Fvm

FRm = mmam

Model force polygon

FIGURE 8.6

Model-prototype relations: prototype view (a) and 

model view (b).
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If the independent π-groups are the same for the model and the prototype, then dependent 
π-groups must also be equal, so

 Cp , m = Cp , p    cf , m = cf , p    CF, m = CF, p (8.9)

To have complete similitude between the model and the prototype, it is necessary to have both 
geometric and dynamic similitude.

In many situations, it may not be possible nor necessary to have all the independent π-groups 
the same for the model and the prototype to carry out useful model studies. For the fl ow of a liquid 
in a horizontal pipe, for example, in which the fl uid completely fi lls the pipe (no free surface), there 
would be no surface tension eff ects, so the Weber number would be inappropriate. Compressibil-
ity eff ects would not be important, so the Mach number would not be needed. In addition, gravity 
would not be responsible for the fl ow, so the Froude number would not have to be considered. 
Th e only signifi cant π-group would be the Reynolds number; thus dynamic similitude would be 
achieved by matching the Reynolds number between the model and the prototype.

On the other hand, if a model test were to be done for the fl ow over a spillway, then the 
Froude number would be a signifi cant π-group because gravity is responsible for the motion 
of the fl uid. Also, the action of viscous stresses due to the spillway surface could possibly 
aff ect the fl ow pattern, so the Reynolds number may be a signifi cant π-group. In this situation, 
dynamic similitude may require that both the Froude number and the Reynolds number be the 
same for the model and prototype.

Th e choice of signifi cant π-groups for dynamic similitude and their actual use in predict-
ing prototype performance are considered in the next two sections.

8.6 Model Studies for Flows without 

Free-Surface Effects

Free-surface eff ects are absent in the fl ow of liquids or gases in closed conduits, including con-
trol devices such as valves, or in the fl ow about bodies (e.g., aircraft ) that travel through air or 
are deeply submerged in a liquid such as water (submarines). Free-surface eff ects are also absent 
where a structure such as a building is stationary and wind fl ows past it. In all these cases, 
given relatively low Mach numbers, the Reynolds-number criterion is the most signifi cant 
for dynamic similarity. Th at is, the Reynolds number for the model must equal the Reynolds 
number for the prototype.

Example 8.4 illustrates the application of Reynolds-number similitude for the fl ow over 
a blimp.

EXAMPLE 8.4

Reynolds-Number Similitude

Problem Statement

Th e drag characteristics of a blimp 5 m in diameter and 60 m 
long are to be studied in a wind tunnel. If the speed of the 
blimp through still air is 10 m/s, and if a 1/10 scale model is 
to be tested, what airspeed in the wind tunnel is needed for 
dynamically similar conditions? Assume the same air pressure 
and temperature for both model and prototype.

Defi ne the Situation

A one-tenth-scale model blimp is being tested in a wind tunnel.
Prototype speed is 10 m/s.

Assumptions: Same air pressure and temperature for model 
and prototype, therefore vm = vp

State the Goal

Find the air speed (m/s) in the wind tunnel for dynamic 
similitude.

Generate Ideas and Make a Plan

Th e only π-group that is appropriate is the Reynolds number 
(there are no compressibility eff ects, free-surface eff ects, or 
gravitation eff ects). Th us, equating the model and prototype 
Reynolds number satisfi es dynamic similitude.
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Example 8.4 shows that the airspeed in the wind tunnel must be 100 m/s for true 
Reynolds number similitude. Th is speed is quite large, and in fact Mach number eff ects may 
start to become important at such a speed. However, it will be shown in Section 8.8 that it is 
not always necessary to operate models at true Reynolds number similitude to obtain useful 
results.

If the engineer feels that it is essential to maintain Reynolds number similitude, then only 
a few alternatives are available. One way to produce high Reynolds numbers at nominal air-
speeds is to increase the density of the air. A NASA wind tunnel at the Ames Research Center 
at Moff ett Field in California is one such facility. It has a 12 ft  diameter test section, it can be 
pressurized up to 90 psia (620 kPa), it can be operated to yield a Reynolds number per foot 
up to 1.2 × 107, and the maximum Mach number at which a model can be tested in this wind 
tunnel is 0.6. Th e airfl ow in this wind tunnel is produced by a single-stage, 20-blade, axial fl ow 
fan, which is powered by a 15,000-horsepower, variable-speed, synchronous electric motor (3). 
Several problems are peculiar to a pressurized tunnel. First, a shell (essentially a pressurized 
bottle) must surround the entire tunnel and its components, adding to the cost of the tunnel. 
Second, it takes a long time to pressurize the tunnel in preparation for operation, increasing 
the time from the start to the fi nish of runs. In this regard, it should be noted that the original 
pressurized wind tunnel at the Ames Research Center was built in 1946; however, because of 
extensive use, the tunnel’s pressure shell began to deteriorate, so a new facility (the one previ-
ously described) was built and put in operation in 1995. Improvements over the old facility 
include a better data collection system, very low turbulence, and capability of depressurizing 
only the test section instead of the entire 620,000 ft 3 wind tunnel circuit when installing 
and removing models. Th e original pressurized wind tunnel was used to test most models of 
U.S. commercial aircraft  over the past half-century, including the Boeing 737, 757, and 767; 
Lockheed L-1011; and McDonnell Douglas DC-9 and DC-10.

Th e Boeing 777 was tested in the low-speed, pressurized, 5 m by 5 m tunnel in Farnbor-
ough, England. Th is tunnel, operated by the Defence Evaluation and Research Agency (DERA) 
of Great Britain, can operate at three atmospheres with Mach numbers up to 0.2. Approxi-
mately 15,000 hours of total testing time was required for the Boeing 777 (4).

Another method of obtaining high Reynolds numbers is to build a tunnel in which the test 
medium (gas) is at a very low temperature, thus producing a relatively high-density, low-
viscosity fl uid. NASA has built such a tunnel and operates it at the Langley Research Center. 
Th is tunnel, called the National Transonic Facility, can be pressurized up to 9 atmospheres. Th e 
test medium is nitrogen, which is cooled by injecting liquid nitrogen into the system. In this 
wind tunnel, it is possible to reach Reynolds numbers of 108 based on a model size of 0.25 m (5). 
Because of its sophisticated design, its initial cost was approximately $100,000,000 (6), and its 
operating expenses are high.

Another modern approach in wind tunnel technology is the development of magnetic or 
electrostatic suspension of models. Th e use of the magnetic suspension with model airplanes 

1.  Equate the Reynolds number of the model and the 
prototype.

2. Calculate model speed.

Take Action (Execute the Plan)

1. Reynolds number similitude:

 Rem = Rep

 
Vm Lm

vm
=

Vp Lp

vp

2. Model velocity:

Vm = Vp
Lp

Lm
  

vm

vp
= 10 m/s × 10 × 1 =  100 m/s
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has been studied (6), and the electrostatic suspension for the study of single-particle aerody-
namics has been reported (7).

Th e use of wind tunnels for aircraft  design has grown signifi cantly as the size and sophisti-
cation of aircraft  have increased. For example, in the 1930s the DC-3 and B-17 each had about 
100 hours of wind tunnel tests at a rate of $100 per hour of run time. By contrast, the F-15 
fi ghter required about 20,000 hours of tests at a cost of $20,000 per hour (6). Th e latter test 
time is even more staggering when one realizes that a much greater volume of data per hour 
at higher accuracy is obtained from the modern wind tunnels because of the high-speed data 
acquisition made possible by computers.

Example 8.5 illustrates the use of Reynolds number similitude to design a test for a valve.

EXAMPLE 8.5

Reynolds Number Similitude of a Valve

Problem Statement

Th e valve shown is the type used in the control of water in 
large conduits. Model tests are to be done, using water as 
the fl uid, to determine how the valve will operate under 
wide-open conditions. Th e prototype size is 6 ft  in diameter 
at the inlet. What fl ow rate is required for the model if the 
prototype fl ow is 700 cfs? Assume that the temperature for 
model and prototype is 60°F and that the model inlet 
diameter is 1 ft .

Rib

Rib

Movable
needle

Defi ne the Situations

A one-sixth-scale model of a valve will be tested in a water 
tunnel. Prototype fl ow rate is 700 cfs.

Assumptions:
1. No compressibility, free-surface, or gravitational eff ects.
2.  Th e temperature of water in the model and prototype is 

the same. Th erefore, kinematic viscosity for the model 
and prototype are equal.

State the Goal

Find the fl ow rate through the model in cfs.

Generate Ideas and Make a Plan

Dynamic similitude is obtained by equating the model and 
prototype Reynolds number. Th e model/prototype area ratio is 
the square of the scale ratio.

1.  Equate the Reynolds numbers of the model and 
prototype.

2. Calculate the velocity ratio.
3.  Calculate the discharge ratio using the model/prototype 

area ratio.

Take Action (Execute the Plan)

1. Reynolds number similitude:
 Rem = Rep

 
Vm Lm

vm
=

Vp Lp

vp

2. Velocity ratio:
Vm

Vp
=

Lp

Lm
 
vm

vp

Since vp = vm,
Vm

Vp
=

Lp

Lm

3. Discharge:

 
Qm

Qp
=

Vm

Vp
 
Am

Ap
=

Lp

Lm
(Lm

Lp
)

2

=
Lm

Lp

 Qm = 700 cfs ×
1
6

=  117 cfs

Review the Solution and the Process

Discussion. Th is discharge is very large and serves to 
emphasize that very few model studies are made that 
completely satisfy the Reynolds number criterion. Th is 
subject will be discussed further in the next sections.
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8.7 Model-Prototype Performance

Geometric (scale model) and dynamic (same π-groups) similitude mean that the dependent 
π-groups are the same for both the model and the prototype. For this reason, measurements 
made with the model can be applied directly to the prototype. Such correspondence is illus-
trated in this section.

Example 8.6 shows how the pressure diff erence measured in a model test can be used to 
fi nd the pressure diff erence between the corresponding two points on the prototype.

EXAMPLE 8.6

Application of Pressure Coeffi cient

Problem Statement

A one-tenth-scale model of a blimp is tested in a wind tunnel 
under dynamically similar conditions. Th e speed of the blimp 
through still air is 10 m/s. A 17.8 kPa pressure diff erence is 
measured between two points on the model. What will be the 
pressure diff erence between the two corresponding points on 
the prototype? Th e temperature and pressure in the wind 
tunnel is the same as the prototype.

Defi ne the Situation

A one-tenth-scale model of a blimp is tested in a wind tunnel 
under dynamically similar conditions. A pressure diff erence of 
17.8 kPa is measured on the model.

Properties: Pressure and temperature are the same for wind 
tunnel test and prototype, so vm = vp.

State the Goal

Find the corresponding pressure diff erence (Pa) on the 
prototype.

Generate Ideas and Make a Plan

Eq. (8.4) reduces to
Cp = f (Re)

1. Equate the Reynolds numbers to fi nd the velocity ratio.
2.  Equate the coeffi  cient of pressure to fi nd the pressure 

diff erence.

Take Action (Execute the Plan)

1. Reynolds number similitude:

 Rem = Rep

 
Vm Lm

vm
=

Vp Lp

vp

 
Vp

Vm
=

Lm

Lp
=

1
10

2. Pressure coeffi  cient correspondence:

 
Δpm

1
2

ρmV 2
m

=
Δpp

1
2

ρp V 2
p

 
Δpp

Δpm
= (

Vp

Vm
)

2

= (Lm

Lp
)

2

=
1

100

Pressure diff erence on the prototype:

Δpp =
Δpm

100
=

17.8 kPa
100

=  178 Pa

Example 8.7 illustrates calculating the fl uid dynamic force on a prototype blimp from 
wind tunnel data using similitude.

EXAMPLE 8.7

Drag Force from Wind Tunnel Testing

Problem Statement

A one-tenth-scale model of a blimp is tested in a wind tunnel 
under dynamically similar conditions. If the drag force on the 
model blimp is measured to be 1530 N, what corresponding 
force could be expected on the prototype? Th e air pressure and 
temperature are the same for both model and prototype.

Defi ne the Situation

A one-tenth-scale model of blimp is tested in a wind tunnel, 
and a drag force of 1530 N is measured.

Properties: Pressure and temperature are the same, vm = vp.

State the Goal

Find the drag force (in newtons) on the prototype.
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8.8 Approximate Similitude at High 

Reynolds Numbers

Th e primary justifi cation for model tests is that it is more economical to get answers needed 
for engineering design by such tests than by any other means. However, as revealed by 
Examples 8.3, 8.4, and 8.6, Reynolds number similitude requires expensive model tests (high-
pressure facilities, large test sections, or using diff erent fl uids). Th is section shows that approximate 
similitude is achievable even though high Reynolds numbers cannot be reached in model tests.

Consider the size and power required for wind tunnel tests of the blimp in Example 8.4. 
Th e wind tunnel would probably require a section at least 2 m by 2 m to accommodate the 
model blimp. With a 100 m/s airspeed in the tunnel, the power required for producing con-
tinuously a stream of air of this size and velocity is in the order of 4 MW. Such a test is not 
prohibitive, but it is very expensive. It is also conceivable that the 100 m/s airspeed would 
introduce Mach-number eff ects not encountered with the prototype, thus generating concern 
over the validity of the model data. Furthermore, a force of 1530 N is generally larger than that 
usually associated with model tests. Th erefore, especially in the study of problems involving 
non-free-surface fl ows, it is desirable to perform model tests in such a way that large magni-
tudes of forces or pressures are not encountered.

For many cases, it is possible to obtain all the needed information from abbreviated tests. 
Oft en, the Reynolds number eff ect (relative viscous eff ect) either becomes insignifi cant at high 
Reynolds numbers or becomes independent of the Reynolds number. Th e point at which test-
ing can be stopped oft en can be detected by inspection of a graph of the pressure coeffi  cient Cp 
versus the Reynolds number Re. Such a graph for a venturi meter in a pipe is shown in 
Figure 8.7. In this meter, Δp is the pressure diff erence between the points shown, and V is 
the velocity in the restricted section of the venturi meter. Here it is seen that viscous forces 
aff ect the value of Cp below a Reynolds number of approximately 50,000. However, for higher 
Reynolds numbers, Cp is virtually constant. Physically, this means that at low Reynolds numbers 
(relatively high viscous forces), a signifi cant part of the change in pressure comes from viscous 
resistance, and the remainder comes from the acceleration (change in kinetic energy) of the 
fl uid as it passes through the venturi meter. However, with high Reynolds numbers (resulting 
from either small viscosity or a large product of V, D, and ρ), the viscous resistance is negligible 
compared with the force required to accelerate the fl uid. Because the ratio of Δp to the kinetic 

Generate Ideas and Make a Plan

Th e Reynolds number is the only signifi cant π-group, so 
Eq. (8.4) reduces to CF = f(Re).

1. Find the velocity ratio by equating Reynolds numbers.
2. Find the force by equating the force coeffi  cients.

Take Action (Execute the Plan)

1. Reynolds number similitude:

 Rem = Rep

 
Vm Lm

vm
=

Vp Lp

vp

 
Vp

Vm
=

Vm

Lp
=

1
10

2. Force coeffi  cient correspondence:

 
Fp

1
2

ρp V 2
p L 2

p

=
Fm

1
2

ρm V 2
m L 2

m

 
Fp

Fm
=

V 2
p

V 2
m

 
L2

p

L2
m

=
L 2

m

L 2
p

 
L2

p

L2
m

= 1

Th erefore,
Fp = 1530 N

Review the Solution and the Process

Discussion. Th e result that the model force is the same as 
the prototype force is interesting. When Reynolds number 
similitude is used and the fl uid properties are the same, the 
forces on the model will always be the same as the forces on 
the prototype.
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pressure does not change (constant Cp) for high Reynolds numbers, there is no need to carry 
out tests at higher Reynolds numbers. Th is is true in general, so long as the fl ow pattern does 
not change with the Reynolds number.

In a practical sense, whoever is in charge of the model test will try to predict from previous 
works approximately what maximum Reynolds number will be needed to reach the point of 
insignifi cant Reynolds number eff ect and then will design the model accordingly. Aft er a series 
of tests has been made on the model, Cp versus Re will be plotted to see whether the range of 
constant Cp has indeed been reached. If so, then no more data are needed to predict the pro-
totype performance. However, if Cp has not reached a constant value, then the test program 
has to be expanded or results extrapolated. Th us, the results of some model tests can be used 
to predict prototype performance, even though the Reynolds numbers are not the same for 
the model and the prototype. Th is is especially valid for angular-shaped bodies, such as model 
buildings, tested in wind tunnels.

In addition, the results of model testing can be combined with analytic results. Computa-
tional fl uid dynamics (CFD) may predict the change in performance with the Reynolds num-
ber, but may not be reliable to predict the performance level. In this case, the model testing 
would be used to establish the level of performance, and the trends predicted by CFD would 
be used to extrapolate the results to other conditions.

Example 8.8 is an illustration of the approximate similitude at a high Reynolds number for 
fl ow through a constriction.

FIGURE 8.7

Cp for a venturi meter as a function of the Reynolds 

numbers.
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EXAMPLE 8.8

Measuring Head Loss in a Nozzle in Reverse Flow

Problem Statement

Tests are to be performed to determine the head loss in a 
nozzle under a reverse-fl ow situation. Th e prototype 
operates with water at 50°F and with a nominal reverse-fl ow 
velocity of 5 ft /s. Th e diameter of the prototype is 3 ft . Th e 
tests are done in a 1/12-scale model facility with water at 
60°F. A head loss (pressure drop) of 1 psid is measured with 

a velocity of 20 ft /s. What will be the head loss in the actual 
nozzle?

V1

p1

d0

p2d1
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In some situations, viscous and compressibility eff ects may both be important, but it is 
not possible to have dynamic similitude with both π-groups. Which π-group is chosen for 
similitude depends a great deal on what information the engineer is seeking. If the engineer 
is interested in the viscous motion of fl uid near a wall in shock-free supersonic fl ow, then the 
Reynolds number should be selected as the signifi cant π-group. However, if the shockwave 
pattern over a body is of interest, then the Mach number should be selected for similitude. A 
useful rule of thumb is that compressibility eff ects are unimportant for M < 0.3.

Example 8.9 shows the diffi  culty in having Reynolds number similitude and avoiding 
Mach number eff ects in wind tunnel tests of an automobile.

Defi ne the Situation

A 1/12-scale model tests for head loss in a reverse-fl ow 
nozzle. A pressure diff erence of 1 psid is measured with 
model at 20 ft /s.

Properties:
•  Water (50°F, Table F.5): ρ = 1.94 slugs/ft 3, ν = 1.41 × 

10–5 ft 2/s 
•  Water (60°F, Table F.5): ρ = 1.94 slugs/ft 3, and 

ν = 1.22 × 10–5 ft 2/s

State the Goal

Find the pressure drop (psid) for the prototype nozzle.

Generate Ideas and Make a Plan

Th e only signifi cant π-group is the Reynolds number, so 
Eq. (8.4) reduces to Cp = f (Re). Dynamic similitude is 
achieved if Rem = Rep, then Cp, m = Cp, p. From Figure 8.7, if 
Rem, Rep > 103, then Cp, m = Cp, p.

1.  Calculate the Reynolds number for the model and 
prototype.

2.  Check if both exceed 103. If not, model tests need to be 
reevaluated.

3.  Calculate pressure coeffi  cient.
4. Evaluate pressure drop in the prototype.

Take Action (Execute the Plan)

1. Reynolds numbers:

 Rem =
VD

v
=

20 ft/s × (3/12 ft)
1.22 × 10−5 ft2/s

= 4.10 × 105

 Rep =
5 ft/s × 3 ft

1.41 × 10−5 ft2/s
= 1.06 × 106

2.  Both Reynolds numbers exceed 103. Th erefore 
Cp, m = Cp, p. Th e test is valid.

3. Pressure coeffi  cient from model tests:

Cp, m =
Δp

1
2

ρV 2
=

1 lbf/in2 × 144 in2/ft2

1
2

× 1.94 slug/ft3 × (20 ft/s)2
= 0.371

4. Pressure drop in prototype:

 Δpp = 0.371 ×
1
2

ρV 2 = 0.371 × 0.5 × 1.94 slug/ft3 × (5 ft/s)2

 = 9.0 lbf/ft2 =  0.0625 psid

Review the Solution and the Process

1.  Knowledge. Because the Reynolds numbers are so much 
greater than 103, the equation for pressure drop is valid 
over a wide range of velocities.

2.  Discussion. Th is example justifi es the independence of 
the Reynolds number referred to in Section 8.1.

EXAMPLE 8.9

Model Tests for Drag Force on an Automobile

Problem Statement

A one-tenth-scale model of an automobile is tested in a wind 
tunnel with air at atmospheric pressure and 20°C. Th e auto-
mobile is 4 m long and travels at a velocity of 100 km/hr in air 
at the same conditions. What should the wind tunnel speed be 
such that the measured drag can be related to the drag of the 

prototype? Experience shows that the dependent π-groups are 
independent of Reynolds numbers for values exceeding 105. 
Th e speed of sound is 1235 km/hr.

Defi ne the Situation

A one-tenth-scale model of a 4 m long automobile moving at 
100 km/hr is tested in wind tunnel.
Properties: Air (20°C), Table A.3, ρ = 1.2 kg/m3, 
v = 1.51 × 10–5 N∙s/m2
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8.9 Free-Surface Model Studies

Spillway Models

Th e fl ow over a spillway is a classic case of a free-surface fl ow. Th e major infl uence, besides 
the spillway geometry itself, on the fl ow of water over a spillway is the action of gravity. 
Hence, the Froude number similarity criterion is used for such model studies. It can be ap-
preciated for large spillways with depths of water on the order of 3 m or 4 m and velocities 
on the order of 10 m/s or more that the Reynolds number is very large. At high values of the 
Reynolds number, the relative viscous forces are oft en independent of the Reynolds number, 
as noted in the foregoing section (§8.8). However, if the reduced-scale model is made too 
small, then the viscous forces as well as the surface tension forces would have a larger relative 
eff ect on the fl ow in the model than in the prototype. Th erefore, in practice, spillway models 
are made large enough so that the viscous eff ects have about the same relative eff ect in the 
model as in the prototype (i.e., the viscous eff ects are nearly independent of the Reynolds 
number). Th en, the Froude number is the signifi cant π-group. Most model spillways are 
made at least 1 m high, and for precise studies, such as calibration of individual spillway 
bays, it is not uncommon to design and construct model spillway sections that are 2 m or 
3 m high. Figures 8.8 and 8.9 show a comprehensive model and spillway model for Hell’s 
Canyon Dam in Idaho.

Example 8.10 is an application of Froude number similitude in modeling discharge over 
a spillway.

State the Goal

Find the wind tunnel speed to achieve similitude.

Generate Ideas and Make a Plan

Mach number of the prototype is about 0.08 (100/1235), so 
Mach number eff ects are unimportant. Dynamic similitude is 
achieved with Reynolds numbers, Rem = Rep. With dynamic 
similitude, CF, m = CF, p, and model measurements can be 
applied to prototype.

1. Determine the model speed for dynamic similitude.
2.  Evaluate the model speed. If it is not feasible, continue 

to next step.
3.  Calculate the prototype Reynolds number. If Rep > 105, 

then Rem ≥ 105, for CF, m = CF, p.
4. Find the speed for which Rem ≥ 105.

Take Action (Execute the Plan)

1. Velocity from Reynolds number similitude:

 (VL
v )

m
= (VL

v )
p

 
Vm

Vp
=

Lp

Lm
= 10

 Vm = 10 × 100 km/hr = 1000 km/hr

2.  With this velocity, M = 1000/1235 = 0.81. Th is is too 
high for model tests because it would introduce 
unwanted compressibility eff ects.

3. Reynolds number of prototype:

 Rep =
VLρ

μ
=

100 km/hr × 0.278 (m/s)(km/hr) × 4 m
1.51 × 10−5 m2/s

 = 7.4 × 10 6

Th erefore, CF, m = CF, p if Rem ≥ 105.
4. Wind tunnel speed:

 Vm ≥ Rem
vm

Lm
= 105 ×

1.51 × 10−5 m2/s
0.4 m

 ≥  3.8 m/s

Review the Solution and the Process

Discussion. Th e wind tunnel speed must exceed 3.8 m/s. 
From a practical point of view, the speed will be chosen to 
provide suffi  ciently large forces for reliable and accurate 
measurements.
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FIGURE 8.9

Spillway model for Hell’s Canyon Dam. Tests 

were made at the Albrook Hydraulic Laboratory, 

Washington State University. (Photo courtesy of 

Albrook Hydraulic Laboratory, Washington State 

University.)

FIGURE 8.8

Comprehensive model for Hell’s Canyon Dam. 

Tests were made at the Albrook Hydraulic 

Laboratory, Washington State University. (Photo 

courtesy of Albrook Hydraulic Laboratory, 

Washington State University.)

EXAMPLE 8.10

Modeling Flood Discharge over a Spillway

Problem Statement

A 1/49-scale model of a proposed dam is used to predict 
prototype flow conditions. If the design flood discharge 
over the spillway is 15,000 m3/s, what water flow rate 
should be established in the model to simulate this flow? 
If a velocity of 1.2 m/s is measured at a point in the 
model, what is the velocity at a corresponding point in the 
prototype?

Defi ne the Situation

A 1/49-scale model of a spillway will be tested.
Prototype discharge is 15,000 m3/s.

State the Goal

Find:
1. Th e fl ow rate over the model
2.  Velocity on the prototype at the point where velocity is 

1.2 m/s on the model

Generate Ideas and Make a Plan

Gravity is responsible for the fl ow, so the signifi cant π-group 
is the Froude number. For dynamic similitude, Frm = Frp.

1. Calculate velocity ratio from Froude number similitude.
2.  Calculate the discharge ratio using the scale ratio and 

calculate the model discharge.
3.  Use the velocity ratio from step 1 to fi nd the velocity at 

the corresponding point in the prototype.
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Ship Model Tests

Th e largest facility for ship testing in the United States is the David Taylor Model Basin, Naval 
Surface Warfare Center, Carderock Division, near Washington, D.C. Two of the core facilities are 
the towing basins and the rotating arm facility. In the rotating arm facility, models are suspended 
from the end of a rotating arm in a larger circular basin. Forces and moments can be measured 
on ship models up to 9 m in length at steady-state speeds as high as 15.4 m/s (30 knots). In the 
high-speed towing basin, models 1.2 m to 6.1 m can be towed at speeds up to 16.5 m/s (32 knots).

Th e aim of the ship model testing is to determine the resistance that the propulsion system 
of the ship must overcome. Th is resistance is the sum of the wave resistance and the surface 
resistance of the hull. Th e wave resistance is a free-surface, or Froude number, phenomenon, 
and the hull resistance is a viscous, or Reynolds number, phenomenon. Because both wave and 
viscous eff ects contribute signifi cantly to the overall resistance, it would appear that both the 
Froude and Reynolds criteria should be used. However, it is impossible to satisfy both if the 
model liquid is water (the only practical test liquid) because the Reynolds number similitude 
dictates a higher velocity for the model than for the prototype [equal to Vp(Lp/Lm)], whereas 
the Froude number similitude dictates a lower velocity for the model [equal to Vp(√Lm/√Lp)]. 
To circumvent such a dilemma, the procedure is to model for the phenomenon that is the most 
diffi  cult to predict analytically and to account for the other resistance by analytical means. 
Because the wave resistance is the most diffi  cult problem, the model is operated according to 
the Froude number similitude, and the hull resistance is accounted for analytically.

To illustrate how the test results and the analytical solutions for surface resistance are 
merged to yield design data, the following necessary sequential steps are indicated:

1. Make model tests according to Froude number similitude, and the total model resistance 
is measured. Th is total model resistance will be equal to the wave resistance plus the surface 
resistance of the hull of the model.

2. Estimate the surface resistance of the model by analytical calculations.
3. Subtract the surface resistance calculated in step 2 from the total model resistance of step 1 

to yield the wave resistance of the model.
4. Using the Froude number similitude, scale the wave resistance of the model up to yield the 

wave resistance of the prototype.
5. Estimate the surface resistance of the hull of the prototype by analytical means.
6. Th e sum of the wave resistance of the prototype from step 4 and the surface resistance of 

the prototype from step 5 yields the total prototype resistance, or drag.

Take Action (Execute the Plan)

1. Froude number similitude:
 Frm = Frp

 
Vm

√gm Lm
=

Vp

√gp Lp

Th e acceleration due to gravity is the same, so

Vm

Vp
= B

Lm

Lp

2. Discharge ratio:

Qm

Qp
=

Am

Ap
  

Vm

Vp
=

L2
m

L2
p B

Lm

Lp
= (Lm

Lp
)

5/2

Discharge for model:

Qm = Qp ( 1
49)

5/2
= 15,000

m3

s
×

1
16,800

=  0.89 m3/s

3. Velocity on prototype:

 
Vp

Vm
= B

Lp

Lm

 Vp = √49 × 1.2 m/s =  8.4 m/s
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Rationale and Description of 

Dimensional Analysis

• Dimensional analysis involves combining dimensional 
variables to form dimensionless groups. Th ese groups, 
called π-groups, can be regarded as the scaling parameters 
for fl uid fl ow. Dimensional analysis is applied to analysis, 
experiment design, and to the presentation of results.

• Th e Buckingham Π theorem states that the number of 
independent π-groups is n – m, where n is the number 
of dimensional variables and m is the number of basic 
dimensions included in the variables.

Rationale and Description of 

Dimensional Analysis

• Th e π-groups can be found by either the step-by-step 
method or the exponent method:
• In the step-by-step method, each dimension is removed 

by successively using a dimensional variable until the 
π-groups are obtained.

• In the exponent method, each variable is raised to a 
power, they are multiplied together, and three simulta-
neous algebraic equations formulated for dimensional 
homogeneity are solved to yield the π-groups.

Common π-Groups

• Four common independent π-groups are

Reynolds number, Re =
ρVL

μ
  Mach number,  M =

V
c

  Weber number,  We =
ρV2L

σ
 Froude number, Fr =

V
√gL

• Th ree common dependent π-groups are

 Pressure coefficient, Cp =
Δp
(ρV 2)/2

 Shear stress coefficient, cf =
τ

(ρV 2)/2

 Force coefficient, CF =
F

(ρV 2L2)/2

• Th e general functional form of the common π-groups is

CF , cf , Cp = f (Re, M, We, Fr)

Dimensional Analysis in Experimental 

Testing

• Experimental testing is oft en performed with a small-
scale replica (model) of the full-scale structure (prototype).

• Similitude is the art and theory of predicting prototype 
performance from model observations. To achieve exact 
similitude:
• Th e model must be a scale model of the prototype 

(geometric similitude).
• Values of the π-groups must be the same for the model 

and the prototype (dynamic similitude).
• In practice, it is not always possible to have complete 

dynamic similitude, so only the most important π-groups 
are matched.

8.10 Summarizing Key Knowledge

1. Buckingham, E. “Model Experiments and the Forms of 
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Printing Offi  ce: No. 1995-685-893.
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Cryogenics to High Reynolds-Number Testing in Wind 
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Dimensional Analysis (§8.3)

8.1 Find the primary dimensions of density (ρ), viscosity (μ), 
and pressure (p).
8.2 According to the Buckingham Π theorem, if there are six 
dimensional variables and three primary dimensions, how many 
dimensionless variables will there be?
8.3 Explain what is meant by dimensional homogeneity.
8.4 Determine which of the following equations are dimensionally 
homogeneous:

a. Q = 2
3 CL√2gH 3/2

where Q is discharge, C is a pure number, L is length, g is 
acceleration due to gravity, and H is head.

b. V =
1.49

n
R2/3 S1/2

where V is velocity, n is length to the one-sixth power, R is 
length, and S is slope.

c. hf = f 
L
D

 
V 2

2g

where hf is head loss, f is a dimensionless resistance coeffi  cient, 
L is length, D is diameter, V is velocity, and g is acceleration due 
to gravity.

d. D =
0.074
Re0.2  

BxρV 2

2

where D is drag force, Re is Vx/v, B is width, x is length, ρ is mass 
density, ν is the kinematic viscosity, and V is velocity.
8.5 Determine the dimensions of the following variables and 
combinations of variables in terms of primary dimensions:

a. T (torque)
b. ρV 2/2, where V is velocity and ρ is mass density
c. √τ/ρ, where τ is shear stress
d.  Q/ND3, where Q is discharge, D is diameter, and N is angular 

speed of a pump
8.6 It takes a certain length of time for the liquid level in a tank 
of diameter D to drop from position h1 to position h2 as the tank 
is being drained through an orifi ce of diameter d at the bottom. 
Determine the π-groups that apply to this problem. Assume that the 
liquid is nonviscous. Express your answer in the functional form.

Δh
d

= f (π1, π2, π3)

h2

h1
D

d

Problem 8.6

8.7 Th e maximum rise of a liquid in a small capillary tube is a 
function of the diameter of the tube, the surface tension, and the 
specifi c weight of the liquid. What are the signifi cant π-groups 
for the problem?
8.8 For very low velocities it is known that the drag force FD of a 
small sphere is a function solely of the velocity V of fl ow past the 
sphere, the diameter d of the sphere, and the viscosity μ of the 
fl uid. Determine the π-groups involving these variables.
8.9 Observations show that the side thrust, F, for a rough spinning 
ball in a fl uid is a function of the ball diameter, D, the free-stream 
velocity, V0, the density, ρ, the viscosity, μ, the roughness height, 
ks, and the angular velocity of spin, ω. Determine the dimensionless 
parameter(s) that would be used to correlate the experimental 
results of a study involving the variables noted above. Express 
your answer in the functional form

F
ρV 2

0 D 2 = f (π1, π2, π3)

V0

D

F

ω

Problem 8.9

8.10 Consider steady viscous fl ow through a small horizontal 
tube. For this type of fl ow, the pressure gradient along the tube, 
Δp/Δℓ should be a function of the viscosity μ, the mean velocity 
V, and the diameter D. By dimensional analysis, derive a func-
tional relationship relating these variables.
8.11 It is known that the diff erential pressure developed by a cen-
trifugal pump, Δp, is a function of the diameter D of the impeller, 
the speed of rotation n, the discharge Q, and the fl uid density ρ. 
By dimensional analysis, determine the π-groups relating these 
variables.
8.12 Th e force on a satellite in the earth’s upper atmosphere 
depends on the mean path of the molecules λ (a length), the 
density ρ, the diameter of the body D, and the molecular speed c: 
F = f (λ, ρ, D, c). Find the nondimensional form of this equation.
8.13 A general study is to be made of the height of rise of liquid 
in a capillary tube as a function of time aft er the start of a test. 
Other signifi cant variables include surface tension, mass density, 
specifi c weight, viscosity, and diameter of the tube. Determine 
the dimensionless parameters that apply to the problem. Express 
your answer in the functional form

h
d

= f (π1, π2, π3)

8.14 An engineer is using an experiment to characterize the 
power P consumed by a fan (see photo) to be used in an elec-
tronics cooling application. Power depends on four variables: 
P = f (ρ, D, Q, n), where ρ is the density of air, D is the diameter 
of the fan impeller, Q is the fl ow rate produced by the fan, and 
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n is the rotation rate of the fan. Find the relevant π-groups and 
suggest a way to plot the data.

Problem 8.14 
(Photo by Donald Elger)

8.15 By dimensional analysis, determine the π-groups for the 
change in pressure that occurs when water or oil fl ows through 
a horizontal pipe with an abrupt contraction as shown. Express 
your answer in the functional form

Δpd4

ρQ2 = f (π1, π2)

D
d

Problem 8.15

8.16 A solid particle falls through a viscous fl uid. Th e falling 
velocity, V, is believed to be a function of the fl uid density, ρf , the 
particle density, ρp, the fl uid viscosity, μ, the particle diameter, D, 
and the acceleration due to gravity, g:

V = f (ρf , ρp, μ, D, g)

By dimensional analysis, develop the π-groups for this problem. 
Express your answer in the form

V
√gD

= f (π1, π2)

8.17 A torpedo-like device is being designed to travel just below 
the water surface. Which dimensionless numbers in Section 8.4 
would be signifi cant in this problem? Give a rationale for your 
answer.
8.18 Flow situations in biofl uid mechanics involve the fl ow 
through tubes that change in size with time (such as blood 
vessels) or are supplied by an oscillatory source (such as a pulsing 
gland). Th e volume fl ow rate Q in the tube will be a function of the 
frequency ω, the tube diameter D, the fl uid density ρ, viscosity μ, 

and the pressure gradient (Δp)/(Δl). Find the π-groups for this 
situation in the form

Q
ωD3 = f (π1, π2)

8.19 Th e rise velocity Vb of a bubble with diameter D in a liquid 
of density ρl and viscosity μ depends on the acceleration due to 
gravity, g, and the density diff erence between the bubble and the 
fl uid, ρl – ρb. Find the π-groups in the form

Vb

√gD
= f (π1, π2)

8.20 Th e discharge of a centrifugal pump is a function of the 
rotational speed of the pump, N, the diameter of the impeller, D, 
the head across the pump, hp , the viscosity of the fl uid, μ, the 
density of the fl uid, ρ, and the acceleration due to gravity, g. Th e 
functional relationship is

Q = f (N, D, hp, μ, ρ, g)

By dimensional analysis, fi nd the dimensionless parameters. 
Express your answer in the form

Q
ND3 = f (π1, π2, π3)

8.21 Drag tests show that the drag of a square plate placed normal 
to the free-stream velocity is a function of the velocity V, the 
density ρ, the plate dimensions B, the viscosity μ, the free-stream 
turbulence root mean square velocity urms , and the turbulence 
length scale Lx. Here urms and Lx are in ft /s and ft , respectively. By 
dimensional analysis, develop the π-groups that could be used 
to correlate the experimental results. Express your answer in the 
functional form

FD

ρV 2B2 = f (π1, π2, π3)

V0 B

Problem 8.21

8.22 Using the Internet, read about the Womersley number (α) 
and answer the following questions.

a.  Is α dimensionless? How do you know? Show that all the 
units in fact cancel out.

b.  Like other independent π-groups, α is the ratio of two 
forces. Of what two forces is it the ratio?

c.  What does the velocity profi le in a blood vessel look like for 
α ≤ 1? For α ≥ 10?

d.  What is the aorta, and where in the human body is it 
located? What is a typical value for α in the aorta? What 
might you conclude about the velocity profi le there?
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8.23 Th e Womersley number (α) is a π-group given by the ratio 
of [pulsatile transient force]/[viscous force]. Biomedical engineers 
have applied this to fl ow in blood vessels. Th e Womersley number 
is given by:

α = rB
ωρ
μ

 where r = blood vessel radius, and ω = frequency, typically the 
heart rate. Just as does Re, α has diff erent practical implications 
in critical ranges. In the range a α ≤ 1, a parabolic (laminar) 
velocity distribution has time to develop in a tube during each 
heartbeat cycle. When α ≥ 10, the velocity profi le is relatively 
fl at (plug fl ow) in the blood vessel. For a human research subject, 
assume the heart rate is 70 beats/s, radius of the aorta is 17 mm, 
density of blood is 1060 kg/m3, and radius of a capillary is 7 μm. 
Th e viscosity of blood is normally 3 × 10–3 Pa∙s.

a. Find α for the aorta of this subject.
b. Find α for the capillary of this subject.
c.  Does either the aorta or the capillary have an α that would 

predict plug fl ow? Does either have an α indicating a para-
bolic velocity distribution?

Common π-Groups (§8.4)

8.24 For each item ahead, which π-group (Re, We, M, or Fr) 
would best match the given description?

a. (kinetic force)/(surface-tension force)
b. (kinetic force)/(viscous force)
c. (kinetic force)/(gravitational force)
d. (kinetic force)/(compressive force)
e. Used for modeling water fl owing over a spillway on a dam
f. Used for designing laser jet printers
g. Used for analyzing the drag on a car in a wind tunnel
h. Used to analyze the fl ight of supersonic jets

Similitude (§8.5)

8.25 What is meant by geometric similitude?
8.26 Many automobile companies advertise products with low 
drag for improved performance. Research the technical literature 
on the Internet regarding wind-tunnel testing of automobiles, 
and summarize your fi ndings in a concise, informative manner 
on two pages or less.
8.27 One of the shortcomings of mounting a model of an auto-
mobile in a wind tunnel and measuring drag is that the eff ect of 
the road is not included. Give some thought as to your impres-
sions of what the eff ect of the road may be on automobile drag 
and your reasoning. Also list some variables that may infl uence 
the eff ect of the ground on automobile drag.
8.28 One of the largest wind tunnels in the United States is the 
NASA Ames Research Center in Moff at Field, California. Look 
up information on this facility (size, test section velocity, etc.) 
and summarize your fi ndings.

8.29 Th e hydrodynamic drag on a sailboat is very important to 
the performance of the craft , especially in competitive races such 
as the America’s Cup. Investigate on the Internet or other sources 
the extent and types of simulations that have been carried out on 
high-performance sailboats.
8.30 Th e drag on a submarine moving below the free surface is 
to be determined by a test on a 1/19-scale model in a water tunnel. 
Th e velocity of the prototype in seawater (ρ = 1015 kg/m3, v = 
1.4 × 10–6 m2/s) is 1 m/s. Th e test is done in fresh water at 20°C. 
Determine the speed of the water in the water tunnel for 
dynamic similitude and the ratio of the drag force on the 
model to the drag force on the prototype.
8.31 In a study of the power required to overcome drag, an 

engineer is using a π-group given by 
P

ρAV 3, where P is the power

lost, ρ is the fl uid density, A is area, and V is the fl uid velocity. In 
laboratory tests with a one-eighth-scale model, the power lost 
was measured as 5 W when the air velocity was 0.5 m/s. Calcu-
late the power lost in the prototype (kW) when the air velocity is 
4 m/s. Temperature is the same in both cases.
8.32 Water with a kinematic viscosity of 10–6 m2/s fl ows through 
a 4 cm pipe. What would the velocity of water have to be for the 
water fl ow to be dynamically similar to oil (v = 10–5 m2/s) fl owing 
through the same pipe at a velocity of 1.0 m/s?
8.33 Oil with a kinematic viscosity of 4 × 10–6 m2/s fl ows 
through a smooth pipe 15 cm in diameter at 3 m/s. What velocity 
should water have at 20°C in a smooth pipe 5 cm in diameter to 
be dynamically similar?
8.34 A large venturi meter is calibrated by means of a one-
tenth-scale model using the prototype liquid. What is the 
discharge ratio Qm/Qp for dynamic similarity? If a pressure 
difference of 400 kPa is measured across ports in the model 
for a given discharge, what pressure difference will occur 
between similar ports in the prototype for dynamically 
similar conditions?
8.35 A one-eighth-scale model of an experimental deep sea 
submersible that will operate at great depths is to be tested to 
determine its drag characteristic by towing it behind a subma-
rine. For true similitude, what should be the towing speed 
relative to the speed of the prototype?
8.36 A spherical balloon that is to be used in air at 60°F and 
atmospheric pressure is tested by towing a 1/12-scale model in 
a lake. Th e model is 1.4 ft  in diameter, and a drag of 37 lbf is 
measured when the model is being towed in deep water at 5 ft /s. 
What drag (in pounds force and newtons) can be expected for 
the prototype in air under dynamically similar conditions? 
Assume that the water temperature is 60°F.
8.37 An engineer needs a value of lift  force for an airplane that 
has a coeffi  cient of lift  (CL) of 0.4. Th e π-group is defi ned as

CL = 2
FL

ρV 2S

where FL is the lift  force, ρ is the density of ambient air, V is the 
speed of the air relative to the airplane, and S is the area of the 
wings from a top view. Estimate the lift  force in newtons for a 
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speed of 90 m/s, an air density of 1.1 kg/m3, and a wing area 
(planform area) of 18 m2.
8.38 An airplane travels in air (p = 100 kPa, T = 10°C) at 150 m/s. 
If a one-eighth-scale model of the plane is tested in a wind 
tunnel at 25°C, what must the density of the air in the tunnel be 
so that both the Reynolds-number and the Mach-number 
criteria are satisfi ed? Th e speed of sound varies with the square 
root of the absolute temperature. (Note: Th e dynamic viscosity is 
independent of pressure.)
8.39 Th e Boeing 787-3 Dreamliner has a wing span of 52 m. It 
fl ies at a cruise Mach number of 0.85, which corresponds to a 
velocity of 945 km/hr at an altitude of 10,000 m. You are going 
to estimate the drag on the prototype by measuring the drag on 
a 1 m wing span scale model in a wind tunnel with air where the 
speed of sound is 340 m/s and the density is 0.98 kg/m3. What is 
the ratio of the force on the prototype to the force on the model? 
Only Mach-number similitude is considered. Use the properties 
of the standard atmosphere in Chapter 3 to evaluate the density 
of air for the prototype.
8.40 Flow in a given pipe is to be tested with air and then with 
water. Assume that the velocities (VA and VW) are such that the 
fl ow with air is dynamically similar to the fl ow with water. Th en 
for this condition, the magnitude of the ratio of the velocities, 
VA/VW, will be (a) less than unity, (b) equal to unity, or 
(c) greater than unity.
8.41 A smooth pipe designed to carry crude oil (D = 60 in., 
ρ = 1.75 slugs/ft 3, and μ = 4 × 10–4 lbf-s/ft 2) is to be modeled 
with a smooth pipe 4 in. in diameter carrying water (T = 60°F). 
If the mean velocity in the prototype is 4.5 ft /s, what should be 
the mean velocity of water in the model to ensure dynamically 
similar conditions?
8.42 A student is competing in a contest to design a radio-
controlled blimp. Th e drag force acting on the blimp depends 
on the Reynolds number, Re = (ρVD)/μ, where V is the speed 
of the blimp, D is the maximum diameter, ρ is the density of air, 
and μ is the viscosity of air. Th is blimp has a coeffi  cient of drag 
(CD) of 0.3. Th is π-group is defi ned as

CD = 2
FD

ρV 2Ap

where FD is the drag force ρ is the density of ambient air, V is the 
speed of the blimp, and Ap = πD2/4 is the maximum section area 
of the blimp from a front view. Calculate the Reynolds number, 
the drag force in newtons, and the power in watts required to 
move the blimp through the air. Blimp speed is 800 mm/s, and 
the maximum diameter is 475 mm. Assume that ambient air is 
at 20°C.

V

Problem 8.42

8.43 Colonization of the moon will require an improved under-
standing of fl uid fl ow under reduced gravitational forces. Th e 
gravitational force on the moon is one-fi ft h that on the surface of 
the earth. An engineer is designing a model experiment for fl ow 
in a conduit on the moon. Th e important scaling parameters are 
the Froude number and the Reynolds number. Th e model will be 
full scale. Th e kinematic viscosity of the fl uid to be used on the 
moon is 2 × 10–5 m2/s. What should be the kinematic viscosity 
of the fl uid to be used for the model on earth?
8.44 A drying tower at an industrial site is 10 m in diameter. Th e 
air inside the tower has a kinematic viscosity of 4 × 10–5 m2/s 
and enters at 18 m/s. A 1/20-scale model of this tower is fabri-
cated to operate with water that has a kinematic viscosity of 
10–6 m2/s. What should the entry velocity of the water be to 
achieve Reynolds-number scaling?
8.45 A fl ow meter to be used in a 40 cm pipeline carrying oil 
(v = 10–5 m2/s, ρ = 860 kg/m3) is to be calibrated by means of 
a model (1/12 scale) carrying water (T = 20°C and standard 
atmospheric pressure). If the model is operated with a velocity 
of 3 m/s, fi nd the velocity for the prototype based on Reynolds-
number scaling. For the given conditions, if the pressure 
diff erence in the model was measured as 3.0 kPa, what pressure 
diff erence would you expect for the discharge meter in the oil 
pipeline?
8.46 Th e “noisemaker” B is towed behind the mine-sweeper A to 
set off  enemy acoustic mines such as that shown at C. Th e drag 
force of the “noisemaker” is to be studied in a water tunnel at a 
one-fi ft h scale (the model is one-fi ft h the size of the full scale). If 
the full-scale towing speed is 5 m/s, what should be the water 
velocity in the water tunnel for the two tests to be exactly 
similar? What will be the prototype drag force if the model drag 
force is found to be 2400 N? Assume that seawater at the same 
temperature is used in both the full-scale and the model tests.

A

B

C

Problem 8.46

8.47 An experiment is being designed to measure aerodynamic 
forces on a building. Th e model is a 1/500-scale replica of the 
prototype. Th e wind velocity on the prototype is 47 ft /s, and the 
density is 0.0024 slugs/ft 3. Th e maximum velocity in the wind 
tunnel is 300 ft /s. Th e viscosity of the air fl owing for the model 
and the prototype is the same. Find the density needed in the 
wind tunnel for dynamic similarity. A force of 50 lbf is measured 
on the model. What will the force be on the prototype?
8.48 A 60 cm valve is designed for control of fl ow in a petroleum 
pipeline. A one-third-scale model of the full-size valve is to be 
tested with water in the laboratory. If the prototype fl ow rate is to 
be 0.5 m3/s, what fl ow rate should be established in the laboratory 
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test for dynamic similitude to be established? Also, if the pres-
sure coeffi  cient Cp in the model is found to be 1.07, what will be 
the corresponding Cp in the full-scale valve? Th e relevant fl uid 
properties for the petroleum are SG = 0.82 and μ = 3 × 10–3 
N∙s/m2. Th e viscosity of water is 10–3 N∙s/m2.
8.49 Th e moment acting on a submarine rudder is studied by a 
1/40-scale model. If the test is made in a water tunnel and if the 
moment measured on the model is 2 N∙m when the freshwa-
ter speed in the tunnel is 6.6 m/s, what are the corresponding 
moment and speed for the prototype? Assume the prototype 
operates in sea water. Assume T = 10°C for both the freshwater 
and the seawater.
8.50 A model hydrofoil is tested in a water tunnel. For a given 
angle of attack, the lift  of the hydrofoil is measured to be 25 kN 
when the water velocity is 15 m/s in the tunnel. If the prototype 
hydrofoil is to be twice the size of the model, what lift  force 
would be expected for the prototype for dynamically similar 
conditions? Assume a water temperature of 20°C for both model 
and prototype.
8.51 Experimental studies have shown that the condition for 
breakup of a droplet in a gas stream is

We/Re1/2 = 0.5

where Re is the Reynolds number and We is the Weber number 
based on the droplet diameter. What diameter water droplet 
would break up in a 12 m/s airstream at 20°C and standard 
atmospheric pressure? Th e surface tension of water is 0.041 N/m.
8.52 Water is sprayed from a nozzle at 20 m/s into air at atmo-
spheric pressure and 20°C. Estimate the size of the droplets 
produced if the Weber number for breakup is 6.0 based on the 
droplet diameter.
8.53 Determine the relationship between the kinematic viscosity 
ratio vm/vP and the scale ratio if both the Reynolds-number and 
the Froude number criteria are to be satisfi ed in a given model test.
8.54 A hydraulic model, 1/20 scale, is built to simulate the fl ow 
conditions of a spillway of a dam. For a particular run, the waves 
downstream were observed to be 8 cm high. How high would 
be similar waves on the full-scale dam operating under the same 
conditions? If the wave period in the model is 2 s, what would 
the wave period in the prototype be?
8.55 To study fl ow over a spillway in a new dam, a 1/20-scale 
model is constructed. Th e maximum design fl ow rate in the 
actual spillway will be 150 m3/s. Calculate the corresponding 
fl ow rate in the model. Th e π-groups that you should match are 

π1 =
Q

AV
 and π2 = B

V
gy

 .

8.56 A seaplane model is built at a one-sixth scale. To simulate 
takeoff  conditions at 117 km/h, what should be the correspond-
ing model speed to achieve Froude-number scaling?
8.57 If the scale ratio between a model spillway and its prototype 
is 1/36, what velocity and discharge ratio will prevail between 
model and prototype? If the prototype discharge is 3000 m3/s, 
what is the model discharge?

8.58 A 1/40-scale model of a spillway is tested in a laboratory. If 
the model velocity and discharge are 3.2 ft /s and 3.53 cfs, respec-
tively, what are the corresponding values for the prototype?
8.59 Flow around a bridge pier is studied using a model at 1/12 
scale. When the velocity in the model is 0.9 m/s, the standing 
wave at the pier nose is observed to be 2.5 cm in height. What 
are the corresponding values of velocity and wave height in the 
prototype?
8.60 A 1/25-scale model of a spillway is tested. Th e discharge in 
the model is 0.1 m3/s. To what prototype discharge does this 
correspond? If it takes 1 min for a particle to fl oat from one point 
to another in the model, how long would it take a similar particle 
to traverse the corresponding path in the prototype?
8.61 A tidal estuary is to be modeled at 1/600 scale. In the actual 
estuary, the maximum water velocity is expected to be 3.6 m/s, 
and the tidal period is approximately 12.5 h. What corresponding 
velocity and period would be observed in the model?
8.62 Th e maximum wave force on a 1/36 model seawall was 
found to be 80 N. For a corresponding wave in the full-scale wall, 
what full-scale force would you expect? Assume freshwater is 
used in the model study. Assume T = 10°C for both model and 
prototype water.
8.63 A model of a spillway is to be built at 1/80 scale. If the 
prototype has a discharge of 800 m3/s, what must be the water 
discharge in the model to ensure dynamic similarity? Th e total 
force on part of the model is found to be 51 N. To what 
prototype force does this correspond?
8.64 A newly designed dam is to be modeled in the laboratory. 
Th e prime objective of the general model study is to determine 
the adequacy of the spillway design and to observe the water 
velocities, elevations, and pressures at critical points of the 
structure. Th e reach of the river to be modeled is 1200 m long, 
the width of the dam (also the maximum width of the reservoir 
upstream) is to be 300 m, and the maximum fl ood discharge to 
be modeled is 5000 m3/s. Th e maximum laboratory discharge is 
limited to 0.90 m3/s, and the fl oor space available for the model 
construction is 50 m long and 20 m wide. Determine the largest 
feasible scale ratio (model/prototype) for such a study.
8.65 Th e wave resistance of a model of a ship at 1/25 scale is 2 lbf 
at a model speed of 5 ft /s. What are the corresponding velocity 
and wave resistance of the prototype?
8.66 A model of a high-rise offi  ce building at 1/550 scale is 
tested in a wind tunnel to estimate the pressures and forces on 
the full-scale structure. Th e wind-tunnel air speed is 20 m/s at 
20°C and atmospheric pressure, and the full-scale structure is 
expected to withstand winds of 200 km/h (10°C). If the extreme 
values of the pressure coeffi  cient are found to be 1.0, –2.7, and 
–0.8 on the windward wall, side wall, and leeward wall of the 
model, respectively, what corresponding pressures could be 
expected to act on the prototype? If the lateral wind force (wind 
force on building normal to wind direction) was measured as 
20 N in the model, what lateral force might be expected in the 
prototype in the 200 km/h wind?
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Viscous Flow Over 

a Flat Surface

CHAPTER ROAD MAP Knowledge of viscous fl ow will equip you to solve many problems in engineering. 
Much of what we know about viscous fl ow has come from the study of fl ow over a fl at surface. This chapter 
introduces both viscous fl ow and the Navier-Stokes equation.

CHAPTERNINE

FIGURE 9.1
The design of boats can involve the application of 

viscous fl ow theory. (Foucras G./StockImage/Getty 

Images.)

LEARNING OUTCOMES

NAVIER-STOKES EQUATIONS (§9.1, §9.2, §9.3). 

●  List the steps to derive the Navier-Stokes equation for steady and 

uniform fl ow. 
●  For Couette fl ow, describe the fl ow and apply the working 

equations. 
●  For Poiseuille fl ow in a channel, describe the fl ow and apply the 

working equations.

BOUNDARY LAYER (QUALITATIVE) (§9.4, §9.5).

●  Explain the boundary layer concept. 
●  Sketch the laminar and turbulent boundary layers and describe the 

main features. 
●  Sketch the velocity profi le in the laminar and turbulent boundary 

layers.

BOUNDARY LAYER (CALCULATIONS) (§9.4, §9.6). 

●  Defi ne and calculate Rex and ReL. 
●  Calculate the boundary layer thickness δ.
●  Calculate the local shear stress coeffi cient cf and the wall shear 

stress. 
●  Calculate the average shear stress coeffi cient Cf and the drag 

force FD. 
●  For a moving body, calculate the power needed to overcome the 

drag force.
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9.1 The Navier-Stokes Equation for Uniform Flow

Many solutions to viscous fl ow problems come from solving the Navier-Stokes equation. In 
this section, we derive this equation for uniform and steady fl ows of a Newtonian fl uid.

Derivation

Step 1:  Sketch a fl uid particle. Select a viscous fl ow that is uniform and steady, and then 
sketch a rectangular fl uid particle with dimensions of Δs by Δy by 1 unit (Fig. 9.2).

Step 2:  Apply Newton’s second law. Apply ΣF = ma in the s direction. Th e acceleration is 
zero because the fl ow is uniform and steady. Th us,

 ΣFs = 0 (9.1)

  Th e forces are the weight, the pressure force, and the shear force. Th us,

(weight) + (pressure force) + (shear force) = 0
 Ws + Fps +  Fτs = 0 (9.2)

 Each variable in Eq. (9.2) represents a component of force in the s direction.
Step 3:  Analyze the weight. Th e weight of the fl uid particle is

 W = mg = ρ(Δs)(Δy)(1)g (9.3)

  Th e component of the weight in the s direction is ρ(Δs)(Δy)g sin(θ). By using the 
triangle that is sketched in the upper part of Fig 9.2, it can be shown that 
sin(θ) = −dz/ds. Th us, the component of the weight in the s direction is

 Ws = −γΔyΔs 
dz
ds

 (9.4)

Step 4:  Analyze the pressure force. Th e pressure terms in Fig. 9.2 come from a Taylor series 
expansion of the pressure fi eld. Th e net pressure force in the s direction is

 Fps = −
dp
ds
ΔsΔy (9.5)

+
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–ΔzΔs

W sin 

θ

τ

ττ

θ

θ

Δy

Δs

pΔy

Δs

s

y
p + dp

ds Δs Δy

d
dy Δy Δs

FIGURE 9.2

This sketch shows the forces acting on a fl uid particle that is 

situated in a viscous fl ow. The particle is rectangular in shape 

and extends 1.0 unit into the paper.
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Step 5:  Analyze the shear force. Th e shear stress terms in Fig. 9.2 come from a Taylor series 
expansion of the shear stress fi eld. Th e net shear force in the s direction is

 Fτs =
dτ
dy
ΔsΔy (9.6)

  If the fl uid is assumed to be a Newtonian fl uid, then τ = μdu/dy. Here, μ is the vis-
cosity of the fl uid and u is the component of the velocity vector in the s direction. 
Substitute τ = μdu/dy into Eq. (9.6) to give

 Fτs = μ
d 2u
dy 2ΔsΔy (9.7)

Step 6:  Combine terms. Substitute the terms from steps 2 to 4 into Eq. (9.2). Th en, divide 
each term by ΔsΔy(1), which is the volume of the fl uid particle. Th e result is the 
Navier-Stokes equation for uniform and steady fl ow of a Newtonian fl uid:

 
d 2u
dy 2 =

1
μ 

d
ds
(p + γz) (9.8)

  Eq. (9.8) describes, for a fl uid particle, the balance between the pressure force, the 
shear force, and the weight. A more general form of the Navier-Stokes equation, 
derived in §16.4, includes terms that account for the acceleration of a fl uid particle.

Solving the Navier-Stokes Equation

Couette fl ow and Poiseuille fl ow, which are analyzed in the next two sections, are classifi ed as 
exact solutions. Th ere are only a few exact solutions in existence; all other solutions involve an 
approximation of one form or another.

When engineers solve the Navier-Stokes equation, the goal is usually the velocity fi eld. 
Aft er the velocity fi eld has been found, other parameters of engineering interest—for example, 
shear stress and mean fl ow rate—can be derived. Th is approach will be illustrated in the next 
two sections.

9.2 Couette Flow

Couette fl ow (see Fig. 9.3 and §2.5) is used to idealize fl ows such as the fl ow of oil in a journal 
bearing.

y

L

s

U
FIGURE 9.3

Couette fl ow involves two fl at plates, each large 

enough that the dimensions of the plates can be 

idealized as infi nite. The lower plate is stationary 

and the upper plate is moving with a constant 

velocity U. The gap L is small—for example, 

a fraction of a millimeter. The equation for the 

pictured velocity profi le is derived in the current 

section.
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Solving for the Velocity Field

To solve for the velocity fi eld in Couette fl ow, take the following steps.

Step 1:  Apply the Navier-Stokes equation. In Couette fl ow, the pressure gradient in the 
stream-wise direction is zero (dp/ds = 0) and the streamlines are in the horizontal 
direction, which means that dz/ds = 0. Th erefore, the right side of Eq. (9.8) is zero, 
and this equation reduces to

 
d 2u
dy 2 = 0 (9.9)

  To solve this diff erential equation, integrate twice using the method known as “sepa-
ration of variables.”

 u = C1y + C2 (9.10)

Step 2:   Write the boundary conditions. To solve for the two constants in Eq. (9.10), apply 
the following two boundary conditions:

 u = 0 at y = 0 (9.11)

 u = U at y = L (9.12)

Step 3:  Apply the boundary conditions. Combine Eq. (9.10) with Eqs. (9.11) and (9.12) to 
give an equation for the velocity fi eld:

 u = Uy/L (9.13)

 Th e velocity profi le (Fig. 9.3) reveals a linear velocity profi le.

Deriving Working Equations

To develop an equation for the shear stress fi eld, apply τ = μ(du/dy) to Eq. (9.13):

 τ = μU/L (9.14)

Eq. (9.14) reveals that the shear stress is a constant at every point. To develop an equation 
for mean velocity, substitute Eq. (9.13) into V = (1/A)∫udA. Aft er integration, the result is 
V = U/2 .

9.3 Poiseuille Flow in a Channel

Th e conduit considered in this section is a rectangular channel (Fig. 9.4). A channel is a fl ow 
passage between two parallel plates, when each plate is wide enough so that the end eff ects 
caused by the side walls of the channel can be neglected.

z

y B

s

FIGURE 9.4

Poiseuille fl ow refers to a laminar fl ow in a 

conduit. This sketch shows a rectangular 

channel and the associated velocity profi le.
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Experiments have revealed that the fl ow in a rectangular channel will be laminar for a 
Reynolds number below 1000. Th us, channel Poiseuille fl ow applies to steady, laminar, and 
fully developed fl ow of a Newtonian fl uid with ReB < 1000, where ReB = UB/ν.

Solving for the Velocity Field

To derive an equation for the velocity fi eld, take the following steps.

Step 1:  Apply the Navier-Stokes equation. Prior to solving Eq. (9.8), recognize that the right 
side of the equation must be a constant. Rationale. Th e independent variable on the 
left  side of the equation is y. Th e independent variable on the right side of the equa-
tion is s. Because each of these variables can change their value independently, both 
sides of the equation must equal a constant to preserve the equality. Th us, the right 
side of the equation must be a constant.

 Integrate Eq. (9.8) twice to give the general solution:

 u =
y2

2μ
 
d
ds
(p + γz) + C1y + C2 (9.15)

Step 2:  Apply the boundary conditions. To develop boundary conditions, apply the no-slip 
condition at each wall:

 u = 0 at y = 0 (9.16)

 u = 0 at y = B (9.17)

 To satisfy Eq. (9.16), set C2 = 0. To satisfy Eq. (9.17), solve for C1 as follows:

 C1 = −
B

2μ
 
d
ds
(p + γz) (9.18)

Step 3:  Build the particular solution. Combine Eqs. (9.15) and (9.18) to give an equation for 
the velocity fi eld:

 u = −
(By − y2)

2μ
 
d
ds
(p + γz) (9.19)

  Notice that Eq. (9.19) is the equation of a parabola (Fig. 9.4). To check any solution 
of a diff erential equation—for example, to validate Eq. (9.19)—we recommend three 
practices: (a) Verify that the solution satisfi es the original diff erential equation, 
(b) verify that the solution is dimensionally homogeneous (DH), and (c) verify that 
the solution satisfi es the boundary conditions.

Deriving Working Equations

To develop an equation for the maximum velocity, recognize that umax occurs at y = B/2. 
Th en, substitute this value into Eq. (9.19) to give

 umax = −( B2

8μ) 
d
ds
(p + γz) (9.20)

Next, simplify the right side of Eq. (9.20) by introducing piezometric head (p + γz = γh). Th e 
result is

 umax = −(B2γ
8μ ) 

dh
ds

 (9.21)
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To develop an equation for discharge per unit width q, substitute Eq. (9.19) into 
Q = qw = ∫udA = ∫ B

0 uwdy. Th e result is

 q = −( B3

12μ) d
ds
(p + γz) = −( B3γ

12μ) dh
ds

 (9.22)

Eq. (9.22) reveals that Poiseuille fl ow is driven by a gradient in piezometric head (dh/ds). Th e 
negative sign on the right side of Eq. (9.22) means that a fl uid will fl ow from high to low piezo-
metric head. Sometimes, we hear someone say that a fl uid fl ows from high to low pressure or 
down the pressure gradient; be aware that this idea about pressure is not true in general.

To develop an equation for mean velocity V , apply the equation V = Q/A =  q/B  and 
introduce umax as given in Eq. (9.21). Th e result is

 V = 2umax/3  (9.23)

Eq. (9.23) reveals that the mean velocity is two-thirds of the maximum velocity.

9.4 The Boundary Layer (Description)

The Boundary Layer Concept

When he was 29 years old, Ludwig Prandtl wrote a paper (1) about the boundary layer concept. 
Th e impact of this idea, as described by John Anderson (2, p. 42), is that “the modern world 
of aerodynamics and fl uid dynamics is still dominated by Prandtl’s idea. By every right, his 
boundary layer concept was worthy of the Nobel Prize.”

Th e central idea of the boundary layer concept (Fig. 9.5) is to idealize the fl ow near the 
surface of a body as a thin layer that is distinct from the surrounding fl ow.

Th e boundary layer concept is applied to idealize many real-world fl ows; some examples 
follow.

• Th e water fl ow past the pier of a bridge
• Th e air fl ow past the surface of the earth
• Th e air fl ow past an automobile
• Th e air or water fl ow in the entrance of a pipe

The Boundary Layer on a Flat Plate

Because fl ow over a fl at plate (Fig. 9.6) is simple, this fl ow is the foundation for understanding 
most boundary layer fl ows. Notice that the fl ow outside the boundary layer is called the free 
stream.

Th e boundary layer starts from the leading edge of the plate. Th e thickness of the boundary 
layer δ increases with x. Th e edge of the boundary layer is defi ned as the point at which the local 
velocity equals 99% of the free stream velocity. Th erefore, y = δ when Eq. (9.24) is satisfi ed.

 
u
Uo

= 0.99 (9.24)

Inviscid flow

Inviscid flow

Body

Boundary layer
FIGURE 9.5

The boundary layer is a thin layer near the body that is 

analyzed separately from the surrounding fl ow.
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Th e boundary layer on a fl at plate starts out laminar (Fig. 9.6). Th is means the fl ow is smooth, 
layer-like, and steady. If plate length L is large enough, the laminar boundary layer will be followed 
by a transition boundary layer and then a turbulent boundary layer. A transition region is the 
zone in which the boundary layer changes from laminar to turbulent. Th e turbulent boundary 
layer has several distinctive characteristics: (a) At each point, the velocity varies with time; 
(b) at each point, the pressure varies with time; (c) the fl ow is always unsteady; and (d) the fl ow is 
dominated by eddies. An eddy is a circular movement of fl uid. Th e largest eddy in the boundary 
layer has a diameter that is approximately equal to the boundary layer thickness. Th e smallest 
eddy in the boundary layer has a diameter that is given by a length scale called the Kolmogorov 
length scale. Due to the eddies in a turbulent fl ow, there is strong mixing in any such fl ow. Th is 
mixing tends to even out the velocity profi le.

The Reynolds Number

Th e nature of the boundary layer (laminar versus turbulent) is correlated the Reynolds number. 
Th e variable Rex, called the “Reynolds number based on x,” or the “local Reynolds number,” is 
defi ned as follows:

 Rex =
Uo x

ν  (9.25)

Th e variable Uo represents the free stream velocity, x is the distance from the leading edge of 
the plate, and ν is the kinematic viscosity of the fl uid. Th e variable ReL, called the “Reynolds 
number based on L,” is defi ned as

 ReL =
Uo L

ν  (9.26)

A variable like x or L in the Reynolds number is called a length scale.

The Transition Reynolds Number

Th e value of Rex at which transition starts and ends varies from experiment to experiment. 
Th us, there is not a unique criterion for transition. Th is book follows a common engineering 
approach that involves three assumptions:

• If Rex ≤ 500,000, the boundary layer is assumed to be laminar.
• If Rex > 500,000, the boundary layer is assumed to be turbulent.
• Th e length of the transition zone is neglected.

Th e transition Reynolds number is Retr = 500,000.

9.5 Velocity Profi les in the Boundary Layer

In fl uid mechanics, engineers want to fi nd the velocity profi le. Once we know the velocity profi le, 
we can determine other parameters (e.g., drag force and shear stress) that we want to know. 

Uo

Retr = 500,000x

Laminar
boundary 

layer

Turbulent
boundary 

layer
Free

stream

= 5E5

Transition 
region

δ

L

FIGURE 9.6

The boundary layer on a fl at surface. 

Here, Uo is the free stream velocity, 

x is distance, δ is the boundary 

layer thickness, L is the length of 

the plate, and Retr is the Reynolds 

number associated with transition.
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Boundary Layer Theory

To analyze a boundary layer, Prandtl created an approximate (not exact) form of the governing 
equations called the boundary layer equations. Blasius (3), a graduate student working with 
Prandtl, solved the boundary layer equations for a laminar boundary layer over a fl at plate; 
engineers call this solution the Blasius solution.

The Laminar Velocity Profi le

For a laminar boundary layer on a fl at plate, the Blasius solution (Fig. 9.7) gives a plot of the 
velocity profi le. Notice that u = 0 at y = 0 because of the no-slip condition. Also, notice that 
the velocity profi le merges smoothly with the free stream.

The Turbulent Velocity Profi le

Researchers have developed multiple solutions for the turbulent velocity profi le. Th e research 
method involves fi tting curves to experimental data with the addition of an ad hoc theory. Th e 
results can be confusing because there are many diff erent velocity profi les. In this textbook, we 
only present some of the most common profi les.

In the turbulent boundary layer, the velocity profi le (Fig. 9.8) is nearly uniform away from 
the wall. Th is is because of eddies that mix the fl ow. Near the wall, the velocity profi le exhibits 
a steep velocity gradient. Th us, τo for the turbulent boundary layer is generally larger than τo 
for the laminar boundary layer.

Logarithmic velocity distribution. A common equation for describing the turbulent 
boundary layer is the logarithmic velocity distribution, which is

 
u
u*

= 2.44 ln (yu*
ν ) + 5.56  (9.27)

Th e friction velocity u* is defi ned by u* = √τo /ρ. Th is term is not really a velocity; instead, 
it is a term that has the same units as velocity. To calculate a value for u*, engineers calculate a 
value of τo using the methods described in §9.6.

Eq. (9.27) applies to the part of the velocity profi le where the value of yu*/ν is between 30 
and 500.
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FIGURE 9.7

The Blasius solution (3) for the velocity 

profi le in a laminar boundary layer on a fl at 

plate. Here, u is the velocity at a height y 

above the surface. The velocity U0 is the 

free stream velocity, and Rex is the local 

Reynolds number.
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Power law formula. For Reynolds numbers between 105 and 107, (i.e., 105 < Rex < 107), 
the velocity profi le in the turbulent boundary layer on a fl at plate is well approximated by the 
power law equation, which is

 
u

Uo
= ( y

δ )
1/7

 (9.28)

Eq. (9.28) matches experimental results for the range (0.1 < y/δ < 1.0). At the wall, Eq. (9.28) 
cannot be valid because du/dy→ ∞ at y = 0 which means that τo→ ∞.

9.6 The Boundary Layer (Calculations)

Equations in this section are based on four assumptions: (1) uniform fl ow over a smooth and 
fl at surface, (2) steady fl ow with the free stream parallel to the fl at surface, (3) a Newtonian fl uid, 
and (4) a large enough Reynolds number to ensure that the boundary layer concept is valid.

Boundary Layer Thickness

For the laminar boundary layer, Schlichting (4, p. 140) shows that the thickness δ of the bound-
ary layer is given by

 
δ
x =

5.0
Re1/2

x
 (9.29)

For the turbulent boundary layer, White, (5, p. 430) shows that δ is given by

 
δ
x =

0.16
Re1/7

x
 (9.30)
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FIGURE 9.8

An example of a turbulent velocity 

profi le. Here, u is the time-averaged 

velocity and u* is the friction velocity.
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EXAMPLE. Water (ν = 1.2E-6 m2/s) fl ows over the top of a fl at plate. Th e plate length is 
1.5 m. Th e free stream velocity is 5 m/s. Calculate the boundary layer thickness at x/L = 0.5

Reasoning.

1. To determine if the boundary layer is laminar or turbulent, calculate the Reynolds 
number. Rex = (5 m/s)(0.75 m)/(1.2E-6 m2/s) = 3.125E6.

2. At the point in question, the boundary layer is turbulent.
3. Th us, δ = (0.16)(0.75 m)/(3.125E6)1/7 = 1.42 cm.

Shear Stress at the Wall

Engineers incorporate the wall shear stress τo into a π-group as follows:

 cf =
(shear stress at the wall)
(kinetic pressure)

=
τo

(ρU2
o /2)

 (9.31)

Th e name of cf  is the local shear stress coefficient. For the laminar boundary layer, Schlichting 
(4, p. 138) shows that

 cf =
0.664
Re1/2

x
 (9.32)

For the turbulent boundary layer, researchers have proposed many diff erent formulas. White 
(5, p. 432) recommends

 cf =
0.455

ln2(0.06 Rex)
 (9.33)

Aft er a value of cf  has been calculated, τo can be found by using

 τo = cf (ρU2
o /2) (9.34)

EXAMPLE. By applying Eqs. (9.32), (9.33), and (9.34), we calculated τo for water fl owing 
over a plate (Fig. 9.9). Notice that τo for the turbulent boundary layer is usually greater than τo 
for the laminar boundary layer and that τo decreases with x. For the laminar boundary layer, 
this decrease is proportional to x−0.5, a fact that we deduced from Eq. (9.32).
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FIGURE 9.9

This fi gure shows the wall shear 

stress τo calculated for water 

fl owing over a fl at plate. The 

problem variables are L = 1.0 m, 

Uo = 1.1 m/s, ν = 1.1E-6 m2/s, 

and ρ = 1000 kg/m3.
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Drag Force (Shear Force, Skin Friction Drag)

Engineers incorporate the drag force into a π-group as follows:

 Cf ≡
(drag force)

(kinetic pressure)(reference area)
=

FD

(ρUo
2 / 2)(ARef)

 (9.35)

Th e term Cf  is called the “coeffi  cient of drag” or the “average shear stress coeffi  cient.” Note that 
the free stream velocity Uo is measured relative to an observer situated on the plate. Example: 

If a plate is moving at a speed of 6 m/s in still air, then Uo = 6 m/s.
Th e reference area ARef is either (a) the surface area of one side of the plate or (b) the sur-

face area of both sides of the plate. Th e drag force FD can also be represented as a shear force Fs 
because the drag force on a fl at plate is due to shear stress only. Also, the drag force associated 
with shear stress is sometimes called the shear force, the skin friction drag, or the surface drag.

To calculate the drag force, rearrange Eq. (9.35) to give

 FD = Cf (ρU2
o /2)(ARef) (9.36)

To calculate Cf , determine the nature of the boundary layer and then select the appropriate 
equation from the three options that follow:

• Laminar boundary layer. If ReL ≤ 500,000, assume the boundary layer is laminar and select 
Eq. (9.37).

 

Laminar
Cf =

1.33
ReL

1/2
 (9.37)

• Mixed boundary layer. If ReL > 500,000, assume the boundary layer is mixed and select 
Eq. (9.38). A mixed boundary layer is a boundary layer that starts as laminar and then 
transitions to turbulent.

 

Turbulent

Laminar Cf = In2(0.06ReL)
0.523

ReL

1520–  (9.38)

• Tripped boundary layer. For this case, select Eq. (9.39). A tripped boundary layer is a 
boundary layer that is turbulent over the entire length of the plate. Engineers idealize the 
boundary layer as tripped when there are roughness elements that cause all of the bound-
ary layer to be turbulent. Examples of roughness elements include sand glued to the plate, 
electrical components on a printed circuit board, and wires situated near the leading edge of 
the plate. If ReL ≫ 500,000, the boundary layer can also be idealized as tripped because the 
length of the laminar boundary layer is short relative to the plate length.

 

Turbulent

Boundary layer trip

Cf =
0.032
ReL

1/7  (9.39)

Th e correlations for drag force are plotted in Fig. 9.10. If ReL ≳ 107, then Eqs. (9.38) and (9.39) 
give the same value of Cf . For this condition, the boundary layer can be modeled as a “tripped 
boundary layer.”
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Th e drag force on a fl at plate can be used to idealize a more complex fl ow. Example: Th e drag 
force on an airplane can be estimated by idealizing the airplane as a fl at plate with an equiva-
lent surface area. Th us, an airplane with an exterior surface area of 6.2 m2 could be idealized 
as a fl at plate with a surface area of 3.1 m2 on the top of the plate and 3.1 m2 on the bottom. To 
achieve scaling, the plate length and other variables should be set so that ReL for the real system 
(i.e., the airplane) will match ReL for the idealization (i.e., the fl at plate).

EXAMPLE PROBLEM. Oil (ρ = 900 kg/m3, ν = 8.0E-5 m2/s) fl ows over both sides of a 
fl at plate. Th e plate dimensions are W = 250 mm and L = 750 mm. Th e free stream velocity is 
Uo = 4.5 m/s. Calculate the drag force on the plate.

Uo

W

L

Reasoning.

1. Th e drag force can be calculated using FD = Cf (ρU2
o /2)(ARef).

2. Th e Reynolds number is ReL = (4.5m/s)(0.75m)/(8.0E-5) = 42,187.
3. Because ReL ≤ 500,000, the boundary layer is laminar.
4. Th us, the drag coeffi  cient is Cf = 1.33/√42,187 = 6.4752E-3.
5. Th e reference area is ARef = (2)(0.75 m)(0.25 m) = 0.375 m2.
6. From step 1, FD = (6.4752E-3)(900 kg/m3)(4.5 m/s)2(0.375 m2)/2 = 22.1 N.
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Cf = ln2(0.06ReL)
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ReL
1/2
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0.032
ReL
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Boundary layer trip

FIGURE 9.10

This fi gure shows Cf on a fl at plate as a 

function of the Reynolds number.
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The Power Equation

When a body (e.g., a car, boat, or airplane) moves through a fl uid, the body must do work on 
the fl uid to overcome the drag force. When the body is moving in a straight line at a constant 
speed (i.e., rectilinear motion), this rate of work is given by the power equation:

 P = FDV (9.40)

Here, P is the power needed to overcome the drag force, FD is the drag force acting on the body, 
and V is the speed of the body relative to a ground-based reference frame.

EXAMPLE PROBLEM. A submarine (length = 150 m, average diameter = 12 m) moves 
through seawater (ν = 1.4E-6 m2/s, ρ = 1030 kg/m3) at a speed of 9 m/s. Estimate the 
power needed to overcome the drag force. Idealize the submarine as a fl at plate that has the 
same surface area as the submarine.

Solution.

1. Th e power needed to overcome drag is P = FDU.
2. Th e drag force is given by FD =  Cf (ρV 2/2)(ARef).
3. Th e reference area is ARef = (150 m)(π)(12 m) = 5655 m2.
4. Th e Reynolds number is ReL = (150 m)(9 m/s)/(1.4E-6 m2/s) = 9.643E8.
5. From either Fig. 9.10 or Eq. (9.38), Cf = 0.00164.
6. Th e drag force (see step 2) is FD = 3.858E5 N.
7. Th e power (see step 1) is P = (3.858E5 N)(9 m/s) = 3.47 MW.

The Navier-Stokes Equation 

(Uniform Flow)

• The Navier-Stokes equation is derived by applying 
Newton’s second law of motion to a fluid particle.

• Th e Navier-Stokes equation only has a few exact solu-
tions. Two of these exact solutions are Couette fl ow and 
Poiseuille fl ow.

• For Couette fl ow, the following facts apply: (a) Th e pres-
sure is uniform, (b) the shear stress is equal everywhere 
to μU/L, and (c) the velocity profi le is linear.

• For Poiseuille fl ow in a channel, the following facts apply: 
(a) Th e criterion for laminar fl ow is ReB = VB/ν < 1000, 
(b) the mean velocity is two-thirds of the maximum 
velocity (V = 2umax /3), (c) the discharge per length is 
q = −(B3γ/12μ)dh/ds, and (d) the velocity profi le is 
parabolic.

The Boundary Layer

• Th e boundary layer is the thin region of fl uid near a solid 
body. In the boundary layer, viscous stresses cause a 
velocity profi le.

• Th e boundary layer thickness δ is the distance from the 
wall to the location where the velocity is 99% of the free 
stream velocity.

• If ReL is large enough, the boundary layer will have three 
regions: (a) the laminar boundary layer, (b) the transi-
tion boundary layer, and (c) the turbulent boundary 
layer.

• For engineering purposes, transition to a turbulent 
boundary layer occurs at Retr = 500,000.

Predicting Boundary Layer 

Parameters

• Table 9.1 lists equations that are commonly applied.
• Wall shear stress τo is calculated using τo = cf (ρU2

o /2).
• Th e drag force FD is calculated from 

FD =Cf (ρU2
o /2)(ARef).

9.7 Summary
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TABLE 9.1 Summary of Equations for a Boundary Layer on a Flat Plate

Parameter

Laminar Flow 

Rex, ReL < 5 × 105

Turbulent Flow 

Rex, ReL ≥ 5 × 105

Boundary Layer Th ickness, δ δ =
5x

Re1/2
x

δ =
0.16x
Re1/7

x

Local Shear Stress Coeffi  cient, cf cf =
0.664
Re1/2

x
cf =

0.445
ln2(0.06Rex)

Average Shear Stress Coeffi  cient, Cf 
 (mixed boundary layer) Cf =

1.33
Re1/2

L
Cf =

0.523
ln2(0.06ReL)

−
1520
ReL

Average Shear Stress Coeffi  cient, Cf 
 (tripped boundary layer) Cf =

0.032
Re1/7

L
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Couette Flow (§9.2)

9.1 Th e velocity distribution in a Couette fl ow is linear if the vis-
cosity is constant. If the moving plate is heated and the viscosity 
of the liquid is decreased near the hot plate, how will the velocity 
distribution change? Give a qualitative description and the ratio-
nale for your argument.
9.2 Th e cube shown weighing 110 N and measuring 39 cm on a 
side is allowed to slide down an inclined surface on which there 
is a fi lm of oil having a viscosity of 10–2 N∙s/m2. What is the 
velocity of the block if the oil has a thickness of 0.11 mm?

10°

Oil thickness
= 0.11 mm

W

Problem 9.2

9.3 A board 3 ft  by 3 ft  that weighs 32 lbf slides down an inclined 
ramp with a velocity of 0.6 ft /s. Th e board is separated from 
the ramp by a layer of oil 0.02 in. thick. Calculate the dynamic 
viscosity μ of the oil.
9.4 A board 1 m by 1 m that weighs 55 N slides down an 
inclined ramp with a velocity of 40 cm/s. Th e board is separated 
from the ramp by a layer of oil 0.6 mm thick. Neglecting the 

edge eff ects of the board, calculate the dynamic viscosity μ of 
the oil.
9.5 Information is needed about the thickness of oil necessary to 
lubricate metal parts sliding down an inclined plane. A square 
metal part with 0.9 m sides that weighs 20 N is required to slide 
down the inclined plane shown, at a velocity of 20 cm/s. Neglecting 
edge eff ects, calculate the necessary thickness of oil, if μ = 5.43 × 
10–2 N∙s/m2.

V

12

5

Problems 9.3, 9.4, 9.5

9.6 A fl at plate is pulled to the right at a speed of 30 cm/s. Oil with 
a viscosity of 4 N∙s/m2 fi lls the space between the plate and the 
solid boundary. Th e plate is 1 m long (L = 1 m) by 30 cm wide, 
and the spacing between the plate and boundary is 2.0 mm.

a.  Express the velocity mathematically in terms of the coordinate 
system shown.

b.  By mathematical means, determine whether this fl ow is 
rotational or irrotational.

PROBLEMS
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c.  Determine whether continuity is satisfi ed, using the 
diff erential form of the continuity equation.

d.  Calculate the force required to produce this plate motion.

L

t

V y

x

Problem 9.6

9.7 Th e upper plate shown is moving to the right with a velocity 
V, and the lower plate is free to move laterally under the action 
of the viscous forces applied to it. For steady-state conditions, 
derive an equation for the velocity of the lower plate. Assume 
that the area of oil contact is the same for the upper plate, each 
side of the lower plate, and the fi xed boundary.

Oil:   1t1

t2 SG = 0.9

SG = 0.9

V

Upper plate

Lower plate

μ

Oil:   2μ

Problem 9.7

9.8 A circular horizontal disk with a 27 cm diameter has a clear-
ance of 3.0 mm from a horizontal plate. What torque is required 
to rotate the disk about its center at an angular speed of 31 rad/s 
when the clearance space contains oil (μ = 8 N∙s/m2)?
9.9 A plate 2 mm thick and 3 m wide (normal to the page) is 
pulled between the walls shown in the fi gure at a speed of 0.5 m/s. 
Note that the space that is not occupied by the plate is fi lled with 
glycerine at a temperature of 20°C. Also, the plate is positioned 
midway between the walls. Sketch the velocity distribution of 
the glycerine at section A-A. Neglecting the weight of the plate, 
estimate the force required to pull the plate at the speed given.

Glycerine

Glycerine

2 mm

6 mm
Plate

Walls

AA

2 m

Problem 9.9

9.10 A bearing uses SAE-30 oil with a viscosity of 0.1 N∙s/m2. 
Th e bearing is 30 mm in diameter, and the gap between the shaft  
and the casing is 1 mm. Th e bearing has a length of 1 cm. Th e 
shaft  turns at ω = 200 rad/s. Assuming that the fl ow between the 

shaft  and the casing is a Couette fl ow, fi nd the torque required to 
turn the bearing.

1 mm

30 mm

ω

Problem 9.10

9.11 Oft en in liquid lubrication applications, there is a heat 
generated that is transferred across the lubricating layer. 
Consider a Couette fl ow with one wall at a higher temperature 
than the other. Th e temperature gradient across the fl ow aff ects 
the fl uid viscosity according to the relationship

μ = μ0 exp (−0.1
y
L)

where μ0 is the viscosity at y = 0 and L is the distance between 
the walls. Incorporate this expression into the Couette fl ow 
equation, and integrate and express the shear stress in the form

τ = C
Uμ0

L

where C is a constant and U is the velocity of the moving wall. 
Analyze your answer. Should the shear stress be greater or less 
than that with uniform viscosity?

Poiseuille Flow (§9.3)

9.12 Uniform, steady fl ow is occurring between horizontal parallel 
plates as shown.

a.  Th e fl ow is Poiseuille; therefore, what is causing the fl uid to 
move?

b.  Where is the maximum velocity located?
c.  Where is the maximum shear stress located?
d.  Where is the minimum shear stress located?

Problem 9.12

9.13 Uniform, steady fl ow is occurring between horizontal parallel 
plates as shown.

a.  In a few words, tell what other condition must be present to 
cause the odd velocity distribution.

b.  Where is the minimum shear stress located?
9.14 Under certain conditions (pressure decreasing in the x 
direction, the upper plate fi xed, and the lower plate moving to the 
right in the positive x direction), the laminar velocity distribution 
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will be as shown. For such conditions, indicate whether each of 
the following statements is true or false:

a.  Th e shear stress midway between the plates is zero.
b.  Th e minimum shear stress occurs next to the moving plate.
c.  Th e maximum shear stress occurs where the velocity is the 

greatest.
d.  Th e minimum shear stress occurs where the velocity is the 

greatest.

x

Problems 9.13, 9.14

9.15 Th e velocity distribution that is shown represents laminar 
fl ow. Indicate which of the following statements are true:

a.  Th e velocity gradient at the boundary is infi nitely large.
b.  Th e maximum shear stress in the liquid occurs midway 

between the walls.
c.  Th e maximum shear stress in the liquid occurs next to the 

boundary.
d.  Th e fl ow is irrotational.
e.  Th e fl ow is rotational.

y

x

U

Moving plate

u

umax

Problem 9.15

9.16 Two horizontal parallel plates are spaced 0.015 ft  apart. Th e 
pressure decreases at a rate of 25 psf/ft  in the horizontal x direc-
tion in the fl uid between the plates. What is the maximum fl uid 
velocity in the x direction? Th e fl uid has a dynamic viscosity of 
10–3 lbf∙s/ft 2 and a specifi c gravity of 0.80.
9.17 A viscous fl uid fi lls the space between these two plates, and 
the pressures at A and B are 150 psf and 100 psf, respectively. 
Th e fl uid is not accelerating. If the specifi c weight of the fl uid is 
100 lbf/ft 3, then one must conclude that (a) fl ow is downward, 
(b) fl ow is upward, or (c) there is no fl ow.

Horizontal

A

B

2 ft

30°

Problem 9.17

9.18 Glycerine at 20°C fl ows downward between two vertical 
parallel plates separated by a distance of 0.6 cm. Th e ends are 
open, so there is no pressure gradient. Calculate the discharge 
per unit width, q, in m2/s.
9.19 Two vertical parallel plates are spaced 0.012 ft  apart. If the 
pressure decreases at a rate of 100 psf/ft  in the vertical z direction 
in the fl uid between the plates, what is the maximum fl uid velocity 
in the z direction? Th e fl uid has a viscosity of 10–3 lbf∙s/ft 2 and a 
specifi c gravity of 0.80.
9.20 Two parallel plates are spaced 0.09 in. apart, and motor oil 
(SAE-30) with a temperature of 100°F fl ows at a rate of 0.009 cfs 
per foot of width between the plates. What is the pressure gradient 
in the direction of fl ow if the plates are inclined at 60° with the 
horizontal and if the fl ow is downward between the plates?
9.21 One type of bearing that can be used to support very large 
structures is shown. Here, fl uid under pressure is forced from the 
bearing midpoint (slot A) to the exterior zone B. Th us, a pressure 
distribution occurs as shown. For this bearing, which is 43 cm 
wide, what discharge of oil from slot A per meter of length of 
bearing is required? Assume a 190 kN load per meter of bearing 
length with a clearance space t between the fl oor and the bearing 
surface of 1.5 mm. Assume an oil viscosity of 0.20 N∙s/m2. How 
much oil per hour would have to be pumped per meter of 
bearing length for the given conditions?

F

BB

A

p

Problem 9.21

9.22 An engineer is designing a very thin, horizontal channel for 
cooling electronic circuitry. Th e channel is 3 cm wide and 6 cm 
long. Th e distance between the plates is 0.4 mm. Th e average 
fl uid velocity is 7 cm/s. Th e fl uid used has a viscosity of 1.2 cp 
and a density of 800 kg/m3. Assuming no change in viscosity 
or density, fi nd the pressure drop in the channel and the power 
required to move the fl ow through the channel.

Heat
transfer

3 cm

0.4 mm

7 cm/s

6 cm

s

Problem 9.22

The Boundary Layer (Description) (§9.4)

9.23 a. Explain in your own words what is meant by “boundary 
layer.” b. Defi ne “boundary layer thickness.”
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9.24 Which of the following are features of a laminar boundary 
layer? (Select all that are correct.)

a.  Flow is smooth.
b.  Th e boundary layer thickness increases in the downstream 

direction.
c.  A decreasing boundary layer thickness correlates with 

decreasing shear stress.
d.  An increasing boundary layer thickness correlates with 

decreasing shear stress.

Velocity Profi les in the Boundary Layer (§9.5)

9.25 A liquid (ρ = 1000 kg/m3; μ = 2 × 10–2 N∙s/m2; v = 2 × 
10–5 m2/s) fl ows tangentially past a fl at plate. If the approach 
velocity is 1 m/s, what is the liquid velocity 2 m downstream from 
the leading edge of the plate, at 0.8 mm away from the plate?
9.26 Oil (v = 10–4 m2/s) fl ows tangentially past a thin plate. If the 
free-stream velocity is 1 m/s, what is the velocity 5 m downstream 
from the leading edge and 15 mm away from the plate?
9.27 Oil (v = 10–4 m2/s; SG = 0.9) fl ows past a plate in a tangen-
tial direction so that a boundary layer develops. If the velocity of 
approach is 0.3 m/s, what is the oil velocity 0.2 m downstream 
from the leading edge, 0.1 cm away from the plate?
9.28 A turbulent boundary layer exists in the fl ow of water at 
20°C over a fl at plate. Th e local shear stress measured at the 
surface of the plate is 0.4 N/m2. What is the velocity at a point 
0.3 cm from the plate surface?

The Boundary Layer (Calculations) (§9.6)

9.29  Classify each of the following features into one of two catego-
ries: laminar boundary layer (L), or turbulent boundary layer (T).

a.  Th e fl ow occurs in smooth layers.
b.  Th e boundary layer contains eddies that mix the fl ow.
c.  Th e velocity profi le can be written with a power law equation.
d.  Th e velocity profi le is a function of √Re.
e.  Th e velocity profi le can be described with the logarithmic 

velocity distribution.
f.  Th e boundary layer thickness δ varies as x6/7.
g.  Th e boundary layer thickness δ varies as x1/2. 
h.  Even when the mean fl ow is steady, the velocity in the 

boundary layer will be unsteady.
i.  Shear stress is a function of the natural log.
j.  Shear stress is a function of √Re.

9.30 Assume the wall adjacent to a liquid laminar boundary is heated 
and the viscosity of the fl uid is lower near the wall and increases the 
free-stream value at the edge of the boundary layer. How would this 
variation in viscosity aff ect the boundary layer thickness and local 
shear stress? Give the rationale for your answers.
9.31 A thin plate 6 ft  long and 3 ft  wide is submerged and held 
stationary in a stream of water (T = 60°F) that has a velocity of 
17 ft /s. What is the thickness of the boundary layer on the plate for 
Rex = 500,000 (assume the boundary layer is still laminar), and at 

what distance downstream of the leading edge does this Reynolds 
number occur? What is the shear stress on the plate at this point?
9.32 What is the ratio of the boundary layer thickness on a 
smooth, fl at plate to the distance from the leading edge just 
before transition to turbulent fl ow?
9.33 A model airplane has a wing span of 6 ft  and a chord (leading 
edge–trailing edge distance) of 4.5 in. Th e model fl ies in air at 
60°F and atmospheric pressure. Th e wing can be regarded as a fl at 
plate so far as drag is concerned. (a) At what speed will a turbulent 
boundary layer start to develop on the wing? (b) What will be the 
total drag force on the wing just before turbulence appears?
9.34 Oil (μ = 10–2 N∙s/m2; ρ = 900 kg/m3) fl ows past a plate in 
a tangential direction so that a boundary layer develops. If the 
velocity of approach is 4 m/s, then at a section 30 cm downstream 
of the leading edge the ratio of τδ (shear stress at the edge of 
the boundary layer) to τ0 (shear stress at the plate surface) is 
approximately (a) 0, (b) 0.24, (c) 2.4, or (d) 24.
9.35 A liquid (ρ = 1000 kg/m3; μ = 2 × 10–2 N∙s/m2; v =2 × 
10–5 m2/s) fl ows tangentially past a fl at plate with total length 
of 4 m (parallel to the fl ow direction), a velocity of 1 m/s, and a 
width of 1.5 m. What is the skin friction drag (shear force) on 
one side of the plate?
9.36 A thin plate 0.7 m long and 1.5 m wide is submerged and held 
stationary in a stream of water (T = 10°C) that has a velocity of 
1.5 m/s. What is the thickness of the boundary layer on the plate 
for Rex = 500,000 (assume the boundary layer is still laminar), and 
at what distance downstream of the leading edge does this Reynolds 
number occur? What is the shear stress on the plate on this point?
9.37 A fl at plate 1.5 m long and 1.0 m wide is towed in water at 
20°C in the direction of its length at a speed of 15 cm/s. Deter-
mine the resistance of the plate and the boundary layer thickness 
at its aft  end.
9.38 Assume that a turbulent gas boundary layer was adjacent to 
a cool wall and the viscosity in the wall region was reduced. How 
may this aff ect the features of the boundary layer? Give some 
rationale for your answers.
9.39 An element for sensing local shear stress is positioned in a fl at 
plate 1 meter from the leading edge. Th e element simply consists 
of a small plate, 1 cm × 1 cm, mounted fl ush with the wall, and 
the shear force is measured on the plate. Th e fl uid fl owing by the 
plate is air with a free-stream velocity of V = 42 m/s, a density 
of 1.2 kg/m3, and a kinematic viscosity of 1.5 × 10–5 m2/s. Th e 
boundary layer is tripped at the leading edge. What is the magni-
tude of the force due to shear stress acting on the element?

1 cm

1 cm

1 m

Plan view
Tripping

wire

V

FS

Problem 9.39
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9.40 An airplane wing of 2 m chord length (leading edge to 
trailing edge distance) and 11 m span fl ies at 200 km/hr in air at 
30°C. Assume that the drag force of the wing surfaces is like that 
of a fl at plate.

a.  What is the friction drag on the wing?
b.  What power is required to overcome this?
c.  How much of the chord has laminar fl ow?
d.  What will be the change in drag if a turbulent boundary 

layer is tripped at the leading edge?
9.41 For the hypothetical boundary layer on the fl at plate shown, 
what is the shear stress on the plate at the downstream end 
(point A)? Here ρ = 1.2 kg/m3 and μ = 3.0 × 10–5 N∙s/m2.

Free stream
velocity = 40 m/s

30 cm

3 mm

A

Problem 9.41

9.42 What is the ratio of the drag force of a plate 30 m long and 
5 m wide to that of a plate 10 m long and 5 m wide if both plates 
are towed lengthwise through water (T = 20°C) at 10 m/s?
9.43 Calculate the power required to pull the sign shown if it is 
towed at 48 m/s and if it is assumed that the sign has the same 
drag force as an equivalent fl at plate. Assume standard atmo-
spheric pressure and a temperature of 10°C.

FLUID MECHANICS FOR ALL ENGINEERS

30 m

2.0 m

Problem 9.43

9.44 A thin plastic panel (3 mm thick) is lowered from a ship to a 
construction site on the ocean fl oor. Th e plastic panel weighs 300 N 
in air and is lowered at a rate of 3 m/s. Assuming that the panel 
remains vertically oriented, calculate the tension in the cable.

3 m

1 m

Problem 9.44

9.45 Th e plate shown in the fi gure is weighted at the bottom so 
it will fall stably and steadily in a liquid. Th e weight of the plate 
in air is 23.5 N, and the plate has a volume of 0.002 m3. Estimate 
the terminal velocity in freshwater at 20°C. Th e boundary layer is 
normal; that is, it is not tripped at the leading edge.

In this problem, the fi nal falling speed (terminal velocity) 
occurs when the weight is equal to the sum of the skin friction 
and buoyancy.

W = B + Fs = γV +
1
2

C f ρU 2
0 S

Hint: Th is problem requires an iterative solution.

2 m

1 m
Edge view

Side view

Problem 9.45

9.46 A turbulent boundary layer develops from the leading edge 
of a fl at plate with water at 20°C fl owing tangentially past the plate 
with a free-stream velocity of 7.7 m/s. Determine the drag force 
acting on one side of the plate, if the plate has dimensions L = 1 m, 
and width B = 0.5 m.
9.47 A model airplane descends in a vertical dive through air 
at standard conditions (1 atmosphere and 20°C). Th e majority 
of the drag is due to skin friction on the wing (like that on a fl at 
plate). Th e wing has a span of 1 m (tip to tip) and a chord length 
(leading edge to trailing edge distance) of 10 cm. Th e leading 
edge is rough, so the turbulent boundary layer is “tripped.” Th e 
model weighs 3 N. Determine the speed (in meters per second) 
at which the model will fall.
9.48 A fl at plate is oriented parallel to a 45 m/s airfl ow at 20°C and 
atmospheric pressure. Th e plate is L = 1 m in the fl ow direction 
and 0.5 m wide. On one side of the plate, the boundary layer is 
tripped at the leading edge, and on the other side there is no 
tripping device. Find the total drag force on the plate.

1 m
0.5 m

Trip strip

U

Problem 9.48

9.49 An engineer is designing a horizontal, rectangular conduit that 
will be part of a system that allows fi sh to bypass a dam. Inside the 
conduit, a fl ow of water at 40°F will be divided into two streams by 
a fl at, rectangular metal plate. Calculate the viscous drag force on 
this plate, assuming boundary layer fl ow with free-stream velocity 
of 12 ft /s and plate dimensions of L = 5 ft  and W = 4.5 ft .
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L

Water

Problem 9.49

9.50 A model is being developed for the entrance region between 
two fl at plates. As shown in the fi gure, it is assumed that the 
region is approximated by a turbulent boundary layer originating 
at the leading edge. Th e system is designed such that the plates 
end where the boundary layers merge. Th e spacing between the 
plates is 4 mm, and the entrance velocity is 10 m/s. Th e fl uid is 
water at 20°C. Roughness at the leading edge trips the boundary 
layers. Find the length L where the boundary layers merge, and 
fi nd the force per unit depth (into the paper) due to shear stress 
on both plates.

L

10 m/s
4 mm

Problem 9.50

9.51 A motor boat pulls a long, smooth, water-soaked log (0.5 m 
in diameter and 40 m long) at a speed of 3 m/s. Assuming total 
submergence, estimate the force required to overcome the shear 
force of the log. Assume a water temperature of 10°C and that the 
boundary layer is tripped at the front of the log.
9.52 High-speed passenger trains are streamlined to reduce shear 
force. Th e cross section of a passenger car of one such train is 
shown. For a train 81 m long, estimate the shear force (a) for a 
speed of 81.1 km/hr and (b) for one of 204 km/hr. What power is 
required for just the shear force at these speeds? Th ese two power 
calculations will be answers (c) and (d), respectively. Assume T = 
10°C and that the boundary layer is tripped at the front of the train.

10 m

Problem 9.52

9.53 A wind tunnel operates by drawing air through a contraction, 
passing this air through a test section, and then exhausting the air 
using a large axial fan. Experimental data are recorded in the 
test section, which is typically a rectangular section of duct that 
is made of clear plastic (usually acrylic). In the test section, the 
velocity should have a very uniform distribution; thus, it is 
important that the boundary layer be very thin at the end of 
the test section. For the pictured wind tunnel, the test section 
is square with a dimension of W = 457 mm on each side and a 
length of L = 914 mm. Find the ratio of maximum boundary 
layer thickness to test section width [δ(x = L)/W] for two cases: 

minimum operating velocity (1 m/s) and maximum operating 
velocity (70 m/s). Assume air properties at 1 atm and 20°C.

Problem 9.53 
(Photo by Donald Elger.)

9.54 A ship 600 ft  long steams at a rate of 25 ft /s through still 
freshwater (T = 50°F). If the submerged area of the ship is 
50,000 ft 2, what is the skin friction drag of this ship?
9.55 A river barge has the dimensions shown. It draws 2 ft  of 
water when empty. Estimate the skin friction drag of the barge 
when it is being towed at a speed of 10 ft /s through still 
freshwater at 60°F.

30° 30°
Side view

End view

40 ft

200 ft

2 ft

Problem 9.55

9.56 A supertanker has length, breadth, and draught (fully loaded) 
dimensions of 325 m, 48 m, and 19 m, respectively. In open seas, 
the tanker normally operates at a speed of 18 kt (1 kt = 0.515 m/s). 
For these conditions, and assuming that fl at-plate boundary layer 
conditions are approximated, estimate the skin friction drag of 
such a ship steaming in 10°C water. What power is required to 
overcome the skin friction drag? What is the boundary layer 
thickness at 300 m from the bow?
9.57 A hydroplane 3 m long skims across a very calm lake (T = 
20°C) at a speed of 15 m/s. For this condition, what will be the 
minimum shear stress along the smooth bottom?
9.58 Estimate the power required to overcome the shear force of 
a water skier if he or she is towed at 30 mph and each ski is 4 ft  
by 6 in. Assume the water temperature is 60°F.
9.59 If the wetted area of an 80 m ship is 1500 m2, approximately 
how great is the skin friction drag when the ship is traveling at a 
speed of 15 m/s? What is the thickness of the boundary layer at 
the stern? Assume seawater at T = 10°C.
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Flow in Conduits

CHAPTER ROAD MAP This chapter explains how to analyze fl ow in conduits. The primary tool, the 
energy equation, was presented in Chapter 7. This chapter expands on this knowledge by describing how to 
calculate head loss. In addition, this chapter explains how to analyze pumps and how to analyze a network 
of pipes.

CHAPTERTEN

LEARNING OUTCOMES

FLOW IN CONDUITS (§10.1, §10.2). 

● Defi ne a conduit. 
●  Know the main ideas about fl ow classifi cation and Reynolds 

number. 
● Specify a pipe size using the NPS standard.

HEAD LOSS (§10.3). 

●  Describe total head loss, pipe head loss, and component head 

loss. 
● Defi ne the friction factor f. 
●  For the Darcy-Weisbach equation, list the steps of the derivation, 

describe the physics, explain the meaning of the variables, and 

apply this equation.

FRICTION FACTOR (§10.5, §10.6). 

● Calculate hf or f using the relevant equations. 
● Describe the Moody diagram and apply this diagram to fi nd f.

EQUATION SOLVING (§10.7). 

●  Solve turbulent fl ow problems when the equations cannot be 

solved by algebra alone.

COMBINED HEAD LOSS (§10.8). 

● Defi ne the minor loss coeffi cient. 
● Describe and apply the combined head loss equation.

HYDRAULIC DIAMETER (§10.9). 

● Defi ne and calculate hydraulic diameter and hydraulic radius. 
● Solve relevant problems.

CENTRIFUGAL PUMPS (§10.9). 

● Sketch and explain the system curve and the pump curve. 
● Solve relevant problems.

FIGURE 10.1
The Alaskan pipeline, a signifi cant accomplishment 

of the engineering profession, transports oil 1286 km 

across the state of Alaska. The pipe diameter is 1.2 m, 

and 44 pumps are used to drive the fl ow. This chapter 

presents information for designing systems involving 

pipes, pumps, and turbines. (Photo © Eastcott/

Momatiuk/The Image Works.)
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10.1 Classifying Flow

Th is section describes how to classify fl ow in a conduit by considering (a) whether the fl ow 
is laminar or turbulent and (b) whether the fl ow is developing or fully developed. Classifying 
fl ow is essential for selecting the proper equation for calculating head loss.

A conduit is any pipe, tube, or duct that is completely fi lled with a fl owing fl uid. Examples 
include a pipeline transporting liquefi ed natural gas, a microchannel transporting hydrogen 
in a fuel cell, and a duct transporting air for heating a building. A pipe that is partially fi lled 
with a fl owing fl uid (e.g., a drainage pipe) is classifi ed as an open-channel fl ow and is analyzed 
using ideas from Chapter 15.

Laminar Flow and Turbulent Flow

Flow in a conduit is classifi ed as being either laminar or turbulent, depending on the magni-
tude of the Reynolds number. Th e original research involved visualizing fl ow in a glass tube, 
as shown in Fig. 10.2a. In the 1880s, Reynolds (1) injected dye into the center of the tube and 
observed the following:

• When the velocity was low, the streak of dye fl owed down the tube with little expansion, as 
shown in Fig. 10.2b. However, if the water in the tank was disturbed, the streak would shift  
about in the tube.

• If velocity was increased, at some point in the tube the dye would all at once mix with the 
water, as shown in Fig. 10.2c.

• When the dye exhibited rapid mixing (Fig. 10.2c), illumination with an electric spark 
revealed eddies in the mixed fl uid, as shown in Fig. 10.2d.

Th e fl ow regimes shown in Fig. 10.2 are laminar fl ow (Fig. 10.2b) and turbulent fl ow 
(Figs. 10.2c and 10.2d). Reynolds showed that the onset of turbulence was related to a 
π-group that is now called the Reynolds number (Re = ρVD/μ) in honor of Reynolds’ 
pioneering work.

Th e Reynolds number is oft en written as ReD, where the subscript “D” denotes that diam-
eter is used in the formula. Th is subscript is called a length scale. Indicating the length scale for 
the Reynolds number is good practice because multiple values are used. For example, Chapter 9 
introduced Rex and ReL.

Dye

Glass tube

(a)

(b)

(c)

(d)

FIGURE 10.2

Reynolds’ experiment:

(a) apparatus,

(b) laminar fl ow of dye in tube,

(c) turbulent fl ow of dye in tube,

(d) eddies in turbulent fl ow.



  Classifying Flow        313

Reynolds number can be calculated with four diff erent equations. Th ese equations are 
equivalent because one can start with one formula and derive the others. Th e formulas are

 ReD =
VD

v =
ρVD

μ =
4Q

πDv
=

4m·

πDμ
 (10.1)

Reynolds discovered that if the fl uid in the upstream reservoir was not completely still or 
if the pipe had some vibrations, then the change from laminar to turbulent fl ow occurred at 
ReD ∼ 2100. However, if conditions were ideal, then it was possible to reach a much higher 
Reynolds number before the fl ow became turbulent. Reynolds also found that, when going 
from high velocity to low velocity, the change back to laminar fl ow occurred at ReD ∼ 2000. 
Based on Reynolds’ experiments, engineers use guidelines to establish whether or not fl ow in a 
conduit will be laminar or turbulent. Th e guidelines used in this text are as follows:

  ReD ≤ 2000 laminar fl ow
  2000 ≤ ReD ≤ 3000 unpredictable (10.2)

  ReD ≥ 3000 turbulent fl ow

In Eq. (10.2), the middle range (2000 ≤ ReD ≤ 3000) corresponds to a type of fl ow that is 
unpredictable because it can change back and forth between laminar and turbulent states. Rec-
ognize that precise values of the Reynolds number versus fl ow regime do not exist. Th us, the 
guidelines given in Eq. (10.2) are approximate, and other references may give diff erent values. 
For example, some references use ReD = 2300 as the criteria for turbulence.

Developing Flow and Fully Developed Flow

Flow in a conduit is classifi ed as either developing fl ow or fully developed fl ow. For example, 
consider laminar fl uid entering a pipe from a reservoir as shown in Fig. 10.3. As the fl uid 
moves down the pipe, the velocity profi le changes in the streamwise direction as viscous eff ects 
cause the plug-type profi le to gradually change into a parabolic profi le. Th is region of chang-
ing velocity profi le is called developing flow. Aft er the parabolic distribution is achieved, the 
fl ow profi le remains unchanged in the streamwise direction, and fl ow is called fully developed 
flow.

Th e distance required for fl ow to develop is called the entry or entrance length (Le). In 
the entry length, the wall shear stress is decreasing in the streamwise (i.e., s) direction. For 

Wall shear stress is 
changing due to the 
change in velocity 
profile as boundary 
layer grows.

Le

s

Distance (s)

Developing flow
Fully developed
flow

Potential core (inviscid flow)

Edge of boundary layer

W
al

l s
he

ar
 s

tr
es

s 
(τ

o) Wall shear stress is 
constant because 
velocity profile is 
constant with s.

FIGURE 10.3

In developing fl ow, the wall shear stress is 

changing. In fully developed fl ow, the wall shear 

stress is constant.
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laminar fl ow, the wall shear stress distribution is shown in Fig. 10.3. Near the pipe entrance, the 
radial velocity gradient (change in velocity with distance from the wall) is high, so the shear 
stress is large. As the velocity profi le progresses to a parabolic shape, the velocity gradient and 
the wall shear stress decrease until a constant value is achieved. Th e entry length is defi ned as 
the distance at which the shear stress reaches 2% of the fully developed value. Correlations for 
entry length are

 
Le

D
= 0.05 ReD  (laminar flow: ReD ≤ 2000) (10.3a)

 
Le

D
= 50     (turbulent flow: ReD ≥ 3000) (10.3b)

Eq. (10.3) is valid for fl ow entering a circular pipe from a reservoir under quiescent condi-
tions. Other upstream components, such as valves, elbows, and pumps, produce complex fl ow 
fi elds that require diff erent lengths to achieve fully developing fl ow.

In summary, fl ow in a conduit is classifi ed into four categories: laminar developing, laminar 
fully developed, turbulent developing, or turbulent fully developed. Th e key to classifi cation is 
to calculate the Reynolds number, as shown by Example 10.1.

EXAMPLE 10.1

Classifying Flow in Conduits

Problem Statement

Consider fl uid fl owing in a round tube of length 1 m and 
diameter 5 mm. Classify the fl ow as laminar or turbulent and 
calculate the entrance length for (a) air (50°C) with a speed 
of 12 m/s and (b) water (15°C) with a mass fl ow rate 
of m· = 8 g/s.

Defi ne the Situation

Fluid is fl owing in a round tube (two cases given).

(a) Air, 50°C, V = 12 m/s
(b) Water, 15°C,     = 0.008 kg/s

D = 0.005 m

L = 1.0 m
Flow

  m·

Properties:
• Air (50°C): Table A.3, v = 1.79 × 10–5 m2/s
• Water (15°C): Table A.5, μ = 1.14 × 10–3 N∙s/m2

Assumptions:
• Th e pipe is connected to a reservoir.
• Th e entrance is smooth and tapered.

State the Goal

• Determine whether each fl ow is laminar or turbulent.
• Calculate the entrance length (in meters) for each case.

Generate Ideas and Make a Plan

• Calculate the Reynolds number using Eq. (10.1).
•  Establish whether the fl ow is laminar or turbulent using 

Eq. (10.2).
• Calculate the entrance length using Eq. (10.3).

Take Action (Execute the Plan)

a. Air:

ReD =
VD

v
=
(12 m/s)(0.005 m)
1.79 × 10−5 m2/s

= 3350

Because ReD > 3000, the  fl ow is turbulent.

Le = 50D = 50(0.005 m) =  0.25 m

b. Water:

 ReD =
4m·

πDμ
=

4(0.008 kg/s)
π(0.005 m)(1.14 × 10−3 N ∙ s/m2)

 = 1787

Because ReD < 2000, the  fl ow is laminar.

Le = 0.05ReD D = 0.05(1787)(0.005 m) =  0.447 m

10.2 Specifying Pipe Sizes

Th is section describes how to specify pipes using the Nominal Pipe Size (NPS) standard. Th is 
information is useful for specifying a size of pipe that is available commercially.
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Standard Sizes for Pipes (NPS)

One of the most common standards for pipe sizes is the NPS system. Th e terms used in the 
NPS system are introduced in Fig. 10.4. Th e ID (pronounced “eye dee”) indicates the inner pipe 
diameter, and the OD (“oh dee”) indicates the outer pipe diameter. As shown in Table 10.1, an 
NPS pipe is specifi ed using two values: a nominal pipe size and a schedule. Th e nominal pipe 
size determines the outside diameter or OD. For example, pipes with a nominal size of 2 inches 
have an OD of 2.375 inches. Once the nominal size reaches 14 inches, the nominal size and 
the OD are equal. Th at is, a pipe with a nominal size of 24 inches will have an OD of 24 inches.

Pipe schedule is related to the thickness of the wall. Th e original meaning of “schedule” 
was the ability of a pipe to withstand pressure; thus pipe schedule correlates with wall thick-
ness. Each nominal pipe size has many possible schedules that range from schedule 5 to sched-
ule 160. Th e data in Table 10.1 show representative ODs and schedules; more pipe sizes are 
specifi ed in engineering handbooks and on the Internet.

10.3 Pipe Head Loss

Th is section presents the Darcy-Weisbach equation, which is used for calculating head loss in 
a straight run of pipe. Th is equation is one of the most useful equations in fl uid mechanics.

Combined (Total) Head Loss

Pipe head loss is one type of head loss; the other type is called component head loss. All head 
loss is classifi ed using these two categories:

 (total head loss) = (pipe head loss) + (component head loss) (10.4)

Component head loss is associated with fl ow through devices such as valves, bends, and tees. 
Pipe head loss is associated with fully developed fl ow in conduits, and it is caused by shear 

ID (inside diameter)

A larger schedule indicates
thicker walls. A schedule
40 pipe has thicker walls than
a schedule 10 pipe.

OD (outside diameter)

FIGURE 10.4

Section view of a pipe.

TABLE 10.1 Nominal Pipe Sizes

NPS (in.) OD (in.) Schedule Wall Thickness (in.) ID (in.)

1/2 0.840 40
80

0.109
0.147

0.622
0.546

1 1.315 40
80

0.133
0.179

1.049
0.957

2 2.375 40
80

0.154
0.218

2.067
1.939

4 4.500 40
80

0.237
0.337

4.026
3.826

8 8.625 40
80

0.322
0.500

7.981
7.625

14 14.000 10
40
80

120

0.250
0.437
0.750
1.093

13.500
13.126
12.500
11.814

24 24.000 10
40
80

120

0.250
0.687
1.218
1.812

23.500
22.626
21.564
20.376
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stresses that act on the fl owing fl uid. Note that pipe head loss is sometimes called major head 
loss, and component head loss is sometimes called minor head loss. Pipe head loss is predicted 
with the Darcy-Weisbach equation.

Derivation of the Darcy-Weisbach Equation

To derive the Darcy-Weisbach equation, start with the situation shown in Fig. 10.5. Assume 
fully developed and steady fl ow in a round tube of constant diameter D. Situate a cylindrical 
control volume of diameter D and length ΔL inside the pipe. Defi ne a coordinate system with 
an axial coordinate in the streamwise direction (s direction) and a radial coordinate in the 
r direction.

Apply the momentum equation to the control volume shown in Fig. 10.5.

 ∑ F =
d
dt ∫cv

vρd V + ∫
cs

vρV ∙ dA (10.5)

(net forces) = (momentum accumulation rate) + (net efflux of momentum)

Select the streamwise direction and analyze each of the three terms in Eq. (10.5). Th e net 
effl  ux of momentum is zero because the velocity distribution at section 2 is identical to the 
velocity distribution at section 1. Th e momentum accumulation term is also zero because the 
fl ow is steady. Th us, Eq. (10.5) simplifi es to 𝚺F = 0. Forces are shown in Fig. 10.6. Summing of 
forces in the streamwise direction gives

            Fpressure + Fshear + Fweight = 0

 (p1 − p2)(πD 2

4 ) − τ0(πDΔL) − γ [(πD 2

4 )ΔL] sin α = 0 
(10.6)

D
Flow

ΔL

ΔL

ΔL
sin α =

cv

(a) (b)

s direction

r direction

α

α

Δz

Δz

2

1

FIGURE 10.5

Initial situation for the derivation of the 

Darcy-Weisbach equation.

2

1

W
p1A

p2A

τ0 (πDΔL)

α

FIGURE 10.6

Force diagram.
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Figure 10.5b shows that sin α = (Δz/ΔL). Equation (10.6) becomes

 (p1 + γz1) − ( p2 + γz 2) =
4ΔLτ0

D
 (10.7)

Next, apply the energy equation to the control volume shown in Fig. 10.5. Recognize that hp = 
ht = 0, V1 = V2, and α1 = α2. Th us, the energy equation reduces to

p1

γ + z1 =
p2

γ + z2 + hL

 ( p1 + γz1) − (p2 + γz 2) = γhL 
(10.8)

Combine Eqs. (10.7) and (10.8) and replace ΔL with L. Also, introduce a new symbol, hf , to 
represent head loss in a pipe:

 hf = (head loss
in a pipe ) =

4Lτ0

Dγ
 (10.9)

Rearrange the right side of Eq. (10.9):

 h f = ( L
D){

4τ0

ρV 2/2}{
ρV 2/2

γ } = {
4τ0

ρV 2/2}( L
D){V 2

2g} (10.10)

Defi ne a new π-group called the friction factor ( f) that gives the ratio of wall shear stress (τ0) 
to kinetic pressure (ρV2/2):

 f ≡
(4 ∙ τ0)

(ρV 2/2)
≈

shear stress acting at the wall
kinetic pressure

 (10.11)

In the technical literature, the friction factor is identifi ed by several diff erent labels that are 
synonymous: friction factor, Darcy friction factor, Darcy-Weisbach friction factor, and the resis-
tance coeffi  cient. Th ere is also another coeffi  cient called the Fanning friction factor, oft en used 
by chemical engineers, which is related to the Darcy-Weisbach friction factor by a factor of 4:

fDarcy = 4 fFanning

Th is text uses only the Darcy-Weisbach friction factor. Combining Eqs. (10.10) and (10.11) 
gives the Darcy-Weisbach equation:

 h f = f 
L
D

  
V 2

2g
 (10.12)

To use the Darcy-Weisbach equation, the fl ow should be fully developed and steady. Th e Darcy-
Weisbach equation is used for either laminar fl ow or turbulent fl ow and for either round pipes 
or nonround conduits, such as a rectangular duct.

Th e Darcy-Weisbach equation shows that head loss depends on the friction factor, the 
pipe length-to-diameter ratio, and the mean velocity squared. Th e key to using the Darcy-
Weisbach equation is calculating a value of the friction factor f. Th is topic is addressed in the 
next sections of this text.

10.4 Stress Distributions in Pipe Flow

Th is section derives equations for the stress distributions on a plane that is oriented normal to 
stream lines. Th ese equations, which apply to both laminar and turbulent fl ow, provide insights 
about the nature of the fl ow. Also, these equations are used for subsequent derivations.
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In pipe fl ow, the pressure acting on a plane that is normal to the direction of fl ow is 
hydrostatic. Th is means that the pressure distribution varies linearly, as shown in Fig. 10.7. 
Th e reason that the pressure distribution is hydrostatic can be explained with Euler’s equation 
(see §4.5).

To derive an equation for the shear stress variation, consider fl ow of a Newtonian fl uid in 
a round tube that is inclined at an angle α with respect to the horizontal, as shown in Fig. 10.8. 
Assume that the fl ow is fully developed, steady, and laminar. Defi ne a cylindrical control volume 
of length ΔL and radius r.

Apply the momentum equation in the s direction. Th e net momentum effl  ux is zero be-
cause the fl ow is fully developed; that is, the velocity distribution at the inlet is the same as the 
velocity distribution at the exit. Th e momentum accumulation is also zero because the fl ow is 
steady. Th e momentum equation simplifi es to force equilibrium:

 ∑ Fs = Fpressure + Fweight + Fshear = 0 (10.13)

Analyze each term in Eq. (10.13) using the force diagram shown in Fig. 10.9:

 pA − (p +
dp
ds
ΔL) A − Wsin α − τ(2πr)ΔL = 0 (10.14)

Let W = γAΔL, and let sin α = Δz/ΔL, as shown in Fig. 10.5b. Next, divide Eq. (10.14) by AΔL:

 τ =
r
2 [−

d
ds
(p + γz)]  (10.15)

Hydrostatic pressure distribution

Flow

Plane normal
to streamlines

FIGURE 10.7

For fully developed fl ow in a pipe, 

the pressure distribution on an 

area normal to streamlines is 

hydrostatic.

Flow
α

ΔL

Radius ro

s direction

Control volume

r directionFIGURE 10.8

Sketch for derivation of an equation for shear stress.

pA

(2πrΔL)τ
p + 

dp

ds
ΔL  A

Angle α

Force diagram
W

FIGURE 10.9

Force diagram corresponding to the control volume 

defi ned in Fig. 10.8.
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Equation (10.15) shows that the shear stress distribution varies linearly with r, as shown 
in Fig. 10.10. Notice that the shear stress is zero at the centerline, it reaches a maximum value 
of τ0 at the wall, and the variation is linear in between. Th is linear shear stress variation applies 
to both laminar and turbulent fl ow.

10.5 Laminar Flow in a Round Tube

Th is section describes laminar fl ow and derives relevant equations. Laminar fl ow is important 
for fl ow in small conduits called microchannels, for lubrication fl ow, and for analyzing other 
fl ows in which viscous forces are dominant. Also, knowledge of laminar fl ow provides a foun-
dation for the study of advanced topics.

Laminar flow is a fl ow regime in which fl uid motion is smooth, the fl ow occurs in layers 
(laminae), and the mixing between layers occurs by molecular diff usion, a process that is much 
slower than turbulent mixing. According to Eq. (10.2), laminar fl ow occurs when ReD ≤ 2000. 
Laminar fl ow in a round tube is called Poiseuille flow or Hagen-Poiseuille flow in honor of 
researchers who studied low-speed fl ows in the 1840s.

Velocity Profi le

To derive an equation for the velocity profi le in laminar fl ow, begin by relating stress to rate of 
strain using the viscosity equation:

τ = μ
dV
dy

where y is the distance from the pipe wall. Change variables by letting y = r0 – r, where r0 is 
pipe radius and r is the radial coordinate. Next, use the chain rule of calculus:

 τ = μ(dV
dy ) = μ(dV

dr )( dr
dy) = −(μ

dV
dr ) (10.16)

Substitute Eq. (10.16) into Eq. (10.15):

 (2μ
r )(dV

dr ) =
d
ds
(p + γz) (10.17)

In Eq. (10.17), the left  side of the equation is a function of radius r, and the right side is a 
function of axial location s. Th is can be true if and only if each side of Eq. (10.17) is equal to a 
constant. Th us,

 constant =
d
ds
( p + γz) = (Δ(p + γz)

ΔL ) =(γΔh
ΔL ) (10.18)

where Δh is the change in piezometric head over a length ΔL of conduit. Combine Eqs. (10.17) 
and (10.18):

 
dV
dr

=( r
2μ)(γΔh

ΔL ) (10.19)

Linear shear
stress distribution

r

Maximum shear stress (τo)
occurs at the wall FIGURE 10.10

In fully developed fl ow (laminar or turbulent), 

the shear stress distribution is linear.
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Integrate Eq. (10.19):

 V = ( r 2

4μ)(γΔh
ΔL )+ C (10.20)

To evaluate the constant of integration C in Eq. (10.20), apply the no-slip condition, which 
states that the velocity of the fl uid at the wall is zero. Th us,

V(r = r0) = 0

0 =
r 2

0

4μ (γΔh
ΔL )+ C

Solve for C and substitute the result into Eq. (10.20):

 V =
r 2

0 − r 2

4μ [−
d
ds
(p + γz)] = −(r 2

0 − r 2

4μ )(γΔh
ΔL ) (10.21)

Th e maximum velocity occurs at r = 0:

 Vmax = −( r 2
0

4μ)(γΔh
ΔL ) (10.22)

Combine Eqs. (10.21) and (10.22):

 V(r) = −(r 2
0 − r 2

4μ )(γΔh
ΔL ) = Vmax(1 − ( r

r0 )
2

) (10.23)

Equation (10.23) shows that velocity varies as radius squared (V ∼ r 2), meaning that the velocity 
distribution in laminar fl ow is parabolic, as plotted in Fig. 10.11.

Discharge and Mean Velocity V

To derive an equation for discharge Q, introduce the velocity profi le from Eq. (10.23) into the 
fl ow rate equation:

 Q = ∫V dA

  = −∫
r0

0

(r 2
0 − r 2)

4μ (γΔh
ΔL )(2πr dr) 

(10.24)

Integrate Eq. (10.24):

 Q = −( π
4μ)(γΔh

ΔL ) (r
2 − r 2

0)
2

2 ⎸
r0

0
= −(πr 4

0

8μ )(γΔh
ΔL ) (10.25)

ro
r

z (vertical)

s (streamwise)V(r)

Vmax

FIGURE 10.11

The velocity profi le in Poiseuille 

fl ow is parabolic.
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To derive an equation for mean velocity, apply Q = VA and use Eq. (10.25).

 V = −( r 2
0

8μ)(γΔh
ΔL ) (10.26)

Comparing Eqs. (10.26) and (10.22) reveals that V = Vmax/2. Next, substitute D/2 for r0 in 
Eq. (10.26). Th e fi nal result is an equation for mean velocity in a round tube:

 V = −( D 2

32μ)(γΔh
ΔL ) =

Vmax

2
 (10.27)

Head Loss and Friction Factor f

To derive an equation for head loss in a round tube, assume fully developed fl ow in the pipe 
shown in Fig. 10.12. Apply the energy equation from sections 1 to 2 and simplify to give

 (p1

γ + z1) = (p2

γ + z2)+ hL (10.28)

Let hL = hf, and then Eq. (10.28) becomes

 (p1

γ + z1) = (p2

γ + z2)+ h f  (10.29)

Expand Eq. (10.27):

 V = −(γD2

32μ)(Δh
ΔL) = −(γD 2

32μ )  
(p2

γ + z2)−(p1

γ + z1)
ΔL

 (10.30)

Reorganize Eq. (10.30) and replace ΔL with L:

 (p1

γ + z1) =(p2

γ + z2) +
32μV L

γD2  (10.31)

Comparing Eqs. (10.29) and (10.31) gives an equation for head loss in a pipe:

 h f =
32μLV

γD 2  (10.32)

Key assumptions for Eq. (10.32) are (a) laminar fl ow, (b) fully developed fl ow, (c) steady fl ow, 
and (d) Newtonian fl uid.

Eq. (10.32) shows that head loss in laminar fl ow varies linearly with velocity. Also, head 
loss is infl uenced by viscosity, pipe length, specifi c weight, and pipe diameter squared.

To derive an equation for the friction factor f, combine Eq. (10.32) with the Darcy-Weisbach 
equation (10.12):

 h f =
32 μLV

γD 2 = f
L
D

  
V 2

2g
 (10.33)

 or f = (32μLV
γD 2 )(D

L )( 2g
V 2) =

64μ
ρDV

=
64

ReD
 (10.34)

Equation (10.34) shows that the friction factor for laminar fl ow depends only on the Reynolds 
number. Example 10.2 illustrates how to calculate head loss.

Diameter D

Flow

L

2

1

FIGURE 10.12

Flow in a pipe.
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EXAMPLE 10.2

Head Loss for Laminar Flow

Problem Statement

Oil (SG = 0.85) with a kinematic viscosity of 6 × 10–4 m2/s 
fl ows in a 15 cm diameter pipe at a rate of 0.020 m3/s. What is 
the head loss for a 100 m length of pipe?

Defi ne the Situation

• Oil is fl owing in a pipe at a fl ow rate of Q = 0.02 m3/s.
• Pipe diameter is D = 0.15 m.

Assumptions: Fully developed, steady fl ow
Properties: Oil: S = 0.85, v = 6 × 10–4 m2/s

State the Goal

Calculate head loss (in meters) for a pipe length of 100 m.

Generate Ideas and Make a Plan

1.  Calculate the mean velocity using the fl ow rate 
equation.

2. Calculate the Reynolds number using Eq. (10.1).
3.  Check whether the fl ow is laminar or turbulent using 

Eq. (10.2).
4. Calculate head loss using Eq. (10.32).

Take Action (Execute the Plan)

1. Mean velocity:

V =
Q
A

=
0.020 m3/s
(πD 2)/4

=
0.020 m3/s

π((0.15 m)2/4)
= 1.13 m/s

2. Reynolds number:

ReD =
VD

v
=
(1.13 m/s)(0.15 m)

6 × 10−4 m2/s
= 283

3. Because ReD < 2000, the fl ow is laminar.
4. Head loss (laminar fl ow):

 h f =
32μLV

γD 2 =
32ρvLV

ρgD 2 =
32vLV

gD 2

 =
32(6 × 10−4 m2/s)(100 m)(1.13 m/s)

(9.81 m/s2)(0.15 m)2

 =  9.83 m

Review the Solution and the Process

Knowledge. An alternative way to calculate head loss for 
laminar fl ow is to use the Darcy-Weisbach equation (10.12) as 
follows:

 f =
64

ReD
=

64
283

= 0.226

 hf = f ( L
D)(V 2

2g ) = 0.226 ( 100 m
0.15 m)( (1.13 m/s)

2 × 9.81 m/s2 )
2

 = 9.83 m

10.6 Turbulent Flow and the Moody Diagram

Th is section describes the characteristics of turbulent fl ow, presents equations for calculating 
the friction factor f, and presents a famous graph called the Moody diagram. Th is information 
is important because most fl ows in conduits are turbulent.

Qualitative Description of Turbulent Flow

Turbulent flow is a fl ow regime in which the movement of fl uid particles is chaotic, eddying, 
and unsteady, with signifi cant movement of particles in directions transverse to the fl ow direc-
tion. Because of the chaotic motion of fl uid particles, turbulent fl ow produces high levels of 
mixing and has a velocity profi le that is more uniform or fl atter than the corresponding lami-
nar velocity profi le. According to Eq. (10.2), turbulent fl ow occurs when Re ≥ 3000.

Engineers and scientists model turbulent fl ow by using an empirical approach. Th is is be-
cause the complex nature of turbulent fl ow has prevented researchers from establishing a math-
ematical solution of general utility. Still, the empirical information has been used successfully 
and extensively in system design. Over the years, researchers have proposed many equations for 
shear stress and head loss in turbulent pipe fl ow. Th e empirical equations that have proven to be 
the most reliable and accurate for engineering use are presented in the next section.
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Equations for the Velocity Distribution

Th e time-average velocity distribution is oft en described using an equation called the power-
law formula:

 
u(r)
umax

= (r0 − r
r0 )

m

 (10.35)

where umax is velocity in the center of the pipe, r0 is the pipe radius, and m is an empirically 
determined variable that depends on Re, as shown in Table 10.2. Notice in Table 10.2 that 
the velocity in the center of the pipe is typically about 20% higher than the mean velocity V. 
Although Eq. (10.35) provides an accurate representation of the velocity profi le, it does not 
predict an accurate value of wall shear stress.

An alternative approach to Eq. (10.35) is to use the turbulent boundary layer equations 
presented in Chapter 9. Th e most signifi cant of these equations, called the logarithmic velocity 
distribution, is given by Eq. (9.27) and repeated here:

 
u(r)
u*

= 2.44 ln 
u*(r0 − r)

v + 5.56 (10.36)

where u*, the shear velocity, is given by u* = √τ0/ρ.

Equations for the Friction Factor, f
To derive an equation for f in turbulent fl ow, substitute the log law in Eq. (10.36) into the defi nition 
of mean velocity given by Eq. (5.10):

V =
Q
A

= ( 1
πr 2

0
)∫

r0

0

u(r)2πrdr = ( 1
πr 2

0
)∫

r0

0

u* [ 2.44 ln
u*(r0 − r)

v + 5.56] 2πrdr

Aft er integration, algebra, and tweaking the constants to better fi t experimental data, the 
result is

 
1
√f 

= 2.0log10 (Re√f ) − 0.8 (10.37)

Equation (10.37), fi rst derived by Prandtl in 1935, gives the friction factor for turbulent fl ow 
in tubes that have smooth walls. Th e details of the derivation of Eq. (10.37) are presented 
by White (20). To determine the infl uence of roughness on the walls, Nikuradse (4), one of 
Prandtl’s graduate students, glued uniform-sized grains of sand to the inner walls of a tube and 
then measured pressure drops and fl ow rates.

Nikuradse’s data, Fig. 10.13, shows the friction factor f plotted as function of the Reynolds 
number for various sizes of sand grains. To characterize the size of sand grains, Nikuradse used 
a variable called the sand roughness height with the symbol ks. Th e π-group, ks/D, is given the 
name relative roughness.

TABLE 10.2 Exponents for Power-Law Equation and Ratio of Mean to Maximum Velocity

Re 4 × 103 2.3 × 104 1.1 × 105 1.1 × 106 3.2 × 106

m 1
6.0

1
6.6

1
7.0

1
8.8

1
10.0

umax/V 1.26 1.24 1.22 1.18 1.16

Source of data: Schlichting (2).
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In laminar fl ow, the data in Fig. 10.13 show that wall roughness does not infl uence f. In 
particular, notice how the data corresponding to various values of ks/D collapse into a single 
blue line that is labeled “laminar fl ow.”

In turbulent fl ow, the data in Fig. 10.13 show that wall roughness has a major impact on f. 
When ks/D = 0.033, then values of f are about 0.04. As the relative roughness drops to 0.002, values 
of f decrease by a factor of about 3. Eventually, wall roughness does not matter, and the value 
of f can be predicted by assuming that the tube has a smooth wall. Th is latter case corresponds to 
the blue curve in Fig. 10.13 labeled “smooth wall tube.” Th e eff ects of roughness are summarized 
by White (5) and presented in Table 10.3. Th ese regions are also labeled in Fig. 10.13.

Moody Diagram

Colebrook (6) advanced Nikuradse’s work by acquiring data for commercial pipes and then 
developing an empirical equation, called the Colebrook-White formula, for the friction factor. 
Moody (3) used the Colebrook-White formula to generate a design chart similar to that shown 
in Fig. 10.14. Th is chart is now known as the Moody diagram for commercial pipes.

Laminar flow
Eq. (10.34)

Smooth wall tube
Eq. (10.37)

ks/D
0.033
0.016
0.0083
0.0040
0.0020
0.00099

Fully rough flow

(1
00

 f
 )

lo
g 1

0

(ReD)log10

2.6 2.8 3.0 3.2 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.03.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Tra
nsiti

onally rough flow

FIGURE 10.13

Resistance coeffi cient f versus Reynolds 

number for sand-roughened pipe. [After 

Nikuradse (4).]

TABLE 10.3 Effects of Wall Roughness

Type of Flow Parameter Ranges Infl uence of Parameters on f

Laminar fl ow ReD < 2000  NA f depends on Reynolds number.
f is independent of wall roughness (ks/D).

Turbulent fl ow, smooth tube
ReD > 3000  (ks

D) Re D < 10
f depends on Reynolds number.
f is independent of wall roughness (ks/D).

Transitionally rough turbulent fl ow
ReD > 3000  10 < (ks

D) ReD < 1000
f depends on Reynolds number.
f depends on wall roughness (ks/D).

Fully rough turbulent fl ow
ReD > 3000  (ks

D)ReD > 1000
f is independent of Reynolds number.
f depends on wall roughness (ks/D).
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In the Moody diagram, Fig. 10.14, the variable ks denotes the equivalent sand roughness. 
Th at is, a pipe that has the same resistance characteristics at high Re values as a sand-roughened 
pipe is said to have a roughness equivalent to that of the sand-roughened pipe. Table 10.4 gives 
the equivalent sand roughness for various kinds of pipes. Th is table can be used to calculate the 
relative roughness for a given pipe diameter, which, in turn, is used in Fig. 10.14 to fi nd the 
friction factor.

In the Moody diagram, Fig. 10.14, the abscissa is the Reynolds number Re, and the ordinate 
is the resistance coeffi  cient f. Each blue curve is for a constant relative roughness ks/D, and the 
values of ks/D are given on the right at the end of each curve. To fi nd f, given Re and ks/D, go 
to the right to fi nd the correct relative roughness curve. Th en, look at the bottom of the chart 
to fi nd the given value of Re and, with this value of Re, move vertically upward until the given 
ks/D curve is reached. Finally, from this point, move horizontally to the left  scale to read the 
value of f. If the curve for the given value of ks/D is not plotted in Fig. 10.14, then simply fi nd 
the proper position on the graph by interpolation between the ks/D curves that bracket the 
given ks/D.

To provide a more convenient solution to some types of problems, the top of the Moody 
diagram presents a scale based on the parameter Re f 1/2. Th is parameter is useful when hf and 
ks/D are known but the velocity V is not. Using the Darcy-Weisbach equation given in Eq. (10.12) 
and the defi nition of Reynolds number, one can show that

 Re f 1/2 =
D3/2

v (2ghf /L)1/2 (10.38)

In the Moody diagram, Fig. 10.14, curves of constant Re f 1/2 are plotted using heavy black 
lines that slant from the left  to right. For example, when Re f 1/2 = 105 and ks/D = 0.004, then 
f = 0.029. When using computers to carry out pipe-fl ow calculations, it is much more con-
venient to have an equation for the friction factor as a function of the Reynolds number and 
relative roughness. By using the Colebrook-White formula, Swamee and Jain (7) developed an 
explicit equation for friction factor, namely

 f =
0.25

[log10 ( ks

3.7D
+

5.74
ReD

0.9 )]
2 (10.39)

TABLE 10.4 Equivalent Sand-Grain Roughness, (ks), for Various Pipe Materials

Boundary Material ks, Millimeters ks, Inches

Glass, plastic 0.00 (smooth) 0.00 (smooth)

Copper or brass tubing 0.0015 6 × 10–5

Wrought iron, steel 0.046 0.002
Asphalted cast iron 0.12 0.005
Galvanized iron 0.15 0.006
Cast iron 0.26 0.010
Concrete 0.3 to 3.0 0.012–0.12
Riveted steel 0.9–9 0.035–0.35
Rubber pipe (straight) 0.025 0.001
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It is reported that this equation predicts friction factors that diff er by less than 3% from those 
on the Moody diagram for 4 × 103 < ReD < 108 and 10–5 < ks/D < 2 × 10–2.

10.7 A Strategy for Solving Problems

Analyzing fl ow in conduits can be challenging because the equations oft en cannot be solved 
with algebra. Th us, this section presents a strategy.

Fig. 10.15 provides a strategy for problem solving. When fl ow is laminar, solutions are 
straightforward because head loss is linear with velocity V and the equations are simple enough 
to solve with algebra. When fl ow is turbulent, head loss is nonlinear with V and the equations 
are too complex to solve with algebra. Th us, for turbulent fl ow engineers use computer solu-
tions or the traditional approach.

To solve a turbulent fl ow problem using the traditional approach, one classifi es the prob-
lems into three cases:

Case 1 applies when the goal is to fi nd the head loss, given the pipe length, pipe diameter, 
and fl ow rate. Th is problem is straightforward because it can be solved using algebra; see 
Example 10.3.
Case 2 applies when the goal is to fi nd the fl ow rate, given the head loss (or pressure 
drop), the pipe length, and the pipe diameter. Th is problem usually requires an iterative 
approach. See Examples 10.4 and 10.5.
Case 3 applies when the goal is to fi nd the pipe diameter, given the fl ow rate, length of pipe, 
and head loss (or pressure drop). Th is problem usually requires an iterative approach; see 
Example 10.6.

Th ere are several approaches that sometimes eliminate the need for an iterative approach. 
For case 2, an iterative approach can sometimes be avoided by using an explicit equation 
developed by Swamee and Jain (7):

 Q = −2.22 D 5/2√ghf /L log ( ks

3.7 D
+

1.78 v
D 3/2√ghf /L) (10.40)

Using Eq. (10.40) is equivalent to using the top of the Moody diagram, which presents a scale 
for Re f 1/2. For case 3, one can sometimes use an explicit equation developed by Swamee and 
Jain (7) and modifi ed by Streeter and Wylie (8):

 D = 0.66 [ks
1.25 (LQ2

ghf
)

4.75

+ vQ 9.4 ( L
ghf

)
5.2

]
0.04

 (10.41)

Example 10.3 shows an example of a case 1 problem.

Algebra. Solve the 
equations using algebra. 

Modern approach. Solve 
the equations using a 

computer program that 
can solve coupled, 

nonlinear equations. 

Traditional. Classify the 
problem into case 1, case 2, 
or case 3. Apply methods 
that can be implemented 

without a computer. 

Laminar flow Turbulent flow FIGURE 10.15

A strategy for solving conduit fl ow problems.
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Example 10.4 shows an example of a case 2 problem. Notice that the solution involves 
application of the scale on the top of the Moody diagram, thereby avoiding an iterative 
solution.

EXAMPLE 10.3

Head Loss in a Pipe (Case 1)

Problem Statement

Water (T = 20°C) fl ows at a rate of 0.05 m3/s in a 20 cm 
asphalted cast iron pipe. What is the head loss per kilometer 
of pipe?

Defi ne the Situation

Water is fl owing in a pipe.

D = 0.2 m
Asphalted, cast iron

Water, 20°C
Q = 0.05 m3/s

L = 1000 m

Assumptions: Fully developed fl ow
Properties: Water (20°C): Table A.5, v = 1 × 10–6 m2/s

State the Goal

Calculate the head loss (in meters) for L = 1000 m.

Generate Ideas and Make a Plan

Because this is a case 1 problem (head loss is the goal), the 
solution is straightforward.

1.  Calculate the mean velocity using the fl ow rate 
equation.

2. Calculate the Reynolds number using Eq. (10.1).

3.  Calculate the relative roughness and then look up f on 
the Moody diagram.

4.  Find head loss by applying the Darcy-Weisbach 
equation (10.1).

Take Action (Execute the Plan)

1. Mean velocity:

V =
Q
A

=
0.05 m3/s
(π/4)(0.2 m)2

= 1.59 m/s

2. Reynolds number:

ReD =
VD

v
=
(1.59 m/s)(0.20 m)

10−6 m2/s
= 3.18 × 105

3. Resistance coeffi  cient:
• Equivalent sand roughness (Table 10.4):

ks = 0.12 mm
• Relative roughness:

ks/D = (0.00012 m)/(0.2 m) = 0.0006
•  Look up f on the Moody diagram for Re = 3.18 × 105 

and ks/D = 0.0006:

f = 0.019

4. Darcy-Weisbach equation:

 h f = f( L
D)(V 2

2g ) = 0.019 (1000 m
0.20 m )( 1.592 m2/s2

2(9.81 m/s2))
 =  12.2 m

EXAMPLE 10.4

Flow Rate in a Pipe (Case 2)

Problem Statement

Th e head loss per kilometer of 20 cm asphalted cast iron pipe 
is 12.2 m. What is the fl ow rate of water through the pipe?

Defi ne the Situation

Th is is the same situation as Example 10.3 except that the head 
loss is now specifi ed and the discharge is unknown.

State the Goal

Calculate the discharge (m3/s) in the pipe.

Generate Ideas and Make a Plan

Th is is a case 2 problem because fl ow rate is the goal. However, 
a direct (i.e., noniterative) solution is possible because head 
loss is specifi ed. Th e strategy will be to use the horizontal scale 
on the top of the Moody diagram.

1.  Calculate the parameter on the top of the Moody diagram.
2. Using the Moody diagram, fi nd the friction factor f.
3.  Calculate mean velocity using the Darcy-Weisbach 

equation (10.12).
4. Find discharge using the fl ow rate equation.
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When case 2 problems require iteration, several methods can be used to fi nd a solution. 
One of the easiest ways is a method called “successive substitution,” which is illustrated in 
Example 10.5.

Take Action (Execute the Plan)

1.  Compute the parameter D3/2√2ghf /L/v:

 D3/ 2
√2 ghf /L

ν
= (0.20 m)3/2

                         ×
[2(9.81 m/s2)(12.2 m/1000 m)]1/2

1.0 × 10−6 m2/s
  = 4.38 × 104

2. Determine resistance coeffi  cient:
• Relative roughness:

ks/D = (0.00012 m)/(0.2 m) = 0.0006
• Look up f on the Moody diagram for
 D3/2√2ghf /L/v = 4.4 × 104 and ks/D = 0.0006:

 f = 0.019

3. Find V using the Darcy-Weisbach equation:

 hf = f( L
D)(V 2

2g )
 12.2 m = 0.019(1000 m

0.20 m )( V 2

2(9.81 m/s2))
 V = 1.59 m/s

4. Use fl ow rate equation to fi nd discharge:

Q = VA = (1.59 m/s)(π/4)(0.2 m)2 =  0.05 m3/s

Review the Solution and the Process

Validation. Th e calculated fl ow rate matches the value from 
Example 10.3. Th is is expected because the data are the same.

EXAMPLE 10.5

Flow Rate in a Pipe (Case 2)

Problem Statement

Water (T = 20°C) fl ows from a tank through a 50 cm diameter 
steel pipe. Determine the discharge of water.

Water Steel pipeD = 50 cm

100 m

Elevation = 60 m

40 m El

1

2

Defi ne the Situation

Water is draining from a tank through a steel pipe.
Assumptions:

• Flow is fully developed.
• Include only the head loss in the pipe.

Properties:
• Water (20°C): Table A.5, v = 1 × 10–6 m2/s.
• Steel pipe: Table 10.4, equivalent sand roughness,

ks = 0.046 mm. Relative roughness (ks/D) is 9.2 × 10–5.

State the Goal

Find: Discharge (m3/s) for the system.

Generate Ideas and Make a Plan

Th is is a case 2 problem because fl ow rate is the goal. An 
iterative solution is used because V is unknown, so there is no 
direct way to use the Moody diagram.

1. Apply the energy equation from section 1 to section 2.
2. First trial: Guess a value of f and then solve for V.
3.  Second trial: Using V from the fi rst trial, calculate a new 

value of f.
4.  Convergence: If the value of f is constant within a few 

percent between trials, then stop. Otherwise, continue 
with more iterations.

5. Calculate fl ow rate using the fl ow rate equation.

Take Action (Execute the Plan)

1. Energy equation (reservoir surface to outlet):

p1

γ
+

V 2
1

2g
+ z1 =

p2

γ
+

V 2
2

2g
+ z2 + hL 

0 + 0 + 60 = 0 +
V 2

2

2g
+ 40 + f

L
D

  
V 2

2

2g
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In a case 3 problem, derive an equation for diameter D and then use the method of successive 
substitution to fi nd a solution. Iterative approaches, as illustrated in Example 10.6, can employ 
a spreadsheet program to perform the calculations.

or

 V = ( 2g × 20
1 + 200f)

1/2

 (a)

2. First trial (iteration 1):
• Guess a value of f = 0.020.
• Use Eq. (a) to calculate V = 8.86 m/s.
• Use V = 8.86 m/s to calculate Re = 4.43 × 106.
•  Use Re = 4.43 × 106 and ks/D = 9.2 × 10–5 on the 

Moody diagram to fi nd that f = 0.012.
• Use Eq. (a) with f = 0.012 to calculate V = 10.7 m/s.

3. Second trial (iteration 2):
• Use V = 10.7 m/s to calculate ReD = 5.35 × 106.
•  Use ReD = 5.35 × 106 and ks/D = 9.2 × 10–5 on the 

Moody diagram to fi nd that f = 0.012.
4.  Convergence: Th e value of f = 0.012 is unchanged 

between the fi rst and second trials. Th erefore, there is 
no need for more iterations.

5. Flow rate:

Q = VA = (10.7 m/s) × (π/4) × (0.50)2 m2 = 2.10 m3/s

EXAMPLE 10.6

Finding Pipe Diameter (Case 3)

Problem Statement

What size of asphalted cast iron pipe is required to carry water 
(60°F) at a discharge of 3 cfs and with a head loss of 4 ft  per 
1000 ft  of pipe?

Defi ne the Situation

Water is fl owing in a asphalted cast iron pipe. Q = 3 ft 3/s.

Assumptions: Fully developed fl ow

Properties:
• Water (60°F): Table A.5, ν = 1.22 × 10–5 ft 2/s
•  Asphalted cast iron pipe: Table 10.4, equivalent sand 

roughness, ks = 0.005 in.

State the Goal

Calculate the pipe diameter (in ft ) so that head loss is 4 ft  per 
1000 ft  of pipe length.

Generate Ideas and Make a Plan

Because this is a case 3 problem (pipe diameter is the goal), 
use an iterative approach.

1.  Derive an equation for pipe diameter by using the 
Darcy-Weisbach equation.

2.  For iteration 1, guess f, solve for pipe diameter, and then 
recalculate f.

3.  To complete the problem, build a table in a spreadsheet 
program.

Take Action (Execute the Solution)

1. Develop an equation to use for iteration.
• Darcy-Weisbach equation:

h f = f( L
D)(V 2

2g ) = f( L
D)(Q2/A2

2g ) =
f LQ2

2g(π/4)2D 5

• Solve for pipe diameter:

D5 =
fLQ2

0.7852(2ghf)
 (a)

2. Iteration 1:
• Guess f = 0.015.
• Solve for diameter using Eq. (a):

D5 =
0.015(1000 ft)(3 ft3/s)2

0.7852(64.4 ft/s2)(4 ft)
= 0.852 ft5 

D = 0.968 ft 

• Find parameters needed for calculating f:

 V =
Q
A

=
3 ft3/s

(π/4)(0.9682 ft2)
= 4.08 ft/s

 Re =
VD

v
=
(4.08 ft/s)(0.968 ft)
1.22 × 10−5 ft2/s

= 3.26 × 105

 ks/D = 0.005/(0.97 × 12) = 0.00043

• Calculate f using Eq. (10.39): f = 0.0178.
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10.8 Combined Head Loss

Previous sections have described how to calculate head loss in pipes. Th is section completes 
the story by describing how to calculate head loss in components. Th is knowledge is essential 
for modeling and design of systems.

The Minor Loss Coeffi cient, K

When fl uid fl ows through a component such as a partially open value or a bend in a pipe, vis-
cous eff ects cause the fl owing fl uid to lose mechanical energy. For example, Fig. 10.16 shows 
fl ow through a “generic component.” At section 2, the head of the fl ow will be less than at sec-
tion 1. To characterize component head loss, engineers use a π-group called the minor loss 
coefficient K:

 K ≡
(Δh)
(V 2/2g)

=
(Δpz)

(ρV 2/2)
 (10.42)

where Δh is the drop in piezometric head that is caused by a component, Δpz is the drop in 
piezometric pressure, and V is mean velocity. As shown in Eq. (10.42), the minor loss coef-
fi cient has two useful interpretations:

K =
drop in piezometric head across component

velocity head
=

pressure drop due to component
kinetic pressure

Th us, the head loss across a single component or transition is hL = K(V2/(2g)), where K is the 
minor loss coeffi  cient for that component or transition.

Most values of K are found by experiment. For example, consider the setup shown in 
Fig. 10.17. To fi nd K, fl ow rate is measured and mean velocity is calculated using V = (Q/A). 
Pressure and elevation measurements are used to calculate the change in piezometric head:

 Δh = h2 − h1 = (p2

γ + z2) − (p1

γ + z1) (10.43)

Th en, values of V and Δh are used in Eq. (10.42) to calculate K. Th e next section presents typical 
data for K.

3.  In the following table, the fi rst row contains the values 
from iteration 1. Th e value of f = 0.0178 from iteration 

1 is used for the initial value for iteration 2. Notice how 
the solution has converged by iteration 2.

Iteration # Initial f D V Re ks/D New f

(ft ) (ft /s)

1 0.0150 0.968 4.08 3.26E+05 4.3E–04 0.0178

2 0.0178 1.002 3.81 3.15E+05 4.2E–04 0.0178

3 0.0178 1.001 3.81 3.15E+05 4.2E–04 0.0178

4 0.0178 1.001 3.81 3.15E+05 4.2E–04 0.0178

Specify a pipe with a 12-inch inside diameter.

Component

2

1

Flow

FIGURE 10.16

Flow through a generic 

component.
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Data for the Minor Loss Coefficient Th is section presents K data and relates these data to 
fl ow separation and wall shear stress. Th is information is useful for system modeling.

Pipe inlet. Near the entrance to a pipe when the entrance is rounded, flow is devel-
oping as shown in Fig. 10.3, and the wall shear stress is higher than that found in fully 
developed flow. Alternatively, if the pipe inlet is abrupt, or sharp-edged, as in Fig. 10.17, 
separation occurs just downstream of the entrance. Hence, the streamlines converge and 
then diverge with consequent turbulence and relatively high head loss. The loss coefficient 
for the abrupt inlet is Ke = 0.5. This value is found in Table 10.5 using the row labeled 
“Pipe entrance” and the criteria of r/d = 0.0. Other values of head loss are summarized in 
Table 10.5.

Flow in an elbow. In an elbow (90° smooth bend), considerable head loss is produced by 
secondary fl ows and by separation that occurs near the inside of the bend and downstream of 
the midsection, as shown in Fig. 10.18.

Th e loss coeffi  cient for an elbow at high Reynolds numbers depends primarily on the 
shape of the elbow. For a very short-radius elbow, the loss coeffi  cient is quite high. For larger-
radius elbows, the coeffi  cient decreases until a minimum value is found at an r/d value of about 4 
(see Table 10.5). However, for still larger values of r/d, an increase in loss coeffi  cient occurs 
because the elbow itself is signifi cantly longer.

Other components. Th e loss coeffi  cients for a number of other fi ttings and fl ow transitions 
are given in Table 10.5. Th is table is representative of engineering practice. For more extensive 
tables, see references (10–15).

In Table 10.5, the K was found by experiment, so one must be careful to ensure that 
Reynolds number values in the application correspond to Reynolds number values used to 
acquire the data.

FIGURE 10.17

Flow at a sharp-edged inlet.

Separation zone

FIGURE 10.18

Flow pattern in an elbow.
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Combined Head Loss Equation

Th e total head loss is given by Eq. (10.4), which is repeated here:

 {total head loss} = {pipe head loss} + {component head loss} (10.44)

TABLE 10.5 Loss Coeffi cients for Various Transitions and Fittings

Description Sketch Additional Data K Source

Pipe entrance 

hL = KeV 2/2g d

r

V

 r/d
 0.0
 0.1
 >0.2

Ke
0.50
0.12
0.03

(10)

Contraction 

hL = KCV 2
2/2g

θD1

V2

D2

D2/D1
0.00
0.20
0.40
0.60
0.80
0.90

KC 
θ = 60°

0.08
0.08
0.07
0.06
0.06
0.06

KC 
θ = 180°

0.50
0.49
0.42
0.27
0.20
0.10

(10)

Expansion 

hL = KEV 2
1/2g

θ

D1V1

D2

D1/D2
0.00
0.20
0.40
0.60
0.80

KE 
θ = 20°

0.30
0.25
0.15
0.10

KE 
θ = 180°

1.00
0.87
0.70
0.41
0.15

(9)

90° miter bend Vanes Without vanes Kb = 1.1 (15)

90° smooth bend

r

d With vanes 

r/d
1
2
3
4
6
8

10

Kb = 0.2

 Kb = 0.35
 0.19
 0.16
 0.21
 0.28
 0.32

(15) 

(16) and (9)

Th readed pipe fi ttings Globe valve—wide open
Angle valve—wide open
Gate valve—wide open
Gate valve—half open
Return bend
Tee
 Straight-through fl ow
 Side-outlet fl ow
90° elbow
45° elbow

 Kv = 10.0
 Kv = 5.0
 Kv = 0.2
 Kv = 5.6
 Kb = 2.2

 Kt = 0.4
 Kt = 1.8
 Kb = 0.9
 Kb = 0.4

(15)
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To develop an equation for the combined head loss, substitute Eqs. (10.12) and (10.42) in 
Eq. (10.44):

 hL = ∑
pipes

f
L

D
  
V 2

2g
+ ∑

components
K

V 2

2g
 (10.45)

Equation (10.45) is called the combined head loss equation. To apply this equation, follow the 
same approaches that were used for solving pipe problems. Th at is, classify the fl ow as case 1, 
2, or 3, and apply the usual equations: the energy, Darcy-Weisbach, and fl ow rate equations. 
Example 10.7 illustrates this approach for a case 1 problem.

EXAMPLE 10.7

Pipe System with Combined Head Loss

Problem Statement

If oil (ν = 4 × 10–5 m2/s; SG = 0.9) fl ows from the upper to 
the lower reservoir at a rate of 0.028 m3/s in the 15 cm smooth 
pipe, then what is the elevation of the oil surface in the upper 
reservoir?

1

2

Elevation = ?

r
D

60 m

7 m Elevation
= 130 m

130 m

= 2

Defi ne the Situation

Oil is fl owing from a upper reservoir to a lower reservoir.

Properties:
• Oil: v = 4 × 10–5 m2/s, SG = 0.9
•  Minor head loss coeffi  cients: Table 10.5, entrance = 

Ke = 0.5; bend = Kb = 0.19; outlet = KE = 1.0

State the Goal

Calculate the elevation (in meters) of the free surface of the 
upper reservoir.

Generate Ideas and Make a Plan

Th is is a case 1 problem because fl ow rate and pipe dimensions 
are known. Th us, the solution is straightforward.

1. Apply the energy equation from 1 to 2.
2. Apply the combined head loss equation (10.45).
3.  Develop an equation for z1 by combining results from 

steps 1 and 2.
4. Calculate the resistance coeffi  cient f.
5. Solve for z1 using the equation from step 3.

Take Action (Execute the Plan)

1. Energy equation and term-by-term analysis:

 
p1

γ
+ α1

V 2
1

2g
+ z1 + hp =

p2

γ
+ α2

V 2
2

2g
+ z2 + ht + hL

 0 + 0 + z1 + 0 = 0 + 0 + z2 + 0 + hL

 z1 = z2 + hL

Interpretation: Change in elevation head is balanced by 
the total head loss.

2. Combined head loss equation:

 hL = ∑
pipes

f
L

D
  
V 2

2g
+ ∑

components
K

V 2

2g

 hL = f
L

D
  
V 2

2g
+ (2Kb

V 2

2g
+ Ke

V 2

2g
+ KE

V 2

2g )
 =

V 2

2g (f
L
D

+ 2Kb + Ke + KE)
3. Combine Eqs. (1) and (2):

z1 = z2 +
V 2

2g ( f
L
D

+ 2Kb + K e + KE)
4. Resistance coeffi  cient:

• Flow rate equation:

V =
Q
A

=
(0.028 m3/s)
(π/4)(0.15 m)2

= 1.58 m/s

• Reynolds number:

ReD =
VD

v
=

1.58 m/s(0.15 m)
4 × 10−5 m2/s

= 5.93 × 103

Th us, fl ow is turbulent.
• Swamee-Jain equation (10.39):

f =
0.25

[log10 ( ks

3.7D
+

5.74
Re0.9)]

2 =
0.25

[log10 (0 +
5.74

59300.9)]
2 = 0.036
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10.9 Nonround Conduits

Previous sections have considered round pipes. Th is section extends this information by 
describing how to account for conduits that are square, triangular, or any other nonround 
shape. Th is information is important for applications such as sizing ventilation ducts in build-
ings and for modeling fl ow in open channels.

When a conduit is noncircular, engineers modify the Darcy-Weisbach equation, Eq. (10.12), 
to use hydraulic diameter Dh in place of diameter:

 hL = f
L

Dh
  
V 2

2g
 (10.46)

Eq. (10.46) is derived using the same approach as Eq. (10.12), and the hydraulic diameter that 
emerges from this derivation is

 Dh ≡
4 × cross-section area

wetted perimeter
 (10.47)

where the “wetted perimeter” is that portion of the perimeter that is physically touching the 
fl uid. Th e wetted perimeter of a rectangular duct of dimension L × w is 2L + 2w. Th us, the 
hydraulic diameter of this duct is

Dh ≡
4 × Lw

2L + 2w
=

2Lw
L + w

Using Eq. (10.47), the hydraulic diameter of a round pipe is the pipe’s diameter D. When 
Eq. (10.46) is used to calculate head loss, the resistance coeffi  cient f is found using a Reynolds 
number based on hydraulic diameter. Use of hydraulic diameter is an approximation. Accord-
ing to White (20), this approximation introduces an uncertainty of 40% for laminar fl ow and 
15% for turbulent fl ow.

 f = ( 64
ReDh

) ± 40% (laminar flow)

  f =
0.25

[log10 ( ks

3.7Dh
+

5.74
ReDh

0.9 )]
2 ± 15% (turbulent flow) 

(10.48)

5. Calculate z1 using the equation from step (3):

z1 = (130 m) +
(1.58 m/s)2

2(9.81)m/s2 

 (0.036
(197 m)
(0.15 m)

+ 2(0.19) + 0.5 + 1.0)
z1 = 136 m 

Review the Solution and the Process

1.  Discussion. Notice that the diff erence is the magnitude 
of the pipe head loss versus the magnitude of the 
component head loss:

 pipe head loss ∼ Σ f
L
D

= 0.036
(197 m)
(0.15 m)

= 47.2

 component head loss ∼ ΣK = 2(0.19) + 0.5 + 1.0 = 1.88

Th us pipe losses ⪢ component losses for this problem.
2.  Skill. When pipe head loss is dominant, make simple 

estimates of K because these estimates will not impact 
the prediction very much.
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In addition to hydraulic diameter, engineers also use hydraulic radius, which is defi ned as

 Rh ≡
section area

wetted perimeter
=

Dh

4
 (10.49)

Notice that the ratio of Rh to Dh is 1/4 instead of 1/2. Although this ratio is not logical, it is 
the convention used in the literature and is useful to remember. Chapter 15, which focuses on 
open-channel fl ow, will present examples of hydraulic radius.

Summary. To model fl ow in a nonround conduit, the approaches of the previous sections 
are followed, with the only diff erence being the use of hydraulic diameter in place of diameter. 
Th is is illustrated by Example 10.8.

EXAMPLE 10.8

Pressure Drop in an HVAC Duct

Problem Statement

Air (T = 20°C and p = 101 kPa absolute) fl ows at a rate of 
2.5 m3/s in a horizontal, commercial steel, HVAC duct. (HVAC 
is an acronym for heating, ventilating, and air conditioning.) 
What is the pressure drop in inches of water per 50 m of duct?

2

1

0.3 m

Air

Q = 2.5 m3/s

50 m

0.6 m

Defi ne the Situation

Air is fl owing through a duct.

Assumptions:
•  Fully developed fl ow, meaning that V1 = V2. Th us, the 

velocity head terms in the energy equation cancel out.
• No sources of component head loss.

Properties:
•  Air (20°C, 1 atm, Table A.2): ρ = 1.2 kg/m3, v = 15.1 × 

10–6 m2/s
• Steel pipe: Table 10.4, ks = 0.046 mm

State the Goal

Find: Pressure drop (inch H2O) in a length of 50 m.

Generate Ideas and Make a Plan

Th is is a case 1 problem because fl ow rate and duct dimensions 
are known. Th us, the solution is straightforward.

1.  Derive an equation for pressure drop by using the 
energy equation.

2. Calculate parameters needed to fi nd head loss.
3.  Calculate head loss by using the Darcy-Weisbach 

equation (10.12).
4.  Calculate pressure drop Δp by combining steps 1, 2, and 3.

Take Action (Execute the Plan)

1. Energy equation (aft er term-by-term analysis):

p1 − p2 = ρghL

2. Intermediate calculations:
• Flow rate equation:

V =
Q
A

=
2.5 m3/s

(0.3 m)(0.6 m)
= 13.9 m/s

• Hydraulic diameter:

Dh ≡
4 × section area
wetted perimeter

=
4(0.3 m)(0.6 m)

(2 × 0.3 m)+ (2 × 0.6 m)
= 0.4 m

• Reynolds number:

Re =
VDh

v
=
(13.9 m/s)(0.4 m)
(15.1 × 10−6 m2/s)

= 368,000

Th us, fl ow is turbulent.
• Relative roughness:

ks/Dh = (0.000046 m)/(0.4 m) = 0.000115

• Resistance coeffi  cient (Moody diagram): f = 0.015
3. Darcy-Weisbach equation:

 hf = f( L
Dh

)(V 2

2g ) = 0.015( 50 m
0.4 m){

(13.9 m/s)2

2(9.81 m/s2)}
 = 18.6 m

4. Pressure drop (from step 1):

 p1 − p2 = ρghL = (1.2 kg/m3)(9.81 m/s2)(18.6 m) = 220 Pa
 p1 − p2 = 0.883 inch H2O
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10.10 Pumps and Systems of Pipes

Th is section explains how to model fl ow in a network of pipes and how to incorporate per-
formance data for a centrifugal pump. Th ese topics are important because pumps and pipe 
networks are common.

Modeling a Centrifugal Pump

As shown in Fig. 10.19, a centrifugal pump is a machine that uses a rotating set of blades 
situated within a housing to add energy to a fl owing fl uid. Th e amount of energy that is added 
is represented by the head of the pump hp, and the rate at which work is done on the fl owing 
fl uid is P = m· ghp.

To model a pump in a system, engineers commonly use a graphical solution involving the en-
ergy equation and a pump curve. To illustrate this approach, consider fl ow of water in the system 
of Fig. 10.20a. Th e energy equation applied from the reservoir water surface to the outlet stream is

p1

γ +
V 2

1

2g
+ z1 + hp =

p2

γ +
V 2

2

2g
+ z2 + ∑ KL

V 2

2g
+ ∑

fL
D

  
V 2

2g

For a system with one size of pipe, this simplifi es to

 hp = (z2 − z1) +
V 2

2g (1 + ∑ KL +
f L
D ) (10.50)

Hence, for any given discharge, a certain head hp must be supplied to maintain that fl ow. Th us, 
construct a head-versus-discharge curve, as shown in Fig. 10.20b. Such a curve is called the 
system curve. Now, a given centrifugal pump has a head-versus-discharge curve that is char-
acteristic of that pump. Th is curve, called a pump curve, can be acquired from a pump manu-
facturer, or it can be measured. A typical pump curve is shown in Fig. 10.20b.

Figure 10.20b reveals that as the discharge increases in a pipe, the head required for fl ow 
also increases. However, the head that is produced by the pump decreases as the discharge 
increases. Consequently, the two curves intersect, and the operating point is at the point of 
intersection—that point where the head produced by the pump is just the amount needed to 
overcome the head loss in the pipe.

To incorporate performance data for a pump, use the energy equation to derive a system 
curve. Th en, acquire a pump curve from a manufacturer or other source and plot the two 
curves together. Th e point of intersection shows where the pump will operate. Th is process is 
illustrated in Example 10.9.

z1

z2

Pump

(a)

0.10 0.20 0.30

H
ea

d,
 m

Discharge, m3/s

0

20

40

60

System curve

Pump curve

System operating point

(b)

FIGURE 10.20

(a) Pump and pipe 

combination.

(b) Pump and system 

curves.

Flow in

Flow out

Impellor

FIGURE 10.19

A centrifugal pump drives 

fl ow with a rotating impellor.
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1

2

Elevation = 200 m

Pump  D = 40 cm, f = 0.015

Elevation = 230 m

Elbow
r
d

= 1L = 1000 m

EXAMPLE 10.9

Finding a System Operating Point

Defi ne the Situation

• Th e system diagram is sketched ahead.
• Th e pump curve is given in Fig. 10.20b.
• Th e friction factor is f = 0.015.

State the Goal

Calculate the discharge (m3/s) in the system.

Generate Ideas and Make a Plan

1.  Develop an equation for the system curve by applying 
the energy equation.

2.  Plot the given pump curve and the system curve on the 
same graph.

3.  Find discharge Q by fi nding the intersection of the 
system and pump curve.

Take Action (Execute the Plan)

Energy equation:

 
p1

g
+

V 2
1

2g
+ z1 + hp =

p2

g
+

V 2
2

2g
+ z2 + ∑hL

 0 + 0 + 200 + hp = 0 + 0 + 230 +(f L
D

+ Ke + Kb + KE) 
V 2

2g

Here, Ke = 0.5, Kb = 0.35 and KE = 1.0. Hence

 hp = 30 +
Q2

2gA2 [0.015(1000)
0.40

+ 0.5 + 0.35 + 1]
 = 30 +

Q 2

2 × 9.81 × [(π/4) × 0.42]2
(39.3)

 = 30 m + 127Q2 m
Now, make a table of Q versus hp (as follows) to give values 
to produce a system curve that will be plotted with the pump 
curve. When the system curve is plotted on the same graph as 
the pump curve, it is seen (Fig. 10.20b) that the operating 
condition occurs at  Q = 0.27 m3/s.

Q(m3/s) hp = (30 m + 127Q2) m

0 30

0.1 31.3

0.2 35.1
0.3 41.4

Pipes in Parallel

Consider a pipe that branches into two parallel pipes and then rejoins, as shown in Fig. 10.21. 
A problem involving this confi guration might be to determine the division of fl ow in each 
pipe, given the total fl ow rate.

f1, D1

f2, D2

L1

L2

FIGURE 10.21

Flow in parallel pipes.
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No matter which pipe is involved, the pressure diff erence between the two junction points 
is the same. Also, the elevation diff erence between the two junction points is the same. Because 
hL = (p1/γ + z1) – (p2/γ + z2), it follows that hL between the two junction points is the same in 
both of the pipes of the parallel pipe system. Th us,

 hL1
= hL2

 f 1
L1

D1

V 2
1

2g
= f 2

L2

D2

V 2
2

2g

Th en,

(V1

V2
)

2

=
f 2 L 2D1

f 1L1D2
  or  

V1

V2
= ( f 2 L2 D1

f1L1D2
)

1/2

If f1 and f2 are known, the division of fl ow can be easily determined. However, some trial-and-
error analysis may be required if f1 and f2 are in the range in which they are functions of the 
Reynolds number.

Pipe Networks

Th e most common pipe networks are water distribution systems for municipalities. Th ese sys-
tems have one or more sources (discharges of water into the system) and numerous loads: one 
for each household and commercial establishment. For purposes of simplifi cation, the loads 
are usually lumped throughout the system. Figure 10.22 shows a simplifi ed distribution system 
with two sources and seven loads.

Th e engineer is oft en engaged to design the original system or to recommend an economi-
cal expansion to the network. An expansion may involve additional housing or commercial 
developments, or it may be designed to handle increased loads within the existing area.

In the design of such a system, the engineer will have to estimate the future loads for the 
system and will need to have sources (wells or direct pumping from streams or lakes) to satisfy 
the loads. Also, the layout of the pipe network must be made (usually parallel to streets), and 
pipe sizes will have to be determined. Th e object of the design is to arrive at a network of pipes 
that will deliver the design fl ow at the design pressure for minimum cost. Th e cost will include 
fi rst costs (materials and construction) as well as maintenance and operating costs. Th e design 
process usually involves a number of iterations on pipe sizes and layouts before the optimum 
design (minimum cost) is achieved.

So far as the fl uid mechanics of the problem are concerned, the engineer must determine 
pressures throughout the network for various conditions—that is, for various combinations of 

S1

S2

L1

L2

L3

L4

L7L6

L5

FIGURE 10.22

Pipe network.
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pipe sizes, sources, and loads. Th e solution of a problem for a given layout and a given set of 
sources and loads requires that two conditions be satisfi ed:

1. Th e continuity equation must be satisfi ed. Th at is, the fl ow into a junction of the network 
must equal the fl ow out of the junction. Th is must be satisfi ed for all junctions.

2. Th e head loss between any two junctions must be the same regardless of the path in the 
series of pipes taken to get from one junction point to the other. Th is requirement results 
because pressure must be continuous throughout the network (pressure cannot have two 
values at a given point). Th is condition leads to the conclusion that the algebraic sum of 
head losses around a given loop must be equal to zero. Here the sign (positive or nega-
tive) for the head loss in a given pipe is given by the sense of the fl ow with respect to the 
loop—that is, whether the fl ow has a clockwise or counterclockwise direction.

At one time, these solutions were made by trial-and-error hand computation, but comput-
ers have made the older methods obsolete. Even with these advances, however, the engineer 
charged with the design or analysis of such a system must understand the basic fl uid mechan-
ics of the system to be able to interpret the results properly and to make good engineering 
decisions based on the results. Th erefore, an understanding of the original method of solution 
by Hardy Cross (17) may help you to gain this basic insight. Th e Hardy Cross method is as 
follows.

Th e engineer fi rst distributes the fl ow throughout the network so that loads at various 
nodes are satisfi ed. In the process of distributing the fl ow through the pipes of the network, the 
engineer must be certain that continuity is satisfi ed at all junctions (fl ow into a junction equals 
fl ow out of the junction), thus satisfying requirement 1. Th e fi rst guess at the fl ow distribution 
obviously will not satisfy requirement 2 regarding head loss; therefore, corrections are applied. 
For each loop of the network, a discharge correction is applied to yield a zero net head loss 
around the loop. For example, consider the isolated loop in Fig. 10.23. In this loop, the loss of 
head in the clockwise direction will be given by

 ∑ hLc
= hLAB

+ hLBC

  = ∑ kQ n
c  

(10.51)

Th e loss of head for the loop in the counterclockwise direction is

 ∑ hLcc
= ∑

cc
kQ n

cc (10.52)

For a solution, the clockwise and counterclockwise head losses have to be equal, or

 ∑ hLc
= ∑ hLcc

 ∑ kQn
c = ∑ kQn

cc

As noted, the fi rst guess for fl ow in the network will undoubtedly be in error; therefore, a 
correction in discharge, ΔQ, will have to be applied to satisfy the head loss requirement. If the 
clockwise head loss is greater than the counterclockwise head loss, ΔQ will have to be applied 
in the counterclockwise direction. Th at is, subtract ΔQ from the clockwise fl ows and add it to 
the counterclockwise fl ows:

 ∑ k(Qc − ΔQ)n = ∑ k(Qcc + ΔQ)n (10.53)

Expand the summation on either side of Eq. (10.53) and include only two terms of the 
expansion:

∑ k(Q n
c − nQ n−1

c ΔQ) = ∑ k(Qn
cc + nQ n−1

cc ΔQ)

A

D C

B

FIGURE 10.23

A typical loop of a pipe 

network.
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Solve for ΔQ:

 ΔQ = ∑ kQ n
c − ∑ kQn

cc

∑ nkQ n−1
c + ∑ nkQ n−1

cc

 (10.54)

Th us, if ΔQ as computed from Eq. (10.54) is positive, the correction is applied in a counter-
clockwise sense (add ΔQ to counterclockwise fl ows and subtract it from clockwise fl ows).

A diff erent ΔQ is computed for each loop of the network and applied to the pipes. Some 
pipes will have two ΔQs applied because they will be common to two loops. Th e fi rst set of 
corrections usually will not yield the fi nal desired result because the solution is approached 
only by successive approximations. Th us, the corrections are applied successively until the 
corrections are negligible. Experience has shown that for most loop confi gurations, applying 
ΔQ as computed by Eq. (10.54) produces too large a correction. Fewer trials are required to 
solve for Qs if approximately 0.6 of the computed ΔQ is used.

More information on methods of solution of pipe networks is available in references 18 
and 19. Searching the Internet for “pipe networks” yields information on soft ware available 
from various sources.

EXAMPLE 10.10

Discharge in a Piping Network

Problem Statement

A simple pipe network with water fl ow consists of three valves 
and a junction, as shown in the fi gure. Th e piezometric head at 
points 1 and 2 is 1 ft  and reduces to zero at point 4. Th ere is a 
wide-open globe valve in line A, a gate valve half open in line B, 
and a wide-open angle valve in line C. Th e pipe diameter in all 
lines is 2 inches. Find the fl ow rate in each line. Assume that 
the head loss in each line is due only to the valves.

1

3

Globe valve—
wide-open

Angle valve—
wide-open

Gate valve—
half open

QA

QB

QC
4

2

Defi ne the Situation

Water fl ows through a network of pipes.

• h1 = h2 = 1 ft .
• h4 = 0 ft .
• Pipe diameter (all pipes) is 0.167 ft .

Assumptions: Head loss is due to valves only.

State the Goal

Find the fl ow rate (in cfs) in each pipe.

Generate Ideas and Make a Plan

1. Let hL , 1→3 = hL , 2→3.
2.  Let hL , 2→4 = 1 ft.
3.  Solve equations using the Hardy Cross approach.

Take Action (Execute the Plan)

Th e piezometric heads at points 1 and 2 are equal, so
hL , 1→3 + hL , 3→2 = 0

Th e head loss between points 2 and 4 is 1 ft , so

hL , 2→3 + hL , 3→4 = 0

Continuity must be satisfi ed at point 3, so

QA + QB = QC

Th e head loss through a valve is given by

 hL = KV
V 2

2g

 = KV
1

2g (Q
A )

2

where KV is the loss coeffi  cient. For a 2-inch pipe, the head 
loss becomes

hL = 32.6Kv Q2

where hL is in feet and Q is in cfs.
Th e head loss equation between points 1 and 2 expressed in 
term of discharge is

32.6KAQ 2
A − 32.6KB Q 2

B = 0
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or
KAQ 2

A − KBQ 2
B = 0

where KA is the loss coeffi  cient for the wide-open globe valve 
(KA = 10) and KB is the loss coeffi  cient for the half-open gate 
valve (KB = 5.6). Th e head loss equation between points 2 
and 4 is

32.6KB Q 2
B + 32.6KC Q 2

C = 1
or

KBQ2
B + KC Q 2

C = 0.0307

where KC is the loss coeffi  cient for the wide-open angle valve 
(KC = 5). Th e two head loss equations and the continuity 
equation comprise three equations for QA, QB, and QC. 
However, the equations are nonlinear and require linearization 
and solution by iteration (Hardy Cross approach). Th e discharge 
is written as

Q = Q0 + ΔQ

where Q0 is the starting value and ΔQ is the change. Th en,

Q2 ∙ Q 2
0 + 2Q0ΔQ

where the (ΔQ)2 term is neglected. Th e equations in terms of 
ΔQ become

 2KAQ0, AΔQA − 2KBQ0, BΔQB = KBQ 2
0, B − KAQ2

0, A

 2K C Q0, CΔQC − 2KB Q0, BΔQB = 0.0307 − KBQ2
0, B − KC Q2

0, C

 ΔQA + ΔQB = ΔQC

which can be expressed in matrix form as

[
2KAQ0, A −2KBQ0,B 0

0 2KBQ0,B 2KC Q0,C

1 1 −1 ]{
ΔQA

ΔQB

ΔQC
}

=
KBQ2

0, B − KAQ2
0, A

[0.0307 − KBQ2
0, B − K C Q2

0,C

0 ]

Th e procedure begins by selecting values for Q0,A, Q0,B, and 
Q0,C. Assume Q0,A = Q0,B and Q0,C = 2Q0,A. Th en, from the 
head loss equation from points 2 to 4,

 KB Q 2
0, B + KC Q2

0, C = 0.0307
 (KB + 4K C)Q 2

0, B = 0.0307
 (5.6 + 4 × 5)Q2

0, B = 0.0307
 Q0, B = 0.0346

and Q0,A = 0.0346 and Q0,C = 0.0693. Th ese values are 
substituted into the matrix equation to solve for the ΔQ’s. 
Th e discharges are corrected by Qnew

0 = Qold
0 +ΔQ and 

substituted into the matrix equation again to yield new ΔQ’s. 
Th e iterations are continued until suffi  cient accuracy is 
obtained. Th e accuracy is judged by how close the column 
matrix on the right approaches zero. A table with the results 
of iterations for this example is as follows:

Iteration

Initial 1 2 3 4

QA 0.0346 0.0328 0.0305 0.0293 0.0287
QB 0.0346 0.0393 0.0384 0.0394 0.0384
QC 0.0693 0.0721 0.0689 0.0687 0.0671

Review the Solution and the Process

Knowledge. Th is solution technique is called the Newton-
Raphson method. Th is method is useful for nonlinear systems 
of algebraic equations. It can be implemented easily on a 
computer. Th e solution procedure for more complex systems 
is the same.

Classifying Flow in Conduits

• A conduit is any pipe, tube, or duct that is fi lled with a 
fl owing fl uid.

• Flow in a conduit is characterized using the Reynolds 
number based on pipe diameter. Th is π-group is given 
by several equivalent formulas:

ReD =
VD

v =
ρVD

μ =
4Q

πDv
=

4m·

πDμ

• To classify a fl ow as laminar or turbulent, calculate the 
Reynolds number:

ReD ≤ 2000  laminar fl ow
ReD ≥ 3000  turbulent fl ow

• Flow in a conduit can be developing or fully developed:
• Developing fl ow occurs near an entrance or aft er the fl ow 

is disrupted (i.e., downstream of a valve, a bend, or an 
orifi ce). Developing fl ow means that the velocity profi le 
and wall shear stress are changing with axial location.

10.11 Summarizing Key Knowledge
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• Fully developed fl ow occurs in straight runs of pipe 
that are long enough to allow the fl ow to develop. 
Fully developed fl ow means that the velocity profi le 
and the shear stress are constant with axial location x. 
In fully developed fl ow, the fl ow is uniform, and the 
pressure gradient (dp/dx) is constant.

• To classify a fl ow at a pipe inlet as developing or fully 
developed, calculate the entrance length (Le). At any axial 
location greater than Le, the fl ow will be fully developed. 
Th e equations for entrance length are

Le

D
= 0.05ReD  (laminar flow: ReD ≤ 2000)

Le

D
= 50     (turbulent flow: ReD ≥ 3000)

• To describe commercial pipe in the NPS system, specify 
a nominal diameter in inches and a schedule number. 
Th e schedule number characterizes the wall thickness. 
Actual dimensions need to be looked up.

Head Loss (Pipe Head Loss)

• Th e sum of head losses in a piping system is called the total 
head loss. Sources of head loss classify into two categories:
• Pipe head loss. Head loss in straight runs of pipe with 

fully developed fl ow.
• Component head loss. Head loss in components and 

transitions such as valves, elbows, and bends.
• To characterize pipe head loss, engineers use a π-group 

called the friction factor. Th e friction factor f gives the 
ratio of wall shear stress (4τ0) to kinetic pressure (ρV2/2).

• Pipe head loss has two symbols that are used: hL and hf. 
To predict pipe head loss, apply the Darcy-Weisbach 
equation (DWE):

hL = hf = f
L
D

V 2

2g

Th ere are three methods for using the DWE:
• Method 1 (laminar fl ow). Apply the DWE in this form:

hf =
32μLV

γD 2

• Method 2 (laminar or turbulent fl ow). Apply the DWE 
and use a formula for f:

f =
64
Re

           laminar fl ow

f =
0.25

[log10( ks

3.7D
+

5.74
ReD

0.9 )]
2  turbulent fl ow

• Method 3 (laminar or turbulent fl ow). Apply the DWE, 
and look up f on the Moody diagram.

• Th e roughness of a pipe wall sometimes aff ects the friction 
factor:
• Laminar fl ow. Th e roughness does not matter; the fric-

tion factor f is independent of roughness.
• Turbulent fl ow. Th e roughness is characterized by 

looking up an equivalent sand roughness height ks and 
then fi nding f as a function of the Reynolds number 
and ks/D. When the fl ow is fully turbulent, then f is 
independent of the Reynolds number.

Head Loss (Component Head Loss)

• To characterize the head loss in a component, engineers 
use a π-group called the minor loss coeffi  cient, K, which 
gives the ratio of head loss to velocity head. Values of K, 
which come from experimental studies, are tabulated in 
engineering references. Each component has a specifi c 
value of K, which is looked up. The head loss for a 
component is

hL = Kcomponent
V 2

2g

• Th e total head loss in a pipe is given by

 overall (total) head loss = ∑ (pipe head losses)
+ ∑ (component head losses)

 hL = ∑
pipes

f
L
D

V 2

2g
+ ∑

components
K

V 2

2g

Additional Useful Results

• Noncircular conduits can be analyzed using the hydraulic 
diameter Dh or the hydraulic radius (Rh). To analyze a 
noncircular conduit, apply the same equations that are 
used for round conduits and replace D with Dh in the 
formulas. Th e equations for Dh and Rh are

Dh = 4Rh =
4 × section area
wetted perimeter

• To fi nd the operating point of a centrifugal pump in a 
system, the traditional approach is a graphical solution. 
Plot a system curve that is derived using the energy 
equation, and plot the head versus fl ow rate curve of the 
centrifugal pump. Th e intersection of these two curves 
gives the operating point of the system.
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• Th e analysis of pipe networks is based on the continuity 
equation being satisfi ed at each junction and the head 
loss between any two junctions being independent of pipe 
path between the two junctions. A series of equations 

based on these principles are solved iteratively to obtain 
the fl ow rate in each pipe and the pressure at each junction 
in the network.
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Notes on Pipe Diameter for Chapter 10 Problems

When a pipe diameter is given using the label “NPS” or “nominal,” 
fi nd the dimensions using Table 10.1 of §10.2. Otherwise, assume 
the specifi ed diameter is an inside diameter (ID).

Classifying Flow (§10.1)

10.1 Kerosene (20°C) fl ows at a rate of 0.04 m3/s in a 25 cm 
diameter pipe. Would you expect the fl ow to be laminar or 
turbulent? Calculate the entrance length.
10.2 A compressor draws 0.4 m3/s of ambient air (20°C) in from 
the outside through a round duct that is 10 m long and 175 mm in 
diameter. Determine the entrance length and establish whether 
the fl ow is laminar or turbulent.

Darcy-Weisbach Equation for Head Loss (§10.3)

10.3 Using §10.3 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the eff ectiveness of your communication.

a.  What is pipe head loss? How is pipe head loss related to 
total head loss?

b.  What is the friction factor f ? How is f related to wall shear stress?
c.  What assumptions need to be satisfi ed to apply the Darcy-

Weisbach equation?
10.4 For each case that follows, apply the Darcy-Weisbach 
equation from Eq. (10.12) in §10.3 to calculate the head loss in a 
pipe. Apply the grid method to carry and cancel units.

PROBLEMS
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a.  Water fl ows at a rate of 23 gpm and a mean velocity of 
210 ft /min in a pipe of length 200 feet. For a resistance 
coeffi  cient of f = 0.02, fi nd the head loss in feet.

b.  Th e head loss in a section of PVC pipe is 0.6 m, the resistance 
coeffi  cient is f = 0.012, the length is 15 m, and the fl ow rate 
is 4 cfs. Find the pipe diameter in meters.

10.5 As shown, air (20°C) is fl owing from a large tank, through a 
horizontal pipe, and then discharging to ambient. Th e pipe length 
is L = 50 m, and the pipe is schedule 40 PVC with a nominal 
diameter of 1 inch. Th e mean velocity in the pipe is 10 m/s, and 
f = 0.015. Determine the pressure (in Pa) that needs to be 
maintained in the tank.

L 

Tank

Air

Problem 10.5

10.6 Air (ρ = 1.4 kg/m3) fl ows in a straight round tube. Th e 
mean velocity is 22 m/s. Th e friction factor is 0.03. Flow is fully 
developed. Calculate the wall shear stress in units of Pa. Choose 
the closest answer (Pa): (a) 1.0, (b) 1.5, (c) 2.0, (d) 2.5, (e) 3.5.
10.7 A Newtonian fl uid is fl owing in a round conduit. Th e fl ow is 
laminar, steady, and fully developed. Determine whether the fol-
lowing statement is true or false: Th e head loss will vary linearly 
with mean velocity.
10.8 Th e head loss from section 1 to 2 is 1.0 m. Th e Darcy friction 
factor is 0.01. D = 1.0 m. L = 100 m. Th e fl ow is steady and fully 
developed. Calculate the mean velocity in m/s. Choose the 
closest answer (m/s): (a) 1.2, (b) 2.4, (c) 3.2, (d) 4.4, (e) 5.6.

21

φD
L

Problem 10.8

10.9 In Case A, water fl ows through an 8-inch schedule 40 pipe 
with a discharge of 75 liters per second. In Case B, the schedule 
is changed to 80. Th e mean velocity is the same in both cases. 
Calculate the discharge in units of L/s for case B. Choose the 
closest answer (L/s): (a) 68, (b) 74, (c) 75, (d) 79, (e) 82.
10.10 Water (15°C) fl ows through a garden hose (ID = 25 mm) 
with a mean velocity of 1.5 m/s. Find the pressure drop for a 
section of hose that is 20 meters long and situated horizontally. 
Assume that f = 0.012.
10.11 As shown, water (15°C) is fl owing from a tank through a 
tube and then discharging to ambient. Th e tube has an ID of 
8 mm and a length of L = 6 m, and the resistance coeffi  cient is 
f = 0.015. Th e water level is H = 3 m. Find the exit velocity in 
m/s. Find the discharge in L/s. Sketch the HGL and the EGL. 
Assume that the only head loss that occurs is in the tube.

L 
H

H2O

Problem 10.11

10.12 Water fl ows in the pipe shown, and the manometer 
defl ects 120 cm. What is f for the pipe if V = 3 m/s?

Problem 10.12

4 m

D = 5 cm

S = 2.5

Elevation = 10 m

Elevation = 11 m

V = 3 m/s

Laminar Flow in Pipes (§10.5)

10.13 A fl uid (μ = 10–2 N∙s/m2; ρ = 800 kg/m3) fl ows with a 
mean velocity of 4 cm/s in a 10 cm smooth pipe.

a. What is the value of the Reynolds number?
b.  What is the magnitude of the maximum velocity in the 

pipe?
c. What is the magnitude of the friction factor f ?
d. What is the shear stress at the wall?
e.  What is the shear stress at a radial distance of 25 mm from 

the center of the pipe?
10.14 A Newtonian fl uid is fl owing in a round conduit. Th e fl ow 
is laminar, steady, and fully developed. Th e Darcy friction factor 
is 16. Calculate ReD. Choose the closest answer: (a) 4.0, (b) 6.1, 
(c) 8.3, (d) 16.6, (e) 32.2.
10.15 Water (15°C) fl ows in a horizontal schedule 40 pipe that 
has a nominal diameter of 0.5 in. Th e Reynolds number is 
Re = 1000. Work in SI units.

a. What is mass fl ow rate?
b. What is the magnitude of the friction factor f ?
c. What is the head loss per meter of pipe length?
d. What is the pressure drop per meter of pipe length?

10.16 Flow of a liquid in a smooth 3 cm pipe yields a head loss 
of 2 m per meter of pipe length when the mean velocity is 1 m/s. 
Calculate f and the Reynolds number. Prove that doubling the 
fl ow rate will double the head loss. Assume fully developed fl ow.
10.17 As shown, a round tube of diameter 0.5 mm and length 
750 mm is connected to plenum. A fan produces a negative gage 
pressure of –1.5 inch H2O in the plenum and draws air (20°C) 
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into the microchannel. What is the mean velocity of air in the 
microchannel? Assume that the only head loss is in the tube.

Fan

Microchannel
diameter D

Plenum
p = –1.5 in-H2O

L 

Air

Problem 10.17

10.18 Liquid (γ = 9.6 kN/m3) is fl owing in a pipe at a steady 
rate, but the direction of fl ow is unknown. Is the liquid moving 
upward or moving downward in the pipe? If the pipe diameter is 
12 mm and the liquid viscosity is 3.0 × 10–3 N∙s/m2, what is the 
magnitude of the mean velocity in the pipe?

p = 110 kPa gage

p = 200 kPa gage

Elevation = 10 m

Elevation = 0 m

Problem 10.18

10.19 Oil (SG = 0.97, μ = 10–2 lbf-s/ft 2) is pumped through a 
nominal 1 in., schedule 80 pipe at the rate of 0.005 cfs. What is 
the head loss per 100 ft  of level pipe?
10.20 A liquid (ρ = 1000 kg/m3; μ = 10–1 N∙s/2 m2; v = 10–4 m2/s) 
fl ows uniformly with a mean velocity of 0.9 m/s in a pipe with 
a diameter of 175 mm. Show that the fl ow is laminar. Also, 
fi nd the friction factor f and the head loss per meter of pipe 
length.
10.21 Kerosene (SG = 0.80 and T = 68°F) fl ows from the tank 
shown and through the 1/4 in. diameter (ID) tube. Determine 
the mean velocity in the tube and the discharge. Assume the only 
head loss is in the tube.

10 ft

0.5 ft
in. diameter1/4

Problem 10.21

10.22 Oil (SG = 0.94; μ = 0.048 N∙s/m2) is pumped through 
a horizontal 10 cm pipe. Mean velocity is 0.3 m/s. What is the 
pressure drop per 10 m of pipe?

10.23 As shown, SAE-10W-30 oil is pumped through an 8 m 
length of 1-cm-diameter drawn tubing at a discharge of 7.85 × 
10–4 m3/s. Th e pipe is horizontal, and the pressures at points 1 
and 2 are equal. Find the power necessary to operate the pump, 
assuming the pump has an effi  ciency of 100%. Properties of 
SAE-10W-30 oil: kinematic viscosity = 7.6 × 10–5 m2/s; specifi c 
weight = 8630 N/m3.

1

8 m

1 cm

Pump

2

Problem 10.23

10.24 In the pipe system shown, for a given discharge, the ratio 
of the head loss in a given length of the 1 m pipe to the head loss 
in the same length of the 2 m pipe is (a) 2, (b) 4, (c) 16, or (d) 32.

f = 0.01 f = 0.012 m 1 mWater

200 m

Problem 10.24

10.25 Glycerine (T = 20°C) fl ows through a funnel with D = 1.3 cm 
as shown. Calculate the mean velocity of the glycerine exiting the 
tube. Assume the only head loss is due to friction in the tube.

30 cm

20 cm

V

D

Problem 10.25

10.26 What nominal size of steel pipe should be used to carry 
0.2 cfs of castor oil at 90°F a distance of 0.5 mi with an allowable 
pressure drop of 10 psi (μ = 0.085 lbf-s/ft 2)? Assume SG = 0.85.
10.27 Velocity measurements are made in a 35-cm pipe. Th e 
velocity at the center is found to be 2 m/s, and the velocity distri-
bution is observed to be parabolic. If the pressure drop is found 
to be 2 kPa per 100 m of pipe, what is the kinematic viscosity ν of 
the fl uid? Assume that the fl uid’s SG = 0.8.
10.28 Th e velocity of oil (SG = 0.8) through the 5-cm smooth 
pipe is 1.2 m/s. Here L = 12 m, z1 = 1 m, z2 = 2 m, and the 
manometer defl ection is 10 cm. Determine the fl ow direction, 
the resistance coeffi  cient f, whether the fl ow is laminar or 
turbulent, and the viscosity of the oil.
10.29 Th e velocity of oil (SG = 0.8) through the 2 in. smooth pipe 
is 5 ft /s. Here L = 30 ft , z1 = 2 ft , z2 = 4 ft , and the manometer 
defl ection is 4 in. Determine the fl ow direction, the resistance 
coeffi  cient f, whether the fl ow is laminar or turbulent, and the 
viscosity of the oil.
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L

z1

z2Deflection

Mercury

Problem 10.29

10.30 Water is pumped through a heat exchanger consisting of 
tubes 8 mm in diameter and 6 m long. Th e velocity in each tube 
is 12 cm/s. Th e water temperature increases from 20°C at the 
entrance to 30°C at the exit. Calculate the pressure diff erence 
across the heat exchanger, neglecting entrance losses but 
accounting for the eff ect of temperature change by using 
properties at average temperatures.

6 m

Problem 10.30

Turbulent Flow in Pipes (§10.6)

10.31 Use Fig. 10.14, Table 10.3, and Table 10.4 (in §10.6) to 
assess the following statements as true or false:

a.  If ks/D is 0.05 or larger, and the fl ow is turbulent, the value 
of f is not dependent on ReD.

b.  For smooth pipes and turbulent fl ow, f depends on ks/D and 
not ReD.

c. For laminar fl ow, f is always given by f = 64/ReD.
d. If ReD = 2 × 107 and ks/D = 0.00005, then f = 0.012.
e. If ReD = 1000 and the pipe is smooth, f =0.04.
f. Th e sand roughness height ks for wrought iron is 0.002 mm.

10.32 A Newtonian fl uid fl ows in a round pipe. Th e fl ow is 
fully developed, steady, and laminar. Determine whether the 
following statement is true or false: Th e head loss in a pipe with a 
rusty and rough wall is greater than the head loss in a pipe with a 
smooth wall (e.g., polished stainless steel).
10.33 A liquid fl ows in a round pipeline. Th e mass fl ow rate is 
9800 kg/s. Th e Reynolds number is 6 million. Kinematic viscosity is 
1.4E-6 m2/s and SG = 0.9. Calculate the pipe diameter in meters. 
Choose the closest answer (m): (a) 0.8, (b) 1.1, (c) 1.4, (d) 1.7, 
(e) 2.0.
10.34 Water (70°F) fl ows through a nominal 4-in., schedule 40, 
PVC pipe at the rate of 6 cfs. What is the resistance coeffi  cient f ? 
Use the Swamee-Jain equation (10.39), given in §10.6.

10.35 Water at 20°C fl ows through a 2 cm ID smooth brass tube 
at a rate of 0.003 m3/s. What is f for this fl ow? Use the Swamee-Jain 
equation (10.39), given in §10.6.
10.36 Water (10°C) fl ows through a 50-cm smooth pipe at a rate 
of 0.05 m3/s. What is the resistance coeffi  cient f ?
10.37 What is f for the fl ow of water at 10°C through a 30-cm 
cast iron pipe with a mean velocity of 24 m/s?
10.38 A fl uid (μ = 10–2 N∙s/m2; ρ = 800 kg/m3) fl ows with a 
mean velocity of 500 mm/s in a 100 mm diameter smooth pipe. 
Answer the following questions relating to the given fl ow 
conditions.

a.  What is the magnitude of the maximum velocity in the 
pipe?

b. What is the magnitude of the resistance coeffi  cient f ?
c. What is the shear velocity?
d.  What is the shear stress at a radial distance of 25 mm from 

the center of the pipe?
e.  If the discharge is doubled, will the head loss per length of 

pipe also be doubled?
10.39 Water (20°C) fl ows in a 35-cm cast iron pipe at a rate of 
0.5 m3/s. For these conditions, determine or estimate the 
following:

a. Th e Reynolds number
b. Friction factor f (use Swamee-Jain Eq. (10.39) in §10.6.)
c. Shear stress at the wall, τ0

10.40 In a 4.2 in. uncoated cast iron pipe, 0.08 cfs of water fl ows 
at 60°F. Determine f from Fig. 10.14.
10.41 Determine the head loss in 800 ft  of a concrete pipe with a 
6 in. diameter (ks = 0.0002 ft ) carrying 2.5 cfs of fl uid. Th e prop-
erties of the fl uid are ν = 3.33 × 10–3 ft 2/s and ρ = 1.5 slug/ft 3.
10.42 Points A and B are 1.5 km apart along a 15-cm new steel 
pipe (ks = 4.6 × 10–5 m). Point B is 20 m higher than A. With a 
fl ow from A to B of 0.03 m3/s of crude oil (S = 0.82) at 10°C 
(μ = 10–2 N∙s/m2), what pressure must be maintained at A if the 
pressure at B is to be 300 kPa gage?
10.43 A pipe can be used to measure the viscosity of a fl uid. A 
liquid fl ows in a 1.7-cm smooth pipe 0.52 m long with an average 
velocity of 8 m/s. A head loss of 5 cm is measured. Estimate the 
kinematic viscosity.
10.44 For a 40 cm pipe, the resistance coeffi  cient f was found 
to be 0.06 when the mean velocity was 3 m/s and the kinematic 
viscosity was 10–5 m2/s. If the velocity were doubled, would you 
expect the head loss per meter of length of pipe to double, triple, 
or quadruple?
10.45 You have the values for (a) the Darcy friction factor and 
(b) the relative roughness. You have a Moody diagram. Determine 
whether the following statement is true or false: You can fi nd the 
value of Reynolds number by using the Moody diagram.
10.46 A fl uid fl ows through a pipe. Calculate the drop in 
piezometer level (Δh) in units of cm. Th e fl ow is steady and fully 
developed. Th e fl uid is Newtonian. Th e mean velocity is 0.4 m/s. 
Th e Reynolds number is 100,000. Th e relative roughness is 0.002. 
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Th e length between piezometers is 50 m and the pipe ID is 
3.0 cm. Choose the closest answer (cm): (a) 8, (b) 14, (c) 22, 
(d) 28, (e) 34.

L

Δh

ReD = 100,000

ks/D = 0.002

D     = 3.0 cm
L      = 50 m

V = 0.4 m/s

Problem 10.46

10.47 Water (50°F) fl ows with a speed of 5 ft /s through a 
horizontal run of PVC pipe. Th e length of the pipe is 100 ft , and 
the pipe is schedule 40 with a nominal diameter of 2.5 inches. 
Calculate (a) the pressure drop in psi, (b) the head loss in feet, and 
(c) the power in horsepower needed to overcome the head loss.
10.48 Water (10°C) fl ows with a speed of 2 m/s through a 
horizontal run of PVC pipe. Th e length of the pipe is 50 m, and 
the pipe is schedule 40 with a nominal diameter of 2.5 inches. 
Calculate (a) the pressure drop in kilopascals, (b) the head loss 
in meters, and (c) the power in watts needed to overcome the 
head loss.
10.49 Air fl ows in a 3-cm smooth tube at a rate of 0.015 m3/s. If 
T = 20°C and p = 110 kPa absolute, what is the pressure drop 
per meter of length of tube?
10.50 Air fl ows in a 1 in. smooth tube at a rate of 30 cfm. If 
T = 80°F and p = 15 psia, what is the pressure drop per foot of 
length of tube?
10.51 Water is pumped through a vertical 10 cm new steel pipe 
to an elevated tank on the roof of a building. Th e pressure on 
the discharge side of the pump is 1.6 MPa. What pressure can be 
expected at a point in the pipe 110 m above the pump when the 
fl ow is 0.02 m3/s? Assume T = 20°C.
10.52 Th e house shown is fl ooded by a broken waterline. Th e 
owners siphon water out of the basement window and down the 
hill, with one hose, of length L, and thus an elevation diff erence 
of h to drive the siphon. Water drains from the siphon, but too 
slowly for the desperate home owners. Th ey reason that with a 
larger head diff erence, they can generate more fl ow. So they get 
another hose, same length as the fi rst, and connect the 2 hoses 
for total length 2L. Th e backyard has a constant slope, so that a 
hose length of 2L correlates to a head diff erence of 2h.

a.  Assume no head loss, and calculate whether the fl ow rate 
doubles when the hose length is doubled from Case 1 
(length L and height h) to Case 2 (length 2L and height 2h).

b.  Assume hL = 0.025(L/D)(V2/2g), and calculate the fl ow rate 
for Cases 1 and 2, where D = 1 in., L = 50 ft ., and h = 20 ft . 
How much of an improvement in fl ow rate is accomplished 
in Case 2 as compared to Case 1?

c.  Both the husband and wife of this couple took fl uid 
mechanics in college. Th ey review with new appreciation 
the energy equation and the form of the head loss term 
and realize that they should use a larger diameter hose. 

Calculate the fl ow rate for Case 3, where L = 50 ft , h = 20 ft , 
and D = 2 in. Use the same expression for hL as in part (b). 
How much of an improvement in fl ow rate is accomplished 
in Case 3 as compared to Case 1 in part (b)?

Hose

L

L

h

h

Problem 10.52

10.53 Water (60°F) is pumped from a reservoir to a large, pres-
surized tank as shown. Th e steel pipe is 4 in. in diameter and 300 
ft  long. Th e discharge is 1 cfs. Th e initial water levels in the tanks 
are the same, but the pressure in tank B is 10 psig, and tank A is 
open to the atmosphere. Th e pump effi  ciency is 90%. Find the 
power necessary to operate the pump for the given conditions.

A B

Problem 10.53

Solving Turbulent Flow Problems (§10.7)

10.54 Using the information at the beginning of §10.7, classify 
each problem given below as case 1, case 2, or case 3. For each of 
your choices, state your rationale.

a. Problem 10.53
b. Problem 10.56
c. Problem 10.60

10.55 A plastic siphon hose with D = 1.2 cm and L = 5.5 m is 
used to drain water (15°C) out a tank. Calculate the velocity in 
the tube for the two situations given below. Use H = 3 m and 
h = 1 m.

a.  Assume the Bernoulli equation applies (neglect all head 
loss).

b.  Assume the component head loss is zero, and the pipe head 
loss is nonzero.

10.56 A plastic siphon hose of length 7 m is used to drain water 
(15°C) out of a tank. For a fl ow rate of 1.5 L/s, what hose diameter 
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is needed? Use H = 5 m and h = 0.5 m. Assume all head loss 
occurs in the tube.

Siphon hose
diameter D

Water
(T = 15°C)

H

h

Problems 10.55, 10.56

10.57 As shown, water (70°F) is draining from a tank through a 
galvanized iron pipe. Th e pipe length is L = 10 ft , the tank depth 
is H = 4 ft , and the pipe is 1 in. NPS schedule 40. Calculate the 
velocity in the pipe and the fl ow rate. Neglect component head 
loss.
10.58 As shown, water (15°C) is draining from a tank through a 
galvanized iron pipe. Th e pipe length is L = 2 m, the tank depth 
is H = 1 m, and the pipe is a 0.5 inch NPS schedule 40. Calculate 
the velocity in the pipe. Neglect component head loss.

Pipe of diameter D

H

L

Problems 10.57, 10.58

10.59 A fl uid with ν = 10–6 m2/s and ρ = 800 kg/m3 fl ows 
through the 8 cm galvanized iron pipe. Estimate the fl ow rate 
for the conditions shown in the fi gure.

p = 150 kPa

p = 120 kPa
Pipe has a

slope of 1/10

30 m

Problem 10.59

10.60 A pipeline is to be designed to carry crude oil (SG = 0.93, 
ν = 10–5 m2/s) with a discharge of 0.10 m3/s and a head loss per 
kilometer of 50 m. What diameter of steel pipe is needed? What 
power output from a pump is required to maintain this fl ow? 
Available pipe diameters are 20, 22, and 24 cm.

Combined Head Loss in Systems (§10.8)

10.61 Use Table 10.5 (§10.8) to select loss coeffi  cients, K, for the 
following transitions and fi ttings.

a. A threaded pipe 90° elbow
b. A 90° smooth bend with r/d = 2

c. A pipe entrance with r/d of 0.3
d. An abrupt contraction, with θ = 180°, and D2/D1 = 0.60
e. A gate valve, wide open

10.62 Th e sketch shows a test of an electrostatic air fi lter. Th e 
pressure drop for the fi lter is 3 inches of water when the airspeed 
is 9 m/s. What is the minor loss coeffi  cient for the fi lter? Assume 
air properties at 20°C.

3 in-H2O

Electrostatic filter

Air

Problem 10.62

10.63 If the fl ow of 0.10 m3/s of water is to be maintained in the 
system shown, what power must be added to the water by the 
pump? Th e pipe is made of steel and is 15 cm in diameter.

Elevation = 10 m

Elevation = 13 m

40 m 40 m

Water
T = 10°C

Problem 10.63

10.64 Water fl ows out of a reservoir, through a penstock, and then 
through a turbine. Calculate the total head loss in units of meters. 
Th e mean velocity is 5.3 m/s. Th e friction factor is 0.02. Th e total 
penstock length is 30 m and the diameter is 0.3 m. Th ere are three 
minor loss coeffi  cients: 0.5 for the penstock entrance, 0.5 for the 
bends in the penstock, and 1.0 for the exit. Choose the closest 
answer (m): (a) 1.2, (b) 2.8, (c) 3.8, (d) 4.8, (e) 5.7.

Penstock Bends: 0.5
Entrance: 0.5

Exit: 1.0

K values
El. 75 m

El. 30 m

L = 30 m
D = 0.3 m
f = 0.02 

T
V = 5.3 m/s

Problem 10.64

10.65 A liquid fl ows upward through a valve situated in a vertical 
pipe. Calculate the diff erential pressure (kPa) between points A 
and B. Th e mean velocity of the fl ow is 4.1 m/s. Th e specifi c 
gravity of the liquid is 1.2. Th e pipe has constant diameter. Th e 
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valve has a minor loss coeffi  cient of 4.0. Assume that major losses 
(i.e., head losses in the pipe itself) can be neglected. Point A is 
located 3.2 meters below point B. Choose the closest answer 
(kPa): (a) 3.4, (b) 6.6, (c) 40, (d) 65, (e) 78.

3.2 m

SG = 1.2

Assume: Major losses ≈ 0
Valve

V

A

B

Kv = 4

V = 4.1 m/s

Problem 10.65

10.66 Water will be siphoned through a 3/16-in.-diameter, 50 in. 
long Tygon tube from a jug on an upside-down wastebasket into 
a graduated cylinder as shown. Th e initial level of the water in 
the jug is 21 in. above the tabletop. Th e graduated cylinder is a 
500 mL cylinder, and the water surface in the cylinder is 12 in. 
above the tabletop when the cylinder is full. Th e bottom of the 
cylinder is 1/2 in. above the table. Th e inside diameter of the jug 
is 7 in. Calculate the time it will take to fi ll the cylinder from an 
initial depth of 2 in. of water in the cylinder.

21 in.

1/2 in.
12 in.

Jug

Problem 10.66

10.67 Water fl ows from a tank through a 2.6 m length of galva-
nized iron pipe 26 mm in diameter. At the end of the pipe is an 
angle valve that is wide open. Th e tank is 2 m in diameter. Cal-
culate the time required for the level in the tank to change from 
10 m to 2 m. Hint: Develop an equation for dh/dt, where h is the 
level and t is time. Th en, solve this equation numerically.

10 m

2.6 m

20°C

Angle valve

Problem 10.67

10.68 A tank and piping system are shown. Th e galvanized pipe 
diameter is 3 cm, and the total length of pipe is 10 m. Th e two 
90° elbows are threaded fi ttings. Th e vertical distance from the 
water surface to the pipe outlet is 5 m. Find (a) the exit velocity 
of the water and (b) the height (h) the water jet would rise on 
exiting the pipe. Th e water temperature is 20°C.

10 m

h

5 mWater

Problem 10.68

10.69 A pump is used to fi ll a tank from a reservoir as shown. 
Th e head provided by the pump is given by hp = h0(l – (Q2/Q2

max)) 
where h0 is 50 meters, Q is the discharge through the pump, and 
Qmax is 2 m3/s. Assume f = 0.018 and the pipe diameter is 90 cm. 
Initially the water level in the tank is the same as the level in the 
reservoir. Th e cross-sectional area of the tank is 100 m2. How long 
will it take to fi ll the tank to a height, h, of 40 m?

Pump

h

30 m

Problem 10.69

10.70 A water turbine is connected to a reservoir as shown. Th e 
fl ow rate in this system is 4 cfs. What power can be delivered by 
the turbine if its effi  ciency is 90%? Assume a temperature of 70°F.

Steel pipe
d = 12 in.

L = 1000 ft

100 ft

Problem 10.70

10.71 What power must the pump supply to the system to pump 
the oil from the lower reservoir to the upper reservoir at a rate of 
0.3 m3/s? Sketch the HGL and the EGL for the system.

Oil

  = 940 kg/m3

v = 10–5 m2/s

D = 30 cm
Steel pipe

L = 150 m

ρ

Elevation = 100 m

Elevation = 112 m

Problem 10.71

10.72 Water is fl owing through a gate valve (Kv = 0.2). Calculate 
the value of b in units of mm. Th e pipe is horizontal. Th e fl ow is 
steady and fully developed. Over a 3-meter pipe length upstream 
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of the valve, the EGL drops by a = 430 mm. Th e pipe ID is 0.25 
m and the friction factor in the pipe is 0.03. Choose the closest 
answer (mm): (a) 180, (b) 240, (c) 320, (d) 340, (e) 360.

Energy grade line

a = 430 mm
b

3.0 m Pipe, D = 0.25 m,  f = 0.03

V

Problem 10.72

10.73 Water fl ows through a turbine. Calculate the power (MW) 
transmitted by the output shaft  of the turbine. Th e water density 
is 1000 kg/m3. Th e elevation of the upper reservoir surface is 720 m 
and that of the lower reservoir is 695 m. Th e pipeline diameter is 
2.2 m, the total length is 50 m, and the mean velocity is 2.4 m/s. 
Th e friction factor is 0.25. Th e sum of minor loss coeffi  cients 
is 4.7. Th e turbine effi  ciency is 80%. Choose the closest answer 
(MW): (a) 1.6, (b) 1.7, (c) 2.0, (d) 2.1, (e) 2.5.

695 m

720 m

D = 2.2 m, L = 50 m

V = 2.4 m/s T

1

2

f    = 0.25

ΣK = 4.7
ηT   = 80%

Problem 10.73

10.74 An engineer is making an estimate of hydroelectric power 
for a home owner. Th is owner has a small stream (Q = 2 cfs, T = 
40 °F) that is located at an elevation H = 34 ft  above the owner’s 
residence. Th e owner is proposing to divert the stream and operate 
a water turbine connected to an electric generator to supply 
electrical power to the residence. Th e maximum acceptable head 
loss in the penstock (a penstock is a conduit that supplies a tur-
bine) is 3 ft . Th e penstock has a length of 87 ft . If the penstock is 
going to be fabricated from commercial-grade, plastic pipe, fi nd 
the minimum diameter that can be used. Neglect component 
head losses. Assume that pipes are available in even sizes—that 
is, 2 in., 4 in., 6 in., and so on.

H
Penstock

Turbine and
generator

Problem 10.74

10.75 A heat exchanger is being designed as a component of 
a geothermal power system in which heat is transferred from 
the geothermal brine to a “clean” fl uid in a closed-loop power 

cycle. Th e heat exchanger, a shell-and-tube type, consists of 100 
galvanized iron tubes 2 cm in diameter and 5 m long, as shown. 
Th e temperature of the fl uid is 200°C, the density is 860 kg/m3, 
and the viscosity is 1.35 × l0–4 N∙s/m2. Th e total mass fl ow rate 
through the exchanger is 40 kg/s.

a.  Calculate the power required to operate the heat exchanger, 
neglecting entrance and outlet losses.

b.  Aft er continued use, 2 mm of scale develops on the inside 
surfaces of the tubes. Th is scale has an equivalent roughness 
of 0.5 mm. Calculate the power required under these 
conditions.

5 m
2 cm

Side view

Problem 10.75

10.76 A heat exchanger consists of a closed system with a series 
of parallel tubes connected by 180° elbows as shown in the fi gure. 
Th ere are a total of 14 return elbows. Th e pipe diameter is 2 cm, 
and the total pipe length is 10 m. Th e head loss coeffi  cient for 
each return elbow is 2.2. Th e tube is copper. Water with an 
average temperature of 40°C fl ows through the system with a 
mean velocity of 10 m/s. Find the power required to operate the 
pump if the pump is 85% effi  cient.
10.77 A heat exchanger consists of 15 m of copper tubing with 
an internal diameter of 15 mm. Th ere are 14 return elbows in the 
system with a loss coeffi  cient of 2.2 for each elbow. Th e pump in 
the system has a pump curve given by

hp = hp0 [1 − ( Q
Qmax

)
3

]
where hp0 is head provided by the pump at zero discharge and 
Qmax is 10–3 m3/s. Water at 40°C fl ows through the system. 
Find the system operating point for values of hp0 of 2 m, 10 m, 
and 20 m.

Pump

Problems 10.76, 10.77

10.78 Gasoline (T = 50°F) is pumped from the gas tank of an 
automobile to the carburetor through a 1/4-in. fuel line of drawn 
tubing 10 ft  long. Th e line has fi ve 90° smooth bends with an r/d 
of 6. Th e gasoline discharges through a 1/32-in. jet in the 
carburetor to a pressure of 14 psia. Th e pressure in the tank is 
14.7 psia. Th e pump is 80% effi  cient. What power must be supplied 
to the pump if the automobile is consuming fuel at the rate of 
0.12 gpm? Obtain gasoline properties from Figs. A.2 and A.3.
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Pump

Carburetor

in. line (ID)

2 ft

1/4

Problem 10.78

10.79 Find the loss coeffi  cient K v of the partially closed valve that 
is required to reduce the discharge to 50% of the fl ow with the 
valve wide-open as shown.

Water
T = 10°C

10 cm diameter steel pipe Threaded
elbows

Water
T = 10°C

Valve
3 m

4 m

2 m

7 m

Problem 10.79

10.80 Th e 12 cm galvanized steel pipe shown is 800 m long 
and discharges water into the atmosphere. Th e pipeline has 
an open globe valve and four threaded elbows; h1 = 3 m and 
h2 = 15 m. What is the discharge, and what is the pressure at A, 
the midpoint of the line?

A
h1

h2

Globe valve

Water
T = 10°C

(50°F)

Problem 10.80

10.81 Water is pumped at a rate of 32 m3/s from the reservoir 
and out through the pipe, which has a diameter of 1.50 m. What 
power must be supplied to the water to eff ect this discharge?

D = 1.5 m

D = 1.5 m

Steel pipe

Water
T = 10°C 300 m

Elevation = 135 m
Elevation = 140 m

Elevation = 95 m

Elevation
= 100 m

Problem 10.81

10.82 Both pipes in the system shown have an equivalent sand 
roughness ks of 0.10 mm and a fl ow rate of 0.1 m3/s, with 
D1 = 12 cm, L1 = 60 m, D2 = 24 cm, and L2 = 120 m. 
Determine the diff erence in the water-surface elevation 
between the two reservoirs.

Water
T = 20°C

D1

L1

D2

L2

Problem 10.82

10.83 Liquid discharges from a tank through the piping system 
shown. Th ere is a venturi section at A and a sudden contraction 
at B. Th e liquid discharges to the atmosphere. Sketch the energy 
and hydraulic gradelines. Where might cavitation occur?

A
B

Problem 10.83

10.84 Th e steel pipe shown carries water from the main pipe A to 
the reservoir and is 2 in. in diameter and 300 ft  long. What must 
be the pressure in pipe A to provide a fl ow of 70 gpm?

Elevation = 90 ft

Water
T = 50°F

Open globe valve

90° bends (threaded)

2 in. galvanized pipe
Elevation = 20 ftA

Problem 10.84

10.85 If the water surface elevation in reservoir B is 110 m, what 
must be the water surface elevation in reservoir A if a fl ow of 
0.03 m3/s is to occur in the cast iron pipe? Draw the HGL and 
the EGL, including relative slopes and changes in slope.
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Elevation = ?

Water
T = 10°C

L = 100 m, D = 20 cm, cast iron pipe L = 150 m
D = 15 cm
 Cast iron pipe

Elevation = 110 m

A

B

Problem 10.85

Nonround Conduits (§10.9)

10.86 Air at 60°F and atmospheric pressure fl ows in a horizontal 
duct with a cross section corresponding to an equilateral triangle 
(all sides equal). Th e duct is 100 ft  long, and the dimension of 
a side is 6 in. Th e duct is constructed of galvanized iron (ks = 
0.0005 ft ). Th e mean velocity in the duct is 12 ft /s. What is the 
pressure drop over the 100 ft  length?

12 ft/s

6 in.

100 ft

Problem 10.86

10.87 Th e cross section of an air duct has the dimensions shown 
in the sketch. Find the hydraulic diameter in units of cm. Choose 
the closest answer (cm): (a) 0.9, (b) 3.0, (c) 3.2, (d) 3.6, (e) 4.1.

+

5 cm

2 cm

2 cm

3 cm

Problem 10.87

10.88 A cold-air duct 120 cm by 15 cm in cross section is 100 m 
long and made of galvanized iron. Th is duct is to carry air at a 
rate of 6 m3/s at a temperature of 15°C and atmospheric pressure. 
What is the power loss in the duct?
10.89 Air (20°C) fl ows with a speed of 10 m/s through a horizontal 
rectangular air-conditioning duct. Th e duct is 20 m long and 
has a cross section of 4 by 10 in. (102 by 254 mm). Calculate 
(a) the pressure drop in inches of water and (b) the power in 
watts needed to overcome head loss. Assume the roughness of 
the duct is ks = 0.004 mm. Neglect component head losses.

Modeling Pumps in Systems (§10.10)

10.90 What power must be supplied by the pump to the fl ow 
if water (T = 20°C) is pumped through the 300-mm steel pipe 
from the lower tank to the upper one at a rate of 0.75 m3/s?

300 mm r = 300 mm

140 m

10 m

50 m

Elevation = 200 m

Elevation = 235 m

Problem 10.90

10.91 If the pump for Fig. 10.20b is installed in the system of 
Prob. 10.90, what will be the rate of discharge of water from the 
lower tank to the upper one?
10.92 A pump that has the characteristic curve shown in the 
accompanying graph is to be installed as shown. What will be 
the discharge of water in the system?

1000 2000 3000 4000 5000

h,
 f

t

Q, gpm

0

20

40

60

80

Pump curve

L = 50 ft
D = 10 in.
f = 0.020

r/d = 1 L = 950 ft
D = 10 in.
f = 0.020

Elevation = 20 ft

Elevation = 15 ft

Elevation = 10 ft

T = 60°F

Problem 10.92

Pipes in Parallel and in Networks (§10.10)

10.93 A pipe system consists of a gate valve, wide-open (Kv = 0.2), 
in line A and a globe valve, wide-open (Kv = 10), in line B. Th e 
cross-sectional area of pipe A is half of the cross-sectional area 
of pipe B. Th e head loss due to the junction, elbows, and pipe 
friction are negligible compared with the head loss through the 
valves. Find the ratio of the discharge in line B to that in line A.
10.94 A fl ow is divided into two branches as shown. A gate valve, 
half open, is installed in line A, and a globe valve, fully open, is 
installed in line B. Th e head loss due to friction in each branch 
is negligible compared with the head loss across the valves. Find 
the ratio of the velocity in line A to that in line B (include elbow 
losses for threaded pipe fi ttings).

A

B

Problems 10.93, 10.94
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10.95 In the parallel system shown, pipe 1 is 1200 m long and 
is 50 cm in diameter. Pipe 2 is 1500 m long and 35 cm in 
diameter. Assume f is the same in both pipes. What is the 
division of the fl ow of water at 10°C if the fl ow rate will 
be 1.2 m3/s?
10.96 Pipes 1 and 2 are the same kind (cast-iron pipe), but 
pipe 2 is three times as long as pipe 1. Th ey are the same 
diameter (1 ft ). If the discharge of water in pipe 2 is 1.5 cfs, 
then what will be the discharge in pipe 1? Assume the same 
value of f in both pipes.

A B

2

1

Problems 10.95, 10.96

10.97 Two pipes are connected in parallel. One pipe is twice the 
diameter of the other and four times as long. Assume that f in the 
larger pipe is 0.010 and f in the smaller one is 0.012. Determine 
the ratio of the discharges in the two pipes.
10.98 Th e pipes shown in the system are all concrete. With a fl ow 
of 25 cfs of water, fi nd the head loss and the division of fl ow in 
the pipes from A to B. Assume f = 0.030 for all pipes.

A B

L = 2000 ft
D = 24 in.

L = 3000 ft
D = 30 in.L = 2000 ft

D = 12 in.

L = 3000 ft
D = 14 in.

L = 3000 ft
D = 16 in.

Problem 10.98

10.99 Frequently in the design of pump systems, a bypass line 
will be installed in parallel to the pump so that some of the fl uid 
can recirculate as shown. Th e bypass valve then controls the fl ow 
rate in the system. Assume that the head-versus-discharge curve 
for the pump is given by hp = 100 – 100Q, where hp is in meters 
and Q is in m3/s. Th e bypass line is 10 cm in diameter. Assume 
the only head loss is that due to the valve, which has a head loss 
coeffi  cient of 0.2. Th e discharge leaving the system is 0.2 m3/s. 
Find the discharge through the pump and bypass line.

Pump

Valve

Bypass line

0.20 m3/s

Problem 10.99
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Drag and Lift

CHAPTER ROAD MAP Previous chapters have described the hydrostatic force on a panel, the buoyant 
force on a submerged object, and the shear force on a fl at plate. This chapter expands this list by introducing 
the lift and drag forces.

CHAPTERELEVEN

LEARNING OUTCOMES

UNDERSTANDING DRAG FORCE (§11.1, §11.2). 

● Defi ne drag.
●  Explain how drag is related to the shear stress and pressure 

distributions.
● Defi ne form drag and friction drag. 
●  For fl ow over a circular cylinder, describe the three drag regimes 

and the drag crisis.

CALCULATING DRAG FORCE (§11.2 to §11.4). 

● Defi ne the coeffi cient of drag. 
● Find CD values. 
● Calculate the drag force. 
● Calculate the power required to overcome drag. 
● Solve terminal velocity problems.

UNDERSTANDING AND CALCULATING LIFT FORCE (§11.1, §11.8).

● Defi ne lift and the coeffi cient of lift. 
● Calculate the lift force.

FIGURE 11.1
This photo shows the USA Olympic pursuit team being 

tested so that aerodynamic drag can be reduced. 

This wind tunnel is located at the General Motors Tech 

Center in Warren, Michigan. (Andy Sacks/Photodisc/

Getty Images.)

When a body moves through a stationary fl uid or when a fl uid fl ows past a body, the fl uid 
exerts a resultant force. Th e component of this resultant force that is parallel to the free-stream 
velocity is called the drag force. Similarly, the lift force is the component of the resultant force 
that is perpendicular to the free stream. For example, as air fl ows over a kite, it creates a resul-
tant force that can be resolved in lift  and drag components, as shown in Fig. 11.2. By defi nition, 
lift  and drag forces are limited to those forces produced by a fl owing fl uid.

11.1 Relating Lift and Drag to Stress Distributions

Th is section explains how lift  and drag forces are related to stress distributions. Th is section 
also introduces the concepts of form and friction drag. Th ese ideas are fundamental to under-
standing lift  and drag.
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Integrating a Stress Distribution to Yield Force

Th is section applies the ideas of §2.4 to develop equations for the lift  and drag forces. Lift  and 
drag forces are related to the stress distribution on a body through integration. For example, 
consider the stress acting on the airfoil shown in Fig. 11.3. As shown, there is a pressure dis-
tribution and a shear stress distribution. To relate stress to force, select a diff erential area as 
shown in Fig. 11.4. Th e magnitude of the pressure force is dFp = p dA, and the magnitude of 
the viscous force is dFv = τ dA.* Th e diff erential lift  force is normal to the free stream direction,

dFL = −p dAsin  θ − τ dA cos θ

and the diff erential drag is parallel to the free stream direction,

dFD = −p dAcos θ + τ dA sinθ

Integration over the surface of the airfoil gives the lift  force (FL) and the drag force (FD) in 
terms of the stress distribution.

 FL = ∫(−p sinθ − τ cos θ)dA (11.1)

 FD = ∫(−pcosθ + τ sinθ)dA (11.2)

*Th e sign convention on τ is such that a clockwise sense of τ dA on the surface of the foil signifi es a positive sign for τ.

Lift force is the component of 
force perpendicular to the free stream.

Drag force is the component of
force parallel to the free stream.

Free stream

(a) (b)

FL

FD

FIGURE 11.2

(a) A kite. (Photo by Donald Elger.)

(b) Forces acting on the kite due to the air 

fl owing over the kite.

Negative gage pressure (vacuum)

Shear stress

Positive gage pressure

FIGURE 11.3

Pressure and shear stress acting on 

an airfoil.
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Form Drag and Friction Drag

Notice that Eq. (11.2) can be written as the sum of two integrals:

FD = ∫(−p cos θ)dA + ∫(τ sin θ)dA

 form drag friction drag 
(11.3)

Form drag is the portion of the total drag force that is associated with the pressure distribu-
tion. Friction drag is the portion of the total drag force that is associated with the viscous 
shear stress distribution. Th e drag force on any body is the sum of form drag and friction drag. 
In words, Eq. (11.3) can be written as

 (total drag force) = (form drag) + (friction drag) (11.4)

11.2 Calculating the Drag Force

Th is section introduces the drag force equation, the coeffi  cient of drag, and presents data for 
two-dimensional bodies. Th is information is used to calculate drag force on objects.

Drag Force Equation

Th e drag force FD on a body is found by using the drag force equation:

 FD = CD ARef(ρV 2
0

2 ) (11.5)

where CD is called the coeffi  cient of drag, A is a reference area of the body, ρ is the fl uid density, 
and V0 is the free stream velocity measured relative to the body.

Th e reference area A depends on the type of body. One common reference area, called 
projected area and given the symbol Ap, is the silhouetted area that would be seen by a person 
looking at the body from the direction of fl ow. For example, the projected area of a plate nor-
mal to the fl ow is bℓ, and the projected area of a cylinder with its axis normal to the fl ow is dℓ. 
Other geometries use diff erent reference areas; for example, the reference area for an airplane 
wing is the planform area, which is the area observed when the wing is viewed from above.

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

– τ dA cos θ

τ dA sin θ

τ dA

–p dA cos θ

–p dA sin θ

θV0
FD

FL

dFv = τ dA

dFp = p dA

FIGURE 11.4

Pressure and viscous forces acting on a differential element 

of area.
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Th e coefficient of drag CD is a parameter that characterizes the drag force associated with 
a given body shape. For example, an airplane might have CD = 0.03, and a baseball might have 
CD = 0.4. Th e coeffi  cient of drag is a π-group that is defi ned by

 CD ≡
FD

ARef (ρV 2
0/2)

=
(drag force)

(reference area)(kinetic pressure)
 (11.6)

Values of the coeffi  cient of drag CD are usually found by experiment. For example, drag 
force FD can be measured using a force balance in a wind tunnel. Th en CD can be calculated 
using Eq. (11.6). For this calculation, the speed of the air in the wind tunnel V0 can be mea-
sured using a Pitot-static tube or similar device, and air density can be calculated by applying 
the ideal gas law using measured values of temperature and pressure.

Equation (11.5) shows that drag force is related to four variables. Drag is related to the shape 
of an object because shape is characterized by the value of CD. Drag is related to the size of the 
object because size is characterized by the reference area. Drag is related to the density of ambient 
fl uid. Finally, drag is related to the speed of the fl uid squared. Th is means that if the wind velocity 
doubles and CD is constant, then the wind load on a building goes up by a factor of four.

Coeffi cient of Drag (Two-Dimensional Bodies)

Th is section presents CD data and describes how CD varies with the Reynolds number for objects 
that can be classifi ed as two dimensional. A two-dimensional body is a body with a uniform 
section area and a fl ow pattern that is independent of the ends of the body. Examples of 
two-dimensional bodies are shown in Fig. 11.5. In the aerodynamics literature, CD values for 
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Re = or Re =
V0d

v
V0b

v
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FIGURE 11.5

Coeffi cient of drag versus Reynolds number 

for two-dimensional bodies. [Data sources: 

Bullivant (1), DeFoe (2), Goett and Bullivant (3), 

Jacobs (4), Jones (5), and Lindsey (6).]
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two-dimensional bodies are called sectional drag coefficients. Two-dimensional bodies can 
be visualized as objects that are infi nitely long in the direction normal to the fl ow.

Th e sectional drag coeffi  cient can be used to estimate CD for real objects. For example, CD 
for a cylinder with a length to diameter ratio of 20 (e.g., L/D ≥ 20) approaches the sectional 
drag coeffi  cient because the end eff ects have an insignifi cant contribution to the total drag 
force. Alternatively, the sectional drag coeffi  cient would be inaccurate for a cylinder with a 
small L/D ratio (e.g., L/D ≈ 1) because the end eff ects would be important.

As shown in Fig. 11.5, the Reynolds number sometimes, but not always, infl uences the 
sectional drag coeffi  cient. Th e value of CD for the fl at plate and square rod are independent of 
Re. Th e sharp edges of these bodies produce fl ow separation, and the drag force is due to the 
pressure distribution (form drag) and not on the shear stress distribution (friction drag, which 
depends on Re). Alternatively, CD for the cylinder and the streamlined strut show strong Re 
dependence because both form and friction drag are signifi cant.

To calculate drag force on an object, fi nd a suitable coeffi  cient of drag, and then apply the 
drag force equation. Th is approach is illustrated by Example 11.1.

EXAMPLE 11.1

Drag Force on a Cylinder

Problem Statement

A vertical cylinder that is 30 m high and 30 cm in diameter is 
being used to support a television-transmitting antenna. Find 
the drag force acting on the cylinder and the bending moment 
at its base. Th e wind speed is 35 m/s, the air pressure is 1 atm, 
and temperature is 20°C.

Cylinder, D = 0.3 m

Air

 T = 20°C
  p = 1.0 atm
V0 = 35 m/s

Antenna

L = 30 m

Defi ne the Situation

Wind is blowing across a tall cylinder.

Assumptions:
• Wind speed is steady.
•  Eff ects associated with the ends of the cylinder are 

negligible because L/D = 100.
•  Neglect drag force on the antenna because the frontal 

area is much less than the frontal area of the cylinder.
•  Th e line of action of the drag force is at an elevation 

of 15 m.

Properties: Air (20°C): Table A.5, ρ = 1.2 kg/m3, and 
μ = 1.81 × 10–5 N∙s/m2

State the Goals

Calculate:
• Drag force (in N) on the cylinder
•  Bending moment (in N∙m) at the base of the cylinder

Generate Ideas and Make a Plan

1. Calculate the Reynolds number.
2. Find coeffi  cient of drag using Fig. 11.5
3. Calculate drag force using Eq. (11.5).
4. Calculate bending moment using M = FD ∙ L/2.

Take Action (Execute the Plan)

1. Reynolds number:

ReD =
V0 Dρ

μ
=

35 m/s × 0.30 m × 1.20 kg/m3

1.81 × 10−5 N ∙ s/m2 = 7.0 × 105

2. From Fig. 11.5, the coeffi  cient of drag is CD = 0.20.
3. Drag force:

 FD =
CD ApρV 2

0

2

 =
(0.2)(30 m)(0.3 m)(1.20 kg/m3)(352 m2/s2)

2
 = 1323 N

4. Moment at the base:

M = FD(L
2 ) = (1323 N)(30

2
 m) =  19,800 N ∙ m
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Discussion of CD for a Circular Cylinder

Drag Regimes Th e coeffi  cient of drag CD, as shown in Fig. 11.5, can be described in terms 
of three regimes.

• Regime I (Re < 103 ). In this regime, CD depends on both form drag and friction drag. As 
shown, CD decreases with increasing Re.

• Regime II (103 < Re < 105). In this regime, CD has a nearly constant value. Th e reason is that 
form drag, which is associated with the pressure distribution, is the dominant cause of drag. 
Over this range of Reynolds numbers, the fl ow pattern around the cylinder remains virtually 
unchanged, thereby producing very similar pressure distributions. Th is characteristic, the 
constancy of CD at high values of Re, is representative of most bodies that have angular form.

• Regime III (105 < Re < 5 × 105). In this regime, CD decreases by about 80%, a remarkable 
change that is called the drag crisis. Th e drag crisis occurs because the boundary layer 
on the circular cylinder changes. For Reynolds numbers less than 105, the boundary layer 
is laminar, and separation occurs about midway between the upstream side and down-
stream side of the cylinder (Fig. 11.6). Hence, the entire downstream half of the cylinder 
is exposed to a relatively low pressure, which in turn produces a relatively high value for 
CD. When the Reynolds number is increased to about 105, the boundary layer becomes 
turbulent, which causes higher-velocity fl uid to be mixed into the region close to the wall 
of the cylinder. As a consequence of the presence of this high-velocity, high-momentum 
fl uid in the boundary layer, the fl ow proceeds farther downstream along the surface of the 
cylinder against the adverse pressure before separation occurs (Fig. 11.7). Th is change in 
separation produces a much smaller zone of low pressure and the lower value of CD.

Surface Roughness

Surface roughness has a major infl uence on drag. For example, if the surface of the cylinder 
is slightly roughened upstream of the midsection, then the boundary layer will be forced to 
become turbulent at lower Reynolds numbers than those for a smooth cylinder surface. Th e 
same trend can also be produced by creating abnormal turbulence in the approach fl ow. Th e 
eff ects of roughness are shown in Fig. 11.8 for cylinders that were roughened with sand grains of 
size k. A small to medium size of roughness (10–3 < k/d < 10–2) on a cylinder triggers an early 
onset of reduction of CD. However, when the relative roughness is quite large (10–2 < k/d), the 
characteristic dip in CD is absent.

11.3 Drag of Axisymmetric and 3-D Bodies

Section 11.2 described drag for two-dimensional bodies. Drag on other body shapes is presented 
in this section. Th is section also describes power and rolling resistance.

V0

Low-pressure zone

–

–

–
–+

+

+
+

High-pressure zone

FIGURE 11.7

Flow pattern around a cylinder 

for Re > 5 × 105.

V0

Low-pressure zone

–

–
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–

–
–+

+
+
+
+

+

High-pressure zone

FIGURE 11.6

Flow pattern around a cylinder 

for 103 < Re < 105.
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Drag Data

An object is classifi ed as an axisymmetric body when the fl ow direction is parallel to an axis of 
symmetry of the body and the resulting fl ow is also symmetric about its axis. Examples of axi-
symmetric bodies include a sphere, a bullet, and a javelin. When fl ow is not aligned with an axis 
of symmetry, the fl ow fi eld is three-dimensional (3-D), and the body is classifi ed as a 3-D body. 
Examples of 3-D bodies include a tree, a building, and an automobile.

Th e principles that apply to two-dimensional fl ow over a body also apply to axisymmetric 
fl ows. For example, at very low values of the Reynolds number, the coeffi  cient of drag is given 
by exact equations relating CD and Re. At high values of Re, the coeffi  cient of drag becomes 
constant for angular bodies, whereas rather abrupt changes in CD occur for rounded bodies. 
All these characteristics can be seen in Fig. 11.9, where CD is plotted against Re for several 
axisymmetric bodies.

Th e drag coeffi  cient of a sphere is of special interest because many applications involve 
the drag of spherical or near-spherical objects, such as particles and droplets. Also, the drag 
of a sphere is oft en used as a standard of comparison for other shapes. For Reynolds numbers 
less than 0.5, the fl ow around the sphere is laminar and amenable to analytical solutions. An 
exact solution by Stokes yielded the following equation, which is called Stokes’s equation, for 
the drag of a sphere:
 FD = 3πμV0 d (11.7)

Note that the drag for this laminar fl ow condition varies directly with the fi rst power of V0. Th is 
is characteristic of all laminar fl ow processes. For completely turbulent fl ow, the drag is a func-
tion of the velocity to the second power. When the drag force given by Eq. (11.7) is substituted 
into Eq. (11.6), the result is the drag coeffi  cient corresponding to Stokes’s equation:

 CD =
24
Re

 (11.8)
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FIGURE 11.8

Effects of roughness on CD for a cylinder. 

[After Miller et al. (7).]
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Th us for fl ow past a sphere, when Re ≤ 0.5, one may use the direct relation for CD given in 
Eq. (11.8).

Several correlations for the drag coeffi  cient of a sphere are available (13). One such 
correlation has been proposed by Clift  and Gauvin (14):

 CD =
24
Re

(1 + 0.15Re0.687) +
0.42

1 + 4.25 × 104 Re−1.16 (11.9)

which deviates from the standard drag curve* by −4% to 6% for Reynolds numbers up to 
3 × 105. Note that as the Reynolds number approaches zero, this correlation reduces to the 
equation for Stokes fl ow.

Values for CD for other axisymmetric and 3-D bodies at high Reynolds numbers 
(Re > 104) are given in Table 11.1. Extensive data on the drag of various shapes is available 
in Hoerner (15).

To fi nd the drag force on an object, fi nd or estimate the coeffi  cient of drag and then apply 
the drag force equation. Th is approach is illustrated by Example 11.2.
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FIGURE 11.9

Coeffi cient of drag versus Reynolds 

number for axisymmetric bodies. [Data 

sources: Abbott (9), Brevoort and Joyner 

(10), Freeman (11), and Rouse (12).]

*Th e standard drag curve represents the best fi t of the cumulative data that have been obtained for drag coeffi  cient of 
a sphere.
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TABLE 11.1 Approximate CD Values for Various Bodies

Type of Body Length Ratio Re CD

b

b

l

Rectangular plate l/b = 1
l/b = 5
l/b = 10
l/b = 20
l/b = ∞

>104

>104

>104

>104

>104

1.18
1.20
1.30
1.50
1.98

d

l

Circular cylinder with 
 axis parallel to fl ow

l/d = 0 (disk)
l/d = 0.5
l/d = 1
l/d = 2
l/d = 4
l/d = 8

>104

>104

>104

>104

>104

>104

1.17
1.15
0.90
0.85
0.87
0.99

Square rod ∞ >104 2.00

Square rod ∞ >104 1.50

60° Triangular cylinder ∞ >104 1.39

Semicircular shell ∞ >104 1.20

Semicircular shell ∞ >104 2.30

Hemispherical shell >104 0.39

Hemispherical shell >104 1.40

Cube >104 1.10

Cube >104 0.81

Cone—60° vertex >104 0.49

Parachute ≈3 × 107 1.20

Sources: Brevoort and Joyner (10), Lindsey (6), Morrison (16), Roberson et al. (17), Rouse (12), and 
Scher and Gale (18).
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Power and Rolling Resistance

When power is involved in a problem, the power equation from Chapter 7 is applied. For 
example, consider a car moving at a steady speed on a level road. Because the car is not ac-
celerating, the horizontal forces are balanced as shown in Fig. 11.10. Force equilibrium gives

FDrive = FDrag + FRolling resistance

Th e driving force (FDrive) is the frictional force between the driving wheels and the road. 
Th e drag force is the resistance of the air on the car. Th e rolling resistance is the frictional force 
that occurs when an object such as a ball or tire rolls. It is related to the deformation and types 
of the materials that are in contact. For example, a rubber tire on asphalt will have a larger roll-
ing resistance than a steel train wheel on a steel rail. Th e rolling resistance is calculated using

FRolling resistance = Fr = Cr N (11.10)

where Cr is the coeffi  cient of rolling resistance and N is the normal force.
Th e power required to move the car shown in Fig. 11.10 at a constant speed is given by 

Eq. (7.2a)

 P = FV = FDriveVCar = (FDrag + FRolling resistance)VCar (11.11)

Th us, when power is involved in a problem, apply the equation P = FV while concurrently 
using a free body diagram to determine the appropriate force. Th is approach is illustrated in 
Example 11.3.

EXAMPLE 11.2

Drag on a Sphere

Problem Statement

What is the drag of a 12 mm sphere that drops at a rate of 8 cm/s 
in oil (μ = 10–1 N∙s/m2, SG = 0.85)?

Defi ne the Situation

A sphere (d = 0.012 m) is falling in oil.
Speed of the sphere is V = 0.08 m/s.

Assumptions: Th e sphere is moving at a steady speed 
(terminal velocity).

Properties:
Oil: μ = 10–1 N∙s/m2, S = 0.85, ρ = 850 kg/m3

State the Goal

Find: Drag force (in newtons) on the sphere.

Generate Ideas and Make a Plan

1. Calculate the Reynolds number.
2. Find the coeffi  cient of drag using Fig. 11.9.
3. Calculate drag force using Eq. (11.5).

Take Action (Execute the Plan)

1. Reynolds number:

Re =
Vdρ

μ
=

(0.08 m/s)(0.012 m)(850 kg/m3)

10−1 N ∙ s/m2 = 8.16

2. Coeffi  cient of drag (from Fig. 11.9) is CD = 5.3.
3. Drag force:

FD =
CD Ap ρV 2

0

2
 

FD =
(5.3) (π/4) (0.0122 m2) (850 kg/m3) (0.08 m/s)2

2
 

= 1.63 × 10−3 N 

FDrive FRolling resistance

FDrag

FIGURE 11.10

Horizontal forces acting on car that 

is moving at a steady speed.
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11.4 Terminal Velocity

Another common application of the drag force equation is fi nding the steady state speed of a 
body that is falling through a fl uid. When a body is dropped, it accelerates under the action 
of gravity. As the speed of the falling body increases, the drag increases until the upward force 
(drag) equals the net downward force (weight minus buoyant force). Once the forces are bal-
anced, the body moves at a constant speed called the terminal velocity, which is identifi ed as 
the maximum velocity attained by a falling body.

To fi nd terminal velocity, balance the forces acting on the object, and then solve the result-
ing equation. In general, this process is iterative, as illustrated by Example 11.4.

EXAMPLE 11.3

Speed of a Bicycle Rider

Problem Statement

A bicyclist of mass 70 kg supplies 300 watts of power while 
riding into a 3 m/s headwind. Th e frontal area of the cyclist 
and bicycle together is 3.9 ft 2 = 0.362 m2, the drag coeffi  cient 
is 0.88, and the coeffi  cient of rolling resistance is 0.007. 
Determine the speed Vc of the cyclist. Express your answer 
in mph and in m/s.

Cyclist

Vc + Vw

Cr = 0.007

m = 70 kg
P = 300 W
CD = 0.88
A = 0.362 m2

Defi ne the Situation

A bicyclist is pedaling into a headwind of magnitude 
Vw = 3 m/s.

Assumptions:
1. Th e path is level, with no hills.
2. Mechanical losses in the bike gear train are zero.

Properties: Air (20°C, 1 atm): Table A.2, ρ = 1.2 kg/m3

State the Goal

Find the speed (m/s and mph) of the rider.

Generate Ideas and Make a Plan

1. Relate bike speed (Vc) to power using Eq. (11.11).
2. Calculate rolling resistance.
3. Develop an equation for drag force using Eq. (11.5).
4. Combine steps 1 to 3.
5. Solve for Vc.

Take Action (Execute the Plan)

1. Power equation:
•  Th e power from the bike rider is being used to over-

come drag and rolling resistance. Th us,

P = (FD + Fr)Vc

2. Rolling resistance:

Fr = Cr N = Cr mg = 0.007(70 kg) (9.81 m/s2) = 4.81 N
3. Drag force:

• V0 = speed of the air relative to the bike rider

V0 = Vc + 3 m/s
• Drag force:

 FD = CD A(ρV 2
0

2 ) =
0.88(0.362 m2) (1.2 kg/m3)

2
  × (Vc + 3 m/s)2

 = 0.1911(Vc + 3 m/s)2

4. Combine results:

 P = (FD + Fr)Vc

 300 W = (0.1911(Vc + 3)2 + 4.81)Vc

5.  Because the equation is 
cubic, use a spreadsheet 
program as shown. In 
this spreadsheet, let Vc 
vary, and then search 
for the value of Vc that 
causes the right side of 
the equation to equal 
300. Th e result is

Vc =  9.12 m/s = 20.4 mph

Vc RHS

(m/s) (W)

0 0.0

5 85.2
8 223.5
9 291.0

9.1 298.4
9.11 299.1
9.12 299.9
9.13 300.6
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EXAMPLE 11.4

Terminal Velocity of a Sphere in Water

Problem Statement

A 20 mm plastic sphere (SG = 1.3) is dropped in water. 
Determine its terminal velocity. Assume T = 20°C.

Defi ne the Situation

A smooth sphere (D = 0.02 m, SG = 1.3) is falling in water.

Properties: Water (20°C): Table A.5, v = 1 × 10–6 m2/s, 
ρ = 998 kg/m3, and γ = 9790 N/m3

State the Goal

Find the terminal velocity (m/s) of the sphere.

Generate Ideas and Make a Plan

Th is problem requires an iterative solution because the terminal 
velocity equation is implicit. Th e plan steps are as follows:

1. Apply force equilibrium.
2. Develop an equation for terminal velocity.
3.  To solve the terminal velocity equation, set up a 

procedure for iteration.
4.  To implement the iterative solution, build a table in a 

spreadsheet program.

Take Action (Execute the Plan)

1. Force equilibrium:
• Sketch a free body diagram.

FD = CD Ap    V 2 /2

FB =      V

W =   sV

w

ρ

γ

γ

• Apply force equilibrium (vertical direction):

FDrag + FBuoyancy = W

2. Terminal velocity equation:
• Analyze terms in the equilibrium equation:

 CD A(ρV 2
0

2 ) + γw V = γsV

 CD(πd 2

4 )(ρV 2
0

2 ) + γw(πd 3

6 ) = γs(πd 3

6 )

• Solve for V0:

 V0 = [ (γs − γw)(4/3)d
CDρw

]
1/2

 = [ (12.7 − 9.79)(103 N/ m3)(4/3)(0.02 m)

CD × 998 kg/m3 ]
1/2

 V0 =(0.0778
CD

)
1/2

=
0.279
CD

1/2  m/s

3. Iteration 1
• Initial guess: V0 = 1.0 m/s
• Calculate Re:

Re =
Vd
v

=
(1.0 m/s)(0.02 m)

1 × 10−6 m2/s
= 20000

• Calculate CD using Eq. (11.9):

CD =
24

20000
(1 + 0.15(200000.687))

+
0.42

1 + 4.25 × 104(20000)−1.16 = 0.456

• Find new value of V0 (use equation from step 2):

V0 = (0.0778
CD

)
1/2

=
0.279

0.4560.5 = 0.413 m/s

4. Iterative solution
•  As shown, use a spreadsheet program to build a table. 

Th e fi rst row shows the results of iteration 1.
•  Th e terminal velocity from iteration 1 V0 = 0.413 m/s 

is used as the initial velocity for iteration 2.
•  Th e iteration process is repeated until the terminal 

velocity reaches a constant value of V0 = 0.44 m/s. 
Notice that convergence is reached in two iterations.

V0 = 0.44 m/s

Iteration # Initial V0 Re CD New V0

(m/s) (m/s)

1 1.000 20000 0.456 0.413

2 0.413 8264 0.406 0.438
3 0.438 8752 0.409 0.436
4 0.436 8721 0.409 0.436
5 0.436 8723 0.409 0.436
6 0.436 8722 0.409 0.436
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11.5 Vortex Shedding

Th is section introduces vortex shedding, which is important for two reasons: It can be used 
to enhance heat transfer and mixing, and it can cause unwanted vibrations and failures of 
structures.

Flow past a bluff  body generally produces a series of vortices that are shed alternatively 
from each side, thereby producing a series of alternating vortices in the wake. Th is phenom-
enon is call vortex shedding. Vortex shedding for a cylinder occurs for Re ≳ 50 and gives the 
fl ow pattern sketched in Fig. 11.11. In this fi gure, a vortex is in the process of formation near 
the top of the cylinder. Below and to the right of the fi rst vortex is another vortex, which was 
formed and shed a short time before. Th us the fl ow process in the wake of a cylinder involves 
the formation and shedding of vortices alternately from one side and then the other. Th is 
alternate formation and shedding of vortices creates a cyclic change in pressure with conse-
quent periodicity in side thrust on the cylinder. Vortex shedding was the primary cause of 
failure of the Tacoma Narrows suspension bridge in the state of Washington in 1940.

Experiments reveal that the frequency of shedding can be represented by plotting Strouhal 
number (St) as a function of Reynolds number. Th e Strouhal number is a π-group defi ned as

 St =
nd
V0

 (11.12)

where n is the frequency of shedding of vortices from one side of the cylinder, in Hz, d is the 
diameter of the cylinder, and V0 is the free stream velocity. Th e Strouhal number for vortex 
shedding from a circular cylinder is given in Fig. 11.12. Other cylindrical and two-dimensional 
bodies also shed vortices. Consequently, the engineer should always be alert to vibration prob-
lems when designing structures that are exposed to wind or water fl ow.

V0

FIGURE 11.11

Formation of a vortex behind a cylinder.
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Strouhal number versus Reynolds 

number for fl ow past a circular cylinder. 

[After Jones (5) and Roshko (8).]
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11.7 Drag in Compressible Flow

So far, this chapter has described drag for fl ows with constant density. Th is section describes 
drag when the density of a gas is changing due to pressure variations. Th ese types of fl ow are 
called compressible fl ows. Th is information is important for modeling of projectiles such as 
bullets and rockets.

11.6 Reducing Drag by Streamlining

An engineer can design a body shape to minimize the drag force. Th is process is called stream-
lining and is oft en focused on reducing form drag. Th e reason for focusing on form drag is 
that drag on most bluff  objects (e.g., a cylindrical body at Re > 1000) is predominantly due 
to the pressure variation associated with fl ow separation. In this case, streamlining involves 
modifying the body shape to reduce or eliminate separation. Th e impacts of streamlining can 
be dramatic. For example, Fig. 11.5 shows that CD for the streamlined shape is about 1/6 of CD 
for the circular cylinder when Re ≈ 5 × 105.

While streamlining reduces form drag, friction drag is typically increased. Th is is because 
there is more surface area on a streamlined body as compared to a nonstreamlined body. Con-
sequently, when a body is streamlined the optimum condition results when the sum of form 
drag and friction drag is minimum.

Streamlining to produce minimum drag at high Reynolds numbers will probably not pro-
duce minimum drag at very low Reynolds numbers. For example, at Re < 1, the majority of 
the drag of a cylinder is friction drag. Hence, if the cylinder is streamlined, the friction drag 
will likely be magnifi ed, and CD will increase.

Another advantage of streamlining at high Reynolds numbers is that vortex shedding is 
eliminated. Example 11.5 shows how to estimate the impact of streamlining by using a ratio 
of CD values.

EXAMPLE 11.5

Comparing Drag on Bluff and Streamlined Shapes

Problem Statement

Compare the drag of the cylinder of Example 11.1 with the 
drag of the streamlined shape shown in Fig. 11.5. Assume that 
both shapes have the same projected area.

Defi ne the Situation

Th e cylinder from Example 11.1 is being compared to a 
streamlined shape.

Assumptions:
1.  Th e cylinder and the streamlined body have the same 

projected area.
2.  Both objects are two-dimensional bodies (neglect end 

eff ects).

State the Goal

Find the ratio of drag force on the streamlined body to drag 
force on the cylinder.

Generate Ideas and Make a Plan

1. Retrieve Re and CD from Example 11.1.

2.  Find the coeffi  cient of drag for the streamlined shape 
using Fig. 11.5.

3. Calculate the ratio of drag forces using Eq. (11.5).

Take Action (Execute the Plan)

1.  From Example 11.1, Re = 7 × 105 and 
CD (cylinder) = 0.2.

2.  Using this Re and Fig. 11.5 gives CD (streamlined 
shape) = 0.034.

3. Drag force ratio (derived from Eq. 11.5) is

FD (streamlined shape)

FD (cylinder)
=

CD (streamlined shape)

CD (cylinder)

 × (
Ap(ρV 2

0/2)

Ap(ρV 2
0/2))

FD (streamlined shape)

FD (cylinder)
=

0.034
0.2

=  0.17

Review the Results and the Process

Discussion. Th e streamlining provided nearly a sixfold 
reduction in drag!
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In steady fl ow, the infl uence of compressibility depends on the ratio of fl uid velocity to the 
speed of sound. Th is ratio is a π-group called the Mach number.

Th e variation of drag coeffi  cient with Mach number for three axisymmetric bodies is 
shown in Fig. 11.13. In each case, the drag coeffi  cient increases only slightly with the Mach 
number at low Mach numbers and then increases sharply as transonic fl ow (M ≈ 1) is 
approached. Note that the rapid increase in drag coeffi  cient occurs at a higher Mach number 
(closer to unity) if the body is slender with a pointed nose. Th e drag coeffi  cient reaches a 
maximum at a Mach number somewhat larger than unity and then decreases as the Mach 
number is further increased.

Th e slight increase in drag coeffi  cient with low Mach numbers is attributed to an increase in 
form drag due to compressibility eff ects on the pressure distribution. However, as the fl ow veloc-
ity is increased, the maximum velocity on the body fi nally becomes sonic. Th e Mach number of 
the free stream fl ow at which sonic fl ow fi rst appears on the body is called the critical Mach num-
ber. Further increases in fl ow velocity result in local regions of supersonic fl ow (M > 1), which 
lead to wave drag due to shock wave formation and an appreciable increase in drag coeffi  cient.

Th e critical Mach number for a sphere is approximately 0.6. Note in Fig. 11.13 that the 
drag coeffi  cient begins to rise sharply at about this Mach number. Th e critical Mach number 
for the pointed body is larger; correspondingly, the rise in drag coeffi  cient occurs at a Mach 
number closer to unity.

Th e drag coeffi  cient data for the sphere shown in Fig. 11.13 are for a Reynolds number of 
the order of 104. Th e data for the sphere shown in Fig. 11.9, on the other hand, are for very low 
Mach numbers. Th e question then arises about the general variation of the drag coeffi  cient of 
a sphere with both Mach number and Reynolds number. Information of this nature is oft en 
needed to predict the trajectory of a body through the upper atmosphere or to model the 
motion of a nanoparticle.

A contour plot of the drag coeffi  cient of a sphere versus both Reynolds and Mach numbers 
based on available data (19) is shown in Fig. 11.14. Notice the CD-versus-Re curve from Fig. 
11.9 in the M = 0 plane. Correspondingly, notice the CD-versus-M curve from Fig. 11.13 in 
the Re = 104 plane. At low Reynolds numbers CD decreases with an increasing Mach number, 
whereas at high Reynolds numbers the opposite trend is observed. Using this fi gure, the engi-
neer can determine the drag coeffi  cient of a sphere at any combination of Re and M. Of course, 
corresponding CD contour plots can be generated for any body, provided the data are available.

11.8 The Theory of Lift

Th is section introduces circulation, the basic cause of lift , as well as the coeffi  cient of lift .
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Circulation

Circulation, a characteristic of a fl ow fi eld, gives a measure of the average rate of rotation of fl uid 
particles that are situated in an area that is bounded by a closed curve. Circulation is defi ned by 
the path integral, as shown in Fig. 11.15. Along any diff erential segment of the path, the velocity 
can be resolved into components that are tangent and normal to the path. Signify the tangential 
component of velocity as VL. Integrate VL dL around the curve. Th e resulting quantity is called 
circulation, which is represented by the Greek letter Γ (capital gamma). Hence,

 Γ = ∮ VL dL (11.13)

Sign convention dictates that in applying Eq. (11.13), one uses tangential velocity vectors 
that have a counterclockwise sense around the curve as negative and take those that have 
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a clockwise direction as having a positive contribution.* For example, consider fi nding the 
circulation for an irrotational vortex. Th e tangential velocity at any radius is C/r, where a 
positive C means a clockwise rotation. Th erefore, if circulation is evaluated about a curve 
with radius r, the diff erential circulation is

 dΓ = VL dL =
C
r1

r1 dθ = C dθ (11.14)

Integrate this around the entire circle:

 Γ = ∫
2π

0

C dθ = 2πC (11.15)

One way to induce circulation physically is to rotate a cylinder about its axis. Fig. 11.16a 
shows the fl ow pattern produced by such action. Th e velocity of the fl uid next to the surface 
of the cylinder is equal to the velocity of the cylinder surface itself because of the no-slip 
condition that must prevail between the fl uid and solid. At some distance from the cylinder, 
however, the velocity decreases with r, much like it does for the irrotational vortex. Th e next 
section shows how circulation produces lift .

Combination of Circulation and Uniform 

Flow around a Cylinder

Superpose the velocity fi eld produced for uniform fl ow around a cylinder, Fig. 11.16b, onto a ve-
locity fi eld with circulation around a cylinder, Fig. 11.16a. Observe that the velocity is reinforced 
on the top side of the cylinder and reduced on the other side (Fig. 11.16c). Also observe that the 
stagnation points have both moved toward the low-velocity side of the cylinder. Consistent with 
the Bernoulli equation (assuming irrotational fl ow throughout), the pressure on the high-velocity 
side is lower than the pressure on the low-velocity side. Hence, a pressure diff erential exists that 

*Th e sign convention is the opposite of that for the mathematical defi nition of a line integral.

High velocity, low pressure

Stagnation points

Reduced velocity, high pressure

(a) (b)

(c)

FIGURE 11.16

Ideal fl ow around a cylinder:

(a) circulation, (b) uniform fl ow, (c) combination 

of circulation and uniform fl ow.
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causes a side thrust, or lift , on the cylinder. According to ideal fl ow theory, the lift  per unit length 
of an infi nitely long cylinder is given by FL/ℓ = ρV0Γ, where FL is the lift  on the segment of 
length ℓ. For this ideal irrotational fl ow, there is no drag on the cylinder. For the real fl ow case, 
separation and viscous stresses do produce drag, and the same viscous eff ects will reduce the lift  
somewhat. Even so, the lift  is signifi cant when fl ow occurs past a rotating body or when a body is 
translating and rotating through a fl uid. Hence, the reason for the “curve” on a pitched baseball 
or the “drop” on a Ping-Pong ball is a fore spin. Th is phenomenon of lift  produced by rotation of 
a solid body is called the Magnus effect aft er a nineteenth-century German scientist who made 
early studies of the lift  on rotating bodies. A paper by Mehta (28) off ers an interesting account of 
the motion of rotating sports balls.

Coeffi  cients of lift  and drag for the rotating cylinder with end plates are shown in Fig. 11.17. 
In this fi gure, the parameter rω/V0 is the ratio of cylinder surface speed to the free stream 
velocity, where r is the radius of the cylinder and ω is the angular speed in radians per second. 
Th e corresponding curves for the rotating sphere are given in Fig. 11.18.

Coeffi cient of Lift

Th e coefficient of lift is a parameter that characterizes the lift  that is associated with a body. 
For example, a wing at a high angle of attack will have a high coeffi  cient of lift , and a wing 
that has a zero angle of attack will have a low or zero coeffi  cient of lift . Th e coeffi  cient of lift  is 
defi ned using a π-group:

 CL ≡
FL

A(ρV 2
0/2)

=
lift force

(reference area)(dynamic pressure)
 (11.16)

To calculate lift  force, engineers use the lift  equation:

 FL = CLA(ρV 2
0

2 ) (11.17)

where the reference area for a rotating cylinder or sphere is the projected area Ap.
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11.9 Lift and Drag on Airfoils

Th is section presents information on how to calculate lift  and drag on winglike objects. Some 
typical applications include calculating the takeoff  weight of an airplane, determining the size 
of wings needed, and estimating power requirements to overcome drag force.

Lift of an Airfoil

An airfoil is a body designed to produce lift  from the movement of fl uid around it. Specifi -
cally, lift  is a result of circulation in the fl ow produced by the airfoil. To see this, consider the 
fl ow of an ideal fl ow (nonviscous and incompressible) past an airfoil as shown in Fig. 11.19a. 
Here, as for irrotational fl ow past a cylinder, the lift  and drag are zero. Th ere is a stagnation 
point on the bottom side near the leading edge, and another on the top side near the trailing 
edge of the foil. In the real fl ow (viscous fl uid) case, the fl ow pattern around the upstream half 
of the foil is plausible. However, the fl ow pattern in the region of the trailing edge, as shown in 
Fig. 11.19a, cannot occur. A stagnation point on the upper side of the foil indicates that fl uid 
must fl ow from the lower side around the trailing edge and then toward the stagnation point. 
Such a fl ow pattern implies an infi nite acceleration of the fl uid particles as they turn the corner 
around the trailing edge of the wing. Th is is a physical impossibility, and separation occurs at 
the sharp edge. As a consequence of the separation, the downstream stagnation point moves 

EXAMPLE 11.6

Lift on a Rotating Sphere

Problem Statement

A Ping-Pong ball is moving at 10 m/s in air and is spinning 
at 100 revolutions per second in the clockwise direction. Th e 
diameter of the ball is 3 cm. Calculate the lift  and drag force 
and indicate the direction of the lift  (up or down). Th e density 
of air is 1.2 kg/m3.

Defi ne the Situation

A Ping-Pong ball is moving horizontally and rotating.

628 rad/s
10 m/s

Properties: Air: ρ = 1.2 kg/m3

State the Goal

Find:
1. Drag force (in newtons) on the ball
2. Lift  force (in newtons) on the ball
3. Th e direction of lift  (up or down?)

Generate Ideas and Make a Plan

1. Calculate the value of rω/V0.
2.  Use the value of rω/V0 to look up the coeffi  cients of lift  

and drag on Fig. 11.7.
3. Calculate lift  force using Eq. (11.8).
4. Calculate drag force using Eq. (11.5).

Take Action (Execute the Plan)

Th e rotation rate in rad/s is
ω = (100 rev/s)(2π rad/rev) = 628 rad/s

Th e rotational parameter is

ωr
V0

=
(628 rad/s)(0.015 m)

10 m/s = 0.942

From Fig. 11.18, the lift  coeffi  cient is approximately 0.26, and 
the drag coeffi  cient is 0.64. Th e lift  force is

 FL =
1
2

ρV 2
0 CL Ap

 =
1
2

(1.2 kg/m3)(10 m/s)2(0.26)
π
4

(0.03 m)2

 =  1.10 × 10−2 N

Th e lift  force is downward. Th e drag force is

 FD =
1
2

ρV 2
0 CD Ap

 =  27.1 × 10−3 N
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to the trailing edge. Flow from both the top and bottom sides of the airfoil in the vicinity of 
the trailing edge then leaves the airfoil smoothly and essentially parallel to these surfaces at the 
trailing edge (Fig. 11.19b).

To bring theory into line with the physically observed phenomenon, it was hypothesized 
that a circulation around the airfoil must be induced in just the right amount so that the down-
stream stagnation point is moved all the way back to the trailing edge of the airfoil, thus al-
lowing the fl ow to leave the airfoil smoothly at the trailing edge. Th is is called the Kutta con-
dition (21), named aft er a pioneer in aerodynamic theory. When analyses are made with this 
simple assumption concerning the magnitude of the circulation, very good agreement occurs 
between theory and experiment for the fl ow pattern and the pressure distribution, as well as 
for the lift  on a two-dimensional airfoil section (no end eff ects). Ideal fl ow theory then shows 
that the magnitude of the circulation required to maintain the rear stagnation point at the trail-
ing edge (the Kutta condition) of a symmetric airfoil with a small angle of attack is given by

 Γ = πcV0 α (11.18)

where Γ is the circulation, c is the chord length of the airfoil, and α is the angle of attack of the 
chord of the airfoil with the free stream direction (see Fig. 11.20 for a defi nition sketch).

Like that for the cylinder, the lift  per unit length for an infi nitely long wing is

FL/ℓ = ρV0 Γ

Th e planform area for the length segment ℓ is ℓc. Hence, the lift  on segment ℓ is

 FL = ρV 2
0 πcℓα (11.19)

For an airfoil, the coeffi  cient of lift  is

 CL =
FL

SρV 2
0/2

 (11.20)

Stagnation point

Stagnation point

Stagnation point

(a)

(b)

FIGURE 11.19

Patterns of fl ow around an airfoil: (a) ideal fl ow—no 

circulation; (b) real fl ow—circulation.
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FIGURE 11.20

Defi nition sketch for an airfoil section.
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where the reference area S is the planform area of the wing—that is, the area seen from the 
plan view. On combining Eqs. (11.18) and (11.19) and identifying S as the area associated 
with length segment ℓ, one fi nds that CL for irrotational fl ow past a two-dimensional airfoil 
is given by

 CL = 2πα (11.21)

Equations (11.19) and (11.21) are the theoretical lift equations for an infinitely long 
airfoil at a small angle of attack. Flow separation near the leading edge of the airfoil produces 
deviations (high drag and low lift ) from the ideal fl ow predictions at high angles of attack. Th ere-
fore, experimental wind-tunnel tests are always made to evaluate the performance of a given 
type of airfoil section. For example, the experimentally determined values of lift  coeffi  cient 
versus α for two NACA (National Advisory Committee for Aeronautics) airfoils are shown in 
Fig. 11.21. Note in this fi gure that the coeffi  cient of lift  increases with the angle of attack, α, to 
a maximum value and then decreases with further increase in α. Th is condition, where CL starts 
to decrease with a further increase in α, is called stall. Stall occurs because of the onset of 
separation over the top of the airfoil, which changes the pressure distribution so that it not only 
decreases lift  but also increases drag. Data for many other airfoil sections are given by Abbott 
and Von Doenhoff  (22).

Airfoils of Finite Length—Effect on Drag and Lift

Th e drag of a two-dimensional foil at a low angle of attack (no end eff ects) is primarily viscous 
drag. However, wings of fi nite length also have an added drag and a reduced lift  associated 
with vortices generated at the wing tips. Th ese vortices occur because the high pressure below 
the wing and the low pressure on top cause fl uid to circulate around the end of the wing from 
the high-pressure zone to the low-pressure zone, as shown in Fig. 11.22. Th is induced fl ow 
has the eff ect of adding a downward component of velocity, w, to the approach velocity V0. 
Hence, the “eff ective” free stream velocity is now at an angle (ϕ ≈ w/V0) to the direction of 
the original free stream velocity, and the resultant force is tilted back as shown in Fig. 11.23. 
Th us, the eff ective lift  is smaller than the lift  for the infi nitely long wing because the eff ective 
angle of incidence is smaller. Th is resultant force has a component parallel to V0 that is called 
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the induced drag and is given by FLϕ. Prandtl (23) showed that the induced velocity w for an 
elliptical spanwise lift  distribution is given by the following equation:

 w =
2FL

πρV0b2 (11.22)

where b is the total length (or span) of the fi nite wing. Hence,

 FDi = FLϕ =
2F 2

L

πρV 2
0 b2 =

C 2
L

π  
S 2

b2 
ρV 2

0

2
 (11.23)

From Eq. (11.23), it can be easily shown that the coeffi  cient of induced drag, CDi, is given by

 CDi =
C 2

L

π(b2/S)
=

C 2
L

πΛ
 (11.24)

which happens to represent the minimum induced drag for any wing planform. Here, the ratio 
b2/S is called the aspect ratio Λ of the wing, and S is the planform area of the wing. Th us, for 
a given wing section (constant CL and constant chord c), longer wings (larger aspect ratios) 
have smaller induced-drag coeffi  cients. Th e induced drag is a signifi cant portion of the total 
drag of an airplane at low velocities and must be given careful consideration in airplane design. 
Aircraft  (such as gliders) and even birds (such as the albatross and gull) that are required to be 
airborne for long periods of time with minimum energy expenditure are noted for their long, 
slender wings. Such a wing is more effi  cient because the induced drag is small. To illustrate the 
eff ect of fi nite span, look at Fig. 11.24, which shows CL and CD versus α for wings with several 
aspect ratios.

Low-pressure region

Tip vortex Tip vortex

High-pressure region

– – –– ––– –

+ + + +
+++++

FIGURE 11.22

Formation of tip vortices.

Induced drag, FDi = FLφ

Resultant force, Fr

(   –   )
w

V0

Effective approach
velocity α

α
φ

φ

FIGURE 11.23

Defi nition sketch for 

induced-drag relations.
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Th e total drag of a rectangular wing is computed by

 FD = (CD0 + CDi)
bcρV 2

0

2
 (11.25)

where CD0 is the coefficient of form drag of the wing section and CDi is the coefficient of 
induced drag.
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FIGURE 11.24

Coeffi cients of lift and drag for three wings with 

aspect ratios of 3, 5, and 7. [After Prandtl (23).]

EXAMPLE 11.7

Wing Area for an Airplane

Problem Statement

An airplane with a weight of 10,000 lbf is fl ying at 600 ft /s at 
36,000 ft , where the pressure is 3.3 psia and the temperature 
is –67°F. Th e lift  coeffi  cient is 0.2. Th e span of the wing is 54 ft . 
Calculate the wing area (in ft 2) and the minimum induced drag.

Defi ne the Situation

An airplane (W = 10,000 lbf) is traveling at V0 = 600 ft /s.
Coeffi  cient of lift  is CL = 0.2.
Wing span is b = 54 ft .

Properties: Atmosphere (36,000 ft ): T = – 67°F, 
p = 3.3 psia

State the Goal

• Calculate the required wing area (in ft 2).
• Find the minimum value of induced drag (in N).

Generate Ideas and Make a Plan

1.  Apply the idea gas law to calculate density of air.
2.  Apply force equilibrium to derive an equation for the 

required wing area.
3.  Calculate the coeffi  cient of induced drag with 

Eq. (11.24).
4. Calculate the drag using Eq. (11.25) with CD0 = 0.

Take Action (Execute the Plan)

1. Ideal gas law:

 ρ =
p

RT

 =
(3.3 lbf/in2)(144 in2/ft2)

(1716 ft-lbf/slug-°R)(−67 + 460°R)

 = 0.000705 slug/ft3

2. Force equilibrium:

W = FL =
1
2

ρV 2
0 CLS
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A graph showing CL and CD versus α is given in Fig. 11.25. Note in this graph that CD is 
separated into the induced-drag coeffi  cient CDi and the form-drag coeffi  cient CD0.

so

 S =
2W

ρV 2
0CL

 =
2 × 10,000 lbf

(0.000705 slug/ft3)(6002 ft2/s2)(0.2)

 =  394 ft2

3. Coeffi  cient of induced drag:

CDi =
C 2

L

π(b2

S )
=

0.22

π ( 542

394)
= 0.00172

4. Th e induced drag is

 Di =
1
2

ρV 2
0 CDi S

 =
1
2

(0.000705 slug/ft3)(600 ft/s)2(0.00172)(394 ft2)

 =  86.0 lbf
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FIGURE 11.25

Coeffi cients of lift and drag 

for a wing with an aspect 

ratio of 5. [After Prandtl (23).]

EXAMPLE 11.8

Takeoff Characteristics of an Airplane

Problem Statement

A light plane (weight = 10 kN) has a wingspan of 10 m and a 
chord length of 1.5 m. If the lift  characteristics of the wing are 
like those given in Fig. 11.24, what must be the angle of attack 
for a takeoff  speed of 140 km/h? What is the stall speed? 
Assume two passengers at 800 N each and standard 
atmospheric conditions.

Defi ne the Situation

•  An airplane (W = 10 kN) with two passengers 
W = 1.6 kN is taking off .

• Wing span is b = 10 m, and chord length is c = 1.5 m.
• Lift  coeffi  cient information is given by Fig. 11.24.
• Takeoff  speed is V0 = 140 km/h.

Assumptions:
1. Ground eff ects can be neglected.
2. Standard atmospheric conditions prevail.
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11.10 Lift and Drag on Road Vehicles

Early in the development of cars, aerodynamic drag was a minor factor in performance be-
cause normal highway speeds were quite low. Th us in the 1920s, coeffi  cients of drag for cars 
were around 0.80. As highway speeds increased and the science of metal forming became more 
advanced, cars took on a less angular shape, so that by the 1940s drag coeffi  cients were 0.70 and 
lower. In the 1970s, the average CD for U.S. cars was approximately 0.55. In the early 1980s, the 
average CD for American cars dropped to 0.45, and currently auto manufacturers are giving 
even more attention to reducing drag in designing their cars. All major U.S., Japanese, and 
European automobile companies now have models with CDs of about 0.33, and some companies 
even report CDs as low as 0.29 on new models. European manufacturers were the leaders in 
streamlining cars because European gasoline prices (including tax) have been, for a number of 
years, about three times those in the United States. Table 11.2 shows the CD for a 1932 Fiat and 
for other more contemporary car models.

Great strides have been made in reducing the drag coeffi  cients for passenger cars. How-
ever, signifi cant future progress will be very hard to achieve. One of the most streamlined cars 
was the “Bluebird,” which set a world land speed record in 1938. Its CD was 0.16. Th e minimum 
CD of well-streamlined racing cars is about 0.20. Th us, lowering the CD for passenger cars 
below 0.30 will require exceptional design and workmanship. For example, the underside of 
most cars is aerodynamically very rough (axles, wheels, muffl  er, fuel tank, shock absorbers, 
and so on). One way to smooth the underside is to add a panel to the bottom of the car, but 
then clearance may become a problem, and adequate dissipation of heat from the muffl  er may 
be hard to achieve. Other basic features of the automobile that contribute to drag but are not 

Properties: Air: ρ = 1.2 kg/m3

State the Goal

Find:

1. Angle of attack (in degrees)
2. Stall speed (in km/h)

Generate Ideas and Make a Plan

1. Find the lift  by applying force equilibrium.
2. Calculate the coeffi  cient of lift  using Eq. (11.20).
3. Find the angle of attack α from Fig. 11.24.
4.  Read the maximum angle of attack from Fig. 11.24, and 

then calculate the corresponding stall speed using the 
lift  force equation (11.17).

Take Action (Execute the Plan)

1.  Force equilibrium (y direction), so lift  = weight = 11.6 kN. 
2. Coeffi  cient of lift :

 CL =
FL

SρV 2
0/2

 =
11,600 N

(15 m2)(1.2 kg/m3)[(140,000/3600)2m2/s2]/2
 = 0.852

3. Th e aspect ratio is

Λ =
b
c

=
10
1.5

= 6.67

4. From Fig. 11.24, the angle of attack is

α = 7°

From Fig. 11.24, stall will occur when

CL = 1.18

Applying the lift  force equation gives

 FL = CL A(ρV 2
0

2 )
 11,600 = 1.18(15)(1.2

2 )(Vstall)
2

 Vstall = 33.0 m/s =  119 km/h

Review the Solution and the Process

Discussion. Notice that the stall speed (119 km/h) is less than 
the takeoff  speed (140 km/h).
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very amenable to drag-reduction modifi cations are interior airfl ow systems for engine cooling, 
wheels, exterior features such as rearview mirrors and antennas, and other surface protrusions. 
Th e reader is directed to references (24) and (25), which address the drag and lift  of road 
vehicles in more detail than is possible here.

To produce low-drag vehicles, the basic teardrop shape is an idealized starting point. Th is 
shape can be altered to accommodate the necessary functional features of the vehicle. For ex-
ample, the rear end of the teardrop shape must be lopped off  to yield an overall vehicle length 
that will be manageable in traffi  c and will fi t in our garages. Also, the shape should be wider 
than its height. Wind-tunnel tests are always helpful in producing the most effi  cient design. 
One such test was done on a three-eighths-scale model of a typical notchback sedan. Wind-
tunnel test results for such a sedan are shown in Fig. 11.26. Here, the centerline pressure dis-
tribution (distribution of CP) for the conventional sedan is shown by a solid line, and that for 
a sedan with a 68 mm rear-deck lip is shown by a dashed line. Clearly, the rear-deck lip causes 

TABLE 11.2 Coeffi cients of Drag for Cars

Make and Model Profi le CD

1932 Fiat Balillo 0.60

Volkswagen “Bug” 0.46

Plymouth Voyager 0.36

Toyota Paseo 0.31

Dodge Intrepid 0.31

Ford Taurus 0.30

Mercedes-Benz E320 0.29

Ford Probe V (concept car) 0.14

GM Sunraycer (experimental 
 solar vehicle)

0.12
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Without deck lip

With deck lip

Cp scale
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–

FIGURE 11.26

Effect of rear-deck lip on model surface. [The data are 

from Schenkel (25).]

Front vane

Rear vane
FIGURE 11.27

Racing car with negative-lift devices.

the pressure on the rear of the car to increase (CP is less negative), thereby reducing the drag 
on the car itself. It also decreases the lift , thereby improving traction. Of course, the lip itself 
produces some drag, and these tests show that the optimum lip height for greatest overall drag 
reduction is about 20 mm.

Research and development programs to reduce the drag of automobiles continue. As 
an entry in the PNGV (Partnership for a New Generation of Vehicles), General Motors 
(26) has exhibited a vehicle with a drag coeffi  cient as low as 0.163, which is approximately 
one-half that of the typical midsize sedan. Th ese automobiles will have a rear engine to 
eliminate the exhaust system underneath the vehicle and allow a fl at underbody. Cooling 
air for the engine is drawn in through inlets on the rear fenders and exhausted out the rear, 
reducing the drag due to the wake. Th e protruding rearview mirrors are also removed to 
reduce the drag. Th e cumulative eff ect of these design modifi cations is a sizable reduction 
in aerodynamic drag.

Th e drag of trucks can be reduced by installing vanes near the corners of the truck body to 
defl ect the fl ow of air more sharply around the corner, thereby reducing the degree of separa-
tion. Th is in turn creates a higher pressure on the rear surfaces of the truck, which reduces the 
drag of the truck.

One of the desired features in racing cars is the generation of negative lift  to improve the 
stability and traction at high speeds. An idea from Smith (27) is to generate negative gage pres-
sure underneath the car by installing a ground-eff ect pod. Th is is an airfoil section mounted 
across the bottom of the car that produces a venturi eff ect in the channel between the airfoil 
section and the road surface. Th e design of ground-eff ect vehicles involves optimizing design 
parameters to avoid separation and possible increase in drag. Another scheme to generate 
negative lift  is the use of vanes, as shown in Fig. 11.27. Sometimes “gurneys” are mounted on 
these vanes to reduce separation eff ects. Gurneys are small ribs mounted on the upper surface 
of the vanes near the trailing edge to induce local separation, reduce the separation on the 
lower surface of the vane, and increase the magnitude of the negative lift . As the speed of rac-
ing cars continues to increase, automobile aerodynamics will play an ever-increasing role in 
traction, stability, and control.
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EXAMPLE 11.9

Calculating Negative Lift on a Race Car

Problem Statement

Th e rear vane installed on the racing car of Fig. 11.27 is at an 
angle of attack of 8° and has characteristics like those given 
in Fig. 11.24. Estimate the downward thrust (negative lift ) 
and drag from the vane that is 1.5 m long and has a chord 
length of 250 mm. Assume the racing car travels at a speed of 
270 km/h on a track where normal atmospheric pressure and 
a temperature of 30°C prevail.

Defi ne the Situation

•  A racing car experiences downward lift  from a 
rear-mounted vane.

•  Vane overall length is 𝓁 = 1.5 m, and chord length is 
c = 0.25 m.

• Car speed is V0 = 270 km/h = 75 m/s.
Properties: Air: ρ = 1.17 kg/m3

State the Goal

Find:

• Downward lift  force from vane (in newtons)
• Drag force from vane (in newtons)

Generate Ideas and Make a Plan

1.  Find the coeffi  cient of lift  CL and the coeffi  cient of drag 
CD from Fig. 11.24.

2.  Calculate the downward force using the lift  force 
equation (11.17).

3. Calculate the drag using the drag force equation (11.5).

Take Action (Execute the Plan)

1. Th e aspect ratio is

Λ =
ℓ
c

=
1.5

0.25
= 6

From Fig. 11.24, the lift  and drag coeffi  cients are

CL = 0.93 and CD = 0.070

2. Lift  force equation:

 FL = CL A(ρV 2
0

2 )
 FL = 0.93 × 1.5 × 0.25 × 1.17 × (75)2/2

 =  1148 N

3. Drag force equation:

 FD = CD A(ρV 2
0

2 ) = (CD

CL
)FL

 FD = (0.070/0.93) × 1148
 =  86.4 N

Relating Lift and Drag to Stress 

Distributions

• When a body moves relative to a fl uid
• Th e drag force is the component of force that is parallel 

to the free stream.
• Th e lift  force is the component of force that is perpen-

dicular to the free stream.
• Th e lift  and drag forces are caused by the stress distri-

butions (pressure and shear stress) acting on the body. 
Integrating the stress distributions over area gives the lift  
and drag forces.

• Th e drag force has two parts:
• Form drag is due to pressure stresses acting on the 

body.
• Friction drag (also called skin friction) is due to shear 

stresses acting on the body.

Calculating and Understanding 

the Drag Force

• Drag force depends on four factors: shape of the body, 
size, fl uid density, and fl uid speed squared. Th ese four 
factors are related through the drag force equation:

FD = CD A(ρV 2
0

2 )
• Th e coeffi  cient of drag (CD), which characterizes the 

shape of a body, is a π-group defi ned by

CD ≡
FD

ARef (ρV 2
0/2)

=
(drag force)

(reference area)(kinetic pressure)

• (CD) is typically found by experiment and tabulated in 
engineering references. Objects are classifi ed into three 
categories: (a) 2-D bodies, (b) axisymmetric bodies, and 
(c) 3-D bodies.

11.11 Summarizing Key Knowledge
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• For a sphere, two useful equations follow.
• Stokes fl ow (ReD < 0.5):

CD =
24
Re

• Clift  and Gauvin correlation (ReD < 3 × 105):

CD =
24
Re

(1 + 0.15 Re0.687) +
0.42

1 + 4.25 × 104 Re−1.16

• Drag of bluff  bodies and streamlined bodies diff ers:
• A bluff  body is a body with fl ow separation when the 

Reynolds number is high enough. When fl ow separa-
tion occurs, the drag is mostly form drag.

• A streamlined body does not have separated fl ow. Con-
sequently, the drag force is mostly friction drag.

• (CD) for cylinders and spheres drops dramatically at Reyn-
olds numbers near 105 because the boundary layer changes 
from laminar to turbulent, moving the separation point 
downstream, reducing the wake region, and decreasing the 
form drag. Th is eff ect is called the drag crisis.

Rolling Resistance and Power

• To calculate the power to move a body such as a car or 
an airplane at a steady speed through a fl uid, the usual 
approach is as follows:
• Step 1. Draw a free body diagram.
• Step 2. Apply the power equation in the form P = FV, 

where F, the force in the direction of motion, is evalu-
ated from the free body diagram.

• Th e rolling resistance is the frictional force that occurs 
when an object such as a ball or tire rolls. Th e rolling 
resistance is calculated using

 FRolling resistance = Fr = Cr N (11.26)

where Cr is the coeffi  cient of rolling resistance and N is 
the normal force.

Finding Terminal Velocity

• Terminal velocity is the steady state speed of a body that 
is falling through a fl uid.

• When a body has reached terminal velocity, the forces 
are balanced. Th ese forces typically are weight, drag, and 
buoyancy.

• To fi nd terminal velocity, sum the forces in the direction 
of motion and solve the resulting equation. Th e solution 
process oft en needs to be done using iteration (tradi-
tional method) or using a computer program (modern 
method).

Vortex Shedding, Streamlining, and 

Compressible Flow

• Vortex shedding can cause benefi cial eff ects (better 
mixing, better heat transfer) and detrimental eff ects 
(unwanted structural vibrations, noise).
• Vortex shedding is when cylinders and bluff  bodies in 

a cross-fl ow produce vortices that are released alter-
nately from each side of the body.

• Th e frequency of vortex shedding depends on a 
π-group called the Strouhal number.

• Streamlining involves designing a body to minimize the 
drag force. Usually, streamlining involves designing to 
reduce or minimize fl ow separation for a bluff  body.

• In high-speed air fl ows, compressibility eff ects increase 
the drag.

The Lift Force

• Th e lift  force on a body depends on four factors: shape, 
size, density of the fl owing fl uid, and speed squared. Th e 
working equation is

FL = CL A(ρV 2
0

2 )
• Th e coeffi  cient of lift  (CL) is a π-group defi ned by

CL ≡
FL

ARef (ρV 2
0/2)

=
(drag force)

(reference area)(kinetic pressure)

• Circulation theory of lift . Th e lift  on an airfoil is due to 
the circulation produced by the airfoil on the surround-
ing fl uid. Th is circulatory motion causes a change in the 
momentum of the fl uid and a lift  on the airfoil.

• Th e lift  coeffi  cient for a symmetric two-dimensional 
wing (no tip eff ect) is

CL = 2πα

where α is the angle of attack (expressed in radians) and 
the reference area is the product of the chord and a unit 
length of wing.

• As the angle of attack increases, the fl ow separates, the 
airfoil stalls, and the lift  coeffi  cient decreases.

• A wing of fi nite span produces trailing vortices that reduce 
the angle of attack and produce an induced drag.

• Th e drag coeffi  cient corresponding to the minimum 
induced drag is

CDi =
C 2

L

π(b2/S)
=

C 2
L

πΛ

where b is the wing span and S is the planform area of 
the wing.
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Lift, Drag, and Stress Distribution (§11.1)

11.1 A hypothetical pressure coeffi  cient variation over a long 
(length normal to the page) plate is shown. What is the coef-
fi cient of drag for the plate in this orientation and with the given 
pressure distribution? Assume that the reference area is the 
surface area (one side) of the plate.

Plate

–2.0

–1.0

0

+1.0

V0

30°

Problem 11.1

PROBLEMS
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11.2 Flow is occurring past the square rod. Th e pressure coef-
fi cient values are as shown. From which direction do you think 
the fl ow is coming? (a) SW direction, (b) SE direction, (c) NW 
direction, or (d) NE direction.

W

N

E

S

–0.5
Cp = +1.0

–1.4

–0.4

Problem 11.2

11.3 Fill in the blanks for the following two statements:
A.  ____________ is associated with the viscous shear stress 

distribution.
  a. Form drag
  b. Friction drag
B. ____________ is associated with the pressure distribution.
  a. Form drag
  b. Friction drag.

11.4 Determine whether the following statement is true or false: 
In general, the drag force and the lift  force are perpendicular.

FLift

FDrag

Problem 11.4

11.5 Determine whether the following statement is true or false: 
In general, the lift  force is upward, and the drag force is horizon-
tal with respect to gravity.

Calculating the Drag Force (§11.2)

11.6 Determine whether the following statements are true or false.
a. Regarding CD, the primary dimensions are: M∙L

T 2

b.  In the context of calculating the drag force for a sphere, the 
formula for projected area is: A = 4πr2

11.7 A sphere is immersed in a fl owing fl uid. Th e velocity V is 
doubled. Also, the sphere diameter D is doubled. Figure out how 
much the drag force increases. Only V and D are changed; all other 
relevant variables remain constant. Th e sphere is stationary. Choose 
the closest answer: (a) 2x, (b) 4x, (c) 6x, (d) 8x, or (e) 16x.

V

Problem 11.7

11.8 Apply the grid method to each situation that follows.
a.  Use Eq. (11.5) to predict the drag force in newtons for an 

automobile that is traveling at V = 60 mph on a summer 
day. Assume that the frontal area is 2 m2 and the coeffi  cient 
of drag is CD = 0.4.

b.  Apply Eq. (11.5) to predict the speed in mph of a bicycle 
rider that is subject to a drag force of 5 lbf on a summer’s 
day. Assume the frontal area of the rider is A = 0.5 m2, and 
the coeffi  cient of drag is CD = 0.3.

11.9 Using the fi rst two sections in this chapter and using other 
resources, answer the questions that follow. Strive for depth, clarity, 
and accuracy. Also, strive for eff ective use of sketches, words, and 
equations.

a.  What are the four most important factors that infl uence the 
drag force?

b. How are stress and drag related?
c. What is form drag? What is friction drag?

11.10 Flow over a rectangular plate produces an average wall 
shear stress of 1.2 pascals. Calculate the friction drag in units of 
N. Th e plate dimensions are 1.5 m by 2.0 m. Th e plate is inclined 
at 20 degrees with respect to the free stream. Choose the closest 
answer (N): (a) 3.4, (b) 3.6, (c) 4.2, (d) 6.8, or (e) 7.2.

Flow

1.5 m

20°

Plate (1.5 × 2.0 m)

τo = 1.2 Pa

Problem 11.10

11.11 Use information in §11.2 and 11.3 to fi nd the coeffi  cient of 
drag for each case described.

a. A sphere is falling through water, and ReD = 10,000.
b.  Air is blowing normal to a very long circular cylinder, and 

ReD = 7,000.
c.  Wind is blowing normal to a billboard that is 20 ft  wide 

by 10 ft  high.
11.12 Determine whether the following statement is true or false: 
When an automobile moves through still air, the power to overcome 
fl uid dynamic drag varies as the speed of the automobile cubed.
11.13 Water is fl owing over a sphere. Th e Reynolds number 
based on sphere diameter is 20. Th e fl ow is steady. Calculate the 
coeffi  cient of drag. Choose the closest answer: (a) 0.4 or less, 
(b) 0.6, (c) 0.8, (d) 1.0, or (e) 2 or greater.
11.14 Estimate the drag of a thin square plate (3 m by 4 m) when 
it is towed through water (10°C). Assume a towing speed of 
about 5 m/s. Use Table 11.1 in §11.3.

a. Th e plate is oriented for minimum drag.
b. Th e plate is oriented for maximum drag.

11.15 A cooling tower, used for cooling recirculating water in 
a modern steam power plant, is 350 ft  high and 200 ft  average 
diameter. Estimate the drag on the cooling tower in a 150 mph 
wind (T = 60°F).
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350 ft

Problem 11.15

11.16 As shown, wind is blowing on a 55-gallon drum. Estimate 
the wind speed needed to tip the drum over. Work in SI units. 
Th e mass of the drum is 48 lbm, the diameter is 22.5 in., and the 
height is 34.5 in. Use Table 11.1 in §11.3.

Air

Vw

D

H

Problem 11.16

11.17 A circular billboard with a diameter of 4 m is exposed to 
the wind. Estimate the total force exerted on the structure by a 
wind that has a direction normal to the structure and a speed 
of 20 m/s. Assume T = 10°C and p = 101 kPa absolute. Use 
Table 11.1 in §11.3.
11.18 Consider a large rock situated at the bottom of a river 
and acted on by a strong current. Estimate a typical speed of the 
current that will cause the rock to move downstream along the 
bottom of the river. List and justify all assumptions. Show all 
calculations and work in SI units. Use Table 11.1 in §11.3.
11.19 What is the moment at the bottom of a fl agpole 20 m 
high and 20 cm in diameter in a 15 m/s wind? Th e atmospheric 
pressure is 100 kPa, and the temperature is 20°C.
11.20 Windstorms sometimes blow empty boxcars off  their 
tracks. Th e dimensions of one type of boxcar are shown. What 
minimum wind velocity normal to the side of the car would be 
required to blow the car over? Assume CD = 1.20.

Track gage = 1.44 m (4 ft, 8 in)

0.91 m (3 ft)

Weight = 190 kN (42,700 lbf)

14 m (45.9 ft)

4 m
(13.1 ft)

Problem 11.20

Drag on Axisymmetric and 3-D Bodies (§11.3)

11.21 Consider trends from Table 11.1 and Fig. 11.9 in order to 
classify these statements as true or false:

a.  A value of CD = 0.35 for a sports car would be a reasonable 
estimate.

b.  A value of CD = 0.5 for a swimming dolphin would be a 
reasonable estimate.

V = 30 m/s

(a)

(b)

Problem 11.21

11.22 Estimate the wind force on a billboard 12 ft  high and 36 ft  
wide when a 60 mph wind (T = 60°F) is blowing normal to it.
11.23 If Stokes’s law is considered valid below a Reynolds number 
of 0.5, what is the largest raindrop that will fall in accordance 
with Stokes’s law?
11.24 What drag is produced when a disk 0.75 m in diameter is 
submerged in water at 10°C and towed behind a boat at a speed 
of 4 m/s? Assume orientation of the disk so that maximum drag 
is produced.
11.25 A Ping-Pong ball of mass 2.6 g and diameter 38 mm is 
supported by an air jet. Th e air is at a temperature of 18°C and a 
pressure of 27 in.-Hg. What is the minimum speed of the air jet?

Nozzle

Air

Problem 11.25

11.26 A semiautomatic popcorn popper is shown. Aft er the 
unpopped corn is placed in screen S, the fan F blows air past 
the heating coils C and then past the popcorn. When the corn 
pops, its projected area increases; thus it is blown up and into a 
container. Unpopped corn has a mass of about 0.15 g per kernel 
and an average diameter of approximately 6 mm. When the corn 
pops, its average diameter is about 18 mm. Within what range of 
airspeeds in the chamber will the device operate properly?
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S
C

F

T = 150°C

Problem 11.26

Power, Energy, and Rolling Resistance (§11.3)

11.27 How much power is required to move a spherical-shaped 
submarine of diameter 1.5 m through seawater at a speed of 
10 knots? Assume the submarine is fully submerged.
11.28 A car is driving into a headwind. Calculate the power (in 
kW) that is required to overcome drag. A car is traveling due east 
at a steady speed of 30 m/s. Th e coeffi  cient of drag for the car is 
0.4 and the reference area is 1.5 m2. Th e wind is coming from 
the northeast at a steady speed of 10 m/s. Th e density of air is 
1.1 kg/m3. Choose the closest answer (kW): (a) 8.2 or less, (b) 11, 
(c) 14, (d) 17, or (e) 27 or greater.

Wind, Vw = 10 m/s

ARef = 1.5 m2

 = 1.1 kg/m3

Car, CD = 0.4

VC  = 30 m/s, 

45º

Problem 11.28

11.29 Estimate the energy in joules and kcal (food calories) that 
a runner supplies to overcome aerodynamic drag during a 10 km 
race. Th e runner runs a 6:30 pace (i.e., each mile takes 6 minutes 
and 30 seconds). Th e product of frontal area and coeffi  cient of 
drag is CD A = 8 ft 2. (One “food calorie” is equivalent to 4186 J.) 
Assume an air density of 1.22 kg/m3.
11.30 Estimate the additional power (in hp) required for the truck 
when it is carrying the rectangular sign at a speed of 30 m/s over 
that required when it is traveling at the same speed but is not 
carrying the sign.

Patrol truck

1.83 m

0.46 m

Problem 11.30

11.31 Estimate the added power (in hp) required for the car 
when the cartop carrier is used and the car is driven at 100 km/h 
in a 25 km/h headwind over that required when the carrier is not 
used in the same conditions.

1.2 m 1.5 m

20 cm

Problem 11.31

11.32 Th e resistance to motion of an automobile consists of 
rolling resistance and aerodynamic drag. Th e weight of an 
automobile is 3000 lbf, and it has a frontal area of 20 ft 2. Th e 
drag coeffi  cient is 0.30, and the coeffi  cient of rolling friction is 
0.02. Determine the percentage savings in gas mileage that one 
achieves when one drives at 55 mph instead of 65 mph on a level 
road. Assume an air temperature of 60°F.
11.33 A car coasts down a very long hill. Th e weight of the car 
is 2000 lbf, and the slope of the grade is 6%. Th e rolling friction 
coeffi  cient is 0.01. Th e frontal area of the car is 18 ft 2, and the 
drag coeffi  cient is 0.29. Th e density of the air is 0.002 slugs /ft 3. 
Find the maximum coasting speed of the car in mph.
11.34 An automobile with a mass of 1000 kg is driven up a hill 
where the slope is 3° (5.2% grade). Th e automobile is moving at 
30 m/s. Th e coeffi  cient of rolling friction is 0.02, the drag coef-
fi cient is 0.4, and the cross-sectional area is 4 m2. Find the power 
(in kW) needed for this condition. Th e air density is 1.2 kg/m3.
11.35 A bicyclist is coasting down a hill with a slope of 4° into a 
headwind (measured with respect to the ground) of 7 m/s. Th e 
mass of the cyclist and bicycle is 80 kg, and the coeffi  cient of roll-
ing friction is 0.02. Th e drag coeffi  cient is 0.5, and the projected 
area is 0.5 m2. Th e air density is 1.2 kg/m3. Find the speed of the 
bicycle in meters per second.
11.36 A bicyclist is capable of delivering 275 W of power to the 
wheels. How fast can the bicyclist travel in a 3 m/s headwind if his 
or her projected area is 0.5 m2, the drag coeffi  cient is 0.3, and the 
air density is 1.2 kg/m3? Assume the rolling resistance is negligible.
11.37 One way to reduce the drag of a blunt object is to install 
vanes to suppress the amount of separation. Such a procedure 
was used on model trucks in a wind tunnel study. For tests on a 
van-type truck without vanes the CD was 0.78. However, when 
vanes were installed around the top and side leading edges of the 
truck body (see the fi gure), a 25% reduction in CD was achieved. 
For a truck with a projected area of 8.36 m2, what reduction in 
drag force will be eff ected by installation of the vanes when the 
truck travels at 100 km/h? Assume standard atmospheric pressure 
and a temperature of 20°C.

Vanes

Problem 11.37
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Terminal Velocity (§11.4)

11.38 Suppose you are designing an object to fall through 
seawater with a terminal velocity of exactly 1 m/s. What variables 
will have the most infl uence on the terminal velocity? List these 
variables and justify your decisions.
11.39 A sphere is falling in a liquid. Calculate the terminal 
velocity in units of m/s. Th e projected area (i.e., reference area) 
is 10 cm2. Th e coeffi  cient of drag is 0.4. Th e mass of the sphere 
is 70 grams. Th e specifi c gravity of the liquid is 1.2. Choose 
the closest answer (m/s): (a)1.3, (b) 1.7, (c) 1.8, (d) 1.9, or 
(e) above 2.1.

AR = 10 cm2
CD = 0.4

VT 

m = 70 g
Liq: SG = 1.2

Problem 11.39

11.40 A grain of pollen is falling at terminal velocity. Th e fl uid is 
air. Calculate the coeffi  cient of drag. Idealize the pollen grain as a 
smooth sphere with a diameter of 50 microns. Th e terminal velocity 
is 6.0 cm/s. Th e air has a kinematic viscosity of 15.0 × 106 m2/s. 
Choose the closest answer: (a) 0.8, or less, (b) 1.8, (c) 18, (d) 88, 
or (e) 120 or greater.

Air

φ 50 μm

VT  = 6 cm/s 
v = 15E-6 m2/s 

Problem 11.40

11.41 Determine the terminal velocity in water (T = 10°C) of an 
8-cm ball that weighs 15 N in air.
11.42 Th is cube is weighted so that it will fall with one edge 
down as shown. Th e cube weighs 22.2 N in air. What will be its 
terminal velocity in water?

10
 cm

Problem 11.42

11.43 As shown, a 35 cm diameter emergency medicine parachute 
supporting a mass of 20 g is falling through air (20°C). Assume a 
coeffi  cient of drag of CD = 2.2, and estimate the terminal velocity 
V0. Use a projected area of (πD2)/4.

V0

Mass M

D

Problem 11.43

11.44 Consider a small air bubble (approximately 4 mm diameter) 
rising in a very tall column of liquid. Will the bubble accelerate 
or decelerate as it moves upward in the liquid? Will the drag of 
the bubble be largely skin friction or form drag? Explain.
11.45 A spherical rock weighs 30 N in air and 5 N in water. 
Estimate its terminal velocity as it falls in water (20°C).
11.46 A sphere 2 cm in diameter rises in oil at a velocity of 
1.5 cm/s. What is the specifi c weight of the sphere if the oil 
density is 900 kg/m3 and the dynamic viscosity is 0.096 N∙s/m2?
11.47 Estimate the terminal velocity of a 1.5 mm plastic sphere 
in oil. Th e oil has a specifi c gravity of 0.95 and a kinematic vis-
cosity of 10–4 m2/s. Th e plastic has a specifi c gravity of 1.07. Th e 
volume of a sphere is given by πD3/6.
11.48 What is the terminal velocity of a 0.5 cm hailstone in 
air that has an atmospheric pressure of 96 kPa absolute and a 
temperature of 0°C? Assume that the hailstone has a specifi c 
weight of 6 kN/m3.
11.49 A drag chute is used to decelerate an airplane aft er 
touchdown. Th e chute has a diameter of 12 ft  and is deployed 
when the aircraft  is moving at 200 ft /s. Th e mass of the aircraft  is 
20,000 lbm, and the density of the air is 0.075 lbm/ft 3. Find the 
initial deceleration of the aircraft  due to the chute.
11.50 If a balloon weighs 0.10 N (empty) and is infl ated with helium 
to a diameter of 60 cm, what will be its terminal velocity in air 
(standard atmospheric conditions)? Th e helium is at a pressure 
of 1 atm and a temperature of 20°C.
11.51 A 2 cm plastic ball with a specifi c gravity of 1.2 is released 
from rest in water at 20°C. Find the time and distance needed to 
achieve 99% of the terminal velocity. Write out the equation of 
motion by equating the mass times acceleration to the buoyant 
force, weight, and drag force and solve by developing a computer 
program or using available soft ware. Use Eq. (11.9) for the drag 
coeffi  cient. Hint: Th e equation of motion can be expressed in the 
form

dv
dt

= −(CD Re
24 ) 18μ

ρbd 2 v +
ρb − ρw

ρb
g

where ρb is the density of the ball and ρw is the density of the 
water. Th is form avoids the problem of the drag coeffi  cient 
approaching infi nity when the velocity approaches zero because 
CD Re/24 approaches unity as the Reynolds number approaches 
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zero. An “if statement” is needed to avoid a singularity in 
Eq. (11.9) when the Reynolds number is zero.

The Theory of Lift (§11.8)

11.52 Apply the grid method to each situation that follows.
a.  Use Eq. (11.17) to predict the lift  force in newtons for a 

spinning baseball. Use a coeffi  cient of lift  of CL = 1.2. Th e 
speed of the baseball is 90 mph. Calculate area using 
A = πr 2, where the radius of a baseball is r = 1.45 in. Assume 
a hot summer day.

b.  Use Eq. (11.17) to predict the size of wing in mm2 needed 
for a model aircraft  that has a mass of 570 g. Wing size 
is specifi ed by giving the wing area (A) as viewed by an 
observer looking down on the wing. Assume the airplane is 
traveling at 80 mph on a hot summer day. Use a coeffi  cient 
of lift  of CL = 1.2. Assume straight and level fl ight so lift  
force balances weight.

11.53 Using §11.8 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy. Also, use 
eff ective sketches, words, and equations.

a. What is circulation? Why is it important?
b. What is lift  force?
c. What variables infl uence the magnitude of the lift  force?

11.54 Th e baseball is thrown from west to east with a spin about 
its vertical axis as shown. Under these conditions it will “break” 
toward the (a) north, (b) south, or (c) neither.

East

Plan view

Problem 11.54

Lift and Drag on Airfoils (§11.9)

11.55 A sphere of diameter 100 mm, rotating at a rate of 286 rpm, 
is situated in a stream of water (15°C) that has a velocity of 1.5 m/s. 
Determine the lift  force (in newtons) on the rotating sphere.
11.56 An airplane wing having the characteristics shown in 
Fig. 11.24 is to be designed to lift  1800 lbf when the airplane is 
cruising at 200 ft /s with an angle of attack of 3°. If 
the chord length is to be 3.5 ft , what span of wing is required? 
Assume ρ = 0.0024 slugs/ft 3.
11.57 A boat of the hydrofoil type has a lift ing vane with an 
aspect ratio of 4 that has the characteristics shown in Fig. 11.24. 
If the angle of attack is 4° and the weight of the boat is 5 tons, 
what foil dimensions are needed to support the boat at a velocity 
of 60 fps?
11.58 One wing (wing A) is identical (same cross section) to 
another wing (wing B) except that wing B is twice as long as 
wing A. Th en for a given wind speed past both wings and with the 
same angle of attack, one would expect the total lift  of wing B to 
be (a) the same as that of wing A, (b) less than that of wing A, 
(c) double that of wing A, or (d) more than double that of wing A.

11.59 What happens to the value of the induced drag coeffi  cient 
for an aircraft  that increases speed in level fl ight? (a) it increases, 
(b) it decreases, (c) it does not change.
11.60 Th e total drag coeffi  cient for an airplane wing is CD = CD0 + 
C2

L/πΛ, where CD0 is the form drag coeffi  cient, CL is the lift  coef-
fi cient and Λ is the aspect ratio of the wing. Th e power is given by 
P = FDV = 1/2 CDρV3S. For level fl ight the lift  is equal to the weight, 
so W/S = 1/2ρCLV2, where W/S is called the “wing loading.” Find 
an expression for V for which the power is a minimum in terms of 
VMinPower = f (ρ, Λ, W/S, CD0), and fi nd the V for minimum power 
when ρ = 1 kg/m3, Λ = 10, W/S = 600 N/m2, and CD = 0.02.
11.61 Th e landing speed of an airplane is 7 m/s faster than its 
stalling speed. Th e lift  coeffi  cient at landing speed is 1.2, and the 
maximum lift  coeffi  cient (stall condition) is 1.4. Calculate both 
the landing speed and the stalling speed.
11.62 Th e fi gure shows the pressure distribution for a 
Göttingen 387-FB lift ing vane (19) when the angle of attack is 8°. 
If such a vane with a 20 cm chord were used as a hydrofoil at a 
depth of 70 cm, at what speed in 10°C freshwater would cavitation 
begin? Also, estimate the lift  per unit of length of foil at this speed.

Cp for upper side
of lifting vane

Cp for lower side
of lifting vane

Cp

Cp

20 cm

–2.0

–1.0

0

0

+0.5

+1.0

Problem 11.62

11.63 A glider at 800 m altitude has a mass of 180 kg and a 
wing area of 20 m2. Th e glide angle is 1.7°, and the air density is 
1.2 kg/m3. If the lift  coeffi  cient of the glider is 0.83, how many 
minutes will it take to reach sea level on a calm day?
11.64 Th e wing loading on an airplane is defi ned as the aircraft  
weight divided by the wing area. An airplane with a wing 
loading of 2000 N/m2 has the aerodynamic characteristics given 
by Fig. 11.25. Under cruise conditions the lift  coeffi  cient is 0.3. 
If the wing area is 10 m2, fi nd the drag force.
11.65 An ultralight airplane has a wing with an aspect ratio of 
5 and with lift  and drag coeffi  cients corresponding to Fig. 11.24. 
Th e planform area of the wing is 200 ft 2. Th e weight of the 
airplane and pilot is 400 lbf. Th e airplane fl ies at 50 ft /s in air 
with a density of 0.002 slugs/ft 3. Find the angle of attack and the 
drag force on the wing.
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Compressible Flow

CHAPTER ROAD MAP The compressibility of a gas that is fl owing in a steady state becomes signifi cant 
when the Mach number exceeds 0.3. For example, the performance of high-speed aircraft, the fl ow in rocket 
nozzles, and the reentry mechanics of spacecraft require inclusion of compressible fl ow effects. This chapter 
introduces topics in compressible fl ow.

CHAPTERTWELVE

LEARNING OUTCOMES

SOUND WAVES (§12.1). 
●  Describe the propagation of a sound wave. 
●  Explain the signifi cance of the Mach number. 
●  Calculate the speed of sound and the Mach number.

COMPRESSIBLE FLOW (§12.2).

●  Explain how properties vary in compressible fl ow.
●  Do relevant calculations.

SHOCK WAVES (§12.3).

●  Describe a normal shock wave.
●  Calculate the property changes across a normal shock wave.

FLOW IN DUCTS (§12.4).

●  Describe how properties vary in a duct when the section area is 

changing.
●  Solve problems involving nozzles.

FIGURE 12.1
The de Laval nozzle is used to accelerate a gas to 

supersonic speeds. This nozzle is used in turbines, 

rocket engines, and supersonic jet engines.

This particular nozzle was designed by Andrew 

Donelick under the guidance of Dr. John Crepeau, 

Professor of Mechanical Engineering at the University of 

Idaho. The nozzle was built by Russ Porter, also at the 

University of Idaho. (Photo by Donald Elger.)

12.1 Wave Propagation in Compressible Fluids

Wave propagation in a fl uid is the mechanism through which the presence of boundaries is com-
municated to the fl owing fl uid. In a liquid, the propagation speed of the pressure wave is much 
higher than the fl ow velocities, so the fl ow has adequate time to adjust to a change in boundary 
shape. Gas fl ows, on the other hand, can achieve speeds that are comparable to and even exceed 
the speed at which pressure disturbances are propagated. In this situation, with compressible 
fl uids, the propagation speed is an important parameter and must be incorporated into the fl ow 
analysis. In this section, it will be shown how the speed of an infi nitesimal pressure disturbance 
can be evaluated and what its signifi cance is to the fl ow of a compressible fl uid.

Speed of Sound

Everyone has had the experience during a thunderstorm of seeing lightning fl ash and hearing 
the accompanying thunder an instant later. Obviously, the sound was produced by the lightning, 
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so the sound wave must have traveled at a fi nite speed. If the air were totally incompressible 
(if that were possible), then the sound of thunder and the lightning fl ash would be simultaneous 
because all disturbances propagate at infi nite speed through incompressible media.* It is analo-
gous to striking one end of a bar of incompressible material and recording instantaneously the 
response at the other end. Actually, all materials are compressible to some degree and propagate 
disturbances at fi nite speeds.

Th e speed of sound is defi ned as the rate at which an infi nitesimal disturbance (pressure 
pulse) propagates in a medium with respect to the frame of reference of that medium. Actual 
sound waves, comprised of pressure disturbances of fi nite amplitude, such that the ear can 
detect them, travel only slightly faster than the “speed of sound.”

To derive an equation for the speed of sound, consider a small section of a pressure wave 
as it propagates at velocity c through a medium, as depicted in Fig. 12.2. As the wave travels 
through the gas at pressure p and density ρ, it produces infi nitesimal changes of Δp, Δρ, and 
ΔV. Th ese changes must be related through the laws of conservation of mass and momentum. 
Select a control surface around the wave and let the control volume travel with the wave. Th e 
velocities, pressures, and densities relative to the control volume (which is assumed to be very 
thin) are shown in Fig. 12.3. Conservation of mass in a steady fl ow requires that the net mass 
fl ux across the control surface be zero. Th us,

 −ρcA + (ρ + Δρ)(c − ΔV)A = 0 (12.1)

where A is the cross-sectional area of the control volume. Neglecting products of higher-order 
terms (ΔρΔV) and dividing by the area reduces the conservation-of-mass equation to

 −ρΔV + cΔρ = 0 (12.2)

Th e momentum equation for a nonaccelerating steady fl ow,

 ∑ F = m· oVo − m· Vi (12.3)

applied to the control volume containing the pressure wave gives

 (p + Δp)A − pA = (−c)(−ρAc) + (−c + ΔV)ρAc (12.4)

where the direction to the right is defi ned as positive. Th e momentum equation reduces to

 Δp = ρcΔV (12.5)

Substituting the expression for ΔV obtained from Eq. (12.2) into Eq. (12.5) gives

 c2 =
Δp
Δρ

 (12.6)

which shows how the speed of propagation is related to the pressure and density change 
across the wave. It is immediately obvious from this equation that if the fl ow were ideally 
incompressible, Δρ = 0, the propagation speed would be infi nite, which confi rms the argu-
ment presented earlier.

Equation (12.6) provides an expression for the speed of a general pressure wave. Th e 
sound wave is a special type of pressure wave. By defi nition, a sound wave produces only in-
fi nitesimal changes in pressure and density, so it can be regarded as a reversible process. Th ere 
is also negligibly small heat transfer, so one can assume the process is adiabatic. A reversible, 
adiabatic process is an isentropic process; thus the resulting expression for the speed of sound is

 c2 =
𝜕p
𝜕ρ ⎸s

 (12.7)

*Actually, the thunder would be heard before the lightning was seen, because light also travels at a fi nite, though very 
high, speed! However, this would violate one of the basic tenets of relativity theory. No medium can be completely 
incompressible and propagate disturbances exceeding the speed of light.

p + Δp p

c

 + Δρ

ΔV

ρρ

FIGURE 12.2

Section view of a sound 

wave.

ρ ρ
ρ

p + Δp p

c

 + Δ

c – ΔV

Control volume

FIGURE 12.3

Flow relative to the sound 

wave.
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Th is equation is valid for the speed of sound in any substance. However, for many substances 
the relationship between p and ρ at constant entropy is not very well known.

To reiterate, the speed of sound is the speed at which an infi nitesimal pressure disturbance 
travels through a fl uid. Waves of fi nite strength (fi nite pressure change across the wave) travel 
faster than sound waves. Sound speed is the minimum speed at which a pressure wave can 
propagate through a fl uid.

For an isentropic process in an ideal gas, the following relationship exists between pres-
sure and density (1):

 
p
ρk = constant (12.8)

where k is the ratio of specifi c heats; that is, the ratio of specifi c heat at constant pressure to that 
at constant volume. Th us,

 k =
cp

cv
 (12.9)

Th e values of k for some commonly used gases are given in Table A.2. Taking the derivative of 
Eq. (12.8) to obtain 𝜕p/𝜕ρ � s results in

 
𝜕p
𝜕ρ ⎸s

=
kp
ρ  (12.10)

However, from the ideal gas law,

p
ρ = RT

so the speed of sound is given by

 c = √kRT (12.11)

Th us, the speed of sound in an ideal gas varies with the square root of the temperature. 
Using this equation to predict sound speeds in real gases at standard conditions gives results 
very near the measured values. Of course, if the state of the gas is far removed from ideal 
conditions (high pressures, low temperatures), then using Eq. (12.11) is not valid.

Example 12.1 illustrates the calculation of sound speed for a given temperature.

EXAMPLE 12.1

Speed of Sound Calculation

Defi ne the Situation

Air is at 15°C.
Assume: Air is an ideal gas.
Properties: Air: Table A.2, R = 287 J/kg K, and k = 1.4

State the Goal

Calculate the speed of sound.

Generate Ideas and Make a Plan

Apply the speed of sound equation, Eq. (12.11), with T = 288 K.

Take Action (Execute the Plan)

 c = √kRT
 c = [(1.4)(287 J/kg K)(288 K )]

1/2 =  340 m/s

Review the Solution and the Process

Knowledge. Th e absolute temperature must always be used in 
speed of sound equation.
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It is possible to demonstrate, in a very simple way, the significance of sound in a com-
pressible flow. Consider the airfoil traveling at speed V in Fig. 12.4. As this airfoil travels 
through the fluid, the pressure disturbance generated by the airfoil’s motion propagates 
as a wave at sonic speed ahead of the airfoil. These pressure disturbances travel a consid-
erable distance ahead of the airfoil before being attenuated by the viscosity of the fluid, 
and they “warn” the upstream fluid that the airfoil is coming. In turn, the fluid particles 
begin to move apart in such a way that there is a smooth flow over the airfoil by the time it 
arrives. If a pressure disturbance created by the airfoil is essentially attenuated in time Δt, 
then the fl uid at a distance Δt(c − V ) ahead is alerted to prepare for the airfoil’s impending 
arrival.

What happens as the speed of the airfoil is increased? Obviously, the relative velocity 
c − V is reduced, and the upstream fl uid has less time to prepare for the airfoil’s arrival. Th e 
fl ow fi eld is modifi ed by smaller streamline curvatures, and the form drag on the airfoil is 
increased. If the airfoil speed increases to the speed of sound or greater, then the fl uid has 
no warning whatsoever that the airfoil is coming and cannot prepare for its arrival. At this 
point, nature resolves the problem by creating a shock wave that stands off  the leading edge, 
as shown in Fig. 12.5. As the fl uid passes through the shock wave near the leading edge, 
it is decelerated to a speed less than sonic speed and therefore has time to divide and fl ow 
around the airfoil. Shock waves will be treated in more detail in Section 12.3.

Another approach to appreciating the signifi cance of sound propagation in a compressible 
fl uid is to consider a point source of sound moving in a quiescent fl uid, as shown in Fig. 12.6. 
Th e sound source is moving at a speed less than the local sound speed in Fig. 12.6a and faster 
than the local sound speed in Fig. 12.6b. At time t = 0, a sound pulse is generated and propa-
gates radially outward at the local speed of sound. At time t1, the sound source has moved a 
distance Vt1, and the circle representing the sound wave emitted at t = 0 has a radius of ct1. 
Th e sound source emits a new sound wave at t1 that propagates radially outward. At time t2, the 
sound source has moved to Vt2, and the sound waves have moved outward as shown.

When the sound source moves at a speed less than the speed of sound, the sound waves 
form a family of nonintersecting eccentric circles, as shown in Fig. 12.6a. For an observer sta-
tioned at A, the frequency of the sound pulses would appear higher than the emitted frequency 

V
c

c

c
Wave front

FIGURE 12.4

Propagation of a sound wave by an airfoil.

Shock wave

Shock wave

FIGURE 12.5

A standing shock wave in front of an airfoil.
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because the sound source is moving toward the observer. In fact, the observer at A will detect 
a frequency of

f = f0/(1 − V/c)

where f0 is the emitting frequency of the moving sound source. Th is change in frequency is 
known as the Doppler effect.

When the sound source moves faster than the local sound speed, the sound waves inter-
sect and form the locus of a cone with a half-angle of

θ = sin−1
(c/V)

Th e observer at A will not detect the sound source until it has passed. In fact, only an observer 
within the cone is aware of the moving sound source.

In view of the physical arguments given, it is apparent that an important parameter 
relating to sound propagation and compressibility eff ects is the ratio V/c. Th is π-group was 
fi rst proposed by Ernst Mach, an Austrian scientist, and bears his name. Th e Mach number 
is defi ned as

 M =
V
c  (12.12)

Th e conical wave surface depicted in Fig. 12.6b is known as a Mach wave and the conical half-
angle as the Mach angle.

Compressible fl ows are characterized by their Mach number regimes as follows:

 M < 1 subsonic fl ow
 M ≈ 1 transonic fl ow
 M > 1 supersonic fl ow

Flows with Mach numbers exceeding 5 are sometimes referred to as hypersonic. Air-
planes designed to travel at near-sonic speeds and faster are equipped with Mach meters 
because of the signifi cance of the Mach number with respect to aircraft  performance.

Evaluation of the Mach number of an airplane flying at altitude is demonstrated in 
Example 12.2.

A t t1t2

ct

Vt

t = 0

A t t1t2

ct

Vt

t = 0

(a) V < c (b) V > c

θ

FIGURE 12.6

A sound fi eld generated by a moving point 

source of sound: (a) the source is moving 

slower than the speed of sound, (b) the 

source is moving faster than the speed of 

sound.
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EXAMPLE 12.2

Calculating the Mach Number of an Aircraft

Problem Statement

An F-16 fi ghter is fl ying at an altitude of 13 km with a speed 
of 470 m/s. Assume a U.S. standard atmosphere, and calculate 
the Mach number of the aircraft .

Defi ne the Situation

A fi ghter jet is fl ying at 470 m/s at an altitude of 13 km.
Assumptions: Th e temperature variation is described by the 
U.S. standard atmosphere.
Properties: From Table A.2, Rair = 287 J/kg K, and k = 1.4.

State the Goal

Calculate the Mach number of the aircraft .

Generate Ideas and Make a Plan

1. Find the temperature at 13 km by using the 1976 standard 
atmosphere model. (e.g., see http://www.digitaldutch.com/
atmoscalc/).

2. Calculate the speed of sound.
3. Calculate the Mach number.

Take Action (Execute the Plan)

1. Temperature at 13 km:

 T = 217 K.
2. Speed of sound:

c = √kRT = √1.4 × 287 × 217 = 295 m/s

3. Mach number:

M =
V
c

=
470 m/s
295 m/s =  1.59

Review the Solution and the Process

Discussion. Th e aircraft  is fl ying at supersonic speed.

12.2 Mach Number Relationships

Th is section will show how fl uid properties vary with the Mach number in a compressible 
fl ow. Consider a control volume bounded by two streamlines in a steady compressible fl ow, as 
shown in Fig. 12.7. Applying the energy equation to this control volume gives

 −m· 1(h1 +
V 2

1

2
+ gz1) + m· 2(h2 +

V 2
2

2
+ gz2) = Q·  (12.13)

Th e elevation terms (z1 and z2) can usually be neglected for gaseous fl ows. If the fl ow is adia-
batic (Q· = 0), the energy equation reduces to

 m· 1(h1 +
V 2

1

2 ) = m· 2(h2 +
V 2

2

2 ) (12.14)

From the principle of continuity, the mass fl ow rate is constant, m· 1 = m· 2, so

 h1 +
V 2

1

2
= h2 +

V 2
2

2
 (12.15)

 FIGURE 12.7

Control volume enclosed by streamlines.
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Because positions 1 and 2 are arbitrary points on the same streamline, one can say that

 h +
V 2

2
= constant along a streamline in an adiabatic flow (12.16)

Th e constant in this expression is called the total enthalpy, ht. It is the enthalpy that would 
arise if the fl ow velocity were brought to zero in an adiabatic process. Th us, the energy equa-
tion along a streamline under adiabatic conditions is

 h +
V 2

2
= ht (12.17)

If ht is the same for all streamlines, the fl ow is homenergic.
It is instructive at this point to compare Eq. (12.17) with the Bernoulli equation. Express-

ing the specifi c enthalpy as the sum of the specifi c internal energy and p/ρ, Eq. (12.17) becomes

u +
p
ρ +

V 2

2
= constant

If the fl uid is incompressible and there is no heat transfer, the specifi c internal energy is con-
stant and the equation reduces to the Bernoulli equation (excluding the pressure change due 
to elevation change).

Temperature

Th e enthalpy of an ideal gas can be written as

 h = cpT (12.18)

where cp is the specifi c heat at constant pressure. Substituting this relation into Eq. (12.17) and 
dividing by cpT, results in

 1 +
V 2

2cpT
=

Tt

T
 (12.19)

where Tt is the total temperature. From thermodynamics (1), it is known for an ideal gas that
 cp − cv = R (12.20)

or
 k − 1 =

R
cv

=
kR
cp

Th erefore, 
 cp =

kR
k − 1

 (12.21)

Substituting this expression for cp back into Eq. (12.19) and realizing that kRT is the speed of 
sound squared results in the total temperature equation:

 Tt = T(1 +
k − 1

2
M2) (12.22)

Th e temperature T is called the static temperature—the temperature that would be reg-
istered by a thermometer moving with the fl owing fl uid. Total temperature is analogous to 
total enthalpy in that it is the temperature that would arise if the velocity were brought to zero 
adiabatically. If the fl ow is adiabatic, the total temperature is constant along a streamline. If not, 
the total temperature varies according to the amount of thermal energy transferred.

Example 12.3 illustrates the evaluation of the total temperature on an aircraft ’s surface.
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If the fl ow is isentropic, thermodynamics shows that the following relationship for pressure 
and temperature of an ideal gas between two points on a streamline is valid (1):

 
p1

p2
=(T1

T2
)

k/(k−1)

 (12.23)

Isentropic fl ow means that there is no heat transfer, so the total temperature is constant along 
the streamline. Th erefore,

 Tt = T1(1 +
k − 1

2
M2

1) = T2(1 +
k − 1

2
M2

2) (12.24)

Solving for the ratio T1/T2 and substituting into Eq. (12.23) shows that the pressure variation 
with the Mach number is given by

 
p1

p2
= {1 + [(k − 1)/2]M2

2

1 + [(k − 1)/2]M2
1}

k/(k−1)

 (12.25)

In the ideal gas law used to derive Eq. (12.23), absolute pressures must always be used in cal-
culations with these equations.

Th e total pressure in a compressible fl ow is given by

 pt = p(1 +
k − 1

2
M2)

k/(k−1)

 (12.26)

which is the pressure that would result if the fl ow were decelerated to zero speed reversibly and 
adiabatically. Unlike total temperature, total pressure may not be constant along streamlines in 
adiabatic fl ows. For example, it will be shown that fl ow through a shock wave, although adiabatic, 
is not reversible and therefore not isentropic. Th e total pressure variation along a streamline in 
an adiabatic fl ow can be obtained by substituting Eqs. (12.26) and (12.24) into Eq. (12.25) to give

 
pt1

pt2

=
p1

p2 {1 + [(k − 1)/2]M2
1

1 + [(k − 1)/2]M2
2}

k/(k−1)

=
p1

p2
(T2

T1
)

k/(k−1)

 (12.27)

EXAMPLE 12.3

Total Temperature Calculation

Problem Statement

An aircraft is flying at M = 1.6 at an altitude where the 
atmospheric temperature is −50°C. The temperature on 
the aircraft’s surface is approximately the total temperature. 
Estimate the surface temperature, taking k = 1.4.

Defi ne the Situation

An aircraft  is fl ying at M = 1.6. Th e static temperature is −50°C.

State the Goal

Calculate the total temperature.

Generate Ideas and Make a Plan

Th is problem can be visualized as the aircraft  being stationary 
and an airstream with a static temperature of −50°C fl owing 
past the aircraft  at a Mach number of 1.6.

1. Convert the local static temperature to degrees K.
2. Use total temperature equation, Eq. (12.22).

Take Action (Execute the Plan)

1. Static temperature in absolute temperature units:

T = 273 − 50 = 223 K
2. Total temperature:

Tt = 223[1 + 0.2 (1.6)
2
] =  337 K or 64°C
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Unless the fl ow is also reversible and Eq. (12.23) is applicable, the total pressures at points 1 
and 2 will not be equal. However, if the fl ow is isentropic, total pressure is constant along 
streamlines.

Density

Analogous to the total pressure, the total density in a compressible fl ow is given by

 ρt = ρ(1 +
k − 1

2
M2)

1/(k−1)

 (12.28)

where ρ is the local or static density. If the fl ow is isentropic, then ρt is a constant along 
streamlines and Eq. (12.28) can be used to determine the variation of gas density with the 
Mach number.

In literature dealing with compressible fl ows, one oft en fi nds reference to “stagnation” 
conditions—that is, stagnation temperature and stagnation pressure. By defi nition, stagna-
tion refers to the conditions that exist at a point in the fl ow where the velocity is zero, regardless 
of whether or not the zero velocity has been achieved by an adiabatic, or reversible, process. 
For example, if one were to insert a Pitot-static tube into a compressible fl ow, strictly speak-
ing one would measure stagnation pressure, not total pressure, because the deceleration of the 
fl ow would not be reversible. In practice, however, the diff erence between stagnation and total 
pressure is insignifi cant.

Kinetic Pressure

Th e kinetic pressure, q = ρV 2/2, is oft en used to calculate aerodynamic forces with the use of 
appropriate coeffi  cients. It can also be related to the Mach number. Using the ideal gas law to 
replace ρ gives

 q =
1
2

 
pV 2

RT
 (12.29)

Th en using the equation for the speed of sound, Eq. (12.11), results in

 q =
k
2

pM2 (12.30)

where p must always be an absolute pressure because it derives from the ideal gas law.
The use of the equation for kinetic pressure to evaluate the drag force is shown in 

Example 12.4.

EXAMPLE 12.4

Calculating the Drag Force on a Sphere

Problem Statement

Th e drag coeffi  cient for a sphere at a Mach number of 0.7 is 
0.95. Determine the drag force on a sphere 10 mm in diameter 
in air if p = 101 kPa.

Defi ne the Situation

A sphere is moving at a Mach number of 0.7 in air.

Properties: From Table A.2, kair = 1.4.

State the Goal

Find the drag force (in newtons) on the sphere.



Th e Bernoulli equation is not valid for compressible fl ows. Consider what would happen 
if one decided to measure the Mach number of a high-speed air fl ow with a Pitot-static tube, 
assuming that the Bernoulli equation was valid. Assume a total pressure of 180 kPa and a static 
pressure of 100 kPa were measured. By the Bernoulli equation, the kinetic pressure is equal to 
the diff erence between the total and static pressures, so

1
2

ρV 2 = pt − p  or  
k
2

pM2 = pt − p

Solving for the Mach number,

M = B
2
k (pt

p
− 1)

and substituting in the measured values, one obtains

M = 1.07

Th e correct approach is to relate the total and static pressures in a compressible fl ow using 
Eq. (12.26). Solving that equation for the Mach number gives

 M = { 2
k − 1

 [(pt

p )
(k−1)/k

− 1 ]}
1/2

 (12.31)

and substituting in the measured values yields

M = 0.96

Th us, applying the Bernoulli equation would have led one to say that the fl ow was supersonic, 
whereas the fl ow was actually subsonic. In the limit of low velocities (pt/p → 1), Eq. (12.31) 
reduces to the expression derived using the Bernoulli equation, which is indeed valid for very 
low (M ⪡ 1) Mach numbers.

It is instructive to see how the pressure coeffi  cient at the stagnation (total pressure) condi-
tion varies with Mach number. Th e pressure coeffi  cient is defi ned by

Cp =
pt − p
1
2 ρV 2

Using Eq. (12.30) for the kinetic pressure enables one to express Cp as a function of the Mach 
number and the ratio of specifi c heats:

Cp =
2

kM2 [(1 +
k − 1

2
M2)

k/(k−1)

− 1]
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Generate Ideas and Make a Plan

Th e drag force on a sphere is FD = qCDA.

1. Calculate the kinetic pressure q from Eq. (12.30).
2. Calculate the drag force.

Take Action (Execute the Plan)

1. Kinetic pressure:

q =
k
2

pM 2 =
1.4
2

(101 kPa) (0.7)
2 = 34.6 kPa

2. Drag force:

 FD = CDq(π
4 )D2 = 0.95(34.6 × 103 N

m2 )(π
4 )(0.01 m)

2

 =  2.58 N
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Th e variation of Cp with the Mach number is shown in Fig. 12.8. At a Mach number of zero, 
the pressure coeffi  cient is unity, which corresponds to incompressible fl ow. Th e pressure coeffi  -
cient begins to depart signifi cantly from unity at a number of about 0.3. From this observation, 
it is inferred that compressibility eff ects in the fl ow fi eld are unimportant for Mach numbers 
less than 0.3.

12.3 Normal Shock Waves

Normal shock waves are wave fronts normal to the fl ow across which a supersonic fl ow is 
decelerated to a subsonic fl ow with an attendant increase in static temperature, pressure, and 
density. Th e purpose of this section is to develop relations for property changes across normal 
shock waves.

Change in Flow Properties across a Normal Shock Wave

Th e most straightforward way to analyze a normal shock wave is to draw a control surface 
around the wave, as shown in Fig. 12.9, and write down the continuity, momentum, and energy 
equations.

Th e net mass fl ux into the control volume is zero because the fl ow is steady. Th erefore,

 −ρ1V1A + ρ2V2A = 0 (12.32)

where A is the cross-sectional area of the control volume. Equating the net pressure forces 
acting on the control surface to the net effl  ux of momentum from the control volume gives

 ρ1V1A(−V1 + V2) = (p1 − p2)A (12.33)

Th e energy equation can be expressed simply as

 Tt1
= Tt2

 (12.34)

because the temperature gradients on the control surface are assumed negligible, and thus heat 
transfer is neglected (adiabatic).
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Variation of the pressure coeffi cient with Mach number.
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Control volume enclosing a normal shock wave.
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Using the equation for the speed of sound, Eq. (12.11), and the ideal gas law, the continu-
ity equation can be rewritten to include the Mach number as follows:

 
p1

RT1
M1 √kRT1 =

p2

RT2
M2 √kRT2 (12.35)

Th e Mach number can be introduced into the momentum equation in the following way:

 ρ2V 2
2 − ρ1V 2

1 = p1 − p2

  p1 +
p1

RT1
V 2

1 = p2 +
p2

RT2
V 2

2  (12.36)

 p1(1 + kM2
1) = p2(1 + kM2

2)

Rearranging Eq. (12.36) for the static pressure ratio across the shock wave results in

 
p2

p1
=

(1 + kM2
1 )

(1 + kM2
2 )

 (12.37)

As will be shown later, the Mach number of a normal shock wave is always greater than unity 
upstream and less than unity downstream, so the static pressure always increases across a 
shock wave.

Rewriting the energy equation in terms of the temperature and Mach number, as done in 
Eq. (12.22), by utilizing the fact that Tt2

/Tt1
= 1, yields the static temperature ratio across the 

shock wave.

 
T2

T1
=

{1 + [(k − 1)/2]M2
1}

{1 + [(k − 1)/2]M2
2}

 (12.38)

Substituting Eqs. (12.37) and (12.38) into Eq. (12.35) gives the following relationship for the 
Mach numbers upstream and downstream of a normal shock wave:

 
M1

1 + kM2
1

(1 +
k − 1

2
M2

1)
1/2

=
M2

1 + kM2
2

(1 +
k − 1

2
M2

2)
1/2

 (12.39)

Solving this equation for M2 as a function of M1 results in two solutions. One solution is trivial: 
M1 = M2, which corresponds to no shock wave in the control volume. Th e other solution gives 
the Mach number downstream of the shock wave:

 M2
2 =

(k − 1)M2
1 + 2

2kM2
1 − (k − 1)

 (12.40)

Note: Because of the symmetry of Eq. (12.39), one can also use Eq. (12.40) to solve for M1 given 
M2 by simply interchanging the subscripts on the Mach numbers.

Setting M1 = 1 in Eq. (12.40) results in M2 also being equal to unity. Equations (12.38) and 
(12.39) also show that there would be no pressure or temperature increase across such a wave. 
In fact, the wave corresponding to M1 = 1 is the sound wave across which, by defi nition, pres-
sure and temperature changes are infi nitesimal. Th us, the sound wave represents a degenerate 
normal shock wave.

Example 12.5 demonstrates how to calculate properties downstream of a normal shock 
wave given the upstream Mach number.
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Th e changes in fl ow properties across a shock wave are presented in Table A.1 for a gas, 
such as air, for which k = 1.4.

A shock wave is an adiabatic process in which no shaft  work is done. Th us, for ideal 
gases the total temperature (and total enthalpy) is unchanged across the wave. Th e total 
pressure, however, does change across a shock wave. Th e total pressure upstream of the wave 
in Example 12.5 is

 pt1
= p1(1 +

k − 1
2

M2
1)

k/(k−1)

 = 100 kPa [1 + (0.2)(1.62
)]

3.5 = 425 kPa

Th e total pressure downstream of the same wave is

 pt2
= p2(1 +

k − 1
2

M2
2)

k/(k−1)

 = 282 kPa[1 + (0.2)(0.6682
)]

3.5 = 380 kPa

Th us, the total pressure decreases through the wave, which occurs because the fl ow through 
the shock wave is not an isentropic process. Total pressure remains constant along streamlines 
only in isentropic fl ow. Values for the ratio of total pressure across a normal shock wave are 
also provided in Table A.1.

EXAMPLE 12.5

Property Changes across a Normal Shock Wave

Problem Statement

A normal shock wave occurs in air fl owing at a Mach number 
of 1.6. Th e static pressure and temperature of the air upstream 
of the shock wave are 100 kPa absolute and 15°C. Determine 
the Mach number, pressure, and temperature downstream of 
the shock wave.

Defi ne the Situation

Th e Mach number upstream of a normal shock wave in air is 1.6.

M2

p2
T2

p1 = 100 kPa abs
T1 = 15°C

M1 = 1.6

Properties: From Table A.2, k = 1.4.

State the Goal

Calculate the downstream Mach number, pressure, and 
temperature.

Generate Ideas and Make a Plan

1. Use Eq. (12.40) to calculate M2.
2. Use Eq. (12.37) to calculate p2.

3.  Convert upstream temperature to degrees Kelvin and 
use Eq. (12.38) to fi nd T2.

Take Action (Execute the Plan)

1. Downstream Mach number:

 M2
2 =

(k − 1)M2
1 + 2

2kM2
1 − (k − 1)

=
(0.4)(1.6)

2 + 2
(2.8)(1.6)

2 − 0.4
= 0.447

 M2 =  0.668

2. Downstream pressure:

 p2 = p1(1 + kM2
1

1 + kM2
2
)

 = (100 kPa) [ 1 + (1.4)(1.6)
2

1 + (1.4)(0.668)
2 ] =  282 kPa, absolute

3. Downstream temperature:

 T2 = T1{
1 + [(k − 1)/2]M2

1

1 + [(k − 1)/2]M2
2
}

 = (288 K) [ 1 + (0.2)(2.56)

1 + (0.2)(0.447)
] =  400 K or 127°C

Review the Solution and the Process

Knowledge. Note that absolute values for the pressure and tem-
perature have to be used in the equations for property changes 
across shock waves.
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Existence of Shock Waves Only in Supersonic Flows

Refer back to Eq. (12.40), which gives the Mach number downstream of a normal shock wave. 
If one were to substitute a value for M1 less than unity, it is easy to see that a value for M2 would 
be larger than unity. For example, if M1 = 0.5 in air, then

 M2
2 =

(0.4)(0.5)
2 + 2

(2.8)(0.5)
2 − 0.4

 M2 = 2.65

Is it possible to have a shock wave in a subsonic fl ow across which the Mach number becomes 
supersonic? In this case the total pressure would also increase across the wave; that is,

pt2

pt1

> 1

Th e only way to determine whether such a solution is possible is to invoke the second law 
of thermodynamics, which states that for any process the entropy of the universe must remain 
unchanged or increase.

 Δsuniv ≥ 0 (12.41)

Because the shock wave is an adiabatic process, there is no change in the entropy of the sur-
roundings; thus the entropy of the system must remain unchanged or increase.

 Δssys ≥ 0 (12.42)

Th e entropy change of an ideal gas between pressures p1 and p2 and temperatures T1 and T2 is 
given by (1)

 Δs1 → 2 = cp ln 
T2

T1
− R ln 

p2

p1
 (12.43)

Using the relationship between cp and R, Eq. (12.21), one can express the entropy change as

 Δs1 → 2 = R ln [ p1

p2
(T2

T1
)

k/(k−1)

]  (12.44)

Note that the quantity in the square brackets is simply the total pressure ratio as given by 
Eq. (12.27). Th erefore, the entropy change across a shock wave can be rewritten as

 Δs = R ln
pt1

pt2

 (12.45)

A shock wave across which the Mach number changes from subsonic to supersonic would give 
rise to a total pressure ratio less than unity and a corresponding decrease in entropy,

Δssys < 0

which violates the second law of thermodynamics. Th erefore, shock waves can exist only in 
supersonic fl ow.

Th e total pressure ratio approaches unity for M1 → 1, which conforms with the defi nition 
that sound waves are isentropic (ln 1 = 0). Example 12.6 demonstrates the increase in entropy 
across a normal shock wave.
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More examples of shock waves will be given in the next section. Th is section is concluded 
by qualitatively discussing other features of shock waves.

Besides the normal shock waves studied here, there are oblique shock waves that are 
inclined with respect to the fl ow direction. Look once again at the shock wave structure 
in front of a blunt body, as depicted qualitatively in Fig. 12.10. Th e portion of the shock 
wave immediately in front of the body behaves like a normal shock wave. As the shock 
wave bends in the free stream direction, oblique shock waves result. Th e same relationships 
derived earlier for the normal shock waves are valid for the velocity components normal to 
oblique waves. Th e oblique shock waves continue to bend in the downstream direction until 
the Mach number of the velocity component normal to the wave is unity. Th en the oblique 
shock has degenerated into a so-called Mach wave, across which changes in fl ow properties 
are infi nitesimal.

EXAMPLE 12.6

Entropy Increase across Shock Wave

Problem Statement

A normal shock wave occurs in air fl owing at a Mach number 
of 1.5. Find the change in entropy across the wave.

Defi ne the Situation

A normal shock wave in air has an upstream Mach number 
of 1.5.

Properties: From Table A.2, Rair = 287 J/kg K, 
and k = 1.4.

State the Goal

Find the change in entropy (in J/kg K) across the wave.

Generate Ideas and Make a Plan

1. Calculate downstream Mach number using Eq. (12.40).
2. Calculate pressure ratio across wave using Eq. (12.37).
3.  Calculate temperature across the wave using 

Eq. (12.38).
4. Calculate entropy change using Eq. (12.44).

Take Action (Execute the Plan)

1. Downstream Mach number:

M2
2 =

(k − 1)M2
1 + 2

2kM2
1 − (k − 1)

=
(0.4)(1.5)

2 + 2
(2.8)(1.5)

2 − 0.4
= 0.492

M2 = 0.701

2. Pressure ratio:

 
p2

p1
= (1 + kM2

1

1 + kM2
2
) = [ 1 + (1.4)(1.5)

2

1 + (1.4)(0.701)
2 ] = 2.46

3. Temperature ratio:

 
T2

T1
= {

1 + [(k − 1)/2]M2
1

1 + [(k − 1)/2]M2
2
}

 = [ 1 + (0.2)(2.25)

1 + (0.2)(0.492)
] = 1.32

4. Entropy change:

 Δs = R ln[( p1

p2
)(T2

T1
)

k /(k−1)

]
 = 287 (J/kg K) ln[( 1

2.46) (1.32)
3.5]

 =  20.5 J/kg K

Mach wave

Oblique shock

Normal shock

FIGURE 12.10

Shock wave structure in front of a blunt body.
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Th e familiar sonic booms are the result of weak oblique shock waves that reach ground 
level. One can appreciate the damage that would ensue from stronger oblique shock waves if 
aircraft  were permitted to travel at supersonic speeds near ground level.

12.4 Isentropic Compressible Flow 

through a Duct with Varying Area

With the fl ow of incompressible fl uids through a venturi confi guration, as the fl ow approaches 
the throat (smallest area), the velocity increases and the pressure decreases; then as the area 
again increases, the velocity decreases. Th e same velocity-area relationship is not always found 
for compressible fl ows. Th e purpose of this section is to show the dependence of fl ow proper-
ties on changes in the cross-sectional area with compressible fl ow in variable area ducts.

Dependence of the Mach Number on Area Variation

Consider the duct of varying area shown in Fig. 12.11. It is assumed that the fl ow is isentropic 
and that the fl ow properties at each section are uniform. Th is type of analysis, in which the fl ow 
properties are assumed to be uniform at each section yet in which the cross-sectional area is 
allowed to vary (nonuniform), is classifi ed as “quasi one-dimensional.”

Th e mass fl ow through the duct is given by

 m· = ρAV (12.46)

where A is the duct’s cross-sectional area. Because the mass fl ow is constant along the duct,

 
dm·

dx
=

d(ρAV)

dx
= 0 (12.47)

which can be written as,*

 
1
ρ 

dρ
dx

+
1
A

 
dA
dx

+
1
V

 
dV
dx

= 0 (12.48)

the fl ow is assumed to be inviscid, so Euler’s equation is valid. For steady fl ow,

ρV
dV
dx

+
dp
dx

= 0

V

x
FIGURE 12.11

Duct with variable area.

*Th is step can easily be seen by fi rst taking the logarithm of Eq. (12.46),

ln(ρAV) = lnρ + lnA + lnV

and then taking the derivative of each term:

d
dx

[ ln(ρAV)] = 0 =
1
ρ

 
dρ
dx

+
1
A

 
dA
dx

+
1
V

 
dV
dx
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Making use of Eq. (12.7), which relates dp/dρ to the speed of sound in an isentropic fl ow, gives

 
−V
c 2  

dV
dx

=
1
ρ 

dρ
dx

 (12.49)

Using this relationship to eliminate ρ in Eq. (12.48) results in

 
1
V

 
dV
dx

=
1

M2 − 1
 

1
A

 
dA
dx

 (12.50a)

which can be written in an alternate form as

 
dV
dA

=
V
A

 
1

M2 − 1
 (12.50b)

Th is equation, although simple, leads to the following important, far-reaching conclusions.

Subsonic Flow

For subsonic fl ow, M2 − 1 is negative, so dV/dA < 0, which means that a decreasing area leads 
to an increasing velocity, and correspondingly an increasing area leads to a decreasing velocity. 
Th is velocity area relationship parallels the trend for incompressible fl ows.

Supersonic Flow

For supersonic fl ow, M2 − 1 is positive, so dV/dA > 0, which means that a decreasing area 
leads to a decreasing velocity, and an increasing area leads to an increasing velocity. Th us, the 
velocity at the minimum area of a duct with supersonic compressible fl ow is a minimum. Th is 
is the principle underlying the operation of diff users on jet engines for supersonic aircraft , as 
shown in Fig. 12.12. Th e purpose of the diff user is to decelerate the fl ow so that there is suffi  -
cient time for combustion in the chamber. Th en the diverging nozzle accelerates the fl ow again 
to achieve a larger kinetic energy of the exhaust gases and an increased engine thrust.

Transonic Flow (M ≈ 1)

Stations along a duct corresponding to dA/dx = 0 represent either a local minimum or a local 
maximum in the duct’s cross-sectional area, as illustrated in Fig. 12.13. If at these stations the 
fl ow was either subsonic (M < 1) or supersonic (M > 1), then by Eq. (12.50a) dV/dx = 0, so 
the fl ow velocity would have either a maximum or a minimum value. In particular, if the fl ow 
were supersonic through the duct of Fig. 12.l3a, then the velocity would be a minimum at the 
throat; if subsonic, a maximum.

What happens if the Mach number is unity? Equation (12.50a) states that if the Mach 
number is unity and dA/dx is not equal to zero, then the velocity gradient dV/dx is infi nite—

M > 1
CombustorDiffuser Nozzle

dA
dx

< 0

< 0

> 0

> 0
dV
dx

dA
dx
dV
dx

FIGURE 12.12

Engine for supersonic aircraft.
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a physically impossible situation. Th erefore, dA/dx must be zero where the Mach number is 
unity for a fi nite, physically reasonable velocity gradient to exist.*

Th e argument can be taken one step further here to show that sonic fl ow can occur only 
at a minimum area. Consider Fig. 12.13a. If the fl ow is initially subsonic, the converging duct 
accelerates the fl ow toward a sonic velocity. If the fl ow is initially supersonic, the converging 
duct decelerates the fl ow toward a sonic velocity. Using this same reasoning, one can prove that 
sonic fl ow is impossible in the duct depicted in Fig. 12.13b. If the fl ow is initially supersonic, 
the diverging duct increases the Mach number even more. If the fl ow is initially subsonic, the 
diverging duct decreases the Mach number; thus sonic fl ow cannot be achieved at a maximum 
area. Hence, the Mach number in a duct of varying cross-sectional area can be unity only at 
a local area minimum (throat). Th is does not imply, however, that the Mach number must 
always be unity at a local area minimum.

de Laval Nozzle

Th e de Laval nozzle is a duct of varying area that produces supersonic fl ow. Th e nozzle is 
named aft er its inventor, de Laval (1845–1913), a Swedish engineer. According to the foregoing 
discussion, the nozzle must consist of a converging section to accelerate the subsonic fl ow, a 
throat section for transonic fl ow, and a diverging section to further accelerate the supersonic 
fl ow. Th us, the shape of the de Laval nozzle is as shown in Fig. 12.14.

One very important application of the de Laval nozzle is the supersonic wind tunnel, 
which has been an indispensable tool in the development of supersonic aircraft . Basically, the 
supersonic wind tunnel (as illustrated in Fig. 12.15) consists of a high-pressure source of gas, 
a de Laval nozzle to produce supersonic fl ow, and a test section. Th e high-pressure source may 
be from a large pressure tank, which is connected to the de Laval nozzle through a regulator 
valve to maintain a constant upstream pressure, or from a pumping system that provides a 
continuous high-pressure supply of gas.

*Actually, the velocity gradient is indeterminate because the numerator and denominator are both zero. However, it 
can be shown by application of L’Hôpital’s rule that the velocity gradient is fi nite.

dA
dx x0

= 0

(a)

dA
dx x0

x0x0

= 0

(b)

FIGURE 12.13

Duct contours for which dA/dx 

is zero.

de Laval
nozzle

Test section
High-

pressure
gas

FIGURE 12.15

Wind tunnel.

M < 1 M > 1M = 1

FIGURE 12.14

de Laval nozzle.
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Th e equations relating to the compressible fl ow through a de Laval nozzle have already 
been developed. Because the mass fl ow rate is the same at every cross section,

ρVA = constant

and the constant is usually evaluated corresponding to those conditions that exist when the 
Mach number is unity. Th us,

 ρVA = ρ*V* A* (12.51)

where the asterisk signifi es conditions wherein the Mach number is equal to unity. Rearranging 
Eq. (12.51) gives

A
A*

=
ρ*V*

ρV

However, the velocity is the product of the Mach number and the local speed of sound. 
Th erefore,

 
A
A*

=
ρ*

ρ  
M* √kRT*

M√kRT
 (12.52)

By defi nition, M* = 1, so

 
A
A*

=
ρ*

ρ  (T*

T)
1/2 1

M
 (12.53)

Because the fl ow in a de Laval nozzle is assumed to be isentropic, the total temperature and 
total pressure (and total density) are constant throughout the nozzle. From Eq. (12.28),

ρ*

ρ  = {1 + [(k − 1)/2]M 2

(k + 1)/2 }
1/(k−1)

and from Eq. (12.24),

T*

T
=

1 + [(k − 1)/2]M2

(k + 1)/2

Substituting these expressions into Eq. (12.53) yields the following relationship for area ratio 
as a function of Mach number in a variable area duct:

 
A
A*

 =
1
M {1 + [(k − 1)/2]M 2

(k + 1)/2 }
(k +1)/2(k−1)

 (12.54)

Th is equation is valid, of course, for all Mach numbers: subsonic, transonic, and supersonic. 
Th e area ratio A/A* is the ratio of the area at the station where the Mach number is M to the 
area where M is equal to unity. Many supersonic wind tunnels are designed to maintain the 
same test section area and to vary the Mach number by varying the throat area.

Example 12.7 illustrates the use of the Mach number–area ratio expression to size the test 
section of a supersonic wind tunnel.

Example 12.7 demonstrates that it is a straightforward task to calculate the area ratio given 
the Mach number and ratio of specifi c heats. However, in practice, one usually knows the area 
ratio and wishes to determine the Mach number. It is not possible to solve Eq. (12.54) for the 
Mach number as an explicit function of the area ratio. For this reason, compressible fl ow tables 
have been developed that allow one to obtain the Mach number easily given the area ratio (as 
shown in Table A.1).
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Consider again Table A.1. Th is table has been developed for a gas, such as air, for which 
k = 1.4. Th e symbols that head each column are defi ned at the beginning of the table. Tables 
for both subsonic and supersonic fl ow are provided. Example 12.8 shows how to use the tables 
to fi nd fl ow properties at a given area ratio.

EXAMPLE 12.7

Finding the Test Section Size in a Supersonic 
Wind Tunnel

Problem Statement

Suppose a supersonic wind tunnel is being designed to operate 
with air at a Mach number of 3. If the throat area is 10 cm2, 
then what must the cross-sectional area of the test section be?

Defi ne the Situation

Design a supersonic wind tunnel with a Mach number of 3.0 in 
the test section.

A* = 10 cm2

M = 3

Properties: From Table A.2, kair = 1.4.

State the Goal

Find the cross-sectional area (in cm2) of the test section.

Generate Ideas and Make a Plan

1.  Use Eq. (12.54), which gives area ratio with respect to 
the throat section.

2. Calculate the area of the test section.

Take Action (Execute the Plan)

1. Area ratio:

 
A
A*

 =
1
M {

1 + [(k − 1)/2]M 2

(k + 1)/2 }
(k +1) /2(k−1)

 =
1
3 [1 + (0.2)32

1.2 ]
3

= 4.23

2. Cross-sectional area of test section:

A = 4.23 × 10 cm2 =  42.3 cm2

EXAMPLE 12.8

Flow Properties in a Supersonic Wind Tunnel

Problem Statement

Th e test section of a supersonic wind tunnel using air has an 
area ratio of 10. Th e absolute total pressure and temperature 
are 4 MPa and 350 K. Find the Mach number, pressure, 
temperature, and velocity at the test section.

Defi ne the Situation

Situation. A supersonic wind tunnel has an area ratio of 10.

A/A* = 10

pt = 4 MPa abs
Tt = 350 K

M

Properties: From Table A.2, kair = 1.4, Rair = 287 J/kg K.

State the Goal

Find the Mach number, pressure, temperature, and velocity at 
the test section.

Generate Ideas and Make a Plan

1.  Use Table A.1 and interpolate to fi nd the Mach number 
at the test section.

2.  Use Table A.1 to fi nd the pressure and temperature 
ratios at the test section.

3.  Evaluate the pressure and temperature in the test 
section.

4. Calculate the speed of sound using Eq. (12.11).
5. Find the velocity using V = MC.

Take Action (Execute the Plan)

1. From Table A.1:

M A/A*

3.5  6.79

4.0 10.72

Interpolating between the two points gives  M = 3.91  at 
A/A* = 10.0.
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Mass Flow Rate through a de Laval Nozzle

An important consideration in the design of a supersonic wind tunnel is size. A large wind 
tunnel requires a large mass fl ow rate, which, in turn, requires a large pumping system for a 
continuous-fl ow tunnel or a large tank for suffi  cient run time in an intermittent tunnel. Th e 
purpose of this section is to develop an equation for the mass fl ow rate.

Th e easiest station at which to calculate the mass fl ow rate is the throat because the Mach 
number is unity there.

m· = ρ* A*V* = ρ*A* √kRT*

It is more convenient, however, to express the mass fl ow in terms of total conditions. Th e 
local density and static temperature at sonic velocity are related to the total density and 
temperature by

 
T*

Tt
= ( 2

k + 1)
 
ρ*

ρt
= ( 2

k + 1)
1/(k−1)

which, when substituted into the foregoing equation, give

 m· = ρt √kRTt A* ( 2
k +1)

(k+1)/2(k−1)

 (12.55)

Usually, the total pressure and temperature are known. Using the ideal gas law to eliminate ρt 
yields the expression for critical mass fl ow rate

 m· =
pt A*

√RTt
k1/2 ( 2

k + 1)
(k+1)/2(k−1)

 (12.56)

For gases with a ratio of specifi c heats of 1.4,

 m· = 0.685
pt A*

√RTt
 (12.57)

For gases with k = 1.67,

 m· = 0.727
pt A*

√RTt
 (12.58)

Example 12.9 illustrates how to calculate mass fl ow rate in a supersonic wind tunnel given 
the conditions in the test section.

2.  Interpolation using Table A.1 to fi nd the pressure and 
temperature ratios:

p
pt

= 0.00743  and  
T
Tt

= 0.246

3. In the test section,
 p = 0.00743 × 4 MPa =  29.7 kPa
 T = 0.246 × 350 K =  86 K

4. Speed of sound:

c = √kRT = √1.4 × 287 × 86 = 186 m/s

5. Velocity:

V = 3.91 × 186 m/s =  727 m/s

Review the Solution and the Process

Knowledge. Low temperatures can cause problems. Notice 
that the temperature of air in the test section is only 86 K, 
or −187°C. At this temperature, the water vapor in the air can 
condense out, creating fog in the tunnel and compromising 
tunnel utility.



  Isentropic Compressible Flow through a Duct with Varying Area        411

Classifi cation of Nozzle Flow by Exit Conditions

Nozzles are classifi ed by the conditions at the nozzle exit. Consider the de Laval nozzle de-
picted in Fig. 12.16 with the corresponding pressure and Mach number distributions plotted 
beneath it. Th e pressure at the nozzle entrance is very near the total pressure because the Mach 
number is small. As the area decreases toward the throat, the Mach number increases and the 
pressure decreases. Th e static to total pressure ratio at the throat, where conditions are sonic, 
is called the critical pressure ratio. It has a value of

p*

pt
= ( 2

k + 1)
k/(k−1)

EXAMPLE 12.9

Mass Flow Rate in Supersonic Wind Tunnel

Problem Statement

A supersonic wind tunnel with a square test section 15 cm 
by 15 cm is being designed to operate at a Mach number of 
3 using air. Th e static temperature and pressure in the test 
section are −20°C and 50 kPa abs, respectively. Calculate the 
mass fl ow rate.

Defi ne the Situation

A Mach 3 supersonic wind tunnel has a 15 cm by 15 cm test 
section.

p = 50 kPa abs
T = –20°C

M

A = 15 cm × 15 cm

Properties: From Table A.2, kair = 1.4 and Rair = 287 J/kg K.

State the Goal

Calculate the mass fl ow rate (kg/s) in the tunnel.

Generate Ideas and Make a Plan

1.  Use Eq. (12.54) to fi nd area ratio and calculate throat area.
2. Use Eq. (12.22) to fi nd total temperature.
3. Use Eq. (12.26) to fi nd total pressure.
4. Use Eq. (12.56) to fi nd the mass fl ow rate.

Take Action (Execute the Plan)

1. Area ratio:

 
A
A*

 =
1
M {

1 + [(k − 1)/2]M 2

(k + 1)/2 }
(k +1) /2(k−1)

 =
1
3 [1 + 0.2 × 32

1.2 ]
3

= 4.23

Th roat area:

A* =
225 cm2

4.23
= 53.2 cm2 = 0.00532 m2

2. Total temperature:

Tt = T (1 +
k − 1

2
M2) = 253 K (2.8) = 708 K

3. Total pressure:

 pt = p(1 +
k − 1

2
M2)

k /(k−1)

= (50 kPa) (36.7)

 = 1840 kPa = 1.84 MPa

4. Mass fl ow rate:

 m· = 0.685
pt A*

√RTt
=

(0.685)[1.840(106 N/m2
)](0.00532 m2

)

[(287 J/kg K)(708 K)]
1/2

 =  14.9 kg/s

Review the Solution and the Process

1.  Discussion. An alternate way to solve this problem is to 
calculate the density in the test section using the ideal 
gas law, calculate the speed of sound with the speed 
of sound equation, fi nd the air speed using the Mach 
number, and fi nally determine the mass fl ow rate with 
m· = ρVA.

2.  Discussion. A pump capable of moving air at this rate 
against a 1.8 MPa pressure would require over 6000 kW 
of power input. Such a system would be large and costly 
to build and to operate.
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which for air with k = 1.4 is
p*

pt
= 0.528

It is called a critical pressure ratio because to achieve sonic fl ow with air in a nozzle, it is neces-
sary that the exit pressure be equal to or less than 0.528 times the total pressure. Th e pressure 
continues to decrease until it reaches the exit pressure corresponding to the nozzle-exit area 
ratio. Similarly, the Mach number monotonically increases with distance down the nozzle.

Th e nature of the exit fl ow from the nozzle depends on the diff erence between the exit 
pressure, pe, and the back pressure (the pressure to which the nozzle exhausts). If the exit 
pressure is higher than the back pressure, then an expansion wave exists at the nozzle exit, 
as shown in Fig. 12.17a. Th ese waves, which will not be studied here, eff ect a turning and 
further acceleration of the fl ow to achieve the back pressure. As one watches the exhaust of a 
rocket motor as it rises through the ever-decreasing pressure of higher altitudes, one can see 
the plume fan out as the fl ow turns more in response to the lower back pressure. A nozzle for 
which the exit pressure is larger than the back pressure is called an underexpanded nozzle 
because the fl ow could have expanded further.

If the exit pressure is less than the back pressure, shock waves occur. If the exit pressure is 
only slightly less than the back pressure, then pressure equalization can be obtained by oblique 
shock waves at the nozzle exit, as shown in Fig. 12.17b.

If, however, the diff erence between back pressure and exit pressure is larger than can be 
accommodated by oblique shock waves, then a normal shock wave will occur in the nozzle, as 
shown in Fig. 12.17c. A pressure jump occurs across the normal shock wave. Th e fl ow becomes 
subsonic and decelerates in the remaining portion of the diverging section in such a way that 

M, p
p = pt

 p = p
*

M = 1

M

p

Me

pe

x

FIGURE 12.16

Distribution of static pressure and Mach number in a 

de Laval nozzle.

p p p

pb

pb

pb

x x x

pe pe

M > 1 M < 1

Normal shock waveOblique shock wavesExpansion waves

(a) (b) (c)

FIGURE 12.17

Conditions at a nozzle exit: (a) expansion 

waves, (b) oblique shock waves, (c) normal 

shock wave.



  Isentropic Compressible Flow through a Duct with Varying Area        413

the exit pressure is equal to the back pressure. As the back pressure is further increased, the 
shock wave moves toward the throat region until, fi nally, there is no region of supersonic fl ow. 
A nozzle in which the exit pressure corresponding to the exit area ratio of the nozzle is less 
than the back pressure is called an overexpanded nozzle. Any fl ow that exits from a duct (or 
pipe) subsonically must always exit at the local back pressure.

A nozzle with supersonic fl ow in which the exit pressure is equal to the back pressure is 
ideally expanded.

Th e assessment of the nozzle exit conditions is provided by Example 12.10.

EXAMPLE 12.10

Finding a Nozzle Exit Condition

Problem Statement

Th e total pressure in a nozzle with an area ratio (A/A*) of 4 is 
1.3 MPa. Air is fl owing through the nozzle. If the back pressure 
is 100 kPa, is the nozzle overexpanded, ideally expanded, or 
underexpanded?

Defi ne the Situation

Air fl ows through a nozzle with exit area ratio of 4.

pb = 100 kPa abs
pt = 1.3 MPa abs

A/A* = 4

State the Goal

Determine the state of the exit condition (ideally expanded, 
overexpanded, or underexpanded).

Generate Ideas and Make a Plan

1.  Interpolate Table A.1 to fi nd Mach number correspond-
ing to exit area ratio.

2. Calculate exit pressure using Eq. (12.26).
3.  Compare exit pressure with back pressure to determine 

exit condition.

Take Action (Execute the Plan)

1. Interpolation for Mach number from Table A.1:

M A/A*

2.90 3.850

3.00 4.235

M = 2.94 at A/A* = 4.0.
2. Exit pressure:

 
pt

pe
= (1 +

k − 1
2

M2)
k /(k−1)

 pe =
1300 kPa

(1 + 0.2 × 2.942
)

3.5 = 38.7 kPa.

3. Because pe < pb, the nozzle is overexpanded.

Review the Solution and the Process

Knowledge. Because the nozzle is overexpanded, there will be 
a shock wave structure inside the nozzle to achieve pressure 
equilibration at the nozzle exit.

Example 12.11 illustrates how to calculate the static pressure at the exit of a de Laval nozzle 
with overexpanded fl ow.

EXAMPLE 12.11

A Shock Wave in a de Laval Nozzle

Problem Statement

Th e de Laval nozzle shown in the fi gure has an expansion ratio 
of 4 (exit area/throat area). Air fl ows through the nozzle, and a 
normal shock wave occurs where the area ratio is 2. Th e total 
pressure upstream of the shock is 1 MPa. Determine the static 
pressure at the exit.

Shock

A
At

= 2

At

Ae = 4
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Mass Flow through a Truncated Nozzle

Th e truncated nozzle is a de Laval nozzle cut off  at the throat, as shown in Fig. 12.18. Th e 
nozzle exits to a back pressure pb. Th is type of nozzle is important to engineers because of its 
frequent use as a fl ow-metering device for compressible fl ows. Th e purpose of this section is to 
develop an equation for mass fl ow through a truncated nozzle.

To calculate the mass fl ow, one must fi rst determine whether the fl ow at the exit is sonic 
or subsonic. Of course, the fl ow at the exit could never be supersonic because the nozzle area 
does not diverge. First, calculate the value of the critical pressure ratio,

p*

pt
= ( 2

k + 1)
k/(k−1)

which, for air, is 0.528. Th en evaluate the ratio of back pressure to total pressure, pb/pt, and 
compare it with the critical pressure ratio:

1. If pb/pt ≤ p*/pt, the exit pressure is higher than or equal to the back pressure, so the exit 
fl ow must be sonic. Pressure equilibration is achieved aft er exit by a series of expansion 

Defi ne the Situation

Air fl ows in de Laval nozzle with an area ratio (Ae/A*) of 4 and 
a normal shock at A/A* = 2.

Normal shock wave

Virtual
nozzle

pt = 1 MPa abs A/A* = 2

Ae /A* = 4

A*v

Properties: kair = 1.4.

State the Goal

Calculate the static pressure (in kPa) at the exit.

Generate Ideas and Make a Plan

Th is problem will require the identifi cation of a “virtual nozzle” 
shown in the sketch. Th e virtual nozzle is an expanding nozzle 
with subsonic fl ow and with a Mach number equal to the 
downstream Mach number behind the normal shock wave.

1.  From Table A.1, interpolate to fi nd the Mach number 
for A/A* = 2.

2.  Using the same table, fi nd the Mach number down-
stream of shock and total pressure ratio across shock.

3.  Calculate total pressure downstream of the shock wave.
4.  Treat the problem as fl ow in a virtual subsonic nozzle 

with a Mach number equal to the Mach number behind 
the wave with new total pressure. Calculate the exit area 
ratio of the virtual nozzle.

5.  Use the subsonic fl ow table to fi nd the subsonic Mach 
number at exit.

6.  Use the total pressure equation to calculate static 
pressure at exit.

Take Action (Execute the Plan)

1.  From interpolation of the supersonic-fl ow part of 
Table A.1,

at A/A* = 2, and M = 2.2.
2. From the same entry in the table,

 M2 = 0.547

 
pt2

pt1

= 0.6281

3. Total pressure downstream of the shock wave:
pt2

= 0.6281 × 1 MPa = 6.28 kPa

4. From the subsonic part of Table A.1,
at M = 0.547, and A/A*v = 1.26.

5. Exit area ratio of virtual nozzle:

 
Ae

A*v
=

Ae

A*
×

A*

As
×

As

A*v

 = 4 ×
1
2

× 1.26 = 2.52

where As is the cross-sectional area at the shock wave.
6. From the subsonic part of Table A.1,

at A/A* = 2.52, M = 0.24
Exit pressure from Eq. (12.26):

 
pt

pe
=(1 +

k − 1
2

M2)
k /(k−1)

 pe =
628 kPa

[1 + (0.2)(0.24)
2
]

3.5 =  603 kpa

FIGURE 12.18

Truncated nozzle.

p    pt

p = pe

pb

T    Tt
∼_

∼_
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waves. Th e mass fl ow is calculated using Eq. (12.56), where A* is the area at the truncated 
station.

2. If pb/pt > p*/pt, the fl ow exits subsonically. In this case the exit pressure is equal to the 
back pressure. One must fi rst determine the Mach number at the exit by using Eq. (12.31):

Me = B
2

k − 1 [( pt

pb
)

(k−1)/k
− 1 ]

Using this value for the Mach number, calculate the static temperature and speed of sound at 
the exit:

 Te =
Tt

{1 + [(k − 1)/2]M2
e }

 ce = √kRTe

Th e gas density at the nozzle exit is determined by using the ideal gas law with the exit 
temperature and back pressure:

ρe =
pb

RTe

Finally, the mass fl ow is given by
m· = ρe Ae Me ce

where Ae is the area at the truncated section.
Example 12.12 shows how to calculate mass fl ow in a truncated nozzle.

EXAMPLE 12.12

Mass Flow in a Truncated Nozzle

Problem Statement

Air exhausts through a truncated nozzle 3 cm in diameter 
from a reservoir at a pressure of 160 kPa and a temperature 
of 80°C. Calculate the mass fl ow rate if the back pressure is 
100 kPa.

Defi ne the Situation

Air fl ows through a 3 cm diameter truncated nozzle.

p = 160 kPa abs
T = 80°C

pb = 100 kPa

V 3 cm

Properties: From Table A.2, kair = 1.4.

State the Goal

Calculate the mass fl ow rate (in kg/s) through the nozzle.

Generate Ideas and Make a Plan

1.  Determine the exit condition by comparing exit 
pressure with back pressure. If pb/pt < p*/pt, exit fl ow 
is sonic. If pb/pt > p*/pt, exit fl ow is subsonic.

2. Calculate mass fl ow according to the exit condition.

Take Action (Execute the Plan)

1. Ratio of exit pressure to total pressure:
pb/ pt = 100/160 = 0.625

Because 0.625 is larger than the critical pressure ratio 
for air (0.528), the fl ow at the nozzle exit must be 
subsonic.

2.  Mach number at exit, from the total pressure equation, 
Eq. (12.26):

 M2
e =

2
k − 1 [( pt

pb
)

(k−1) /k
− 1]

 Me = 0.85

Static temperature at exit, from the total temperature 
equation, Eq. (12.22):

 Te =
Tt

{1 + [(k − 1)/2]M2
e }

= 308 K
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Further information and other topic areas in compressible fl ow can be found in other 
sources, such as Anderson (2) and Shapiro (3).

Static density at exit, from the ideal gas law:

ρe =
pb

RTe
=

100 × 103 N/m2

(287 J/ kg K)(309 K)

= 1.13 kg/m3

Speed of sound at the exit from the speed-of-sound 
equation, Eq. (12.11):

 ce = √kRTe = [(1.4)(287 J/kg K)(309 K)
1/2

 = 352 m/s

Mass fl ow rate:
 m· = ρe Ae Me ce

 m· = (1.13 kg/m3
)(π/4)(0.032 m2

)(0.85)(352 m/s)

 =  0.239 kg/s

Review the Solution and the Process

Had pb/pt been less than 0.528, then Eq. (12.56) would have 
been used to calculate the mass fl ow rate.

Speed of Sound and Compressible 

Flow

• Th e speed of sound is the speed at which an infi nitesimal 
pressure disturbance travels through a fl uid.

• Th e speed of sound in an ideal gas is

c = √kRT

 where k is the ratio of specifi c heats, R is the gas constant, 
and T is the absolute temperature.

• Th e Mach number is defi ned as

M =
V
c

• Compressible fl ows are classifi ed as

 M < 1 subsonic
 M ≈ 1 transonic
 M > 1 supersonic

• In general, if the Mach number is less than 0.3, then a 
steady fl ow can be regarded as incompressible.

Property Variations along a Streamline

• For an adiabatic fl ow (no heat transfer), the temperature 
varies along a streamline according to

T = Tt(1 +
k − 1

2
M2)

−1

 where Tt, the total temperature, is the temperature 
attained if the fl ow is decelerated to zero velocity.

• If the fl ow is isentropic, the pressure varies along a 
streamline as

p = pt(1 +
k − 1

2
M 2)

−k/(k−1)

 where pt is the total pressure, the pressure achieved if the 
fl ow is decelerated to zero velocity isentropically.

The Normal Shock Wave

• A normal shock wave is a narrow region in which a 
supersonic fl ow is decelerated to a subsonic fl ow with 
an attendant rise in pressure, temperature, and density. 
Th e total temperature does not change through a shock 
wave, but the total pressure decreases. Th e shock wave 
is a nonisentropic process and can only occur in super-
sonic fl ows.

The de Laval Nozzle

• A de Laval nozzle is a duct with a converging and ex-
panding area that is used to accelerate a compressible 
fl uid to supersonic speeds. Sonic fl ow can occur only at 
the nozzle throat (minimum area).

• Th e ratio of the area at a location in the nozzle to the 
throat area, A/A*, is a function of the local Mach number 
and the ratio of specifi c heats.

• Th e fl ow rate through a de Laval nozzle is given by

m· = 0.685
pt A*

√RTt

12.5 Summarizing Key Knowledge
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• A de Laval nozzle is classifi ed by comparing the pressure 
at the exit, pe, for supersonic fl ow in the nozzle with the 
back (ambient) pressure, pb:

pe/pb > 1  underexpanded
pe/pb = 1  ideally expanded
pe /pb < 1  overexpanded

• Shock waves occur in overexpanded nozzles, yielding a 
subsonic fl ow at the exit.

• A truncated nozzle is a de Laval nozzle terminated at the 
throat. Th e truncated nozzle is typically used for mass 
fl ow measurement.

1. Cengel, Y. A., and M. A. Boles, Th ermodynamics. New York: 
McGraw-Hill, 1994.
2. Anderson, J. D., Jr. Modern Compressible Flow with Historical 
Perspective. New York: McGraw-Hill, 1991.

3. Shapiro, A. H. Th e Dynamics and Th ermodynamics of 
Compressible Fluid Flow. New York: Ronald Press, 1953.
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Speed of Sound and Mach Number (§12.1)

12.1 Th e speed of sound in an ideal gas _______. Select all that 
are correct:

a. depends on √T where T is absolute temperature
b. depends on √T where T is temperature in °C
c.  depends on √k, where k = cp/cv, a ratio of specifi c heats for 

a given gas
12.2 Make these calculations about the speed of sound in air.

a.  Th e speed of sound in air is 340 m/s. What is this speed in 
miles per hour?

b.  If it takes 4 seconds between seeing lightning and 
hearing the thunder, how far away (miles) is the storm 
(T = 50°F)?

12.3 Th e Mach number _______. (Select all that are correct).
a. is the ratio V/c, where c = specifi c heat
b. is the ratio V/c, where c = the speed of sound
c.  depends on the velocity, V, of the fl uid relative to the 

moving body.
d. has a magnitude of M < 1 for subsonic fl ow
e. has a magnitude of M > 1 for supersonic fl ow

12.4 How fast (in meters per second) will a sound wave travel in 
methane at −5°C?
12.5 Calculate the speed of sound in helium at 45°C.
12.6 Calculate the speed of sound in hydrogen at 38°F.
12.7 How much faster will a sound wave propagate in helium 
than in nitrogen if the temperature of both gases is 20°C?
12.8 A supersonic aircraft  is fl ying at Mach 1.6 through air at 
30°C. What temperature could be expected on exposed aircraft  
surfaces?

12.9 What is the temperature on the nose of a supersonic fi ghter 
fl ying at Mach 3 through air at −20°C?
12.10 A high-performance aircraft  is fl ying at a Mach number of 
1.8 at an altitude of 10,000 m, where the temperature is −44°C 
and the pressure is 30.5 kPa.

a. How fast is the aircraft  traveling in kilometers per hour?
b.  Th e total temperature is an estimate of surface temperature 

on the aircraft . What is the total temperature under these 
conditions?

c.  If the aircraft  slows down, at what speed (kilometers per 
hour) will the Mach number be unity?

12.11 An airplane travels at 850 km/h at sea level where the tem-
perature is 10°C. How fast would the airplane be fl ying at the same 
Mach number at an altitude where the temperature was −50°C?
12.12 An airplane fl ies at a Mach number of 0.95 at a 10,000 m 
altitude, where the static temperature is −44°C and the pressure 
is 30 kPa absolute. Th e lift  coeffi  cient of the wing is 0.05. Deter-
mine the wing loading (lift  force/wing area).

Mach-Number Relationships (§12.2)

12.13 An airfl ow at M = 0.85 passes through a conduit with a 
cross-sectional area of 60 cm2. Th e total absolute pressure is 
360 kPa, and the total temperature is 10°C. Calculate the mass 
fl ow rate through the conduit.
12.14 Oxygen fl ows from a reservoir in which the temperature is 
200°C and the pressure is 300 kPa absolute. Assuming isentropic 
fl ow, calculate the velocity, pressure, and temperature when the 
Mach number is 0.9.
12.15 Hydrogen fl ows from a reservoir where the temperature 
is 20°C and the pressure is 500 kPa absolute to a duct 2 cm in 
diameter where the velocity is 250 m/s. Assuming isentropic 

PROBLEMS
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fl ow, calculate the temperature, pressure, Mach number, and 
mass fl ow rate at the 2 cm section.
12.16 Th e total pressure in a Mach-2.5 wind tunnel operating with 
air is 547 kPa absolute. A sphere 3 cm in diameter, positioned 
in the wind tunnel, has a drag coeffi  cient of 0.95. Calculate the 
drag of the sphere.

Normal Shock Waves (§12.3)

12.17 Which of the following statements are true?
a. Shock waves only occur in supersonic fl ows.
b. Th e static pressure increases across a normal shock wave.
c.  Th e Mach number downstream of a normal shock wave can 

be supersonic.
12.18 Can normal shock waves occur in subsonic fl ows? Explain 
your answer.
12.19 A normal shock wave exists in a 500 m/s stream of nitro-
gen having a static temperature of −50°C and a static pressure of 
70 kPa. Calculate the Mach number, pressure, and temperature 
downstream of the wave and the entropy increase across the 
wave.
12.20 A normal shock wave exists in a Mach 3 stream of air 
having a static temperature and pressure of 35°F and 30 psia. 
Calculate the Mach number, pressure, and temperature down-
stream of the shock wave.
12.21 A Pitot-static tube is used to measure the Mach number 
on a supersonic aircraft . Th e tube, because of its bluntness, 
creates a normal shock wave as shown. Th e absolute total 
pressure downstream of the shock wave (pt2

) is 150 kPa. Th e 
static pressure of the free stream ahead of the shock wave (p1) 
is 40 kPa and is sensed by the static pressure tap on the probe. 
Determine the Mach number (M1) graphically.

M1
p1

pt2

Problem 12.21

12.22 A shock wave occurs in a methane stream in which the 
Mach number is 3, the static pressure is 89 kPa absolute, and the 
static temperature is 20°C. Determine the downstream Mach 
number, static pressure, static temperature, and density.
12.23 Th e Mach number downstream of a shock wave in helium 
is 0.85, and the static temperature is 110°C. Calculate the velocity 
upstream of the wave.

Flow in Truncated Nozzles (§12.4)

12.24 What is meant by “back pressure”?
12.25 Th e truncated nozzle shown in the fi gure is used to meter 
the mass fl ow of air in a pipe. Th e area of the nozzle is 3 cm2. Th e 
total pressure and total temperature measured upstream of the 

nozzle in the pipe are 300 kPa absolute and 20°C. Th e pressure 
downstream of the nozzle (back pressure) is 90 kPa absolute. 
Calculate the mass fl ow rate.
12.26 Th e truncated nozzle shown in the fi gure is used to monitor 
the mass fl ow rate of methane. Th e area of the nozzle is 3 cm2, 
and the area of the pipe is 12 cm2. Th e upstream total pressure 
and total temperature are 150 kPa absolute and 30°C. Th e back 
pressure is 100 kPa.

a. Calculate the mass fl ow rate of methane.
b.  Calculate the mass fl ow rate assuming the Bernoulli equation 

is valid, with the density being the density of the gas at the 
nozzle exit.

Problems 12.25, 12.26

12.27 A truncated nozzle with a 10 cm2 exit area is supplied from 
a helium reservoir in which the absolute pressure is fi rst 130 kPa 
and then 350 kPa. Th e temperature in the reservoir is 28°C, and 
the back pressure is 100 kPa. Calculate the mass fl ow rate of 
helium for the two reservoir pressures.
12.28 A sampling probe is used to draw gas samples from a gas 
stream for analysis. In sampling, it is important that the velocity 
entering the probe equal the velocity of the gas stream (isokinetic 
condition). Consider the sampling probe shown, which has 
a truncated nozzle inside it to control the mass fl ow rate. Th e 
probe has an inlet diameter of 4 mm and a truncated nozzle 
diameter of 2 mm. Th e probe is in a hot-air stream with a static 
temperature of 600°C, a static pressure of 100 kPa absolute, and 
a velocity of 60 m/s. Calculate the pressure required in the probe 
(back pressure) to maintain the isokinetic sampling condition.

4 mm
2 mm

U = 60 m/s

T = 600°C

p = 100 kPa

pb

Problem 12.28

Flow in de Laval Nozzles (§12.4)

12.29 Sketch how the Mach number and velocity vary through a 
de Laval nozzle from the entrance to the exit. How is the velocity 
variation diff erent from a venturi confi guration?
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12.30 When a de Laval nozzle has expansion ratio of 4, what 
does that mean?
12.31 A wind tunnel using air is designed to have a Mach number 
of 3, a static pressure of 1.5 psia, and a static temperature of 
−10°F in the test section. Determine the area ratio of the nozzle 
required and the reservoir conditions that must be maintained if 
air is to be used.
12.32 A de Laval nozzle is to be designed to operate supersoni-
cally and expand ideally to an absolute pressure of 25 kPa. If the 
stagnation pressure in the nozzle is 1 MPa, calculate the nozzle 
area ratio required. Determine the nozzle throat area for a mass 
fl ow of 10 kg/s and a stagnation temperature of 550 K. Assume 
that the gas is nitrogen.
12.33 A rocket nozzle with an area ratio of 4 is operating at a 
total absolute pressure of 1.3 MPa and exhausting to an atmo-
sphere with an absolute pressure of 30 kPa. Determine whether 
the nozzle is overexpanded, underexpanded, or ideally expanded. 
Assume k = 1.4.
12.34 A de Laval nozzle with an exit area ratio of 1.688 
exhausts air from a large reservoir into ambient conditions 
at p = 100 kPa.

a.  Show that the reservoir pressure must be 782.5 kPa to 
achieve ideally expanded exit conditions at M = 2.

b.  What are the static temperature and pressure at the throat 
if the reservoir temperature is 17°C with the pressure as 
in (a)?

c.  If the reservoir pressure were lowered to 700 kPa, what would 
be the exit condition (overexpanded, ideally expanded, 
underexpanded, subsonic fl ow in entire nozzle)?

d.  What reservoir pressure would cause a normal shock to 
form at the exit?

12.35 A rocket nozzle has the confi guration shown. Th e diameter 
of the throat is 4 cm, and the exit diameter is 8 cm. Th e half-angle 
of the expansion cone is 15°. Gases with a specifi c heat ratio of 
1.2 fl ow into the nozzle with a total pressure of 250 kPa. Th e 
back pressure is 100 kPa. First, using an iterative or graphical 
method, determine the area ratio at which the shock occurs. 
Th en determine the shock wave’s distance from the throat in 
centimeters.

15°

pb = 100 kPa

Problem 12.35

12.36 Consider airfl ow in the variable-area channel shown in 
the fi gure. Determine the Mach number, static pressure, and 
stagnation pressure at station 3. Assume isentropic fl ow except 
for normal shock waves.

A1 = 100 cm2

M1 = 2.1
p1 = 65 kPa

A2 = 75 cm2

A3 = 120 cm2

Shock
wave

1

2

3

Problem 12.36

12.37 Determine the back pressure necessary for the shock wave 
to position itself as shown in the fi gure. Th e fl uid is air.

M1 = 0.3
A1 = 200 cm2

p1 = 400 kPa

As = 120 cm2

A2 = 140 cm2

Shock wave

1 2
s

Problem 12.37
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Flow Measurements

CHAPTER ROAD MAP Measurement techniques are important because fl uid mechanics relies heavily 
on experiments. Thus, this chapter describes ways to measure fl ow rate, pressure, and velocity. Also, this 
chapter describes how to estimate the uncertainty of a measurement.

CHAPTERTHIRTEEN

LEARNING OUTCOMES

VELOCITY AND PRESSURE (§13.1).

●  Describe common instruments for measuring velocity and pressure.

FLOW RATE (§13.2).

●  Calculate fl ow rate by integrating velocity distribution data. 
●  Calculate fl ow rate for an obstruction fl owmeter (i.e., an orifi ce, 

venturi, fl ow nozzle). 
●  Calculate fl ow rate for a rectangular or triangular weir.

FIGURE 13.1
This photograph shows a laminar fl ow element being 

used to measure the volume fl ow rate of air for testing of 

fans. (Photo by Donald Elger.)

13.1 Measuring Velocity and Pressure

Stagnation (Pitot) Tube

Th e stagnation tube, also called the Pitot tube, is shown in Fig. 13.2a. A Pitot tube measures 
stagnation pressure with an open tube that is aligned parallel with the velocity direction and 
then senses pressure in the tube using a pressure gage or transducer.

When the stagnation tube was introduced in Chapter 4, viscous eff ects were not discussed. 
Viscous eff ects are notable because they can infl uence the accuracy of a measurement. Th e 
eff ects of viscosity, from reference (1), are shown in Fig. 13.3. Th is shows the pressure coeffi  cient 
Cp plotted as a function of the Reynolds number. Viscous eff ects are important when Cp > 1.0. 
Th is guideline can be used to establish a Reynolds number range.

In Fig. 13.3, it is seen that when the Reynolds number for the circular stagnation tube is 
greater than 60, the error in measured velocity is less than 1%. For boundary layer measurements, 
a stagnation tube with a fl attened end can be used. By fl attening the end of the tube, the velocity 
measurement can be taken nearer the boundary than if a circular tube were used. For these 
fl attened tubes, the pressure coeffi  cient remains near unity for a Reynolds number as low as 30.
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Static Tube

A static tube, as shown in Fig. 13.2b, is an instrument for measuring static pressure. Static 
pressure is the pressure in a fl uid that is stationary or in a fl uid that is fl owing. When the fl uid 
is fl owing, the static pressure must be measured in a way that does not disturb the pressure. 
Th us, in the design of the static tube, as shown in Fig. 13.4, the placement of the holes along the 
probe is critical because the rounded nose on the tube causes some decrease of pressure along 
the tube, and the downstream stem causes an increase in pressure in front of it. Hence, the 
location for sensing the static pressure must be at the point where these two eff ects cancel each 
other. Experiments reveal that the optimum location is at a point approximately 6 diameters 
downstream of the front of the tube and 8 diameters upstream from the stem.

Pitot-Static Tube

Th e Pitot-static tube, Fig. 13.2c, measures velocity by using concentric tubes to measure static 
pressure and dynamic pressure. Application of the Pitot-static tube is presented in Chapter 4.

(a)

Pitot tube

(c)

Pitot-static tube

(b)

Static tube

FIGURE 13.2

Section views of (a) Pitot 

tube, (b) Static tube, and 

(c) Pitot-static tube.
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FIGURE 13.3

Viscous effects on Cp. [Data are from Hurd, Chesky, and Shapiro (1).]
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FIGURE 13.4

Static tube.
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Yaw Meters

A yaw meter, Fig. 13.5, is an instrument for measuring velocity by using multiple pressure 
ports to determine the magnitude and direction of fl uid velocity. Th e fi rst two yaw meters in 
Fig. 13.5 can be used for two-dimensional fl ow, where fl ow direction in only one plane needs 
to be found. Th e third yaw meter in Fig. 13.5 is used for determining fl ow direction in three 
dimensions. In all these devices, the tube is turned until the pressure on symmetrically op-
posite openings is equal. Th is pressure is sensed by a diff erential pressure gage or manometer 
connected to the openings in the yaw meter. Th e fl ow direction is sensed when a null reading 
is indicated on the diff erential gage. Th e velocity magnitude is found by using equations that 
depend on the type of yaw meter that is used.

The Vane or Propeller Anemometer

Th e term anemometer originally meant an instrument that was used to measure the velocity 
of the wind. However, anemometer now means an instrument that is used to measure fl uid 
velocity because anemometers are used in water, air, nitrogen, blood, and many other fl uids.

Th e vane anemometer (Fig. 13.6a) and the propeller anemometer (Fig. 13.6b) measure 
velocity by using vanes typical of a fan or propeller, respectively. Th ese blades rotate with a 
speed of rotation that depends on the wind speed. Typically, an electronic circuit converts 
the rotational speed into a velocity reading. On some older instruments, the rotor drives a 
low-friction gear train that, in turn, drives a pointer that indicates feet on a dial. Th us, if the 
anemometer is held in an airstream for 1 min and the pointer indicates a 300 ft  change on the 
scale, the average airspeed is 300 ft /min.

A

A

A

A

A

A

V0

V0

V0

Elevation view

View A-A

View A-A

View A-A

(a)

(b)

(c)

FIGURE 13.5

Various types of yaw meters:

(a) cylindrical-tube yaw meter, 

(b) two-tube yaw meter, 

(c) three-dimensional yaw 

meter.
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Cup Anemometer

Instead of using vanes, the cup anemometer (Fig. 13.7) is a device that uses the drag on cup-
shaped objects to spin a rotor around a central axis. Because the rotational speed of the rotor 
is related to drag force, the frequency of rotation is related to the fl uid velocity by appropriate 
calibration data. A typical rotor comprises three to fi ve hemispherical or conical cups. In addi-
tion to applications in air, engineers use a cup anemometer to measure the velocity in streams 
and rivers.

Hot-Wire and Hot-Film Anemometers

Th e hot-wire anemometer (HWA; Fig. 13.8) is an instrument for measuring velocity by sensing 
the heat transfer from a heated wire. As velocity increases, more energy is needed to keep the 
wire hot, and the corresponding changes in electrical characteristics can be used to determine 
the velocity of the fl uid that is passing by the wire.

Th e HWA has advantages over other instruments. Th e HWA is well suited for measuring 
velocity fl uctuations that occur in turbulent fl ow, whereas instruments such as the Pitot-static 
tube are only suitable for measuring velocity that either is steady or changes slowly with time. 
Th e sensing element of the HWA is quite small, allowing the HWA to be used in locations such 
as the boundary layer, where the velocity is varying in a region that is small in size. Many other 
instruments are too large for recording velocity in a region that is geometrically small. Another 
advantage of the HWA is that it is sensitive to low-velocity fl ows, a characteristic lacking in the 
Pitot tube and other instruments. Th e main disadvantages of the HWA are its delicate nature 
(the sensor wire is easily broken), its relatively high cost, and its need for an experienced user.

Th e basic principle of the hot-wire anemometer is described as follows: A wire of very 
small diameter—the sensing element of the hot-wire anemometer—is welded to supports as 
shown in Fig. 13.8. In operation, the wire either is heated by a fi xed fl ow of electric current (the 
constant-current anemometer) or is maintained at a constant temperature by adjusting the 
current (the constant-temperature anemometer).

Vanes

Housing

(a) (b)

FIGURE 13.6

(a) Vane anemometer,

(b) propeller anemometer.

FIGURE 13.7

Cup anemometer.

Wire supports

Heated wire
FIGURE 13.8

Probe for hot-wire anemometer (enlarged).
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A fl ow of fl uid past the hot wire causes the wire to cool because of convective heat 
transfer. In the constant-current anemometer, the cooling of the wire causes its resistance 
to change, and a corresponding voltage change occurs across the wire. Because the rate of 
cooling is a function of the speed of fl ow past the heated wire, the voltage across the wire 
is correlated with the fl ow velocity. Th e more popular type of anemometer, the constant-
temperature anemometer, operates by varying the current in such a manner as to keep the 
resistance (and temperature) constant. Th e fl ow of current is correlated with the speed of 
the fl ow: the higher the speed, the greater the current needed to maintain a constant tem-
perature. Typically, the wires are 1 mm to 2 mm in length and heated to 150°C. Th e wires 
may be 10 μm or less in diameter; the time response improves with the smaller wire. Th e 
lag of the wire’s response to a change in velocity (thermal inertia) can be compensated for 
more easily, using modern electronic circuitry, in constant-temperature anemometers than 
in constant-current anemometers. Th e signal from the hot wire is processed electronically 
to give the desired information, such as mean velocity or the root mean square of the velocity 
fl uctuation.

To illustrate the versatility of these instruments, note that the hot-wire anemometer can 
accurately measure gas fl ow velocities from 30 cm/s to 150 m/s; it also can measure fl uctuating 
velocities with frequencies up to 100,000 Hz, and it has been used satisfactorily for both gases 
and liquids.

Th e single hot wire mounted normal to the mean fl ow direction measures the fl uctuating 
component of velocity in the mean fl ow direction. Other probe confi gurations and electronic 
circuitry can be used to measure other components of velocity.

For velocity measurements in liquids or dusty gases, where wire breakage is a problem, the 
hot-fi lm anemometer is more suitable. Th is anemometer consists of a thin conducting metal 
fi lm (less than 0.1 μm thick) mounted on a ceramic support, which may be 50 μm in diam-
eter. Th e hot fi lm operates in the same fashion as the hot wire. Recently, the split fi lm has been 
introduced. It consists of two semicylindrical fi lms mounted on the same cylindrical support 
and electrically insulated from each other. Th e split fi lm provides both speed and directional 
information.

For more detailed information on the hot-wire and hot-fi lm anemometers, see King and 
Brater (2) and Lomas (3).

Laser-Doppler Anemometer

Th e laser-Doppler anemometer (LDA) is an instrument for measuring velocity by using the 
Doppler shift  that occurs when a particle in a fl ow scatters light from crossed laser beams. 
Advantages of the LDA are that the fl ow fi eld is not disturbed by the presence of a probe and 
it provides excellent spatial resolution. Disadvantages of the LDA include cost, complexity, the 
need for a transparent fl uid, and requirements for particle seeding.

Th ere are several diff erent confi gurations for the LDA. Th e dual-beam mode (Fig. 13.9) 
splits a laser beam into two parallel beams and then uses a converging lens to cause the two 
beams to cross. Th e point where beams cross is called the measuring volume, which might best 
be described as an ellipsoid that is typically 0.3 mm in diameter and 2 mm long, illustrating the 
excellent spatial resolution achievable. Th e interference of the two beams generates a series of 
light and dark fringes in the measuring volume perpendicular to the plane of the two beams. 
As a particle passes through the fringe pattern, light is scattered, and a portion of the scattered 
light passes through the collecting lens toward the photodetector. A typical signal obtained 
from the photodetector is shown in the fi gure.

It can be shown from optics theory that the spacing between the fringes is given by

 Δx =
λ

2 sin ϕ
 (13.1)
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where λ is the wavelength of the laser beam and ϕ is the half-angle between the crossing 
beams. By suitable electronic circuitry, the frequency of the signal ( f ) is measured, so the 
velocity is given by

 U =
Δx
Δt

=
λ f

2 sin ϕ
 (13.2)

Th e operation of the laser-Doppler anemometer depends on the presence of particles to 
scatter the light. Th ese particles need to move at the same velocity as the fl uid. Th us, the par-
ticles need to be small relative to the size of fl ow patterns, and they need to have a density near 
that of the ambient fl uid. In liquid fl ows, impurities of the fl uid can serve as scattering centers. 
In water fl ows, adding a few drops of milk is common. In gaseous fl ows, it is common to “seed” 
the fl ow with small particles. Smoke is oft en used for this seeding.

Laser-Doppler anemometers that provide two or three velocity components of a particle 
traveling through the measuring volume are now available. Th is is accomplished by using laser 
beam pairs of diff erent colors (wavelengths). Th e measuring volumes for each color are posi-
tioned at the same physical location but oriented diff erently to measure a diff erent component. 
Th e signal-processing system can discriminate the signals from each color and thereby provide 
component velocities.

Another recent technological advance in laser-Doppler anemometry is the use of fi ber 
optics, which transmit the laser beams from the laser to a probe that contains optical elements 
to cross the beams and generate a measuring volume. Th us, measurements at diff erent loca-
tions can be made by moving the probe and without moving the laser. For more applications 
of the laser-Doppler technique, see Durst (4).

Marker Methods

Th e marker method for determining velocity involves particles that are placed in the stream. 
By analyzing the motion of these particles, one can deduce the velocity of the fl ow itself. Of 
course, this requires that the markers follow virtually the same path as the surrounding fl uid 
elements. Th erefore, the marker must have nearly the same density as the fl uid, or it must be 
so small that its motion relative to the fl uid is negligible. Th us, for water fl ow it is common to 
use colored droplets from a liquid mixture that has nearly the same density as the water. For 
example, Macagno (6) used a mixture of n-butyl phthalate and xylene with a bit of white paint 
to yield a mixture that had the same density as water and could be photographed eff ectively. 
Solid particles (such as plastic beads) that have densities near that of the liquid being studied 
can also be used as markers.

Pinhole
Photodetector

Output signal

Measuring
volume

Collecting lens

Fringe pattern

Focusing lens

Flow

Laser 2 φ

Δx

FIGURE 13.9

Dual-beam laser-Doppler anemometer.
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For a fl ow of water, hydrogen bubble visualization (Fig. 13.10) is a useful method. Th e 
technique involves the generation of small hydrogen bubbles from a tiny electrical wire (25 to 
50 μm in diameter) using electrolysis. Th e electrical wire acts as the negative electrode (i.e., 
the anode). Th e cathode (i.e., the positive electrode) is situated where it will not disturb the 
fl ow. Th e wire is pulsed with a current, and hydrogen bubbles form on the wire and then are 
transported downstream by the fl owing water. By repeating the electrical signal at various 
times, you can produce lines of bubbles. Other details concerning the marker methods of fl ow 
visualization are described by Macagno (6).

A relatively new marker method is particle image velocimetry (PIV), which provides a 
measurement of the velocity fi eld. In PIV, the marker or seeding particles may be minuscule 
spheres of aluminum, glass, or polystyrene, or they may be oil droplets, oxygen bubbles (liq-
uids only), or smoke particles (gases only). Th e seeding particles are illuminated to produce 
a photographic record of their motion. In particular, a sheet of light passing through a cross 
section of the fl ow is pulsed on twice, and the scattered light from the particles is recorded by 
a camera. Th e fi rst pulse of light records the position of each particle at time t, and the second 
pulse of light records the position at time t + Δt. Th us, the displacement Δr of each particle 
is recorded on the photograph. Dividing Δr by Δt yields the velocity of each particle. Because 
PIV uses a sheet of light, the method provides a simultaneous measurement of velocity at 
locations throughout a cross section of the fl ow. Hence, PIV is identifi ed as a whole-fi eld tech-
nique. Other velocity measurements (e.g., the LDA method) are limited to measurements at 
one location.

PIV measurement of the velocity fi eld for fl ow over a backward-facing step is shown 
in Fig. 13.11. Th is experiment was carried out in water using 15 μm diameter, silver-coated 

Anode (electrical wire)

(produced at times t1 and t2)

Flow

Hydrogen bubbles

FIGURE 13.10

When the hydrogen bubble visualization 

method is applied, hydrogen bubbles are 

produced by the electrolysis of water.

FIGURE 13.11

Velocity vectors from PIV 

measurements. (Courtesy of 

TSI Incorporated and Florida 

State University.)
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hollow spheres as seeding particles. Notice that the PIV method provided data over the cross 
section of the fl ow. Although the data shown in Fig. 13.11 are qualitative, numerical values of 
the velocity at each location are also available.

The PIV method is typically performed using digital hardware and computers. For 
example, images may be recorded with a digital camera. Each resulting digital image is 
evaluated with soft ware that calculates the velocity at points throughout the image. Th is 
evaluation proceeds by dividing the image into small subareas called “interrogation areas.” 
Within a given interrogation area, the displacement vector (Δr) of each particle is found by 
using statistical techniques (auto- and cross-correlation). Aft er processing, the PIV data are 
typically available on a computer screen. Additional information on PIV systems is provided 
by Raff el et al. (7).

Smoke is oft en used as a marker in fl ow measurement. One technique is to suspend 
a wire vertically across the fl ow fi eld and allow oil to fl ow down the wire. Th e oil tends to 
accumulate in droplets along the wire. Applying a voltage to the wire vaporizes the oil, 
creating streaks from the droplets. Figure 13.12 is an example of a fl ow pattern revealed by 
such a method. Smoke generators that provide smoke by heating oils are also commercially 
available. It is also possible to position a thin sheet of laser light through the smoke fi eld 
to obtain an improved spatial defi nition of the fl ow fi eld indicated by the smoke. Another 
technique is to introduce titanium tetrachloride (TiC14) in a dried-air fl ow, which reacts 
with the water vapor in the ambient air to produce micron-sized titanium oxide particles, 
which serve as tracers.

13.2 Measuring Flow Rate (Discharge)

Measuring fl ow rate is important in research, design, and testing and in many commercial 
applications.

Direct Measurement of Volume or Weight

For liquids, a simple and accurate method is to collect a sample of the fl owing fl uid over a given 
period of time Δt. Th e sample is weighed, and the average weight rate of fl ow is ΔW/Δt, where 
ΔW is the weight of the sample. Th e volume of a sample can also be measured (usually in a 
calibrated tank), and from this the average volume rate of fl ow is calculated as ΔV/Δt, where 
ΔV is the volume of the sample. Th is method has several disadvantages; for example, it cannot 
be used for an unsteady fl ow, and it is not always possible to collect a sample.

FIGURE 13.12

Flow pattern produced by a model truck in a wind tunnel. 

(Photo by Stephen Lyda.)
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Integrating a Measured Velocity Distribution

Flow rate can be found by measuring a velocity distribution and then integrating using the 
volume fl ow rate equation:

Q = ∫
A

V dA

For example, one can divide a rectangular conduit into subareas and then measure velocity at 
the center of each subarea, as shown in Fig. 13.13. Th en, fl ow rate is determined by

 Q = ∫
A

V dA ≈ ∑
N

i=1
Vi(ΔA)i (13.3)

where N is the number of subareas. When the fl ow area occurs in a round pipe, then the subarea 
is a ring, as shown by Example 13.1.

Measure velocity at
center of each subarea

Subarea ΔAi

FIGURE 13.13

Dividing a rectangular 

conduit into subareas for 

approximating discharge.

EXAMPLE 13.1

Calculating Flow Rate from Velocity Data

Problem Statement

Th e data given in the table are for a velocity traverse of air fl ow 
in a pipe 100 cm in diameter. What is the volume rate of fl ow 
in cubic meters per second?

r (cm) V (m/s)

 0.00 50.0

 5.00 49.5

10.00 49.0
15.00 48.0
20.00 46.5
25.00 45.0
30.00 43.0
35.00 40.5
40.00 37.5
45.00 34.0
47.50 25.0
50.00  0.0

Defi ne the Situation

Air is fl owing in a round pipe (D = 1.0 m).
Velocity in m/s is known as a function of radius (see table).

Assumptions: Th e velocity distribution is symmetric around 
the centerline of the pipe.

State the Goal

Calculate the volume fl ow rate (m3/s) in the pipe.

Generate Ideas and Make a Plan

1.  Develop an equation for a round pipe by applying 
Eq. (13.3).

2. Find discharge by using a spreadsheet program.

Take Action (Execute the Plan)

Th e fl ow rate is given by

Q = ∑
N

i=1
Vi (ΔA) i

Th e area ΔAi is shown in the 
sketch. Visualize this area as a strip of length 2πri and width 
Δri. Th en ΔAi ≈ (2πri)Δri. Th e fl ow rate equation becomes

Q = ∑
N

i=1
Vi (ΔA) i = ∑

N

i=1
Vi (2πri)Δri

i

ri 

(cm)

Vi 

(m/s)

2*π*ri 

(m)

Δri 

(m)

ΔAi 

(m2)

Vi*Δ Ai 

(m3/s)

 1 0.0 50.0 0.0000 0.0250 0.0000 0.000

 2 5.0 49.5 0.3142 0.0500 0.0157 0.778

 3 10.0 49.0 0.6283 0.0500 0.0314 1.539
 4 15.0 48.0 0.9425 0.0500 0.0471 2.262
 5 20.0 46.5 1.2566 0.0500 0.0628 2.922
 6 25.0 45.0 1.5708 0.0500 0.0785 3.534
 7 30.0 43.0 1.8850 0.0500 0.0942 4.053
 8 35.0 40.5 2.1991 0.0500 0.1100 4.453
 9 40.0 37.5 2.5133 0.0500 0.1257 4.712
10 45.0 34.0 2.8274 0.0375 0.1060 3.605
11 47.5 25.0 2.9845 0.0250 0.0746 1.865
12 50.0 0.0 3.1416 0.0125 0.0393 0.000

SUM⇒ 0.50 0.79 29.72

ΔAi = (2πri) Δri 

Δri

+
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Calibrated Orifi ce Meter

An orifice meter is an instrument for measuring fl ow rate by using a carefully designed plate 
with a round opening and situating this device in a pipe, as shown in Fig. 13.14. Flow rate is 
found by measuring the pressure drop across the orifi ce and then using an equation to calculate 
the appropriate fl ow rate. One common application of the orifi ce meter is metering of natural 
gas in pipelines. Because large quantities of natural gas are measured and the associated 
costs are high, accuracy is very important. Th is section describes the main ideas associated 
with orifi ce meters. Details about using orifi ce meters are presented in standards such as 
reference (10).

Flow through a sharp-edged orifi ce is shown in Fig. 13.14. Note that the streamlines 
continue to converge a short distance downstream of the plane of the orifi ce. Hence, the 
minimum-fl ow area is actually smaller than the area of the orifi ce. To relate the minimum-
fl ow area, oft en called the contracted area of the jet, or vena contracta, to the area of the orifi ce 
Ao, one uses the contraction coeffi  cient, which is defi ned as

Aj = Cc Ao

Cc =
Aj

Ao

Th en, for a circular orifi ce,

Cc =
(π/4)d 2

j

(π/4)d 2 = (
dj

d )
2

To perform the sum, use a spreadsheet as shown. To see how 
the table is set up, consider the row i = 2. Th e area is

ΔA2 = (2πr2)Δr2 = (2π(0.05 m))(0.05 m) = 0.0157 m2

which is given in the sixth column. Th e last column gives

V2(ΔA)2 = (49.5 m/s)(0.0157 m2) = 0.778 m3/s

Discharge is found by summing the last column. As shown,

Q = ∑
12

i=1
Vi (ΔA)i =  29.7

m3

s

To check the validity of the calculation, sum the column 
labeled Δri and check to ensure that this value equals the 
radius of the pipe. As shown, this sum is 0.5 m. Similarly, the 
pipe area of

A = πr 2 = π (0.5 m)2 = 0.785 m2

should be produced by summing the column labeled ΔAi. As 
shown, this is the case.

1/2DD

D

d

A2 = Cc Ao

2

1

FIGURE 13.14

Flow through a sharp-edged pipe orifi ce.
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Because dj and d2 are identical, Cc = (d2/d)2. At low values of the Reynolds number, Cc is a 
function of the Reynolds number. However, at high values of the Reynolds number, Cc is only 
a function of the geometry of the orifi ce. For d/D ratios less than 0.3, Cc has a value of approxi-
mately 0.62. However, as d/D is increased to 0.8, Cc increases to a value of 0.72.

To derive the orifi ce equation, consider the situation shown in Fig. 13.14. Apply the 
Bernoulli equation between section 1 and section 2:

p1

γ +
V 2

1

2g
+ z1 =

p2

γ +
V 2

2

2g
+ z2

V1 is eliminated by means of the continuity equation V1A1 = V2A2. Solving for V2 gives

 V2 = {
2g [( p1/γ + z1) − ( p2/γ + z2)]

1 − (A2/A1)
2 }

1/2
 (13.4a)

However, A2 = Cc Ao and h = p/γ + z, so Eq. (13.4a) reduces to

 V2 = B
2g (h1 − h2)

1 − C 2
c A2

o/A2
1
 (13.4b)

Our primary objective is to obtain an expression for discharge in terms of h1, h2, and the 
geometric characteristics of the orifi ce. Th e discharge is given by V2A2. Hence, multiply both 
sides of Eq. (13.4b) by A2 = CcAo to give the desired result:

 Q =
Cc Ao

√1 − C 2
c A2

o/A2
1
√2g (h1 − h2) (13.5)

Equation (13.5) is the discharge equation for the fl ow of an incompressible inviscid fl uid 
through an orifi ce. However, it is valid only at relatively high Reynolds numbers. For low and 
moderate values of the Reynolds number, viscous eff ects are signifi cant, and an additional co-
effi  cient called the coeffi  cient of velocity, Cv, must be applied to the discharge equation to relate 
the ideal to the actual fl ow.* Th us, for viscous fl ow through an orifi ce, we have the following 
discharge equation:

Q =
Cv Cc Ao

√1 − C 2
c A2

o/A2
1
√2g (h1 − h2)

Th e product CvCc is called the discharge coefficient, Cd, and the combination CvCc/(1 − 
C2

cA2
o/A2

1)1/2 is called the flow coefficient, K. Th us, Q = KAo√2g (h1 − h2) , where

 K =
Cd

√1 − C 2
c A2

o/A2
1
 (13.6)

If Δh is defi ned as h1 − h2, then the fi nal form of the orifi ce equation reduces to

 Q = KAo√2gΔh (13.7a)

If a diff erential pressure transducer is connected across the orifi ce, it will sense a piezo-
metric pressure change that is equivalent to γΔh, so the orifi ce equation becomes

 Q = KAoB2 
Δpz

ρ  (13.7b)

*At low Reynolds numbers the coeffi  cient of velocity may be quite small; however, at Reynolds numbers above 105, 
Cv typically has a value close to 0.98. See Lienhard (8) for Cv analyses.
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Experimentally determined values of K as a function of d/D and Reynolds number based on 
orifi ce size are given in Fig. 13.15. If Q is given, Red is equal to 4Q/π dv. K is obtained from 
Fig. 13.15 (using the vertical lines and the bottom scale), and Δh is computed from Eq. (13.7a), 
or Δpz can be computed from Eq. (13.7b). However, the problem of determining the discharge 
Q when a certain value of Δh or a certain value of Δpz is given oft en arises. When Q is to be 
determined, there is no direct way to obtain K by entering Fig. 13.15 with Re, because Re is a 
function of the fl ow rate, which is still unknown. Hence, another scale, which does not involve 
Q, is constructed on the graph of Fig. 13.15. Th e variables for this scale are obtained in the fol-
lowing manner: Because Red = 4Q/π dv and Q = K(πd 2/4)√2gΔh, write Red in terms of Δh:

Red = K 
d
v
√2gΔh

or

Red

K
=

d
v
√2gΔh =

d
vB

2Δpz

ρ

Th us, the slanted dashed lines and the top scale are used in Fig. 13.15 when Δh is known and 
the fl ow rate is to be determined. If a certain value of Δp is given, then apply Fig. 13.15 by using 
Δpz/ρ in place of gΔh in the parameter at the top of Fig. 13.15.

Th e literature on orifi ce fl ow contains numerous discussions concerning the optimum 
placement of pressure taps on both the upstream side and the downstream side of an orifi ce. 
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Th e data given in Fig. 13.15 are for “corner taps.” Th at is, on the upstream side the pressure 
readings were taken immediately upstream of the orifi ce plate (at the corner of the orifi ce plate 
and the pipe wall), and the downstream tap was at a similar downstream location. However, 
pressure data from fl ange taps (1 in. upstream and 1 in. downstream) and from the taps shown 
in Fig. 13.14 all yield virtually the same values for K; the diff erences are no greater than the 
deviations involved in reading Fig. 13.15. For more precise values of K with specifi c types of 
taps, see the ASME report on fl uid meters (10).

Head Loss for Orifi ces

Some head loss occurs between the upstream side of the orifi ce and the vena contracta. How-
ever, this head loss is very small compared with the head loss that occurs downstream of the 
vena contracta. Th is downstream portion of the head loss is like that for an abrupt expansion. 
Neglecting all head loss except that due to the expansion of the fl ow gives

 hL =
(V2 − V1)

2

2g
 (13.8)

where V2 is the velocity at the vena contracta and V1 is the velocity in the pipe. It can be shown 
that the ratio of this expansion loss, hL, to the change in head across the orifi ce, Δh, is given as

 
hL

Δh
=

V2

V1
− 1

V2

V1
+ 1

 (13.9)

Table 13.1 shows how the ratio increases with increasing values of V2/V1. It is obvious that an 
orifi ce is very ineffi  cient from the standpoint of energy conservation. Examples 13.2 and 13.3 
illustrate how to make calculations when orifi ce meters are used.

TABLE 13.1 Relative Head Loss for Orifi ces

V2/V1→ 1 2 4 6 8 10
hL/Δh→ 0 0.33 0.60 0.71 0.78 0.82

EXAMPLE 13.3

Applying an Orifi ce Meter to Measure the 
Flow Rate of Water

Problem Statement

A 15 cm orifi ce is located in a horizontal 24 cm water pipe, and 
a water-mercury manometer is connected to either side of the 
orifi ce. When the defl ection on the manometer is 25 cm, what 
is the discharge in the system, and what head loss is produced 
by the orifi ce? Assume the water temperature is 20°C.

Defi ne the Situation

Water flows through an orifice (d = 0.15 m) in a pipe 
(D = 0.24 m). A mercury-water manometer is used to 
measure pressure drop.

Properties:
• Water (20°C): Table A.5, v = 1 × 10−6 m2/s.
• Mercury (20°C): Table A.4, SG = 13.6.

State the Goal

• Calculate discharge (in m3/s) in the pipe.
• Calculate head loss (in meters) produced by the orifi ce.

l

Δl = 25 cm

1 2

Generate Ideas and Make a Plan

1. Calculate Δh = h1 − h2 using the manometer equation.
2. Find the fl ow coeffi  cient K using Fig. 13.15.
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3. Find discharge Q using Eq. (13.7a).
4.  Calculate the coeffi  cient of contraction Cc using Eq. (13.6).
5. Solve for the velocity V2 at the vena contracta.
6. Calculate head loss using Eq. (13.8).

Take Action (Execute the Plan)

1. Change in piezometric head:
• Apply manometer equation from 1 to 2:

p1 + γw (l + Δl ) − γHg Δl − γw l = p2

• Solve for Δh:

Δh =
p1 − p2

γw
= Δl 

γHg − γw

γw
= Δl(

γHg

γw
− 1)

Δh = (0.25 m)(13.6 − 1) = 3.15 m of water

2. Flow coeffi  cient:
• Calculate (Red/K):

 
Red

K
=

d √2gΔh
v

=
0.15 m√2(9.81 m/s2

)(3.15 m)

1.0 × 10−6 m2/s
 = 1.2 × 106

•  From Fig. 13.15 with d/D = 0.625, K = 0.66 
(interpolated).

3. Discharge:
 Q = 0.66Ao √2gΔh

 = 0.66 
π
4

d 2√2(9.81 m/s2
)(3.15 m)

 = 0.66 (0.785)(0.152 m2
)(7.86 m/s) =  0.092 m3/s

4. Coeffi  cient of contraction Cc:

K =
Cd

√1 − C2
c A2

o/A2
1

Let K = 0.66. Th e ratio (Ao /A1)2 = (0.625)4 = 0.1526 
and Cd = CvCc. Assuming Cv = 0.98 (see the discussion 
of Cv in §13.2.) and solving for Cc gives Cc = 0.633.

5. Velocity at the vena contracta:

V2 = Q/(Cc Ao)

    (0.092 m3/s)/[(0.633)(π/4)(0.152 m2
)] = 8.23 m/s

V1 = Q/Apipe

    (0.092 m3/s)/[(π/4)(0.242 m2
)] = 2.03 m/s

6. Head loss:

 hL = (V2 − V1)
2/2g = (8.23 − 2.03)

2/(2 × 9.81)

 =  1.96 m

EXAMPLE 13.4

Applying an Orifi ce Meter

Problem Statement

An air-water manometer is connected to either side of an 
8 in. orifi ce in a 12 in. water pipe. If the maximum fl ow rate 
is 2 cfs, what is the defl ection on the manometer? Th e water 
temperature is 60°F.

Defi ne the Situation

•  Water fl ows (Q = 2 cfs) through an orifi ce (d = 8 in.) in 
a pipe (D = 2 in.)

•  An air-water manometer is used to measure pressure drop.

Air

Deflection = Δ l

Properties: Water (60°F): Table A.5, v = 1.22 × 10−5 ft 2/s.

State the Goal

Calculate the defl ection (in ft ) of water in the manometer.

Generate Ideas and Make a Plan

1. Calculate Reynolds number.
2. Find the fl ow coeffi  cient K from Fig. 13.15.
3. Solve for Δh by using Eq. (13.7a).
4. Solve for Δl by using the manometer equation.

Take Action (Execute the Plan)

1. Reynolds number:

Re =
4Q
πdv

=
(4)(2 ft3/s)

π((8/12) ft)(1.22 × 10−5 ft2/s)

=  3.1 × 105

2. Flow coeffi  cient:
•  Use Fig. 13.15. Interpolate for d/D = 8/12 = 0.667 to 

fi nd K ≈ 0.68.
3. Change in piezometric head:

• From Q = KAo √2gΔh, solve for Δh:

Δh =
Q2

2gK 2A2
o

=
4

64.4(0.682
)[((π)/4)(8/12)

2
]

2 = 1.1 ft

4. Manometer defl ection:
• Th e defl ection is related to Δh by

Δh = Δl (γw − γair

γw
)

•  Because γw ⪢ γair , Δl = Δh = 1.1 ft .   Δl = 1.1 ft
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Th e sharp-edged orifi ce can also be used to measure the mass fl ow rate of gases. Th e dis-
charge equation [Eq. (13.7b)] is multiplied by the upstream gas density and an empirical factor 
to account for compressibility eff ects (10). Th e resulting equation is

 m· = YAo K√2ρ1(p1 − p2) (13.10)

where K, the fl ow coeffi  cient, is found using Fig. 13.15 and Y is the compressibility factor given 
by the empirical equation

 Y = 1 − {1
k

 (1 −
p2

p1
)[ 0.41 + 0.35 (Ao

A1
)

2

]} (13.11)

In this case, both the pressure diff erence across the orifi ce and the absolute pressure of 
the gas are needed. When using the equation for the compressibility factor, remember that the 
absolute pressure must be used.

EXAMPLE 13.5

Applying an Orifi ce Meter to Measure the Flow Rate 
of Natural Gas

Problem Statement

Th e mass fl ow rate of natural gas is to be measured using a 
sharp-edged orifi ce. Th e upstream pressure of the gas is 101 kPa 
absolute, and the pressure diff erence across the orifi ce is 10 kPa. 
Th e upstream temperature of the methane is 15°C. Th e pipe 
diameter is 10 cm, and the orifi ce diameter is 7 cm. What is 
the mass fl ow rate?

Defi ne the Situation

•  Natural gas (methane) is fl owing through a sharp-edged 
orifi ce.

•  Pipe diameter is D = 0.1 m. Orifi ce diameter is d = 0.07 m.
•  Pressure diff erence across orifi ce is 10 kPa.

Properties: Natural gas (15°C, 1 atm): Table A.2,
ρ = 0.678 kg/m3, v = 1.59 × 10−5 m2/s, K = 1.31.

State the Goal

Find the mass fl ow rate (in kg/s).

Generate Ideas (Make a Plan)

1. Find the fl ow coeffi  cient K from Fig. 13.15.
2. Calculate the compressibility factor Y using Eq. (13.11).
3. Calculate the mass fl ow rate using Eq. (13.10).

Take Action (Execute the Plan)

1. Flow coeffi  cient:
•  Calculate (Red/K):
Red

K
=

d
v B2 

Δp
ρ1

=
0.07

1.59 (10−5)B2 
104

0.678
= 7.56 × 105

•  Using Fig. 13.15, K = 0.7.
2. Compressibility factor:

Y = 1 − { 1
1.31

 (1 −
91

101) (0.41 + 0.35 × 0.7 4)} = 0.962

3. Mass fl ow rate of methane:

 m· = YAo K √2ρ1(p1 − p2)

 = 0.962 (π
4

0.072) (0.7)√2(0.678)(104)

 =  0.302 kg/s

Th e foregoing examples involved the determination of either Q or Δh for a given size of 
orifi ce. Another type of problem is determination of the diameter of the orifi ce for a given Q 
and Δh. For this type of problem, a trial-and-error procedure is required. Because one knows 
the approximate value of K, that is guessed fi rst. Th en, the diameter is solved for, aft er which a 
better value of K can be determined, and so on.

Venturi Meter

Th e venturi meter (Fig. 13.16) is an instrument for measuring fl ow rate by using measurements 
of pressure across a converging-diverging fl ow passage. Th e main advantage of the venturi meter 
as compared to the orifi ce meter is that the head loss for a venturi meter is much smaller. 
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Th e lower head loss results from streamlining the fl ow passage, as shown in Fig. 13.16. Such 
streamlining eliminates any jet contraction beyond the smallest fl ow section. Consequently, the 
coeffi  cient of contraction has a value of unity, and the venturi equation is

 Q =
AtCd

√1 − (At/Ap)
2
√2g (hp − ht) (13.12)

 Q = KAt√2gΔh  (13.13)

where At is the throat area and Δh is the diff erence in piezometric head between the venturi en-
trance (pipe) and the throat. Note that the venturi equation is the same as the orifi ce equation. 
However, K for the venturi meter approaches unity at high values of the Reynolds number and 
small d/D ratios. Th is trend can be seen in Fig. 13.15, where values of K for the venturi meter 
are plotted along with similar data for the orifi ce.

Flow Nozzles

Th e flow nozzle (Fig. 13.17) is an instrument for measuring fl ow rate by using the pressure 
drop across a nozzle that is typically placed inside a conduit. Similar to an orifi ce meter, design 
and application of the fl ow nozzle is described by engineering standards (10). As compared to 
an orifi ce meter, the fl ow nozzle is better in fl ows that cause wear (e.g., particle-laden fl ow). 
Th e reason is that erosion of an orifi ce will produce more change in the pressure-drop versus 
fl ow-rate relationship. Both the fl ow nozzle and orifi ce meter will produce about the same 
overall head loss.

Pressure-sensing holes

Throat section

Mercury

D d

Deflection

FIGURE 13.16

Typical venturi meter.

1D

D

Gage liquid

d

0.5D

FIGURE 13.17

Typical fl ow nozzle.
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Electromagnetic Flowmeter

All the fl owmeters described so far require that some sort of obstruction be placed in the 
fl ow. Th e obstruction may be the rotor of a vane anemometer or the reduced cross section of 
an orifi ce or venturi meter. A meter that neither obstructs the fl ow nor requires pressure taps 
(which are subject to clogging) is the electromagnetic flowmeter. Its basic principle is that a 
conductor that moves in a magnetic fi eld produces an electromotive force. Hence, liquids with 
a degree of conductivity generate a voltage between the electrodes, as in Fig. 13.18, and this 
voltage is proportional to the velocity of fl ow in the conduit. It is interesting to note that the 
basic principle of the electromagnetic fl owmeter was investigated by Faraday in 1832. How-
ever, practical application of the principle was not made until approximately a century later, 
when it was used to measure blood fl ow. Recently, with the need for a meter to measure the 
fl ow of liquid metal in nuclear reactors and with the advent of sophisticated electronic signal 
detection, this type of meter has found extensive commercial use.

EXAMPLE 13.6

Applying a Venturi Meter to Measure the Flow 
Rate of Water

Problem Statement

Th e pressure diff erence between the taps of a horizontal 
venturi meter carrying water is 35 kPa. If  d = 20 cm and 
D = 40 cm, what is the discharge of water at 10°C?

Defi ne the Situation

• Water fl ows through a horizontal venturi meter.
•  Pipe diameter is D = 0.40 m. Venturi throat diameter is 

d = 0.2 m.

Properties: Water (10°C): Table A.5, v = 1.31 × 10−6 m2/s, 
and γ = 9810 N/m3.

State the Goal

Find the discharge (m3/s).

Generate Ideas and Make a Plan

1. Compute Δh = h1 − h2.
2. Find the fl ow coeffi  cient K from Fig. 13.15.
3. Find discharge Q using Eq. (13.7a).

Take Action (Execute the Plan)

1. Change in piezometric head:

Δh =
Δp
γ

+ Δz =
Δp
γ

+ 0 =
35,000 N/m2

9810 N/m3 = 3.57 m of water

2. Flow coeffi  cient:
• Calculate (Red/K):

Red

K
=

d√2gΔh
v

=
0.20√2(9.81)(3.57)

1.31(10−6)
= 1.28 × 106

• From Fig. 13.15, fi nd that K = 1.02.
3. Discharge:

 Q = 1.02A2√2gΔh

 = 1.02(0.785)(0.202)√2(9.81)(3.57) =  0.268 m3/s

Electrodes

Flow direction

Voltmeter

Electrically insulated pipe

Magnetic field

emf

FIGURE 13.18

Electromagnetic fl owmeter.
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Th e main advantages of the electromagnetic fl owmeter are that the output signal varies 
linearly with the fl ow rate and that the meter causes no resistance to the fl ow. Th e major disad-
vantages are its high cost and its unsuitability for measuring gas fl ow.

For a summary of the theory and application of the electromagnetic fl owmeter, the reader 
is referred to Shercliff  (11). Th is reference also includes a comprehensive bibliography on the 
subject.

Ultrasonic Flowmeter

Another form of nonintrusive fl owmeter that is used in diverse applications ranging from 
blood fl ow measurement to open-channel fl ow is the ultrasonic flowmeter. Basically, there 
are two diff erent modes of operation for ultrasonic fl owmeters. One mode involves measuring 
the diff erence in travel time for a sound wave traveling upstream and downstream between 
two measuring stations. Th e diff erence in travel time is proportional to fl ow velocity. Th e second 
mode of operation is based on the Doppler eff ect. When an ultrasonic beam is projected into an 
inhomogeneous fl uid, some acoustic energy is scattered back to the transmitter at a diff erent 
frequency (Doppler shift ). Th e measured frequency diff erence is related directly to the fl ow 
velocity.

Turbine Flowmeter

Th e turbine flowmeter consists of a wheel with a set of curved vanes (blades) mounted inside 
a duct. Th e volume rate of fl ow through the meter is related to the rotational speed of the 
wheel. Th is rotational rate is generally measured by a blade passing an electromagnetic pickup 
mounted in the casing. Th e meter must be calibrated for the given fl ow conditions. Th e turbine 
meter is versatile in that it can be used for either liquids or gases. It has an accuracy of better 
than 1% over a wide range of fl ow rates, and it operates with small head loss. Th e turbine fl ow-
meter is used extensively in monitoring fl ow rates in fuel-supply systems.

Vortex Flowmeter

Th e vortex flowmeter (Fig. 13.19) measures fl ow rate by relating vortex shedding frequency 
to fl ow rate. Th e vortices are shed from a sensor tube that is situated in the center of a pipe. 
Th ese vortices cause vibrations, which are sensed by piezoelectric crystals that are located 
inside the sensor tube and are converted to an electronic signal that is directly proportional 
to fl ow rate. Th is vortex meter gives accurate and repeatable measurements with no moving 
parts. However, the corresponding head loss is comparable to that from other obstruction-
type meters.

Electronics produce
a useful signal.

Vortices are shed from
this sensor bar.

Flow

Vibration of this bar
is sensed, for example, by
piezoelectric crystals.

FIGURE 13.19

Vortex fl owmeter.
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Rotameter

Th e rotameter (Fig. 13.20) is an instrument for measuring fl ow rate by sensing the position 
of an active element (weight) that is situated in a tapered tube. Th e equilibrium position of the 
weight is related to the fl ow rate. Because the velocity is lower at the top of the tube (greater fl ow 
section there) than at the bottom, the rotor seeks a neutral position where the drag on it just 
balances its weight. Th us the rotor “rides” higher or lower in the tube depending on the rate of 
fl ow. Th e weight is designed so that it spins and thus stays in the center of the tube. A calibrated 
scale on the side of the tube indicates the rate of fl ow. Although venturi and orifi ce meters have 
better accuracy (approximately 1% of full scale) than the rotameter (approximately 5% of full 
scale), the rotameter off ers other advantages, such as ease of use and low cost.

Rectangular Weir

A weir (Fig. 13.21) is an instrument for determining flow rate in liquids by measuring the 
height of water relative to an obstruction in an open channel. The discharge over the weir 

Outlet

Scale

Active element
(weight)

Conical glass tube

Inlet

FIGURE 13.20

Rotameter.

FIGURE 13.21

Defi nition sketch for sharp-crested 

weir: (a) plan view, (b) elevation view.

Weir

L

H

Drawdown

Weir crest

Nappe

(a)

(b)

P
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is a function of the weir geometry and of the head on the weir, H, which is defined as the 
vertical distance between the weir crest and the liquid surface taken far enough upstream 
of the weir to avoid local free-surface curvature.

The discharge equation for the weir is derived by integrating V dA = VL dh over the 
total head on the weir. Here, L is the length of the weir and V is the velocity at any given 
distance h below the free surface. Neglecting streamline curvature and assuming negli-
gible velocity of approach upstream of the weir, one obtains an expression for V by writing 
the Bernoulli equation between a point upstream of the weir and a point in the plane of 
the weir (see Fig. 13.22). Assuming the pressure in the plane of the weir is atmospheric, 
this equation is

 
p1

γ + H = (H − h) +
V 2

2g
 (13.14)

Here, the reference elevation is the elevation of the crest of the weir, and the reference pressure 
is atmospheric pressure. Th erefore, p1 = 0, and Eq. (13.14) reduces to

V = √2gh

Th en dQ = √2gh Ldh, and the discharge equation becomes

 Q = ∫
H

0

√2gh Ldh

  =
2
3

L√2g H 3/2  
(13.15)

In the case of actual fl ow over a weir, the streamlines converge downstream of the plane 
of the weir, and viscous eff ects are not entirely absent. Consequently, a discharge coeffi  cient 
Cd must be applied to the basic expression on the right-hand side of Eq. (13.15) to bring the 
theory in line with the actual fl ow rate. Th us, the rectangular weir equation is

 Q =
2
3

Cd√2g LH 3/2

  = K√2g LH 3/2  
(13.16)

FIGURE 13.22

Theoretical velocity distribution over a weir.

dh

1

V =    2gh
h

H
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For low-viscosity liquids, the fl ow coeffi  cient K is primarily a function of the relative head 
on the weir, H/P. An empirically determined equation for K adapted from Kindsvater and 
Carter (12) is

 K = 0.40 + 0.05
H
P

 (13.17)

Th is is valid up to an H/P value of 10 as long as the weir is well ventilated so that atmospheric 
pressure prevails on both the top and the bottom of the weir nappe.

When the rectangular weir does not extend the entire distance across the channel, as in 
Fig. 13.23, additional end contractions occur. Th erefore, K will be smaller than for the weir 
without end contractions. Refer to King (13) for additional information on fl ow coeffi  cients 
for weirs.

(a)

(b)

FIGURE 13.23

Rectangular weir with end contractions:

(a) plan view, (b) elevation view.

EXAMPLE 13.7

Applying a Rectangular Weir to Measure the Flow Rate 
of Water

Problem Statement

Th e head on a rectangular weir that is 60 cm high in a rectangular 
channel that is 1.3 m wide is measured to be 21 cm. What is the 
discharge of water over the weir?

Defi ne the Situation

• Water fl ows over a rectangular weir.
•  Th e weir has a height of P = 0.6 m and a width of 

L = 1.3 m.
• Head on the weir is H = 0.21 m.

State the Goal

Find the discharge (m3/s).

Generate Ideas and Make a Plan

1. Calculate the fl ow coeffi  cient K using Eq. (13.17).
2.  Calculate fl ow rate using the rectangular weir 

equation (13.16).

Take Action (Execute the Plan)

1. Flow coeffi  cient:

K = 0.40 + 0.05 
H
P

= 0.40 + 0.05(21
60) = 0.417

2. Discharge:

 Q = K√2g LH 3/2 = 0.417√2(9.81) (1.3)(0.213/2)

 =  0.23 m3/s
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Triangular Weir

A defi nition sketch for the triangular weir is shown in Fig. 13.24. Th e primary advantage of 
the triangular weir is that it has a higher degree of accuracy over a much wider range of fl ow 
than does the rectangular weir because the average width of the fl ow section increases as the 
head increases.

Th e discharge equation for the triangular weir is derived in the same manner as that for 
the rectangular weir. Th e diff erential discharge dQ = V dA = VL dh is integrated over the total 
head on the weir to give

Q = ∫
H

0

√2gh (H − h)2 tan(θ
2) dh

which integrates to

Q =
8

15
√2g tan(θ

2) H 5/2

However, a coeffi  cient of discharge must still be used with the basic equation. Hence,

 Q =
8

15
Cd√2g tan(θ

2) H 5/2 (13.18)

Experimental results with water fl ow over weirs with θ = 60° and H > 2 cm indicate that Cd 
has a value of 0.58. Hence, the triangular weir equation with these limitations is

 Q = 0.179√2g H 5/2 (13.19)

FIGURE 13.24

Defi nition sketch for the triangular weir.

dh

h

HH

θ

L

EXAMPLE 13.8

Flow Rate for a Triangular Weir

Problem Statement

Th e head on a 60° triangular weir is measured to be 43 cm. 
What is the fl ow of water over the weir?

Defi ne the Situation

• Water fl ows over a 60° triangular weir.
• Head on the weir is H = 0.43 m.

State the Goal

Calculate the discharge (m3/s).

Generate Ideas and Make a Plan

Apply the triangular weir equation (13.19).

Take Action (Execute the Plan)

 Q = 0.179√2g H 5/2 = 0.179 × √2 × 9.81 × (0.43)5/2

 =  0.096 m3/s

More details about fl ow-measuring devices for incompressible fl ow can be found in 
references (14) and (15).
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13.3 Summarizing Key Knowledge

Measuring Velocity and Pressure

• Instruments for velocity measurement include the stag-
nation tube, Pitot-static tube, yaw meter, vane and cup 
anemometers, hot-wire and hot-fi lm anemometers, laser-
Doppler anemometer, and particle image velocimeter.

• Instruments for pressure measurement include the static 
tube, piezometer, diff erential manometer, Bourdon-tube 
gage, and several types of pressure transducers.

Measuring Flow Rate (Discharge)

• To measure fl ow rate, there are several direct methods, 
including the following:
• Measure volume (or weight) and divide by time.
•  Measure velocities at points on a cross section and 

 integrate using Q = ∫V dA.

• Common instruments for fl ow measurement include 
the orifi ce meter, fl ow nozzle, venturi meter, electro-
magnetic fl ow meter, ultrasonic fl ow meter, turbine 
fl ow meter, vortex fl ow meter, rotameter, and weir.

• Flow rate or discharge for a fl owmeter that uses a re-
stricted opening (i.e., an orifi ce, fl ow nozzle, or venturi) 
is calculated using

Q = KAo√2gΔh = KAo√2Δpz/ρ

where K is a fl ow coeffi  cient that depends on Reynolds 
number and the type of fl owmeter, Ao is the area of the 
opening, Δh is the change in piezometric head across 
the fl owmeter, and Δpz is drop in piezometric pressure 
across the fl owmeter.

• Discharge for a rectangular weir of length L is given by

Q = K√2g LH 3/2

where K is the fl ow coeffi  cient that depends on H/P. 
Th e term H is the height of the water above the crest of 
the weir, as measured upstream of the weir, and P is the 
height of the weir.

• Discharge for a 60° triangular weir with H > 2 cm is 
given by

Q = 0.179√2g H 5/2
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Measuring Velocity and Pressure (§13.1)

13.1 List fi ve diff erent instruments or approaches that engineers use 
to measure fl uid velocity, and fi ve more that are used to measure 
pressure. For each instrument or approach, list two advantages and 
two disadvantages, using this text or sources on the internet.

Flow Velocity: Stagnation Tubes (§13.1)

13.2 A stagnation tube 4 mm in diameter is used to measure 
the velocity in a stream of air as shown. What is the air velocity 
if the defl ection on the air-water manometer is 1.6 mm? Air 
temperature = 10°C, and p = 1 atm.
13.3 If the velocity in an airstream (pa = 98 kPa; T = 10°C) is 
24 m/s, what defl ection will be produced in an air-water 
manometer if the stagnation tube is 2 mm in diameter?

Deflection

Stagnation tube

Problems 13.2, 13.3

13.4 What would be the error in velocity determination if one 
used a Cp value of 1.00 for a circular stagnation tube instead of the 
true value? Assume the measurement is made with a stagnation 
tube 2 mm in diameter that is measuring air (T = 25°C, p = 1 atm) 
velocity for which the stagnation pressure reading is 5.00 Pa.
13.5 Without exceeding an error of 2.5%, what is the minimum 
air velocity that can be obtained using a 1 mm circular 
stagnation tube if the formula

V = √2Δpstag/ρ = √2ghstag

is used for computing the velocity? Assume standard atmospheric 
conditions.
13.6 Without exceeding an error of 1%, what is the minimum 
water velocity that can be obtained using a 1.5 mm circular 
stagnation tube if the formula

V = √2Δpstag/ρ = √2ghstag

is used for computing the velocity? Assume the water temperature 
is 20°C.
13.7 A velocity-measuring probe used frequently for measuring 
smokestack gas velocities is shown. Th e probe consists of two 
tubes bent away from and toward the fl ow direction and cut off  on 
a plane normal to the fl ow direction, as shown. Assume the pres-
sure coeffi  cient is 1.0 at A and −0.4 at B. Th e probe is inserted in a 

stack where the temperature is 300°C and the pressure is 100 kPa 
absolute. Th e gas constant of the stack gases is 410 J/kg K. Th e 
probe is connected to a water manometer, and a 1.0 cm defl ection 
is measured. Calculate the stack gas velocity.

Problem 13.7

A

B

Flow Velocity: Laser-Doppler Anemometers (§13.1)

13.8 On the Internet, locate technically sound resources relevant 
to the LDA. Skim these resources, and then

a.  write down fi ve fi ndings that are relevant to engineering 
practice and interesting to you, and

b.  write down two questions about LDAs that are interesting 
and insightful.

13.9 A laser-Doppler anemometer (LDA) system is being used 
to measure the velocity of air in a tube. Th e laser is an argon-ion 
laser with a wavelength of 4880 angstroms. Th e angle between the 
laser beams is 20°. Th e time interval is determined by measuring 
the time between fi ve spikes, as shown, on the signal from the 
photodetector. Th e time interval between the fi ve spikes is 
12 microseconds. Find the velocity.

Problem 13.9
12 μs

Measuring Volume Flow Rate or Discharge (§13.2)

13.10 Classify the following devices as to whether they are used 
to measure velocity (V), pressure (P), or discharge (Q).

a. hot-wire anemometer
b. venturi meter
c. diff erential manometer
d. orifi ce meter
e. stagnation tube
f. rotameter
g. ultrasonic fl ow meter
h. Bourdon-tube gage
i. weir
j. laser-Doppler anemometer

PROBLEMS
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13.11 List fi ve diff erent instruments or approaches that engineers 
use to measure fl ow rate (discharge). For each instrument or 
approach, list two advantages and two disadvantages.
13.12 Water from a pipe is diverted into a tank for 5 min. If 
the weight of diverted water is measured to be 10 kN, what is 
the discharge in cubic meters per second? Assume the water 
temperature is 20°C.
13.13 Water from a test apparatus is diverted into a calibrated 
volumetric tank for 6 min. If the volume of diverted water is 
measured to be 67 m3, what is the discharge in cubic meters per 
second, gallons per minute, and cubic feet per second?
13.14 A velocity traverse in a 24 cm oil pipe yields the data in the 
table. What are the discharge, mean velocity, and ratio of maximum 
to mean velocity? Does the fl ow appear to be laminar or turbulent?

r (cm) V (m/s) r (cm) V (m/s)

0 8.7  7 5.8
1 8.6  8 4.9
2 8.4  9 3.8
3 8.2 10 2.5
4 7.7 10.5 1.9
5 7.2 11.0 1.4
6 6.5 11.5 0.7

13.15 Th eory and experimental verifi cation indicate that the 
mean velocity along a vertical line in a wide stream is closely 
approximated by the velocity at 0.6 depth. If the indicated 
velocities at 0.6 depth in a river cross section are measured, 
what is the discharge in the river?

Problem 13.15

0
1
2
3
4

D
ep

th
, m

10 20 30 40 50 60 70 80 90 100 110 120
Distance from left bank, m

1.54

1.32 m/s

1.68 m/s 1.69 1.71 1.75 1.80 1.91 1.87 1.75
1.56

1.02 m/s

Discharge: Orifi ce Meters (§13.2)

13.16 For the jet and orifi ce shown, determine Cv, Cc, and Cd.

2 m 1.90 m

Vena contracta

d = 8 cm

d = 10.0 cm

Problem 13.16

13.17 A fl uid jet discharging from a 10.2 cm orifi ce has a diameter 
of 8 cm at its vena contracta. What is the coeffi  cient of contraction?
13.18 Figure 13.14 in §13.2 shows a sharp-edged orifi ce. Note 
that the metal surface immediately downstream of the leading 
edge makes an acute angle with the metal of the upstream face 
of the orifi ce. Do you think the orifi ce would operate the same 
(have the same fl ow coeffi  cient, K) if that angle were 90°? Explain 
how you came to your conclusion.
13.19 A 6 in. orifi ce is placed in a 10 in. pipe, and a mercury 
manometer is connected to either side of the orifi ce. If the fl ow 
rate of water (60°F) through this orifi ce is 4.5 cfs, what will be the 
manometer defl ection?
13.20 Determine the discharge of water through this 7 in. 
orifi ce that is installed in a 12 in. pipe. Assume T = 60°F and 
v = 1.22 × 10−5 ft 2/s.

1.0 ft

Mercury

2 ft

12 in

Problem 13.20

13.21 Determine the discharge of water (T = 60°F) through the 
orifi ce shown if h = 4 ft , D = 6 in., and d = 3 in.

h

d D
Water

Problem 13.21

13.22 Th e 10 cm orifi ce in the horizontal 30 cm pipe shown is 
the same size as the orifi ce in the vertical pipe. Th e manometers 
are mercury-water manometers, and water (T = 20°C) is fl owing 
in the system. Th e gages are Bourdon-tube gages. Th e fl ow, at a 
rate of 0.1 m3/s, is to the right in the horizontal pipe and there-
fore downward in the vertical pipe. Is Δp as indicated by gages A 
and B the same as Δp as indicated by gages D and E? Determine 
their values. Is the defl ection on manometer C the same as the 
defl ection on manometer F? Determine the defl ections.
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Water

Mercury

Water

Mercury

30 cm

30 cm

d = 30 cm
A B

C

F

D

E

Problem 13.22

13.23 A 15 cm plate orifi ce at the end of a 30 cm pipe is 
enlarged to 20 cm. With the same pressure drop across the 
orifi ce (approximately 50 kPa), what will be the percentage of 
increase in discharge?
13.24 If water (20°C) is fl owing through this 4.3 cm orifi ce, 
estimate the rate of fl ow. Assume fl ow coeffi  cient K = 0.6.

Vertical

50 kPa

60 kPa

50 cm

30 cm

Problem 13.24

13.25 A pressure transducer is connected across an orifi ce as 
shown. Th e pressure at the upstream pressure tap is p1, and the 
pressure at the downstream tap is p2. Th e pressure at the transducer 
connected to the upstream tap is pT,1 and to the downstream 
pressure tap, pT,2. Show that the diff erence in piezometric pressure 
defi ned as (p1 + γz1) − (p2 + γz2) is equal to the pressure diff erence 
across the transducer, pT,1 − pT,2.

Vertical
pT, 1
pT, 2

p1

p2

�1

�2

Problem 13.25

13.26 Water (T = 50°F) is pumped at a rate of 20 cfs through the 
system shown in the fi gure. What diff erential pressure will occur 
across the orifi ce? What power must the pump supply to the fl ow 
for the given conditions? Also, draw the HGL and the EGL for the 
system. Assume f = 0.015 for the pipe.

Elevation = 10 ft Differential-pressure gage

D = 2 ft
1 ft orifice

300 ft

f = 0.015

Elevation = 5 ft

Problem 13.26

13.27 Determine the size of orifi ce required in a 15-cm pipe 
to measure 0.03 m3/s of water with a defl ection of 1 m on a 
mercury-water manometer.
13.28 What is the discharge of gasoline (SG = 0.68) in a 20 cm 
horizontal pipe if the diff erential pressure across a 10 cm orifi ce 
in the pipe is 100 kPa?
13.29 An orifi ce is to be designed to have a change in pressure of 
48 kPa across it (measured with a diff erential-pressure transducer) 
for a discharge of 4.0 m3/s of water in a pipe 1.2 m in diameter. 
What diameter should the orifi ce have to yield the desired results?

Discharge: Venturi Meters (§13.2)

13.30 What is the main advantage of a venturi meter versus an 
orifi ce meter? Th e main disadvantage?
13.31 Water fl ows through a venturi meter that has a 40 cm throat. 
Th e venturi meter is in a 70 cm pipe. What defl ection will occur on 
a mercury-water manometer connected between the upstream and 
throat sections if the discharge is 0.75 m3/s? Assume T = 20°C.
13.32 What is the throat diameter required for a venturi meter 
in a 61 cm horizontal pipe carrying water with a discharge of 
0.76 m3/s if the diff erential pressure between the throat and the 
upstream section is to be limited to 200 kPa at this discharge? 
For a fi rst iteration, assume K = 1.02.
13.33 Estimate the rate of fl ow of water through the venturi 
meter shown.

Air (   = 0.20 lbf/ft3)γ

48 in

Diameter = 4 in

Diameter = 12 in

30°

Problem 13.33
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13.34 When no fl ow occurs through the venturi meter, the 
indicator on the diff erential-pressure gage is straight up and 
indicates a Δp of zero. When 5 cfs of water fl ows to the right, the 
diff erential-pressure gage indicates Δp = +10 psi. If the fl ow is 
now reversed and 5 cfs fl ow to the left  through the venturi meter, 
in which range would Δp fall? (a) Δp < −10 psi, (b) −10 psi < 
Δp < 0, (c) 0 < Δp < 10 psi, or (d) Δp = 10 psi?

Problem 13.34

13.35 Th e pressure diff erential across this venturi meter is 92 kPa. 
What is the discharge of water (T = 20°C) through it? (Hint: Th e 
value of fl ow coeffi  cient you calculate should be K = 1.02.)

d = 1.00 m
D = 2.00 m

Δp

Problem 13.35

13.36 Th e diff erential-pressure gage on the venturi meter shown 
reads 5.4 psi, h = 25 in., d = 7 in., and D = 12 in. What is the 
discharge of water in the system? Assume T = 50°F.
13.37 Th e diff erential-pressure gage on the venturi meter reads 
40 kPa, d = 20 cm, D = 40 cm, and h = 75 cm. What is the 
discharge of gasoline (SG = 0.69; μ = 3 × 10−4 N∙s/m2) in 
the system?

Δp

h

D

d

Problems 13.36, 13.37

13.38 A fl ow nozzle has a throat diameter of 2 cm and a beta 
ratio (d/D) of 0.5. Water fl ows through the nozzle, creating a 
pressure diff erence across the nozzle of 8 kPa. Th e viscosity of 

the water is 10−6 m2/s, and the density is 1000 kg/m3. Find the 
discharge.
13.39 Water fl ows through an annular venturi consisting of 
a body of revolution mounted inside a pipe. Th e pressure is 
measured at the minimum area and upstream of the body. Th e 
pipe is 5 cm in diameter, and the body of revolution is 2.5 cm in 
diameter. A head diff erence of 1 m is measured across the pressure 
taps. Find the discharge in cubic meters per second.

2.5 cm5 cm

Problem 13.39

Other Discharge Measurement Techniques (§13.2)

13.40 What is the head loss in terms of V0
2/2g for the fl ow nozzle 

shown?

V0 d = D1
3

D

Problem 13.40

13.41 A vortex fl owmeter is used to measure the discharge in 
a duct 5 cm in diameter. Th e diameter of the shedding element 
is 1 cm. Th e Strouhal number based on the shedding frequency 
from one side of the element is 0.2. A signal frequency of 50 Hz 
is measured by a pressure transducer mounted downstream of 
the element. What is the discharge in the duct?
13.42 A rotameter operates by aerodynamic suspension of a 
weight in a tapered tube. Th e scale on the side of the rotameter 
is calibrated in scfm of air—that is, cubic feet per minute at 
standard conditions (  p = 1 atm and T = 68°F). By considering 
the balance of weight and aerodynamic force on the weight 
inside the tube, determine how the readings would be corrected 
for nonstandard conditions. In other words, how would the 
actual cubic feet per minute be calculated from the reading on 
the scale, given the pressure, temperature, and gas constant of 
the gas entering the rotameter?

FD

Weight

V

Problem 13.42

13.43 A rotameter is used to measure the fl ow rate of a gas with 
a density of 1.0 kg/m3. Th e scale on the rotameter indicates 
5 liters/s. However, the rotameter is calibrated for a gas with a 
density of 1.2 kg/m3. What is the actual fl ow rate of the gas 
(in liters per second)?
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13.44 Ultrasonic fl owmeters are used to measure velocity in 
systems where it is important to not disrupt the fl ow, such as for 
blood velocity. One mode of operation of ultrasonic fl owmeters 
is to measure the travel times between two stations for a sound 
wave traveling upstream and then downstream with the fl ow. Th e 
downstream propagation speed with respect to the measuring 
stations is c + V, where c is the sound speed and V is the fl ow 
velocity. Correspondingly, the upstream propagation speed is 
c − V.

a.  Derive an expression for the fl ow velocity in terms of the 
distance between the two stations, L; the diff erence in travel 
times, Δt; and the sound speed.

b.  Th e sound speed is typically much larger than V (c >>  V ). 
With this approximation, express V in terms of L, c, and Δt.

c.  A 10-ms time diff erence is measured for waves traveling 
20 m in a gas where the speed of sound is 300 m/s. Calculate 
the fl ow velocity.

Weirs (§13.2)

13.45 On the Internet, locate technically reliable resources about 
weirs to answer the following questions.

a. What are fi ve important considerations for using weirs?
b.  What variables infl uence fl ow rate through a rectangular 

weir?
13.46 Water fl ows over a rectangular weir that is 3 m wide and 
35 cm high. If the head on the weir is 15 cm, what is the discharge 
in cubic meters per second?
13.47 Th e head on a 60° triangular weir is 25 cm. What is the 
discharge over the weir in cubic meters per second?
13.48 Water fl ows over two rectangular weirs. Weir A is 5 ft  long 
in a channel 10 ft  wide; weir B is 5 ft  long in a channel 5 ft  wide. 
Both weirs are 2 ft  high. If the head on both weirs is 1.00 ft , then 
one can conclude that (a) QA = QB, (b) QA > QB, or (c) QA < QB.

5 ft

10 ft

2 ftWeir A

5 ft

2 ftWeir B

Problem 13.48

13.49 A 1 ft high rectangular weir (weir 1) is installed in a 
2 ft wide rectangular channel, and the head on the weir is 
observed for a discharge of 10 cfs. Th en the 1 ft  weir is replaced 
by a 2 ft high rectangular weir (weir 2), and the head on the 

weir is observed for a discharge of 10 cfs. Th e ratio H1/H2 should 
be (a) equal to 1.00, (b) less than 1.00, or (c) greater than 1.00.
13.50 A 3 m long rectangular weir is to be constructed in a 3 m 
wide rectangular channel, as shown (a). Th e maximum fl ow in 
the channel will be 4 m3/s. What should be the height P of the 
weir to yield a depth of water of 2 m in the channel upstream of 
the weir?
13.51 Consider the rectangular weir described in Prob. 13.50. 
When the head is doubled, the discharge is (a) doubled, (b) less 
than doubled, or (c) more than doubled.
13.52 Water at 50°F is piped from a reservoir to a channel like 
that shown. Th e pipe from the reservoir to the channel is a 4 in. 
steel pipe 100 ft  in total length. Th ere are two 90° bends, r/D = 1, 
in the line, and the entrance and exit are sharp edged. Th e weir 
is 2 ft  long. Th e elevation of the water surface in the reservoir 
is 100 ft , and the elevation of the bottom of the channel is 70 ft . 
Th e crest of the weir is 3 ft  above the bottom of the channel. For 
steady fl ow conditions determine the water surface elevation in 
the channel and the discharge in the system.

L

H

(a) Rectangular weir
      (end view)

(b) Elevation view

Problems 13.50, 13.51, 13.52

13.53 At one end of a rectangular tank 1 m wide is a sharp-crested 
rectangular weir 1 m high. In the bottom of the tank is a 10 cm 
sharp-edged orifi ce. If 0.10 m3/s of water fl ows into the tank and 
leaves the tank both through the orifi ce and over the weir, what 
depth will the water in the tank attain?
13.54 What is the water discharge over a rectangular weir 4 ft  
high and 18 ft  long in a rectangular channel 18 ft  wide if the head 
on the weir is 2.2 ft ?
13.55 A reservoir is supplied with water at 60°F by a pipe 
with a venturi meter as shown. Th e water leaves the reservoir 
through a triangular weir with an included angle of 60°. Th e 
fl ow coeffi  cient of the venturi is unity, the area of the venturi 
throat is 12 in.2, and the measured Δp is 10 psi. Find the head, H, 
of the triangular weir.

ΔP

60°60°H

Problem 13.55

13.56 At a particular instant water fl ows into the tank shown 
through pipes A and B, and it fl ows out of the tank over the 
rectangular weir at C. The tank width and weir length 
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(dimensions normal to page) are 2 ft . Th en, for the given 
conditions, is the water level in the tank rising or falling?

Diameter = 1 ft

Diameter = 6 in.4 ft/s
4 ft/s

1 ft

A

B

C

2 ft

Problem 13.56

13.57 Water fl ows from the fi rst reservoir to the second over a 
rectangular weir with a width-to-head ratio of 3. Th e height P of 
the weir is twice the head. Th e water from the second reservoir 
fl ows over a 60° triangular weir to a third reservoir. Th e dis-
charge across both weirs is the same. Find the ratio of the head 
on the rectangular weir to the head on the triangular weir.

HT

2HR

HR

Problem 13.57

13.58 Th e head on a 60° triangular weir is 1.8 ft . What is the 
discharge of water over the weir?
13.59 An engineer is designing a triangular weir for measuring the 
fl ow rate of a stream of water that has a discharge of 6 cfm. Th e 
weir has an included angle of 45° and a coeffi  cient of discharge of 
0.6. Find the head on the weir.
13.60 A pump is used to deliver water at 10°C from a well to a 
tank. Th e bottom of the tank is 2 m above the water surface in 
the well. Th e pipe is commercial steel 2.5 m long with a diameter 
of 5 cm. Th e pump develops a head of 20 m. A triangular weir 
with an included angle of 60° is located in a wall of the tank with 
the bottom of the weir 1 m above the tank fl oor. Find the level of 
the water in the tank above the fl oor of the tank.

2 m

5 cm pipe

Pump

1 m
h

Problem 13.60
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Turbomachinery

CHAPTER ROAD MAP Machines to move fl uids or to extract power from moving fl uids have been 
designed since the beginning of recorded history. Fluid machines are everywhere. They are the essential 
components of the automobiles we drive, the supply systems for the water we drink, the power generation 
plants for the electricity we use, and the air-conditioning and heating systems that provide the comfort we 
enjoy. This chapter introduces the concepts underlying various types of machines.

CHAPTERFOURTEEN

LEARNING OUTCOMES

PROPELLER THEORY (§14.1).

●  Describe the factors that infl uence the thrust and effi ciency of a 

propeller. 
●  Calculate the thrust and effi ciency of a propeller.

CENTRIFUGAL PUMPS (§14.2 to §14.4). 

● Describe axial fl ow and radial fl ow pumps. 
●  Defi ne the head coeffi cient and the discharge coeffi cient. 
●  Sketch a pump performance curve and describe the relevant 

π-groups that appear. 
●  Explain how specifi c speed is used to select an appropriate 

type of pump for an application. 
●  Explain how to use NPSH to avoid cavitation.

TURBINES (§14.8). 

●  Describe an impulse turbine and a reaction turbine. 
●  Describe the maximum power that can be produced by a wind 

turbine.

FIGURE 14.1
This fi gure shows the impeller from the blower inside a 

vacuum cleaner. This impeller rotates inside a housing. 

This rotational motion creates a suction pressure that 

draws air into the center hole. The air is fl ung outward 

by the spinning blades of the impeller.

This impeller was “liberated” from the vacuum cleaner 

by Jason Stirpe while he was an engineering student. 

Jason used this impeller with a DC motor and a 

homemade housing to fabricate a blower for a design 

that he was creating. Being resourceful is at the heart of 

technology innovation. (Photo by Donald Elger.)

Fluid machines are separated into two broad categories: positive-displacement machines 
and turbomachines. Positive-displacement machines operate by forcing fl uid into or out of a 
chamber. Examples include the bicycle tire pump, the gear pump, the peristaltic pump, and the 
human heart. Turbomachines involve the fl ow of fl uid through rotating blades or rotors that 
remove or add energy to the fl uid. Examples include propellers, fans, water pumps, windmills, 
and compressors.

Axial-fl ow turbomachines operate with the fl ow entering and leaving the machine in the 
direction that is parallel to the axis of rotation of blades. A radial-fl ow machine can have the 
fl ow either entering or leaving the machine in the radial direction that is normal to the axis of 
rotation.
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Table 14.1 provides a classifi cation for turbomachinery. Power-absorbing machines re-
quire power to increase head (or pressure). A power-producing machine provides shaft  power 
at the expense of head (or pressure) loss. Pumps are associated with liquids, whereas fans 
(blowers) and compressors are associated with gases. Both gases and liquids produce power 
through turbines. Oft en, “gas turbine” refers to an engine that has both a compressor and tur-
bine and produces power.

14.1 Propellers

A propeller is a fan that converts rotational motion into thrust. Th e design of a propeller is 
based on the fundamental principles of airfoil theory (1). For example, consider a section 
of the propeller in Fig. 14.2; notice the analogy between the lift ing vane and the propeller. 
Th is propeller is rotating at an angular speed ω, and the speed of advance of the airplane and 

TABLE 14.1 Categories of Turbomachinery

Power Absorbing Power Producing

Axial machines Axial pumps
Axial fans
Propellers
Axial compressors

Axial turbine (Kaplan)
Wind turbine
Gas turbine

Radial machines Centrifugal pump
Centrifugal fan
Centrifugal compressor

Impulse turbine (Pelton wheel)
Reaction turbine (Francis turbine)

A

B B

A

Vt = r

dr

r

r

r0

dFL

dFD

V0 (velocity of
advance)

V0

(d)(b)

(a)

(c)

Vt = r

ω

ω

ω

ω
θβ
α

FIGURE 14.2

Propeller motion: (a) airplane motion, (b) view A-A, 

(c) view B-B, (d) velocity relative to blade element.
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propeller is V0. Focusing on an elemental section of the propeller, Fig. 14.2c, note that the 
given section has a velocity with components V0 and Vt. Here, Vt is tangential velocity, 
Vt = rω, resulting from the rotation of the propeller. Reversing and adding the velocity vectors 
V0 and Vt yield the velocity of the air relative to the particular propeller section (Fig. 14.2d).

Th e angle θ is given by

 θ = arctan(V0

rω) (14.1)

For a given forward speed and rotational rate, this angle is a minimum at the propeller tip 
(r = r0) and increases toward the hub as the radius decreases. Th e angle β is known as the 
pitch angle. Th e local angle of attack of the elemental section is

 α = β − θ (14.2)

Th e propeller can be analyzed as a series of elemental sections (of width dr) producing lift  and 
drag, which provide the propeller thrust and create resistive torque. Th is torque multiplied by 
the rotational speed is the power input to the propeller.

Th e propeller is designed to produce thrust; because the greatest contribution to thrust 
comes from the lift  force FL, the goal is to maximize lift  and minimize drag, FD. For a given 
shape of propeller section, the optimum angle of attack can be determined from data such 
as are given in Fig. 11.24. Because the angle θ increases with decreasing radius, the local 
pitch angle has to change to achieve the optimum angle of attack. Th is is done by twisting 
the blade.

A dimensional analysis can be performed to determine the π-groups that characterize the 
performance of a propeller. For a given propeller shape and pitch distribution, the thrust of a 
propeller T will depend on the propeller diameter D, the rotational speed n, the forward speed 
V0, the fl uid density ρ, and the fl uid viscosity μ:

 T = f(D, ω, V0, ρ, μ) (14.3)

Performing a dimensional analysis results in

 
T

ρn2D4 = f ( V0

nD
, 

ρD2 n
μ ) (14.4)

It is conventional practice to express the rotational rate, n, as revolutions per second (rps). Th e 
π-group on the left  is called the thrust coefficient,

 CT =
T

ρn2D4 (14.5)

Th e fi rst π-group on the right is the advance ratio. Th e second group is a Reynolds number 
based on the tip speed and diameter of the propeller. For most applications, the Reynolds 
number is high, and experience shows that the thrust coeffi  cient is unaff ected by the Reynolds 
number, so

 CT = f( V0

nD) (14.6)

Th e angle θ at the propeller tip is related to the advance ratio by

 θ = arctan( V0

ωr0 ) = arctan( 1
π 

V0

nD) (14.7)

As the advance ratio increases and θ increases, the local angle of attack at the blade element 
decreases, the lift  increases, and the thrust coeffi  cient goes down. Th is trend is illustrated in 
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Fig. 14.3, which shows the dimensionless performance curves for a typical propeller. Ulti-
mately, an advance ratio is reached where the thrust coeffi  cient goes to zero.

Performing a dimensional analysis for the power, P, shows

 
P

ρn3D 5 = f ( V0

nD
, 

ρD 2n
μ ) (14.8)

Th e π-group on the left  is the power coefficient,

 CP =
P

ρn3D5 (14.9)

As with the thrust coeffi  cient, the power coeffi  cient is not signifi cantly infl uenced by the Reynolds 
number at high Reynolds numbers, so CP reduces to a function of the advance ratio only:

 CP = f ( V0

nD) (14.10)

Th e functional relationship between CP and V0/nD for an actual propeller is also shown in 
Fig. 14.3. Even though the thrust coeffi  cient approaches zero for a given advance ratio, the 
power coeffi  cient shows little decrease because it still takes power to overcome the torque on 
the propeller blade.

Th e curves for CT and CP are evaluated from performance characteristics of a given pro-
peller operating at diff erent values of V0, as shown in Fig. 14.4. Although the data for the 
curves are obtained for a given propeller, the values for CT and CP, as a function of advance 
ratio, can be applied to geometrically similar propellers of diff erent sizes and angular speeds.* 
Example 14.1 illustrates such an application.
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FIGURE 14.3

Dimensionless performance curves for a typical propeller; D = 2.90 m, 

n = 1400 rpm. [After Weick (2).]

*Th e speed of sound was not included in the dimensional analysis. However, the propeller performance is reduced 
because the Mach number based on the propeller tip speed leads to shock waves and other compressible-fl ow eff ects.
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FIGURE 14.4

Power and thrust of a propeller 2.90 m in diameter at a 

rotational speed of 1400 rpm. [After Weick (2).]

EXAMPLE 14.1

Propeller Application

Problem Statement

A propeller with the characteristics shown in Fig. 14.3 is to be 
used to drive a swamp boat. If the propeller is to have a diameter 
of 2 m and a rotational speed of N = 1200 rpm, what should be 
the thrust starting from rest? If the boat resistance (air and 
water) is given by the empirical equation FD = 0.003ρV 2

0/2, 
where V0 is the boat speed in meters per second, FD is the drag, 
and ρ is the mass density of the water, what will be the maximum 
speed of the boat and what power will be required to drive the 
propeller? Assume ρair = 1.20 kg/m3 and ρwater = 1000 kg/m3.

2 m
N = 1200 rpm

FD  = 0.003ρV0
2/2

V0

Defi ne the Situation

A propeller is being used to drive a swamp boat.

Properties: ρ = 1.2 kg/m3, ρw = 1000 kg/m3.

State the Goals

• Calculate thrust (in N) starting from rest.
• Find maximum speed (in m/s) of swamp boat.
• Calculate power required (in kW) to operate propeller.

Generate Ideas and Make a Plan

1.  From Fig. 14.3, fi nd thrust coeffi  cient for zero advance ratio.
2. Calculate thrust using Eq. (14.5).

3.  To calculate maximum speed, plot propeller thrust 
versus boat speed and on same graph plot resistance of 
swamp boat versus boat speed. Th e maximum speed is 
where the curves intersect.

4.  Th e maximum power will be when the boat speed is 
zero, so use Eq. (14.9) with CP for zero advance ratio 
from Fig. 14.3.

Take Action (Execute the Plan)

1. From Fig. 14.3, CT = 0.048 for V0/nD = 0.
2. Th rust:

 FT = CT ρa D4n2 = 0.048(1.20 kg/m3)(2 m)4(20 rps)2

 =  369 N
3. Table of thrust versus speed of swamp boat:

V0 V0/nD CT

FT = 

CTρaD
4n2

FD = 

0.003ρwV2
0/2

 5 m/s 0.125 0.040 307 N 37.5 N
10 m/s 0.250 0.027 207 N 150 N
15 m/s 0.375 0.012 90 N 337 N

Graph of propeller thrust and swamp boat drag versus 
speed:
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Th e effi  ciency of a propeller is defi ned as the ratio of the power output—that is, thrust 
times velocity of advance—to the power input. Hence, the effi  ciency η is given as

η =
FT V0

P
=

CTρD4 n2V0

CpρD5n3

or

 η =
CT

CP
( V0

nD) (14.11)

Th e variation of effi  ciency with advance ratio for a typical propeller is also shown in Fig. 14.3. 
Th e effi  ciency can be calculated directly from CT and CP performance curves. Note that at low 
advance ratios the effi  ciency increases with advance ratio and then reaches a maximum value 
before the decreasing thrust coeffi  cient causes the effi  ciency to drop toward zero. Th e maxi-
mum effi  ciency represents the best operating point for fuel effi  ciency.

Many propeller systems are designed to have variable pitch; that is, pitch angles can be 
changed during propeller operation. Diff erent effi  ciency curves corresponding to varying 
pitch angles are shown in Fig. 14.5. Th e envelope for the maximum effi  ciency is also shown in 
the fi gure. During operation of the aircraft , the pitch angle can be controlled to achieve maxi-
mum effi  ciency corresponding to the propeller rpm and forward speed.

Th e best source for propeller performance information is from propeller manufacturers. 
Th ere are many speciality manufacturers for everything from marine to aircraft  applications.

14.2 Axial-Flow Pumps

Th e axial-fl ow pump acts much like a propeller enclosed in a housing, as shown in Fig. 14.6. 
Th e rotating element, the impeller, causes a pressure change between the upstream and down-
stream sections of the pump. In practical applications, axial-fl ow machines are best suited to 

Curves intersect at V0 = 11 m/s. Hence, the maximum 
speed of the swamp boat is 11 m/s.

4. At V0/nD = 0, CP = 0.014:

 P = 0.014(1.20 kg/m3)(2 m)5(20 rps)3

 = 4300 m ∙ N/s =  4.30 kW

Review the Solution and the Process

Discussion. In an actual application, the starting rotational 
rate of the propeller need not be 1200 rpm but can be a lower 
value. Aft er the boat is gaining speed, the rotational rate can 
be increased to achieve maximum speed.
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FIGURE 14.5

Effi ciency curves for variable-pitch propeller.
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deliver relatively low heads and high fl ow rates. Hence, pumps used for dewatering lowlands, 
such as those behind dikes, are almost always of the axial-fl ow type. Water turbines in low-head 
dams (less than 30 m) where the fl ow rate and power production are large are also generally 
of the axial type.

Head and Discharge Coeffi cients for Pumps

Th e thrust coeffi  cient is defi ned as FT/ρD4n2 for use with propellers, and if the same variables 
are applied to fl ow in an axial pump, the thrust can be expressed as FT = ΔpA = γΔHA or

 CT =
γΔHA
ρD 4n2 =

π
4

 
γΔHD 2

ρD 4n2 =
π
4

 
gΔH
D 2n2  (14.12)

A new parameter, called the head coefficient, CH, is defi ned using the variables of Eq. (14.12), as

 CH =
4
π CT =

ΔH
D 2n2/g

 (14.13)

which is a π-group that relates head delivered to fan diameter and rotational speed.
Th e independent π-group relating to propeller operation is V0/nD; however, multiplying 

the numerator and denominator by the diameter squared gives V0D2/nD3, and V0D2 is pro-
portional to the discharge, Q. Th us, the π-group for pump similarity studies is Q/nD3 and is 
identifi ed as the discharge coefficient CQ. Th e power coeffi  cient used for pumps is the same 
as the power coeffi  cient used for propellers. Summarizing, the π-groups used in the similarity 
analyses of pumps are

  CH =
ΔH

D 2n2/g
 (14.14)

  CP =
P

ρD5n3  (14.15)

  CQ =
Q

nD 3  (14.16)

where CH and CP are functions of CQ for a given type of pump.
Figure 14.7 is a set of curves of CH and CP versus CQ for a typical axial-fl ow pump. Also 

plotted on this graph is the effi  ciency of the pump as a function of CQ. Th e dimensional curves 
(head and power versus Q for a constant speed of rotation) from which Fig. 14.7 was developed 

pupstream

Δpblower

pdownstream

FIGURE 14.6

Axial-fl ow blower in a duct.
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are shown in Fig. 14.8. Because curves like those shown in Fig. 14.7 or Fig. 14.8 characterize 
pump performance, they are oft en called characteristic curves or performance curves. Th ese 
curves are obtained by experiment.

Th ere can be a problem with overload when operating axial-fl ow pumps. As seen in Fig. 14.7, 
when the pump fl ow is throttled below maximum-effi  ciency conditions, the required power 
increases with decreasing fl ow, thus leading to the possibility of overloading at low-fl ow con-
ditions. For very large installations, special operating procedures are followed to avoid such 
overloading. For instance, the valve in the bypass from the pump discharge back to the pump 
inlet can be adjusted to maintain a constant fl ow through the pump. However, for small-scale 
applications, it is oft en desirable to have complete fl exibility in fl ow control without the com-
plexity of special operating procedures.

Performance curves are used to predict prototype operation from model tests or the eff ect 
of changing the speed of the pump. Example 14.2 shows how to use pump curves to calculate 
discharge and power.
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EXAMPLE 14.2

Discharge and Power for an Axial-Flow Pump

Defi ne the Situation

For the pump represented by Figs. 14.7 and 14.8, what discharge 
of water in cubic meters per second will occur when the pump 
is operating against a 2 m head and at a speed of 600 rpm? What 
power in kilowatts is required for these conditions?

Defi ne the Situation

Th is problem involves an axial-fl ow pump with water.

Axial-flow pump

N = 600 rpm ΔH = 2 m

Properties: Assume ρ = 1000 kg/m3.

State the Goal

• Calculate discharge (in m3/s).
• Calculate power (in kW).

Generate Ideas and Make a Plan

1. Calculate CH.

2. From Fig. 14.7 fi nd CQ and CP.
3. Use CQ to calculate discharge.
4. Use CP to calculate power.

Take Action (Execute the Plan)

1.  Rotational rate is (600 rev/min)/(60 s/min) = 10 rps. 
D = 35.6 cm.

CH =
2 m

(0.356 m)2(102 s−2)/(9.81 m/s2)
= 1.55

2. From Fig. 14.7, CQ = 0.40 and CP = 0.72.
3. Discharge is

 Q = CQnD3

 Q = 0.40(10 s−1)(0.356 m)3 =  0.180 m3/s
4. Power is

 P = 0.72ρD5n3

 = 0.72(103 kg/m3)(0.356 m)5 (10 s−1)3

 = 4.12 km ∙ N/s = 4.12 kJ/s =  4.12 kW

EXAMPLE 14.3

Head and Power for an Axial-Flow Pump

Problem Statement

If a 30 cm axial-fl ow pump with the characteristics shown 
in Fig. 14.7 is operated at a speed of 800 rpm, what head ΔH 
will be developed when the water-pumping rate is 0.127 m3/s? 
What power is required for this operation?

Defi ne the Situation

Th is problem involves a 30 cm axial-fl ow pump with water.

Axial-flow pump
N = 800 rpm

Q = 0.127 m3/s

ΔH = ?

P = ?

Properties: Water: ρ = 103 kg/m3.

State the Goals

• Calculate H = head (in meters) developed.
• Calculate power (in kW) required.

Generate Ideas and Make a Plan

1. Calculate the discharge coeffi  cient, CQ.

2. From Fig. 14.7, read CH, and CP.
3. Use Eq. (14.14) to calculate head produced.
4. Use Eq. (14.15) to calculate power required.

Take Action (Execute the Plan)

1. Discharge coeffi  cient is

 Q = 0.127 m3/s

 n =
800
60

= 13.3 rps

 D = 30 cm

 CQ =
0.127 m3/s

(13.3 s−1)(0.30 m)3
= 0.354

2. From Fig. 14.7, CH = 1.70 and CP = 0.80.
3. Head produced is

ΔH =
CHD2n2

g
=

1.70(0.30 m)2 (13.3 s−1)2

(9.81 m/s2)
=  2.76 m

4. Power required is

 P = CpρD5n3

 = 0.80(103 kg/m3)(0.30 m)5(13.3 s−1)3 =  4.57 kW

Example 14.3 illustrates how to calculate head and power for an axial fl ow pump.



458 CHAPTER 14  •  TURBOMACHINERY

Fan Laws

Th e fan laws are used extensively by designers and practitioners involved with axial fans and 
blowers. Th e fan laws are equations that provide the discharge, pressure rise, and power require-
ments for a fan that operates at diff erent speeds. Th e laws are based on the discharge, head, 
and power coeffi  cients being the same at any other state as at the reference state, o; namely, CQ = 
CQo, = CHo, and CP = CPo. Because the size and design of fan is unchanged, the discharge at 
speed n is

 Q = Qo 
n
no

 (14.17a)

and the pressure rise is

 Δ p = Δpo( n
no)

2

 (14.17b)

and fi nally the power required is

 P = Po( n
no)

3

 (14.17c)

Th ese fan laws cannot be applied between fans of diff erent size and design. Of course, the fan 
laws do not provide exact values because of design considerations and manufacturing toler-
ances, but they are very useful in estimating fan performance.

14.3 Radial-Flow Machines

Radial-fl ow machines are characterized by the radial fl ow of the fl uid through the machine. 
Radial-fl ow pumps and fans are better suited for larger heads at lower fl ow rates than axial 
machines.

Centrifugal Pumps

A sketch of the centrifugal pump is shown in Fig. 14.9. Fluid from the inlet pipe enters 
the pump through the eye of the impeller and then travels outward between the vanes of the 
impeller to its edge, where the fl uid enters the casing of the pump and is then conducted to the 
discharge pipe. Th e principle of the radial-fl ow pump is diff erent from that of the axial-fl ow 

A

A

Eye of
impeller

Impeller

View A-A

Casing
FIGURE 14.9

Centrifugal pump.
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pump in that the change in pressure results in large part from rotary action (pressure increases 
outward like that in the rotating tank in §4.11) produced by the rotating impeller. Additional 
pressure increase is produced in the radial-fl ow pump when the high velocity of the fl ow leav-
ing the impeller is reduced in the expanding section of the casing.

Although the basic designs are diff erent for radial- and axial-fl ow pumps, it can be shown 
that the same similarity parameters (CQ, CP, and CH) apply for both types. Th us, the methods 
that have already been discussed for relating size, speed, and discharge in axial-fl ow machines 
also apply to radial-fl ow machines.

Th e major practical diff erence between axial- and radial-fl ow pumps so far as the user 
is concerned is the diff erence in the performance characteristics of the two designs. Th e di-
mensional performance curves for a typical radial-fl ow pump operating at a constant speed of 
rotation are shown in Fig. 14.10. Th e corresponding dimensionless performance curves for the 
same pump are shown in Fig. 14.11. Note that the power required at shutoff  fl ow is less than 
that required for fl ow at maximum effi  ciency. Normally, the motor used to drive the pump is 
chosen for conditions corresponding to maximum pump effi  ciency. Hence, the fl ow can be 
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throttled between the limits of shutoff  condition and normal operating conditions with no 
chance of overloading the pump motor. In this latter case, a radial-fl ow pump off ers a distinct 
advantage over axial-fl ow pumps.

Radial-fl ow pumps are manufactured in sizes from 1 hp or less and heads of 50 or 60 ft  
to thousands of horsepower and heads of several hundred feet. Figure 14.12 shows a cutaway 
view of a single-suction, single-stage, horizontal-shaft  radial pump. Fluid enters in the direc-
tion of the rotating shaft  and is accelerated outward by the rotating impeller. Th ere are many 
other confi gurations designed for specifi c applications.

Example 14.4 shows how to fi nd the speed and discharge for a centrifugal pump needed 
to provide a given head.

Outflow

Inflow

Impeller

FIGURE 14.12

Cutaway view of a single-suction, single-stage, 

horizontal-shaft radial pump. Pump inlet, outlet, 

and impeller are marked. (Copyright Sulzer 

Pumps.)

EXAMPLE 14.4

Speed and Discharge of Centrifugal Pump

Problem Statement

A pump that has the characteristics given in Fig. 14.10 when 
operated at 2133.5 rpm is to be used to pump water at maximum 
effi  ciency under a head of 76 m. At what speed should the 
pump be operated, and what will the discharge be for these 
conditions?

Defi ne the Situation

A centrifugal pump operated at 2133.5 rpm pumps water to 
head of 76 m at maximum effi  ciency.

Assumptions: Assume the pump is the same size as that corre-
sponding to Fig. 14.10 and the water properties are the same.

State the Goal

1. Find the operational speed of the pump (rpm).
2. Calculate discharge (m3/s).

Generate Ideas and Make a Plan

Th e CH, CP, CQ, and η are the same for any pump with the 
same characteristics operating at maximum effi  ciency. Th us,

(CH)N = (CH)2133.5 rpm

where N represents the unknown speed. Also, 
(CQ)N = (CQ)2133.5 rpm.

1. Calculate speed using the same head coeffi  cient.
2.  Calculate discharge using the same discharge 

coeffi  cient.
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Example 14.5 shows how to scale-up data for a specifi c centrifugal pump to predict 
performance.

Take Action (Execute the Plan)

1.  Speed calculation: From Fig. 14.10, at maximum 
effi  ciency ΔH = 90 m.

 ( gΔH
n2D 2 )

N
= ( gΔH

n2D 2 )
2133.5

 
76 m
N 2 =

90 m
2133.52 rpm2

 N = 2133.5 × (76
90)

1/2
=  1960 rpm

2.  Discharge calculation: From Fig. 14.10, at maximum 
effi  ciency Q = 0.255 m3/s.

 ( Q
nD3 )

N
= ( Q

nD3 )
2133.5

 
Q1960

Q2133.5
=

1960
2133.5

= 0.919

 Q1960 =  0.234 m3/s

14.4 Specifi c Speed

Th e preceding sections pointed out that axial-fl ow pumps are best suited for high discharge 
and low head, whereas radial machines perform better for low discharge and high head. A 
tool for selecting the best pump is the value of a π-group called the specifi c speed, ns. Th e 

EXAMPLE 14.5

Head, Discharge, and Power of a Centrifugal Pump

Problem Statement

Th e pump with the characteristics shown in Figs. 14.10 and 
14.11 is a model of a pump that was actually used in one of the 
pumping plants of the Colorado River Aqueduct [see Daugherty 
and Franzini (4)]. For a prototype that is 5.33 times larger 
than the model and operates at a speed of 400 rpm, what head, 
discharge, and power are to be expected at maximum effi  ciency?

Defi ne the Situation

A prototype pump is 5.33 times larger than the corresponding 
model. Th e prototype operates at 400 rpm.

Assumptions: Pumping water with ρ = 103 kg/m3.

State the Goal

Find (at maximum effi  ciency):

1. Head (in meters)
2. Discharge (in m3/s)
3. Power (in kW)

Generate Ideas and Make a Plan

1.  Find CQ, CH, and CP at maximum effi  ciency from 
Fig. 14.11.

2. Evaluate speed in rps and calculate the new diameter.
3.  Use Eqs. (14.14) through (14.16) to calculate head, 

discharge, and power.

Take Action (Execute the Plan)

1.  From Fig. 14.11 at maximum effi  ciency, CQ = 0.12, 
CH = 5.2 and CP = 0.69.

2.  Speed in rps: n = (400/60) rps = 6.67 rps 
D = 0.371 × 5.33 = 1.98 m.

3.  Pump performance:
• Head:

ΔH =
CH D2n2

g
=

5.2(1.98 m)2 (6.67 s−1)2

(9.81 m/s2)
=  92.4 m

• Discharge:
Q = CQnD3 = 0.12(6.67 s−1)(1.98 m)3 =  6.21 m3/s

• Power:
 P = CPρD5n3 = 0.69 ((103 kg)/m3)(1.98 m)5 (6.67 s−1)3

 =  6230 kW
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specific speed is obtained by combining both CH and CQ in such a manner that the diameter 
D is eliminated:

ns =
C 1/2

Q

C3/4
H

=
(Q/nD3)1/2

[ΔH/(D2n2/g)]3/4 =
nQ1/2

g 3/4ΔH 3/4

Th us, specifi c speed relates diff erent types of pumps without reference to their sizes.
As shown in Fig. 14.13, when effi  ciencies of diff erent types of pumps are plotted against 

ns, it is seen that certain types of pumps have higher effi  ciencies for certain ranges of ns. For 
low specifi c speeds, the radial-fl ow pump is more effi  cient, whereas high specifi c speeds 
favor axial-fl ow machines. In the range between the completely axial-fl ow machine and the 
completely radial-fl ow machine, there is a gradual change in impeller shape to accommo-
date the particular fl ow conditions with maximum effi  ciency. Th e boundaries between axial, 
mixed, and radial machines are somewhat vague, but the value of the specifi c speed provides 
some guidance on which machine would be most suitable. Th e fi nal choice would depend 
on which pumps were commercially available as well as their purchase price, operating cost, 
and reliability.

It should be noted that the specifi c speed traditionally used for pumps in the United States 
is defi ned as Ns = NQ1/2/ΔH 3/4. Here, the speed N is in revolutions per minute, Q is in gallons 
per minute, and ΔH is in feet. Th is form is not dimensionless. Th erefore, its values are much 
larger than those found for ns (the conversion factor is 17,200). Most texts and references 
published before the introduction of the SI system of units use this traditional defi nition for 
specifi c speed.

Example 14.6 illustrates the use of specifi c speed to select a pump type.
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14.5 Suction Limitations of Pumps

Th e pressure at the suction side of a pump is important because of the possibility that cavitation 
may occur. As water fl ows past the impeller blades of a pump, local high-velocity fl ow zones 
produce low relative pressures (Bernoulli eff ect), and if these pressures reach the vapor pres-
sure of the liquid, then cavitation will occur. For a given type of pump operating at a given 
speed and a given discharge, there will be certain pressure at the suction side of the pump 
below which cavitation will occur. In their testing procedures, pump manufacturers always 
determine this limiting pressure and include it with their pump performance curves.

More specifi cally, the pressure that is signifi cant is the diff erence in pressure between the 
suction side of the pump and the vapor pressure of the liquid being pumped. In practice, 
engineers express this diff erence in terms of pressure head, called the net positive suction 
head (NPSH). To calculate NPSH for a pump that is delivering a given discharge, fi rst apply 
the energy equation from the reservoir from which water is being pumped to the section of 
the intake pipe at the suction side of the pump. Th en, subtract the vapor pressure head of the 
water to determine NPSH.

In Fig. 14.14, points 1 and 2 are the points between which the energy equation would be 
written to evaluate NPSH.

A more general parameter for indicating susceptibility to cavitation is specifi c speed. 
However, instead of using head produced (ΔH), one uses NPSH for the variable to the 3/4 
power. Th is is

nss =
nQ1/2

g 3/4(NPSH)3/4

EXAMPLE 14.6

Using Specifi c Speed to Select a Pump

Problem Statement

What type of pump should be used to pump water at the rate 
of 10 cfs and under a head of 600 ft ? Assume N = 1100 rpm.

Defi ne the Situation

A pump will be pumping water at 10 cfs for a head of 600 ft .

State the Goal

Find the best type of pump for this application.

Generate Ideas and Make a Plan

1. Calculate specifi c speed.
2. Use Fig. 14.13 to select a pump type.

Take Action (Execute the Plan)

1. Rotational rate in rps:

n =
1100

60
= 18.33 rps

Specifi c speed:

 ns =
n√Q
(gΔH)3/4

 =
18.33 rps × (10 cfs)1/2

(32.2 ft/s2 × 600 ft)3/4 = 0.035

2.  From Fig. 14.13, a radial-fl ow pump is the best 
choice.

2

1

FIGURE 14.14

Locations used to evaluate NPSH 

for a pump.
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Here, nss is called the suction specifi c speed. Th e more traditional suction specifi c speed 
used in the United States is Nss = NQ1/2/(NPSH)3/4, where N is in rpm, Q is in gallons per 
minute (gpm), and NPSH is in feet. Analyses of data from pump tests show that the value 
of the suction specifi c speed is a good indicator of whether cavitation may be expected. For 
example, the Hydraulic Institute (5) indicates that the critical value of Nss is 8500. Th e reader 
is directed to manufacturer’s data or the Hydraulic Institute for more details about critical 
NPSH or Nss.

An analysis to fi nd NPSH for a pump system is illustrated in Example 14.7.

EXAMPLE 14.7

Calculating Net Positive Suction Head

Problem Statement

In Fig. 14.14, the pump delivers 2 cfs fl ow of 80°F water, and 
the intake pipe diameter is 8 in. Th e pump intake is located 
6 ft  above the water surface level in the reservoir. Th e pump 
operates at 1750 rpm. What are the net positive suction head 
and the traditional suction specifi c speed for these conditions?

Defi ne the Situation

A pump delivers 2 cfs fl ow of 80°F water.

Assumptions:

1. Entrance loss coeffi  cient = 0.10.
2. Bend loss coeffi  cient = 0.20.

Properties: Water at 80°F: Table A.5, γ = 62.2 lbf/ft 3, 
and pvap = 0.506 psi.

State the Goal

• Calculate the positive suction head (NPSH).
• Calculate the traditional suction specifi c speed (Nss).

Generate Ideas and Make a Plan

Th e net positive suction head is the diff erence between 
pressure at pump inlet and the vapor pressure.

1.  Determine the atmospheric pressure in head of water 
for reservoir surface.

2. Determine velocity in 8 in. pipe.
3.  Apply the energy equation between the reservoir and 

pump entrance.
4. Calculate NPSH.
5. Calculate Nss with Nss = (NQ1/2)/(NPSH)3/4.

Take Action (Execute the Plan)

1. Pressure head at reservoir:

p1

γ
=

14.7 lbf/in2 × 144 (in2/ft2)

62.2 lbf/ft3 = 34 ft

2. Velocity in pipe:

V2 =
Q
A

=
2 cfs

π × ((4 in)/12)2
= 5.73 ft/s

3. Energy equation between points 1 and 2:

p1

γ
+

V 2
1

2g
+ z1 =

p2

γ
+

V 2
2

2g
+ z2 + ∑hL

• Input values:

V1 = 0,   z1 = 0,   z2 = 6
• Head loss:

∑hL = (0.1 + 0.2)
V 2

2

2g

• Head at pump entrance:

 
p2

γ
=

p1

γ
− z 2 −

V 2
2

2g
(1 + 0.3)

 = 34 − 6 − 1.3 ×
5.732

2 × 32.2
= 27.3 ft

4. Vapor pressure in feet of head:

0.506 × 144/62.2 = 1.17 ft.
Net positive suction head:

NPSH = 27.3 − 1.17 = 26.1 ft
5. Traditional suction specifi c speed:

 Q = 2 cfs = 898 gpm

 Nss = (1750)(898)1/2/(26.1)3/4 =  4540

Review the Solution and the Process

1.  Discussion. For a typical single-stage centrifugal pump 
with an intake diameter of 8 in. and pumping 2 cfs, the 
critical NPSH is normally about 10 ft ; therefore, the 
pump of this example is operating well within the safe 
range with respect to cavitation susceptibility.

2.  Discussion. Th is value of Nss is much below the critical 
limit of 8500; therefore, it is in a safe operating range so 
far as cavitation is concerned.
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A typical pump performance curve for a centrifugal pump that would be supplied by a 
pump manufacturer is shown in Fig. 14.15. Th e solid lines labeled from 5 in. to 7 in. represent 
diff erent impeller sizes that can be accommodated by the pump housing. Th ese curves give the 
head delivered as a function of discharge. Th e dashed lines represent the power required by the 
pump for a given head and discharge. Lines of constant effi  ciency are also shown. Obviously, 
when selecting an impeller, one would like to have the operating point as close as possible to 
the point of maximum effi  ciency. Th e NPSH value gives the minimum head (absolute head) at 
the pump intake for which the pump will operate without cavitation.

14.6 Viscous Effects

In the foregoing sections, similarity parameters were developed to predict prototype results 
from model tests, neglecting viscous eff ects. Th e latter assumption is not necessarily valid, 
especially if the model is quite small. To minimize the viscous eff ects in modeling pumps, the 
Hydraulic Institute standards (5) recommend that the size of the model be such that the model 
impeller is not less than 30 cm in diameter. Th ese same standards state that the model should 
have geometric similarity with the prototype.

Even with geometric similarity, one can expect the model to be less effi  cient than the pro-
totype. An empirical formula proposed by Moody (7) is used for estimating prototype effi  cien-
cies of radial- and mixed-fl ow pumps and turbines from model effi  ciencies. Th at formula is

 
1 − e1

1 − e
=( D

D1
)

1/5
 (14.18)

Here, e1 is the effi  ciency of the model and e is the effi  ciency of the prototype.
Example 14.8 shows how to estimate the effi  ciency due to viscous eff ects.
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Centrifugal pump performance curve. [After McQuiston and Parker (6). Used with permission 

of John Wiley and Sons.]
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14.7 Centrifugal Compressors

Centrifugal compressors are similar in design to centrifugal pumps. Because the density of 
the air or gases used is much less than the density of a liquid, the compressor must rotate at 
much higher speeds than the pump to eff ect a sizable pressure increase. If the compression 
process were isentropic and the gases ideal, the power necessary to compress the gas from 
p1 to p2 would be

 Ptheo =
k

k − 1
Q1 p1[(p2

p1
)
(k−1)/k

− 1]  (14.19)

where Q1 is the volume fl ow rate into the compressor and k is the ratio of specifi c heats. Th e 
power calculated using Eq. (14.19) is referred to as the theoretical adiabatic power. Th e effi  -
ciency of a compressor with no water cooling is defi ned as the ratio of the theoretical adiabatic 
power to the actual power required at the shaft . Ordinarily, the effi  ciency improves with higher 
inlet-volume fl ow rates, increasing from a typical value of 0.60 at 0.6 m3/s to 0.74 at 40 m3/s. 
Higher effi  ciencies are obtainable with more expensive design refi nements.

Example 14.9 shows how to calculate shaft  power required to operate a compressor.

EXAMPLE 14.8

Calculating Viscous Effects on Pump Effi ciency

Problem Statement

A model with an impeller diameter of 45 cm is tested and found 
to have an effi  ciency of 85%. If a geometrically similar prototype 
has an impeller diameter of 1.80 m, estimate its effi  ciency when 
it is operating under conditions that are dynamically similar to 
those in the model test (CQ, model = CQ, prototype).

Defi ne the Situation

A pump with a 45 cm diameter impeller has 85% effi  ciency.

Assumptions: Th e effi  ciency diff erences are due to viscous 
eff ects.

State the Goal

Find the effi  ciency of a pump with a 1.6 m impeller.

Generate Ideas and Make a Plan

Use Eq. (14.18) to determine viscous eff ects.

Take Action (Execute the Plan)

Effi  ciency:

e = 1 −
1 − e1

(D/D1)
1/5 = 1 −

0.15
1.32

= 1 − 0.11 = 0.89

or
e = 89%

EXAMPLE 14.9

Calculating Shaft Power for a Centrifugal Compressor

Problem Statement

Determine the shaft  power required to operate a compressor 
that compresses air at the rate of 1 m3/s from 100 kPa to 
200 kPa. Th e effi  ciency of the compressor is 65%.

Defi ne the Situation

Th e inlet fl ow rate to a compressor is 1.0 m3/s. Th e pressure 
change is from 100 kPa to 200 kPa.

Q = 1 m3/s 200 kPa

100 kPa

From Table A.2, k = 1.4.

State the Goal

Pshaft (kW) ➡ required shaft  power (in kW)
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Cooling is necessary for high-pressure compressors because of the high gas temperatures 
resulting from the compression process. Cooling can be achieved through the use of water 
jackets or intercoolers that cool the gases between stages. Th e effi  ciency of water-cooled com-
pressors is based on the power required to compress ideal gases isothermally, or

 Ptheo = p1Q1 ln
p2

p1
 (14.20)

which is usually called the theoretical isothermal power. Th e effi  ciencies of water-cooled 
compressors are generally lower than those of noncooled compressors. If a compressor is 
cooled by water jackets, its effi  ciency characteristically ranges between 55% and 60%. Th e use 
of intercoolers results in effi  ciencies from 60% to 65%.

Application to Fluid Systems

Th e selection of a pump, fan, or compressor for a specifi c application depends on the desired 
fl ow rate. Th is process requires the acquisition or generation of a system curve for the fl ow 
system of interest and a performance curve for the fl uid machine. Th e intersection of these two 
curves provides the operating point, as discussed in Chapter 10.

For example, consider using the centrifugal pump with the characteristics shown in Fig. 14.15 
to pump water at 60°F from a wall into a tank, as shown in Fig. 14.16. A pumping capacity of at 
least 80 gpm is required. Two hundred feet of standard schedule-40 2 in. galvanized iron pipe 
are to be used. Th ere is a check valve in the system as well as an open gate valve. Th ere is a 20 ft  
elevation between the well and the top of the fl uid in the tank. Applying the energy equation, 
the head required by the pump is

hp = Δz +
V 2

2g ( fL
D

+ ∑ KL)
where KL represents the head loss coeffi  cients for the entrance, check valve, gate valve, and 
sudden-expansion loss entering the tank. Using representative values for the loss coeffi  cients 
and evaluating the friction factor from the Moody diagram in Chapter 10 leads to

hp = 20 + 0.00305 Q2

where Q is the fl ow rate in gpm. Th is is the system curve.
Th e result of plotting the system curve on the pump-performance curves is shown in 

Fig. 14.17. Th e locations where the lines cross are the operating points. Note that a discharge 

Generate Ideas and Make a Plan

1. Use Eq. (14.19) to calculate theoretical power.
2.  Divide theoretical power by effi  ciency to fi nd shaft  

(required) power.

Take Action (Execute the Plan)

1. Th eoretical power:

 Ptheo =
k

k − 1
Q1 p1 [ ( p2

p1
)
(k−1)/k

− 1 ]
 = (3.5)(1 m3/s)(105 N/m2)[(2)0.286 − 1]

 = 0.767 × 105 N ∙ m/s = 76.7 kW

2. Shaft  power:

Pshaft =
76.7
0.65

kW =  118 kW
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of just over 80 gpm is achieved with the 6.5 in. impeller. Also, referring back to Fig. 14.15, the 
effi  ciency at this point is about 62%. To ensure that the design requirements are satisfi ed, the 
engineer may select the larger impeller, which has an operating point of 95 gpm. If the pump 
is to be used in continuous operation and the effi  ciency is important to operating costs, the 
engineer may choose to consider another pump that would have a higher effi  ciency at the op-
eration point. An engineer experienced in the design of pump systems would be very familiar 
with the trade-off s for economy and performance and could make a design decision relatively 
quickly.

In some systems, it may be advantageous to use two pumps in series or in parallel. If 
two pumps are used in series, the performance curve is the sum of the pump heads of the two 
machines at the same fl ow rate, as shown in Fig. 14.18a. Th is confi guration would be desirable 
for a fl ow system with a steep system curve, as shown in the fi gure. If two pumps are connected 
in parallel, the performance curve is obtained by adding the fl ow rates of the two pumps at 
the same pump heads, as shown in Fig. 14.18b. Th is confi guration would be advisable for fl ow 
systems with shallow system curves, as shown in the fi gure. Th e concepts presented here for 
pumps also apply to fans and compressors.

Check
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Pump
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galvanized iron pipe

FIGURE 14.16

System for pumping water from a well into a tank.
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System and pump performance curves for pumping application.
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14.8 Turbines

A turbine is defi ned as a machine that extracts energy from a moving fl uid. Much of the basic 
theory and most similarity parameters used for pumps also apply to turbines. However, there 
are some diff erences in physical features and terminology. Th e details of the fl ow through the 
impellers of radial-fl ow machines will now be addressed.

Th e two main categories of hydraulic machines are impulse and reaction turbines. In a 
reaction turbine, the water fl ow is used to rotate a turbine wheel or runner through the action 
of vanes or blades attached to the wheel. When the blades are oriented like a propeller, the 
fl ow is axial and the machine is called a Kaplan turbine. When the vanes are oriented like an 
impeller in a centrifugal pump, the fl ow is radial, and the machine is called a Francis turbine. 
In an impulse turbine, the water accelerates through a nozzle and impinges on vanes attached 
to the rim of the wheel. Th is machine is called a Pelton wheel.

Impulse Turbine

In the impulse turbine, a jet of fl uid issuing from a nozzle impinges on vanes of the turbine 
wheel, or runner, thus producing power as the runner rotates (see Fig. 14.19 and Fig. 14.20). 
Th e primary feature of the impulse turbine with respect to fl uid mechanics is the power pro-
duction as the jet is defl ected by the moving vanes. When the momentum equation is applied 
to this defl ected jet, it can be shown [see Daugherty and Franzini (4)] for idealized conditions 
that the maximum power will be developed when the vane speed is one-half of the initial jet 
speed. Under such conditions, the exiting jet speed will be zero; all the kinetic energy of the jet 
will have been expended in driving the vane. Th us, if one applies the energy equation, between 
the incoming jet and the exiting fl uid (assuming negligible head loss and negligible kinetic 
energy at exit), it is found that the head given up to the turbine is ht = (V 2j /2g), and the power 
thus developed is

 P = Qγht (14.21)

where Q is the discharge of the incoming jet, γ is the specifi c weight of jet fl uid, and ht = V2
j /2g, 

or the velocity head of the jet. Th us, Eq. (14.21) reduces to

 P = ρQ
V 2

j

2
 (14.22)

A

A

Turbine runner

Vanes (buckets)

Generator
shaft

View A-A

Water jet

Nozzle

FIGURE 14.19

Impulse turbine.
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To obtain the torque on the turbine shaft , the angular momentum equation is applied to a 
control volume, as shown in Fig. 14.21. For steady fl ow,

∑ M = ∑
cs

ro × (m· ovo) − ∑
cs

ri × (m· i vi)

Generally, it is assumed that the exiting fl uid has negligible angular momentum. Th e moment 
acting on the system is the torque T acting on the shaft . Th us, the angular momentum equa-
tion reduces to
 T = −m· rVj (14.23)

FIGURE 14.20

A photograph of the runner from a Pelton wheel turbine.

(Alberto Pomares/Getty Images, Inc.)
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FIGURE 14.21

Control-volume approach for the impulse 

turbine using the angular momentum 

principle.
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Th e mass fl ow rate across the control surface is ρQ, so the torque is

T = −ρQVj r

Th e minus sign indicates that the torque applied to the system (to keep it rotating at constant 
angular velocity) is in the clockwise direction. However, the torque applied by the system to 
the shaft  is in the counterclockwise direction, which is the direction of wheel rotation, so

 T = ρQVj r (14.24)

Th e power developed by the turbine is Tω, or

 P = ρQVj r ω (14.25)

Furthermore, if the velocity of the turbine vanes is (1/2)Vj for maximum power, as noted 
earlier, then P = ρQV 2j/2, which is the same as Eq. (14.22).

Th e calculation of torque for an impulse turbine is illustrated in Example 14.10.

State the Goal

Find:
• Power (kW) developed by turbine
• Angular speed (rpm) of wheel for maximum effi  ciency
• Torque (kN∙m) on turbine shaft 

EXAMPLE 14.10

Analyzing an Impulse Turbine

Problem Statement

What power in kilowatts can be developed by the impulse 
turbine shown if the turbine effi  ciency is 85%? Assume that the 
resistance coeffi  cient f of the penstock is 0.015 and the head 
loss in the nozzle itself is negligible. What will be the angular 
speed of the wheel, assuming ideal conditions (Vj = 2Vbucket), 
and what torque will be exerted on the turbine shaft ?

Defi ne the Situation

Th is problem involves an impulse turbine with an effi  ciency 
of 85%.

Assumptions:
1. Th ere is no entrance loss.
2. Head loss in nozzle is negligible.
3. Water density is 1000 kg/m3.

Generate Ideas and Make a Plan

1. Apply the energy equation to fi nd nozzle velocity.
2. Use Eq. (14.22) for power.
3. For maximum effi  ciency, ωr = (Vj/2).
4. Calculate torque from P = Tω.

Take Action (Execute the Plan)

1. Energy equation:

p1

γ
+

V 2
1

2g
+ z1 =

pj

γ
+

V 2
j

2g
+ zj + hL

• Values in energy equation:
p1 = 0, z1 = 1670 m, V1 = 0, pj = 0, zj = 1000 m

• Penstock-supply pipe velocity ratio:

Vpenstock =
Vj Aj

Apenstock
= Vj(0.18 m

1 m )
2

= 0.0324 Vj

• Head loss:

 hL = f 
L
D

 
1

2g
V 2

penstock

 =
0.015 × 6000

1
(0.0324)2 

V 2
j

2g
= 0.094 

V 2
j

2g

Elevation = 1670 m

Penstock

D = 1 m

djet = 18 cm

3 m

Elevation
= 1000 m

6 km
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Reaction Turbine

In contrast to the impulse turbine, in which a jet under atmospheric pressure impinges on only 
one or two vanes at a time, fl ow in a reaction turbine is under pressure and reacts on all vanes 
of the impeller turbine simultaneously. Also, this fl ow completely fi lls the chamber in which 
the impeller is located (see Fig. 14.22). Th ere is a drop in pressure from the outer radius of the 
impeller, r1, to the inner radius, r2. Th is is another point of diff erence with the impulse turbine, 
in which the pressure is the same for the entering and exiting fl ows. Th e original form of the 
reaction turbine, fi rst extensively tested by J. B. Francis, had a completely radial-fl ow impeller 
(Fig. 14.23). Th at is, the fl ow passing through the impeller had velocity components only in 
a plane normal to the axis of the runner. However, more recent impeller designs, such as the 
mixed-fl ow and axial-fl ow types, are still called reaction turbines.

Torque and Power Relations for the Reaction Turbine

As for the impulse turbine, the angular momentum equation is used to develop formulas for 
the torque and power for the reaction turbine. Th e segment of turbine runner shown in Fig. 14.23 
depicts the fl ow conditions that occur for the entire runner. Th e guide vanes outside the runner 
itself cause the fl uid to have a tangential component of velocity around the entire circumference 
of the runner. Th us, the fl uid has an initial amount of angular momentum with respect to the 
turbine axis when it approaches the turbine runner. As the fl uid passes through the passages 
of the runner, the runner vanes eff ect a change in the magnitude and direction of its velocity. 
Th us, the angular momentum of the fl uid is changed, which produces a torque on the runner. 
Th is torque drives the runner, which, in turn, generates power.

To quantify the preceding, let V1 and α1 represent the incoming velocity and the angle of 
the velocity vector with respect to a tangent to the runner, respectively. Similar terms at the 
inner-runner radius are V2 and α2. Applying the angular momentum equation for steady fl ow, 
Eq. (6.27), to the control volume shown in Fig. 14.23 yields

 T = m 
· (−r2 V2 cos α2) − m·  (−r1 V1 cos α1)

  = m·  (r1 V1 cos α1 − r2 V2 cos α2)  
(14.26)

Th e power from this turbine will be Tω, or

 P = ρQω (r1 V1 cos α1 − r2 V2 cos α2) (14.27)

• Jet velocity:

 z1 − z2 = 1.094 
V 2

j

2g

 Vj = (2 × 9.81 m/s2 × 670 m
1.094 )

1/2
= 109.6 m/s

2. Gross power:

 P = Qγ 
V 2

j

2g
=

γAjV 3
j

2g

 =
9810(π/4)(0.18)2(109.6)3

2 × 9.81
= 16,750 kW

Power delivered:
P = 16,750 × efficiency =  14,240 kW

3. Angular speed of wheel:

 Vbucket =
1
2

 (109.6 m/s) = 54.8 m/s

 rω = 54.8 m/s

 ω =
54.8 m/s

1.5 m
= 36.5 rad/s

Wheel speed:

N = (36.5 rad/s) 1 rev
2π rad

 (60 s/min) =  349 rpm

4. Torque:

T =
power

ω
=

14,240 kW
36.5 rad/s =  390 kN ∙ m
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Equation (14.27) shows that the power production is a function of the directions of the fl ow 
velocities entering and leaving the impeller—that is, α1 and α2.

It is interesting to note that even though the pressure varies within the fl ow in a reaction 
turbine, it does not enter into the expressions derived using the angular momentum equation. 
Th e reason it does not appear is that the chosen outer and inner control surfaces are concentric 
with the axis about which the moments and angular momentum are evaluated. Th e pressure 
forces acting on these surfaces all pass through the given axis; therefore, they do not produce 
moments about the given axis.

Vane Angles

It should be apparent that the head loss in a turbine will be less if the fl ow enters the runner 
with a direction tangent to the runner vanes than if the fl ow approaches the vane with an angle 
of attack. In the latter case, separation will occur with consequent head loss. Th us, vanes of 
an impeller designed for a given speed and discharge and with fi xed guide vanes will have a 
particular optimum blade angle β1. However, if the discharge is changed from the condition 
of the original design, the guide vanes and impeller vane angles will not “match” the new fl ow 
condition. Most turbines for hydroelectric installations are made with movable guide vanes on 
the inlet side to eff ect a better match at all fl ows. Th us, α1 is increased or decreased automati-
cally through governor action to accommodate fl uctuating power demands on the turbine.
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Dam
FIGURE 14.22

Schematic view of a reaction turbine 

installation: (a) elevation view, (b) plan view, 

section A-A.
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To relate the incoming-fl ow angle α1 and the vane angle β1, fi rst assume that the fl ow 
entering the impeller is tangent to the blades at the periphery of the impeller. Likewise, the 
fl ow leaving the stationary guide vane is assumed to be tangent to the guide vane. To develop 
the desired equations, consider both the radial and the tangential components of velocity at 
the outer periphery of the wheel (r = r1). It is easy to compute the radial velocity, given Q and 
the geometry of the wheel, by the continuity equation:

 Vr1
=

Q
2πr1 B

 (14.28)

where B is the height of the turbine blades. Th e tangential (tangent to the outer surface of the 
runner) velocity of the incoming fl ow is

 Vt1
= Vr1

 cot α1 (14.29)

However, this tangential velocity is equal to the tangential component of the relative velocity 
in the runner, Vr1

 cot β1, plus the velocity of the runner itself, ωr1. Th us, the tangential velocity, 
when viewed with respect to the runner motion, is

 Vt1
= r1ω + Vr1

 cot β1 (14.30)

Now, eliminating Vt1
 between Eqs. (14.29) and (14.30) results in

 Vr1 cot α1 = r1ω + Vr1
 cot β1 (14.31)

Equation (14.31) can be rearranged to yield

 α1 = arccot (r1ω
Vr1

+ cot β1) (14.32)

Example 14.11 illustrates how to calculate the inlet blade angle to avoid separation.
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Specifi c Speed for Turbines

Because of the attention focused on the production of power by turbines, the specifi c speed for 
turbines is defi ned in terms of power:

ns =
nP1/2

g 3/4 γ1/2 ht
5/4

It should also be noted that large water turbines are innately more effi  cient than pumps. Th e 
reason for this is that as the fl uid leaves the impeller of a pump, it decelerates appreciably over 
a relatively short distance. Also, because guide vanes are generally not used in the fl ow passages 
with pumps, large local velocity gradients develop, which in turn cause intense mixing and 
turbulence, thereby producing large head losses. In most turbine installations, the fl ow that 
exits the turbine runner is gradually reduced in velocity through a gradually expanding draft 
tube, thus producing a much smoother fl ow situation and less head loss than for the pump. For 
additional details of hydropower turbines, see Daugherty and Franzini (4).

Gas Turbines

Th e conventional gas turbine consists of a compressor that pressurizes the air entering the 
turbine and delivers it to a combustion chamber. Th e high-temperature, high-pressure gases 
resulting from combustion in the combustion chamber expand through a turbine, which both 
drives the compressor and delivers power. Th e theoretical effi  ciency (power delivered/rate of 
energy input) of a gas turbine depends on the pressure ratio between the combustion chamber 
and the intake; the higher the pressure ratio, the higher the effi  ciency. Th e reader is directed to 
Cohen et al. (8) for more detail.

Wind Turbines

Wind energy is discussed frequently as an alternative energy source. Th e application of wind 
turbines* as potential sources for power becomes more attractive as utility power rates increase 

EXAMPLE 14.11

Analyzing a Francis Turbine

Problem Statement

A Francis turbine is to be operated at a speed of 600 rpm and 
with a discharge of 4.0 m3/s. If r1 = 0.60 m, β1 = 110°, and the 
blade height B is 10 cm, what should be the guide vane angle 
α1 for a nonseparating fl ow condition at the runner entrance?

Defi ne the Situation

A Francis turbine is operating with an angular speed of 
600 rpm and a discharge of 4.0 m3/s.

State the Goal

Find the inlet guide vane angle, α1.

Generate Ideas and Make a Plan

Use Eq. (14.32) for inlet guide angle.

Take Action (Execute the Plan)

Radial velocity at inlet:

 α1 = arccot (r1ω
Vr1

+ cot β1)
 r1ω = 0.6 × 600 rpm × 2π rad/rev × 1/60 min/s

 = 37.7 m/s
Inlet guide vane angle:

 Vr1
=

Q
2πr1B

=
4.00 m3/s

2π × 0.6 m × 0.10 m
= 10.61 m/s

 cot β1 = cot (110°) = −0.364

 α1 = arccot ( 37.7
10.61

− 0.364) =  17.4°

*Th e phrase “wind turbine” is used to convey the idea of conversion of wind to electrical energy. A windmill converts 
wind energy to mechanical energy.



476 CHAPTER 14  •  TURBOMACHINERY

and the concern over greenhouse gases grows. In many European countries, especially north-
ern Europe, the wind turbine is playing an ever-increasing role in power generation.

In essence, the wind turbine is just a reverse application of the process of introducing 
energy into an airstream to derive a propulsive force. Th e wind turbine extracts energy from 
the wind to produce power. Th ere is one signifi cant diff erence, however. Th e theoretical upper 
limit of effi  ciency of a propeller supplying energy to an airstream is 100%; that is, it is theo-
retically possible, neglecting viscous and other eff ects, to convert all the energy supplied to a 
propeller into energy of the airstream. Th is is not the case for a wind turbine.

A sketch of a horizontal-axis wind turbine is shown in Fig. 14.24. Th e wind blows along 
the axis of the turbine. Th e area of the circle traced out by the rotating blades is the capture 
area. Th e power associated with the wind passing through the capture area is

 P = ρQ
V 2

2
= ρA

V 3

2
 (14.33)

where ρ is the air density and V is the wind speed. In an analysis attributed to Glauert/Betz (9), 
the theoretical maximum power attainable from a wind turbine is 16/27 or 59.3% of this 
power or

 Pmax =
16
27

 (1
2

ρV 3A) (14.34)

Other factors, such as swirl of the airstream and viscous eff ects, further reduce the power 
achievable from a wind turbine.

Th e power output of any wind turbine is related to the wind speed through the wind 
turbine power curve. A typical curve is shown in Fig. 14.25. Th is curve can usually be obtained 
from the manufacturer. Th e wind turbine is inoperative below the cut-in speed. Aft er cut-in, 
the power increases with wind speed reaching a maximum value, which is the rated power 
output for the turbine. Engineering design and safety constraints impose an upper limit on the 
rotational velocity and establish the cutout speed. A braking system is used to prevent opera-
tion of the wind turbine beyond this velocity.

Th e conventional horizontal-axis wind turbine has been the focus of most research and 
design. Considerable eff ort has also been devoted to assessment of the Savonius rotor and the 
Darrieus turbine, both of which are vertical-axis turbines, as shown in Fig. 14.26. Th e Savonius 
rotor consists of two curved blades forming an S-shaped passage for the air fl ow. Th e Darrieus 
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turbine consists of two or three airfoils attached to a vertical shaft ; the unit resembles an egg 
beater. Th e advantage of vertical-axis turbines is that their operation is independent of wind 
direction. Th e Darrieus wind turbine is considered superior in performance but has a disad-
vantage in that it is not self-starting. Frequently, a Savonius rotor is mounted on the axis of a 
Darrieus turbine to provide the starting torque.

For more information on wind turbines and wind turbine systems, refer to Wind Energy 
Explained (10).

(a) Savonius rotor (b) Darrieus rotor

FIGURE 14.26

Wind turbine confi gurations:

(a) Savonius turbine, (b) Darrieus turbine.

EXAMPLE 14.12

Calculating the Capture Area of a Wind Turbine

Problem Statement

Calculate the minimum capture area necessary for a windmill 
that has to operate fi ve 100-watt bulbs if the wind velocity is 
20 km/h and the air density is 1.2 kg/m3.

Defi ne the Situation

A wind turbine needs to generate 500 W of electrical power.

State the Goal

Find the minimum capture area of the windmill.

Generate Ideas and Make a Plan

Use the equation for maximum power of a windmill.

Take Action (Execute the Plan)

Capture area for maximum power:

A = Pmax 
54
16

 
1

ρV 3

Wind velocity in m/s:

20 km/h =
20 × 1000

3600
= 5.56 m/s

Minimum capture area:

 A = 500 W ×
54
16

×
1

1.2 kg/m3 × (5.56 m/s)3

 =  8.18 m2

Review the Solution and the Process

Discussion. Th is area corresponds to a windmill diameter of 
3.23 m, or about 10.6 ft .

The Propeller

• Th e thrust of a propeller is calculated using

FT = CT ρn2D4

where ρ is the fl uid density, n is the rotational rate of the 
propeller, and D is the propeller diameter. Th e thrust 
coeffi  cient CT is a function of the advance ratio V0/nD.

• Th e effi  ciency of a propeller is the ratio of the power 
delivered by the propeller to the power provided to the 
propeller:

η =
FT V0

P

14.9 Summarizing Key Knowledge
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Pumps

• Pumps can be axial fl ow or radial fl ow:
• An axial-fl ow pump consists of an impeller, much like 

a propeller, mounted in a housing.
• In a radial-fl ow pump, fl uid enters near the eye of the 

impeller, passes through the vanes, and exits at the 
edge of the vanes.

• Th e head provided by a pump is quantifi ed by the head 
coeffi  cient, CH, defi ned as

CH =
gΔH
n2D2

 where ΔH is the head across the pump.
• Th e head coeffi  cient is a function of the discharge coef-

fi cient, which is

CQ =
Q

nD3

 where Q is the discharge.
• Pump performance curves show head delivered, power 

required, and effi  ciency as a function of discharge.
• Th e specifi c speed of a pump can be used to select an ap-

propriate type of pump for a given application:
• Axial-fl ow pumps are best suited for high-discharge, 

low-head applications.
• Radial-fl ow pumps are best suited for low-discharge, 

high-head applications.

Water Turbines

• Turbines convert the energy associated with a moving 
fl uid to shaft  work.

• Turbines are classifi ed into two categories:
• Th e impulse turbine consists of a liquid jet impinging 

on vanes of a turbine wheel or runner.
• A reaction turbine consists of a series of rotating vanes 

immersed in a fl owing fl uid. Th e pressure on the vanes 
provides the torque for the power.

Wind Turbines

• Wind turbines are classifi ed based on the axis of the 
rotor:
• Th e rotor of a turbine can revolve around a horizontal 

axis. Most commercial wind turbines use this design.
• Th e rotor of a turbine can revolve around a vertical axis. 

Two types of turbine in this category are the Darrieus 
turbine and the Savonius turbine.

• Th e maximum power derivable from a wind turbine is

Pmax =
16
27

 (1
2

ρV 3
0 A)

 where A is the capture area of the wind turbine (projected 
area from direction of wind) and V0 is the wind speed.
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Propellers (§14.1)

14.1 Explain why the thrust of a fi xed-pitch propeller decreases 
with increasing forward speed.
14.2 What limits the rotational speed of a propeller?

14.3 What thrust is obtained from a propeller 3 m in diameter 
that has the characteristics given in Fig. 14.3 when the propeller 
is operated at an angular speed of 1100 rpm and an advance 
velocity of zero? Assume ρ = 1.05 kg/m3.

PROBLEMS
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14.4 What thrust is obtained from a propeller 3 m in 
diameter that has the characteristics given in Fig. 14.3 when 
the propeller is operated at an angular speed of 1400 rpm and 
an advance velocity of 80 km/h? What power is required to 
operate the propeller under these conditions? Assume 
ρ = 1.05 kg/m3.
14.5 A propeller 8 ft  in diameter has the characteristics shown 
in Fig. 14.3. What thrust is produced by the propeller when it is 
operating at an angular speed of 1200 rpm and a forward speed 
of 30 mph? What power input is required under these operating 
conditions? If the forward speed is reduced to zero, what is the 
thrust? Assume ρ = 0.0024 slugs/ft 3.
14.6 A propeller 8 ft in diameter, like the one for which 
characteristics are given in Fig. 14.3, is to be used on 
a swamp boat and is to operate at maximum efficiency 
when cruising. If the cruising speed is to be 30 mph, what 
should the angular speed of the propeller be? Assume 
ρ = 0.0024 slugs/ft3.
14.7 For the propeller and conditions described in Problem 14.6, 
determine the thrust and the power input.
14.8 A propeller is being selected for an airplane that will 
cruise at 2000 m altitude, where the pressure is 60 kPa absolute 
and the temperature is 10°C. Th e mass of the airplane is 1200 kg, 
and the planform area of the wing is 10 m2. Th e lift -to-drag 
ratio is 30:1. Th e lift  coeffi  cient is 0.4. Th e engine speed at 
cruise conditions is 3000 rpm. Th e propeller is to operate at 
maximum effi  ciency, which corresponds to a thrust coeffi  cient 
of 0.025. Calculate the diameter of the propeller and the speed 
of the aircraft .
14.9 If the tip speed of a propeller is to be kept below 0.8c, 
where c is the speed of sound, what is the maximum allowable 
angular speed of propellers having diameters of 2 m, 3 m, and 4 m? 
Take the speed of sound as 335 m/s.
14.10 A propeller 2 m in diameter, like the one for which 
characteristics are given in Fig. 14.3, is to be used on a swamp 
boat and is to operate at maximum effi  ciency when cruising. 
If the cruising speed is to be 40 km/h, what should the angular 
speed of the propeller be?
14.11 For the propeller and conditions described in Problem 
14.10, determine the thrust and the power input. Assume 
ρ = 1.2 kg/m3.
14.12 A propeller 2 m in diameter and like the one for which 
characteristics are given in Fig. 14.3 is used on a swamp boat. 
If the angular speed is 1000 rpm and if the boat and passengers 
have a combined mass of 300 kg, estimate the initial acceleration 
of the boat when starting from rest. Assume ρ = 1.1 kg/m3.

Axial Flow Pumps and Fans (§14.2)

14.13 Answer the following questions about axial-fl ow pumps.
a.  Axial-fl ow pumps are best suited for what conditions 

of head produced and discharge?
b.  For an axial-fl ow pump, how does the head produced 

by the pump and the power required to operate a pump 
vary with fl ow rate through the pump?

14.14 If a pump having the characteristics shown in Fig. 14.7 has 
a diameter of 40 cm and is operated at a speed of 1000 rpm, what 
will be the discharge when the head is 3 m?
14.15 Th e pump used in the system shown has the characteristics 
given in Fig. 14.8. What discharge will occur under the condi-
tions shown, and what power is required?
14.16 If the conditions are the same as in Problem 14.15 except 
that the speed is increased to 900 rpm, what discharge will occur, 
and what power is required for the operation?

60 m

Diameter = 35.6 cm

50 cm
Elevation

= 21 m

Elevation
= 20 m

1 m

Water

Steel pipe

Problems 14.15, 14.16

14.17 For a pump with the characteristics given in Fig. 14.7 
or 14.8, what water discharge and head will be produced at 
maximum effi  ciency if the pump diameter is 20 in. and the 
angular speed is 1100 rpm? What power is required under 
these conditions?
14.18 A pump has the characteristics given by Fig. 14.7. What 
discharge and head will be produced at maximum effi  ciency if 
the pump size is 50 cm and the angular speed is 45 rps? What 
power is required when pumping water at 10°C under these 
conditions?
14.19 For a pump with the characteristics of Fig. 14.7, plot the 
head-discharge curve if the pump is 14 in. in diameter and is 
operated at a speed of 1000 rpm.
14.20 For a pump having the characteristics of Fig. 14.7, plot 
the head-discharge curve if the pump diameter is 60 cm and the 
speed is 690 rpm.
14.21 An axial-fl ow blower is used for a wind tunnel that has 
a test section measuring 60 cm by 60 cm and is capable of 
airspeeds up to 40 m/s. If the blower is to operate at maximum 
effi  ciency at the highest speed and if the rotational speed of 
the blower is 2000 rpm at this condition, what are the 
diameter of the blower and the power required? Assume that 
the blower has the characteristics shown in Fig. 14.7. Assume 
ρ = 1.2 kg/m3.
14.22 An axial-fl ow blower is used to air-condition an offi  ce 
building that has a volume of 105 m3. It is decided that the air at 
60°F in the building must be completely changed every 15 min. 
Assume that the blower operates at 600 rpm at maximum 
effi  ciency and has the characteristics shown in Fig. 14.7. 
Calculate the diameter and power requirements for two blowers 
operating in parallel.
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14.23 An axial fan 2 m in diameter is used in a wind tunnel as 
shown (test section 1.2 m in diameter; test section velocity of 
60 m/s). Th e rotational speed of the fan is 1800 rpm. Assume 
the density of the air is constant at 1.2 kg/m3. Th ere are negligible 
losses in the tunnel. Th e performance curve of the fan is identical 
to that shown in Fig. 14.7. Calculate the power needed to operate 
the fan.

Test section 1.2 m

U = 60 m/s2 m

Problem 14.23

Radial Flow Pumps (§14.3)

14.24 Th e radial fl ow pump is best suited for what conditions 
of head produced and discharge?
14.25 A pump is used to pump water out of a reservoir. What 
limits the depth for which the pump can draw water?
14.26 If a pump with the characteristics given in Fig. 14.10 is 
doubled in size but halved in speed, what will be the head and 
discharge at maximum effi  ciency?
14.27 A pump having the characteristics given in Fig. 14.10 
pumps water at 20°C from a reservoir at an elevation of 366 m 
to a reservoir at an elevation of 450 m through a 36 cm steel pipe. 
If the pipe is 610 m long, what will be the discharge through the 
pipe?
14.28 If a pump with the characteristics given in Fig. 14.10 or 
14.11 is operated at a speed of 1600 rpm, what will be the dis-
charge when the head is 135 ft ?
14.29 If a pump with the performance curve shown is operated 
at a speed of 1600 rpm, what will be the maximum possible head 
developed?
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Problem 14.29

14.30 If a pump with the characteristics given in Fig. 14.10 is 
operated at a speed of 30 rps, what will be the shutoff  head?

14.31 If a pump with the characteristics given in Fig. 14.11 is 
40 cm in diameter and is operated at a speed of 25 rps, what will 
be the discharge when the head is 50 m?
14.32 A centrifugal pump 20 cm in diameter is used to pump 
kerosene at a speed of 5000 rpm. Assume that the pump has 
the characteristics shown in Fig. 14.11. Calculate the fl ow rate, 
the pressure rise across the pump, and the power required if the 
pump operates at maximum effi  ciency.

Specifi c Speed and Pump Selection (§14.4)

14.33 Answer the following questions regarding pump sizing and 
selection.

a.  What is the diff erence between a system curve and a pump 
curve? Explain.

b.  Th e operating point for a pump system is established 
by what condition?

14.34 Th e value of the specifi c speed suggests the type of pump 
to be used for a given application. A high specifi c speed suggests 
the use of what kind of pump?
14.35 Th e pump curve for a given pump is represented by

hp, pump = 20[1 − ( Q
100)

2

]
where hp,pump is the head provided by the pump in feet and Q 
is the discharge in gpm. Th e system curve for a pumping 
application is

hp, sys = 5 + 0.002Q2

where hp,sys is the head in feet required to operate the system 
and Q is the discharge in gpm. Find the operating point (Q) for 
(a) one pump, (b) two identical pumps connected in series, and 
(c) two identical pumps connected in parallel.
14.36 What is the suction specifi c speed for the pump that 
is operating under the conditions given in Problem 14.15? 
Is this a safe operation with respect to susceptibility to 
cavitation?
14.37 What type of pump should be used to pump water at a rate 
of 10 cfs and under a head of 30 ft ? Assume N = 1500 rpm.
14.38 For the most effi  cient operation, what type of pump should 
be used to pump water at a rate of 0.10 m3/s and under a head of 
30 m? Assume n = 25 rps.
14.39 What type of pump should be used to pump water at a rate 
of 0.40 m3/s and under a head of 70 m? Assume N = 1100 rpm.
14.40 An axial-fl ow pump is to be used to lift  water against a 
head (friction and static) of 15 ft . If the discharge is to be 4000 
gpm, what maximum speed in revolutions per minute is allowed 
if the suction head is 5 ft ?
14.41 A pump is needed to pump water at a rate of 0.2 m3/s from 
the lower to the upper reservoir shown in the fi gure. What type 
of pump would be best for this operation if the impeller speed is 
to be 600 rpm? Assume f = 0.02 and Ke = 0.5.
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20 m

100 cm

Elevation = 15 m

Elevation = 18 m

Pump

Problem 14.41

14.42 Plot the fi ve performance curves in Fig. 14.15 for the 
diff erent impeller diameters in terms of the head and discharge 
coeffi  cients. Use the impeller diameter for D.

Compressors (§14.7)

14.43 When a gas is compressed adiabatically, there is a pressure 
rise and a temperature rise. Th e ratio of fi nal temperature to 
initial temperature is less than the ratio of fi nal pressure to initial 
pressure. Will the fi nal density be (a) less or (b) greater than the 
initial density?
14.44 Methane fl owing at the rate of 1 kg/s is to be compressed 
by a noncooled centrifugal compressor from 100 kPa to 165 kPa. 
Th e temperature of the methane entering the compressor is 27°C. 
Th e effi  ciency of the compressor is 70%. Calculate the shaft  
power necessary to run the compressor.
14.45 A 36 kW (shaft  output) motor is available to run a 
noncooled compressor for carbon dioxide. Th e pressure is 
to be increased from 100 kPa to 150 kPa. If the compressor is 
60% effi  cient, calculate the volume fl ow rate into the 
compressor.
14.46 A water-cooled centrifugal compressor is used to compress 
air from 100 kPa to 600 kPa at the rate of 2 kg/s. Th e temperature 
of the inlet air is 15°C. Th e effi  ciency of the compressor is 50%. 
Calculate the necessary shaft  power.

Impulse Turbines (§14.8)

14.47 An impulse turbine will produce no power if the velocity 
of the jet striking the bucket is the same as the bucket velocity. 
Explain.
14.48 A penstock 1 m in diameter and 10 km long carries 
water at 10°C from a reservoir to an impulse turbine. If the 
turbine is 85% effi  cient, what power can be produced by the 
system if the upstream reservoir elevation is 650 m above the 
turbine jet and the jet diameter is 16.0 cm? Assume that 
f = 0.016 and neglect head losses in the nozzle. What should 
the diameter of the turbine wheel be if it is to have an angular 
speed of 360 rpm? Assume ideal conditions for the bucket 
design [Vbucket = (1/2)Vj].
14.49 Consider an idealized bucket on an impulse turbine that 
turns the water through 180°. Prove that the bucket speed should 
be one-half the incoming jet speed for a maximum power pro-
duction. (Hint: Set up the momentum equation to solve for the 
force on the bucket in terms of Vj  and Vbucket; then the power will 

be given by this force times Vbucket. (You can use your mathemati-
cal talent to complete the problem.)
14.50 Consider a single jet of water striking the buckets of the 
impulse wheel as shown. Assume ideal conditions for power 
generation [Vbucket = (1/2)Vj and the jet is turned through 180° 
of arc]. With the foregoing conditions, solve for the jet force on 
the bucket and then solve for the power developed. Note that 
this power is not the same as that given by Eq. (14.24)! Study the 
fi gure to resolve the discrepancy.

Problem 14.50

Reaction Turbines (§14.8)

14.51 Answer the following questions about reaction turbines.
a.  How does a reaction turbine diff er from a centrifugal 

pump?
b. What is meant by the “runner” in a reaction turbine?

14.52 For a given Francis turbine, β1 = 60°, β2 = 90°, r1 = 5 m, 
r2 = 3 m, and B = 1 m. Th e discharge is 126 m3/s, and the 
rotational speed is 60 rpm. Assume T = 10°C.

a.  What should α1 be for a nonseparating fl ow condition 
at the entrance to the runner?

b.  What is the maximum attainable power with the 
conditions noted?

c.  If you were to redesign the turbine blades of the runner, 
what changes would you suggest to increase the power 
production if the discharge and overall dimensions are to be 
kept the same?

14.53 To produce a discharge of 3.3 m3/s, a Francis turbine will 
be operated at a speed of 60 rpm, r1 = 1.5 m, r2 = 1.20 m, 
B = 33 cm, β1 = 85°, and β2 = 165°. What should (a) α1 be for 
nonseparating fl ow to occur through the runner? What 
(b) power and (c) torque should result with this operation? 
Assume T = 10°C.
14.54 A Francis turbine is to be operated at a speed of 120 rpm 
and with a discharge of 200 m3/s. If r1 = 3 m, B = 0.90 m, and 
β1 = 45°, what should α1 be for nonseparating fl ow at the runner 
inlet?
14.55 Shown is a preliminary layout for a proposed small 
hydroelectric project. Th e initial design calls for a discharge of 
8 cfs through the penstock and turbine. Assume 80% turbine 
effi  ciency. For this setup, what power output could be expected 
from the power plant? Draw the HGL and EGL for the system.
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Elevation = 3000 ft

Penstock
(steel pipe 12 in.

in diameter)

Elevation = 2600 ft

L
 =

 1
00

0 
ft

Problem 14.55

Wind Turbines (§14.8)

14.56 What determines the minimum and maximum wind 
speeds at which a wind turbine can operate?
14.57 Using the Internet and other resources, identify at 
least four types of wind turbines. For each type, describe its 
distinguishing characteristics and its relative advantages and 
disadvantages.
14.58 Calculate the minimum capture area necessary for a wind 
turbine that will be required to power the 2 kW demands of an 
energy-effi  cient home. Assume a wind velocity of 10 mph and an 
air density of 1.2 kg/m3.

14.59 Calculate the maximum power derivable from a conven-
tional horizontal-axis wind turbine with a propeller 2.3 m in 
diameter in a 47 km/h wind with density 1.2 kg/m3.
14.60 A wind farm consists of 20 Darrieus turbines, each 15 m 
high. Th e total output from the turbines is to be 2 MW in a 
wind of 20 m/s and an air density of 1.2 kg/m3. Th e Darrieus 
turbine shown has the shape of an arc of a circle. Find the 
minimum width, W, of the turbine needed to provide this 
power output.

W

15 m

Problem 14.60

14.61 A windmill is connected directly to a mechanical pump 
that is to pump water from a well 10 ft  deep as shown. Th e 
windmill is a conventional horizontal-axis type with a fan 
diameter of 10 ft . Th e effi  ciency of the mechanical pump is 
80%. Th e density of the air is 0.07 lbm/ft 3. Assume the windmill 
delivers the maximum power available. Th ere is 20 ft  of 2 in. 
galvanized pipe in the system. What would the discharge of 
the pump be (in gallons per minute) for a 30 mph wind? 
(1 cfm = 7.48 gpm)

10 ft

Problem 14.61
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FLOW IN OPEN CHANNELS

CHAPTER ROAD MAP The fl ow of water in open channels can be observed in aqueducts, rivers, 
fl umes, irrigation ditches, and other contexts. Although these contexts are quite different, a small set of 
concepts and a few equations generalize to most applications of open-channel fl ow. These ideas are 
introduced in this chapter.

CHAPTERFIFTEEN

LEARNING OUTCOMES

DESCRIBING FLOW (§15.1). 

●  Defi ne an open channel. 
●  Defi ne uniform fl ow and nonuniform fl ow. 
●  Defi ne the Froude number. 
●  Calculate the hydraulic radius, and the Reynolds number.
●  List the criteria for laminar and turbulent fl ow.

UNIFORM FLOW (§15.2, §15.3). 

●  Explain the physics of the energy equation and also explain the 

corresponding HGL and EGL. 
●  Calculate fl ow rate with the Darcy-Weisbach approach or the 

Manning equation. 
●  Defi ne and explain the best hydraulic section.

NONUNIFORM FLOW (§15.4 to §15.7). 

●  Describe and compare rapidly varied fl ow and gradually varied 

fl ow. 
●  Describe critical depth, specifi c energy, supercritical fl ow, and 

subcritical fl ow. 
●  Describe a hydraulic jump and perform calculations.
●  Describe the factors that are used to classify surface profi les that 

occur in gradually varied fl ow.

FIGURE 15.1
Aerial view of the California Aqueduct at the southwest 

end of the Tehachapi Mountains. (Macduff Everton/The 

Image Bank/Getty Images.)
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15.1 Describing Open-Channel Flow

An open channel is one in which a liquid fl ows with a free surface. A free surface means that 
the liquid surface is exposed to the atmosphere. Examples of open channels are natural creeks 
and rivers, artifi cial channels such as irrigation ditches and canals, and pipelines or sewers 
fl owing less than full. In most cases, water or wastewater is the fl owing liquid.

Flow in an open channel is described as uniform or nonuniform, as distinguished in 
Fig. 15.2. As defi ned in Chapter 4, uniform flow means that the velocity is constant along a 
streamline, which in open-channel fl ow means that depth and cross section are constant along 
the length of a channel. Th e depth for uniform-fl ow conditions is called normal depth and is 
designated by yn. For nonuniform flow, the velocity changes from section to section along the 
channel, and thus one observes changes in depth. Th e velocity change may be due to a change 
in channel confi guration, such as a bend, change in cross-sectional shape, or change in chan-
nel slope. For example, Fig. 15.2 shows steady fl ow over a spillway of constant width, where 
the water must fl ow progressively faster as it goes over the brink of the spillway (from A to B), 
caused by the suddenly steeper slope. Th e faster velocity requires a smaller depth, in accor-
dance with conservation of mass (continuity). From reach B to C, the fl ow is uniform because 
the velocity (and thus depth) are constant. Aft er reach C, the abrupt fl attening of channel slope 
requires the velocity to suddenly and turbulently slow down. Th us, there is a deeper depth 
downstream of C than in reach B to C.

Th e most complicated open-channel fl ow is unsteady nonuniform fl ow. An example of 
this is a breaking wave on a sloping beach. Th eory and analysis of unsteady nonuniform fl ow 
are reserved for more advanced courses.

Dimensional Analysis in Open-Channel Flow

Open-channel fl ow results from gravity moving water from higher to lower elevations and is 
impeded by friction forces caused by the roughness of the channel. Th us, the functional equa-
tion Q = f (μ, ρ, V, L) and dimensional analysis leads to two important π-groups: the Froude 
number and the Reynolds number. Th e Froude number squared is the ratio of kinetic force to 
gravity force:

 Fr2 =
kinetic force
gravity force

=
ρL2 V 2

γL3 =
V 2

L γ/ρ (15.1)

 Fr =
V

√gL
 (15.2)

A

B

C

Nonuniform

Nonuniform

Uniform

FIGURE 15.2

Distinguishing uniform and 

nonuniform fl ow: This example 

shows steady fl ow over a spillway, 

such as the emergency overfl ow 

channel of a dam.
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Th e Froude number is important if the gravitational force infl uences the direction of fl ow, such 
as in fl ow over a spillway, or the formation of surface waves. However, it is unimportant when 
gravity causes only a hydrostatic pressure distribution, such as in a closed conduit.

Th e use of Reynolds number for determining whether the fl ow in open channels will be 
laminar or turbulent depends on the hydraulic radius, given by

 Rh =
A
P

 (15.3)

where A is the cross-sectional area of fl ow and P is the wetted perimeter. Th e characteristic 
length Rh is analogous to diameter D in pipe fl ow. Recall that for pipe fl ow (Chapter 10) if 
the Reynolds number (VDρ/μ = VD/v) is less than 2000, the fl ow will be laminar, and if it is 
greater than about 3000, one can expect the fl ow to be turbulent. Th e Reynolds number crite-
rion for open-channel fl ow would be 2000 if one replaced D in the Reynolds number with 4Rh, 
where Rh is the hydraulic radius. For this defi nition of Reynolds number, laminar fl ow would 
occur in open channels if V(4Rh)/v < 2000.

However, the standard convention in open-channel fl ow analysis is to defi ne the Reynolds 
number as

 Re =
VRh

v  (15.4)

Th erefore, in open channels, if the Reynolds number is less than 500, the fl ow is laminar, and 
if Re is greater than about 750, one can expect to have turbulent fl ow. A brief analysis of this 
turbulent criterion (see Example 15.1) will show that water fl ow in channels will usually be 
turbulent unless the velocity and/or the depth is very small.

It should be noted that for rectangular channels (see Fig. 15.3), the hydraulic radius is

 Rh =
A
P

=
By

B + 2y
 (15.5)

For a wide and shallow channel, B ≫ y and Eq. (15.5) reduces to Rh ≈ y, which means that the 
hydraulic radius approaches the depth of the channel.

Most open-channel fl ow problems involve turbulent fl ow. If one calculates the condi-
tions needed to maintain laminar fl ow, as in Example 15.1, one sees that laminar fl ow is 
uncommon.

y

y

B

Side view

End view

FIGURE 15.3

Open-channel relations.
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15.2 Energy Equation for Steady 

Open-Channel Flow

To derive the energy equation for fl ow in an open channel, begin with Eq. (7.29) and let the 
pump head and turbine head equal zero: hp = ht = 0. Equation (7.29) becomes

 
p1

γ + α1 
V 2

1

2g
+ z1 =

p2

γ + α2 
V 2

2

2g
+ z2 + hL (15.6)

Use Fig. 15.4 to show that

p1

γ + z1 = y1 + S0Δx  and  
p2

γ + z2 = y2

where S0 is the slope of the channel bottom and y is the depth of fl ow. Assume the fl ow in the 
channel is turbulent, so α1 = α2 ≈ 1.0. Equation (15.6) becomes

 y1 +
V 2

1

2g
+ S0Δx = y2 +

V 2
2

2g
+ hL (15.7)

In addition to the foregoing assumptions, Eq. (15.7) also requires that the channel have a 
uniform cross section and that the fl ow be steady.

EXAMPLE 15.1

Calculating Reynolds Number and Classifying Flow 
for a Rectangular Open Channel

Problem Statement

Water (60 °F) fl ows in a 10 ft  wide rectangular channel at a depth 
of 6 ft . What is the Reynolds number if the mean velocity is 
0.1 ft /s? With this velocity, at what maximum depth can one 
be assured of having laminar fl ow?

Defi ne the Situation

Water fl ows in a rectangular channel.
B = 10 ft, y = 6 ft, V = 0.1 ft/s.

Properties:
Water (60 °F, 1 atm, Table A.5): v = 1.22 × 10−5 ft 2/s.

State the Goal

1. Re ➡ Reynolds number
2. ym(ft ) ➡ maximum depth for laminar fl ow

Generate Ideas and Make a Plan

To fi nd Re, apply Eq. (15.4). To fi nd ym, apply the criteria that 
laminar fl ow occurs for Re < 500. Th e plan is as follows:

1. Calculate the hydraulic radius using Eq. (15.5).
2. Calculate the Reynolds number using Eq. (15.4).
3. Let Re = 500, solve for Rh, and then solve for ym.

Take Action (Execute the Plan)

1. Hydraulic radius:

Rh =
By

B + 2y
=

(10 ft)(6 ft)
(10 ft) + 2(6 ft)

= 2.727 ft

2. Reynolds number:

Re =
VR h

v
=

(0.1 ft/s)(2.727 ft)
(1.22 × 10−5 ft2/s)

=  22,400

3. Laminar fl ow criteria (Re < 500):

 Re = VRh/v = (0.10 ft/s)Rh/(1.22 × 10−5 ft2/s) = 500
 Rh = (500)(1.22 × 10−5 ft2/s)/(0.10 ft/s) = 0.061 ft

For a rectangular channel,
 Rh = (By)/(B + 2y)

 (By)/(B + 2y) = (10y)/(10 + 2y) = 0.061 ft
 ym =  0.062 ft

Review the Solution and the Process

1.  Knowledge. Velocity or depth must be very small to 
yield laminar fl ow of water in an open channel.

2.  Knowledge. Depth and hydraulic radius are virtually the 
same when depth is very small relative to width.
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15.3 Steady Uniform Flow

Uniform fl ow requires that velocity be constant in the fl ow direction, so the shape of the chan-
nel and the depth of fl uid is the same from section to section. Consideration of the foregoing 
slope equations shows that for uniform fl ow the slope of the HGL will be the same as the chan-
nel slope because the velocity and depth are the same in both sections. Th e HGL, and thus the 
slope of the water surface, is controlled by head loss. If one restates the Darcy-Weisbach equa-
tion introduced in Chapter 10 with D replaced by 4Rh, the head loss is

 hf =
f L

4Rh
 
V 2

2g
  or  

hf

L
=

f
4Rh

 
V 2

2g
 (15.8)

From Fig. 15.4, S0 is equal to the slope of the EGL, which is a function of the head loss, so 
S0 = (hf /L), yielding the following equation for velocity:

 V = B
8g
f

 Rh S0 (15.9)

To solve Eq. (15.9) for velocity, the friction factor f can be found from the Moody diagram 
(Fig. 10.14) and can then be used to solve iteratively for the velocity for a given uniform-fl ow 
condition. Th is is demonstrated in Example 15.2.

V1
2

2g
1

V2
2

2g
2

hL

p2

p1

z2

z1

y1

Δx

S0Δx

EGL

α

γ

γ

α

HGL

y2

datum

FIGURE 15.4

Defi nition sketch for fl ow in open 

channels.

EXAMPLE 15.2

Applying the Darcy-Weisbach Equation to Find the Flow 
Rate in a Rectangular Open Channel

Problem Statement

Estimate the discharge of water that a concrete channel 10 ft  
wide can carry if the depth of fl ow is 6 ft  and the slope of the 
channel is 0.0016.

Defi ne the Situation

• Water fl ows in a rectangular channel.
• B = 10 ft , y = 6 ft , S0 = 0.0016.

Assumptions: Uniform fl ow

Properties:
• Water (60 °F, 1 atm, Table A.5): v = 1.22 × 10−5 ft 2/s
• Concrete (Table 10.4): ks ≈ 0.005 ft

State the Goal

Q(ft 3/s) ➡ discharge in the channel

Generate Ideas and Make a Plan

Because the goal is Q, apply the fl ow rate equation:
 Q = VA (a)

To fi nd V in Eq. (a), apply Eq. (15.9):

 V = B
8g
f

Rh S0 (b)
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Rock-Bedded Channels

For rock-bedded channels, such as those in some natural streams or unlined canals, the larger 
rocks produce most of the resistance to fl ow; essentially none of this resistance is due to vis-
cous eff ects. Th us, the friction factor is independent of the Reynolds number. Th is is analogous 
to the fully rough region of the Moody diagram for pipe fl ow. For a rock-bedded channel, 
Limerinos (1) has shown that the resistance coeffi  cient f can be given in terms of the size of 
rock in the stream bed as

 f =
1

[1.2 + 2.03 log( Rh

d84
)]

2 (15.10)

where d84 is a measure of the rock size.*

The Chezy Equation

Leaders in open-channel research have recommended the use of the methods already presented 
(involving the Reynolds number and relative roughness ks) for channel design (2). However, 
many engineers continue to use two traditional methods: the Chezy equation and the Man-
ning equation.

To fi nd Rh in Eq. (b), apply Eq. (15.5):

 Rh =
By

B + 2y
=

(10 ft)(6 ft)
(10 ft) + 2(6 ft)

= 2.727 ft (c)

To fi nd f in Eq. (b), use an iterative approach with the 
Moody diagram. Th is is a Case 2 problem from Chapter 10. 
Th erefore:

1. Calculate relative roughness. Th en, guess a value of f.
2. Calculate V using Eq. (b).
3.  Calculate Reynolds number, then look up f on the 

Moody diagram and compare to the guess in step 1. If 
needed, go back to step 2.

4. Calculate Q using Eq. (a).

Take Action (Execute the Plan)

1. Calculate relative roughness:

ks

4Rh
=

0.005 ft
4(60 ft2/22 ft)

=
0.005 ft

4(2.73 ft)
= 0.00046

Use the value of ks/4Rh = 0.00046 as a guide to estimate 
f = 0.016.

2. Calculate V based on guess of f:

 V = B
8(32.2 ft/s2

)(2.73 ft)(0.0016)

0.016

 = √70.6 ft2/s2 = 8.39 ft/s
3. Calculate a new value of f based on V from step 2:

Re = V 
4Rh

v
=

8.39 ft/s (10.9 ft)
1.2 (10−5 ft2/s)

= 7.62 × 106

Using this new value of Re and ks/4Rh = 0.00046, read 
f as 0.016. Th is value of f is the same as the previous 
estimate. Th us, we conclude that

V = 8.39 ft/s
4. Flow rate equation:

Q = VA = 8.39 ft/s (60 ft2
) =  503 cfs

Review the Solution and the Process

1.  Notice. Th e approach to solving this problem parallels 
the approach presented in Chapter 10 for solving prob-
lems that involve fl ow in conduits.

2.  Knowledge. Hydraulic diameter is four times the 
hydraulic radius. Th is is why the relative roughness 
formula in step 1 is ks/(4Rh).

*Most river-worn rocks are somewhat elliptical in shape. Limerinos (1) showed that the intermediate dimension d84 
correlates best with f. Th e d84 refers to the size of rock (intermediate dimension) for which 84% of the rocks in the 
random sample are smaller than the d84 size. Details for choosing the sample are given by Wolman (3).
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As noted earlier, the depth in uniform fl ow, called normal depth, yn, is constant. Conse-
quently, hf /L is the slope S0 of the channel, and Eq. (15.8) can be written as

RhS0 =
f

8g
 V 2

or

 V = C√RhS0 (15.11)

where
 C = √8g/f  (15.12)

Because Q = VA, the discharge in a channel is given by

 Q = CA√RhS0 (15.13)

Th is equation is known as the Chezy equation aft er a French engineer of that name. For prac-
tical application, the coeffi  cient C must be determined. One way to determine C is by knowing 
an acceptable value of the friction factor f and using Eq. (15.12).

The Manning Equation

Th e second, and more common, way to determine C in the SI system of units is given as:

 C =
R1/6

h

n  (15.14)

where n is a resistance coeffi  cient called Manning’s n, which has diff erent values for diff erent 
types of boundary roughness. When this expression for C is inserted into Eq. (15.13), the result 
is a common form of the discharge equation for uniform fl ow in open channels for SI units, 
referred to as the Manning equation:

 Q =
1.0
n  AR 2/3

h S1/2
0  (15.15)

Table 15.1 gives values of n for various types of boundary surfaces. Th e major limitation 
of this approach is that the viscous or relative-roughness eff ects are not present in the design 
formula. Hence, application outside the range of normal-sized channels carrying water is not 
recommended.

EXAMPLE 15.3

Resistance Coeffi cient for Boulders

Problem Statement

Determine the value of the resistance coeffi  cient, f, for a natural 
rock-bedded channel that is 100 ft  wide and has an average 
depth of 4.3 ft . Th e d84 size of boulders in the stream bed is 
0.72 ft .

Defi ne the Situation

A natural channel is lined with boulders.

State the Goal

Find the friction factor, f.

Generate Ideas and Make a Plan

1.  Since the channel is wide, approximate Rh as the depth 
of the channel.

2.  Use Eq. (15.10) to fi nd f on the basis of the d84 boulder 
size.

Take Action (Execute the Plan)

1. Rh is 4.3 ft .
2. Evaluate f.

f =
1

[1.2 + 2.03 log ( 4.3
0.72)]

2 =  0.130
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Manning Equation: Traditional System of Units

Th e form of the Manning equation depends on the system of units because Manning’s equa-
tion is not dimensionally homogeneous. In Eq. (15.15), notice that the primary dimensions 
on the left  side of the equation are L3/T and the primary dimensions on the right side are L8/3.

To convert the Manning equation from SI to traditional units, one must apply a factor 
equal to 1.49 if the same value of n is used in the two systems. Th us, in the traditional system 
the discharge equation using Manning’s n is

 Q =
1.49

n  AR 2/3
h S1/2

0  (15.16)

In Example 15.4, a value for Manning’s n is calculated from known information about a channel 
and compared to tabulated values for n in Table 15.1.

TABLE 15.1 Typical Values of Roughness Coeffi cient, Manning’s n

Lined Canals n

Cement plaster
Untreated gunite
Wood, planed
Wood, unplaned
Concrete, troweled
Concrete, wood forms, unfi nished
Rubble in cement
Asphalt, smooth
Asphalt, rough
Corrugated metal

0.011
0.016
0.012
0.013
0.012
0.015
0.020
0.013
0.016
0.024

Unlined Canals

Earth, straight and uniform
Earth, winding and weedy banks
Cut in rock, straight and uniform
Cut in rock, jagged and irregular

0.023
0.035
0.030
0.045

Natural Channels

Gravel beds, straight
Gravel beds plus large boulders
Earth, straight, with some grass
Earth, winding, no vegetation
Earth, winding, weedy banks
Earth, very weedy and overgrown

0.025
0.040
0.026
0.030
0.050
0.080

EXAMPLE 15.4

Apply the Chezy Equation to fi nd Manning’s Value of n 
for Flow in a Channel

Problem Statement

If a channel with boulders has a slope of 0.0030, is 100 ft  wide, 
has an average depth of 4.3 ft , and is known to have a friction 
factor of 0.130, what is the discharge in the channel, and what 
is the numerical value of Manning’s n for this channel?

Defi ne the Situation

Water fl ows in an channel with boulders:
S0 = 0.003, B = 100 ft, y = 4.3 ft, f = 0.13

Assumptions: Rh ≈ y = 4.3 ft (because the channel is wide).

State the Goal

1. Q(cfs) ➡ discharge in the channel
2. n ➡ Manning’s n



  Steady Uniform Flow        491

In Example 15.5, the Chezy equation for traditional units is used to compute discharge.

Generate Ideas and Make a Plan

To fi nd Q, apply the fl ow rate equation:
 Q = VA (a)

To fi nd V in Eq. (a), apply Eq. (15.9):

 V = B
8g
f

 Rh S0 (b)

To fi nd n, apply Eq. (15.16):

 Q =
1.49

n
 AR2/3

h S1/2
0  (c)

Because Eqs. (a) to (c) form a set of three equations with three 
unknowns, they can be solved. Th e plan is as follows:

1. Calculate V using Eq. (b).
2. Calculate Q using Eq. (a).
3. Calculate n using Eq. (c).

Take Action (Execute the Plan)

1. Velocity:

V =[B
(8)(32.2 ft/s2

)

0.130 ][√(4.3 ft)(0.0030) ] = 5.06 ft/s

2. Flow rate equation:

Q = VA = (5.06 ft/s)(100 × 4.3 ft2
) =  2180 cfs

3. Manning’s n (traditional units):

n =
1.49

Q
AR2/3

h S1/2
0

n = ( 1.49
2176 ft3/s) (100 × 4.3 ft2

) (4.3 ft)2/3
(0.003)

1/2

n =  0.0426

Review the Solution and the Process

1.  Validation. Th is calculated value of n is within the range 
of typical values in Table 15.1 under the category of 
“Unlined Canals: Cut in rock.”

2.  Notice. For uniform fl ow, f in the Darcy-Weisbach 
equation can be related to Manning’s n (as shown by 
this example).

EXAMPLE 15.5

Discharge Using Chezy Equation

Problem Statement

Using the Chezy equation with Manning’s n, compute the 
discharge in a concrete channel 10 ft  wide if the depth of fl ow 
is 6 ft  and the slope of the channel is 0.0016.

Defi ne the Situation

Water fl ows in a concrete channel. Width = 10 ft . Depth = 6 ft . 
Slope = 0.0016.

Properties: n = 0.015 for concrete channel (Table 15.1).

State the Goal

Find the discharge, Q.

Generate Ideas and Make a Plan

Use the Chezy equation for traditional units, Eq. (15.16).

Take Action (Execute the Plan)

 Q =
1.49

n
 AR 2/3

h S1/2
0

 Rh =
60
22

= 2.73 ft  and  R2/3
h = 1.95

 S1/2
0 = 0.04  and  A = 60 ft2

 Q =
1.49

0.015
(60)(1.96)(0.04) =  467 cfs

Th e two results (Examples 15.4 and 15.5) are within expected engineering accuracy for 
this type of problem. For a more complete discussion of the historical development of Man-
ning’s equation and the choice of n values for use in design or analysis, refer to Yen (4) and 
Chow (5).
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Best Hydraulic Section for Uniform Flow

Th e best hydraulic section is the channel geometry that gives the maximum discharge for a 
given cross-sectional area. Maximum discharge occurs when a geometry has the minimum 
wetted perimeter. Th erefore, it yields the least viscous energy loss for a given area. Consider 
the quantity AR2/3

h  in Manning’s equation given in Eqs. (15.15 and 15.16), which is referred to 
as the section factor. Because Rh = A/P, the section factor relating to uniform fl ow is given by 
A(A/P)2/3. Th us, for a channel of given resistance and slope, the discharge will increase with 
increasing cross-sectional area but decrease with increasing wetted perimeter P. For a given 
area A and a given shape of channel—for example, rectangular cross section—there will be a 
certain ratio of depth to width (y/B) for which the section factor will be maximum. Th is ratio 
is the best hydraulic section.

Example 15.6 shows that the best hydraulic section for a rectangular channel occurs when 
y = 1

2 B. It can be shown that the best hydraulic section for a trapezoidal channel is half a hexa-
gon as shown; for the circular section, it is the half circle with depth equal to radius; and for the 
triangular section, it is a triangle with a vertex of 90° (Fig. 15.5). Of all the various shapes, the 
half circle has the best hydraulic section because it has the smallest perimeter for a given area.

Th e best hydraulic section can be relevant to the cost of the channel. For example, if a 
trapezoidal channel were to be excavated and if the water surface were to be at adjacent ground 
level, the minimum amount of excavation (and excavation cost) would result if the channel of 
best hydraulic section were used.

L

L

L

L

L

L

R

90°

B

y = B/2

FIGURE 15.5

Best hydraulic sections for 

different geometries.

EXAMPLE 15.6

Finding the Best Hydraulic Section for a Rectangular 
Channel

Problem Statement

Determine the best hydraulic section for a rectangular channel 
with depth y and width B.

Defi ne the Situation

Water fl ows in a rectangular channel. Depth = y. Width = B.

State the Goal

Find the best hydraulic section (relate B and y).

Generate Ideas and Make a Plan

1.  Set A = By and P = B + 2y so that both are 
a function of y.

2.  Let A be constant, and minimize P:
•  Diff erentiate P with respect to y and set the derivative 

equal to zero.
•  Express the result of minimizing P as a relation 

between y and B.

Take Action (Execute the Plan)

1. Relate A and P in terms of y:

P =
A
y

+ 2y

2a. Minimize P:

dP
dy

=
−A
y 2 + 2 = 0

A
y 2 = 2

2b. Express result in terms of y and B:

 A = By , so
By
y2 = 2   or  y =

1
2

 B

Review the Solution and the Process

Knowledge. Th e best hydraulic section for a rectangular channel 
occurs when the depth is one-half the width of the channel 
(see Fig. 15.5).

Uniform Flow in Culverts and Sewers

Sewers are conduits that carry sewage (liquid domestic, commercial, or industrial waste) from 
households, businesses, and factories to sewage disposal sites. Th ese conduits are oft en circu-
lar in cross section, but elliptical and rectangular conduits are also used. Th e volume rate of 
sewage varies throughout the day and season, but of course sewers are designed to carry the 
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maximum design discharge fl owing full or nearly full. At discharges less than the maximum, 
the sewers will operate as open channels.

Sewage usually consists of about 99% water and 1% solid waste. Because most sewage is so 
dilute, it is assumed that it has the same physical properties as water for purposes of discharge 
computations. However, if the velocity in the sewer is too small, then the solid particles may 
settle out and cause blockage of the fl ow. Th erefore, sewers are usually designed to have a mini-
mum velocity of about 2 ft /s (0.60 m/s) at times when the sewer is fl owing full. Th is condition 
is met by choosing a slope on the sewer line to achieve the desired velocity.

A culvert is a conduit placed under a fi ll, such as a highway embankment. It is used to 
convey stream fl ow from the uphill side of the fi ll to the downhill side. Figure 15.6 shows the 
essential features of a culvert. A culvert should be able to convey runoff  from a design storm 
without overtopping the fi ll and without erosion of the fi ll at either the upstream or down-
stream end of the culvert. Th e design storm, for example, might be the maximum storm that 
could be expected to occur once in 50 years at the particular site.

Th e fl ow in a culvert is a function of many variables, including cross-sectional shape 
(circular or rectangular), slope, length, roughness, entrance design, and exit design. Flow in 
a culvert may occur as an open channel throughout its length, it may occur as a com-
pletely full pipe, or it may occur as a combination of both. Th e complete design and analysis of 
culverts are beyond the scope of this text; therefore, only simple examples are included here 
(Examples 15.7 and 15.8). For more extensive treatment of culverts, please refer to Chow (5), 
Henderson (6), and American Concrete Pipe Assoc. (7).

Roadway
Embankment

Culvert

FIGURE 15.6

Culvert under a highway embankment.

EXAMPLE 15.7

Sizing a Round Concrete Sewer Line

Problem Statement

A sewer line is to be constructed of concrete pipe to be laid on 
a slope of 0.006. If n = 0.013 and if the design discharge is 
110 cfs, then what size pipe (commercially available) should be 
selected for a full-fl ow condition? What will be the mean velocity 
in the sewer pipe for these conditions? (It should be noted that 
concrete pipe is readily available in commercial sizes of 8 in., 
10 in., and 12 in. diameter and then in 3 in. increments up to 
36 in. diameter. From 36 in. diameter up to 144 in., the sizes 
are available in 6 in. increments.)

Defi ne the Situation

Sewer line, S0 = 0.006, Q (design) = 110 cfs.

Assumptions: Can only use a standard pipe size.

State the Goal

Find: Th e pipe diameter large enough to carry design discharge 
and that allows V ≥ 2 ft /s at full-fl ow condition.

Generate Ideas and Make a Plan

1. Use Chezy equation for traditional units, Eq. (15.16).
2. Solve for AR2/3.
3.  For pipe fl owing full, relate A and P to diameter 

through Rh.
4.  Solve for diameter, and use the next commercial size 

larger.
5. Check that velocity for full fl ow is greater than 2 ft /s.

Take Action (Execute the Plan)

1. Chezy equation for traditional units is

 Q =
1.49

n
AR2/3S1/2

0

 Q = 110 ft3/s
 n = 0.013

 S0 = 0.006 (assume atmospheric pressure in the pipe)



494 CHAPTER 15  •  FLOW IN OPEN CHANNELS

Example 15.8 demonstrates the calculation of necessary slope given all sources of head 
loss and a required discharge.

2.  Solve for AR2/3. Note that units of AR2/3 are ft 8/3 because 
A is in ft 2 and Rh is in ft 2/3.

AR2/3 =
(110 ft3/s)(0.013)

(1.49)(0.006)1/2 = 12.39 ft8/3

3. Relate A and P to diameter by relating to Rh:

Rh =
A
P
   and  Rh

2/3 = (A
P )

2/3

ARh
2/3 =

A5/3

P2/3 = 12.39 ft8/3

For a pipe fl owing full, A = πD2/4 and P = πD, or

(πD2/4)5/3

(πD)2/3 = 12.39 ft8/3

4.  Solving for diameter yields D = 3.98 ft  = 47.8 in. Use 
the next commercial size larger, which is   D = 48 in.

A =
πD2

4
= 50.3 ft2 (for pipe flowing full)

5. Verify that velocity of full fl ow is greater than 2 ft /s:

V =
Q
A

=
(110 ft3/s)
(50.3 ft2)

=  2.19 ft/s

EXAMPLE 15.8

Culvert Design

Problem Statement

A 54 in. diameter culvert laid under a highway embankment 
has a length of 200 ft  and a slope of 0.01. Th is was designed to 
pass a 50-year fl ood fl ow of 225 cfs under full-fl ow conditions 
(see fi gure). For these conditions, what head H is required? 
When the discharge is only 50 cfs, what will be the uniform 
fl ow depth in the culvert? Assume n = 0.012.

Defi ne the Situation

A culvert has been designed to carry 225 cfs with the given 
dimensions.

Assumptions: Uniform fl ow; pipe head loss hf can be related 
to S0.

H

State the Goal

Find:
1.  Th e height H required between the two free surfaces 

when fl owing full.
2. Th e uniform fl ow depth in the culvert when Q = 50 cfs.

Generate Ideas and Make a Plan

1.  Use the energy equation between the two end sections, 
accounting for head loss.

2. Document all sources of head loss.
3. Find pipe head loss hf using Eq. (15.17) and the fact that

S0 =
hf

L
4.  Use continuity equation to fi nd V, the uniform fl ow 

velocity, needed to calculate head loss.
5. Solve for H.
6.  Solve for depth of fl ow, for Q = 50 cfs, using Eq. (15.16) 

and pipe geometry relations for pipe fl owing partly full.

Take Action (Execute the Plan)

1. Energy equation:
p1

g
+

V 2
1

2g
+ z1 =

p2

g
+

V 2
2

2g
+ z2 + ∑ hL

Let points 1 and 2 be at the upstream and downstream 
water surfaces, respectively.

Th us, (p1 = p2 = 0 gage  and  V1 = V2 = 0).

Also, (z1 − z2 = H).

Th erefore, (H = ∑ hL).

2.  Head losses occur at culvert entrance and exit, as well as 
over the length of pipe:

H = pipe head loss + entrance head loss + exit head loss

H =
V 2

2g
 (Ke + KE) + pipe head loss

 Ke = 0.50 (from Table 10.5)

 KE = 1.00 (from Table 10.5)
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15.4 Steady Nonuniform Flow

As stated in the beginning of this chapter and shown in Fig. 15.2, all open-channel fl ows are 
classifi ed as either uniform or nonuniform. Recall that uniform fl ow has constant velocity along 
a streamline and thus has constant depth for a constant cross section. In steady nonuniform 
fl ow, the depth and velocity change over distance (but not with time). For all such cases, the en-
ergy equation as generally introduced in Section 15.2 is invoked to compare two cross sections. 
However, for analysis of nonuniform fl ow, it is useful to distinguish whether the depth and 
velocity change occurs over a short distance, referred to as rapidly varied flow, or over a long 
reach of the channel, referred to as gradually varied flow (Fig. 15.7). Th e head loss term is dif-
ferent for these two cases. For rapidly varied fl ow, one can neglect the resistance of the channel 
walls and bottom because it occurs over a short distance. For gradually varied fl ow, because of 
the long distances involved, the surface resistance is a signifi cant variable in the energy balance.

15.5 Rapidly Varied Flow

Rapidly varied fl ow is analyzed with the energy equation presented previously for open-channel 
fl ow, Eq. (15.7), with the additional assumptions that the channel bottom is horizontal (S0 = 0) 
and the head loss is zero (hL = 0). Th erefore, Eq. (15.7) becomes

 y1 +
V 2

1

2g
= y2 +

V 2
2

2g
 (15.17)

3. Pipe head loss is

 Q =
1.49

n
 AR2/3

h S1/2
0

 Q = 225 ft3/s

 A =
πD2

4
= 15.90 ft2

 Rh =
A
P

=
πD2/4

πD
=

D
4

= 1.125 ft

 R2/3
h = (1.125 ft)2/3 = 1.0817 ft2/3

 S0 =
hf

L

 225 =
1.49

0.012
(15.90 ft2) (1.0817 ft2/3)(

hf

200)
1/2

 hf = 2.22 ft

4. Continuity equation yields

V =
Q
A

=
225 ft3/s
15.90 ft2 = 14.15 ft/s

5. Solve for H:

H =
14.152

64.4
(0.50 + 1.0) + 2.22

H = 4.66 ft + 2.22 ft =  6.88 ft

6. Depth of fl ow for Q = 50 cfs is

50 =
1.49

0.012
AR2/3

h (0.01)1/2

Values of A and Rh will depend on the geometry of the 
partly full pipe, as shown:

θθ

D

y

Area A if angle θ is given in degrees:

A = [ (πD2

4 )( 20
360°)] − (D

2 )
2

(sin θ cos θ)

Wetted perimeter will be P = πD(π/180°), so

Rh =
A
P

= (D
4 )[ 1 − (sin θ cos θ

(πθ/180°) ) ]
Substituting these relations for A and Rh into the 
discharge equation and solving for θ yields θ = 70°. 
Th erefore, y is

y =
D
2

−
D
2

 cos θ = (54 in
2 ) (1 − 0.342) =  17.8 in

Open-channel
flow

Nonuniform
Flow

Uniform
Flow

Rapidly
Varying

Gradually
Varying

FIGURE 15.7

Classifying nonuniform fl ow.



496 CHAPTER 15  •  FLOW IN OPEN CHANNELS

Specifi c Energy

Th e sum of the depth of fl ow and the velocity head is defi ned as the specific energy:

 E = y +
V 2

2g
 (15.18)

Note that specifi c energy has dimensions of length; that is, it is a head term. Equation (15.17) 
states that the specifi c energy at section 1 is equal to the specifi c energy at section 2, or E1 = E2. 
Th e continuity equation between sections 1 and 2 is

 A1V1 = A2V2 = Q (15.19)

Th erefore, Eq. (15.17) can be expressed as

 y1 +
Q2

2gA2
1

= y2 +
Q2

2gA2
2
 (15.20)

Because A1 and A2 are functions of the depths y1 and y2, respectively, the magnitude of the 
specifi c energy at section 1 or 2 is solely a function of the depth at each section. If, for a given 
channel and given discharge, one plots depth versus specifi c energy, then a relationship such 
as that shown in Fig. 15.8 is obtained. By studying Fig. 15.8 for a given value of specifi c energy, 
one can see that the depth may be either large or small. Th is means that for the small depth, the 
bulk of the energy of fl ow is in the form of kinetic energy—that is, Q2/(2gA2) ⪢ y—whereas for 
a larger depth, most of the energy is in the form of potential energy. Flow under a sluice gate 
(Fig. 15.9) is an example of fl ow in which two depths occur for a given value of specifi c energy. 
Th e large depth and low kinetic energy occur upstream of the gate; the low depth and large 
kinetic energy occur downstream. Th e depths as used here are called alternate depths. Th at is, 
for a given value of E, the large depth is alternate to the low depth, or vice versa. Returning to 
the fl ow under the sluice gate, one fi nds that if the same rate of fl ow is maintained, but the gate 
is set with a larger opening, as in Fig. 15.9b, the upstream depth will drop, and the downstream 
depth will rise. Th is results in diff erent alternate depths and a smaller value of specifi c energy 
than before. Th is is consistent with the diagram in Fig. 15.8.

Finally, it can be seen in Fig. 15.8 that a point will be reached where the specifi c energy 
is minimum and only a single depth occurs. At this point, the fl ow is termed critical. Th us, 
one defi nition of critical flow is the fl ow that occurs when the specifi c energy is minimum 
for a given discharge. Th e fl ow for which the depth is less than critical (velocity is greater than 
critical) is termed supercritical flow, and the fl ow for which the depth is greater than critical 
(velocity is less than critical) is termed subcritical flow. Th erefore, subcritical fl ow occurs 

V1
2

2g

V2
2

2g

V c
2

2g

45°

E E

y1 > yc

yc

y

y2 < yc

Q = constant
Subcritical flow

Alternate depths

Supercritical flow

yc

y1

y2

FIGURE 15.8

Relation between depth and 

specifi c energy.
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upstream and supercritical fl ow occurs downstream of the sluice gate in Fig. 15.9. Subcritical 
fl ows corresponds to a Froude number less than one (Fr < 1), and supercritical fl ow corre-
sponds to Fr > 1. Some engineers refer to subcritical and supercritical fl ow as tranquil and 
rapid fl ow, respectively. Other aspects of critical fl ow are shown in the next section.

Characteristics of Critical Flow

Critical fl ow occurs when the specifi c energy is minimum for a given discharge. Th e depth 
for this condition may be determined by solving for dE/dy from E = y + Q2/2gA2 and setting 
dE/dy equal to zero:

 
dE
dy

= 1 −
Q2

gA3 ∙
dA
dy

 (15.21)

However, dA = T dy, where T is the width of the channel at the water surface, as shown in 
Fig. 15.10. Th en Eq. (15.21), with dE/dy = 0, will reduce to

 
Q2Tc

gA3
c

= 1 (15.22)

or

 
Ac

Tc
=

Q2

gA2
c
 (15.23)

If the hydraulic depth, D, is defi ned as

 D =
A
T

 (15.24)

then Eq. (15.23) will yield a critical hydraulic depth Dc, given by

 Dc =
Q2

gA2
c

=
V 2

g  (15.25)

EGL

Subcritical flow

Supercritical flow

(a)

EGL

Subcritical flow

Supercritical flow

(b)

FIGURE 15.9

Flow under a sluice gate: (a) smaller gate opening, (b) larger gate opening.

dy
T

y

FIGURE 15.10

Open-channel relations.
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Dividing Eq. (15.25) by Dc and taking the square root yields

 1 =
V

√gDc
 (15.26)

Note: V/ √gDc is the Froude number. Th erefore, it has been shown that the Froude number is 
equal to unity when critical fl ow prevails.

If a channel is of rectangular cross section, then A/T is the actual depth, and Q2/A2 = q2/y2, 
so the condition for critical depth (Eq. 15.23) for a rectangular channel becomes

 yc = (q2

g )
1/3

 (15.27)

where q is the discharge per unit width of channel.

EXAMPLE 15.9

Calculating Critical Depth in a Channel

Problem Statement

Determine the critical depth in this trapezoidal channel for a 
discharge of 500 cfs. Th e width of the channel bottom is 
B = 20 ft , and the sides slope upward at an angle of 45°.

45°45°

B = 20 ft

y

Defi ne the Situation

Water fl ows in a trapezoidal channel with known geometry.

State the Goal

Calculate the critical depth.

Generate Ideas and Make a Plan

1.  For critical fl ow, Eq. (15.22) must apply.

2.  Relate this channel geometry to width T and area A in 
Eq. (15.22).

3.  By iteration (choose y and compute A3/T), fi nd y that 
will yield A3/T equal to 7764 ft 2. Th is y will be critical 
depth yc.

Take Action (Execute the Plan)

1.  Apply Eq. (15.22) to show that:

Q2

g
=

A3
c

Tc

2.  For Q = 500 cfs,

A3
c

Tc
=

5002

32.2
= 7764 ft2

For this channel, A = y(B + y) and T = B + 2y.
3.  Iterate to fi nd yc:

yc =  2.57 ft

Critical fl ow may also be examined in terms of how the discharge in a channel varies with 
depth for a given specifi c energy. For example, consider fl ow in a rectangular channel where

E = y +
Q2

2gA2

or

E = y +
Q2

2gy2B2

If one considers a unit width of the channel and lets q = Q/B, then the foregoing equation 
becomes

E = y +
q2

2gy2
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If one determines how q varies with y for a constant value of specifi c energy, one sees that criti-
cal fl ow occurs when the discharge is maximum (see Fig. 15.11).

Originally, the term critical flow probably related to the unstable character of the fl ow for 
this condition. Referring to Fig. 15.8, one can see that only a slight change in specifi c energy 
will cause the depth to increase or decrease a signifi cant amount; this is a very unstable condi-
tion. In fact, observations of critical fl ow in open channels show that the water surface consists 
of a series of standing waves. Because of the unstable nature of the depth in critical fl ow, de-
signing canals so that normal depth is either well above or well below critical depth is usually 
best. Th e fl ow in canals and rivers is usually subcritical; however, the fl ow in steep chutes or 
over spillways is supercritical.

In this section, various characteristics of critical fl ow have been explored. Th e main ones 
can be summarized as follows:

1. Critical fl ow occurs when specifi c energy is minimum for a given discharge (Fig. 15.8).
2. Critical fl ow occurs when the discharge is maximum for a given specifi c energy.
3. Critical fl ow occurs when

A3

T
=

Q2

g

4. Critical fl ow occurs when Fr = 1. Subcritical fl ow occurs when Fr < 1. Supercritical fl ow 
occurs when Fr > 1.

5. For rectangular channels, critical depth is given as yc = (q2/g)1/3.

Common Occurrence of Critical Flow

Critical fl ow occurs when a liquid passes over a broad-crested weir (Fig. 15.12). Th e principle of 
the broad-crested weir is illustrated by fi rst considering a closed sluice gate that prevents water 
from being discharged from the reservoir, as shown in Fig. 15.12a. If the gate is opened a small 
amount (gate position a′-a′), the fl ow upstream of the gate will be subcritical, and the fl ow down-
stream will be supercritical (as in the condition shown in Fig. 15.9). As the gate is opened further, 
a point is fi nally reached where the depths immediately upstream and downstream of the gate are 
the same. Th is is the critical condition. At this gate opening and beyond, the gate has no infl uence 
on the fl ow; this is the condition shown in Fig. 15.12b, the broad-crested weir. If the depth of fl ow 
over the weir is measured, the rate of fl ow can easily be computed from Eq. (15.27):

q = √gy 3
c

or

 Q = L√gy 3
c  (15.28)

where L is the length of the weir crest normal to the fl ow direction.

qmax

yc

q

y

E = constant FIGURE 15.11

Variation of q and y with constant specifi c energy.
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Because yc/2 = (V 2
c/2g), from Eq. (15.25), it can be shown that yc = (2/3E), where E is the 

total head above the crest (H + V2
approach/2g); hence Eq. (15.28) can be rewritten as

Q = L√g (2
3)

3/2
 E3/2

or

 Q = 0.385L √2g E 3/2
c  (15.29)

For high weirs, the upstream velocity of approach is almost zero. Hence, Eq. (15.29) can be 
expressed as

 Qtheor = 0.385L √2g H 3/2 (15.30)

If the height P of the broad-crested weir is relatively small, then the velocity of approach 
may be signifi cant, and the discharge produced will be greater than that given by Eq. (15.30). 
Also, head loss will have some eff ect. To account for these eff ects, a discharge coeffi  cient C is 
defi ned as

 C = Q/Qtheor (15.31)

Th en

 Q = 0.385CL √2g H 3/2 (15.32)

where Q is the actual discharge over the weir. An analysis of experimental data by Raju (15) 
shows that C varies with H/(H + P) as shown in Fig. 15.13. Th e curve in Fig. 15.13 is for a weir 
with a vertical upstream face and a sharp corner at the intersection of the upstream face and 
the weir crest. If the upstream face is sloping at a 45° angle, the discharge coeffi  cient should be 
increased 10% over that given in Fig. 15.13. Rounding of the upstream corner will also produce 
a coeffi  cient of discharge as much as 3% greater.

Equation (15.32) reveals a defi nite relationship for Q as a function of the head, H. Th is type 
of discharge-measuring device is in the broad class of discharge meters called critical-flow 
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Flow over a broad-crested 
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(b) depth of fl ow is controlled 

by a weir and is yc.
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Discharge coeffi cient for a broad-crested weir for 

0.1 < H/L < 0.8.



  Rapidly Varied Flow        501

flumes. Another very common critical-fl ow fl ume is the venturi flume, which was developed 
and calibrated by Parshall (8). Figure 15.14 shows the essential features of the venturi fl ume. 
Th e discharge equation for the venturi fl ume is in the same form as Eq. (15.32), the only 
diff erence being that the experimentally determined coeffi  cient C will have a diff erent value 
from the C for the broad-crested weir. For more details on the venturi fl ume, you may refer 
to Roberson et al. (9), Parshall (8), and Chow (5). Th e venturi fl ume is especially useful for 
discharge measurement in irrigation systems because little head loss is required for its use, and 
sediment is easily fl ushed through if the water happens to be silty.

Th e depth also passes through a critical stage in channel fl ow where the slope changes 
from a mild one to a steep one. A mild slope is defi ned as a slope for which the normal depth 
yn is greater than yc. Likewise, a steep slope is one for which yn < yc. Th is condition is shown 
in Fig. 15.15. Note that yc is the same for both slopes in the fi gure because yc is a function of 
the discharge only. However, normal depth (uniform-fl ow depth) for the mild upstream chan-
nel is greater than critical, whereas the normal depth for the steep downstream channel is less 
than critical; hence it is obvious that the depth must pass through a critical stage. Experiments 
show that critical depth occurs a very short distance upstream of the intersection of the two 
channels.

Another place where critical depth occurs is upstream of a free overfall at the end of a channel 
with a mild slope (Fig. 15.16). Critical depth will occur at a distance of 3yc to 4yc upstream of the 
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Venturi flume

Crest

Flow

Throat section(a) Plan

 

(b) Profile
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Flow through a venturi fl ume.
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Critical depth at a free overfall.
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Critical depth at a break in grade.
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brink. Such occurrences of critical depth (at a break in grade or at a brink) are useful in computing 
surface profi les because they provide a point for starting surface-profi le calculations.*

Channel Transitions

Whenever a channel’s cross-sectional confi guration (shape or dimension) changes along its 
length, the change is termed a transition. Concepts previously presented are used to show 
how the fl ow depth changes when the fl oor of a rectangular channel is increased in elevation 
or when the width of the channel is decreased. In these developments, negligible energy losses 
are assumed. First, the case where the fl oor of the channel is raised (an upstep) is considered. 
Later in this section, confi gurations of transitions used for subcritical fl ow from a rectangular 
to a trapezoidal channel are presented.

Consider the rectangular channel shown in Fig. 15.17, where the fl oor rises an amount Δz. 
To help in evaluating depth changes, one can use a diagram of specifi c energy versus depth, 
which is similar to Fig. 15.8. Th is diagram is applied both at the section upstream of the transi-
tion and at the section just downstream of the transition. Because the discharge, Q, is the same 
at both sections, the same diagram is valid at both sections. As noted in Fig. 15.17, the depth 
of fl ow at section 1 can be either large (subcritical) or small (supercritical) if the specifi c energy 
E1 is greater than that required for critical fl ow. It can also be seen in Fig. 15.17 that when the 
upstream fl ow is subcritical, a decrease in depth occurs in the region of the elevated channel 
bottom. Th is occurs because the specifi c energy at this section, E2, is less than that at section 1 by 
the amount Δz. Th erefore, the specifi c energy diagram indicates that y2 will be less than y1. In a 
similar manner, it can be seen that when the upstream fl ow is supercritical, the depth as well as 
the actual water-surface elevation increases from section 1 to section 2. A further note should 
be made about the eff ect on fl ow depth of a change in bottom-surface elevation. If the channel 
bottom at section 2 is at an elevation greater than that just suffi  cient to establish critical fl ow at 
section 2, then there is not enough head at section 1 to cause fl ow to occur over the rise under 
steady-fl ow conditions. Instead, the water level upstream will rise until it is just suffi  cient to 
reestablish steady fl ow.

When the channel bottom is kept at the same elevation but the channel is decreased in 
width, then the discharge per unit of width between sections 1 and 2 increases, but the specifi c 
energy E remains constant. Th us, when utilizing the diagram of q versus depth for the given 
specifi c energy E, note that the depth in the restricted section increases if the upstream fl ow is 
supercritical and decreases if it is subcritical (see Fig. 15.18).

*Th e procedure for making these computations starts in §15.7 in the subsection titled “Quantitative Evaluation of the 
Water-Surface Profi le.”
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FIGURE 15.17

Change in depth with change in bottom 

elevation of a rectangular channel.
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Th e foregoing paragraphs describe gross eff ects for the simplest transitions. In practice, it 
is more common to fi nd transitions between a channel of one shape (rectangular cross section, 
for example) and a channel with a diff erent cross section (trapezoidal, for example). A very 
simple transition between two such channels consists of two straight vertical walls joining the 
two channels, as shown by the half section in Fig. 15.19.

Th is type of transition can work, but it will produce excessive head loss because of the 
abrupt change in cross section and the ensuing separation that will occur. To reduce the head 
losses, a more gradual type of transition is used. Figure 15.20 is a half section of a transition 
similar to that of Fig. 15.19, but with the angle θ much greater than 90°. Th is is called a wedge 
transition.

Th e warped-wall transition shown in Fig. 15.21 will yield even smoother fl ow than either 
of the other two, and it will thus have less head loss. In the practical design and analysis of 
transitions, engineers usually use the complete energy equation, including the kinetic energy 
factors α1 and α2 as well as a head loss term hL, to defi ne velocity and water-surface eleva-
tion through the transition. Analyses of transitions utilizing the one-dimensional form of the 
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energy equation are applicable only if the fl ow is subcritical. If the fl ow is supercritical, then 
a much more involved analysis is required. For more details on the design and analysis of 
transitions, refer to Hinds (10), Chow (5), U.S. Bureau of Reclamation (11), and Rouse (12).

Wave Celerity

Wave celerity is the velocity at which an infi nitesimally small wave travels relative to the veloc-
ity of the fl uid. It can be used to characterize the velocity of waves in the ocean or propagation 
of a fl ood wave following a dam failure. A derivation of wave celerity, c, follows.

Consider a small solitary wave moving with velocity c in a calm body of liquid of small 
depth (Fig. 15.22a). Because the velocity in the liquid changes with time, this is a condition of 
unsteady fl ow. However, if one referred all velocities to a reference frame moving with the wave, 
the shape of the wave would be fi xed, and the fl ow would be steady. Th en, the fl ow is amenable 
to analysis with the Bernoulli equation. Th e steady-fl ow condition is shown in Fig. 15.22b. 
When the Bernoulli equation is written between a point on the surface of the undisturbed fl uid 
and a point at the wave crest, the following equation results:

 
c2

2g
+ y =

V 2

2g
+ y + Δy (15.33)

In Eq. (15.33), V is the velocity of the liquid in the section where the crest of the wave is located. 
From the continuity equation, cy = V(y + Δy). Hence,

V =
cy

y + Δy
and

 V 2 =
c2y2

(y + Δy)2 (15.34)

When Eq. (15.34) is substituted into Eq. (15.33), it yields

 
c2

2g
+ y =

c2y2

2g [y2 + 2yΔy + (Δy)2]
+ y + Δy (15.35)

c

cc
V

Δy

(a)
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y

FIGURE 15.22

Solitary wave (exaggerated 

vertical scale): (a) unsteady 

fl ow, (b) steady fl ow.
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Solving Eq. (15.35) for c aft er discarding terms with (Δy)2, assuming an infi nitesimally small 
wave, yields the wave celerity equation:

 c = √gy (15.36)

It has thus been shown that the speed of a small solitary wave is equal to the square root of the 
product of the depth and g.

15.6 Hydraulic Jump

Occurrence of the Hydraulic Jump

An interesting and important case of rapidly varied fl ow is the hydraulic jump. A hydraulic 
jump occurs when the fl ow is supercritical in an upstream section of a channel and is then 
forced to become subcritical in a downstream section (the change in depth can be forced 
by a sill in the downstream part of the channel or just by the prevailing depth in the stream 
further downstream), resulting in an abrupt increase in depth and considerable energy loss. 
Hydraulic jumps (Fig. 15.23) are oft en considered in the design of open channels and spill-
ways of dams. If a channel is designed to carry water at supercritical velocities, the designer 
must be certain that the fl ow will not become subcritical prematurely. If it did, overtopping 
of the channel walls would undoubtedly occur, with consequent failure of the structure. 
Because the energy loss in the hydraulic jump is initially not known, the energy equation is 
not a suitable tool for analysis of the velocity-depth relationships. Because there is a signifi -
cant diff erence in hydrostatic head on both sides of the equation causing opposing pressure 
forces, the momentum equation can be applied to the problem, as developed in the following 
sections.

Derivation of Depth Relationships in Hydraulic Jumps

Consider fl ow as shown in Fig. 15.23. Here, it is assumed that uniform fl ow occurs both 
upstream and downstream of the jump and that the resistance of the channel bottom over the 
relatively short distance L is negligible. Th e derivation is for a horizontal channel, but experi-
ments show that the results of the derivation will apply to all channels of moderate slope 
(S0 < 0.02). Th e derivation is started by applying the momentum equation in the x direction 
to the control volume shown in Fig. 15.24:

∑ Fx = m· 2V2 − m· 1V1
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FIGURE 15.23

Defi nition sketch for the hydraulic 

jump.
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Th e forces are the hydrostatic forces on each end of the system; thus the following is 
obtained:

p1A1 − p2 A2 = ρV2 A2V2 − ρV1A1V1

or

 p1A1 + ρQV1 = p2 A2 + ρQV2 (15.37)

In Eq. (15.37), p1 and p2 are the pressures at the centroids of the respective areas A1 and A2.
A representative problem (e.g., Example 15.10) is to determine the downstream depth y2 

given the discharge and upstream depth. Th e left -hand side of Eq. (15.37) would be known 
because V, A, and p are all functions of y and Q, and the right-hand side is a function of y2; 
therefore, y2 can be determined.

V2

2

2

1

1

Control surface

Hydrostatic
pressure at
section   

Hydrostatic
pressure at
section

V1

FIGURE 15.24

Control-volume analysis for the hydraulic jump.

EXAMPLE 15.10

Calculating Downstream Depth for a Hydraulic Jump

Problem Statement

Water fl ows in a trapezoidal channel at a rate of 300 cfs. Th e 
channel has a bottom width of 10 ft  and side slopes of 1 vertical 
to 1 horizontal. If a hydraulic jump is forced to occur where 
the upstream depth is 1.0 ft , what will be the downstream 
depth and velocity? What are the values of Fr1 and Fr2?

45°
A1A A1B A1C

1 ft

10 ft

Defi ne the Situation

A hydraulic jump is forced in a trapezoidal channel.

Properties: Water (50°F), Table A.5:
γ = 62.4 lbf/ft 3, and ρ = 1.94 slugs/ft 3.

State the Goal

1. Downstream depth and velocity
2. Values of Fr1 and Fr2

Generate Ideas and Make a Plan

1.  Find cross section, velocity, and hydraulic depth in the 
upstream section.

2.  Find pressure in the upstream section to use for the 
left -hand side of Eq. (15.37).

3.  Use channel geometry information to solve for y2 in 
right-hand side of Eq. (15.37).

4.  Use Eq. (15.2) to solve for the Froude number at both 
sections.

Take Action (Execute the Plan)

1.  By inspection, for the upstream section, the cross-
sectional fl ow area is 11 ft 2.
Th erefore, the mean velocity is V1 = Q/A1 = 27.3 ft /s.
Th e hydraulic depth is D1 = A1/T1 = 11 ft 2/12 ft  = 
0.9167 ft .

2.  Th e location of the centroid (y ) of the area A1 can be 
obtained by taking moments of the subareas about the 
water surface (see example sketch).

A1 y1 = A1A × 0.333 ft + A1B × 0.500 ft + A1C × 0.333 ft

(11 ft2)y1 = (0.333 ft)(0.500 ft2 × 2) + (0.50 ft)(10.00 ft2)

y = 0.485 ft



  Hydraulic Jump        507

Hydraulic Jump in Rectangular Channels

If one writes Eq. (15.37) for a unit width of a rectangular channel where p1 = γy1/2, p2 = γy2/2, 
Q = q, A1 = y1, and A2 = y2, this will yield

 γ
y2

1

2
+ ρqV1 = γ

y2
2

2
+ ρqV2 (15.38a)

but q = Vy, so Eq. (15.38a) can be rewritten as

 
γ
2

(y 2
1 − y 2

2 ) =
γ
g (V 2

2 y2 − V 2
1 y1) (15.38b)

Th e preceding equation can be further manipulated to yield

 
2V 2

1

gy1
= ( y2

y1 )
2

+
y2

y1
 (15.39)

Th e term on the left -hand side of Eq. (15.39) will be recognized as twice Fr1
2. Hence, Eq. (15.39) 

is written as

 ( y2

y1 )
2

+
y2

y1
− 2Fr 2

1 = 0 (15.40)

By use of the quadratic formula, it is easy to solve for y2/y1 in terms of the upstream Froude 
number. Th is yields an equation for depth ratio across a hydraulic jump:

 
y2

y1
=

1
2 (√1 + 8Fr 2

1 − 1) (15.41)

or

 y2 =
y1

2 (√1 + 8Fr 2
1 − 1) (15.42)

Th e other solution of Eq. (15.40) gives a negative downstream depth, which is not physically 
possible. Hence, the downstream depth is expressed in terms of the upstream depth and the up-
stream Froude number. In Eqs. (15.41) and (15.42), the depths y1 and y2 are said to be conjugate 

Pressure p1 = 62.4 lbf/ft 3 × 0.485 ft  = 30.26 lbf/ft 2.
Th erefore,

30.26 × 11 + 1.94 × 300 × 27.3 = p2 A2 + ρQV2

3.  Using the right-hand side of Eq. (15.37), solve for y2:

 p2 A2 + ρQV2 = 16,221 lbf

 γy2 A2 +
ρQ2

A2
= 16,221

 y 2 = ∑ Ai yi

A2
=

By2
2/2 + y3

2/3
A2

Using B = 10 ft , Q = 300 ft 2/s, and material properties 
assumed earlier,

y2 =  5.75 ft

4. Froude numbers at both sections are

 Fr1 =
V1

√gD1
=

27.3 ft/s
√32.2 ft/s2 × 0.9167 ft

=  5.02

 V2 =
Q
A2

=
300

57.5 + 5.752 = 3.31 ft/s

 D2 =
A2

T2
=

90.56
21.5

= 4.21 ft

 Fr2 =
V

√gD
=

3.31
√32.2 × 4.21

=  0.284
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or sequent (both terms are in common use) to each other, in contrast to the alternate depths 
obtained from the energy equation. Numerous experiments show that the relation represented 
by Eqs. (15.41) and (15.42) is valid over a wide range of Froude numbers.

Although no theory has been developed to predict the length of a hydraulic jump, experi-
ments [see Chow (5)] show that the relative length of the jump, L/y2, is approximately 6 for Fr1 
ranging from 4 to 18.

Head Loss in a Hydraulic Jump

In addition to determining the geometric characteristics of the hydraulic jump, it is oft en de-
sirable to determine the head loss produced by it. Th is is obtained by comparing the specifi c 
energy before the jump to that aft er the jump, the head loss being the diff erence between the 
two specifi c energies. It can be shown that the head loss for a jump in a rectangular channel is

 hL =
( y2 − y1)

3

4y1 y2
 (15.43)

For more information on the hydraulic jump, see Chow (5). Th e following example shows that 
Eq. (15.43) yields a magnitude that equals the diff erence between the specifi c energies at the 
two ends of the hydraulic jump.

EXAMPLE 15.11

Calculating Head Loss in a Hydraulic Jump

Problem Statement

Water fl ows in a rectangular channel at a depth of 30 cm with 
a velocity of 16 m/s, as shown in the following sketch. If a 
downstream sill (not shown) forces a hydraulic jump, what 
will be the depth and velocity downstream of the jump? What 
head loss is produced by the jump?

30 cm V = 16 m/s
y2

Defi ne the Situation

A hydraulic jump is occurring in a rectangular 
channel.

State the Goal

• Calculate downstream depth and velocity.
• Calculate head loss produced by the jump.

Generate Ideas and Make a Plan

1.  To calculate hL using Eq. (15.43), calculate y2 from the 
depth ratio equation (Eq. 15.42). Th is requires Fr1.

2. Check validity of head loss by comparing to E1 − E2.

Take Action (Execute the Plan)

1.  Calculate Fr1, y2, V2, and hL from Eqs. (Eq. 15.42) 
and (15.43):

 Fr1 =
V

√gy1
=

16
√9.81 (0.30)

= 9.33

 y2 =
0.30

2 [√1 + 8(9.33)2 − 1] =  3.81 m

 V2 =
q
y2

=
(16 m/s)(0.30 m)

3.81 m
=  1.26 m/s

 hL =
(3.81 − 0.30)3

4(0.30)(3.81)
=  9.46 m

2. Compare the head loss to E1 − E2:

hL = (0.30 +
162

2 × 9.81)−(3.81 +
1.262

2 × 9.81) = 9.46 m

Th e value is the same, so  validity of hL equation is verifi ed.

Use of Hydraulic Jump on Downstream End of Dam Spillway

Previously it was shown that the transition from supercritical to subcritical fl ow produces a 
hydraulic jump and that the relative height of the jump (y2/yl) is a function of Fr1. Because 
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fl ow over the spillway of a dam invariably results in supercritical fl ow at the lower end of 
the spillway and because fl ow in the channel downstream of a spillway is usually subcritical, 
it is obvious that a hydraulic jump must form near the base of the spillway (see Fig. 15.25). 
Th e downstream portion of the spillway, called the spillway apron, must be designed so that 
the hydraulic jump always forms on the concrete structure itself. If the hydraulic jump 
were allowed to form beyond the concrete structure, as in Fig. 15.26, severe erosion of the 
foundation material as a result of the high-velocity supercritical fl ow could undermine the dam 
and cause its complete failure. One way to solve this problem might be to incorporate a long, 
sloping apron into the design of the spillway, as shown in Fig. 15.27. A design like this would 
work very satisfactorily from the hydraulics point of view. For all combinations of Fr1 and 

Spillway

Hydraulic jump

Apron

FIGURE 15.25

Spillway of dam and hydraulic jump.

Apron

L

FIGURE 15.27

Long sloping apron.

Possible undermining of
dam due to severe erosion

in this region

FIGURE 15.26

Hydraulic jump occurring 

downstream of spillway apron.
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water-surface elevation in the downstream channel, the jump would always form on the 
sloping apron. However, its main drawback is cost of construction. Construction costs will 
be reduced as the length, L, of the stilling basin is reduced. Much research has been devoted 
to the design of stilling basins that will operate properly for all upstream and downstream 
conditions and yet be relatively short to reduce construction cost. Research by the U.S. Bureau 
of Reclamation (13) has resulted in sets of standard designs that can be used. Th ese designs 
include sills, baffl  e piers, and chute blocks, as shown in Fig. 15.28.

Naturally Occurring Hydraulic Jumps

Hydraulic jumps can occur naturally in creeks and rivers, providing spectacular standing 
waves, called rollers. Kayakers and white-water raft ers must exercise considerable skill when 
navigating hydraulic jumps because the signifi cant energy loss that occurs over a short dis-
tance can be dangerous, potentially engulfi ng the boat in turbulence. A special case of hydrau-
lic jump, referred to as a submerged hydraulic jump, can be deadly to white-water enthusiasts 
because it is not easy to see. A submerged hydraulic jump occurs when the downstream 
depth predicted by conservation of momentum is exceeded by the tailwater elevation, and the 
jump cannot move upstream in response to this disequilibrium because of a buried obstacle 
[see Valle and Pasternak (14)]. Th us, the visual markers of a hydraulic jump, particularly the 
rolling waves depicted in Figs. 15.23 and 15.24, are hidden.

A surge, or tidal bore, is a moving hydraulic jump that may occur for a high tide entering 
a bay or river mouth. Tides are generally low enough that the waves they produce are smooth 
and nondestructive. However, in some parts of the world the tides are so high that their entry 
into shallow bays or mouths of rivers causes a surge to form. Surges may be very hazardous to 
small boats. Th e same analytical methods used for the jump can be used to solve for the speed 
of the surge.

15.7 Gradually Varied Flow

For gradually varied fl ow, channel resistance is a signifi cant factor in the fl ow process. Th ere-
fore, the energy equation is invoked by comparing S0 and Sf.

Basic Differential Equation for Gradually Varied Flow

Th ere are a number of cases of open-channel fl ow in which the change in water-surface profi le 
is so gradual that it is possible to integrate the relevant diff erential equation from one section 
to another to obtain the desired change in depth. Th is may be either an analytical integration 
or, more commonly, a numerical integration. In Section 15.2, the energy equation was written 

Chute blocksSpillway

Baffle piers

End still

FIGURE 15.28

Spillway with stilling basin 

Type III as recommended by the 

USBR (13).
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between two sections of a channel Δx distance apart. Because the only head loss here is the 
channel resistance, the hL is given by Δhf, and Eq. (15.7) becomes

 y1 +
V 2

1

2g
+ S0 Δx = y2 +

V 2
2

2g
+ Δhf  (15.44)

Th e friction slope Sf is defi ned as the slope of the EGL, or Δhf /Δx. Th us, Δhf = Sf Δx, and defi ning 
Δy = y2 − y1, then

 
V 2

2

2g
−

V 2
1

2g
=

d
dx (V 2

2g )Δx (15.45)

Th erefore, Eq. (15.44) becomes

Δy = S0Δx − Sf Δx −
d

dx (V 2

2g ) Δx

Dividing through by Δx and taking the limit as Δx approaches zero gives us

 
dy
dx

+
d

dx (V 2

2g ) = S0 − Sf  (15.46)

Th e second term is rewritten as [d(V 2/2g)/dy] dy/dx, so that Eq. (15.46) simplifi es to

 
dy
dx

=
S0 − Sf

1 + d(V 2/2g)/dy
 (15.47)

To put Eq. (15.47) in a more usable form, the denominator is expressed in terms of the Froude 
number. Th is is accomplished by observing that

 
d
dy (V 2

2g ) =
d
dy ( Q2

2gA2 ) (15.48)

Aft er diff erentiating the right side of Eq. (15.48), the equation becomes

d
dy (V 2

2g ) =
−2Q2

2gA3 ∙
dA
dy

But dA/dy = T (top width), and A/T = D (hydraulic depth); therefore,

d
dy (V 2

2g ) =
−Q2

gA2 D
or

d
dy (V 2

2g ) = −Fr2

Hence, when the expression for d(V2/2g)/dy is substituted into Eq. (15.47), the result is

 
dy
dx

=
S0 − Sf

1 − Fr2 (15.49)

Th is is the general diff erential equation for gradually varied fl ow. It is used to describe the 
various types of water-surface profi les that occur in open channels. Note that, in the derivation 
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of the equation, S0 and Sf were taken as positive when the channel and energy grade lines, 
respectively, were sloping downward in the direction of fl ow. Also note that y is measured from 
the bottom of the channel. Th erefore, dy/dx = 0 if the slope of the water surface is equal to the 
slope of the channel bottom, and dy/dx is positive if the slope of the water surface is less than 
the channel slope.

Introduction to Water-Surface Profi les

In the design of projects involving the fl ow in channels (rivers or irrigation canals, for ex-
ample), the engineer must oft en estimate the water-surface profile (elevation of the water 
surface along the channel) for a given discharge. For example, when a dam is being de-
signed for a river project, the water-surface profi le in the river upstream must be defi ned 
so that the project planners will know how much land to acquire to accommodate the up-
stream pool. Th e fi rst step in defi ning a water-surface profi le is to locate a point or points 
along the channel where the depth can be computed for a given discharge. For example, at 
a change in slope from mild to steep, critical depth will occur just upstream of the break in 
grade (see Fig. 15.32). At that point, it is possible to solve for yc with Eq. (15.25) or (15.27). 
Also, for fl ow over the spillway of a dam, there will be a discharge equation for the spillway 
from which one can calculate the water-surface elevation in the reservoir at the face of the 
dam. Such points where there is a unique relationship between discharge and water-surface 
elevation are called controls. Once the water-surface elevations at these controls are de-
termined, then the water-surface profi le can be extended upstream or downstream from 
the control points to defi ne the water-surface profi le for the entire channel. Th e comple-
tion of the profi le is done by numerical integration. However, before this integration is 
performed, it is usually helpful for the engineer to sketch in the profi les. To assist in the 
process of sketching the possible profi les, the engineer can refer to diff erent categories of 
profi les (water-surface profi les have unique characteristics depending on the relationship 
between normal depth, critical depth, and the actual depth of fl ow in the channel). Th is 
initial sketching of the profi les helps the engineer to scope the problem and to obtain a so-
lution, or solutions, in a minimum amount of time. Th e next section describes the various 
types of water-surface profi les.

Types of Water-Surface Profi les

Th ere are 12 diff erent types of water-surface profi les for gradually varied fl ow in channels, and 
these are shown schematically in Fig. 15.29. Each profi le is identifi ed by a letter and number 
designator. For example, the fi rst water-surface profi le in Fig. 15.29 is identifi ed as an M1 
profi le. Th e letter indicates the type of slope of the channel—that is, whether the slope is mild 
(M), critical (C), steep (S), horizontal (H), or adverse (A). Th e slope is defi ned as mild if the 
uniform fl ow depth, yn, is greater than the critical fl ow depth, yc. Conversely, if yn is less than 
yc, the channel would be termed steep. If yn = yc, this is a channel with critical slope. Th e 
designation M, S, or C is determined by computing yn and yc for the given channel for a given 
discharge. Equations (15.11) through (15.15) are used to compute yn, and Eq. (15.27) is used 
to compute yc. Figure 15.30 shows the relationship between yn and yc for the H, M, S, C, and A 
designations. As the name implies, a horizontal slope is one where the channel actually has a 
zero slope, and an adverse slope is one where the slope of the channel is upward in the direc-
tion of fl ow. Normal depth does not exist for these two cases (for example, water cannot fl ow 
at uniform depth in either a horizontal channel or one with adverse slope); therefore, they are 
given the special designations H and A, respectively.

Th e number designator for the type of profi le relates to the position of the actual water 
surface in relation to the position of the water surface for uniform and critical fl ow in the chan-
nel. If the actual water surface is above that for uniform and critical fl ow (y > yn; y > yc), then 
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that condition is given a 1 designation; if the actual water surface is between those for uniform 
and critical fl ow, then it is given a 2 designation; and if the actual water surface lies below those 
for uniform and critical fl ow, then it is given a 3 designation. Figure 15.31 depicts these condi-
tions for mild and steep slopes.

yc

yn S2

S1

S3

Steep (S) slope

H2

∞

H3

Horizontal (H) slope

yc

yn

A3

A2

Adverse (A) slope

yc

yn

yc

M1

M2

M3

Mild (M) slope

C1

C3

Critical (C) slope

yn = yc

FIGURE 15.29

Classifi cation of water-surface 

profi les of gradually varied fl ow.

Flow direction

yn = •

yc

yc

yc
yc

yn

yn

yn = yc

MH C S A

FIGURE 15.30

Letter designators as a function of the 

relationship between yn and yc.

M1

M2

S1

S2

S3M3

OR

Location of water surface

yn

ynyc

yc

FIGURE 15.31

Number designator as a function of the 

location of the actual water surface in 

relation to yn and yc.
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Figure 15.32 shows how diff erent water-surface profi les can develop in certain fi eld situ-
ations. More specifi cally, if one considers in detail the fl ow downstream of the sluice gate (see 
Fig. 15.33), then one can see that the discharge and slope are such that the normal depth is 
greater than the critical depth; therefore, the slope is mild. Th e actual depth of fl ow shown in 
Fig. 15.33 is less than both yc and yn. Hence, a type 3 water-surface profi le exists. Th e complete 
classifi cation of the profi le in Fig. 15.33, therefore, is a mild type 3 profi le, or simply an M3 
profi le. Using these designations, one would categorize the profi le upstream of the sluice gate 
as type M1.

M1

Mild slope

Mild slope

Dam

Sluice gate

M3

M2

Mild

M2

S2

H3
Steep

Horizontal

FIGURE 15.32

Water-surface profi les associated 

with fl ow behind a dam, fl ow 

under a sluice gate, and fl ow in a 

channel with a change in grade.

M3 surface profile
yc

yn

FIGURE 15.33

Water-surface profi le, M3 type.

EXAMPLE 15.12

Classifi cation of Water-Surface Profi les

Problem Statement

Classify the water-surface profi le for the fl ow downstream of 
the sluice gate in Fig. 15.9 if the slope is horizontal and that 

for the fl ow immediately downstream of the break in grade in 
Fig. 15.15.

Defi ne the Situation

Nonuniform fl ow is occurring in a channel.
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Now, refer to Eq. (15.49) to describe the shapes of the profi les. Again, for example, if one 
considers the M3 profi le, it is known that Fr > 1 because the fl ow is supercritical (y < yc), and that 
Sf > S0 because the velocity is greater than normal velocity. Hence, a head loss greater than that 
for normal fl ow must exist. Inserting these relative values into Eq. (15.49) reveals that both the 
numerator and the denominator are negative. Th us, dy/dx must be positive (the depth increases in 
the direction of fl ow), and as critical depth is approached, the Froude number approaches unity. 
Hence, the denominator of Eq. (15.49) approaches zero. Th erefore, as the depth approaches criti-
cal depth, dy/dx → ∞. What actually occurs in cases in which the critical depth is approached in 
supercritical fl ow is that a hydraulic jump forms and a discontinuity in profi le is thereby produced.

Certain general features of profi les, as shown in Fig. 15.29, are evident. First, as the depth 
becomes very great, the velocity of fl ow approaches zero. Hence, Fr → 0 and Sf → 0 and dy/dx 
approaches S0 because dy/dx = (S0 − Sf)(1 − Fr2). In other words, the depth increases at the same 
rate at which the channel bottom drops away from the horizontal. Th us, the water surface ap-
proaches the horizontal. Th e profi les that show this tendency are types M1, S1, and C1. A physical 
example of the M1 type is the water-surface profi le upstream of a dam, as shown in Fig. 15.32. 
Th e second general feature of several of the profi les is that those that approach normal depth do 
so asymptotically. Th is is shown in the S2, S3, M1, and M2 profi les. Also note in Fig. 15.29 that 
profi les that approach critical depth are shown by dashed lines. Th is is done because near critical 
depth either discontinuities develop (hydraulic jump), or the streamlines are very curved (such as 
near a brink). Th ese profi les cannot be accurately predicted by Eq. (15.49) because this equation is 
based on one-dimensional fl ow, which, in these regions, is invalid.

Quantitative Evaluation of the Water-Surface Profi le

In practice, most water-surface profi les are generated by numerical integration—that is, by 
dividing the channel into short reaches and carrying the computation for water-surface eleva-
tion from one end of the reach to the other. For one method, called the direct step method, 
the depth and velocity are known at a given section of the channel (one end of the reach), and 
one arbitrarily chooses the depth at the other end of the reach. Th en, the length of the reach 
is solved for. Th e applicable equation for quantitative evaluation of the water-surface profi le is 
the energy equation written for a fi nite reach of channel, Δx:

y1 +
V 2

1

2g
+ S0 Δx = y2 +

V 2
2

2g
+ Sf Δx

State the Goal

Find the water-surface profi le classifi cation for the two diff erent 
fl ow situations.

Generate Ideas and Make a Plan

1.  Select a number designator based on the location of the 
actual water surface relative to yn and yc (see Fig. 15.31).

2.  Select a letter designator to describe the steepness of the 
slopes, which can also be characterized by the relative 
size of yn and yc (see Fig. 15.30).

Take Action (Execute the Plan)

For Fig. 15.9:

1.  Th e actual depth is less than critical; thus the profi le is 
type 3.

2.  Th e channel is horizontal; hence the profi le is designated 
type H3.

For Fig. 15.15:

1.  Th e actual depth is greater than normal but less than 
critical, so the profi le is type 2.

2.  Th e uniform-fl ow depth (normal depth yn) is less than 
the critical depth; hence the slope is steep. Th erefore, 
the water-surface profi le is designated   type S2.
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or

Δx(Sf − S0) = (y1 +
V 2

1

2g ) − (y2 +
V 2

2

2g )
or

 Δx =
(y1 + V 2

1/2g) − (y2 + V 2
2/2g)

Sf − S0
=

(y1 − y2) + (V 2
1 − V 2

2)/2g
Sf − S0

 (15.50)

Th e procedure for evaluation of a profi le starts by ascertaining which type applies to the 
given reach of channel (using the methods of the preceding subsection). Th en, starting from 
a known depth, compute a fi nite value of Δx for an arbitrarily chosen change in depth. Th e 
process of computing Δx, step by step, up (negative Δx) or down (positive Δx) the channel is 
repeated until the full reach of channel has been covered. Usually, small changes of y are taken 
so that the friction slope is approximated by the following equation:

 Sf =
hf

Δx
=

f V 2

8gRh
 (15.51)

Here, V is the mean velocity in the reach, and Rh is the mean hydraulic radius. Th at is, V = 
(V1 + V2)/2, and Rh = (Rh1 + Rh2)/2. It is obvious that a numerical approach of this type is 
ideally suited for solution by computer.

EXAMPLE 15.13

Classifi cation and Numerical Analysis of a Water-Surface 
Profi le

Problem Statement

Water discharges from under a sluice gate into a horizontal 
rectangular channel at a rate of 1 m3/s per meter of width, 
as shown in the following sketch. What is the classifi cation 
of the water-surface profi le? Quantitatively evaluate the 
profi le downstream of the gate and determine whether it 
will extend all the way to the abrupt drop 80 m downstream. 
Make the simplifying assumptions that the resistance factor 
f is equal to 0.02 and that the hydraulic radius Rh is equal to 
the depth y.

q = 1 m3/s

10 cm

80 m

Defi ne the Situation

Water discharges underneath a sluice gate.

Assumptions:
1. Resistance factor f is equal to 0.02.
2. Hydraulic radius Rh is equal to the depth y.

State the Goal

• Classify of the downstream profi le.
•  Determine if increasing slope will prevail all the way to a 

point of interest 80 m downstream.

Generate Ideas and Make a Plan

1.  Determine the letter designation of channel using 
Fig. 15.30.

2.  For fl ow leaving the sluice gate, determine critical 
depth yc, and compare to actual depth of fl ow. Use this 
information to refi ne the classifi cation.

3.  Solve for depth versus distance using Eqs. (15.50) and 
(15.51).

Take Action (Execute the Plan)

1.  Channel is horizontal, so the letter designation is H.
2.  Determine critical depth yc using Eq. (15.27):

 yc = (q2/g)1/3 = [(12 m4/s2)/(9.81 m/s2)]1/3

 =  0.467 m
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Th us, the depth of fl ow from sluice gate is less than the 
critical depth. Th erefore the water-surface profi le is 
classifi ed as

type H3.

3.  To determine depth versus distance along the channel, 
apply Eqs. (15.50) and (15.51) using the numerical 
approach given in Table 15.2. Th en, plot the results as 
shown. From the plot, conclude that the

profile extends to the abrupt drop.
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0
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TABLE 15.2 Solution To Example 15.13

Section 

Number 

Down-

stream 

of Gate

Depth 

y, m

Velocity 

at 

Section 

V, m/s

Mean 

Velocity in 

Reach, 

(V1 + V2)/2 V 2

Mean 

Hydraulic 

Radius, 

Rm = 

( y1 + y2)/2
f V 2

mean

8gRm
Sf =

Δx =

( y1 − y2) + 
(V 2

1 − V2
2)

2g
( Sf − S0)

Distance 

from Gate 

x, m

1 (at gate) 0.1 10 . . . 100 . . . . . . . . . 0
. . . . . . 8.57  73.4 0.12 0.156 15.7

2 0.14 7.14 . . .  51.0 . . . . . . . . . 15.7
. . . . . . 6.35  40.3 0.16 0.064 15.3

3 0.18 5.56 . . .  30.9 . . . . . . . . . 31.0
. . . . . . 5.05  25.5 0.20 0.032 15.1

4 0.22 4.54 . . .  20.6 . . . . . . . . . 46.1
. . . . . . 4.19  17.6 0.24 0.019 13.4

5 0.26 3.85 . . .  14.8 . . . . . . . . . 59.5
. . . . . . 3.59  12.9 0.28 0.012 12.4

6 0.30 3.33 . . .  11.1 . . . . . . . . . 71.9
. . . . . . 3.13   9.8 0.32 0.008 10.9

7 0.34 2.94 . . .   8.6 . . . . . . . . . 82.8

Describing Open-Channel Flow

• An open channel is one in which a liquid fl ows with a 
free surface.

• Steady open-channel fl ow is classifi ed as either
• uniform (velocity is constant for all points on each 

streamline) or
• nonuniform (velocity is varying for points along a spe-

cifi c streamline).

Steady and Uniform Flow

• Th e head loss corresponds to the potential energy change 
associated with the slope of the channel.

• Th e discharge is given by the Manning equation:

Q =
1
n  AR2/3

h S1/2
0

15.8 Summarizing Key Knowledge
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where A is the fl ow area, S0 is the slope of the channel, 
and n is the resistance coeffi  cient (Manning’s n), which 
has been tabulated for diff erent surfaces.

Nonuniform Flow

• Nonuniform fl ow in open channels is characterized as 
either rapidly varied fl ow or gradually varied fl ow. In 
rapidly varied fl ow, the channel resistance is negligible, 
and fl ow changes (depth and velocity changes) occur 
over relatively short distances.

• Th e signifi cant π-group is the Froude number:

Fr =
V

√gDc

 where Dc is the hydraulic depth, A/T. When the Froude 
number is equal to unity, the fl ow is critical.

• Subcritical fl ow occurs when the Froude number is less 
than unity and supercritical when the Froude number is 
greater than unity.

Hydraulic Jump

• A hydraulic jump usually occurs when the fl ow along the 
channel changes from supercritical to subcritical.

• Th e governing equation for hydraulic jump in a horizontal, 
rectangular channel is

y2 =
y1

2
 (√1 + 8 Fr2

1 − 1)

• Th e corresponding head loss in the hydraulic jump is

hL =
( y2 − y1)

3

4y1 y2

• When the fl ow along the channel changes from subcritical 
to supercritical fl ow, the head loss is assumed to be negli-
gible, and the depth and velocity relationship is governed 
by the change in elevation of the channel bottom and the 
specifi c energy, y + V 2/2g. Typical cases of this type of 
fl ow include the following:

1. Flow under a sluice gate
2. An upstep in the channel bottom
3. Reduction in width of the channel

Gradually Varied Flow

• For gradually varied fl ow, the governing diff erential 
equation is

dy
dx

=
S0 − Sf

1 − Fr2

 When this equation is integrated along the length of the 
channel, the depth y is determined as a function of dis-
tance x along the channel. Th is yields the water-surface 
profi le for the reach of the channel.
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Describing Open-Channel Flow (§15.1)

15.1 Why is the Reynolds number for onset of turbulence given 
by Re > 2000 in fully fl owing pipes and Re > 500 in partly 
fl owing pipes and other open channels?
15.2 A rectangular open channel has a base of length 2b, and the 
water is fl owing with a depth of b.

a. Sketch this channel.
b. What is the hydraulic radius of this channel?

15.3 Two channels have the same cross-sectional area, but 
diff erent geometry, as shown.

a. Which channel has the largest wetted perimeter?
b.  Which channel has more contact between water and 

channel wall?
c. Which channel will have more energy loss to friction?

Steady Uniform Open-Channel Flow (§15.3)

15.4 Consider uniform fl ow of water in the two channels shown. 
Th ey both have the same slope, the same wall roughness, and the 
same cross-sectional area. Th erefore, is (a) QA = QB, (b) QA < QB, 
or (c) QA > QB?

5 ft

10 ft

7.07 ft

7.07 ft

A B

Problems 15.3, 15.4

15.5 Th is wood fl ume has a slope of 0.0019. What will be the 
discharge of water in it for a depth of 1 m? Th e wood is planed.

1 m
45° 45°

Problem 15.5

15.6 A mountain stream fl ows over a rocky streambed. Apply 
the Limerinos and Chezy equations to calculate the discharge. 
Th e stream has an intermediate rock size d 84 of 30 cm, an 
average depth of 2.1 m, a slope of S = 0.0037, and a width of 
52 m. Choose the closest answer (m3/s): (a) 85, (b) 120, (c) 160, 
(d) 240, or (e) 410.
15.7 Water is fl owing in a rectangular concrete channel. Apply 
the Manning equation to calculate the discharge. Th e channel is 
unfi nished concrete 8 ft  wide and drops 3 ft  over a run of 1000 ft ; 
the depth of fl ow is 2.5 ft ; T = 60°F; and the fl ow is uniform. 
Choose the closest answer (cfs): (a) 114, (b) 145, (c) 183, (d) 212, 
or (e) 565.

15.8 Estimate the discharge of water (T = 10°C) that fl ows 1.5 m 
deep in a long rectangular concrete channel that is 3 m wide and 
is on a slope of 0.001. Use the Darcy-Weisbach equation.
15.9 Consider channels of rectangular cross section carrying 
100 cfs of water fl ow. Th e channels have a slope of 0.001. Determine 
the cross-sectional areas required for widths of 2 ft , 4 ft , 6 ft , 8 ft , 
10 ft , and 15 ft . Plot A versus y/b, and see how the results compare 
with the accepted result for the best hydraulic section. Use the 
Manning equation, with unfi nished concrete.
15.10 A concrete (assume n = 0.013) sewer pipe 2.5 ft  in diameter 
is laid so it has a drop in elevation of 1.0 ft  per 800 ft  of length. 
If sewage (assume the properties are the same as those of water) 
fl ows at a depth of 1.25 ft  in the pipe, what will be the discharge?
15.11 Determine the discharge in a 5 ft  diameter smooth 
(troweled) concrete sewer pipe on a slope of 0.001 that is 
carrying water at a depth of 4 ft .
15.12 Water fl ows at a depth of 8 ft  in the trapezoidal, concrete-
lined channel shown. If the channel slope is 1 ft  in 1500 ft , what 
is the average velocity, and what is the discharge? Use the Darcy-
Weisbach equation with ks = 0.003 ft .

10 ft

Water
T = 50°F 2

1

Problem 15.12
15.13 What will be the depth of fl ow in a trapezoidal troweled 
concrete-lined channel that has a water discharge of 1000 cfs? 
Th e channel has a slope of 1 ft  in 500 ft . Th e bottom width of the 
channel is 10 ft , and the side slopes are 1 vertical to 1 horizontal.
15.14 What discharge of water will occur in a trapezoidal channel 
that has a bottom width of 18 ft  and side slopes of 1 vertical to 
1 horizontal if the slope of the channel is 2 ft /mile and the depth 
is 4 ft ? Th e channel is lined with troweled concrete.
15.15 A rectangular concrete channel 4 m wide on a slope of 0.004 
is designed to carry a water (T = 10°C) discharge of 25 m3/s. 
Estimate the uniform fl ow depth for these conditions. Th e 
channel has a rectangular cross section, and the concrete is 
rough, unfi nished.
15.16 A rectangular troweled concrete channel 8 ft  wide with a 
slope of 10 ft  in 3000 ft  is designed for a discharge of 400 cfs. For 
a water temperature of 40°F, estimate the depth of fl ow.
15.17 A concrete-lined trapezoidal channel with a bottom width 
of 10 ft  and side slopes of 1 vertical to 2 horizontal is designed 
to carry a fl ow of 3000 cfs. If the slope of the channel is 0.001, 
what will be the depth of fl ow in the channel? Th e concrete is 
unfi nished.
15.18 Design a canal with a trapezoidal cross section to carry 
a design discharge of irrigation water of 900 cfs. Th e slope of 
the canal is to be 0.002. Th e canal is to be lined with unfi nished 
concrete, and it is to have the best hydraulic section for the 
design fl ow.

PROBLEMS
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Steady Nonuniform Open-Channel Flow (§15.4)

15.19 How are head loss and slope related for nonuniform fl ow, 
as compared to uniform fl ow?
15.20 Is critical fl ow a desirable or undesirable fl ow condition? 
Why?
15.21 Critical fl ow _____. (Select all of the following that are 
correct.)

a.  occurs when specifi c energy is a minimum for a given 
discharge.

b.  occurs when the discharge is maximum for a given specifi c 
energy.

c. occurs when Fr < 1.
d. occurs when Fr = 1.

15.22 Water fl ows at a depth of 100 in. with a velocity of 25 ft /s 
in a rectangular channel, with width = 3 ft . (a) Is the fl ow 
subcritical or supercritical? (b) What is the alternate depth?
15.23 Th e water discharge in a rectangular channel 20 ft  wide 
is 550 cfs. If the depth of water is 3 ft , is the fl ow subcritical or 
supercritical?
15.24 Th e discharge in a rectangular channel 18 ft  wide is 
420 cfs. If the water velocity is 9 ft /s, is the fl ow subcritical or 
supercritical?
15.25 Water fl ows at a rate of 8 m3/s in a rectangular channel 
2 m wide. Determine the Froude number and the type of fl ow 
(subcritical, critical, or supercritical) for depths of 30 cm, 1.0 m, 
and 2.0 m. What is the critical depth?
15.26 For a rectangular channel 3 m wide and discharge of 
12 m3, what is the alternate depth to the 90 cm depth? What is 
the specifi c energy for these conditions?
15.27 Water fl ows at the critical depth with a velocity of 12 m/s. 
What is the depth of fl ow?
15.28 Water fl ows uniformly at a rate of 320 cfs in a rectangular 
channel that is 12 ft  wide and has a bottom slope of 0.005. If n is 
0.014, is the fl ow subcritical or supercritical?
15.29 Th e discharge in a trapezoidal channel is 10 m3/s. Th e 
bottom width of the channel is 3.0 m, and the side slopes are 
1 vertical to 1 horizontal. If the depth of fl ow is 1.0 m, is the fl ow 
supercritical or subcritical?
15.30 A rectangular channel is 6 m wide, and the discharge of 
water in it is 18 m3/s. Plot depth versus specifi c energy for these 
conditions. Let specifi c energy range from Emin to E = 7 m. What 
are the alternate and sequent depths to the 30 cm depth?
15.31 A long rectangular channel that is 8 m wide and has a mild 
slope ends in a free outfall. If the water depth at the brink is 0.55 m, 
what is the discharge in the channel?
15.32 A broad-crested weir is used to measure discharge in an 
irrigation ditch. Calculate the discharge. Th e weir is 10 ft  long, 
4 ft  high, and the head on the weir is 2.4 ft . Use Figure 15.13 to 
fi nd the discharge coeffi  cient. Choose the closest answer: (a) 12, 
(b) 24, (c) 55, (d) 79, or (e) 101.
15.33 What discharge of water will occur over a 2 m high, broad-
crested weir that is 5 m long if the head on the weir is 60 cm?

15.34 Th e crest of a high, broad-crested weir has an elevation of 
100 m. If the weir is 10 m long and the discharge of water over 
the weir is 25 m3/s, what is the water-surface elevation in the 
reservoir upstream?
15.35 Th e crest of a high, broad-crested weir has an elevation 
of 300 ft . If the weir is 40 ft  long and the discharge of water over 
the weir is 1200 cfs, what is the water-surface elevation in the 
reservoir upstream?
15.36 Water fl ows with a velocity of 3 m/s and at a depth of 3 m 
in a rectangular channel. What is the change in depth and in 
water-surface elevation produced by a gradual upward change in 
bottom elevation (upstep) of 30 cm? What would be the depth 
and elevation changes if there were a gradual downstep of 30 cm? 
What is the maximum size of upstep that could exist before 
upstream depth changes would result?
15.37 Water fl ows with a velocity of 2 m/s and at a depth of 3 m 
in a rectangular channel. What is the change in depth and in 
water-surface elevation produced by a gradual upward change in 
bottom elevation (upstep) of 60 cm? What would be the depth 
and elevation changes if there were a gradual downstep of 15 cm? 
What is the maximum size of upstep that could exist before 
upstream depth changes would result?
15.38 Assuming no energy loss, what is the maximum value of 
Δz that will permit the unit fl ow rate of 6 m2/s to pass over the 
hump without increasing the upstream depth? Sketch carefully 
the water-surface shape from section 1 to section 2. On the 
sketch give values for Δz, the depth, and the amount of rise or 
fall in the water surface from section 1 to section 2.

q = 6 m2/s

1 2

3 m

Δz

Problem 15.38

15.39 Water fl ows with a velocity of 3 m/s in a rectangular 
channel 3 m wide at a depth of 3 m. What is the change in depth 
and in water-surface elevation produced when a gradual contrac-
tion in the channel to a width of 2.6 m takes place? Determine 
the greatest contraction allowable without altering the specifi ed 
upstream conditions.
15.40 A rectangular channel that is 10 ft  wide is very smooth 
except for a small reach that is roughened with angle irons 
attached to the bottom. Water fl ows in the channel at a rate of 
200 cfs and at a depth of 1.0 ft  upstream of the rough section. 
Assume frictionless fl ow except over the roughened part, where 
the total drag of all roughness (all of the angle irons) is assumed 
to be 2000 lbf. Determine the depth downstream of the roughness 
for the assumed conditions.

Rough section

?1.00 ft

Problem 15.40
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15.41 Water fl ows from a reservoir into a steep rectangular 
channel that is 4 m wide. Th e reservoir water surface is 3 m 
above the channel bottom at the channel entrance. What discharge 
will occur in the channel?
15.42 A small wave is produced in a pond that is 18 in. deep. 
What is the speed of the wave in the pond?
15.43 A small wave in a pool of water having constant depth 
travels at a speed of 3 m/s. How deep is the water?
15.44 As waves in the ocean approach a sloping beach, they 
curve so that they are nearly parallel to the beach when they 
fi nally break (see accompanying fi gure). Explain why the waves 
curve like this. Hint: With a sloping beach, where is the water 
most shallow?

Aerial view of waves

Beach

Wave direction

Shallow-water waves

Deep-water waves

Problem 15.44

Hydraulic Jumps (§15.6)

15.45 For a hydraulic jump, __________. (Select all of the 
following that are correct.)

a. the fl ow changes from subcritical to supercritical.
b. the fl ow changes from supercritical to subcritical.
c. signifi cant energy is lost.
d.  the height of the water abruptly increases from the 

upstream to the downstream cross section.
e.  the downstream and upstream depth are related quantita-

tively in terms of the upstream Fr.
f.  the energy equation is a better tool for analysis than the 

momentum equation.
15.46 Th e baffl  ed ramp shown is used as an energy dissipator in a 
two-dimensional open channel. For a discharge of 18 cfs per foot 
of width, calculate the head lost, the power dissipated, and the 
horizontal component of force exerted by the ramp on the water.

2 ft2 ft

3 ft

Problem 15.46

15.47 Th e spillway shown has a discharge of 3.1 m3/s per meter 
of width occurring over it. What depth y2 will exist downstream 
of the hydraulic jump? Assume negligible energy loss over the 
spillway.

y2

5 m

y1

Problem 15.47

15.48 Th e fl ow of water downstream from a sluice gate in a 
horizontal channel has a depth of 35 cm and a fl ow rate of 7 m3/s 
per meter of width. Th e sluice gate is 2 m wide.

a.  Could a hydraulic jump be caused to form downstream of 
this section?

b. If so, what would be the depth downstream of the jump?
15.49 It is known that the discharge per unit width is 65 cfs/ft  
and that the height (H) of the hydraulic jump is 14 ft . What is the 
depth y1?

y1

H

Problem 15.49

15.50 Water fl ows in a channel at a depth of 40 cm and with a 
velocity of 8 m/s. An obstruction causes a hydraulic jump to be 
formed. What is the depth of fl ow downstream of the jump?
15.51 Water fl ows in a trapezoidal channel at a depth of 40 cm 
and with a velocity of 10 m/s. An obstruction causes a hydraulic 
jump to be formed. What is the depth of fl ow downstream of 
the jump? Th e bottom width of the channel is 5 m, and the side 
slopes are 1 vertical to 1 horizontal.
15.52 A hydraulic jump occurs in a wide rectangular channel. 
If the depths upstream and downstream are 0.50 ft  and 10 ft , 
respectively, what is the discharge per foot of width of channel?
15.53 Th e 20 ft  wide rectangular channel shown has three diff er-
ent reaches. S0,1 = 0.01; S0,2 = 0.0004; S0,3 = 0.00317; Q = 500 cfs; 
n1 = 0.015; normal depth for reach 2 is 5.4 ft  and that for reach 3 
is 2.7 ft . Determine the critical depth and normal depth for reach 
1 (use Manning’s equation from §15.3). Th en classify the fl ow 
in each reach (supercritical, subcritical, critical), and determine 
whether a hydraulic jump could occur. In which reach(es) might 
it occur if it does occur?

Elevation = 1272 ft

Elevation = 1264.4 ft

Elevation
= 1261.2 ft

Elevation = 1265 ft

Elevation = 1270 ft

Elevation = 1274 ft

Reach 2 Reach 3Reach 1

Problem 15.53
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15.54 Water fl ows from under the sluice gate as shown and 
continues on to a free overfall (also shown). Upstream from 
the overfall the fl ow soon reaches a normal depth of 1.1 m. Th e 
profi le immediately downstream of the sluice gate is as it would 
be if there were no infl uence from the part nearer the overfall. 
Will a hydraulic jump form for these conditions? If so, locate its 
position. If not, sketch the full profi le and label each part. Draw 
the energy grade line for the system.

0.10 m
0.15 m 0.20 m 0.25 m 0.31 m

20 m 20 m 20 m 20 m

T = 20°C

10 m/s

Free overfall

1.1 m

Problem 15.54

15.55 Water is fl owing as shown under the sluice gate in a hori-
zontal rectangular channel that is 5 ft  wide. Th e depths of y0 and 
y1 are 65 ft  and 1 ft , respectively. What will be the horsepower 
lost in the hydraulic jump?

y1

y0

Problem 15.55

15.56 Water fl ows uniformly at a depth y1 = 32 cm in the con-
crete channel shown, which is 8 m wide. Estimate the height of 
the hydraulic jump that will form when a sill is installed to force 
it to form. Assume Manning’s n value is n = 0.012.

y1

Slope = 0.040

?

Problem 15.56

Gradually Varied Flow (§15.7)

15.57 Th e normal depth in the channel downstream of the sluice 
gate shown is 1 m. What type of water-surface profi le occurs 
downstream of the sluice gate? Also, estimate the shear stress 
on the smooth bottom at a distance 0.5 m downstream of the 
sluice gate.

5.55 m 40 cm

V = 10 m/s

Surface profile
type = ?

Water
T = 20°C

Problem 15.57

15.58 Water fl ows at a rate of 100 ft 3/s in a rectangular channel 
10 ft  wide. Th e normal depth in that channel is 2 ft . Th e actual 
depth of fl ow in the channel is 4 ft . Th e water-surface profi le in 
the channel for these conditions would be classifi ed as (a) S1, 
(b) S2, (c) M1, or (d) M2.
15.59 Th e water-surface profi le labeled with a question mark is 
(a) M2, (b) S2, (c) H2, or (d) A2.

Horizontal

?

Problem 15.59

15.60 Th e partial water-surface profi le shown is for a rectangular 
channel that is 3 m wide and has water fl owing in it at a rate of 
5 m3/s. Sketch in the missing part of the water-surface profi le and 
identify the type(s).

Horizontal 1.6 m

Normal depth = 30 cm

Problem 15.60

15.61 A very long 10 ft  wide concrete rectangular channel with 
a slope of 0.0001 ends with a free overfall. Th e discharge in the 
channel is 120 cfs. One mile upstream the fl ow is uniform. What 
kind (classifi cation) of water surface occurs upstream of the brink?
15.62 Th e discharge per foot of width in this rectangular channel 
is 20 cfs. Th e normal depths for parts 1 and 3 are 0.5 ft  and 1.00 ft , 
respectively. Th e slope for part 2 is 0.001 (sloping upward in the 
direction of fl ow). Sketch all possible water-surface profi les for 
fl ow in this channel, and label each part with its classifi cation.

q = 20 cfs/ft (flowing at normal depth)

1
2 3

Problem 15.62

15.63 Consider the hydraulic jump shown for the long hori-
zontal rectangular channel. What kind of water-surface profi le 
(classifi cation) is located upstream of the jump? What kind of 
water-surface profi le is located downstream of the jump? If baffl  e 
blocks are put on the bottom of the channel in the vicinity of 



  Problems        523

A to increase the bottom resistance, what changes are likely to 
occur given the same gate opening? Explain and/or sketch the 
changes.

A

Problem 15.63

15.64 Th e steep rectangular concrete spillway shown is 4 m wide 
and 500 m long. It conveys water from a reservoir and delivers 
it to a free outfall. Th e channel entrance is rounded and smooth 
(negligible head loss at the entrance). If the water-surface eleva-
tion in the reservoir is 2 m above the channel bottom, what will 
the discharge in the channel be?

Reservoir
500 m

Problem 15.64

15.65 Th e concrete rectangular channel shown is 3.5 m wide and 
has a bottom slope of 0.001. Th e channel entrance is rounded 
and smooth (negligible head loss at the entrance), and the 
reservoir water surface is 2.5 m above the bed of the channel at 
the entrance.

a. Estimate the discharge in the channel if the length is 3000 m.

b.  Tell how you would solve for the discharge in the channel 
if the length is 100 m.

Problem 15.65

15.66 A dam 50 m high backs up water in a river valley as shown. 
During fl ood fl ow, the discharge per meter of width, q, is equal 
to 10 m2/s. Making the simplifying assumptions that R = y and 
f = 0.030, determine the water-surface profi le upstream from the 
dam to a depth of 6 m. In your numerical calculation, let the fi rst 
increment of depth change be yc ; use increments of depth change 
of 10 m until a depth of 10 m is reached; and then use 2 m incre-
ments until the desired limit is reached.

y

yc

q = 10 m2/s

S0 = 0.0004, f = 0.030

50 m

Problem 15.66
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Modeling of Fluid 

Dynamics Problems

CHAPTER ROAD MAP This chapter describes modeling and introduces two methods that are useful 
for modeling:

●  Partial Differential Equations (PDEs). This method involves formulating the governing scientifi c laws as 
partial differential equations.

●  Computational Fluid Dynamics (CFD). This method involves approximating the partial differential 
equations with algebraic equations and then using a computer algorithm to solve these equations.

CHAPTERSIXTEEN

LEARNING OUTCOMES

MODELING AND PDEs (§16.1, §16.2).

●  Describe how engineers build models.
●  Explain how engineers apply PDEs in the context of modeling.

MATH TOPICS (§16.2).

●  Explain the velocity fi eld.
●  Explain Taylor series.
●  Explain invariant notation.
●  Explain mathematical operators.
●  Explain the material derivative.
●  Explain the acceleration fi eld.

THE CONTINUITY EQUATION (§16.3). 

●  List the steps to derive the continuity equation. 
●  List and describe the various forms of the continuity equation.

THE NAVIER-STOKES EQUATION (§16.4). 

●  List the steps to derive the Navier-Stokes equation. 
●  Describe the physics of the Navier-Stokes equation.

CFD (§16.5). 

●  Describe CFD. 
●  Describe how engineers select a CFD code. 
●  Describe how CFD codes work. 
●  Explain these topics: grid, time step, boundary condition, 

validation, verifi cation, and turbulence models.

FIGURE 16.1
The Eagle X-TS and the workers at the assembly 

plant where the plane was built. The Eagle X-TS was 

designed by John Roncz using CFD. Roncz, a world-

class designer, is responsible for some portion of 50 

aircraft designs. Two of Roncz’s designs are on display 

at the National Air and Space Museum in the United 

States. (Photo courtesy of John Roncz.)

Roncz describes how he learned fl uid mechanics:

“The main advantage I have is that I’ve never taken 

a single course in aeronautical engineering. . . . As a 

result, I’ve had to fi gure it all out myself. You understand 

things better that way.” (1)
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Paths cannot be taught, they can only be taken.
—Traditional Zen saying

In the fi rst chapter of this book, we spoke of your path to success. At the end of this chapter 
(§16.7) we suggest a path for moving forward.

16.1 Models in Fluid Mechanics

Engineers create models of systems because this process saves money and results in better 
designs. Modeling involves analyses, experiments, and computer simulations. Th ese topics are 
introduced in this section.

The Concept of a Model

In engineering, there is something real (e.g., a dam and associated power plant), and there is 
an idealization (i.e., a model) of this real thing. A model, according to Wang (2), is a tool to 
represent a simplifi ed version of reality. Ford (3) suggests that the model is a substitute for a real 
system. Some examples of models include the following:

• A road map is a model because a map represents a complex array of roads.
• Architects’ drawings are models because they represent buildings that will be built.
• A table of contents is a model because it represents the subject matter of a book.

Some examples of models relevant to fl uid mechanics are as follows:

• Th e ideal gas law is a model because it is an idealized (simplifi ed) description of how the 
variables of density, pressure, and temperature are related.

• A collection of equations can be a model. For example, the energy equation together with 
the Darcy-Weisbach equation and suitable minor loss coeffi  cients can be used to predict the 
fl ow rate for water through a siphon. Using the equations is a substitute for building a system 
and then correlating experimental data.

• A small-scale car that is used in a wind tunnel to estimate drag acting on a full-scale car is a 
model.

To advance the discussion of modeling, we next describe an engineering project.
Example of an Engineering Project. Th e slow sand fi lter (Fig. 16.2) is a widely used 

technology for producing clean drinking water. Water enters the fi lter at the top, and naturally 
occurring organisms that live in the topmost layer of the fi lter remove the biological contami-
nants. Th is topmost layer, called the schmutzdecke, is found in the top few millimeters of the 
sand layer. Th e sand and gravel below the schmutzdecke collects dirt and clay particles.

Several years ago, students from the University of Idaho designed a slow sand fi lter for 
applications in Kenya. Because slow sand fi lters do not require chemicals or electricity, this 
technology is especially suitable to applications in the developing world.

Schmutzdecke
(active biological layer)

Raw water in

Safe drinking
water out

Sand

Gravel

FIGURE 16.2

The slow sand fi lter.
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Th e team choose to develop various models of the slow sand fi lter. Th e model-building 
process is described in the next subsections.

Summary. A model is an idealization or simplifi ed version of reality. Models are valuable 
when they help engineers and other professionals reach goals in an economical way.

How to Build a Model of a System

Th e reason for building a model is to solve a problem (Fig. 16.3). Th e process of model build-
ing, according to Montgomery et al. (4), involves identifying relevant variables, determining 
the relationships between these variables, and then testing the model to ensure that it is 
accurate (i.e., does the model faithfully capture what happens in reality?). As shown, the 
process of model building is iterative.

Example. To build a model of a slow sand fi lter (Fig. 16.2), the modeling process involves 
the following steps.

• Step 2a: Identify the variables. Determine which variables characterize performance. Th en, 
classify the variables into two groups:
• Performance variables characterize how well the product performs. Examples of these 

variables include the fl ow rate through the fi lter, the clarity of the water that leaves the 
fi lter, and the time period between maintenance for fi lter cleaning. Performance variables 
are dependent variables, meaning that they depend on the values of the design variables.

• Design variables are the factors that engineers can select. Examples of these variables are 
depth of water on top of the fi lter, the thickness of the sand layer, and the distribution of 
sand and gravel sizes.

• Step 2b: Determine how the variables are related. Th e purpose of this step is to identify 
cause and eff ect. For example, if one changes the size of the sand particles, does this make 
the fi lter perform better or worse? Why? Th ere are two approaches for determining how the 
variables are related (4):
• Mechanistic models are based on scientifi c knowledge of the phenomena. For example, 

Darcy’s Law describes fl ow of fl uids through a porous medium such as sand and gravel, 
and the equation itself tells us the relationship among the variables.

• Empirical models involve relating the variables by using curve fi ts of experimental data. 
For example, experiments and correlation could be used to determine the time it takes for 
the schmutzdecke to develop.

yes

no

1. Figure out what
problem you are trying

to solve

3. Apply the model
to solve the problem

4. Communicate
the solution

2b. Determine
how variables

are related

2a. Identify the
variables

2c. Is the model
accurate enough?

Model building
occurs in steps
2a to 2c.

FIGURE 16.3

The model in the context of engineering 

problem solving.
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• Step 2c: Test the model for accuracy. Th e result of step 2a is an ability to predict the rela-
tionship between design variables (e.g., dimensions, particle sizes) and performance vari-
ables (e.g., water quality or fl ow rate). Th e purpose of step 2c is to check to see how accurate 
the predictions are. Much of this time, this step is done by comparing experimental data 
with predictions.

• Iterate back to step 2a. In practice, model building is iterative. Iteration involves repeating 
a process with the aim of reaching a desired goal. Each repetition of the process is called an 
iteration, and the results of one iteration are used as the starting point for the next iteration. 
Iterations are ended when the model has enough accuracy for the purposes of the engineers.

Example of Iteration (Slow Sand Filter). To build a model of a slow sand fi lter, one 
might start out with a model comprised of a few equations and a simple, bench-top experi-
ment. Th e model would be highly simplifi ed, and the purpose of the fi rst iteration would be to 
gain experience with modeling and measuring the fl ow of water through sand. In subsequent 
iterations, the analytical and experimental models would be developed and continually com-
pared. Aft er analytical models had been developed, the team might create a CFD model to 
perform parametric studies on the design.

Aft er the model has been validated through the iterative process, the next steps are to apply 
the model to solve the problem (step 3 of Fig. 16.3) and to communicate the solution (step 4).

Summary. Models are built in an iterative process that involves identifying the variables, 
classifying these variables into performance variables and design variables, and determining 
how the variables are related. Finally, the model is validated to see if model predictions are 
accurate enough for the needs of the problem. Th e most important aspect of model building 
is to start simple and then use sequential iterations to improve accuracy. Model building was 
introduced in Chapter 1. When models are based on scientifi c laws and equations, then the 
Wales-Woods approaches describes how experts build math models.

Three Methods for Model Building

Model building involves three methods.

Analytical fl uid dynamics (AFD) involves knowledge and equations that are commonly 
found in engineering textbooks and references.
Experimental fl uid dynamics (EFD) involves experiments to gather information about 
variables. EFD is oft en used to validate calculations, to validate computer solutions, and 
to determine performance characteristics of systems that are not easily modeled using 
calculations or computers.
Computational fl uid dynamics (CFD) involves computer solutions of the governing 
partial diff erential equations. Th at is, engineers run a computer program to understand 
how the variables interact.

In real-world applications, model building usually involves an integrated and iterative com-
bination of the preceding approaches. For example, model-building eff orts for the slow sand 
fi lter might include the following:

• Darcy’s law (AFD). To predict the rate at which water fl ows through the sand and gravel, 
one can apply Darcy’s law, which describes fl ow through a porous medium. Th is is an example 
of AFD because it involves a known equation.

• Measuring permeability (EFD). To apply Darcy’s law, one must estimate the value of the 
permeability of sand layers. (Permeability is a property of a porous medium that characterizes 
how easily water fl ows through the material for a given pressure drop.) To determine perme-
ability, the engineer sets up an experiment and measures the value for various types of sand 
and gravel.



528 CHAPTER 16  •  MODELING OF FLUID DYNAMICS PROBLEMS

• Computational model (CFD). A commercially available CFD computer model for ground-
water fl ow could be applied to perform parametric studies on the slow sand fi lter so that 
engineers could examine many diff erent design variations.

• Experiments (EFD). Experiments can measure how long it takes for the schmutzdecke layer 
to grow.

Summary. In fl uid mechanics, there are three approaches to model building: analytical 
fl uid mechanics, experimental fl uid mechanics, and computational fl uid mechanics. Most 
models involve two or three of these approaches working synergistically.

Assessing the Value of a Model

Ford (3) asserts that a model is useful when it helps one learn something about the system that 
the model represents. For example, a road map is useful when it helps one more easily navigate 
an unfamiliar location, and architects’ drawings are useful when they help a builder under-
stand what materials need to be purchased and how the architect intends a house to look.

Th e value of a model is related to the benefi ts and the costs (i.e., resources required to 
produce the model). One way to assess value is to use a ratio of benefi ts to costs:

(value of
a model) =

(benefits provided by the model)
(resources required to implement the model)

To assess value, some questions that engineers might ask include the following:

Benefi ts:
• Will the model lead to a design that works better?
• Will the model help the team complete the project faster?
• Will the model lead to a fi nal design that is lower cost to build? To operate?
• Will the model help the team understand the interactions of the variables?
• Can the model be used for future projects?
• Would the model be benefi cial to other engineers who are designing similar systems?

Resources, costs, and risks:
• What is the risk of failure? Can a model that works be developed?
• How accurate will the model be? What accuracy is needed?
• How much engineering time will the model take to build?
• Does soft ware need to be purchased? Experiments built? Other costs?

As shown in Fig. 16.4, the three modeling approaches provide diff erent types of information 
and have varying levels of cost (time and resources).

• Algebraic equations. Applying equations found in textbooks provides estimates (low level 
of details). Costs are low because estimates usually require a pencil, paper, and a calculator 
and take about one hour.

• PDEs. Finding an existing solution to the governing PDEs provides rich details about the 
fl ow. Costs are modest because one has to search the literature, learn the details of the solu-
tion, and apply the solution. However, there are only a few solutions in the literature; there-
fore, this approach is only sometimes useful.

• CFD. Developing a CFD solution provides a wealth of details. Th e costs can be high because 
one has to obtain a code, learn the code, set up the model, and validate the model.

• Experiment. Designing and conducting an experiment provides data from the physical world, 
which is oft en used to assess the validity of math-based solutions. Costs for an experiment can 
range from very low to very high, depending on the scope and nature of the experiment.
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Summary. Th ree useful methods for model building are analysis, experiment, and 
computation. Oft en, these three methods are used in combination via a iterative strategy 
that involves starting with simple models and then refi ning these models. Th ere are multiple 
trade-off s in model building that involve cost, benefi ts, solution accuracy, and solution detail.

16.2 Foundations for Learning Partial 

Differential Equations (PDEs)

Th is section presents:

• Why learning PDEs is useful
• Some mathematical foundations for learning PDEs

Rationale for Learning PDEs

PDEs represent the scientifi c laws that govern fl owing fl uids. Solving these equations gives 
numerical values for the pressure fi eld, the velocity fi eld, or other fi elds. From these fi elds, 
engineers can calculate nearly anything of engineering interest, such as drag force, head loss, 
and power requirements.

Th us, solving the PDEs is the ultimate solution technique—but there is a catch! In practice, the 
PDEs have nonlinear terms that prevent direct mathematical solutions, except in a limited number 
of special cases. Th ese special cases were solved many years ago, and today’s engineers do not solve 
problems by directly solving the PDEs. Nevertheless, there are two benefi ts to learning PDEs.

Understanding Existing Solutions (Benefit #1). Th e literature has many existing solu-
tions of PDEs. Th ese solutions classify into two categories:

• Exact solutions. An exact solution involves a physical situation in which the equations of 
motion reduce to equations that can be solved. Th ere are about 100 such solutions in exis-
tence. Examples include Poiseuille fl ow and Couette fl ow.

• Idealized solutions. An idealized solution involves a physical situation in which assumptions 
are made that allow the governing equations to be simplifi ed and solved mathematically. 
Two examples of idealized solution are as follows:
• Potential fl ow. When an external fl ow around a body is assumed to be inviscid (i.e., 

frictionless) and irrotational (i.e., the fl uid particles are not rotating), the equations reduce 
to equations that can be solved analytically. Th is situation is called potential fl ow.

• Laminar boundary layer fl ow. When laminar viscous fl ow near a wall is simplifi ed by 
making boundary layer assumptions, the equations can be solved. Th e resulting solution, 
called the Blasius solution, describes fl ow in the laminar boundary layer.
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FIGURE 16.4

Information provided by a modeling 

approach versus the cost of the 

modeling approach.
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Engineers use existing solutions to gain understanding of more complex problems. For example, 
a bicycle rider was severely injured in a collision caused by a bus that passed too close to him. 
When a large vehicle passes closely by a cyclist, this causes side forces on the cyclist. To gain 
insight into these side forces, an engineer used the solution for potential fl ow around an elliptical 
body to predict the magnitude and direction of the side force.

A second example involves modeling blood fl ow in the human abdominal aorta. Some-
times, the aorta loses its structural integrity and bulges out to form an aneurysm. If an aneurysm 
ruptures, death is common. Th us, the researchers wanted to understand the forces exerted by the 
fl ow on the aneurysm walls. Two existing solutions were used to gain insight into this problem: 
the Poiseuille solution for steady laminar fl ow in a round tube and the Womersley solution for 
oscillatory laminar fl ow in a round tube.

Understanding and Validating CFD (Benefit #2). Because CFD codes solve PDEs, the 
fi rst step in learning CFD is to learn about the PDEs.

Existing solutions are used to validate CFD codes. For example, when a CFD model of 
blood fl ow in an aneurysm was developed, the code was validated in part by modeling an exist-
ing analytical solution (i.e., the Womersley solution) and then checking to make sure that the 
CFD solution matched the analytical solution.

Summary. Th ree reasons for learning PDEs are (a) to be able to understand and apply 
existing solutions that are found in the literature, (b) to understand the equations that are being 
solved by CFD codes, and (c) to validate CFD codes by ensuring that the CFD code can cor-
rectly predict the results given by a known classical solution.

Th e remainder of this section introduces mathematics that are useful in the development 
of PDEs.

Velocity Field: Cartesian Coordinates

Th e solution of the equations of motion are fi elds such as the pressure fi eld, the density fi eld, 
the temperature fi eld, and the velocity fi eld. Th us, understanding fi elds is important. Th is sec-
tion introduces the velocity fi eld.

In the Cartesian coordinate system, a point in space is identifi ed by specifying coordinates 
(x, y, z; Fig. 16.5). Th e associated unit vectors are i in the x direction, j in the y direction, and 
k in the z direction. Notice that the coordinate system is right-handed, which means that the 
cross product of i and j is the k unit vector:

i × j = k

Th e velocity fi eld is given by

 V = u(x, y, z, t)i + v (x, y, z, t)j + w(x, y, z, t)k (16.1)

where u = u(x, y, z, t) is the x direction component of the velocity vector, and v and w have 
similar meanings. Th e independent variables are position (x, y, z) and time (t).

Th e next two examples show how to reduce the general form of the velocity fi eld so that it 
applies to a specifi c situation. Notice the process steps.

EXAMPLE. Consider steady fl ow in a plane (Fig. 16.6). Reduce the general equation for 
the velocity fi eld so that it applies to this situation.

Ideas/Action.

1. Write the general equation for the velocity fi eld:

V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k

2. Analyze the dependent variables. Because the fl ow is planar, w = 0. Th us, the dependent 
variables reduce to u and v.

x

z

y

Locate a point in
space by specifying
(x, y, z) 

FIGURE 16.5

Cartesian coordinates.
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3. Analyze the independent variables. Because the fl ow is planar, z is not parameter. Because 
the fl ow is steady, time is not a parameter. Th us, the independent variables are x and y; the 
velocity fi eld reduces to V = u(x,y)i + v(x, y)j.

EXAMPLE. Consider steady fl ow entering a channel (Fig. 16.7) formed by plates that 
extend to ±∞ in the z direction. Such plates are called infi nite plates. Reduce the general 
equation for the velocity fi eld so that it applies to this situation.

Ideas/Action

1. Write the general equation for the velocity fi eld:

V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k
2. Analyze the dependent variables. Let w = 0 because there is no fl ow in the z direction.
3. Analyze the independent variables. Because the fl ow is planar, the velocity does not vary 

with z. Because the fl ow is steady, the velocity does not vary this time. Th us, the reduced 
equation for the velocity fi eld is

V = u(x, y)i + v(x, y)j

 Th is equation means that both u and v will be nonzero, and both u and v will vary with x 
and y. Th e reason is that fl ow in the entrance to the channel is developing (see Chapter 10). 
Once the fl ow is fully developed, then the velocity fi eld will reduce to the form

V = u(y)i

Summary. Th e general form of the velocity fi eld in Cartesian coordinates is given by Eq. 
(16.1). To reduce this equation so that it applies to a given situation, analyze the independent 
and the dependent variables, and eliminate terms that are not relevant or are zero.

Velocity Field: Cylindrical Coordinates

Because cylindrical coordinates are widely used in application, this system is introduced next.
In cylindrical coordinates (Fig. 16.8), a point in space is described by specifying coor-

dinates (r, θ, z). Th e radius r is measured from the origin, the azimuth angle θ is measured 
counterclockwise from the x axis, and the height z is measured from the x-y plane.

Velocity vector V

Velocity at a point
is represented with
velocity components (u, v)
V � ui � vj

v

u

FIGURE 16.6

Example of velocity components for planar fl ow.

Uniform velocity distribution at x � 0

Infinite plate

y

x

FIGURE 16.7

Flow between infi nite plates.
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Th e velocity fi eld in general form is

 V = vr(r, θ, z, t)ur + vθ(r, θ, z, t)uθ + vz(r, θ, z, t)uz (16.2)

EXAMPLE. Fig. 16.9 shows ideal fl ow over a circular cylinder. Reduce the general form of 
the velocity fi eld so that it applies to this situation.

Ideas/Action

Represent the velocity vector at a point of interest (see Fig. 16.9).
• Step 1. Sketch an x- and y-coordinate axis.
• Step 2. Sketch a radius vector of length r.
• Step 3. Sketch unit vectors ur and uθ.
• Step 4. Represent the velocity vector with components vr and vθ.

Next, do a term-by-analysis of Eq. (16.2). Eliminate z and vz because the fl ow is planar. 
Eliminate t because the fl ow is steady. Eq. (16.2) reduces to

V = vr(r, θ)ur + vθ(r, θ)

For fl ow in a plane (e.g., Fig. 16.9), the z direction is not needed; use only the r and θ coordi-
nates. Th is two-dimensional coordinate system is called polar coordinates.

Summary. When cylindrical coordinates are used, the general form of the velocity fi eld 
is given by Eq. (16.2). For the fl ow in a plane, the coordinates can be simplifi ed to a 2-D fl ow, 
and the coordinates are called polar coordinates.

Point in space

θ

θ

uz

ur

u 

yr

x

z

z

FIGURE 16.8

Coordinates and unit vectors in cylindrical coordinate system.
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interest

V

Flow

ur

vrvθ y

r x

θ θu 

FIGURE 16.9

Using polar coordinates to represent the 

velocity vector at a point. The pictured fl ow 

is ideal fl ow (i.e., inviscid and irrotational) 

over a circular cylinder.
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Taylor Series

Engineers learn Taylor series because Taylor series are used to perform the following tasks:

• Derive both ordinary and partial diff erential equations.
• Convert diff erential equations into algebraic equations that can be solved using a computer 

algorithm by a CFD program.

A Taylor series is a series expansion of a function about a point. Th e general formula for the 
function f(x) expanded around the point x = a is

 f (x) = f (a) +( df
dx )

a

(x − a)
1!

+(d 2 f
dx2 )

a
 
(x − a)2

2!
+ …  (16.3)

For example, when the function is f (x) = ex, Eq. (16.3) becomes

 ex = ea [1 + (x − a) +
(x − a)2

2
+

(x − a)3

6
+ … ]  (16.4)

Kojima et al. (5) suggest that a Taylor series is an imitation of an equation, just as equations are 
imitations of the physical world (see Fig. 16.10).

Taylor series are commonly truncated. Th is means that higher-order terms are neglected. 
For example, consider the following Taylor series:

  Taylor series approximation (the acronym 
 Function H.O.T. stands for “higher-order terms”)

 f (x) =
1

1 − x
= 1 + x + x2 + x3 + x4 + … (H.O.T.)  

(16.5)

When x = 0.1, Eq. (16.5) gives

 Function Taylor series approximation

f (x) =
1

1 − 0.1
= 1.11111 … = 1 + 0.1 + 0.01 + 0.001 + 0.0001 … + … (H.O.T.)  

(16.6)

Th e eff ects of neglecting higher-order terms are as follows:

• When two terms are kept, the result is 1.1.
• When three terms are kept, the result is 1.11.
• When four terms are kept, the result is 1.111.

For engineering purposes, it is sometimes useful to modify Eq. (16.3) by changing the inde-
pendent variables. Change x to x + Δx and let a = x. Th e result is

 f (x + Δx) = f (x) + ( df
dx )

x
 
(Δx)

1!
+ ( d 2 f

dx 2 )
x
 
(Δx)2

2!
+ … (H.O.T.) (16.7)
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Data (observations) are idealized with equations. Then, equations are 

idealized with a Taylor series.



534 CHAPTER 16  •  MODELING OF FLUID DYNAMICS PROBLEMS

In fl uid mechanics, one uses the Taylor series for a function of several variables. Th e general 
form of the Taylor series for a function of two variables f(x, y) expanded about point (a, b) is

f (x, y) = f (a, b) +( 𝜕 f
𝜕x )

a, b
 
(x − a)

1!
+( 𝜕 f

𝜕 y )
a, b

 
( y − b)

1!
 

(16.8)

 + ( 𝜕2 f
𝜕x 2 )

a, b

(x − a)2

2!
+( 𝜕2 f

𝜕x 𝜕y)
a, b

2(x − a)(y − b)
2!

+ ( 𝜕2 f
𝜕 y 2 )

a , b

(y − b)2

2!
+ …

To modify Eq. (16.8) so that it is more useful for fl uid mechanics, let x = x + Δx, y = y, a = x, 
and b = y:

f (x + Δx, y) = f (x, y) +( 𝜕 f
𝜕x )

x, y
 
Δx
1!

+( 𝜕 2 f
𝜕x2 )

x, y
 
(Δx)2

2!
+ ( 𝜕3 f

𝜕x 3 )
x, y

 
(Δx)3

3!
+ …  (16.9)

Next, introduce the variables used in fl uid mechanics:

f (x + Δx, y, z, t) = f (x, y, z, t) +(𝜕 f
𝜕x )

x, y, z, t
 
Δx
1!

+ (𝜕 2 f
𝜕x2 )

x, y, z, t
 
(Δx)2

2!
+ … H.O.T. (16.10)

Summary. In fl uid mechanics, engineers commonly expand functions into a Taylor se-
ries, which is a series expansion of about a point. Oft en, higher-order terms are neglected. A 
useful form of the Taylor series for fl uid mechanics is given in Eq. (16.10).

Mathematical Notation (Invariant Notation and Operators)

In addition to Cartesian, cylindrical, and polar coordinates, engineers use systems such as 
spherical coordinates, toroidal coordinates, and generalized curvilinear coordinates. Because 
there is a large amount of detail, engineers sometimes write equations in ways that apply to any 
coordinate system. Invariant notation is a mathematical notation that applies (i.e., generalizes) 
to any coordinate system.

To introduce invariant notation, consider the gradient of the pressure fi eld (Table 16.1). 
As shown, the gradient can be written several ways. Also, the mathematical notation can be 
classifi ed into two categories:

• Coordinate-specifi c notation. Terms in equations are written so that they apply to a specifi c 
coordinate system. For example, Table 16.1 shows Cartesian and cylindrical coordinates.

• Invariant notation. Terms are written so that they apply to any coordinate system; that is, 
they generalize.

TABLE 16.1 Alternative Ways to Write the Gradient of the Pressure Field

Category Description Mathematical Form

Coordinate-specifi c 
notation

Cartesian coordinates
𝜕p
𝜕x

i +
𝜕p
𝜕y

j +
𝜕p
𝜕z

k

Cylindrical coordinates
𝜕p
𝜕r

ur +
1
r

 
𝜕p
𝜕θ

uθ +
𝜕p
𝜕z

uz

Invariant notation

Del notation ∇p
Gibbs notation grad(p)
Indicial notation 
(Einstein summation convention)

𝜕p
𝜕xi

  or 𝜕i p



  Foundations for Learning Partial Differential Equations (PDEs)        535

Table 16.1 shows three types of invariant notation:

• Del notation is represented by the nabla symbol, ∇ . Del notation is the most common 
approach used in engineering.

• Gibbs notation uses words to represent operators—for example, grad to represent the 
gradient. Gibbs notation is common in mathematics.

• Indicial notation is a shorthand approach that is common in both engineering and physics.

Mathematical Operators

In mathematics, collections of terms called operators are given names because they appear 
commonly in the equations of mathematical physics. In the equations of fl uid mechanics, 
some common operators include the following:

• Gradient. For example, the gradient of the pressure fi eld or the gradient of the velocity fi eld
• Divergence. For example, the divergence of the velocity fi eld
• Curl. For example, the curl of the velocity fi eld
• LaPlacian. For example, the LaPlacian of the velocity fi eld
• Material derivative. For example, the time derivative of the temperature fi eld

Each operator has a physical interpretation, and in the next section we show how to develop a 
physical interpretation by going through the derivation of the partial diff erential equation. For 
a thorough introduction to operators, we recommend Schey’s book (6).

Summary. A variety of mathematical notations are used. Th e notations can be classifi ed 
into invariant and coordinate specifi c categories. Th e path that we recommend is to learn each 
notation (over time) and recognize that the various notations are just diff erent ways to express 
the same ideas.

The Material Derivative

Th is subsection introduces an operator called the material derivative. Th is operator has mul-
tiple names in the literature, including the (a) substantial derivative, (b) Lagrangian derivative, 
and (c) derivative following the particle. Whenever you hear any of these labels, recognize that 
all name the material derivative.

Th e best way to understand the material derivative is to go through the steps of the deriva-
tion, which we do next. We select temperature for the derivation because temperature is easy 
to visualize.

Th e purpose of the derivation is to develop an expression for the time rate of change of the 
temperature of a fl uid particle.

Step 1:  Select a fl uid particle. Visualize a fl uid particle in a fl ow that has temperature varia-
tions (Fig. 16.11). Notice that as the given fl uid particle moves, its temperature will 
rise because it is being transported from a cooler region to a warmer region.

Step 2:  Apply the defi nition of the derivative. Th e time rate of change of temperature T of 
the fl uid particle is given by the ordinary derivative:

 
dT
dt

= lim
xt→0

T(t + Δt) − T(t)
Δt

 (16.11)

 As shown in Fig. 16.12, at time t, the particle is at location (x, y, z).
   Th us, the particle’s temperature at time t is given by T = T(x, y, z, t). Similarly, 

the particle’s temperature at time t + Δt is T = T(x + Δx, y + Δy, z + Δz, t + Δt). 
Substituting into Eq. (16.11) gives

Hotter
region

Fluid particle in a 
flowing fluid

Colder
region

FIGURE 16.11

A fl uid particle moving from a 

region of cooler temperatures 

to a region of higher 

temperatures.
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dT
dt

= lim
Δt→0

T(x + Δx, y + Δy, z + Δz, t + Δt) − T(x, y, z, t)
Δt

 (6.12)

Step 3:  Apply Taylor’s series. Expand the numerator in a Taylor’s series and neglect higher-
order terms:

  
dT
dt

= lim
Δt→0

 
(𝜕T

𝜕x ) 
Δx
1!

+( 𝜕T
𝜕y ) 

Δy
1!

+( 𝜕T
𝜕z ) 

Δz
1!

+( 𝜕T
𝜕t ) 

Δt
1!

Δt
 

(16.13)

 = lim
Δt→0

 ( 𝜕T
𝜕x ) 

Δx
Δt

+( 𝜕T
𝜕y ) 

Δy
Δt

+( 𝜕T
𝜕z ) 

Δz
Δt

+( 𝜕T
𝜕t ) 

Δt
Δt

Step 4: Apply the defi nition of speed.

 u = lim
Δt→0

Δx
Δt

, v = lim
Δt→0

Δy
Δt

, w = lim
Δt→0

Δz
Δt

 (16.14)

Step 5:  Combine equations. Insert Eq. (16.14) into Eq. (16.13) to give the fi nal result:

 
dT
dt

= ( 𝜕T
𝜕t ) + u( 𝜕T

𝜕x ) + v ( 𝜕T
𝜕y ) + w ( 𝜕T

𝜕z ) (16.15)

Step 6:  Interpret the result. Th e left  side of the equation is the desired result: the time derivative 
of a property of a particle. Th e right side describes the mathematical mechanics for doing 
the derivative when a fi eld is used. Th at is, this equation describes how to do the math to 
obtain a time derivative when an Eulerian description is being used. To summarize:

 
dT
dt

   = ( 𝜕T
𝜕t ) + u( 𝜕T

𝜕x ) + v( 𝜕T
𝜕y ) + w( 𝜕T

𝜕z )  

(16.16)
  time derivative of  mathematics needed to do the derivative when
 the temperature of  a fi eld (i.e., an Eulerian approach) is being used
 a fl uid particle

Step 7:  Generalize the results. Eq. (16.16) was derived for a specifi c scalar fi eld (i.e., the 
temperature fi eld). However, it could have been derived for any scalar fi eld. Th us, let 
J represent a generic scalar fi eld.

  Similarly, Eq. (16.16) could have been derived using any coordinate system. Th us, one 
can replace the spatial derivatives with an invariant notation. Th e generalization of 
Eq. (16.16) is

 
dJ
dt
   = ( 𝜕 J

𝜕t ) + V ∙ ∇ J = ( 𝜕 J
𝜕t ) + V ∙ grad ( J) 

(16.17)
 time derivative  mathematics needed to do the derivative when 
 of the property J  a fi eld (i.e., an Eulerian approach) is being used
 of a fl uid particle

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ {

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ {

At time t, the particle
is at location (x, y, z) 

At time t � �t, the
particle is at location
(x � �x, y � �y, z � �z) 

x

z

y

FIGURE 16.12

As a fl uid particle is transported by a fl owing fl uid, its 

location changes, as shown here.
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 Note that many engineering references write the material derivative using capital letters:

 (material derivative is
represented using ) ⇒ DJ

Dt
 (16.18)

 In cylindrical coordinates, the material derivative is

 
dJ
dt

=
𝜕J
𝜕t

+ vr
𝜕J
𝜕r

+
vθ

r  
𝜕J
𝜕θ

+ vz
𝜕J
𝜕z

 (16.19)

Summary. Th e material derivative represents the time rate of change of a property of a 
fl uid particle. As shown in Eq. (16.17), the partial derivative terms (right side) described the 
mechanics needed to fi nd the derivative. Th e material derivative can be written in Cartesian 
coordinates (16.16), cylindrical coordinates (16.19), or in an invariant notation (16.17).

The Acceleration Field

Th e acceleration fi eld describes the acceleration of each fl uid particle:

 (acceleration at a
point in a field ) = (

acceleration of
the fluid particle
at this location ) = (

material derivative
of the
velocity field )  (16.20)

Th erefore, introduce the material derivative to describe the acceleration fi eld:

 a =
dV
dt

 (16.21)

To represent Eq. (16.21) in Cartesian coordinates, insert the velocity fi eld from Eq. (16.1):

 a =
d
dt

(ui + vj + wk) =
du
dt

i +
dv
dt

j +
dw
dt

k (16.22)

Because du/dt is the material derivative of a scalar fi eld, this term can be evaluated using 
Eq. (16.16). When this is done for each term on the right side of Eq. (16.22), the acceleration 
in Cartesian coordinates is given by

(acceleration
of a fluid particle) = a =

dV
dt

=[
{( 𝜕u

𝜕t) + u( 𝜕u
𝜕x ) + v( 𝜕u

𝜕y ) + w( 𝜕u
𝜕z )}i

{( 𝜕v
𝜕t) + u( 𝜕v

𝜕x) + v( 𝜕v
𝜕y) + w( 𝜕v

𝜕z)}j

{( 𝜕w
𝜕t ) + u( 𝜕w

𝜕x )+ v( 𝜕w
𝜕y )+ w( 𝜕w

𝜕z )}k] (16.23)

When acceleration is derived in cylindrical coordinates, the result is

 a =[
ar

aθ

az
]=[

dvr

dt
−

v2
θ

r
dvθ

dt
+

vr vθ

r
dvz

dt
]=[

𝜕vr

𝜕t
+ vr 

𝜕vr

𝜕r
+

vθ

r  
𝜕vr

𝜕θ
+ vz 

𝜕vr

𝜕z
−

v2
θ

r
𝜕vθ

𝜕t
+ vr 

𝜕vθ

𝜕r
+

vθ

r  
𝜕vθ

𝜕θ
+ vz 

𝜕vθ

𝜕z
+

vr vθ

r
𝜕vz

𝜕t
+ vr 

𝜕vz

𝜕r
+

vθ

r  
𝜕vz

𝜕θ
+ vz 

𝜕vz

𝜕z
] (16.24)
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Summary. Th e acceleration fi eld is given by the material derivative of the velocity 
fi eld. Th is can be written in Cartesian coordinates [Eq. (16.23)] or cylindrical coordinates 
[Eq. (16.24)].

16.3 The Continuity Equation

Th e continuity equation, according to Frank White (7), is one of fi ve partial diff erential equa-
tions that are needed to model a fl owing fl uid. Th e set of fi ve equations is as follows:

• Th e continuity equation. Th is is the law of conservation of mass applied to a fl uid and 
expressed as a partial diff erential equation.

• Th e momentum equation. Th is is Newton’s second law of motion applied to fl uid. Th is 
equation is mostly commonly developed for a Newtonian fl uid, and the equation is called 
the Navier-Stokes equation.

• Th e energy equation. Th is is the law of conservation of energy applied to a fl uid.
• Equations of state (two equations). An equation of state describes how thermodynamic 

variables are related. For example, an equation of state for density describes how density 
varies with temperature and pressure.

Th e continuity equation is described in this section; the Navier-Stokes equation is described 
in the next section. Th e other three equations are described in the books by White (7, 8).

In practice, there are multiple ways to write the continuity equation as a partial diff erential 
equation. Th is can be quite confusing when learning. Th us, the main purpose of this section is 
to introduce the following:

• Various forms of the continuity equation
• Language and ideas for understanding how and why engineers use these diff erent forms

Derivation Using a Control Volume (Conservation Form)

Th is section introduces one of the ways to derive the continuity equation.
Step 1:  Select a control volume (CV). Select a CV (Fig. 16.13) centered around the point 

(x, y, z). Assume that the CV is stationary and nondeforming.
  Let the CV have dimensions (Δx, Δy, Δz), where each dimension is infi nitesimal in 

size. Infi nitesimal means that dimensions are approaching zero in the sense of the 
limit in calculus (e.g., limit Δx → 0).

Step 2: Apply conservation of mass. Apply conservation of mass to the CV. Th e physics are

 (rate of accumulation of mass) + (net outflow of mass) = (zero) (16.25)

 Th ese physics can represented by this equation:

 
dmcv

dt
+ m· net = 0 (16.26)

Location (x, y, z) 

Stationary CV situated
around point (x, y, z) 

Flow

x

y
z

FIGURE 16.13

A stationary, nondeforming, infi nitesimal CV that is 

situated at point (x, y, z) in a moving fl uid.
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Step 3: Analyze the accumulation. Th e accumulation term is

 
dmcv

dt
=

𝜕(mass in cv)
𝜕t

=
𝜕(ρV)

𝜕t
= ( 𝜕ρ

𝜕t ) V = ( 𝜕ρ
𝜕t )Δx ΔyΔz (16.27)

  Eq. (16.27) uses a partial derivative because the control volume is fi xed in place, 
which means that the variables x, y and z have fi xed values. Th e volume term was 
pulled out of the derivative because the volume of the CV is constant with time.

Step 4:  Analyze the outfl ow. To analyze m· net, consider fl ow through the x faces (Fig. 16.14) of 
the CV. An x face is defi ned as a face of the cube that is perpendicular to the x axis. As 
shown, there is outfl ow through the positive x face and infl ow through the negative x face.

 Th e mass fl ow rates through the x faces are

m· positive 
x face

= (ρAu)x+Δx/2 = (ρu)x+Δx/2 (ΔyΔz)

 m· negative 
x face

= (ρAu) x−Δx /2 = (ρu)x −Δx /2 (ΔyΔz) 
(16.28)

 Th e net fl ow rate through the x faces is
 m· net = m· positive 

x face
− m· negative 

x face

  = ((ρu) x+Δx/2 − ((ρu)x −Δx/2))(ΔyΔz) (16.29)

 Simplify Eq. (16.29) by expanding the derivatives in a Taylor series to give

 m· net 
x face

=
𝜕(ρu)

𝜕x
(ΔxΔyΔz) (16.30)

 Repeat the process used to derive Eq. (16.30) for the y face to give

 m· net 
y face

=
𝜕(ρv)

𝜕y
(ΔxΔyΔz) (16.31)

 Repeat the process used to derive Eq. (16.30) for the z face to give

 m· net 
z face

=
𝜕(ρw)

𝜕z
(ΔxΔyΔz) (16.32)

 To sum the mass fl ow rates through all faces, add up the terms in Eqs. (16.30) to (16.32):

 m· net = ( 𝜕(ρu)
𝜕x

+
𝜕(ρv)

𝜕y
+

𝜕(ρw)
𝜕z )(ΔxΔyΔz) (16.33)

Step 5:  Combine results. Insert terms from Eqs. (16.27) and (16.33) into Eq. (16.26):

 ( 𝜕ρ
𝜕t )(ΔxΔyΔz) + ( 𝜕(ρu)

𝜕x
+

𝜕(ρv)
𝜕y

+
𝜕(ρw)

𝜕z )(ΔxΔyΔz) = 0 (16.34)

 Divide through by the volume of the CV to give the fi nal result:

 
𝜕ρ
𝜕t

+
𝜕(ρu)

𝜕x
+

𝜕(ρv)
𝜕y

+
𝜕(ρw)

𝜕z
= 0 (16.35)

Inflow
of mass

Outflow
of mass

x

y
z

FIGURE 16.14

Infl ow and outfl ow of mass through the x faces of the control volume.
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Step 6:  Interpret the physics Th e meaning of Eq. (16.35) is

 
𝜕ρ
𝜕t
        +  

𝜕(ρu)
𝜕x

+
𝜕(𝜕v)

𝜕y
+

𝜕(ρw)
𝜕z

= 0  

(16.36) rate of accumulation of mass  net rate of mass fl ow
 in a diff erential CV divided by  out of the CV divided by the
 the volume of the CV  volume of the CV
 (kg/s per m3) (kg/s per m3)

Note the dimensions and units of the terms that appear in the continuity equation:

 
(mass/time)

(volume)
=

kg/s
m3  (16.37)

Derivation Using a Fluid Particle (Nonconservation Form)

Th e literature uses two forms of the continuity equation:

• Conservation form. Th e conservation form, developed in the last subsection, is derived by 
starting with a diff erential control volume and applying conservation of mass to this CV. 
Th is is an Eulerian approach.

• Nonconservation form. Th e nonconservation form, developed in this subsection, is derived 
by starting with a diff erential fl uid particle and applying conservation of mass to this particle. 
Th is is a Lagrangian approach.

Next, we derive the nonconservation form of the continuity equation.

Step 1:   Select a fl uid particle. Select a fl uid particle (Fig. 16.15) centered around a point 
(x, y, z) in space. Because a particle moves with a fl owing fl uid, this particle is at this 
location only at a specifi c instant in time.

Step 2:   Apply conservation of mass. By defi nition, the mass of the particle must stay constant 
with time. To say this mathematically:

 
d(mass)

dt
=

d[(density)(volume)]
dt

=
d(ρV)

dt
= 0 (16.38)

Step 3:   Apply the product rule. Eq. (16.38) becomes

 ρ 
dV
dt

+ V 
dρ
dt

= 0 (16.39)

Step 4:   Analyze the change in volume term. Th e change in volume term describes how the 
volume of the fl uid particle changes with time. To analyze this term, apply the defi nition 
of the derivative:

 
dV
dt

= lim
Δt→0

 
V(t + Δt) − V(t)

Δt
 (16.40)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ {
} 

(x, y, z) 

Fluid particle centered 
around point (x, y, z) 
at time t

Flow

x

�x

�z

�y

y

z
FIGURE 16.15

A fl uid particle (infi nitesimal in size) located at the point 

(x, y, z) in a fl owing fl uid.
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 In Eq. (16.40), the volume at time t is

 V(t) = ΔxΔyΔz (16.41)

 and the volume at time t + Δt is

 V(t + Δt) = (Δx + Δx′)(Δy + Δy′)(Δz + Δz′) (16.42)

  where each term of the form Δx′ represents a change in the length of the side of the 
particle. Next, multiply out the terms on the right side of Eq. (16.42) and neglect 
higher-order terms. Th e equation becomes

 V(t + Δt) ≈ ΔxΔyΔz + Δx′ΔyΔz + ΔxΔy′Δz + ΔxΔyΔz′ (16.43)

 Next, combine Eqs. (16.41) and (16.43) and apply Taylor’s series:

V(t + Δt) − V(t) ≈(𝜕u
𝜕x

 Δx)ΔyΔzΔ t +Δx (𝜕v
𝜕y

 Δy)ΔzΔ t + ΔxΔy (𝜕w
𝜕z

 Δz)Δt (16.44)

 Th en, substitute Eq. (16.44) into (16.40) to give

 
dV
dt

= ( 𝜕u
𝜕x

+
𝜕v
𝜕y

+
𝜕w
𝜕z )ΔxΔyΔz = ( 𝜕u

𝜕x
+

𝜕v
𝜕y

+
𝜕w
𝜕z ) V (16.45)

Step 5:   Combine Results. Substitute Eq. (16.45) into Eq. (16.39), divide each term by the 
volume of the particle, and rearrange to give

 
dρ
dt

+ ρ( 𝜕u
𝜕x

+
𝜕v
𝜕y

+
𝜕w
𝜕z ) = 0 (16.46)

Step 6:   Interpret the Physics. Th e derivation of Eq. (16.46) reveals two main ideas:
• A change in the density of a fl uid particle occurs if, and only if, the volume of the 

fl uid particle is changing with time.
• Th e volume change of a fl uid particle is represented mathematically by the bracketed 

variables in the second term of Eq. (16.46).

  Note that the conservation form [Eq. (16.35)] and the nonconservation form [Eq. (16.46)] 
are equivalent mathematically because it is possible to start with one of these equations 
and derive the other.

Summary. Derivation of the conservation and the nonconservation forms of the conti-
nuity equation gives equations that are equivalent mathematically. However, these equations 
have diff erent physical interpretations.

Cylindrical Coordinates

Th e continuity equation can also be derived in cylindrical coordinates; see Pritchard (9). Th e 
result (conservation form) is

 
𝜕ρ
𝜕t
        +  

1
r  

𝜕(rρvr)
𝜕r

+
1
r  

𝜕(ρvθ)
𝜕θ

+
𝜕(ρvz)

𝜕z
= 0  

(16.47) rate of accumulation of mass  net rate of mass fl ow
 in a diff erential CV divided by  out of the CV divided by the
 the volume of the CV  volume of the CV
 (kg/s per m3) (kg/s per m3)

One can also derive the continuity equation in spherical coordinates and in other coordinate 
systems.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ {
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Invariant Notation

Th is subsection shows how to modify the continuity equation to an invariant form. Th e “del” 
operator is defi ned as

 ∇ ≡ i 
𝜕
𝜕x

+ j 
𝜕
𝜕y

+ k 
𝜕
𝜕z

 (16.48)

Th us, start with the continuity equation in Cartesian components and introduce the del 
operator using the dot product:

𝜕ρ
𝜕t

+
𝜕(ρu)

𝜕x
+

𝜕(ρv)
𝜕y

+
𝜕(ρw)

𝜕z
= 0

 
𝜕ρ
𝜕t

+ (i 
𝜕

𝜕x
+ j 

𝜕
𝜕y

+ k 
𝜕

𝜕z) ∙ ((ρu)i + (ρv)j + (ρw)k) = 0 (16.49)

𝜕ρ
𝜕t

+ ∇ ∙ (ρV) = 0

Th e last line in Eq. (16.49) is the continuity equation in an invariant form. Th e physics are

 
𝜕ρ
𝜕t
   +    ∇ ∙ (ρV)  = 0  (16.50)

 accumulation net outfl ow of mass

Th e term ∇  ∙ (ρV) is the divergence. Eq. (16.50) can also be written with the Gibbs notation:

 
𝜕ρ
𝜕t
   +   div (ρV)  = 0  (16.51)

 accumulation net outfl ow of mass

A useful aspect of invariant notion is that it provides a way to describe the physics of a math 
operator. For example, the physics of the divergence operator can be established from Eq. (16.50):

 div (ρV) = ∇ ∙ (ρV) =
(

net rate of outflow of mass
from a differential CV centered)about point (x, y, z)

(volume of the CV)
 

(16.52)

Th e physics of the divergence operator can also be found another way. Step 1 is to write Eq. (16.46) 
in this form:

dρ
dt

+ ρ(∇ ∙ V) = 0

 
dρ
dt

+ ρdiv(V) = 0 
(16.53)

Step 2 is to go back through the derivation of Eq. (16.46). Th is will reveal that

 ∇ ∙ V = div (V) =
(time rate of change of the volume of a fluid particle)

(volume of the fluid particle)
 (16.54)

⎧⎪⎨⎪⎩ {

⎧⎪⎨⎪⎩ {
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Summary. Th e continuity equation can be written in an invariant form. Th is approach pro-
vides a method for developing a physical interpretation of the divergence operator. As shown, 
the divergence operator has two diff erent physical interpretations.

Continuity for Incompressible (Constant Density) Flow

Because it is common to assume a constant value of density, the continuity equation is oft en 
written for the case of constant density. Th is is usually called incompressible fl ow.

When density is constant, the continuity equation written in Cartesian coordinates 
[Eq. (16.36) or Eq. (16.46)] reduces to

 
𝜕u
𝜕x

+
𝜕v
𝜕y

+
𝜕w
𝜕z

= 0 (16.55)

Similarly, the continuity equation for cylindrical coordinates [(Eq. (16.47)] reduces to

 
1
r  

𝜕(rvr)
𝜕r

+
1
r  

𝜕vθ

𝜕θ
+

𝜕vz

𝜕z
= 0 (16.56)

When density is constant, Eq. (16.51) reduces to

 ∇ ∙ V = div(V) = 0 (16.57)

Summary. When fl ow is modeled as incompressible, the continuity equation reduces to 
∇  ∙ V = div(V) = 0, which means that the divergence of the velocity fi eld is zero. Th is equa-
tion can also be written in Cartesian coordinates [Eq. (16.55)] and cylindrical coordinates 
[Eq. (16.56)].

Summary of the Mathematical Forms 

of the Continuity Equation

Table 16.2 lists some of the ways to write the continuity equation as a PDE. Recognize that the 
math simply refl ects alternative ways to describe the physics.

As shown in the next example, the continuity equation can be applied in two steps.

• Step 1: Selection. From Table 16.2, select an applicable form of the continuity equation.
• Step 2: Reduction. Eliminate the variables in the continuity equation that are equal to zero 

or are negligible.

EXAMPLE. Consider developing laminar flow in a round pipe (Fig. 16.16). At the 
entrance to the pipe, the velocity profi le is uniform. As the fl ow proceeds down the pipe, 
the velocity profi le becomes fully developed. Assume the fl ow is steady and constant 
density. Reduce the general equation for the continuity equation so that it applies to this 
situation.

Developing flow

Uniform velocity
profile

Fully developed flow

r

z

FIGURE 16.16

Developing laminar fl ow in 

a round pipe.
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Action

Step 1: Selection. Because the fl ow is constant density and the geometry is a round pipe, 
select the incompressible fl ow form of continuity in cylindrical coordinates, Eq. (16.56):

1
r  

𝜕(rvr)
𝜕r

+
1
r  

𝜕vθ

𝜕θ
+

𝜕vz

𝜕z
= 0

Step 2: Reduction. Assume that the fl ow is symmetric about the z axis. Th us, let vθ = 0. Th e 
continuity equation reduces to

1
r  

𝜕(rvr)
𝜕r

+
𝜕vz

𝜕z
= 0

Review. One could solve this equation to give the velocity fi eld for developing fl ow in a 
round pipe. Because this equation has two unknown variables (vr and vz), one would also 
need to solve the Navier-Stokes equation.

16.4 The Navier-Stokes Equation

Th e Navier-Stokes equation, introduced in this section, is widely used in both theory and in 
application.

Th e Navier-Stokes equation represents Newton’s second law of motion as applied to viscous 
fl ow of a Newtonian fl uid. In this text, we assume incompressible fl ow and constant viscosity. In 
the literature, one can fi nd more general derivations.

TABLE 16.2 Alternative Ways to Write the Continuity Equation as a PDE

Description Equation

General 
equation

Cartesian coordinates 
(conservation form)

𝜕ρ
𝜕t

+
𝜕(ρu)

𝜕x
+

𝜕(ρv)
𝜕y

+
𝜕(ρw)

𝜕z
= 0

Cartesian coordinates 
(nonconservation 
form)

dρ
dt
       +ρ(𝜕u

𝜕x
+

𝜕v
𝜕y

+
𝜕w
𝜕z)= 0

𝜕ρ
𝜕t

+(u
𝜕ρ
𝜕x

+ v
𝜕ρ
𝜕y

+ w
𝜕ρ
𝜕z)+ρ(𝜕u

𝜕x
+

𝜕v
𝜕y

+
𝜕w
𝜕z)= 0

Cylindrical coordinates 
(conservation form)

𝜕ρ
𝜕t

+
1
r

 
𝜕(rρvr)

𝜕r
+

1
r

 
𝜕(ρvθ)
𝜕θ

+
𝜕(ρvz)

𝜕z
= 0

Invariant 
(conservation form)

𝜕ρ
𝜕t

+ ∇ ∙ (ρV) = 0

Invariant 
(nonconservation 
form)

dρ
dt

+ ρ(∇ ∙ V) = 0

Incompressible 
fl ow 
equation

Invariant form ∇ ∙ V = div(V) = 0

Cartesian coordinates 𝜕u
𝜕x

+
𝜕v
𝜕y

+
𝜕w
𝜕z

= 0

Cylindrical coordinates
1
r

 
𝜕(rvr)

𝜕r
+

1
r

 
𝜕vθ

𝜕θ
+

𝜕vz

𝜕z
= 0
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Derivation

Similar to the continuity equations, there are multiple ways to derive the Navier-Stokes 
equation. Th is section shows how to derive the equation by starting with a fl uid particle and 
applying Newton’s second law. Th us, the result will be the nonconservation form of the equation. 
Because the derivation is complex, we omit some of the technical details; to access these details, 
we recommend the text Viscous Fluid Flow (8).

Step 1:  Select a Fluid Particle. Select a fl uid particle in a fl owing fl uid (Fig. 16.17). Let the 
particle have the shape of a cube. Assume the dimensions are infi nitesimal and that 
the particle is at the position (x, y, z) at the instant shown.

Step 2:  Apply Newton’s second law.

(sum of forces on a fluid particle) = (mass)(acceleration)

 ∑ F = ma = m
dV
dt

 (16.58)

  Regarding the forces, the two categories are body forces and surfaces forces. Th e only 
possible surface forces are the pressure force and the shear force. Assume that the 
only body force is the weight W. Eq. (16.58) becomes

(weight) + (pressure force) + (shear force) = (density)(volume)(acceleration)

 W + Fp + Fs = ρ V
d V
dt

 (16.59)

 Th e weight is given by

 W = (mass)(gravity vector) = ρVg (16.60)

 Insert Eq. (16.60) into Eq. (16.59) to give

 ρVg + Fp + Fs = ρV
dV
dt

 (16.61)

Step 3:  Analyze the pressure force. To begin, consider the forces on the x faces of the particle 
(Fig. 16.18).

 Th e net force due to pressure on the x faces is

 Fpressure
x faces

= −((pA)x+Δx/2 − ( pA)x−Δx/2)i = −(px+Δx /2 − px−Δx/2)(ΔyΔz)i (16.62)

Fluid particle
(moving with flow)

Flow

x�z

�x

y
z

�y

FIGURE 16.17

A fl uid particle situated in a fl owing fl uid.

( pA)(x��x/2) ( pA)(x��x/2)

x

y
z

FIGURE 16.18

The pressure forces on the x faces of a fl uid particle.
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  Simplify Eq. (16.62) by applying a Taylor series expansion (twice) and neglecting 
higher-order terms to give

 Fpressure
x faces

=
𝜕p
𝜕x

(ΔxΔyΔz)i (16.63)

 Repeat this process for the y and z faces, and combine results to give

 Fpressure 
all faces

= −( 𝜕p
𝜕x

 (ΔxΔyΔz)i +
𝜕p
𝜕y

 (ΔxΔyΔz) j +
𝜕p
𝜕z

 (ΔxΔyΔz)k) (16.64)

 Simplify Eq. (16.64), and then introduce vector notation to give

 Fpressure = −( 𝜕p
𝜕x

 i +
𝜕p
𝜕y

j +
𝜕p
𝜕z

k)(ΔxΔyΔz) = −∇p(ΔxΔyΔz) (16.65)

 Eq. (16.65) reveals a physical interpretation of the gradient:

 (
gradient of the
pressure field
at a point ) =

(net pressure force
on a fluid particle)

(volume of the particle)
 (16.66)

Step 4:  Analyze the shear force. Th e shear force is the net force on the fl uid particle due to 
shear stresses. Shear stress is caused by viscous eff ects and is represented mathemati-
cally as shown in Fig. 16.19. Th is fi gure shows that each face of the fl uid particle has 
three stress components. For example, the positive x face has three stress compo-
nents, which are τxx, τxy, and τxz. Th e double subscript notation describes the direc-
tion of the stress component and the face on which the component acts. For example:

• τxx is the shear stress on the x face in the x direction.
• τxy is the shear stress on the x face in the y direction.
• τxz is the shear stress on the x face in the z direction.

  Shear stress is a type of mathematical entity called a second-order tensor. A tensor 
is analogous to but more general than a vector. Examples: A zeroth-order tensor is a 
scalar. A fi rst-order tensor is a vector. A second-order tensor has magnitude, direction, 
and orientation (where orientation describes which face the stress acts on).

  To fi nd the net shear force on the particle, each stress component is multiplied by 
area, and the forces are added. Th en, a Taylor series expansion is applied. Th e result 
is that

y

x

z

τij = shear stress
on the i face
in the j direction

yyτ  

yzτ  
yxτ  

zyτ  

zxτ  
xzτ  

xyτ  

xxτ  

zzτ  

FIGURE 16.19

Shear stresses that act on a fl uid particle.
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 Fshear = [
Fx, shear

Fy, shear

Fz, shear
] =[

( 𝜕τxx

𝜕x
+

𝜕τxy

𝜕x
+

𝜕τxz

𝜕x )
(

𝜕τyx

𝜕y
+

𝜕τyy

𝜕y
+

𝜕τyz

𝜕y )
( 𝜕τzx

𝜕z
+

𝜕τzy

𝜕z
+

𝜕τzz

𝜕z )](ΔxΔyΔz) (16.67)

 Eq. (16.67) can be written in invariant notation as

 Fshear = (∇ ∙ τ)V = (div(τ))V (16.68)

  where the terms on the right side represent the divergence of the stress tensor times 
the volume of the fl uid particle.

     Eq. (16.68) reveals the physics of the divergence when it operates on the stress 
tensor. Note that this is the third physical interpretation of the divergence operator 
in this chapter. Th is is because the physics of a mathematical operator depend on the 
context in which the operator is used.

 (divergence of
the stress tensor) =

(net shear force
on a fluid particle)

(volume of the particle)
 

(16.69)

Step 6:  Combine terms. Substitute the shear force, Eq. (16.68), and the pressure force, 
Eq. (16.65), into Newton’s second law of motion, Eq. (16.61). Th en, divide by the 
volume of the fl uid particle to give

 ρ 
d V
dt

= ρg − ∇p + ∇ ∙ τij (16.70)

  Eq. (16.70) is the diff erential form of the linear momentum equation without any 
assumption about the nature of the fl uid. Th e next step involves modifying this equa-
tion so that it applies to a Newtonian fl uid.

Step 7:  Assume a Newtonian fl uid. In 1845, Stokes fi gured out a way to write the stress 
tensor in terms of the rate-of-strain tensor of the fl owing fl uid. Th e details are omitted 
here. Aft er Stokes’s results are introduced, assume constant density and viscosity. 
Eq. (16.70) becomes

 ρ 
d V
dt

= ρg − ∇p + μ∇ 2 V (16.71)

  Where ∇ 2V is a mathematical operator called the Laplacian of the velocity fi eld. 
Eq. (16.71) is the fi nal result, the Navier-Stokes equation.

Step 8:  Interpret the physics. Th e physics of the Navier-Stokes equation are

 ρ 
d V
dt

 = ρg + −∇p + μ∇ 2 V 

(16.72)
 mass of the particle times  

weight of the net pressure force net shear force

 acceleration of the particle  
particle divided on the particle on the particle

 divided by the volume of the particle 
by its volume divided by its volume divided by its volume

 Note the dimensions and units:

 dimensions =
force

volume
∼

N
m3 =

kg
m2 ∙ s2 (16.73)

{⎧⎨⎩ ⎧⎨⎩ ⎧⎨⎩ 

)( ( () ) )(
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Cartesian and Cylindrical Coordinates

To write Eq. (16.72) in Cartesian coordinates, fi nd a suitable reference (e.g., the Internet, an 
advanced fl uids text, an engineering handbook) and look up the material derivative (dV/dt), 
the gradient, and the Laplacian operator in Cartesian coordinates. Aft er substitution, the 
Navier-Stokes equation (constant properties) for Cartesian coordinates is

 ρ( 𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

+ w
𝜕u
𝜕z ) = ρgx −

𝜕p
𝜕x

+ μ ( 𝜕2u
𝜕x2 +

𝜕2u
𝜕y2 +

𝜕2u
𝜕z2 )

 ρ ( 𝜕v
𝜕t

+ u
𝜕v
𝜕x

+ v
𝜕v
𝜕y

+ w
𝜕v
𝜕z) = ρgy −

𝜕p
𝜕y

+ μ ( 𝜕2v
𝜕x2 +

𝜕2v
𝜕y2 +

𝜕2v
𝜕z2 ) (16.74)

 ρ ( 𝜕w
𝜕t

+ u
𝜕w
𝜕x

+ v
𝜕w
𝜕y

+ w
𝜕w
𝜕z ) = ρgz −

𝜕p
𝜕z

+ μ ( 𝜕2w
𝜕x2 +

𝜕2w
𝜕y2 +

𝜕2w
𝜕z2 )

Th e Navier-Stokes equation cannot be solved in general because of the nonlinear terms. An 
example of a nonlinear term is

u 
𝜕u
𝜕x

Th is term is nonlinear because a dependent variable (u) is multiplied by its fi rst derivative 
(∂u/∂x). In general, nonlinear terms in diff erential equations involve functions of the dependent 
variables.

Th e Navier-Stokes equation (constant properties) for cylindrical coordinates is

r : ρ( 𝜕vr

𝜕t
+ vr

𝜕vr

𝜕r
+

vθ

r  
𝜕vr

𝜕θ
+ vz

𝜕vr

𝜕z
−

v2
θ

r ) = ρgr −
𝜕p
𝜕r

+ μ(1
r  

𝜕
𝜕r (r

𝜕vr

𝜕r )+
1
r2 

𝜕2vr

𝜕θ2 +
𝜕2vr

𝜕z2 −
vr

r2 −
2
r2 

𝜕vθ

𝜕θ )
θ : ρ(𝜕vθ

𝜕t
+vr

𝜕vθ

𝜕r
+

vθ

r  
𝜕vθ

𝜕θ
+ vz

𝜕vθ

𝜕z
+

vrvθ

r )= ρgθ −
1
r 

𝜕p
𝜕θ

+ μ(1
r  

𝜕
𝜕r (r 

𝜕vθ

𝜕r )+
1
r2 

𝜕2vθ

𝜕θ2 +
𝜕2vθ

𝜕z2 −
vθ

r2 +
2
r2 

𝜕vθ

𝜕θ ) (16.75)

z : ρ( 𝜕vz

𝜕t
+ vr

𝜕vz

𝜕r
+

vθ

r  
𝜕vz

𝜕θ
+ vz

𝜕vz

𝜕z ) = ρgz −
𝜕p
𝜕z

+ μ (1
r  

𝜕
𝜕r (r 

𝜕vz

𝜕r )+
1
r2 

𝜕2vz

𝜕θ2 +
𝜕2vz

𝜕z2 )

Summary. Th e Navier-Stokes equation represents Newton’s second law of motion ap-
plied to the viscous fl ow of a Newtonian fl uid. Th e Navier-Stokes equation has nonlinear terms 
that prevent an exact mathematical solution for most problems.

16.5 Computational Fluid Dynamics (CFD)

Computational fluid dynamics (CFD) is a method for obtaining approximate solutions to 
problems in fl uid mechanics and heat transfer by using numerical solutions of the governing 
PDEs. Th is section describes the following:

• Why CFD is valuable
• How CFD is used in practice
• What CDF programs are and how they work

Why CFD Is Valuable

CFD gives engineers a modeling tool that greatly extends their abilities. For example, there is 
not a straightforward way to develop and solve equations that will predict the pressure fi eld 
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and streamline patterns for fl ow around a building. One might use an experimental approach, 
but this has issues such as matching the Reynolds number and the diffi  culty of performing 
parametric studies.

Th us, CFD provides a way to simulate physical phenomena that are impossible for analysis 
and diffi  cult for experiments. CFD is a useful modeling tool in cases such as the following:

• Complex systems (e.g., ink-jet printers, the human heart, mixing tanks)
• Full-scale simulations (e.g., ships, airplanes, dams)
• Environmental eff ects (e.g., hurricanes, weather, pollution dispersion)
• Hazards (e.g., explosions, radiation dispersion)
• Physics (e.g., planetary boundary layer, stellar evolution)

CFD is also useful for studying the eff ects of design perturbations. For example, to design a 
propeller, one could systemically vary design variables such as the blade profi le, blade pitch, 
and rotation speed and see the eff ect on performance variables such as effi  ciency, thrust, and 
power.

CFD is used in many industries and fi elds of study: aerospace, automotive, biomedical, 
chemical processing, HVAC, hydraulics, hydrology, marine, oil and gas, and power generation.

Summary. CFD is valuable to the engineer because

• CFD provides a method for modeling complex problems that cannot eff ectively be modeled 
with analytical or experimental fl uid mechanics,

• CFD provides a way to consider design perturbations on complex problems such as propeller 
design and the design of spillways, and

• CFD is widely used in industry.

CFD Codes in Professional Practice

A code is engineering lingo for a computer program. In professional practice and most research 
projects, engineers have the following options:

• Option 1. Write their own code. Th is is rarely done.
• Option 2. Apply a code that has been developed by others. Th is is the most common practice 

because code development requires years of eff ort.

Th is subsection describes three commonly used codes and provides suggestions about selecting 
a code.

Ground Water Modeling. MODFLOW (10) is a computer program for analyzing 
groundwater fl ow. Th is code has been under development since the early 1980s. MODFLOW 
is considered the de facto standard for simulation of ground fl ows. Th e program is well vali-
dated and is considered as legally defensible in U.S. courts.

MODFLOW is available in noncommerical (i.e., free) versions. However, the licensing 
is limited to government and academic entities. For commercial use, implementations of 
MODFLOW cost from $1,000 to $7,000 USD (10).

Internal Combustion Engine Modeling. Th e KIVA codes (11, 12) were originally de-
veloped in 1985 by Los Alamos National Laboratory to simulate the processes taking place 
inside an internal combustion engine. Th e KIVA programs have become the most widely used 
CFD programs for multidimensional combustion modeling. KIVA can be applied to under-
stand combustion chemistry processes, such as autoignition of fuels, and to optimize diesel 
engines for high effi  ciency and low emissions. Hence, KIVA has been used by engine manufac-
turers to improve the performance of engines.

Modeling of Flows with Free Surfaces. In 1963, Tony Hirt of the Los Alamos National 
Laboratory pioneered a computational method called the volume of fl uid (VOF) approach, 
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which is useful for tracking and locating a free surface or a fl uid–fl uid interface. Th us, the VOF 
method is useful for modeling fl ows such as fl ow from a reservoir or the fl ow of metal into a 
mold. Dr. Hirt left  Los Alamos and founded a company called Flow Science that now markets 
a code called FLOW-3D.

According to the company’s website (13), the following are some examples of applications 
of FLOW-3D:

• Modeling a coff er dam and spillway of a hydroelectric power plant
• Designing a canoe chute for passage around a low head dam
• Modeling the molding of foamed polyurethane resin, which can expand in volume by more 

than 30 times during molding

Th e examples of FLOW-3D, KIVA, and MODFLOW suggest some common ideas:

• CFD programs can be very useful for applications. Th e three codes just described pro-
vide technologies for modeling (a) groundwater fl ow, ( b) internal combustion engines, and 
(c) open-channel fl ows. Th ere are other codes available that allow one to model other 
applications. Th us, CFD is a powerful technology for modeling problems that involve fl uids.

• Select a CFD code to match your problem. CFD codes are developed to solve specifi c types 
of problems. FLOW-3D is for open channel fl ow, whereas KIVA is for internal combustion 
engines, and MODFLOW is for modeling groundwater fl ow. Th us, make sure that the CFD 
code is well suited for the type of problem you want to solve.

• Use an existing code. Many codes (e.g., MODFLOW, KIVA, and FLOW-3D) have been 
under development since the 1980s or earlier. Many years of work have gone into these 
codes. Th us, it is cost-eff ective to take advantage of this legacy instead of writing a code from 
scratch.

Features of CFD Programs

Th is subsection describes the vocabulary and ideas used by most CFD programs.
Approximation of PDEs. CFD codes apply mathematical methods to develop approxi-

mate solutions to the governing PDEs. Approximate solutions (estimates) can be close to real-
ity or far away from reality, depending on the details of how the estimate is made. Th e accuracy 
of the estimate is determined in part by how the code was developed. However, most of the 
accuracy is based on decisions made by the user of the code.

Th ere are many ways to develop approximate solutions of partial diff erential equations. 
Th ree common approaches are the fi nite diff erence method, the fi nite element method, and the 
fi nite volume method.

When a partial diff erential equation is approximated, the result is a set of many algebraic 
equations that are solved at points in space. Th ese points in space are defi ned using a grid.

Grid Generation. A grid (Fig. 16.20) is a set of points in space at which a code solves for 
values of velocity and other variables of interest. Th e grid is set up by the user. Th ere are two 
trade-off s:

• Accuracy. If the grid is closely spaced, which is called a fi ne grid, then the solution is gener-
ally more accurate. In the grid shown in Fig. 16.20, notice how the user set a fi ne grid near 
the wall of the cylinder.

• Computational time. If the grid is coarse (grid lines are widely spaced), then the amount of 
time for the code to run deceases. Decreasing the computer run time is important because 
CFD codes can take a long time (i.e., days) to run one simulation.

Grid generation capability is set up by the code developers, and the grid generation itself is 
done by the user. Wyman (15) describes three approaches available for grid generation:
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• Structured grid methods. With this method, the grid is laid out in a regular repeating 
pattern called a block (Fig. 16.20). Details (fi ne grid, coarse grid, etc.) are specifi ed by the 
user. Th e advantage of a structured grid is that the user can set up the grid to maximize 
accuracy while achieving acceptable run time. A drawback of a structured grid is that it can 
take signifi cant time for the user to input the parameters needed to create the grid. Also, a 
structured grid requires user expertise for proper layout.

• Unstructured grid methods. An unstructured grid is based on a computer algorithm that 
selects an arbitrary collection of elements to fi ll the solution domain. Because the elements 
lack a pattern, the grid is called unstructured. An unstructured grid method is well suited 
for novices because the grid can be set up easily and quickly and does not require much user 
expertise. Th e drawbacks are that the grid may not be good as a structured grid in terms of 
accuracy and solution time.

• Hybrid grid methods. Hybrid grid methods are designed to take advantage of the positive 
aspects of both structured and unstructured grids. Hybrid grids use a structured grid in local 
regions while using an unstructured grid in the bulk of the domain.

Time Steps. Because PDEs are being solved by CFD codes, the approximation methods 
involve solving for variables at specifi c instances in time. Th e interval between each solution 
time is called a time step.

Accuracy versus Solution Time. In general, if one selects a fi ne grid and small time 
steps, the CFD solution is more accurate. However, fi ne resolution of space and time drive 
up the required solution time for the computer. Th is might seem like a nonissue with today’s 
fast computers, but CFD programs can require days or weeks of solution time. Th us, there 
is a trade-off  between accuracy of a solution versus the time that the computer needs for 
calculations.

Boundary Conditions and Initial Conditions. Solving PDEs, which includes using 
CFD programs to develop approximate solutions to PDEs, involves the specifi cation of bound-
ary conditions and initial conditions:

• Specifying a boundary condition involves giving numerical values for the dependent vari-
ables on the physical boundaries that describe that spatial region in which the diff erential 
equations are to be solved. For example:
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FIGURE 16.20

A grid used to model subsonic fl ow 

past a circular cylinder at a Reynolds 

number of 10,000. From NASA (14).
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• When fl ow enters a boundary, the user might specify a known value of velocity at each 
point. Th is is known as a velocity boundary condition.

• When fl ow enters a boundary, the user might specify a known value of pressure at each 
point. Th is is known as a pressure boundary condition.

• Specifying an initial condition involves giving numerical values for the dependent variables 
at all spatial points at the starting time of the solutions.

Turbulence (Direct Numerical Simulation). Because most fl ows of engineering inter-
est involve turbulent fl ow, CFD codes have methods for analyzing turbulent fl ow. Th e most ac-
curate approach, which is called direct numerical simulation (DNS), involves setting the grid 
and time steps fi ne enough to resolve the features of the turbulent fl ow. As a result, Hussan (16) 
asserts that a DNS solution is very accurate but is also “unrealistic for 99.9% of CFD problems 
because it is computationally unrealistic.” Th is is because the required computer time is too 
large for today’s computers. Th us, DNS is not used for most problems.

Turbulence Modeling. Turbulence modeling involves the prediction of eff ects of turbu-
lence by applying simplifi ed equations. Th ese equations are simpler than the full, time-de-
pendent Navier-Stokes equations. CFD Online (www.cfd-online.com) describes 27 turbulence 
models and is a good source for details.

One of the most widely used turbulence models is called the k-epsilon model (or k-ε 
model). Th is model uses one equation for the turbulent kinetic energy (k) and another 
equation for the rate of dissipation of the turbulent energy (e). Th ese equations are used 
together with the Reynolds-averaged Navier-Stokes (RANS) equations. The RANS 
equations are developed by starting with the equations of motion and then taking the time 
average. According to Hussan (16), the k-ε method “can be very accurate, but it is not 
suitable for transient fl ows because the averaging process wipes out most of the important 
characteristics of a time-dependent solution.” Th e main advantage of the k-ε model is that it 
is computationally effi  cient.

Another widely used turbulence model is called large eddy simulation (LES). Large eddy 
simulation is a compromise between DNS and k-ε. LES uses enough detail to resolve the large-
scale structures of the turbulence but uses the k-ε equations to resolve the small scales. Th e 
LES method allows one to solve problems that are not well modeled with the k-ε model by 
using an approach that is more computationally effi  cient than DNS.

Solver. A solver is the computer algorithm that solves the algebraic equations used by the 
CFD code. Th e outputs of the solver are the values of the velocity, pressure, and other relevant 
fi elds.

Post Processing. Aft er the solver has generated a solution, the code uses this solu-
tion to calculate other parameters of interest. Th is process is called post processing, and the 
soft ware that does this work is called the post processor. Some common functions of a post 
processor:

• Calculate derivative variables such as vorticity or shear stress
• Calculate integral variables such as pressure force, shear force, lift , drag, coeffi  cient of lift , 

and coeffi  cient of drag
• Calculate turbulent quantities such as Reynolds stresses and energy spectra
• Develop plots and other visual representations of data:

• Plots showing time history—for example, time history of forces or wave heights
• 2-D contour plots of variables such as pressure, velocity, or vorticity
• 2-D velocity vector plots
• 3-D iso-surface plots of parameters such as pressure or vorticity
• Plots showing streamlines, pathlines, or streaklines
• Animations of the fl ow
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Verifi cation and Validation

Engineers are very interested in assessing the trustworthiness of solutions. To this end, the 
CFD community has adopted methods for assessing correctness.

Validation examines the degree to which CFD predictions agree with real-world observa-
tions. A common validation strategy is to systematically compare CFD predictions to experi-
mental data or to solutions to well-known problems, called benchmark solutions.

Verification examines the degree to which the numerical methods used by the code result 
in accurate answers. Verifi cation can involve varying the spacing in the grid and ensuring that 
the predicted results are not dependent on the grid spacing. Similarly, verifi cation can involve 
varying the time step to ensure that results are time step independent.

16.6 Examples of CFD

Th is section presents three examples of how professionals apply and think about CFD.

Flow through a Spillway

Problem Definition. Th is study by Li et al. (18) involved the Canton Dam (see Fig. 16.21), 
which is located on the North Canadian River in Oklahoma. When the dam was built in 1948, 
the design was based on maximum fl owrate (during a fl ood) of about 10,000 m3/s. Since this 
time, improved hydrology data have suggested that the dam should be able to pass a peak fl ood 
discharge of 17,700 m3/s. Th us, a new auxiliary spillway was proposed, and the study presents 
an analysis of the proposed spillway.

Methods. A commercial CFD code, Fluent, was used to solve the time-dependent Reyn-
olds-averaged Navier-Stokes (RANS) equations. Th e turbulence model was a k-ε model with 
wall functions. Th e CFD code was used to develop a tentative design. Th is design was then 
built in a 1:54 scale physical model, and the experimental data was used to validate the CFD 
code.

Results. Li et al. stated: (18, p. 74)

 “Th e physical model results were compared to the CFD model results, and found to 
be in good agreement. Th e CFD model was thus validated, which in turn validated the 
methodology used.”

Auxiliary
spillway

Island

Existing dam
and spillway

Flow

y

x

z

Approach 
channelUpstream

FIGURE 16.21

The Canton Dam showing the proposed new auxiliary spillway.
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In this quote note the following:

• Th e engineers concluded that the CFD model was trustworthy.
• Th e engineers suggest that integrating CFD and experimental modeling is a viable approach 

for the design of hydraulic structures.

Drag on a Cyclist

Problem Definition. Bicycle racers and coaches want to understand how to reduce aerody-
namic drag (see Fig. 16.22) because 90% or more of the resistive forces on the cyclist is due to 
this drag.

However, past CFD studies present issues with how the turbulence models were set up and 
with the degree of validation of the experiments. Th us, the purposes of the Defraeye et al. (14) 
study were as follows:

• Evaluate the use of CFD for the analysis of aerodynamic drag of diff erent cycling positions.
• Examine and improve some of the limitations of previous CFD modeling studies for sport 

applications.

Methods. Th e experimental method involved wind tunnel experiments to gather pres-
sure data at 30 spatial locations and to provide data on the coeffi  cient of drag. Th is drag data 
was measured as the product of coeffi  cient of drag (CD) and frontal area (A) because accurately 
measuring frontal area is challenging.

Th e CFD simulation used both the RANS approach and LES.
Results. Th e results (Table 16.3) show that the CFD and experimental results diff er by 

about 11% for RANS and about 7% for LES. Th e authors state that this is considered to be a 

(a) (b) (c)

FIGURE 16.22

Cyclist positions: (a) upright 

position, (b) dropped position, and 

(c) time trial position.

aTh e comparison with the experiment is calculated using this formula:

(ACD predicted from CFD) − (ACD measured from experiment)
(ACD measured from experiment)

TABLE 16.3 Predicted Drag for Cyclists from Defraeye et al. (17)

Cyclist Position 

(Fig. 16.22)

Turbulence 

Model

ACD 

(m2)

Comparison with 

Experiment (%)a

Upright RANS 0.219 13
LES 0.219 13

Dropped RANS 0.179 7
LES 0.172 3

Time trial RANS 0.150 12
LES 0.142 6
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close agreement in CFD studies. Th e authors report a fair agreement for the predicted surface 
pressures, especially with LES. Despite the higher accuracy of LES, the authors suggest that the 
higher computational cost makes RANS more attractive for practical use.

Th e authors conclude that CFD is a valuable tool for evaluating the drag corresponding 
to diff erent cyclist positions and for investigating the infl uence of small adjustments in the 
cyclist’s position. A strong advantage of CFD is that detailed fl ow fi eld information is obtained, 
which cannot easily be obtained from wind tunnel tests. Th ese details provide insights about 
the drag force and guidance for position improvements.

Predicting Wind Loads on a Telescope Structure

Problem. Because the next generation of optical telescopes are large, wind loading on the 
structure becomes more signifi cant. Th us, Mamou et al. (19) conducted a study to investi-
gate the wind loading on the prototype Canadian/U.S. very large optical telescope (VLOT) 
structure. Th e study was done during the fi rst phase of design to assess wind loads, vortex 
shedding, and cavity resonances caused by wind blowing over the opening of the telescope. 
Th e structure (Fig. 16.23) is 51 m in diameter, with a 24 m diameter opening through which 
the telescope views the sky. Th e purpose of the study was to assess the capability of a CFD 
model.

Methods. Th e code was a fully unsteady Lattice-Boltzmann CFD program. Wind tunnel 
data were used to validate the code.

Results. Th e authors noted that cavity resonance due to fl ow over the opening and vor-
tex shedding from the spherical structure were observed in the wind tunnel experiments and 
the CFD computations. Th e CFD code predicted three simultaneously excited cavity modes 
that were identical to those measured.

16.7 A Path for Moving Forward

For students who want to learn more fl uid mechanics, this section gives ideas for moving forward.

Study at the Graduate Level

Some useful graduate courses include partial diff erential equations, continuum mechanics, 
numerical methods, fl uid mechanics, and computational fl uid mechanics. While taking classes, 
some useful ways to expand one’s horizons include the following:

• Read the research literature.
• Read technical books.
• Read on the Internet (for example, see the online CFD community at www.cfd-online.com).

Flow

Spherical enclosure
(D = 51 m)

Telescope

Opening (D = 24 m) Cavity (resonances)
FIGURE 16.23

The very large optical telescope structure.
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Learn via Application (Jump into the Swimming Pool)

Some ideas for application include the following:

• Find a CFD code and learn to run it.
• Run projects for companies.
• Get involved in research: Take the lead role in writing a research paper.

For students who become involved in research, consider going to conferences and presenting 
your work. Submit your papers for publication. Sometimes, work will be criticized, but peer 
reviews are an opportunity for learning.

At research meetings, get to know the members of the community. Most people who attend 
research meeting have passion for their technical work, and many enjoy helping new people 
who are becoming engaged in the discipline.

Follow John Roncz’s Advice

As John Roncz states (see beginning of chapter), jump in and fi gure out things yourself. Th is is 
really the key to learning anything.

Models

• A model is an idealization or simplifi ed version of reality. 
Models are valuable when they help us reach our goals in 
an economical way.

• Th e process of model building is an iterative process 
including the following steps:
• Identify the variables.
• Classify the variables into performance variables (de-

pendent variables) and design variables (independent 
variables).

• Determine how to relate the variables. When variables 
can be related by applying engineering equations, apply 
the Wales-Woods model. When variables can be related 
by correlating experimental data, apply regression 
analysis and other methods from statistics.

• Validate to determine if model predictions are accu-
rate enough.

• In fl uid mechanics, there are three approaches to model 
building: analytical fl uid mechanics, experimental fl uid 
mechanics, and computational fl uid mechanics. Most 
models involve two or three of these approaches work-
ing synergistically.

• Model building is best done by starting with simple 
models and then evolving these models through an iterative 
process. Multiple trade-off s in model building involve re-
sources, benefi ts, solution accuracy, and solution detail.

Foundations for Learning Partial 

Differential Equations (PDEs)

• Th e PDEs that govern fl owing fl uids can be solved for 
only a few special cases because nonlinear terms pre-
clude a general solution. Problems that can be solved are 
called exact solutions. Th ese exact solutions were discov-
ered many years ago.

• Two reasons to learn PDEs are as follows:
• To understand and apply existing solutions (found in 

the literature)
• To understand the equations being solved by CFD codes

• Th e solution of the PDEs are fi elds. Th e general form of 
a fi eld is exemplifi ed by the velocity fi eld. Th e velocity 
fi eld is

Cartesian V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k

Cylindrical V = vr(r, θ, z, t)ur + vθ(r, θ, z, t)uθ + vz(r, θ, z, t)uz

• Notice that the velocity fi eld involves the following:
• Independent variables. Th e independent variables are 

the three position variables and time.
• Dependent variables. Th e dependent variables are the 

three velocity components.
• Taylor series are commonly applied in fl uid mechanics 

for developing derivations and for developing CFD pro-
grams. A useful form of the Taylor series is

16.8 Summarizing Key Knowledge
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(acceleration
of a fluid particle) = a =

dV
dt

= [
{( 𝜕u

𝜕t ) + u( 𝜕u
𝜕x ) + v( 𝜕u

𝜕y) + w( 𝜕u
𝜕z )}i

{( 𝜕v
𝜕t ) + u( 𝜕v

𝜕x) + v( 𝜕v
𝜕y) + w( 𝜕v

𝜕z)}j

{( 𝜕w
𝜕t ) + u( 𝜕w

𝜕x ) + v( 𝜕w
𝜕y) + w( 𝜕w

𝜕z )}k]
• Invariant notation is a mathematical notation that ap-

plies (i.e., generalizes) to multiple coordinate systems. 
Th ree common forms of invariant notation are as 
follows:
• Del notation uses the nabla symbol ∇.
• Gibbs notation uses words (e.g., grad, div, curl) to repre-

sent operators.
• Indicial notation uses subscripted letters to represent 

vector components and summations.
• An operator is a named collection of mathematical terms. 

Common operators in fl uid mechanics equations are as 
follows:
• Gradient (e.g., the gradient of the pressure fi eld)
• Divergence (e.g., the divergence of the velocity fi eld)
• Curl (e.g., the curl of the velocity fi eld)
• LaPlacian (e.g., the LaPlacian of the velocity fi eld)
• Material derivative (e.g., the time derivative of the 

temperature fi eld)
• Each operator has one or more physical interpretations. 

Th ese interpretations can be developed by working 
through the derivations of the PDEs.

f (x + Δx, y, z, t) = f (x, y, z, t) +( 𝜕f
𝜕x)

x, y, z, t
 
Δx
1!

 + ( 𝜕2f
𝜕x2 )

x, y, z, t
 
(Δx)2

2!
+ … H.O.T.

where H.O.T. stands for “higher-order terms.” For a small 
change (i.e., Δx is small), higher-order terms are oft en 
neglected.

• PDEs are written in two ways:
• Coordinate specifi c form. Terms apply to a specifi c co-

ordinate system. Th is approach is useful for specifi c 
applications.

• Invariant form. Terms apply to any coordinate system; 
that is, they generalize. Th is approach is useful for 
writing (e.g., thesis, research paper) and presentations 
because the equations are compact, and they illustrate 
the physics.

The Continuity Equation

• Any problem involving a fl owing fl uid can, in principle, 
be solved by solving a coupled set of fi ve partial diff er-
ential equations comprised of the continuity equation, 
the momentum equation, the energy equation, and two 
equations of state.

• Th e conservation form of the continuity equation is derived 
by applying the law of conservation of mass to a diff eren-
tial control volume. Th e resulting equation, in Cartesian 
coordinates, is

𝜕ρ
𝜕t

    + 
𝜕(ρu)

𝜕x
+

𝜕(ρν)
𝜕y

+
𝜕(ρw)

𝜕z
= 0

rate of accumulation of mass net rate of mass fl ow
in a diff erential CV divided out of the CV divided by
by the volume of the  the volume of the CV
CV (kg/s per m3) (kg/s per m3)

• Th e continuity equation can be expressed using two 
forms:
• Th e conservation form is derived by starting with a dif-

ferential control volume and applying conservation of 
mass to this CV.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ {

• Th e material derivative
• has multiple names in the literature (e.g., substantial 

derivative, Lagrangian derivative, and derivative fol-
lowing the particle),

• represents the time rate of change of a property of a 
fl uid particle, and

• is represented in symbols as

dJ
dt
    = ( 𝜕 J

𝜕t ) + V ∙ ∇ J = ( 𝜕 J
𝜕t ) + V ∙ grad ( J)

 time derivative  mathematics needed to do the derivative when 
 of property J of  a fi eld (i.e., an Eulerian approach) is being used
 a fl uid particle

• Acceleration, defi ned at a point in space, means the acceler-
ation of the fl uid particle at this point at the given instant 
in time. Acceleration in Cartesian coordinates is

{ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ 
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Velocity Derivative of velocity

�uu
�x

FIGURE 16.24

Nonlinear terms in the Navier-Stokes 

equation contain the product of 

velocity and its derivative.

• Th e nonconservation form is derived by starting with a 
diff erential fl uid particle and applying conservation of 
mass to this particle.

• Th e conservation and nonconservation forms are 
mathematically equivalent because one can start with 
one form of the equation and derive the other form.

• Th e nonconservation form of the continuity equation in 
Cartesian coordinates is

dρ
dt

+ ρ ( 𝜕u
𝜕x

+
𝜕v
𝜕y

+
𝜕w
𝜕z ) = 0

• Derivation of the continuity equation provides two 
interpretations of the divergence operator:

div (ρV) = ∇ ∙ (ρV) =
(

net rate of outflow of mass
from a differential CV centered
about point (x, y, z)

)
(volume of the CV)

∇ ∙ V = div (V)

=
(time rate of change of the volume of a fluid particle)

(volume of the fluid particle)

• When density is constant, the fl ow is called incompress-
ible, and the continuity equation can be written as

Invariant form ∇ ∙ V = div(V) = 0
Cartesian coordinates 𝜕u

𝜕x
+

𝜕v
𝜕y

+
𝜕w
𝜕z

= 0

The Navier-Stokes Equation

• Th e Navier-Stokes equation is derived by applying 
Newton’s second law of motion to a viscous fl ow while 
also assuming that the fl uid is Newtonian.

• In invariant form, the Navier-Stokes equation for an in-
compressible fl ow with constant density and viscosity is

• Derivation of the Navier-Stokes equation reveals the 
physics of operators:
• Th e gradient of the pressure fi eld describes the net 

pressure force on a fl uid particle divided by the vol-
ume of the particle.

• Th e divergence of the shear stress tensor describes the 
net viscous force on a fl uid particle divided by the vol-
ume of the particle.

• Nonlinear terms (see Fig. 16.24) appear in the accelera-
tion term of the Navier-Stokes equation.

Computational Fluid Dynamics (CFD)

• Computational fl uid dynamics (CFD) is a method for 
solving fl uid mechanics problems by developing approxi-
mate solutions to the governing PDEs. Benefi ts of learning 
CFD include the following:
• CFD can be applied to model complex problems that 

cannot be modeled eff ectively with experiment or 
analysis.

• CFD provides a way to vary design parameters and 
learn what happens to the performance of the system 
under study.

• CFD is widely used in industry.
• Regarding CFD codes:

• Engineers typically apply an existing code rather than 
writing their own code because many excellent codes 
are available and the process of developing a code 
takes years of eff ort.

• Engineers select codes that fi t the type of problem 
that they are trying to solve (e.g., for modeling ground-
water, engineers might select MODFLOW; for mod-
eling an internal combustion engine, engineers might 
select KIVA).

• CFD codes have an associated language:
• A grid is a set of points in space at which a code solves 

for values of velocity and other variables of interest.
• A time step is the interval between each solution time.
• Boundary conditions are specifi ed values of the depen-

dent variables (e.g., pressure, velocity) on the physical 
boundaries of the problem.

 ρ 
d V
dt

 = ρg + −∇p + μ∇ 2 V

 mass of the particle times  
weight of the net pressure force net shear force

 acceleration of the particle  
particle divided on the particle on the particle

 divided by the volume of the particle 
by its volume divided by its volume divided by its volume( ) ( ( () ) )

⏟

⏟ ⏟

{ 
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• Specifying an initial condition involves giving nu-
merical values for the dependent variables at all spatial 
points at the starting time of the solution.

• A solver is a label for the computer algorithm that 
solves the algebraic equations that approximate the 
PDEs that are being solved by the CFD code.

• A post processor is a computer algorithm that uses the 
solution from the solver to generate plots and calcu-
late parameters such as drag force and shear stress.

• Validation assesses the degree to which CFD predic-
tions agree with experimental data.

• Verifi cation examines the degree to which the nu-
merical methods used by the code result in accurate 
answers.

• Th ree common approaches to modeling turbulent fl ow 
are as follows:
• Direct numerical simulation (DNS) involves setting 

the grid and time steps fi ne enough to resolve the fea-
tures of the turbulent fl ow. DNS is unrealistic for most 
fl ows because the required computational time is too 
large.

• Large eddy simulation (LES) involves direct simulation 
of the large-scale eddies in the turbulence and approx-
imate simulation of the smaller eddies.

• Th e k-epsilon model (k-ε model) represents turbulence 
by introducing two extra equations. As compared 
to DNS and LES, the k-ε model is computationally 
effi  cient.
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Models in Fluid Mechanics (§16.1)

16.1 Which of the following could be considered a model? 
Why? (Select all that apply.)

a. Th e ideal gas law
b.  A set of instructions for using a Pitot-static tube to measure 

velocity

c. An airplane built from a kit
d. A computer program to predict the force on a pipe bend

16.2 Apply the modeling building process to the following task. 
Your team is designing a helium-fi lled balloon that will travel to 
at least 80,000 feet elevation in the atmosphere. Th e balloon will 
transport a payload comprised of a camera and a data acquisition 

PROBLEMS
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system. Right now, you choose to solve a simpler problem, which 
is to develop a model that predicts the weight on the earth’s 
surface (at your location) such that a helium-fi lled balloon is 
neutrally buoyant. Th is simpler problem can be easily tested with 
an experiment in your classroom.

a. What are the relevant variables?
b.  How are the variables related? What are the relevant equa-

tions? How can you apply these equations to develop a 
single algebraic equation to solve for your goal?

c.  What is a simple and low-cost way to test your math model 
using experimental data?

16.3 Apply the modeling building process to the following task. 
Your team is designing a two-stage, solid-fuel rocket that is 
intended to travel to 15,000 feet and then take photos. Right now, 
you choose to solve a simpler problem, which is to develop a 
model that predicts the height that a small, low-cost rocket will 
fl y. A small rocket can be purchased from manufacturers such as 
Estes or Pitsco, and it is relatively easy to measure elevation for 
such a rocket.

a. What are the relevant variables?
b.  How are the variables related? What are the relevant 

equations?
c.  What is a simple and low-cost way to test your math model 

using experimental data?

Foundations for Learning PDEs (§16.2)

16.4 Why do you think that engineers make the eff ort to learn 
partial diff erential equations? What are the benefi ts to them?

16.5 Consider the function f (x) =
1

1 − x
. Show how to fi nd the

Taylor series expansion for the function f (x) about the point 
x = 0. Evaluate the numerical value of the Taylor series for 
x = 0.1 using fi ve terms.
16.6 Consider the function f (x) = ln(x). Show how to fi nd the 
Taylor series expansion for the function f (x) about the point 
x = a. Th en, fi nd the numerical value for x = 1.5 and six terms 
of the Taylor series expansion.
16.7 Consider a fl at horizontal plate that is infi nite in size in 
both dimensions. Above the plate is a fl uid of viscosity μ. Th e 
plate is at rest. Th en, at time equals zero seconds, the plate is set 
in motion to the right with a constant velocity V acting to the 
right. Consider the velocity fi eld in the fl uid above the plate and 
simplify the general form of the velocity fi eld by answering the 
following questions.

a.  Which velocity components (u, v, w) are zero? Which are 
nonzero? Why?

b.  Which spatial variables (x, y, z) are parameters? Which can 
be ignored? Why?

c. Is time a parameter? Or, can time be ignored? Why?
d.  What is the reduced equation that represents the velocity 

fi eld?

Flat plate (infinite in extent)
(set in motion at t � 0)

Viscous fluid

x

y

V

Problem 16.7

The Continuity Equation (§16.3)

16.8 Compare and contrast the integral form of the continuity 
equation [(Eq. (5.28)] with the PDE form of the continuity 
equation [(Eq. (16.36)]. Address the following questions.

a.  Are the units and dimensions of each term the same? Or 
diff erent?

b.  How do the physics compare? What is the same? What is 
diff erent?

c.  How do the derivations compare? What is the same? What 
is diff erent?

d.  When would you want to apply the integral form of the 
continuity equation (Chapter 5)? When would you want to 
apply the PDE form of the continuity equation (Chapter 16)?

16.9 Start with the conservation form of the continuity equation 
in Cartesian coordinates and derive the nonconservation form.
16.10 Start with the nonconservation form of the continuity 
equation in Cartesian coordinates and derive the 
conservation form.
16.11 Consider water draining out of round hole in the bottom 
of a round tank. Assume constant density and also assume that 
the water does not swirl. Th en,

a.  select the general form of the continuity equation that best 
applies to this problem, and

b.  show how to simplify the general equation from part (a) to 
develop the reduced form.

Problem 16.11
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The Navier-Stokes Equation (§16.4)

16.12 Answer each question that follows.
a.  Is Eq. (16.72) in conservation form or nonconservation 

form? Why?
b.  Is Eq. (16.72) in invariant form or coordinate-specifi c form? 

Why?
16.13 What are the physics of the gradient of the pressure fi eld? 
What are the units? What are the dimensions?
16.14 What are the physics of the divergence of the shear stress 
tensor? What are the units? What are the dimensions?
16.15 Compare the Navier-Stokes equation to Euler’s equation.

a. What are two important similarities?
b. What are two important diff erences?

16.16 Stress, as introduced in the derivation of the Navier-Stokes 
equation, is a second-order tensor. Using the Internet, fi nd some 
articles on tensors and answer the following questions:

a. Why do people use tensors? What are the benefi ts?
b. What does tensor mean? How is a tensor defi ned?
c.  What are fi ve examples of tensors as they are applied in 

engineering and physics?

Computational Fluid Dynamics (§16.5)

16.17 If someone asked you why CFD codes are useful for 
engineers, how would you answer? List your top three reasons in 
priority order.
16.18 Would you prefer to write your own CFD programs, or 
would you prefer to use codes that have been written by others? 
Discuss the advantages and disadvantages of each approach.

16.19 Using the Internet, fi nd one example of a publicly available 
CFD program (either a commercial or noncommercial code) and 
describe the code so that others can understand it. Address the 
following questions in your response.

a.  What is the history of the code? When was the code devel-
oped? By whom?

b.  What is the main purpose of the code? What type of fl ow is 
the code well suited for?

c.  How much does the code cost?
d.  What training and resources are available to help you learn 

the code?
16.20 Briefl y explain each of the following ideas.

a. Grid
b. Time step
c. Solution time for a CFD program versus the accuracy
d. Boundary condition
e. Initial condition

16.21 Briefl y explain each of the following ideas.
a. DNS
b. k-epsilon method
c. LES

16.22 Briefl y explain each of the following ideas.
a. Post processor
b. Verifi cation
c. Validation
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Appendix

Volume and area formulas:

  Acircle = πr 2 = πD 2/4
  Asphere surface = πD 2

 Vsphere =
1
6

πD 3 =
4
3

πr 3

 Vcone =
1
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Centroids and moments 

of inertia of plane areas.
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TABLE A.1 Compressible Flow Tables for an Ideal Gas with k = 1.4

M or M1 = local number or Mach number upstream of a normal shock wave; p/pt = ratio of static 
pressure to total pressure; ρ/ρt = ratio of static density to total density; T/Tt = ratio of static 
temperature to total temperature; A/A* = ratio of local cross-sectional area of an isentropic stream 
tube to cross-sectional area at the point where M = 1; M2 = Mach number downstream of a normal 
shock wave; p2/p1 = static pressure ratio across a normal shock wave; T2 /T1 = static pressure ratio 
across a normal shock wave; pt2/pt1 = total pressure ratio across normal shock wave.

Subsonic Flow

M p/pt ρ/ρt
T/Tt A/A*

0.00 1.0000 1.0000 1.0000 ∞
0.05 0.9983 0.9988 0.9995 11.5914
0.10 0.9930 0.9950 0.9980 5.8218
0.15 0.9844 0.9888 0.9955 3.9103
0.20 0.9725 0.9803 0.9921 2.9630
0.25 0.9575 0.9694 0.9877 2.4027
0.30 0.9395 0.9564 0.9823 2.0351
0.35 0.9188 0.9413 0.9761 1.7780
0.40 0.8956 0.9243 0.9690 1.5901
0.45 0.8703 0.9055 0.9611 1.4487
0.50 0.8430 0.8852 0.9524 1.3398
0.52 0.8317 0.8766 0.9487 1.3034
0.54 0.8201 0.8679 0.9449 1.2703
0.56 0.8082 0.8589 0.9410 1.2403
0.58 0.7962 0.8498 0.9370 1.2130
0.60 0.7840 0.8405 0.9328 1.1882
0.62 0.7716 0.8310 0.9286 1.1657
0.64 0.7591 0.8213 0.9243 1.1452
0.66 0.7465 0.8115 0.9199 1.1265
0.68 0.7338 0.8016 0.9153 1.1097
0.70 0.7209 0.7916 0.9107 1.0944
0.72 0.7080 0.7814 0.9061 1.0806
0.74 0.6951 0.7712 0.9013 1.0681
0.76 0.6821 0.7609 0.8964 1.0570
0.78 0.6691 0.7505 0.8915 1.0471
0.80 0.6560 0.7400 0.8865 1.0382
0.82 0.6430 0.7295 0.8815 1.0305
0.84 0.6300 0.7189 0.8763 1.0237
0.86 0.6170 0.7083 0.8711 1.0179
0.88 0.6041 0.6977 0.8659 1.0129
0.90 0.5913 0.6870 0.8606 1.0089
0.92 0.5785 0.6764 0.8552 1.0056
0.94 0.5658 0.6658 0.8498 1.0031
0.96 0.5532 0.6551 0.8444 1.0014
0.98 0.5407 0.6445 0.8389 1.0003
1.00 0.5283 0.6339 0.8333 1.0000

(Continued)
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TABLE A.1 Compressible Flow Tables for an Ideal Gas with k = 1.4 (Continued)

 Supersonic Flow Normal Shock Wave

M1 p/pt ρ/ρt
T/Tt A/A* M2 p2/p1 T2/T1 pt2

/pt1

1.00 0.5283 0.6339 0.8333 1.000 1.0000 1.000 1.000 1.0000
1.01 0.5221 0.6287 0.8306 1.000 0.9901 1.023 1.007 0.9999
1.02 0.5160 0.6234 0.8278 1.000 0.9805 1.047 1.013 0.9999
1.03 0.5099 0.6181 0.8250 1.001 0.9712 1.071 1.020 0.9999
1.04 0.5039 0.6129 0.8222 1.001 0.9620 1.095 1.026 0.9999
1.05 0.4979 0.6077 0.8193 1.002 0.9531 1.120 1.033 0.9998
1.06 0.4919 0.6024 0.8165 1.003 0.9444 1.144 1.039 0.9997
1.07 0.4860 0.5972 0.8137 1.004 0.9360 1.169 1.046 0.9996
1.08 0.4800 0.5920 0.8108 1.005 0.9277 1.194 1.052 0.9994
1.09 0.4742 0.5869 0.8080 1.006 0.9196 1.219 1.059 0.9992
1.10 0.4684 0.5817 0.8052 1.008 0.9118 1.245 1.065 0.9989
1.11 0.4626 0.5766 0.8023 1.010 0.9041 1.271 1.071 0.9986
1.12 0.4568 0.5714 0.7994 1.011 0.8966 1.297 1.078 0.9982
1.13 0.4511 0.5663 0.7966 1.013 0.8892 1.323 1.084 0.9978
1.14 0.4455 0.5612 0.7937 1.015 0.8820 1.350 1.090 0.9973
1.15 0.4398 0.5562 0.7908 1.017 0.8750 1.376 1.097 0.9967
1.16 0.4343 0.5511 0.7879 1.020 0.8682 1.403 1.103 0.9961
1.17 0.4287 0.5461 0.7851 1.022 0.8615 1.430 1.109 0.9953
1.18 0.4232 0.5411 0.7822 1.025 0.8549 1.458 1.115 0.9946
1.19 0.4178 0.5361 0.7793 1.026 0.8485 1.485 1.122 0.9937
1.20 0.4124 0.5311 0.7764 1.030 0.8422 1.513 1.128 0.9928
1.21 0.4070 0.5262 0.7735 1.033 0.8360 1.541 1.134 0.9918
1.22 0.4017 0.5213 0.7706 1.037 0.8300 1.570 1.141 0.9907
1.23 0.3964 0.5164 0.7677 1.040 0.8241 1.598 1.147 0.9896
1.24 0.3912 0.5115 0.7648 1.043 0.8183 1.627 1.153 0.9884
1.25 0.3861 0.5067 0.7619 1.047 0.8126 1.656 1.159 0.9871
1.30 0.3609 0.4829 0.7474 1.066 0.7860 1.805 1.191 0.9794
1.35 0.3370 0.4598 0.7329 1.089 0.7618 1.960 1.223 0.9697
1.40 0.3142 0.4374 0.7184 1.115 0.7397 2.120 1.255 0.9582
1.45 0.2927 0.4158 0.7040 1.144 0.7196 2.286 1.287 0.9448
1.50 0.2724 0.3950 0.6897 1.176 0.7011 2.458 1.320 0.9278
1.55 0.2533 0.3750 0.6754 1.212 0.6841 2.636 1.354 0.9132
1.60 0.2353 0.3557 0.6614 1.250 0.6684 2.820 1.388 0.8952
1.65 0.2184 0.3373 0.6475 1.292 0.6540 3.010 1.423 0.8760
1.70 0.2026 0.3197 0.6337 1.338 0.6405 3.205 1.458 0.8557
1.75 0.1878 0.3029 0.6202 1.386 0.6281 3.406 1.495 0.8346
1.80 0.1740 0.2868 0.6068 1.439 0.6165 3.613 1.532 0.8127
1.85 0.1612 0.2715 0.5936 1.495 0.6057 3.826 1.569 0.7902

(Continued)
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1.90 0.1492 0.2570 0.5807 1.555 0.5956 4.045 1.608 0.7674
1.95 0.1381 0.2432 0.5680 1.619 0.5862 4.270 1.647 0.7442
2.00 0.1278 0.2300 0.5556 1.688 0.5774 4.500 1.688 0.7209
2.10 0.1094 0.2058 0.5313 1.837 0.5613 4.978 1.770 0.6742
2.20 0.9352–1† 0.1841 0.5081 2.005 0.5471 5.480 1.857 0.6281

2.30 0.7997–1 0.1646 0.4859 2.193 0.5344 6.005 1.947 0.5833

2.50 0.5853–1 0.1317 0.4444 2.637 0.5130 7.125 2.138 0.4990

2.60 0.5012–1 0.1179 0.4252 2.896 0.5039 7.720 2.238 0.4601

2.70 0.4295–1 0.1056 0.4068 3.183 0.4956 8.338 2.343 0.4236

2.80 0.3685–1 0.9463–1 0.3894 3.500 0.4882 8.980 2.451 0.3895

2.90 0.3165–1 0.8489–1 0.3729 3.850 0.4814 9.645 2.563 0.3577

3.00 0.2722–1 0.7623–1 0.3571 4.235 0.4752 10.330 2.679 0.3283

3.50 0.1311–1 0.4523–1 0.2899 6.790 0.4512 14.130 3.315 0.2129

4.00 0.6586–2 0.2766–1 0.2381 10.72 0.4350 18.500 4.047 0.1388

4.50 0.3455–2 0.1745–1 0.1980 16.56 0.4236 23.460 4.875 0.9170–1

5.00 0.1890–2 0.1134–1 0.1667 25.00 0.4152 29.000 5.800 0.6172–1

5.50 0.1075–2 0.7578–2 0.1418 36.87 0.4090 35.130 6.822 0.4236–1

6.00 0.6334–2 0.5194–2 0.1220 53.18 0.4042 41.830 7.941 0.2965–1

6.50 0.3855–2 0.3643–2 0.1058 75.13 0.4004 49.130 9.156 0.2115–1

7.00 0.2416–3 0.2609–2 0.9259–1 104.1 0.3974 57.000 10.47 0.1535–1

7.50 0.1554–3 0.1904–2 0.8163–1 141.8 0.3949 65.460 11.88 0.1133–1

8.00 0.1024–3 0.1414–2 0.7246–1 190.1 0.3929 74.500 13.39 0.8488–2

8.50 0.6898–4 0.1066–2 0.6472–1 251.1 0.3912 84.130 14.99 0.6449–2

9.00 0.4739–4 0.8150–3 0.5814–1 327.2 0.3898 94.330 16.69 0.4964–2

9.50 0.3314–4 0.6313–3 0.5249–1 421.1 0.3886 105.100 18.49 0.3866–2

10.00 0.2356–4 0.4948–3 0.4762–1 535.9 0.3876 116.500 20.39 0.3045–2

†x–n means x ∙ 10–n.
Data source: R. E. Bolz and G. L. Tuve, Th e Handbook of Tables for Applied Engineering Sciences, CRC Press, Inc., Cleveland, 1973. Copyright © 1973 
by Th e Chemical Rubber Co., CRC Press, Inc.

TABLE A.1 Compressible Flow Tables for an Ideal Gas with k = 1.4 (Continued)

 Supersonic Flow Normal Shock Wave

M1 p/pt ρ/ρt
T/Tt A/A* M2 p2/p1 T2/T1 pt2

/pt
1
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TABLE A.2 Physical Properties of Gases [T = 15°C (59°F), p = 1 atm]

Gas

Density 

kg/m3 

(slugs/ft3)

Kinematic 

Viscosity 

m2/s (ft2/s)

R 

Gas 

Constant 

J/kg K 

(ft-lbf/slug-°R)

cp 

J

kg K

( Btu

lbm-°R) k =
cp

cv

S 

Sutherland’s 

Constant 

K(°R)

Air 1.22
(0.00237)

1.46 × 10–5

(1.58 × 10–4)
287

(1716)
1004

(0.240)
1.40 111

(199)

Carbon dioxide 1.85
(0.0036)

7.84 × 10–6

(8.48 × 10–5)
189

(1130)
841

(0.201)
1.30 222

(400)

Helium 0.169
(0.00033)

1.14 × 10–4

(1.22 × 10–3)
2077

(12,419)
5187
(1.24)

1.66 79.4
(143)

Hydrogen 0.0851
(0.00017)

1.01 × 10–4

(1.09 × 10–3)
4127

(24,677)
14,223
(3.40)

1.41 96.7
(174)

Methane (natural gas) 0.678
(0.0013)

1.59 × 10–5

(1.72 × 10–4)
518

(3098)
2208

(0.528)
1.31 198

(356)

Nitrogen 1.18
(0.0023)

1.45 × 10–5

(1.56 × 10–4)
297

(1776)
1041

(0.249)
1.40 107

(192)

Oxygen 1.35
(0.0026)

1.50 × 10–5

(1.61 × 10–4)
260

(1555)
916

(0.219)
1.40

Data source: V. L. Streeter (ed.), Handbook of Fluid Dynamics, McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Tuve, Handbook 
of Tables for Applied Engineering Science, CRC Press, Inc. Cleveland, 1973; and Handbook of Chemistry and Physics, Chemical Rubber Company, 1951.
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TABLE A.3 Mechanical Properties of Air at Standard Atmospheric Pressure

Temperature Density Specifi c Weight Dynamic Viscosity Kinematic Viscosity

kg/m3 N/m3 N∙s/m2 m2/s

–20°C 1.40 13.70 1.61 × 10–5 1.16 × 10–5

–10°C 1.34 13.20 1.67 × 10–5 1.24 × 10–5

0°C 1.29 12.70 1.72 × 10–5 1.33 × 10–5

10°C 1.25 12.20 1.76 × 10–5 1.41 × 10–5

20°C 1.20 11.80 1.81 × 10–5 1.51 × 10–5

30°C 1.17 11.40 1.86 × 10–5 1.60 × 10–5

40°C 1.13 11.10 1.91 × 10–5 1.69 × 10–5

50°C 1.09 10.70 1.95 × 10–5 1.79 × 10–5

60°C 1.06 10.40 2.00 × 10–5 1.89 × 10–5

70°C 1.03 10.10 2.04 × 10–5 1.99 × 10–5

80°C 1.00 9.81 2.09 × 10–5 2.09 × 10–5

90°C 0.97 9.54 2.13 × 10–5 2.19 × 10–5

100°C 0.95 9.28 2.17 × 10–5 2.29 × 10–5

120°C 0.90 8.82 2.26 × 10–5 2.51 × 10–5

140°C 0.85 8.38 2.34 × 10–5 2.74 × 10–5

160°C 0.81 7.99 2.42 × 10–5 2.97 × 10–5

180°C 0.78 7.65 2.50 × 10–5 3.20 × 10–5

200°C 0.75 7.32 2.57 × 10–5 3.44 × 10–5

slugs/ft 3 lbf/ft 3 lbf-s/ft 2 ft 2/s

0°F 0.00269 0.0866 3.39 × 10–7 1.26 × 10–4

20°F 0.00257 0.0828 3.51 × 10–7 1.37 × 10–4

40°F 0.00247 0.0794 3.63 × 10–7 1.47 × 10–4

60°F 0.00237 0.0764 3.74 × 10–7 1.58 × 10–4

80°F 0.00228 0.0735 3.85 × 10–7 1.69 × 10–4

100°F 0.00220 0.0709 3.96 × 10–7 1.80 × 10–4

120°F 0.00213 0.0685 4.07 × 10–7 1.91 × 10–4

150°F 0.00202 0.0651 4.23 × 10–7 2.09 × 10–4

200°F 0.00187 0.0601 4.48 × 10–7 2.40 × 10–4

300°F 0.00162 0.0522 4.96 × 10–7 3.05 × 10–4

400°F 0.00143 0.0462 5.40 × 10–7 3.77 × 10–4

Data source: R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. Copyright © 1973 by Th e 
Chemical Rubber Co., CRC Press, Inc.
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TABLE A.4 Approximate Physical Properties of Common Liquids at Atmospheric Pressure

Liquid and 

Temperature

Density

kg/m3 

(slugs/ft3)

Specifi c 

Gravity

Specifi c 

Weight 

N/m3 (lbf/ft3)

Dynamic 

Viscosity 

N∙s/m2 (lbf-s/ft2)

Kinematic 

Viscosity 

m2/s (ft2/s)

Surface 

Tension 

N/m* (lbf/ft)

Ethyl alcohol(1)(3) 
 20°C (68°F)

799
(1.55)

0.79 7,850
(50.0)

1.2 × 10–3

(2.5 × 10–5)
 1.5 × 10–6

 (1.6 × 10–5)
2.2 × 10–2

(1.5 × 10–3)
Carbon tetrachloride(3) 
 20°C (68°F)

1,590
(3.09)

1.59 15,600
(99.5)

9.6 × 10–4

(2.0 × 10–5)
 6.0 × 10–7

 (6.5 × 10–6)
2.6 × 10–2

(1.8 × 10–3)
Glycerine(3) 
 20°C (68°F)

1,260
(2.45)

1.26 12,300
(78.5)

1.41
(2.95 × 10–2)

1.12 × 10–3

(1.22 × 10–2)
6.3 × 10–2

(4.3 × 10–3)
Kerosene(1)(2) 
 20°C (68°F)

814
(1.58)

0.81 8,010
(51)

1.9 × 10–3

(4.0 × 10–5)
2.37 × 10–6

(2.55 × 10–5)
2.9 × 10–2

(2.0 × 10–3)
Mercury(1)(3) 
 20°C (68°F)

13,550
(26.3)

13.55 133,000
(847)

1.5 × 10–3

(3.1 × 10–5)
 1.2 × 10–7

 (1.3 × 10–6)
4.8 × 10–1

(3.3 × 10–2)

Sea water 10°C 
 at 3.3% salinity

1,026
(1.99)

1.03 10,070
(64.1)

1.4 × 10–3

(2.9 × 10–5)
 1.4 × 10–6

 (1.5 × 10–5)

Oils—38°C (100°F) 
 SAE 10W(4)

870
(1.69)

0.87 8,530
(54.4)

3.6 × 10–2

(7.5 × 10–4)
 4.1 × 10–5

 (4.4 × 10–4)
 SAE 10W-30(4) 880

(1.71)
0.88 8,630

(55.1)
6.7 × 10–2

(1.4 × 10–3)
 7.6 × 10–5

 (8.2 × 10–4)
 SAE 30(4) 880

(1.71)
0.88 8,630

(55.1)
1.0 × 10–1

(2.1 × 10–3)
 1.1 × 10–4

 (1.2 × 10–3)
*Liquid–air surface tension values.
Data source: (1) V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill, New York, 1961; (2) V. L. Streeter, Fluid Mechanics, 4th ed., McGraw-Hill, 
New York, 1966; (3) A. A. Newman, Glycerol, CRC Press, Cleveland, 1968; (4) R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering 
Sciences, CRC Press, Cleveland, 1973.
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TABLE A.5 Approximate Physical Properties of Water* at Atmospheric Pressure

Temperature Density Specifi c Weight

Dynamic 

Viscosity

Kinematic 

Viscosity Vapor Pressure

kg/m3 N/m3 N∙s/m2 m2/s N/m2 abs

0°C 1000 9810 1.79 × 10–3 1.79 × 10–6 611

5°C 1000 9810 1.51 × 10–3 1.51 × 10–6 872

10°C 1000 9810 1.31 × 10–3 1.31 × 10–6 1,230

15°C 999 9800 1.14 × 10–3 1.14 × 10–6 1,700

20°C 998 9790 1.00 × 10–3 1.00 × 10–6 2,340

25°C 997 9781 8.91 × 10–4 8.94 × 10–7 3,170

30°C 996 9771 7.97 × 10–4 8.00 × 10–7 4,250

35°C 994 9751 7.20 × 10–4 7.24 × 10–7 5,630

40°C 992 9732 6.53 × 10–4 6.58 × 10–7 7,380

50°C 988 9693 5.47 × 10–4 5.53 × 10–7 12,300

60°C 983 9643 4.66 × 10–4 4.74 × 10–7 20,000

70°C 978 9594 4.04 × 10–4 4.13 × 10–7 31,200

80°C 972 9535 3.54 × 10–4 3.64 × 10–7 47,400

90°C 965 9467 3.15 × 10–4 3.26 × 10–7 70,100

100°C 958 9398 2.82 × 10–4 2.94 × 10–7 101,300

slugs/ft 3 lbf/ft 3 lbf-s/ft 2 ft 2/s psia

40°F 1.94 62.43 3.23 × 10–5 1.66 × 10–5 0.122

50°F 1.94 62.40 2.73 × 10–5 1.41 × 10–5 0.178

60°F 1.94 62.37 2.36 × 10–5 1.22 × 10–5 0.256

70°F 1.94 62.30 2.05 × 10–5 1.06 × 10–5 0.363

80°F 1.93 62.22 1.80 × 10–5 0.930 × 10–5 0.506

100°F 1.93 62.00 1.42 × 10–5 0.739 × 10–5 0.949

120°F 1.92 61.72 1.17 × 10–5 0.609 × 10–5 1.69

140°F 1.91 61.38 0.981 × 10–5 0.514 × 10–5 2.89

160°F 1.90 61.00 0.838 × 10–5 0.442 × 10–5 4.74

180°F 1.88 60.58 0.726 × 10–5 0.385 × 10–5 7.51

200°F 1.87 60.12 0.637 × 10–5 0.341 × 10–5 11.53

212°F 1.86 59.83 0.593 × 10–5 0.319 × 10–5 14.70

*Notes: Bulk modulus Ev of water is approximately 2.2 GPa (3.2 × 105 psi).
Data source: R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. Copyright © 1973 by 
Th e Chemical Rubber Co., CRC Press, Inc.
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Chapter 1

1.8 (b)
1.10 Surface force
1.18 (b)

1.20   ρ = 2.78 ×  10−3 
slug
ft3

1.24 No. Instead, p2 = 1.2 p1.
1.26 ρCO2

 = 1.66 kg/m3, γCO2
= 16.3 N/m3

1.28 D = 1.50 ft 

1.30 
ρwater
ρair

 = 253

1.32 mreleased = 31.9 kg
1.34 m = 5.23 × 108 slugs = 7.63 × 109

  kg
1.38 (a) and (b)
1.40 ρ = 0.253 lbm/ft3

1.42 (a) F = 100 N (b) F = 3.11 lbf  (c) F = 445 N
1.44 C = $10, 900
1.46 ML2/T 2, M/LT, M, L3/T, L2/T
1.48  Dimensions:  mass, energy/time, pressure; Units:  slug, 

kg, meters, horsepower, pascals
1.50 (a) M

LT2  (b) M ∙ L2

T 2  (c) ML2

T 3  (d) dimensionless
1.52 (a) ML

T2  (b) ML
T2

Chapter 2

2.2 (a) Table A.4 (b) Table A.3 (c) Table A.4
2.4 (a) Table A.4 (b) Table A.5
2.6 (a)
2.8 (a)
2.10  For water: Δμ = −9. 95 × 10−4 N∙s/m2, 

Δρ = −35 kg/m3. For air: Δμ = 3.70 × 10−6 N∙s/m2, 
Δρ = −0.28 kg/m3.

2.12  Oil: μ = 4.0 × 10−2, ν = 4.5 × 10−5. Kerosene: 
μ = 1.0 × 10−3, ν = 1.5 × 10−6. Water: μ =  
5.47 × 10−4, ν = 5.53 × 10−7.

2.14  μair = 1.91 × 10−5
 
N ∙ s
m2 , νair = 10.1 × 10−5m2/s, 

  μwater = 6.53 × 10−5 N∙s/m2, νwater = 6.58 × 10−7m2/s

2.16 (b) and (d)

2.18  SI: 13.55, 133,000 N/m3, 13,550 kg/m3. Traditional: 
13.55, 847 lbf/ft3; 26.3 slug/ft3.

2.20 (c)
2.22 Vfinal = 4290 cm3

2.24 (a)
2.26 (b)
2.28 (b)
2.30 (a) μ = 3 × 10−4 lbf ∙ s

in2 = 4.32 × 10−2 lbf ∙ s
ft2

 (b) μ = 2.067 N ∙ s
m2  

  (c) more
2.32 τ (y = 1 mm) = 1.49 Pa
2.34 τmax = 1.0 N/m2; midway between the two boundaries
2.36 τ = 0.300 lbf

ft2

2.38 (a) τmax occurs at y = H.

 (b) y =
H
2

−
μut

Hdp/ds

 (c) ut = (1/2μ)
dp
ds

H2

2.40 (a) 
τ2

τ3
=

2
3

 (b) V  = 0.06 m/s

 (c) τ = 0.30 N/m2

2.44 p =
4σ
d

2.46 m = 0.268 g
2.48 h =  14.9 mm
2.52 (a)
2.54 σ = 0.0961 N/m
2.56 (a)
2.58 Water will not boil

Chapter 3

3.2 (a) ρ = 0.181 kg/m3

 (b) ρ = 0.268 kg/m3

3.4 Pabs = 341 kPa abs

3.6 (a) W2
W1

=(D2
D1) 

2
 

 (b)  (D2/D1) =√300, 000;  select a D1 and D2 
        accordingly.

Answers
Answers to Even-Numbered Problems
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3.8 (a) and (c)
3.10 (a) water; (b) p = −γz
3.14 Height decreases; Δh = 2.55 m
3.16 SGoil = 0.87; pc = 72.6 kPa gage
3.18 F2 = 2310 N

3.20 p = 490 kPa gage;  
p50

patm
= 5.83

3.22 Δℓ = 0.0824 m
3.24 h2 = 4w

(SG) (γwater) (πD2
1)

3.26  pmax = 128 kPa, at bottom of liquid with SG = 3; 
FCD = 98.1 kN

3.28 Vadded = 29.6 in3

3.30 d = 2.80 m
3.32 (a)
3.34 (c)
3.36 pA = 591 Pa gage
3.38 pcontainer = 891 Pa gage
3.40 pA = 5.72 psig; pA = 39.5 kPa gage
3.42  Water: 468 mm; Mercury: 121 mm; 

p3 = pmax = 16.1 kPa gage
3.44 pA − pB = 4.17 kPa; hA − hB = −0.50 m
3.46 pA − pB = 108 psf; hA − hB = 3.32 ft 
3.50 Part 1 (b);  Part 2 (c)
3.52 (a) Tank 1 (b) Tank 2
3.54 (a) F = 22.1 kN (b) Distance = 0.50 m
3.56 a, b, and e
3.58 F = 11.9 kN; ycp − y = 14.8 mm
3.60 F = 1930 lbf
3.62 RA = 557  kN
3.64 h = ℓ/3
3.66 Will stay in position

3.68 F =
5γWh2

3√3
; 

RT

F
=

3
10

3.70 Unstable
3.72 Fh = 2465 N; Fv = 321 N
3.74  (a) all are equal
 (b) no change
 (c)  steel-fi lled sinks, water-fi lled neutral, air-fi lled rises
3.76 SG > 19.0; yes
3.78 (c)
3.80 Ship will rise; Δh = 0.343 ft
3.82  V = 31.6 L; γblock = 22.1  kN/m3

3.84 L = 2.24  m
3.86 ΔV = 0.854 m3

3.88 ρwood = 556  kg/m3

3.90 SG = 0.89
3.92 Weights of balls, mN:  5.19, 5.24, 5.29, 5.34, 5.38, 5.44

3.94 
ℓ
w

= 0.211; SG = 0.211

3.96 Unstable
3.98 Unstable

Chapter 4

4.2 Streakline
4.4 (c)
4.8 (b)
4.10 Th e conditions favor laminar
4.14 (b) and (d)
4.16  Steady fl ow: 𝜕Vs /𝜕t = 0; unsteady fl ow: 𝜕Vs /𝜕t ≠ 0; 

uniform fl ow: 𝜕Vs /𝜕s = 0; nonuniform fl ow: 
𝜕Vs /𝜕s ≠ 0

4.18 No
4.20 (d)
4.22 (b)

4.24 ax = (3 U 2
0 

r3
0

x4 )(1 −
r3

0

x3 )
4.26 ac = 5.48  ft/s2

4.28 aℓ = 3.56 ft /s2;  ac = 9.48 ft /s2

4.32 
𝜕p
𝜕z

= −70.8 lbf/ft 3

4.34 as = 66.8 ft /s2

4.36 pupstream = 490 kPa gage

4.38 
𝜕p
𝜕x

= −5330 psf/ft 

4.40 pB − pA = 12.7 kPa; pC − pA = 44.6 kPa
4.42 a and c
4.44 V2 = 6.76  m/s
4.46 V1 = 3.78  m/s
4.48 V = 231 ft /s
4.50 h = 2.22  m
4.52 (b)
4.54 V = 69.3  m/s
4.56 V = 1210 ft /s
4.58 V0 = 1.66  m/s
4.60 pB − pC = 66.5 kPa
4.62 V0 = 9.19 m/s
4.68 Irrotational
4.70 Irrotational
4.72 z2 − z1 = 0.045 m
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4.74 pA = 154 kPa, gage
4.76 (c)
4.78 p2 − p1 = 0.960 kPa
4.80 (c)
4.84 p = −4.98 psig
4.86  ar = 88, 800 m/s2; RCF = 9060
4.88 ω = 6.26 rad/s
4.90 an = 4g
4.92 F = 15.7 N
4.94 z2 = 12.6 m

Chapter 5

5.4 (c)
5.6 V = 0.996 m/s
5.8 Q = 12.6 m3/s; Q = 445 cfs
5.10 m· = 5.71  kg/s
5.12 V

Vo
= 1

3

5.14 Q = 138 cfs; Q = 62, 100 gpm
5.16 (a) Q = 5 m3/s (b) V = 5 m/s (c) m· = 9.5 kg/s
5.18 Q = 0.743 m3/s
5.20 Q = 0.136 m3/s
5.22 Vport = 13.1 ft /s
5.24 Q = 1 cfs
5.26 V = 0.230 ft /s
5.28 Q = 0.0849 cfs; Q = 37.9 gpm
5.30 Q = 0.110 m3/s
5.34  (a) extensive (b) extensive (c) intensive 

(d) extensive (e) intensive
5.40 (a), (b), (c), (d), and (e)
5.42 (a)
5.44 No. Explanation is based upon the continuity equation.
5.46  (a) m and ρ will both ↓. (b) From IDL gas law, with 

T constant, ↓ ρ leads to ↓ p.
5.48 Rising
5.50 p2 = 311  kPa

5.52 (a) At A, ac =
−Q2

r(2πrh)2 (b)  ac = −12, 700 m/s2

 (c) Vpipe = 48.4 m/s
5.54 Vin = 4.47 m/s
5.56 VR = (2/3)  ft /s
5.58 QA = 0.388 m3/s, Q18 cm = 0.0621 m3/s
5.60 VB = 5.00 m/s
5.62 QB = +3.33 cfm; leaving
5.64 Rising; dh

dt = 1/8 ft /sec
5.66 Qp = 7.5 cfs

5.68 m· = 7.18  slugs/s; VC = 20.4  ft/s; SG = 0.925
5.70 V = 6.95  m/s

5.72 (a) Q = 0.658AoB
2(p1 − p2)

ρ

 (b) Q = 5.20 × 10−4 m3/s
5.74 t = 9  h 6 min
5.76 Δt = 621 s  or  10.3 min; Δt = 20.1 min
5.80 ρe = 0.0676 kg/m3

5.82 (b)
5.84 pB = 18.1 lbf/in2

5.86 Qf = 0.228 L/min; Ql
Ql + Qw

= 0.028 (or 2.8%)
5.90 Q = 84, 400 cfm
5.96 Vo = 23.9 ft /s
5.98 V0 = 39.6 ft /s

Chapter 6

6.4 (a) MD (b) FD (c) FD
 (d) FD, if signifi cant (e) FD
6.6 F = 0.869 N
6.8 (a) True (b) False
6.10 μ = 0.239
6.12 v1 = 30.9 ft/s
6.14 F1 = 182 N; F2 = 169 N; F1 is slightly larger.
6.16 m· = 200  kg/s; D = 7.14  cm
6.18 pair = 8.25  atm
6.20 T = 946 lbf
6.24  Fx = −331 lbf (acts to the left ); Fy = −85 lbf (acts 

downward)
6.26 F = (9.99 lbf)i + (37.3 lbf)j
6.28 v = 0.774 m/s
6.30 h = 3.21 m
6.32 F (water on vane) = (25,200i + 5720j) N
6.34 Fx = 11.9  kN (acting to the left )
6.36 as = −80  m/s2

6.38 D = 91.8 lbf, L = 5260 lbf
6.40 v2 = 50.8 ft /s
6.42 F = −4310 lbf  (acts to left )
6.44 Fx = −6080 lbf
6.46 F = 1.02 MN
6.48 (a) pgage = 13.3 kPa (b) Fx = −1.38 kN/m
6.50 F = (−491i − 14.7j) lbf
6.52 F = (−36.8i + 119j) N
6.54 (d)
6.56 F = (−14.1i + 0j + 1.38k) kN
6.58 F = (−1030i  − 356j  + 287k) lbf
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6.60 Fa = 2470 lbf
6.62 Fy = 12, 200  lbf  (acting downward)
6.64 Fx = 3350 lbf (acting to left , opposite of inlet fl ow)
6.66 Fx = −1380 N
6.68 Fx = −272 lbf  (acting to the left )
6.70  Fx = −7.76 kN (acts to the left ), Fy = −1.8 kN (acts 

downward)
6.72 Fx = −49.7 kN
6.74 Fτ = πD2

4  [p1 − p2 − (1/3)ρU2]

6.76 T = 688 N (acting to the right)
6.80 T = 15.3 kN (to the left )

6.82 ar = 0.112 ft /s2; 
ar
gc

= 0.0035

6.84 Fr = 100 N (acting to the left )
6.86 Δt = 2.22 s
6.88 F = (465j − 1530k) N; T = (16.3j − 413k) N∙m
6.90  F = (12.1i − 3.1j) kN; M = (−2.54k) kN∙m
6.92 P = 3.83 hp

Chapter 7

7.4 a, d, f, and g
7.8 a
7.12 (a) α = 1.0 (b) α > 1.0
 (c) α > 1.0 (d) α > 1.0
7.14 α = 27

20

7.16  Q = 0.311 m3/s; pB = 86.4  kPa gage
7.18 pA = −437 psfg; V2 = 34.0  ft/s

7.20   
p2

γ
= 38.0 m

7.22 pA − pB = 12.4  kPa diff erential
7.24 KL = 2.57
7.26 Q = 5.03 × 10−3

 m3/s
7.28 p1 = 118 Pa gage
7.30 hL = 3.64  ft; pB = −3.51 psig
7.32 Depth = 6.78  m
7.34 Q = 0.302 m3/s
7.36 t = 6.63 h
7.38 Δp = 19.6 kPa; W·

p = P = 692  W
7.40 P = 1.76  MW
7.42 P = 24.1 hp
7.44 P = 61.6  kW
7.46 P = 1470  hp = 1.10  MW
7.50 h = 119 ft 
7.52 W· = P = 309 hp
7.54 hL = 0.975 ft 
7.56 hL = 0.125  m

7.58 Q = 0.0149  m3/s
7.60 Fj = 11.7  lbf  acting to the left 
7.62 Fwall = 198 lbf acting upward
7.64 p80 = 1210 kPa gage; Fx = −910 kN
7.66 (b), (c), and (d)
7.68  (a) From right to left  (b) Pump (c) Pipe CA is 

smaller—steeper HGL (e) No
7.72 hp = 8.00  m
7.74 (a) Q = 1.99 m3/s
 (b) Sketch
 (c) Bottom of pipe before nozzle 
 (d) High point at bend 
 (e) pmax = 373  kPa gage, and pmin = −82.6 kPa gage
7.76 P = 9260 hp, sketch
7.78 Q = 0.0735 m3/s
7.80 Q = 6.96 m3/s; pp = 78.5 kPa gage
7.82 zL = 129 ft 
7.84 Q = 0.523 m3/s; pm = −392 kPa gage

Chapter 8
8.2 Th ree dimensionless variables (or three π-groups)
8.4  (a) Homogeneous (b) Not homogeneous 

(c) Homogeneous (d) Homogeneous

8.6 Δh
d = f (D

d , γt2

ρd , h1
d ), or Δh

d = f (d
D, 

gt2

d , 
h1
d )

8.8 C = FD
μVd

8.10 C = Δp
Δℓ

D2

μV, or Δp
Δℓ = C μV

D2

8.12 F/(ρc2λ2) = f(D/λ), or F/(ρc2D2) = f(D/λ)

8.14  P
ρD5n3 = f ( Q

nD3); plot dimensionless power (P/ρD5n3) on 
  the vertical axis, dimensionless fl ow rate (Q/nD3) on 

the horizontal axis

8.16 V
√gD

= f (VρpD
μ , 

ρf
ρp)

8.18 
Q

ωD3 = f( μ
ωρD2, 

Δp/Δl
ρω2D )

8.20 Q
ND3 = f (hp

D , 
μ

ρND2, 
g

N2D)
8.24  (a) We (b) Re (c) Fr (d) M (e) Fr 

(f) We (g) Re (h) M

8.30 Um = 13.6  m/s; 
FD, m

FD, p
= 0.504

8.32 Vw = 0.10 m/s;
8.34 Qm

Qp
= 1

10; Δpp = 4.0  kPa
8.36   Fp = 7.58  lbf = 33.7 N
8.38 ρm = 10.5  kg/m3

8.40 c
8.42  Re = 25, 200, FD = 20.4 × 10−3 N; 

P = 16.3 × 10−3 W
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8.44   Vm = 9.0 m/s
8.46 Vtunnel = 25 m/s; FD = Fprot. = 2400 N
8.48 Qm = 0.0455 m3/s; Cp = 1.07
8.50 Fp = 25  kN
8.52 d = 0.913 mm
8.54 hp = 1.6 m; tp = 8.94  s
8.56 Vm = 13.27 m/s = 47.8 km/hr
8.58 Vp = 20.2  ft/s; Qp = 35, 700 ft3/s
8.60 tp = 5 min; Qp = 312 m3/s
8.62 Fp = 3.83 MN
8.64 Lm

Lp
= 1

31.4 = 0.0318
8.66  pwindward wall = 1.93 kPa gage;

pside wall = 1929 Pa gage × (−2.7) = −5.21  kPa gage;
pleeward wall = 1929 Pa gage × (−0.8) = −1.54  kPa gage;
Flateral = 48.6 MN

Chapter 9

9.2   V = 1.38 m/s
9.4 μ = 3.44 × 10−2 N∙s/m2

9.6  (a) u = (umax
Δy ) y = 150y m/s 

(b) rotational (c) yes (d) Fs = 180 N
9.8 T = 43.1 N∙m
9.10 T = 3.45 × 10−3 N∙m
9.12  (a) Pressure gradient (b) Centerline 

(c) Two walls (d) Centerline
9.14 (a) False (b) False (c) False (d) True
9.16 umax = 0.703 ft /s
9.18 q = 1.57 × 10−4 m2/s

9.20 
dp
ds

= −464  psf/ft 

9.22 
dp
ds

= −6.30 × 104 Pa/m;  P = 3.18 × 10−4 W

9.24 a, b, and d
9.26 u = 0.23 m/s
9.28 u = 0.311 m/s
9.30 Th icker boundary layer and reduced τ

9.32 
δ
x

= 0.0071

9.34 (a)
9.36 (a) δ = 3.09 mm (b) x = 0.437  m 
 (c) τ0 = 1.06 N/m2

9.40  (a) Fs, wing = 230 N (b) P = 12.8  kW 
(c) xcr = 14.4 cm (d) 16.2% increase

9.42 
Fs, 30

Fs, 10
= 2.63

9.44  T = 124 N

9.46 F = 42.6 N
9.48  Fs = 4.17 N
9.50 L = 0.0845m; Fs/B = 40.0 N/m
9.52  (a) P81.1 = 12.1 kW; P204 = 171 kW 

(b) Fs81.1
= 534 N;  Fs204

= 3020 N
9.54 Fs = 49, 100 lbf
9.56 (a) Fs = 1.85 MN (b) P = 17.1 MW 
 (c) δ = 2.25 m
9.58 P = 1.62 hp

Chapter 10

10.2 Turbulent; Le = 8.75  m
10.4 (a) hf = 5.57  ft
 (b) D = 0.200  m
10.6 (d)
10.8 (d)
10.10 Δp = 10.8  kPa gage
10.12 f = 0.0491
10.14 (a)
10.16  f = 1.18; Re = 54.4; doubling Q will increase both 

V and hf by a factor of 2.
10.18 Downward; V = 0.90 m/s
10.20 Re < 2000, so laminar; f = 0.0406; hf

L = 0.0096
10.22 Δp = 0.461 kPa per 10 m of pipe length
10.24 (d)
10.26  Select a 14-inch nominal diameter NPS schedule 

40 pipe (ID = 13.1 in.).
10.28  Downward from right to left ; f = 0.0908; laminar; 

μ = 0.068  N∙s/m2

10.30 Δp = 321 Pa diff erential
10.32 False
10.34 f = 0.0102
10.36 f = 0.018
10.38  (a) Vmax = 0.632 m/s (b) f = 0.041 

(c) u* = 0.0358  m/s (d) τ25 mm = 0.513 N/m2 
(e) No. Closer to factor of 4.

10.40 f = 0.0300
10.42 pA = 768  kPa gage
10.44 Quadrupled
10.46 (e)
10.48 (a) Δp = 29.1  kPa
 (b) hf = 2.97  m
 (c) Power to overcome head loss = 177  W

10.50 
Δp
L

= 2.48 psf per foot of tube

10.52  (a) No. Instead, a factor of √2. (b) Small factor, 
not 2. (c) Factor of 5.48 when D is doubled.
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10.54 (a) 1 (b) 3 (c) 2
10.56 D = 0.022  m
10.58 V = 3.15  m/s
10.60  D = 22 cm (nominal pipe size); P = 45.6  kW for 

each kilometer of pipe length
10.62 K = 15.4
10.64 (e)
10.66 t = 29.7 s
10.68 (a) V2 = 26.5 m/s (b) h = 35.9 cm
10.70 P = 38.1 hp
10.72 (b)
10.74 D ≈ 8 in
10.76 P = 7.07  kW
10.78 P = 10.1 × 10−4  hp
10.80 Q = 0.0129 m3/s; pA = −92.0  kPa
10.82 z1 − z2 = 44.5 m
10.84 pA = 51.6 psig
10.86 Δpf = 1.77 lbf/ft 2

10.88 Ploss = 27.5  kW
10.90 P = 581 kW
10.92 Q ≈ 2, 950 gpm

10.94 
VA

VB
= 1.26

10.96 Q1 = 2.60 cfs
10.98  Q(12-inch pipe) = 6.46 cfs;    Q(14-inch pipe) =  

7.75 cfs;    Q(16-inch pipe) = 10.8 cfs;   hLAB
= 107  ft

Chapter 11

11.2 (d)
11.4 True
11.6  (a) False. CD is a π–group, therefore dimensionless. 

(b) False. Projected area is area of circle.
11.8 (a) FD = 337  N (b) V = 35.7 mph
11.10 (d)
11.12 True
11.14 (a) FD = 802.7  N (b) FD = 177, 000  N
11.16 V = 19.7  m/s
11.18 V = 3.9  m/s
11.20 V = 33.5 m/s
11.22 FD =  4720 lbf
11.24 FD = 4.14  kN
11.26 (5.9  m/s) ≤ V ≤ (17.7  m/s)
11.28 (c)
11.30 Additional power = 21.9  hp
11.32 14.7%

11.34 P =  47.2 kW
11.36 Vc = 12.6 m/s
11.38 Sobj, (V/A), and CD

11.40 (e)
11.42 V0 = 1.47 m/s
11.44 Accelerate; form drag
11.46 γsphere = 8750  N/m3

11.48 V = 9.13 m/s
11.50 V0 = 3.83 m/s upward
11.52 (a) FL = 4.84  N
 (b)  A = 6.23 × 103 mm2

11.54 (a)
11.56 b = 18.75  ft
11.58 (d)
11.60 V = [43(W/S)2(1/(πΛρ2CD0

))]1/4; V = 29.6 m/s
11.62 V0 = 10.5 m/s; FL/length = 16, 000  N/m
11.64 FD = 4000 N

Chapter 12 

12.2 (a) V = 761 mph (b) s = 0.84 mi
12.4 c = 427 m/s
12.6 c = 4160 ft /s
12.8 Tt = 185°C
12.10  (a) V = 1970 km/hr (b) Tt = 377 K = 104oC 

(c) V = 1090 km/hr
12.12 W = 948 Pa
12.14 (a) V = 346 m/s (b) p = 177 kPa (c) T = 407 K
12.16 FD = 94.1 N
12.18  No. Impossible because it would violate the second 

law of thermodynamics.
12.20  (a) M2 = 0.475 (b) p2 = 310 psia 

(c) T2 = 1326.6 °R = 866.6 °F
12.22  (a) M2 = 0.454 (b) p2 = 680 kPa, abs 

(c) T2 = 680 K = 407 °C (d) ρ2 = 2.55 kg/m3

12.26  (a) m· = 0.0733 kg/s (b) m· = 0.0794 kg/s; 
error = 8.3% (too high)

12.28 pb = 87.2 kPa abs
12.32 (a) Ae /A* = 4.45 (b) AT = 29.5 cm2

12.34  (b) p = 413  kPa and T = −31 °C 
(c) Overexpanded (d) pt = 174 kPa

12.36  M3 = 0.336; pt = 499 kPa; p3 = 461 kPa

Chapter 13

13.2 V = 5.01  m/s
13.4 % error = 0.1%
13.6 V ≥ 0.06  m/  s
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13.10  (a) V  (b) Q (c) P (d) Q (e) P (f) Q 
(g) Q (h) P (i) Q (j) V

13.12 Q = 3.40 × 10−3 m3/s
13.14 Vmean = 4.33  m/  s;  Vmax /Vmean = 2; Q = 0.196 m3/s
13.16 Cv = 0.975; Cc = 0.640; Cd = 0.624
13.20 Q = 5.01 cfs
13.22  Defl ection hC = hF = 1.82 m; ΔpC = 225 kPa; 

ΔpF = 222 kPa
13.24 Q = 4.44 × 10−3

 m3/  s
13.26 Δp = 1, 610 psf;  P = 32.0 hp; sketch
13.28 Q = 0.0842 m3/s
13.32 d = 0.221 m
13.34 (b)
13.36 Q = 7.6 cfs
13.38 Q = 0.00124  m3/s
13.40 hL = 64V2

0/2g
13.42 Q/Qstd. = (ρstd./ρ)0.5

13.44 V = (L/Δt)[−1 + √1 + (cΔt/L)2; V = 22.5  m/  s
13.46 Q = 0.325  m3/  s
13.48 (c)
13.50 P = 1.22 m
13.52 H = 0.53 ft , Q = 2.54  ft 3/s
13.54 Q = 202  ft3/  s
13.56 Water level is falling.
13.58 Q = 6.24 ft 3/s
13.60 h = 1.24 m

Chapter 14

14.4 FT = 926 N; P = 35.7 kW
14.6 N = 1160 rpm
14.8 D = 1.71 m; V0 = 89.4 m/s
14.10 N = 1170 rpm
14.12 a = 0.783 m/s2

14.14 Q = 0.667 m3/s
14.16 Q = 0.32 m3/s; P = 13.5 kW
14.18 Q = 3.60 m3/s; ΔH = 38.7 m; P = 1710 kW
14.22 D = 2.07 m; P = 27.8 kW
14.26 ΔH = 91.3 m; Q = 0.878 m3/s
14.28 Q = 6.25 cfs
14.30 H30 = 73.8 m
14.32 Q = 0.0833 m3/s; Δh = 146 m; P = 104 kW
14.36  Nss = 2,760, which is much below 8,500; therefore, 

safe.
14.38 Radial fl ow pump
14.40 N = 2070 rpm
14.44 Pref = 118.0 kW

14.46 Pref = 592.4 kW
14.48 P = 10.6 MW; D = 2.85 m
14.52 a. α1 = 6.78° b. P = 88.9 MW c. increase β2

14.54 α1 = 13.6°
14.58 A = 282 m2

14.60 W = 3.46 m

Chapter 15

15.2 Sketch; Rh = b2
15.4 (c)
15.6 (d)
15.8 Q = 8.91 m3/s
15.10 Q = 6.5  ft3/  s
15.12  DW Eqn: V = 7.75 ft /s; Q = 1610 cfs; Manning Eqn: 

V = 7.05 fps; Q = 1470 cfs
15.14 Manning: Q = 443 cfs
15.16 d = 4.29 ft 
15.22 Supercritical, and y2 = 15.07 ft 
15.24 Subcritical
15.26 E = 1.907 m; y2 = 1.58 m
15.28 Supercritical
15.30 Plot; yalt = 5.38 m; y2 = 2.33 m
15.32 (e)
15.34 Elev. =  101 m
15.36  (a) y2 = 2.49  m; Δy = −0.51  m (b) y2 = 3.40 m; 

Δy = 0.40 m (c) zstep, max =  0.43 m
15.38 Δz = 0.89 m
15.40 y2 = 1.43 ft 
15.42 V = 6.95 ft /s
15.44  Wave in shallow water is slower than that in deeper 

water.
15.46  hL = 2.30 ft ; P =  4.70 hp; 

Fx = −51.2 lbf; that is, 51.2 lbf opposite to the 
direction of fl ow

15.48 Yes; y2 = 5.17 m
15.50 y2 = 2.09 m
15.52 q = 29.1 ft 2/s
15.54  Yes; at approx. 29 m downstream of the sluice gate; 

sketch
15.56 Δ Elev = 1.42 m (increase)
15.58 (c)
15.60 Sketch with hydraulic jump; S1 and H2
15.64 Q = 19.2 m3/s

Chapter 16

16.12  True; False; False





Abrupt/sudden expansion, 244–245
Absolute pressure, 16, 62–64
Absolute temperature, 16
Acceleration

calculating, when velocity fi eld is specifi ed, 118
centripetal, 117
convective and local, 117
defi ned, 115
gravitational, 10
mathematical description of, 116–117
moving objects and, 209–211
physical interpretation of, 115–116

Acceleration fi eld, 537–538
Accumulation 

mass, 166
momentum, 194–195

Action force, 9
Adhesion, 49–50
Adiabatic process, 391, 396
Advance ratio, 451–452
Adverse pressure gradient, 138
Airfoils

drag and lift  on, 373–379
sound propagation, 393

Airplanes
drag and lift  on, 373–379
Mach number for, calculating, 395
total temperature calculation, 397
wind tunnel applications, 277–278

Alternate depths, 496
Analytical fl uid dynamics (AFD), 527
Anderson, J., 297
Anemometers

cup, 423
hot-wire or hot-fi lm, 423–424
laser-Doppler, 424–425
vane or propeller, 422

Angular momentum equation, 211–214
Apron, 509
Archimedes’ principle, 85
Area-averaged velocity, 156
Atmospheric pressure, 61–62
Attached fl ow, 114, 115
Automobiles

drag and lift  on, 282–283, 379–382
model tests for drag force on, 282–283

Average shear stress coeffi  cient, 302, 305
Avogadro’s law, 15
Avogadro’s number, 17
Axial-fl ow pumps, 454–458
Axisymmetric bodies, drag and, 360–365

Barometers, 71
Bernoulli equation (in calculations)

inviscid and irrotational fl ow, 137
inviscid fl ow, 135

Bernoulli equation (theory)
compared with the energy equation, 244
continuity equation and, 174
derivation of, 123, 244
examples, 126–129
head form, 123
irrotational form, 136–137
physical interpretation-energy is 

conserved, 124
physical interpretation-velocity and 

pressure vary, 125
pressure form, 123
summary of, 126, 143

Best hydraulic section, 492
Bingham plastics, 44–45
Blasius solution, 299
Body(-ies)

defi ned, 6
fl oating, 87–90

Body-as-a-particle, 6
Body force, 9, 188–189
Boundary, system, 33
Boundary conditions, 551–552

for Couette fl ow, 295
for Poiseuille fl ow, 296

Boundary layer, 297–305
calculations with, 300–305
description of, 297–298
laminar, 302
mixed, 302
thickness of, 300–301, 305
tripped, 302
velocity profi les in, 298–300

Bourdon-tube gage, 71
Boyle’s law, 15
Buckingham π theorem, 265
Bulk modulus of elasticity, 35, 39
Buoyant force, 84–90

as common fl uid force, 43
defi ned, 84
fl oating bodies, 87–90
immersed bodies, 86–87

Buoyant force equation, 84–85

Capillary action, 50–51
Capillary repulsion, 51
Capture area, 476, 477

Index
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Cartesian components, 109
Cartesian coordinates, 530–531, 548
Cavitation, 174–177

benefi ts of, 175
defi ned, 174
degradation from, 175
sites, identifying, 176–177

Center of buoyancy, 86–87
Center of pressure (CP), 76, 79
Centrifugal compressors, 466–468
Centrifugal pumps, 337–338, 458–461
Centripetal acceleration, 117
Centroid, 77
Channel, 295–297
Characteristic curves, 456
Charles’s law, 15
Chemical energy, 228–229
Chezy equation, 488, 489, 491
Circulation, 370–372
Closed system (control mass), 160–162, 231
Coeffi  cients. See specifi c coeffi  cients
Coeffi  cient of drag, 302, 358
Coeffi  cient of lift , 372
Coeffi  cient of velocity, 430
Colebrook-White formula, 324
Combined head loss, 315–316, 331–335
Combined head loss equation, 333–334
Component head loss, 315–316, 331–335
Compressible fl ows/fl uids, 390–417

density, 398
drag and, 368–370
isentropic, through a duct with varying area, 405–416
kinetic, 398–400
Mach number relationships, 395–400
normal shock waves, 400–405
speed of sound, 390–394
temperature, 396–398
wave propagation, 390–395

Compressors, centrifugal, 466–468
Computational fl uid dynamics (CFD), 281, 527, 548–555

computer programs (codes), 549–550
examples of, 553–555
features of, 550–552
importance of, 548–549
validation and verifi cation, 553

Conduits, defi ned, 312
Conduits, fl ow in

centrifugal pumps, 337–338
classifying, 312–314
developing versus fully developed, 313–314
entry or entrance length, 313–314
fl ow problems, strategies for solving, 327–331
laminar fl ow in round tubes, 319–322
laminar versus turbulent, 312–313
nonround, 335–336
parallel pipes, 338–339
pipe head loss, 315–317

pipe networks, 339–342
pipe sizes, specifying, 314–315
stress distributions in pipe fl ow, 317–319
turbulent fl ow, 322–327

Conjugate depth, 507–508
Conservation of energy, 230–231
Conservation of mass. See Continuity equation
Consistent Unit Rule, 20–21
Consistent units, 20–22
Constant density, 67–68, 543
Constant density assumption, 38–39
Constant velocity, 207–209
Continuity equation (in calculations)

algebraic form, 168
diff erential equation form, 544

Continuity equation (theory)
applications, 167–174
Bernoulli equation and, 174
constant density, 543
cylindrical coordinates, 541
derivation, 166, 538–541
diff erential form, 538–544
invariant notation, 542–543
modeling, 538–544
physical interpretation of, 166–167
pipe fl ow form, 172–174
summary of, 168, 543–544
units, 168

Continuum assumption, 6–7
Controls in open channel fl ow, 512
Control mass (closed system), 160–162, 231
Control surface (CS)

defi ned, 161
transport across, 163–164

Control volume (CV) (open system)
conservation of energy and, 231
description of, 161–162
linear momentum equation for stationary, 197–206

Control volume approach
closed system (control mass), 160–162
open system (control volume), 161–162
properties, intensive and extensive, 161, 162
Reynolds transport theorem, 164–166
transport across control surface, 163–164

Convective acceleration, 117
Couette fl ow

and viscosity equation, 46–48
and viscous fl ow, 294–295

Critical depth, 498
Critical fl ow, 496–502
Critical-fl ow fl umes, 500–501
Critical mass fl ow rate, 410
Critical pressure ratio, 411–412
Critical thinking (CT), 2–3
Cross, H., 340
Culverts, uniform fl ow in, 492–495
Cup anemometers, 423
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Curved surface, pressure force on, 81–83
Cyclist, drag on a, 554–555
Cylinders, drag on, 360
Cylindrical coordinates, 531–532, 541, 548

Dam spillways, hydraulic jumps on, 508–510
Darcy-Weisbach equation (DWE), 316–317, 487–488
Deforming CV, 161
de Laval nozzles

fl ow in, 407–410
mass fl ow rate, 410–411, 414–416
nozzle fl ow classifi cation by exit 

conditions, 411–414
shock waves in, 413–414
truncated, 414–416

Density, 37–39
bulk modulus of elasticity, 39
constant, 67–68, 543
and constant density assumption, 38–39
defi ning, 14
as fl uid property, 35
specifi c gravity, 37–38
total, 398
variable, 66–67

Depth, conjugate versus sequent, 507–508
Depth ratio, 507
Derivatives, 12–13
Design storm, 493
Developing fl ow, 313–314
Diagram(s)

free body, 66
momentum, 195–197
moody, 324–327
phase, liquid and vapor, 52–53

Diff erential pressure, 64, 75
Dimensions

primary and secondary, 22–23
time as, 22

Dimensional analysis
approximate, at high Reynolds numbers, 280–283
Buckingham π theorem, 265
common π groups, 269–272
defi ned, 265
exponent method, 268–269
model-prototype performance, 279–280
need for, 263–265
open-channel fl ow, 484–485
similitude, 272–276
step-by-step method, 265–268
variables, selection of signifi cant, 269

Dimensional homogeneity (DH), 23–24
Dimensionality, of fl ow, 113
Dimensionally homogeneous, 23
Direct numerical simulation (DNS), 552
Direct step method, 515
Discharge coeffi  cient, 430, 455–458
Discharge (volume) fl ow rate, 320–321

equations for, 155–158
measuring, 427–441
in a pipe network, 341–342

Dividing streamline, 105
Doppler eff ect, 394
Draft  tube, 475
Drag curve, standard, 362
Drag force

airfoil, 373–379
automobile, 282–283, 379–382
axisymmetric bodies and, 360–365
and boundary layer, 302–303
calculating, 357–361
coeffi  cient of. See Coeffi  cient of drag
as common fl uid force, 43
compressible fl ows and, 368–370
on a cyclist, 554–555
cylinder, 360
defi ned, 355
induced, 375–376
on a sphere, 364
on a sphere, calculating, 398–399
streamlining to reduce, 368
stress distribution and, 355–357
surface roughness, 360–361
three-dimensional bodies and, 360–365
two-dimensional bodies and, 358–359

Drag force equation, 357–358
Dynamic similitude, 274–276

Eddy, 298
Effi  ciency

equation for, 241
mechanical, 241–243
thermal, 241

Effl  ux, 167
Electrical energy, 229
Electromagnetic fl owmeters, 436–437
Elevation, 61–62
Energy

categories of, 228–229
conservation of, 230–231
defi ned, 228
specifi c, 496–497
technical vocabulary of, 228–230
units, 228

Energy equation (in calculations), 237
Energy equation (theory)

applications, 238–241, 243
compared with the Bernoulli equation, 244
derivation of, 232, 236–237
fl ow and shaft  work, 232–234
kinetic energy correction factor, 234–236
modeling, 538
physical interpretation of, 237
for steady open-channel fl ow, 486
summary of, 238
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Energy grade line (EGL), 247–250
Engineering notation, 12
Enthalpy

and thermal energy, 53–54
total, 396

Entry or entrance length, 313–314
Equation literacy, 9
Equivalent sand roughness, 326
Estimates, 11
Eulerian approach, 108–109
Euler’s equation

calculations involving, 121–122
derivation of, 118–119
physical interpretation of, 120–121
pressure variation, due to changing speed of particle, 120
pressure variation, normal to curved streamlines, 120–121
pressure variation, normal to rectilinear streamlines, 120

Expansion, abrupt/sudden, 244–245
Experimental fl uid dynamics (EFD), 527
Exponent method, 268–269
Extensive properties, 161, 162

Fan laws, 458
Fanning friction factor, 317
Favorable pressure gradient, 138
Field, 108
Fixed CV, 161
Flat surface

boundary layer on, 297–298, 305
pressure force on, 75–81

Floating bodies, 87–90
Flow. See also Conduits, fl ow in; Open channels, 

fl ow in; specifi c fl ows
attached, 114, 115
classifi cation of, 312–314
critical, 496–502
critical mass, 410
in de Laval nozzles, 407–410
developing, 313–314
dimensionality of, 113
gradually varied, 495, 510–517
homenergic, 396
hypersonic, 394
inviscid, 113
irrotational, 133, 136–137
momentum, 193–194
multidimensional, 113
nonuniform, 110, 484, 495
nozzles, 435
one-dimensional, 113
rapid, 497
rapidly varied, 495–505
subcritical, 496–497
subsonic, 406
supercritical, 496
tranquil, 497
transonic, 406–407

uniform, 110, 484
unsteady, 111
without free-surface eff ects, model studies for, 276–278

FLOW-3D, 550
Flow coeffi  cient, 430
Flowing fl uids

acceleration, 115–118
circular cylinders and, 137–139
describing, 109–115, 142
dimensionality, 113
Eulerian and Lagrangian approaches, 108–109
inviscid, 113
laminar, 111–112
pathlines, streaklines, and streamlines, 104–106
regions, 114
rotational motion, 132–136
separation, 114–115
steady and unsteady, 111
turbulent, 111–112
uniform and nonuniform, 110
velocity, 107–109
viscous, 113

Flowing gases, 53–54
Flow measurements. See Measuring; Measuring devices
Flowmeters

electromagnetic, 436–437
turbine, 437
ultrasonic, 437
vortex, 437

Flow rate
critical mass, 410
deriving equations for, 155–157
diff erential areas for determining, 159
example problems, 158–160
mass, 157, 158, 410–411
measuring, 427–441
units, 155, 157
volume (discharge), 155–158
working equations for, 158

Flow Science, 550
Flow work, 232–234
Fluids. See also Flowing fl uids

constant density assumptions for, 38
defi ning, 4–5
ideal, 137
Newtonian vs. non-Newtonian, 44–45
shear-thickening, 44–45
shear-thinning, 44–45

Fluid forces, 42, 43
Fluid in a solid body rotation, 139
Fluid interface rule, 68
Fluid jets, 197–199
Fluid mechanics, 2
Fluid properties, 34–54

bulk modulus of elasticity, 39
common fl uid forces, 42, 43
and constant density assumption, 38–39
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looking up, 34–37
specifi c gravity, 37–38
and stress, 39–42
surface tension, 48–52
thermal energy in fl owing gases, 53–54
vapor pressure, 52–53
and viscosity equation, 42–48

Flume, 32
Force(s). See also specifi c forces

action and reaction, 9
body and surface, 8–9, 188–189 
defi ned, 8–9
between molecules, 4
relating stress to, 41–42
seven common fl uid forces, 42–43
summary of, 189
transitions and, 245–246

Force coeffi  cient, 270, 271
Force units, 10–11
Form drag, 357
Francis turbines, 213–214, 469, 474, 475
Free body diagram (FBD), 66
Free surface, defi ned, 484
Free-surface eff ects, model studies for fl ows without, 276–278
Free-surface model studies, 283–285, 549–550
Friction drag, 357
Friction factor, 317

laminar fl ow, 321
Moody diagram, 325
turbulent fl ow, 323–325

Friction velocity, 299
Froude number, 271, 272, 484–485
Fully developed fl ow, 313–314

Gage pressure, 16, 63, 75
Gage pressure rule, 76
Gas(es)

constant density assumptions for, 38
defi ning, 4–5
real and ideal, 15–16
thermal energy in fl owing, 53–54

Gas constant, specifi c and universal, 17–18
Gas pressure change rule, 70
Gas turbines, 475
General equation, 11
Geometric similitude, 273–274
Gradually varied fl ow, 495, 510–517
Gravitational acceleration, 10
Gravitational force, 9
Gravity, specifi c, 35, 37–38
Grid generation, 550–551
Grid method, 19–20

Hagen-Poiseuille fl ow, 319
Hardy Cross method, 340
Head

defi ned, 124

piezometric, 68
pump, 237
total, 247
turbine, 237

Head coeffi  cient, 455–458
Head loss

component/combined, 315–316, 331–335
defi ned, 237
fl ow problems, strategies for solving, 327–331
in hydraulic jumps, 508
laminar fl ow and, 321–322
in a nozzle in reverse fl ow, 281–282
for orifi ces, 432, 434
pipe, 315–317

Heat, specifi c, 53
Heat transfer, 231
Hirt, T., 549–550
Homenergic fl ows, 396
Hot-wire or hot-fi lm anemometers, 423–424
HVAC duct, pressure drop in, 336
Hydraulic depth, 497
Hydraulic diameter, 335
Hydraulic grade line (HGL), 247–250
Hydraulic jumps

dam spillways and, 508–510
depth relationships, 505–507
head loss in, 508
naturally occurring, 510
occurrences of, 505
in rectangular channels, 507–508
submerged, 510

Hydraulic machines, 64–66
Hydraulic radius, 336, 485
Hydrogen bubble visualization, 426
Hydrometers, 85
Hydrophilic surfaces, 50
Hydrophobic surfaces, 50, 51
Hydrostatic condition, 66
Hydrostatic equations, 66–70

hydrostatic algebraic equation, 67–68
and hydrostatic condition, 66
hydrostatic diff erential equation, 66–67
working equations, 68–70

Hydrostatic equilibrium, 66. See also Pressure
Hydrostatic pressure distribution, 76–80
Hypersonic fl ows, 394

Ideal fl uid, 137
Ideal gas, 15–16, 54
Ideal gas law (IGL), 15–18

units in, 16–17
universal and specifi c gas constant, 17–18
working equations for, 18

Ideally expanded nozzles, 413
Immersed bodies, 86–87
Impulse turbines, 469–472
Induced drag, 375–376
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Induction, 15
Inertial reference frames, 206–207
Infl ow, 167
Initial conditions, 551–552
Integrals, 13
Intensive properties, 161, 162
Internal combustion engine modeling, 549
Internal energy, 53
Invariant notation, 534–535, 542–543
Inviscid fl ow, 113
Irrotational fl ow, 133, 136–137
Isentropic process

compressible fl uids through a duct with 
varying area, 405–416

defi ned, 391

Joule, J. P., 230–231

Kaplan turbines, 469
k-epsilon model, 552
Kinematic properties, 34
Kinematic viscosity, 34, 35
Kinetic energy correction factor, 234–236
Kinetic pressure, 30, 398–400
KIVA, 549, 550
Kolmogorov length scale, 298
Kutta condition, 374

Lagrangian approach, 108–109
Laminar boundary layer, 302
Laminar fl ow

defi ned, 319
description of, 111–112, 312–313
discharge and mean velocity, 320–321
head loss and friction factor, 321–322
kinetic energy correction factor, 235–236
in round tubes, 319–322
velocity profi le in, 319–320

Laminar velocity profi le, 299
Large eddy simulation (LES), 552
Laser-Doppler anemometers (LDAs), 424–425
Length scale, 312
Lift  force

airfoil, 373–379
automobile, 379–382
circulation, 370–371
circulation combined with uniform fl ow, 371–372
coeffi  cient, 372. See Coeffi  cient of lift 
as common fl uid force, 43
defi ned, 355
on a rotating sphere, 373
stress distribution and, 355–357

Lift  force equation, 372
Linear momentum equation

applications, 195–197
for moving objects, 206–211
for stationary control volume, 197–206

summary of, 195
theory, 192–195

Liquids. See also Fluids
constant density assumptions for, 38
defi ning, 4–5

Local acceleration, 117
Local Reynolds number, 298
Local shear stress coeffi  cient, 301, 305
Logarithmic velocity distribution, 299
Los Alamos National Laboratory, 549–550

Mach, E., 394
Mach angle, 394
Mach number, 271, 272

for airplanes, calculating, 395
area variation and, 405–406
critical, 369
defi ned, 394
relationships and compressible fl ows, 395–400

Mach wave, 394
Macroscopic descriptions, 4
Magnus eff ect, 372
Manning equation, 489–491
Manning’s n, 489–491
Manometer, 72–75
Marker methods, 425–427
Mass

defi ning, 8
as dimension, 22
molar, 17

Mass balance equation, 168
Mass fl ow rate, 157

critical, 410
de Laval nozzles and, 410–411, 414–416

Mass fl ow rate equation, 158
Mass units, 10–11
Material body, 6
Material derivative, 536–537
Material particle, 6
Material properties, 34
Math models, 25–27
Mean velocity, 156, 320–321
Measuring, 420–441

fl ow rate, 427–441
marker methods, 425–427
pressure, 70–75, 129–132, 420–427
velocity, 129–132, 420–427

Measuring devices, 420–425, 429–441
anemometers, cup, 423
anemometers, hot-wire or hot-fi lm, 423–424
anemometers, laser-Doppler, 424–425
anemometers, vane or propeller, 422
barometers, 71
Bourdon-tube gages, 71
fl owmeters, electromagnetic, 436–437
fl owmeters, turbine, 437
fl owmeters, ultrasonic, 437
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fl owmeters, vortex, 437
fl ow nozzles, 435
hydrometers, 85
manometers, 72–75
orifi ce meters, 429–434
piezometers, 71–72
Pitot-static tube, 130–132, 421
pressure transducers, 75
rotameters, 438
stagnation (Pitot) tube, 420–421
static tube, 421
venturi meters, 434–436
weirs, rectangular, 438–440
weirs, triangular, 441
yaw meters, 422

Mechanical advantage, 64
Mechanical effi  ciency, 241–243
Mechanical energy, 228
Mechanical work, 229
Mechanics, 2
Metacenter, 87
Metacentric height, 87
Metric system, 12
Microscopic descriptions, 4
Mild slope, 501
Minor loss coeffi  cient, 331–333
Mixed boundary layer, 302
Models (modeling)

assessing the value of, 528–529
computational fl uid dynamics, 527, 548–555
continuity equation, 538–544
defi ned, 525
methods for building, 527–528
Navier-Stokes equation, 538, 544–548
partial diff erential equations, 529–538
process, 525–529

Model testing
applications, 272–273
approximate similitude at high Reynolds numbers, 

280–283
dynamic similitude, 274–276
for fl ows without free-surface eff ects, 276–278
free-surface, 283–285
geometric similitude, 273–274
model-prototype performance, 279–280
ship, 273, 285
spillway, 283–285

MODFLOW, 549, 550
Molar mass, 17
Moles, 16–17
Molecules, forces between, 4
Moment-of-momentum equation, 211–214
Momentum accumulation, 194–195
Momentum diagram, 195–197
Momentum equation (in calculations)

angular momentum, 211
linear momentum, 195

Momentum equation (theory)
angular momentum equation, 211–214
applications of linear, 195–197
linear momentum equation, 192–211
linear, for stationary control volume, 

197–206
Newton’s laws of motion, 188–192
nozzles and, 202–203
theory of linear, 192–195
visual solution method, 190–191, 195–196

Momentum fl ow, 193–194
Moody diagram, 324–327
Moving objects

accelerating, 209–211
constant velocity, 207–209
linear momentum equations and, 206–211
reference frames, 206–207

Multidimensional fl ow, 113

Nardi, A., 25
Navier-Stokes equation, 538

Cartesian and cylindrical coordinates, 548
for Couette fl ow, 295
derivation, 545–547
modeling, 544–548
for Poiseuille fl ow, 296
for uniform fl ow, 293–294

Net positive suction head (NPSH), 463–465
Newton (unit), 10
Newtonian fl uids, 44–45
Newton’s Laws of Motion, 188–192, 293
Newton’s Law of Universal Gravitation (NLUG), 9–10
Nominal Pipe Size (NPS), 315
Noninertial reference frames, 206–207
Non-Newtonian fl uids, 44–45
Nonround conduits, 335–336
Nonuniform fl ow, 110, 484, 495
Normal depth, 484, 489
Normal shock waves

defi ned, 400
in de Laval nozzles, 413–414
property changes across, 400–402
in supersonic fl ows, 403–405

Normal stress, 39–40
Nozzles. See also de Laval nozzles

applications, 201
fl ow classifi cation by exit conditions, 411–414
ideally expanded, 413
momentum equation and, 202–203
overexpanded, 413
underexpanded, 412

Nuclear energy, 229
Numbers, representing, 12

Oblique shock waves, 404
One-dimensional fl ow, 113
Open channels, defi ned, 484
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Open channels, fl ow in, 483–518
best hydraulic section, 492
Chezy equation, 488, 489, 491
critical fl ow, 496–502
description of, 484–486
dimensional analysis, 484–485
energy equation for steady, 486
gradually varied, 495, 510–517
hydraulic jump, 505–510
Manning equation, 489–491
rapidly varied, 495–505
Reynolds number, 485, 486
rock-bedded channels, 488, 489
steady nonuniform, 495
steady uniform, 487–495
transitions, 502–504
wave celerity, 504–505

Open system. See Control volume
Orifi ces, head loss for, 432, 434
Orifi ce meters, 429–434
Outfl ow, 167
Overexpanded nozzles, 413

Panel, 75. see also Flat surface
Panel force working equations, 80
Parallel pipes, 338–339
Partial diff erential equations (PDEs), 529–538

acceleration fi eld, 537–538
approximation of, 550
Cartesian coordinates, 530–531
cylindrical coordinates, 531–532
material derivative, 536–537
notation, invariant, 534–535
operators, 535
reasons for learning, 529–530
Taylor series, 533–534

Particle, 6
Particle image velocimetry (PIV), 426–427
Pathlines, 104–106
Pelton wheel, 469
Performance curves, pumps, 456
Phase diagram, water, 52–53
π-groups

common, 269–272
defi nition, 24
as dimensionless groups, 24
exponent method, 268–269
step-by-step method, 265–268
use of term, 265

π theorem, Buckingham, 265
Piezometers, 71–72
Piezometric head, 68
Piezometric pressure, 67–68
Pipes

bends, 203–204
continuity equation and, 172–174
expansion, abrupt/sudden, 244–245

forces on, 245–246
head loss, 315–317, 327–331
networks, 339–342
parallel, 338–339
sizes, specifying, 314–315
stress distributions in pipe fl ow, 317–319

Pitch angle, 451
Pitot (stagnation tube), 129–130, 420–421
Pitot-static tube, 130–132, 421
Poiseuille fl ow, 319

in a channel, 295–297
in a round pipe, 319–322
shear stress in a, 46–47

Positive-displacement machines, 449
Post processor, 552
Power

defi ned, 229–230
and rolling resistance, 364–365

Power coeffi  cient, 452
Power equation, 239–241, 304
Power-law equation, 323
Power law formula, 300
Prandtl, L., 297, 323, 376
Pressure, 61–83

absolute, 16, 62–64
atmospheric, 61–62
defi ned, 61
diff erential, 64, 75
fl uid properties varied with, 36
gage, 16, 63, 75
hydraulic machines, 64–66
hydrostatic equations, 66–70
kinetic, 30, 398–400
measuring, 70–75, 129–132, 420–427
as normal stress, 39
piezometric, 67–68
related to the pressure force, 41
and shear stress, 39–43
static, 129
total, 397
vacuum, 63–64

Pressure coeffi  cient, 137, 270, 271, 279
Pressure distribution, 41

hydrostatic, 76–80
for ideal fl uid, 137–138
sketching, 77
uniform, 76

Pressure fi eld
circular cylinders and, 137–139
rotating fl ow and, 139–141

Pressure force
as a common fl uid force, 43
on a curved surface, 81–83
defi ned, 41–42
on a fl at surface, 75–81
in viscous fl ow problems, 293
related to the pressure distribution, 41
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Pressure gradient, favorable and adverse, 138
Pressure ratio, critical, 411–412
Pressure tap, 129
Pressure transducer (PT), 75
Pressure variation. See Euler’s equation
Pressure vessel force balance, 77
Primary dimensions, 22–23
Problem solving, 24–27

defi ning, 24–25
and math models, 25–27

Process, for a system, 33
Projected area, 357
Propellers, 450–454
Propeller anemometers, 422
Properties. See also Fluid properties

defi ned, 33
intensive and extensive, 161, 162
kinematic, 34
material, 34
variation of, with temperature and pressure, 36

Pumps
axial-fl ow, 454–458
centrifugal, 337–338, 458–461
curves, characteristic or performance, 456
defi ned and types of, 230
discharge coeffi  cient, 455–458
head coeffi  cient, 455–458
mechanical effi  ciency, 241–243
power equation, 239–241
suction limitations of, 463–465

Pump curve, 337
Pump head, 237

Radial-fl ow machines, 458–461
Rapidly varied fl ow, 495–505
Rate of strain, 44
Reaction force, 9
Reaction turbines, 469, 472–473
Real gas, 15–16
Reference frames, 206–207
Relative roughness, 323
Resistance, power and rolling, 364–365
Resistance coeffi  cient, 317, 489
Reynolds, O., 271, 312
Reynolds-averaged Navier-Stokes (RANS) equations, 552
Reynolds number, 271, 272

approximate similitude at high, 280–283
and boundary layer, 298
conduit fl ow type and, 312–313
length scale, 312
open-channel fl ow and, 485, 486
similitude for a valve, 278
similitude for fl ow over a blimp, 276–277

Reynolds transport theorem, 160, 164–166
Rock-bedded channels, 488, 489
Rolling resistance, 364–365
Rotameters, 438

Rotational motion, 132–136, 139–141
Roughness

drag and surface, 360–361
equivalent sand, 326
relative, 323
sand roughness height, 323
type of fl ow and eff ects of wall, 324

Roughness coeffi  cient, 490
Runner, turbine, 469

Sand roughness
equivalent, 326
height, 323

Saturation pressure, 52
Saturation temperature, 52
Scientifi c notation, 12
Secondary dimensions, 22–23
Sectional drag coeffi  cient, 358–359
Sequent depth, 507–508
Sewers, uniform fl ow in, 492–495
Shaft  work, 232–234
Shear force

and boundary layer, 302–303
as common fl uid force, 43
defi ned, 42
in viscous fl ow problems, 294
related to shear stress, 42

Shear stress
distributions in pipe fl ow, 318–319
in a Poiseuille fl ow, 46–47
and pressure, 39–43
at the wall, 301
related to shear force, 42

Shear stress coeffi  cient, 271
Shear stress distribution, 42
Shear-thickening fl uids, 44–45
Shear-thinning fl uids, 44–45
Ship model testing, 273, 285
Shock waves

in de Laval nozzles, 413–414
normal. See Normal shock waves
oblique, 404
in supersonic fl ows, 403–405

Signifi cant fi gures, 12
Similitude, 272–285

approximate, at high Reynolds numbers, 
280–283

defi ned, 272
dynamic, 274–276
fl ows without free-surface eff ects, 

276–278
free-surface model studies, 283–285
geometric, 273–274
model-prototype performance, 279–280
scope of, 272–273

Skin friction drag, 302–303
Sluice gate, 496
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Solids, 5
Solid mechanics, 2
Solver, 552
Sonic booms, 405
Sound

Doppler eff ect, 394
speed of, 390–394

Special-case equation, 11
Specifi c energy, 496–497
Specifi c gas constant, 17–18
Specifi c gravity, 35, 37–38
Specifi c heat, 53
Specifi c speed, 461–463, 475
Specifi c weight, 14–15, 35
Speed of sound, 390–394
Spheres, drag force and

calculating, 364, 398–399
Spheres, fi nding π-groups

using exponent method, 268–269
using step-by-step method, 267

Spheres, lift  on rotating, 373
Spillways

hydraulic jumps on dam, 508–510
models, 283–285, 553–554

Stager, R., 25
Stagnation

point, 105
tube (Pitot), 129–130, 420–421
use of term, 398

Stall, 375
Standard atmosphere, 62
Standard Structure of Critical Th inking (SSCT), 3
States, defi ned, 33–34
Static pressure, 129
Static pressure ratio, 401
Static temperature, 396
Static temperature ratio, 401
Static tube, 421
Steady fl ow, 111

energy equation for steady open-channel fl ow, 486
nonuniform, 495
uniform, 487–495

Steady state, 33
Steep slope, 501
Step-by-step method, 265–268
Streaklines, 104–106
Streamlines, 104–106, 368
Stress. See also shear stress and pressure

defi ned, 40–41
distributions and drag and lift , 355–357
distributions in pipe fl ow, 317–319
and fl uid properties, 39–42
normal, 39–40
relating forces to, 41–42

Strouhal number, 367
Subcritical fl ow, 496–497
Submerged hydraulic jumps, 510

Subsonic fl ow, 406
Sudden expansion, 244–245
Supercritical fl ow, 496
Supersonic fl ows

de Laval nozzles, 407–410
diff users, 406
shock waves in, 403–405

Supersonic wind tunnels
de Laval nozzles and, 407–410
fl ow properties in, 409–410
mass fl ow rate in, 411
test section size in, 409

Surface force, 8, 188–189
Surface roughness, drag and, 360–361
Surface tension

and adhesion, 49–50
and capillary action, 50–51
as fl uid property, 35, 48–52

Surface tension force, 43
Surge hydraulic jumps, 510
Surroundings, 33
System(s)

curve, 337
defi ned, 33

Taylor series, 533–534
Temperature

absolute, 16
fl uid properties varied with, 36
static, 396
total, 396, 397

Terminal velocity, 365–366
Th eoretical adiabatic power, 466
Th eoretical isothermal power, 467
Th ermal effi  ciency, 241
Th ermal energy

defi ned, 228
in fl owing gases, 53–54

Th ree-dimensional bodies, drag and, 
360–365

Th rust coeffi  cient, 451–452
Th rust force, 43
Tidal bore, 510
Time, as dimension, 22
Time-averaged velocity, 156
Time steps, 551
Total density, 398
Total enthalpy, 396
Total head tube, 129–130
Total pressure, 397
Total temperature, 396, 397
Tranquil fl ow, 497
Transition(s)

abrupt/sudden expansions and, 244–245
defi ned, 502
forces on, 245–246
open channel, 502–504



  INDEX        591

warped-wall, 503
wedge, 503

Transition region, 298
Transition Reynolds number, 298
Transonic fl ow, 406–407
Transport

across control surface, 163–164
Reynolds transport theorem, 160, 

164–166
Tripped boundary layer, 302
Truncated nozzles, 414–416
Turbines

defi ned, 230, 469
Francis, 213–214, 469, 474, 475
gas, 475
impulse, 469–472
Kaplan, 469
mechanical effi  ciency, 241–243
reaction, 469, 472–473
specifi c speed for, 475
types of, 230
vane angles, 473–475
wind, 475–477

Turbine fl owmeters, 437
Turbine head, 237
Turbomachinery, 449–478

categories of, 450
compressors, centrifugal, 466–468
defi ned, 449
propellers, 450–454
pumps, axial-fl ow, 454–458
pumps, centrifugal, 458–461
pumps, suction limitations of, 463–465
radial-fl ow machines, 458–461
specifi c speed, 461–463
turbines, 469–477
viscous eff ects, 465–466

Turbulence modeling, 552
Turbulent fl ow

defi ned, 111–112, 312–313, 322
friction factor, 323–325
Moody diagram, 324–326
velocity distribution, 323

Turbulent velocity profi le, 299–300
Two-dimensional bodies, drag and, 

358–359

Ultrasonic fl owmeters, 437
Underexpanded nozzles, 412
Uniform fl ow

best hydraulic section, 492
in culverts and sewers, 492–495
defi ned, 110, 484
Navier-Stokes equation for, 293–294
steady, 487–495

Uniform pressure distribution, 76
U.S. standard atmosphere, 62

Unit prefi xes, 12
Units, 10–11, 18–24

consistent, 20–22
defi ned, 19
and dimensional homogeneity, 23–24
grid method, 19–20
in ideal gas law, 16–17
organized by dimensions, 21–23
and π-groups, 24

Universal gas constant, 17–18
Unsteady fl ow, 111
U-tube manometer, 72

Vacuum pressure, 63–64
Validation, 553
Vanes, 199–201, 473–475
Vane anemometers, 422
Vapor pressure, 35, 52–53
Variable density, 66–67
Variable velocity distribution, 205–206
Vector equation, 190–191
Velocity

area-averaged, 156
Cartesian components, 109
coeffi  cient of. See Coeffi  cient of velocity
constant, and moving bodies, 207–209
defi ned, 107
Eulerian and Lagrangian approaches, 108–109
fl owing fl uids and, 107–109
friction, 299
mean, 156, 320–321
measuring, 129–132, 420–427
terminal, 365–366
time-averaged, 112

Velocity distribution
logarithmic, 299
measuring, 428
power-law equation, 323
turbulent fl ow, 323
variable, 205–206

Velocity fi eld, 107–108
for Couette fl ow, 295
for Poiseuille fl ow, 296

Velocity gradient, 43–44
Velocity profi le(s)

in boundary layer, 298–300
defi ned, 44
laminar, 319–320
turbulent, 299–300

Vena contracta, 429
Venturi fl umes, 501
Venturi meters, 434–436
Venturi nozzles, 128
Verifi cation, 553
Viscosity

as fl uid property, 35
kinematic, 34
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Viscosity equation, 42–48
and Couette fl ow, 46–48
with Newtonian vs. non-Newtonian fl uids, 44–45
reasoning with, 45
for shear stress in a Poiseuille fl ow, 46–47
and velocity gradient, 43–44

Viscous eff ects, 465–466
Viscous fl ow, 113, 292–305

and boundary layer, 297–304
Couette fl ow, 294–295
Navier-Stokes equation for uniform fl ow, 293–294
Poiseuille fl ow in a channel, 295–297
pressure distribution for, 138

Viscous force, 43
Visual solution method (VSM), 190–191, 195–196
Volume (discharge) fl ow rate, 155–158
Volume fl ow rate equation, 158
Vortex fl owmeters, 437
Vortex shedding, 114, 367
Vorticity, 134–135

Wales, C., 25
Wales-Woods Model (WWM), 25–27
Wall shear stress, 301
Warped-wall transitions, 503
Water-surface profi les

defi ned, 512
evaluation of, 515–517
types of, 512–515

Wave celerity, 504–505
Wave celerity equation, 505
Wave propagation, in compressible 

fl uids, 390–395
Weather, and pressure, 62
Weber number, 271, 272
Wedge transitions, 503
Weight, 10
Weight, specifi c, 14–15, 35
Weirs

rectangular, 438–440
triangular, 441

William P. Morgan Cavitation Tunnel, 175
Wind loads on a telescope structure, 

predicting, 555
Wind tunnels

applications, 272–273, 277–280
momentum equation and fi nding drag 

force, 205–206
supersonic. See Supersonic wind tunnels

Wind turbines, 475–477
Woods, D., 25–26
Work

defi ned, 229
fl ow and shaft , 232–234
mechanical, 229

Working equations, 18

Yaw meters, 422
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