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Notices  
This information was developed for products and services offered in the U.S.A.  

IBM may not offer the products, services, or features discussed in this document in other countries. 
Consult your local IBM representative for information on the products and services currently available 
in your area. Any reference to an IBM product, program, or service is not intended to state or imply 
that only that IBM product, program, or service may be used. Any functionally equivalent product, 
program, or service that does not infringe any IBM intellectual property right may be used instead. 
However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, 
program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this 
document. The furnishing of this document does not grant you any license to these patents. You can 
send license inquiries, in writing, to:  

IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A.  

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM 
Intellectual Property Department in your country or send inquiries, in writing, to:  

Intellectual Property Licensing 
Legal and Intellectual Property Law 
IBM Japan, Ltd. 
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 

The following paragraph does not apply to the United Kingdom or any other country where 
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES 
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you.  

This information could include technical inaccuracies or typographical errors. Changes are 
periodically made to the information herein; these changes will be incorporated in new editions of the 
publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) 
described in this publication at any time without notice.  

Any references in this information to non-IBM Web sites are provided for convenience only and do 
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites 
are not part of the materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you. 
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The licensed program described in this document and all licensed material available for it are 
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License 
Agreement or any equivalent agreement between us. 

Any performance data contained herein was determined in a controlled environment. Therefore, the 
results obtained in other operating environments may vary significantly. Some measurements may 
have been made on development-level systems and there is no guarantee that these measurements 
will be the same on generally available systems. Furthermore, some measurements may have been 
estimated through extrapolation. Actual results may vary. Users of this document should verify the 
applicable data for their specific environment. 

Information concerning non-IBM products was obtained from the suppliers of those products, their 
published announcements or other publicly available sources. IBM has not tested those products and 
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM 
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of 
those products. 

All statements regarding IBM's future direction or intent are subject to change or withdrawal without 
notice, and represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To 
illustrate them as completely as possible, the examples include the names of individuals, companies, 
brands, and products. All of these names are fictitious and any similarity to the names and addresses 
used by an actual business enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 

This information contains sample application programs in source language, which illustrate 
programming techniques on various operating platforms. You may copy, modify, and distribute these 
sample programs in any form without payment to IBM, for the purposes of developing, using, 
marketing or distributing application programs conforming to the application programming interface 
for the operating platform for which the sample programs are written. These examples have not been 
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, 
serviceability, or function of these programs. The sample programs are provided "AS IS", without 
warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample 
programs. 

References in this publication to IBM products or services do not imply that IBM intends to make 
them available in all countries in which IBM operates. 

If you are viewing this information softcopy, the photographs and color illustrations may not 
appear. 
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IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business 
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“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml. 
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Preface 

Keeping your skills current in today's world is becoming increasingly challenging. There are 
too many new technologies being developed, and little time to learn them all. The DB2®  
on Campus Book Series has been developed to minimize the time and effort required to 
learn many of these new technologies. 

Who should read this book?  
This book is a good starting point for beginners to the open source world. It is specially 
written to equip students, and open source enthusiasts with the norms and best practices 
of open source. You should read this book if you want to: 

 Educate yourself on the objectives of open source 

 Understand open source software licensing requirements  

 Get an introduction to the norms followed in the open source world 

 Join the open source movement and begin contributing.  

How is this book structured? 
The first chapters of this book discuss the history of open source software development 
and its licensing requirements. It then talks about how organizations use open source as 
their business model. Chapter 4 introduces the reader to the tools used in the development 
of an open source project. Chapters 5 and 6 take the reader into more details about how to 
contribute to an existing open source project. Chapter 7 provides a case study where you 
practice contributing to an open source project. Chapter 8 goes a bit deeper describing the 
Technology Explorer for IBM DB2, an open source project hosted at sourceForge.net; it 
also summarizes and revisits some of the concepts discussed in the previous chapters. 

Exercises are provided with most chapters. There are also review questions in each 
chapter to help you learn the material; answers to review questions are included in 
Appendix A.  

A book for the community  
This book was created by the community; a community consisting of university professors, 
students, and professionals (including IBM employees). The online version of this book is 
released to the community at no-charge. Numerous members of the community from 
around the world have participated in developing this book, which will also be translated to 
several languages by the community. If you would like to provide feedback, contribute new 
material, improve existing material, or help with translating this book to another language, 
please send an email of your planned contribution to db2univ@ca.ibm.com with the subject 
“Getting started with open source development book feedback” 

mailto:db2univ@ca.ibm.com�
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Conventions 
Many examples of commands, SQL statements, and code are included throughout the 
book. Specific keywords are written in uppercase bold. For example: A NULL   value 
represents an unknown state. Commands are shown in lowercase bold. For example: The 
dir command lists all files and subdirectories on Windows®.  SQL statements are shown 
in upper case bold.  For example: Use the SELECT statement to retrieve information from a 
table. 

Object names used in our examples are shown in bold italics. For example: The flights  
table has five columns. 

Italics are also used for variable names in the syntax of a command or statement. If the 
variable name has more than one word, it is joined with an underscore. For example: 
CREATE TABLE table_name 

What’s next? 
We recommend you to review the following books in this book series for more details about 
related topics:  

 Getting started with DB2 Express-C 

 Getting started with Ruby on Rails 

 Getting started with PHP 

 Getting started with Python 

 Getting started with Perl 

The following figure shows all the different eBooks in the DB2 on Campus book series 
available for free at ibm.com/db2/books 

http://www.ibm.com/db2/books�
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Chapter 1 – Introduction to open source 
development 
Open source software development is a methodology for creating software products, from 
the design and development to distribution. Under this methodology the author offers 
access to the source code. This chapter gets you started into this fascinating software 
development world. It teaches you how it all started, and what the direction will be for the 
coming years. 

In this chapter you will learn about: 

 A brief history about open source software development 

 The evolution of the open source movement 

 Open source versus free software 

 Advantages and disadvantages of open source 

 Trends and perspectives 

 Career prospective in the open source world 

1.1 A brief history about open source development 
The story of open source development started long before Richard Stallman created the 
Free Software movement. In the 50's and 60's almost all the software that existed was 
mostly produced by research institutes. Software was not seen as a product. In those 
times, computer companies were in the hardware business; and software was made freely 
available to encourage hardware sales. The source code was distributed with the software 
because users often had to change the code to fix bugs or add new features to support 
hardware issues. During this time software was developed and distributed by communities 
of user groups and no effort was needed to make it freely available.  

Things started to change in the early 1970's when operating systems and compilers began 
to grow very fast, with the emergence of micro-processors. For almost a decade until the 
early 1980's computer vendors and software companies began to routinely charge for 
software licenses, and sell software as a product imposing legal restrictions on new 
software developments through copyrights, trademarks, and leasing contracts. At that time 
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two different groups, both in United States, were establishing the roots of the current open 
source software (OSS) philosophy. 

In the East coast, a programmer at the MIT Artificial Intelligence Lab launched the GNU 
Project and the Free Software Foundation, his name was Richard Stallman. On the West 
coast, the Computer Science Research Group (CSRG) of the University of California at 
Berkeley were improving the UNIX system, and started to build lots of applications which 
quickly became known as “BSD UNIX”. With the advent of Usenet, an Internet user group, 
programming communities started to share their software and contribute to each others' 
work. This is when the real development of the open source movement began. 

1.2 The evolution of the open source movement 
We start recording the evolution of open source development from the creation in 1986 of 
the Free Software Foundation by Richard Stallman (who likes to use his initials RMS). After 
this foundation was established, several major open source projects were initiated as 
shown in Figure 1.1. 

 

Figure 1.2 - Evolution of Open Source development 
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In 1984, Stallman started the GNU project with the ultimate goal of building a free operating 
system. Within this project, he wrote the EMACS editor, which is considered by many as 
the most powerful text editor. 

In 1985 Stallman created the Free Software Foundation (FSF), a nonprofit organization 
dedicated to the elimination of restrictions on copying, redistribution, understanding and 
modification of computer programs. The organization's goal was to promote the 
development and use of open source software in all areas of computing, particularly in 
helping to develop the GNU operating system and its tools. Until 1990 the foundation was 
dedicated to writing more software. Today, it coordinates many independent open source 
projects, where the FSF's focus has shifted to the structural and legal aspects of the open 
source community. As a legal tool, the GNU General Public License (GPL) was designed 
not only to ensure that the software produced by GNU would remain free, but to promote 
the production of more and more open source software. 

In 1987 Stallman created an open source compiler, the GNU C Compiler (GCC) with the 
idea to encourage more open source code contributions. Nowadays the GCC compiler is 
often chosen as the favorite to develop software that needs to be implemented in various 
types of hardware and supports C, C++, FORTRAN, Ada, Java™, Objective-C and Pascal. 

For many years, employees of Cygnus Support, a small company founded by Michael 
Tiemann, David Vinayak Wallace, and John Gilmore were the maintainers of several key 
GNU software products, including the GNU Debugger (gdb) and GNU Binutils. This 
company was also one of the major contributors to the GCC project.  

In 1991 a student of the Department of Computer Science at the University of Helsinki in 
Finland, Linus Torvalds, created with the help of several volunteer programmers through 
Usenet the Linux® kernel. Some time after, the kernel grew with the assistance of 
developers around the world as open source software. A few years later a full open source 
operating system was available and released as GNU/Linux. 

In 1993 the Debian GNU/Linux operating system was created by Ian Murdock in order to 
assemble all the GNU tools that existed at the time and the Linux kernel. The Debian 
Project grew slowly and gained notoriety when the program dpkg was released. This 
program is the basis of the Debian package management system and is used to install, 
remove, and provide information on the Debian software packages (.deb). 

One of the most important events in open source development happened in 1994 when 
Robert McCool developed the Apache HTTP server. This Web server played a key role in 
the development of the World Wide Web, and it was the first open source alternative to the 
Netscape Web server. Today, more than 100 million Web sites use Apache as their Web 
server of choice, as shown in Figure 1.2. 
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Figure 1.2 – Market share for top Web servers across all domains according to 
Netcraft (http://www.netcraft.com) 

In 1995 Marc Ewing created his own Linux distribution called RedHat. RedHat is nowadays 
a major company that provides operating-system platforms along with middleware, 
applications, and management products, as well as support, training, and consulting 
services. 

In 1996 the KDE and GNOME desktop environments were developed, providing basic 
desktop functionality for daily needs as well as development tools. 

Two years later, in 1998, many software companies started to accept the open source 
movement when Netscape Communicator source code was made open source, and the 
Mozilla Foundation was established. It is in that year as well, that the term open source 
was first used at a conference in California.  This term was created by Eric Raymond and 
Bruce Perens to promote the free software philosophy in the corporate world. 

1.3 FLOSS - Free, libre, open source software 
Until now the use of the term "open source" has many opponents. From one side Stallman 
and others with similar thoughts object to "open source" as they say it does not make users 
realize the freedom that the software in question gives to them. And when Stallman uses 
the term "free software", he is not referring to price as indicated by his quote, “Free 
software is a matter of liberty, not price. To understand the concept, you should think of 
'free' as in free speech, not as in 'free beer'”. On the other hand, using the term "free 
software" was commonly confused with the no-charge connotation, which obviously made 
business organizations uneasy. 

In order to end this discussion other terms have been proposed, one of them is FLOSS – 
Free, libre, open source software, or Free (as in libre) open source software. There are 

http://www.netcraft.com/�
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three terms to explain this concept. As already mentioned, free software is a philosophical 
concept that aims to convey the idea of software that can be used, studied and modified 
without any restriction. It does not refer to price, but liberty. This software can be freely 
distributed. Because many people can confuse the concept of free software with freeware 
(closed-source software freely distributed by the author) the concept of Libre Software was 
created. Libre is a word used by several Romanic Languages such as Spanish, 
Portuguese and French. This word does not exist in English, but what it means is free as in 
"free speech", freedom as a right that a citizen has and not freedom associated with zero 
cost (Gratis). Open source on the other hand is a movement which emphasizes on source 
code of software being freely available. It also talks about certain criteria which must exist 
in the license of software to make it open source. 

In this book when we used the term open source, we mean FLOSS. In essence the 
freedom here refers to what an individual developer or user has with the code. It does not 
refer to a no-charge license. We discuss more details on the various connotations this 
phrase has in the open source world in the chapters to come. 

Did you know? 

The first use of the phrase “free open source software” on Usenet was in a posting on 18 
March 1998, just a month after the term “open source” itself was introduced. 

 
Did you know? 

The IBM® DB2 Express-C database is free as in free beer. Check out these Web sites for 
more details: 

http://freedb2.com/2009/08/06/db2-express-c-those-who-use-oracle-like-it-a-lot/ 

http://db2express.com 

http://tldp.org/HOWTO/DB2-HOWTO/whyexpc9.html 

1.4 Advantages and disadvantages of open source 
Based on the fact that open source software is free and can be seen by everyone has 
great advantages. But the fact that it is being developed by a nonprofit community has 
some disadvantages. In this section we discuss the pros and cons of open source software 
maintenance and development. 

1.4.1 Pros 

Open source software has lower monetary costs as development, support and license 
costs are fairly minimal when compared to proprietary software. This does tempt many 
organizations to use open source software in their business model. In fact many 
companies do business with open source, IBM being one of them. For example, IBM offers 
a quality service with the Linux operating system. Another company, RedHat is selling the 
Linux operating system with support services.  

http://freedb2.com/2009/08/06/db2-express-c-those-who-use-oracle-like-it-a-lot/�
http://db2express.com/�
http://tldp.org/HOWTO/DB2-HOWTO/whyexpc9.html�
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As far as security and reliability goes, open source is a great model because, as many 
people analyze the source code, a safer and more secure code will be produced. Since 
open source software has so many people participating in its development, some programs 
are faster and scale better than the proprietary counterparts. Also depending on usage and 
need, open source software is also changed by experienced users thereby making code 
more stable. 

Open source is also the answer to the incompatible formats in proprietary software, 
because it only uses open standards, that is, standards that are known or are accessible to 
all the people. One such example is OpenDocument Text (.odt), which is an open standard 
for word processor documents. 

From a corporate perspective, companies that use open source do not have to worry about 
complicated licensing, and thus, do not suffer the risk of having illegal copies that infringe 
copyrights. Therefore, they don’t need anti-piracy measures, such as CD keys, product 
activation and serial keys. 

Open Source software is community driven and community serving; a large number of 
bright, and generous developers work openly and with the whole community. For example 
when an open source program crashes it provides useful information to find the source of 
the error or to report a possible bug. 

Open source software is independent of companies and its main authors. If the company 
goes bankrupt or the authors fail to maintain the program, the code continues to belong to 
the community. Therefore, many people believe open source software can live by itself. As 
long as there are passionate contributors from the community, this is indeed the case. 

1.4.2 Cons 

Open source software has been focused to provide solutions to servers rather than to 
desktop computers. As a result, adoption in the desktop arena is much slower. For 
example, Linux desktops are still not used as much as Microsoft® Windows®. In addition, 
many software is not yet compatible with open source. When a user chooses a Linux 
desktop he has to remove several software that are not supported on Linux, or in some 
cases, there is no similar nor viable open source application. A good example is the 
gaming industry, which is still very focused on Windows. 

Excluding companies that sell open source combined with technical support; proprietary 
software offers better service and support. The quality and availability of assistance in an 
open source project is proportional to the interest and use of the program by the 
community. An open source tool with few users can be poorly documented and have 
almost no means to help you understand it. 

1.5 Open source trends and perspectives 
The advantages of OSS outweigh its disadvantages, this is why companies are starting to 
pay close attention to open source. Increasingly, many companies are using open source 
software tools for development and test; but open source is quickly gaining market share 
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as an alternative in production environments. A well known example is the LAMP stack – 
LAMP being Linux, Apache, MySQL® and PHP/Perl/Python. It is arguably the widest 
adopted software stack for the deployment of Web applications.  

Many other open source projects that emerged since the 80's are still going strong, with 
many users and better product quality. This is the case of the Eclipse IDE (Integrated 
Development Environment). Eclipse was developed by IBM in 2001, and donated to the 
open source community in 2004. Today, Eclipse is one of the widest IDEs in use 
worldwide. 

There are more and more companies whose business model relies on open source. For 
example, some companies specialize in delivering an integrated and fully tested 
environment consisting of different open source software like LAMP. The fact that such 
companies exist is the greatest measure of the success of open source community 
developed software. 

Chapter 2 discusses in more detail other business models used in the open source world, 
and more details about Eclipse too. Other chapters in this book will discuss other 
successful open source projects in more detail.  

1.6 Career path 
We don't want to undermine your intelligence by making you believe that the number of 
jobs in OSS is much higher than that for proprietary software. However; though smaller, it 
is a niche market.  

Today it would be easier to get a C/C++ programmer job. In order to get developers who 
have programmed in newer technologies like Python, or Ruby, and who have understood 
the community, its trends, and its ways of working would certainly take a lot more time and 
effort. Just as we make correct technology choices for a software solution based on its 
architecture, organizations need to make choices to find the right fit for the right job. With 
the growing trends of involvement and usage of OSS in companies the demand for open 
source developers to take up this work is definitely on the rise. IBM itself has shown a lot of 
involvement in open source software like Eclipse, Linux, and so on.  

In summary, OSS jobs are increasing. It’s still a niche area, but its growth potential makes 
it worth exploring. Needless to say that being an expert in a niche area always calls for a 
premium salary for oneself. 

1.7 Exercises 
Review the following link to learn about the involvement of IBM in OSS development. 

http://www.accessmylibrary.com/article-1G1-133183812/history-ibm-open-source.html 

1.8 Summary 
In this chapter you learned about the history of open source and how it evolved over the 
years. You also learned about the underlying difference between the terms "free software" 

http://www.accessmylibrary.com/article-1G1-133183812/history-ibm-open-source.html�
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and "open source software". This moved us to discussing some of the advantages and 
disadvantages of open source software and how working in the open source space could 
benefit your career in the long term. 

1.9 Review questions 
1. When was the term "Open source" first used and by who? 

2. What does FLOSS stands for? 

3. List the pros of FLOSS 

4. List the cons of FLOSS 

5. Which foundation was started when Netscape Communicator software was made 
open source? 

6. Which of the following open-source projects appears in the 90s? 

A. EMACS 

B. XFree86 

C. KDE 

D. Eclipse IDE 

E. None of the above 

7. Who was the founder of the Free Software Foundation? 

A. Richard Stallman 

B. Ian Murdock 

C. Miguel de Icaza 

D. Linus Torvalds 

E. None of the above 

8. One of the two groups who established the roots of OSS were: 

A. The founders of the GNU project 

B. The creators of BSD UNIX 

C. The founders of the GNOME project 

D. A & B 

E. None of the above 

9. In Stallman's definition of Free Software, "Free" means: 

A. Free as in "Free beer" 

B. Free as in "Free speech" 
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C. Free as in "Free of charge" 

D. All of the above 

E. None of the above 

10. In Stallman's definition, Free Software is: 

A. Freeware 

B. Libre 

C. Software that can be modified, studied and distributed with no restriction, but 
may not be free of charge 

D. B and C 

E. None of the above 





 

 

2 
Chapter 2 – Open source business models 
You've probably heard the saying "There’s no such thing as a free lunch". Do you think this 
applies to open source? Are the users of open source software getting a free lunch? The 
answer to this question lies in the famous quote "free as in free speech, not as in free beer" 
discussed in Chapter 1. If the creators of open source software are giving their users a free 
lunch, then how do they themselves earn a living or even be profitable? In this chapter we 
try to understand the answers to this question.  

In this chapter you will learn about:  

 The different business models employed by companies (not communities) involved 
in open source. 

 How the business models affect you, as a contributor to open source, if any. 

You might be asking yourself "Why should this matter to me as developer?" Strictly 
speaking, at this point you can choose not to bother; however, from our experience, this 
knowledge will help you understand some of the nuances behind why communities and 
companies do what they do. You may use this knowledge to your advantage, and perhaps 
use it as a guide towards your success when you start your own open source project! 
Understanding the economics behind how open source operates can be interesting in 
itself! 

2.1 Open source business models: The big picture 
An open source business model is a model used by companies that are involved in the 
development of open source software to keep themselves financially viable and successful. 
In fact today these companies compete with traditional proprietary software companies for 
investor’s money on the stock markets. Traditional software companies get revenue by the 
sale of the software they create, that is, they earn money for each copy of the software 
sold. As illustrated in Figure 2.1, traditional software business models monetize software by 
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either directly selling software products or by providing software development services. 

 

Figure 2.1- Business models for Proprietary software 

 

Did you know? 

When IBM sold the first mainframes, the software that was bundled with them was made 
freely available in open source. Users were allowed to modify and enhance it. 

 

How about open source software companies? Stepping back into the evolution of open 
source software, it is fair enough to say that the initial roots of open source software were 
sowed by either community projects which had mutual sharing as their main concern (over 
business ambitions) as in the case of the GNU project, or funded by government contracts 
as in the case of BSD UNIX. However as open source software usage progressed to the 
extent that many of them were viable alternatives to their commercial counterparts, 
commercial software companies became interested in finding ways by which they could 
promote, develop and monetize open source software. During this period many startup 
companies emerged, such as Red Hat. Red Hat focuses on the development and 
promotion of the Linux open source software, building their revenue and profits around it. 
These companies began to explore new economic models, different from traditional 
commercial software to succeed in the competitive software market. 

This phase – companies involved in the development and promotion of open source 
software – has lasted for around a decade or more now. Today there are probably very few 
domains of product software from operating systems to Business Intelligence, in which 
there are no commercial companies promoting open source communities and their 
software. Studies have been carried out by groups to find out the various economic models 
employed by these companies. The top four models are illustrated in Figure 2.2.  
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Figure 2.2- Business models for open source software 

Companies that develop and promote open source software are sometimes referred to as 
Commercial Open Source Software companies (COSS) or Professional Open Source 
Software companies (POSS).  

The following sections describe in detail each of the four business models shown in Figure 
2.2. 

2.2 Dual licensing  
In this model, the open source software is licensed by the POSS company under both, an 
open source license (using GPL only, a license to discuss in detail in Chapter 3) as well as 
a commercial license. In this model the POSS company generates revenue when it sells 
the open source software under a commercial license. 

Why would a consumer of open source software pay the POSS company to obtain the 
same software which is also available free of charge? This is needed when the consumer 
wants to link his own proprietary software to the open source software, but does not want 
this to cause its proprietary software to become open source as it would under the GPL 
license. According to the GPL license, when one accepts GPL licensed source code and 
links it with any other code (dynamic linking or static linking), the linked software also 
becomes open source. Thus the only way proprietary software vendors can link with GPL 
software without causing their own software to become GPL is by paying the POSS 
company. The POSS company then gives the same software to the proprietary software 
company under a license that excludes the need for the latter to make their proprietary 
software open source when they link to it. Figure 2.3 summarizes how dual licensing 
business model works.  
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Figure 2.3 - Dual licensing business model 

As a developer, you may want to consider this if you are planning to make code 
contributions to an open source project that has dual license. You will be giving the POSS 
company the right to make money directly out of your contribution by commercially 
licensing your code. Of course if the POSS company plans to accept your contributions 
they will ask you to sign a legal document which states that you have given them the rights 
to do so.  

MySQL, JBoss and SugarCRM are examples of POSS companies that employ the dual 
licensing business model.  

2.3 Split open source software / commercial products  
In this model, there is a core portion of the software which is available as open source. This 
core provides the base functionality. Then there are other portions or extensions that are 
built on top of or extend the functionality provided by the core. The latter is licensed under 
commercial or proprietary licenses and sold like typical proprietary software. Figure 2.4 
illustrates how this model works. 
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Figure 2.4 - Split open source software / commercial products business model 

Many POSS companies choose the Apache or Mozilla open source license when they 
want to follow this business model, since these licenses allow this kind of intermixing where 
some parts can be open source and other parts proprietary. 

This model is used by many commercial software companies that participate in open 
source including IBM. In fact, IBM is an acknowledged leader in this space. Does this mean 
IBM is a POSS company? A company is considered a POSS when most of its revenue 
comes from open source software sales. Since this is not the case for IBM it would not be 
considered a POSS company by that definition. Probably the best example of IBM’s 
successful usage of this open source business model is Eclipse – the world’s default IDE 
and tooling platform.  

As discussed in Chapter 1, before IBM donated Eclipse to the open source community, a 
number of proprietary Java IDE’s competed with each other; yet as a whole, Java IDE’s 
had a very small portion of the IDE market share compared to Microsoft’s Visual Studio. 
When IBM open sourced its VisualAge family of IDE products as Eclipse, it became the de-
facto standard and was widely accepted by all. This led to a massive increase in the overall 
Java IDE market share compared to Visual Studio. Thus, IBM chose the right strategy with 
Eclipse, and is probably the biggest beneficiary financially - IBM Rational’s development 
tools which are commercial software products have seen a great uptake since they are 
based on Eclipse. 

If you are a developer planning to contribute to an open source project under this business 
model, you can be certain that your code will never be licensed under a commercial 
license, since it would be part of the core, which must be open source. 

2.4 Product specialists  
A POSS company that nurtured an open source software project either by creating it from 
the start or contributing and maintaining it, can generate revenue from it by providing 
training and consulting services to the customers of the open source software. This is 
illustrated in Figure 2.5. 
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Figure 2.5 - The product specialists' business model 

If the open source software caters to a domain that is very complex, and it achieves good 
adoption, there can be significant revenue to be made from providing training and 
consulting services. For example, this may be the case with business intelligence software 
(as compared to wiki software). By the very nature of being the creators and maintainers of 
the software, it follows that they would be the experts, and hence the best trainers and 
consultants in the market. The POSS can achieve this position with minimal spending on 
marketing efforts. 

2.5 Platform providers 
In a not so distant past software systems were monolithic. In those days one probably 
bought the entire system from a single vendor who provided all the software and support 
needed. However these are the days of concepts like Service Oriented Architecture (SOA) 
where software systems are built from multiple components from different software vendors 
and integrated into one system. And what if those multiple components were all open 
source?  

Open source software has permeated every domain of product software. Today many 
software systems in production run entire software stacks consisting of open source 
software. However, as you can imagine, customers building this type of systems have to 
face many challenging decisions: Which open source software receives community 
support? Which ones have a diminishing number of contributors and is on the way out?. 
How can you determine if a given open source software will work well with another one? 
How can these software be integrated taking into account different versions? How many 
resources should be allocated to test and verify the integrated system and then upgrade 
and patch it in the right manner so that it still works?.  

Finding the right answer to these questions can be a nightmare. For example let's say that 
a patch of open source software X needs Java 1.5; however, open source software Y, 
which is also part of the system will work only with Java 1.4.  

By now, you probably understand why a customer would be willing to pay a company to 
deliver a tested and verified system made up of different open source software. This is the 
reason the platform providers business model came into existence. Figure 2.6 illustrates 
this idea. 
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Figure 2.6 - The platform providers' business model 

An example of a POSS company using this business model is Zend, "the PHP company". 
Zend provides a platform fully tested to develop PHP applications. 

2.6 Business model relationship to license 
It is interesting that when we analyze the above mentioned business models, the 
relationship these models have is vis-à-vis to open source licenses. This is illustrated in 
Figure 2.7. In the bottom quadrants, the business model is tied to the license of the open 
source software. Dual licensing applies only when the open source software is GPL-
licensed, and Split Open Source / Commercial products when the open source software is 
Mozilla-based. However the business models in the top quadrant have no bearing on the 
license of the open source software itself.  
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Figure 2.7 - Business model relationship to open source software license 

2.7 Open source business model and proprietary software  
Customers, startup companies and IT departments are finding it difficult to justify the 
licensing costs of proprietary software they use, and have been looking at open source 
software as a cost-reduction alternative. This has taken open source software adoption to 
new levels especially in segments like Web applications. 

In order to remain competitive, several proprietary software vendors have evolved their 
strategies in this area. A widely used strategy is to offer no-charge versions of their fee-
based products. The source code of these no-charge versions remains close. A typical 
example is with Database Management Systems (DBMS). Established DBMS vendors 
such as IBM, Oracle® and Microsoft compete today with open source DBMSs like MySQL 
and PostgreSQL by offering "Express" editions of their popular fee-based DBMS systems. 
The Express editions are free of charge, and by default have no customer support. This 
means that if you run into a problem such as a defect in the product, the vendor will not 
provide you with any support. However, vendors often optionally offer support for a fee. 
Thus proprietary software vendors are using the same approach as the open source 
business model – not charging for the software itself but generating revenue by providing 
support. 

In addition to customer support revenue, proprietary vendors view this as an opportunity for 
adoption and upgrade to fee-based versions in the future. For example a startup company 
in its initial stages may not be in a position to spend lots of money to purchase software 
licenses; however, if the company grows, they would need more sophisticated product 
features which are generally not available in the free versions or on open source software. 
Therefore, an obvious choice for these companies would be to upgrade to a fee-based 
version of the proprietary software. 
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To an extent, Express editions have not seen significant adoption due to the customer's 
perception that these editions are nothing more than crippled software with upgrade paths 
to the fee-based versions. And though this may be true in some cases such as Oracle XE 
and Microsoft SQL Server® Express which place a 2GB hard limit on the amount of data 
that can be stored; other companies like IBM with its DB2 Express-C database product, do 
provide more flexibility.  

Did you know? 

IBM DB2 Express-C database server does not provide any restriction on the amount of 
data you can store. It can run on Linux, Windows, and the Mac OS, and can be installed on 
hardware of any size. Applications developed for DB2 Express-C will work with no 
modification on other editions of DB2, should you need to upgrade, because DB2 Express-
C is built using the same code base as the other DB2 editions. 

For more information visit ibm.com/db2/express 

 

Did you know? 

When Oracle bought Sun Microsystems in 2009, MySQL became an Oracle product since 
MySQL had been bought by Sun a few years earlier. At the time of writing, Oracle has not 
made it clear what are its plans for MySQL, but there are interesting comments here: 

http://freedb2.com/2009/09/22/ellison-oracle-does-not-compete-with-mysql-mysql-
disagrees/  

 

In conclusion, using an Express version does have its merits when the product offers you 
low cost optional support, flexibility of use, and an easy upgrade path to more sophisticated 
editions in the future as your needs grow. 

2.8 Summary 
This chapter started with an explanation about the open source software ecosystem, and 
how it generates money to sustain itself. It then explained the different business models 
that exist in the world of open source, and how choosing a model can impact you as a 
contributor to open source software communities. Finally, we looked at "Express" versions 
of proprietary software as an alternative for companies to start with no licensing cost, the 
option for low cost customer support, and the possibility to easily upgrade to a version with 
more features. 

2.9 Exercises 
Review the following article which provides a brilliant analogy about a POSS company and 
bee-keeping. 

http://wiki.pentaho.com/display/BEEKEEPER/The+Beekeeper 

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK15�
http://freedb2.com/2009/09/22/ellison-oracle-does-not-compete-with-mysql-mysql-disagrees/�
http://freedb2.com/2009/09/22/ellison-oracle-does-not-compete-with-mysql-mysql-disagrees/�
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2.10 Review questions 
1. Name a well-known database company that uses the dual licensing business 

model. 

2. In which business model would the Eclipse project and its various plug-ins fall 
under? 

3. What are Professional Open Source Software Companies? 

4. Describe how DB2 Express-C is different from its competitors like Oracle XE or 
Microsoft SQL Server Express.  

5. What is the value proposition from businesses using the Platform Providers' 
Business Model? 

6. Which of the following is not one of the top business models used in open source: 

A. Dual licensing 

B. Platform Providers 

C. OS Providers 

D. All of the above 

E. None of the above 

7. Which of the following business models require specific licenses? 

A. Split open source / Commercial products 

B. Platform providers 

C. OS Providers 

D. All of the above 

E. None of the above 

8. Which of the following is a characteristic of DB2 Express-C? 

A. DB2 Express-C is a free database server by IBM 

B. DB2 Express-C has no limitation on the database size or the number of users 

C. DB2 Express-C can run on Linux, Windows and the Mac OS 

D. All of the above 

E. None of the above 

9. What are the advantages of the express versions of some commercial products 
like DB2 Express-C? 

A. It's free 

B. It has optional fee-based support when your company grows 

C. It provides an easy upgrade path when your company grows 
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D. All of the above 

E. None of the above 

10. A company using the "Product Specialists" business model: 

A. Does not spend a lot of money in marketing 

B. Uses this model because it delivers complex OSS software in a large market 

C. Relies on its expertise to deliver training given that it developed the software 

D. All of the above 

E. None of the above 

 

 





 

 

3 
Chapter 3 – Licensing 
In earlier chapters you were introduced to the various business models employed by a 
company involved in open source, and several open source licenses were mentioned. But 
what makes a software license open source? This chapter provides an answer to this 
question.  

In this chapter you will learn about: 

 The tenets of intellectual property, copyright and the intents of an open source 
license.  

 An explanation of what makes a license an open source license  

 A brief description of some of the most commonly used open source licenses  

 Things to keep in mind while choosing a license for a software 

3.1 Intellectual property, copyright and licensing: The big picture  
Intellectual Property (IP) are legally protected rights that one has over new ideas or 
creations. Common types of intellectual property include copyrights, trademarks, patents, 
industrial design rights and trade secrets.  

Copyright gives the creator of the original work exclusive rights in terms of usage, 
distribution and customization of the work. 

Some of the privileges copyright provides to the author of software include: 

 The right to produce and sell copies of the work 

 The right to create derivative works  

 The right to sell, transfer or reassign any of the rights granted by copyright to others  

The transfer of rights by the author partly or wholly at his own terms is what we refer to as 
licensing. The term license means permission. The copyright holder, or licensor, grants 
another person, known as the licensee, specific permissions to use the work.  

Figure 3.1 depicts this relationship between licensor, licensee and license. It also shows 
that a license is a subset of the privileges that the Copyright Act grants the licensor. The 
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licensor permits the licensee to use these privileges as agreed between the two parties in 
the license.   

Figure 3.1: Relationship between licensor, licensee and license 

3.2 Open source licensing 
This section provides a brief history about open source licensing, its intent, and a brief 
description of commonly used licenses. 

3.2.1 History of open source licensing 

The open source software movement traces its history to the formation of the Free 
Software Foundation ("FSF") in 1985 by Richard Stallman. As discussed in Chapter 1, Free 
Software is more of an ideology that emphasizes the freedom users have with the source 
code and not with the price one pays for the software. In essence, free software is an 
attempt to guarantee certain rights for both, users and developers. These freedoms 
include: 

 Freedom to execute the program for any reason 

 Freedom to examine the source code, see how it works and change it to do what 
you would like it to do 

 Freedom to redistribute the source and keep the money generated from it 

 Freedom to modify and redistribute the modified source code 

In order to guarantee these freedoms the GNU General Public License (GPL) was created. 
In short any software licensed under GPL must include the source code. Any modifications 
made to a GPL source code will also be licensed under GPL. This was to ensure that 
software once "opened" to the community could not be "closed" at a later time.  

Copyright 

Licensor / 
Copyright Holder 

Licensee 

License 

Intellectual Property 
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In 1998 a non-profit institution called Open Source Initiative (OSI) defined the term "open 
source software" to emphasize a break with the anti-business past associated with GNU to 
place a new emphasis in the community on the possibilities of extending the free software 
model to the commercial world. The OSI does not define a specific license as GPL but lays 
down the pre-requisites of the distribution terms of open source software. It thereby 
accepts various licenses whose distribution terms comply with the Open Source Definition 
(OSD). There are ten criteria mentioned at the OSI Web site 
(http://www.opensource.org/docs/osd). The main intentions for the OSD are described in 
the article "Open source licensing, Part 1: The intent" [1] by Martin Streicher and are 
summarized in Table 3.1 below.  

 Intention Explanation 

1 Licensees are free to use open 
source software for any purpose 
whatsoever. 

This basically means that the licensee need not 
justify the usage of the open source software. 

2 Licensees are free to make copies of 
open source software and are free to 
distribute those copies without 
payment of royalties to a licensor. 

This implies that the licensee can redistribute 
the software at a cost or free of charge. 

3 Licensees are free to create 
derivative works of open source 
software and are free to distribute 
those works without payment of 
royalties to a licensor. 

This allows the licensee to modify the open 
source software and then redistribute it with or 
without charge. The licensee is in no way liable 
to pay any amount to the licensor for this 
neither can the licensor pose any restrictions on 
the derivative works. A pre-requisite for 
intention 3 to occur is the pre-existence of 
intention 4. 

4 Licensees are free to access and 
use the source code of open source 
software. 

This means the source code is freely available 

5 Licensees are free to combine open 
source and other software. 

This gives the licensee the ability to mix open 
source software with other software. 

Table 3.1 - Intentions of open source software 

 

We review in the next section how the GPL and MIT licenses meet the above intents of 
open source software. 

http://www.opensource.org/docs/osd�
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3.2.2 Commonly used open source licenses  

Though there are over 50 OSI approved licenses most of the licenses fall under two 
categories:  

 Academic licenses, such as the Berkeley Software Distribution (BSD) license, 
allow software to be used for any purpose. Software obtained via an academic 
license can be freely changed, sold, redistributed, sublicensed, and combined with 
other software. 

 Reciprocal licenses like the GNU General Public License (GPL), also allow 
software to be used for any purpose, however it enforces that the changed or 
modified software must also be licensed under the exact terms as the original 
license. 

A GPL licensed code does not allow proprietary software to link to it. It also does not permit 
redistribution with software having a GPL non-compatible license. Also redistribution of the 
derivative works need to be with GPL. On the other hand MIT licensed software allows all 
of it. It permits proprietary code to link to it, redistribution with non-MIT license software and 
redistribution of derivative works with non-MIT license. Interestingly, they both are open 
source software licenses as they follow the open source definition specified by the OSI. 
Table 3.2 compares the GPL versus the MIT license. 

 GPL license MIT license 

Allow proprietary code to 
link to open source code 

No Yes 

Allow redistribution of 
software with other code 
that has another license 

No Yes 

Allow redistribution of 
derivative work 

Yes. Derivative work becomes open 
source with GPL license 

Yes 

Table 3.2 - Comparing the GPL vs. the MIT reciprocal licenses 

Let's take an even closer look at the GPL and MIT licenses by reviewing excerpts of each 
license as shown in Listing 3.1 and 3.2 respectively. We will verify each of the licenses 
satisfy the five intentions explained earlier in Table 3.1 
 
You may modify your copy or copies of the Program or any portion of it, thus forming a work based 
on the Program, and copy and distribute such modifications or work -- provided that you -- cause any 
work that you distribute or publish, that in whole or in part contains or is derived from the Program or 
any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this 
License. 
 
These requirements apply to the modified work as a whole. If identifiable sections of that work are not 
derived from the Program, and can be reasonably considered independent and separate works in 
themselves, then this License, and its terms, do not apply to those sections when you distribute them 
as separate works. 
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But when you distribute the same sections as part of a whole which is a work based on the Program, 
the distribution of the whole must be on the terms of this License, whose permissions for other 
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. 
 
Listing 3.1 - An excerpt of the GNU license 

The sentence "You may modify your copy or copies of the Program or any portion of it, 
thus forming a work based on the Program, and copy and distribute such modifications or 
work" indicates that licensees are free to access, and use open source software for any 
purpose and that they are free to create and distribute derivative works (Intention 1, 3, 4 
and 5). In the same sentence, the clause "copy and distribute such modifications or work" 
further indicates that licensees are free to make copies of the open source software 
(Intention 2).  

 
Copyright (c) year, copyright holders 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
associated documentation files (the "Software"), to deal in the Software without restriction, including 
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to 
the following conditions: 
 
< text that follows has been removed for the sake of brevity > 
 
The above copyright notice and this permission notice shall be included in all copies or substantial 
portions of the Software. 
 
Listing 3.2 - An excerpt of the MIT license 

The phrase "permission is hereby granted, free of charge" clearly indicates that MIT 
permits licensees to access and use open source software for any purpose whatsoever 
(Intention 1). Further the phrase "rights to use, copy, modify, merge, publish, distribute, 
sublicense and/or sell copies" combined with "free of charge" indicates that licensees are 
free to make and distribute copies, access the source code, create derivative works and 
combine open source and other software without payment of royalties (Intention 2, 3, 4 and 
5).   

In conclusion, both GPL and MIT are valid open source licenses as they satisfy the same 
intentions though through different means, and are thereby best suited in different 
situations.  

Did you know? 

The IBM Public License (IPL) was IBM's first open source license. The Common Public 
License (CPL) is essentially the next version of the IPL. In 2009 CPL was superseded by 
the Eclipse Public License (EPL). 

3.3 Choosing the right license  
By now you must be feeling more of a lawyer and less of a developer. Yet, all of this 
information is very relevant to you: It can help you avoid a lawsuit. An interesting licensing 
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violation is the case between the Free Software Foundation (FSF) and Cisco. In 2004 a 
German court ordered Cisco to stop selling its wireless routers because it was in violation 
of the terms and conditions of the GPL license - Cisco’s products were using GPL-licensed 
software in their code, but not providing free availability of their source code. 

Another case of license violation happened early in 2009 when Microsoft was found in 
violation of the GPL license on the Hyper-V code it released to the open source 
community. More information can be found at this link: 

http://www.theregister.co.uk/2009/07/23/microsoft_hyperv_gpl_violation/. 

So what is the right open source license to use for a given software? There is no magic 
formula but some of the things to consider are listed below: 

 Is the work in question a derived work? Or would the work be redistributed with 
other open source software? If so, what are the license terms you have agreed as a 
licensee? 

 Do you want the software to be revenue generating? Review the different open 
source business models as described earlier in Chapter 2. 

 Do you want access to use licensees’ contributions? How do you add this clause to 
your license? 

 Review the licenses in the OSI website - http://www.opensource.org/licenses to see 
if any of the existing and approved licenses of OSI would be good for you to use. 

This and several other factors are things to consider while choosing an appropriate license 
for the software in question. Depending on the scope of the project you could get into legal 
discussions to help you chose an appropriate license. 

3.4 Exercises 
The OSI categorizes various approved licenses. Review these categories and the licenses' 
terms and conditions at http://www.opensource.org/licenses/category  

3.5 Summary 
In this chapter you learned about the concept of Intellectual Property and how it related to a 
license. You also learned about the relationship between a license, licensor and licensee. 
Next, the chapter explained what makes a license an open source license, and provided a 
description and comparison between the BSD, GPL and MIT licenses. Finally the chapter 
provided questions that would help you choose the most appropriate open source license 
for your needs. 

3.6 Review questions 
1. What is required for OSI license approval? 

2. Why is it important for developers to know about OSS licenses? 

http://www.theregister.co.uk/2009/07/23/microsoft_hyperv_gpl_violation/�
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3. Name 3 popular OSS licenses 

4. How come the MIT and GPL licenses are both OSS licenses even though they 
have contradictory items? 

5. Name the two main categories of OSS licenses 

6. Is the Eclipse Public License approved by OSI?   

A. Yes 

B. No 

7. If I modify a program licensed under GPL and distribute the object code of the 
modified program for free, must I make the source code available? 

A. Yes 

B. No 

8. Under MIT, can you link proprietary code to open source code?  

A. Yes 

B. No 

9. Intellectual property and copyright are synonyms. True or false? 

A. True 

B. False 

10. Which of the following is not an OSS license?  

A. GPL 

B. BSD 

C. MIT 

D. EPL 

E. None of the above 
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4 
Chapter 4 – Community driven development 
Open source software is often developed by a group of people who normally have no 
governing authority or organizational support. What are the strategies and methods they 
follow? Which tools do they use at the various phases of the software development life 
cycle? Are these tools available for free? This chapter provides the answers to all of the 
above questions. 

In this chapter you will learn about: 

 Various tools used in an open source software development project. 

 Processes of designing and writing the programs. 

 Managing different versions of the source code and creating new builds. 

 Methods of testing and issues tracking. 

 How open source software is released. 

4.1 Community driven development: The big picture 
A community is a diverse group of people sharing their thoughts, ideas, work, and 
experiences, at a common place. The term “community” as used in this chapter is not an 
exception to this definition. In the software industry, community driven development 
broadly means an initiative under which a group of technologists work together with a 
common vision of producing open source software. 

Most of the OSS development communities who are successful today, organize 
themselves in a similar way as a professional organization or proprietary software 
company. This is why in a well structured OSS community; you can find each member has 
a job role within the team. Groups of people performing similar jobs, form sub teams within 
the community. Figure 4.1 gives you an overview of such a community, where multiple sub 
teams collaborate to develop open source software. 
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Figure 4.1 – Community driven software development 

As shown in the figure, the developers' group is responsible for writing code for different 
independent modules of the software. The builders’ group takes these modules from the 
developers and put them together to build a new version of the software. These software 
builds are internally tested by the testers' group. In case a bug or failure is found, they 
report back to the appropriate developer who debugs the code and includes a proper fix. 
This is an iterative process that repeats itself until the product satisfies all its requirements 
and becomes error free to the maximum possible extent. Once the objectives of the project 
are met, the release management group packs together the final version (final build) of 
the software with all the necessary documents, and then hands it over to the customers. 

OSS development communities, especially those which are self driven, offer their team 
members the flexibility of shuffling their job roles. This means that a developer may perform 
the role of a tester, a tester may work as a build team member, and so on. Most 
importantly, these communities always keep the door open for the users (customers), so 
that they can also contribute effectively into the project and become part of the community. 

Software development tools are a collection of programs that help with specific tasks 
during the software development life cycle. They are normally used for project 
management, and to perform repetitive, and time consuming tasks. There exist both, 
proprietary and open source development tools. For an open source project, it should be 
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obvious that the latter one is the preferred choice. There are also a few instances, where 
communities use their self developed tools.   

The next sections describe the various processes and tools used by the OSS development 
communities in detail. 

 4.1.1 Developers' group: Software design and development 

You can think of software design as the blueprint that defines the architecture and 
behavior of a product, and coding as the process of implementing the design.   

A community driven software development typically starts as a project to address problems 
generic across the society. These problems are technically termed pain points, and 
include a list of requirements that the software is expected to fulfill. The designers’ group, 
which in many cases is also part of the developers' group, takes these requirements as 
input and writes algorithms which are cost effective and optimal in terms of performance.   

Software designers should be the most experienced and knowledgeable members of the 
community as their job requires thorough understanding of the entire system. They also 
must be aware of every alternative to overcome all the probable barriers of implementing 
the design. Following are the two most important points that a designer must analyze 
closely:  

 Hardware platform: The designer must know the capabilities of the hardware, with 
which the software is going to interact. Resources like number and speed of the 
processors, I/O device response time, available system cache, primary memory and 
secondary storage space etc. are the most important concerns. 

 Operating system: The operating system (OS) provides the environment for 
running applications. Process and thread handling mechanisms vary from one OS 
to another. Moreover, the algorithms of job scheduling, CPU time allocation, 
avoiding deadlock situations are also different. The designer must take these 
factors into account. 

A perfect design should be self explanatory and easy to understand. All the algorithms and 
flowcharts should include detailed explanations and other necessary documentations 
including time-space complexity and the expected behaviors of the system under best and 
worst scenarios. 

Unified Modeling Language (UML) is a widely accepted standard used for software design. 
It allows a designer to describe the structure, behavior, and interactions among different 
sub units of the system with the help of various simple diagrams. 

Following design, the software development life cycle enters the coding phase. At this 
stage, the design is first sub divided into multiple smaller units. Different development 
groups code these sub units separately as individual modules. 

Coding is the process of translating the steps of an algorithm, into multiple computer 
instructions, with the help of a programming language. Choosing the proper language for 
writing the source code is critical. A community should always encourage using languages 
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which have gained industry wide trust and with which the development team is well versed. 
Some communities prefer using interpreted languages, since they consume less time to 
create the executable modules as compared to the compiled languages.  

Automatic code generators are often helpful in developing big and complex code 
snippets. iCodeGenerator is an open source code generator offered by SourceForge 
(http://sourceforge.net/projects/codegenerator/). 

Transition between the design and code generation phases in a community driven 
development typically tend to overlap with each other in a project. Developers sometimes 
start coding parts of a system, while other parts are yet to be designed. Although, this kind 
of approach of running two phases in parallel saves time; it may result in duplication of 
effort in the event of a change in design. 

4.1.1.1 Version control  

Software development is an incremental process where functionality is added or removed 
one by one. At any given time the code of different modules may undergo frequent 
modifications by different individuals or groups which create different versions of the same 
code. Version control (or revision control) is the mechanism to manage all of these 
versions in an effective way.   

There are two varieties of version control systems:  

 Centralized Version Control System (CVCS) – This is perhaps the most widely 
used version control system to-date. It works in a centralized manner which means 
that developers and testers around the world have to connect to a server, where a 
central repository for the entire project is stored.  

Concurrent Versions System (CVS) is a very well known open source CVCS 
(http://ftp.gnu.org/non-gnu/cvs/). To get a private copy of a particular file, you first 
need to check it out from the repository. Once done with your changes, you may 
commit or save your work into the repository by checking the file in. CVS will 
automatically increment the version (or revision) number by 1 and record all the 
necessary information about the change in its log. If someone else had already 
committed some other changes to the same file, CVS will automatically merge your 
changes with those of the other person. This system also allows a user to track 
back the old versions of a file. By comparing two successive versions of a file, you 
can easily determine modifications introduced.  

One of the main drawbacks of CVCS is that developers may interfere with each 
other's working environment. For example, a small bug injected through a code 
change, becomes a big issue when it causes various other modules of the entire 
code base to fail.  

 Decentralized / Distributed Version Control System (DVCS) – This type of 
version control allows a developer or tester to create their own code branch, that is,   
they can maintain versions of the code in a decentralized manner. A DVCS 
provides all the functionalities of CVCS, plus the flexibility of creating a local 
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repository. Git, Bazaar, Monotone, Mercurial and Darcs are a few examples of open 
source DVCS software.  

Did you know? 

During the early days of Linux® kernel development, Linus Torvalds used CVS for version 
management. In 2002, Linus switched to BitKeeper; however, since BitKeeper became 
proprietary in 2005, Linus started writing a completely new DVCS, called git. The official 
web site of git (http://git-scm.com/) describes it as – “... a free & open source, distributed 
version control system designed to handle everything from small to very large projects with 
speed and efficiency. Every Git clone is a full-fledged repository with complete history and 
full revision tracking capabilities, not dependent on network access or a central server. 
Branching and merging are fast and easy to do.” 

4.1.2 Builders' group: Software building 

Programs are normally written in smaller units that are compiled before they can be 
executed. The resulting object modules are then bound together in a process known as 
linking to form a complete software system. Software building refers to the sum of 
compiling and linking all the source code of a project.  

Software building is a dynamic process: People constantly add, delete and modify the 
source code files under the project’s central repository. To make these changes effective, 
the modified code needs to be recompiled and linked regularly. Development communities 
generally have a separate build team to carry out this task. It is important to mention that 
the build process recompiles only those source code files which were modified since the 
previous build was released. For the rest of the elements which remained unchanged, the 
older compiled modules are picked up. Figure 4.3 illustrates this fact. 

 

Figure 4.3 – Software builds 

Build 0 (A0 + B0 + C0 + D0) 
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In the figure, the central repository contains four source code files A, B, C and D. The base 
version of these files is illustrated with the number zero, so A0 represents the base version 
of source code file A for example. When compiled and linked they create ‘Build 0’. On the 
next iteration, all the files were modified and their versions were upgraded to 1. Since all 
the files were modified, all are compiled and linked to create ‘Build 1’. On the net iteration, 
only source code file A and C are modified creating second versions of them (A2 and C2). 
As a result when creating ‘Build 2’, only A2 and C2 are compiled, and then linked with B1 
and D1. Similarly, ‘Build 3’ is created based on the newly compiled A3 and precompiled B1, 
C2 and D1. 

Berczuk and Appleton have divided software builds into the following three distinct 
categories in their book “Software Configuration Management Patterns” [2], and an 
additional paper with Konieczka, “Build Management for an Agile Team” [3]: 

 Private build – A private build is a new version of a developer’s personal branch in 
a DVCS. Naturally, this type of build is only visible to its owner and he can access it 
locally even when working offline.  

 Integration build – An integration build is created from the compilation and linking 
of the main project branch and is available to all within the community for use. 

 Release build – A release build is the final version of the software to be shipped. It 
is basically a snapshot of a stable integration build which users use as a product. 

Frequent builds allow the source code to undergo less number of modifications. This 
reduces the effort needed for debugging and fixing the new errors. On the other hand, the 
build process involves a lot of repetitive tasks which can be automated by means of open 
source tools like make, ant, maven, and scons. 

So far we have discussed about the building process in a project environment. However, 
since the code is open, at anytime users can tailor it at their own premises and get 
customized versions of the product. A later section discusses how you can rebuild and 
install open source software after changing its source code. 

4.1.3 Testers' group: Software Testing  

Software testing as defined by Glenford J. Myers in his book “The Art of Software 
Testing” [4], is “the process of executing a program with the intent of finding errors". 

Conventionally, there are two varieties of software testing – black box and white box. 

 Black box testing: In this type of testing, the actual output of the code is compared 
with the expected result. Testers are supposed to feed the system with a set of 
inputs, and note down the corresponding outputs. In case of any mismatch between 
the obtained and expected results they report it to the developer without analyzing 
the code. 

 White box testing: In contrast to black box, in this type of testing, testers look into 
the source code of the product and carry out some investigation in the event of 
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failures. This requires a developer to put less effort and time for analyzing the error 
before fixing it. 

With open source software, every person, no matter whether he is a member of the 
community or not, gets equal opportunity of performing white box testing as the source 
code is accessible to all. 

Testing also requires planning and a proper infrastructure. At different stages of 
development, the code undergoes various levels of testing: 

 Unit testing: This level is used to test individually each of the units that make up a 
software 

 Integration testing: In this level, all the stable modules are integrated with each 
other to form the entire system, and tested as a whole.  

 System testing: This testing ensures the software is operational and satisfying all 
its requirements.   

 Alpha testing: In this stage, the software is given to the users internal to the 
community, to judge its performance against practical deployment.  

 Beta testing: After fixing the errors discovered during alpha testing, the community 
releases the software to the external users as a beta version, with a disclaimer that 
it may fail in unplanned use cases. The community expects external users to 
provide feedback about these unplanned scenarios. 

Small scale open source software without any organizational governance may not undergo 
formal testing. However, this software tends to be quickly adopted because it provides a 
solution to a common problem. When a bug is encountered, the user will normally poke 
through the code to make things work again, or he can customize it to his own needs. This 
is the way in which many people become members of OSS communities. When the 
software becomes so useful and with enough followers, some users take the software to 
the next level by enhancing it, and formally releasing it to the community.  

OSS development often spends less time and budget to test their product. Rather, they 
leverage the community to test and fix the code themselves; and to provide feedback for 
new functionality. In addition, this unique approach makes open source software very 
robust. 

4.1.4 Release management group: Packaging   

Users give preference to a product that is well packaged. In an open source software, the 
core item of a package is the source code. A standard package includes accessories like 
an installation guide, a user manual, and other information. Packages of software written in 
high level languages like C or C++ that require compilation of the source code, optionally 
may contain a pre-compiled executable version of the product. All of these elements are 
put together within a single directory and compressed into a single file.  

The format of the compressed file depends on the operating system on which the software 
is meant to run. On Linux or UNIX®, packages are presented in formats like .tar, .gz etc. 
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which are created using compression utilities like tar, gzip, bgzip, bzip2. On Windows®, 
the distribution package is zip. If the software has operating system specific versions, each 
of them is released in separate packages. 

Once the package is prepared, it goes through a small test by a few developers to ensure 
the final version of the product can be decompressed, installed, and works correctly.  

Then it is published in one or more internet Web sites for download. In some cases, if there 
is budget, CDs or DVDs can be ordered online at no charge. 

4.1.5 Release management group: Releasing 

Releasing software means making a completely new or upgraded version of a software 
available to the users. A new release introduces a product into the market and an 
upgraded version provides fixes for errors found in a previous released version and 
optionally adds new features. 

To distinguish the versions from each other, each OSS community follows its own 
convention of using unique numbers for every release. Provided below is a template of 
such numbering scheme for the file names of the compressed package. The file extension 
is not shown, but it would be .tar, .gz, .zip and so on as discussed in the previous section:  

Abcdefg x.y.z < Alpha | Beta > 

 

In the above example, Abcdefg is the name of the software and x, y, and z represent 
the major, minor and micro components of the unique release number respectively. A 
release containing only small fixes for a previous version, is considered as a small or minor 
release and thus associated with the same release number as that of the previous one, 
incrementing its last digit (micro component) by 1. For example, if a product was released 
as Abcdefg 2.0.5, a small release would be represented as Abcdefg 2.0.6. A critical 
bug fix is implied by increasing the minor component and resetting the micro component 
which makes the new release to be identified as Abcdefg 2.1.0. If new functionalities 
are added, the version number would be upgraded to Abcdefg 3.0.0. When the 
software with limited functionality is made available to internal users for testing, this interim 
version is called Alpha as in Abcdefg 3.0.0 Alpha. An alpha version helps the 
development community collect error reports form the users. Depending on the count and 
sensitivity of the errors discovered, communities may also decide to release multiple alpha 
versions like Abcdefg 3.0.0 Alpha 1, Abcdefg 3.0.0 Alpha 2, and so on. When 
the alpha round is over, the feature complete product is given to third parties outside the 
community. This is called a Beta release. Following the example, the release would be 
called Abcdefg 3.0.0 Beta. With sufficient testing and debugging through alpha and 
beta cycles, the software finally becomes ready to be officially shipped. At this conclusive 
stage, the community announces “General Availability (GA)” of their product. 

After a successful release, the developers' group work is divided in two: The first one is to 
maintain & support the already released version, and the second one is to further improve 
the product with new functionalities to be included in the next version. At this point, the 
central repository of the version control system is branched into two. The branch where 
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maintenance works will occur is called the release branch. Stable snapshots of this 
branch are released as minor versions of the product at the same major line (for example, 
Abcdefg 3.1.0, Abcdefg 3.2.0 and so on). Fixes for high potential failures which 
cannot wait until next minor release are distributed to the customers via a sub branch of the 
current minor release line such as Abcdefg 3.2.1, Abcdefg 3.2.2, etc.  

The branch where developers work on the new version (Abcdefg 4.0.0 for this 
example) is called the mainline development branch. This branch progresses in parallel 
with the release branch.  

A community should continue to provide fixes for previous versions until the majority of the 
existing users start using the latest version of the software. 

4.2 Installation and issue tracking 
After an OSS is released and is available to users, users have to install the product. In 
contrast to proprietary software, OSS may require users to compile the source code, and 
perform some configuration before the installation. This is described in this section.  The 
section also describes how users can provide feedback to the community using issue 
tracking. 

 

4.2.1 Installation 

Before a user can install the software in his system, he needs to extract it by 
decompressing the package. Many users often attempt to install the software without 
reading the instructions. It is recommended to at least review the README or INSTALL 
files. Typical installation steps for open source software are: 

 Understanding the system configuration 

 Compiling the source code  

 Executing the installation file.  

For example, on a Linux or UNIX based system, the sequence of commands below 
accomplish these three steps: 

# ./configure 

# make 

# make install 

The first command is executed from the location where the software package is extracted. 
It invokes a tiny program called configure (generally included with the package) to detect 
the hardware and software specifications of the machine and create a Makefile 
containing the set of instructions to complete the installation process.  



60    Getting started with open source development 

 

The second command, (make) compiles the source code of the software as dictated by the 
Makefile.  

The third command (make install) reads the configuration specifications of the 
computer from the Makefile and installs the software into it. Although the first two 
commands can be executed by any normal user, the last one needs root access. 

If the OSS package does not contain the configure script, users are provided with a 
Makefile they can edit with their computer’s configuration and start the setup process 
from the second step.  

Note that users can change the source code at any time and go through this process again 
to install the modified version of the product. 

4.2.2 Issue tracking  

Although the term “issue” may be interpreted as a bug or problem in the software 
development world, in reality it is more than that. An issue may refer to a bug, but also to a 
change request, where the change is related to a piece of existing code, design, feature or 
even software documentation. 

OSS projects typically use free issue tracking tools like Abuky, Bugzilla, Buggit, BugRat, 
GNATS, JitterBug, and Mantis. An issue can be discovered by a developer, a tester or 
even a user. Once identified it is reported to the community by logging a record in the 
issue tracking database, managed by the tool, with all the necessary details. Every single 
issue record is associated with a unique number for identification purpose. Figure 4.2 
shows different states of an issue throughout its entire life cycle. 

 

 

 

 

 

 

 

Figure 4.2 – Life cycle of an issue. 

When a person ("the originator") finds a problem, he logs a defect in the issue tracking 
database, and the state of the issue is set to opened. Thereafter, someone from the 
development team tries to reproduce the error and takes ownership of the issue if he 
validates it is indeed a bug. At that point the state of the issue is updated to working. Once 
the developer (owner) fixes the problem, he commits the changes required into the central 
repository, and updates the state to delivered. When these changes are included in the 
build of the project branch, the state changes to integrated. If the build passes all the 
required tests, it is made available to the entire community and the issue state changes to 

Opened Working Delivered Integrated Validated 

Fix working fine? Closed 
No Yes 
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validated. The originator can now verify that the new build resolves the problem. If the 
error reoccurs, the state is switched back to opened and the whole cycle starts again; 
otherwise, the issue is closed.   

There are variations to the life cycle illustrated in Figure 4.2. It is common to find new 
opened issues being closed very soon due to these reasons: 

 Duplicate:  If someone opens an issue for an error which is already known to the 
development team, the issue is closed as a duplicate.  

 Non-reproducible: When an issue cannot be recreated under a similar 
environment, the issue is closed as non-reproducible. 

Such instances are very common as users not following an OSS project closely are also 
able to report failures. Moreover, there are instances where users open issues without 
understanding a feature properly. This can cause the issue tracking database of a popular 
OSS to grow considerably with invalid issues. To avoid this situation, it is the responsibility 
of the community’s active members to follow up the issues as soon as they are opened by 
either accepting or declining them with proper justifications. On the hand, users should 
analyze a problem before opening an issue. They should at least perform some basic 
research by discussing the problem in blogs or discussion forums, or searching in the issue 
tracking database. Another option is to e-mail the development team directly, and only 
open an issue when they confirm it is a new problem. 

4.3 Exercises 
1. Visit Mozilla’s bug tracking system at https://bugzilla.mozilla.org/ and see how an 

open source community tracks issues. Mozilla accepts bug reports and feature 
enhancement requests for all their products through this portal. 

2. Know more about open source software testing from 
http://www.opensourcetesting.org/. 

3. Learn about “Linux Software Packaging History and Concepts” from 
http://wiki.rpath.com/wiki/Appliance_Development:Linux_Software_Packaging_Hist
ory_and_Concepts. 

4. The Apache community uses Subversion (SVN) revision control system and allows 
everyone to access the source code over the internet. Know how you can get 
inside their code repository and work with the contents from 
http://www.apache.org/dev/version-control.html#source-code-repositories. 

4.4 Summary 
In this chapter, you learned how open source software is developed as a community 
initiative and how a project goes from an idea to a featured product. The chapter discussed 
all the stages of the software development life cycle, such as designing, coding, testing, 
building, packaging and releasing; with focus on the different groups who participate at 
each stage, and also on the open source software tools used.  
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4.5 Review questions  
1. What does the term “community driven development” mean in the software 

industry? 

2. State the key difference between CVCS and DVCS. 

3. Name some open source issue tracking tools. 

4. What are the items typically included within an OSS package? 

5. What are the steps to install open source software in a computer? 

6. Which of the following is a valid format of a Windows specific OSS package? 

A. .tar 

B. .zip 

C. .gz 

D. A and C 

E. All of the above. 

7. Which of the following is used during the design process of an OSS? 

A. UML 

B. XML 

C. CVS 

D. Git 

E. None of the above 

8. myproduct 3.4.5 – in this scheme of version numbering, which is the “minor” 
component? 

A. myproduct 

B. 3 

C. 4 

D. 5 

E. None of the above 

9. Which two of the following tools can be used to automate software build process? 

A. Make 

B. Apache 

C. Ant 

D. Darcs 

E. None of the above 
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10. Which of the following is not

A. Opened 

 a state in the life cycle of an issue? 

B. Fixed 

C. Closed 

D. Integrated 

E. Validated 





 

 

5 
Chapter 5 – Participating in open source 
development 
On Chapter 4 you became acquainted with the software development process for OSS, 
and the relationship between the different groups in the community. This chapter is related 
to Chapter 4; however, the focus is more on the communication and social aspects when 
participating in an open source development project.  

In this chapter you will learn about: 

 How different communities operate, and how you can fit in 

 Different channels for effective communication across the community 

 How you should interact with others contributors and users 

Note: 

The writing style starting from this chapter is somewhat different than in the previous 
chapters. This is done on purpose.  The writing style is used to also reflect the way many 
people in OSS communities communicate.  

5.1 Participating in open source development: The big picture 
Open source development is quickly gaining traction as one of the most effective 
development models. Just imagine the consequences of a having a handful of techies and 
savvy eyes going through your code, constantly reviewing it, correcting and adding to it. In 
little to no time your project would reach a level of quality you couldn’t ever have imagined.  

As discussed in Chapter 4, every major open source project has its own model of 
organization, a tight thought hierarchy where different people with different functions and 
different skills work in conjunction, most commonly across the Web. Figure 5.1 illustrates a 
traditional organization of an open source community.  
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Figure 5.1: Traditional organization of an open source community 

In Chapter 4, the focus was mainly on the groups responsible for the development of the 
software. In this chapter, we are taking a broader view. Notice how users take part in the 
organization as opposed to the closed software development method where users cannot 
take a more direct participation. 

In order to contribute to an open source project a common misconception is that you have 
to be some kind of hacker; however, this is not the case. There are many ways one can 
contribute to an open source project.  

Positions on a project vary according to project dimension; some projects behave much 
like a company. In those cases projects are divided into departments such as, 
development, public relationships, documentation, etc.; the structure reflects the project 
needs. What you should keep in mind is that there are many positions to occupy. In 
contrast, small projects are typically composed of a main developer with several co-
developers. Though you are likely to be assigned your role when you first start contributing 
to a project, here is a description of the different roles normally available:  

 Project Leader / Main developer: A leader performs functions that are not too 
different from a company's CEO: He is the one making tough decisions, and in big 
projects he is also in charge of coordinating many of the project subdivisions. 
Smaller projects often are governed by several developers, similar to a company’s 
board of directors. 
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 Programmer: There aren't as many programmers as one would think; in many 
active projects the programmers are a small percentage of all contributors. The 
programmer is in charge of implementing features and fixing bugs. 

 Documentation Writer: In the past open source software was difficult to install and 
only those who had the patience and skill could get this software working. This was 
perhaps one of the reasons why documentation became very important, as well as 
the fact that community members often rotate software development positions. It is 
the responsibility of the documentation writer to ensure that every person can use 
the software in hand. 

 Translator: Even though English is the official Web language, it is true that not all 
of us are fluent in it, for that same reason it is common for a project to readily make 
its manuals available in as many languages as possible. Any user is more than 
welcome to translate any piece of the documentation to his own native language. 

 Designer: Gone are the days when people in the Free and Open Source Software 
community didn't believe in image and its overall importance to a project. There are 
many kinds of designers. UI designers often called usability engineers, Web 
designers, and artwork designers. Projects like KDE or Gnome rely heavily on 
designers work. 

 Public relationship: In some cases, such is the dimension of a project that huge 
amount of content is generated every day. Keeping the community up-to-date can 
be an overwhelming job. In order to keep a coherent image, a public relations team 
is assigned to key areas, passing the message along through the community 
communication channels. 

 Active User: Active users of the software are the base of the pyramid. They use the 
software, provide feedback, and may customize the product to their needs. 

The strength of the open source development model comes from the user base and the 
power given to it. A healthy project will empower users to submit feature requests, fill out 
bug reports, and will welcome user cooperation using properly administered 
communication channels. In a later section you will be introduced to some of the most used 
means of communication within a community, and you will learn effective ways of getting 
the word across.  

5.2 Open source communities 
Chances are you have found a certain software tool that satisfies your needs, but you don't 
have the money to pay for it. So you search through the Internet for an alternative free 
version, and after some time you find a free open source software that seems to have all 
that you need. Quickly you go through the features list and bummer!, an important feature 
that would be useful to you is missing. Most times someone with similar needs would have 
already gone through that same path and contributed with code that would have provided  
this specific feature; however, not this time; this time it's up to you!.  
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Contributing with code for the desired feature may take you weeks, but in the process you 
will learn tones of new and interesting information, gain a few ideas that would make that 
software snappier and meet people from all over the world who share the same passion 
you do; like the one of sitting alone at night with a stash of chips and a can of coke, 
cracking a problem like a mad man in pajamas, waiting for the moment the solution comes 
down that stairway from heaven, and rejoicing when it arrives by dancing with his cat. 

Open source communities are full of people like this, well, maybe not all of them dance with 
their cats, but they love to be challenged and aren’t afraid to get involved. For them 
opportunity often appears from necessity, which generates motivation which then mutates 
into fun and responsibility.  

If you are reading this book, we assume you are interested in open source, and if you 
haven’t already contributed in some way, maybe it's because you don't know where or how 
to start. Well, as many things in life, you have to find the need first; motivation is just not 
enough. By "need" we mean that you should search for a project you have a special 
interest in, for instance, start by looking for the ones you use on a day-to-day basis.  

Take GNU/Linux for example. Many of us in the open source community use GNU/Linux 
daily, for it is a very robust, very powerful operating system, and with its many distributions 
it makes for a very good playground for people to enter the FLOSS community. Debian is 
one of those distributions, one of the oldest as a matter of fact, and it drives itself from a 
strict belief in free software as depicted in their "social contract", which guarantees you that 
in a bare installation, Debian contains only free software. Of the thousands of applications 
that make up Debian or almost any other distribution, many have their own community. 
Debian itself has a community.  

It is then a matter of time that in your daily routine taming around your computer, you strike 
a bug in one of the thousands of software that make up Debian. Impaired and with no other 
alternative to continue whatever is you were doing, you look for a way to solve it. The bug 
hunting leads you to a little library with a very simple mission, intrigued you want to know 
more about that little library. Fortunately it is not hard in the open source world to find good 
documentation even to the simplest piece of software; good documentation guarantees 
project continuity and enables community feedback. Even small libraries like this one that 
is bugging you may have a community attached. It comes to no surprise, libraries are used 
by bigger applications, and the developers of these applications rely on these libraries for 
very specific functionalities; it’s a mutual interest. If you are lucky, you may even find a bug 
tracking tool. For some of the smaller software projects that have no need for a bug 
tracking tool, the project leader normally goes with a simpler and centralized feedback 
platform, like a forum. It’s very hard to be the first to find a bug in a community as large as 
Debian’s, rest assure that if this example were to suit reality someone would have already 
fill in the bug for you. But in this reality you are the master, checking out every bug that 
bugs you. A little debugging with a proper software tool, a simple run through the source 
code and there it was. Five minutes later you have set up a patch, you go into the bug 
tracking tool and submit it, a few hours later one of the developers picks it up, merges it 
into the main code and redistributes it. Your good deed for the day is done. 
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Now don’t get the wrong idea, it is not all dull work and necessity that makes an open 
source contributor. Some of us, specially the younger ones, have a tendency to get bored 
quickly. There’s a little noise bubbling in our heads, like kids on Christmas Eve that just 
have a lot of curiosity. We go to where our current obsession drives us. 

Finding an open source community that fits you out of pure interest should not be difficult, 
you see communities come in all size and shapes. They range from extremely large like 
the Linux kernel to the very small like your run for the mill script that downloads dubious 
content from the Internet. Some of the larger projects turn into non-profit organizations to 
provide a sustainable platform from where they can grow. This is why the Mozilla 
Foundation was born. You may know Mozilla as the organization who brings you Firefox, a 
really good Web browser that happens to be licensed as free and open source software.  

These larger projects function very much like a typical company, structured into different 
departments, each with an individual area of operation.  

Did you know?  

In 1993 a company called Netscape released a version of a graphical Web browser named 
Mosaic. Mosaic was one of the first of its kind, revolutionary as a matter of fact, quickly 
becoming the world's most popular browser. In 1995 Microsoft launched Internet Explorer, 
becoming the first Mosaic opponent. Internet Explorer was bundled with Windows, which 
gave it quite an advantage. By the end of the 90’s Netscape was already in trouble. In 
order to save the company Netscape leadership created the Mozilla Foundation, and 
released their browser as open source. They expected that by releasing the code, a 
community would gather around it, helping the company regain the lost market. They were 
right! 

 

Once you indentify a potential community with whom you’d like to get involved, you should 
take some time probing it. Try to figure how a new member’s work is contributed. Many 
projects will make available information on the subject but many others will not. If not in a 
separate section on their webpage, search forums for instructions on how to get your 
patches or bugs submitted. Go for frequently asked questions (FAQ) sections and wikis. 
Sometimes smaller projects include this information into text files that come with the source 
of the application, check it also!  Ultimately if nothing else works search around the Web, 
maybe one of the community members has posted some information somewhere. A good 
example of a development guide is at http://ldn.linuxfoundation.org/how-participate-linux-
community a Linux kernel developer's guide, which makes also a good read even if you 
don’t plan to take on kernel development.  

Suffice is to say that open source has grown from being associated with a software project, 
to a more extended concept. Open source is now in effect a culture; it symbolizes free 
sharing of content. Communities gather around the most different concepts of content, 
written content, video, even hardware such as computer chips or cars are turned into open 
source.  

http://ldn.linuxfoundation.org/how-participate-linux-community�
http://ldn.linuxfoundation.org/how-participate-linux-community�
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Wikipedia is one of those communities, even though we must point out that technically it is 
not considered to be open source. This is because Wikipedia’s license does not satisfy the 
open source principles; it is nonetheless a great example of peer contribution. You may 
even also come across some projects that have associated literature in the form of a book 
created gradually by contributors. 

5.3 Effective communication 
The internet is the foundation of open source communities since users and contributors are 
scattered across the globe. This also means that communication must be as effective and 
organized as possible. There must me established infrastructures, and these 
infrastructures must be well designed and should fully fulfill the community needs and 
modus operandi. 

Though there are no standard communication channels, there is a historic means of 
communication used extensively across all open source projects: email. Email can be used 
as a great discussion mechanism through mailing lists. Mailing lists provide one of the 
most important community feedback channels, they are filled with developers taking on 
enthusiastic and technical discussions. There is also a more direct communication 
approach used extensively across the open source world, Internet Relay Chat (IRC) for 
instantaneous textual communication between two or more parties.  

In the past BBSs (Bulletin Board Systems) were used to exchange messages with other 
users. In 1998 IRCs were introduced, and quickly became the de-facto communication tool 
for real-time communication throughout the 90’s. IRC users have to install a client part of 
the software to their local computers. Today real-time communication falls in the hands of 
instant messaging services, but IRCs remain widely used. Due to its open nature it is a 
good way to meet other people. There are a number of IRC servers you can connect to, 
but the one used by most open source fellows are the freenode servers (freenode.com). A 
popular open source IRC is mIRC (http://www.mirc.com/). 

Web sites are the first and foremost medium for promoting a given open source software 
and to mass communicate project details. You can host your own Web site with the help of 
open source Web servers like Apache (http://www.apache.org/). If Web hosting is not an 
area which you or your community has much expertise or interest in, you may consider 
using a site like SourceForge. SourceForge not only provides you with Web hosting, but 
also offers an integrated platform on which you can run your entire OSS project. For more 
information visit http://sourceforge.net/. In addition, the last chapter of this book includes a 
case study using SourceForge. 

 

http://www.mirc.com/�
http://www.apache.org/�
http://sourceforge.net/�


Chapter 5 – Participating in open source development     71 

 

Did you know? 

Part of the ranking process on sourceForge comes from downloads but much of the 
calculation is driven by community activity. If someone opens a defect, checks in code, 
makes a feature request, or posts to a forum page; all of that adds to the relative activity 
score and the project’s overall ranking. Projects with a high ranking get noticed. 

An example of a successful open source project hosted on SourceForge is the 
Technology Explorer for IBM DB2 (TE). TE has over 10,000 downloads with a 
sourceforge.org ranking consistently in the top 200 projects and in the top ten of over 
13,000 database related projects. To find out more about the Technology Explorer for IBM 
DB2 refer to Chapter 8. 

 

A Wiki is a collaborative Web site developed and maintained by a group of people for 
knowledge sharing purpose. In an OSS community, active members who are aware of the 
various technical details of the project, generally publish their own articles in the form of 
tutorials. http://wiki.rubyonrails.org/ is an example of such a wiki maintained by the Ruby on 
Rails user group. Wikis are generally open to all for contribution, with restriction only to the 
deletion of pages. 

Feeling the pulse of the community is not restricted to their official communication 
channels. Weblogs (also known as blogs) have emerged has one of the most valid means 
of sharing thoughts around the Web. You are guaranteed to gather a lot of helpful 
information through blog surfing.  

Planets are aggregation of blogs. Every major community has one; it’s like a newsletter but 
much more effective. Developers write about their work and you get to know what’s 
happening from an insider's point of view. It is also one great way members can gain 
visibility in the community. After all, being credited for great work is the only and best 
payback community members receive; and everyone likes to be appreciated for their work. 

Still the best way by far for feeling your community is to meet the members in person. The 
most active and passionate members that happen to share the same geographic location 
organize themselves once in a while, to go out and get to know each other. These are 
called user groups. Look for user groups in your area and go have some fun!. 
Meetup.com is a Web site where you can easily arrange a local reunion with a specific 
theme. The Ruby community has done this. Check it out!, maybe there is one for yours 
already. 

Some communities go further and organize worldwide conferences, where they can calmly 
and effectively discuss the future of the project as well as throw some technical 
presentations and boost the morale of everyone involved.   

There are other types of meetings, however. FOSDEM, short for Free and Open Source 
Development European Meeting, is a once in a year event in Brussels. It gathers roughly 
five thousand visitors each year. Developers from all major open source projects come 
together to exchange knowledge which help promote their community and announce 
upcoming changes and innovations.  

http://wiki.rubyonrails.org/�
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Last but not least, there are events called hackatons where developers come together and 
try to implement as many features or close as many bugs as they can. As you can imagine 
this can provide big pushes into a project's life cycle and as a side effect it improves 
collaborative working and respect among developers. Now, if you bring a bunch of 
developers together, give them a beer and a laptop, and you will certainly have a hackaton 
going as part of the original event. 

5.3.1 Communication etiquette and guidelines 

As passionate as people are in this kind of projects, it is not uncommon for opinions to 
diverge and matters to get out of hand. For that reason communities often follow guidelines 
for user behavior. These guidelines emphasize users' and contributors' communication 
conventions as to maintain social order and effectiveness.  

These are some of the community guidelines: 

 Search before you ask. 

This principle is quite simple, sometimes the information you are looking for is 
clearly stated somewhere within the project documentation or commonly available 
around the internet. It may be easier to ask on a mailing list or forum but this would 
be the equivalent to asking someone else to do the work for you.  

 Do not engage in acts of verbal aggression. 

The Internet is a wonderful place, it enables people to communicate across 
continents with no connection whatsoever to their real identity, this triggers some 
primal human behaviors issues in some of us. Enabling these behaviors in yourself 
will not bring anything helpful to the conversation, it will however destroy any 
credibility you have left.   

 Do not support acts of verbal aggression. 

If you are taking part on a discussion when all of a sudden a flame war erupts, 
please do not take part on it, respect other people’s opinions, be constructive and 
try to positively explain your view. Do remember a hierarchy exists, as in your 
professional life, you’ll often find people with more authority and lesser technical 
expertise. 

 Know were to ask your questions. 

Usually a quick look around the project Web site is all you need to find your way to 
a forum or IRC channel where you can ask a specific question. Sometimes in bigger 
projects these platforms are carefully divided into different and appropriate sections 
where your question can be answered by someone with appropriate knowledge.  

 Show results, you'll earn more respect showing work than talking about it. 

Often when you take part on a technical discussion and your point of view is not 
getting across, do not stress it, sometimes the best way to do it is by presenting the 
end result. Even if it turns out it is not the best solution, you will end up helping in 
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achieving it, hopefully you’ll learn something new as well, and you’ll have proven 
yourself to the community. 

 Be concise, explain your intentions first. 

Objectiveness is a big plus in any work area, besides saving you and others a lot of 
time; it simplifies the chore at hand. Across any written medium such as the ones 
we have seen earlier, it is absolutely essential that you make yourself and your 
intentions clear in any communication attempt. Start by asking yourself “is this 
information relevant?” 

5.4 Exercises 
1. Pick one or more OSS projects mentioned in this book so far, then choose your 

favorite search engine, and perform the following. 

A. Investigate the project purpose 

B. Find where it is heading, and where it came from 

C. Search for getting started documentation 

Note:  

If you would like to skip this step, Chapter 8 provides an example of an open source 
project where all the above information is provided. 

2. Consider reading the essay “How to ask smart questions” by Eric Raymond on his 
FAQ page http://www.catb.org/esr/faqs/. 

3. Choose the project you enjoyed the most from question one, keep in mind that it 
must have a forum or IRC channel. Now from what you have read in question two, 
you are more than able to engage in your community. Go to the community site 
and join their forum or IRC channel. Participate! 

5.5 Summary 
This chapter started discussing the motivations for contributing to an open source project. It 
also described the different roles a new member can take, which are not restricted to 
coding. The chapter then discussed a range of communication channels used by 
communities to exchange information; and finally it explained some guidelines and 
etiquette required when dealing with other members in the community, such as “Do not 
engage in acts of verbal aggression”.  

5.6 Review questions 
1. How is a project ranked in sourceForge? 

2. List some of the duties of a Project Leader. 

3. Why is documentation important in an OSS project? 

http://www.catb.org/esr/faqs/�
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4. Why are there translators in an OSS community? 

5. Name two communication etiquette guidelines 

6. What are the benefits of open source development? 

A.  Delay on bug fixes 

B.  Poor security 

C.  Size of contribution 

D.  All of the above 

E.  None of the above 

7. What do most open source contributors expect to receive from their contribution? 

A.  Money 

B.  Recognition 

C.  A paid job 

D.  All of the above 

E.  None of the above 

8. Open source contributors should have one of these traits: 

A.  Know how to code 

B.  Own an IBM Model M keyboard 

C.  Quick learner and willing to help others 

D.  All of the above 

E.  None of the above 

9. Which of the following mediums of communication is popular among OSS 
communities for publishing Web articles or tutorials? 

A.  Email 

B.  IRC 

C.  Internet blog 

D.  Wiki 

E.  None of the above 

10. When engaging in discussions in an OSS project one must  

A.  Doubt other people's capabilities 

B.  Ignore those who shares different opinions 

C.  Prove our point with reason and work 
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D.  All of the above 

E.  None of the above 





 

 

6 
Chapter 6 – Starting your own open source 
project 
In this chapter you will apply all the knowledge you have acquired thus far to experience 
how to start your own open source project. So think of something big!   

In this chapter you will learn about: 

 How to set up the basic infrastructure of your project. 

 How to gather people for your community. 

 How to promote your software and get more contributors. 

 How to handle huge amounts of change requests from users. 

6.1 Starting your own open source project: The big picture 
Before starting an open source software development project, you must perform a self 
assessment test using the flow chart depicted in Figure 6.1. 

 

Figure 6.1 – Prerequisites for starting a new OSS project 
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As illustrated in Figure 6.1, the mandatory criteria for starting an OSS project is asking 
yourself two main questions:  

1. What is the fundamental idea or requirement of your software? Do you feel many 
people would have same kind of requirements? 

1. Is there any software already available in the market for the same purpose? If yes, 
does your product stand out for any reason? Why would people use it? 

If you can convince yourself with the answers to the above questions, your project can be 
kicked off.  

But, hold on. Do you have any prior experience contributing to an OSS project? Have you 
ever managed such a project? If your answer for either or both of these questions is NO, 
we suggest you be a part of at least one OSS project and understand their community 
culture. Get in touch with the management team and learn their experiences of dealing with 
various aspects of the project. 

All sorted out? What are you waiting for then? Let’s get started with setting up the platform 
for the project. 

6.2 Providing the ecosystem for your open source project 
An ecosystem is a perfect environment, where interactive species work together as a 
single unit. In an OSS project, this environment undoubtedly refers to the OSS community. 

As you may have guessed, the intention of this section is to find out how to build a 
community. This may sound as something simple, but gathering contributors together, and 
getting the work done, is easier said than done. To achieve this goal, you need to have 
management skills and expertise. This may be a good approach: 

1. Establish a goal for your project. 

2. Create a plan, roadmap or strategy to accomplish your goal. 

3. Find community members. 

4. Understand the basic needs of your project and community. 

5. Arrange for necessary funds. 

The only way to get members for your community is to raise awareness. Is there any 
person in your social network, who you feel can help in developing the software? Yes? Go, 
and get him convinced to contribute to your project. Other activities that will help are: 

 Posting your project details in relevant forums.  

 Building an official Web site. This site should convey all the details of your project. It 
should be the only portal from where users can access the code repository, issue 
tracking database, see the build status, browse the mailing lists, and subscribe to 
one or more of them. A Web site will allow you to reach contributors from all over 
the world. 
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 Getting the members to promote the project. Once you get a few members for your 
community, encourage all of them to promote your community. This makes the 
awareness effort multiplied by the number of members. 

The first and most important thing that an OSS product and project needs is an appropriate 
license. When choosing the license, remember that users always prefer those ones which 
are well known in the industry; for example, BSD, GPL, etc. An unfamiliar license, even if it 
is very short, simple, and straight forward may discourage some users from choosing your 
software and contribute in the project. So, it is always recommended to select an 
unchanged version of a well known, popular open source license unless your product has 
special characteristics that would require specific terms and conditions. Refer to Chapter 3 
- Licensing, to get more detailed guidance on the choice of a license. 

Setting up channels of communication is next in the list. As discussed before, the easiest 
way to mass communicate all the details of your project is through a Web site. You also 
need to create separate mailing lists, IRC chat rooms, and blogs where people can discuss 
about specific matters of the project or product. Your active participation as well as the 
participation from other key community members will often encourage the newbies to get 
more involved into the project, because it shows that the project management and the main 
developers have the interest to understand your feedback, and fix problems proactively. 
Refer to Chapter 5 - Participating in open source development, for more information about 
this topic. 

Other requirements of the project include various software development tools for version 
control, issue tracking, automating build process, designing, coding and testing. We have 
discussed about these tools in Chapter 4 - Community driven development. 

6.3 Accepting contributions 
Chapter 5 gave you an idea on how you can contribute to an open source project. This 
section tells you, how to drive the car on your own. Growth of an OSS project strongly 
relies on code or some other contributions from the outer world. And as you have already 
learned, the only way to gather such contributions in large scale is to make your software 
popular among the users, so that they feel enthusiastic about participating effectively in 
your project. It is not very easy to make a product widely visible in the present competitive 
market. However, if the key concept is innovative and if your software is distinctly ahead of 
other existing products, it is definitely not impossible!  

OSS development projects typically start with small communities. Since commitment to the 
project is completely voluntary, some developers may not always devote much time on 
your project when they are busy with other important jobs. In such situations, it becomes 
really challenging to take the work forward with limited amount of workforce. On the other 
hand, once your community becomes famous and well known, you can naturally expect to 
get flooded with bug reports, patches, functionality improvement request etc. on a daily 
basis. But keep your head on your shoulder. Never try to handle all these requests 
yourself. Rather, delegate it properly. Redirect the issues and other reports or requests to 
the relevant development team, and ask any of the people within that group to address it. 
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When someone contributes code as part of a code change or new feature request, a 
developer should first spend some time understanding the requirement. If things are not 
clear, he can request the contributor to provide more details. Once the idea is clear to the 
developer, he needs to check the status of the present release cycle to ensure if it is the 
right time to accept the request. If it is, the developer should walk through the code, before 
allowing the user to check it in. If it's not a good time, the request should be scheduled for 
the next release. 

Dealing with code reviews is painful when a developer has to do it all by himself. Make 
sure to delegate and involve more people into the review work. You can also let the 
experienced contributors whom you have worked with earlier and are entrusted by their 
quality of work, commit their work directly. Besides balancing the workload throughout the 
entire community, it also helps to clear the bottlenecks by reducing the number of pending 
user requests. 

Another suggestion is to share with the community the criteria to accept code contributions. 
This way the community will know ahead of time what is required and code accordingly.  

6.4 Exercises 
1. Become a member of an existing OSS community and use your practical 

knowledge and experience while driving your own project. 

2. Sourceforge provides an integrated platform for developing open source software. 
Explore http://sourceforge.net/ before starting your OSS project. You may like to 
make use of it. 

6.5 Summary 
In this chapter, you learned how to start an open source software development project of 
your own. You understood how to build up the basic infrastructure of your project, how to 
form a community, and how to satisfy its various needs. 

Later, the chapter discussed about handling multiple aspects of accepting user 
contributions, and how to get more and more people involved in the project with effective 
contributions. You also learned the way to deal with many user change requests.  

6.6 Review questions  
1. Which two fundamental points a founder of an OSS project must evaluate before 

starting his project? 

2. What are the basic steps to start your OSS project? 

3. How can you grow the awareness of your project? 

4. Why is it recommended to go for an unchanged version of an already existing OSS 
license? 

5. How can you overcome the stress of the code review effort? 

http://sourceforge.net/�
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6. Which of the following is not a valid method for getting members for an OSS 
community? 

A. Face to face interaction. 

B. Posting project details in relevant forums. 

C. Creating an official website. 

D. Consulting a legal advisor. 

E. None of the above 

7. Which of the following is not a mandatory requirement to start an OSS project? 

A. A license. 

B. A software development company’s guidance. 

C. Communication channels. 

D. Software development tools. 

E. All of the above 

8. What is the next step after receiving a feature enhancement request from a user? 

A. Requirement analysis. 

B. Checking the status of the release cycle. 

C. Asking the user to deliver the necessary code. 

D. Postponing the improvement until next release. 

E. None of the above 

9. Which of the following methods should you follow to handle overflowing user 
change requests? 

A. Let it be a responsibility of one particular member of the community. 

B. Delegate authority and tasks. 

C. Don't accept new change requests, when many of such requests are pending. 

D. None of the above. 

E. All of the above 

10. What is the best possible way to minimize the effort of screening user contributed 
code? 

A. Allow any user to commit their changes directly to the project branch without 
reviewing them. 

B. Ask every user to perform all kinds of testing of their own. 

C. Sharing the code selection criteria with the users. 
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D. Accept code only from known external users. 

E. None of the above 

 



 

 

7 
Chapter 7 – Case Study: Contributing to an 
open source project 
If you made it this far you must be thrilled and wanting to get your hands dirty. Use this 
chapter as your first guided tour to contribute to a real project. All the knowledge you've 
gained thus far can be applied following the step by step example provided in this chapter. 

The subject of our study is the DB2 module to Ruby on Rails. Why? You may ask. Because 
the authors of this book are familiar with it and it will give us the opportunity to take a look 
to a very important tool.  

7.1 Ruby on Rails and the DB2 module 
There are a few tools that can help you develop Web applications, Ruby on Rails (RoR) is 
certainly one of the best. Ruby on Rails is a Web application framework developed by 
David Hansson and released in 2004, since then it has gained a lot of traction and has 
become widely used. Its adoption is much due to its simplicity and philosophy. Ruby on 
Rails builds on principles such as, Don’t Repeat Yourself and Convention over 
Configuration. RoR is based on the Model-View-Controller (MVC) architecture and built-in 
tools such as scaffolding, which guarantee a rapid and easy development. 

DB2 is a relational database management system, first released in 1983 by IBM. Even 
though it is not an open source software, DB2 has a no-charge version known as DB2 
Express-C, giving us the ability to use one of the most high-performance relational 
databases available in the market for free!. DB2 can run on Linux, UNIX, Windows, Mac 
OS X (beta version at the time of writing), system i and z/OS® (mainframes). Its high 
availability and seamless stability has catered to the business crowd, but fear not, its 
features may well be what you are looking for. Like Ruby on Rails, DB2 builds on bold 
principles to succeed, DB2 supports for pureXML® technology which gives it a clear boost 
on application performance. It also provides the best compression support in the industry, 
allowing huge databases to be reduced to slightly more than half of their previous sizes.  

Bringing together the benefits of these two technologies will put you at an obvious 
advantage. Here is where the DB2 Ruby on Rails module comes in. The DB2 Ruby on 
Rails module is the glue that makes this happen. A team of six developers ensures the 
project stays highly active and extremely well maintained, providing Rails developers with 
continuous integration.  
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Note: 

If you would like to learn more about Ruby on Rails, refer to the ebook Getting started with 
Ruby on Rails. For DB2, refer to the ebook Getting started with DB2 Express-C, or review 
Appendix B, Up and Running with DB2. 

Both ebooks are free and part of the DB2 on Campus book series at ibm.com/db2/books. 

7.2 The ruby forge 

DB2 module for Ruby on Rails is hosted at ruby forge. A forge is basically a Web 
collaboration platform, providing developers with all the tools they need to manage the 
project and bring the discussion and code back to the community. A good forge will 
provide services like, mailing lists, source code management, wiki, bug tracking, forums 
and download archives. A forge holds a different number of projects, and some forges 
even have the ability to fork projects, enabling the user to start its own project from an 
existing one.  

Figure 7.1 shows the ruby forge front page for the Ruby on Rails DB2 module. 

 

Figure 7.1 - The RubyForge site showing the DB2 - RoR module main page (top)  

This is the top section of the DB2 - RoR module page, which consists of a quick project 
description, a list of the project developers and some menus on the horizontal bar. These 
menus give you direct access to different sections of the Web page, containing the tools 
we have talked through the book. The main menu bar includes the following (listed from left 
to right): 
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 Summary: Provides a summary of the project. This is what you can see in Figure 
7.1 

 Forums: A place where users can exchange their ideas.  

 Tracker: Takes you to the bug reporting tool with several but similar options.  

 Lists: Provides a listing of several mailing lists available with capability to view, 
subscribe and unsubscribe.  

 Tasks: Provides a todo list that project developers use to organize their activities. 

 Docs: For documentation 

 News and the SCM area: Gives you instructions to check out the project through 
subversion 

 Files: Takes you to the download area containing all different versions of the Rails 
DB2 driver package in different formats.  

Figure 7.2 shows the bottom part of the ruby forge DB2 - RoR module page. 

 

Figure 7.2 - The RubyForge site showing the DB2 - RoR module main page (bottom)  
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The bottom part of the Web page has a more detailed view of the items in the main 
menu, for example, the Latest File Releases area, gives you a description of the latest 
version as well as the date it came out and a quick link for downloading it. Below, the 
“Public Areas” section and the “Latest News” section follow the same principle. Either 
using the menu or these sections will lead you to the same content. It is important though 
that when you first arrive to a system like this you take some time to understand it. The 
sheer quantity of information with unusual nomenclatures can have an overwhelming 
impact. 

7.3 Submitting a bug 
The purpose of this chapter is to effectively use the knowledge we gathered from the rest 
of the book. One way of doing so is to imagine a situation where you have to submit a bug 
in the DB2 rails driver. As you have seen in the previous chapters, there are many ways of 
contributing to open source without having to type in a line of code. Submitting a bug may 
come across as trivial, but in fact most open source developers deal with poorly submitted 
bugs regularly.  

Bugs exist since the first piece of software was created. Some bugs are nastier than others 
and can make software unusable. Bug reporting intends to decrease the amount of bugs in 
an application, making life easier for all of the users. A good bug report consists of the 
following: 

- A detailed description of the system in which the software is running  

- The input the user was feeding to the application 

- The error message  

- The expected behavior 

Bug reports must be objective and based on facts, guesses have no place here. Even if 
you have the best of intentions by providing these guesses, it is not uncommon for a 
developer to spend a lot more time looking for a bug in a place there isn’t one, so the best 
thing you can do is just to fill in the bug with as much information as you can, and leave the 
rest to the developers. They will prompt you for input if they need to do so. 

Let’s imagine for a moment that you find a real bug and you intend to fill in a bug report on 
the DB2 rails driver ruby forge page. "Where do I start?" you may ask. Well, the process 
below may help answer this question:  

1. Check if there is already a submission for that bug. Duplicate bug submissions are 
a waste of time to you and to the developers. 

2. If you don’t have an account on ruby forge, create one. If you have an account, 
login, then go to the ruby forge DB2 rails adapter page and select tracker from the 
main menu, then click on Bugs. Click Submit New button right below the main 
menu. 

3. Fill in the fields: 
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 Category – This field requires some knowledge on the project structure. It 
refers to different sections of the project. For example the project may have a 
separate section for the user interface. In this case, the Ruby-DB2 project 
has two sections, Adapter and Driver. The adapter sits on rails ActiveRecord, 
which is a component responsible for the Object Relational Mapping (ORM). 
The driver, on the other hand, is responsible for making rails talk to IBM DB2 
database. 

 Group – The version of the IBM DB2 adapter and driver you are running. 

 Summary – A short description of the bug. 

 Detailed Description – This should include all the information necessary for 
the developer to reproduce the bug. In a system running rails, it would be 
obvious to start with the rails version, followed by the DB2 adapter and driver 
versions as well. All the error messages printed or logged by rails should be 
included. If you were doing anything at the time of the crash, describe it in 
detail.   

 Upload Files – If you have a patch, attach and upload it. Sometimes when 
the output of the log files takes up too much space on the screen, it is nice to 
store it in one or more files and upload. 

4. Press Submit and off you go. 

Submitting bugs is simple science and one the best ways to contribute to an open source 
project; however, most people provide poor bug descriptions due to lack of knowledge or 
proper documentation. In this chapter you have seen how to fill a bug report in a simple 
and effective manner. There will be times when despite all your efforts, you won’t make 
yourself clear. Be persistent and try to get your thoughts through clearly. The developers 
will appreciate it and you will have your software fixed sooner. Good Bug Hunting!
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Chapter 8 - Case Study: A sourceForge 
project, Technology Explorer for IBM DB2 
Some open source projects grow along predictable lines. Some start well but quickly lose 
momentum. Just look at the number of projects on sourceforge.net that have had no recent 
activity. Other projects grow organically in unpredictable directions. The Technology 
Explorer for IBM DB2 or TE for short (http://db2mc.sf.net) is a project that has been 
through a long evolution. The TE started like all good open source projects, as an itch that 
needed scratching. 

8.1 What is the Technology Explorer for IBM DB2? 
The Technology Explorer is a light weight, Web based console for DB2 for Linux, UNIX and 
Windows. The Technology Explorer is also a teaching and exploration tool for DB2. It is a 
great way to learn about DB2 because it doesn't just explain how to do things; it lets you 
play using a live database. The TE includes hundreds of ways to see inside the database 
and monitor what is going on. It also includes numerous tutorials and advanced techniques 
to get the most out of your system.   

The Technology Explorer is meant to be a tool for the community. You can use it, change 
it, extend it and use it to share your ideas. Everything is defined using XML so you don't 
need to write code to make changes.  

Some of the key features of the Technology Explorer are:  

 Is a light weight Web based platform for interacting with DB2 for Linux, UNIX and 
Windows  

 Is easy to expand and customize 

 Works with DB2 for Linux, UNIX and Windows version 9.1, 9.5 and 9.7  

 Connects to any DB2 data server using only an IP address 

 Contains a wealth of content to highlight, demonstrate and teach you about DB2's 
core features 

Figure 8.1 shows the Technology Explorer. It can run on most popular browsers. 

http://db2mc.sf.net/�
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Figure 8.1 – The Technology Explorer for IBM DB2  

8.2 A quick overview of the Technology Explorer for IBM DB2 
This section provides a quick overview of the TE. You will learn the requirements to set it 
up, and its basic operations. The easiest way to get started wit the TE is by looking up its 
homepage on SourceForge http://sourceforge.net/projects/db2mc/ 

This site includes everything about the TE including setup instructions, wikis, requirements 
and forums as well as the source code.   

8.2.1 Requirements for setting up the TE 

To start working with the TE, you will need to: 

 Install DB2  

- Download DB2 Express-C, the free version of DB2 from 
http://www.ibm.com/db2/express/download.html 

 Install Apache 

- Download Apache Web server from http://httpd.apache.org/ 

 Install PHP 

- Download PHP from http://www.php.net/ 

http://sourceforge.net/projects/db2mc/�
http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK15�
http://httpd.apache.org/�
http://www.php.net/�
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 Install the IBM DB2 driver for PHP 

- Download this driver from http://sourceforge.net/projects/db2mc/files/ 

 Download and unzip TE 

- Download the TE from http://sourceforge.net/projects/db2mc/ 

For more information about DB2 refer to the free eBook Getting Started with DB2 Express-
C that is part of the DB2 on Campus book series. Alternatively, you can also review 
Appendix B, Up and Running with DB2.  

For instructions on how to set up Apache and PHP for TE refer also to the TE page on 
SourceForge.  The development team is working on simplifying the set-up process.  At the 
time you are reading this, a single package installer may already be available on the TE 
SourceForge site.   

8.2.2 Some basic features and operations of the TE 

This document will briefly discuss some basic features and operations that the TE offers: 

 Connect to a database 

 Display table and view contents, and the output of queries 

 Run ad hoc queries  

 View and change database configuration and monitoring parameters 

 Display basic monitoring information  

 Create and work with tutorials and workshops 

If you would like to know more about how to use TE in detail, a step-by-step guide is also 
available on the TE SourceForge site. 

8.2.2.1 Connecting to a Database 

Figure 8.2 shows the TE starting page.  This is the page that appears when you start the 
TE in your browser. 

http://sourceforge.net/projects/db2mc/files/�
http://sourceforge.net/projects/db2mc/�
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Figure 8.2 – TE starting page 
 

The main menu bar is at the top of the page. The database connection manager is at the 
top left. The RSS feed reader is at the bottom left; and the introduction page is on the right.   

To create a new database connection, click on New in the top right corner of the 
connection manager as shown in Figure 8.3 below. 
 

 

Figure 8.3 – Creating a new connection 
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If you are connecting to a database on your local machine, enter the database name, 
user name, and password, as shown in Figure 8.4 below. The password field color will 
change from red to green when you enter a password.  

 

Figure 8.4 – Connection Form 
 

If you are connecting to a remote database, then you must also enter the host name of the 
database machine as well as the port number used by the DB2 instance (the default is 
50000).  Click on Connect. The TE should load with the connection details in the top left 
panel, with an arrow under the Active field, and a check mark under the Authenticated field 
as shown in Figure 8.5 below. 

 

Figure 8.5 – Connected to the Sample database 
 

 



94    Getting started with open source development 

 

If you get an error message, check that: 

 You have entered the correct combination of user name and password 

 The user has authorization to connect to the database 

 The database name is spelled properly 

 For remote databases, make sure the host name and port number are correct 

 The DB2 database server is running  

Note: 

Connecting to a DB2 database is discussed in detail in the free eBook Getting started with 
DB2 Express-C. You can also watch this video:  

http://www.channeldb2.com/video/video/show?id=807741%3AVideo%3A4222  

8.2.2.2 Display tables, views, and aliases  

With the TE, you can display DB2 catalog tables, and views.  Select DB2 catalog views 
from the View menu at the top of the page as illustrated in Figure 8.6. 

 

Figure 8.6 – Opening the Catalog Views 
 
Figure 8.7 below provides an example of all items in the SYSCAT.TABLES view.   

 

Figure 8.7 – SYSCAT.TABLES catalog view 

http://www.channeldb2.com/video/video/show?id=807741%3AVideo%3A4222�
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From this page you can see the query that retrieved the data in the table by clicking on 
View -> Profile Query as shown in Figure 8.8. 

Figure 8.8 – Viewing the query that retrieved the data displayed on the page 
 

You can also see the contents of each table by selecting the See the contents  icon at 
the left of the display. A new tab opens with the contents of the table or view you selected. 
This is illustrated in Figure 8.9 below for table DB2INST2.ACT. 

 

Figure 8.9 – Contents of a table 
 

8.2.2.3 Running ad hoc queries in TE 

TE allows you to run SQL statements. You can see the results including BLOB, CLOB, 
DBCLOB, and XML data. Figure 8.10 provides an example of an SQL statement (at the 
top) and the output (at the bottom). In the example the RESUME column is defined as 
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CLOB. On the left side of the result, there is an icon  that when clicked will display the 
CLOB contents on the right for the given employee. 

 

Figure 8.10 – Running an ad hoc query 
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8.2.2.4 View and change database configuration and monitoring parameters 

The TE allows you to change database configuration and monitoring parameters without 
having to revert to the command line. The icons highlighted in Figure 8.11 below are used 
to change values. 

Figure 8.11 – Changing database configuration parameters 
 

8.2.2.5 Display monitoring information 

The TE includes monitoring information under the Monitor menu. DB2 can provide detailed 
monitoring information through SQL, which allows TE to show you what is happening in 
your DB2 server. Figure 8.12 provides a sample of a monitoring dashboard.  You can set it 
to refresh as often as you like. 

Figure 8.12 – The monitoring dashboard 
 

8.2.2.6 Tutorials/Workshops 

The TE offers many tutorials and workshops on DB2 as well as on the TE itself.  Figure 
8.13 shows a small sample of the DB2 feature-based tutorials available. If you want to 
learn how to customize the TE, have a look at what is available under Learn -> Workshops 
on Technology Explorer menu.  
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Figure 8.13 - Tutorials and workshops available with TE 
 

8.3 You need a key insight to build a project 
The TE started as a hobby project and a way to explore DB2 and PHP. It started with basic 
information from a developerWorks® article (http://www.ibm.com/developerworks/data) on 
how to connect PHP to a DB2 data server. By writing a set of functions to encapsulate 
connection information and process SQL it was easier to quickly retrieve data from the 
server. Then by creating a set of PHP objects that describe tables and how to display them 
it became easy to quickly display data in a standard way. The first version was a sample 
PHP application for the sample database shipped with DB2. It demonstrated some basic 
principals of good PHP application development and examples of how to interface with 
DB2.  

It evolved into an Open Source project when we understood the importance of flexibility in 
the design and the value of engaging the DB2 community. The first important insight was 
that sample data provided with the DB2 Sample database isn’t as interesting as system 
data. The sample data serves no immediate practical purpose. We needed something with 
a practical application that would attract users to the project.  

Fortunately DB2 9.1 has a ready source of data that is useful to anyone using a DB2 
database - monitoring and performance data. By switching from a sample business 
application to a sample monitoring and management application the DB2 Monitoring 
Console Open Source Project was created (if you were wondering why the URL for the 
project is db2mc).  

http://www.ibm.com/developerworks/data�
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The second insight was that you could describe database tables and views using XML 
files. By switching to XML we created a far more flexible development environment. It 
became easy for anyone to customize the db2mc without writing a single line of code. We 
also took advantage of the outstanding XML support in IBM DB2. By using an XQuery 
statement we could automatically create a default XML profile for any table or view directly 
from the DB2 catalog with just a push of a button. Creating a new display used to take an 
hour or more. It now took minutes. Figure 8.14 shows an example of an XML profile. 

 

Figure 8.14 – XML Profile 

This also added the ability to look at the contents of any table or view. Selecting the 
contents icons on the tables or view catalog page generates a default profile that is fed 
back to the page generator to create a default display for any page or view. This eliminated 
the tedious task of creating new pages. 

With this new flexibility we also wanted to start engaging the DB2 community. Quick and 
simple displays are only useful if they contain meaningful information. The best way we felt 
to do this was to make the code available as an open source project. We hoped that DBA’s 
would take some of the SQL queries they use every day and convert them to pages in the 
db2mc. More importantly we wanted them to contribute their work back to the DB2 
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community so other people could see the insight they gained from SQL that some DBA had 
taken years to develop.  

The key insight that drives the Technology Explorer project is that to engage the 
community of database users you need an interface that is as flexible and dynamic as the 
SQL or XML languages. There are over 200 XML profiles shipped with the TE. They not 
only account for over 90% of the code shipped with the TE they represent an open 
language that people in the community can use to communicate their ideas of how they 
work.  

8.4 You need to support and grow a community 
Early adopters and contributors are the lifeblood of any open source project. You ignore 
them at your peril. For every 100 or 1000 users you are lucky to find one contributor. We 
were lucky enough that a very experienced and knowledgeable DBA found our project. 
Peter Prib (http://sourceforge.net/users/peterprib) has become an exceptional contributor to 
the project. He has added numerous new pages, new tools and utilities, and even more 
branches of code that we have yet been able to integrate into the mainline code stream. If 
he needs something to support his database administration consulting practice he adds it 
to the project. He has also been a great tester and regularly opens defects and adds 
requirements. Peter Prib’s most important role is as our domain expert. He works with DB2 
servers and customers every day. There is no substitute for that kind of practical 
experience. He doesn’t just say that something is important, he invests his time.  

We also receive contributions from universities and colleges. They are an outstanding 
resource for contribution. Working on an open source project not only gives a student 
practical experience but can become part of their portfolio of work. Most students work on 
software owned by another company. They can’t show their code to anyone else or even 
prove that their code was used in the final product.  

Contributing to an open source project has two advantages. First someone else usually 
approves your code and may give you valuable feedback on your style and technique. And 
second your code is available for anyone to see. A prospective employer can see for 
themselves that you have experience building code that was accepted by your peers.  

The Technology Explorer for IBM DB2 uses a very open Apache license that makes it easy 
for anyone in the community to contribute. If you choose to contribute to a project, don’t be 
surprised if they ask you to sign a contributor's agreement. They just need proof that the 
code you are contributing is original.  

8.5 Make your project easy to adopt 
Adoption isn’t usability. It is much more than that. People go through a very well defined set 
of steps when they adopt new technology. As Jonathan Schwartz, from Sun Microsystems, 
has said, “Adoption is a non-economic phenomena, no money is spent, only time…” In 
other words, people spend time when they investigate new technology before they spend 
any money. Even if open source is free, if you want people to adopt your project, you need 

http://sourceforge.net/users/peterprib�
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to make their initial time investment very low. You need to make your project convenient to 
use.  

The first step is to ensure the software is easy to install and try out. If possible, build a live 
Web site where people can try out your project without installing anything. We made sure 
that we could set up the Technology Explorer for IBM DB2 so it could run in demonstration 
mode. Take a look at http://db2mc.dfw.ibm.com for an example. The setup ensures that 
anything destructive has been turned off.  

Invest the time in an integrated installer. The only clearly negative feedback on the TE is 
that it takes too many steps to set up. A common problem with open source projects is that 
they are built on several components. The TE requires a Web server, DB2 PHP drivers as 
well as the TE code. For someone who has been through the process before, or is familiar 
with Web applications, it only takes five minutes, but to a novice, the number of steps may 
seem complex. We are finalizing an integrated installer that lays down all the components 
along with a single desktop icon to launch the TE and hope to have legal approval to ship 
all the components by the time you read this.   

The second step is to ensure that someone can quickly see how to adapt the software to 
their own needs. In the more recent versions of the Technology Explorer we included 
demonstrations on how to customize the system including detailed examples. Figure 8.15 
illustrates a tutorial about how to customize the TE. 

 

Figure 8.15 – Tutorial on how to customize the Technology Explorer 

http://db2mc.dfw.ibm.com/�
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Adopting is also about easily making the transition from what you are already using. As 
mentioned before, you can easily create a new display in the Technology Explorer by 
selecting the XML icon from the table or view page. You can also export the SQL 
embedded in any XML profile to the ad hoc SQL page. Often we found that the results we 
needed were not available from a simple table or view. DB2 DBAs have also spent years 
developing SQL to answer key questions about the databases they are managing.  

To give them a way to use their SQL we added the ad hoc SQL page. It not only allows 
them to reuse their SQL; they can quickly build new pages based on their existing SQL. 
The Generate table definition XML actions on the results tab will automatically generate an 
XML profile for any statement you can run in the ad hoc window. Building a bridge from 
existing practice to your new technology will greatly accelerate adoption.     

Figure 8.16 illustrates running ad hoc statements in the TE. 

 

Figure 8.16 – Running ad hoc statements 

8.6 Understand your business model 
A business model isn’t always about making money by selling a product or service. 
Sometimes, especially with open source, it can be about saving money or sharing a cost 
and risk. It is always about understanding why you are investing in a project. In some 
cases open source is the basis for a services business. The software is free, but support 
comes at a cost.  
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Several companies are built around this model for Linux or PHP. In some cases there is a 
problem that is simply more cost effective for many people to share; Apache and Eclipse 
are good examples. In other cases it is about establishing a programming model or 
platform to deliver services, Google’s Chrome for example.  

In the case of the Technology Explorer for IBM DB2 we saw an opportunity to build a 
business model on demonstrations and tutorials. IBM was looking for ways to deliver more 
effective live tutorials and demonstrations for the DB2 data server while expanding their 
open user community and expanding their presence in universities and colleges. The 
flexible platform based on XML was the perfect starting point.  

One of the first things we did to turn the TE from a sample program into a teaching tool was 
to integrate the DB2 Information Center 
(http://publib.boulder.ibm.com/infocenter/db2luw/v9r7) into the program. Every page in the 
TE includes an information icon that explains where the information for the page comes 
from. Figure 8.17 below provides an example where you can see that the table page is 
generated from the SYSCAT.TABLES catalog view. In the Database Configuration 
Parameters page we included information links to the Information Center for each 
parameter.  

 

Figure 8.17 –Integrated access to the DB2 Information Center 

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7�
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At the time we also had access to software and paper examples and tutorials. Many based 
on SQL examples. The biggest problem was that it was inconvenient for people to copy 
and paste the examples from an online source or worse to manually type from a paper 
during a workshop.  

We extended the XML model to include step by step tutorials. Each tutorial included 
multiple steps each with a description to the left with a live ad hoc window and results 
screen to the right. Important parts of the SQL or XML can be highlighted in the ad hoc 
window. This is illustrated in Figure 8.19. 

 

Figure 8.19 –Highlighting SQL 

Once you have run through the tutorial, you are free to go back and alter the SQL or XML, 
and rerun the statements, all against a live database. We also support including pages 
from the DB2 Information Center or other pages, for example a list of tables, in the right 
side of the page instead of the ad hoc page.  

As the number of tutorials grew, they were grouped together into larger workshops that 
focus on business problems. Additional functions like graphing and driving multiuser 
workloads were added to demonstrate more complex scenarios.  

The XML language, which we developed to describe each tutorial, acts as a script. It is 
easy to modify and easy to copy to create a new tutorial. More importantly, just like the 
XML that defines the display pages in the TE, the tutorial XML acts as a language that 
people can use to describe their ideas. Instead of simply publishing documents, the tutorial 
structure can be used to explain a management process to a new DBA or highlight a 
valuable technique for getting the most out of DB2.  
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Make sure you take the time to understand why you are investing in an open source 
project. It may be as simple as a way to learn a new technology. With each step, the 
reason to keep investing time and resources may change. Whether it was as a sample 
PHP program, an open source monitor, or a community tool and teaching platform the TE 
project had a clear set of goals, stakeholders and investment. Throughout we have stayed 
focused on the original insight that started the project.  

8.7 Keep your project current 
Do everything in the open. Remember that source forge ranks projects based on 
community activity as much as it does by downloads. Even if you are working with a small 
group of contributors open a defect for every change. Track each improvement through a 
requirement and post your ideas to the forums. The more transparent your work the more 
active the project will appear and the better your ranking.  

We have never advertised the TE. Most new users I talk to say they hear about it through 
word of mouth or through a lucky search on Google. Blog postings, webpage links, and 
other references bring most people to the Web site. Of the people who come to the TE 
sourceForge site about half stay and read about the project for at least an hour.  

If you can find an insight to build a project around, make sure it is convenient to use and 
engages a larger community. Don’t lose focus on why you are investing your time at each 
stage of the project and always do your work in the open. 





 

 

A 
Appendix A – Solutions to review questions 
Chapter 1 

1. In 1998 Eric Raymond and Bruce Perens first used the term open source in a 
conference in California. 

2. FLOSS stands for Free Libre Open Source Software 

3. Refer to section 1.4.1 

4. Refer to section 1.4.2 

5. The Mozilla Foundation. 

6. C. KDE 

7. A. Richard Stallman 

8. D. A & B 

9. B. Free as in "Free speech" 

10. D. B & C 

 

Chapter 2 

1. MySQL. 

2. Split Open Source software / commercial products. 

3. POSS companies help the consumer manage the risks of deploying open source 
software. 

4. Not limits on data storage and usage. No limits on type of hardware used. Paid 
support option 

5. It is difficult to work in an OSS environment with many different OSS products that 
have not been tested together. Using the Platform providers' business model, a 
company offers a tested environment and provides support. 

6. C. OS Providers is not a business model 

7. A. Split open source / commercial products 
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8. D. All of the above 

9. C. All of the above 

10. D. All of the above 

 

Chapter 3 

1. Should be based on OSD (Open Source Definition). 

2. To avoid possible lawsuits! 

3. GPL, MIT, BSD 

4. They have contradictory statements, however both satisfy the intentions for OSS 
licenses according to the OSI 

5. Academic and reciprocal 

6. Yes 

7. Yes 

8. Yes 

9. False. Intellectual property (IP) is a superset containing copyrights, trademarks, 
etc. 

10. E. None of the above 

 

Chapter 4 

1. In the software industry, “community driven development” broadly means an 
initiative under which a group of technologists work together with a common vision 
of producing open source software. 

2. CVCS allows a single central repository for the entire project branch, which is 
shared by all the members of the community. In contrast, DVCS allows a 
developer or a tester to create his own code branch in addition to one or more 
shared central repository. 

3. Abuky, Bugzilla, Buggit, BugRat, GNATS, JitterBug, and Mantis are a few 
examples of open source issue tracking tools.  

4. The central item of an OSS package is the source code. Additionally, a standard 
package should also include a few accessories like installation guide, user manual, 
and other information which will help a newbie become familiar with the system. 
Packages of the software written in high level languages like C, C++ or something 
else that requires compilation of the source code, optionally may contain a pre-
compiled executable version of the product ready to be installed into user’s 
computer. 
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5. Typical installation steps for open source software are – understanding the system 
configuration, compiling the source code and finally executing the installation file. 
Given below is the sequence of commands to accomplish these three steps in a 
UNIX® based system: 

# ./configure 

# make 

# make install 

The first command is executed from the location where the software package is 
extracted. It invokes a tiny program called configure (generally included within the 
package) to detect the hardware and software specifications of the machine and 
create a Makefile containing the set of instructions to complete the installation 
process. The make command compiles the source code of the software as dictated 
by the Makefile. And finally make install reads the configuration specifications of 
the computer from the Makefile and installs the software into it. Although the first 
two commands can be executed by any normal user, the last one needs root 
access to the system. 

6. B. .zip is the valid format for Microsoft® Windows® packages. Whereas, .tar and 
.gz are specific to UNIX® platform. 

7. A. Unified Modeling Language (UML) is a widely accepted standard used for 
software design purpose. It allows a designer to describe the structure, behavior, 
and interactions among different sub units of the system with the help of various 
simple diagrams. 

8. C. ‘myproduct’ is the name of the software. ‘3’, ‘4’ and ‘5’ are the “major”, “minor” 
and “micro” components of the release number respectively. 

9. D. A and C. Make and Ant are two build automation software. Whereas, Apache is 
an open source Web server and Darcs is a decentralized version control tool. 

10. B. "Fixed" is not a state in the life cycle of an issue. 

 

Chapter 5 

1. It is ranked based on number of downloads, and community activity such as 
opening defects, checking in code, making feature requests, etc.  

2. A leader performs functions that are not too different from a company's CEO:  

- He is the one making tough decisions 

- In big projects he is in charge of coordinating many of the project subdivisions.  

3. In the early years of OSS, documentation was particularly important because 
working with OSS was not that straight forward. Only those who had the patience 
and skill could get this software working. Today, documentation is still very 
important since community members often rotate software development positions. 
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It is the responsibility of the documentation writer to ensure that every person can 
use the software in hand. 

4. Translators are needed because OSS communities are worldwide communities. 
Though every member must have some English skills, having documentation in 
their own language will help. 

5. Two guidelines can be: 

- Search before you ask. 

- Do not engage in acts of verbal aggression. 

6. E 

7. B 

8. C 

9. A 

10. C 

 

Chapter 6 

1. Before starting an open source software development project, a person must 
evaluate following two key points: 

A. What is the fundamental idea or requirement of your software? Do you feel 
many people would have same kind of requirements? 

B. Is there any software already available in the market for the same purpose? If 
yes, where does your product stand out i.e. why would people use it? 

2. Following are the basic steps for setting up the infrastructure of the project: 

A. Fix a definite mission or goal for your project. 

B. Plan a roadmap or strategy to accomplish your objective. 

C. Find people. 

D. Understand the basic needs of your project and community. 

E. Arrange for necessary funds. 

3. Once you get a few members for your community, encourage all of them to 
publicize your community. This makes the awareness effort multiplied by the 
number of members. 

4. Users always prefer licenses which are well known in the industry (e.g. BSD, GPL, 
etc.). An unfamiliar license, even if it is very short, simple, and straight forward may 
discourage some users from choosing your software and contribute in the project. 
So, it is always recommended to select an unchanged version of a well known, 
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popular open source license unless your product has an acute demand for very 
specific terms and conditions. 

5. Dealing with code reviews becomes a pain when a developer has to do it everyday 
in bulk. Delegate: Involve more people into the review work, let the experienced 
users whom you have worked with earlier and are entrusted by their quality of 
work, to commit their work directly. 

6. D. Legal advice is only needed while choosing appropriate license for the software. 
Others are valid options for gathering community members. 

7. B. Open source software can be developed with or without any guidance of a 
software development company’s guidance. All the other options are mandatory 
necessities of an OSS community. 

8. A. Before a developer spends time going through the details of a code contribution 
or new feature request, he should try to understand its requirement. If there is any 
lack of clarity or consistency, he can request the user to provide more details. 
Once the idea is clear to the developer, he needs to check the status of the 
present release cycle to ensure if it is proper time to accept the request. If YES, the 
developer should ideally walk through the code, before permitting the user to check 
it in. And if the opposite is true, the request gets scheduled for the next release. 

9. B. One should never try to handle all user change requests himself. Rather, he 
should delegate it properly, redirect the issues and other reports or requests to the 
relevant development team, and ask any of the people within that group to address 
it. 

10. C. You may optionally share the code selection criteria of your community with the 
users; so that they keep them in mind while writing the codes and sending 
acceptance requests. This is the best possible way to minimize the effort of 
screening user contributed codes. 
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Appendix B – Up and running with DB2 
This appendix is a good foundation for learning about DB2. This appendix is streamlined to 
help you get up and running with DB2 quickly and easily. 

In this appendix you will learn about: 

 DB2 packaging 

 DB2 installation  

 DB2 Tools 

 The DB2 environment 

 DB2 configuration 

 Connecting to a database  

 Basic sample programs   

 DB2 documentation  

Note: 

For more information about DB2, refer to the free e-book Getting Started with DB2 
Express-C that is part of this book series.  

B.1 DB2: The big picture 
DB2 is a data server that enables you to safely store and retrieve data. DB2 commands, 
XQuery statements, and SQL statements are used to interact with the DB2 server allowing 
you to create objects, and manipulate data in a secure environment. Different tools can be 
used to input these commands and statements as shown in Figure B.1. This figure 
provides an overview of DB2 and has been extracted from the Getting Started with DB2 
Express-C e-book. 
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Figure B.1 - DB2 - The big picture 

On the left-hand side of the figure, we provide examples of different commands and 
statements that users can issue. In the center of the figure, we list some of the tools where 
you can input these commands and statements, and on the right-hand side of the figure 
you can see the DB2 environment; where your databases are stored. In subsequent 
sections, we discuss some of the elements of this figure in more detail. 

 
B.2 DB2 packaging 
DB2 servers, clients and drivers are created using the same core components, and then 
are packaged in a way that allows users to choose the functions they need for the right 
price. This section describes the different DB2 editions or product packages available. 

 
B.2.1 DB2 servers 

Figure B.2 provides an overview of the different DB2 data server editions that are 
available.  
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DB2 Enterprise Edition

DB2 Express-C
Extra
functionality

Extra
functionality

DB2 Express Edition

DB2 Workgroup Edition

Extra
functionality+ + +

 
Figure B.2 - DB2 Server Packaging 

As shown in Figure B.2, all DB2 server editions are built one on top of the other. DB2 
Express-C is a free version of DB2, and it is the core component of all DB2 products. When 
additional functionality is added to DB2 Express-C, it becomes DB2 Express. Additional 
functionality added to DB2 Express, becomes DB2 Workgroup, and so on. Figure B.2 
illustrates why it is so easy to upgrade from DB2 Express-C to any other DB2 server should 
you need to in the future: All DB2 servers editions are built based on DB2 Express-C.  

Also applications built for DB2 Express-C are applicable on other DB2 Editions as well.  
Your applications will function without any modifications required! 

 

B.2.2 DB2 clients and drivers 
When you install a DB2 server, a DB2 client component is also installed. If you only need 
to install a client, you can install either the IBM Data Server Client, or the IBM Data Server 
Runtime Client. Figure B.3 illustrates these two clients. 

 

Figure B.3 - DB2 Clients 
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From the above figure, you can see the IBM Data Server Runtime client has all the 
components you need (driver and network support) to connect and work with a DB2 Data 
Server. The IBM Data Server client has this same support and also includes GUI Tools and 
libraries for application development. 

In addition to these clients, provided are these other clients and drivers: 

 DB2 Runtime Client Merge Modules for Windows: mainly used to embed a DB2 
runtime client as part of a Windows application installation 

 IBM Data Server Driver for JDBC and SQLJ: allows Java applications to connect to 
DB2 servers without having to install a client 

 IBM Data Server Driver for ODBC and CLI: allows ODBC and CLI applications to 
connect to a DB2 server without having to install a client 

 IBM Data Server Driver Package: includes a Windows-specific driver with support for 
.NET environments in addition to ODBC, CLI and open source. This driver was 
previously known as the IBM Data Server Driver for ODBC, CLI and .NET. 

There is no charge to use DB2 clients or drivers. 

B.3 Installing DB2 

In this section we explain how to install DB2 using the DB2 setup wizard. 

 

B.3.1 Installation on Windows 

DB2 installation on Windows is straight-forward and requires the following basic steps: 

1. Ensure you are using a local or domain user that is part of the Administrator group 
on the server where you are installing DB2.  

2. After downloading and unzipping DB2 Express-C for Windows from 
ibm.com/db2/express, look for the file setup.exe, and double-click on it.  

3. Follow the self- explanatory instructions from the wizard. Choosing default values 
is normally sufficient.  

4. The following is performed by default during the installation:  

- DB2 is installed in C:\Program Files\IBM\SQLLIB  

- The DB2ADMNS and DB2USERS Windows operating system groups are 
created. 

- The instance DB2 is created under C:\Program Files\IBM\SQLLIB\DB2  

- The DB2 Administration Server (DAS) is created  

- Installation logs are stored in: 
    My Documents\DB2LOG\db2.log 
    My Documents\DB2LOG\db2wi.log  

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK15�
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- Several Windows services are created.  

 
B.3.2 Installation on Linux 
DB2 installation on Linux is straight-forward and requires the following basic steps: 

1. Log on as the Root user to install DB2.  

2. After downloading DB2 Express-C for Linux from ibm.com/db2/express, look for 
the file db2setup, and execute it: ./db2setup  

3. Follow the self-explanatory instructions from the wizard. Choosing default values is 
normally sufficient.  

4. The following is performed by default during installation:  

- DB2 is installed in /opt/ibm/db2/V9.7 

- Three user IDs are created. The default values are listed below: 
    db2inst1 (instance owner) 
    db2fenc1 (Fenced user for fenced routines) 
    dasusr1 (DAS user)  

- Three user groups are created corresponding to the above user IDs: 
  db2iadm1 
  db2fadm1 
  dasadm1  

- Instance db2inst1 is created  

- The DAS dasusr1 is created  

- Installation logs are stored in: 
   /tmp/db2setup.his 
  /tmp/db2setup.log 
  /tmp/db2setup.err  

B.4 DB2 tools 
There are several tools that are included with a DB2 data server such as the DB2 Control 
Center, the DB2 Command Editor, and so on. Starting with DB2 version 9.7 however; most 
of these tools are deprecated (that is, they are still supported but no longer enhanced) in 
favor of IBM Data Studio. IBM Data Studio is provided as a separate package not included 
with DB2. Refer to the ebook Getting started with IBM Data Studio for DB2 for more details. 

 

B.4.1 Control Center  

Prior to DB2 9.7, the primary DB2 tool for database administration was the Control Center, 
as illustrated in Figure B.4. This tool is now deprecated, but still included with DB2 servers. 

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK15�
http://www.ibm.com/db2/books�
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Figure B.4 - The DB2 Control Center 

To start the Control Center on Windows use Start -> Programs -> IBM DB2 -> DB2COPY1 
(Default) -> General Administration Tools -> Control Center or alternatively, type the 
command db2cc from a Windows Command Prompt or Linux shell. 

The Control Center is a centralized administration tool that allows you to: 

 View your systems, instances, databases and database objects;  

 Create, modify and manage databases and database objects; 

 Launch other DB2 graphical tools 

The pane on the left-hand side provides a visual hierarchy of the database objects on your 
system(s), providing a folder for Tables, Views, etc. When you double-click a folder (for 
example, the Tables folder, as shown in Figure B.5), the pane on the top right will list all of 
the related objects, in this case, all the tables associated with the SAMPLE database. If you 
select a given table in the top right pane, the bottom right pane provides more specific 
information about that table. 

Right-clicking on the different folders or objects in the Object tree will bring up menus 
applicable to the given folder or object. For example, right-clicking on an instance and 
choosing Configure parameters would allow you to view and update the parameters at the 
instance level. Similarly, if you right-click on a database and choose Configure parameters, 
you would be able to view and update parameters at the database level.  
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B.4.2 Command Line Tools 

There are three types of Command Line tools: 

 DB2 Command Window (only on Windows) 

 DB2 Command Line Processor (DB2 CLP) 

 DB2 Command Editor (GUI-based, and deprecated) 

These tools are explained in more detail in the next sections. 

B.4.2.1 DB2 Command Window  

The DB2 Command Window is only available on Windows operating systems; it is often 
confused with Windows Command Prompt. Though they look the same, the DB2 
Command Window, however, initializes the environment for you to work with DB2. To start 
this tool, use Start -> Programs -> IBM DB2 -> DB2COPY1 (Default) -> Command Line 
Tools -> Command Window or alternatively, type the command db2cmd from a Windows 
Command Prompt to launch it on another window. Figure B.5 shows the DB2 Command 
Window. 

 

Figure B.5 - The DB2 Command Window 

You can easily identify you are working in the DB2 Command Window by looking at the 
window title which always includes the words DB2 CLP as highlighted in the figure. From 
the DB2 Command Window, all commands must be prefixed with db2. For example, in the 
above figure, two statements are issued: 

db2 connect to sample 

db2 select * from staff 
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For Linux, the equivalent of the DB2 Command Window is simply the Linux shell (or 
terminal) where the DB2 environment has been set up by executing the db2profile file. 
This file is created by default and added to the .login file for the DB2 instance owner. By 
default the DB2 instance owner is db2inst1. 

B.4.2.2 DB2 Command Line Processor 

The DB2 Command Line Processor (CLP) is the same as the DB2 Command Window, with 
one exception that the prompt is db2=> rather than an operating system prompt. To start 
the DB2 Command Line Processor on Windows, use Start -> Programs -> IBM DB2 -> 
DB2COPY1 (Default) -> Command Line Tools -> Command Line Processor or alternatively 
from a DB2 Command Window or Linux shell type db2 and press Enter. The prompt will 
change to db2 as shown in Figure B.6.   

 

Figure B.6 - The DB2 Command Line Processor (CLP) 

Note that Figure B.6 also illustrates that when working in the CLP, you do not need to 
prefix commands with DB2. To exit from the CLP, type quit. 

B.4.2.3 DB2 Command Editor 

The DB2 Command Editor is the GUI version of the DB2 Command Window or DB2 
Command Line Processor as shown in Figure B.7. This tool is deprecated for DB2 version 
9.7. 
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Figure B.7 - The DB2 Command Editor 
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B.5 The DB2 environment   
Figure B.8 provides a quick overview of the DB2 environment. 

 
Figure B.8 - The DB2 Environment 

The figure illustrates a server where DB2 Express-C has been installed. The smaller boxes 
in light green (Environment Variables, Database Manager Configuration File, Database 
Configuration File, DB2 Profile Registry) are the different areas where a DB2 server can be 
configured, and they will be explained in more detail in the next section. The larger dark 
green box represents an instance which in this example has the name myinst. 

An instance is an environment where database objects can be created. On the same 
server, you can create several instances, each of which is treated independently. For 
example, you can use an instance for development, another one for test, and another one 
for production. Table B.1 shows some useful commands you can use at the instance level. 
Note that the commands shown in this section can also be performed from DB2 GUI Tools. 

 Command  Description  

db2start  Starts the current instance  

db2stop   Stops the current instance  

db2icrt <instance_name>  Creates a new instance  

db2idrop <instance_name> Drops an instance 

db2ilist  Lists the instances you have on your system  
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db2 get instance  Lists the current active instance  

Table B.1 - Useful instance-level DB2 commands 

 

Within an instance you can create many databases. A database is a collection of objects 
such as tables, views, indexes, and so on. For example, in Figure B.8, the database MYDB1 
has been created within instance myinst. Table B.2 shows some commands you can use 
at the database level. 

Command/SQL statement  Description  

create database <database_name> Creates a new database  

drop database <database_name> Drops a database  

connect to <database_name>  Connects to a database  

create table/create view/create index  SQL statements to create table, views, and 
indexes respectively   

Table B.2 - Commands and SQL Statements at the database level 

 

B.6 DB2 configuration 
DB2 parameters can be configured using the Configuration Advisor GUI tool. The 
Configuration Advisor can be accessed through the Control Center by right clicking on a 
database and choosing Configuration Advisor. Based on your answers to some questions 
about your system resources and workload, the configuration advisor will provide a list of 
DB2 parameters that would operate optimally using the suggested values. If you would like 
more detail about DB2 configuration, keep reading. Otherwise, use the Configuration 
Advisor and you are ready to work with DB2! 

A DB2 server can be configured at four different levels as shown earlier in Figure B.8: 

 Environment variables are variables set at the operating system level. The main 
environment variable to be concerned about is DB2INSTANCE. This variable 
indicates the current instance you are working on, and for which your DB2 commands 
will apply. 

 Database Manager Configuration File (dbm cfg) includes parameters that affect the 
instance and all the databases it contains. Table B.3 shows some useful commands to 
manage the dbm cfg. 
 

Command   Description   

get dbm cfg  Retrieves information about the dbm cfg  
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update dbm cfg using 
<parameter_name> <value>  Updates the value of a dbm cfg parameter  

Table B.3 - Commands to manipulate the dbm cfg 

 Database Configuration File (db cfg) includes parameters that affect the particular 
database in question. Table B.4 shows some useful commands to manage the db cfg. 

Command   Description   

 get db cfg for <database_name>  Retrieves information about the db cfg for 
a given database  

update db cfg for <database_name>    

    using <parameter_name> <value>  
Updates the value of a db cfg parameter  

Table B.4 - Commands to manipulate the db cfg 

 

 DB2 Profile Registry variables includes parameters that may be platform specific 
and can be set globally (affecting all instances), or at the instance level (affecting one 
particular instance). Table B.5 shows some useful commands to manipulate the DB2 
profile registry. 

 Command   Description  

  db2set -all  Lists all the DB2 profile registry variables that 
are set  

  db2set <parameter>=<value>  Sets a given parameter with a value  

Table B.5 - Commands to manipulate the DB2 profile registry 

B.7 Connecting to a database  
If your database is local, that is, it resides on the same system where you are performing 
your database operation; the connection setup is performed automatically when the 
database is created. You can simply issue a connect to database_name statement to 
connect to the database. 

If your database is remote, the simplest method to set up database connectivity is by using 
the Configuration Assistant GUI tool following these steps: 

1. Start the Configuration Assistant from the system where you want to connect to the 
database. To start this tool, use the command db2ca from a Windows command 
prompt or Linux shell. Figure B.9 shows the Configuration Assistant. 
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Figure B.9 - The DB2 Configuration Assistant 

2. From the Configuration Assistant, click on the Selected --> Add database using 
Wizard menu 

3. From the Select how you want to set up a connection window, you can use Search 
the network if your network is small without many hubs. If you know the name of 
the server where DB2 resides, choose Known systems and drill down all the way 
to the database you want to connect. Proceed with the wizard using default values. 
If you do not know the name of your system, choose Other systems (Search the 
network). Note that this may take a long time if your network is large. 

4. If Search the network does not work, go back to the Select how you want to set up 
a connection window, and choose Manually configure a connection to a database. 
Choose TCP/IP and click next. Input the hostname or IP address where your DB2 
server resides. Input either the service name or the port number. 

5. Continue with the wizard prompts and leave the default values.  

6. After you finish your set up, a window will pop up asking you if you want to test 
your connection. You can also test the connection after the setup is finished by 
right-clicking on the database, and choosing Test Connection. 

B.8 Basic sample programs  
Depending on the programming language used, different syntax is required to connect to a 
DB2 database and perform operations. Below are links to basic sample programs which 
connect to a database, and retrieve one record. We suggest you first download (from 
ftp://ftp.software.ibm.com/software/data/db2/udb/db2express/samples.zip) all the sample 
programs in this section: 

ftp://ftp.software.ibm.com/software/data/db2/udb/db2express/samples.zip�
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CLI program 

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0401chong/index.html#scenario1 

ODBC program   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0401chong/index.html#scenario2 

C program with embedded SQL 

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0401chong/index.html#scenario3 

JDBC program using Type 2 Universal (JCC) driver   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0401chong/index.html#scenario6 

JDBC program using Type 4 Universal (JCC) driver   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0401chong/index.html#scenario8 

Visual Basic and C++ ADO program - Using the IBM OLE DB provider for DB2 
(IBMDADB2)   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0402chong2/index.html#scenario1 

Visual Basic and C++ ADO program - Using the Microsoft OLE DB Provider for ODBC 
(MSDASQL)   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0402chong2/index.html#scenario2 

Visual Basic and C# ADO.Net using the IBM DB2 .NET Data Provider   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0402chong2/index.html#scenario3 

Visual Basic and C# ADO.Net using the Microsoft OLE DB .NET Data Provider   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0402chong2/index.html#scenario4 

Visual Basic and C# ADO.Net using the Microsoft ODBC .NET Data Provider   

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0402chong2/index.html#scenario5 
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B.9 DB2 documentation 

The DB2 Information Center provides the most up-to-date online DB2 documentation. The 
DB2 Information Center is a web application. You can access the DB2 Information Center 
online (http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp), or you can 
download and install the DB2 Information Center to your local computer.  Links to the 
online DB2 Information Center as well as downloadable versions are available at 
http://www.ibm.com/software/data/db2/9/download.html?S_TACT=download&S_CMP=exp
csite 

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp�
http://www.ibm.com/software/data/db2/9/download.html?S_TACT=download&S_CMP=expcsite�
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Resources 

Web sites 
 

1. DB2 Express-C web site:  

ibm.com/db2/express  

Use this web site to download the image for DB2 Express-C servers, DB2 clients, 
DB2 drivers, manuals, access to the team blog, mailing list sign up, etc. 

 

2. DB2 Express-C forum: 
www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19 

Use the forum to post technical questions when you cannot find the answers in the 
manuals yourself. 

 

3. DB2 Information Center  

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp 

The information center provides access to the online manuals.  It is the most up to 
date source of information. 

 

4. developerWorks 

http://www-128.ibm.com/developerworks/db2 

This Web site is an excellent resource for developers and DBAs providing access to 
current articles, tutorials, etc. for free. 

 

5. alphaWorks® 

http://www.alphaworks.ibm.com/ 

This Web site provides direct access to IBM's emerging technology. It is a place 
where one can find the latest technologies from IBM Research.   

 

6. planetDB2 

www.planetDB2.com 

This is a blog aggregator from many contributors who blog about DB2. 

 

7. DB2 Technical Support 

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK15�
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19�
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp�
http://www-128.ibm.com/developerworks/db2�
http://www.alphaworks.ibm.com/�
http://www.planetdb2.com/�


 

 

If you purchased the 12 months subscription license of DB2 Express-C, you can 
download fixpacks from this Web site. 

http://www.ibm.com/software/data/db2/support/db2_9/ 

 

8. ChannelDB2 

ChannelDB2 is a social network for the DB2 community. It features content such as 
DB2 related videos, demos, podcasts, blogs, discussions, resources, etc. for Linux, 
UNIX, Windows, z/OS, and i5/OS®.  

http://www.ChannelDB2.com/  
 

9. How to Ask Questions The Smart Way:  

http://catb.org/esr/faqs/smart-questions.html#intro 

A manual by Eric S. Raymond and Rick Moen who will enlighten new users in the art 
of getting technical answers online. 

 

10. Ruby Language Site: 

http://www.ruby-lang.org 

Your starting point to the ruby community. 

 

11. The Cathedral and the Bazaar 
 
An almost complete online version of the book by Eric S. Raymond, on the open 
source developing model (Bazaar) vs. closed source developing model (Cathedral). 
 

12. Debian Community Guidelines, http://people.debian.org/~enrico/dcg/index.html 
 

13. Intro to Distributed Version Control (Illustrated) 
Kalid Azad  
October 15, 2007 
http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/ 
 

14. Ruby Language Site: 
http://www.ruby-lang.org 
Your starting point to the ruby community. 

15. P. G. Capek, S. Frank, S. Gerdt, and D. Shields, A history of IBM’s open source 
involvement and strategy - 
http://www.research.ibm.com/journal/abstracts/sj/442/capek.html 

16. http://en.wikipedia.org/wiki/Open_source 

http://www-306.ibm.com/software/data/db2/support/db2_9/�
http://www.channeldb2.com/�
http://catb.org/esr/faqs/smart-questions.html#intro�
http://www.ruby-lang.org/�
http://people.debian.org/~enrico/dcg/index.html�
http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/�
http://www.ruby-lang.org/�
http://www.research.ibm.com/journal/abstracts/sj/442/capek.html�
http://en.wikipedia.org/wiki/Open_source�
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17. http://www.ibm.com/developerworks/opensource/library/os-
license/?S_TACT=105AGX44&S_CMP=LP 

18. http://en.wikipedia.org/wiki/Copyright 

19. http://en.wikipedia.org/wiki/Intellectual_property 

20. http://www.opensource.org 

21. http://www.fsf.org/licensing/essays/free-sw.html 

22. http://www.internetnews.com/bus-
news/article.php/3790721/Cisco+Hit+With+Open+Source+Lawsuit.htm 

23. http://www.out-law.com/page-8490 

24. GUIDE SME's Deliverable ID: D8.1.1 – Carlo Daffara 
http://flossmetrics.org/sections/deliverables/docs/deliverables/WP8/D8.1.1-
SMEs_Guide.pdf 
 

25. “From Wikipedia, the free encyclopedia” 

- Software build 
http://en.wikipedia.org/wiki/Software_build 

- Software design 
http://en.wikipedia.org/wiki/Software_design 

- Release management 
http://en.wikipedia.org/wiki/Release_management 

- Software release life cycle 
http://en.wikipedia.org/wiki/Software_release_life_cycle 

 

http://www.ibm.com/developerworks/opensource/library/os-license/?S_TACT=105AGX44&S_CMP=LP�
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http://en.wikipedia.org/wiki/Software_build�
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Books 
1. Free Redbook: DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, 

Java, and .NET  

Whei-Jen Chen, John Chun, Naomi Ngan, Rakesh Ranjan, Manoj K. Sardana,  
August 2006 - SG24-7301-00 
http://www.redbooks.ibm.com/abstracts/sg247301.html?Open  
 

2. Understanding DB2 – Learning Visually with Examples V9.5 

Raul F. Chong, et all.  January 2008 
ISBN-10: 0131580183  
 

3. DB2 9: pureXML overview and fast start  by Cynthia M. Saracco, Don Chamberlin, 
Rav Ahuja June 2006 SG24-7298 

http://www.redbooks.ibm.com/abstracts/sg247298.html?Open 

 

4. The Cathedral & the Bazaar 

Eric S. Raymond 
January 15, 2001 
http://www.amazon.com/Cathedral-Bazaar-Musings-Accidental-

Revolutionary/dp/0596001088 
 

5. Software Engineering Approaches for Offshore and Outsourced Development - 
Vol. 4716 

First International Conference, SEAFOOD 2007, Zurich, Switzerland 
Bertrand Meyer, M. Joseph (Eds.) 
February 5-6, 2007, Revised Papers 
Springer 
Copyright © Springer-Verlag Berlin Heidelberg 2007 
 

6. IBM® Rational® ClearCase®, Ant, and CruiseControl - The JavaTM Developer's 
Guide to Accelerating and Automating the Build Process 

Kevin A. Lee 
First Edition - May 24, 2006 
IBM Press 
Copyright © 2006 
 

7. Clinical engineering handbook - Academic Press Series in Biomedical Engineering 

Joseph F. Dyro 
Chapter 85: Medical Device Software Development  
Richard C. Fries and Andre E. Bloesch 

 August 27, 2004 
Elsevier  

http://www.redbooks.ibm.com/abstracts/sg247301.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247298.html?Open�
http://www.amazon.com/Cathedral-Bazaar-Musings-Accidental-Revolutionary/dp/0596001088�
http://www.amazon.com/Cathedral-Bazaar-Musings-Accidental-Revolutionary/dp/0596001088�
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Imprint: Academic Press 
Copyright © 2004 Elsevier Inc. 
 

8. The Art of Software Testing 

Glenford J. Myers 
Second Edition 
Revised and updated by Tom Badgett and Todd M. Thomas with Corey sandler  
John Wiley & Sons, Inc., Hoboken, New Jersey 
Copyright © 2004 Word Association Inc. 
 

9. Producing Open Source Software - How to Run a Successful Free Software 
Project 
 
Karl Fogel 
First Edition 
October, 2005 
O'Reilly Media, Inc. 
Copyright © 2005, 2006, 2007 Karl Fogel, under a CreativeCommons Attribution-
ShareAlike (3.0) license 

 
10. Innovation Happens Elsewhere 

Ron Goldman & Richard P. Gabriel  
Version 1.01 
http://www.dreamsongs.com/IHE/IHE.html 

 

Contact emails 
General DB2 Express-C mailbox: db2x@ca.ibm.com 

General DB2 on Campus program mailbox: db2univ@ca.ibm.com 

 

http://www.dreamsongs.com/IHE/IHE.html�
mailto:db2x@ca.ibm.com�
mailto:db2univ@ca.ibm.com�


 

 

Getting started with open source development couldn't be 
easier.  

Read this book to:      

 Find out what open source development is all about 
 Learn about open source licenses 
 Understand how to work with open source communities 
 Learn about open source business models and trends 
 Start and contribute to open source projects 
 Practice using hands-on exercises 
 
 

 
 
 
Open source software development is a community-driven methodology 
to develop software products, from the design and development stages 
to distribution. Developers across different parts of the world are 
passionate about their collaboration, and several successful projects 
including Firefox, Moodle, and Drupal, are widely used today. Moreover, 
many companies are using open source software as the foundation to 
build their business models. 
 
This book gets you started into the fascinating world of open source 
software development. Using the exercises and case studies provided, 
you will get good hands-on experience to contribute to and start open 
source projects. 
 
To learn more about open source development visit: 
ibm.com/developerworks/opensource/ 
 
To learn more or download DB2® Express-C, visit 
ibm.com/db2/express 
 
To socialize and watch related videos, visit 
channelDB2.com 
 
This book is part of the DB2 on Campus book series, free eBooks for the 
community. Learn more at db2university.com 
 
 

 
Price: 24.99USD 
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