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PREFACE

The objective of this book is to develop an understanding of the basic principles
of the matrix methods of structural analysis, so that they can be efficiently im-
plemented on modern computers. Focusing on the stiffness approach, Matrix
Analysis of Structures covers the linear analysis of two- and three-dimensional
framed structures in static equilibrium. It also presents an introduction to nonlin-
ear structural analysis and contains the fundamentals of the flexibility approach. 

The book is divided into ten chapters. Chapter 1 presents a general intro-
duction to the subject, and Chapter 2 reviews the basic concepts of matrix alge-
bra relevant to matrix structural analysis. The next five chapters (Chapters 3
through 7) cover the analysis of plane trusses, beams, and plane rigid frames. The
computer implementation of the stiffness method is initiated early in the text
(beginning with Chapter 4), to allow students sufficient time to complete devel-
opment of computer programs within the duration of a single course. Chapter 8
presents the analysis of space trusses, grids, and space rigid frames,  Chapter 9
covers some special topics and modeling techniques, and Chapter 10 provides an
introduction to nonlinear structural analysis. All the relationships necessary for
matrix stiffness analysis are formulated using the basic principles of the me-
chanics of deformable bodies. Thus, a prior knowledge of the classical methods
of structural analysis, while helpful, is not essential for understanding the mater-
ial presented in the book. The format of the book is flexible enough to enable in-
structors to emphasize topics that are consistent with the goals of the course. 

Each chapter begins with a brief introduction that defines its objectives,
and ends with a summary outlining its salient features. An important general
feature of the book is the inclusion of step-by-step procedures for analysis, and
detailed flowcharts, to enable students to make an easier transition from theory
to problem solving and program development. Numerous solved examples are
provided to clarify the fundamental concepts, and to illustrate the application
of the procedures for analysis.

A computer program for the analysis of two- and three-dimensional framed
structures is available on the publisher’s website www.cengage.com/engineering.
This interactive software cab be used by students to check their answers to text
exercises, and to verify the correctness of their own computer programs. The
MATLAB® code for various flowcharts given in the book is available to instruc-
tors for distribution to students (if they so desire). A solutions manual, containing
complete solutions to text exercises, is also available for instructors.

A NOTE ON THE REVISED EDITION

In this second edition, while the major features of the first edition have been re-
tained, an introductory chapter on nonlinear analysis has been added because of

xi
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its increasing use in structural design. In addition, the sections on temperature
changes and fabrication errors (Section 7.5), and nonprismatic members (Sec-
tion 9.8), have been expanded via inclusion of additional examples. The total
number of examples has been increased by about 10 percent, and the number of
problems has been increased by about 15 percent to 255, of which about 40 per-
cent are new problems. These new problems include some computer exercises
intended to familiarize students with the use of the general-purpose structural
analysis software. There are many other minor revisions, including some in the
computer software, which has been upgraded to make it compatible with the lat-
est versions of Microsoft Windows®. Finally, most of the photographs have been
replaced with new ones, some figures have been redrawn and rearranged, and
the page layout of the book has been redesigned to enhance clarity.
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Structural analysis, which is an integral part of any structural engineering project,
is the process of predicting the performance of a given structure under a pre-
scribed loading condition. The performance characteristics usually of interest in
structural design are: (a) stresses or stress resultants (i.e., axial forces, shears, and
bending moments); (b) deflections; and (c) support reactions. Thus, the analysis
of a structure typically involves the determination of these quantities as caused by
the given loads and/or other external effects (such as support displacements and
temperature changes). This text is devoted to the analysis of framed structures—
that is, structures composed of long straight members. Many commonly used
structures such as beams, and plane and space trusses and rigid frames, are clas-
sified as framed structures (also referred to as skeletal structures).

In most design offices today, the analysis of framed structures is routinely
performed on computers, using software based on the matrix methods of struc-
tural analysis. It is therefore essential that structural engineers understand the
basic principles of matrix analysis, so that they can develop their own com-
puter programs and/or properly use commercially available software—and ap-
preciate the physical significance of the analytical results. The objective of this
text is to present the theory and computer implementation of matrix methods
for the analysis of framed structures in static equilibrium.

This chapter provides a general introduction to the subject of matrix 
computer analysis of structures. We start with a brief historical background in
Section 1.1, followed by a discussion of how matrix methods differ from classi-
cal and finite-element methods of structural analysis (Section 1.2). Flexibility
and stiffness methods of matrix analysis are described in Section 1.3; the six
types of framed structures considered in this text (namely, plane trusses, beams,
plane frames, space trusses, grids, and space frames) are discussed in Section 1.4;
and the development of simplified models of structures for the purpose of analy-
sis is considered in Section 1.5. The basic concepts of structural analysis neces-
sary for formulating the matrix methods, as presented in this text, are reviewed
in Section 1.6; and the roles and limitations of linear and nonlinear types of
structural analysis are discussed in Section 1.7. Finally, we conclude the chap-
ter with a brief note on the computer software that is provided on the publisher’s
website for this book (Section 1.8). (www.cengage.com/engineering)

1.1 HISTORICAL BACKGROUND
The theoretical foundation for matrix methods of structural analysis was laid
by James C. Maxwell, who introduced the method of consistent deformations
in 1864; and George A. Maney, who developed the slope-deflection method in
1915. These classical methods are considered to be the precursors of the ma-
trix flexibility and stiffness methods, respectively. In the precomputer era, the
main disadvantage of these earlier methods was that they required direct solu-
tion of simultaneous algebraic equations—a formidable task by hand calcula-
tions in cases of more than a few unknowns.

The invention of computers in the late 1940s revolutionized structural
analysis. As computers could solve large systems of simultaneous equations,
the analysis methods yielding solutions in that form were no longer at a

2 Chapter 1 Introduction
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disadvantage, but in fact were preferred, because simultaneous equations could
be expressed in matrix form and conveniently programmed for solution on
computers.

S. Levy is generally considered to have been the first to introduce the
flexibility method in 1947, by generalizing the classical method of consistent
deformations. Among the subsequent researchers who extended the flexibility
method and expressed it in matrix form in the early 1950s were H. Falken-
heimer, B. Langefors, and P. H. Denke. The matrix stiffness method was devel-
oped by R. K. Livesley in 1954. In the same year, J. H. Argyris and S. Kelsey
presented a formulation of matrix methods based on energy principles. In 1956,
M. T. Turner, R. W. Clough, H. C. Martin, and L. J. Topp derived stiffness ma-
trices for the members of trusses and frames using the finite-element approach,
and introduced the now popular direct stiffness method for generating the struc-
ture stiffness matrix. In the same year, Livesley presented a nonlinear formula-
tion of the stiffness method for stability analysis of frames.

Since the mid-1950s, the development of matrix methods has continued at
a tremendous pace, with research efforts in recent years directed mainly toward
formulating procedures for the dynamic and nonlinear analysis of structures,
and developing efficient computational techniques for analyzing large
structures. Recent advances in these areas can be attributed to S. S. Archer,
C. Birnstiel, R. H. Gallagher, J. Padlog, J. S. Przemieniecki, C. K. Wang, and
E. L. Wilson, among others.

1.2 CLASSICAL, MATRIX, AND FINITE-ELEMENT
METHODS OF STRUCTURAL ANALYSIS

Classical versus Matrix Methods
As we develop matrix methods in subsequent chapters of this book, readers
who are familiar with classical methods of structural analysis will realize
that both matrix and classical methods are based on the same fundamental
principles—but that the fundamental relationships of equilibrium, compatibil-
ity, and member stiffness are now expressed in the form of matrix equations, so
that the numerical computations can be efficiently performed on a computer.

Most classical methods were developed to analyze particular types of struc-
tures, and since they were intended for hand calculations, they often involve cer-
tain assumptions (that are unnecessary in matrix methods) to reduce the amount
of computational effort required for analysis. The application of these methods
usually requires an understanding on the part of the analyst of the structural be-
havior. Consider, for example, the moment-distribution method. This classical
method can be used to analyze only beams and plane frames undergoing bend-
ing deformations. Deformations due to axial forces in the frames are ignored
to reduce the number of independent joint translations. While this assumption
significantly reduces the computational effort, it complicates the analysis by re-
quiring the analyst to draw a deflected shape of the frame corresponding to each
degree of freedom of sidesway (independent joint translation), to estimate the rel-
ative magnitudes of member fixed-end moments: a difficult task even in the case

Section 1.2 Classical, Matrix, and Finite-Element Methods of Structural Analysis 3
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of a few degrees of freedom of sidesway if the frame has inclined members.
Because of their specialized and intricate nature, classical methods are generally
not considered suitable for computer programming.

In contrast to classical methods, matrix methods were specifically devel-
oped for computer implementation; they are systematic (so that they can be
conveniently programmed), and general (in the sense that the same overall for-
mat of the analytical procedure can be applied to the various types of framed
structures). It will become clear as we study matrix methods that, because of
the latter characteristic, a computer program developed to analyze one type of
structure (e.g., plane trusses) can be modified with relative ease to analyze
another type of structure (e.g., space trusses or frames).

As the analysis of large and highly redundant structures by classical
methods can be quite time consuming, matrix methods are commonly used.
However, classical methods are still preferred by many engineers for analyz-
ing smaller structures, because they provide a better insight into the behavior
of structures. Classical methods may also be used for preliminary designs,
for checking the results of computerized analyses, and for deriving the mem-
ber force–displacement relations needed in the matrix analysis. Furthermore,
a study of classical methods is considered to be essential for developing an
understanding of structural behavior.

Matrix versus Finite Element Methods
Matrix methods can be used to analyze framed structures only. Finite-element
analysis, which originated as an extension of matrix analysis to surface struc-
tures (e.g., plates and shells), has now developed to the extent that it can be 
applied to structures and solids of practically any shape or form. From a theo-
retical viewpoint, the basic difference between the two is that, in matrix methods,
the member force–displacement relationships are based on the exact solutions
of the underlying differential equations, whereas in finite-element methods,
such relations are generally derived by work-energy principles from assumed
displacement or stress functions.

Because of the approximate nature of its force–displacement relations,
finite-element analysis generally yields approximate results. However, as will
be shown in Chapters 3 and 5, in the case of linear analysis of framed structures
composed of prismatic (uniform) members, both matrix and finite-element
approaches yield identical results.

1.3 FLEXIBILITY AND STIFFNESS METHODS
Two different methods can be used for the matrix analysis of structures: the flex-
ibility method, and the stiffness method. The flexibility method, which is also
referred to as the force or compatibility method, is essentially a generalization
in matrix form of the classical method of consistent deformations. In this ap-
proach, the primary unknowns are the redundant forces, which are calculated
first by solving the structure’s compatibility equations. Once the redundant
forces are known, the displacements can be evaluated by applying the equations
of equilibrium and the appropriate member force–displacement relations.

4 Chapter 1 Introduction
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The stiffness method, which originated from the classical slope-deflection
method, is also called the displacement or equilibrium method. In this ap-
proach, the primary unknowns are the joint displacements, which are deter-
mined first by solving the structure’s equations of equilibrium. With the joint
displacements known, the unknown forces are obtained through compatibility
considerations and the member force–displacement relations.

Although either method can be used to analyze framed structures, the flexi-
bility method is generally convenient for analyzing small structures with a few re-
dundants. This method may also be used to establish member force-displacement
relations needed to develop the stiffness method. The stiffness method is more
systematic and can be implemented more easily on computers; therefore, it is pre-
ferred for the analysis of large and highly redundant structures. Most of the com-
mercially available software for structural analysis is based on the stiffness
method. In this text, we focus our attention mainly on the stiffness method, with
emphasis on a particular version known as the direct stiffness method, which is
currently used in professional practice. The fundamental concepts of the flexibil-
ity method are presented in Appendix B.

1.4 CLASSIFICATION OF FRAMED STRUCTURES
Framed structures are composed of straight members whose lengths are signif-
icantly larger than their cross-sectional dimensions. Common framed struc-
tures can be classified into six basic categories based on the arrangement of
their members, and the types of primary stresses that may develop in their
members under major design loads.

Plane Trusses
A truss is defined as an assemblage of straight members connected at their ends
by flexible connections, and subjected to loads and reactions only at the joints
(connections). The members of such an ideal truss develop only axial forces
when the truss is loaded. In real trusses, such as those commonly used for sup-
porting roofs and bridges, the members are connected by bolted or welded con-
nections that are not perfectly flexible, and the dead weights of the members
are distributed along their lengths. Because of these and other deviations from
idealized conditions, truss members are subjected to some bending and shear.
However, in most trusses, these secondary bending moments and shears are
small in comparison to the primary axial forces, and are usually not considered
in their designs. If large bending moments and shears are anticipated, then the
truss should be treated as a rigid frame (discussed subsequently) for analysis
and design.

If all the members of a truss as well as the applied loads lie in a single plane,
the truss is classified as a plane truss (Fig. 1.1). The members of plane trusses are
assumed to be connected by frictionless hinges. The analysis of plane trusses is
considerably simpler than the analysis of space (or three-dimensional) trusses.
Fortunately, many commonly used trusses, such as bridge and roof trusses, can
be treated as plane trusses for analysis (Fig. 1.2).

Section 1.4 Classification of Framed Structures 5
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Beams
A beam is defined as a long straight structure that is loaded perpendicular to its
longitudinal axis (Fig. 1.3). Loads are usually applied in a plane of symmetry
of the beam’s cross-section, causing its members to be subjected only to bend-
ing moments and shear forces.

Plane Frames
Frames, also referred to as rigid frames, are composed of straight members
connected by rigid (moment resisting) and/or flexible connections (Fig. 1.4).
Unlike trusses, which are subjected to external loads only at the joints, loads on
frames may be applied on the joints as well as on the members.

If all the members of a frame and the applied loads lie in a single plane, the
frame is called a plane frame (Fig. 1.5). The members of a plane frame are, in

6 Chapter 1 Introduction

Fig. 1.2 Roof Truss
(Photo courtesy of Bethlehem Steel Corporation)

Fig. 1.1 Plane Truss
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general, subjected to bending moments, shears, and axial forces under the ac-
tion of external loads. Many actual three-dimensional building frames can be
subdivided into plane frames for analysis.

Space Trusses
Some trusses (such as lattice domes, transmission towers, and certain aero-
space structures (Fig. 1.6)) cannot be treated as plane trusses because of the
arrangement of their members or applied loading. Such trusses, referred to as
space trusses, are analyzed as three-dimensional structures subjected to three-
dimensional force systems. The members of space trusses are assumed to be
connected by frictionless ball-and-socket joints, and the trusses are subjected
to loads and reactions only at the joints. Like plane trusses, the members of
space trusses develop only axial forces.

Grids
A grid, like a plane frame, is composed of straight members connected
together by rigid and/or flexible connections to form a plane framework. The

Section 1.4 Classification of Framed Structures 7

Fig. 1.4 Skeleton of a Structural Steel Frame Building
(Joe Gough / Shutterstock)
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Fig. 1.5 Plane Frame
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Fig. 1.6 A Segment of the Integrated Truss Structure which
Forms the Backbone of the International Space Station
(Photo Courtesy of National Aeronautics and Space 
Administration 98-05165)
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main difference between the two types of structures is that plane frames are
loaded in the plane of the structure, whereas the loads on grids are applied in
the direction perpendicular to the structure’s plane (Fig. 1.7). Members of grids
may, therefore, be subjected to torsional moments, in addition to the bending
moments and corresponding shears that cause the members to bend out of the
plane of the structure. Grids are commonly used for supporting roofs covering
large column-free areas in such structures as sports arenas, auditoriums, and
aircraft hangars (Fig. 1.8).

Section 1.4 Classification of Framed Structures 9

Fig. 1.7 Grid
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Fig. 1.8 National Air and Space Museum, Washington, DC (under construction)
(Photo courtesy of Bethlehem Steel Corporation)
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Space Frames
Space frames constitute the most general category of framed structures.
Members of space frames may be arranged in any arbitrary directions, and
connected by rigid and/or flexible connections. Loads in any directions may be
applied on members as well as on joints. The members of a space frame may,
in general, be subjected to bending moments about both principal axes, shears
in both principal directions, torsional moments, and axial forces (Fig. 1.9).

1.5 ANALYTICAL MODELS
The first (and perhaps most important) step in the analysis of a structure is to
develop its analytical model. An analytical model is an idealized representation
of a real structure for the purpose of analysis. Its objective is to simplify the
analysis of a complicated structure by discarding much of the detail (about
connections, members, etc.) that is likely to have little effect on the structure’s
behavioral characteristics of interest, while representing, as accurately as
practically possible, the desired characteristics. It is important to note that the
structural response predicted from an analysis is valid only to the extent that
the analytical model represents the actual structure. For framed structures, the
establishment of analytical models generally involves consideration of issues
such as whether the actual three-dimensional structure can be subdivided into
plane structures for analysis, and whether to idealize the actual bolted or
welded connections as hinged, rigid, or semirigid joints. Thus, the develop-
ment of accurate analytical models requires not only a thorough understanding
of structural behavior and methods of analysis, but also experience and knowl-
edge of design and construction practices.

10 Chapter 1 Introduction

Fig. 1.9 Space Frame
(© MNTravel / Alamy)
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In matrix methods of analysis, a structure is modeled as an assemblage of
straight members connected at their ends to joints. A member is defined as a
part of the structure for which the member force-displacement relationships to
be used in the analysis are valid. The member force-displacement relationships
for the various types of framed structures will be derived in subsequent chapters.
A joint is defined as a structural part of infinitesimal size to which the ends of the
members are connected. In finite-element terminology, the members and joints
of structures are generally referred to as elements and nodes, respectively.

Supports for framed structures are commonly idealized as fixed supports,
which do not allow any displacement; hinged supports, which allow rotation
but prevent translation; or, roller or link supports, which prevent translation in
only one direction. Other types of restraints, such as those which prevent rota-
tion but permit translation in one or more directions, can also be considered in
an analysis, as discussed in subsequent chapters.

Line Diagrams
The analytical model of a structure is represented by a line diagram, on which
each member is depicted by a line coinciding with its centroidal axis. The mem-
ber dimensions and the size of connections are not shown. Rigid joints are usu-
ally represented by points, and hinged joints by small circles, at the intersections
of members. Each joint and member of the structure is identified by a number.
For example, the analytical model of the plane truss of Fig. 1.10(a) is shown in
Fig. 1.10(b), in which the joint numbers are enclosed within circles to distin-
guish them from the member numbers enclosed within rectangles.

Section 1.5 Analytical Models 11
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12 Chapter 1 Introduction

1.6 FUNDAMENTAL RELATIONSHIPS FOR 
STRUCTURAL ANALYSIS
Structural analysis, in general, involves the use of three types of relationships:

● Equilibrium equations,

● compatibility conditions, and

● constitutive relations.

Equilibrium Equations
A structure is considered to be in equilibrium if, initially at rest, it remains at
rest when subjected to a system of forces and couples. If a structure is in equi-
librium, then all of its members and joints must also be in equilibrium.

Recall from statics that for a plane (two-dimensional) structure lying in the
XY plane and subjected to a coplanar system of forces and couples (Fig. 1.11),
the necessary and sufficient conditions for equilibrium can be expressed in
Cartesian (XY) coordinates as

(1.1)

These equations are referred to as the equations of equilibrium for plane
structures.

For a space (three-dimensional) structure subjected to a general three-
dimensional system of forces and couples (Fig. 1.12), the equations of equilib-
rium are expressed as

∑
FX = 0

∑
FY = 0

∑
FZ = 0∑

MX = 0
∑

MY = 0
∑

MZ = 0 (1.2)

For a structure subjected to static loading, the equilibrium equations must
be satisfied for the entire structure as well as for each of its members and joints.
In structural analysis, equations of equilibrium are used to relate the forces
(including couples) acting on the structure or one of its members or joints.

∑
FX = 0

∑
FY = 0

∑
M = 0

Fig. 1.11
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Compatibility Conditions
The compatibility conditions relate the deformations of a structure so that its
various parts (members, joints, and supports) fit together without any gaps or
overlaps. These conditions (also referred to as the continuity conditions)
ensure that the deformed shape of the structure is continuous (except at the lo-
cations of any internal hinges or rollers), and is consistent with the support
conditions.

Consider, for example, the two-member plane frame shown in Fig. 1.13.
The deformed shape of the frame due to an arbitrary loading is also depicted,
using an exaggerated scale. When analyzing a structure, the compatibility con-
ditions are used to relate member end displacements to joint displacements
which, in turn, are related to the support conditions. For example, because
joint 1 of the frame in Fig. 1.13 is attached to a roller support that cannot trans-
late in the vertical direction, the vertical displacement of this joint must be
zero. Similarly, because joint 3 is attached to a fixed support that can neither
rotate nor translate in any direction, the rotation and the horizontal and vertical
displacements of joint 3 must be zero.

The displacements of the ends of members are related to the joint displace-
ments by the compatibility requirement that the displacements of a member’s
end must be the same as the displacements of the joint to which the member
end is connected. Thus, as shown in Fig. 1.13, because joint 1 of the example
frame displaces to the right by a distance d1 and rotates clockwise by an angle
θ1, the left end of the horizontal member (member 1) that is attached to joint 1

Section 1.6 Fundamental Relationships for Structural Analysis 13
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must also translate to the right by distance d1 and rotate clockwise by angle θ1.
Similarly, because the displacements of joint 2 consist of the translations d2 to
the right and d3 downward and the counterclockwise rotation θ2, the right end
of the horizontal member and the top end of the vertical member that are con-
nected to joint 2 must also undergo the same displacements (i.e., d2, d3, and θ2).
The bottom end of the vertical member, however, is not subjected to any dis-
placements, because joint 3, to which this particular member end is attached,
can neither rotate nor translate in any direction.

Finally, compatibility requires that the deflected shapes of the members of
a structure be continuous (except at any internal hinges or rollers) and be con-
sistent with the displacements at the corresponding ends of the members.

Constitutive Relations
The constitutive relations (also referred to as the stress-strain relations) de-
scribe the relationships between the stresses and strains of a structure in accor-
dance with the stress-strain properties of the structural material. As discussed
previously, the equilibrium equations provide relationships between the forces,
whereas the compatibility conditions involve only deformations. The constitutive
relations provide the link between the equilibrium equations and compatibility
conditions that is necessary to establish the load-deformation relationships for a
structure or a member.

In the analysis of framed structures, the basic stress-strain relations are first
used, along with the member equilibrium and compatibility equations, to estab-
lish relationships between the forces and displacements at the ends of a member.
The member force-displacement relations thus obtained are then treated as the

14 Chapter 1 Introduction
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constitutive relations for the entire structure, and are used to link the structure’s
equilibrium and compatibility equations, thereby yielding the load-deformation
relationships for the entire structure. These load-deformation relations can then be
solved to determine the deformations of the structure due to a given loading.

In the case of statically determinate structures, the equilibrium equations
can be solved independently of the compatibility and constitutive relations to
obtain the reactions and member forces. The deformations of the structure, if
desired, can then be determined by employing the compatibility and constitu-
tive relations. In the analysis of statically indeterminate structures, however,
the equilibrium equations alone are not sufficient for determining the reactions
and member forces. Therefore, it becomes necessary to satisfy simultaneously
the three types of fundamental relationships (i.e., equilibrium, compatibility,
and constitutive relations) to determine the structural response.

Matrix methods of structural analysis are usually formulated by direct ap-
plication of the three fundamental relationships as described in general terms
in the preceding paragraphs. (Details of the formulations are presented in sub-
sequent chapters.) However, matrix methods can also be formulated by using
work-energy principles that satisfy the three fundamental relationships indi-
rectly. Work-energy principles are generally preferred in the formulation of
finite-element methods, because they can be more conveniently applied to
derive the approximate force-displacement relations for the elements of
surface structures and solids.

The matrix methods presented in this text are formulated by the direct ap-
plication of the equilibrium, compatibility, and constitutive relationships. How-
ever, to introduce readers to the finite-element method, and to familiarize them
with the application of the work-energy principles, we also derive the member
force-displacement relations for plane structures by a finite-element approach
that involves a work-energy principle known as the principle of virtual work. In
the following paragraphs, we review two statements of this principle pertaining
to rigid bodies and deformable bodies, for future reference.

Principle of Virtual Work for Rigid Bodies
The principle of virtual work for rigid bodies (also known as the principle of
virtual displacements for rigid bodies) can be stated as follows.

If a rigid body, which is in equilibrium under a system of forces (and
couples), is subjected to any small virtual rigid-body displacement,
the virtual work done by the external forces (and couples) is zero.

In the foregoing statement, the term virtual simply means imaginary, not
real. Consider, for example, the cantilever beam shown in Fig. 1.14(a). The
free-body diagram of the beam is shown in Fig. 1.14(b), in which PX, and PY

are the components of the external load P in the X and Y directions, respec-
tively, and R1, R2, and R3 represent the reactions at the fixed support 1. Note that
the beam is in equilibrium under the action of the forces PX, PY, R1, and R2, and
the couple R3. Now, imagine that the beam is given an arbitrary, small virtual
rigid-body displacement from its initial equilibrium position 1–2 to another
position 1′–2′, as shown in Fig. 1.14(c). As this figure indicates, the total virtual
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displacement of the beam can be decomposed into rigid-body translations δdX

and δdY in the X and Y directions, respectively, and a rigid-body rotation δθ

about point 1. Note that the symbol δ is used here to identify the virtual quanti-
ties. As the beam undergoes the virtual displacement from position 1–2 to
position 1′–2′, the forces and the couple acting on it perform work, which is re-
ferred to as the virtual work. The total virtual work, δWe, can be expressed as
the algebraic sum of the virtual work δWX and δWY, performed during transla-
tions in the X and Y directions, respectively, and the virtual work δWR, done
during the rotation; that is,

δWe = δWX + δWY + δWR (1.3)

During the virtual translation δdX of the beam, the virtual work performed by
the forces can be expressed as follows (Fig 1.14c).

δWX = R1δdX − PXδdX = (R1 − PX ) δdX = (
∑

FX ) δdX (1.4)
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Similarly, the virtual work done during the virtual translation δdY is given by

δWY = R2δdY − PY δdY = (R2 − PY ) δdY = (
∑

FY ) δdY (1.5)

and the virtual work done by the forces and the couple during the small virtual
rotation δθ can be expressed as follows (Fig. 1.14c).

δWR = R3δθ − PY (Lδθ) = (R3 − PY L) δθ = (
∑

M©1 ) δθ (1.6)

The expression for the total virtual work can now be obtained by substi-
tuting Eqs. (1.4–1.6) into Eq. (1.3). Thus,

δWe = (
∑

FX ) δdX + (
∑

FY ) δdY + (
∑

M©1 ) δθ (1.7)

However, because the beam is in equilibrium, 
∑

FX = 0,
∑

FY = 0, and∑
M©1 = 0; therefore, Eq. (1.7) becomes

(1.8)

which is the mathematical statement of the principle of virtual work for rigid
bodies.

Principle of Virtual Work for Deformable Bodies
The principle of virtual work for deformable bodies (also called the principle
of virtual displacements for deformable bodies) can be stated as follows.

If a deformable structure, which is in equilibrium under a system of
forces (and couples), is subjected to any small virtual displacement
consistent with the support and continuity conditions of the structure,
then the virtual external work done by the real external forces (and
couples) acting through the virtual external displacements (and rota-
tions) is equal to the virtual strain energy stored in the structure.

To demonstrate the validity of this principle, consider the two-member
truss of Fig. 1.15(a), which is in equilibrium under the action of an external
load P. The free-body diagram of joint 3 of the truss is shown in Fig. 1.15(b).
Since joint 3 is in equilibrium, the external and internal forces acting on it must
satisfy the following two equations of equilibrium:

+ → ∑
FX = 0 −F1 sin θ1 + F2 sin θ2 = 0

+ ↑ ∑
FY = 0 F1 cos θ1 + F2 cos θ2 − P = 0 (1.9)

in which F1 and F2 denote the internal (axial) forces in members 1 and 2, re-
spectively; and θ1 and θ2 are, respectively, the angles of inclination of these
members with respect to the vertical as shown in the figure.

Now, imagine that joint 3 is given a small virtual compatible displacement,
δd, in the downward direction, as shown in Fig. 1.15(a). It should be noted that
this virtual displacement is consistent with the support conditions of the truss
in the sense that joints 1 and 2, which are attached to supports, are not dis-
placed. Because the reaction forces at joints 1 and 2 do not perform any work,

δWe = 0
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the total virtual work for the truss, δW, is equal to the algebraic sum of the vir-
tual work of the forces acting at joint 3. Thus, from Fig. 1.15(b),

δW = Pδd − F1(δd cos θ1) − F2(δd cos θ2)

which can be rewritten as

δW = (P − F1 cos θ1 − F2 cos θ2) δd (1.10)

As indicated by Eq. (1.9), the term in parentheses on the right-hand side of
Eq. (1.10) is zero. Therefore, the total virtual work, δW, is zero. By substituting
δW = 0 into Eq. (1.10) and rearranging terms, we write

P(δd) = F1(δd cos θ1) + F2(δd cos θ2) (1.11)

in which the quantity on the left-hand side represents the virtual external work,
δWe, performed by the real external force P acting through the virtual external
displacement δd. Furthermore, because the terms (δd )cos θ1 and (δd )cos θ2 are
equal to the virtual internal displacements (elongations) of members 1 and 2,
respectively, we can conclude that the right-hand side of Eq. (1.11) represents
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the virtual internal work, δWi, done by the real internal forces acting through
the corresponding virtual internal displacements; that is,

δWe = δWi (1.12)

Realizing that the internal work is also referred to as the strain energy, U, we
can express Eq. (1.12) as

(1.13)

in which δU denotes the virtual strain energy. Note that Eq. (1.13) is the math-
ematical statement of the principle of virtual work for deformable bodies.

For computational purposes, it is usually convenient to express Eq. (1.13)
in terms of the stresses and strains in the members of the structure. For that pur-
pose, let us consider a differential element of a member of an arbitrary struc-
ture subjected to a general loading (Fig. 1.16). The element is in equilibrium
under a general three-dimensional stress condition, due to the real forces
acting on the structure. Now, as the structure is subjected to a virtual dis-
placement, virtual strains develop in the element and the internal forces due to
the real stresses perform virtual internal work as they move through the inter-
nal displacements caused by the virtual strains. For example, the virtual in-
ternal work done by the real force due to the stress σx as it moves through the
virtual displacement caused by the virtual strain δεx can be determined as
follows.

real force = stress × area = σx (dy dz)
virtual displacement = strain × length = (δεx) dx

δWe = δU
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Therefore,

virtual internal work = real force × virtual displacement

= (σx dy dz) (δεx dx)

= (δεx σx) dV

in which dV = dx dy dz is the volume of the differential element. Thus, the vir-
tual internal work due to all six stress components is given by

virtual internal work in element dV

= (δεxσx + δεyσy + δεzσz + δγxyτxy + δγyzτyz + δγzxτzx) dV (1.14)

In Eq. (1.14), δεx , δεy, δεz, δγxy, δγyz, and δγzx denote, respectively, the vir-
tual strains corresponding to the real stresses σx , σy, σz, τxy, τyz, and τzx ,

shown in Fig. 1.16.
The total virtual internal work, or the virtual strain energy stored in the en-

tire structure, can be obtained by integrating Eq. (1.14) over the volume V of
the structure. Thus,

δU =
∫

V

(
δεxσx + δεyσy + δεzσz + δγxyτxy + δγyzτyz + δγzxτzx

)
dV

(1.15)

Finally, by substituting Eq. (1.15) into Eq. (1.13), we obtain the statement of
the principle of virtual work for deformable bodies in terms of the stresses and
strains of the structure.

(1.16)

1.7 LINEAR VERSUS NONLINEAR ANALYSIS
In this text, we focus our attention mainly on linear analysis of structures.
Linear analysis of structures is based on the following two fundamental
assumptions:

1. The structures are composed of linearly elastic material; that is, the
stress-strain relationship for the structural material follows Hooke’s law.

2. The deformations of the structures are so small that the squares and
higher powers of member slopes, (chord) rotations, and axial strains are
negligible in comparison with unity, and the equations of equilibrium
can be based on the undeformed geometry of the structure.

The reason for making these assumptions is to obtain linear relationships
between applied loads and the resulting structural deformations. An impor-
tant advantage of linear force-deformation relations is that the principle of

δWe =
∫

V

(
δεxσx + δεyσy + δεzσz + δγxyτxy + δγyzτyz + δγzxτzx

)
dV

20 Chapter 1 Introduction
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superposition can be used in the analysis. This principle states essentially that
the combined effect of several loads acting simultaneously on a structure
equals the algebraic sum of the effects of each load acting individually on the
structure.

Engineering structures are usually designed so that under service loads they
undergo small deformations, with stresses within the initial linear portions of
the stress-strain curves of their materials. Thus, linear analysis generally proves
adequate for predicting the performance of most common types of structures
under service loading conditions. However, at higher load levels, the accuracy
of linear analysis generally deteriorates as the deformations of the structure
increase and/or its material is strained beyond the yield point. Because of its
inherent limitations, linear analysis cannot be used to predict the ultimate load
capacities and instability characteristics (e.g., buckling loads) of structures.

With the recent introduction of design specifications based on the ultimate
strengths of structures, the use of nonlinear analysis in structural design is in-
creasing. In a nonlinear analysis, the restrictions of linear analysis are removed
by formulating the equations of equilibrium on the deformed geometry of the
structure that is not known in advance, and/or taking into account the effects of
inelasticity of the structural material. The load-deformation relationships thus
obtained for the structure are nonlinear, and are usually solved using iterative
techniques. An introduction to this still-evolving field of nonlinear structural
analysis is presented in Chapter 10.

1.8 SOFTWARE
Software for the analysis of framed structures using the matrix stiffness
method is provided on the publisher’s website for this book, www.cengage.com/
engineering. The software can be used by readers to verify the correctness of
various subroutines and programs that they will develop during the course of
study of this text, as well as to check the answers to the problems given at the
end of each chapter. A description of the software, and information on how to
install and use it, is presented in Appendix A.

SUMMARY

In this chapter, we discussed the topics summarized in the following list.

1. Structural analysis is the prediction of the performance of a given
structure under prescribed loads and/or other external effects.

2. Both matrix and classical methods of structural analysis are based on the
same fundamental principles. However, classical methods were developed to
analyze particular types of structures, whereas matrix methods are more general
and systematic so that they can be conveniently programmed on computers.

3. Two different methods can be used for matrix analysis of structures;
namely, the flexibility and stiffness methods. The stiffness method is more sys-
tematic and can be implemented more easily on computers, and is therefore
currently preferred in professional practice.

Summary 21
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4. Framed structures are composed of straight members whose lengths
are significantly larger than their cross-sectional dimensions. Framed struc-
tures can be classified into six basic categories: plane trusses, beams, plane
frames, space trusses, grids, and space frames.

5. An analytical model is a simplified (idealized) representation of a real
structure for the purpose of analysis. Framed structures are modeled as assem-
blages of straight members connected at their ends to joints, and these analyti-
cal models are represented by line diagrams.

6. The analysis of structures involves three fundamental relationships:
equilibrium equations, compatibility conditions, and constitutive relations.

7. The principle of virtual work for deformable bodies states that if a
deformable structure, which is in equilibrium, is subjected to a small compati-
ble virtual displacement, then the virtual external work is equal to the virtual
strain energy stored in the structure.

8. Linear structural analysis is based on two fundamental assumptions:
the stress-strain relationship for the structural material is linearly elastic, and
the structure’s deformations are so small that the equilibrium equations can be
based on the undeformed geometry of the structure.

22 Chapter 1 Introduction
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MATRIX ALGEBRA

Somerset Corporate Center Office Building, New Jersey, and its Analytical Model
(Photo courtesy of Ram International. Structural Engineer: The Cantor Seinuk Group, P.C.)
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In matrix methods of structural analysis, the fundamental relationships of
equilibrium, compatibility, and member force–displacement relations are
expressed in the form of matrix equations, and the analytical procedures are
formulated by applying various matrix operations. Therefore, familiarity
with the basic concepts of matrix algebra is a prerequisite to understanding
matrix structural analysis. The objective of this chapter is to concisely pre-
sent the basic concepts of matrix algebra necessary for formulating the
methods of structural analysis covered in the text. A general procedure for
solving simultaneous linear equations, the Gauss–Jordan method, is also
discussed. 

We begin with the basic definition of a matrix in Section 2.1, followed by
brief descriptions of the various types of matrices in Section 2.2. The matrix
operations of equality, addition and subtraction, multiplication, transposition,
differentiation and integration, inversion, and partitioning are defined in Sec-
tion 2.3; we conclude the chapter with a discussion of the Gauss–Jordan elim-
ination method for solving simultaneous equations (Section 2.4).

2.1 DEFINITION OF A MATRIX
A matrix is defined as a rectangular array of quantities arranged in rows
and columns. A matrix with m rows and n columns can be expressed as
follows.

A = [A] =

⎡
⎢⎢⎢⎢⎣

A11 A12 A13 · · · · · · A1n

A21 A22 A23 · · · · · · A2n

A31 A32 A33 · · · · · · A3n

· · · · · · · · · · · · Ai j · · ·
Am1 Am2 Am3 · · · · · · Amn

⎤
⎥⎥⎥⎥⎦ i th row

(2.1)

jth column m × n

As shown in Eq. (2.1), matrices are denoted either by boldface letters (A) or
by italic letters enclosed within brackets ([A]). The quantities forming a
matrix are referred to as its elements. The elements of a matrix are usually
numbers, but they can be symbols, equations, or even other matrices (called
submatrices). Each element of a matrix is represented by a double-subscripted
letter, with the first subscript identifying the row and the second subscript
identifying the column in which the element is located. Thus, in Eq. (2.1),
A23 represents the element located in the second row and third column of
matrix A. In general, Aij refers to an element located in the ith row and jth
column of matrix A.

The size of a matrix is measured by the number of its rows and columns
and is referred to as the order of the matrix. Thus, matrix A in Eq. (2.1), which
has m rows and n columns, is considered to be of order m × n (m by n). As an

24 Chapter 2 Matrix Algebra
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example, consider a matrix D given by

D =

⎡
⎢⎢⎣

3 5 37
8 −6 0

12 23 2
7 −9 −1

⎤
⎥⎥⎦

The order of this matrix is 4 × 3, and its elements are symbolically denoted
by Dij with i = 1 to 4 and j = 1 to 3; for example, D13 = 37, D31 = 12,
D42 = −9, etc.

2.2 TYPES OF MATRICES
We describe some of the common types of matrices in the following paragraphs.

Column Matrix (Vector)
If all the elements of a matrix are arranged in a single column (i.e., n = 1), it is
called a column matrix. Column matrices are usually referred to as vectors, and
are sometimes denoted by italic letters enclosed within braces. An example of
a column matrix or vector is given by 

B = {B} =

⎡
⎢⎢⎢⎢⎣

35
9

12
3

26

⎤
⎥⎥⎥⎥⎦

Row Matrix
A matrix with all of its elements arranged in a single row (i.e., m = 1) is re-
ferred to as a row matrix. For example,

C = [9 35 −12 7 22]

Square Matrix
If a matrix has the same number of rows and columns (i.e., m = n), it is called
a square matrix. An example of a 4 × 4 square matrix is given by 

A =

⎡
⎢⎢⎢⎢⎢⎣

6 12 0 20

15 −9 −37 3

−24 13 8 1

40 0 11 −5

⎤
⎥⎥⎥⎥⎥⎦

(2.2)

main diagonal

Section 2.2 Types of Matrices 25
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26 Chapter 2 Matrix Algebra

As shown in Eq. (2.2), the main diagonal of a square matrix extends from the
upper left corner to the lower right corner, and it contains elements with match-
ing subscripts—that is, A11, A22, A33, . . . , Ann. The elements forming the main
diagonal are referred to as the diagonal elements; the remaining elements of a
square matrix are called the off-diagonal elements.

Symmetric Matrix
When the elements of a square matrix are symmetric about its main diagonal
(i.e., Aij = Aji), it  is termed a symmetric matrix. For example,

A =

⎡
⎢⎢⎣

6 15 −24 40
15 −9 13 0

−24 13 8 11
40 0 11 −5

⎤
⎥⎥⎦

Lower Triangular Matrix
If all the elements of a square matrix above its main diagonal are zero, (i.e.,
Aij = 0 for j > i), it  is referred to as a lower triangular matrix. An example of
a 4 × 4 lower triangular matrix is given by 

A =

⎡
⎢⎢⎣

8 0 0 0
12 −9 0 0
33 17 6 0
−2 5 15 3

⎤
⎥⎥⎦

Upper Triangular Matrix
When all the elements of a square matrix below its main diagonal are zero (i.e.,
Aij = 0 for j < i), it is called an upper triangular matrix. An example of a 3 × 3
upper triangular matrix is given by 

A =
⎡
⎣ −7 6 17

0 12 11
0 0 20

⎤
⎦

Diagonal Matrix
A square matrix with all of its off-diagonal elements equal to zero (i.e., Aij = 0
for i � j ), is called a diagonal matrix. For example,

A =

⎡
⎢⎢⎣

6 0 0 0
0 −3 0 0
0 0 11 0
0 0 0 27

⎤
⎥⎥⎦
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Unit or Identity Matrix
If all the diagonal elements of a diagonal matrix are equal to 1 (i.e., Iij = 1 and
Iij = 0 for i �= j), it is referred to as a unit (or identity) matrix. Unit matrices are
commonly denoted by I or [I]. An example of a 3 × 3 unit matrix is given by

I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

Null Matrix
If all the elements of a matrix are zero (i.e., Oij = 0), it is termed a null matrix.
Null matrices are usually denoted by O or [O]. An example of a 3 × 4 null
matrix is given by 

O =
⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0

⎤
⎦

2.3 MATRIX OPERATIONS

Equality
Matrices A and B are considered to be equal if they are of the same order and if
their corresponding elements are identical (i.e., Aij = Bij). Consider, for
example, matrices

A =
⎡
⎣ 6 2

−7 8
3 −9

⎤
⎦ and B =

⎡
⎣ 6 2

−7 8
3 −9

⎤
⎦

Since both A and B are of order 3 × 2, and since each element of A is equal to
the corresponding element of B, the matrices A and B are equal to each other;
that is, A = B.

Addition and Subtraction
Matrices can be added (or subtracted) only if they are of the same order. The
addition (or subtraction) of two matrices A and B is carried out by adding
(or subtracting) the corresponding elements of the two matrices. Thus, if
A + B = C, then Cij = Aij + Bij; and if A − B = D, then Dij = Aij − Bij . The
matrices C and D have the same order as matrices A and B.

Section 2.3 Matrix Operations 27

E X A M P L E 2.1 Calculate the matrices C = A + B and D = A − B if

A =
⎡
⎣ 6 0

−2 9
5 1

⎤
⎦ and B =

⎡
⎣ 2 3

7 5
−12 −1

⎤
⎦
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S O L U T I O N

C = A + B =
⎡
⎣ (6 + 2) (0 + 3)

(−2 + 7) (9 + 5)

(5 − 12) (1 − 1)

⎤
⎦ =

⎡
⎣ 8 3

5 14
−7 0

⎤
⎦ Ans

D = A − B =
⎡
⎣ (6 − 2) (0 − 3)

(−2 − 7) (9 − 5)

(5 + 12) (1 + 1)

⎤
⎦ =

⎡
⎣ 4 −3

−9 4
17 2

⎤
⎦ Ans

28 Chapter 2 Matrix Algebra

Multiplication by a Scalar
The product of a scalar c and a matrix A is obtained by multiplying each
element of the matrix A by the scalar c. Thus, if cA = B, then Bij = cAij.

E X A M P L E 2.2 Calculate the matrix B = cA if c = −6 and

A =
⎡
⎣ 3 7 −2

0 8 1
12 −4 10

⎤
⎦

S O L U T I O N

B = cA =
⎡
⎣ −6(3) −6(7) −6(−2)

−6(0) −6(8) −6(1)

−6(12) −6(−4) −6(10)

⎤
⎦ =

⎡
⎣−18 −42 12

0 −48 −6
−72 24 −60

⎤
⎦ Ans

Multiplication of Matrices
Two matrices can be multiplied only if the number of columns of the first ma-
trix equals the number of rows of the second matrix.  Such matrices are said to
be conformable for multiplication. Consider, for example, the matrices

A =
⎡
⎣ 1 8

4 −2
−5 3

⎤
⎦ and B =

[
6 −7

−1 2

]
(2.3)

3 × 2 2 × 2

The product AB of these matrices is defined because the first matrix, A, of the
sequence AB has two columns and the second matrix, B, has two rows. How-
ever, if the sequence of the matrices is reversed, then the product BA does not
exist, because now the first matrix, B, has two columns and the second matrix,
A, has three rows. The product AB is referred to either as A postmultiplied by
B, or as B premultiplied by A. Conversely, the product BA is referred to either
as B postmultiplied by A, or as A premultiplied by B.

When two conformable matrices are multiplied, the product matrix thus
obtained has the number of rows of the first matrix and the number of columns
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Any element Cij of the product matrix C can be determined by multiplying
each element of the ith row of A by the corresponding element of the jth
column of B (see Eq. 2.4), and by algebraically summing the products; that is,

Ci j = Ai1 B1 j + Ai2 B2 j + · · · + Aim Bmj (2.5)

Eq. (2.5) can be expressed as

(2.6)

in which m represents the number of columns of A, or the number of rows
of B. Equation (2.6) can be used to determine all elements of the product
matrix  C = AB.

Ci j =
m∑

k=1
Aik Bkj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai1 Ai2 · · · · · · Aim

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 j

B2 j
...
...

Bmj

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ci j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

j th column
j th column

i th rowi th row

A
(l × m)

B
(m × n)

C
(l × n)

=
equal

of the second matrix. Thus, if a matrix A of order l × m is postmultiplied by a
matrix B of order m × n, then the product matrix C = AB has the order l × n;
that is,

(2.4)

E X A M P L E 2.3 Calculate the product C = AB of the matrices A and B given in Eq. (2.3).

S O L U T I O N

C = AB =
⎡
⎣ 1 8

4 −2
−5 3

⎤
⎦

[
6 −7

−1 2

]
=

⎡
⎣ −2 9

26 −32
−33 41

⎤
⎦ Ans

(3 × 2) (2 × 2) (3 × 2)

The element C11 of the product matrix C is determined by multiplying each element of
the first row of A by the corresponding element of the first column of B and summing
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A flowchart for programming the matrix multiplication procedure on a com-
puter is given in Fig. 2.1. Any programming language (such as FORTRAN,
BASIC, or C, among others) can be used for this purpose. The reader is encour-
aged to write this program in a general form (e.g., as a subroutine), so that it can
be included in the structural analysis computer programs to be developed in later
chapters.

An important application of matrix multiplication is to express simultane-
ous equations in compact matrix form. Consider the following system of linear
simultaneous equations.

A11x1 + A12x2 + A13x3 + A14x4 = P1

A21x1 + A22x2 + A23x3 + A24x4 = P2

A31x1 + A32x2 + A33x3 + A34x4 = P3

A41x1 + A42x2 + A43x3 + A44x4 = P4

(2.7)

in which xs are the unknowns and As and Ps represent the coefficients and con-
stants, respectively. By using the definition of multiplication of matrices, this
system of equations can be expressed in matrix form as⎡

⎢⎢⎢⎣
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P1

P2

P3

P4

⎤
⎥⎥⎥⎦ (2.8)

or, symbolically, as

Ax = P (2.9)

Matrix multiplication is generally not commutative; that is,

(2.10)

Even when the orders of two matrices A and B are such that both products AB
and BA are defined and are of the same order, the two products, in general, will

AB �= BA

30 Chapter 2 Matrix Algebra

the resulting products; that is,

C11 = 1(6) + 8(−1) = −2

Similarly, the element C12 is obtained by multiplying the elements of the first row of
A by the corresponding elements of the second column of B and adding the resulting
products; that is,

C12 = 1(−7) + 8(2) = 9

The remaining elements of C are computed in a similar manner:

C21 = 4(6) + (−2)(−1) = 26

C22 = 4(−7) −2(2) = −32

C31 = −5(6) + 3(−1) = −33

C32 = −5(−7) + 3(2) = 41
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not be equal. It is essential, therefore, to maintain the proper sequential order
of matrices when evaluating matrix products.

Section 2.3 Matrix Operations 31

Start

Stop

Input A(L, M), B(M, N)

Output C

Dimension C(L, N)

I = 1

J = 1

K = 1

C(I, J) = 0.0

K = K + 1

I = I + 1

J = J + 1

C(I, J) = C(I, J) + A(I, K)*B(K, J)

I ≤ L?

J ≤ N?

K ≤ M?

yes

yes

yes

no

no

no

Fig. 2.1 Flowchart for Matrix Multiplication

E X A M P L E 2.4 Calculate the products AB and BA if

A =
[

1 −8
−7 2

]
and B =

[
6 −3
4 −5

]

Are the products AB and BA equal?
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Matrix multiplication is associative and distributive, provided that the se-
quential order in which the matrices are to be multiplied is maintained. Thus,

ABC = (AB)C = A(BC) (2.11)

and

A(B + C) = AB + AC (2.12)

The product of any matrix A and a conformable null matrix O equals a
null matrix; that is,

AO = O and OA = O (2.13)

For example,[
2 −4

−6 8

] [
0 0
0 0

]
=

[
0 0
0 0

]

The product of any matrix A and a conformable unit matrix I equals the
original matrix A; thus,

AI = A and IA = A (2.14)

For example,[
2 −4

−6 8

] [
1 0
0 1

]
=

[
2 −4

−6 8

]

and [
1 0
0 1

] [
2 −4

−6 8

]
=

[
2 −4

−6 8

]

We can see from Eqs. (2.13) and (2.14) that the null and unit matrices serve
purposes in matrix algebra that are similar to those of the numbers 0 and 1, re-
spectively, in scalar algebra.

Transpose of a Matrix
The transpose of a matrix is obtained by interchanging its corresponding rows
and columns. The transposed matrix is commonly identified by placing a
superscript T on the symbol of the original matrix. Consider, for example, a
3 × 2 matrix

B =
⎡
⎣ 2 −4

−5 8
1 3

⎤
⎦

3 × 2

S O L U T I O N

AB =
[

1 −8
−7 2

] [
6 −3
4 −5

]
=

[ −26 37
−34 11

]
Ans

BA =
[

6 −3
4 −5

] [
1 −8

−7 2

]
=

[
27 −54
39 −42

]
Ans

Comparing products AB and BA, we can see that AB �= BA. Ans
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The transpose of B is given by

BT =
[

2 −5 1
−4 8 3

]

2 × 3

Note that the first row of B becomes the first column of BT. Similarly, the sec-
ond and third rows of B become, respectively, the second and third columns of
BT. The order of BT thus obtained is 2 × 3.

As another example, consider the matrix

C =
⎡
⎣ 2 −1 6

−1 7 −9
6 −9 5

⎤
⎦

Because the elements of C are symmetric about its main diagonal (i.e.,
Cij = Cji for i � j), interchanging the rows and columns of this matrix
produces a matrix CT that is identical to C itself; that is, CT = C. Thus, the
transpose of a symmetric matrix equals the original matrix.

Another useful property of matrix transposition is that the transpose of a
product of matrices equals the product of the transposed matrices in reverse
order. Thus, 

(2.15)

Similarly,

(ABC)T = CTBTAT (2.16)

(AB)T = BTAT

E X A M P L E 2.5 Show that (AB)T = BTAT if

A =
⎡
⎣ 9 −5

2 1
−3 4

⎤
⎦ and B =

[
6 −1 10

−2 7 5

]

S O L U T I O N

AB =
⎡
⎣ 9 −5

2 1
−3 4

⎤
⎦

[
6 −1 10

−2 7 5

]
=

⎡
⎣ 64 −44 65

10 5 25
−26 31 −10

⎤
⎦

(AB)T =
⎡
⎣ 64 10 −26

−44 5 31
65 25 −10

⎤
⎦ (1)

BT AT =
⎡
⎣ 6 −2

−1 7
10 5

⎤
⎦

[
9 2 −3

−5 1 4

]
=

⎡
⎣ 64 10 −26

−44 5 31
65 25 −10

⎤
⎦ (2)

By comparing Eqs. (1) and (2), we can see that (AB)T = BT AT . Ans
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Differentiation and Integration
A matrix can be differentiated (or integrated) by differentiating (or integrating)
each of its elements.

34 Chapter 2 Matrix Algebra

E X A M P L E 2.6 Determine the derivative dA/dx if

A =
⎡
⎣ x2 3 sin x −x4

3 sin x −x cos2 x
−x4 cos2 x 7x3

⎤
⎦

S O L U T I O N By differentiating the elements of A, we obtain

A11 = x2 d A11

dx
= 2x

A21 = A12 = 3 sin x
d A21

dx
= d A12

dx
= 3 cos x

A31 = A13 = −x4 d A31

dx
= d A13

dx
= −4x3

A22 = −x
d A22

dx
= −1

A32 = A23 = cos2 x
d A32

dx
= d A23

dx
= −2 cos x sin x

A33 = 7x3 d A33

dx
= 21x2

Thus, the derivative dA/dx is given by

dA
dx

=
⎡
⎣ 2x 3 cos x −4x3

3 cos x −1 −2 cos x sin x
−4x3 −2 cos x sin x 21x2

⎤
⎦ Ans

E X A M P L E 2.7 Determine the partial derivative ∂B/∂y if

B =
⎡
⎣ 2y3 −yz −2xz

3xy2 yz −z2

2x2 −2xz 3xy2

⎤
⎦

S O L U T I O N We determine the partial derivative, ∂Bij/∂y, of each element of B to obtain

∂B
∂y

=
⎡
⎣ 6y2 −z 0

6xy z 0
0 0 6xy

⎤
⎦ Ans

E X A M P L E 2.8 Calculate the integral 
∫ L

0 AAT dx if

A =

⎡
⎢⎢⎣

1 − x

L
x

L

⎤
⎥⎥⎦
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E X A M P L E 2.9 Check whether or not matrix B is the inverse of matrix A, if

A =
[ −4 2

−3 1

]
and B =

[
0.5 −1
1.5 −2

]

Inverse of a Square Matrix
The inverse of a square matrix A is defined as a matrix A−1 with elements of
such magnitudes that the product of the original matrix A and its inverse A�1

equals a unit matrix I; that is,

(2.17)

The operation of inversion is defined only for square matrices, with the inverse
of such a matrix also being a square matrix of the same order as the original
matrix. A procedure for determining inverses of matrices will be presented in
the next section.

AA−1 = A−1 A = I

Section 2.3 Matrix Operations 35

S O L U T I O N First, we calculate the matrix product AAT as

B = AAT =

⎡
⎢⎣

(
1 − x

L

)
x

L

⎤
⎥⎦

[(
1 − x

L

) x

L

]
=

⎡
⎢⎢⎣

(
1 − x

L

)2 x

L

(
1 − x

L

)

x

L

(
1 − x

L

) x2

L2

⎤
⎥⎥⎦

Next, we integrate the elements of B to obtain

∫ L

0
B11dx =

∫ L

0

(
1 − x

L

)2
dx =

∫ L

0

(
1 − 2x

L
+ x2

L2

)
dx

=
(

x − x2

L
+ x3

3L2

)L

0
= L

3

∫ L

0
B21dx =

∫ L

0
B12dx =

∫ L

0

x

L

(
1 − x

L

)
dx =

∫ L

0

(
x

L
− x2

L2

)
dx

=
(

x2

2L
− x3

3L2

)L

0
= L

2
− L

3
= L

6

∫ L

0
B22dx =

∫ L

0

(
x2

L2

)
dx =

(
x3

3L2

)L

0
= L

3

Thus,

∫ L

0
AAT dx =

⎡
⎣

L

3

L

6
L

6

L

3

⎤
⎦ = L

6

[
2 1
1 2

]
Ans
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36 Chapter 2 Matrix Algebra

The operation of matrix inversion serves a purpose analogous to the oper-
ation of division in scalar algebra. Consider a system of simultaneous linear
equations expressed in matrix form as

Ax = P

in which A is the square matrix of known coefficients; x is the vector of the
unknowns; and P is the vector of the constants. As the operation of division is
not defined in matrix algebra, the equation cannot be solved for x by dividing
P by A (i.e., x = P/A). However, we can determine x by premultiplying both
sides of the equation by A−1, to obtain

A−1Ax = A−1P

As A−1A = I and Ix = x, we can write

x = A−1P

which shows that a system of simultaneous linear equations can be solved
by premultiplying the vector of constants by the inverse of the coefficient
matrix.

An important property of matrix inversion is that the inverse of a symmet-
ric matrix is also a symmetric matrix.

Orthogonal Matrix
If the inverse of a matrix is equal to its transpose, the matrix is referred to as an
orthogonal matrix. In other words, a matrix A is orthogonal if

A−1 = AT

S O L U T I O N

AB =
[ −4 2

−3 1

] [
0.5 −1
1.5 −2

]
=

[
(−2 + 3) (4 − 4)

(−1.5 + 1.5) (3 − 2)

]
=

[
1 0
0 1

]

Also,

BA =
[

0.5 −1
1.5 −2

] [−4 2
−3 1

]
=

[
(−2 + 3) (1 − 1)

(−6 + 6) (3 − 2)

]
=

[
1 0
0 1

]

Since AB = BA = I, B is the inverse of A; that is, 

B = A−1 Ans

E X A M P L E 2.10 Determine whether matrix A given below is an orthogonal matrix.

A =

⎡
⎢⎢⎣

0.8 0.6 0 0
−0.6 0.8 0 0

0 0 0.8 0.6
0 0 −0.6 0.8

⎤
⎥⎥⎦
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Partitioning of Matrices
In many applications, it becomes necessary to subdivide a matrix into a num-
ber of smaller matrices called submatrices. The process of subdividing a matrix
into submatrices is referred to as partitioning. For example, a 4 × 3 matrix B
is partitioned into four submatrices by drawing horizontal and vertical dashed
partition lines:

B =

⎡
⎢⎢⎣

2 −4 −1
−5 7 3

8 −9 6
1 3 8

⎤
⎥⎥⎦ =

[
B11 B12

B21 B22

]�
�
�
�
�
�

�������
(2.18)

in which the submatrices are

B11 =
⎡
⎣ 2 −4

−5 7
8 −9

⎤
⎦ B12 =

⎡
⎣ −1

3
6

⎤
⎦

B21 = [1 3] B22 = [8]

Matrix operations (such as addition, subtraction, and multiplication) can be
performed on partitioned matrices in the same manner as discussed previously
by treating the submatrices as elements—provided that the matrices are parti-
tioned in such a way that their submatrices are conformable for the particular op-
eration. For example, suppose that the 4 × 3 matrix B of Eq. (2.18) is to be post-
multiplied by a 3 × 2 matrix C, which is partitioned into two submatrices:

C =
⎡
⎣ 9 −6

4 2
−3 1

⎤
⎦ =

[
C11

C21

]
�����

(2.19)

Section 2.3 Matrix Operations 37

S O L U T I O N

AAT =

⎡
⎢⎢⎣

0.8 0.6 0 0
−0.6 0.8 0 0

0 0 0.8 0.6
0 0 −0.6 0.8

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.8 −0.6 0 0
0.6 0.8 0 0
0 0 0.8 −0.6
0 0 0.6 0.8

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

(0.64 + 0.36) (−0.48 + 0.48) 0 0
(−0.48 + 0.48) (0.36 + 0.64) 0 0

0 0 (0.64 + 0.36) (−0.48 + 0.48)

0 0 (−0.48 + 0.48) (0.36 + 0.64)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

which shows that AAT = I. Thus,

A−1 = AT

Therefore, matrix A is orthogonal. Ans
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The product BC is expressed in terms of submatrices as

BC =
[

B11 B12

B21 B22

] [
C11

C21

]
=

[
B11C11 + B12C21

B21C11 + B22C21

]
(2.20)

It is important to realize that matrices B and C have been partitioned in such a
way that their corresponding submatrices are conformable for multiplication;
that is, the orders of the submatrices are such that the products B11C11, B12C21,
B21C11, and B22C21 are defined. It can be seen from Eqs. (2.18) and (2.19) that
this is achieved by partitioning the rows of the second matrix C of the product
BC in the same way that the columns of the first matrix B are partitioned. The
products of the submatrices are:

B11C11 =
⎡
⎣ 2 −4

−5 7
8 −9

⎤
⎦

[
9 −6
4 2

]
=

⎡
⎣ 2 −20

−17 44
36 −66

⎤
⎦

B12C21 =
⎡
⎣ −1

3
6

⎤
⎦ [−3 1] =

⎡
⎣ 3 −1

−9 3
−18 6

⎤
⎦

B21C11 = [1 3]

[
9 −6
4 2

]
= [21 0]

B22C21 = [8][−3 1] = [−24 8]

By substituting the numerical values of the products of submatrices into
Eq. (2.20), we obtain

BC =

⎡
⎢⎢⎣

⎡
⎣ 2 −20

−17 44
36 −66

⎤
⎦

[21 0]

⎡
⎣ 3 −1

−9 3
−18 6

⎤
⎦

[−24 8]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

5 −21
−26 47

18 −60
−3 8

⎤
⎥⎥⎦

2.4 GAUSS–JORDAN ELIMINATION METHOD
The Gauss–Jordan elimination method is one of the most commonly used
procedures for solving simultaneous linear equations, and for determining
inverses of matrices.

Solution of Simultaneous Equations
To illustrate the Gauss–Jordan method for solving simultaneous equations,
consider the following system of three linear algebraic equations:

5x1 + 6x2 − 3x3 = 66

9x1 − x2 + 2x3 = 8 (2.21a)

8x1 − 7x2 + 4x3 = −39

38 Chapter 2 Matrix Algebra
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+
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To determine the unknowns x1, x2, and x3, we begin by dividing the first equa-
tion by the coefficient of its x1 term to obtain

x1 + 1.2x2 − 0.6x3 = 13.2

9x1 − x2 + 2x3 = 8

8x1 − 7x2 + 4x3 = −39

(2.21b)

Next, we eliminate the unknown x1 from the second and third equations by suc-
cessively subtracting from each equation the product of the coefficient of its x1

term and the first equation. Thus, to eliminate x1 from the second equation, we
multiply the first equation by 9 and subtract it from the second equation.
Similarly, we eliminate x1 from the third equation by multiplying the first equa-
tion by 8 and subtracting it from the third equation. This yields the system of
equations

x1 + 1.2x2 − 0.6x3 = 13.2

− 11.8x2 + 7.4x3 = −110.8

− 16.6x2 + 8.8x3 = −144.6

(2.21c)

With x1 eliminated from all but the first equation, we now divide the second
equation by the coefficient of its x2 term to obtain

x1 + 1.2x2 − 0.6 x3 = 13.2

x2 − 0.6271x3 = 9.39

− 16.6x2 + 8.8 x3 = −144.6

(2.21d)

Next, the unknown x2 is eliminated from the first and the third equations, suc-
cessively, by multiplying the second equation by 1.2 and subtracting it from the
first equation, and then by multiplying the second equation by −16.6 and sub-
tracting it from the third equation. The system of equations thus obtained is

x1 + 0.1525x3 = 1.932

x2 − 0.6271x3 = 9.39

− 1.61 x3 = 11.27

(2.21e)

Focusing our attention now on the unknown x3, we divide the third equation by
the coefficient of its x3 term (which is −1.61) to obtain

x1 + 0.1525x3 = 1.932

x2 − 0.6271x3 = 9.39

x3 = −7

(2.21f)

Finally, we eliminate x3 from the first and the second equations, successively,
by multiplying the third equation by 0.1525 and subtracting it from the first
equation, and then by multiplying the third equation by −0.6271 and subtract-
ing it from the second equation. This yields the solution of the given system of
equations:

x1 = 3

x2 = 5

x3 = −7

(2.21g)
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or, equivalently,

x1 = 3; x2 = 5; x3 = −7 (2.21h)

To check that this solution is correct, we substitute the numerical values of
x1, x2, and x3 back into the original equations (Eq. 2.21(a)):

5(3) + 6(5) − 3(−7) = 66 Checks

9(3) − 5 + 2(−7) = 8 Checks

8(3) − 7(5) + 4(−7) = −39 Checks

As the foregoing example illustrates, the Gauss–Jordan method basically
involves eliminating, in order, each unknown from all but one of the equations
of the system by applying the following operations: dividing an equation by a
scalar; and multiplying an equation by a scalar and subtracting the resulting
equation from another equation. These operations (called the elementary
operations) when applied to a system of equations yield another system of
equations that has the same solution as the original system. In the Gauss–-
Jordan method, the elementary operations are performed repeatedly until a
system with each equation containing only one unknown is obtained.

The Gauss–Jordan elimination method can be performed more conve-
niently by using the matrix form of the simultaneous equations (Ax = P). In
this approach, the coefficient matrix A and the vector of constants P are treated
as submatrices of a partitioned augmented matrix,

G
n × (n + 1)

= [A
n × n

� P]

n × 1
(2.22)

where n represents the number of equations. The elementary operations are
then applied to the rows of the augmented matrix, until the coefficient matrix is
reduced to a unit matrix. The elements of the vector, which initially contained
the constant terms of the original equations, now represent the solution of the
original system of equations; that is,

G =
⎧⎨
⎩

[A

[I

�

�

P]

x]

−−−−−−−[
elementary operations (2.23)

This procedure is illustrated by the following example.

40 Chapter 2 Matrix Algebra

E X A M P L E 2.11 Solve the system of simultaneous equations given in Eq. 2.21(a) by the Gauss–Jordan
method.

S O L U T I O N The given system of equations can be written in matrix form as

Ax = P⎡
⎣ 5 6 −3

9 −1 2
8 −7 4

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 66

8
−39

⎤
⎦ (1)
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from which we form the augmented matrix

G = [A�P] =
⎡
⎣ 5 6 −3 66

9 −1 2 8
8 −7 4 −39

⎤
⎦�

�
�
�

(2)

We begin Gauss–Jordan elimination by dividing row 1 of the augmented matrix by
G11 = 5 to obtain

G =
⎡
⎣ 1 1.2 −0.6 13.2

9 −1 2 8
8 −7 4 −39

⎤
⎦�

�
�
�

(3)

Next, we multiply row 1 by G21 = 9 and subtract it from row 2; then multiply row 1
by G31 = 8 and subtract it from row 3. This yields

G =
⎡
⎣ 1 1.2 −0.6 13.2

0 −11.8 7.4 −110.8
0 −16.6 8.8 −144.6

⎤
⎦�

�
�
�

(4)

We now divide row 2 by G22 = −11.8 to obtain

G =
⎡
⎣ 1 1.2 −0.6 13.2

0 1 −0.6271 9.39
0 −16.6 8.8 −144.6

⎤
⎦�

�
�
�

(5)

Next, we multiply row 2 by G12 = 1.2 and subtract it from row 1, and then multiply
row 2 by G32 = −16.6 and subtract it from row 3. Thus,

G =
⎡
⎣ 1 0 0.1525 1.932

0 1 −0.6271 9.39
0 0 −1.61 11.27

⎤
⎦�

�
�
�

(6)

By dividing row 3 by G33 = −1.61, we obtain

G =
⎡
⎣ 1 0 0.1525 1.932

0 1 −0.6271 9.39
0 0 1 −7

⎤
⎦�

�
�
�

(7)

Finally, we multiply row 3 by G13 = 0.1525 and subtract it from row 1; then multiply
row 3 by G23 = −0.6271 and subtract it from row 2 to obtain

G =
⎡
⎣ 1 0 0 3

0 1 0 5
0 0 1 −7

⎤
⎦�

�
�
�

(8)

Thus, the solution of the given system of equations is

x =
⎡
⎣ 3

5
−7

⎤
⎦ Ans

To check our solution, we substitute the numerical value of x back into Eq. (1). This yields
⎡
⎣ 5 6 −3

9 −1 2
8 −7 4

⎤
⎦

⎡
⎣ 3

5
−7

⎤
⎦ =

⎡
⎣ 15 + 30 + 21 = 66

27 − 5 − 14 = 8
24 − 35 − 28 = −39

⎤
⎦ Checks
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Fig. 2.2 Flowchart for Solution of Simultaneous
Equations by Gauss–Jordan Method42
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The solution of large systems of simultaneous equations by the Gauss–
Jordan method is usually carried out by computer, and a flowchart for program-
ming this procedure is given in Fig. 2.2. The reader should write this program in a
general form (e.g., as a subroutine), so that it can be conveniently included in the
structural analysis computer programs to be developed in later chapters.

It should be noted that the Gauss–Jordan method as described in the pre-
ceding paragraphs breaks down if a diagonal element of the coefficient matrix
A becomes zero during the elimination process. This situation can be remedied
by interchanging the row of the augmented matrix containing the zero diago-
nal element with another row, to place a nonzero element on the diagonal; the
elimination process is then continued. However, when solving the systems of
equations encountered in structural analysis, the condition of a zero diagonal
element should not arise; the occurrence of such a condition would indicate
that the structure being analyzed is unstable [2]*.

Matrix Inversion
The procedure for determining inverses of matrices by the Gauss–Jordan
method is similar to that described previously for solving simultaneous equa-
tions. The procedure involves forming an augmented matrix G composed of
the matrix A that is to be inverted and a unit matrix I of the same order as A;
that is,

G
n × 2n

= [A
n × n

� I]

n × n
(2.24)

Elementary operations are then applied to the rows of the augmented matrix to
reduce A to a unit matrix. Matrix I, which was initially the unit matrix, now
represents the inverse matrix A−1; thus,

G =
⎧⎨
⎩

[A

[I

�

�

I]

A−1]

−−−−−−−−−[
elementary operations (2.25)

Section 2.4 Gauss–Jordan Elimination Method 43

*Numbers in brackets refer to items listed in the bibliography.

E X A M P L E 2.12 Determine the inverse of the matrix shown using the Gauss–Jordan method.

A =
⎡
⎣ 13 −6 6

−6 12 −1
6 −1 9

⎤
⎦

S O L U T I O N The augmented matrix is given by

G = [A�I] =
⎡
⎣ 13 −6 6 1 0 0

−6 12 −1 0 1 0
6 −1 9 0 0 1

⎤
⎦�

�
�
�

(1)
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44 Chapter 2 Matrix Algebra

We begin the Gauss–Jordan elimination process by dividing row 1 of the augmented
matrix by G11 = 13:

G =
⎡
⎣ 1 −0.4615 0.4615 0.07692 0 0

−6 12 −1 0 1 0
6 −1 9 0 0 1

⎤
⎦�

�
�
�

(2)

Next, we multiply row 1 by G21 = −6 and subtract it from row 2, and then multiply
row 1 by G31 = 6 and subtract it from row 3. This yields

G =
⎡
⎣ 1 −0.4615 0.4615 0.07692 0 0

0 9.231 1.769 0.4615 1 0
0 1.769 6.231 −0.4615 0 1

⎤
⎦�

�
�
�

(3)

Dividing row 2 by G22 = 9.231, we obtain

G =
⎡
⎣ 1 −0.4615 0.4615 0.07692 0 0

0 1 0.1916 0.04999 0.1083 0
0 1.769 6.231 −0.4615 0 1

⎤
⎦�

�
�
�

(4)

Next, we multiply row 2 by G12 = −0.4615 and subtract it from row 1; then multiply
row 2 by G32 = 1.769 and subtract it from row 3. This yields

G =
⎡
⎣ 1 0 0.5499 0.09999 0.04998 0

0 1 0.1916 0.04999 0.1083 0
0 0 5.892 −0.5499 −0.1916 1

⎤
⎦�

�
�
�

(5)

Divide row 3 by G33 = 5.892:

G =
⎡
⎣ 1 0 0.5499 0.09999 0.04998 0

0 1 0.1916 0.04999 0.1083 0
0 0 1 −0.09333 −0.03252 0.1697

⎤
⎦�

�
�
�

(6)

Multiply row 3 by G13 = 0.5499 and subtract it from row 1; then multiply row 3 by 
G23 = 0.1916 and subtract it from row 2 to obtain

G =
⎡
⎣ 1 0 0 0.1513 0.06787 −0.09333

0 1 0 0.06787 0.1145 −0.03252
0 0 1 −0.09333 −0.03252 0.1697

⎤
⎦�

�
�
�

(7)

Thus, the inverse of the given matrix A is

A−1 =
⎡
⎣ 0.1513 0.06787 −0.09333

0.06787 0.1145 −0.03252
−0.09333 −0.03252 0.1697

⎤
⎦ Ans

Finally, we check our computations by using the relationship AA−1 = I:

AA−1 =
⎡
⎣ 13 −6 6

−6 12 −1
6 −1 9

⎤
⎦

⎡
⎣ 0.1513 0.06787 −0.09333

0.06787 0.1145 −0.03252
−0.09333 −0.03252 0.1697

⎤
⎦

=
⎡
⎣ 0.9997 0.0002 0

0 0.9993 0
0 0 0.9998

⎤
⎦ ≈ I Checks
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SUMMARY

In this chapter, we discussed the basic concepts of matrix algebra that are nec-
essary for formulating the matrix methods of structural analysis:

1. A matrix is defined as a rectangular array of quantities (elements)
arranged in rows and columns. The size of a matrix is measured by its
number of rows and columns, and is referred to as its order.

2. Two matrices are considered to be equal if they are of the same order,
and if their corresponding elements are identical.

3. Two matrices of the same order can be added (or subtracted) by adding
(or subtracting) their corresponding elements.

4. The matrix multiplication AB = C is defined only if the number of
columns of the first matrix A equals the number of rows of the second
matrix B. Any element Cij of the product matrix C can be evaluated by
using the relationship

Ci j =
m∑

k=1
Aik Bkj (2.6)

where m is the number of columns of A, or the number of rows of B.
Matrix multiplication is generally not commutative; that is, AB �= BA.

5. The transpose of a matrix is obtained by interchanging its correspond-
ing rows and columns. If C is a symmetric matrix, then CT = C.
Another useful property of matrix transposition is that

(AB)T = BTAT (2.15)

6. A matrix can be differentiated (or integrated) by differentiating (or in-
tegrating) each of its elements.

7. The inverse of a square matrix A is defined as a matrix A−1 which
satisfies the relationship:

AA−1 = A−1A = I (2.17)

8. If the inverse of a matrix equals its transpose, the matrix is called an
orthogonal matrix.

9. The Gauss–Jordan method of solving simultaneous equations essen-
tially involves successively eliminating each unknown from all but one
of the equations of the system by performing the following operations:
dividing an equation by a scalar; and multiplying an equation by a
scalar and subtracting the resulting equation from another equation.
These elementary operations are applied repeatedly until a system with
each equation containing only one unknown is obtained.

Summary 45
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2.9 Show that (ABC)T = CTBTAT by using the following
matrices

A =

⎡
⎢⎢⎣

−9 0
13 20
8 −3

−11 −5

⎤
⎥⎥⎦ B =

[
15 −1 −4
6 16 9

]

C =
⎡
⎣ −7 10 6 0

−1 2 −8 −2
16 12 2 8

⎤
⎦

2.10 Determine the matrix triple product C = BTAB if

A =
⎡
⎣ 40 −10 −25

−10 15 12
−25 12 30

⎤
⎦ B =

⎡
⎣ 5 7 −3

−7 8 4
3 −4 9

⎤
⎦

2.11 Determine the matrix triple product C = BTAB if

A =
[

300 −100
−100 200

]

B =
[

0.6 0.8 −0.6 −0.8
−0.8 0.6 0.8 −0.6

]

2.12 Develop a computer program to determine the matrix
triple product C = BTAB, where A is a square matrix of
any order. Check the program by solving Problems 2.10
and 2.11 and comparing the results to those determined by
hand calculations.

2.13 Determine the derivative dA/dx if

A =
⎡
⎣ −2x2 3sin x −7x

3sin x cos2 x −3x3

−7x −3x3 3sin2 x

⎤
⎦

2.14 Determine the derivative d(A + B)/dx if

A =

⎡
⎢⎢⎣

−3x 5
4x2 −x3

−7 5x
2x3 −x2

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

2x2 −x
−12x 8

2x3 −3x2

−1 6x

⎤
⎥⎥⎦

2.15 Determine the derivative d(AB)/dx if

A =
⎡
⎣ 4x 2 −5x2

2 −3x3 −x
−5x2 −x 7

⎤
⎦ B =

⎡
⎣−5x3 −x

6 −3x2

2x2 4x

⎤
⎦

Section 2.3

2.1 Determine the matrices C = A + B and D = A − B if

A =
⎡
⎣ 3 8 −1

8 −7 −4
−1 −4 5

⎤
⎦ B =

⎡
⎣ 5 9 −2

−9 6 3
2 −3 −4

⎤
⎦

2.2 Determine the matrices C = 2A + B and D = A − 3B if

A =

⎡
⎢⎢⎣

8 −6 −3
1 −2 0

−6 5 −1
−2 8 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

3 2 −3
−4 3 0

2 −8 6
−1 4 −7

⎤
⎥⎥⎦

2.3 Determine the products C = AB and D = BA if

A = [ 4 −6 2 ] B =
⎡
⎣ 3

1
−5

⎤
⎦

2.4 Determine the products C = AB and D = BA if

A =

⎡
⎢⎢⎣

4 6
−7 −5

1 −9
−3 11

⎤
⎥⎥⎦ B =

[ −1 3 −5 2
−13 −4 7 6

]

2.5 Determine the products C = AB and D = BA if

A =
⎡
⎣ 4 −6 1

−6 5 7
1 7 8

⎤
⎦ B =

⎡
⎣ 3 5 0

5 7 −2
0 −2 9

⎤
⎦

2.6 Determine the products C = AB if

A =

⎡
⎢⎢⎣

12 −11 10
0 2 −4

−7 9 8
6 15 −5

⎤
⎥⎥⎦ B =

⎡
⎣ 13 −1 5

16 −9 0
−3 20 −7

⎤
⎦

2.7 Develop a computer program to determine the matrix
product C = AB of two conformable matrices A and B of
any order. Check the program by solving Problems 2.4–2.6
and comparing the computer-generated results to those
determined by hand calculations.

2.8 Show that (AB)T = BTAT by using the following matrices

A =

⎡
⎢⎢⎣

21 10 16
−15 11 0

13 20 −9
7 −17 14

⎤
⎥⎥⎦ B =

⎡
⎣ 7 −4

−1 9
3 −6

⎤
⎦

46 Chapter 2 Matrix Algebra
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2.16 Determine the partial derivatives ∂A/∂x, ∂A/∂y, and
∂A/∂z, if

A =
⎡
⎣ x2 −y2 2z2

−y2 3xy −yz
2z2 −yz 4xz

⎤
⎦

2.17 Calculate the integral 
∫ L

0 A dx if

A =

⎡
⎢⎢⎣

−5 −3x2

4x −x3

2x4 6
5x2 −x

⎤
⎥⎥⎦

2.18 Calculate the integral 
∫ L

0 A dx if

A =
⎡
⎣ 2x − sin x 2 cos2 x

− sin x 5 −4x3

2 cos2 x −4x3 (1 − x2)

⎤
⎦

2.19 Calculate the integral 
∫ L

0 AB dx if

A =
[−x3 2x2 3

2x −x2 2x3

]
B =

⎡
⎣−2x x2

5 −2x
3x3 −3

⎤
⎦

2.20 Determine whether the matrices A and B given below are
orthogonal matrices.

A =

⎡
⎢⎢⎣

−0.28 −0.96 0 0
0.96 −0.28 0 0
0 0 −0.28 −0.96
0 0 0.96 −0.28

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

−0.28 0.96 0 0
0.96 −0.28 0 0
0 0 −0.28 0.96
0 0 0.96 −0.28

⎤
⎥⎥⎦

Section 2.4

2.21 through 2.25 Solve the following systems of simultane-
ous equations by the Gauss–Jordan method.

2.21 2x1 − 3x2 + x3 = −18

−9x1 + 5x2 + 3x3 = 18

4x1 + 7x2 − 8x3 = 53

2.22 20x1 − 9x2 + 15x3 = 354

− 9x1 + 16x2 − 5x3 = −275

15x1 − 5x2 + 18x3 = 307

2.23 4x1 − 2x2 + 3x3 = 37.2

3x1 + 5x2 − x3 = −7.2

x1 − 4x2 + 2x3 = 30.3

2.24 6x1 + 15x2 − 24x3 + 40x4 = 190.9

15x1 + 9x2 − 13x3 = 69.8

−24x1 − 13x2 + 8x3 − 11x4 = −96.3

40x1 − 11x3 + 5x4 = 119.35

2.25 2x1 − 5x2 + 8x3 + 11x4 = 39

10x1 + 7x2 + 4x3 − x4 = 127

−3x1 + 9x2 + 5x3 − 6x4 = 58

x1 − 4x2 − 2x3 + 9x4 = −14

2.26 Develop a computer program to solve a system of simulta-
neous equations of any size by the Gauss–Jordan method.
Check the program by solving Problems 2.21 through
2.25 and comparing the computer-generated results to
those determined by hand calculations.

2.27 through 2.30 Determine the inverse of the matrices shown
by the Gauss–Jordan method.

2.27 A =
⎡
⎣ 5 3 −4

3 8 −2
−4 −2 7

⎤
⎦

2.28 A =
⎡
⎣ 6 −4 1

−1 9 3
4 2 5

⎤
⎦

2.29 A =

⎡
⎢⎢⎣

7 −6 3 −2
−6 4 −1 5

3 −1 8 9
−2 5 9 2

⎤
⎥⎥⎦

2.30 A =

⎡
⎢⎢⎣

5 −7 −3 11
10 −6 −13 2
−1 12 8 −4
−9 7 −5 6

⎤
⎥⎥⎦

Problems 47
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PLANE TRUSSES

Goethals Bridge, a Cantilever Truss Bridge between Staten Island, NY, 
and Elizabeth, NJ.
(Photo courtesy of Port Authority of New York and New Jersey)

48

26201_03_ch03_p048-127.qxd  12/1/10  5:00 PM  Page 48

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.1 Global and Local Coordinate Systems 49

A plane truss is defined as a two-dimensional framework of straight prismatic
members connected at their ends by frictionless hinged joints, and subjected to
loads and reactions that act only at the joints and lie in the plane of the struc-
ture. The members of a plane truss are subjected to axial compressive or tensile
forces only.

The objective of this chapter is to develop the analysis of plane trusses
based on the matrix stiffness method. This method of analysis is general, in
the sense that it can be applied to statically determinate, as well as indetermi-
nate, plane trusses of any size and shape. We begin the chapter with the defini-
tions of the global and local coordinate systems to be used in the analysis. The
concept of “degrees of freedom” is introduced in Section 3.2; and the member
force–displacement relations are established in the local coordinate system,
using the equilibrium equations and the principles of mechanics of materials,
in Section 3.3. The finite-element formulation of member stiffness relations
using the principle of virtual work is presented in Section 3.4; and transfor-
mation of member forces and displacements from a local to a global coor-
dinate system, and vice versa, is considered in Section 3.5. Member stiffness
relations in the global coordinate system are derived in Section 3.6; the for-
mulation of the stiffness relations for the entire truss, by combining the member
stiffness relations, is discussed in Section 3.7; and a step-by-step procedure
for the analysis of plane trusses subjected to joint loads is developed in
Section 3.8.

3.1 GLOBAL AND LOCAL COORDINATE SYSTEMS
In the matrix stiffness method, two types of coordinate systems are employed
to specify the structural and loading data and to establish the necessary
force–displacement relations. These are referred to as the global (or structural)
and the local (or member) coordinate systems.

Global Coordinate System
The overall geometry and the load–deformation relationships for an entire
structure are described with reference to a Cartesian or rectangular global co-
ordinate system.

When analyzing a plane (two-dimensional) structure, the origin of the
global XY coordinate system can be located at any point in the plane of the struc-
ture, with the X and Y axes oriented in any mutually perpendicular directions in
the structure’s plane. However, it is usually convenient to locate the origin at a

The global coordinate system used in this text is a right-handed XYZ
coordinate system with the plane structure lying in the XY plane.
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50 Chapter 3 Plane Trusses

lower left joint of the structure, with the X and Y axes oriented in the horizontal
(positive to the right) and vertical (positive upward) directions, respectively, so
that the X and Y coordinates of most of the joints are positive.

Consider, for example, the truss shown in Fig. 3.1(a), which is composed
of six members and four joints. Figure 3.1(b) shows the analytical model of the
truss as represented by a line diagram, on which all the joints and members are
identified by numbers that have been assigned arbitrarily. The global coordi-
nate system chosen for analysis is usually drawn on the line diagram of the
structure as shown in Fig. 3.1(b). Note that the origin of the global XY coordi-
nate system is located at joint 1.

Local Coordinate System
Since it is convenient to derive the basic member force–displacement relation-
ships in terms of the forces and displacements in the directions along and per-
pendicular to members, a local coordinate system is defined for each member
of the structure.

(a) Actual Truss
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(b) Analytical Model Showing Global and Local
Coordinate Systems
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Fig. 3.1
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Section 3.1 Global and Local Coordinate Systems 51

Undeformed
configuration

Deformed
configuration
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Fig. 3.1 (continued)
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52 Chapter 3 Plane Trusses

On the line diagram of the structure, the positive direction of the x axis for
each member is indicated by drawing an arrow along each member, as shown
in Fig. 3.1(b). For example, this figure shows the origin of the local coordinate
system for member 1 located at its end connected to joint 1, with the x1 axis di-
rected from joint 1 to joint 2; the origin of the local coordinate system for
member 4 located at its end connected to joint 2, with the x4 axis directed from
joint 2 to joint 4, etcetera. The joint to which the member end with the origin
of the local coordinate system is connected is termed the beginning joint for the
member, and the joint adjacent to the opposite end of the member is referred to
as the end joint. For example, in Fig. 3.1(b), member 1 begins at joint 1 and
ends at joint 2, member 4 begins at joint 2 and ends at joint 4, and so on. Once
the local x axis is specified for a member, its y axis can be established by ap-
plying the right-hand rule. The local y axes thus obtained for all six members
of the truss are depicted in Fig. 3.1(b). It can be seen that, for each member, if
we curl the fingers of our right hand from the direction of the x axis toward the
direction of the corresponding y axis, then the extended thumb points out of the
plane of the page, which is the positive direction of the global Z axis.

3.2 DEGREES OF FREEDOM
The degrees of freedom of a structure, in general, are defined as the indepen-
dent joint displacements (translations and rotations) that are necessary to
specify the deformed shape of the structure when subjected to an arbitrary
loading. Since the joints of trusses are assumed to be frictionless hinges, they
are not subjected to moments and, therefore, their rotations are zero. Thus,
only joint translations must be considered in establishing the degrees of free-
dom of trusses.

Consider again the plane truss of Fig. 3.1(a). The deformed shape of the
truss, for an arbitrary loading, is depicted in Fig. 3.1(c) using an exaggerated
scale. From this figure, we can see that joint 1, which is attached to the hinged
support, cannot translate in any direction; therefore, it has no degrees of free-
dom. Because joint 2 is attached to the roller support, it can translate in the
X direction, but not in the Y direction. Thus, joint 2 has only one degree of free-
dom, which is designated d1 in the figure. As joint 3 is not attached to a
support, two displacements (namely, the translations d2 and d3 in the X and
Y directions, respectively) are needed to completely specify its deformed posi-
tion 3′. Thus, joint 3 has two degrees of freedom. Similarly, joint 4, which is
also a free joint, has two degrees of freedom, designated d4 and d5. Thus, the

The origin of the local xyz coordinate system for a member may be
arbitrarily located at one of the ends of the member in its unde-
formed state, with the x axis directed along the member’s centroidal
axis in the undeformed state. The positive direction of the y axis is
defined so that the coordinate system is right-handed, with the local
z axis pointing in the positive direction of the global Z axis.
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Section 3.2 Degrees of Freedom 53

entire truss has a total of five degrees of freedom. As shown in Fig. 3.1(c), the
joint displacements are defined relative to the global coordinate system, and
are considered to be positive when in the positive directions of the X and
Y axes. Note that all the joint displacements are shown in the positive sense in
Fig. 3.1(c). The five joint displacement of the truss can be collectively written
in matrix form as

d =

⎡
⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

⎤
⎥⎥⎥⎥⎦

in which d is called the joint displacement vector, with the number of rows
equal to the number of degrees of freedom of the structure.

It is important to note that the five joint displacements d1 through d5 are
necessary and sufficient to uniquely define the deformed shape of the truss
under any arbitrary loading condition. Furthermore, the five joint displace-
ments are independent, in the sense that each displacement can be varied arbi-
trarily and independently of the others.

As the foregoing example illustrates, the degrees of freedom of all types of
framed structures, in general, are the same as the actual joint displacements.
Thus, the number of degrees of freedom of a framed structure can be determined
by subtracting the number of joint displacements restrained by supports from
the total number of joint displacements of the unsupported structure; that is,

⎛
⎝ number of

degrees of
freedom

⎞
⎠ =

⎛
⎜⎜⎝

number of joint
displacements of
the unsupported
structure

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

number of joint
displacements
restrained by
supports

⎞
⎟⎟⎠ (3.1)

As the number of displacements of an unsupported structure equals the prod-
uct of the number of degrees of freedom of a free joint of the structure and the
total number of joints of the structure, we can express Eq. (3.1) as

NDOF = NCJT (NJ) − NR (3.2)

in which NDOF represents the number of degrees of freedom of the structure
(sometimes referred to as the degree of kinematic indeterminacy of the struc-
ture); NCJT represents the number of degrees of freedom of a free joint (also
called the number of structure coordinates per joint); NJ is the number of joints;
and NR denotes the number of joint displacements restrained by supports.

Since a free joint of a plane truss has two degrees of freedom, which are
translations in the X and Y directions, we can specialize Eq. (3.2) for the case
of plane trusses:

NCJT = 2
NDOF = 2(NJ) − NR

}
for plane trusses (3.3)

Let us apply Eq. (3.3) to the truss of Fig. 3.1(a). The truss has four joints (i.e.,
NJ = 4), and the hinged support at joint 1 restrains two joint displacements,
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namely, the translations of joint 1 in the X and Y directions; whereas the roller
support at joint 2 restrains one joint displacement, which is the translation of
joint 2 in the Y direction. Thus, the total number of joint displacements that are
restrained by all supports of the truss is 3 (i.e., NR = 3). Substituting the
numerical values of NJ and NR into Eq. (3.3), we obtain

NDOF = 2(4) − 3 = 5
which is the same as the number of degrees of freedom of the truss obtained
previously.

The degrees of freedom (or joint displacements) of a structure are also
termed the structure’s free coordinates; the joint displacements restrained by
supports are commonly called the restrained coordinates of the structure. The
free and restrained coordinates are referred to collectively as simply the struc-
ture coordinates. It should be noted that each structure coordinate represents an
unknown quantity to be determined by the analysis, with a free coordinate rep-
resenting an unknown joint displacement, and a restrained coordinate repre-
senting an unknown support reaction. Realizing that NCJT (i.e., the number of
structure coordinates per joint) equals the number of unknown joint displace-
ments and/or support reactions per joint of the structure, the total number of
unknown joint displacements and reactions for a structure can be expressed as⎛

⎝ number of unknown
joint displacements
and support reactions

⎞
⎠ = NDOF + NR = NCJT(NJ )

Numbering of Degrees of Freedom and
Restrained Coordinates
When analyzing a structure, it is not necessary to draw the structure’s
deformed shape, as shown in Fig. 3.1(c), to identify its degrees of freedom.
Instead, the degrees of freedom can be directly specified on the line diagram of
the structure by assigning numbers to the arrows drawn at the joints in the
directions of the joint displacements, as shown in Fig. 3.1(d). The restrained
coordinates are identified in a similar manner. However, the arrows represent-
ing  the restrained coordinates are usually drawn with a slash (−→/ ) to distin-
guish them from the arrows identifying the degrees of freedom.

The degrees of freedom of a plane truss are numbered starting at the lowest-
numbered joint that has a degree of freedom, and proceeding sequentially to
the highest-numbered joint. In the case of more than one degree of freedom at
a joint, the translation in the X direction is numbered first, followed by the
translation in the Y direction. The first degree of freedom is assigned the num-
ber one, and the last degree of freedom is assigned a number equal to NDOF.

Once all the degrees of freedom of the structure have been numbered, we
number the restrained coordinates in a similar manner, but begin with a num-
ber equal to NDOF + 1. We start at the lowest-numbered joint that is attached
to a support, and proceed sequentially to the highest-numbered joint. In the
case of more than one restrained coordinate at a joint, the coordinate in the
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X direction is numbered first, followed by the coordinate in the Y direction.
Note that this procedure will always result in the last restrained coordinate of
the structure being assigned a number equal to 2(NJ ).

The degrees of freedom and the restrained coordinates of the truss in
Fig. 3.1(d) have been numbered using the foregoing procedure. We start num-
bering the degrees of freedom by examining joint 1. Since the displacements of
joint 1 in both the X and Y directions are restrained, this joint does not have any
degrees of freedom; therefore, at this point, we do not assign any numbers to
the two arrows representing its restrained coordinates, and move on to the next
joint. Focusing our attention on joint 2, we realize that this joint is free to dis-
place in the X direction, but not in the Y direction. Therefore, we assign the
number 1 to the horizontal arrow indicating that the X displacement of joint 2
will be denoted by d1. Note that, at this point, we do not assign any number to
the vertical arrow at joint 2, and change our focus to the next joint. Joint 3 is
free to displace in both the X and Y directions; we number the X displacement
first by assigning the number 2 to the horizontal arrow, and then number the Y
displacement by assigning the number 3 to the vertical arrow. This indicates
that the X and Y displacements of joint 3 will be denoted by d2 and d3, respec-
tively. Next, we focus our attention on joint 4, which is also free to displace in
both the X and Y directions; we assign numbers 4 and 5, respectively, to its dis-
placements in the X and Y directions, as shown in Fig. 3.1(d). Again, the arrow
that is numbered 4 indicates the location and direction of the joint displace-
ment d4; the arrow numbered 5 shows the location and direction of d5.

Having numbered all the degrees of freedom of the truss, we now return to
joint 1, and start numbering the restrained coordinates of the structure. As pre-
viously discussed, joint 1 has two restrained coordinates; we first assign the
number 6 (i.e., NDOF + 1 = 5 + 1 = 6) to the X coordinate (horizontal
arrow), and then assign the number 7 to the Y coordinate (vertical arrow).
Finally, we consider joint 2, and assign the number 8 to the vertical arrow rep-
resenting the restrained coordinate in the Y direction at that joint. We realize
that the displacements corresponding to the restrained coordinates 6 through 8
are zero (i.e., d6 = d7 = d8 = 0). However, we use these restrained coordinate
numbers to specify the reactions at supports of the structure, as discussed sub-
sequently in this section.

Joint Load Vector
External loads applied to the joints of trusses are specified as force components
in the global X and Y directions. These load components are considered posi-
tive when acting in the positive directions of the X and Y axes, and vice versa.
Any loads initially given in inclined directions are resolved into their X and
Y components, before proceeding with an analysis. For example, the 150 k
inclined load acting on a joint of the truss in Fig. 3.1(a) is resolved into its
rectangular components as

load component in X direction = 150 cos 30� = 129.9 k→
load component in Y direction = 150 sin 30� = 75 k↓
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These components are applied at joint 3 of the line diagram of the truss shown
in Fig. 3.1(b).

In general, a load can be applied to a structure at the location and in the
direction of each of its degrees of freedom. For example, a five-degree-of-
freedom truss can be subjected to a maximum of five loads, P1 through P5, as
shown in Fig. 3.1(e). As indicated there, the numbers assigned to the degrees
of freedom are also used to identify the joint loads. In other words, a load cor-
responding to a degree of freedom di is denoted by the symbol Pi. The five joint
loads of the truss can be collectively written in matrix form as

P =

⎡
⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
129.9
−75

0
−75

⎤
⎥⎥⎥⎥⎦ k

in which P is called the joint load vector of the truss. The numerical form of P
is obtained by comparing Figs. 3.1(b) and 3.1(e). This comparison shows that:
P1 = 0; P2 = 129.9 k; P3 = −75 k; P4 = 0; and P5 = −75 k. The negative
signs assigned to the magnitudes of P3 and P5 indicate that these loads act in
the negative Y (i.e., downward) direction. The numerical values of P1 through
P5 are then stored in the appropriate rows of the joint load vector P, as shown
in the foregoing equation. It should be noted that the number of rows of P
equals the number of degrees of freedom (NDOF ) of the structure.

Reaction Vector
A support that prevents the translation of a joint of a structure in a particular di-
rection exerts a reaction force on the joint in that direction. Thus, when a truss
is subjected to external loads, a reaction force component can develop at the
location and in the direction of each of its restrained coordinates. For example,
a truss with three restrained coordinates can develop up to three reactions, as
shown in Fig. 3.1(e). As indicated there, the numbers assigned to the restrained
coordinates are used to identify the support reactions. In other words, a reac-
tion corresponding to an ith restrained coordinate is denoted by the symbol Ri.
The three support reactions of the truss can be collectively expressed in matrix
form as

R =
⎡
⎣ R6

R7

R8

⎤
⎦

in which R is referred to as the reaction vector of the structure. Note that the
number of rows of R equals the number of restrained coordinates (NR) of the
structure.

The procedure presented in this section for numerically identifying the
degrees of freedom, joint loads, and reactions of a structure considerably sim-
plifies the task of programming an analysis on a computer, as will become
apparent in Chapter 4.
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E X A M P L E 3.1 Identify numerically the degrees of freedom and restrained coordinates of the tower
truss shown in Fig. 3.2(a). Also, form the joint load vector P for the truss.

S O L U T I O N The truss has nine degrees of freedom, which are identified by the numbers 1 through
9 in Fig. 3.2(c). The five restrained coordinates of the truss are identified by the
numbers 10 through 14 in the same figure. Ans

By comparing Figs. 3.2(b) and (c), we express the joint load vector as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20
0
0

20
0
0

−35
10

−20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k Ans
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3.3 MEMBER STIFFNESS RELATIONS IN THE
LOCAL COORDINATE SYSTEM
In the stiffness method of analysis, the joint displacements, d, of a structure
due to an external loading, P, are determined by solving a system of simulta-
neous equations, expressed in the form

P = Sd (3.4)

in which S is called the structure stiffness matrix. It will be shown subse-
quently that the stiffness matrix for the entire structure, S, is formed by assem-
bling the stiffness matrices for its individual members. The stiffness matrix for
a member expresses the forces at the ends of the member as functions of the
displacements of those ends. In this section, we derive the stiffness matrix for
the members of plane trusses in the local coordinate system.

To establish the member stiffness relations, let us focus our attention on an
arbitrary member m of the plane truss shown in Fig. 3.3(a). When the truss is
subjected to external loads, m deforms and internal forces are induced at its
ends. The initial and displaced positions of m are shown in Fig. 3.3(b), where
L, E, and A denote, respectively, the length, Young’s modulus of elasticity,
and the cross-sectional area of m. The member is prismatic in the sense that its
axial rigidity, EA, is constant. As Fig. 3.3(b) indicates, two displacements—
translations in the x and y directions—are needed to completely specify the dis-
placed position of each end of m. Thus, m has a total of four end displacements
or degrees of freedom. As shown in Fig. 3.3(b), the member end displacements
are denoted by u1 through u4, and the corresponding member end forces are
denoted by Q1 through Q4. Note that these end displacements and forces are de-
fined relative to the local coordinate system of the member, and are considered
positive when in the positive directions of the local x and y axes. As indicated in
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Fig. 3.3(b), the numbering scheme used to identify the member end displace-
ments and forces is as follows:

It should be remembered that our objective here is to determine the rela-
tionships between member end forces and end displacements. Such relation-
ships can be conveniently established by subjecting the member, separately, to
each of the four end displacements as shown in Figs. 3.3(c) through (f); and by
expressing the total member end forces as the algebraic sums of the end forces
required to cause the individual end displacements. Thus, from Figs. 3.3(b)
through (f), we can see that

Q1 = k11u1 + k12u2 + k13u3 + k14u4 (3.5a)

Q2 = k21u1 + k22u2 + k23u3 + k24u4 (3.5b)

Q3 = k31u1 + k32u2 + k33u3 + k34u4 (3.5c)

Q4 = k41u1 + k42u2 + k43u3 + k44u4 (3.5d)

in which kij represents the force at the location and in the direction of Qi re-
quired, along with other end forces, to cause a unit value of displacement uj,
while all other end displacements are zero. These forces per unit displacement
are called stiffness coefficients. It should be noted that a double-subscript nota-
tion is used for stiffness coefficients, with the first subscript identifying the
force and the second subscript identifying the displacement.

By using the definition of matrix multiplication, Eqs. (3.5) can be ex-
pressed in matrix form as⎡

⎢⎢⎣
Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ (3.6)

or, symbolically, as

(3.7)

in which Q and u are the member end force and member end displacement vec-
tors, respectively, in the local coordinate system; and k is called the member
stiffness matrix in the local coordinate system.

Q = ku

Member end displacements and forces are numbered by beginning
at the end of the member designated “b”, where the origin of the
local coordinate system is located, with the translation and force in
the x direction numbered first, followed by the translation and force
in the y direction. The displacements and forces at the opposite end
of the member, designated “e,” are then numbered in the same
sequential order.
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The stiffness coefficients kij can be evaluated by subjecting the member,
separately, to unit values of each of the four end displacements. The member
end forces required to cause the individual unit displacements are then deter-
mined by applying the equations of equilibrium, and by using the principles of
mechanics of materials. The member end forces thus obtained represent the
stiffness coefficients for the member.

Let us determine the stiffness coefficients corresponding to a unit value of
the displacement u1 at end b of m, as shown in Fig. 3.3(c). Note that all other dis-
placements of m are zero (i.e., u2 = u3 = u4 = 0). Since m is in equilibrium, the
end forces k11, k21, k31, and k41 acting on it must satisfy the three equilibrium
equations:

∑
Fx = 0,

∑
Fy = 0, and

∑
M = 0.Applying the equations of

equilibrium, we write

+ → ∑
Fx = 0 k11 + k31 = 0

k31 = −k11 (3.8)

+ ↑ ∑
Fy = 0 k21 + k41 = 0 (3.9)

+ ∑
Me = 0 −k21(L) = 0

Since L is not zero, k21 must be zero; that is

k21 = 0 (3.10)

By substituting Eq. (3.10) into Eq. (3.9), we obtain

k41 = 0 (3.11)

Equations (3.8), (3.10), and (3.11) indicate that m is in equilibrium under the
action of two axial forces, of equal magnitude but with opposite senses, applied
at its ends. Furthermore, since the displacement u1 = 1 results in the shorten-
ing of the member’s length, the two axial forces causing this displacement
must be compressive; that is, k11 must act in the positive direction of the local
x axis, and k31 (with a magnitude equal to k11) must act in the negative direc-
tion of the x axis.

To relate the axial force k11 to the unit axial deformation (u1 = 1) of m, we
use the principles of the mechanics of materials. Recall that in a prismatic
member subjected to axial tension or compression, the normal stress σ is
given by

σ = axial force

cross-sectional area
= k11

A
(3.12)

and the normal strain, ε, is expressed as

ε = change in length

original length
= 1

L
(3.13)

For linearly elastic materials, the stress–strain relationship is given by Hooke’s
law as

σ = Eε (3.14)

Substitution of Eqs. (3.12) and (3.13) into Eq. (3.14) yields

k11

A
= E

(
1

L

)

a
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from which we obtain the expression for the stiffness coefficient k11,

k11 = E A

L
(3.15)

The expression for k31 can now be obtained from Eq. (3.8) as

k31 = −k11 = − E A

L
(3.16)

in which the negative sign indicates that this force acts in the negative x direc-
tion. Figure 3.3(c) shows the expressions for the four stiffness coefficients
required to cause the end displacement u1 = 1 of m.

By using a similar approach, it can be shown that the stiffness coefficients
required to cause the axial displacement u3 = 1 at end e of m are as follows
(Fig. 3.3e).

k13 = − E A

L
k23 = 0 k33 = E A

L
k43 = 0 (3.17)

The deformed shape of m due to a unit value of displacement u2, while all
other displacements are zero, is shown in Fig. 3.3(d). Applying the equilibrium
equations, we write

+ → ∑
Fx = 0 k12 + k32 = 0

k32 = −k12 (3.18)

+ ↑ ∑
Fy = 0 k22 + k42 = 0 (3.19)

+ ∑
Me = 0 −k22(L) = 0

from which we obtain

k22 = 0 (3.20)

Substitution of Eq. (3.20) into Eq. (3.19) yields

k42 = 0 (3.21)

Thus, the forces k22 and k42, which act perpendicular to the longitudinal axis of
m, are both zero.

As for the axial forces k12 and k32, Eq. (3.18) indicates that they must be of
equal magnitude but with opposite senses. From Fig. 3.3(d), we can see that the
deformed length of the member, L′, can be expressed in terms of its unde-
formed length L as

L ′ = L

cos ρ
(3.22)

in which the angle ρ denotes the rotation of the member due to the end dis-
placement u2 = 1. Since the displacements are assumed to be small, cos ρ ≈ 1
and Eq. (3.22) reduces to

L ′ ≈ L (3.23)

a
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which can be rewritten as

L ′ − L ≈ 0 (3.24)

As Eq. (3.24) indicates, the change in the length of m (or its axial deforma-
tion) is negligibly small and, therefore, no axial forces develop at the ends of
m; that is,

k12 = k32 = 0 (3.25)

Thus, as shown in Fig. 3.3(d), no end forces are required to produce the dis-
placement u2 = 1 of m.

Similarly, the stiffness coefficients required to cause the small end dis-
placement u4 = 1, in the direction perpendicular to the longitudinal axis of m,
are also all zero, as shown in Fig. 3.3(f). Thus,

k14 = k24 = k34 = k44 = 0 (3.26)

By substituting the foregoing values of the stiffness coefficients into
Eq. (3.6), we obtain the following stiffness matrix for the members of plane
trusses in their local coordinate systems.

k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E A

L
0 − E A

L
0

0 0 0 0

− E A

L
0

E A

L
0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= E A

L

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.27)

Note that the ith column of the member stiffness matrix k consists of the end
forces required to cause a unit value of the end displacement ui, while all other
displacements are zero. For example, the third column of k consists of the four
end forces required to cause the displacement u3 = 1, as shown in Fig. 3.3(e),
and so on. The units of the stiffness coefficients are expressed in terms of force
divided by length (e.g., k/in or kN/m). When evaluating a stiffness matrix for
analysis, it is important to use a consistent set of units. For example, if we
wish to use the units of kips and feet, then the modulus of elasticity (E) must
be expressed in k/ft2, area of cross-section (A) in ft2, and the member length
(L) in ft.

From Eq. (3.27), we can see that the stiffness matrix k is symmetric; that
is, kij = kji. As shown in Section 3.4, the stiffness matrices for linear elastic
structures are always symmetric.
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E X A M P L E 3.2 Determine the local stiffness matrices for the members of the truss shown in Fig. 3.4.

S O L U T I O N Members 1 and 2 E = 29,000 ksi, A = 8 in.2, L = 18 ft = 216 in.

E A

L
= 29,000(8)

216
= 1,074.1 k/in.
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Substitution into Eq. (3.27) yields

k1 = k2 =

⎡
⎢⎢⎣

1,074.1 0 −1,074.1 0
0 0 0 0

−1,074.1 0 1,074.1 0
0 0 0 0

⎤
⎥⎥⎦ k/in. Ans

Members 3 and 4 E = 29,000 ksi, A = 12 in.2, L = 24 ft = 288 in.

E A

L
= 29,000(12)

288
= 1,208.3 k/in.

Thus, from Eq. (3.27),

k3 = k4 =

⎡
⎢⎢⎣

1,208.3 0 −1,208.3 0
0 0 0 0

−1,208.3 0 1,208.3 0
0 0 0 0

⎤
⎥⎥⎦ k/in. Ans

Members 5 and 6 E = 29,000 ksi, A = 12 in.2,

L =
√

(18)2 + (24)2 = 30 ft = 360 in.

E A

L
= 29,000(12)

360
= 966.67 k/in.
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Thus,

k5 = k6 =

⎡
⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎦ k/in. Ans

E X A M P L E 3.3 The displaced position of member 8 of the truss in Fig. 3.5(a) is given in Fig. 3.5(b).
Calculate the axial force in this member.
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S O L U T I O N Member Stiffness Matrix in the Local Coordinate System: From Fig. 3.5(a), we can
see that E = 200 GPa = 200(106) kN/m2; A = 1,200 mm2 = 0.0012 m2; and
L =

√
(4)2 + (3)2 = 5 m. Thus,

E A

L
= 200(106)(0.0012)

5
= 48,000 kN/m

From Eq. (3.27), we obtain

k8 = 48,000

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ kN/m

Member End Displacements in the Local Coordinate System: From Fig. 3.5(b), we
can see that the beginning end, 2, of the member displaces 9 mm in the negative x di-
rection and 12 mm in the negative y direction. Thus, u1 = −9 mm = −0.009 m and
u2 = −12 mm = −0.012 m. Similarly, the opposite end, 6, of the member displaces
12 mm and 16 mm, respectively, in the x and y directions; that is, u3 = 12 mm = 0.012 m
and u4 = 16 mm = 0.016 m. Thus, the member end displacement vector in the local
coordinate system is given by

u8 =

⎡
⎢⎢⎣

−0.009
−0.012

0.012
0.016

⎤
⎥⎥⎦ m
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3.4 FINITE-ELEMENT FORMULATION 
USING VIRTUAL WORK*
In this section, we present an alternate formulation of the member stiffness ma-
trix k in the local coordinate system. This approach, which is commonly used
in the finite-element method, essentially involves expressing the strains and
stresses at points within the member in terms of its end displacements u, and
applying the principle of virtual work for deformable bodies as delineated by
Eq. (1.16) in Section 1.6. Before proceeding with the derivation of k, let us
rewrite Eq. (1.16) in a more convenient matrix form as

δWe =
∫

V
δεT σ dV (3.28)

in which δWe denotes virtual external work; V represents member volume; and
δε and σ denote, respectively, the virtual strain and real stress vectors, which
for a general three-dimensional stress condition can be expressed as follows
(see Fig. 1.16).

δε =

⎡
⎢⎢⎢⎢⎢⎢⎣

δεx

δεy

δεz

δγxy

δγyz

δγzx

⎤
⎥⎥⎥⎥⎥⎥⎦

σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σx

σy

σz

τxy

τyz

τzx

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.29)

Displacement Functions
In the finite-element method, member stiffness relations are based on assumed
variations of displacements within members. Such displacement variations are
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*This section can be omitted without loss of continuity.

Member End Forces in the Local Coordinate System: We calculate the member end
forces by applying Eq. (3.7). Thus,

Q = ku

Q8 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ = 48,000

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−0.009
−0.012

0.012
0.016

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1,008
0

1,008
0

⎤
⎥⎥⎦ kN

The member end forces, Q, are depicted on the free-body diagram of the member in
Fig. 3.5(c), from which we can see that, since the end force Q1 is negative, but Q3 is
positive, member 8 is subjected to a tensile axial force, Qa, of magnitude 1,008 kN;
that is,

Qa8 = 1,008 kN (T) Ans
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referred to as the displacement or interpolation functions. A displacement
function describes the variation of a displacement component along the
centroidal axis of a member in terms of its end displacements.

Consider a prismatic member of a plane truss, subjected to end displace-
ments u1 through u4, as shown in Fig. 3.6(a). Since the member displaces in
both the x and y directions, we need to define two displacement functions,

68 Chapter 3 Plane Trusses
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ūx and ū y, for the displacements in the x and y directions, respectively. In
Fig. 3.6(a), the displacement functions ūx and ū y are depicted as the displace-
ments of an arbitrary point G located on the member’s centroidal axis at a dis-
tance x from end b (left end).

The total displacement of the member (due to u1 through u4) can be de-
composed into the displacements in the x and y directions, as shown in
Figs. 3.6(b) and (c), respectively. Note that Fig. 3.6(b) shows the member sub-
jected to the two end displacements, u1 and u3, in the x direction (with u2 =
u4 = 0); Fig. 3.6(c) depicts the displacement of the member due to the two end
displacements, u2 and u4, in the y direction (with u1 = u3 = 0).

The displacement functions assumed in the finite-element method are
usually in the form of complete polynomials,

ū(x) =
n∑

i=0
ai xi with ai 	= 0 (3.30)

in which n is the degree of the polynomial. The polynomial used for a particular
displacement function should be of such a degree that all of its coefficients can
be evaluated by applying the available boundary conditions; that is,

n = nbc − 1 (3.31)

with nbc = number of boundary conditions.
Thus, the displacement function ūx for the truss member (Fig. 3.6b) is as-

sumed in the form of a linear polynomial as

ūx = a0 + a1x (3.32)

in which a0 and a1 are the constants that can be determined by applying the fol-
lowing two boundary conditions:

at x = 0 ūx = u1

at x = L ūx = u3

By applying the first boundary condition—that is, by setting x = 0 and ūx = u1

in Eq. (3.32)—we obtain

a0 = u1 (3.33)

Next, by using the second boundary condition—that is, by setting x = L and
ūx = u3—we obtain

u3 = u1 + a1L

from which follows

a1 = u3 − u1

L
(3.34)

By substituting Eqs. (3.33) and (3.34) into Eq. (3.32), we obtain the expression
for ūx ,

ūx = u1 +
(

u3 − u1

L

)
x
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or

(3.35)

The displacement function ū y, for the member displacement in the y dire-
ction (Fig. 3.6(c)), can be determined in a similar manner; that is, using a linear
polynomial and evaluating its coefficients by applying the boundary conditions.
The result is

(3.36)

The plots of the displacement functions ūx and ū y are shown in Figs. 3.6(b)
and (c), respectively.

It is important to realize that the displacement functions as given by
Eqs. (3.35) and (3.36) have been assumed, as is usually done in the finite-
element method. There is no guarantee that an assumed displacement function
defines the actual displacements of the member, except at its ends. In general,
the displacement functions used in the finite-element method only approximate
the actual displacements within members (or elements), because they represent
approximate solutions of the underlying differential equations. For this reason,
the finite-element method is generally considered to be an approximate method
of analysis. However, for the prismatic members of framed structures, the dis-
placement functions in the form of complete polynomials do happen to de-
scribe exactly the actual member displacements and, therefore, such functions
yield exact member stiffness matrices for prismatic members.

From Fig. 3.6(c), we observe that the graph of the displacement function
ū y exactly matches the displaced shape of the member’s centroidal axis due to
the end displacements u2 and u4. As this displaced shape defines the actual dis-
placements in the y direction of all points along the member’s length, we can
conclude that the function ū y, as given by Eq. (3.36), is exact.

To demonstrate that Eq. (3.35) describes the actual displacements in the 
x direction of all points along the truss member’s centroidal axis, consider again
the member subjected to end displacements, u1 and u3, in the x direction as
shown in Fig. 3.7(a). Since the member is subjected to forces only at its ends,
the axial force, Qa, is constant throughout the member’s length. Thus, the axial
stress, σ, at point G of the member is

σ = Qa

A
(3.37)

in which A represents the cross-sectional area of the member at point G. Note
that the axial stress is distributed uniformly over the cross-sectional area A. By
substituting the linear stress–strain relationship ε = σ/E into Eq. (3.37), we

ū y =
(

1 − x

L

)
u2 +

(
x

L

)
u4

ūx =
(

1 − x

L

)
u1 +

(
x

L

)
u3
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obtain the strain at point G as

ε = Qa

EA
= constant = a1 (3.38)

in which a1 is a constant. As this equation indicates, since the member is pris-
matic (i.e., EA = constant), the axial strain is constant throughout the member
length.

To relate the strain ε to the displacement ūx , we focus our attention on
the differential element GH of length dx (Fig. 3.7(a)). The undeformed and
deformed positions of the element are shown in Fig. 3.7(b), in which ūx and
ūx + dūx denote, respectively, the displacements of the ends G and H of the
element in the x direction. From this figure, we can see that

deformed length of element = dx + (ūx + dūx ) − ūx

= dx + dūx

Therefore, the strain in the element is given by

ε = deformed length − initial length

initial length
= (dx + dūx ) − dx

dx

or

(3.39)ε = dūx

dx
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By equating the two expressions for strain as given by Eqs. (3.38) and (3.39),
we obtain

dūx

dx
= a1 (3.40)

which can be rewritten as

dūx = a1dx (3.41)

By integrating Eq. (3.41), we obtain

ūx = a1x + a0 (3.42)

in which a0 is the constant of integration. Note that Eq. (3.42), obtained by in-
tegrating the actual strain–displacement relationship, indicates that the linear
polynomial form assumed for ūx in Eq. (3.32) was indeed correct. Further-
more, if we evaluate the two constants in Eq. (3.42) by applying the boundary
conditions, we obtain an equation which is identical to Eq. (3.35), indicating
that our assumed displacement function ūx (as given by Eq. (3.35)) does in-
deed describe the actual member displacements in the x direction.

Shape Functions
The displacement functions, as given by Eqs. (3.35) and (3.36), can be ex-
pressed alternatively as

ūx = N1u1 + N3u3 (3.43a)

ū y = N2u2 + N4u4 (3.43b)

with

N1 = N2 = 1 − x

L
(3.44a)

N3 = N4 = x

L
(3.44b)

in which Ni (with i = 1,4) are called the shape functions. The plots of the four
shape functions for a plane truss member are given in Fig. 3.8. We can see from
this figure that a shape function Ni describes the displacement variation along
a member’s centroidal axis due to a unit value of the end displacement ui, while
all other end displacements are zero.

Equations (3.43) can be written in matrix form as

[
ūx

ū y

]
=

[
N1 0 N3 0
0 N2 0 N4

]
⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ (3.45)

or, symbolically, as

(3.46)ū = Nu
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in which ū is the member displacement function vector, and N is called the
member shape function matrix.

Strain–Displacement Relationship
As discussed previously, the relationship between the axial strain, ε, and
the displacement, ūx , is given by ε = dūx/dx (see Eq. (3.39)). This strain–
displacement relationship can be expressed in matrix form as

ε =
[

d

dx
0

] [
ūx

ū y

]
= Dū (3.47)

in which D is known as the differential operator matrix. To relate the strain, ε,
to the member end displacements, u, we substitute Eq. (3.46) into Eq. (3.47) to
obtain

ε = D(Nu) (3.48)

Since the end displacement vector u does not depend on x, it can be treated as
a constant in the differentiation indicated by Eq. (3.48). In other words, the dif-
ferentiation applies to N, but not to u. Thus, Eq. (3.48) can be rewritten as

(3.49)ε = (DN)u = Bu
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in which, B = DN is called the member strain–displacement matrix. To
determine B, we write

B = DN =
[

d

dx
0

] [
N1 0 N3 0
0 N2 0 N4

]

By multiplying matrices D and N,

B =
[

d N1

dx
0

d N3

dx
0

]

Next, we substitute the expressions for N1 and N3 from Eqs. (3.44) into the pre-
ceding equation to obtain

B =
[

d

dx

(
1 − x

L

)
0

d

dx

(
x

L

)
0

]

Finally, by performing the necessary differentiations, we determine the strain–
displacement matrix B:

B =
[

− 1

L
0

1

L
0

]
= 1

L
[ −1 0 1 0 ] (3.50)

Stress–Displacement Relationship
The relationship between member axial stress and member end displacements
can now be established by substituting Eq. (3.49) into the stress–strain rela-
tionship, σ = Eε. Thus,

(3.51)

Member Stiffness Matrix, k
With both member strain and stress expressed in terms of end displacements,
we can now establish the relationship between member end forces Q and end
displacements u, by applying the principle of virtual work for deformable bod-
ies. Consider an arbitrary member of a plane truss that is in equilibrium under
the action of end forces Q1 through Q4. Assume that the member is given small
virtual end displacements δu1 through δu4, as shown in Fig. 3.9. The virtual

σ = EBu
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external work done by the real member end forces Q1 through Q4 as they move
through the corresponding virtual end displacements δu1 through δu4 is

δWe = Q1 δu1 + Q2 δu2 + Q3 δu3 + Q4 δu4

which can be expressed in matrix form as

δWe = [ δu1 δu2 δu3 δu4 ]

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦

or

δWe = δuT Q (3.52)

By substituting Eq. (3.52) into the expression for the principle of virtual work
for deformable bodies, as given by Eq. (3.28), we obtain

δuT Q =
∫

V
δεT σ dV (3.53)

Recall that the right-hand side of Eq. (3.53) represents the virtual strain energy
stored in the member. Substitution of Eqs. (3.49) and (3.51) into Eq. (3.53) yields

δuT Q =
∫

V
(B δu)TEBdV u

Since (B δu)T = δuT BT , we can write the preceding equation as

δuT Q = δuT
∫

V
BTEBdV u

or

δuT

(
Q −

∫
V

BTEBdV u
)

= 0

Since δuT can be arbitrarily chosen and is not zero, the quantity in the paren-
theses must be zero. Thus,

Q =
(∫

V
BTEBdV

)
u = ku (3.54)

in which

(3.55)

is the member stiffness matrix in the local coordinate system. To determine the
explicit form of k, we substitute Eq. (3.50) for B into Eq. (3.55) to obtain

k = E

L2

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦ [ −1 0 1 0 ]

∫
V

dV = E

L2

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

∫
V

dV

k =
∫

V
BTEBdV
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Since 
∫

V dV = V = AL , the member stiffness matrix, k, becomes

k = E A

L

⎡
⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎦

Note that the preceding expression for k is identical to that derived in Sec-
tion 3.3 (Eq. (3.27)) using the direct equilibrium approach.

Symmetry of the Member Stiffness Matrix
The expression for the stiffness matrix k as given by Eq. (3.55) is general, in
the sense that the stiffness matrices for members of other types of framed struc-
tures, as well as for elements of surface structures and solids, can also be ex-
pressed in the integral form of this equation. We can deduce from Eq. (3.55)
that for linear elastic structures, the member stiffness matrices are symmetric.

Transposing both sides of Eq. (3.55), we write

kT =
∫

V
(BT EB)TdV

Now, recall from Section 2.3 that the transpose of a product of matrices equals
the product of the transposed matrices in reverse order; that is, (ABC)T =
CTBTAT. Thus, the preceding equation becomes

kT =
∫

V
BT ET (BT )T dV

For linear elastic structures, E is either a scalar (in the case of framed struc-
tures), or a symmetric matrix (for surface structures and solids). Therefore,
ET = E. Furthermore, by realizing that (BT)T = B, we can express the preced-
ing equation as

kT =
∫

V
BT EBdV (3.56)

Finally, a comparison of Eqs. (3.55) and (3.56) yields

(3.57)

which shows that k is a symmetric matrix.

3.5 COORDINATE TRANSFORMATIONS
When members of a structure are oriented in different directions, it becomes
necessary to transform the stiffness relations for each member from its local
coordinate system to a single global coordinate system selected for the entire
structure. The member stiffness relations as expressed in the global coordinate
system are then combined to establish the stiffness relations for the whole
structure. In this section, we consider the transformation of member end forces
and end displacements from local to global coordinate systems, and vice versa,

kT = k
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for members of plane trusses. The transformation of the stiffness matrices is
discussed in Section 3.6.

Transformation from Global to Local Coordinate Systems
Consider an arbitrary member m of a plane truss (Fig. 3.10(a)). As shown in
this figure, the orientation of m relative to the global XY coordinate system is
defined by an angle θ, measured counterclockwise from the positive direction
of the global X axis to the positive direction of the local x axis. Recall that the
stiffness matrix k derived in the preceding sections relates member end forces
Q and end displacement u described with reference to the local xy coordinate
system of the member, as shown in Fig. 3.10(b).
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Now, suppose that the member end forces and end displacements are spec-
ified with reference to the global XY coordinate system (Fig. 3.10(c)), and we
wish to determine the equivalent system of end forces and end displacements,
in the local xy coordinates, which has the same effect on m. As indicated in
Fig. 3.10(c), the member end forces in the global coordinate system are de-
noted by F1 through F4, and the corresponding end displacements are denoted
by v1 through v4. These global member end forces and end displacements are
numbered beginning at member end b, with the force and translation in the X
direction numbered first, followed by the force and translation in the Y direc-
tion. The forces and displacements at the member’s opposite end e are then
numbered in the same sequential order.

By comparing Figs. 3.10(b) and (c), we observe that at end b of m, the
local force Q1 must be equal to the algebraic sum of the components of the
global forces F1 and F2 in the direction of the local x axis; that is,

Q1 = F1 cos θ + F2 sin θ (3.58a)

Similarly, the local force Q2 equals the algebraic sum of the components of F1

and F2 in the direction of the local y axis. Thus,

Q2 = −F1 sin θ + F2 cos θ (3.58b)

By using a similar reasoning at end e, we express the local forces in terms of
the global forces as

Q3 = F3 cos θ + F4 sin θ (3.58c)

Q4 = −F3 sin θ + F4 cos θ (3.58d)

Equations 3.58(a) through (d) can be written in matrix form as⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ sin θ 0 0
−sin θ cos θ 0 0

0 0 cos θ sin θ

0 0 −sin θ cos θ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ (3.59)

or, symbolically, as

Q = TF (3.60)

with

T =

⎡
⎢⎢⎣

cos θ sin θ 0 0
−sin θ cos θ 0 0

0 0 cos θ sin θ

0 0 −sin θ cos θ

⎤
⎥⎥⎦ (3.61)

in which T is referred to as the transformation matrix. The direction cosines of
the member, necessary for the evaluation of T, can be conveniently determined
by using the following relationships:

cos θ = Xe − Xb

L
= Xe − Xb√

(Xe − Xb)2 + (Ye − Yb)2
(3.62a)

sin θ = Ye − Yb

L
= Ye − Yb√

(Xe − Xb)2 + (Ye − Yb)2
(3.62b)
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in which Xb and Yb denote the global coordinates of the beginning joint b for
the member, and Xe and Ye represent the global coordinates of the end joint e.

The member end displacements, like end forces, are vectors, which are de-
fined in the same directions as the corresponding forces. Therefore, the trans-
formation matrix T (Eq. (3.61)), developed for transforming end forces, can
also be used to transform member end displacements from the global to local
coordinate system; that is,

(3.63)

Transformation from Local to Global Coordinate Systems
Next, let us consider the transformation of member end forces and end
displacements from local to global coordinate systems. A comparison of
Figs. 3.10(b) and (c) indicates that at end b of m, the global force F1 must be
equal to the algebraic sum of the components of the local forces Q1 and Q2 in
the direction of the global X axis; that is,

F1 = Q1 cos θ − Q2 sin θ (3.64a)

In a similar manner, the global force F2 equals the algebraic sum of the com-
ponents of Q1 and Q2 in the direction of the global Y axis. Thus,

F2 = Q1 sin θ + Q2 cos θ (3.64b)

By using a similar reasoning at end e, we express the global forces in terms of
the local forces as

F3 = Q3 cos θ − Q4 sin θ (3.64c)

F4 = Q3 sin θ + Q4 cos θ (3.64d)

We can write Eqs. 3.64(a) through (d) in matrix form as⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ −sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ −sin θ

0 0 sin θ cos θ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ (3.65)

By comparing Eqs. (3.59) and (3.65), we observe that the transformation ma-
trix in Eq. (3.65), which transforms the forces from the local to the global co-
ordinate system, is the transpose of the transformation matrix T in Eq. (3.59),
which transforms the forces from the global to the local coordinate system.
Therefore, Eq. (3.65) can be expressed as

(3.66)

Furthermore, a comparison of Eqs. (3.60) and (3.66) indicates that the inverse
of the transformation matrix must be equal to its transpose; that is,

T−1 = TT (3.67)

which indicates that the transformation matrix T is orthogonal.

F = TT Q

u = Tv
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E X A M P L E 3.4 Determine the transformation matrices for the members of the truss shown in Fig. 3.11.

S O L U T I O N Member 1 From Fig. 3.11, we can see that joint 1 is the beginning joint and joint 2
is the end joint for member 1. By applying Eqs. (3.62), we determine

cos θ = X2 − X1

L
= 6 − 0

6
= 1

sin θ = Y2 − Y1

L
= 0 − 0

6
= 0

The transformation matrix for member 1 can now be obtained by using Eq. (3.61)

T1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ = I Ans

As the preceding result indicates, for any member with the positive directions of its
local x and y axes oriented in the positive directions of the global X and Y axes,
respectively, the transformation matrix always equals a unit matrix, I.

As discussed previously, because the member end displacements are also
vectors, which are defined in the same directions as the corresponding forces,
the matrix TT also defines the transformation of member end displacements
from the local to the global coordinate system; that is,

v = TTu (3.68)
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Member 2

cos θ = X3 − X4

L
= 0 − 6

6
= −1

sin θ = Y3 − Y4

L
= 8 − 8

6
= 0

Thus, from Eq. (3.61)

T2 =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ Ans

Member 3

cos θ = X3 − X1

L
= 0 − 0

8
= 0

sin θ = Y3 − Y1

L
= 8 − 0

8
= 1

Thus,

T3 =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ Ans

Member 4

cos θ = X2 − X4

L
= 6 − 6

8
= 0

sin θ = Y2 − Y4

L
= 0 − 8

8
= −1

Thus,

T4 =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ Ans

Member 5

L =
√

(X4 − X1)2 + (Y4 − Y1)2 =
√

(6 − 0)2 + (8 − 0)2 = 10 m

cos θ = X4 − X1

L
= 6 − 0

10
= 0.6

sin θ = Y4 − Y1

L
= 8 − 0

10
= 0.8

T5 =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦ Ans
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E X A M P L E 3.5 For the truss shown in Fig. 3.12(a), the end displacements of member 2 in the global
coordinate system are (Fig. 3.12(b)):

v2 =

⎡
⎢⎢⎣

0.75
0
1.5

−2

⎤
⎥⎥⎦ in.

Calculate the end forces for this member in the global coordinate system. Is the mem-
ber in equilibrium under these forces?

S O L U T I O N Member Stiffness Matrix in the Local Coordinate System: E = 10,000 ksi, A = 9 in.2, 

L =
√

(9)2 + (12)2 = 15 ft = 180 in.

E A

L
= 10,000(9)

180
= 500 k/in.

Member 6

L =
√

(X3 − X2)2 + (Y3 − Y2)2 =
√

(0 − 6)2 + (8 − 0)2 = 10 m

cos θ = X3 − X2

L
= 0 − 6

10
= −0.6

sin θ = Y3 − Y2

L
= 8 − 0

10
= 0.8

T6 =

⎡
⎢⎢⎣

−0.6 0.8 0 0
−0.8 −0.6 0 0

0 0 −0.6 0.8
0 0 −0.8 −0.6

⎤
⎥⎥⎦ Ans
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Fig. 3.12 (continued)
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Thus, from Eq. (3.27),

k2 = 500

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ k/in.

Transformation Matrix: From Fig. 3.12(a), we can see that joint 1 is the beginning
joint and joint 3 is the end joint for member 2. By applying Eqs. (3.62), we determine

cos θ = X3 − X1

L
= 9 − 0

15
= 0.6

sin θ = Y3 − Y1

L
= 12 − 0

15
= 0.8

The transformation matrix for member 2 can now be evaluated by using Eq. (3.61):

T2 =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦

Member End Displacements in the Local Coordinate System: To determine the mem-
ber global end forces, first we calculate member end displacements in the local coor-
dinate system by using the relationship u = Tv (Eq. (3.63)). Thus,

u2 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.75
0
1.5

−2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.45
−0.6
−0.7
−2.4

⎤
⎥⎥⎦ in.

These end displacements are depicted in Fig. 3.12(c).

Member End Forces in the Local Coordinate System: Next, by using the expression
Q = ku (Eq. (3.7)), we compute the member local end forces as

Q2 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ = 500

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.45
−0.6
−0.7
−2.4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

575
0

−575
0

⎤
⎥⎥⎦ k

Note that, as shown in Fig. 3.12(d), the member is in compression with an axial force
of magnitude 575 k.

Member End Forces in the Global Coordinate System: Finally, we determine the de-
sired member end forces by applying the relationship F = TTQ as given in Eq. (3.66).
Thus,

F2 =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6 −0.8 0 0
0.8 0.6 0 0
0 0 0.6 −0.8
0 0 0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

575
0

−575
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

345
460

−345
−460

⎤
⎥⎥⎦ k Ans

The member end forces in the global coordinate system are shown in Fig. 3.12(e).
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3.6 MEMBER STIFFNESS RELATIONS IN THE GLOBAL
COORDINATE SYSTEM
By using the member stiffness relations in the local coordinate system from Sec-
tions 3.3 and 3.4, and the transformation relations from Section 3.5, we can now
establish the stiffness relations for members in the global coordinate system.

First, we substitute the local stiffness relations Q = ku (Eq. (3.7)) into the
force transformation relations F = TTQ (Eq. (3.66)) to obtain

F = TT Q = TT ku (3.69)

Then, by substituting the displacement transformation relations u = Tv
(Eq. (3.63)) into Eq. (3.69), we determine that the desired relationship between
the member end forces F and end displacements v, in the global coordinate
system, is

F = TTkTv (3.70)

Equation (3.70) can be conveniently expressed as

(3.71)

with

(3.72)

in which the matrix K is called the member stiffness matrix in the global
coordinate system. The explicit form of K can be determined by substituting
Eqs. (3.27) and (3.61) into Eq. (3.72), as

K =

⎡
⎢⎢⎢⎣

cos θ −sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ −sin θ

0 0 sin θ cos θ

⎤
⎥⎥⎥⎦

EA

L

⎡
⎢⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

cos θ sin θ 0 0
−sin θ cos θ 0 0

0 0 cos θ sin θ

0 0 −sin θ cos θ

⎤
⎥⎥⎥⎦

K = TT kT

F = Kv
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Equilibrium Check: To check whether or not the member is in equilibrium, we apply
the three equations of equilibrium, as follows.

+ → ∑
FX = 0 345 − 345 = 0 Checks

+ ↑ ∑
FY = 0 460 − 460 = 0 Checks

+ ∑
M©1 = 0 345(12) − 460(9) = 0 Checks

Therefore, the member is in equilibrium. Ans

Y
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Performing the matrix multiplications, we obtain

K = E A

L

⎡
⎢⎢⎣

cos2 θ cos θ sin θ −cos2 θ −cos θ sin θ

cos θ sin θ sin2 θ −cos θ sin θ −sin2 θ

−cos2 θ −cos θ sin θ cos2 θ cos θ sin θ

−cos θ sin θ −sin2 θ cos θ sin θ sin2 θ

⎤
⎥⎥⎦

(3.73)

Note that, like the member local stiffness matrix, the member global stiff-
ness matrix, K, is symmetric. The physical interpretation of the member global
stiffness matrix K is similar to that of the member local stiffness matrix; that is,
a stiffness coefficient Kij represents the force at the location and in the direction
of Fi required, along with other end forces, to cause a unit value of displacement
vj, while all other end displacements are zero. Thus, the jth column of matrix K
consists of the end forces in the global coordinate system required to cause a
unit value of the end displacement vj, while all other end displacements are zero.

As the preceding interpretation indicates, the member global stiffness
matrix K can alternately be derived by subjecting an inclined truss member,
separately, to unit values of each of the four end displacements in the global co-
ordinate system as shown in Fig. 3.13, and by evaluating the end forces in the
global coordinate system required to cause the individual unit displacements.
Let us verify the expression for K given in Eq. (3.73), using this alternative ap-
proach. Consider a prismatic plane truss member inclined at an angle θ relative
to the global X axis, as shown in Fig. 3.13(a). When end b of the member is
given a unit displacement v1 = 1, while the other end displacements are held
at zero, the member shortens and an axial compressive force develops in it. In
the case of small displacements (as assumed herein), the axial deformation ua

of the member due to v1 is equal to the component of v1 = 1 in the undeformed
direction of the member; that is (Fig. 3.13(a)),

ua = v1 cos θ = 1 cos θ = cos θ
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e

b′
b

Y

X

Displaced 
position

Initial 
position

 EA cos θ
K41 � − EA cos θ sin θ 

cos θ

L
L

L

L L

L

K21 � EA cos θ sin θ

v1 � 1

K31 � − EA cos2 θ

K11 � EA cos2 θ

 EA cos θ

θ

(a) First Column of K (v1 = 1, v2 = v3 = v4 = 0)

Fig. 3.13
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(b) Second Column of K (v2 = 1, v1 = v3 = v4 = 0)

e

b′

b

Y

X

 EA sin θ

sin θK12 � EA sin θ cos θ 

v2 � 1

K42 � − EA sin2 θ
L L

LL

L

K22 � EA sin2 θ
 EA sin θ

θ

K32 = − EA sin θ cos θ
L

b

e

e′

Y

X

cos θ
K33 � EA cos2 θ

v3 �1

K23 � − EA cos θ sin θ

K13 � − EA cos2 θ

K43 � EA cos θ sin θ  EA cos θ

EA cos θ

θ

L

L L

L

LL

(c) Third Column of K (v3 = 1, v1 = v2 = v4 = 0)

e

e′

b

Y

X

sin θ

K34 � EA sin θ cos θv4 � 1

K44 �  EA sin2 θ

K24 � − EA sin2 θ

K14 � − EA sin θ cos θ

 EA sin θ

 EA sin θ

L L

L

LL

L

(d) Fourth Column of K (v4 = 1, v1 = v2 = v3 = 0)

θ

Fig. 3.13 (continued)
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The axial compressive force Qa in the member caused by the axial deformation
ua can be expressed as

Qa =
(

E A

L

)
ua =

(
E A

L

)
cos θ

From Fig. 3.13(a), we can see that the stiffness coefficients must be equal to the
components of the member axial force Qa in the directions of the global X and
Y axes. Thus, at end b,

K11 = Qa cos θ =
(

E A

L

)
cos2 θ (3.74a)

K21 = Qa sin θ =
(

E A

L

)
cos θ sin θ (3.74b)

Similarly, at end e,

K31 = −Qa cos θ = −
(

E A

L

)
cos2 θ (3.74c)

K41 = −Qa sin θ = −
(

E A

L

)
cos θ sin θ (3.74d)

in which the negative signs for K31 and K41 indicate that these forces act in the
negative directions of the X and Y axes, respectively. Note that the member must
be in equilibrium under the action of the four end forces, K11, K21, K31, and K41.
Also, note that the expressions for these stiffness coefficients (Eqs. (3.74)) are
identical to those given in the first column of the K matrix in Eq. (3.73).

The stiffness coefficients corresponding to the unit values of the remaining
end displacements v2, v3, and v4 can be evaluated in a similar manner, and are
given in Figs. 3.13 (b) through (d), respectively. As expected, these stiffness
coefficients are the same as those previously obtained by transforming the stiff-
ness relations from the local to the global coordinate system (Eq. (3.73)).

88 Chapter 3 Plane Trusses

E X A M P L E 3.6 Solve Example 3.5 by using the member stiffness relationship in the global coordinate
system, F = Kv.

S O L U T I O N Member Stiffness Matrix in the Global Coordinate System: It was shown in Example 3.5
that for member 2,

E A

L
= 500 k/in., cos θ = 0.6, sin θ = 0.8

Thus, from Eq. (3.73):

K2 =

⎡
⎢⎢⎣

180 240 −180 −240
240 320 −240 −320

−180 −240 180 240
−240 −320 240 320

⎤
⎥⎥⎦ k/in.
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3.7 STRUCTURE STIFFNESS RELATIONS
Having determined the member force–displacement relationships in the global
coordinate system, we are now ready to establish the stiffness relations for the
entire structure. The structure stiffness relations express the external loads P
acting at the joints of the structure, as functions of the joint displacements d.
Such relationships can be established as follows:

1. The joint loads P are first expressed in terms of the member end forces
in the global coordinate system, F, by applying the equations of
equilibrium for the joints of the structure.

2. The joint displacements d are then related to the member end displace-
ments in the global coordinate system, v, by using the compatibility
conditions that the displacements of the member ends must be the same
as the corresponding joint displacements.

3. Next, the compatibility equations are substituted into the member
force–displacement relations, F = Kv, to express the member global
end forces F in terms of the joint displacements d. The F–d relations
thus obtained are then substituted into the joint equilibrium equations
to establish the desired structure stiffness relationships between the
joint loads P and the joint displacements d.

Consider, for example, an arbitrary plane truss as shown in Fig. 3.14(a).
The analytical model of the truss is given in Fig. 3.14(b), which indicates
that the structure has two degrees of freedom, d1 and d2. The joint loads cor-
responding to these degrees of freedom are designated P1 and P2, respec-
tively. The global end forces F and end displacements v for the three mem-
bers of the truss are shown in Fig. 3.14(c), in which the superscript (i)
denotes the member number. Note that for members 1 and 3, the bottom
joints (i.e., joints 2 and 4, respectively) have been defined as the beginning
joints; whereas, for member 2, the top joint 1 is the beginning joint. As
stated previously, our objective is to express the joint loads P as functions of
the joint displacement d.
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Member End Forces in the Global Coordinate System: By applying the relationship
F = Kv as given in Eq. (3.71), we obtain

F =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

180 240 −180 −240
240 320 −240 −320

−180 −240 180 240
−240 −320 240 320

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.75
0
1.5

−2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

345
460

−345
−460

⎤
⎥⎥⎦ k

Ans

Equilibrium check: See Example 3.5.
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Fig. 3.14

(a) Truss
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3
2

4
X

Y

R4

R5R3 R7

R6

P2, d2

P1, d1

R8

(b) Analytical Model

1 2 3
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Equilibrium Equations
To relate the external joint loads P to the internal member end forces F, we
apply the two equations of equilibrium, 

∑
FX = 0 and

∑
FY = 0, to the free

body of joint 1 shown in Fig. 3.14(c). This yields the equilibrium equations,

P1 = F (1)
3 + F (2)

1 + F (3)
3 (3.75a)

P2 = F (1)
4 + F (2)

2 + F (3)
4 (3.75b)

Compatibility Equations
By comparing Figs. 3.14(b) and (c), we observe that since the lower end 2 of
member 1 is connected to the hinged support 2, which cannot translate in any
direction, the two displacements of end 2 of the member must be zero. Simi-
larly, since end 1 of this member is connected to joint 1, the displacements of
end 1 must be the same as the displacements of joint 1. Thus, the compatibility
conditions for member 1 are

v
(1)
1 = v

(1)
2 = 0 v

(1)
3 = d1 v

(1)
4 = d2 (3.76)
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2

3

1

4

11

Y

X

F3
(1), v3

(1)

F4
(1), v4

(1)

F1
(1), v1

(1)

F2
(1), v2

(1)

F2
(2), v2

(2)

F1
(2), v1

(2)

F1
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(3)

F2
(3), v2

(3)

F3
(3), v3

(3)

F4
(3), v4

(3)

F3
(2), v3

(2)

F4
(2), v4

(2)

(c)

1

2
3

1

F4
(1) F4

(3)

F3
(3)

F3
(1)

P1

P2

F2
(2)

F1
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Fig. 3.14 (continued)
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In a similar manner, the compatibility conditions for members 2 and 3, respec-
tively, are found to be

v
(2)
1 = d1 v

(2)
2 = d2 v

(2)
3 = v

(2)
4 = 0 (3.77)

v
(3)
1 = v

(3)
2 = 0 v

(3)
3 = d1 v

(3)
4 = d2 (3.78)

Member Stiffness Relations
Of the two types of relationships established thus far, the equilibrium equations
(Eqs. (3.75)) express joint loads in terms of member end forces, whereas the
compatibility equations (Eqs. (3.76) through (3.78)) relate joint displacements
to member end displacements. Now, we will link the two types of relationships
by employing the member stiffness relationship in the global coordinate sys-
tem derived in the preceding section.

We can write the member global stiffness relation F = Kv (Eq. (3.71)) in
expanded form for member 1 as

⎡
⎢⎢⎢⎢⎢⎢⎣

F (1)
1

F (1)
2

F (1)
3

F (1)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

K (1)
11 K (1)

12 K (1)
13 K (1)

14

K (1)
21 K (1)

22 K (1)
23 K (1)

24

K (1)
31 K (1)

32 K (1)
33 K (1)

34

K (1)
41 K (1)

42 K (1)
43 K (1)

44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.79)

from which we obtain the expressions for forces at end 1 of the member:

F (1)
3 = K (1)

31 v
(1)
1 + K (1)

32 v
(1)
2 + K (1)

33 v
(1)
3 + K (1)

34 v
(1)
4 (3.80a)

F (1)
4 = K (1)

41 v
(1)
1 + K (1)

42 v
(1)
2 + K (1)

43 v
(1)
3 + K (1)

44 v
(1)
4 (3.80b)

In a similar manner, we write the stiffness relations for member 2 as

⎡
⎢⎢⎢⎢⎢⎢⎣

F (2)
1

F (2)
2

F (2)
3

F (2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

K (2)
11 K (2)

12 K (2)
13 K (2)

14

K (2)
21 K (2)

22 K (2)
23 K (2)

24

K (2)
31 K (2)

32 K (2)
33 K (2)

34

K (2)
41 K (2)

42 K (2)
43 K (2)

44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

v
(2)
1

v
(2)
2

v
(2)
3

v
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.81)

from which we obtain the forces at end 1 of the member:

F (2)
1 = K (2)

11 v
(2)
1 + K (2)

12 v
(2)
2 + K (2)

13 v
(2)
3 + K (2)

14 v
(2)
4 (3.82a)

F (2)
2 = K (2)

21 v
(2)
1 + K (2)

22 v
(2)
2 + K (2)

23 v
(2)
3 + K (2)

24 v
(2)
4 (3.82b)
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Similarly, for member 3, the stiffness relations are written as⎡
⎢⎢⎢⎢⎢⎢⎣

F (3)
1

F (3)
2

F (3)
3

F (3)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

K (3)
11 K (3)

12 K (3)
13 K (3)

14

K (3)
21 K (3)

22 K (3)
23 K (3)

24

K (3)
31 K (3)

32 K (3)
33 K (3)

34

K (3)
41 K (3)

42 K (3)
43 K (3)

44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

v
(3)
1

v
(3)
2

v
(3)
3

v
(3)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.83)

and the forces at end 1 of the member are given by

F (3)
3 = K (3)

31 v
(3)
1 + K (3)

32 v
(3)
2 + K (3)

33 v
(3)
3 + K (3)

34 v
(3)
4 (3.84a)

F (3)
4 = K (3)

41 v
(3)
1 + K (3)

42 v
(3)
2 + K (3)

43 v
(3)
3 + K (3)

44 v
(3)
4 (3.84b)

Note that Eqs. (3.80), (3.82), and (3.84) express the six member end forces that
appear in the joint equilibrium equations (Eqs. (3.75)), in terms of member end
displacements.

To relate the joint displacements d to the member end forces F, we
substitute the compatibility equations into the foregoing member force–
displacement relations. Thus, by substituting the compatibility equations for
member 1 (Eqs. (3.76)) into its force–displacement relations as given by
Eqs. (3.80), we express the member end forces F(1) in terms of the joint dis-
placements d as

F (1)
3 = K (1)

33 d1 + K (1)
34 d2 (3.85a)

F (1)
4 = K (1)

43 d1 + K (1)
44 d2 (3.85b)

In a similar manner, for member 2, by substituting Eqs. (3.77) into Eqs. (3.82),
we obtain

F (2)
1 = K (2)

11 d1 + K (2)
12 d2 (3.86a)

F (2)
2 = K (2)

21 d1 + K (2)
22 d2 (3.86b)

Similarly, for member 3, substitution of Eqs. (3.78) into Eqs. (3.84) yields

F (3)
3 = K (3)

33 d1 + K (3)
34 d2 (3.87a)

F (3)
4 = K (3)

43 d1 + K (3)
44 d2 (3.87b)

Structure Stiffness Relations
Finally, by substituting Eqs. (3.85) through (3.87) into the joint equilibrium
equations (Eqs. (3.75)), we establish the desired relationships between the joint
loads P and the joint displacements d of the truss:

P1 = (
K (1)

33 + K (2)
11 + K (3)

33

)
d1 + (

K (1)
34 + K (2)

12 + K (3)
34

)
d2 (3.88a)

P2 = (
K (1)

43 + K (2)
21 + K (3)

43

)
d1 + (

K (1)
44 + K (2)

22 + K (3)
44

)
d2 (3.88b)
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Equations (3.88) can be conveniently expressed in condensed matrix form as

(3.89)

in which

S =
[

K (1)
33 + K (2)

11 + K (3)
33 K (1)

34 + K (2)
12 + K (3)

34

K (1)
43 + K (2)

21 + K (3)
43 K (1)

44 + K (2)
22 + K (3)

44

]
(3.90)

The matrix S, which is a square matrix with the number of rows and columns
equal to the degrees of freedom (NDOF ), is called the structure stiffness
matrix. The preceding method of determining the structure stiffness relation-
ships by combining the member stiffness relations is commonly referred to as
the direct stiffness method [48].

Like member stiffness matrices, structure stiffness matrices of linear
elastic structures are always symmetric. Note that in Eq. (3.90) the two off-
diagonal elements of S are equal to each other, because K (1)

34 = K (1)
43 ,

K (2)
12 = K (2)

21 , and K (3)
34 = K (3)

43 ; thereby making S a symmetric matrix.

Physical Interpretation of Structure Stiffness Matrix
The structure stiffness matrix S can be interpreted in a manner analogous to the
member stiffness matrix. A structure stiffness coefficient Sij represents the force
at the location and in the direction of Pi required, along with other joint forces,
to cause a unit value of the displacement dj, while all other joint displacements
are zero. Thus, the jth column of the structure stiffness matrix S consists of the
joint loads required, at the locations and in the directions of all the degrees of
freedom of the structure, to cause a unit value of the displacement dj while all
other displacements are zero. This interpretation of the structure stiffness ma-
trix indicates that such a matrix can, alternatively, be determined by subjecting
the structure, separately, to unit values of each of its joint displacements, and
by evaluating the joint loads required to cause the individual displacements.

To illustrate this approach, consider again the three-member truss of
Fig. 3.14. To determine its structure stiffness matrix S, we subject the truss to
the joint displacements d1 = 1 (with d2 = 0), and d2 = 1 (with d1 = 0), as
shown in Figs. 3.15(a) and (b), respectively. As depicted in Fig. 3.15(a), the
stiffness coefficients S11 and S21 (elements of the first column of S) represent
the horizontal and vertical forces at joint 1 required to cause a unit displace-
ment of the joint in the horizontal direction (d1 = 1), while holding it in place
vertically (d2 = 0). The unit horizontal displacement of joint 1 induces unit
displacements, in the same direction, at the top ends of the three members con-
nected to the joint. The member stiffness coefficients (or end forces) necessary
to cause these unit end displacements of the individual members are shown in
Fig. 3.15(a). Note that these stiffness coefficients are labeled in accordance
with the notation for member end forces adopted in Section 3.5. (Also, recall

P = Sd
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that the explicit expressions for member stiffness coefficients, in terms of E, A,
L, and θ of a member, were derived in Section 3.6.)

From Fig. 3.15(a), we realize that the total horizontal force S11 at joint 1,
required to cause the joint displacement d1 = 1 (with d2 = 0), must be equal to
the algebraic sum of the horizontal forces at the top ends of the three members
connected to the joint; that is,

S11 = K (1)
33 + K (2)

11 + K (3)
33 (3.91a)
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Similarly, the total vertical force S21 at joint 1 must be equal to the algebraic
sum of the vertical forces at the top ends of all the members connected to the
joint. Thus (Fig. 3.15a),

S21 = K (1)
43 + K (2)

21 + K (3)
43 (3.91b)

Note that the expressions for S11 and S21, as given in Eqs. 3.91(a) and (b), are
identical to those listed in the first column of the S matrix in Eq. (3.90).
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The stiffness coefficients in the second column of the S matrix can be de-
termined in a similar manner. As depicted in Fig. 3.15(b), the structure stiff-
ness coefficients S12 and S22 represent the horizontal and vertical forces at
joint 1 required to cause a unit displacement of the joint in the vertical direc-
tion (d2), while holding it in place horizontally (d1 = 0). The joint displace-
ment d2 = 1 induces unit vertical displacements at the top ends of the three
members; these, in turn, cause the forces (member stiffness coefficients) to
develop at the ends of the members. From Fig. 3.15(b), we can see that the
stiffness coefficient S12 of joint 1, in the horizontal direction, must be equal to
the algebraic sum of the member stiffness coefficients, in the same direction,
at the top ends of all the members connected to the joint; that is,

S12 = K (1)
34 + K (2)

12 + K (3)
34 (3.91c)

Similarly, the structure stiffness coefficient S22, in the vertical direction, equals
the algebraic sum of the vertical member stiffness coefficients at the top ends
of the three members connected to joint 1. Thus (Fig. 3.15b),

S22 = K (1)
44 + K (2)

22 + K (3)
44 (3.91d)

Again, the expressions for S12 and S22, as given in Eqs. 3.91(c) and (d), are the
same as those listed in the second column of the S matrix in Eq. (3.90).

Assembly of the Structure Stiffness Matrix 
Using Member Code Numbers
In the preceding paragraphs of this section, we have studied two procedures for
determining the structure stiffness matrix S. Although a study of the foregoing
procedures is essential for developing an understanding of the concept of the
stiffness of multiple-degrees-of-freedom structures, these procedures cannot
be implemented easily on computers and, therefore, are seldom used in practice.

From Eqs. (3.91), we observe that the structure stiffness coefficient of a
joint in a direction equals the algebraic sum of the member stiffness coeffi-
cients, in that direction, at all the member ends connected to the joint. This fact
indicates that the structure stiffness matrix S can be formulated directly by
adding the elements of the member stiffness matrices into their proper posi-
tions in the structure matrix. This technique of directly forming a structure
stiffness matrix by assembling the elements of the member global stiffness ma-
trices can be programmed conveniently on computers. The technique was in-
troduced by S. S. Tezcan in 1963 [44], and is sometimes referred to as the code
number technique.

To illustrate this technique, consider again the three-member truss of
Fig. 3.14. The analytical model of the truss is redrawn in Fig. 3.16(a), which
shows that the structure has two degrees of freedom (numbered 1 and 2), and
six restrained coordinates (numbered from 3 to 8). The stiffness matrices in
the global coordinate system for members 1, 2, and 3 of the truss are desig-
nated K1, K2, and K3, respectively (Fig. 3.16(c)). Our objective is to form the
structure stiffness matrix S by assembling the elements of K1, K2, and K3.

To determine the positions of the elements of a member matrix K in the
structure matrix S, we identify the number of the structure’s degree of freedom
or restrained coordinate, at the location and in the direction of each of the
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member’s global end displacements, v. Such structure degrees of freedom and
restrained coordinate numbers for a member, when arranged in the same order
as the member’s end displacements, are referred to as the member’s code num-
bers. In accordance with the notation for member end displacements adopted
in Section 3.5, the first two end displacements, v1 and v2, are always specified
in the X and Y directions, respectively, at the beginning of the member; and the
last two end displacements, v3 and v4, are always in the X and Y directions, re-
spectively, at the end of the member. Therefore, the first two code numbers for
a member are always the numbers of the structure degrees of freedom and/or
restrained coordinates in the X and Y directions, respectively, at the beginning
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Fig. 3.16 (continued)
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joint for the member; and the third and fourth member code numbers are al-
ways the numbers of the structure degrees of freedom and/or restrained coor-
dinates in the X and Y directions, respectively, at the end joint for the member.

From Fig. 3.16(a), we can see that for member 1 of the truss, the beginning
and the end joints are 2 and 1, respectively. At the beginning joint 2, the re-
strained coordinate numbers are 3 and 4 in the X and Y directions, respectively;
whereas, at the end joint 1, the structure degree of freedom numbers, in the X
and Y directions, are 1 and 2, respectively. Thus, the code numbers for member 1
are 3, 4, 1, 2. Similarly, since the beginning and end joints for member 2 are
1 and 3, respectively, the code numbers for this member are 1, 2, 5, 6. In a sim-
ilar manner, the code numbers for member 3 are found to be 7, 8, 1, 2. The code
numbers for the three members of the truss can be verified by comparing the
member global end displacements shown in Fig. 3.16(b) with the structure
degrees of freedom and restrained coordinates given in Fig. 3.16(a).

The code numbers for a member define the compatibility equations for the
member. For example, the code numbers 3, 4, 1, 2 imply the following com-
patibility equations for member 1:

v
(1)
1 = d3 v

(1)
2 = d4 v

(1)
3 = d1 v

(1)
4 = d2

Since the displacements corresponding to the restrained coordinates 3 and 4
are zero (i.e., d3 = d4 = 0), the compatibility equations for member 1 become

v
(1)
1 = v

(1)
2 = 0 v

(1)
3 = d1 v

(1)
4 = d2

which are identical to those given in Eqs. (3.76).
The member code numbers can also be used to formulate the joint equi-

librium equations for a structure (such as those given in Eqs. (3.75)). The equi-
librium equation corresponding to an ith degree of freedom (or restrained
coordinate) can be obtained by equating the joint load Pi (or the reaction Ri) to
the algebraic sum of the member end forces, with the code number i, of all the
members of the structure. For example, to obtain the equilibrium equations for
the truss of Fig. 3.16(a), we write the code numbers for its three members by
the side of their respective end force vectors, as

F1 =

⎡
⎢⎢⎢⎢⎣
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(3.92)

From Eq. (3.92), we can see that the member end forces with the code number 1 
are: F (1)

3 of member 1, F (2)
1 of member 2, and F (3)

3 of member 3. Thus, the equi-
librium equation corresponding to degree of freedom 1 is given by

P1 = F (1)
3 + F (2)

1 + F (3)
3

which is identical to Eq. 3.75(a). Similarly, the equilibrium equation corre-
sponding to degree of freedom 2 can be obtained by equating P2 to the sum of
the end forces, with code number 2, of the three members. Thus, from Eq. (3.92)

P2 = F (1)
4 + F (2)

2 + F (3)
4

which is the same as Eq. (3.75(b)).
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To establish the structure stiffness matrix S, we write the code numbers of
each member on the right side and at the top of its stiffness matrix K, as shown
in Fig. 3.16(c). These code numbers now define the positions of the elements
of the member stiffness matrices in the structure stiffness matrix S. In other
words, the code numbers on the right side of a matrix K represent the row num-
bers of the S matrix, and the code numbers at the top represent the column
numbers of S. Furthermore, since the number of rows and columns of S equal
the number of degrees of freedom (NDOF ) of the structure, only those ele-
ments of a K matrix with both row and column code numbers less than or equal
to NDOF belong in S. For example, since the truss of Fig. 3.16(a) has two de-
grees of freedom, only the bottom-right quarters of the member matrices K1

and K3, and the top-left quarter of K2, belong in S (see Fig. 3.16(c)).
The structure stiffness matrix S is established by algebraically adding the

pertinent elements of the K matrices of all the members, in their proper posi-
tions, in the S matrix. For example, to assemble S for the truss of Fig. 3.16(a),
we start by storing the pertinent elements of K1 in S (see Fig. 3.16(c)). Thus,
the element K (1)

33 is stored in row 1 and column 1 of S, the element K (1)
43 is

stored in row 2 and column 1 of S, the element K (1)
34 is stored in row 1 and col-

umn 2 of S (see Fig. 3.16(c)), and the element K (1)
44 is stored in row 2 and

column 2 of S. Note that only those elements of K1 whose row and column
code numbers are either 1 or 2 are stored in S. The same procedure is then re-
peated for members 2 and 3. When two or more member stiffness coefficients
are stored in the same position in S, then the coefficients must be algebraically
added. The completed structure stiffness matrix S for the truss is shown in 
Fig. 3.16(c). Note that this matrix is identical to the one determined previously
by substituting the member compatibility equations and stiffness relations into
the joint equilibrium equations (Eq. (3.90)).

Once S has been determined, the structure stiffness relations, P = Sd
(Eq. (3.89)), which now represent a system of simultaneous linear algebraic
equations, can be solved for the unknown joint displacements d. With d
known, the end displacements v for each member can be obtained by applying
the compatibility equations defined by its code numbers; then the correspond-
ing end displacements u and end forces Q and F can be computed by using the
member’s transformation and stiffness relations. Finally, the support reactions
R can be determined from the member end forces F, by considering the equi-
librium of the support joints in the directions of the restrained coordinates, as
discussed in the following paragraphs.

Assembly of the Support Reaction Vector
Using Member Code Numbers
The support reactions R of a structure can be expressed in terms of the mem-
ber global end forces F, using the equilibrium requirement that the reaction in
a direction at a joint must be equal to the algebraic sum of all the forces, in that
direction, at all the member ends connected to the joint. Because the code num-
bers of a member specify the locations and directions of its global end forces
with respect to the structure’s degrees of freedom and/or restrained coordi-
nates, the reaction corresponding to a restrained coordinate can be evaluated by
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algebraically summing those elements of the F vectors of all the members
whose code numbers are the same as the restrained coordinate.

As the foregoing discussion suggests, the reaction vector R can be as-
sembled from the member end force vectors F, using a procedure similar to
that for forming the structure stiffness matrix. To determine the reactions,
we write the restrained coordinate numbers (NDOF + 1 through 2(NJ )) on
the right side of vector R, as shown in Fig. 3.16(d). Next, the code numbers
of each member are written on the right side of its end force vector F
(Fig. 3.16(d)). Any member code number that is greater than the number of
degrees of freedom of the structure (NDOF) now represents the restrained co-
ordinate number of the row of R in which the corresponding member force is
to be stored. The reaction vector R is obtained by algebraically adding the
pertinent elements of the F vectors of all the members in their proper posi-
tions in R.

For example, to assemble R for the truss of Fig. 3.16(a), we begin by
storing the pertinent elements of F1 in R. Thus, as shown in Fig. 3.16(d),
the element F (1)

1 with code number 3 is stored in row 1 of R, which has the re-
strained coordinate number 3 by its side. Similarly, the element F (1)

2 (with
code number 4) is stored in row 2 (with restrained coordinate number 4) of R.
Note that only those elements of F1 whose code numbers are greater than 2
(= NDOF) are stored in R. The same procedure is then repeated for members
2 and 3. The completed support reaction vector R for the truss is shown in
Fig. 3.16(d).
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E X A M P L E 3.7 Determine the structure stiffness matrix for the truss shown in Fig. 3.17(a).

S O L U T I O N Analytical Model: The analytical model of the truss is shown in Fig. 3.17(b). The
structure has three degrees of freedom—the translation in the X direction of joint 1,
and the translations in the X and Y directions of joint 4. These degrees of freedom are
identified by numbers 1 through 3; and the five restrained coordinates of the truss are
identified by numbers 4 through 8, as shown in Fig. 3.17(b).

Structure Stiffness Matrix: To generate the 3 × 3 structure stiffness matrix S, we will
determine, for each member, the global stiffness matrix K and store its pertinent ele-
ments in their proper positions in S by using the member’s code numbers.

Member 1 L = 6 m, cos θ = 1, sin θ = 0
E A

L
= 70(106) (0.0015)

6
= 17,500 kN/m

The member stiffness matrix in global coordinates can now be evaluated by using
Eq. (3.73).

7 8 2 3

K1 =

⎡
⎢⎢⎣

17,500 0 −17,500 0
0 0 0 0

−17,500 0 17,500 0
0 0 0 0

⎤
⎥⎥⎦

7
8
2
3

kN/m��
�
�

������
(1)
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Fig. 3.17
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From Fig. 3.17(b), we observe that joint 3 has been selected as the beginning joint, and
joint 4 as the end joint, for member 1. Thus, the code numbers for this member are
7, 8, 2, 3. These numbers are written on the right side and at the top of K1 (see Eq. (1))
to indicate the rows and columns, respectively, of the structure stiffness matrix S,
where the elements of K1 must be stored. Note that the elements of K1 that correspond
to the restrained coordinate numbers 7 and 8 are simply disregarded. Thus, the element
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in row 3 and column 3 of K1 is stored in row 2 and column 2 of S, as

1 2 3

S =
⎡
⎣ 0 0 0

0 17,500 0
0 0 0

⎤
⎦1

2
3

(2)

Member 2 As shown in Fig. 3.17(b), joint 1 is the beginning joint, and joint 4 is the
end joint, for member 2. By applying Eqs. (3.62), we determine

L =
√

(X4 − X1)2 + (Y4 − Y1)2 =
√

(6 − 0)2 + (8 − 0)2 = 10 m

cos θ = X4 − X1

L
= 6 − 0

10
= 0.6

sin θ = Y4 − Y1

L
= 8 − 0

10
= 0.8

E A

L
= 70(106)(0.0015)

10
= 10,500 kN/m

By using the expression for K given in Eq. (3.73), we obtain

1 4 2 3

K2 =

⎡
⎢⎢⎣

3,780 5,040 −3,780 −5,040
5,040 6,720 −5,040 −6,720

−3,780 −5,040 3,780 5,040
−5,040 −6,720 5,040 6,720

⎤
⎥⎥⎦

1
4
2
3

kN/m
���� ��������

���� ��������

� �

� �
� �
� �

(3)

From Fig. 3.17(b), we can see that the code numbers for this member are 1, 4, 2, 3.
These numbers are used to add the pertinent elements of K2 in their proper positions
in S, as given in Eq. (2). Thus, S now becomes

1 2 3

S =
⎡
⎣ 3,780 −3,780 −5,040

−3,780 17,500 + 3,780 5,040
−5,040 5,040 6,720

⎤
⎦1

2
3

(4)

Member 3 L = 8 m, cos θ = 0, sin θ = 1
E A

L
= 70(106)(0.0015)

8
= 13,125 kN/m

By using Eq. (3.73),

5 6 2 3

K3 =

⎡
⎢⎢⎣

0 0 0 0
0 13,125 0 −13,125
0 0 0 0
0 −13,125 0 13,125

⎤
⎥⎥⎦

5
6
2
3

kN/m��
�
�

������ (5)

The code numbers for this member are 5, 6, 2, 3. By using these code numbers, the
pertinent elements of K3 are added in S (as given in Eq. (4)), yielding

1 2 3

S =
⎡
⎣ 3,780 −3,780 −5,040

−3,780 17,500 + 3,780 5,040
−5,040 5,040 6,720 + 13,125

⎤
⎦1

2
3

kN/m
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3.8 PROCEDURE FOR ANALYSIS
Based on the discussion presented in the previous sections, the following step-
by-step procedure can be developed for the analysis of plane trusses subjected
to joint loads.

1. Prepare an analytical model of the truss as follows.
a. Draw a line diagram of the structure, on which each joint and

member is identified by a number.
b. Establish a global XY coordinate system, with the X and Y axes oriented

in the horizontal (positive to the right) and vertical (positive upward)
directions, respectively. It is usually convenient to locate the origin
of the global coordinate system at a lower left joint of the structure, so
that the X and Y coordinates of most of the joints are positive.

c. For each member, establish a local xy coordinate system by
selecting one of the joints at its ends as the beginning joint and the
other as the end joint. On the structure’s line diagram, indicate the
positive direction of the local x axis for each member by drawing an
arrow along the member pointing toward its end joint. For horizontal
members, the coordinate transformations can be avoided by selecting
the joint at the member’s left end as the beginning joint.

d. Identify the degrees of freedom (or joint displacements) and the
restrained coordinates of the structure. These quantities are specified
on the line diagram by assigning numbers to the arrows drawn at the
joints in the X and Y directions. The degrees of freedom are numbered
first, starting at the lowest-numbered joint and proceeding sequen-
tially to the highest. In the case of more than one degree of freedom
at a joint, the X-displacement is numbered first, followed by the
Y-displacement. After all the degrees of freedom have been numbered,
the restrained coordinates are numbered, beginning with a number
equal to NDOF + 1. Starting at the lowest-numbered joint and
proceeding sequentially to the highest, all of the restrained coor-
dinates of the structure are numbered. In the case of more than one
restrained coordinate at a joint, the X-coordinate is numbered first,
followed by the Y-coordinate.

2. Evaluate the structure stiffness matrix S. The number of rows and
columns of S must be equal to the degrees of freedom (NDOF) of the
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Since the stiffnesses of all three members of the truss have now been stored in S, the
structure stiffness matrix for the given truss is

1 2 3

S =
⎡
⎣ 3,780 −3,780 −5,040

−3,780 21,280 5,040
−5,040 5,040 19,845

⎤
⎦1

2
3

kN/m Ans

Note that the structure stiffness matrix S, obtained by assembling the stiffness coeffi-
cients of the three members, is symmetric.
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structure. For each member of the truss, perform the following
operations.
a. Calculate its length and direction cosines. (The expressions for cos θ

and sin θ are given in Eqs. (3.62).)
b. Compute the member stiffness matrix in the global coordinate

system, K, using Eq. (3.73).
c. Identify its code numbers, and store the pertinent elements of K

in their proper positions in S, using the procedure described in
Section 3.7.

The complete structure stiffness matrix, obtained by assembling the
stiffness coefficients of all the members of the truss, must be a
symmetric matrix.

3. Form the NDOF × 1 joint load vector P.

4. Determine the joint displacements d. Substitute P and S into the struc-
ture stiffness relations, P = Sd (Eq. (3.89)), and solve the resulting sys-
tem of simultaneous equations for the unknown joint displacements d.
To check that the solution of simultaneous equations has been carried
out correctly, substitute the numerical values of d back into the structure
stiffness relations, P = Sd. If the solution is correct, then the stiffness
relations should be satisfied. Note that joint displacements are consid-
ered positive when in the positive directions of the global X and Y axes;
similarly, the displacements are negative in the negative directions.

5. Compute member end displacements and end forces, and support reac-
tions. For each member of the truss, do the following.
a. Obtain member end displacements in the global coordinate system, v,

from the joint displacements, d, using the member’s code numbers.
b. Calculate the member’s transformation matrix T by using Eq.

(3.61), and determine member end displacements in the local
coordinate system, u, using the transformation relationship u = Tv
(Eq. (3.63)). For horizontal members with local x axis positive to the
right (i.e., in the same direction as the global X axis), member end
displacements in the global and local coordinate systems are the
same; that is, u = v. Member axial deformation, ua, if desired, can
be obtained from the relationship ua = u1 − u3, in which u1 and u3

are the first and third elements, respectively, of vector u. A positive
value of ua indicates shortening (or contraction) of the member in
the axial direction, and a negative value indicates elongation.

c. Determine the member stiffness matrix in the local coordinate sys-
tem, k, using Eq. (3.27); then calculate member end forces in the
local coordinate system by using the stiffness relationship Q = ku
(Eq. (3.7)). The member axial force, Qa, equals the first element, Q1,
of the vector Q (i.e., Qa = Q1); a positive value of Qa indicates that
the axial force is compressive, and a negative value indicates that the
axial force is tensile.

d. Compute member end forces in the global coordinate system, F, by
using the transformation relationship F = TTQ (Eq. (3.66)). For hori-
zontal members with the local x axis positive to the right, the member
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end forces in the local and global coordinate systems are the same;
that is, F = Q.

e. By using member code numbers, store the pertinent elements of F in
their proper positions in the support reaction vector R, as discussed
in Section 3.7.

6. To check the calculation of member end forces and support reactions,
apply the three equations of equilibrium (

∑
FX = 0,

∑
FY = 0, and∑

M = 0) to the free body of the entire truss. If the calculations have
been carried out correctly, then the equilibrium equations should be
satisfied.

Instead of following steps 5c and d, the member end forces can be deter-
mined alternatively by first evaluating the global forces F, using the global
stiffness relationship F = Kv (Eq. (3.71)), and then obtaining the local forces
Q from the transformation relationship Q = TF (Eq. (3.60)).
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Fig. 3.18

E X A M P L E 3.8 Determine the joint displacements, member axial forces, and support reactions for the
truss shown in Fig. 3.18(a) by the matrix stiffness method.

S O L U T I O N Analytical Model: The analytical model of the truss is shown in Fig. 3.18(b). The
truss has two degrees of freedom, which are the translations of joint 1 in the X and Y
directions. These are numbered as 1 and 2, respectively. The six restrained coordinates
of the truss are identified by numbers 3 through 8.

Structure Stiffness Matrix:

Member 1 As shown in Fig. 3.18(b), we have selected joint 2 as the beginning joint,
and joint 1 as the end joint, for member 1. By applying Eqs. (3.62), we determine

L =
√

(X1 − X2)2 + (Y1 − Y2)2 =
√

(12 − 0)2 + (16 − 0)2 = 20 ft

12 ft 12 ft

16 ft

(8 in. 2)(8
 in

.2 )

(6
 in

.2 )

300 k

150 k

(a) Truss

E = 29,000 ksi
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Y

X

2

53 7

864

11

2 3 4

(b) Analytical Model

2
1 3

(c) Structure Stiffness Matrix

(348 +  0 + 348)
S =   (464 +  0 − 464)    (618.67 +  906.25 + 618.67)   2 

=
      0      2,143.6   2

 (464 +  0 − 464) 696 0 11

1 2 21

k/in.

150

300

233.2316.774

233.23

233.23

16.774

16.774

126.83
126.83

126.83

1

(d) Member End Forces in Local Coordinate Systems

2
1 3

Fig. 3.18 (continued)
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cos θ = X1 − X2

L
= 12 − 0

20
= 0.6

sin θ = Y1 − Y2

L
= 16 − 0

20
= 0.8

Using the units of kips and inches, we evaluate the member’s global stiffness matrix
(Eq. (3.73)) as

K1 = (29,000)(8)

(20)(12)

⎡
⎢⎢⎣

0.36 0.48 −0.36 −0.48
0.48 0.64 −0.48 −0.64

−0.36 −0.48 0.36 0.48
−0.48 −0.64 0.48 0.64

⎤
⎥⎥⎦

or
3 4 1 2

K1 =

⎡
⎢⎢⎣

348 464 −348 −464
464 618.67 −464 −618.67

−348 −464 348 464
−464 −618.67 464 618.67

⎤
⎥⎥⎦

3
4
1
2

�
�
�

������� k/in. (1)
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(e) Support Reaction Vector

186.58

−139.94

126.83

0

−13.419

−10.064 3

4

5

6

7

8

kR �

Y

X

300 k

150 k

10.064 k 139.94 k

13.419 k 126.83 k 186.58 k

1

2 3 4

(f) Support Reactions

2
1 3

Fig. 3.18 (continued)
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From Fig. 3.18(b), we observe that the code numbers for member 1 are 3, 4, 1, 2. These
numbers are written on the right side and at the top of K1 (see Eq. (1)) to indicate the
rows and columns, respectively, of the structure stiffness matrix S, in which the elements
of K1 must be stored. Note that the elements of K1, which correspond to the restrained
coordinate numbers 3 and 4, are simply ignored. Thus, the element in row 3 and column
3 of K1 is stored in row 1 and column 1 of S, as shown in Fig. 3.18(c); and the element
in row 4 and column 3 of K1 is stored in row 2 and column 1 of S. The remaining ele-
ments of K1 are stored in S in a similar manner, as shown in Fig. 3.18(c).

Member 2 From Fig. 3.18(b), we can see that joint 3 is the beginning joint, and
joint 1 is the end joint, for member 2. Applying Eqs. (3.62), we write

L =
√

(X1 − X3)2 + (Y1 − Y3)2 =
√

(12 − 12)2 + (16 − 0)2 = 16 ft

cos θ = X1 − X3

L
= 12 − 12

16
= 0

sin θ = Y1 − Y3

L
= 16 − 0

16
= 1

Thus, using Eq. (3.73),

5 6 1 2

K2 =

⎡
⎢⎢⎣

0 0 0 0
0 906.25 0 −906.25
0 0 0 0
0 −906.25 0 906.25

⎤
⎥⎥⎦

5
6
1
2

�
�
�

������ k/in.

From Fig. 3.18(b), we can see that the code numbers for this member are 5, 6, 1, 2.
These numbers are used to store the pertinent elements of K2 in their proper positions
in S, as shown in Fig. 3.18(c).

Member 3 It can be seen from Fig. 3.18(b) that joint 4 is the beginning joint, and
joint 1 is the end joint, for member 3. Thus,

L =
√

(X1 − X4)2 + (Y1 − Y4)2 =
√

(12 − 24)2 + (16 − 0)2 = 20 ft

cos θ = X1 − X4

L
= 12 − 24

20
= −0.6

sin θ = Y1 − Y4

L
= 16 − 0

20
= 0.8

Using Eq. (3.73),

7 8 1 2

K3 =

⎡
⎢⎢⎣

348 −464 −348 464
−464 618.67 464 −618.67
−348 464 348 −464

464 −618.67 −464 618.67

⎤
⎥⎥⎦

7
8
1
2

�
�
�

�������� k/in.

The code numbers for this member are 7, 8, 1, 2. Using these numbers, the pertinent
elements of K3 are stored in S, as shown in Fig. 3.18(c).

The complete structure stiffness matrix S, obtained by assembling the stiffness
coefficients of the three members of the truss, is given in Fig. 3.18(c). Note that S is
symmetric.
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Joint Load Vector: By comparing Figs. 3.18(a) and (b), we realize that

P1 = 150 k P2 = −300 k

Thus, the joint load vector is

P =
[

150
−300

]
k (2)

Joint Displacements: By substituting P and S into the structure stiffness relationship
given by Eq. (3.89), we write

P = Sd[
150

−300

]
=

[
696 0

0 2,143.6

] [
d1

d2

]

Solving these equations, we determine the joint displacements:

d1 = 0.21552 in. d2 = −0.13995 in.

or

d =
[

0.21552
−0.13995

]
in. Ans

To check that the solution of equations has been carried out correctly, we substitute
the numerical values of joint displacements back into the structure stiffness relation-
ship to obtain

P = Sd =
[

696 0
0 2,143.6

] [
0.21552

−0.13995

]
=

[
150

−300

]
Checks

which is the same as the load vector P given in Eq. (2), thereby indicating that the cal-
culated joint displacements do indeed satisfy the structure stiffness relations.

Member End Displacements and End Forces:

Member 1 The member end displacements in the global coordinate system can be
obtained simply by comparing the member’s global degree of freedom numbers with
its code numbers, as follows:

v1 =

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

3
4
1
2

=

⎡
⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦ in. (3)

Note that the code numbers for the member (3, 4, 1, 2) are written on the right side of
v, as shown in Eq. (3). Because the code numbers corresponding to v1 and v2 are the re-
strained coordinate numbers 3 and 4, this indicates that v1 = v2 = 0. Similarly, the
code numbers 1 and 2 corresponding to v3 and v4, respectively, indicate that v3 = d1

and v4 = d2. It should be clear that these compatibility equations could have been es-
tablished alternatively by a simple visual inspection of the line diagram of the structure
depicted in Fig. 3.18(b). However, as will be shown in Chapter 4, the use of the member
code numbers enables us to conveniently program this procedure on a computer.

To determine the member end displacements in the local coordinate system, we
first evaluate its transformation matrix T as defined in Eq. (3.61):

T1 =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦
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112 Chapter 3 Plane Trusses

The member local end displacements can now be calculated, using the relationship
u = Tv (Eq. (3.63)), as

u1 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0.017352

−0.25639

⎤
⎥⎥⎦ in.

Before we can calculate the member end forces in the local coordinate system,
we need to determine its local stiffness matrix k, using Eq. (3.27):

k1 =

⎡
⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎦ k/in.

Now, using Eq. (3.7), we compute the member local end forces as

Q = ku

Q1 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.017352

−0.25639

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−16.774
0

16.774
0

⎤
⎥⎥⎦ k

The member axial force is equal to the first element of the vector Q1; that is,

Qa1 = −16.774 k

in which the negative sign indicates that the axial force is tensile, or

Qa1 = 16.774 k (T) Ans

This member axial force can be verified by visually examining the free-body diagram
of the member subjected to the local end forces, as shown in Fig. 3.18(d).

By applying Eq. (3.66), we determine the member end forces in the global coor-
dinate system: 

F = TTQ

F1 =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6 −0.8 0 0
0.8 0.6 0 0
0 0 0.6 −0.8
0 0 0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−16.774
0

16.774
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−10.064
−13.419

10.064
13.419

⎤
⎥⎥⎦

3
4
1
2

k����

(4)

Next, we write the member code numbers (3, 4, 1, 2) on the right side of F1 (see
Eq. (4)), and store the pertinent elements of F1 in their proper positions in the reaction
vector R by matching the code numbers (on the side of F1) to the restrained coordinate
numbers written on the right side of R (see Fig. 3.18(e)). Thus, the element in row 1 of
F1 (with code number 3) is stored in row 1 of R (with restrained coordinate number
3); and the element in row 2 of F1 (with code number 4) is stored in row 2 of R (with
restrained coordinate number 4), as shown in Fig. 3.18(e). Note that the elements in
rows 3 and 4 of F1, with code numbers corresponding to degrees of freedom 1 and 2
of the structure, are simply disregarded.
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Member 2 The member end displacements in the global coordinate system are
given by

v2 =

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

5
6
1
2

=

⎡
⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦ in.

The member end displacements in the local coordinate system can now be determined
by using the relationship u = Tv (Eq. (3.63)), with T as defined in Eq. (3.61):

u2 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

−0.13995
−0.21552

⎤
⎥⎥⎦ in.

Using Eq. (3.7), we compute member end forces in the local coordinate system:

Q = ku

Q2 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ = 906.25

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0

−0.13995
−0.21552

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

126.83
0

−126.83
0

⎤
⎥⎥⎦ k

from which we obtain the member axial force (see also Fig. 3.18(d)):

Qa2 = 126.83 k (C) Ans

Using the relationship F = TTQ (Eq. (3.66)), we calculate the member global
end forces to be

F2 =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

126.83
0

−126.83
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
126.83

0
−126.83

⎤
⎥⎥⎦

5
6
1
2

k����

The pertinent elements of F2 are now stored in their proper positions in the reaction
vector R, by using member code numbers (5, 6, 1, 2), as shown in Fig. 3.18(e).

Member 3 The member global end displacements are

v3 =

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

7
8
1
2

=

⎡
⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦ in.

As in the case of members 1 and 2, we can determine the end forces Q3 and F3 for
member 3 by using the relationships u = Tv, Q = ku, and F = TTQ, in sequence. How-
ever, such member forces can also be obtained by applying sequentially the global stiffness
relationship F = Kv (Eq. (3.71)) and the transformation relation Q = TF (Eq. (3.60)). Let
us apply this alternative approach to determine the end forces for member 3.
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Applying Eq. (3.71), we compute the member end forces in the global coordinate
system:

F = Kv

F3 =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

348 −464 −348 464
−464 618.67 464 −618.67
−348 464 348 −464

464 −618.67 −464 618.67

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.21552

−0.13995

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−139.94
186.58
139.94

−186.58

⎤
⎥⎥⎦

7
8
1
2

k����

Using the member code numbers (7, 8, 1, 2), the pertinent elements of F3 are stored in
the reaction vector R, as shown in Fig. 3.18(e).

The member end forces in the local coordinate system can now be obtained by using
the transformation relationship Q = TF (Eq. (3.60)), with T as defined in Eq. (3.61).

Q3 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.6 0.8 0 0
−0.8 −0.6 0 0

0 0 −0.6 0.8
0 0 −0.8 −0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−139.94
186.58
139.94

−186.58

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

233.23
0

−233.23
0

⎤
⎥⎥⎦ k

from which the member axial force is found to be (see also Fig. 3.18(d))

Qa3 = 233.23 k (C) Ans

Support Reactions: The completed reaction vector R is shown in Fig. 3.18(e), and
the support reactions are depicted on a line diagram of the truss in Fig. 3.18(f). Ans

Equilibrium Check: Applying the equations of equilibrium to the free body of the
entire truss (Fig. 3.18(f)), we obtain

+ → ∑
FX = 0 150 − 10.064 − 139.94 = −0.004 ≈ 0 Checks

+ ↑ ∑
FY = 0 −300 − 13.419 + 126.83 + 186.58 = −0.009 ≈ 0 Checks

+ ∑
M©1 = 0 −10.064(16) + 13.419(12) − 139.94(16)

+ 186.58(12) = −0.076 k-ft ≈ 0 Checks

a

E X A M P L E 3.9 Determine the joint displacements, member axial forces, and support reactions for the
truss shown in Fig. 3.19(a), using the matrix stiffness method.

S O L U T I O N Analytical Model: From the analytical model of the truss shown in Fig. 3.19(b), we
observe that the structure has three degrees of freedom (numbered 1, 2, and 3), and
five restrained coordinates (numbered 4 through 8). Note that for horizontal member
2, the left end joint 3 is chosen as the beginning joint, so that the positive directions of
local axes are the same as the global axes. Thus, no coordinate transformations are
necessary for this member; that is, the member stiffness relations in the local and
global coordinate systems are the same.
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6 m 4 m

8 m

EA � constant

E � 70 GPa

A � 4,000 mm2

400 kN 400 kN

800 kN

(a) Truss

1 3

2

64

75

8

Y

X

43

1 2

(b) Analytical Model

2

1

3 4

5

Fig. 3.19
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Fig. 3.19 (continued) 

S =

⎡
⎣ 35,000 + 8,533 0 0

0 46,667 + 10,080 + 6,260.9 13,440 − 12,522

0 13,440 − 12,522 17,920 + 25,043

⎤
⎦1

2

3

=
⎡
⎣ 43,533 0 0

0 63,008 918

0 918 42,963

⎤
⎦1

2

3

kN/m

(c) Structure Stiffness Matrix

1

1 2 3

2 3

(d) Support Reaction Vector 

−0.57994

321.59 − 0.77325

−98.008 − 200.38 =    −298.39

78.407 + 400.76

−599.06 + 98.008

R =

4

5

6

7

8

−0.57994

479.17

320.82

−501.05

kN

4

5

6

7

8

400 kN 400 kN

800 kN501.05 kN

320.82 kN

0.57994 kN
298.39 kN

479.17 kN

Y

X

43

1 2

(e) Support Reactions

2

1

3 4

5
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Structure Stiffness Matrix:

Member 1 Using Eqs. (3.62), we write

L =
√

(X3 − X1)2 + (Y3 − Y1)2 =
√

(0 − 0)2 + (8 − 0)2 = 8 m

cos θ = X3 − X1

L
= 0 − 0

8
= 0

sin θ = Y3 − Y1

L
= 8 − 0

8
= 1

Using the units of kN and meters, we obtain the member global stiffness matrix
(Eq. (3.73)):

4 5 8 1

K1 = 70(106)(0.004)

8

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
0 35,000 0 −35,000
0 0 0 0
0 −35,000 0 35,000

⎤
⎥⎥⎦

4
5
8
1

kN/m

��
����

From Fig. 3.19(b), we observe that the code numbers for member 1 are 4, 5, 8, 1. These
numbers are written on the right side and at the top of K1, and the pertinent elements
of K1 are stored in their proper positions in the structure stiffness matrix S, as shown
in Fig. 3.19(c).

Member 2 As discussed, no coordinate transformations are needed for this
horizontal member; that is, T2 = I, and K2 = k2. Substituting E = 70(106) kN/m2,
A = 0.004 m2, and L = 6 m into Eq. (3.27), we obtain

8 1 2 3

K2 = k2 =

⎡
⎢⎢⎣

46,667 0 −46,667 0
0 0 0 0

−46,667 0 46,667 0
0 0 0 0

⎤
⎥⎥⎦

8
1
2
3

kN/m
�
�
�
�

��������

From Fig. 3.19(b), we can see that the code numbers for member 2 are 8, 1, 2, 3. These
numbers are used to store the appropriate elements of K2 in S, as shown in Fig. 3.19(c).

Member 3

L =
√

(X4 − X1)2 + (Y4 − Y1)2 =
√

(6 − 0)2 + (8 − 10)2 = 10 m

cos θ = X4 − X1

L
= 6 − 0

10
= 0.6

sin θ = Y4 − Y1

L
= 8 − 0

10
= 0.8

4 5 2 3

K3 =

⎡
⎢⎢⎣

10,080 13,440 −10,080 −13,440
13,440 17,920 −13,440 −17,920

−10,080 −13, 440 10,080 13,440
−13,440 −17,920 13,440 17,920

⎤
⎥⎥⎦

4
5
2
3

kN/m�
�
�

���������

Using the code numbers (4, 5, 2, 3) of member 3, the relevant elements of K3 are
stored in S, as shown in Fig. 3.19(c).
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118 Chapter 3 Plane Trusses

Member 4

L =
√

(X3 − X2)2 + (Y3 − Y2)2 =
√

(0 − 10)2 + (8 − 0)2 = 12.806 m

cos θ = X3 − X2

L
= 0 − 10

12.806
= −0.78088

sin θ = Y3 − Y2

L
= 8 − 0

12.806
= 0.62471

6 7 8 1

K4 =

⎡
⎢⎢⎣

13,333 −10,666 −13,333 10,666
−10,666 8,533 10,666 −8,533
−13,333 10,666 13,333 −10,666

10,666 −8,533 −10,666 8,533

⎤
⎥⎥⎦

6
7
8
1

kN/m

��
����

The member code numbers are 6, 7, 8, 1. Thus, the element in row 4 and column 4 of
K4 is stored in row 1 and column 1 of S, as shown in Fig. 3.19(c).

Member 5

L =
√

(X4 − X2)2 + (Y4 − Y2)2 =
√

(6 − 10)2 + (8 − 0)2 = 8.9443 m

cos θ = X4 − X2

L
= 6 − 10

8.9443
= −0.44721

sin θ = Y4 − Y2

L
= 8 − 0

8.9443
= 0.89442

6 7 2 3

K5 =

⎡
⎢⎢⎣

6,260.9 −12,522 −6,260.9 12,522
−12,522 25,043 12,522 −25,043
−6,260.9 12,522 6,260.9 −12,522
12,522 −25,043 −12,522 25,043

⎤
⎥⎥⎦

6
7
2
3

kN/m�
�
�

����������

The code numbers for member 5 are 6, 7, 2, 3. These numbers are used to store the
pertinent elements of K5 in S.

The completed structure stiffness matrix S is given in Fig. 3.19(c).

Joint Load Vector: By comparing Figs. 3.19(a) and (b), we obtain

P =
⎡
⎣ −400

800
−400

⎤
⎦ kN

Joint Displacements: The structure stiffness relationship (Eq. (3.89)) can now be
written as

P = Sd⎡
⎣ −400

800
−400

⎤
⎦ =

⎡
⎣ 43,533 0 0

0 63,008 918
0 918 42,963

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

Solving these equations simultaneously, we determine the joint displacements.

d =
⎡
⎣ −0.0091884

0.012837
−0.0095846

⎤
⎦ m =

⎡
⎣ −9.1884

12.837
−9.5846

⎤
⎦ mm Ans
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To check our solution, the numerical values of d are back-substituted into the structure
stiffness relation P = Sd to obtain

P = Sd =
⎡
⎣ 43,533 0 0

0 63,008 918
0 918 42,963

⎤
⎦

⎡
⎣ −0.0091884

0.012837
−0.0095846

⎤
⎦ =

⎡
⎣ −400

800.04 ≈ 800
−400

⎤
⎦

Checks

Member End Displacements and End Forces:

Member 1 The global end displacements of member 1 are obtained by comparing
its global degree-of-freedom numbers with its code numbers. Thus,

v1 =

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

4
5
8
1

=

⎡
⎢⎢⎣

0
0
0
d1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0

−0.0091884

⎤
⎥⎥⎦ m

To determine its local end displacements, we apply the relationship u = Tv
(Eq. (3.63)), with T as given in Eq. (3.61):

u1 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0

−0.0091884

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

−0.0091884
0

⎤
⎥⎥⎦ m

Next, we compute the end forces in the local coordinate system by using the relation-
ship Q = ku (Eq. (3.7)), with k as defined in Eq. (3.27). Thus,

Q1 =

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ = 35,000

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0

−0.0091884
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

321.59
0

−321.59
0

⎤
⎥⎥⎦ kN

Therefore, the member axial force, which equals the first element of the vector
Q1, is

Qa1 = 321.59 kN (C) Ans

The global end forces can now be obtained by using the relationship F = TTQ
(Eq. (3.66)):

F1 =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

321.59
0

−321.59
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
321.59

0
−321.59

⎤
⎥⎥⎦

4
5
8
1

kN

Using the code numbers (4, 5, 8, 1), the elements of F1 corresponding to the restrained
coordinates (4 through 8) are stored in their proper positions in R, as shown in
Fig. 3.19(d).

Member 2

u2 = v2 =

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

8
1
2
3

=

⎡
⎢⎢⎣

0
d1

d2

d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−0.0091884

0.012837
−0.0095846

⎤
⎥⎥⎦ m
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120 Chapter 3 Plane Trusses

Using the relationship Q � ku (Eq. (3.7)), we determine the member end
forces:

F2 = Q2 = 46,667

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
−0.0091884

0.012837
−0.0095846

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−599.06
0

599.06
0

⎤
⎥⎥⎦

8
1
2
3

kN

from which the member axial force is found.

Qa2 = −599.06 kN = 599.06 kN (T) Ans

The element in the first row of F2 (with code number 8) is stored in the fifth row of R
(with restrained coordinate number 8), as shown in Fig. 3.19(d).

Member 3

v3 =

⎡
⎢⎢⎣

0
0
0.012837

−0.0095846

⎤
⎥⎥⎦

4
5
2
3

m

Using Eq. (3.63),

u = Tv

u3 =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.012837

−0.0095846

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0.00003452

−0.01602

⎤
⎥⎥⎦ m

Applying Eq. (3.7),

Q = ku

Q3 = 28,000

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.00003452

−0.01602

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.96656
0
0.96656
0

⎤
⎥⎥⎦ kN

from which,

Qa3 = −0.96656 kN = 0.96656 kN (T) Ans

From Eq. (3.66), we obtain

F = TTQ

F3 =

⎡
⎢⎢⎣

0.6 −0.8 0 0
0.8 0.6 0 0
0 0 0.6 −0.8
0 0 0.8 0.6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−0.96656
0
0.96656
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.57994
−0.77325

0.57994
0.77325

⎤
⎥⎥⎦

4
5
2
3

kN

The pertinent elements of F3 are stored in R, using the member code numbers (4, 5, 2, 3),
as shown in Fig. 3.19(d).

26201_03_ch03_p048-127.qxd  12/1/10  5:00 PM  Page 120

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.8 Procedure for Analysis 121

Member 4

v4 =

⎡
⎢⎢⎣

0
0
0

−0.0091884

⎤
⎥⎥⎦

6
7
8
1

m

u � Tv

u4 =

⎡
⎢⎢⎣

−0.78088 0.62471 0 0
−0.62471 −0.78088 0 0

0 0 −0.78088 0.62471
0 0 −0.62471 −0.78088

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0

−0.0091884

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
0

−0.0057401
0.007175

⎤
⎥⎥⎦ m

Q = ku

Q4 = 21,865

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0

−0.0057401
0.007175

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

125.51
0

−125.51
0

⎤
⎥⎥⎦ kN

from which,

Qa4 = 125.51 kN (C) Ans

F = TTQ

F4 =

⎡
⎢⎢⎣

−0.78088 −0.62471 0 0
0.62471 −0.78088 0 0
0 0 −0.78088 −0.62471
0 0 0.62471 −0.78088

⎤
⎥⎥⎦

⎡
⎢⎢⎣

125.51
0

−125.51
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−98.008
78.407
98.008

−78.407

⎤
⎥⎥⎦

6
7
8
1

kN

The relevant elements of F4 are stored in R, as shown in Fig. 3.19(d).

Member 5

v5 =

⎡
⎢⎢⎣

0
0
0.012837

−0.0095846

⎤
⎥⎥⎦

6
7
2
3

m

26201_03_ch03_p048-127.qxd  12/1/10  5:00 PM  Page 121

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



122 Chapter 3 Plane Trusses

u = Tv

u5 =

⎡
⎢⎢⎣

−0.44721 0.89442 0 0
−0.89442 −0.44721 0 0

0 0 −0.44721 0.89442
0 0 −0.89442 −0.44721

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.012837

−0.0095846

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
0

−0.014313
−0.0071953

⎤
⎥⎥⎦ m

Q = ku

Q5 = 31,305

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0

−0.014313
−0.0071953

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

448.07
0

−448.07
0

⎤
⎥⎥⎦ kN

Thus,

Qa5 = 448.07 kN (C) Ans

F = TTQ

F5 =

⎡
⎢⎢⎣

−0.44721 −0.89442 0 0
0.89442 −0.44721 0 0
0 0 −0.44721 −0.89442
0 0 0.89442 −0.44721

⎤
⎥⎥⎦

⎡
⎢⎢⎣

448.07
0

−448.07
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−200.38
400.76
200.38

−400.76

⎤
⎥⎥⎦

6
7
2
3

kN

The pertinent elements of F5 are stored in R, as shown in Fig. 3.19(d).

Support Reactions: The completed reaction vector R is given in Fig. 3.19(d), and the
support reactions are shown on a line diagram of the structure in Fig. 3.19(e). Ans

Equilibrium Check: Considering the equilibrium of the entire truss, we write
(Fig. 3.19(e)),

+ → ∑
FX = 0 −0.57994 − 298.39 − 501.05 + 800 = −0.02 kN ≈ 0

Checks

+ ↑ ∑
FY = 0 320.82 + 479.17 − 400 − 400 = −0.01 kN ≈ 0 Checks

+ ∑
M©1 = 0 479.17(10) + 501.05(8) − 800(8) − 400(6) = 0.1kN . m ≈ 0

Checks

a

SUMMARY

In this chapter, we have studied the basic concepts of the analysis of plane
trusses based on the matrix stiffness method. A block diagram that summarizes
the various steps involved in this analysis is presented in Fig. 3.20.
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P R O B L E M S

Problems 123

Fig. 3.20

Identify degrees of freedom d and
restrained coordinates of the truss

For each member:
Evaluate K
Store K in S

Form joint load vector P

Solve P = Sd for d

For each member:
Obtain v from d

Calculate u = Tv, Q = ku and F = TTQ
Store F in R

20 k

12 k1

2 3

5 ft 5 ft

10 ft

EA � constant

E � 10,000 ksi

A � 6 in.2

1 2

Fig. P3.1, P3.17

120 kN

80 kN 4

3

1 2

4 m 4 m

4 m

4 m

EA � constant
E � 200 GPa
A � 2,000 mm2

4 6

1

5

2 3

Fig. P3.2, P3.23

Section 3.2

3.1 through 3.3 Identify by numbers the degrees of free-
dom and restrained coordinates of the trusses shown in
Figs. P3.1–P3.3. Also, form the joint load vector P for the
trusses.
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3.7 If end displacements in the local coordinate system for
member 9 of the truss shown in Fig. P3.7 are

u9 =

⎡
⎢⎢⎣

17.6
3.2

33
6

⎤
⎥⎥⎦ mm

calculate the axial force in the member.

Section 3.5

3.8 and 3.9 Determine the transformation matrix T for each
member of the trusses shown in Figs. P3.8 and P3.9.

124 Chapter 3 Plane Trusses

3

4

21

7 ft7 ft 18 ft

1

2
3

EA � constant
E � 29,000 ksi
A � 5 in.2

24 ft

75 k

50 k

Fig. P3.5, P3.9, P3.15, P3.19

2
1

3

4

12 ft

12 ft

12 ft

EA � constant
E � 10,000 ksi
A � 8 in.2

21

3
4 5

Fig. P3.6, P3.10, P3.12

5

2

6

3 4
1

3

30 k

30 k

10 k

15 ft

20 ft

15 ft 15 ft

EA � constant

E � 29,000 ksi

A � 6 in.2

1 2

5 6

4

7 9
8

Fig. P3.3, P3.25

1 2

3

5 m 3 m

4 m

1

3

4

2

400 kN

30�

EA � constant
E � 200 GPa
A � 5,000 mm2

Fig. P3.4, P3.8, P3.14, P3.18

Section 3.3

3.4 and 3.5 Determine the local stiffness matrix k for each
member of the trusses shown in Figs. P3.4 and P3.5.

3.6 If end displacements in the local coordinate system for
member 5 of the truss shown in Fig. P3.6 are

u5 =

⎡
⎢⎢⎣

−0.5
0.5
0.75
1.25

⎤
⎥⎥⎦ in.

calculate the axial force in the member.
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Section 3.8

3.16 through 3.25 Determine the joint displacements,
member axial forces, and support reactions for the trusses
shown in Figs. P3.16 through P3.25, using the matrix stiff-
ness method. Check the hand-calculated results by using the
computer program on the publisher’s website for this book
(www.cengage.com/engineering), or by using any other gen-
eral purpose structural analysis program available.

Problems 125

1

5

6

EA � constant

E � 200 GPa

A � 5,000 mm2

4

2

3

5 6

6 m

6 m

8 m

3

1

4
109

87
2

Fig. P3.7, P3.11, P3.13

21

3

3 m

75 kN

4 m

EA � constant

E � 70 GPa

A � 2,000 mm2

1

2

Fig. P3.16

80 kN

21

3

5 m

5 m

E � 200 GPa

(4,000 mm2)

(4
,0

00
 m

m
2 ) (6,000 mm 2)

1

2
3

Fig. P3.20

3.10 If the end displacements in the global coordinate system
for member 5 of the truss shown in Fig. P3.10 are

v5 =

⎡
⎢⎢⎣

0.5
0
0.25

−1

⎤
⎥⎥⎦ in.

calculate the end forces for the member in the global coordinate
system. Is the member in equilibrium under these forces?

3.11 If the end displacements in the global coordinate system
for member 9 of the truss shown in Fig. P3.11 are

v9 =

⎡
⎢⎢⎣

16
−8
30

−15

⎤
⎥⎥⎦ mm

calculate the end forces for the member in the global coordinate
system. Is the member in equilibrium under these forces? 

Section 3.6

3.12 Solve Problem 3.10, using the member stiffness relation-
ship in the global coordinate system, F = Kv.

3.13 Solve Problem 3.11, using the member stiffness relation-
ship in the global coordinate system, F = Kv.

Section 3.7

3.14 and 3.15 Determine the structure stiffness matrices S for
the trusses shown in Figs. P3.14 and P3.15.
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1

E = 29,000 ksi

4 5

2

3

20 ft20 ft

(8 in.2)

(6 in. 2) (8 in. 2)
(6

 in
.2 )

(6 in
.2 )

(8 in.2) (8 in.2)

25 k 25 k

16 ft

1
5

7

4

6

2

3

Fig. P3.24

1

E � 29,000 ksi

4

2

3

24 ft

6 ft 6 ft12 ft

(8 in.2)

(1
2 

in
.2 ) (12 in. 2)

(1
2 

in
.2 ) (12 in. 2)

120 k

60 k

120 k

1

2 5

43

Fig. P3.22

2

1

3

4

12 ft

24 ft

16 ft

75 k

150 k

75 k

EA � constant

E � 10,000 ksi

A � 6 in.2

1

23

4
5

Fig. P3.21

3.26 and 3.27 Using a structural analysis computer program,
determine the joint displacements, member axial forces, and
support reactions for the Fink roof truss and the Baltimore
bridge truss shown in Figs. P3.26 and P3.27, respectively. Ver-
ify the computer-generated results by manually checking the
equilibrium equations for the entire truss, and for its joints num-
bered 5,10 and 15.

3.28 and 3.29 Using a structural analysis computer program,
determine the largest value of the load parameter P that can be
applied to the trusses shown in Figs. P3.28 and P3.29 without
causing yielding and buckling of any of the members.
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Problems 127

1 2
3

14 15
745 kN

8

9

10

11

12

13

65
4

5 m5 m6 m6 m5 m5 m

EA � constant
E  � 70 GPa
A � 10,000 mm2

90 kN

90 kN

90 kN

90 kN

90 kN

90 kN

90 kN

45 kN
8 m

8 at 4 m � 32 m

Fig. P3.26

1

10

2

9

EA � constant
E  � 200 GPa
A � 20,000 mm2

14

131211

15 16

120 kN 120 kN120 kN 120 kN120 kN 120 kN120 kN
8 at 6 m = 48 m

120 kN120 kN 120 kN 120 kN
3 4 5 6 7 8

3.5 m

3.5 m

Fig. P3.27

25 ft

25 ft

25 ft

25 ft

50 ft
E, A, I, σy = constant
E = 29,000 ksi     A = 14.7 in.2

Moment of Inertia: I = 400 in.4

Yield Stress: σ y = 36 ksi

P—
2

P

P

P

Fig. P3.28

8 m

8 m

8 m

8 m

6 m6 m
P

3P—
4

P—
2

P—
4

E, A, I, σ y = constant
E = 200 GPa     A = 14,600 mm2

Moment of Inertia: I = 462(106) mm4

Yield Stress: σ y = 250 MPa

Fig. P3.29
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128

4 
4.1 Data Input
4.2 Assignment of Structure Coordinate Numbers
4.3 Generation of the Structure Stiffness Matrix
4.4 Formation of the Joint Load Vector
4.5 Solution for Joint Displacements
4.6 Calculation of Member Forces and Support Reactions

Summary
Problems

COMPUTER PROGRAM FOR
ANALYSIS OF PLANE TRUSSES

Truss Bridge
(Capricornis Photographic Inc. / Shutterstock)
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Section 4.1 Data Input 129

In the previous chapter, we studied the basic principles of the analysis of plane
trusses by the matrix stiffness method. In this chapter, we consider the com-
puter implementation of the foregoing method of analysis. Our objective is to
develop a general computer program that can be used to analyze any statically
determinate or indeterminate plane truss, of any arbitrary configuration, sub-
jected to any system of joint loads.

From a programming viewpoint, it is generally convenient to divide a
structural analysis program into two parts or modules: (a) input module, and
(b) analysis module (Fig. 4.1). The input module reads, and stores into the
computer’s memory, the structural and loading data necessary for the analysis;
the analysis module uses the input data to perform the analysis, and communi-
cates the results back to the user via an output device, such as a printer or a
monitor. The development of a relatively simple input module is presented in
Section 4.1; in the following five sections (4.2 through 4.6), we consider
programming of the five analysis steps discussed in Chapter 3 (Fig. 3.20). The
topics covered in these sections are as follows: assignment of the degree-of-
freedom and restrained coordinate numbers for plane trusses (Section 4.2);
generation of the structure stiffness matrix by assembling the elements of the
member stiffness matrices (Section 4.3); formation of the joint load vector
(Section 4.4); solution of the structure stiffness equations to obtain joint dis-
placements (Section 4.5); and, finally, evaluation of the member axial forces
and support reactions (Section 4.6).

The entire programming process is described by means of detailed flow-
charts, so that readers can write this computer program in any programming
language. It is important to realize that the programming process presented in
this chapter represents only one of many ways in which the matrix stiffness
method of analysis can be implemented on computers. Readers are strongly
encouraged to conceive, and attempt, alternative strategies that can make the
computer implementation (and/or application of the method) more efficient.
One such strategy, which takes advantage of the banded form of the structure
stiffness matrix, will be discussed in Chapter 9.

4.1 DATA INPUT
In this section, we focus our attention on the input module of our computer
program. As stated previously, the input module of a structural analysis pro-
gram reads the structural and loading data necessary for analysis from a file
or another type of input device, and stores it in the computer’s memory so that
it can be processed conveniently by the program for structural analysis.

Structural Analysis Program

Input Module Analysis Module

Fig. 4.1
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130 Chapter 4 Computer Program for Analysis of Plane Trusses

When structural analysis is carried out by hand calculations (e.g., as in
Chapter 3), the information needed for the analysis is obtained by visually in-
specting the analytical model of the structure (as represented by the line dia-
gram). In computerized structural analysis, however, all of the data necessary
for analysis must be specified in the form of numbers, and must be organized
in the computer’s memory in the form of matrices (arrays), in such a way that
it can be used for analysis without any reference to a visual image (or line dia-
gram) of the structure. This data in numerical form must completely and
uniquely define the analytical model of the structure. In other words, a person
with no knowledge of the actual structure or its analytical model should be able
to reconstruct the visual analytical model of the structure, using only the
numerical data and the knowledge of how this data is organized.

The input data necessary for the analysis of plane trusses can be divided
into the following six categories:

● joint data

● support data

● material property data

● cross-sectional property data

● member data

● load data

In the following, we discuss procedures for inputting data belonging to each of
the foregoing categories, using the truss of Fig. 4.2(a) as an example. The ana-
lytical model of this truss is depicted in Fig. 4.2(b). Note that all the informa-
tion in this figure is given in units of kips and inches. This is because we plan
to design a computer program that can work with any consistent set of units.
Thus, all the data must be converted into a consistent set of units before being
input into the program.

18 ft

3 at 24 ft � 72 ft

ESteel � 29,000 ksi

EAluminum � 10,000 ksi

(8 in.2)(8 in.2) (16 in.2)

(16 in. 2)

Aluminum

(8 in.2)

(8
 in

.2 )

75 k

25 k

60 k

Steel

SteelSteel Aluminum

St
ee

l

(12 in
.2 )Stee

l

(12 in
.2 )Stee

l
(12 in. 2)

Steel (8
 in

.2 )

St
ee

l

(a) Actual Truss

Fig. 4.2
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Section 4.1 Data Input 131
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288 in.288 in. 288 in.
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8 

in
.2 )
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Y

X

65

1
2 3

4

(b) Analytical Model

321

4

65 9 1087

Fig. 4.2 (continued )

X coordinate

Y coordinate

COORD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

288 0

576 0

864 0

288 216

576 216

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

NJ × 2

(c) Joint Coordinate Matrix

Joint number

⎡
⎢⎣

1 1 1

3 0 1

4 0 1

⎤
⎥⎦MSUP =

Restraint in Y direction
            (0 = free, 1 = restrained)

Restraint in X direction
            (0 = free, 1 = restrained)

NS × (NCJT + 1)
(d) Support Data Matrix

EM = 29000

10000

Material no. 1

Material no. 2
NMP × 1

(e) Elastic Modulus Vector 

NCP × 1

CP =
8

12

16

Cross-section type no. 1

Cross-section type no. 2

Cross-section type no. 3

(f ) Cross-sectional Property Vector

NM × 4

Beginning joint
End joint

Material no.
Cross-section type no.

MPRP =

1 2 1 1

2 3 1 1

3 4 2 3

5 6 1 1

2 5 1 1

3 6 1 1

1 5 1 2

2 6 1 2

3 5 1 2

4 6 2 3

Member 1

Member 2

Member 3

Member 4

Member 5

Member 6

Member 7

Member 8

Member 9

Member 10

(g) Member Data Matrix

Joint number
Force in X direction

Force in Y direction

JP =
2

5

6

PJ =
0

25 0

0

NJL × 1 NJL × NCJT

(h) Load Data Matrices

−75

−60
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132 Chapter 4 Computer Program for Analysis of Plane Trusses

Joint Data
The joint data consists of: (a) the total number of joints (NJ) of the truss, and
(b) the global (X and Y ) coordinates of each joint. The relative positions of the
joints of the truss are specified by means of the global (X and Y ) coordinates of
the joints. These joint coordinates are usually stored in the computer’s memory
in the form of a matrix, so that they can be accessed easily by the computer
program for analysis. In our program, we store the joint coordinates in a ma-
trix COORD of the order NJ × 2 (Fig. 4.2(c)). The matrix, which is referred
to as the joint coordinate matrix, has two columns, and its number of rows
equals the total number of joints (NJ) of the structure. The X and Y coordinates
of a joint i are stored in the first and second columns, respectively, of the ith
row of the matrix COORD. Thus, for the truss of Fig. 4.2(b) (which has six
joints), the joint coordinate matrix is a 6 × 2 matrix, as shown in Fig. 4.2(c).
Note that the joint coordinates are stored in the sequential order of joint
numbers. Thus, by comparing Figs. 4.2(b) and (c), we can see that the X and
Y coordinates of joint 1 (i.e., 0 and 0) are stored in the first and second
columns, respectively, of the first row of COORD. Similarly, the X and Y co-
ordinates of joint 5 (288 and 216) are stored in the first and second columns,
respectively, of the fifth row of COORD, and so on.

A flowchart for programming the reading and storing of the joint data for
plane trusses is given in Fig. 4.3(a). As shown there, the program first reads the
value of the integer variable NJ, which represents the total number of joints of
the truss. Then, using a Do Loop command, the X and Y coordinates of each
joint are read, and stored in the first and second columns, respectively, of the
matrix COORD. The Do Loop starts with joint number 1 and ends with joint

Read NJ

I = 1

Dimension COORD(NJ, 2)

yes

no
I ≤ NJ?

Read COORD(I, 1), COORD(I, 2)

I = I + 1

(a) Flowchart for Reading and Storing Joint Data

Start Part I

Continue to Part II

Read NS

I = 1

Dimension MSUP(NS, NCJT + 1)

yes

no
I ≤ NS?

Read MSUP(I, 1), MSUP(I, 2), . . . , MSUP(I, NCJT + 1)

I = I + 1

(b) Flowchart for Reading and Storing Support Data

Start Part II

Continue to Part III

Fig. 4.3
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Section 4.1 Data Input 133

Read NMP

I = 1

Dimension EM(NMP)

yes

no
I ≤ NMP?

Read EM(I)

I = I + 1

(c) Flowchart for Reading and
Storing Material Property Data

Start Part III

Continue to Part IV

Read NCP

I = 1

Dimension CP(NCP)

yes

no
I ≤ NCP?

Read CP(I)

I = I + 1

(d) Flowchart for Reading and Storing 
Cross-sectional Property Data

Start Part IV

Continue to Part V

Read NM

I = 1

Dimension MPRP(NM, 4)

yes

no
I ≤ NM?

Read MPRP(I, 1), MPRP(I, 2), MPRP(I, 3), MPRP(I, 4)

I = I + 1

(e) Flowchart for Reading and Storing Member Data

Start Part V

Continue to Part VI

Fig. 4.3 (continued)

Read NJL

I = 1

yes

no
I ≤ NJL?

Read JP(I ), PJ(I, 1), PJ(I, 2), . . . , PJ(I, NCJT )

I = I + 1

Print All Input Data

Dimension JP(NJL), PJ(NJL, NCJT )

(f) Flowchart for Reading and Storing Load Data

Start Part VI

Continue to Part VII
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134 Chapter 4 Computer Program for Analysis of Plane Trusses

number NJ. It should be noted that, depending upon the type of programming
language and/or compiler being used, some additional statements (such as
variable type declaration and formatted read/write statements) may be needed
to implement the foregoing program. (It is assumed herein that the reader has
a working knowledge of a programming language.)

The input data to be read by the computer program is either entered interac-
tively by the user (responding to prompts on the screen), or is supplied in the form
of a data file. The former approach is used in the computer software which can be
downloaded from the publisher’s website for this book. However, the latter ap-
proach is recommended for beginning programmers, because it is straightforward
and requires significantly less programming. As an example, the input data file (in
free-format) for the truss of Fig. 4.2(b) is given in Fig. 4.4. Note that the first line

6
0, 0
288, 0
576, 0
864, 0
288, 216
576, 216
3
1, 1, 1
3, 0, 1
4, 0, 1
2
29000
10000
3
8
12
16
10
1, 2, 1, 1
2, 3, 1, 1
3, 4, 2, 3
5, 6, 1, 1
2, 5, 1, 1
3, 6, 1, 1
1, 5, 1, 2
2, 6, 1, 2
3, 5, 1, 2
4, 6, 2, 3
3
2, 0, −75
5, 25, 0
6, 0, −60

Joint data

Support data

Material property data

Cross-sectional property data

Member data

Joint load data

Fig. 4.4 An Example of an Input Data File
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Section 4.1 Data Input 135

of this data file contains the total number of joints of the truss (i.e., 6); the next six
lines contain the X and Y coordinates of joints 1 through 6, respectively.

Support Data
The support data consists of (a) the number of joints that are attached to sup-
ports (NS); and (b) the joint number, and the directions of restraints, for each
support joint. Since there can be at most two restrained coordinates at a joint of
a plane truss (i.e., NCJT = 2), the restraints at a support joint of such a struc-
ture can be conveniently specified by using a two-digit code in which each digit
is either a 0 or a 1. The first digit of the code represents the restraint condition
at the joint in the global X direction; it is 0 if the joint is free to translate in the
X direction, or it is 1 if the joint is restrained in the X direction. Similarly,
the second digit of the code represents the restraint condition at the joint in the
global Y direction; a 0 indicates that the joint is unrestrained in the Y direction,
and a 1 indicates that it is restrained. The restraint codes for the various types
of supports for plane trusses are given in Fig. 4.5. (The special case of inclined
roller supports will be considered in Chapter 9.)

Considering again the example truss of Fig. 4.2(b), we can see that joint 1
is attached to a hinged support that prevents it from translating in any direction.

Type of Support Restraint Code

Free joint
 (no support)

Roller with
horizontal
reaction

Roller with
vertical
reaction

Hinge

0, 0

1, 0

0, 1

1, 1

RY

RX

RX

RY

Fig. 4.5 Restraint Codes for Plane Trusses
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136 Chapter 4 Computer Program for Analysis of Plane Trusses

Thus, the restraint code for joint 1 is 1,1 indicating that this joint is restrained
from translating in both the X and Y directions. Similarly, the restraint codes for
joints 3 and 4, which are attached to roller supports, are 0,1 because these
joints are free to translate in the horizontal (X) direction, but are restrained by
the rollers from translating in the vertical (Y) direction. The restraint codes of
the remaining joints of the truss, which are free to translate in any direction,
can be considered to be 0,0. However, it is not necessary to input codes for free
joints, because the computer program considers every joint to be free, unless it
is identified as a support joint.

The support data can be stored in the computer’s memory in the form of
an integer matrix MSUP of order NS × (NCJT + 1) (Fig. 4.2(d)). For plane
trusses, because NCJT = 2, the support data matrix MSUP consists of three
columns, with the number of rows equal to the number of support joints (NS).
In each row of MSUP, the support joint number is stored in the first column,
and the first and second digits of the corresponding restraint code are stored in
the second and third columns, respectively. Thus, for the truss of Fig. 4.2(b),
which has three support joints, the support data matrix is a 3 × 3 matrix, as
shown in Fig. 4.2(d). Note that in the first row of MSUP the support joint
number 1 is stored in the first column, and the first and second digits of the re-
straint code for this joint (i.e., 1 and 1) are stored in the second and third
columns, respectively. Similarly, the second row of MSUP consists of the
support joint number 3 in the first column, and the two digits of the corre-
sponding restraint code (i.e., 0 and 1) in the second and third columns, re-
spectively, and so on.

A flowchart for programming the reading and storing of the support data is
given in Fig. 4.3(b), in which, as noted previously, the integer variable NCJT
denotes the number of structure coordinates per joint. Like this flowchart, many
parts of the computer program presented in this chapter are given in a general
form in terms of the variable NCJT, so that they can be conveniently incorpo-
rated into computer programs for analyzing other types of framed structures
(e.g., beams and plane frames), which are considered in subsequent chapters.
For example, as discussed in this section, by setting NCJT = 2, the flowchart
of Fig. 4.3(b) can be used to input support data for plane trusses; whereas, as
discussed subsequently in Chapter 6, the same flowchart can be used to input
support data for plane frames, provided NCJT is set equal to three.

An example of how the support data for a plane truss may appear in an
input data file is given in Fig. 4.4.

Material Property Data
The material property data involves (a) the number of materials used in
the structure (NMP), and (b) the modulus of elasticity (E) of each material. The
elastic moduli are stored by the program in an elastic modulus vector EM. The
number of rows of EM equals the number of materials (NMP), with the elastic
modulus of material i stored in the ith row of the vector (Fig. 4.2(e)).

Consider, for example, the truss of Fig. 4.2(b). The truss is composed of
two materials; namely, steel and aluminum. We arbitrarily select the steel
(E = 29,000 ksi) to be material number 1, and the aluminum (E = 10,000 ksi)
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Section 4.1 Data Input 137

to be material number 2. Thus, the elastic modulus vector, EM, of the truss
consists of two rows, as shown in Fig. 4.2(e); the elastic modulus of material
number 1 (i.e., 29,000) is stored in the first row of EM, and the elastic modu-
lus of material number 2 (i.e., 10,000) is stored in the second row.

Figure 4.3(c) shows a flowchart for programming the reading and storing
of the material property data; Fig. 4.4 illustrates how this type of data may ap-
pear in an input data file.

Cross-Sectional Property Data
The cross-sectional property data consists of (a) the number of different cross-
section types used for the truss members (NCP); and (b) the cross-sectional
area (A) for each cross-section type. The cross-sectional areas are stored by the
program in a cross-sectional property vector CP. The number of rows of CP
equals the number of cross-section types (NCP), with the area of cross-section
i stored in the ith row of the vector (Fig. 4.2(f)).

For example, three types of member cross-sections are used for the truss
of Fig. 4.2(b). We arbitrarily assign the numbers 1, 2, and 3 to the cross-
sections with areas of 8, 12, and 16 in.2, respectively. Thus, the cross-sectional
property vector, CP, consists of three rows; areas of cross-section types 1, 2,
and 3 are stored in rows 1, 2, and 3, respectively, as shown in Fig. 4.2(f).

A flowchart for reading and storing the cross-sectional property data into
computer memory is given in Fig. 4.3(d); Fig. 4.4 shows an example of an
input data file containing this type of data.

Member Data
The member data consists of (a) the total number of members (NM) of the
truss; and (b) for each member, the beginning joint number, the end joint num-
ber, the material number, and the cross-section type number.

The member data can be stored in computer memory in the form of an
integer member data matrix, MPRP, of order NM × 4 (Fig. 4.2(g)). The in-
formation corresponding to a member i is stored in the ith row of MPRP; its
beginning and end joint numbers are stored in the first and second columns, re-
spectively, and the material and cross-section numbers are stored in the third
and fourth columns, respectively.

For example, since the truss of Fig. 4.2(b) has 10 members, its member
data matrix is a 10 × 4 matrix, as shown in Fig. 4.2(g). From Fig. 4.2(b), we
can see that the beginning and end joints for member 1 are 1 and 2, respec-
tively; the material and cross-section numbers for this member are 1 and 1,
respectively. Thus, the numbers 1, 2, 1, and 1 are stored in columns 1
through 4, respectively, of the first row of MPRP, as shown in Fig. 4.2(g).
Similarly, we see from Fig. 4.2(b) that the beginning joint, end joint, mater-
ial, and cross-section numbers for member 3 are 3, 4, 2, and 3, respectively,
and they are stored, respectively, in columns 1 through 4 of row 3 of MPRP,
and so on.

Figure 4.3(e) shows a flowchart for programming the reading and storing
of the member data. An example of how member data may appear in an input
data file is given in Fig. 4.4.
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138 Chapter 4 Computer Program for Analysis of Plane Trusses

Load Data
The load data involves (a) the number of joints that are subjected to external
loads (NJL); and (b) the joint number, and the magnitudes of the force compo-
nents in the global X and Y directions, for each loaded joint. The numbers of
the loaded joints are stored in an integer vector JP of order NJL × 1; the cor-
responding load components in the X and Y directions are stored in the first and
second columns, respectively, of a real matrix PJ of order NJL × NCJT, with
NCJT = 2 for plane trusses (see Fig. 4.2(h)). Thus, for the example truss of
Fig. 4.2(a), which has three joints (2, 5, and 6) that are subjected to loads, the
load data matrices, JP and PJ, are of orders 3 × 1 and 3 × 2, respectively, as
shown in Fig. 4.2(h). The first row of JP contains joint number 2; the loads in
the X and Y directions at this joint (i.e., 0 and −75 k) are stored in the first and
second columns, respectively, of the same row of PJ. The information about
joints 5 and 6 is then stored in a similar manner in the second and third rows,
respectively, of JP and PJ, as shown in the figure.

A flowchart for programming the reading and storing of the load data is
given in Fig. 4.3(f), in which NCJT must be set equal to 2 for plane trusses.
Figure 4.4 shows the load data for the example truss in an input file.

It is important to recognize that the numerical data stored in the various
matrices in Figs. 4.2(c) through (h) completely and uniquely defines the ana-
lytical model of the example truss, without any need to refer to the line diagram
of the structure (Fig. 4.2(b)).

After all the input data has been read and stored in computer memory, it is
considered a good practice to print this data directly from the matrices in the
computer memory (or view it on the screen), so that its validity can be verified
(Fig. 4.3(f)). An example of such a printout, showing the input data for the ex-
ample truss of Fig. 4.2, is given in Fig. 4.6.

**********************************
*   Computer Software *
* for *
* MATRIX ANALYSIS OF STRUCTURES *
*         Second Edition         *
* by *
* Aslam Kassimali *
**********************************

General Structural Data

Project Title: Figure 4-2
Structure Type : Plane Truss
Number of Joints : 6
Number of Members : 10
Number of Material Property Sets (E) : 2
Number of Cross-Sectional Property Sets : 3

Fig. 4.6 A Sample Printout of Input Data
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Joint Coordinates

Joint No.       X Coordinate       Y Coordinate
1             0.0000E+00         0.0000E+00
2             2.8800E+02         0.0000E+00
3             5.7600E+02         0.0000E+00
4             8.6400E+02         0.0000E+00
5             2.8800E+02         2.1600E+02
6             5.7600E+02         2.1600E+02

Supports

Joint No.       X Restraint       Y Restraint
1                Yes                Yes
3                No                 Yes
4                No                 Yes

Material Properties

Material       Modulus of        Co-efficient of
No.       Elasticity (E)    Thermal Expansion
1           2.9000E+04         0.0000E+00
2           1.0000E+04         0.0000E+00

Cross-Sectional Properties

Property No.       Area (A)
1            8.0000E+00
2            1.2000E+01
3            1.6000E+01

Member Data

Member   Beginning   End   Material   Cross-Sectional
No.     Joint    Joint    No.      Property No.
1         1        2      1             1
2         2        3      1             1
3         3        4      2             3
4         5        6      1             1
5         2        5      1             1
6         3        6      1             1
7         1        5      1             2
8         2        6      1             2
9         3        5      1             2
10         4        6      2             3

Joint Loads

Joint No.         X Force         Y Force
2             0.0000E+00     -7.5000E+01
5             2.5000E+01      0.0000E+00
6             0.0000E+00     -6.0000E+01

************* End of Input Data *************

Fig. 4.6 (continued)

139
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140 Chapter 4 Computer Program for Analysis of Plane Trusses

4.2 ASSIGNMENT OF STRUCTURE
COORDINATE NUMBERS
Having completed the input module, we are now ready to develop the analysis
module of our computer program. The analysis module of a structural analysis
program uses the input data stored in computer memory to calculate the de-
sired response characteristics of the structure, and communicates these results
to the user through an output device, such as a printer or a monitor.

As discussed in Section 3.8, the first step of the analysis involves specifi-
cation of the structure’s degrees of freedom and restrained coordinates, which
are collectively referred to as, simply, the structure coordinates. Recall that
when the analysis was carried out by hand calculations (in Chapter 3), the
structure coordinate numbers were written next to the arrows, in the global
X and Y directions, drawn at the joints. In computerized analysis, however,
these numbers must be organized in computer memory in the form of a matrix
or a vector. In our program, the structure coordinate numbers are stored in an
integer vector NSC, with the number of rows equal to the number of structure
coordinates per joint (NCJT ) times the number of joints of the structure (NJ).
For plane trusses, because NCJT = 2, the number of rows of NSC equals twice
the number of joints of the truss (i.e., 2NJ). The structure coordinate numbers
are arranged in NSC in the sequential order of joint numbers, with the number
for the X coordinate at a joint followed by the number for its Y coordinate. In
other words, the numbers for the X and Y structure coordinates at a joint i are
stored in rows (i − 1)2 + 1 and (i − 1)2 + 2, respectively, of NSC. For exam-
ple, the line diagram of the truss of Fig. 4.2(a) is depicted in Fig. 4.7(a) with its
degrees of freedom and restrained coordinates indicated, and the correspond-
ing 12 × 1 NSC vector is given in Fig. 4.7(b).

The procedure for assigning the structure coordinate (i.e., degrees of free-
dom and restrained coordinate) numbers was discussed in detail in Section 3.2.

P2, d2

P5, d5

P1, d1

P4, d4

P3, d3

P6, d6

R9

R10

P8, d8

P7, d7

Y

X

65

1

2 3

4

R11 R12

(a) Line Diagram Showing Degrees of Freedom
 and Restrained Coordinates

321

4

65
9 1087

Fig. 4.7
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Section 4.2 Assignment of Structure Coordinate Numbers 141

This procedure can be conveniently programmed using the flowcharts given
in Fig. 4.8 on the next page. Figure 4.8(a) describes a program for determining
the number of degrees of freedom and the number of restrained coordinates of
the structure. (Note again that NCJT = 2 for plane trusses.) The program first
determines the number of restrained coordinates (NR) by simply counting the
number of 1s in the second and third columns of the support data matrix MSUP.
Recall from our discussion of restraint codes in Section 4.1 that each 1 in the
second or third column of MSUP represents a restraint (in either the X or Y
direction) at a joint of the structure. With NR known, the number of degrees of
freedom (NDOF) is evaluated from the following relationship (Eq. (3.3)).

NDOF = 2(NJ) − NR

For example, since the MSUP matrix for the example truss, given in
Fig. 4.2(d), contains four 1s in its second and third columns, the number of

9
10
1
2
3

11
4

12
5
6
7
8

NSC � 

X
Y
X
Y
X
Y
X
Y
X
Y
X
Y

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Structure coordinate
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(b) Structure Coordinate Number Vector
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(c) Joint Load Vector

Fig. 4.7 (continued)
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142 Chapter 4 Computer Program for Analysis of Plane Trusses

restrained coordinates of the truss is four. Furthermore, since the truss has six
joints (Fig. 4.2(c)), its number of degrees of freedom equals

NDOF = 2(6) − 4 = 8

Once the number of degrees of freedom (NDOF) has been determined, the
program generates the structure coordinate number vector NSC, as shown by

NR = 0, I = 1

yes

yes

yes

no

no

no

I ≤ NS?

I1 ≤ NCJT + 1?

MSUP(I, I1) = 1?

I1 = I1 + 1

I = I + 1

I1 = 2

NR = NR + 1

NDOF = NCJT*NJ − NR

(a) Flowchart for Determining Number 
of Degrees of Freedom

Start Part VII

Continue to Part VIII

 I = 1, J = 0, K = NDOF

ICOUNT = 0, I1 = 1

ICOUNT = 1, I2 = 1

K = K + 1
NSC(I3) = K

 J = J + 1
NSC(I3) = J

J = J + 1
NSC(I3) = J

I3 = (I − 1)*NCJT + I2

I3 = (I − 1)*NCJT + I2

Dimension NSC(NCJT*NJ)

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

I ≤ NJ?

I2 ≤ NCJT?

I2 ≤ NCJT?

I1 ≤ NS?ICOUNT = 0?

MSUP(I1, I2 + 1) = 1?

I2 = I2 + 1

I2 = I2 + 1

I = I + 1

I2 = 1

I1 = I1 + 1

MSUP(I1, 1) = I?

(b) Flowchart for Generating Structure
 Coordinate Numbers

Start Part VIII

Continue to Part IX

Fig. 4.8
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Section 4.3 Generation of the Structure Stiffness Matrix 143

the flowchart in Fig. 4.8(b). Again, NCJT should be set equal to 2 for plane
trusses. As this flowchart indicates, the program uses two integer counters,
J and K, to keep track of the degrees-of-freedom and restrained coordinate
numbers, respectively. The initial value of J is set equal to 0, whereas the ini-
tial value of K is set equal to NDOF.

The structure coordinates are numbered, one joint at a time, starting at
joint 1 and proceeding sequentially to the joint number NJ. First, the number of
the joint under consideration, I, is compared with the numbers in the first
column of the support matrix MSUP to determine whether or not I is a support
joint. If a match is found between I and one of the numbers in the first column
of MSUP, then the counter ICOUNT is set equal to 1; otherwise, the value of
ICOUNT remains 0 as initially assigned.

If joint I is not a support joint (i.e., ICOUNT = 0), then the number for its
degree of freedom in the X direction is obtained by increasing the degrees-of-
freedom counter J by 1 (i.e., J = J + 1), and this value of J is stored in row
number (I − 1)2 + 1 of the NSC vector. Next, the value of J is again increased
by 1 (i.e., J = J + 1) to obtain the number for the degree of freedom of joint I
in the Y direction, and the new value of J is stored in row (I − 1)2 + 2 of the
NSC vector.

If joint I is found to be a support joint (i.e., ICOUNT = 1), then the second
column of the corresponding row of MSUP is checked to determine whether
joint I is restrained in the X direction. If the joint is restrained in the X direction,
then the number for its X-restrained coordinate is obtained by increasing the re-
strained coordinate counter K by 1 (i.e., K = K + 1), and this value of K is
stored in row (I − 1)2 + 1 of the NSC vector. However, if the joint is not re-
strained in the X direction, then the degrees-of-freedom counter J is increased
by 1, and its value (instead of that of K) is stored in row (I − 1)2 + 1 of the
NSC vector. Next, the restraint condition in the Y direction at joint I is deter-
mined by checking the third column of the corresponding row of MSUP. If the
joint is found to be restrained, then the counter K is increased by 1; otherwise,
the counter J is increased by the same amount. The new value of either K or J
is then stored in row (I − 1)2 + 2 of the NSC vector.

The computer program repeats the foregoing procedure for each joint of
the structure to complete the structure coordinate number vector, NSC. As
shown in Fig. 4.8(b), this part of the program (for generating structure coordi-
nate numbers) can be conveniently coded using Do Loop or For–Next types of
programming statements.

4.3 GENERATION OF THE STRUCTURE
STIFFNESS MATRIX
The structure coordinate number vector NSC, defined in the preceding section,
can be used to conveniently determine the member code numbers needed to es-
tablish the structure stiffness matrix S, without any reference to the visual
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144 Chapter 4 Computer Program for Analysis of Plane Trusses

image of the structure (e.g., the line diagram). The code numbers at the beginning
of a member of a general framed structure are stored in the following rows of
the NSC vector:

NSC row for the first code number = (JB − 1)NCJT + 1
NSC row for the second code number = (JB − 1)NCJT + 2

...
...

(4.1a)

NSC row for the NCJTth code number = (JB − 1)NCJT + NCJT

in which JB is the beginning joint of the member. Similarly, the code numbers
at the end of the member, connected to joint JE, can be obtained from the fol-
lowing rows of the NSC:

NSC row for the first code number = (JE − 1)NCJT + 1
NSC row for the second code number = (JE − 1)NCJT + 2

...
...

(4.1b)

NSC row for the NCJTth code number = (JE − 1)NCJT + NCJT

Suppose, for example, that we wish to determine the code numbers for
member 9 of the truss of Fig. 4.2(b). First, from the member data matrix
MPRP of this truss (Fig. 4.2(g)), we obtain the beginning and end joints for
this member as 3 and 5, respectively. (This information is obtained from row 9,
columns 1 and 2, respectively, of MPRP.) Next, we determine the row num-
bers of the NSC vector in which the structure coordinate numbers for joints 3
and 5 are stored. Thus, at the beginning of the member (Eq. (4.1a) with
NCJT = 2),

NSC row for the first code number = (3 − 1)2 + 1 = 5
NSC row for the second code number = (3 − 1)2 + 2 = 6

Similarly, at the end of the member (Eq. (4.1b)),

NSC row for the first code number = (5 − 1)2 + 1 = 9
NSC row for the second code number = (5 − 1)2 + 2 = 10

The foregoing calculations indicate that the code numbers for member 9 are
stored in rows 5, 6, 9, and 10 of the NSC vector. Thus, from the appropriate
rows of the NSC vector of the truss given in Fig. 4.7(b), we obtain the mem-
ber’s code numbers to be 3, 11, 5, 6. A visual check of the truss’s line diagram
in Fig. 4.7(a) indicates that these code numbers are indeed correct.

The procedure for forming the structure stiffness matrix S by assembling
the elements of the member global stiffness matrices K was discussed in detail
in Sections 3.7 and 3.8. A flowchart for programming this procedure is pre-
sented in Fig. 4.9, in which NCJT should be set equal to 2 for plane trusses.
As indicated by the flowchart, this part of our computer program begins by ini-
tializing all the elements of the S matrix to 0. The assembly of the structure
stiffness matrix is then carried out using a Do Loop, in which the following op-
erations are performed for each member of the structure.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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Section 4.3 Generation of the Structure Stiffness Matrix 145

 I = 1

J = 1

IM = 1

Call Subroutine MSTIFFG

Call Subroutine STORES

Dimension S(NDOF, NDOF), GK(2*NCJT, 2*NCJT)

yes

yes

yes

no

no

I ≤ NDOF?

IM ≤ NM?

J ≤ NDOF?

IM = IM + 1

I = I + 1

J = J + 1S(I, J) = 0

JB = MPRP(IM, 1), JE = MPRP(IM, 2)
I = MPRP(IM, 3), E = EM(I )
I = MPRP(IM, 4), A = CP(I )

XB = COORD(JB, 1), YB = COORD(JB, 2)
XE = COORD(JE, 1), YE = COORD(JE, 2)

BL = SQR((XE − XB)^2 + (YE − YB)^2)
CX = (XE − XB)/BL, CY = (YE − YB)/BL

no

Start Part IX

Continue to Part X

Fig. 4.9 Flowchart for Generating Structure Stiffness
Matrix for Plane Trusses

1. Evaluation of member properties. For the member under consider-
ation, IM, the program reads the beginning joint number, JB, and the end joint
number, JE, from the first and second columns, respectively, of the member
data matrix MPRP. Next, the material property number is read from the third
column of MPRP, and the corresponding value of the modulus of elasticity, E,
is obtained from the elastic modulus vector EM. The program then reads the
number of the member cross-section type from the fourth column of MPRP,
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146 Chapter 4 Computer Program for Analysis of Plane Trusses

Arguments: E, A, BL, CX, CY, GK

Z1 = Z*(CX^2)
Z3 = Z*CX*CY
GK(2, 1) = Z3
GK(4, 1) = −Z3
GK(2, 2) = Z2
GK(4, 2) = −Z2
GK(2, 3) = −Z3
GK(4, 3) = Z3
GK(2, 4) = −Z2
GK(4, 4) = Z2

Start Subroutine MSTIFFG

End Subroutine MSTIFFG
Return to calling program

Z = E *A/BL,
Z2 = Z*(CY^2),
GK(1, 1) = Z1,
GK(3, 1) = −Z1,
GK(1, 2) = Z3,
GK(3, 2) = −Z3,
GK(1, 3) = −Z1,
GK(3, 3) = Z1,
GK(1, 4) = −Z3,
GK(3, 4) = Z3,

Fig. 4.10 Flowchart of Subroutine MSTIFFG
for Determining Member Global Stiffness
Matrix for Plane Trusses

and obtains the corresponding value of the cross-sectional area, A, from the
cross-sectional property vector CP. Finally, the X and Y coordinates of the
beginning joint JB and the end joint JE are obtained from the joint coordinate
matrix COORD, and the member’s length, BL, and its direction cosines, CX
(= cos θ) and CY (= sin θ), are calculated using Eqs. (3.62).

2. Determination of member global stiffness matrix GK (= K) by
subroutine MSTIFFG. After the necessary properties of the member under
consideration, IM, have been evaluated, the program calls on the subroutine
MSTIFFG to form the member stiffness matrix in the global coordinate
system. (A flowchart of this subroutine is shown in Fig. 4.10.) Note that in the
computer program, the member global stiffness matrix is named GK (instead
of K) to indicate that it is a real (not an integer) matrix. As the flowchart in
Fig. 4.10 indicates, the subroutine simply calculates the values of the various
stiffness coefficients, and stores them into appropriate elements of the GK ma-
trix, in accordance with Eq. (3.73).

3. Storage of the elements of member global stiffness matrix GK into
structure stiffness matrix S by subroutine STORES. Once the matrix GK
has been determined for the member under consideration, IM, the program
(Fig. 4.9) calls the subroutine STORES to store the pertinent elements of
GK in their proper positions in the structure stiffness matrix S. A flowchart
of this subroutine, which essentially consists of two nested Do Loops, is
given in Fig. 4.11. As this flowchart indicates, the outer Do Loop performs
the following operations sequentially for each row of the GK matrix,
starting with row 1 and ending with row 2(NCJT ): (a) the member code
number N1 corresponding to the row under consideration, I, is obtained
from the NSC vector using the procedure discussed previously in this
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Section 4.3 Generation of the Structure Stiffness Matrix 147

 I = 1

I1 = (JE − 1)*NCJT + (I − NCJT )I1 = (JB − 1)*NCJT + I

I1 = (JE − 1)*NCJT + (J − NCJT )I1 = (JB − 1)*NCJT + J

N1 = NSC(I1)

N2 = NSC(I1)

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

I ≤ 2*NCJT?

J ≤ 2*NCJT?

I ≤ NCJT?

J ≤ NCJT?

N1 ≤ NDOF?

N2 ≤ NDOF? J = J + 1

I = I + 1

J = 1

Arguments: JB, JE, NCJT, NDOF, NSC, GK, S

S(N1, N2) = S(N1, N2) + GK(I, J )

Start Subroutine STORES

End Subroutine STORES
Return to calling program

Fig. 4.11 Flowchart of Subroutine STORES for Storing Member Global Stiffness Matrix
in Structure Stiffness Matrix
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148 Chapter 4 Computer Program for Analysis of Plane Trusses

section; (b) if N1 is less than or equal to NDOF, then the inner Do Loop is
activated; otherwise, the inner loop is skipped; and (c) the row number I is
increased by 1, and steps (a) through (c) are repeated. The inner loop, activated
from the outer loop, performs the following operations sequentially for each
column of the GK matrix, starting with column 1 and ending with column
2(NCJT ): (a) the member code number N2 corresponding to the column under
consideration, J, is obtained from the NSC vector; (b) if N2 is less than or equal
to NDOF, then the value of the element in the Ith row and Jth column of GK is
added to the value of the element in the N1th row and N2th column of S;
otherwise, no action is taken; and (c) the column number J is increased by 1,
and steps (a) through (c) are repeated. The inner loop ends when its steps (a)
and (b) have been applied to all the columns of GK; the program control is then
returned to step (c) of the outer loop. The subroutine STORES ends when steps
(a) and (b) of the outer loop have been applied to all the rows of the GK matrix,
thereby storing all the pertinent elements of the global stiffness matrix of the
member under consideration, IM, in their proper positions in the structure
stiffness matrix S.

Refocusing our attention on Fig. 4.9, we can see that formation of the
structure stiffness matrix is complete when the three operations, described
in the foregoing paragraphs, have been performed for each member of the
structure.

4.4 FORMATION OF THE JOINT LOAD VECTOR
In this section, we consider the programming of the next analysis step, which
involves formation of the joint load vector P. A flowchart for programming this
process is shown in Fig. 4.12. Again, when analyzing plane trusses, the value
of NCJT should be set equal to 2 in the program. It is seen from the figure that
this part of our computer program begins by initializing each element of P to 0.
The program then generates the load vector P by performing the following
operations for each row of the load data vector JP, starting with row 1 and
proceeding sequentially to row NJL:

1. For the row under consideration, I, the number of the loaded joint I1 is
read from the JP vector.

2. The number of the X structure coordinate, N, at joint I1 is obtained
from row I2 = (I1 − 1)2 + 1 of the NSC vector. If N ≤ NDOF, then the value
of the element in the Ith row and the first column of the load data matrix PJ
(i.e., the X load component) is added to the Nth row of the load vector P; oth-
erwise, no action is taken.

3. The NSC row number I2 is increased by 1 (i.e., I2 = I2 + 1), and the
structure coordinate number, N, of the Y coordinate is read from the NSC. If
N ≤ NDOF, then the value of the element in the Ith row and the second column
of PJ (i.e., the Y load component) is added to the Nth row of P; otherwise, no
action is taken.
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Section 4.4 Formation of the Joint Load Vector 149

The foregoing operations are repeated for each loaded joint of the struc-
ture to complete the joint load vector P.

To illustrate this procedure, let us form the joint load vector P for the ex-
ample truss of Fig. 4.2(a) without referring to its visual image or line diagram
(i.e., using only the input data matrices and the NSC vector). Recall that in
Section 4.2, using the MSUP matrix, we determined that the number of de-
grees of freedom of this structure equals 8. Thus, the joint load vector P for the
truss must be of order 8 × 1.

Fig. 4.12 Flowchart for Forming Joint Load Vector

 I = 1

 I = 1

 J = 1

P(I ) = 0

I1 = JP(I )
I2 = (I1 − 1)*NCJT

I2 = I2 + 1
N = NSC(I2)

Dimension P(NDOF )

yes

yes

yes

yes

no

no

no

no

I ≤ NDOF?

I ≤ NJL?

J ≤ NCJT?

P(N) = P(N) + PJ(I, J )

I = I + 1

J = J + 1N ≤ NDOF?

I = I + 1

Start Part X

Continue to Part XI
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150 Chapter 4 Computer Program for Analysis of Plane Trusses

We begin generating P by focusing our attention on row 1 (i.e., I = 1) of
the load data vector JP (Fig. 4.2(h)), from which we determine the number of
the first loaded joint, I1, to be 2. We then determine the row of the NSC in
which the number of the X structure coordinate at joint 2 is stored, using the
following relationship:

I2 = (2 − 1)2 + 1 = 3

From row 3 of the NSC vector given in Fig. 4.7(b), we read the number of the
structure coordinate under consideration as 1 (i.e., N = 1). This indicates that
the force component in the first row and first column of the load data matrix PJ
(i.e., the X component of the load acting at joint 2) must be stored in the first
row of P; that is, P(1) = 0. Next, we increase I2 by 1 (i.e., I2 = 4) and, from
row 4 of the NSC, we find the number of the Y structure coordinate at the joint
to be 2 (i.e., N = 2). This indicates that the load component in the first row
and second column of PJ is to be stored in the second row of P; that is,
P(2) = −75.

Having stored the loads acting at joint 2 in the load vector P, we now focus
our attention on the second row of JP (i.e., I = 2), and read the number of the
next loaded joint, I1, as 5. We then determine the NSC row where the number
of the X structure coordinate at joint 5 is stored as

I2 = (5 − 1)2 + 1 = 9

From row 9 of the NSC (Fig. 4.7(b)), we find the number of the structure co-
ordinate under consideration to be 5 (i.e., N = 5). Thus, the force component
in row 2 and column 1 of PJ must be stored in row 5 of P; or P(5) = 25. Next,
we increase I2 by 1 to 10, and from row 10 of the NSC read the structure co-
ordinate number, N, as 6. Thus, the load component in the second row and sec-
ond column of PJ is stored in the sixth row of P; or P(6) = 0.

Finally, by repeating the foregoing procedure for row 3 of JP, we store the
X and Y force components at joint 6 in rows 7 and 8, respectively, of P. The
completed joint load vector P thus obtained is shown in Fig. 4.7(c).

4.5 SOLUTION FOR JOINT DISPLACEMENTS
Having programmed the generation of the structure stiffness matrix S and the
joint load vector P, we now proceed to the next part of our computer program,
which calculates the joint displacements, d, by solving the structure stiffness
relationship, Sd = P (Eq. (3.89)). A flowchart for programming this analysis
step is depicted in Fig. 4.13. The program solves the system of simultaneous
equations, representing the stiffness relationship, Sd = P, using the Gauss–
Jordan elimination method discussed in Section 2.4.

It should be recognized that the program for the calculation of joint dis-
placements, as presented in Fig. 4.13, involves essentially the same operations
as the program for the solution of simultaneous equations given in Fig. 2.2.
However, in the previous program (Fig. 2.2), the elementary operations were
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Section 4.5 Solution for Joint Displacements 151

Fig. 4.13 Flowchart for Calculation of Joint Displacements by
Gauss–Jordan Method

 I = 1

J = 1

 K = 1

M = I

Z1 = S(I, I )

S(I, J ) = S(I, J )/Z1

P(I ) = P(I )/Z1

Z = S(K, I )

yes

yes

yes

yes

yes

no

no

no

no

no

I ≤ NDOF?

J ≤ NDOF?

M ≤ NDOF?

K = I?

P(K ) = P(K ) − P(I )*Z

S(K, M ) = S(K, M ) − S(I, M )*Z

K = K + 1

J = J + 1

M = M + 1

Print Joint Displacements P

K ≤ NDOF?I = I + 1

Start Part XI

Continue to Part XII
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152 Chapter 4 Computer Program for Analysis of Plane Trusses

applied to an augmented matrix; in the present program (Fig. 4.13), to save
space in computer memory, no augmented matrix is formed, and the elemen-
tary operations are applied directly to the structure stiffness matrix S and the
joint load vector P. Thus, at the end of the Gauss–Jordan elimination process,
the S matrix is reduced to a unit matrix, and the P vector contains values of the
joint displacements. In the rest of our computer program, therefore, P (instead
of d) is considered to be the joint displacement vector. The joint displacements
thus obtained can be communicated to the user through a printout or on the
screen.

4.6 CALCULATION OF MEMBER FORCES
AND SUPPORT REACTIONS
In this section, we consider programming of the final analysis step, which in-
volves calculation of the member forces and support reactions. A flowchart for
programming this analysis step is presented in Fig. 4.14, with NCJT = 2 for
plane trusses. As shown there, this part of our computer program begins by ini-
tializing each element of the reaction vector, R, to 0. The member forces and
support reactions are then determined by performing the following operations
for each member of the structure, via a Do Loop.

1. Evaluation of member properties. For the member under consid-
eration, IM, the program reads the beginning joint number JB, the end joint
number JE, the modulus of elasticity E, the cross-sectional area A, and the X
and Y coordinates of the beginning and end joints. It then calculates the
member length, BL, and direction cosines, CX (= cos θ) and CY (= sin θ),
using Eqs. (3.62).

2. Evaluation of member global end displacements V (= v) by subrou-
tine MDISPG. After the properties of the member under consideration,
IM, have been calculated, the computer program calls subroutine MDISPG,
to obtain the member end displacements in the global coordinate system. A
flowchart of this subroutine is given in Fig. 4.15. As this flowchart indicates,
after initializing V to 0, the subroutine reads, in order, for each of the mem-
ber end displacements, VI, the number of the corresponding structure coordi-
nate, N, at joint JB or JE, from the NSC vector. If the structure coordinate
number N, corresponding to an end displacement VI, is found to be less than
or equal to NDOF, then the value of the element in the Nth row of the joint-
displacement vector P (= d) is stored in the Ith row of the member
displacement vector V.

3. Determination of member transformation matrix T by subroutine
MTRANS. After the global end-displacement vector V for the member under
consideration, IM, has been evaluated, the main program (Fig. 4.14) calls on
the subroutine MTRANS to form the member transformation matrix T. A flow-
chart of this subroutine is shown in Fig. 4.16. As this figure indicates, the sub-
routine first initializes T to 0, and then simply stores the values of the direction
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Section 4.6 Calculation of Member Forces and Support Reactions 153

Fig. 4.14 Flowchart for Determination of Member Forces and Support
Reactions for Plane Trusses

Dimension BK(2*NCJT, 2*NCJT ), T(2*NCJT, 2*NCJT ), V(2*NCJT ),
U(2*NCJT ), Q(2*NCJT ), F(2*NCJT ), R(NR)

I = 1

IM = 1

R(I ) = 0

JB = MPRP(IM, 1), JE = MPRP(IM, 2)
I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), A = CP(I)

XB = COORD(JB, 1), YB = COORD(JB, 2)
XE = COORD(JE, 1), YE = COORD(JE, 2)

BL = SQR((XE − XB)^2 + (YE − YB)^2)
CX = (XE − XB)/BL, CY = (YE − YB)/BL

yes

yes

no

no

I ≤ NR?

Call Subroutine MDISPG

Call Subroutine MTRANS

Call Subroutine MDISPL

Call Subroutine MSTIFFL

Call Subroutine MFORCEL

Call Subroutine MFORCEG

Call Subroutine STORER

I = I + 1

IM = IM + 1

Print Support Reactions R

IM ≤ NM?

Start Part XII

End of Program

26201_04_ch04_p128-161.qxd  12/1/10  5:03 PM  Page 153

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



154 Chapter 4 Computer Program for Analysis of Plane Trusses

 I = 1

yes

yes

yes

yes

yes

no

no

no

no

I ≤ 2*NCJT?

I ≤ 2*NCJT?

I ≤ NCJT?

N ≤ NDOF?

I = I + 1

I = I + 1

I = I + 1

Arguments: JB, JE, NCJT, NDOF, NSC, P, V

V(I) = 0

V(I ) = P(N)

V(I ) = P(N)

J = (JB − 1)* NCJT
I = 1

J = J + 1
N = NSC(J)

N ≤ NDOF?

J = J + 1
N = NSC(J)

J = (JE − 1) * NCJT
I = NCJT + 1

no

Start Subroutine MDISPG

End Subroutine MDISPG
Return to calling program

Fig. 4.15 Flowchart of Subroutine MDISPG
for Determining Member Global Displacement
Vector

Fig. 4.16 Flowchart of Subroutine MTRANS for
Determining Member Transformation Matrix for
Plane Trusses

 I = 1

 J = 1

yes

yes

no

no

I ≤ 2*NCJT?

J ≤ 2*NCJT?I = I + 1

J = J + 1

Arguments: CX, CY, NCJT, T

T(I, J ) = 0

T(1, 1) = CX,  T(2, 1) = −CY
T(1, 2) = CY,  T(2, 2) = CX
T(3, 3) = CX,  T(4, 3) = −CY
T(3, 4) = CY,  T(4, 4) = CX

Start Subroutine MTRANS

End Subroutine MTRANS
Return to calling program
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Section 4.6 Calculation of Member Forces and Support Reactions 155

cosines CX and CY, with appropriate plus or minus signs, into various elements
of T in accordance with Eq. (3.61).

4. Calculation of member local end displacements U (= u) by subroutine
MDISPL. Next, as shown in Fig. 4.14, the program calls subroutine MDISPL
to obtain the local end displacements of the member under consideration, IM.
From the flowchart given in Fig. 4.17, we can see that after initializing U to 0,
this subroutine calculates the member local end-displacement vector by apply-
ing the relationship U = TV (Eq. (3.63)). The procedure for multiplying ma-
trices was discussed in Section 2.3, and subroutine MDISPL (Fig. 4.17) uses
essentially the same operations as the program for matrix multiplication given
in Fig. 2.1.

5. Determination of member local stiffness matrix BK (= k) by sub-
routine MSTIFFL. After the local end displacements of the member under

Start Subroutine MDISPL

I = 1

I = 1

J = 1

J = J + 1

I = I + 1

U(I ) = 0

U(I ) = U(I ) + T(I, J) * V(J)

I = I + 1

I ≤ 2*NCJT?

I ≤ 2*NCJT?

J ≤ 2*NCJT?

Arguments: NCJT, V, T, U

no

no

no

yes

yes

yes

End Subroutine MDISPL
Return to calling program

Fig. 4.17 Flowchart of Subroutine MDISPL for Determining
Member Local Displacement Vector
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156 Chapter 4 Computer Program for Analysis of Plane Trusses

consideration, IM, have been evaluated, the program calls subroutine 
MSTIFFL to form the member stiffness matrix in the local coordinate
system. A flowchart of this subroutine is shown in Fig. 4.18, in which the
member local stiffness matrix is identified by the name BK (instead of k) to
indicate that it is a real matrix. As this figure indicates, the subroutine, after
initializing BK to 0, simply calculates the values of the various stiffness
coefficients and stores them in appropriate elements of BK, in accordance
with Eq. (3.27).

6. Evaluation of member local end forces Q by subroutine MFORCEL.
As shown in Fig. 4.14, the program then calls subroutine MFORCEL to ob-
tain the local end forces of the member under consideration, IM. From the
flowchart depicted in Fig. 4.19, we can see that, after initializing Q to 0, this

I ≤ 2*NCJT?

J ≤ 2*NCJT?

Start Subroutine MSTIFFL

Arguments: E, A, BL, NCJT, BK 

I = 1

J = 1

I = I + 1

J = J + 1BK(I, J ) = 0

Z = E*A/BL
BK(1, 1) = Z,     BK(3, 1) = −Z
BK(1, 3) = −Z, BK(3, 3) = Z

no

no

yes

yes

End Subroutine MSTIFFL
Return to calling program

Fig. 4.18 Flowchart of Subroutine MSTIFFL for Determining
Member Local Stiffness Matrix for Plane Trusses

I ≤ 2*NCJT?

I ≤ 2*NCJT?

Start Subroutine MFORCEL

Arguments: NCJT, BK, U, Q 

I = 1

I = 1

J = 1

I = I + 1

J ≤ 2*NCJT?I = I + 1

J = J + 1

Q(I ) = 0

Q(I ) = Q(I ) + BK(I, J )*U(J )

no

no

yes

Print Member Forces Q

yes

yes

no

End Subroutine MFORCEL
Return to calling program

Fig. 4.19 Flowchart of Subroutine MFORCEL for
Determining Member Local Force Vector
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Section 4.6 Calculation of Member Forces and Support Reactions 157

subroutine calculates the member local end forces using the relationship
Q = BK U (Eq. (3.7)). The Q vector thus obtained is then printed or displayed
on the screen.

7. Calculation of member global end forces F by subroutine MFORCEG.
After the local end forces of the member under consideration, IM, have been
evaluated, the computer program calls subroutine MFORCEG to calculate
the member end forces in the global coordinate system. A flowchart of this
subroutine is given in Fig. 4.20. From the figure, we can see that after initializ-
ing F to 0, the subroutine calculates the global end forces by applying the rela-
tionship F = TTQ (Eq. (3.66)); these forces are then communicated to the user
through a printer or on the screen.

I ≤ 2*NCJT?

I ≤ 2*NCJT?

J ≤ 2*NCJT?

Start Subroutine MFORCEG

Arguments: NCJT, T, Q, F 

I = 1

I = 1

J = 1

F(I ) = 0

F(I ) = F(I ) + T(J, I )*Q(J )

Print Member Forces F

I = I + 1

I = I + 1

J = J + 1

no

no

no

yes

yes

yes

End Subroutine MFORCEG
Return to calling program

Fig. 4.20 Flowchart of Subroutine MFORCEG for Determining
Member Global Force Vector
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158 Chapter 4 Computer Program for Analysis of Plane Trusses

Start Subroutine STORER

I = 1

I = I + 1

N = NSC(I1)

R(N − NDOF ) = R(N − NDOF ) + F(I )

I1 = (JB   − 1)*NCJT + I I1 = (JE   − 1)*NCJT + (I − NCJT )

I ≤ 2*NCJT?

I ≤ NCJT?

N > NDOF?

Arguments: JB, JE, NCJT, NDOF, NSC, F, R

no

no

no

yes

yes

yes

End Subroutine STORER
Return to calling program

Fig. 4.21 Flowchart of Subroutine STORER for Storing Member Global Forces in
Support Reaction Vector

8. Storage of the elements of member global force vector F in reaction
vector R by subroutine STORER. Once the global force vector F has been
determined for the member under consideration, IM, the program (Fig. 4.14)
calls subroutine STORER to store the pertinent elements of F in their proper
positions in the support reaction vector R. A flowchart of this subroutine,
which essentially consists of a Do Loop, is given in Fig. 4.21. As shown in this
flowchart, the subroutine reads, in order, for each of the member’s forces, FI,
the number of the corresponding structure coordinate, N, from the NSC vector.
If N > NDOF, then the value of FI is added to the (N − NDOF)th row of the
reaction vector R.

Returning our attention to Fig. 4.14, we can see that the formation of the
reaction vector R is completed when the foregoing eight operations have been
performed for each member of the structure. The support reactions thus
obtained can then be communicated to the user via a printer or on the screen.
A sample printout is given in Fig. 4.22, showing the results of the analysis for
the example truss of Fig. 4.2.
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***************************************************
* Results of Analysis *
***************************************************

Joint Displacements

Joint No.       X Translation       Y Translation

1             0.0000E+00         0.0000E+00
2             7.4568E-02        -2.0253E-01
3             1.1362E-01         0.0000E+00
4             1.0487E-01         0.0000E+00
5             5.7823E-02        -1.5268E-01
6             2.8344E-02        -7.9235E-02

Member Axial Forces

Member Axial Force (Qa)

1            6.0069E+01 (T)
2            3.1459E+01 (T)
3            4.8629E+00 (C)
4            2.3747E+01 (C)
5            5.3543E+01 (T)
6            8.5105E+01 (C)
7            4.3836E+01 (C)
8            3.5762E+01 (T)
9            4.5402E+01 (C)
10            6.0787E+00 (T)

Support Reactions

Joint No.           X Force           Y Force

1             -2.5000E+01        2.6301E+01
3              0.0000E+00        1.1235E+02
4              0.0000E+00       -3.6472E+00

***************** End of Analysis *****************

Summary 159

SUMMARY

In this chapter, we have developed a general computer program for the analy-
sis of plane trusses subjected to joint loads. The general program consists of a
main program, which is subdivided into twelve parts, and nine subroutines.
Brief descriptions of the various parts of the main program, and the subrou-
tines, are provided in Table 4.1 for quick reference.

Fig. 4.22 A Sample Printout of Analysis Results
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160 Chapter 4 Computer Program for Analysis of Plane Trusses

Table 4.1 Computer Program for Analysis of Plane Trusses

Main
program 
part Description

I Reads and stores joint data (Fig. 4.3(a))
II Reads and stores support data (Fig. 4.3(b))
III Reads and stores material properties (Fig. 4.3(c))
IV Reads and stores cross-sectional properties (Fig. 4.3(d))
V Reads and stores member data (Fig. 4.3(e))
VI Reads and stores joint loads (Fig. 4.3(f))
VII Determines the number of degrees of freedom NDOF of the

structure (Fig. 4.8(a))
VIII Forms the structure coordinate number vector NSC

(Fig. 4.8(b))
IX Generates the structure stiffness matrix S (Fig. 4.9); subroutines

called: MSTIFFG and STORES
X Forms the joint load vector P (Fig. 4.12)
XI Calculates the structure’s joint displacements by solving the

stiffness relationship, Sd = P, using the Gauss–Jordan elimina-
tion method. The vector P now contains joint displacements
(Fig. 4.13).

XII Determines the member end force vectors Q and F, and the
support reaction vector R (Fig. 4.14); subroutines called:
MDISPG, MTRANS, MDISPL, MSTIFFL, MFORCEL,
MFORCEG, and STORER

Subroutine Description

MDISPG Determines the member global displacement vector V from the
joint displacement vector P (Fig. 4.15)

MDISPL Calculates the member local displacement vector U = TV
(Fig. 4.17)

MFORCEG Determines the member global force vector F = TTQ
(Fig. 4.20)

MFORCEL Evaluates the member local force vector Q = BK U
(Fig. 4.19)

MSTIFFG Forms the member global stiffness matrix GK (Fig. 4.10)
MSTIFFL Forms the member local stiffness matrix BK (Fig. 4.18)
MTRANS Forms the member transformation matrix T (Fig. 4.16)
STORER Stores the pertinent elements of the member global force vector

F in the reaction vector R (Fig. 4.21)
STORES Stores the pertinent elements of the member global stiffness

matrix GK in the structure stiffness matrix S (Fig. 4.11)
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P R O B L E M S

Section 4.3

4.3 Extend the program of Problem 4.2 to generate, and print,
the structure stiffness matrix S. Use the program to generate the
structure stiffness matrices for the trusses of Problems 3.16
through 3.25, and compare the computer-generated S matrices
to those obtained by hand calculations.

Section 4.4

4.4 Extend the program developed in Problem 4.3 to form,
and print, the joint load vector P. Apply the program to
the trusses of Problems 3.16 through 3.25, and compare the
computer-generated P vectors to those obtained by hand
calculations.

Section 4.5

4.5 Extend the program of Problem 4.4 so that it can: (a) cal-
culate the structure’s joint displacements by solving the stiff-
ness relationship, Sd = P, using the Gauss–Jordan elimination
method; and (b) print the joint displacements. Using the
program, determine the joint displacements for the trusses of
Problems 3.16 through 3.25, and compare the computer-
generated results to those obtained by hand calculations.

Section 4.6

4.6 Extend the program developed in Problem 4.5 so that it
can determine and print: (a) the local end forces, Q, for each
member of the truss; and (b) the support reaction vector R. Use
the program to analyze the trusses of Problems 3.16 through
3.25, and compare the computer-generated results to those
obtained by hand calculations.

The objective of the following problems is to develop, incre-
mentally, a computer program for the analysis of plane trusses;
while testing each program increment for correctness, as it is
being developed. The reader is strongly encouraged to manually
solve as many of the problems (3.16 through 3.25) as possible,
so that these hand-calculation results can be used to check the
correctness of the various parts of the computer program.

Section 4.1

4.1 Develop an input module of a computer program for
the analysis of plane trusses, which can perform the following
operations:

a. read from a data file, or computer screen, all the necessary
input data;

b. store the input data in computer memory in the form of
scalars, vectors, and/or matrices, as appropriate; and

c. print the input data from computer memory.

Check the program for correctness by inputting data for the
trusses of Problems 3.16 through 3.25, and by carefully exam-
ining the printouts of the input data to ensure that all data have
been correctly read and stored.

Section 4.2

4.2 Extend the program developed in Problem 4.1, so that it
can perform the following additional operations:

a. determining the number of degrees of freedom (NDOF) of
the structure;

b. forming the structure coordinate number vector NSC; and
c. printing out the NDOF and NSC.

To check the program for correctness, use it to determine the
NDOF and NSC for the trusses of Problems 3.16 through 3.25,
and compare the computer-generated results to those obtained
by hand calculations.
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A Continuous Beam Bridge
(Photo courtesy of Bethlehem Steel Corporation)
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Section 5.1 Analytical Model 163

The term “beam” is used herein to refer to a long straight structure, which is
supported and loaded in such a way that all the external forces and couples
(including reactions) acting on it lie in a plane of symmetry of its cross-section,
with all the forces perpendicular to its centroidal axis. Under the action of ex-
ternal loads, beams are subjected only to bending moments and shear forces
(but no axial forces).

In this chapter, we study the basic concepts of the analysis of beams by
the matrix stiffness method, and develop a computer program for the analysis
of beams based on the matrix stiffness formulation. As we proceed through
the chapter, the reader will notice that, although the member stiffness relations
for beams differ from those for plane trusses, the overall format of the method
of analysis remains essentially the same—and many of the analysis steps de-
veloped in Chapter 3 for the case of plane trusses can be directly applied to
beams. Therefore, the computer program developed in Chapter 4 for the
analysis of plane trusses can be modified with relative ease for the analysis of
beams.

We begin by discussing the preparation of analytical models of beams in
Section 5.1, where the global and local coordinate systems and the degrees of
freedom of beams are defined. Next, we derive the member stiffness relations
in the local coordinate system in Section 5.2; and present the finite-element
formulation of the member stiffness matrix, via the principle of virtual work, in
Section 5.3. The derivation of the member fixed-end forces, due to external
loads applied to members, is considered in Section 5.4; and the formation of
the stiffness relations for the entire beam, by combining the member stiffness
relations, is discussed in Section 5.5. The procedure for forming the structure
fixed-joint force vectors, and the concept of equivalent joint loads, are intro-
duced in Section 5.6; and a step-by-step procedure for the analysis of beams is
presented in Section 5.7. Finally, a computer program for the analysis of beams
is developed in Section 5.8.

5.1 ANALYTICAL MODEL
For analysis by the matrix stiffness method, the continuous beam is modeled as
a series of straight prismatic members connected at their ends to joints, so that
the unknown external reactions act only at the joints. Consider, for example,
the two-span continuous beam shown in Fig. 5.1(a). Although the structure ac-
tually consists of a single continuous beam between the two fixed supports at
the ends, for the purpose of analysis it is considered to be composed of three
members (1, 2, and 3), rigidly connected at four joints (1 through 4), as shown
in Fig. 5.1(b). Note that joint 2 has been introduced in the analytical model so
that the vertical reaction at the roller support acts on a joint (instead of on a
member), and joint 3 is used to subdivide the right span of the beam into two
members, each with constant flexural rigidity (EI ) along its length. This divi-
sion of the beam into members and joints is necessary because the formulation
of the stiffness method requires that the unknown external reactions act only at
the joints (i.e., all the member loads be known in advance of analysis), and the
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164 Chapter 5 Beams

Fig. 5.1
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(c) Degrees of Freedom

member stiffness relationships used in the analysis (to be derived in the fol-
lowing sections) are valid for prismatic members only.

It is important to realize that because joints 1 through 4 (Fig. 5.1(b)) are
modeled as rigid joints (i.e., the corresponding ends of the adjacent members
are rigidly connected to the joints), they satisfy the continuity and restraint
conditions of the actual structure (Fig. 5.1(a)). In other words, since the left end
of member 1 and the right end of member 3 of the analytical model are rigidly
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Section 5.1 Analytical Model 165

connected to joints 1 and 4, respectively, which are in turn attached to the fixed
supports, the displacements and rotations at the exterior ends of the members
are 0; thereby satisfying the restraint conditions of the actual beam at the two
ends. Similarly, as the right end of member 1 and the left end of member 2
(Fig. 5.1(b)) are connected to the rigid joint 2, which is attached to a roller sup-
port, the displacements at the foregoing ends of members 1 and 2 are 0, and the
rotations at the two ends are equal. This indicates that the analytical model sat-
isfies the restraint and continuity conditions of the actual beam at the location
of joint 2. Finally, the right end of member 2 and the left end of member 3
(Fig. 5.1(b)) are rigidly connected to joint 3, to ensure that the continuity of
both the displacement and the rotation is maintained at the location of joint 3
in the analytical model.

Global and Local Coordinate Systems
As discussed in Chapter 3, the overall geometry, as well as the loads and dis-
placements (including rotations) at the joints of a structure are described with
reference to a Cartesian global (XYZ ) coordinate system. The particular orien-
tation of the global coordinate system, used in this chapter, is as follows.

1

4 6

(d) Structure Coordinate Numbers

5

7

3 8

32

2

1 4
X

Y

2 31

R5

R8
P1, d1 P3, d3
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(e) Degrees of Freedom, Joint Loads, and Support Reactions
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321 4
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Fig. 5.1 (continued)
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Although not necessary, it is usually convenient to locate the origin of the
global XY coordinate system at the leftmost joint of the beam, as shown in
Fig. 5.1(b), so that the X coordinates of all the joints are positive. As will be-
come apparent in Section 5.8, this definition of the global coordinate system
simplifies the computer programming of beam analysis, because only one (X)
coordinate is needed to specify the location of each joint of the structure.

As in the case of plane trusses (Chapter 3), a local (right-handed, xyz) co-
ordinate system is defined for each member of the beam, to establish the rela-
tionships between member end forces and end displacements, in terms of
member loads. Note that the terms forces (or loads) and displacements are
used in this text in the general sense to include moments and rotations, respec-
tively. The local coordinate system is defined as follows.

The local coordinate systems for the three members of the example continuous
beam are depicted in Fig. 5.1(b). As this figure indicates, the local coordinate
system of each member is oriented so that the positive directions of the local
x and y axes are the same as the positive directions of the global X and Y axes,
respectively.

The selection of the global and local coordinate systems, as specified in this
section, considerably simplifies the analysis of continuous beams by eliminating
the need for transformation of member end forces, end displacements, and stiff-
nesses, from the local to the global coordinate system and vice-versa.

Degrees of Freedom
The degrees of freedom (or free coordinates) of a beam are simply its unknown
joint displacements (translations and rotations). Since the axial deformations
of the beam are neglected, the translations of its joints in the global X direction
are 0. Therefore, a joint of a beam can have up to two degrees of freedom,
namely, a translation in the global Y direction (i.e., in the direction perpendicu-
lar to the beam’s centroidal axis) and a rotation (about the global Z axis). Thus,

The origin of the local xyz coordinate system for a member is located
at the left end (beginning) of the member in its undeformed state, with
the x axis directed along its centroidal axis in the undeformed state,
and the y axis oriented in the vertical (positive upward) direction.

The global coordinate system used for the analysis of beams is a
right-handed XYZ coordinate system, with the X axis oriented in the
horizontal (positive to the right) direction, and coinciding with the
centroidal axis of the beam in the undeformed state. The Y axis is ori-
ented in the vertical (positive upward) direction, with all the external
loads and reactions of the beam lying in the XY plane.

166 Chapter 5 Beams
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Section 5.1 Analytical Model 167

the number of structure coordinates (i.e., free and/or restrained coordinates) at
a joint of a beam equals 2, or NCJT = 2.

Let us consider the analytical model of the continuous beam as given in
Fig. 5.1(b). The deformed shape of the beam, due to an arbitrary loading, is de-
picted in Fig. 5.1(c) using an exaggerated scale. From this figure, we can see
that joint 1, which is attached to the fixed support, can neither translate nor
rotate; therefore, it does not have any degrees of freedom. Since joint 2 of
the beam is attached to the roller support, it can rotate, but not translate. Thus,
joint 2 has only one degree of freedom, which is designated d1 in the figure. As
joint 3 is not attached to a support, two displacements—the translation d2 in the
Y direction, and the rotation d3 about the Z axis—are needed to completely
specify its deformed position 3′. Thus, joint 3 has two degrees of freedom.
Finally, joint 4, which is attached to the fixed support, can neither translate nor
rotate; therefore, it does not have any degrees of freedom. Thus, the entire
beam has a total of three degrees of freedom.

As indicated in Fig. 5.1(c), joint translations are considered positive when
vertically upward, and joint rotations are considered positive when counter-
clockwise. All the joint displacements in Fig. 5.1(c) are shown in the positive
sense. The NDOF × 1 joint displacement vector d for the beam is written as

d =
⎡
⎣ d1

d2

d3

⎤
⎦

Since the number of structure coordinates per joint equals 2 (i.e.,
NCJT = 2), the number of degrees of freedom, NDOF, of a beam can be
obtained from Eq. (3.2) as

(5.1)

in which, as in the case of plane trusses, NJ represents the number of joints of
the beam, and NR denotes the number of joint displacements restrained by sup-
ports (or the number of restrained coordinates). Let us apply Eq. (5.1) to the
analytical model of the beam in Fig. 5.1(b). The beam has four joints (i.e.,
NJ = 4); two joints, 1 and 4, are attached to the fixed supports that together re-
strain four joint displacements (namely, the translations in the Y direction and
the rotations of joints 1 and 4). Furthermore, the roller support at joint 2 re-
strains one joint displacement, which is the translation of joint 2 in the Y direc-
tion. Thus, the total number of joint displacements that are restrained by all
supports of the beam is 5 (i.e., NR = 5). Substitution of the numerical values
of NJ and NR into Eq. (5.1) yields

NDOF = 2(4) − 5 = 3

which is the same as the number of degrees of freedom of the beam obtained
previously. As in the case of plane trusses, the free and restrained coordinates
of a beam are collectively referred to simply as the structure coordinates.

NCJT = 2
NDOF = 2(NJ) − NR

}
for beams
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When analyzing a beam, it is not necessary to draw its deformed shape, as
shown in Fig. 5.1(c), to identify the degrees of freedom. Instead, all the struc-
ture coordinates (i.e., degrees of freedom and restrained coordinates) are usu-
ally directly specified on the beam’s line diagram by assigning numbers to the
arrows drawn at the joints in the directions of the joint displacements, as shown
in Fig. 5.1(d). In this figure, a slash (/) has been added to the arrows corre-
sponding to the restrained coordinates to distinguish them from those repre-
senting the degrees of freedom.

The procedure for assigning numbers to the structure coordinates of
beams is similar to that for the case of plane trusses, discussed in detail in
Section 3.2. The degrees of freedom are numbered first, starting at the lowest-
numbered joint, that has a degree of freedom, and proceeding sequentially to
the highest-numbered joint. If a joint has two degrees of freedom, then the
translation in the Y direction is numbered first, followed by the rotation. The
first degree of freedom is assigned the number 1, and the last degree of freedom
is assigned a number equal to NDOF.

After all the degrees of freedom of the beam have been numbered, its re-
strained coordinates are numbered beginning with a number equal to
NDOF + 1. Starting at the lowest-numbered joint that is attached to a sup-
port, and proceeding sequentially to the highest-numbered joint, all of the
restrained coordinates of the beam are numbered. If a joint has two restrained
coordinates, then the coordinate in the Y direction (corresponding to the
reaction force) is numbered first, followed by the rotation coordinate (corre-
sponding to the reaction couple). The number assigned to the last restrained
coordinate of the beam is always 2(NJ ). The structure coordinate numbers for
the example beam, obtained by applying the foregoing procedure, are given in
Fig. 5.1(d).

Joint Load and Reaction Vectors
Unlike plane trusses, which are subjected only to joint loads, the external loads
on beams may be applied at the joints as well as on the members. The external
loads (i.e., forces and couples or moments) applied at the joints of a structure
are referred to as the joint loads, whereas the external loads acting between the
ends of the members of the structure are termed the member loads. In this sec-
tion, we focus our attention only on the joint loads, with the member loads con-
sidered in subsequent sections. As discussed in Section 3.2, an external joint
load can, in general, be applied to the beam at the location and in the direction
of each of its degrees of freedom. For example, the beam of Fig. 5.1(b), with
three degrees of freedom, can be subjected to a maximum of three joint loads,
P1 through P3, as shown in Fig. 5.1(e). As indicated there, a load correspond-
ing to a degree of freedom di is denoted symbolically by Pi. The 3 × 1 joint
load vector P for the beam is written in the form

P =
⎡
⎣ P1

P2

P3

⎤
⎦

NDOF × 1

168 Chapter 5 Beams
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Section 5.1 Analytical Model 169

As for the support reactions, when a beam is subjected to external joint
and/or member loads, a reaction (force or moment) can develop at the location
and in the direction of each of its restrained coordinates. For example, the
beam of Fig. 5.1(b), which has five restrained coordinates, can develop up to
five reactions, as shown in Fig. 5.1(e). As indicated in this figure, the reaction
corresponding to the ith restrained coordinate is denoted symbolically by Ri.
The 5 × 1 reaction vector R for the beam is expressed as

R =

⎡
⎢⎢⎢⎢⎣

R4

R5

R6

R7

R8

⎤
⎥⎥⎥⎥⎦

NR × 1

E X A M P L E 5.1 Identify by numbers the degrees of freedom and restrained coordinates of the con-
tinuous beam with a cantilever overhang shown in Fig. 5.2(a). Also, form the beam’s
joint load vector P.

S O L U T I O N The beam has four degrees of freedom, which are identified by numbers 1 through 4
in Fig. 5.2(b). The four restrained coordinates of the beam are identified by numbers
5 through 8 in the same figure. Ans

By comparing Figs. 5.2(a) and (b), we can see that P1 = −50 k-ft; P2 = 0;
P3 = −20 k; and P4 = 0. The negative signs assigned to the magnitudes of P1 and 
P3 indicate that these loads act in the clockwise and downward directions, respec-
tively. Thus, the joint load vector can be expressed in the units of kips and feet, as

P =

⎡
⎢⎢⎣

−50
0

−20
0

⎤
⎥⎥⎦ Ans

Alternative Approach: The analysis of beams with cantilever overhangs can be con-
siderably expedited by realizing that the cantilever portions are statically determinate
(in the sense that the shear and moment at a cantilever’s end can be evaluated directly
by applying the equilibrium equations to the free-body of the cantilever portion).
Therefore, the cantilever portions can be removed from the beam, and only the
remaining indeterminate part needs to be analyzed by the stiffness method. However,
the end moments and the end forces exerted by the cantilevers on the remaining inde-
terminate part of the structure must be included in the stiffness analysis, as illustrated
in the following paragraphs.

Since the beam of Fig. 5.2(a) has a cantilever member CD, we separate this stati-
cally determinate member from the rest of the beam, as shown in Fig. 5.2(c). The
force SCD and the moment MCD at end C of the cantilever are then calculated by
applying the equilibrium equations, as follows.

+ ↑ ∑
FY = 0 SC D − 20 = 0 SC D = 20 k ↑

+ ∑
MC = 0 MC D − 20(10) = 0 MC D = 200 k-ft

Next, the moment MCD is applied as a joint load, in the clockwise (opposite) direction,
at joint C of the indeterminate part AC of the beam, as shown in Fig. 5.2(c). Note that

a
Y
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Fig. 5.2
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Section 5.2 Member Stiffness Relations 171

the end force SCD (= 20 k) need not be considered in the analysis of the indeterminate
part because its only effect is to increase the reaction at support C by 20 k.

The analytical model of the indeterminate part of the beam is drawn in Fig. 5.2(d).
Note that the number of degrees of freedom has now been reduced to only two, identi-
fied by numbers 1 and 2 in the figure. The number of restrained coordinates remains at
four, and these coordinates are identified by numbers 3 through 6 in Fig. 5.2(d). By
comparing the indeterminate part of the beam in Fig. 5.2(c) to its analytical model in
Fig. 5.2(d), we obtain the joint load vector as

P =
[ −50

−200

]
k-ft Ans

Once the analytical model of Fig. 5.2(d) has been analyzed by the stiffness method,
the reaction force R6 must be adjusted (i.e., increased by 20 k) to account for the end
force SCD being exerted by the cantilever CD on support C.

5.2 MEMBER STIFFNESS RELATIONS
When a beam is subjected to external loads, internal moments and shears gen-
erally develop at the ends of its individual members. The equations expressing
the forces (including moments) at the end of a member as functions of the dis-
placements (including rotations) of its ends, in terms of the external loads ap-
plied to the member, are referred to as the member stiffness relations. Such
member stiffness relations are necessary for establishing the stiffness relations
for the entire beam, as discussed in Section 5.5. In this section, we derive the
stiffness relations for the members of beams.

To develop the member stiffness relations, we focus our attention on an
arbitrary prismatic member m of the continuous beam shown in Fig. 5.3(a).
When the beam is subjected to external loads, member m deforms and internal
shear forces and moments are induced at its ends. The initial and displaced po-
sitions of m are depicted in Fig. 5.3(b), in which L, E, and I denote the length,
Young’s modulus of elasticity, and moment of inertia, respectively, of the mem-
ber. It can be seen from this figure that two displacements—translation in the
y direction and rotation about the z axis—are necessary to completely specify

X

Y

(a) Beam

y

x

b em

Fig. 5.3
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+
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the displaced position of each end of the member. Thus, the member has a total
of four end displacements or degrees of freedom. As Fig. 5.3(b) indicates, the
member end displacements (including rotations) are denoted by u1 through u4,
and the corresponding end forces (including moments) are denoted by Q1

through Q4. Note that the member end translations and forces are considered
positive when vertically upward (i.e., in the positive direction of the local y axis),
and the end rotations and moments are considered positive when counterclock-
wise. The numbering scheme used for identifying the member end displace-
ments and forces is similar to that used previously for plane trusses in Chapter 3.
As indicated in Fig. 5.3(b), the member end displacements and forces are num-
bered by beginning at the left end b of the member, which is the origin of the local
coordinate system, with the vertical translation and force numbered first, fol-
lowed by the rotation and moment. The displacements and forces at the opposite
end e of the member are then numbered in the same sequential order.

The relationships between member end forces and end displacements can
be conveniently established by subjecting the member, separately, to each of
the four end displacements and external loads, as shown in Figs. 5.3(c) through
(g); and by expressing the total member end forces as the algebraic sums of the
end forces required to cause the individual end displacements and the forces
caused by the external loads acting on the member with no end displacements.
Thus, from Figs. 5.3(b) through (g), we can see that

Q1 = k11u1 + k12u2 + k13u3 + k14u4 + Q f 1 (5.2a)

Q2 = k21u1 + k22u2 + k23u3 + k24u4 + Q f 2 (5.2b)

Q3 = k31u1 + k32u2 + k33u3 + k34u4 + Q f 3 (5.2c)

Q4 = k41u1 + k42u2 + k43u3 + k44u4 + Q f 4 (5.2d)

in which, as defined in Chapter 3, a stiffness coefficient kij represents the force
at the location and in the direction of Qi required, along with other end forces,
to cause a unit value of displacement uj, while all other end displacements are
0, and the member is not subjected to any external loading between its ends.
The last terms, Q f i (with i = 1 to 4), on the right sides of Eqs. (5.2), represent
the forces that would develop at the member ends, due to external loads, if
both ends of the member were fixed against translations and rotations (see
Fig. 5.3(g)). These forces are commonly referred to as the member fixed-end
forces due to external loads. Equations (5.2) can be written in matrix form as

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

Q f 1

Q f 2

Q f 3

Q f 4

⎤
⎥⎥⎦ (5.3)

or, symbolically, as

(5.4)Q = ku + Qf

174 Chapter 5 Beams
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Section 5.2 Member Stiffness Relations 175

in which Q and u represent the member end force and member end displace-
ment vectors, respectively, in the local coordinate system; k is the member
stiffness matrix in the local coordinate system; and Qf is called the member
fixed-end force vector in the local coordinate system.

In the rest of this and the following section, we focus our attention on the
derivation of the member stiffness matrix k. The fixed-end force vector Q f is
considered in detail in Section 5.4.

Derivation of Member Stiffness Matrix k
Various classical methods of structural analysis, such as the method of consis-
tent deformations and the slope-deflection equations, can be used to determine
the expressions for the stiffness coefficients kij in terms of member length and
its flexural rigidity, EI. In the following, however, we derive such stiffness ex-
pressions by directly integrating the differential equation for beam deflection.
This direct integration approach is not only relatively simple and straightfor-
ward, but it also yields member shape functions as a part of the solution. The
shape functions are often used to establish the member mass matrices for the
dynamic analysis of beams [34]; they also provide insight into the finite-
element formulation of beam analysis (considered in the next section).

It may be recalled from a previous course on mechanics of materials that
the differential equation for small-deflection bending of a beam, composed of
linearly elastic homogenous material and loaded in a plane of symmetry of its
cross-section, can be expressed as

(5.5)

in which ū y represents the deflection of the beam’s centroidal axis (which co-
incides with the neutral axis) in the y direction, at a distance x from the origin
of the xy coordinate system as shown in Fig. 5.3(b); and M denotes the bend-
ing moment at the beam section at the same location, x. It is important to real-
ize that the bending moment M is considered positive in accordance with the
beam sign convention, which can be stated as follows (see Fig. 5.4).

To obtain the expressions for the coefficients ki1 (i = 1 through 4) in the
first column of the member stiffness matrix k (Eq. (5.3)), we subject the

The bending moment at a section of a beam is considered positive when
the external force or couple tends to bend the beam concave upward
(in the positive y direction), causing compression in the fibers above
(in the positive y direction), and tension in the fibers below (in the
negative y direction), the neutral axis of the beam at the section.

d2ū y

dx2
= M

E I
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member to a unit value of the end displacement u1 at end b, as shown in
Fig. 5.3(c). Note that all other end displacements of the member are 0 (i.e.,
u2 = u3 = u4 = 0), and the member is in equilibrium under the action of two
end moments k21 and k41, and two end shears k11 and k31. To determine the
equation for bending moment for the member, we pass a section at a distance
x from end b, as shown in Fig. 5.3(c). Considering the free body to the left of
this section, we obtain the bending moment M at the section as

M = −k21 + k11x (5.6)

Note that the bending moment due to the couple k21 is negative, in accordance
with the beam sign convention, because of its tendency to bend the member
concave downward, causing tension in the fibers above and compression in the
fibers below the neutral axis. The bending moment k11x due to the end shear k11

is positive, however, in accordance with the beam sign convention.
Substitution of Eq. (5.6) into Eq. (5.5) yields

d2ū y

dx2
= 1

E I
(−k21 + k11x) (5.7)

in which the flexural rigidity EI of the member is constant because the member
is assumed to be prismatic. The equation for the slope θ of the member can be
determined by integrating Eq. (5.7) as

θ = dūy

dx
= 1

E I

(
−k21x + k11

x2

2

)
+ C1 (5.8)

in which C1 denotes a constant of integration. By integrating Eq. (5.8), we
obtain the equation for deflection as

ū y = 1

E I

(
−k21

x2

2
+ k11

x3

6

)
+ C1x + C2 (5.9)

in which C2 is another constant of integration. The four unknowns in Eqs. (5.8)
and (5.9)—that is, two constants of integration C1 and C2, and two stiffness
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Section 5.2 Member Stiffness Relations 177

coefficients k11 and k21—can now be evaluated by applying the following four
boundary conditions.

At end b, x = 0, θ = 0
x = 0, ū y = 1

At end e, x = L , θ = 0
x = L , ū y = 0

By applying the first boundary condition—that is, by setting x = 0 and θ = 0
in Eq. (5.8)—we obtain C1 = 0. Next, by using the second boundary
condition—that is, by setting x = 0 and ū y = 1 in Eq. (5.9)—we obtain
C2 = 1. Thus, the equations for the slope and deflection of the member become

θ = 1

E I

(
−k21x + k11

x2

2

)
(5.10)

ū y = 1

E I

(
−k21

x2

2
+ k11

x3

6

)
+ 1 (5.11)

We now apply the third boundary condition—that is, we set x = L and θ = 0
in Eq. (5.10)—to obtain

0 = 1

E I

(
−k21L + k11

L2

2

)

from which

k21 = k11
L

2
(5.12)

Next, we use the last boundary condition—that is, we set x = L and ū y = 0 in
Eq. (5.11)—to obtain

0 = 1

E I

(
−k21

L2

2
+ k11

L3

6

)
+ 1

from which

k21 = 2E I

L2
+ k11

L

3
(5.13)

By substituting Eq. (5.12) into Eq. (5.13), we determine the expression for the
stiffness coefficient k11:

(5.14)

and the substitution of Eq. (5.14) into Eq. (5.12) yields

(5.15)k21 = 6E I

L2

k11 = 12E I

L3
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The remaining two stiffness coefficients, k31 and k41, can now be deter-
mined by applying the equations of equilibrium to the free body of the mem-
ber shown in Fig. 5.3(c). Thus,

+ ↑ ∑
Fy = 0

12E I

L3
+ k31 = 0

(5.16)

+ ∑
Me = 0

6E I

L2
− 12E I

L3
(L) + k41 = 0

(5.17)

To determine the deflected shape of the member, we substitute the expressions
for k11 (Eq. (5.14)) and k21 (Eq. (5.15)) into Eq. (5.11). This yields

ū y = 1 − 3

(
x

L

)2

+ 2

(
x

L

)3

(5.18)

Since the foregoing equation describes the variation of ū y (i.e., the y displace-
ment) along the member’s length due to a unit value of the end displacement
u1, while all other end displacements are zero, it represents the member shape
function N1; that is,

(5.19)

The expressions for coefficients ki2 (i = 1 through 4) in the second column
of the member stiffness matrix k (Eq. (5.3)) can be evaluated in a similar man-
ner. We subject the member to a unit value of the end displacement u2 at end b,
as shown in Fig. 5.3(d). Note that all other member end displacements are 0
(i.e., u1 = u3 = u4 = 0), and the member is in equilibrium under the action of
two end moments k22 and k42, and two end shears k12 and k32. The equation for
bending moment at a distance x from end b of the member can be written as

M = −k22 + k12x (5.20)

By substituting Eq. (5.20) into the differential equation for beam deflection
(Eq. (5.5)), we obtain

d2ū y

dx2
= 1

E I
(−k22 + k12x) (5.21)

N1 = 1 − 3

(
x

L

)2

+ 2

(
x

L

)3

k41 = 6E I

L2

Y

k31 = −12E I

L3
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Section 5.2 Member Stiffness Relations 179

By integrating Eq. (5.21) twice, we obtain the equations for the slope and de-
flection of the member as

θ = dūy

dx
= 1

E I

(
−k22x + k12

x2

2

)
+ C1 (5.22)

ū y = 1

E I

(
−k22

x2

2
+ k12

x3

6

)
+ C1x + C2 (5.23)

The four unknowns, C1, C2, k12 and k22, in Eqs. (5.22) and (5.23) can now be
evaluated by applying the boundary conditions, as follows.

At end b, x = 0, θ = 1
x = 0, ū y = 0

At end e, x = L , θ = 0
x = L , ū y = 0

Application of the first boundary condition (i.e., θ = 1 at x = 0) yields C1 = 1;
using the second boundary condition (i.e., ū y = 0 at x = 0), we obtain C2 = 0.
By applying the third boundary condition (i.e., θ = 0 at x = L), we obtain

0 = 1

E I

(
−k22L + k12

L2

2

)
+ 1

from which

k22 = E I

L
+ k12

L

2
(5.24)

and application of the last boundary condition (i.e., ū y = 0 at x = L) yields

0 = 1

E I

(
−k22

L2

2
+ k12

L3

6

)
+ L

from which

k22 = 2E I

L
+ k12

L

3
(5.25)

By substituting Eq. (5.24) into Eq. (5.25), we obtain the expression for the
stiffness coefficient k12:

(5.26)

and by substituting Eq. (5.26) into either Eq. (5.24) or Eq. (5.25), we obtain

(5.27)k22 = 4E I

L

k12 = 6E I

L2
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To determine the two remaining stiffness coefficients, k32 and k42, we
apply the equilibrium equations to the free body of the member shown in
Fig. 5.3(d):

+ ↑ ∑
Fy = 0

6E I

L2
+ k32 = 0

(5.28)

+ ∑
Me = 0

4E I

L
− 6E I

L2
(L) + k42 = 0

(5.29)

The shape function (i.e., deflected shape) of the member, due to a unit end
displacement u2, can now be obtained by substituting the expressions for
k12 (Eq. (5.26)) and k22 (Eq. (5.27)) into Eq. (5.23), with C1 = 1 and C2 = 0.
Thus,

(5.30)

Next, we subject the member to a unit value of the end displacement u3 at
end e, as shown in Fig. 5.3(e), to determine the coefficients ki3 (i = 1 through 4)
in the third column of the member stiffness matrix k. The bending moment at
a distance x from end b of the member is given by

M = −k23 + k13x (5.31)

Substitution of Eq. (5.31) into the beam deflection differential equation
(Eq. (5.5)) yields

d2ū y

dx2
= 1

E I
(−k23 + k13x) (5.32)

By integrating Eq. (5.32) twice, we obtain

θ = dūy

dx
= 1

E I

(
−k23x + k13

x2

2

)
+ C1 (5.33)

ū y = 1

E I

(
−k23

x2

2
+ k13

x3

6

)
+ C1x + C2 (5.34)

N2 = x

(
1 − x

L

)2

k42 = 2E I

L

Y

k32 = −6E I

L2

180 Chapter 5 Beams

26201_05_ch05_p162-248.qxd  12/1/10  5:05 PM  Page 180

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 5.2 Member Stiffness Relations 181

The four unknowns, C1, C2, k13 and k23, in Eqs. (5.33) and (5.34) are evaluated
using the boundary conditions, as follows.

At end b, x = 0, θ = 0
x = 0, ū y = 0

At end e, x = L , θ = 0
x = L , ū y = 1

Using the first two boundary conditions, we obtain C1 = C2 = 0. Application
of the third boundary condition yields

0 = 1

E I

(
−k23L + k13

L2

2

)

from which

k23 = k13
L

2
(5.35)

and, using the last boundary condition, we obtain

1 = 1

E I

(
−k23

L2

2
+ k13

L3

6

)

from which

k23 = −2E I

L2
+ k13

L

3
(5.36)

By substituting Eq. (5.35) into Eq. (5.36), we determine the stiffness coeffi-
cient k13 to be

(5.37)

and the substitution of Eq. (5.37) into Eq. (5.35) yields

(5.38)

The two remaining stiffness coefficients, k33 and k43, are determined by con-
sidering the equilibrium of the free body of the member (Fig. 5.3(e)):

+ ↑ ∑
Fy = 0 − 12E I

L3
+ k33 = 0

(5.39)k33 = 12E I

L3

k23 = −6E I

L2

k13 = −12E I

L3
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+ ∑
Me = 0 − 6E I

L2
+ 12E I

L3
(L) + k43 = 0

(5.40)

and the shape function N3 for the member is obtained by substituting
Eqs. (5.37) and (5.38) into Eq. (5.34) with C1 = C2 = 0. Thus,

(5.41)

To determine the stiffness coefficients ki4 (i = 1 through 4) in the last
(fourth) column of k, we subject the member to a unit value of the end dis-
placement u4 at end e, as shown in Fig. 5.3(f). The bending moment in the
member is given by

M = −k24 + k14x (5.42)

Substitution of Eq. (5.42) into Eq. (5.5) yields

d2ū y

dx2
= 1

E I
(−k24 + k14x) (5.43)

By integrating Eq. (5.43) twice, we obtain

θ = dūy

dx
= 1

E I

(
−k24x + k14

x2

2

)
+ C1 (5.44)

ū y = 1

E I

(
−k24

x2

2
+ k14

x3

6

)
+ C1x + C2 (5.45)

To evaluate the four unknowns, C1, C2, k14 and k24, in Eqs. (5.44) and
(5.45), we use the boundary conditions, as follows.

At end b, x = 0, θ = 0
x = 0, ū y = 0

At end e, x = L , θ = 1
x = L , ū y = 0

Application of the first two boundary conditions yields C1 = C2 = 0. Using
the third boundary condition, we obtain

1 = 1

E I

(
−k24L + k14

L2

2

)

or

k24 = − E I

L
+ k14

L

2
(5.46)

N3 = 3

(
x

L

)2

− 2

(
x

L

)3

k43 = −6E I

L2

Y
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Section 5.2 Member Stiffness Relations 183

and the use of the fourth boundary condition yields

0 = 1

E I

(
−k24

L2

2
+ k14

L3

6

)

from which

k24 = k14
L

3
(5.47)

By substituting Eq. (5.47) into Eq. (5.46), we obtain the stiffness coefficient
k14:

(5.48)

and by substituting Eq. (5.48) into Eq. (5.47), we obtain

(5.49)

Next, we determine the remaining stiffness coefficients by considering the
equilibrium of the free body of the member (Fig. 5.3(f)):

+ ↑ ∑
Fy = 0

6E I

L2
+ k34 = 0

(5.50)

+ ∑
Me = 0

2E I

L
− 6E I

L2
(L) + k44 = 0

(5.51)

To obtain the shape function N4 of the beam, we substitute Eqs. (5.48) and
(5.49) into Eq. (5.45), yielding

(5.52)

Finally, by substituting the expressions for the stiffness coefficients
(Eqs. (5.14–5.17), (5.26–5.29), (5.37–5.40), and (5.48–5.51)), into the matrix

N4 = x2

L

(
−1 + x

L

)

k44 = 4E I

L

Y

k34 = −6E I

L2

k24 = 2E I

L

k14 = 6E I

L2
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E X A M P L E 5.2 Determine the stiffness matrices for the members of the beam shown in Fig. 5.5.

S O L U T I O N Member 1 E = 29,000 ksi, I = 875 in.4, L = 15 ft = 180 in.

E I

L3
= 29,000 (875)

(180)3 = 4.351 k/in.

Substitution in Eq. (5.53) yields

k1 =

⎡
⎢⎢⎣

52.212 4,699.1 −52.212 4,699.1
4,699.1 563,889 −4,699.1 281,944

−52.212 −4,699.1 52.212 −4,699.1
4,699.1 281,944 −4,699.1 563,889

⎤
⎥⎥⎦ Ans

Member 2 E = 29,000 ksi, I = 1,750 in.4, L = 20 ft = 240 in.

E I

L3
= 29,000 (1,750)

(240)3 = 3.6712 k/in.

Thus, from Eq. (5.53)

k2 =

⎡
⎢⎢⎣

44.054 5,286.5 −44.054 5,286.5
5,286.5 845,833 −5,286.5 422,917

−44.054 −5,286.5 44.054 −5,286.5
5,286.5 422,917 −5,286.5 845,833

⎤
⎥⎥⎦ Ans

form of k given in Eq. (5.3), we obtain the following local stiffness matrix for
the members of beams.

k = E I

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦ (5.53)

Note that the stiffness matrix k is symmetric; that is, kij = kji.
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Section 5.3 Finite-Element Formulation Using Virtual Work 185

5.3 FINITE-ELEMENT FORMULATION USING
VIRTUAL WORK*
The member stiffness matrix k, as given by Eq. (5.53), is usually derived
in the finite-element method by applying the principle of virtual work. The
formulation involves essentially the same general steps that were outlined in
Section 3.4 for the case of the members of plane trusses.

Displacement Function
Consider a prismatic member of a beam, subjected to end displacements u1

through u4, as shown in Fig. 5.6. Since the member displaces only in the y di-
rection, only one displacement function ū y needs to be defined. In Fig. 5.6, the
displacement function ū y is depicted as the displacement of an arbitrary point
G located on the member’s centroidal axis (which coincides with the neutral
axis) at a distance x from the end b.

As discussed in Section 3.4, in the finite-element method, a displacement
function is usually assumed in the form of a complete polynomial of such a de-
gree that all of its coefficients can be evaluated from the available boundary
conditions of the member. From Fig. 5.6, we realize that the boundary condi-
tions for the member under consideration are as follows.

At end b, x = 0, ū y = u1 (5.54a)

x = 0, θ = dūy

dx
= u2 (5.54b)

*This section can be omitted without loss of continuity.

x

y

b

b′

e

e′

L

Displaced 
position

u1

u2
u3

u4

Initial 
position

uy

x

EI = constant

G

G′

Fig. 5.6
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At end e, x = L , ū y = u3 (5.54c)

x = L , θ = dūy

dx
= u4 (5.54d)

Since there are four boundary conditions, we can use a cubic polynomial (with
four coefficients) for the displacement function ū y, as

ū y = a0 + a1x + a2x2 + a3x3 (5.55)

in which a0 through a3 are the constants to be determined by applying the four
boundary conditions specified in Eqs. (5.54). By differentiating Eq. (5.55) with
respect to x, we obtain the equation for the slope of the member as

θ = dūy

dx
= a1 + 2a2x + 3a3x2 (5.56)

Now, we apply the first boundary condition (Eq. (5.54a)) by setting x = 0 and
ū y = u1 in Eq. (5.55). This yields

a0 = u1 (5.57)

Similarly, using the second boundary condition—that is, by setting x = 0 and
θ = u2 in Eq. (5.56)—we obtain

a1 = u2 (5.58)

Next, we apply the third boundary condition, setting x = L and ū y = u3 in
Eq. (5.55). This yields

u3 = a0 + a1L + a2L2 + a3L3 (5.59)

By substituting a0 = u1 (Eq. (5.57)) and a1 = u2 (Eq. (5.58)) into Eq. (5.59),
we obtain

a3 = 1

L3

(−u1 − u2L + u3 − a2L2
)

(5.60)

To apply the fourth boundary condition (Eq. (5.54d)), we set x = L and θ = u4

in Eq. (5.56). This yields

u4 = a1 + 2a2L + 3a3L2 (5.61)

By substituting Eqs. (5.57), (5.58), and (5.60) into Eq. (5.61), and solving the
resulting equation for a2, we obtain

a2 = 1

L2
(−3u1 − 2u2L + 3u3 − u4L) (5.62)

and the backsubstitution of Eq. (5.62) into Eq. (5.60) yields

a3 = 1

L3
(2u1 + u2L − 2u3 + u4L) (5.63)

Finally, by substituting Eqs. (5.57), (5.58), (5.62), and (5.63) into 
Eq. (5.55), we obtain the following expression for the displacement function
ū y, in terms of the end displacements u1 through u4.
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Section 5.3 Finite-Element Formulation Using Virtual Work 187

(5.64)

Shape Functions
The displacement function ū y, as given by Eq. (5.64), can alternatively be
written as

ū y = N1u1 + N2u2 + N3u3 + N4u4 (5.65)

with

N1 = 1 − 3

(
x

L

)2

+ 2

(
x

L

)3

(5.66a)

N2 = x

(
1 − x

L

)2

(5.66b)

N3 = 3

(
x

L

)2

− 2

(
x

L

)3

(5.66c)

N4 = x2

L

(
−1 + x

L

)
(5.66d)

in which Ni (i = 1 through 4) are the member shape functions. A comparison
of Eqs. (5.66a) through (5.66d) with Eqs. (5.19), (5.30), (5.41), and (5.52), re-
spectively, indicates that the shape functions determined herein by assuming a
cubic displacement function are identical to those obtained in Section 5.2 by
exactly solving the differential equation for bending of beams. This is because
a cubic polynomial represents the actual (or exact) solution of the governing
differential equation (Eq. (5.5)), provided that the member is prismatic and it is
not subjected to any external loading.

Equation (5.65) can be written in matrix form as

ū y = [ N1 N2 N3 N4 ]

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ (5.67)

or, symbolically, as

(5.68)

in which N is the member shape-function matrix.

ū y = Nu

ū y =
[

1 − 3

(
x

L

)2

+ 2

(
x

L

)3
]

u1 +
[

x

(
1 − x

L

)2
]

u2

+
[

3

(
x

L

)2

− 2

(
x

L

)3
]

u3 +
[

x2

L

(
−1 + x

L

)]
u4
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Strain–Displacement Relationship
We recall from mechanics of materials that the normal (longitudinal) strain ε in
a fiber of a member, located at a distance y above the neutral axis, can be
expressed in terms of the displacement ū y of the member’s neutral axis, by the
relationship

ε = −y
d2ū y

dx2
(5.69)

in which the minus sign indicates that the tensile strain is considered positive.
By substituting Eq. (5.68) into Eq. (5.69), we write

ε = −y
d2

dx2
(Nu) (5.70)

Since the end-displacement vector u is not a function of x, it can be treated
as a constant for the purpose of differentiation. Thus, Eq. (5.70) can be ex-
pressed as

(5.71)

To determine the member strain-displacement matrix B, we write

B = −y
d2N
dx2

= −y

[
d2N1

dx2

d2N2

dx2

d2N3

dx2

d2N4

dx2

]
(5.72)

By differentiating twice the equations for the shape functions as given by
Eqs. (5.66), and substituting the resulting expressions into Eq. (5.72), we
obtain

B = − y

L2

[
6

(
−1 + 2

x

L

)
2L

(
−2 + 3

x

L

)
6

(
1 − 2

x

L

)
2L

(
−1 + 3

x

L

)]
(5.73)

Stress–Displacement Relationship
To establish the relationship between the member normal stress and the end
displacements, we substitute Eq. (5.71) into the stress–strain relation σ = Eε.
This yields

(5.74)

Member Stiffness Matrix, k
With both the member strain and stress expressed in terms of end displace-
ments, we can now establish the member stiffness matrix k by applying the
principle of virtual work for deformable bodies. Consider an arbitrary member

σ = EBu

ε =
(

−y
d2N
dx2

)
u = Bu
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Section 5.3 Finite-Element Formulation Using Virtual Work 189

of a beam in equilibrium under the action of end forces Q1 through Q4, as
shown in Fig. 5.7. Note that the member is not subjected to any external load-
ing between its ends; therefore, the fixed-end forces Qf are 0.

Now, assume that the member is given small virtual end displacements δu1

through δu4, as shown in Fig. 5.7. The virtual external work done by the real
member end forces Q1 through Q4 as they move through the corresponding vir-
tual end displacements δu1 through δu4 is

δWe = Q1δu1 + Q2δu2 + Q3δu3 + Q4δu4

which can be written in matrix form as

δWe = δuT Q (5.75)

Substitution of Eq. (5.75) into the expression for the principle of virtual work
for deformable bodies as given in Eq. (3.28) in Section 3.4, yields

δuT Q =
∫

V
δεT σ dV (5.76)

in which the right-hand side represents the virtual strain energy stored in the
member. By substituting Eqs. (5.71) and (5.74) into Eq. (5.76), we obtain

δuT Q =
∫

V
(B δu)T EB dV u

Since (B δu)T = δuT BT, the foregoing equation becomes

δuT Q = δuT
∫

V
BT EB dV u

or

δuT

(
Q −

∫
V

BT EB dV u
)

= 0

x

y

b

b′ 

e

e′

L

Virtual displaced 
position

δu1

δu2
δu3

δu4

Q4

Q3Q1

Q2
Equilibrium 

position
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As δuT may be arbitrarily chosen and is not 0, the quantity in the parentheses
must be 0; thus,

Q =
(∫

V
BT EB dV

)
u = ku (5.77)

with

(5.78)

Note that the foregoing general form of k for beam members is the same as that
obtained in Section 3.4 for the members of plane trusses (Eq. (3.55)). To
explicitly determine the member stiffness matrix k, we substitute Eq. (5.73) for
B into Eq. (5.78). This yields

k = E

L4

∫
V

y2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

(
−1 + 2

x

L

)

2L

(
−2 + 3

x

L

)

6

(
1 − 2

x

L

)

2L

(
−1 + 3

x

L

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
6

(
−1 + 2

x

L

)
2L

(
−2 + 3

x

L

)
6

(
1 − 2

x

L

)
2L

(
−1 + 3

x

L

)]
dV (5.79)

By substituting dV = (dA) dx into Eq. (5.79), and realizing that 
∫

A y2 dA = I,
we obtain 

k = E I

L4

∫ L

0

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36
(
−1 + 2

x

L

)2
12L

(
−2 + 3

x

L

) (
−1 + 2

x

L

)
−36

(
−1 + 2

x

L

)2
12L

(
−1 + 3

x

L

) (
−1 + 2

x

L

)

12L
(
−2 + 3

x

L

) (
−1 + 2

x

L

)
4L2

(
−2 + 3

x

L

)2
12L

(
−2 + 3

x

L

) (
1 − 2

x

L

)
4L2

(
−2 + 3

x

L

) (
−1 + 3

x

L

)

−36
(
−1 + 2

x

L

)2
12L

(
−2 + 3

x

L

) (
1 − 2

x

L

)
36

(
−1 + 2

x

L

)2
12L

(
−1 + 3

x

L

) (
1 − 2

x

L

)

12L
(
−1 + 3

x

L

) (
−1 + 2

x

L

)
4L2

(
−2 + 3

x

L

) (
−1 + 3

x

L

)
12L

(
−1 + 3

x

L

) (
1 − 2

x

L

)
4L2

(
−1 + 3

x

L

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx

(5.80)

k =
∫

V
BT EB dV
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Section 5.4 Member Fixed-End Forces Due to Loads 191

which, upon integration, becomes

k = E I

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦

Note that the foregoing expression for k is identical to that derived in Section 5.2
(Eq. (5.53)) by directly integrating the differential equation for beam deflection
and applying the equilibrium equations.

5.4 MEMBER FIXED-END FORCES DUE TO LOADS
It was shown in Section 5.2 that the stiffness relationships for a member of a
beam can be written in matrix form (see Eq. (5.4)) as

Q = ku + Q f

As the foregoing relationship indicates, the total forces Q that can develop at
the ends of a member can be expressed as the sum of the forces ku due to the
end displacements u, and the fixed-end forces Q f that would develop at the
member ends due to external loads if both member ends were fixed against
translations and rotations.

In this section, we consider the derivation of the expressions for fixed-end
forces due to external loads applied to the members of beams. To illustrate the
procedure, consider a fixed member subjected to a concentrated load W, as
shown in Fig. 5.8(a). As indicated in this figure, the fixed-end moments at the
member ends b and e are denoted by FMb and FMe, respectively, whereas FSb

and FSe denote the fixed-end shears at member ends b and e, respectively. Our
objective is to determine expressions for the fixed-end moments and shears in
terms of the magnitude and location of the load W; we will use the direct in-
tegration approach, along with the equations of equilibrium, for this purpose.

As the concentrated load W acts at point A of the member (Fig. 5.8(a)), the
bending moment M cannot be expressed as a single continuous function of x
over the entire length of the member. Therefore, we divide the member into
two segments, bA and Ae; and we determine the following equations for bend-
ing moment in segments bA and Ae, respectively:

0 ≤ x ≤ l1 M = −F Mb + F Sbx (5.81)

l1 ≤ x ≤ L M = −F Mb + F Sbx − W (x − l1) (5.82)

By substituting Eqs. (5.81) and (5.82) into the differential equation for beam
deflection (Eq. (5.5)), we obtain, respectively,

0 ≤ x ≤ l1
d2ū y

dx2
= 1

E I
(−F Mb + F Sbx) (5.83)

l1 ≤ x ≤ L
d2ū y

dx2
= 1

E I
[−F Mb + F Sbx − W (x − l1)] (5.84)
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By integrating Eq. (5.83) twice, we obtain the equations for the slope and de-
flection in segment bA of the member:

0 ≤ x ≤ l1 θ = dūy

dx
= 1

E I

(
−FMbx + FSb

x2

2

)
+ C1 (5.85)

0 ≤ x ≤ l1 ū y = 1

E I

(
−FMb

x2

2
+ FSb

x3

6

)
+ C1x + C2 (5.86)

Similarly, by integrating Eq. (5.84) twice, we obtain the equations for the slope
and deflection in the segment Ae:

l1 ≤ x ≤ L θ = 1

E I

[
−FMbx + FSb

x2

2
− Wx

2
(x − 2l1)

]
+ C3 (5.87)

l1 ≤ x ≤ L ūy = 1

E I

[
−FMb

x2

2
+ FSb

x3

6
− Wx2

6
(x − 3l1)

]
+ C3x + C4 (5.88)
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Section 5.4 Member Fixed-End Forces Due to Loads 193

Equations (5.85) through (5.88) indicate that the equations for the slope
and deflection of the member contain a total of six unknowns; that is, four con-
stants of integration, C1 through C4, and two fixed-end forces, FMb and FSb.
These six unknowns can be evaluated by applying four boundary conditions
(i.e., the slopes and deflections at the two fixed ends, b and e, must be 0), and
two continuity conditions requiring that the slope and the deflection of the
member’s elastic curve be continuous at point A. By applying the two bound-
ary conditions for the fixed end b (i.e., at x = 0, θ = ū y = 0) to Eqs. (5.85) and
(5.86), we obtain

C1 = C2 = 0 (5.89)

Next, to evaluate the constant C3, we use the condition that the slope must be
continuous at point A. This condition requires that the two slope equations
(Eqs. (5.85) and (5.87)) yield the same slope θA at x = l1. By setting x = l1 in
Eqs. (5.85) and (5.87), and equating the resulting expressions, we obtain

1

E I

(
−FMbl1 + FSb

l2
1

2

)
= 1

E I

(
−FMbl1 + FSb

l2
1

2
+ Wl2

1

2

)
+ C3

By solving for C3, we determine that

C3 = − Wl2
1

2E I
(5.90)

In a similar manner, we evaluate the constant C4 by applying the condition of
continuity of deflection at point A. By setting x = l1 in the two deflection equa-
tions (Eqs. (5.86) and (5.88)), and equating the resulting expressions, we obtain

1

E I

(
−FMb

l2
1

2
+ FSb

l3
1

6

)

= 1

E I

(
−FMb

l2
1

2
+ FSb

l3
1

6
+ Wl3

1

3

)
− Wl3

1

2E I
+ C4

from which

C4 = Wl3
1

6E I
(5.91)

With the four constants of integration known, we can now evaluate the two
remaining unknowns, FSb and FMb, by applying the boundary conditions that
the slope and deflection at the fixed end e must be 0 (i.e., at x = L, θ = ū y = 0).
By setting x = L in Eqs. (5.87) and (5.88), with θ = 0 in Eq. (5.87) and ū y = 0
in Eq. (5.88), we obtain

1

E I

[
−FMb L + FSb

L2

2
− WL

2
(L − 2l1)

]
− Wl2

1

2E I
= 0 (5.92)

1

E I

[
−FMb

L2

2
+ FSb

L3

6
− WL2

6
(L − 3l1)

]
− Wl2

1 L

2E I
+ Wl3

1

6E I
= 0

(5.93)
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To solve Eqs. (5.92) and (5.93) for FSb and FMb, we rewrite Eq. (5.92) to ex-
press FMb in terms of FSb as

FMb = FSb
L

2
− W

2
(L − 2l1) − Wl2

1

2L
(5.94)

By substituting Eq. (5.94) into Eq. (5.93), and solving the resulting equation
for FSb, we obtain

FSb = W

L3

(
L3 − 3l2

1 L + 2l3
1

)

Substitution of L = l1 + l2 into the numerator of the foregoing equation yields
the expression for the fixed-end shear FSb as

FSb = Wl2
2

L3
(3l1 + l2) (5.95)

By back substituting Eq. (5.95) into Eq. (5.94), we obtain the expression for
the fixed-end moment as

FMb = Wl1l2
2

L2
(5.96)

Finally, the fixed-end forces, FSe and FMe, at the member end e, can be de-
termined by applying the equations of equilibrium to the free body of the mem-
ber (Fig. 5.8(a)). Thus,

+ ↑ ∑
Fy = 0

Wl2
2

L3
(3l1 + l2) − W + FSe = 0

By substituting L = l1 + l2 into the numerator and solving for FSe, we obtain

FSe = Wl2
1

L3
(l1 + 3l2) (5.97)

and

+ ∑
Me = 0

Wl1l2
2

L2
− Wl2

2

L3
(3l1 + l2)L + Wl2 + FMe = 0

FMe = −Wl2
1l2

L2
(5.98)

in which the negative answer for FMe indicates that its actual sense is clock-
wise for the loading condition under consideration. Figure 5.8(b) depicts the
four fixed-end forces that develop in a member of a beam subjected to a single
concentrated load.

The expressions for fixed-end forces due to other types of loading condi-
tions can be derived by using the direct integration approach as illustrated here,
or by employing another classical method, such as the method of consistent de-
formations. The expressions for fixed-end forces due to some common types of
member loads are given inside the front cover of this book for convenient
reference.

Y
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Section 5.4 Member Fixed-End Forces Due to Loads 195

Member Fixed-End Force Vector Qf

Once the fixed-end forces for a member have been evaluated, its fixed-end
force vector Qf can be generated by storing the fixed-end forces in their proper
positions in a 4 × 1 vector. In accordance with the scheme for numbering
member end forces adopted in Section 5.2, the fixed-end shear FSb and the
fixed-end moment FMb, at the left end b of the member, must be stored in the
first and second rows, respectively, of the Qf vector; the fixed-end shear FSe

and the fixed-end moment FMe, at the opposite member end e, are stored in the
third and fourth rows, respectively, of the Qf vector. Thus, the fixed-end force
vector for a member of a beam (Fig 5.8(a)) is expressed as

Q f =

⎡
⎢⎢⎣

Q f 1

Q f 2

Q f 3

Q f 4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

FSb

FMb

FSe

FMe

⎤
⎥⎥⎦ (5.99)

When storing numerical values or fixed-end force expressions in Qf, the
appropriate sign convention for member end forces must be followed. In ac-
cordance with the sign convention adopted in Section 5.2, the fixed-end shears
are considered positive when upward (i.e., in the positive direction of the local
y axis); the fixed-end moments are considered positive when counterclock-
wise. For example, the fixed-end force vector for the beam member shown in
Fig. 5.8(b) is given by

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wl2
2

L3
(3l1 + l2)

Wl1l2
2

L2

Wl2
1

L3
(l1 + 3l2)

−Wl2
1l2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E X A M P L E 5.3 Determine the fixed-end force vectors for the members of the two-span continuous
beam shown in Fig. 5.9. Use the fixed-end force equations given inside the front
cover.

S O L U T I O N Member 1 By substituting w = 2 k/ft, L = 30 ft, and l1 = l2 = 0 into the fixed-end
force expressions given for loading type 3, we obtain

FSb = FSe = 2(30)

2
= 30 k

FMb = 2(30)2

12
= 150 k-ft

FMe = −2(30)2

12
= −150 k-ft
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Fig. 5.9

By substituting these values of fixed-end forces into Eq. (5.99), we obtain the fixed-
end force vector for member 1:

Q f 1 =

⎡
⎢⎢⎣

30
150
30

−150

⎤
⎥⎥⎦ Ans

Member 2 From Fig. 5.9(a), we can see that this member is subjected to two differ-
ent loadings—a concentrated load W = 18 k with l1 = 10 ft, l2 = 20 ft, and L = 30 ft
(load type 1), and a uniformly distributed load w = 2 k/ft with l1 = l2 = 0 and L = 30 ft
(load type 3). The fixed-end forces for such a member, due to the combined effect of
several loads, can be conveniently determined by superimposing (algebraically
adding) the fixed-end forces due to each of the loads acting individually on the mem-
ber. By using superposition, we determine the fixed-end forces for member 2 to be

FSb = 18(20)2

(30)3
[3(10) + (20)] + 2 (30)

2
= 43.333 k

FMb = 18 (10) (20)2

(30)2
+ 2 (30)2

12
= 230 k-ft

FSe = 18(10)2

(30)3
[10 + 3(20)] + 2 (30)

2
= 34.667 k

FMe = −18 (10)2 (20)

(30)2
− 2 (30)2

12
= −190 k-ft
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Section 5.5 Structure Stiffness Relations 197

Thus, the fixed-end force vector for member 2 is

Q f 2 =

⎡
⎢⎢⎣

43.333
230

34.667
−190

⎤
⎥⎥⎦ Ans

5.5 STRUCTURE STIFFNESS RELATIONS
The procedure for establishing the structure stiffness relations for beams is es-
sentially the same as that for plane trusses discussed in Section 3.7. The proce-
dure, called the direct stiffness method, involves: (a) expressing the joint loads
P in terms of the member end forces Q by applying the joint equilibrium equa-
tions; (b) relating the joint displacements d to the member end displacements
u by using the compatibility conditions that the member end displacements and
rotations must be the same as the corresponding joint displacements and rota-
tions; and (c) linking the joint displacements d to the joint loads P by means of
the member force-displacement relations Q = ku + Q f.

Consider, for example, an arbitrary beam subjected to joint and member
loads, as depicted in Fig. 5.10(a). The structure has three degrees of freedom,
d1 through d3, as shown in Fig. 5.10(b). Our objective is to establish the struc-
ture stiffness relationships, which express the external loads as functions of the
joint displacements d. The member end forces Q and end displacements u for
the three members of the beam are given in Fig. 5.10(c), in which the super-
script (i) denotes the member number.

By applying the equations of equilibrium 
∑

FY = 0 and 
∑

M = 0 to the
free body of joint 2, and the equilibrium equation 

∑
M = 0 to the free body of

joint 3, we obtain the following relationships between the external joint loads
P and the internal member end forces Q.

P1 = Q(1)
3 + Q(2)

1 (5.100a)

P2 = Q(1)
4 + Q(2)

2 (5.100b)

P3 = Q(2)
4 + Q(3)

2 (5.100c)

Next, we determine compatibility conditions for the three members of
the beam. Since the left end 1 of member 1 is connected to fixed support 1
(Fig. 5.10(b)), which can neither translate nor rotate, the displacements u1

(1)

and u(1)
2 of end 1 of the member (Fig. 5.10(c)) must be 0. Similarly, since end 2

of this member is connected to joint 2, the displacements u(1)
3 and u(1)

4 of end
2 must be the same as the displacements d1 and d2, respectively, of joint 2.
Thus, the compatibility equations for member 1 are:

u(1)
1 = u(1)

2 = 0 u(1)
3 = d1 u(1)

4 = d2 (5.101)
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In a similar manner, the compatibility equations for members 2 and 3, respec-
tively, are given by

u(2)
1 = d1 u(2)

2 = d2 u(2)
3 = 0 u(2)

4 = d3 (5.102)

u(3)
1 = 0 u(3)

2 = d3 u(3)
3 = u(3)

4 = 0 (5.103)

The link between the joint equilibrium equations (Eqs. (5.100)) and the
compatibility conditions (Eqs. (5.101) through (5.103)) is provided by the
member stiffness relationship Q = ku + Qf (Eq. (5.4)). To express the six
member end forces that appear in Eqs. (5.100) in terms of the member end
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Section 5.5 Structure Stiffness Relations 199

displacements, we will use the expanded form of the member stiffness rela-
tionship given in Eqs. (5.2). Thus, the end forces Q(1)

3 and Q(1)
4 , of member 1,

can be expressed in terms of the member end displacements as

Q(1)
3 = k(1)

31 u(1)
1 + k(1)

32 u(1)
2 + k(1)

33 u(1)
3 + k(1)

34 u(1)
4 + Q(1)

f 3 (5.104a)

Q(1)
4 = k(1)

41 u(1)
1 + k(1)

42 u(1)
2 + k(1)

43 u(1)
3 + k(1)

44 u(1)
4 + Q(1)

f 4 (5.104b)

Similarly, the end forces Q(2)
1 , Q(2)

2 , and Q(2)
4 , of member 2, are written as

Q(2)
1 = k(2)

11 u(2)
1 + k(2)

12 u(2)
2 + k(2)

13 u(2)
3 + k(2)

14 u(2)
4 + Q(2)

f 1 (5.105a)

Q(2)
2 = k(2)

21 u(2)
1 + k(2)

22 u(2)
2 + k(2)

23 u(2)
3 + k(2)

24 u(2)
4 + Q(2)

f 2 (5.105b)

Q(2)
4 = k(2)

41 u(2)
1 + k(2)

42 u(2)
2 + k(2)

43 u(2)
3 + k(2)

44 u(2)
4 + Q(2)

f 4 (5.105c)

and the end force Q(3)
2 ,of member 3, is expressed as

Q(3)
2 = k(3)

21 u(3)
1 + k(3)

22 u(3)
2 + k(3)

23 u(3)
3 + k(3)

24 u(3)
4 + Q(3)

f 2 (5.106)

Next, we relate the joint displacements d to the member end forces Q by
substituting the compatibility equations, Eqs. (5.101), (5.102), and (5.103),
into the member force-displacement relations given by Eqs. (5.104), (5.105),
and (5.106), respectively. Thus,

Q(1)
3 = k(1)

33 d1 + k(1)
34 d2 + Q(1)

f 3 (5.107a)

Q(1)
4 = k(1)

43 d1 + k(1)
44 d2 + Q(1)

f 4 (5.107b)

Q(2)
1 = k(2)

11 d1 + k(2)
12 d2 + k(2)

14 d3 + Q(2)
f 1 (5.107c)

Q(2)
2 = k(2)

21 d1 + k(2)
22 d2 + k(2)

24 d3 + Q(2)
f 2 (5.107d)

Q(2)
4 = k(2)

41 d1 + k(2)
42 d2 + k(2)

44 d3 + Q(2)
f 4 (5.107e)

Q(3)
2 = k(3)

22 d3 + Q(3)
f 2 (5.107f)

Finally, by substituting Eqs. (5.107) into the joint equilibrium equations
(Eqs. (5.100)), we establish the desired structure stiffness relationships as

P1 =
(

k(1)
33 + k(2)

11

)
d1 +

(
k(1)

34 + k(2)
12

)
d2 + k(2)

14 d3 +
(

Q(1)
f 3 + Q(2)

f 1

)
(5.108a)

P2 =
(

k(1)
43 + k(2)

21

)
d1 +

(
k(1)

44 + k(2)
22

)
d2 + k(2)

24 d3 +
(

Q(1)
f 4 + Q(2)

f 2

)
(5.108b)

P3 = k(2)
41 d1 + k(2)

42 d2 +
(

k(2)
44 + k(3)

22

)
d3 +

(
Q(2)

f 4 + Q(3)
f 2

)
(5.108c)

Equations (5.108) can be conveniently expressed in matrix form as

P = Sd + P f

or

(5.109)P − P f = Sd
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in which

S =

⎡
⎢⎢⎣

k(1)
33 + k(2)

11 k(1)
34 + k(2)

12 k(2)
14

k(1)
43 + k(2)

21 k(1)
44 + k(2)

22 k(2)
24

k(2)
41 k(2)

42 k(2)
44 + k(3)

22

⎤
⎥⎥⎦ (5.110)

is the NDOF × NDOF structure stiffness matrix for the beam of Fig. 5.10(b),
and

P f =

⎡
⎢⎢⎣

Q(1)
f 3 + Q(2)

f 1

Q(1)
f 4 + Q(2)

f 2

Q(2)
f 4 + Q(3)

f 2

⎤
⎥⎥⎦ (5.111)

is the NDOF × 1 structure fixed-joint force vector. The structure fixed-joint
force vectors are further discussed in the following section. In the rest of this
section, we focus our attention on the structure stiffness matrices.

By examining Eq. (5.110), we realize that the structure stiffness matrix S
of the beam of Fig. 5.10(b) is symmetric, because of the symmetric nature of
the member stiffness matrices (i.e., kij = kji). (The structure stiffness matrices
of all linear elastic structures are always symmetric.) As discussed in Chapter 3,
a structure stiffness coefficient Sij represents the force at the location and in the
direction of Pi required, along with other joint forces, to cause a unit value of
the displacement dj, while all other joint displacements are 0, and the structure
is not subjected to any external loads. We can use this definition to verify the
S matrix (Eq. (5.110)) for the beam of Fig. 5.10.

In Figs. 5.11(a) through (c), the beam is subjected to the unit values of the
three joint displacements d1 through d3, respectively. As depicted in Fig. 5.11(a),
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Section 5.5 Structure Stiffness Relations 201

the joint displacement d1 = 1 (with d2 = d3 = 0) induces unit displacements
u(1)

3 = 1 at the right end of member 1 and u(2)
1 = 1 at the left end of member 2,

while member 3 is not subjected to any displacements. The member stiffness
coefficients (or end forces) necessary to cause the foregoing end displacements
of the individual members are also shown in Fig. 5.11(a). (Recall that we de-
rived the explicit expressions for member stiffness coefficients, in terms of E,
I, and L of the member, in Section 5.2.) From the figure, we can see that the
total vertical joint force S11 at joint 2, required to cause the joint displacement
d1 = 1 (with d2 = d3 = 0), must be equal to the algebraic sum of the vertical

2 31 4
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3 43
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(b) Second Column of S (d2 = 1, d1 = d3 = 0)
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Fig. 5.11 (continued)
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forces at the two member ends connected to this joint; that is,

S11 = k(1)
33 + k(2)

11 (5.112a)

Similarly, the total joint moment S21 at joint 2 must be equal to the algebraic
sum of the moments at the ends of members 1 and 2 connected to joint 2. Thus,
(Fig. 5.11(a)),

S21 = k(1)
43 + k(2)

21 (5.112b)

and the total joint moment S31 at joint 3 must equal the algebraic sum of the
moments at the two member ends connected to the joint; that is,

S31 = k(2)
41 (5.112c)

Note that the foregoing expressions for si1 (i = 1 through 3) are identical to
those listed in the first column of S in Eq. (5.110).

The second column of S can be verified in a similar manner. From
Fig. 5.11(b), we can see that the joint rotation d2 = 1 (with d1 = d3 = 0) in-
duces unit rotations u(1)

4 = 1 at the right end of member 1, and u(2)
2 = 1 at the

left end of member 2. The member stiffness coefficients associated with these
end displacements are also shown in the figure. By comparing the joint forces
with the member end forces, we obtain the expressions for the structure stiff-
ness coefficients as

S12 = k(1)
34 + k(2)

12 (5.112d)

S22 = k(1)
44 + k(2)

22 (5.112e)

S32 = k(2)
42 (5.112f)

which are the same as those in the second column of S in Eq. (5.110).
Similarly, by subjecting the beam to a unit rotation d3 = 1 (with

d1 = d2 = 0), as shown in Fig. 5.11(c), we obtain

S13 = k(2)
14 (5.112g)

S23 = k(2)
24 (5.112h)

S33 = k(2)
44 + k(3)

22 (5.112i)

The foregoing structure stiffness coefficients are identical to those listed in the
third column of S in Eq. (5.110).

Assembly of the Structure Stiffness Matrix
Using Member Code Numbers
Although the procedures discussed thus far for formulating S provide clearer
insight into the basic concept of the structure stiffness matrix, it is more con-
venient from a computer programming viewpoint to directly form the structure
stiffness matrix S by assembling the elements of the member stiffness matrices k.
This technique, which is sometimes referred to as the code number technique,
was described in detail in Section 3.7 for the case of plane trusses. The
technique essentially involves storing the pertinent elements of the stiffness

202 Chapter 5 Beams
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Section 5.5 Structure Stiffness Relations 203

matrix k for each member of the beam, in the structure stiffness matrix S,
by using the member code numbers. The code numbers for a member are
simply the structure coordinate numbers at the location and in the direction
of each of the member end displacements u, arranged in the order of the end
displacements.

To illustrate this technique, consider again the three-member beam of
Fig. 5.10. The analytical model of the beam is redrawn in Fig. 5.12(a), which
shows its three degrees of freedom (numbered from 1 to 3) and five restrained
coordinates (numbered from 4 to 8). In accordance with the notation for mem-
ber end displacements adopted in Section 5.2, the first two end displacements
of a member, u1 and u2, are always the vertical translation and rotation, respec-
tively, at the left end (or beginning) of the member, whereas the last two end
displacements, u3 and u4, are always the vertical translation and rotation, re-
spectively, at the right end (or end) of the member. Thus, the first two
code numbers for a member are always the structure coordinate numbers

R5

R8

P1

P3P2

R4 R7

321 4
X

Y

2 31

R6

Three degrees of freedom (1 through 3);
five restrained coordinates (4 through 8)

(a) Analytical Model

4 5 1 2 1 2 6 3 6 3 7 8

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k (1)
11 k (1)

12 k (1)
13 k (1)

14

k (1)
21 k (1)

22 k (1)
23 k (1)

24

k (1)
31 k (1)

32 k (1)
33 k (1)

34

k (1)
41 k (1)

42 k (1)
43 k (1)

44

⎤
⎥⎥⎥⎥⎥⎥⎦

4

5

1

2

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k (2)
11 k (2)

12 k (2)
13 k (2)

14

k (2)
21 k (2)

22 k (2)
23 k (2)

24

k (2)
31 k (2)

32 k (2)
33 k (2)

34

k (2)
41 k (2)

42 k (2)
43 k (2)

44

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

6

3
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⎡
⎢⎢⎢⎢⎢⎢⎣
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corresponding to the vertical translation and rotation, respectively, of the be-
ginning joint; and the third and fourth member code numbers are always the
structure coordinate numbers corresponding to the vertical translation and ro-
tation, respectively, of the end joint.

From Fig. 5.12(a) we can see that, for member 1 of the beam, the begin-
ning joint is 1 with restrained coordinates 4 and 5, and the end joint is 2 with
degrees of freedom 1 and 2. Thus, the code numbers for member 1 are 4, 5, 1, 2.
Similarly, the code numbers for member 2, for which the beginning and end
joints are 2 and 3, respectively, are 1, 2, 6, 3. In a similar manner, the code
numbers for member 3 are found to be 6, 3, 7, 8.

To establish the structure stiffness matrix S, we write the code numbers of
each member on the right side and at the top of its stiffness matrix ki (i = 1, 2,
or 3), as shown in Fig. 5.12(b). These code numbers now define the positions of
the elements of the member stiffness matrices in the structure stiffness matrix
S. In other words, the code numbers on the right side of a k matrix represent the
row numbers of S; and the code numbers at the top represent the column num-
bers of S. Furthermore, since the number of rows and columns of S equal the
number of degrees of freedom (NDOF ) of the beam, only those elements of a
k matrix for which both the row and the column code numbers are less than or
equal to NDOF belong in the structure stiffness matrix S. The structure stiffness
matrix S is obtained by algebraically adding the pertinent elements of the k ma-
trices of all the members in their proper positions in the S matrix.

To assemble the S matrix for the beam of Fig. 5.12(a), we start by storing
the pertinent elements of the stiffness matrix of member 1, k1, in the S matrix
(see Fig. 5.12(b)). Thus, the element k(1)

33 is stored in row 1 and column 1 of S,
the element k(1)

43 is stored in row 2 and column 1 of S, the element k(1)
34 is stored

in row 1 and column 2 of S, and the element k(1)
44 is stored in row 2 and column

2 of S. It should be noted that since the beam has three degrees of freedom,
only those elements of k1 whose row and column code numbers both are less
than or equal to 3 are stored in S. The same procedure is then used to store the
pertinent elements of k2 and k3, of members 2 and 3, respectively, in the S ma-
trix. Note that when two or more member stiffness coefficients are stored in the
same element of S, then the coefficients must be algebraically added. The com-
pleted structure stiffness matrix S for the beam is shown in Fig. 5.12(b), and is
identical to the one derived previously (Eq. (5.110)) by substituting the mem-
ber compatibility and stiffness relations into the joint equilibrium equations.

204 Chapter 5 Beams

E X A M P L E 5.4 Determine the structure stiffness matrix for the three-span continuous beam shown
in Fig. 5.13(a).

S O L U T I O N Analytical Model: The analytical model of the structure is shown in Fig. 5.13(b). The
beam has two degrees of freedom—the rotations of joints 2 and 3—which are
identified by the structure coordinate numbers 1 and 2 in the figure.

Structure Stiffness Matrix: To generate the 2 × 2 structure stiffness matrix S, we will
determine, for each member, the stiffness matrix k and store its pertinent elements in
their proper positions in S by using the member code numbers.
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Section 5.5 Structure Stiffness Relations 205

Member 1 By substituting L = 16 m into Eq. (5.53), we obtain

3 4 5 1

k1 = E I

⎡
⎢⎢⎣

0.0029297 0.023438 −0.0029297 0.023438
0.023438 0.25 −0.023438 0.125

−0.0029297 −0.023438 0.0029297 −0.023438
0.023438 0.125 −0.023438 0.25

⎤
⎥⎥⎦

3
4
5
1

(1)

From Fig. 5.13(b), we observe that the code numbers for this member are 3, 4, 5, 1.
These numbers are written on the right side and at the top of k1 in Eq. (1), to indicate
the rows and columns, respectively, of the structure stiffness matrix S, where the ele-
ments of k1 are to be stored. Thus, the element in row 4 and column 4 of k1 is stored
in row 1 and column 1 of S, as

1 2

S = E I

[
0.25 0
0 0

]
1
2

(2)

Note that the elements of k1 corresponding to the restrained coordinate numbers 3, 4,
and 5 are disregarded.

Member 2 L = 12 m. By using Eq. (5.53),

5 1 6 2

k2 = E I

⎡
⎢⎢⎣

0.0069444 0.041667 −0.0069444 0.041667
0.041667 0.33333 −0.041667 0.16667

−0.0069444 −0.041667 0.0069444 −0.041667
0.041667 0.16667 −0.041667 0.33333

⎤
⎥⎥⎦

5
1
6
2

(3)

16 m 8 m6 m6 m

15 kN/m

100 kN

EI = constant
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4

1 2
8
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(b) Analytical Model

Fig. 5.13
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From Fig. 5.13(b), we can see that the code numbers for this member are 5, 1, 6, 2.
These numbers are used to add the pertinent elements of k2 in their proper positions
in the structure stiffness matrix S given in Eq. (2), which now becomes

1 2

S = E I

[
0.25 + 0.33333 0.16667

0.16667 0.33333

]
1
2

(4)

Member 3 L = 8 m. Thus,

6 2 7 8

k3 = E I

⎡
⎢⎢⎣

0.023438 0.09375 −0.023438 0.09375
0.09375 0.5 −0.09375 0.25

−0.023438 −0.09375 0.023438 −0.09375
0.09375 0.25 −0.09375 0.5

⎤
⎥⎥⎦

6
2
7
8

(5)

The code numbers for this member are 6, 2, 7, 8. Thus, the element in row 2 and
column 2 of k3 is added in row 2 and column 2 of S in Eq. (4), as

1 2

S = E I

[
0.25 + 0.33333 0.16667

0.16667 0.33333 + 0.5

]
1
2

Since the stiffnesses of all three members of the beam have now been stored in S, the
structure stiffness matrix for the given beam is

1 2

S = E I

[
0.58333 0.16667
0.16667 0.83333

]
1
2

Ans

Note that the structure stiffness matrix is symmetric.

5.6 STRUCTURE FIXED-JOINT FORCES AND
EQUIVALENT JOINT LOADS
As discussed in the preceding section, the force–displacement relationships for
an entire structure can be expressed in matrix form (see Eq. (5.109)) as

P − P f = Sd

in which Pf represents the structure fixed-joint force vector. It was also shown
in the preceding section that by using the basic equations of equilibrium, com-
patibility, and member stiffness, the structure fixed-joint forces Pf can be ex-
pressed in terms of the member fixed-end forces Qf (see Eq. (5.111)). In this
section, we consider the physical interpretation of the structure fixed-joint
forces; and discuss the formation of the Pf vector, by assembling the elements
of the member Qf vectors, using the member code numbers.

The concept of the structure fixed-joint forces Pf is analogous to that of the
member fixed-end forces Q f. The structure fixed-joint forces represent the re-
action forces (and/or moments) that would develop at the locations and in the
directions of the structure’s degrees of freedom, due to the external member

206 Chapter 5 Beams
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Section 5.6 Structure Fixed-Joint Forces and Equivalent Joint Loads 207

loads, if all the joints of the structure were fixed against translations and
rotations.

To develop some insight into the concept of structure fixed-joint forces, let
us reconsider the beam of Fig. 5.10. The beam, subjected only to the member
loads, is redrawn in Fig. 5.14(a), with its analytical model depicted in
Fig. 5.14(b). Now, assume that joint 2, which is free to translate and rotate, is
restrained against these displacements by an imaginary restraint (or clamp)
applied to it, as shown in Fig. 5.14(c). Similarly, joint 3, which is free to rotate,
is also restrained against rotation by means of an imaginary restraint (or
clamp). When external loads are applied to the members of this hypothetical
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Fig. 5.14
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completely fixed structure, reaction forces and moments develop at each of its
joints. Note that, in Fig. 5.14(c), the reactions due to the imaginary restraints
are denoted symbolically by Pf i (i = 1 through 3), whereas the reactions at the
actual supports are denoted by Rf i (i = 4 through 8). The imaginary reactions
Pf1, Pf2, and Pf3, which are at the locations and in the directions of the struc-
ture’s three degrees of freedom 1, 2, and 3, respectively, are considered the
structure fixed-joint forces due to member loads. Thus, the structure fixed-joint
force vector, Pf, for the beam, can be written as

P f =
⎡
⎣ Pf 1

Pf 2

Pf 3

⎤
⎦ (5.113)

208 Chapter 5 Beams
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Q f1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q (1)
f1

Q (1)
f2

Q (1)
f3

Q (1)
f4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

5

1

2

P f =

⎡

⎢⎢⎢⎣

Q (1)
f3 + Q (2)

f1

Q (1)
f4 + Q (2)

f2

Q (2)
f4 + Q (3)

f2

⎤

⎥⎥⎥⎦

1

2

3

Q f2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q (2)
f1

Q (2)
f2

Q (2)
f3

Q (2)
f4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

2

6

3

Q f3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q (3)
f1

Q (3)
f2

Q (3)
f3

Q (3)
f4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6

3

7

8
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(e) Assembly of Structure Fixed-Joint Force Vector Pf

Fig. 5.14 (continued)
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Section 5.6 Structure Fixed-Joint Forces and Equivalent Joint Loads 209

To relate the structure fixed-joint forces Pf to the member fixed-end
forces Qf, we draw the free-body diagrams of the members and the interior
joints of the hypothetical fixed beam, as shown in Fig. 5.14(d). In this figure,
the superscript (i) denotes the member number. Note that, because all the
joints of the beam are completely restrained, the member ends, which are
rigidly connected to the joints, are also fixed against any displacements.
Therefore, only the fixed-end forces due to member loads, Qf, can develop at
the ends of the three members of the beam. By applying the equations of
equilibrium

∑
FY = 0 and

∑
M = 0 to the free body of joint 2, and the

equilibrium equation
∑

M = 0 to the free body of joint 3, we obtain the fol-
lowing relationships between the structure fixed-joint forces and the member
fixed-end forces.

Pf 1 = Q(1)
f 3 + Q(2)

f 1

Pf 2 = Q(1)
f 4 + Q(2)

f 2

Pf 3 = Q(2)
f 4 + Q(3)

f 2

which can be expressed in vector form as

P f =

⎡
⎢⎢⎣

Pf 1

Pf 2

Pf 3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Q(1)
f 3 + Q(2)

f 1

Q(1)
f 4 + Q(2)

f 2

Q(2)
f 4 + Q(3)

f 2

⎤
⎥⎥⎥⎦

Note that the foregoing Pf vector is identical to that determined for the exam-
ple beam in the preceding section (Eq. (5.111)).

Assembly of Structure Fixed-Joint Force Vector
Using Member Code Numbers
The structure fixed-joint force vector Pf can be conveniently assembled from
the member fixed-end force vectors Q f, using the member code number tech-
nique. The technique is similar to that for forming the structure stiffness matrix
S, described in the preceding section. Essentially, the procedure involves stor-
ing the pertinent elements of the fixed-end force vector Qf for each member of
the beam in their proper positions in the structure fixed-joint force vector Pf,
using the member code numbers.

The foregoing procedure is illustrated for the example beam in Fig. 5.14(e).
As shown there, the code numbers of each member are written on the right side
of its fixed-end force vector Qf. Any member code number that is less than or
equal to the number of degrees of freedom of the structure (NDOF ), now iden-
tifies the row of Pf in which the corresponding member force is to be stored.
Thus, as shown in Fig. 5.14(e), the third and fourth elements of Qf1, with code
numbers 1 and 2, respectively, are stored in the first and second rows of Pf. The
same procedure is then repeated for members 2 and 3. Note that the completed
Pf vector for the beam is identical to that obtained previously (Eq. (5.111)).
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Equivalent Joint Loads
The negatives of the structure fixed-joint forces (i.e., −Pf) are commonly
known as the equivalent joint loads. This is because the structure fixed-joint
forces, when applied to a structure with their directions reversed, cause the
same joint displacements as the actual member loads.

The validity of the foregoing interpretation can be shown easily using
the principle of superposition (Section 1.7), as illustrated in Fig. 5.15. Fig-
ure 5.15(a) shows a continuous beam subjected to arbitrary member loads.
(This beam was considered previously, and its analytical model is given in
Fig. 5.14(b).) In Fig. 5.15(b), joints 2 and 3 of the beam are fixed by imaginary
restraints so that the translation and rotation of joint 2, and the rotation of joint
3, are 0. This hypothetical completely fixed beam is then subjected to member
loads, causing the structure fixed-joint forces Pf1, Pf 2, and Pf 3 to develop at the
imaginary restraints, as shown in Fig. 5.15(b). Lastly, as shown in Fig. 5.15(c),

210 Chapter 5 Beams

L2

I

L3

I

L1

1.5I

W2
w1 w3

1 4

2 3

(a) Actual Beam Subjected to Member Loads

=

W2

Pf1

Pf 2
Pf3

w1 w3

1

2 3

4

(b) Fixed Beam Subjected to Member Loads

1 4
2 3

Pf1

Pf2 Pf 3

(c) Actual Beam Subjected to Equivalent Joint Loads

+

Fig. 5.15
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Section 5.6 Structure Fixed-Joint Forces and Equivalent Joint Loads 211

the actual beam is subjected to external loads at its joints, which are equal in
magnitude to Pf1, Pf 2, and Pf 3, but are reversed in direction.

By comparing Figs. 5.15(a), (b), and (c), we realize that the actual loading
applied to the beam in Fig. 5.15(a) equals the algebraic sum of the loadings
given in Figs. 5.15(b) and (c), because the reactive forces Pf1, Pf 2, and Pf 3 in
Fig. 5.15(b) cancel the corresponding applied loads in Fig. 5.15(c). Thus, ac-
cording to the principle of superposition, any joint displacement of the actual
beam due to the member loads (Fig. 5.15(a)) must equal the algebraic sum of
the corresponding joint displacement of the fixed beam due to the member
loads (Fig. 5.15(b)), and the corresponding joint displacement of the actual
beam subjected to no member loads, but to the fixed-joint forces with their di-
rections reversed. However, the joint displacements of the fixed beam (Fig.
5.15(b)) are 0. Therefore, the joint displacements of the beam due to the mem-
ber loads (Fig. 5.15(a)) must be equal to the corresponding joint displacements
of the beam due to the negatives of the fixed-joint forces (Fig. 5.15(c)). In other
words, the negatives of the structure fixed-joint forces do indeed cause the
same joint displacements of the beam as the actual member loads; and in that
sense, such forces can be considered to be the equivalent joint loads. It is im-
portant to realize that this equivalency between the negative fixed-joint forces
and the member loads is valid only for joint displacements, and cannot be gen-
eralized to member end forces and reactions, because such forces are generally
not 0 in fixed structures subjected to member loads.

Based on the foregoing discussion of equivalent joint loads, we can define
the equivalent joint load vector Pe for a structure as simply the negative of its
fixed-joint force vector Pf ; that is,

(5.114)

An alternative form of the structure stiffness relations, in terms of the equiv-
alent joint loads, can now be obtained by substituting Eq. (5.114) into
Eq. (5.109). This yields

(5.115)

Once S, Pf (or Pe), and P have been evaluated, the structure stiffness rela-
tions (Eq. (5.109) or Eq. (5.115)), which now represent a system of simultane-
ous linear equations, can be solved for the unknown joint displacements d.
With d known, the end displacements u for each member can be determined by
applying the compatibility equations defined by its code numbers; then the cor-
responding end forces Q can be computed by applying the member stiffness re-
lations. Finally, the support reactions R are determined from the member
end forces Q, by considering the equilibrium of the support joints in the direc-
tions of the restrained coordinates via member code numbers, as discussed in
Chapter 3 for the case of plane trusses.

P + Pe = Sd

Pe = −P f
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E X A M P L E 5.5 Determine the fixed-joint force vector and the equivalent joint load vector for the
propped-cantilever beam shown in Fig. 5.16(a).

S O L U T I O N Analytical Model: See Fig. 5.16(b).

Structure Fixed-Joint Force Vector: To generate the 3 × 1 structure fixed-joint force
vector Pf, we will, for each member: (a) determine the fixed-end force vector Q f,
using the fixed-end force equations given inside the front cover; and (b) store the per-
tinent elements of Q f in their proper positions in Pf, using the member code numbers.

Member 1 By substituting w = 30 kN/m, L = 9 m, and l1 = l2 = 0 into the fixed-
end force expressions for loading type 3, we obtain

FSb = FSe = 30(9)

2
= 135 kN

FMb = 30(9)2

12
= 202.5 kN · m

FMe = −30(9)2

12
= −202.5 kN · m

212 Chapter 5 Beams

9 m
2I

7 m
I

30 kN/m

E = constant
(a) Beam

5

2 3

321

21

1

4 6

X

Y

(b) Analytical Model (NDOF = 3)

80 kN•m 122.5 kN•m

32
1

240 kN

(c) Equivalent Joint Loads

Fig. 5.16
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Section 5.6 Structure Fixed-Joint Forces and Equivalent Joint Loads 213

Thus, the fixed-end force vector for member 1 is given by

Q f 1 =

⎡
⎢⎢⎣

135
202.5
135

−202.5

⎤
⎥⎥⎦

4
5
1
2

���� (1)

From Fig. 5.16(b), we can see that the code numbers for member 1 are 4, 5, 1, 2. These
numbers are written on the right side of Q f 1 in Eq. (1) to indicate the rows of the struc-
ture fixed-joint vector Pf, where the elements of Q f 1 are to be stored. Thus, the elements
in the third and fourth rows of Q f 1 are stored in rows 1 and 2, respectively, of Pf, as

P f =
⎡
⎣ 135

−202.5
0

⎤
⎦1

2
3

(2)

Note that the elements of Q f 1 corresponding to the restrained coordinate numbers 4
and 5 are disregarded.

Member 2 By substituting w = 30 kN/m, L = 7 m, and l1 = l2 = 0 into the fixed-
end force expressions for loading type 3, we obtain

FSb = FSe = 30(7)

2
= 105 kN

FMb = 30(7)2

12
= 122.5 kN · m

FMe = −30(7)2

12
= −122.5 kN · m

Thus,

Q f 2 =

⎡
⎢⎢⎣

105
122.5
105

−122.5

⎤
⎥⎥⎦

1
2
6
3

����

����

(3)

From Fig. 5.16(b), we observe that the code numbers for this member are 1, 2, 6, 3.
These numbers are used to add the pertinent elements of Qf 2 in their proper positions
in Pf given in Eq. (2), which now becomes

P f =
⎡
⎣ 135 + 105

−202.5 + 122.5
−122.5

⎤
⎦1

2
3

Since the fixed-end forces for both members of the beam have now been stored in Pf,
the structure fixed-joint force vector for the given beam is

P f =
⎡
⎣ 240

−80
−122.5

⎤
⎦1

2
3

Ans

Equivalent Joint Load Vector: By using Eq. (5.114), we obtain

Pe = −P f =
⎡
⎣ −240

80
122.5

⎤
⎦1

2
3

Ans
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5.7 PROCEDURE FOR ANALYSIS
Based on the concepts presented in the previous sections, we can develop the
following step-by-step procedure for the analysis of beams by the matrix stiff-
ness method. The reader should note that the overall format of this procedure
is essentially the same as the procedure for analysis of plane trusses presented
in Chapter 3.

1. Prepare an analytical model of the beam, as follows.

a. Draw a line diagram of the beam, and identify each joint and mem-
ber by a number. The origin of the global XY coordinate system is
usually located at the farthest left joint, with the X and Y axes ori-
ented in the horizontal (positive to the right) and vertical (positive
upward) directions, respectively. For each member, establish a local
xy coordinate system, with the origin at the left end (beginning) of
the member, and the x and y axes oriented in the horizontal (positive
to the right) and vertical (positive upward) directions, respectively.

b. Number the degrees of freedom and restrained coordinates of the
beam, as discussed in Section 5.1.

2. Evaluate the structure stiffness matrix S and fixed-joint force vector Pf.
The number of rows and columns of S must be equal to the number of
degrees of freedom (NDOF) of the beam; the number of rows of Pf

must equal NDOF. For each member of the structure, perform the fol-
lowing operations.

a. Compute the member stiffness matrix k (Eq. (5.53)).

b. If the member is subjected to external loads, then evaluate its fixed-
end force vector Q f, using the expressions for fixed-end forces given
inside the front cover.

c. Identify the member code numbers and store the pertinent elements
of k and Qf in their proper positions in the structure stiffness matrix
S, and the fixed-joint force vector Pf, respectively. The complete
structure stiffness matrix S, obtained by assembling the stiffness
coefficients of all the members of the beam, must be symmetric.

3. If the beam is subjected to joint loads, then form the NDOF × 1 joint
load vector P.

4. Determine the joint displacements d. Substitute P, Pf, and S into
the structure stiffness relations, P − Pf = Sd (Eq. (5.109)), and solve
the resulting system of simultaneous equations for the unknown
joint displacements d. To check that the simultaneous equations have
been solved correctly, substitute the numerical values of the joint dis-
placements d back into the structure stiffness relations, P − Pf = Sd.

214 Chapter 5 Beams

These equivalent joint loads, when applied to the beam as shown in Fig. 5.16(c), cause
the same joint displacements as the actual 30 kN/m uniformly distributed load given
in Fig. 5.16(a).
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Section 5.7 Procedure for Analysis 215

E X A M P L E 5.6 Determine the joint displacements, member end forces, and support reactions for the
three-span continuous beam shown in Fig. 5.17(a), using the matrix stiffness method.

S O L U T I O N Analytical Model: See Fig. 5.17(b). The beam has two degrees of freedom—the
rotations of joints 2 and 3—which are numbered 1 and 2, respectively. The six
restrained coordinates of the beam are numbered 3 through 8.

Structure Stiffness Matrix and Fixed-Joint Force Vector:

Member 1 By substituting E = 29,000 ksi, I = 510 in.4, and L = 240 in. into
Eq. (5.53), we obtain

3 4 5 1

k1 =

⎡
⎢⎢⎣

12.839 1,540.6 −12.839 1,540.6
1,540.6 246,500 −1,540.6 123,250
−12.839 −1,540.6 12.839 −1,540.6

1,540.6 123,250 −1,540.6 246,500

⎤
⎥⎥⎦

3
4
5
1

������

(1)

If the solution is correct, then the stiffness relations should be satisfied.
It should be noted that joint translations are considered positive when in
the positive direction of the Y axis, and joint rotations are considered
positive when counterclockwise.

5. Compute member end displacements and end forces, and support
reactions. For each member of the beam, do the following.

a. Obtain member end displacements u from the joint displacements
d, using the member code numbers.

b. Compute member end forces, using the relationship Q = ku + Q f

(Eq. (5.4)).

c. Using the member code numbers, store the pertinent elements of Q
in their proper positions in the support reaction vector R (as dis-
cussed in Chapter 3).

6. Check the calculation of member end forces and support reactions by
applying the equations of equilibrium, 

∑
FY = 0 and 

∑
M = 0, to

the free body of the entire beam. If the calculations have been carried
out correctly, then the equilibrium equations should be satisfied.

EI = constant
E = 29,000 ksi
I = 510 in.4

20 ft 15 ft 20 ft

10 ft

30 k 1.5 k/ft

(a) Three-Span Continuous Beam

Fig. 5.17
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216 Chapter 5 Beams

4

2 8

321 4

2 31 1

3 765

X

Y

(b) Analytical Model

1 2 1 2

S =
[

246,500 + 328,667 164,333

164,333 328,667 + 246,500

]
1

2
=

[
575,167 164,333

164,333 575,167

]
1

2

Pf =
[

−900

600

]
1

2

(c) Structure Stiffness Matrix and Fixed-Joint Force Vector

1 21

30 k

1,150 400

18.125 11.875

3 43

0.125 k/in.

200 800

12.5 17.5

2 32400 200

1.1111 1.1111

(d) Member End Forces

30 k
0.125 k/in.

1,150 k-in. 800 k-in.

3

4

2

1

18.125 k 17.5 k11.389 k12.986 k

(f) Support Reactions

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

18.125

1,150

11.875 + 1.1111

−1.1111 + 12.5

17.5

−800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

4

5

6

7

8

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

18.125 k

1,150k-in.

12.986 k

11.389 k

17.5 k

−800 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e) Support Reaction Vector

Fig. 5.17 (continued)
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Section 5.7 Procedure for Analysis 217

Using the fixed-end force equations given inside the front cover, we evaluate the fixed-
end forces due to the 30 k concentrated load as 

FSb = 30(120)2

(240)3
[3(120) + 120] = 15 k

FMb = 30(120)(120)2

(240)2
= 900 k-in.

FSe = 30(120)2

(240)3
[120 + 3(120)] = 15 k

FMe = −30(120)2(120)

(240)2
= −900 k-in.

Thus, the fixed-end force vector for member 1 is

Q f 1 =

⎡
⎢⎢⎣

15
900
15

−900

⎤
⎥⎥⎦

3
4
5
1

���

(2)

From Fig. 5.17(b), we observe that the code numbers for member 1 are 3, 4, 5, 1.
Using these code numbers, the pertinent elements of k1 and Q f1 are stored in their
proper positions in the 2 × 2 structure stiffness matrix S and the 2 × 1 structure
fixed-joint force vector Pf, respectively, as shown in Fig. 5.17(c).

Member 2 E = 29,000 ksi, I = 510 in.4, and L = 180 in.

5 1 6 2

k2 =

⎡
⎢⎢⎣

30.432 2,738.9 −30.432 2,738.9
2,738.9 328,667 −2,738.9 164,333
−30.432 −2,738.9 30.432 −2,738.9

2,738.9 164,333 −2,738.9 328,667

⎤
⎥⎥⎦

5
1
6
2

(3)

Since this member is not subjected to any external loads, its fixed-end force vector is
0; that is,

Q f 2 = 0 (4)

Using the code numbers 5, 1, 6, 2 for this member (see Fig. 5.17(b)), the relevant ele-
ments of k2 are stored into S, as shown in Fig. 5.17(c).

Member 3 E = 29,000 ksi, I = 510 in.4, and L = 240 in.

6 2 7 8

k3 =

⎡
⎢⎢⎣

12.839 1,540.6 −12.839 1,540.6
1,540.6 246,500 −1,540.6 123,250
−12.839 −1,540.6 12.839 −1,540.6

1,540.6 123,250 −1,540.6 246,500

⎤
⎥⎥⎦

6
2
7
8

(5)

The fixed-end forces due to the 0.125 k/in. (=1.5 k/ft) uniformly distributed load are

FSb = 0.125(240)

2
= 15 k

FMb = 0.125(240)2

12
= 600 k-in.

FSe = 0.125(240)

2
= 15 k

FMe = −0.125(240)2

12
= −600 k-in.

�����
� �
�����

�����
�
�����
�����

������
� �

�����
� �
�����

26201_05_ch05_p162-248.qxd  12/1/10  5:05 PM  Page 217

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



218 Chapter 5 Beams

Thus,

Q f 3 =

⎡
⎢⎢⎣

15
600
15

−600

⎤
⎥⎥⎦

6
2
7
8

���

��� (6)

The relevant elements of k3 and Q f3 are stored in S and Pf, respectively, using the
member code numbers 6, 2, 7, 8.

The completed structure stiffness matrix S and structure fixed-joint force vector Pf

are given in Fig. 5.17(c). Note that the S matrix is symmetric.

Joint Load Vector: Since no external loads (i.e., moments) are applied to the beam at
joints 2 and 3, the joint load vector is 0; that is,

P = 0

Joint Displacements: By substituting the numerical values of P, Pf, and S into
Eq. (5.109), we write the stiffness relations for the entire continuous beam as

P − Pf = Sd[
0
0

]
−

[ −900
600

]
=

[
575,167 164,333
164,333 575,167

] [
d1

d2

]

or [
900

−600

]
=

[
575,167 164,333
164,333 575,167

] [
d1

d2

]

By solving these equations simultaneously, we determine the joint displacements to be

d =
[

2.0284
−1.6227

]
× 10−3 rad Ans

To check the foregoing solution, we substitute the numerical values of d back into the
structure stiffness relationship to obtain

P − P f = Sd =
[

575,167 164,333
164,333 575,167

][
2.0284

−1.6227

]
× 10−3 =

[
900.01

−599.99

]

Checks
Member End Displacements and End Forces:

Member 1 The member end displacements u can be obtained simply by comparing
the member’s degree of freedom numbers with its code numbers, as follows:

u1 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦

3
4
5
1

=

⎡
⎢⎢⎣

0
0
0
d1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0

2.0284

⎤
⎥⎥⎦ × 10−3 (7)

Note that the member code numbers (3, 4, 5, 1), when written on a side of u as
shown in Eq. (7), define the compatibility equations for the member. Since the code
numbers corresponding to u1, u2, and u3 are the restrained coordinate numbers 3, 4, and
5, respectively, this indicates that u1 = u2 = u3 = 0. Similarly, the code number 1 cor-
responding to u4 indicates that u4 = d1. The foregoing compatibility equations can be
easily verified by a visual inspection of the beam’s line diagram, given in Fig. 5.17(b).

The member end forces can now be calculated, using the member stiffness rela-
tionship Q = ku + Q f (Eq. (5.4)). Using k1 and Q f1 from Eqs. (1) and (2), respectively,
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Section 5.7 Procedure for Analysis 219

we write

Q1 =

⎡
⎢⎢⎣

12.839 1,540.6 −12.839 1,540.6
1,540.6 246,500 −1,540.6 123,250
−12.839 −1,540.6 12.839 −1,540.6

1,540.6 123,250 −1,540.6 246,500

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0
2.0284

⎤
⎥⎥⎦ × 10−3

+

⎡
⎢⎢⎣

15
900
15

−900

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

18.125 k
1,150 k-in.
11.875 k

−400 k-in.

⎤
⎥⎥⎦

3
4
5
1

�����

(8) Ans

The end forces for member 1 are shown in Fig. 5.17(d). We can check our calculation
of end forces by applying the equilibrium equations, 

∑
Fy = 0 and 

∑
M = 0, to the

free body of member 1 to ensure that it is in equilibrium. Thus,

+ ↑ ∑
Fy = 0 18.125 − 30 + 11.875 = 0 Checks

+ ∑
M©1 = 0 1,150 − 30(120) − 400 + 11.875(240) = 0 Checks

Next, to generate the support reaction vector R, we write the member code numbers
(3, 4, 5, 1) on the right side of Q1, as shown in Eq. (8), and store the pertinent elements
of Q1 in their proper positions in R by matching the code numbers on the side of Q1

to the restrained coordinate numbers on the right side of R (see Fig. 5.17(e)).

Member 2 The member end displacements are given by

u2 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦

5
1
6
2

=

⎡
⎢⎢⎣

0
d1

0
d2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
2.0284
0

−1.6227

⎤
⎥⎥⎦ × 10−3

By using k2 from Eq. (3) and Q f 2 = 0, we compute member end forces as

Q = ku + Q f

Q2 =

⎡
⎢⎢⎣

30.432 2,738.9 −30.432 2,738.9
2,738.9 328,667 −2,738.9 164,333
−30.432 −2,738.9 30.432 −2,738.9

2,738.9 164,333 −2,738.9 328,667

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
2.0284
0

−1.6227

⎤
⎥⎥⎦ × 10−3

=

⎡
⎢⎢⎣

1.1111 k
400 k-in.

−1.1111 k
−200 k-in.

⎤
⎥⎥⎦

5
1
6
2

�����

�����

�����

Ans

The foregoing member end forces are shown in Fig. 5.17(d). To check our calcula-
tions, we apply the equations of equilibrium to the free body of member 2 as

+ ↑ ∑
Fy = 0 1.1111 − 1.1111 = 0 Checks

+ ∑
M©2 = 0 400 − 200 − 1.1111(180) = 0.002 ≈ 0 Checks

Next, we store the pertinent elements of Q2 in their proper positions in the reaction
vector R, using the member code numbers (5, 1, 6, 2), as shown in Fig. 5.17(e).

Y

Y
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220 Chapter 5 Beams

Member 3

u3 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦

6
2
7
8

=

⎡
⎢⎢⎣

0
d2

0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−1.6227

0
0

⎤
⎥⎥⎦ × 10−3

By substituting k3 and Qf 3 from Eqs. (5) and (6), respectively, into the member stiff-
ness relationship Q = ku + Q f, we determine the end forces for member 3 to be

Q3 =

⎡
⎢⎢⎣

12.839 1,540.6 −12.839 1,540.6
1,540.6 246,500 −1,540.6 123,250
−12.839 −1,540.6 12.839 −1,540.6

1,540.6 123,250 −1,540.6 246,500

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
−1.6227

0
0

⎤
⎥⎥⎦ × 10−3

+

⎡
⎢⎢⎣

15
600
15

−600

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

12.5 k
200 k-in.
17.5 k

−800 k-in.

⎤
⎥⎥⎦

6
2
7
8

����

���� Ans

These member end forces are shown in Fig. 5.17(d). To check our calculations, we
apply the equilibrium equations:

+ ↑ ∑
Fy = 0 12.5 − 0.125(240) + 17.5 = 0 Checks

+ ∑
M©3 = 0 200 − 0.125(240)(120) − 800 + 17.5(240) = 0 Checks

Next, by using the code numbers (6, 2, 7, 8) for member 3, we store the relevant ele-
ments of Q3 in their proper positions in R.

Support Reactions: The completed reaction vector R is shown in Fig. 5.17(e), and the
support reactions are depicted on a line diagram of the structure in Fig. 5.17(f). Ans

Equilibrium Check: Finally, applying the equilibrium equations to the free body of
the entire beam (Fig. 5.17(f)), we write

+ ↑ ∑
Fy = 0

18.125 − 30 + 12.986 + 11.389 − 0.125(240) + 17.5 = 0 Checks

+ ∑
M©1 = 0

1,150 − 30(120) + 12.986(240) + 11.389(420) − 0.125(240)(540)

+ 17.5(660) − 800 = 0.02 ≈ 0 Checks

Y

Y

E X A M P L E 5.7 Determine the joint displacements, member end forces, and support reactions for the
beam shown in Fig. 5.18(a), using the matrix stiffness method.

S O L U T I O N Analytical Model: See Fig. 5.18(b). The beam has four degrees of freedom
(numbered 1 through 4) and four restrained coordinates (numbered 5 through 8).
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Section 5.7 Procedure for Analysis 221

E = constant
E = 28 GPa
I = 5.8(109) mm4

6 m 4 m 5 m 5 m

1.5 I I

200 kN

30 kN/m

90 kN•m

150 kN

(a) Beam

6

2 4

421

31

1

5 8

3

3

7

2
X

Y

(b) Analytical Model

1 2 3 4 1 2 3 4

S =

(13,533 + 30,450) 60,900 0

(−40,600 + 60,900)

(−40,600 + 60,900)

(162,400 + 162,400) 81,200 0

60,900 81,200 (162,400 + 64,960) 32,480

0 0 32,480 64,960

1

2

3

4

=

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

43,983 20,300 60,900 0

20,300 324,800 81,200 0

60,900 81,200 227,360 32,480

0 0 32,480 64,960

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

1

2

3

4

P
f

=

⎡
⎢⎢⎢⎣

27

−36

187.5

−187.5

⎤
⎥⎥⎥⎦

1

2

3

4

(c) Structure Stiffness Matrix and Fixed-Joint Force Vector

3

99.79 50.21

247.92
150 kN

337.92

2

236.78

143.67 143.67

1

30 kN/m

281.19

236.78

146.33 56.33

(d) Member End Forces

Fig. 5.18

26201_05_ch05_p162-248.qxd  12/1/10  5:05 PM  Page 221

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



222 Chapter 5 Beams

Structure Stiffness Matrix and Fixed-Joint Force Vector:

Member 1 By substituting E = 28(106) kN/m2, I = 8,700(10−6) m4, and L = 6 m
into Eq. (5.53), we write

5 6 1 2

k1 =

⎡
⎢⎢⎣

13,533 40,600 −13,533 40,600
40,600 162,400 −40,600 81,200

−13,533 −40,600 13,533 −40,600
40,600 81,200 −40,600 162,400

⎤
⎥⎥⎦

5
6
1
2

Using the fixed-end force expressions given inside the front cover, we obtain
FSb = 63 kN, FMb = 54 kN · m, FSe = 27 kN, and FMe = −36 kN · m. Thus,

Q f 1 =

⎡
⎢⎢⎣

63
54
27

−36

⎤
⎥⎥⎦

5
6
1
2

���

Using the code numbers (5, 6, 1, 2) for member 1, we store the pertinent elements of
k1 and Q f1 in their proper positions in the S matrix and the Pf vector, respectively, as
shown in Fig. 5.18(c).

Member 2 E = 28(106)  kN/m2, I = 5,800(10−6) m4, and L = 4 m. Thus,

1 2 7 3

k2 =

⎡
⎢⎢⎣

30,450 60,900 −30,450 60,900
60,900 162,400 −60,900 81,200

−30,450 −60,900 30,450 −60,900
60,900 81,200 −60,900 162,400

⎤
⎥⎥⎦

1
2
7
3

As this member is not subjected to any loads,

Q f 2 = 0

Using the member code numbers 1, 2, 7, 3, the relevant elements of k2 are stored in S
in Fig. 5.18(c).

R =

⎡
⎢⎢⎢⎣

146.33

281.19

143.67 + 99.79

50.21

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

146.33 kN

281.19 kN · m

243.46 kN

50.21 kN

⎤
⎥⎥⎥⎦

(e) Support Reaction Vector

5

6

7

8

4

200 kN30 kN/m

90 kN•m

150 kN
281.19

21

146.33

3

243.46 50.21
(f) Support Reactions

Fig. 5.18 (continued)

�����������
�
�

� �
� �
� ����������� �����

���������� ������ �� �
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Section 5.7 Procedure for Analysis 223

Member 3 E = 28(106) kN/m2, I = 5,800(10−6) m4, and L = 10 m.

7 3 8 4

k3 =

⎡
⎢⎢⎣

1,948.8 9,744 −1,948.8 9,744
9,744 64,960 −9,744 32,480

−1,948.8 −9,744 1,948.8 −9,744
9,744 32,480 −9,744 64,960

⎤
⎥⎥⎦

7
3
8
4

The fixed-end forces are determined to be FSb = 75 kN, FMb = 187.5 kN · m,
FSe = 75 kN, and FMe = −187.5 kN · m. Thus,

Q f 3 =

⎡
⎢⎢⎣

75
187.5
75

−187.5

⎤
⎥⎥⎦

7
3
8
4

����

����

����

The relevant elements of k3 and Qf 3 are stored in S and Pf respectively, using the mem-
ber code numbers 7, 3, 8, 4. The completed structure stiffness matrix S and structure
fixed-joint force vector Pf are given in Fig. 5.18(c).

Joint Load Vector: By comparing Figs. 5.18(a) and (b), we realize that P1 = −200 kN,
P2 = 0, P3 = −90 kN · m, and P4 = 0. Thus, the joint load vector can be expressed as

P =

⎡
⎢⎢⎣

−200
0

−90
0

⎤
⎥⎥⎦

Joint Displacements: The stiffness relations for the entire beam can be expressed as

P − Pf = Sd

By substituting the numerical values of P, Pf, and S, we obtain⎡
⎢⎢⎣

−200
0

−90
0

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

27
−36
187.5

−187.5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

43,983 20,300 60,900 0
20,300 324,800 81,200 0
60,900 81,200 227,360 32,480

0 0 32,480 64,960

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎦

or ⎡
⎢⎢⎣

−227
36

−277.5
187.5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

43,983 20,300 60,900 0
20,300 324,800 81,200 0
60,900 81,200 227,360 32,480

0 0 32,480 64,960

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎦

By solving the foregoing system of simultaneous equations, we determine the joint
displacements to be

d =

⎡
⎢⎢⎣

−4.4729 m
0.56143 rad

−0.68415 rad
3.2285 rad

⎤
⎥⎥⎦ × 10−3 Ans

Back substitution of the foregoing numerical values of d into the structure stiffness
relationship P − Pf = Sd indicates that the solution of the simultaneous equations
has indeed been carried out correctly.

����� ������ � �� � ������ �����

����� ������ � �� � �
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5.8 COMPUTER PROGRAM
In this section, we consider computer implementation of the procedure for the
analysis of beams presented in this chapter. Because of the similarity in the
methods for the analysis of beams and plane trusses, the overall format of
the program for beam analysis remains the same as that for the analysis of
plane trusses developed in Chapter 4. Therefore, many parts of the plane truss
program can be copied and used, without any modifications, in the program for
beam analysis. In the following, we discuss the development of an input mod-
ule and consider programming of the analysis steps for beams.

Input Module
Joint Data The joint data consists of (a) the total number of joints (NJ) of
the beam, and (b) the global X coordinate of each joint. (Recall that the global

224 Chapter 5 Beams

Member End Displacements and End Forces:

Member 1

u1 =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦

5
6
1
2

=

⎡
⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

−4.4729
0.56143

⎤
⎥⎥⎦ × 10−3

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎣

146.33 kN
281.19 kN · m
−56.33 kN
236.78 kN · m

⎤
⎥⎥⎦

5
6
1
2

Ans

Member 2

u2 =

⎡
⎢⎢⎣

−4.4729
0.56143
0

−0.68415

⎤
⎥⎥⎦

1
2
7
3

× 10−3; Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎣

−143.67 kN
−236.78 kN · m

143.67 kN
−337.92 kN · m

⎤
⎥⎥⎦

1
2
7
3

Ans

Member 3

u3 =

⎡
⎢⎢⎣

0
−0.68415

0
3.2285

⎤
⎥⎥⎦

7
3
8
4

× 10−3; Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎣

99.79 kN
247.92 kN · m
50.21 kN
0

⎤
⎥⎥⎦

7
3
8
4

Ans

The member end forces are shown in Fig. 5.18(d).

Support Reactions: The reaction vector R, as assembled from the appropriate elements
of the member end-force vectors, is given in Fig. 5.18(e). Also, Fig. 5.18(f) depicts the
support reactions on a line diagram of the structure. Ans

Equilibrium Check: The equilibrium equations check.
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Section 5.8 Computer Program 225

XY coordinate system must be oriented so that the X axis coincides with the
beam’s centroidal axis.) The joint coordinates are stored in computer memory
in the form of a joint coordinate vector COORD of the order NJ × 1.
Consider, for example, the continuous beam shown in Fig. 5.19(a), with its
analytical model given in Fig. 5.19(b). As the beam has four joints, its
COORD vector has four rows, with the X coordinate of a joint i stored in the
ith row, as shown in Fig. 5.19(c). A flowchart for programming the reading

E = 29,000 ksi

10 ft 20 ft 10 ft

I = 350 in.4 I = 500 in.4

10 ft

25 k2 k/ft40 k-ft

5 ft 5 ft

3 k/ft

(a) Actual Beam

E = 29,000 ksi

L = 120 in.
I = 350 in.4

L = 240 in.
I = 350 in.4

L = 120 in.
I = 500 in.4

120 in.

25 k
0.1667 k/in.480 k-in.

60 in.60 in.

0.25 k/in.

421 31 32

X

Y

(b) Analytical Model (Units: Kips, Inches)

COORD =

⎡
⎢⎢⎢⎣

0

120

360

480

⎤
⎥⎥⎥⎦

X Coordinate

Joint 1

Joint 2

Joint 3

Joint 4

(c) Joint Coordinate Vector

NJ × 1

MSUP =

⎡
⎢⎢⎢⎣

1 1 0

2 1 0

3 1 0

4 1 1

⎤
⎥⎥⎥⎦

Joint number

Restraint in Y direction
         (0 = free, 1 = restrained)

Rotational restraint
               (0 = free, 1 = restrained)

NS × (NCJT + 1)

(d) Support Data Matrix

Fig. 5.19
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226 Chapter 5 Beams

EM = [29000] Material no. 1

(e) Elastic Modulus Vector
NMP × 1

CP =
[

350

500

]

NCP ×

Moment of inertia

Cross-section type no. 1

Cross-section type no. 2

(f) Cross-Sectional Property Vector

1

Joint number
Force in Y direction

Moment

JP =
[
1
]

PJ =
[
0 −480

]

NJL × 1 NJL × NCJT

(h) Joint Load Data Matrices

Member number
Load type number

MP =

⎡
⎢⎣

2 3

2 1

3 4

⎤
⎥⎦ PM =

⎡
⎢⎣

0.1667 0 0 120

25 0 180 0

0.25 0 0 0

⎤
⎥⎦

W, M, w or w1

w2 (if load type = 4)

0    (otherwise)
l1

l2   (if load type = 3 or 4)

0    (otherwise)

(i) Member Load Data Matrices

NML × 2 NML × 4

MPRP =

⎡
⎢⎣

1 2 1 1

2 3 1 1

3 4 1 2

⎤
⎥⎦

NM × 4

Beginning joint

End joint

Material no.

Cross-section
type no.

(g) Member Data Matrix

Member 1

Member 2

Member 3

Fig. 5.19 (continued)
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Section 5.8 Computer Program 227

and storing of the joint data for beams is given in Fig. 5.20(a), and an exam-
ple of the input data file for the beam of Fig. 5.19(b) is shown in Fig. 5.21 on
page 229. Note that the first line of this data file contains the total number of
joints of the beam (i.e., 4), with the next four lines containing the X coordi-
nates of joints 1 through 4, respectively.

Support Data The support data consists of (a) the number of joints that are
attached to supports (NS), and (b) the joint number, and the restraint code, for
each support joint. Since the number of structure coordinates per joint of a
beam equals 2 (i.e., NCJT = 2), a two-digit code is used to specify the
restraints at a support joint. The first digit of the code represents the restraint
condition at the joint in the global Y direction; it equals 0 if the joint is free to
translate in the Y direction, or it equals 1 if the joint is restrained in the Y di-
rection. Similarly, the second digit of the code represents the rotational re-
straint condition at the joint; a 0 indicates that the joint is free to rotate, and a 1
indicates that it is restrained against rotation. The restraint codes for the vari-
ous types of supports for beams are given in Fig. 5.22 on page 230. Since the
joints 1, 2, and 3 of the example beam (Fig. 5.19(b)) are attached to roller sup-
ports, their restraint codes are 1,0, indicating that these joints are restrained
from translating in the Y direction, but are free to rotate. Similarly, the restraint
code for joint 4, which is attached to a fixed support, is 1,1, because this joint can
neither translate nor rotate. The support data for beams is stored in computer

Read NJ

Dimension COORD (NJ)

I � 1

I ≤ NJ?

Read COORD(I)

I � I + 1

yes

no

Continue to Part II

(a) Flowchart for Reading and Storing Joint Data for Beams

Start Part I

Fig. 5.20

Start Part VIa

Continue to Part VIb

Read NJL

NJL > 0 ?

I ≤ NJL?

( (Dimension JP NJL), PJ NJL, NCJT)

I = 1

Read JP(I ), PJ(I, 1), PJ(I, 2), . . . ,  PJ(I, NCJT )

(b) Flowchart for Reading and Storing Joint Load Data

I � I + 1

no

no

yes

yes
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memory as an integer matrix MSUP of order NS × (NCJT + 1), as discussed
in Chapter 4 for the case of plane trusses. Thus, for the beam of Fig. 5.19(b),
which has four support joints, MSUP is a 4 × 3 matrix, as shown in Fig. 5.19(d).
The computer code developed previously for Part II of the plane truss analysis
program (see flowchart in Fig. 4.3(b)) can be copied and used in the beam
analysis program for reading the support data, and storing it in computer
memory. An example of how the support data for beams may appear in an
input data file is given in Fig. 5.21.

Material Property Data The procedure for inputting material property data
for beams is identical to that for the case of plane trusses, as described in
Chapter 4. Thus, the computer code written for Part III of the plane truss
program (see flowchart in Fig. 4.3(c)) can be used in the beam analysis pro-
gram for inputting the material property data. The elastic modulus vector for
the example beam of Fig. 5.19(b) is given in Fig. 5.19(e); Fig. 5.21 illustrates
how this type of data may appear in an input data file.

228 Chapter 5 Beams

Start Part VIb

Read NML 

NML > 0?

I ≤ NML?

Dimension MP(NML, 2), PM(NML, 4)

Read MP(I, 1), MP(I, 2)
If MP(I, 2) = 1 or 2 then read PM(I, 1), PM(I, 3)

If MP(I, 2) = 3 then read PM(I, 1), PM(I, 3), PM(I, 4)
If MP(I, 2) = 4 then read PM(I, 1), PM(I, 2), PM(I, 3), PM(I, 4) 

Initialize all elements of PM to zero

Print All Input Data

Continue to Part VII

I = 1

I = I + 1

no

no

yes

yes

(c) Flowchart for Reading and Storing Member Load Data

Fig. 5.20 (continued)
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Section 5.8 Computer Program 229

Cross-Sectional Property Data The cross-sectional property data consists of
(a) the number of different cross-section types used for the members of the
beam (NCP), and (b) the moment of inertia (I) for each cross-section type. The
moments of inertia are stored in computer memory in a cross-sectional prop-
erty vector CP of order NCP × 1, with the moment of inertia of cross-section
i stored in the ith row of CP. For example, two types of member cross-sections
are used for the beam of Fig. 5.19(b). We arbitrarily assign the numbers 1 and
2 to the cross-sections with the moments of inertia of 350 and 500 in.4, respec-
tively. Thus, the CP vector consists of two rows, with the moments of inertia of
cross-section types 1 and 2 stored in rows 1 and 2, respectively, as shown in
Fig. 5.19(f). The computer code developed in Part IV of the plane truss pro-
gram (see flowchart in Fig. 4.3(d)) can be used for inputting cross-sectional
property data for beams. An example of how this type of data may appear in an
input data file is given in Fig. 5.21.

Member Data As in the case of plane trusses, the member data for beams
consists of (a) the total number of members (NM) of the beam, and (b) for each
member: the beginning joint number, the end joint number, the material
number, and the cross-section type number. This member data is organized in

4
0
120
360
480
4
1, 1, 0
2, 1, 0
3, 1, 0
4, 1, 1
1
29000
2
350
500
3
1, 2, 1, 1
2, 3, 1, 1
3, 4, 1, 2
1
1, 0, −480
3
2, 3, 0.1667, 0, 120
2, 1, 25, 180
3, 4, 0.25, 0, 0, 0

Joint data

Support data

Material property data

Cross-sectional 
property data

Member data

Joint load data

Member load data

Fig. 5.21 An Example of an Input Data File
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computer memory in the form of an integer member data matrix, MPRP, of
order NM × 4, as discussed in Chapter 4. The computer code for Part V of the
plane truss program (see flowchart in Fig. 4.3(e)) can be used for inputting
member data for beams. The MPRP matrix for the example beam is shown in
Fig. 5.19(g), with the corresponding input data file given in Fig. 5.21.

Joint Load Data The joint load data involves (a) the number of joints that are
subjected to external loads (NJL), and (b) for each loaded joint, the joint num-
ber, and the magnitudes of the force in the global Y direction and the couple.
As in the case of plane trusses (Chapter 4), the numbers of the loaded joints are
stored in an integer vector JP of order NJL × 1, with the corresponding force
and couple being stored in the first and second columns, respectively, of a real
matrix PJ of order NJL × NCJT (with NCJT = 2 for beams). The joint load

230 Chapter 5 Beams

Type of Support Restraint Code

Free joint
 (no support)

Roller or
hinge

Support which 
prevents rotation,
but not translation
in Y direction; for 
example, a collar
 on a smooth shaft

Fixed

0, 0

1, 0

0, 1

1, 1

MR

MR

RY
RY

RY

RY

RY

MR

Fig. 5.22 Restraint Codes for Beams
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Section 5.8 Computer Program 231

matrices for the example beam of Fig. 5.19(b) are shown in Fig. 5.19(h). A
flowchart for programming the input of joint load data is given in Fig. 5.20(b);
and Fig. 5.21 shows the joint load data for the example beam in an input file
that can be read by the program.

Member Load Data The member load data consists of (a) the total number
of loads applied to the members of the beam (NML), and (b) for each member
load: the member number, the load type, and the magnitude(s) and location(s)
of the load. The four common types of member loads for beams are depicted as
load types 1 through 4 inside the front cover of this book, along with the ex-
pressions for the corresponding member fixed-end forces. The total number of
member loads, NML, represents the sum of the different loads acting on the in-
dividual members of the structure. From Fig. 5.19(b), we can see that member 1
of the example beam is not subjected to any loads, whereas member 2 is
subjected to two loads—namely, a uniformly distributed load (type 3) and a
concentrated load (type 1). Also, member 3 of the beam is subjected to one
load—a linearly varying load (type 4). Thus, the beam is subjected to a total of
three member loads; that is, NML = 3. For each member load, the member
number and the load type are stored in the first and second columns, respec-
tively, of an integer matrix MP of order NML × 2, with the corresponding load
magnitude(s) and location(s) being stored in a real matrix PM of order
NML × 4. With reference to the load types depicted inside the front cover:
when the load type is 1 or 2, the magnitude of W or M is stored in the first col-
umn, and the distance l1 is stored in the third column, of the PM matrix, with
the elements of the second and fourth columns of PM left blank (or set equal
to 0). In the case of load type 3, the magnitude of w is stored in the first col-
umn, and distances l1 and l2 are stored in the third and fourth columns, respec-
tively, of the PM matrix, with the second column element left blank. When the
load type is 4, the magnitudes of w1 and w2 are stored in the first and second
columns, respectively, and the distances l1 and l2 are stored in the third and
fourth columns, respectively, of the PM matrix. For example, as the beam of
Fig. 5.19(b) is subjected to three member loads, its member load-data matri-
ces, MP and PM, are of the orders 3 × 2 and 3 × 4, respectively, as shown in
Fig. 5.19(i). The first rows of these matrices contain information about the first
member load, which is arbitrarily chosen to be the uniformly distributed load
acting on member 2. Thus, the first row of MP contains the member number, 2,
and the load type, 3, stored in the first and second columns; and the first row of
PM contains w = 0.1667 in column 1, 0 in column 2, l1 = 0 in column 3, and
l2 = 120 in column 4. The information about the second member load—the
concentrated load acting on member 2—is then stored in the second rows of
MP and PM; with the member number 2 and the load type 1 stored in the first
and second columns of MP, and W = 25 and l1 = 180 stored in the first and
third columns of PM. Similarly, the third member load—the linearly varying
load on member 3—is defined in the third rows of MP and PM; with the mem-
ber number 3 and the load type 4 stored in the first and second columns of
MP, and w1 = 0.25, w2 = 0, l1 = 0, and l2 = 0 stored in columns 1 through 4,
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232 Chapter 5 Beams

**********************************
*   Computer Software *
* for *
* MATRIX ANALYSIS OF STRUCTURES *
*         Second Edition         *
* by *
* Aslam Kassimali *
**********************************

General Structural Data

Project Title: Figure 5-19
Structure Type: Beam
Number of Joints: 4
Number of Members: 3
Number of Material Property Sets (E): 1
Number of Cross-Sectional Property Sets: 2

Joint Coordinates

Joint No.       X Coordinate

1             0.0000E+00
2             1.2000E+02
3             3.6000E+02
4             4.8000E+02

Supports

Joint No.    Y Restraint    Rotational Restraint

1             Yes                 No
2             Yes                 No
3             Yes                 No
4             Yes                 Yes

Fig. 5.23 A Sample Printout of Input Data

respectively, of PM, as shown in Fig. 5.19(i). It is important to realize that the
member fixed-end force expressions given inside the front cover are based on
the sign convention that the member loads W, w, w1, and w2 are positive when
acting downward (i.e., in the negative direction of the member y axis), and the
couple M is positive when clockwise. A flowchart for programming the input
of member load data is given in Fig. 5.20(c); Fig. 5.21 shows the member load
data in an input file that can be read by the program.

An example of a computer printout of the input data for the beam of
Fig. 5.19 is given in Fig. 5.23.
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Section 5.8 Computer Program 233

Material Properties

Material       Modulus of        Co-efficient of
No.       Elasticity (E)    Thermal Expansion

1           2.9000E+04         0.0000E+00

Cross-Sectional Properties

Property No.       Moment of Inertia

1                3.5000E+02
2                5.0000E+02

Member Data

Member   Beginning   End   Material   Cross-Sectional
No.     Joint    Joint    No.      Property No.

1         1        2      1             1
2         2        3      1             1
3         3        4      1             2

Joint Loads

Joint No.         Y Force         Moment

1             0.0000E+00     -4.8000E+02

Member Loads

Load
Magnitude
(W or M)

or        Load
Member  Load  Intensity  Intensity  Distance  Distance
No.  Type  (w or w1)     w2        l1         l2

2    Conc. 2.500E+1   ---      1.80E+2   ----
2  Uniform  1.667E-1      ---       0.00E+0   1.20E+2
3   Linear  2.500E-1    0.000E+0    0.00E+0   0.00E+0

************** End of Input Data **************

Fig. 5.23 (continued)

Analysis Module

Assignment of Structure Coordinate Numbers The process of programming
the determination, for beams, of the number of degrees of freedom, NDOF,
and the formation of the structure coordinate number vector, NSC, is identical
to that for plane trusses. Thus, Parts VII and VIII of the plane truss program (as
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described by flowcharts in Figs. 4.8(a) and (b)) can be copied and used without
any modifications in the program for the analysis of beams.

Generation of the Structure Stiffness Matrix and the Equivalent Joint
Load Vector A flowchart for programming this part of our computer program
is presented in Fig. 5.24. As the flowchart indicates, this part of the program

234 Chapter 5 Beams

Start Part IX

Initialize all elements of S and P to zero

IM = 1

Dimension S(NDOF, NDOF), P(NDOF), BK(2*NCJT, 2*NCJT), QF(2*NCJT)

IM ≤ NM?

JB = MPRP(IM, 1), JE = MPRP(IM, 2)
I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), ZI = CP(I)

XB = COORD(JB), XE = COORD(JE)
BL = XE − XB

NML > 0?

Call Subroutine MFEFLL

Continue to Part X

Call Subroutine MSTIFFL

Call Subroutine STORES

Initialize all elements of QF to zero

Call Subroutine STOREPF IML ≤ NML?

IM = MP(IML, 1)?

IML = 1

IM = IM + 1

yes

IML = IML + 1

no

no

no

no

yes

yes

yes

Fig. 5.24 Flowchart for Generating Structure Stiffness Matrix and Equivalent Joint
Load Vector for Beams
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Section 5.8 Computer Program 235

begins by initializing all the elements of the S matrix, and a structure load
vector P of order NDOF × 1, to 0. The assembly of the structure stiffness
matrix, and the equivalent joint load vector due to member loads, is then car-
ried out by using a Do Loop, in which the following operations are per-
formed for each member of the beam: (a) For the member under considera-
tion, IM, the program reads the modulus of elasticity E and the moment of
inertia ZI, and calculates the member length BL. (b) Next, the program calls
the subroutine MSTIFFL to form the member stiffness matrix BK (= k). As
the flowchart in Fig. 5.25 indicates, this subroutine simply calculates the val-
ues of the various elements of the BK matrix, in accordance with Eq. (5.53).
(c) The program then calls the subroutine STORES to store the pertinent el-
ements of BK in their proper positions in the structure stiffness matrix S. A
flowchart of this subroutine is given in Fig. 5.26 on the next page. By com-
paring the flowchart of the present STORES subroutine (Fig. 5.26) with that
of the STORES subroutine of the plane truss program in Fig. 4.11, we can
see that the two subroutines are identical, except that the present subroutine
stores the elements of the member local stiffness matrix BK (instead of the
global stiffness matrix GK) in S. (d) Returning our attention to Fig. 5.24, we
can see that after the STORES subroutine has been executed, the program
checks the first column of the member load data matrix MP to determine
whether the member under consideration, IM, is subjected to any loads. If the
member is subjected to loads, then the subroutine MFEFLL is called to form
the member fixed-end force vector QF (= Qf). As the flowchart in Fig. 5.27
on page 237 indicates, this subroutine calculates the values of the member
fixed-end forces, for load types 1 through 4, using the equations given inside

Start Subroutine MSTIFFL

Arguments: E, ZI, BL, BK

End Subroutine MSTIFFL
Return to calling program

Z � E*ZI/(BL^3)
BK(1, 1) � 12*Z, BK(2, 1) � 6*BL*Z
BK(3, 1) � −12*Z, BK(4, 1) � 6*BL*Z
BK(1, 2) � 6*BL*Z, BK(2, 2) � 4*(BL^2)*Z
BK(3, 2) � −6*BL*Z, BK(4, 2) � 2*(BL^2)*Z
BK(1, 3) � −12*Z, BK(2, 3) � −6*BL*Z
BK(3, 3) � 12*Z, BK(4, 3) � −6*BL*Z
BK(1, 4) � 6 *BL*Z, BK(2, 4) � 2*(BL^2)*Z
BK(3, 4) � −6*BL*Z, BK(4, 4) � 4*(BL^2)*Z

Fig. 5.25 Flowchart of Subroutine MSTIFFL
for Determining Member Stiffness Matrix for
Beams
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236 Chapter 5 Beams

Start Subroutine STORES

Arguments: JB, JE, NCJT, NDOF, NSC, BK, S

I = 1

I ≤ 2*NCJT?

I ≤ NCJT?

I1 = (JB − 1)*NCJT + I I1 = (JE − 1)*NCJT + (I − NCJT)

N1 = NSC(I1)

I1 = (JB − 1)*NCJT + J I1 = (JE − 1)*NCJT + (J − NCJT)

S(N1, N2) = S(N1, N2) + BK(I, J)

N2 = NSC(I1)

J ≤ 2*NCJT?

N1 ≤ NDOF?

J = 1

 J ≤ NCJT ?

N2 ≤ NDOF?

End Subroutine STORES
Return to calling program

J = J + 1

I = I + 1

no

noyes

no

no

yes no

no

yes

yes

yes

yes

Fig. 5.26 Flowchart of Subroutine STORES for Storing Member Stiffness Matrix in
Structure Stiffness Matrix for Beams
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Section 5.8 Computer Program 237

the front cover. (e) The program then calls the subroutine STOREPF to store
the negative values of the pertinent elements of QF in their proper positions
in the load vector P. A flowchart of this subroutine, which essentially con-
sists of a Do Loop, is given in Fig. 5.28 on the next page. As shown in this
flowchart, the subroutine reads, in order, for each of the member fixed-end
forces, QFI, the number of the corresponding structure coordinate, N1, from
the NSC vector. If N1 is less than or equal to NDOF, then the value of QFI

is subtracted from the N1th row of the load vector P. From Fig. 5.24, we can
see that when the foregoing operations have been performed for each mem-
ber of the beam, the structure stiffness matrix S is completed, and the struc-
ture load vector P equals the equivalent joint load vector Pe, or the negative
of the structure fixed-joint force vector Pf (i.e., P = Pe = −Pf).

Storage of the Joint Loads into the Structure Load Vector In this part of our
computer program, the joint loads are added to the structure load vector P.

Start Subroutine MFEFLL

Arguments: IML, BL, MP, PM, QF

LDTYPE = MP(IML, 2)

no

no

If LDTYPE = 1?

If LDTYPE = 2?

If LDTYPE = 4?

If LDTYPE = 3?

no

BW = PM(IML, 1), BL1 = PM(IML, 3)
Use equations for load type 1 to
calculate FSB, FMB, FSE, FME

BM = PM(IML, 1), BL1 = PM(IML, 3)
Use equations for load type 2 to
calculate FSB, FMB, FSE, FME

W = PM(IML, 1), BL1 = PM(IML, 3),
BL2 = PM(IML, 4)

Use equations for load type 3 to
calculate FSB, FMB, FSE, FME

W1 = PM(IML, 1), W2 = PM(IML, 2),
BL1 = PM(IML, 3), BL2 = PM(IML, 4)

Use equations for load type 4 to
calculate FSB, FMB, FSE, FME

QF(1) = QF(1) + FSB
QF(2) = QF(2) + FMB
QF(3) = QF(3) + FSE
QF(4) = QF(4) + FME

End Subroutine MFEFLL
Return to calling program

yes

yes

yes

yesno

Fig. 5.27 Flowchart of Subroutine MFEFLL for Determining Member Fixed-End
Force Vector for Beams
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A flowchart for programming this process is shown in Fig. 5.29. This flowchart
is the same as the previous flowchart (Fig. 4.12) for forming the joint load vec-
tor for plane trusses, except that the load vector P is not initialized to 0 in this
part of the program (as it was previously), because it now contains the equiva-
lent joint loads due to member loads.

Solution for Joint Displacements In this part, the program solves the system
of simultaneous equations representing the beam’s stiffness relationship,
Sd = P, using Gauss–Jordan elimination. The programming of this process
has been discussed previously (see the flowchart in Fig. 4.13), and it may be re-
called that, upon completion of the Gauss–Jordan elimination process, the
vector P contains the values of the joint displacements d. The computer code
developed in Chapter 4 for Part XI of the plane truss program can be trans-
ported, without any alteration, into the beam analysis program for the calcula-
tion of joint displacements.

238 Chapter 5 Beams

Start Subroutine STOREPF

Arguments: JB, JE, NCJT, NDOF, NSC, QF, P

I � 1

I ≤ 2*NCJT?
no

no

yes

yes

End Subroutine STOREPF
Return to calling program

N1 � NSC(I1)

N1 ≤ NDOF ?

yes

no

P(N1) � P(N1) � QF(I )

I1 � (JB � 1)*  NCJT + I

I ≤ NCJT ?

I1 � (JE � 1)* NCJT + (I � NCJT )

I � I + 1

Fig. 5.28 Flowchart of Subroutine STOREPF for Storing Member Fixed-End Force
Vector in Structure Load Vector for Beams
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Calculation of Member Forces and Support Reactions The last part of our
program involves the calculation of member forces and support reactions. A
flowchart for programming this process is given in Fig. 5.30 on the next page. As
this figure indicates, after initializing the reaction vector R to 0, the program uses
a Do Loop to perform the following operations for each member of the beam:
(a) For the member under consideration, IM, the program reads the modulus of
elasticity E and the moment of inertia ZI, and calculates the member length BL.
(b) Next, the program calls the subroutine MDISPL to obtain the member end
displacements U (= u) from the joint displacements P (= d), using the member
code numbers, as depicted by the flowchart in Fig. 5.31 on page 241. (c) The pro-
gram then calls the subroutine MSTIFFL (Fig. 5.25) to form the member stiff-
ness matrix BK (= k). (d) Returning our attention to Fig. 5.30, we can see that
the program then initializes the QF vector to 0, and checks the first column
of the member load matrix MP to determine if the member IM is subjected to
any loads. If the member is subjected to loads, then the subroutine MFEFLL
(Fig. 5.27) is used to form the fixed-end force vector QF. (e) Next, the program

Start Part X

Continue to Part XI

I = 1

I1 = JP(I )
I2 = (I1 – 1)*NCJT

J = 1

P(N) = P(N) + PJ(I, J)

I ≤ NJL?

J ≤ NCJT?

N ≤ NDOF?

no

no

no

yes

yes

yes

I = I + 1

J = J + 1

I2 = I2 + 1
N = NSC(I2)

Fig. 5.29 Flowchart for Storing Joint Loads in Structure
Load Vector
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240 Chapter 5 Beams

IM ≤ NM?

IM = 1

IML = 1

Dimension BK(2*NCJT, 2*NCJT), U(2*NCJT ), Q(2*NCJT ), QF(2*NCJT), R(NR)

JB = MPRP(IM, 1), JE = MPRP(IM, 2)
I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), ZI = CP(I)

XB = COORD(JB), XE = COORD(JE)
BL = XE − XB

NML > 0?

Call Subroutine MFEFLL

End of Program

Print Support Reactions R

Call Subroutine MDISPL

Call Subroutine MSTIFFL

IML  ≤ NML?

IM = MP(IML, 1)?

yes

yes

yes

yes

no

no

no

no

Start Part XII

Initialize all elements of R to zero

Initialize all elements of QF to zero

IM = IM + 1

Call Subroutine
STORER

Call Subroutine
MFORCEL

IML = IML + 1

Fig. 5.30 Flowchart for Determination of Member Forces and Support Reactions 
for Beams
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no

no

yes

yes

yes

yes

no

no

Start Subroutine MDISPL

Arguments: JB, JE, NCJT, NDOF, NSC, P, U

Initialize all elements of U to zero

J � (JB − 1)*NCJT
I � 1

I ≤ NCJT?

N ≤ NDOF?

N ≤ NDOF?

I ≤ 2*NCJT?

J � J + 1
N � NSC(J)

J � J + 1
N � NSC(J)

J � (JE − 1)*NCJT
I � NCJT + 1

U(I) � P(N)

U(I) � P(N )

End Subroutine MDISPL
Return to calling program

I � I + 1

I � I + 1

Fig. 5.31 Flowchart of Subroutine MDISPL for
Determining Member Displacement Vector for Beams

calls the subroutine MFORCEL to evaluate the member end forces Q, using
the relationship Q = BK U + QF (i.e., Q = ku + Q f, see Eq. (5.4)). A
flowchart of this subroutine is shown in Fig. 5.32. (f ) The program then stores
the pertinent elements of Q in the support reaction vector R, using the subrou-
tine STORER. The present STORER subroutine, whose flowchart is given in
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Fig. 5.33, is identical to the STORER subroutine of the plane truss program
(Fig. 4.21), except that the present subroutine stores the elements of the member
local force vector Q (instead of the global force vector F) in R. A sample
computer printout, showing the results of the analysis of the example beam of
Fig. 5.19, is given in Fig. 5.34.

Finally, the entire program for the analysis of beams is summarized in
Table 5.1. As shown in this table, the program consists of a main program, di-
vided into twelve parts, and seven subroutines. Brief descriptions of the vari-
ous parts and subroutines of the program are also provided in Table 5.1 for
quick reference. It should be noted that seven parts of the main program can be
obtained from the plane truss computer program developed in Chapter 4. Fur-
thermore, the computer code for many of the remaining parts of the main pro-
gram, as well as the subroutines, can be conveniently developed by modifying
the computer code written previously for the corresponding part or subroutine
of the plane truss program.

242 Chapter 5 Beams

I ≤ 2*NCJT?

I ≤ 2*NCJT?

J ≤ 2*NCJT?

Start Subroutine MFORCEL

Arguments: NCJT, BK, U, Q, QF 

I = 1

I = 1

J = 1

Q(I ) = QF(I )

Q(I ) = Q(I ) + BK(I, J)*U(J )

Print Member Forces Q

I = I + 1

I = I + 1

J = J + 1

no

no

no

yes

yes

yes

End Subroutine MFORCEL
Return to calling program

Fig. 5.32 Flowchart of Subroutine MFORCEL for Determining
Member Local Force Vector
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Start Subroutine STORER

I = 1

I = I�+�1

N = NSC(I1)

R(N − NDOF ) = R(N − NDOF ) + Q(I )

I1 = (JB   − 1)*NCJT + I I1 = (JE   − 1)*NCJT + (I − NCJT )

I ≤ 2*NCJT?

I ≤ NCJT?

N > NDOF?

Arguments: JB, JE, NCJT, NDOF, NSC, Q, R

no

no

no

yes

yes

yes

End Subroutine STORER
Return to calling program

Fig. 5.33 Flowchart of Subroutine STORER for Storing Member Forces in Support
Reaction Vector for Beams

Fig. 5.34 A Sample Printout of Analysis Results

***************************************************
* Results of Analysis *
***************************************************

Joint Displacements

Joint No.       Y Translation       Rotation (Rad)

1             0.0000E+00        -5.5719E-04
2             0.0000E+00        -1.7231E-03
3             0.0000E+00         1.6238E-03
4             0.0000E+00         0.0000E+00
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244 Chapter 5 Beams

Member End Forces in Local Coordinates

Member      Joint    Shear Force     Moment

1           1       -9.6435E+00  -4.8000E+02
2        9.6435E+00  -6.7722E+02

2           2        2.0055E+01   6.7722E+02
3        2.4949E+01  -9.6485E+02

3           3        2.0311E+01   9.6485E+02
4       -5.3106E+00   2.7242E+02

Support Reactions

Joint No.           Y Force           Moment

1             -9.6435E+00        0.0000E+00
2              2.9698E+01        0.0000E+00
3              4.5260E+01        0.0000E+00
4             -5.3106E+00        2.7242E+02

***************** End of Analysis *****************

Fig. 5.34 (continued)

(continued)

Table 5.1 Computer Program for Analysis of Beams

Main
program part Description

I Reads and stores joint data (Fig. 5.20(a))

II Reads and stores support data (Fig. 4.3(b))

III Reads and stores material properties (Fig. 4.3(c))

IV Reads and stores cross-sectional properties (Fig. 4.3(d))

V Reads and stores member data (Fig. 4.3(e))

VIa Reads and stores joint loads (Fig. 5.20(b))

VIb Reads and stores member loads (Fig. 5.20(c))

VII Determines the number of degrees of freedom NDOF of the
structure (Fig. 4.8(a))

VIII Forms the structure coordinate number vector NSC (Fig. 4.8(b))

IX Generates the structure stiffness matrix S and the structure load
vector P = Pe = −Pf due to member loads (Fig. 5.24) Subroutines
called: MSTIFFL, STORES, MFEFLL, and STOREPF

X Stores joint loads in the structure load vector P (Fig. 5.29)

XI Calculates the structure joint displacements by solving the
stiffness relationship, Sd = P, using Gauss–Jordan elimination.
The vector P now contains joint displacements (Fig. 4.13).
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SUMMARY

In this chapter, we have developed the matrix stiffness method for the analysis
of beams. A block diagram summarizing the various steps of the analysis is
presented in Fig. 5.35.

Table 5.1 (continued)

Main
program part Description

XII Determines the member end force vector Q, and the support
reaction vector R (Fig. 5.30). Subroutines called: MDISPL,
MSTIFFL, MFEFLL, MFORCEL, and STORER

Subroutine Description

MDISPL Determines the member displacement vector U from the joint dis-
placement vector P (Fig. 5.31)

MFEFLL Calculates the member fixed-end force vector QF (Fig. 5.27)

MFORCEL Evaluates the member local force vector Q = BK U + QF 
(Fig. 5.32)

MSTIFFL Forms the member stiffness matrix BK (Fig. 5.25)

STOREPF Stores the negative values of the pertinent elements of the member
fixed-end force vector QF in the structure load vector P (Fig. 5.28)

STORER Stores the pertinent elements of the member force vector Q in the
reaction vector R (Fig. 5.33)

STORES Stores the pertinent elements of the member stiffness matrix BK
in the structure stiffness matrix S (Fig. 5.26)

For each member:
Evaluate k and Qf

Store k in S and Qf  in Pf

Form joint load vector P

Solve P − Pf = Sd for d

Identify degrees of freedom d and
restrained coordinates of the beam

For each member:
Obtain u from d

Calculate Q = ku + Qf
Store Q in R

Fig. 5.35

Section 5.1

5.1 through 5.4 Identify by numbers the degrees of freedom
and restrained coordinates of the beams shown in Figs. P5.1
through P5.4. Also, form the joint load vector P for the beams.

15 ft
I 2 I

15 ft

E = 4,500 ksi
I  = 600 in.4

2

1 3

60 k-ft

25 k

1
2

Fig. P5.1, P5.5, P5.19, P5.27

EI = constant
E = 200 GPa
I = 700 (106) mm4

2

1
3

21

85 kN

8 m 4 m

Fig. P5.2, P5.28

P R O B L E M S
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EI = constant
E  = 70 GPa
I   = 225 (106) mm4

150 kN.m

6 m 6 m6 m

1 2 3
1

2

3

4

Fig. P5.3, P5.6, P5.20, P5.29

E = 29,000 ksi
I  = 300 in.4

20 ft 20 ft

1.25 I 1.25 I I

15 ft15 ft

50 k50 k

1
2 3

4

1

2 4

3

5

Fig. P5.4, P5.7, P5.21, P5.35

E = 29,000 ksi
I = 700 in.4

15 ft
I

15 ft
2I

21

Fig. P5.9

EI = constant
E   = 10,000 ksi
I   = 540 in.4 

2 31

24 ft24 ft

3 k/ft
10 k 10 k

8ft 8ft 8ft

1
42 3

Fig. P5.10, P5.17, P5.24, P5.31

EI = constant

w

L

b e

Fig. P5.11

E = 29,000 ksi
I = 250 in.4

2.5 k/ft
30 k

12 ft

I 2 I

8 ft 8 ft12 ft

1 2
3

1
2

3

4

Fig. P5.8, P5.22, P5.23, P5.30

Section 5.2

5.5 through 5.8 Determine the stiffness matrices for the mem-
bers of the beams shown in Figs. P5.5 through P5.8.

5.9 If the end displacements of member 1 of the beam shown
in Fig. P5.9 are

u1 =

⎡
⎢⎢⎣

0
0

−0.6667 in.

−0.006667 rad

⎤
⎥⎥⎦

calculate the end forces for the member. Is the member in equi-
librium under these forces?

5.10 If the end displacements of member 2 of the beam shown
in Fig. P5.10 are

u2 =

⎡
⎢⎢⎣

0
0.08581 rad

0
−0.08075 rad

⎤
⎥⎥⎦

calculate the end forces for the member. Is the member in equi-
librium under these forces?

Section 5.4

5.11 through 5.14 Using the direct integration approach, de-
rive the equations of fixed-end forces due to the member loads
shown in Figs. P5.11 through P5.14. Check the results, using
the fixed-end force expressions given inside the front cover.
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5.15 and 5.16 Determine the fixed-end force vectors for the
members of the beams shown in Figs. P5.15 and P5.16. Use the
fixed-end force equations given inside the front cover.

EI = constant

w

L

L

b e

2

Fig. P5.12

EI = constant

w

L

b e

Fig. P5.13

EI = constant

w

b e

L

L
2

Fig. P5.14

EI = constant
E = 200 GPa
I = 400(106) mm4

2 31

15 m 15 m 15 m

18 kN/m

25 kN/m

120 kN•m

90 kN 90 kN

5m 5m 5m

1
4

2 3

Fig. P5.15, P5.25, P5.33

E = 29,000 ksi
I = 310 in.4

3 41

24 ft 24 ft 24 ft 24 ft

2 k/ft
3 k/ft

75 k-ft

40 k40 k

16 ft 12 ft

2

Fig. P5.16, P5.26, P5.32

E = 30 GPa
I = 4.8 (109) mm4

100 kN 100 kN

20 kN/m

5 m
I

5 m
I

5 m
1.5 I

2 31

Fig. P5.18, P5.34

5.17 If the end displacements of member 1 of the beam shown
in Fig. P5.17 are

u1 =

⎡
⎢⎢⎣

0
0
0

0.08581 rad

⎤
⎥⎥⎦

calculate the end forces for the member. Is the member in equi-
librium under these forces?

5.18 If the end displacements of member 2 of the beam shown
in Fig. P5.18 are

u2 =

⎡
⎢⎢⎣

−0.02532 m
−0.00434 rad
−0.02532 m
0.00434 rad

⎤
⎥⎥⎦

calculate the end forces for the member. Is the member in equi-
librium under these forces?

Section 5.5

5.19 through 5.22 Determine the structure stiffness matrices
S for the beams shown in Figs. P5.19 through P5.22.
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Section 5.6

5.23 through 5.26 Determine the fixed-joint force vectors
and the equivalent joint load vectors for the beams shown in
Figs. P5.23 through P5.26.

Section 5.7

5.27 through 5.35 Determine the joint displacements, mem-
ber end forces, and support reactions for the beams shown in
Figs. P5.27 through P5.35, using the matrix stiffness method.
Check the hand-calculated results by using the computer pro-

248 Chapter 5 Beams

gram provided with this book, the publisher’s website for this
book (www.cengage.com/engineering), or by using any other
general purpose structural analysis program available.

Section 5.8

5.36 Develop a general computer program for the analysis of
beams by the matrix stiffness method. Use the program to
analyze the beams of Problems 5.27 through 5.35, and compare
the computer-generated results to those obtained by hand
calculations.
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PLANE FRAMES

Beekman Tower, New York
(Estormiz, Wikimedia Commons)
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A plane frame is defined as a two-dimensional assemblage of straight members
connected together by rigid and/or hinged connections, and subjected to loads
and reactions that lie in the plane of the structure. Under the action of external
loads, the members of a plane frame may be subjected to axial forces like the
members of plane trusses, as well as bending moments and shears like the
members of beams. Therefore, the stiffness relations for plane frame members
can be conveniently obtained by combining the stiffness relations for plane
truss and beam members.

The members of frames are usually connected by rigid connections, al-
though hinged connections are sometimes used. In this chapter, we develop the
analysis of rigidly connected plane frames based on the matrix stiffness method.
The modifications in the method of analysis necessary to account for the
presence of any hinged connections in the frame are considered in Chapter 7.

We begin, in Section 6.1, with a discussion of the process of developing
an analytical model of the frame. We establish the force–displacement rela-
tions for the members of plane frames in their local coordinate systems in
Section 6.2, where we also consider derivation of the member fixed-end axial
forces due to external loads applied to the members. The transformation of
member forces and displacements from a local to a global coordinate system,
and vice versa, is considered in Section 6.3; and the member stiffness rela-
tions in the global coordinate system are developed in Section 6.4. The stiff-
ness relations for the entire frame are formulated in Section 6.5, where the
process of forming the structure fixed-joint force vectors, due to member loads,
is also discussed. We then develop a step-by-step procedure for the analysis of
plane frames in Section 6.6; finally, in Section 6.7, we cover the computer
implementation of the procedure for analysis of plane frames.

6.1 ANALYTICAL MODEL
The process of dividing plane frames into members and joints, for the purpose
of analysis, is the same as that for beams (Chapter 5); that is, a plane frame is
divided into members and joints so that: (a) all of the members are straight and
prismatic, and (b) all the external reactions act only at the joints. Consider, for
example, the frame shown in Fig. 6.1(a). The analytical model of the frame is
depicted in Fig. 6.1(b), which shows that, for the purpose of analysis, the frame
is considered to be composed of four members and five joints. Note that
because the member stiffness relationships to be used in the analysis are valid
for prismatic members only, the left column of the frame has been subdivided
into two members, each with constant cross-sectional properties (i.e., cross-
sectional area and moment of inertia) along its length.

Global and Local Coordinate Systems
The global and local coordinate systems for plane frames are established in a
manner similar to that for plane trusses (Chapter 3). The global coordinate
system used for plane frames is a right-handed XYZ coordinate system with the
frame lying in the XY plane, as shown in Fig. 6.1(b). It is usually convenient to
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(a) Actual Frame
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(b) Analytical Model Showing Global and Local Coordinate Systems
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Fig. 6.1
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Deformed
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(c) Degrees of Freedom
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locate the origin of the global coordinate system at a lower left joint of the
frame with the X and Y axes oriented in the horizontal (positive to the right) and
the vertical (positive upward) directions, respectively (see Fig. 6.1(b)).

For each member of the frame, a local xyz coordinate system is estab-
lished, with its origin at an end of the member and the x axis directed along the
member’s centroidal axis in the undeformed state. The positive direction of
the y axis is defined so that the local coordinate system is right-handed, with
the local z axis pointing in the positive direction of the global Z axis. The
member end at which the origin of the local coordinate system is located can
be chosen arbitrarily, and is usually considered to be the beginning of the mem-
ber; the opposite member end is simply referred to as the end of the member.
The local coordinate systems selected for the four members of the example
frame are depicted in Fig. 6.1(b). As indicated in this figure, the member local
coordinate systems can be conveniently shown on the line diagram of the struc-
ture by drawing an arrow on each member in the positive direction of its x axis.

Degrees of Freedom and Restrained Coordinates
The degrees of freedom of a plane frame are simply the unknown displacements
(translations and rotations) of its joints. Since an unsupported joint of a plane

252 Chapter 6 Plane Frames

4

3

1

2

X

Y

10

13

11 14

12

3

2

6

1

4

5

9

7

8

5

15
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(NDOF = 10, NR = 5)
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Fig. 6.1 (continued)
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frame can translate in any direction in the XY plane and rotate about the Z axis,
three displacements—the translations in the X and Y directions and the rotation
about the Z axis—are needed to completely specify its deformed position.
Thus, a free joint of a plane frame has three degrees of freedom, and three
structure coordinates (i.e., free and/or restrained coordinates) need to be de-
fined at each joint, for the purpose of analysis (i.e., NCJT = 3).

Let us examine the degrees of freedom of the analytical model of the
example frame given in Fig. 6.1(b). The deformed shape of the frame, due to
an arbitrary loading, is depicted in Fig. 6.1(c), using an exaggerated scale.
From this figure, we can see that joint 1, which is attached to a fixed support,
can neither translate nor rotate; therefore, it does not have any degrees of free-
dom. Since joint 2 is not attached to any support, it is free to translate as well
as rotate, and three displacements—the translations d1 and d2 in the X and Y
directions, respectively, and the rotation d3—are needed to completely specify
its deformed position 2�. Thus, joint 2 has three degrees of freedom. Similarly,
joints 3 and 4, which are also free joints, have three degrees of freedom each.
The displacements of joint 3 are designated d4, d5, and d6; the degrees of free-
dom of joint 4 are designated d7, d8, and d9. Finally, joint 5, which is attached
to a hinged support, can rotate, but it cannot translate; therefore, it has only one
degree of freedom, designated d10.  Thus, the entire frame has a total of ten
degrees of freedom. All the joint displacements are shown in Fig. 6.1(c) in the
positive sense. As indicated in this figure, the joint translations are considered
positive when in the positive directions of the X and Y axes and joint rotations
considered positive when counterclockwise. The NDOF × 1 joint displace-
ment vector d for this frame is written as

d =

⎡
⎢⎢⎢⎢⎢⎣

d1

d2
...

d9

d10

⎤
⎥⎥⎥⎥⎥⎦

10 × 1

As discussed in Section 3.2, the number of degrees of freedom, NDOF, of
a framed structure, in general, can be determined by subtracting the number of
joint displacements restrained by supports, NR, from the total number of joint
displacements of the unsupported structure (which equals NCJT × NJ ). Since
NCJT equals 3 for plane frames, the number of degrees of freedom of such
structures can be expressed as (see Eq. (3.2))

(6.1)

From Fig. 6.1(b), we can see that the example frame has five joints (i.e.,
NJ = 5); of these, joint 1 is attached to a fixed support that restrains three joint
displacements, and joint 5 is attached to a hinged support that restrains two

NCJT � 3
NDOF � 3(NJ ) − NR

}
for plane frames

Section 6.1 Analytical Model 253
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joint displacements. Thus, the total number of joint displacements that are
restrained by all supports of the frame equals 5 (i.e., NR = 5). Substitution of
NJ = 5 and NR = 5 into Eq. (6.1) yields the number of degrees of freedom of
the frame:

NDOF = 3(5) − 5 = 10

which is the same as the number of degrees of freedom of the frame obtained
previously.

As in the case of plane trusses and beams, the structure coordinates of a
plane frame are usually specified on the frame’s line diagram by assigning
numbers to the arrows drawn at the joints in the directions of the joint dis-
placements, with a slash (/) added to the arrows representing the restrained
coordinates to distinguish them from the degrees of freedom, as shown in
Fig. 6.1(d). The procedure for assigning numbers to the structure coordinates
of a plane frame is analogous to that for plane trusses and beams. The degrees
of freedom of the frame are numbered first by beginning at the lowest-
numbered joint with a degree of freedom, and proceeding sequentially to the
highest-numbered joint. If a joint has more than one degree of freedom, then
the translation in the X direction is numbered first, followed by the translation
in the Y direction, and then the rotation. The first degree of freedom is assigned
the number one, and the last degree of freedom is assigned the number equal to
NDOF. After all the degrees of freedom have been numbered, the restrained
coordinates of the frame are numbered in the same manner as the degrees of
freedom, but starting with the number equal to NDOF + 1 and ending with the
number equal to 3(NJ). The structure coordinate numbers for the example
frame, obtained by applying this procedure, are given in Fig. 6.1(d).

254 Chapter 6 Plane Frames

E X A M P L E 6.1 Identify by numbers the degrees of freedom and restrained coordinates of the frame
shown in Fig. 6.2(a). Also, form the joint load vector P for the frame.

S O L U T I O N Degrees of Freedom and Restrained Coordinates: See Fig. 6.2(b). Ans

Joint Load Vector: Units are kips and feet.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

20
0
0
0
0

−75
10

−11.5
0
0

−11.5
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ans
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6.2 MEMBER STIFFNESS RELATIONS IN THE 
LOCAL COORDINATE SYSTEM
Consider an arbitrary prismatic member m of the plane frame shown in
Fig. 6.3(a). When the frame is subjected to external loads, member m deforms
and internal axial forces, shears, and moments are induced at its ends. The ini-
tial and displaced positions of the member are shown in Fig. 6.3(b), from
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which we can see that three displacements—translations in the x and y direc-
tions and rotation about the z axis—are needed to completely specify the
displaced position of each end of the member. Thus, the member has a total of
six degrees of freedom. As indicated in Fig. 6.3(b), the six member end dis-
placements are denoted by u1 through u6, and the corresponding member end
forces are denoted by Q1 through Q6. Note that the member end displacements
u and end forces Q are defined relative to the local coordinate system of the
member, with translations and forces in the positive directions of the local x
and y axes considered positive, and counterclockwise rotations and moments
considered positive. As shown in Fig. 6.3(b), a member’s local end displace-
ments and end forces are numbered by beginning at its end b, with the transla-
tion and force in the x direction numbered first, followed by the translation and
force in the y direction, and then the rotation and moment. The displacements
and forces at the member’s opposite end e are then numbered in the same
sequential order.

The relationships between the end forces Q and the end displacements u,
for the members of plane frames, can be established by essentially the same
process as used previously for the case of beams (Section 5.2). The process in-
volves subjecting the member, separately, to each of the six end displacements
as shown in Fig. 6.3(c) through (h), and to the external loading with no end dis-
placements (i.e., with both member ends completely fixed against translations
and rotations), as shown in Fig. 6.3(i). The total member end forces due to the
combined effect of the six end displacements, and the external loading, can
now be expressed as

Qi =
6∑

j=1

(
ki j u j

) + Q f i i = 1, 2, . . . , 6 (6.2)
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in which the stiffness coefficient kij represents the force corresponding to
Qi due to a unit value of the displacement uj, and Q f i denotes the fixed-end
force corresponding to Qi due to the external loads acting on the member.
Equation (6.2) can be expressed in matrix form as 

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3

Q4

Q5

Q6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

Q f 1

Q f 2

Q f 3

Q f 4

Q f 5

Q f 6

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.3)

or, symbolically, as

(6.4)

in which Q and u denote the 6 × 1 member end-force and member end-
displacement vectors, respectively, in the local coordinate system; k represents
the 6 × 6 member local stiffness matrix; and Qf is the 6 × 1 member fixed-end
force vector in the local coordinate system.

Member Local Stiffness Matrix k
The explicit form of the local stiffness matrix k (in terms of E, A, I, and L) for
the members of plane frames can be conveniently developed by using the ex-
pressions for the member stiffness coefficients of trusses and beams derived in
Chapters 3 and 5, respectively.

To obtain the first column of k, we subject the member to a unit end dis-
placement u1 = 1 (with u2 = u3 = u4 = u5 = u6 = 0), as shown in Fig. 6.3(c).
The expressions for the member axial forces required to cause this unit axial
deformation were derived in Section 3.3, and are given in Fig. 3.3(c). By com-
paring Figs. 6.3(c) and 3.3(c), we obtain the stiffness coefficients for the plane
frame member, due to end displacement u1 = 1, as

k11 = E A

L
, k41 = − E A

L
, k21 = k31 = k51 = k61 = 0 (6.5a)

Note that the imposition of end displacement u1 = 1 does not cause the
member to bend; therefore, no moments or shears develop at the ends of the
member.

Similarly, the fourth column of k can be determined by comparing
Fig. 6.3(f) to Fig. 3.3(e), which yields

k14 = − E A

L
, k44 = E A

L
, k24 = k34 = k54 = k64 = 0 (6.5b)

To determine the second column of k, the member is subjected to a unit end
displacement u2 = 1 (with u1 = u3 = u4 = u5 = u6 = 0), as shown in 6.3(d).

Q = ku + Q f
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The expressions for the member end shears and moments required to cause
this deflected shape were derived in Section 5.2, and are given in Fig. 5.3(c). By
comparing Figs. 6.3(d) and 5.3(c), we obtain the stiffness coefficients for the
plane frame member, due to u2 = 1, as

k22 = 12E I

L3
, k32 = 6E I

L2
, k52 = −12E I

L3
, k62 = 6E I

L2
,

k12 = k42 = 0 (6.5c)

The third, fifth, and sixth columns of k can be developed in a similar man-
ner, by comparing Figs. 6.3(e), (g), and (h) to Figs. 5.3(d), (e), and (f), respec-
tively. This process yields

k23 = 6E I

L2
, k33 = 4E I

L
, k53 = −6E I

L2
, k63 = 2E I

L
,

k13 = k43 = 0 (6.5d)

k25 = −12E I

L3
, k35 = −6E I

L2
, k55 = 12E I

L3
,

k65 = −6E I

L2
, k15 = k45 = 0 (6.5e)

and

k26 = 6E I

L2
, k36 = 2E I

L
, k56 = −6E I

L2
, k66 = 4E I

L
,

k16 = k46 = 0 (6.5f)

Finally, by substituting Eqs. (6.5) into the appropriate columns of k given
in Eq. (6.3), we can express the local stiffness matrix for the members of plane
frames as

k = E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 12 6L 0 −12 6L

0 6L 4L2 0 −6L 2L2

− AL2

I
0 0

AL2

I
0 0

0 −12 −6L 0 12 −6L

0 6L 2L2 0 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Member Local Fixed-End Force Vector Qf

Unlike the members of beams, which are loaded only perpendicular to their
longitudinal axes, the members of plane frames can be subjected to loads ori-
ented in any direction in the plane of the structure. Before proceeding with the
calculation of the fixed-end forces for a plane frame member, any loads acting
on it in inclined directions are resolved into their components in the directions

(6.6)
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of the local x and y axes of the member. For example, the vertical load W acting
on the inclined member m of the frame of Fig. 6.4(a) is resolved into its
rectangular components in the local x and y directions of the member m as

Wx = W sin θ and Wy = W cos θ

as shown in Fig. 6.4(b).
After all the loads acting on a member have been resolved into compo-

nents parallel and perpendicular to the longitudinal axis of the member (i.e., in
the local x and y directions, respectively), the fixed-end shears (FSb and FSe)
and moments (FMb and FMe) due to the perpendicular loading and any couples
can be calculated by using the fixed-end force equations for loading types 1
through 4 (given inside the front cover). The procedure for deriving these
fixed-end shear and moment equations was discussed in Section 5.4.

The expressions for the member fixed-end axial forces, due to two com-
mon types of member axial loadings, are also given inside the front cover (see
loading types 5 and 6). Such expressions can be conveniently determined by
integrating the differential equation for the member axial deformation. This
approach is illustrated in the following paragraphs, with loading type 6 taken
as an example.

Consider a fixed member of a plane frame, subjected to a uniformly
distributed axial load w over a part of its length, as shown in Fig. 6.5(a). As in-
dicated there, the fixed-end axial forces at the member ends b and e are denoted
by FAb and FAe, respectively. To develop the differential equation for axial de-
formation of an elastic member, we recall from Section 3.4 that the relationship
between the axial strain εa and the axial displacement ūx , of the centroidal axis
of a member, is given by (see Eq. (3.39))

εa = dūx

dx
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Substitution of this strain-displacement equation into Hooke’s law yields

σa = Eεa = E
dūx

dx

in which σa represents the axial stress. To relate the axial displacement ūx to
the axial force Qa acting at the cross-section, we multiply both sides of the pre-
ceding equation by the cross-sectional area A to obtain

Qa = σa A = E A
dūx

dx

or

(6.7)

Equation (6.7) represents the differential equation for axial deformation of a
member composed of linearly elastic homogeneous material. In this equation,
ūx denotes the displacement of the member’s centroidal axis in the x direction,
at a distance x from the origin b of the local xy coordinate system of the mem-
ber (Fig. 6.5(a)); Qa represents the axial force at the member cross-section at
the same location, x. Furthermore, Eq. (6.7) is based on the sign convention
that the axial force Qa is considered positive when causing tension at the mem-
ber cross-section. The total axial deformation of a member can be obtained by
multiplying both sides of Eq. (6.7) by dx and integrating the resulting equation

dūx

dx
= Qa

E A
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over the length L of the member:

ūxe(atx = L) =
∫ L

0

Qa

E A
dx (6.8)

Realizing that EA is constant for prismatic members, the axial deformation of
such members can be expressed as

ūxe = 1

E A

∫ L

0

Qa dx (6.9)

To obtain the expressions for the fixed-end axial forces FAb and FAe for the
member shown in Fig. 6.5(a), we first determine the equations for axial force
Qa in terms of one of the unknowns, FAb. Since the uniformly distributed load
w is applied over member portion cd (Fig. 6.5(a)), the axial force Qa cannot be
expressed as a single continuous function over the entire length of the member.
Therefore, we divide the member into three segments, bc, cd, and de, and de-
termine the equations for axial force in these segments by passing sections 1–1,
2–2, and 3–3, respectively, through the member, as shown in Fig. 6.5(a). By
considering the equilibrium of the free body of the member to the left of sec-
tion 1–1 (Fig. 6.5(b)), we determine the axial force Qa at section 1–1 to be

+→
∑

Fx = 0 F Ab + Qa = 0 Qa = −F Ab

Thus, the equation of the axial force in segment bc can be expressed as

0 ≤ x ≤ l1 Qa = −F Ab (6.10a)

Similarly, by considering the free bodies of the member to the left of sec-
tions 2–2 and 3–3 (Fig. 6.5(c) and (d)), we obtain the equations of the axial
force in segments cd and de, respectively, as

l1 ≤ x ≤ L − l2 Qa = −F Ab + w(x − l1) (6.10b)

L − l2 ≤ x ≤ L Qa = −F Ab + w(L − l1 − l2) (6.10c)

Section 6.2 Member Stiffness Relations in the Local Coordinate System 263

x

l1

c w

FAb Qa

b

x − l1

(c) Section 2–2

x

l1

c dw

FAb Qa

b

L − l1 − l2

(d) Section 3–3

Fig. 6.5 (continued)

26201_06_ch06a_p249-291.qxd  12/1/10  5:10 PM  Page 263

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Next, by substituting Eqs. (6.10) into Eq. (6.9), we write

ūxe = 1

E A

[∫ l1

0
−F Ab dx +

∫ L−l2

l1

{−F Ab + w(x − l1)} dx

+
∫ L

L−l2

{−F Ab + w(L − l1 − l2)} dx

]

By integrating and simplifying the right-hand side of the foregoing equation,
we obtain the axial deformation of the member as

ūxe = 1

E A

[
−F Ab L + w

2
(L − l1 − l2)(L − l1 + l2)

]
(6.11)

The expression for FAb can now be determined by using the compatibility con-
dition that, because both ends b and e of the member are attached to fixed sup-
ports, the axial deformation of the member must be 0. Thus, by substituting
ūxe = 0 into Eq. (6.11), we write

ūxe = 1

E A

[
−F Ab L + w

2
(L − l1 − l2)(L − l1 + l2)

]
= 0 (6.12)

Solving Eq. (6.12) for FAb, we obtain

F Ab = w

2L
(L − l1 − l2)(L − l1 + l2) (6.13)

With the fixed-end axial force FAb known, we can now determine the re-
maining fixed-end axial force FAe by applying the equation of equilibrium∑

Fx = 0 to the free body of the entire member. Thus (see Fig. 6.5(a)),

+→
∑

Fx = 0 F Ab − w(L − l1 − l2) + F Ae = 0

Substituting Eq. (6.13) into the foregoing equation, and simplifying the result,
we obtain the expression for FAe:

F Ae = w

2L
(L − l1 − l2)(L + l1 − l2) (6.14)

The expressions for fixed-end axial forces due to other types of axial
loadings can be derived in a similar manner, using the integration approach
illustrated here.

Once the fixed-end axial and shear forces and moments for a member have
been evaluated, its fixed-end force vector Qf can be generated by storing the
fixed-end forces and moments in their proper positions in a 6 × 1 vector, as
follows.

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q f 1

Q f 2

Q f 3

Q f 4

Q f 5

Q f 6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

F Ab

F Sb

F Mb

F Ae

F Se

F Me

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.15)
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The sign convention for member local fixed-end forces, Qf, is the same as that
for the member end forces in the local coordinate system, Q. Thus, the member
local fixed-end axial forces and shears are considered positive when in the posi-
tive directions of the member’s local x and y axes, and the local fixed-end
moments are considered positive when counterclockwise. However, the mem-
ber loads are commonly defined to be positive in the directions opposite to those
for the local fixed-end forces. In other words, the member axial and perpendicu-
lar loads are considered positive when in the negative directions of the member’s
local x and y axes, respectively, and the external couples applied to the members
are considered positive when clockwise. The expressions for the member fixed-
end forces (including moments) given inside the front cover of this text are based
on this sign convention, in which all the fixed-end forces and member loads
(including couples) are shown in the positive sense.
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E X A M P L E 6.2 The displaced position of member 2, of the frame of Fig. 6.6(a), is given in Fig. 6.6(b).
Calculate the end forces for this member in the local coordinate system. Is the member
in equilibrium under these forces?

S O L U T I O N Member Local Stiffness Matrix: From Fig. 6.6(a), we can see that, for member 2,
E = 29,000 ksi, A = 28.2 in.2, I = 833 in.4, and L =

√
(16)2 + (12)2 = 20 ft =

240 in. By substituting the numerical values of E, A, I, and L into Eq. (6.6), we obtain
the following local stiffness matrix for member 2, in units of kips and inches.
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X
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(a)

2

1

3

Fig. 6.6

26201_06_ch06a_p249-291.qxd  12/1/10  5:10 PM  Page 265

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3′

3

2

2′

x

y

Displaced
position

Initial
position

1.3533 in.

0.013559 rad

0.0035434 rad1.8828 in.

1.447 in.

1.8454 in.

(b) Displaced Position of Member 2

3 3

2

2

x

y

0.25 k/in.
24 k

18 k

24 k

0.2 k/in.
0.15 k/in.

4

4

3

3

5

5

18 k

�

960 k-in.

960 k-in.

Y

X

(c) Local Fixed-end Forces for Member 2

3

2

x

17.07 k

109.44 k

65.07 k

0.2 k/in.

0.15 k/in.

145.44 k

2,960.4 k-in.

6,896.7 k-in.

(d) Local End Forces for Member 2

240 in.

y

Fig. 6.6 (continued)

266

26201_06_ch06a_p249-291.qxd  12/1/10  5:10 PM  Page 266

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3,407.5 0 0 −3,407.5 0 0
0 20.97 2,516.4 0 −20.97 2,516.4
0 2,516.4 402,620 0 −2,516.4 201,310

−3,407.5 0 0 3,407.5 0 0
0 −20.97 −2,516.4 0 20.97 −2,516.4
0 2,516.4 201,310 0 −2,516.4 402,620

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Member Local End Displacements: See Fig. 6.6(b).

u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.8828
1.4470

−0.0035434
1.8454
1.3533

−0.013559

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Note that the values of u3 and u6 are negative, because both member ends rotate in the
clockwise direction.

Member Local Fixed-end Force Vector: As the 0.25 k/in. (= 3 k/ft) uniformly dis-
tributed load, applied to the member, acts in the vertical direction, it is necessary to
resolve it into components parallel and perpendicular to the member. The components
of the vertical distributed load in the local x and y directions are (see Fig. 6.6(c)):

wx = −3

5
(0.25) = −0.15 k/in.

wy = 4

5
(0.25) = 0.2 k/in.

in which, in accordance with the sign convention for member loads discussed previ-
ously, a negative sign is assigned to the magnitude of wx because it acts in the positive
direction of the local x axis.

The local fixed-end forces can now be evaluated, using the expressions given
inside the front cover. By substituting w = −0.15 k/in., L = 240 in., and l1 = l2 = 0
into the expressions for the fixed-end axial forces given for loading type 6, we obtain

F Ab = F Ae = −0.15(240)

2
= −18 k

Similarly, substitution of w = 0.2 k/in., L = 240 in., and l1 = l2 = 0 into the expres-
sions for the fixed-end shears and moments given for loading type 3 yields

F Sb = F Se = 0.2(240)

2
= 24 k

F Mb = −F Me = 0.2(240)2

12
= 960 k-in.

These fixed-end forces for member 2 are shown in Fig. 6.6(c). The local fixed-end
force vector for the member is given by

Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−18
24

960
−18

24
−960

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

(1)
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6.3 COORDINATE TRANSFORMATIONS
Unlike beams, whose members all are oriented in the same direction, plane
frames usually contain members oriented in various directions in the plane
of the structure. Therefore, it becomes necessary to transform the stiffness re-
lations of the members of a plane frame from their local coordinate systems to
the global coordinate system before they can be combined to establish the stiff-
ness relations for the entire frame. In this section, we extend the transformation
relationships developed in Section 3.5 for plane truss members to include end
moments and rotations, so that they can be used for the members of plane
frames. The revised transformation relations thus obtained are then used in
Section 6.4 to develop the member stiffness relations in the global coordinate
system for plane frames.

Consider an arbitrary member m of a plane frame, as shown in Fig. 6.7(a).
The orientation of the member with respect to the global XY coordinate system
is defined by an angle θ, measured counterclockwise from the positive direc-
tion of the global X axis to the positive direction of the local x axis, as shown
in Fig. 6.7(a). When the frame is subjected to external loads, member m
deforms, and internal forces and moments develop at its ends. The displaced
position of member m, due to an arbitrary loading applied to the frame, is
shown in Figs. 6.7(b) and (c). In Fig. 6.7(b), the member end displacements, u,
and end forces, Q, are measured relative to the local xy coordinate system of
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Member Local End Forces: The local end forces for member 2 can now be deter-
mined by substituting the numerical forms of k2, u2, and Q f 2 (Eqs. (1), (2), and (3),
respectively), into Eq. (6.4), and performing the required matrix multiplication and
addition. This yields

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

109.44 k
−17.07 k

−2,960.4 k-in.
−145.44 k

65.07 k
−6,896.7 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

These member end forces are depicted in Fig. 6.6(d).

Equilibrium Check: To check whether the member is in equilibrium, we apply the
three equations of equilibrium to the free body of the member shown in Fig. 6.6(d).
Thus,

+ ↘ ∑
Fx = 0 109.44 + 0.15(240) − 145.44 = 0 Checks

+ ↗ ∑
Fy = 0 −17.07 − 0.2(240) + 65.07 = 0 Checks

+ ∑
M©2 = 0 −2,960.4 − 0.2(240)(120) − 6,896.7 + 65.07(240) = −0.3 ∼= 0

Checks

Therefore, the member is in equilibrium. Ans

Y
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the member; whereas, in Fig. 6.7(c), the member end displacements, v, and end
forces, F, are defined with respect to the global XY coordinate system of the
frame. The local and global systems of member end displacements and forces
are equivalent, in the sense that both systems cause the same translations and
rotations of the member ends b and e, and produce the same state of strain and
stress in the member. As shown in Fig. 6.7(c), the global member end forces,
F, and end displacements, v, are numbered by beginning at member end b, with
the force and translation in the X direction numbered first, followed by the
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X

Q2

(b) Member End Forces and End Displacements
in the Local Coordinate System
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θ
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force and translation in the Y direction, and then the moment and rotation. The
forces and displacements at the member’s opposite end e are then numbered in
the same sequential order.

Now, suppose that the member’s global end forces and end displacements
are specified, and we wish to determine the corresponding end forces and end
displacements in the local coordinate system of the member. As discussed in
Section 3.5, the local forces Q1 and Q2 must be equal to the algebraic sums of
the components of the global forces F1 and F2 in the directions of the local x
and y axes, respectively; that is,

Q1 = F1 cos θ + F2 sin θ (6.16a)

Q2 = −F1 sin θ + F2 cos θ (6.16b)

Note that Eqs. (6.16a and b) are identical to Eqs. (3.58a and b), respectively,
derived previously for the case of plane truss members.

As for the relationship between the local end moment Q3 and the global
end moment F3—because the local z axis and the global Z axis are oriented in
the same direction (i.e., directed out of the plane of the page), the local moment
Q3 must be equal to the global moment F3. Thus,

Q3 = F3 (6.16c)

Using a similar reasoning at end e of the member, we express the local forces
in terms of the global forces as

Q4 = F4 cos θ + F5 sin θ (6.16d)

Q5 = −F4 sin θ + F5 cos θ (6.16e)

Q6 = F6 (6.16f)
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y

b

b′
e

e′
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position

v4

v1

v5

x
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F1 θ

=

Y

X

(c) Member End Forces and End Displacements
in the Global Coordinate System

 v3

v6

m

Fig. 6.7 (continued)
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We can write Eqs. (6.16a through f) in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3

Q4

Q5

Q6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0
−sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 −sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.17)

or, symbolically, as

Q = TF (6.18)

in which the transformation matrix T is given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0
−sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 −sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.19)

The direction cosines (cosθ and sinθ ) of the plane frame members can be eval-
uated using Eqs. (3.62a and b), given in Section 3.5.

Because member end displacements, like end forces, are vectors, which
are defined in the same directions as the corresponding forces, the transforma-
tion matrix T (Eq. (6.19)) can also be used to transform member end displace-
ments from the global to the local coordinate system; that is,

(6.20)

Next, we consider the transformation of member end forces and end dis-
placements from the local to the global coordinate system. Returning our at-
tention to Figs. 6.7(b) and (c), we realize that at end b of the member, the
global forces F1 and F2 must be equal to the algebraic sums of the components
of the local forces Q1 and Q2 in the directions of the global X and Y axes,
respectively; that is,

F1 = Q1 cos θ − Q2 sin θ (6.21a)

F2 = Q1 sin θ + Q2 cos θ (6.21b)

and, as discussed previously, the global moment F3 equals the local moment
Q3, or

F3 = Q3 (6.21c)

In a similar manner, the global forces at end e of the member can be expressed
in terms of the local forces as

F4 = Q4 cos θ − Q5 sin θ (6.21d)

F5 = Q4 sin θ + Q5 cos θ (6.21e)

F6 = Q6 (6.21f)

u = Tv
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We can write Eqs. (6.21a through f ) in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ −sin θ 0 0 0 0
sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ −sin θ 0
0 0 0 sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3

Q4

Q5

Q6

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.22)

By comparing Eq. (6.22) to Eq. (6.17), we realize that the transformation ma-
trix in Eq. (6.22), which transforms the forces from the local to the global co-
ordinate system, is the transpose of the transformation matrix T in Eq. (6.17),
which transforms the forces from the global to the local coordinate system.
Therefore, Eq. (6.22) can be written as

(6.23)

Also, a comparison of Eqs. (6.18) and (6.23) indicates that the inverse of T
equals its transpose; that is,

T−1 = TT (6.24)

which indicates that the transformation matrix T is orthogonal.
As discussed previously, because the member end displacements are also

vectors defined in the directions of their corresponding forces, the matrix TT

also defines the transformation of member end displacements from the local to
the global coordinate system; that is,

v = TT u (6.25)

By comparing the transformation matrix T derived herein for plane frame
members (Eq. (6.19)) with the one developed in Section 3.5 for plane truss
members (Eq. (3.61)), we observe that the T matrix for plane trusses can be ob-
tained by deleting the third and sixth columns and the third and sixth rows from
the T matrix for plane frame members. This is because there are no moments
and rotations induced at the ends of plane truss members, which are subjected
to axial forces only.

F = TTQ
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E X A M P L E 6.3 The displaced position of member 2, of the frame of Fig. 6.8(a), is given in Fig. 6.8(b).
Calculate the end displacements and end forces for this member in the global
coordinate system. Is the member in equilibrium under the global end forces?

S O L U T I O N Member Local End Displacements and Forces: In Example 6.2, we obtained the local
end displacement and force vectors for the member under consideration as

u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.8828 in.
1.4470 in.

−0.0035434 rad
1.8454 in.
1.3533 in.

−0.013559 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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4

3

1

2

X

Y
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24 ft

12 ft

16 ft

100 k

50 k

E, A, I = constant
E = 29,000 ksi
A = 28.2 in.2

I  = 833 in.4

(a)

2

1

3

3′

3

2

2′

x

y

Displaced
position

Initial
position

1.3533 in.

0.013559 rad

0.0035434 rad1.8828 in.

1.447 in.

1.8454 in.

(b) Displaced Position of Member 2

Fig. 6.8
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and

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

109.44 k
−17.07 k

−2,960.4 k-in.
−145.44 k

65.07 k
−6,896.7 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Transformation Matrix: From Fig. 6.8(a), we can see that joint 2 is the beginning
joint and joint 3 is the end joint for member 2. By applying Eqs. (3.62), we determine
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3′

2

2′

X

Y

Displaced
position

Initial
position

2.2883 in.0.0246 in.

0.02792 in.

2.3744 in.

0.0035434 rad

0.013559 rad

3

(c) End Displacements in the Global Coordinate
System for Member 2

3

2
3 k/ft

L � 20 ft

77.31 k

77.31 k

79.32 k

139.32 k

246.7 k-ft

574.73 k-ft

X

Y

(d) End Forces in the Global Coordinate
System for Member 2

Fig. 6.8 (continued)
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the member’s direction cosines as

cos θ = X3 − X2

L
= 16 − 0

20
= 0.8

sin θ = Y3 − Y2

L
= 12 − 24

20
= −0.6

The transformation matrix for member 2 can now be evaluated, using Eq. (6.19).

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.8 −0.6 0 0 0 0
0.6 0.8 0 0 0 0
0 0 1 0 0 0
0 0 0 0.8 −0.6 0
0 0 0 0.6 0.8 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Member Global End Displacements: By substituting the transpose of T2 from Eq. (3),
and u2 from Eq. (1), into Eq. (6.25), we obtain

V2 = TT
2 u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.3744 in.
0.02792 in.

−0.0035434 rad
2.2883 in.

−0.02460 in.
−0.013559 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

These end displacements are depicted in Fig. 6.8(c).

Member Global End Forces: Similarly, by substituting the transpose of T2 from Eq.
(3), and Q2 from Eq. (2), into Eq. (6.23), we determine the global end forces for mem-
ber 2 to be

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

77.31 k
−79.32 k

−2,960.4 k-in.
(= −246.7 k-ft)

−77.31 k
139.32 k

−6,896.7 k-in.
(= −574.73 k-ft)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The global member end forces are shown in Fig. 6.8(d).

Equilibrium Check: See Fig. 6.8(d).

+ → ∑
FX = 0 77.31 − 77.31 = 0 Checks

+ ↑ ∑
FY = 0 −79.32 − 3(20) + 139.32 = 0 Checks

+ ∑
M©2 = 0 −246.7 − 3(20)

(
16

2

)
− 574.73 − 77.31(12)

+ 139.32(16) = −0.03 k-ft ∼= 0 Checks

Therefore, the member is in equilibrium. Ans

Y

Ans
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6.4 MEMBER STIFFNESS RELATIONS IN 
THE GLOBAL COORDINATE SYSTEM
The process of establishing the stiffness relationships for plane frame members
in the global coordinate system is similar to that for the members of plane trusses
(Section 3.6). We first substitute the local stiffness relations Q = ku + Qf

(Eq. (6.4)) into the force transformation relations F = TTQ (Eq. (6.23)) to
obtain

F = TT Q = TT ku + TT Q f (6.26)

Then, we substitute the displacement transformation relations u = Tv
(Eq. (6.20)) into Eq. (6.26) to determine the desired relationships between the
member end forces F and end displacements v, in the global coordinate system:

F = TT kTv + TT Q f (6.27)

Equation (6.27) can be conveniently expressed as

(6.28)

with

(6.29)

(6.30)

The matrix K represents the member stiffness matrix in the global coordinate
system; Ff is called the member fixed-end force vector in the global coordinate
system.

Member Global Stiffness Matrix K
The expression of the member global stiffness matrix K given in Eq. (6.29), as
a product of the three matrices TT, k, and T, is sometimes referred to as the
matrix triple product form of K. The explicit form of K, in terms of L, E, A, I,
and θ of the member, can be determined by substituting the explicit forms of
the member local stiffness matrix k from Eq. (6.6) and the member transfor-
mation matrix T from Eq. (6.19) into Eq. (6.29), and by multiplying the matri-
ces TT, k, and T, in that order. The explicit form of the member global stiffness
matrix K thus obtained is given in Eq. (6.31).

From a computer programming viewpoint, it is usually more convenient to
evaluate K using the numerical values of k and T in the matrix triple product
given in Eq. (6.29), rather than the explicit form of K given in Eq. (6.31). In
Section 6.7, we will develop a computer subroutine to generate K by

F f = TT Q f

K = TT kT

F = Kv + F f
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multiplying the numerical forms of TT, k, and T, in sequence. The explicit
form of K (Eq. (6.31)), however, provides insight into the physical interpreta-
tion of the member global stiffness matrix, and proves convenient for evaluat-
ing K by hand calculations.

Section 6.4 Member Stiffness Relations in the Global Coordinate System 277

(6.31)

K = E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I cos2 θ + 12 sin2 θ
(

AL2

I − 12
)

cos θ sin θ −6L sin θ −
(

AL2

I cos2 θ + 12 sin2 θ
)

−
(

AL2

I − 12
)

cos θ sin θ −6L sin θ

(
AL2

I − 12
)

cos θ sin θ AL2

I sin2 θ + 12 cos2 θ 6L cos θ −
(

AL2

I − 12
)

cos θ sin θ −
(

AL2

I sin2 θ + 12 cos2 θ
)

6L cos θ

−6L sin θ 6L cos θ 4L2 6L sin θ −6L cos θ 2L2

−
(

AL2

I cos2 θ + 12 sin2 θ
)

−
(

AL2

I − 12
)

cos θ sin θ 6L sin θ AL2

I cos2 θ + 12 sin2 θ
(

AL2

I − 12
)

cos θ sin θ 6L sin θ

−
(

AL2

I − 12
)

cos θ sin θ −
(

AL2

I sin2 θ + 12 cos2 θ
)

−6L cos θ
(

AL2

I − 12
)

cos θ sin θ AL2

I sin2 θ + 12 cos2 θ −6L cos θ

−6L sin θ 6L cos θ 2L2 6L sin θ −6L cos θ 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) First Column of K (v1 = 1, v2 = v3 = v4 = v5 = v6 = 0)

e

b

b′ X

Y
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K11
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K51

K41

θ
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position

Initial 
position

Fig. 6.9

The physical interpretation of the member global stiffness matrix K for
plane frame members is similar to that of K for members of plane trusses. A
stiffness coefficient Kij represents the force at the location and in the direction
Fi required, along with other global end forces, to cause a unit value of dis-
placement vj, while all other global end displacements are 0, and the member
is not subjected to any external loads between its ends. In other words, as de-
picted in Figs. 6.9(a) through (f), the jth column of K ( j = 1 through 6) repre-
sents the member end forces, in the global coordinate system, required to cause
a unit value of the global end displacement vj, while all other end displace-
ments are 0, and the member is not subjected to any external loads.

26201_06_ch06a_p249-291.qxd  12/1/10  5:10 PM  Page 277

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



278

e

b

b′

v2 = 1

K12

K22

K32

K62

K52

K42

θ

X

Y

(b) Second Column of K (v2 = 1, v1 = v3 = v4 = v5 = v6 = 0)

(c) Third Column of K (v3 = 1, v1 = v2 = v4 = v5 = v6 = 0)

e

b

v3 = 1

K13

K23

K33

K63

K53

K43

θ

X

Y

(d) Fourth Column of K (v4 = 1, v1 = v2 = v3 = v5 = v6 = 0)

e
e′

b

v4 = 1

K14

K24

K34

K64

K44

K54

θ
X

Y

Fig. 6.9 (continued)
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We can use the foregoing interpretation of the member global stiffness ma-
trix to check the explicit form of K given in Eq. (6.31). For example, to
determine the first column of K, we subject the member to a unit end displace-
ment v1 = 1, while all other end displacements are held at 0. As shown in
Fig. 6.10(a), the components of this global end displacement in the directions
along, and perpendicular to, the member’s longitudinal axis, respectively, are

ua = v1 cos θ = 1 cos θ = cos θ

up = v1 sin θ = 1 sin θ = sin θ

The axial compressive force in the member caused by the axial deformation ua

is shown in Fig. 6.10(b), and the member end shears and moments due to
the perpendicular displacement up are given in Fig. 6.10(c). Note that these
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(e) Fifth Column of K (v5 = 1, v1 = v2 = v3 = v4 = v6 = 0)
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Fig. 6.9 (continued)
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member end shears and moments are obtained by multiplying the member end
forces developed previously (Fig. 6.3(d)) by the negative of up (or by setting
u2 = −up = −sin θ in Fig. 6.3(d)).

By comparing Figs. 6.10(a), (b), and (c), we realize that the global stiff-
ness coefficients K11 and K21, at end b of the member, must be equal to the
algebraic sums in the global X and Y directions, respectively, of the member
end axial force and shear at end b; that is,

K11 =
(

E A

L
cos θ

)
cos θ +

(
12E I

L3
sin θ

)
sin θ

= E A

L
cos2 θ + 12E I

L3
sin2 θ (6.32a)

and

K21 =
(

E A

L
cos θ

)
sin θ −

(
12E I

L3
sin θ

)
cos θ

=
(

E A

L
− 12E I

L3

)
cos θ sin θ (6.32b)

Also, the global stiffness coefficient K31 in Fig. 6.10(a) must be equal to the
member end moment in Fig. 6.10(c); that is,

K31 = −6E I

L2
sin θ (6.32c)

Similarly, the global stiffness coefficients at end e of the member can be ex-
pressed as (see Figs. 6.10(a) through (c))

K41 = −
(

E A

L
cos θ

)
cos θ −

(
12E I

L3
sin θ

)
sin θ

= − E A

L
cos2 θ − 12E I

L3
sin2 θ (6.32d)

K51 = −
(

E A

L
cos θ

)
sin θ +

(
12E I

L3
sin θ

)
cos θ

= −
(

E A

L
− 12E I

L3

)
cos θ sin θ (6.32e)

and

K61 = −6E I

L2
sin θ (6.32f)

Note that the expressions for the member global stiffness coefficients, in
Eqs. 6.32(a) through (f), are identical to those in the first column of the explicit
form of K given in Eq. (6.31). The remaining columns of K can be verified in
a similar manner.

Member Global Fixed-End Force Vector Ff

The explicit form of the member global fixed-end force vector Ff can be ob-
tained by substituting Eqs. (6.19) and (6.15) into the relationship Ff = TTQ f
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(Eq. (6.30)). This yields

F f =

⎡
⎢⎢⎢⎢⎢⎢⎣

F Ab cos θ − F Sb sin θ

F Ab sin θ + F Sb cos θ

F Mb

F Ae cos θ − F Se sin θ

F Ae sin θ + F Se cos θ

F Me

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.33)

The member global fixed-end forces Ff, like the local fixed-end forces Qf,
represent the forces that would develop at the member ends due to external
loads, if both member ends were restrained against translations and rotations.
However, the global fixed-end forces Ff are oriented in the global X and Y di-
rections of the structure (Fig. 6.11(a)), whereas the local fixed-end forces Qf

are oriented in the local x and y directions of the member (Fig. 6.11(b)).
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E X A M P L E 6.4 In Example 6.3, the global end displacement vector for member 2 of the frame of
Fig. 6.8 was found to be

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.3744 in.
0.02792 in.

−0.0035434 rad
2.2883 in.

−0.02460 in.
−0.013559 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Calculate the end forces for this member in the global coordinate system using the
member global stiffness relationship F = Kv + Ff.

S O L U T I O N Member Global Stiffness Matrix: It was shown in Example 6.3 that, for the member
under consideration,

cos θ = 0.8 and sin θ = −0.6

By substituting these direction cosines, and the numerical values of E = 29,000 ksi,
A = 28.2 in.2, I = 833 in.4, and L = 240 in., into Eq. (6.31), we evaluate the global
stiffness matrix for member 2 as

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2,188.3 −1,625.5 1,509.8 −2,188.3 1,625.5 1,509.8
−1,625.5 1,240.1 2,013.1 1,625.5 −1,240.1 2,013.1

1,509.8 2,013.1 402,620 −1,509.8 −2,013.1 201,310
−2,188.3 1,625.5 −1,509.8 2,188.3 −1,625.5 −1,509.8

1,625.5 −1,240.1 −2,013.1 −1,625.5 1,240.1 −2,013.1
1,509.8 2,013.1 201,310 −1,509.8 −2,013.1 402,620

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The matrix K2 can be obtained alternatively by substituting the numerical forms of k2

(Eq. (1) of Example 6.2) and T2 (Eq. (3) of Example 6.3) into the relationship
K = TT kT (Eq. (6.29)), and by evaluating the matrix triple product. The reader is en-
couraged to use this alternative approach to verify the foregoing K2 matrix.

Member Global Fixed-end Force Vector: From Example 6.2: FAb = FAe = −18 k;
FSb = FSe = 24 k; and FMb = −FMe = 960 k-in. By substituting these numerical
values, and cos θ = 0.8 and sin θ = −0.6, into Eq. (6.33), we obtain

F f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
30

960
0

30
−960

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Again, the reader is urged to verify this Ff 2 vector by substituting the numerical values
of Q f 2 (Eq. (3) of Example 6.2) and T2 (Eq. (3) of Example 6.3) into the relationship
F f = TT Q f (Eq. (6.30)), and by performing the matrix multiplication.
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Member Global End Forces: The global end forces for member 2 can now be deter-
mined by applying Eq. (6.28):

F2 = K2v2 + F f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

77.22 k
−79.25 k

−2,960.5 k-in.
(= −246.7 k-ft)

−77.22 k
139.25 k

−6,896.7 k-in.
(= −574.73 k-ft)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that this F2 vector is the same as the one obtained in Example 6.3 by transform-
ing the member end forces from the local to the global coordinate system.

Equilibrium check: See Example 6.3.

Ans

6.5 STRUCTURE STIFFNESS RELATIONS
The process of establishing the structure stiffness relations for plane frames is
essentially the same as that for beams (Section 5.5), except that the member
global (instead of local) stiffness relations must now be used to assemble the
structure stiffness matrices and the fixed-joint force vectors. Consider, for ex-
ample, an arbitrary plane frame as shown in Fig. 6.12(a). As the analytical
model of the frame in Fig. 6.12(b) indicates, the frame has three degrees of
freedom, d1, d2, and d3, with the corresponding joint loads designated P1, P2,
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and P3, respectively. Remember that our objective is to relate the known exter-
nal joint (and member) loads to the as yet unknown joint displacements d.

To achieve our objective, we first relate the joint loads P to the member
global end forces F by writing the joint equilibrium equations. By applying the
three equations of equilibrium, 

∑
FX = 0,

∑
FY = 0, and 

∑
M = 0, to the

free body of joint 2 drawn in Fig. 6.12(c), we obtain

P1 = F (1)
4 + F (2)

1 (6.34a)

P2 = F (1)
5 + F (2)

2 (6.34b)

P3 = F (1)
6 + F (2)

3 (6.34c)

in which the superscript (i) denotes the member number.
Next, we relate the joint displacements d to the member global end dis-

placements v by applying the compatibility conditions that the member end
displacements must be the same as the corresponding joint displacements.
Thus, by comparing Figs. 6.12(b) and (c), we write the compatibility equations
for members 1 and 2, respectively, as

v
(1)
1 = v

(1)
2 = v

(1)
3 = 0 v

(1)
4 = d1 v

(1)
5 = d2 v

(1)
6 = d3 (6.35)

v
(2)
1 = d1 v

(2)
2 = d2 v

(2)
3 = d3 v

(2)
4 = v

(2)
5 = v

(2)
6 = 0 (6.36)
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With the relationships between P and F, and v and d, now established,
we express the member end forces F that appear in the equilibrium equations
(Eqs. (6.34)) in terms of the member end displacements v, using the member
global stiffness relations F = Kv + Ff (Eq. (6.28)). By writing this equation in
expanded form for an arbitrary member i (i = 1 or 2), we obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (i)
1

F (i)
2

F (i)
3

F (i)
4

F (i)
5

F (i)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K (i)
11 K (i)

12 K (i)
13 K (i)

14 K (i)
15 K (i)

16

K (i)
21 K (i)

22 K (i)
23 K (i)

24 K (i)
25 K (i)

26

K (i)
31 K (i)

32 K (i)
33 K (i)

34 K (i)
35 K (i)

36

K (i)
41 K (i)

42 K (i)
43 K (i)

44 K (i)
45 K (i)

46

K (i)
51 K (i)

52 K (i)
53 K (i)

54 K (i)
55 K (i)

56

K (i)
61 K (i)

62 K (i)
63 K (i)

64 K (i)
65 K (i)

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(i)
1

v
(i)
2

v
(i)
3

v
(i)
4

v
(i)
5

v
(i)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (i)
f 1

F (i)
f 2

F (i)
f 3

F (i)
f 4

F (i)
f 5

F (i)
f 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.37)

From this, we determine the expressions for forces at end 2 of member 1 (i.e.,
i = 1) to be

F (1)
4 = K (1)

41 v
(1)
1 + K (1)

42 v
(1)
2 + K (1)

43 v
(1)
3 + K (1)

44 v
(1)
4

+ K (1)
45 v

(1)
5 + K (1)

46 v
(1)
6 + F (1)

f 4
(6.38a)

F (1)
5 = K (1)

51 v
(1)
1 + K (1)

52 v
(1)
2 + K (1)

53 v
(1)
3 + K (1)

54 v
(1)
4

+ K (1)
55 v

(1)
5 + K (1)

56 v
(1)
6 + F (1)

f 5
(6.38b)

F (1)
6 = K (1)

61 v
(1)
1 + K (1)

62 v
(1)
2 + K (1)

63 v
(1)
3 + K (1)

64 v
(1)
4

+ K (1)
65 v

(1)
5 + K (1)

66 v
(1)
6 + F (1)

f 6
(6.38c)

Similarly, from Eq. (6.37), we determine the expressions for forces at end 2 of
member 2 (i.e., i = 2) to be

F (2)
1 = K (2)

11 v
(2)
1 + K (2)

12 v
(2)
2 + K (2)

13 v
(2)
3 + K (2)

14 v
(2)
4

+ K (2)
15 v

(2)
5 + K (2)

16 v
(2)
6 + F (2)

f 1
(6.39a)

F (2)
2 = K (2)

21 v
(2)
1 + K (2)

22 v
(2)
2 + K (2)

23 v
(2)
3 + K (2)

24 v
(2)
4

+ K (2)
25 v

(2)
5 + K (2)

26 v
(2)
6 + F (2)

f 2
(6.39b)

F (2)
3 = K (2)

31 v
(2)
1 + K (2)

32 v
(2)
2 + K (2)

33 v
(2)
3 + K (2)

34 v
(2)
4

+ K (2)
35 v

(2)
5 + K (2)

36 v
(2)
6 + F (2)

f 3
(6.39c)

By substituting the compatibility equations for members 1 and 2 (Eqs. (6.35)
and (6.36)) into Eqs. (6.38) and (6.39), respectively, we obtain

F (1)
4 = K (1)

44 d1 + K (1)
45 d2 + K (1)

46 d3 + F (1)
f 4 (6.40a)

F (1)
5 = K (1)

54 d1 + K (1)
55 d2 + K (1)

56 d3 + F (1)
f 5 (6.40b)
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F (1)
6 = K (1)

64 d1 + K (1)
65 d2 + K (1)

66 d3 + F (1)
f 6 (6.40c)

F (2)
1 = K (2)

11 d1 + K (2)
12 d2 + K (2)

13 d3 + F (2)
f 1 (6.40d)

F (2)
2 = K (2)

21 d1 + K (2)
22 d2 + K (2)

23 d3 + F (2)
f 2 (6.40e)

F (2)
3 = K (2)

31 d1 + K (2)
32 d2 + K (2)

33 d3 + F (2)
f 3 (6.40f)

Finally, by substituting Eqs. (6.40) into the joint equilibrium equations
(Eqs. (6.34)), we obtain the desired structure stiffness relations for the plane
frame:

P1 =
(

K (1)
44 + K (2)

11

)
d1 +

(
K (1)

45 + K (2)
12

)
d2

+
(

K (1)
46 + K (2)

13

)
d3 +

(
F (1)

f 4 + F (2)
f 1

) (6.41a)

P2 =
(

K (1)
54 + K (2)

21

)
d1 +

(
K (1)

55 + K (2)
22

)
d2

+
(

K (1)
56 + K (2)

23

)
d3 +

(
F (1)

f 5 + F (2)
f 2

) (6.41b)

P3 =
(

K (1)
64 + K (2)

31

)
d1 +

(
K (1)

65 + K (2)
32

)
d2

+
(

K (1)
66 + K (2)

33

)
d3 +

(
F (1)

f 6 + F (2)
f 3

) (6.41c)

The foregoing equations can be symbolically expressed as

P = Sd + Pf

or

(6.42)

in which S represents the NDOF × NDOF structure stiffness matrix, and Pf is
the NDOF × 1 structure fixed-joint force vector, for the plane frame with

S =

⎡
⎢⎢⎣

K (1)
44 + K (2)

11 K (1)
45 + K (2)

12 K (1)
46 + K (2)

13

K (1)
54 + K (2)

21 K (1)
55 + K (2)

22 K (1)
56 + K (2)

23

K (1)
64 + K (2)

31 K (1)
65 + K (2)

32 K (1)
66 + K (2)

33

⎤
⎥⎥⎦ (6.43)

and

P f =

⎡
⎢⎢⎣

F (1)
f 4 + F (2)

f 1

F (1)
f 5 + F (2)

f 2

F (1)
f 6 + F (2)

f 3

⎤
⎥⎥⎦ (6.44)

Structure Stiffness Matrix S
As discussed in Chapters 3 and 5, an element Sij of the structure stiffness matrix
S represents the force at the location and in the direction of Pi required, along

P − Pf = Sd
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with other joint forces, to cause a unit value of the displacement dj, while all
other joint displacements are 0, and the frame is subjected to no external loads.
In other words, the jth column of S consists of joint forces required, at the lo-
cations and in the directions of all the degrees of freedom of the frame, to cause
a unit value of the displacement dj while all other joint displacements are 0.

We can use the foregoing interpretation to verify the S matrix given in  
Eq. (6.43) for the frame of Fig. 6.12. To obtain the first column of S, we sub-
ject the frame to a unit value of the joint displacement d1 = 1 (d2 = d3 = 0), as
shown in Fig. 6.13(a). As depicted there, this unit joint displacement induces
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2
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(a) First Column of S (d1 = 1, d2 = d3 = 0)

Fig. 6.13
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unit global end displacements v(1)
4 at the end of member 1, and v(2)

1 at the be-
ginning of member 2. The member global stiffness coefficients, necessary to
cause the foregoing end displacements, are also given in Fig. 6.13(a). From
this figure, we can see that the structure stiffness coefficients (or joint forces)
S11 and S21 at joint 2 must be equal to the algebraic sums of the forces in the X
and Y directions, respectively, at the two member ends connected to the joint;
that is,

S11 = K (1)
44 + K (2)

11 (6.45a)

S21 = K (1)
54 + K (2)

21 (6.45b)
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Fig. 6.13 (continued)
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(b) Second Column of S (d2 = 1, d1 = d3 = 0)
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Similarly, the structure stiffness coefficient (or joint moment) S31 at joint 2
must be equal to the algebraic sum of the moments at the two member ends
connected to the joint; thus,

S31 = K (1)
64 + K (2)

31 (6.45c)

Note that the expressions for Si1 (i = 1 to 3) given in Eqs. (6.45) are identical
to those listed in the first column of S in Eq. (6.43).

The second and third columns of S can be verified in a similar manner
using Figs. 6.13(b) and (c), respectively. It should be noted that the structure
stiffness matrix S in Eq. (6.43) is symmetric, because of the symmetry of the
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Fig. 6.13 (continued)
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(c) Third Column of S (d3 = 1, d1 = d2 = 0)
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member global stiffness matrices (i.e., Kij = Kji). The structure stiffness matri-
ces of linear elastic structures must always be symmetric.

Structure Fixed-Joint Force Vector Pf and 
Equivalent Joint Loads
As discussed in Chapter 5, the structure fixed-joint forces represent the reac-
tions that would develop at the locations and in the directions of the frame’s
degrees of freedom, due to member loads, if all the joints of the frame were
fixed against translations and rotations. This definition enables us to directly
express the structure fixed-joint forces in terms of the member global fixed-end
forces (instead of deriving such expressions by combining the frame’s equilib-
rium, compatibility, and member force-displacement relations, as was done in
the earlier part of this section—see Eqs. (6.34) through (6.44)).

Let us verify the Pf vector, given in Eq. (6.44) for the frame of Fig. 6.12,
using this direct approach. The frame is redrawn in Fig. 6.14(a) with its joint
2, which is actually free to translate in the X and Y directions and rotate, now
restrained against these displacements by an imaginary restraint. When this
hypothetical completely fixed frame is subjected to member loads only (note
that the joint load W1 shown in Fig. 6.12(a) is not drawn in Fig. 6.14(a)), the
structure fixed-joint forces (or reactions) Pf 1, Pf 2, and Pf 3 develop at the imag-
inary restraint at joint 2. As shown in Fig. 6.14(a), the structure fixed-joint
force at the location and in the direction of an ith degree of freedom is denoted
by Pf i .

To relate the structure fixed-joint forces Pf to the member global fixed-end
forces Ff, we draw the free-body diagrams of the two members of the
hypothetical fixed frame, as shown in Fig. 6.14(b). Note that, because all the
joints of the frame are restrained, the member ends, which are rigidly con-
nected to the joints, are also fixed against any displacements. Therefore, only
the fixed-end forces due to member loads, Ff, can develop at the ends of the
members.

By comparing Figs. 6.14(a) and (b), we realize that the structure fixed-
joint forces Pf 1 and Pf 2 at joint 2 must be equal to the algebraic sums of the
fixed-end forces in the X and Y directions, respectively, at the two member
ends connected to the joint; that is,

Pf 1 = F (1)
f 4 + F (2)

f 1 (6.46a)

Pf 2 = F (1)
f 5 + F (2)

f 2 (6.46b)

Similarly, the structure fixed-joint moment Pf 3 at joint 2 must be equal to the
algebraic sum of the fixed-end moments at the two member ends connected to
the joint. Thus,

Pf 3 = F (1)
f 6 + F (2)

f 3 (6.46c)

Note that the expressions for Pf i (i = 1 to 3) given in Eqs. (6.46) are the same
as those listed in the Pf vector in Eq. (6.44).

Section 6.5 Structure Stiffness Relations 291

26201_06_ch06a_p249-291.qxd  12/1/10  5:10 PM  Page 291

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It may be recalled from Section 5.6 that another interpretation of the
structure fixed-joint forces due to member loads is that when they are applied
to the structure with their directions reversed, the fixed-joint forces cause the
same joint displacements as the actual member loads. The negatives of the
structure fixed-joint forces are, therefore, referred to as the equivalent joint
loads. We can show the validity of this interpretation by setting the joint loads
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equal to 0 (i.e., P = 0) in Eq. (6.42), thereby reducing the structure stiffness
relationship to

−Pf = Sd (6.47)

in which d now represents the joint displacements due to the negatives of the
structure fixed-joint forces applied to the joints of the structure. However, since
member loads are now the only external effects acting on the structure, the d
vector in Eq. (6.47) must also represent the joint displacements due to member
loads. Thus, we can conclude that the negatives of the structure fixed-joint
forces must cause the same joint displacements as the actual member loads.

The validity of this interpretation can also be demonstrated using the
principle of superposition. Figure 6.15(a) shows the two-member frame con-
sidered previously (Fig. 6.12), subjected to arbitrary member loads w and W2.
In Fig. 6.15(b), joint 2 of the frame is fixed by an imaginary restraint so that,
when the fixed frame is subjected to member loads, the structure fixed-joint
forces Pf 1, Pf 2, and Pf 3 develop at the imaginary restraint. Lastly, in Fig. 6.15(c),
the actual frame is subjected to joint loads, which are equal in magnitude to the
structure fixed-joint forces Pf 1, Pf 2, and Pf 3, but reversed in direction.

By comparing Figs. 6.15(a) through (c), we realize that the actual loading
applied to the actual frame in Fig. 6.15(a) equals the algebraic sum of the
loadings in Figs. 6.15(b) and (c), because the reactions Pf 1, Pf 2, and Pf 3 in
Fig. 6.15(b) cancel the corresponding applied loads in Fig. 6.15(c). Thus, in
accordance with the superposition principle, any joint displacement of the
actual frame due to the member loads (Fig. 6.15(a)) must be equal to the alge-
braic sum of the corresponding joint displacement of the fixed frame due to the
member loads (Fig. 6.15(b)) and the corresponding joint displacement of the
actual frame subjected to no member loads, but to the structure fixed-joint
forces with their directions reversed. However, since the joint displacements
of the fixed frame (Fig. 6.15(b)) are 0, the joint displacements of the frame
due to the member loads (Fig. 6.15(a)) must be equal to the corresponding
joint displacements of the frame due to the negatives of the fixed-joint forces
(Fig. 6.15(c)). Thus, the negatives of the structure fixed-joint forces can be
considered to be equivalent to member loads in terms of joint displacements. It
should be noted that this equivalency is valid only for joint displacements, and
it cannot be generalized to member end forces and support reactions.

Assembly of S and Pf , Using Member Code Numbers
In the preceding paragraphs of this section, we have demonstrated that the
structure stiffness matrix S for plane frames can be formulated directly by
algebraically adding the appropriate elements of the member global stiffness
matrices K (see, for example, Eqs. (6.43) and (6.45), and Fig. 6.13). Further-
more, it has been shown that the structure fixed-joint force vector Pf for plane
frames can also be established directly by algebraically adding the member
global fixed-end forces Ff at the location, and in the direction, of each of the
structure’s degrees of freedom (see, for example, Eqs. (6.44) and (6.46), and
Fig. 6.14).
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E X A M P L E 6.5 Determine the structure stiffness matrix, the fixed-joint force vector, and the
equivalent joint loads for the frame shown in Fig. 6.16(a).

S O L U T I O N Analytical Model: See Fig. 6.16(b). The frame has four degrees of freedom and five
restrained coordinates, as shown.

Structure Stiffness Matrix: The 4 × 4 structure stiffness matrix will be generated by
evaluating each member’s global stiffness matrix K, and storing its pertinent elements
in S using the member code numbers.

The foregoing process of directly generating S and Pf can be conveniently
implemented by employing the member code number technique described in
detail in Chapters 3 and 5. The application of this technique for plane frames
remains essentially the same as that for the case of beams, except that the mem-
ber global (instead of local) stiffness matrices K and the member global fixed-
end force vectors Ff must now be used to form S and Pf, respectively. It should
also be realized that each member of the plane frame has six code numbers,
arranged in the sequential order of the member’s global end displacements v.
The application of the member code number technique for plane frames is il-
lustrated in the following example.
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Member 1 As shown in Fig. 6.16(b), joint 1 is the beginning joint and joint 2 is the
end joint for this member. Thus,

cos θ = X2 − X1

L
= 0 − 0

10
= 0

sin θ = Y2 − Y1

L
= 10 − 0

10
= 1

By substituting E = 200(10)6 kN/m2, A = 0.00474 m2, I = 0.0000222 m4, L = 10 m,
and the foregoing values of the direction cosines into the expression for K given in
Eq. (6.31), we obtain

5 6 7 1 2 3

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

53.28 0 −266.4 −53.28 0 −266.4
0 94,800 0 0 −94,800 0

−266.4 0 1,776 266.4 0 888
−53.28 0 266.4 53.28 0 266.4

0 −94,800 0 0 94,800 0
−266.4 0 888 266.4 0 1,776

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5
6
7
1
2
3

�������������
�
�
�

(1)

From Fig. 6.16(b), we observe that the code numbers for member 1 are 5, 6, 7, 1, 2,  3.
These numbers are written on the right side and at the top of K1 (Eq. (1)), to indicate
the rows and columns of S in which the elements of K1 are to be stored. Thus,

1 2 3 4

S =

⎡
⎢⎢⎣

53.28 0 266.4 0
0 94,800 0 0

266.4 0 1,776 0
0 0 0 0

⎤
⎥⎥⎦

1
2
3
4

(2)

Member 2 From Fig. 6.16(b), we can see that this member is horizontal, with its
left-end joint 2 selected as the beginning joint, thereby orienting the positive direc-
tions of the member’s local x and y axes in the positive directions of the global X and
Y axes, respectively. Thus, no coordinate transformations are needed for this member
(i.e., cos θ = 1, sin θ = 0, and T = I); and its stiffness relations, and fixed-end forces,
are the same in the local and global coordinate systems.

By substituting the numerical values of E, A, and I, and L = 8 m into Eq. (6.6),
we obtain

1 2 3 8 9 4

K2 = k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

118,500 0 0 −118,500 0 0
0 104.06 416.25 0 −104.06 416.25
0 416.25 2,220 0 −416.25 1,110

−118,500 0 0 118,500 0 0
0 −104.06 −416.25 0 104.06 −416.25
0 416.25 1,110 0 −416.25 2,220

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
8
9
4

�������������� ����

�������������� ����

� �
� �
� �
� �

� �� �

The code numbers for this member—1, 2, 3, 8, 9, 4 (see Fig. 6.16(b))—are now used
to add the pertinent elements of K2 in their proper positions in the structure stiffness
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matrix S given in Eq. (2), which now becomes

1 2 3 4

S =

⎡
⎢⎢⎣

53.28 + 118,500 0 266.4 0
0 94,800 + 104.06 416.25 416.25

266.4 416.25 1,776 + 2,220 1,110
0 416.25 1,110 2,220

⎤
⎥⎥⎦

1
2
3
4

Because the stiffnesses of both members of the frame have now been stored in S, the
structure stiffness matrix for the given frame is

1 2 3 4

S =

⎡
⎢⎢⎣

118,553 0 266.4 0
0 94,904 416.25 416.25

266.4 416.25 3,996 1,110
0 416.25 1,110 2,220

⎤
⎥⎥⎦

1
2
3
4

Ans

Note that the structure stiffness matrix is symmetric.

Structure Fixed-Joint Force Vector: We will generate the 4 × 1 structure fixed-joint
force vector by evaluating, for each member, the global fixed-end force vector Ff, and
storing its pertinent elements in Pf using the member code numbers.

Member 1 The 24 kN/m uniformly distributed load acting on this member is posi-
tive, because it acts in the negative direction of the member’s local y axis. By substi-
tuting w = 24 kN/m, L = 10 m, and l1 = l2 = 0 into the fixed-end force expressions
for loading type 3 listed inside the front cover, we evaluate

FSb = FSe = 24(10)

2
= 120 kN

FMb = −FMe = 24(10)2

12
= 200 kN · m

As the member is not subjected to any axial loads,

FAb = FAe = 0

By substituting the foregoing values of the member fixed-end forces, along with
cos θ = 0 and sin θ = 1, into the explicit form of Ff given in Eq. (6.33), we obtain

F f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−120
0

200
−120

0
−200

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5
6
7
1
2
3

��� (3)

The code numbers of the member, 5, 6, 7, 1, 2, 3, are written on the right side of Ff1

in Eq. (3) to indicate the rows of Pf in which the elements of Ff1 are to be stored. Thus,

P f =

⎡
⎢⎢⎣

−120
0

−200
0

⎤
⎥⎥⎦

1
2
3
4

(4)
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Member 2 By substituting P = 75 kN, L = 8 m, and l1 = l2 = 4 m into the fixed-
end force expressions for loading type 1, we determine the member fixed-end shears
and moments to be

FSb = FSe = 75

2
= 37.5 kN

FMb = −FMe = 75(8)

8
= 75 kN · m

As no axial loads are applied to this member,

FAb = FAe = 0

Thus,

F f 2 = Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
37.5
75

0
37.5

−75

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
8
9
4

���

���

Using the member code numbers 1, 2, 3, 8, 9, 4, we add the pertinent elements of Ff 2

in their proper positions in Pf (as given in Eq. (4)), which now becomes

P f =

⎡
⎢⎢⎣

−120
37.5

−200 + 75
−75

⎤
⎥⎥⎦

1
2
3
4

Because the fixed-end forces for both members of the frame have now been stored in
Pf, the structure fixed-joint force vector for the given frame is

P f =

⎡
⎢⎢⎣

−120
37.5

−125
−75

⎤
⎥⎥⎦

1
2
3
4

Ans

Equivalent Joint Loads:

Pe = −P f =

⎡
⎢⎢⎣

120
−37.5
125
75

⎤
⎥⎥⎦

1
2
3
4

Ans

The equivalent joint loads are depicted in Fig. 6.16(c). These equivalent joint
loads cause the same joint displacements of the frame as the actual member loads of
Fig. 6.16(a).

6.6 PROCEDURE FOR ANALYSIS
Using the concepts discussed in the previous sections, we can now develop the
following step-by-step procedure for the analysis of plane frames by the matrix
stiffness method.
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1. Prepare an analytical model of the structure, identifying its degrees of
freedom and restrained coordinates (as discussed in Section 6.1).
Recall that for horizontal members, the coordinate transformations
can be avoided by selecting the left-end joint of the member as the
beginning joint.

2. Evaluate the structure stiffness matrix S(NDOF × NDOF ) and fixed-
joint force vector Pf (NDOF × 1). For each member of the structure,
perform the following operations:

a. Calculate the length and direction cosines (i.e., cos θ and sin θ) of
the member (Eqs. (3.62)).

b. Compute the member stiffness matrix in the global coordinate sys-
tem, K, using its explicit form given in Eq. (6.31). The member
global stiffness matrix alternatively can be obtained by first forming
the member local stiffness matrix k (Eq. (6.6)) and the transforma-
tion matrix T (Eq. (6.19)), and then evaluating the matrix triple
product, K = TTkT (Eq. (6.29)). The matrix K must be symmetric.

c. If the member is subjected to external loads, then evaluate the mem-
ber fixed-end force vector in the global coordinate system, Ff, using
the expressions for fixed-end forces given inside the front cover, and
the explicit form of Ff given in Eq. (6.33). The member global fixed-
end force vector can also be obtained by first forming the member
local fixed-end force vector Qf (Eq. (6.15)), and then using the rela-
tionship Ff = TTQf (Eq. (6.30)).

d. Identify the member code numbers and store the pertinent elements
of K and Ff in their proper positions in the structure stiffness matrix
S and the fixed-joint force vector Pf, respectively.

The complete structure stiffness matrix S, obtained by assembling the
stiffness coefficients of all the members of the structure, must be
symmetric.

3. If the structure is subjected to joint loads, then form the joint load vec-
tor P(NDOF × 1).

4. Determine the joint displacements d. Substitute P, Pf , and S into the
structure stiffness relationship, P − Pf = Sd (Eq. (6.42)), and solve the
resulting system of simultaneous equations for the unknown joint
displacements d. To check the solution for correctness, substitute the
numerical values of the joint displacements d back into the stiffness
relationship P − Pf = Sd. If the solution is correct, then the stiffness
relationship should be satisfied. Note that joint translations are consid-
ered positive when in the positive directions of the global X and Y axes,
and joint rotations are considered positive when counterclockwise.

5. Compute member end displacements and end forces, and support
reactions. For each member of the structure, carryout the following
steps:

a. Obtain member end displacements in the global coordinate system,
v, from the joint displacements, d, using the member code numbers.
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b. Form the member transformation matrix T (Eq. (6.19)), and deter-
mine the member end displacements in the local coordinate system,
u, using the transformation relationship u = Tv (Eq. (6.20)).

c. Form the member local stiffness matrix k (Eq. (6.6)) and local
fixed-end force vector Q f (Eq. (6.15)); then calculate the member
end forces in the local coordinate system, Q, using the stiffness
relationship Q = ku + Q f (Eq. (6.4)).

d. Determine the member end forces in the global coordinate system,
F,  using the transformation relationship F = TTQ (Eq. (6.23)).

e. If the member is attached to a support joint, then use the member
code numbers to store the pertinent elements of F in their proper po-
sitions in the support reaction vector R.

6. Check the calculation of member end forces and support reactions by
applying the equilibrium equations 

(∑
FX = 0,

∑
FY = 0, and∑

M = 0
)

to the free body of the entire structure. If the calculations
have been carried out correctly, then the equilibrium equations should
be satisfied.

Instead of following steps 5(c) and (d) of this procedure, the member end
forces alternatively can be obtained by first calculating the global forces
F using the global stiffness relationship F = Kv + Ff (Eq. (6.28)), and then
evaluating the local forces Q from the transformation relationship Q = TF
(Eq. (6.18)). It should also be noted that it is usually not necessary to determine
the global end forces for all the members of the structure, because such forces
are not used for design purposes. However, F vectors for the members that are
attached to supports are always evaluated, so that they can be used to form the
support reaction vector R.
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E X A M P L E 6.6 Determine the joint displacements, member end forces, and support reactions for the two-
member frame shown in Fig. 6.17(a) on the next page, using the matrix stiffness method.

S O L U T I O N Analytical Model: See Fig. 6.17(b). The frame has three degrees of freedom—
the translations in the X and Y directions, and the rotation, of joint 2—which are
numbered 1, 2, and 3, respectively. The six restrained coordinates of the frame are
identified by numbers 4 through 9, as shown in Fig. 6.17(b).

Structure Stiffness Matrix and Fixed-Joint Force Vector:

Member 1 As shown in Fig. 6.17(b), we have selected joint 1 as the beginning joint,
and joint 2 as the end joint for this member. By applying Eqs. (3.62), we determine

L =
√

(X2 − X1)2 + (Y2 − Y1)2 =
√

(10 − 0)2 + (20 − 0)2

= 22.361 ft = 268.33 in. (1a)

cos θ = X2 − X1

L
= 10 − 0

22.361
= 0.44721 (1b)

sin θ = Y2 − Y1

L
= 20 − 0

22.361
= 0.89443 (1c)
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Using the units of kips and inches, we evaluate the member global stiffness matrix as
(Eq. (6.31))

4 5 6 1 2 3

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

259.53 507.89 −670.08 −259.53 −507.89 −670.08
507.89 1,021.4 335.04 −507.89 −1,021.4 335.04

−670.08 335.04 134,015 670.08 −335.04 67,008
−259.53 −507.89 670.08 259.53 507.89 670.08
−507.89 −1,021.4 −335.04 507.89 1,021.4 −335.04
−670.08 335.04 67,008 670.08 −335.04 134,015

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

���������������
�
�
�

Note that K1 is symmetric.
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90 k
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A = 11.8 in.2

I = 310 in.4
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(b) Analytical Model
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θ

90
 c
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.
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33
 in

.

1
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y
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(c) Loading on Member 1

1 2 3

S =

⎡⎢⎢⎢⎣
259.53 + 1,425.8 507.89 670.08

507.89 1,021.4 + 7.8038 −335.04 + 936.46

670.08 −335.04 + 936.46 134,015 + 149,833

⎤
⎥⎥⎥⎦

1

2

3

1 2 3

=

⎡
⎢⎢⎢⎣

1,685.3 507.89 670.08

507.89 1,029.2 601.42

670.08 601.42 283,848

⎤
⎥⎥⎥⎦

1

2

3

1

2

3

P f =

⎡
⎢⎢⎢⎣

0

45 + 15

−1,350 + 600

⎤
⎥⎥⎥⎦

1

2

3

=

⎡
⎢⎢⎢⎣

0

60

−750

⎤
⎥⎥⎥⎦

(d) Structure Stiffness Matrix and Fixed-Joint Force Vector

Fig. 6.17 
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(e) Member End Forces in Local Coordinate Systems

R =

⎡
⎢⎢⎢⎢⎢⎢

⎢⎢⎢⎢⎢⎢
⎢⎢⎣

30.371 k

102.09 k

1, 216 k-in.

−30.372 k

17.913 k

−854.07 k-in.

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥⎥⎦

4

5

6

7

8

9

(f) Support Reaction Vector

Y

1

2 3

102.09 k

17.913 k

1,216 k-in.

854.07 k-in.

30.371 k

30.372 k

X

90 k

0.125 k/in.
1,500 k-in.

2

1

(g) Support Reactions

Fig. 6.17 (continued)
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304 Chapter 6 Plane Frames

As the 90 k load applied to this member is inclined with respect to the member’s
local coordinate system, we evaluate the rectangular components of the load in the
directions of the local x and y axes as (see Fig. 6.17(c))

Wx = 90 sin θ = 90(0.89443) = 80.498 k

Wy = 90 cos θ = 90(0.44721) = 40.249 k

Note that both Wx and Wy are considered positive because they act in the negative
directions of the local x and y axes, respectively. The member’s fixed-end axial
forces can now be evaluated by substituting W = Wx = 80.498 k, L = 268.33 in., and
l1 = l2 = 134.16 in. into the expressions for loading type 5 given inside the front
cover. This yields

FAb = FAe = 80.498

2
= 40.249 k (2a)

Similarly, by substituting W = Wy = 40.249 k, and the numerical values of L, l1, and l2
into the equations for loading type 1, we obtain the fixed-end shears and moments as

FSb = FSe = 40.249

2
= 20.125 k (2b)

FMb = −FMe = 40.249(268.33)

8
= 1,350 k-in. (2c)

By substituting the numerical values of the member fixed-end forces and direction
cosines into Eq. (6.33), we calculate the member global fixed-end force vector as

F f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
45

1,350
0

45
−1,350

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

���

From Fig. 6.17(b), we observe that the code numbers for member 1 are 4, 5, 6, 1,
2, 3. Using these code numbers, we store the pertinent elements of K1 and Ff1 in their
proper positions in the 3 × 3 structure stiffness matrix S and the 3 × 1 structure
fixed-joint force vector Pf, respectively, as shown in Fig. 6.17(d).

Member 2 As this member is horizontal, with its left-end joint 2 selected as the
beginning joint, no coordinate transformations are needed; that is, T2 = I, K2 = k2,
and Ff 2 = Qf 2. Thus, by substituting L = 240 in., E = 29,000 ksi, A = 11.8 in.2, and
I = 310 in.4 into Eq. (6.6), we obtain

1 2 3 7 8 9

K2 = k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1,425.8 0 0 −1,425.8 0 0
0 7.8038 936.46 0 −7.8038 936.46
0 936.46 149,833 0 −936.46 74,917

−1,425.8 0 0 1,425.8 0 0
0 −7.8038 −936.46 0 7.8038 −936.46
0 936.46 74,917 0 −936.46 149,833

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

���������������

�
�
�
�

(3)
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Using the equations given for loading type 3 inside the front cover, we obtain the fixed-
end forces due to the uniformly distributed load of magnitude 0.125 k/in. (= 1.5 k/ft):

FAb = FAe = 0

FSb = FSe = 0.125(240)

2
= 15 k

FMb = −FMe = 0.125(240)2

12
= 600 k-in.

Thus (Eq. (6.15)),

F f 2 = Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
15

600
0

15
−600

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

��� (4)

The relevant elements of K2 and Ff 2 are stored in S and Pf , respectively, using the
member code numbers 1, 2, 3, 7, 8, 9.

The completed structure stiffness matrix S and structure fixed-joint force vector Pf

are given in Fig. 6.17(d). Note that S is symmetric.

Joint Load Vector: By comparing Figs. 6.17(a) and (b), we write the joint load
vector, in kips and inches, as

P =
⎡
⎣ 0

0
−1,500

⎤
⎦1

2
3

Joint Displacements: By substituting the numerical values of P, Pf , and S into
Eq. (6.42), we write the stiffness relations for the entire frame as

P − Pf = Sd

⎡
⎣ 0

0
−1,500

⎤
⎦ −

⎡
⎣ 0

60
−750

⎤
⎦ =

⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

or

⎡
⎣ 0

−60
−750

⎤
⎦ =

⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

Solving these equations, we determine the joint displacements to be

d =
⎡
⎣ 0.021302 in.

−0.06732 in.

−0.0025499 rad

⎤
⎦ Ans
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306 Chapter 6 Plane Frames

To check the foregoing solution, we substitute the numerical values of d back into the
structure stiffness relationship, as

P − P f = Sd =
⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ 0.021302

−0.06732
−0.0025499

⎤
⎦

=
⎡
⎣ 0

−60
−750

⎤
⎦ Checks

Member End Displacements and End Forces:

Member 1 As in the case of plane trusses, the global end displacements v for a
plane frame member can be obtained by applying the member’s compatibility equa-
tions, using its code numbers. Thus, for member 1 of the frame under consideration,
the global end displacement vector can be established as

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d1

d2

d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.021302 in.

−0.06732 in.

−0.0025499 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

As shown in Eq. (5), the code numbers for the member (4, 5, 6, 1, 2, 3) are first writ-
ten on the right side of v. The fact that the code numbers corresponding to v1, v2, and
v3 are the restrained coordinate numbers 4, 5, and 6, respectively, indicates that v1 =
v2 = v3 = 0. Similarly, the code numbers 1, 2, and 3 corresponding to v4, v5, and v6,
respectively, indicate that v4 = d1, v5 = d2, and v6 = d3. Note that these compatibility
equations can be verified easily by a visual inspection of the frame’s line diagram
given in Fig. 6.17(b).

To determine the member local end displacements, u, we first evaluate the trans-
formation matrix T (Eq. (6.19)), using the direction cosines given in Eqs. (1):

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.44721 0.89443 0 0 0 0
−0.89443 0.44721 0 0 0 0

0 0 1 0 0 0
0 0 0 0.44721 0.89443 0
0 0 0 −0.89443 0.44721 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The member local end forces can now be calculated using the relationship u = Tv
(Eq. (6.20)), as

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.050686 in.

−0.04916 in.

−0.0025499 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Before we can calculate the member’s local end forces Q, we need to determine
its local stiffness matrix k and fixed-end force vector Qf . Thus, using Eq. (6.6):

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1,275.3 0 0 −1,275.3 0 0
0 5.584 749.17 0 −5.584 749.17
0 749.17 134,015 0 −749.17 67,008

−1,275.3 0 0 1,275.3 0 0
0 −5.584 −749.17 0 5.584 −749.17
0 749.17 67,008 0 −749.17 134,015

⎤
⎥⎥⎥⎥⎥⎥⎦

and, by substituting Eqs. (2) into Eq. (6.15):

Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

40.249
20.125
1,350

40.249
20.125

−1,350

⎤
⎥⎥⎥⎥⎥⎥⎦

Now, using Eq. (6.4), we compute the member local end forces as

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

104.89 k
18.489 k
1,216 k-in.

−24.39 k
21.761 k

−1,654.9 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

The local end forces for member 1 are depicted in Fig. 6.17(e), and we can check our
calculations for these forces by considering the equilibrium of the free body of the
member, as follows.

+ ∑
Fx = 0 104.89 − 80.498 − 24.39 = 0.002 =∼ 0 Checks

+ ∑
Fy = 0 18.489 − 40.249 + 21.761 = 0.001 =∼ 0 Checks

+ ∑
M©2 = 0 1,216 − 18.489(268.33) + 40.249(134.16) − 1,654.9

= −0.25 =∼ 0 Checks

The member global end forces F can now be determined by applying Eq. (6.23), as

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

30.371
102.09
1,216

−30.371
−12.083
−1,654.9

⎤
⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

���� (6)

Next, to generate the support reaction vector R, we write the member code numbers
(4, 5, 6, 1, 2, 3) on the right side of F1 as shown in Eq. (6), and store the pertinent
elements of F1 in their proper positions in R by matching the code numbers on the side
of F1 to the restrained coordinate numbers on the right side of R in Fig. 6.17(f).

Y

à

á

26201_06_ch06b_p292-339.qxd  12/1/10  5:11 PM  Page 307

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



308 Chapter 6 Plane Frames

Member 2 The global and local end displacements for this horizontal member are

u2 = v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.021302 in.

−0.06732 in.

−0.0025499 rad
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

By using k2 from Eq. (3) and Q f 2 from Eq. (4), we compute the member local and
global end forces to be

F2 = Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

30.372 k
12.087 k
154.9 k-in.

−30.372 k
17.913 k

−854.07 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

������ Ans

These end forces for member 2 are depicted in Fig. 6.17(e). To check our calculations,
we apply equilibrium equations to the free body of member 2, as follows.

→+
∑

Fx = 0 30.372 − 30.372 = 0 Checks

+ ↑ ∑
Fy = 0 12.087 − 0.125(240) + 17.913 = 0 Checks

+ ∑
M©2 = 0 154.9 − 0.125(240)(120) + 17.913(240)

− 854.07 = −0.05 ∼= 0 Checks

Next, we store the pertinent elements of F2 in their proper positions in the reaction
vector R, using the member code numbers (1, 2, 3, 7, 8, 9), as shown in Fig. 6.17(f ).

Support Reactions: The completed reaction vector R is given in Fig. 6.17(f ), and the
support reactions are depicted on a line diagram of the structure in Fig. 6.17(g). Ans

Equilibrium Check: Finally, we check our calculations by considering the equilib-
rium of the free body of the entire structure (Fig. 6.17(g)), as follows.

→+
∑

FX = 0 30.371 − 30.372 = −0.001 ∼= 0 Checks

+ ↑ ∑
FY = 0 102.09 − 90 − 0.125(240) + 17.913 = 0.003 ∼= 0 Checks

+ ∑
M©1 = 0 1,216 − 90(60) − 1,500 − 0.125(240)(240) + 30.372(240)

+ 17.913(360) − 854.07 = −0.11 ∼= 0 Checks

a

a

E X A M P L E 6.7 Determine the joint displacements, member local end forces, and support reactions
for the two-story frame, subjected to a wind loading, shown in Fig. 6.18(a).

S O L U T I O N Analytical Model: See Fig. 6.18(b). The frame has nine degrees of freedom,
numbered 1 through 9; and six restrained coordinates, identified by the numbers 10
through 15.
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Section 6.6 Procedure for Analysis 309

12 kN/m

6 m

6 m

9 m

40 kN

80 kN

E, A, I = constant
E = 30 GPa
A = 75,000 mm2

I = 4.8(108) mm4

(a) Frame

4

3

1

5

2

X

Y

2

3
5

1

12

10 13

11

3

2

1

7

9

8

6

4

5

14

15

(b) Analytical Model

4

Fig. 6.18
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310 Chapter 6 Plane Frames

Fig. 6.18 (continued)

P f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−36

−54

117

−36

−54

−117

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

8

9

(d) Structure Fixed-Joint Force Vector 

49.027

49.027

85.948

85.948

195.38

320.31

360.44

275.86

157.03

157.03

106.05

106.05

1.6114

1.6114

90.06

80.392

110.6

110.6

93.398 90.061

70.73
12 kN/m

59.07

27.004

93.398

5

195.47

222.38

46.429 46.429

24.5 24.5

4

1 2

3

(e) Member Local End Forces

1 2 3 4 5 6 7 8 9

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

251,600 0 0 −250,000 0 0 −800 0 −2,400

0 750,237 1,066.7 0 −237.04 1,066.7 0 −375,000 0

0 1,066.7 25,600 0 −1,066.7 3,200 2,400 0 4,800

−250,000 0 0 394,851 −95,943 1,990.4 −144,051 95,943 −409.62

0 −237.04 −1,066.7 −95,943 439,335 −1,681.1 95,943 −64, 098 −614.44

0 1,066.7 3,200 1,990.4 −1,681.1 21,325 409.62 614.44 2,662.6

−800 0 2,400 −144,051 95,943 409.62 144, 851 −95,943 2,809.6

0 −375,000 0 95,943 −64,098 614.44 −95,943 439,098 614.44

−2,400 0 4,800 −409.62 −614.44 2,662.6 2,809.6 614.44 14,925

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

8

9

(c) Structure Stiffness Matrix
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Structure Stiffness Matrix and Fixed-Joint Force Vector:

Members 1, 2, and 3 E = 30(106)kN/m2,A = 0.075m2, I = 480(10−6)m4,L = 6m,
cos θ = 0, and sin θ = 1. The member global stiffness matrix, in units of kN and
meters, is given by the following (see Eq. (6.31)).

Member 3 → 1 2 3 7 8 9

Member 2 → 13 14 15 4 5 6

Member 1 → 10 11 12 1 2 3

K1 = K2 = K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

800 0 −2,400 −800 0 −2,400

0 375,000 0 0 −375,000 0

−2,400 0 9,600 2,400 0 4,800

−800 0 2,400 800 0 2,400

0 −375,000 0 0 375,000 0

−2,400 0 4,800 2,400 0 9,600

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

11

12

1

2

3

13

14

15

4

5

6

1

2

3

7

8

9

Section 6.6 Procedure for Analysis 311

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−106.05 kN

−157.03 kN

360.44 kN·m
−85.948 kN

49.027 kN

320.31 kN·m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

11

12

13

14

15

(f ) Support Reaction Vector

12 kN/m

40 kN

80 kN

6 m

6 m

9 m

Y

X

4
3

1

5

2

360.44 320.31

157.03 49.027

85.948106.05

(g) Support Reactions

Fig. 6.18 (continued)
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312 Chapter 6 Plane Frames

As these members are not subjected to any loads, their fixed-end forces are 0.
Thus,

Ff 1 = Ff 2 = Ff 3 = 0

Using the code numbers for member 1 (10, 11, 12, 1, 2, 3), member 2 (13, 14, 15,
4, 5, 6), and member 3 (1, 2, 3, 7, 8, 9), the relevant elements of K1, K2, and K3 are
stored in their proper positions in the 9 × 9 structure stiffness matrix S (Fig. 6.18(c)).

Member 4 Substituting L = 9 m and the foregoing values of E, A, and I into Eq. (6.6),
we obtain

1 2 3 4 5 6

K4 = k4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

250,000 0 0 −250,000 0 0

0 237.04 1,066.7 0 −237.04 1,066.7

0 1,066.7 6,400 0 −1,066.7 3,200

−250,000 0 0 250,000 0 0

0 −237.04 −1,066.7 0 237.04 −1,066.7

0 1,066.7 3,200 0 −1,066.7 6,400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

(1)

As no loads are applied to this member,

Ff 4 = Qf 4 = 0

The pertinent elements of K4 are stored in S using the member code numbers 1, 2, 3,
4, 5, 6.

Member 5

L =
√

(X5 − X4)2 + (Y5 − Y4)2 =
√

(0 − 9)2 + (12 − 6)2 = 10.817 m (2a)

cos θ = X5 − X4

L
= 0 − 9

10.817
= −0.83205 (2b)

sin θ = Y5 − Y4

L
= 12 − 6

10.817
= 0.5547 (2c)

4 5 6 7 8 9

K5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

144,051 −95,943 −409.62 −144,051 95,943 −409.62
−95,943 64,098 −614.44 95,943 −64,098 −614.44
−409.62 −614.44 5,325.1 409.62 614.44 2,662.6

−144,051 95,943 409.62 144,051 −95,943 409.62
95,943 −64,098 614.44 −95,943 64,098 614.44

−409.62 −614.44 2,662.6 409.62 614.44 5,325.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

From Figs. 6.18(a) and (b), we observe that the 12 kN/m uniformly distributed load
applied to member 5 acts in the negative direction of the member’s local y axis; there-
fore, it is considered positive for the purpose of calculating fixed-end forces. Thus,

FAb = FAe = 0 (3a)

FSb = FSe = wL

2
= 12(10.817)

2
= 64.9 kN (3b)

FMb = −FMe = wL2

12
= 12(10.817)2

12
= 117 kN · m (3c)
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Section 6.6 Procedure for Analysis 313

Using Eq. (6.33), we determine the global fixed-end force vector for the member to be

F f 5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−36
−54
117
−36
−54

−117

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

Using the code numbers 4, 5, 6, 7, 8, 9, we store the pertinent elements of K5 and Ff 5

in their proper positions in the S matrix and the Pf vector, respectively.
The complete structure stiffness matrix S and structure fixed-joint force vector Pf

are shown in Figs. 6.18(c) and (d), respectively.

Joint Load Vector:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

80
0
0
0
0
0
40
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7
8
9

Joint Displacements: By substituting the numerical values of S (Fig. 6.18(c)), Pf

(Fig. 6.18(d)), and P (Eq. (4)) into the structural stiffness relationship P − Pf = Sd
(Eq. (6.42)), and solving the resulting system of simultaneous equations, we obtain
the following joint displacements:

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.185422 m
0.000418736 m

−0.0176197 rad
0.18552 m

−0.000130738 m
−0.0260283 rad

0.186622 m
0.000713665 m
0.0178911 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7
8
9

To check this solution, we evaluate the matrix product Sd, using the foregoing values
of the joint displacements d, and substitute the results into the structure stiffness rela-
tionship, as

P − P f = Sd⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

80
0
0
0
0
0
40
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−36
−54
117
−36
−54

−117

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

79.939
−0.001466

0.0013239
36.051
54.006

−116.992
76.007
53.994

116.994

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ans

(4)

Checks
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314 Chapter 6 Plane Frames

Member End Displacements and End Forces:

Member 1

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d1

d2

d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.185422
0.000418736

−0.0176197

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

cos θ = 0, sin θ = 1

T1 = T2 = T3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.000418736
−0.185422
−0.0176197

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k1 = k2 = k3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

375,000 0 0 −375,000 0 0
0 800 2,400 0 −800 2,400
0 2,400 9,600 0 −2,400 4,800

−375,000 0 0 375,000 0 0
0 −800 −2,400 0 800 −2,400
0 2,400 4,800 0 −2,400 9,600

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)
Q f 1 = 0

Q1 = k1u1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−157.03 kN
106.05 kN
360.44 kN · m
157.03 kN

−106.05 kN
275.86 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−106.05
−157.03

360.44
106.05
157.03
275.86

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

(7)
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Section 6.6 Procedure for Analysis 315

Member 2

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.18552
−0.000130738
−0.0260283

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
4
5
6

Using T2 from Eq. (5), we obtain

u2 = T2v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.000130738
−0.18552
−0.0260283

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k2 from Eq. (6), and realizing that Qf 2 = 0, we determine that

Q2 = k2u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

49.027 kN
85.948 kN
320.31 kN · m

−49.027 kN
−85.948 kN

195.38 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−85.948
49.027
320.31
85.948

−49.027
195.38

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
4
5
6

(8)

Member 3

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.185422
0.000418736

−0.0176197
0.186622
0.000713665
0.0178911

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

Using T3 from Eq. (5), we compute

u3 = T3v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.000418736
−0.185422
−0.0176197

0.000713665
−0.186622

0.0178911

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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316 Chapter 6 Plane Frames

Using k3 from Eq. (6), and realizing that Qf 3 = 0, we obtain

Q3 = k3u3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−110.6 kN
1.6114 kN

−80.392 kN · m
110.6 kN

−1.6114 kN
90.06 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

Note that it is not necessary to compute the member global end force vector F3,
because this member is not attached to any supports (and, therefore, none of the
elements of F3 will appear in the support reaction vector R).

Member 4 T4 = I

u4 = v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.185422
0.000418736

−0.0176197
0.18552

−0.000130738
−0.0260283

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6

Using k4 from Eq. (1), and Qf 4 = 0, we obtain

Q4 = k4u4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−24.5 kN
−46.429 kN
−195.47 kN · m

24.5 kN
46.429 kN

−222.38 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

Member 5

v5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.18552
−0.000130738
−0.0260283

0.186622
0.000713665
0.0178911

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

cos θ = −0.83205, sin θ = 0.5547 (Eqs. (2))

T5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.83205 0.5547 0 0 0 0
−0.5547 −0.83205 0 0 0 0

0 0 1 0 0 0
0 0 0 −0.83205 0.5547 0
0 0 0 −0.5547 −0.83205 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u5 = T5v5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.154434
−0.102799
−0.0260283
−0.154883
−0.104113

0.0178911

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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k5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

208,013 0 0 −208,013 0 0
0 136.54 738.46 0 −136.54 738.46
0 738.46 5,325.1 0 −738.46 2,662.6

−208,013 0 0 208,013 0 0
0 −136.54 −738.46 0 136.54 −738.46
0 738.46 2,662.6 0 −738.46 5,325.1

⎤
⎥⎥⎥⎥⎥⎥⎦

From Eqs. (3), we obtain

Q f 5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
64.9

117
0

64.9
−117

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q5 = k5u5 + Q f 5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

93.398 kN
59.07 kN

27.004 kN · m
−93.398 kN

70.73 kN
−90.061 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

The member local end forces are shown in Fig. 6.18(e).

Support Reactions: The reaction vector R, as assembled from the appropriate ele-
ments of the member global end force vectors F1 and F2 (Eqs. (7) and (8), respec-
tively), is given in Fig. 6.18(f). Also, Fig. 6.18(g) depicts these support reactions on a
line diagram of the frame. Ans

Equilibrium Check: Considering the equilibrium of the entire frame, we write
(Fig. 6.18(g))

+ → ∑
Fx = 0 40 + 80 + (12

√
117)

6√
117

− 106.05 − 85.948 = 0.002 ∼= 0

Checks

+ ↑ ∑
FY = 0 (12

√
117)

9√
117

− 157.03 + 49.027 = −0.003 ∼= 0 Checks

+ ∑
M©1 = 0 360.44 − 80(6) − 40(12) − (12

√
117)

(
6√
117

)
9

+ (12
√

117)

(
9√
117

)
4.5 + 320.31 + 49.027(9)

= −0.007 ∼= 0 Checks

Y

6.7 COMPUTER PROGRAM
The overall organization and format of the computer program for the analysis
of plane frames remains the same as the plane truss and beam analysis pro-
grams developed previously. All the parts, and many subroutines, of the new
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program can be replicated from the previous programs with no, or relatively
minor, modifications. In this section, we discuss the development of this
program for the analysis of plane frames, with emphasis on the programming
aspects not considered in previous chapters.

Input Module
Joint Data The part of the computer program for reading and storing the joint
data for plane frames (i.e., the number of joints, NJ, and X and Y coordinates of
each joint) remains the same as Part I of the plane truss analysis program (see
flowchart in Fig. 4.3(a)). As discussed in Section 4.1, the program stores the joint
coordinates in a NJ × 2 joint coordinate matrix COORD in computer memory.
As an example, let us consider the gable frame of Fig. 6.19(a), with its analytical
model shown in Fig. 6.19(b). Since the frame has five joints, its COORD matrix
has five rows, with the X and Y coordinates of a joint i stored in the first and sec-
ond columns, respectively, of the ith row, as shown in Fig. 6.19(c). An example of
the input data file for the gable frame is given in Fig. 6.20 on page 320.

Support Data The computer code written for Part II of the plane truss analy-
sis program (see flowchart in Fig. 4.3(b)) can be used to input the support data
for plane frames, provided that the number of structure coordinates per joint is
set equal to 3 (i.e., NCJT = 3) in the program. A three-digit code is now used
to specify the restraints at a support joint, with the first two digits representing
the translational restraint conditions in the global X and Y directions,
respectively, and the third digit representing the rotational restraint condition at
the joint. As in the case of plane trusses and beams, each digit of the restraint

318 Chapter 6 Plane Frames

0.25 k/in.

96 in.

240 in.

240 in. 240 in.

129.24 in.45 k20 k

Columns:
E = 29,000 ksi
A = 29.8 in.2

 I = 2,420 in.4

Girders:
E = 10,000 ksi
A = 30.6 in.2

 I = 3,100 in.4

(a) Gable Frame

75 k

Fig. 6.19

4

3

1 5

2

X

Y

1 4

32

(b) Analytical Model
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X Coordinate
Y Coordinate

COORD =

⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎣

0 0

0 240

240 336

480 240

480 0

⎤
⎥⎥
⎥⎥
⎥⎥⎥⎥⎦

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

NJ × 2

(c) Joint Coordinate Matrix 

Restraint in X Direction

Rotational RestraintJoint Number
(0 = free, 1 = restrained)

(0 = free, 1 = restrained)
Restraint in Y Direction
(0 = free, 1 = restrained)

MSUP =
[

1 1 1 1

5 1 1 0

]

NS × (NCJT + 1)

(d) Support Data Matrix

EM =
[ ]

Material No. 1

Material No. 2

NMP × 1

(e) Elastic Modulus Vector

29000
10000

Area
Moment of Inertia

CP =
[

29.8

30.6

]
Cross-SectionType No. 1

Cross-SectionType No. 2

NCP × 2

(f) Cross-Sectional Property Matrix

2420
3100

Beginning Joint
End Joint

Material No.
Cross-Section Type No.

MPRP =

⎡
⎢⎢⎢⎣

1 2 1 1

2 3 2 2

4 3 2 2

5 4 1 1

⎤
⎥⎥⎥⎦

Member 1

Member 2

Member 3

Member 4

(g) Member Data Matrix

NM × 4

Joint Number
Force in X Direction

Force in Y Direction

Moment

JP = [2] PJ = [75 0 0]

NJL × 1 NJL × NCJT

(h) Joint Load Data Matrices

Member Number
Load Type Number

MP =

⎡
⎢⎣

2 3

3 1

3 5

⎤
⎥⎦ PM =

⎡
⎢⎣

0.25 0 0 0

−45 0 129.24 0

20 0 129.24 0

⎤
⎥⎦

NML × 2 NML × 4
W, M, w or w

w2 (if Load Type = 4)
0 (otherwise) l1

l 2 (if Load = 3, 4 or 6)
0 (otherwise)

(i) Member Load Data Matrices

1

Type

Fig. 6.19 (continued)
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code can be either 0 (indicating no restraint) or 1 (indicating restraint). The re-
straint codes for some common types of supports for plane frames are given in
Fig. 6.21. The program stores the support data in a NS × 4 MSUP matrix, as
shown in Fig. 6.19(d) for the gable frame, and an example of how this data may
appear in an input file is given in Fig. 6.20.

Material Property Data This part of the program remains the same as Part III
of the plane truss analysis program (see flowchart in Fig. 4.3(c)). The program
stores the moduli of elasticity in a NMP × 1 EM vector, as shown in Fig. 6.19(e)
for the example gable frame; Fig. 6.20 illustrates how this data may appear in
an input data file.

Cross-sectional Property Data As two cross-sectional properties (namely,
area and moment of inertia) are needed in the analysis of plane frames, the
code written previously for Part IV of the plane truss program should be mod-
ified to increase the number of columns of the cross-sectional property matrix
CP from one to two, as indicated by the flowchart in Fig. 6.22(a). As before,
the number of rows of CP equals the number of cross-section types (NCP),
with the area and moment of inertia of the cross-section i now stored in the first
and second columns, respectively, of the ith row of the CP matrix of order
NCP × 2. For example, the CP matrix for the gable frame of Fig. 6.19(a) is
shown in Fig. 6.19(f), and Fig. 6.20 shows how this data may appear in an
input data file.

320 Chapter 6 Plane Frames

5
0, 0
0, 240
240, 336

Joint data

480, 240
480, 0
2
1, 1, 1, 1 Support data
5, 1, 1, 0
2
29000 Material property data
10000
2
29.8, 2420 Cross-sectional property data
30.6, 3100
4
1, 2, 1, 1
2, 3, 2, 2
4, 3, 2, 2

Member data

5, 4, 1, 1
1
2, 75, 0, 0

Joint load      data

3
2, 3, 0.25, 0, 0
3, 1, −45, 129.24

Member load     data

3, 5, 20, 129.24

Fig. 6.20 An Example of an Input Data File
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Member Data This part of the computer program remains the same as Part V
of the plane truss analysis program (see flowchart in Fig. 4.3(e)). As discussed
in Section 4.1, the program stores the member data in an integer matrix MPRP
of order NM × 4. The MPRP matrix for the example gable frame is shown in
Fig. 6.19(g).

Joint Load Data The code written for Part VIa of the beam analysis program
(see flowchart in Fig. 5.20(b)) can be used for inputting joint load data for
plane frames, provided that NCJT is set equal to 3. The program stores
the numbers of the loaded joints in an integer vector JP of order NJL × 1, with
the corresponding loads in the X and Y directions and the couple being stored
in the first, second, and third columns, respectively, of a real matrix PJ of order
NJL × 3. The joint load matrices for the example gable frame are shown in
Fig. 6.19(h); Fig. 6.20 illustrates how this data may appear in an input data file.

Member Load Data As members of plane frames may be subjected to
both axial and perpendicular loads, the code written for Part VIb of the beam

Section 6.7 Computer Program 321

Type of Support Restraint Code

Free joint
 (no support)

Roller with
horizontal
reaction

Roller with
vertical
reaction

Support which 
prevents rotation,
but not translation

Hinge

Fixed

0, 0, 0

0, 1, 0

0, 0, 1

1, 0, 0

1, 1, 0

1, 1, 1RX

RY RY

RY

RY

RY

MR

MR

RX

RX

RX

RY

MR

RX RX

Fig. 6.21 Restraint Codes for Plane Frames
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analysis program should be modified to include inputting of the member axial
loads. The flowchart shown in Fig. 6.22(b) can be used for programming the
input of the four perpendicular, and two axial, member load types (i.e., load
types 1 through 6) given inside the front cover. The format for reading and stor-
ing the member load data for plane frames remains the same as that for beams,
as discussed in Section 5.8. The member load matrices, MP and PM, for the
example gable frame are shown in Fig. 6.19(i); Fig. 6.20 shows this member
load data in an input file that can be read by the program.

An example of a computer printout of the input data for the gable frame of
Fig. 6.19 is given in Fig. 6.23.

Analysis Module

Assignment of Structure Coordinate Numbers The parts of the program
for determining the number of degrees of freedom (NDOF) and forming the

322 Chapter 6 Plane Frames

Start Part IV

Dimension CP(NCP, 2)

I = 1

I ≤ NCP?

Read CP(I, 1), CP(I, 2)

Continue to Part V

I = I + 1

yes

no

(a) Flowchart for Reading and Storing 
     Cross-Sectional Property Data

Read NCP

Dimension MP(NML, 2), PM(NML, 4) 

I  = 1

Start Part VIb

I ≤ NML?

NML > 0?

Initialize all elements of PM to zero

Continue to Part VII

Read MP(I, 1), MP(I, 2)
If MP(I, 2) = 1, 2, or 5 then read PM(I, 1), PM(I, 3)

If MP(I, 2) = 3 or 6 then read PM(I, 1), PM(I, 3), PM(I, 4)
If MP(I, 2) = 4 then read PM(I, 1), PM(I, 2), PM(I, 3), PM(I, 4)

I = I + 1

Print All Input Data

yes

no

no

yes

(b) Flowchart for Reading and Storing Member Load Data

Read NML

Fig. 6.22
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***********************************
* Computer Software    *
* for *
* MATRIX ANALYSIS OF STRUCTURES *
* Second Edition *
* by  *
* Aslam Kassimali *
***********************************

General Structural Data

Project Title: Figure 6-19
Structure Type: Plane Frame
Number of Joints: 5
Number of Members: 4
Number of Material Property Sets (E): 2
Number of Cross-Sectional Property Sets: 2

Joint Coordinates

Joint No.       X Coordinate       Y Coordinate

1             0.0000E+00         0.0000E+00
2             0.0000E+00         2.4000E+02
3             2.4000E+02         3.3600E+02
4             4.8000E+02         2.4000E+02
5             4.8000E+02         0.0000E+00

Supports

Rotational
Joint No. X Restraint Y Restraint Restraint

1             Yes           Yes            Yes
5             Yes           Yes            No

Material Properties

Material       Modulus of        Co-efficient of
No.       Elasticity (E)    Thermal Expansion

1           2.9000E+04         0.0000E+00
2           1.0000E+04         0.0000E+00

Cross-Sectional Properties

Property No.     Area (A)      Moment of Inertia (I)

1          2.9800E+01           2.4200E+03
2          3.0600E+01           3.1000E+03

Fig. 6.23 A Sample Printout of Input Data
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Member Data

Member   Beginning  End   Material    Cross-Sectional
No.     Joint Joint  No. Property No.

1         1        2        1                1
2         2        3        2                2
3         4        3        2                2
4         5        4        1                1

Joint Loads

Joint No.      X Force       Y Force          Moment

2         7.5000E+01    0.0000E+00      0.0000E+00

Member Loads

Load
Magnitude
(W or M)

or        Load
Member  Load   Intensity  Intensity Distance Distance
No.  Type   (w or w1)    w2        l1        l2

2    Uniform  2.500E-1    ---    0.00E+0    0.00E+0
3    Axial–C 2.000E+1   --- 1.29E+2     ----
3     Conc.  -4.500E+1   --- 1.29E+2     ----

************** End of Input Data **************

Fig. 6.23 (continued)

structure coordinate number vector (NSC), for plane frames, remain the same
as Parts VII and VIII of the plane truss analysis program (see flowcharts in
Figs. 4.8(a) and (b)), provided that NCJT is set equal to 3 in these programs.

Generation of the Structure Stiffness Matrix and Equivalent Joint Load
Vector A flowchart for writing this part of the plane frame analysis program
is given in Fig. 6.24. Comparing this flowchart with that for Part IX of the
beam analysis program in Fig. 5.24, we can see that the two programs are sim-
ilar; the present program, however, transforms the stiffness matrix and fixed-
end force vector of each member from its local to the global coordinate system
before storing their elements in the structure stiffness matrix and equivalent
joint load vector, respectively (see Fig. 6.24). Recall from Chapter 5 that such
coordinate transformations are not necessary for beams, because the local and
global coordinate systems of such structures are oriented in the same direction.
From the flowchart in Fig. 6.24, we can see that for each member of the plane
frame, the program first reads the member’s material and cross-sectional
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IM ≤ NM?

IM = 1

Initialize all elements of QF to zero

Dimension�S(NDOF, NDOF), P(NDOF), GK(2*NCJT, 2*NCJT),
              BK(2*NCJT, 2*NCJT), FF(2*NCJT), QF(2*NCJT)

JB = MPRP(IM, 1), JE = MPRP(IM, 2), I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), A = CP(I , 1), ZI = CP(I , 2) 

XB = COORD(JB, 1), YB = COORD(JB, 2), XE = COORD(JE, 1), YE = COORD(JE, 2)
BL = SQR((XE − XB)^2 + (YE − YB)^2), CX = (XE − XB)/BL, CY = (YE − YB)/BL

NML > 0?

Call Subroutine MFEFLL

Continue to Part X

Call Subroutine MSTIFFL

Call Subroutine MTRANS

IML ≤ NML?

IM = MP(IML, 1)?

yes

yes

yes

yes

no

no

no

no

Start Part IX

Initialize all elements of S and P to zero

Call Subroutine MSTIFFG

Call Subroutine STORES

Call Subroutine
MFEFG

Call Subroutine
STOREPF

IM = IM + 1

IML = IML + 1

IML = 1

Fig. 6.24 Flowchart for Generating Structure Stiffness Matrix and Equivalent Joint
Load Vector
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properties, and calculates its length and direction cosines. Next, the program
calls the subroutines MSTIFFL and MTRANS to form the member local stiff-
ness matrix BK and transformation matrix T, respectively. As the flowcharts
given in Figs. 6.25 and 6.26 indicate, these subroutines calculate the matrices
BK and T in accordance with Eqs. (6.6) and (6.19), respectively. The program
then calls the subroutine MSTIFFG to obtain the member global stiffness
matrix GK. A flowchart of this subroutine, which evaluates the member global
stiffness matrix using the matrix triple product K = TTkT (Eq. (6.29)), is
given in Fig. 6.27. As this flowchart indicates, the subroutine MSTIFFG uses
two nested Do Loops to calculate the member global stiffness matrix GK
(= K). In the first loop, the member local stiffness matrix BK (= K) is post-
multiplied by its transformation matrix T to obtain an intermediate matrix TS;
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I ≤ 2*NCJT?

J ≤ 2*NCJT?

I = 1

BK(I, J ) = 0 J = J + 1

J = 1

Z�= E*A/BL
BK(1, 1)�= Z, BK(4, 1)�=� Z
BK(1, 4)�= Z, BK(4, 4)�=�Z
Z�= E*ZI/(BL^3)
BK(2, 2)�= 12*Z, BK(3, 2)�= 6*BL*Z
BK(5, 2)�= 12*Z, BK(6, 2)�= 6*BL*Z
BK(2, 3)�= 6*BL*Z, BK(3, 3)�= 4*(BL^2)*Z
BK(5, 3)�= 6*BL*Z, BK(6, 3)�= 2*(BL^2)*Z
BK(2, 5)�= 12*Z, BK(3, 5)�= 6*BL*Z
BK(5, 5)�= 12*Z, BK(6, 5)�= 6*BL*Z
BK(2, 6)�= 6*BL*Z, BK(3, 6)�= 2*(BL^2)*Z
BK(5, 6)�= 6*BL*Z, BK(6, 6)�= 4*(BL^2)*Z

I = I + 1

no

no

yes

yes

End Subroutine MSTIFFL
Return to calling program

Start Subroutine MSTIFFL

Arguments: E, A, ZI, BL, NCJT, BK 

Fig. 6.25 Flowchart of Subroutine MSTIFFL for
Determining Member Local Stiffness Matrix for Plane Frames

Start Subroutine MTRANS

I = 1

Arguments: CX, CY, NCJT, T

T(1, 1) = CX,��T(2, 1) = −CY�
T(1, 2) = CY,��T(2, 2) = CX�
T(4, 4) = CX,��T(5, 4) = −CY
T(4, 5) = CY,��T(5, 5) = CX
T(3, 3) = 1,��   T(6, 6) = 1�

J = 1

I = I + 1

J = J + 1

yes

T(I, J) = 0
yes

no

no

I ≤ 2*NCJT?

J ≤ 2*NCJT?

End Subroutine MTRANS
Return to calling program

Fig. 6.26 Flowchart of Subroutine MTRANS for
Determining Member Transformation Matrix for Plane
Frames
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in the second, the matrix TS is premultiplied by the transpose of the transfor-
mation matrix (i.e., TT) to obtain the desired member global stiffness matrix
GK (= K). Returning our attention to Fig. 6.24, we can see that the program
then calls the subroutine STORES to store the pertinent elements of GK in the
structure stiffness matrix S. This subroutine remains the same as the STORES
subroutine of the plane truss analysis program (see flowchart in Fig. 4.11).
After STORES has been executed, the program (Fig. 6.24) forms the member
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Start Subroutine MSTIFFG

Dimension TS(2*NCJT, 2*NCJT)

Initialize all elements of GK and TS to zero

Arguments: NCJT, BK, T, GK

I = I + 1

J = J + 1

K = K + 1

TS(I, J) = TS(I, J) + BK(I, K)*T(K, J)

K ≤ 2*NCJT?

K = 1

I = 1

I ≤ 2*NCJT?

J = 1

J ≤ 2*NCJT?

yes

yes

I = I + 1

J = J + 1

K = K + 1

GK(I, J) = GK(I, J) + T(K, I )*TS(K, J)

K ≤ 2*NCJT?

K = 1

I = 1

I ≤ 2*NCJT?

J = 1

J ≤ 2*NCJT?

yes

yes

yes

End Subroutine MSTIFFG
Return to calling program

no

no

no

no

no

no

yes

Fig. 6.27 Flowchart of Subroutine MSTIFFG for Determining Member Global Stiffness Matrix
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local fixed-end force vector QF (= Qf) by calling the subroutine MFEFLL
(Fig. 6.28), which calculates the values of the member fixed-end forces, for
load types 1 through 6, using the equations given inside the front cover. Next,
the program calls the subroutine MFEFG (Fig. 6.29), which evaluates the
member global fixed-end force vector FF (= Ff), using the relationship
Ff = TTQf (Eq. (6.30)). Finally, the program calls the subroutine STOREPF
(Fig. 6.30) to store the negative values of the pertinent elements of FF in their

328 Chapter 6 Plane Frames

Start Subroutine MFEFLL

Arguments: IML, BL, MP, PM, QF

LDTYPE = MP(IML, 2)

no

no

If LDTYPE = 1?

If LDTYPE = 2?

If LDTYPE = 3?

BW = PM(IML, 1), BL1 = PM(IML, 3)
Use equations for load type 1 to
calculate FSB, FMB, FSE, FME

BM = PM(IML, 1), BL1 = PM(IML, 3)
Use equations for load type 2 to
calculate FSB, FMB, FSE, FME

W = PM(IML, 1), BL1 = PM(IML, 3),
BL2 = PM(IML, 4)

Use equations for load type 3 to
calculate FSB, FMB, FSE, FME

QF(1) = QF(1) + FAB
QF(2) = QF(2) + FSB
QF(3) = QF(3) + FMB
QF(4) = QF(4) + FAE
QF(5) = QF(5) + FSE
QF(6) = QF(6) + FME

End Subroutine MFEFLL
Return to calling program

yes

yes

yes

W1 = PM(IML, 1), W2 = PM(IML, 2),
BL1 = PM(IML, 3), BL2 = PM(IML, 4)

Use equations for load type 4 to
calculate FSB, FMB, FSE, FME

If LDTYPE = 4?

no

yes

BW = PM(IML, 1), BL1 = PM(IML, 3),
Use equations for load type 5 to

calculate FAB, FAE
If LDTYPE = 5?

no

yes

W = PM(IML, 1), BL1 = PM(IML, 3),
BL2 = PM(IML, 4)

Use equations for load type 6 to
calculate FAB, FAE

If LDTYPE = 6?

no

yesno

Initialize FAB, FSB, FMB, FAE, FSE, FME to zero

Fig. 6.28 Flowchart of Subroutine MFEFLL for Determining Member Local Fixed-
End Force Vector for Plane Frames
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proper positions in the structure load vector P. When all the operations shown
in Fig. 6.24 have been performed for each member of the frame, the structure
stiffness matrix S is complete, and the structure load vector P equals the nega-
tive of the structure fixed-joint force vector (i.e., P = −Pf = Pe).

Storage of Joint Loads into the Structure Load Vector This is the same as
Part X of the beam analysis program (see flowchart in Fig. 5.29).

Solution for Joint Displacements This part of the program remains the same
as Part XI of the plane truss analysis program (see flowchart in Fig. 4.13). Re-
call that upon completion of this part, the vector P contains the values of the
joint displacements d.

Calculation of Member Forces and Support Reactions A flowchart for writ-
ing this last part of the program is presented in Fig. 6.31. Note that this part of

Section 6.7 Computer Program 329

Start Subroutine MFEFG

FF(I) = 0

Arguments: NCJT, T, QF, FF

yes

yes

no

no

no

I = 1

I ≤ 2*NCJT?

I = 1

I ≤ 2*NCJT?

J = 1

I = I + 1

I = I + 1

J = J + 1FF(I ) = FF(I ) + T(J, I )*QF(J)

yes

J ≤ 2*NCJT?

End Subroutine MFEFG
Return to calling program

Fig. 6.29 Flowchart of Subroutine MFEFG for Determining Member
Global Fixed-End Force Vector
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the plane frame analysis program is essentially a combination of the corre-
sponding parts (XII) of the plane truss and beam analysis programs developed
previously. From the flowchart in Fig. 6.31, we can see that, for each member
of the frame, the program first reads the member’s material and cross-sectional
properties, and calculates its length and direction cosines. Next, the program
calls the subroutine MDISPG to form the member global end displacement
vector V (= v). This subroutine is the same as the MDISPG subroutine of the
plane truss analysis program (see flowchart in Fig. 4.15). The program then
calls the subroutine MTRANS (Fig. 6.26) to form the member transformation
matrix T, and the subroutine MDISPL, which calculates the member local end
displacement vector U (= u), using the relationship u = Tv (Eq. (6.20)). The
subroutine MDISPL remains the same as the corresponding subroutine of
the plane truss program (see flowchart in Fig. 4.17). Next, the subroutine
MSTIFFL (Fig. 6.25) is called by the program to form the member local stiff-
ness matrix BK (= k); if the member under consideration is subjected to loads,
then its local fixed-end force vector QF (= Qf) is generated using the subrou-
tine MFEFLL (Fig. 6.28). The program then calls the subroutines MFORCEL
and MFORCEG, respectively, to calculate the member’s local and global end

330 Chapter 6 Plane Frames

Start Subroutine STOREPF

Arguments: JB, JE, NCJT, NDOF, NSC, FF, P

I = 1

I ≤ 2*NCJT?

I ≤ NCJT?

I1 = (JB − 1)*NCJT + I I1 = (JE − 1)*NCJT + (I − NCJT)

N1 = NSC(I1)

N1 ≤ NDOF?I = I + 1

no

noyes

no

yes

yes

P(N1) = P(N1) − FF(I)

End Subroutine STOREPF
Return to calling program

Fig. 6.30 Flowchart of Subroutine STOREPF for Storing Member Global Fixed-
End Force Vector in Structure Load Vector
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Start Part XII

Initialize all elements of R to zero

IM = 1

Dimension BK(2*NCJT, 2*NCJT ), T(2*NCJT, 2*NCJT ), V(2*NCJT),
U(2*NCJT), F(2*NCJT), Q(2*NCJT), QF(2*NCJT), R(NR)

IM ≤ NM?

JB = MPRP(IM, 1), JE = MPRP(IM, 2), I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), A = CP(I, 1), ZI = CP(I, 2)

XB = COORD(JB, 1), YB = COORD(JB, 2), XE = COORD(JE, 1),
YE = COORD(JE, 2)

BL = SQR((XE − XB)^2 + (YE − YB)^2), CX = (XE − XB)/BL, CY = (YE − YB)/BL

Call Subroutine MDISPG

Call Subroutine MDISPL

Call Subroutine MSTIFFL

Call Subroutine MTRANS

Call Subroutine STORER

Call Subroutine MFORCEG

Call Subroutine MFORCEL

IM = IM + 1

yes

no

no

Initialize all elements of QF to zero

IML ≤ NML?

IML = 1

NML > 0?
no

Call Subroutine MFEFLL

Print Support Reactions R

yes

IM = MP(IML, 1)? IML = IML + 1
no

yes

yes

End of Program

Fig. 6.31 Flowchart for Determination of Member Forces and Support Reactions for Plane Frames
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force vectors Q and F. The subroutine MFORCEL, which evaluates Q using
the relationship Q = ku + Qf (Eq. (6.4)), is the same as the corresponding
subroutine of the beam analysis program (see flowchart in Fig. 5.32); the
subroutine MFORCEG, which computes F using the relationship F = TTQ
(Eq. (6.23)), remains the same as the corresponding subroutine of the plane
truss program (see flowchart in Fig. 4.20). Finally, the program stores the per-
tinent elements of F in the support reaction vector R by calling the subroutine
STORER, which remains the same as the corresponding subroutine of the
plane truss program (see flowchart in Fig. 4.21). The computational process
depicted in Fig. 6.31 can be somewhat expedited by calling the subroutines

332 Chapter 6 Plane Frames

Fig. 6.32 A Sample Printout of Analysis Results

***************************************************
* Results of Analysis *
***************************************************

Joint Displacements

Joint No. X Translation Y Translation  Rotation (Rad)

1      0.0000E+00   0.0000E+00      0.0000E+00
2      3.4472E+00  -9.1684E-03     -1.9513E-02
3      3.9520E+00  -1.3152E+00      7.0646E-03
4      4.4247E+00  -2.1160E-02     -9.2709E-03
5      0.0000E+00   0.0000E+00     -2.3019E-02

Member End Forces in Local Coordinates

Member Joint Axial Force Shear Force Moment

1 1 3.3014E+01 6.7356E+01 1.3789E+04
2 -3.3014E+01 -6.7356E+01 2.3767E+03

2 2 1.9358E+01 2.7814E+01 -2.3767E+03
3 -1.9358E+01 3.6808E+01 1.2142E+03

3 4 5.9404E+01 -5.8303E+01 -8.0403E+03
3 -3.9404E+01 1.3303E+01 -1.2142E+03

4 5 7.6195E+01 3.3501E+01 1.5378E-03
4 -7.6195E+01 -3.3501E+01 8.0403E+03

Support Reactions

Joint No.   X Force       Y Force        Moment

1 -6.7356E+01 3.3014E+01 1.3789E+04
5 -3.3501E+01 7.6195E+01 0.0000E+00

***************** End of Analysis *****************
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MFORCEG and STORER for only those members of the frame that are at-
tached to supports. To check whether or not a member is attached to a support,
its beginning and end joint numbers (i.e., JB and JE) can be compared with the
support joint numbers stored in the first column of the support data matrix
MSUP.

A sample printout, showing the results of analysis for the example gable
frame of Fig. 6.19, is presented in Fig. 6.32, and the entire computer program for
the analysis of plane frames is summarized in Table 6.1. As indicated in this
table, the computer program consists of a main program (which is divided into
twelve parts) and twelve subroutines. Of these, eight parts of the main program
and six subroutines can be replicated from the previously developed plane truss
and beam analysis programs without any modifications. Finally, it should be re-
alized that the computer program, developed herein for the analysis of plane
frames, can also be used to analyze beams, although it is not as efficient for beam
analysis as the program developed specifically for that purpose in Chapter 5.

Section 6.7 Computer Program 333

Table 6.1 Computer Program for Analysis of Plane Frames

Main
program part Description

I Reads and stores joint data (Fig. 4.3(a))

II Reads and stores support data (Fig. 4.3(b))

III Reads and stores material properties (Fig. 4.3(c))

IV Reads and stores cross-sectional properties (Fig. 6.22(a))

V Reads and stores member data (Fig. 4.3(e))

VIa Reads and stores joint loads (Fig. 5.20(b))

VIb Reads and stores member loads (Fig. 6.22(b))

VII Determines the number of degrees of freedom NDOF of the
structure (Fig. 4.8(a))

VIII Forms the structure coordinate number vector NSC
(Fig. 4.8(b))

IX Generates the structure stiffness matrix S and the structure
load vector P = Pe = −Pf due to member loads (Fig. 6.24)
Subroutines called: MSTIFFL, MTRANS, MSTIFFG,
STORES, MFEFLL, MFEFG, and STOREPF

X Stores joint loads in the structure load vector P (Fig. 5.29)

XI Calculates the structure’s joint displacements by solving the
stiffness relationship, Sd = P, using Gauss–Jordan elimina-
tion. The vector P now contains joint displacements
(Fig. 4.13).

XII Determines the member end force vectors Q and F, and the
support reaction vector R (Fig. 6.31)
Subroutines called: MDISPG, MTRANS, MDISPL,
MSTIFFL, MFEFLL, MFORCEL, MFORCEG, and
STORER

(continued)
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SUMMARY

In this chapter, we have developed the matrix stiffness method for the analysis
of rigidly connected plane frames subjected to external loads. A block diagram
summarizing the various steps of the analysis is shown in Fig. 6.33.

334 Chapter 6 Plane Frames

Table 6.1 (continued)

Subroutine Description

MDISPG Forms the member global displacement vector V from the joint dis-
placement vector P (Fig. 4.15)

MDISPL Evaluates the member local displacement vector U = TV (Fig. 4.17)

MFEFG Determines the member global fixed-end force vector FF = TTQF
(Fig. 6.29)

MFEFLL Calculates the member local fixed-end force vector QF (Fig. 6.28)

MFORCEG Evaluates the member global force vector F = TT Q (Fig. 4.20)

MFORCEL Calculates the member local force vector Q = BK U + QF
(Fig. 5.32)

MSTIFFG Determines the member global stiffness matrix GK = TT BK T
(Fig. 6.27)

MSTIFFL Forms the member local stiffness matrix BK (Fig. 6.25)

MTRANS Forms the member transformation matrix T (Fig. 6.26)

STOREPF Stores the negative values of the pertinent elements of the member
global fixed-end force vector FF in the structure load vector P
(Fig. 6.30)

STORER Stores the pertinent elements of the member global force vector F in
the reaction vector R (Fig. 4.21)

STORES Stores the pertinent elements of the member global stiffness matrix
GK in the structure stiffness matrix S (Fig. 4.11)

For each member:
Evaluate K and Ff

Store K in S and Ff  in Pf

Form joint load vector P

Solve P − Pf = Sd for d

Identify degrees of freedom d and
restrained coordinates of the plane frame

For each member:
Obtain v from d

Calculate u = Tv, Q = ku + Qf  and F = TTQ
Store F in R

Fig. 6.33
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10 ft

10 ft

30 ft

75 k-ft
1.5 k/ft

40 k

E, A, I = constant
E = 29,000 ksi
A = 10.3 in.2

I = 510 in.4

2

1

1

2 3

Fig. P6.1, P6.7, P6.16, P6.24, P6.32, P6.42

3 k/ft

9 ft

18 ft 6 ft 6 ft

E, A, I = constant
E = 10,000 ksi
A = 8.84 in.2

I  = 170 in.4

2

3

1

1

2

15 k

Fig. P6.3, P6.9, P6.18, P6.26, P6.34, P6.44

24 m

20 kN/m

E, A, I = constant
E = 200 GPa
A = 16,000 mm2

I  = 1,186(106) mm4

7 m

16 m

3

1

2

1

2

Fig. P6.4, P6.10, P6.19, P6.27, P6.35, P6.45

150 kN·m 24 kN/m

125 kN

12 m3 m

8 m

3 m

E, A, I = constant
E = 200 GPa
A = 13,000 mm2

I = 762(106) mm4

2

1

2

3

1

Fig. P6.2, P6.8, P6.17, P6.25, P6.33, P6.43

P R O B L E M S

Section 6.1

6.1 through 6.6 Identify by numbers the degrees of freedom
and restrained coordinates of the frames shown in Figs. P6.1
through P6.6. Also, form the joint load vector P for these
frames.
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L

l1 l2
W

b e

E, A, I = constant

Fig. P6.13

160 kN

15 kN/m

12 m

10 m

5 m

1

2

3

E, A, I = constant
E = 70 GPa
A = 4,570 mm2

I = 34.5(106) mm4

2

1

Fig. P6.14, P6.22, P6.30

6.13 Using the integration approach, derive the equations of
fixed-end forces due to the concentrated axial member load
shown in Fig. P6.13. Check the results using the fixed-end force
expressions given inside the front cover.

6.14 Assume that the local end displacements for the mem-
bers of the frame shown in Fig. P6.14 are

u1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−5.2507 mm
−12.251 mm
−0.12416 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

9.2888 mm
−9.5586 mm
−0.12416 rad

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Calculate the member local end force vectors. Are the members
in equilibrium under these forces?

20 ft

25 ft

2 k/ft

30 k

E = 4,500 ksi
Columns:
A = 80 in.2

I = 550 in.4

Girder:
A = 108 in.2

I = 1,300 in.4

2

1 3

1

2

4

3

Fig. P6.5, P6.11, P6.20, P6.28, P6.36, P6.48

2 k/ft1 k/ft

1 k/ft

25 ft

20 ft

10 ft

A = 9.12 in.2

I = 375 in.4

A = 10.3 in.2

I = 285 in.4

E = 10,000 ksi

2

1

1

2

3

Fig. P6.6, P6.12, P6.21, P6.29, P6.37, P6.47

Section 6.2

6.7 through 6.12 Determine the local stiffness matrix k, and
the fixed-end force vector Qf, for each member of the frames
shown in Figs. P6.7 through P6.12. Use the fixed-end force
equations given inside the front cover.
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8 ft

10 ft

2.5 ft

15 ft

12 ft

2

3

41

E, A, I = constant
E = 29,000 ksi
A = 10.3 in.2

I = 285 in.4

75 k 150 k

2

1

3

4 k/ft

Fig. P6.15, P6.23, P6.31

6.15 Assume that the local end displacements for the mem-
bers of the frame shown in Fig. P6.15 are

u1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.05147 in.

2.0939 in.

0.0079542 rad

⎤
⎥⎥⎥⎥⎥⎥⎦

; u2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.0184 in.

0.14398 in.

0.0028882 rad
1.9526 in.

−0.75782 in.

0.0079542 rad

⎤
⎥⎥⎥⎥⎥⎥⎦

;

u3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.04847 in.

2.023 in.

0.0028882 rad

⎤
⎥⎥⎥⎥⎥⎥⎦

Calculate the member local end force vectors. Are the members
in equilibrium under these forces?

Section 6.3

6.16 through 6.21 Determine the transformation matrix T for
each member of the frames shown in Figs. P6.16 through P6.21.

6.22 Using the local end displacements given in Problem 6.14
for the members of the frame of Fig. P6.22, calculate the global
end displacement vector and the global end force vector for
each member of the frame. Are the members in equilibrium
under the global end forces?

6.23 Using the local end displacements given in Problem 6.15
for the members of the frame of Fig. P6.23, calculate the global
end displacement vector and the global end force vector for
each member of the frame. Are the members in equilibrium
under the global end forces?

Section 6.4

6.24 through 6.29 Determine the global stiffness matrix K,
and fixed-end force vector Ff , for each member of the frames
shown in Figs. P6.24 through P6.29.

6.30 Calculate the member global end force vectors required
in Problem 6.22 using the member global stiffness relationship
F = Kv + Ff .

6.31 Calculate the member global end force vectors required
in Problem 6.23 using the member global stiffness relationship
F = Kv + Ff .

Section 6.5

6.32 through 6.37 Determine the structure stiffness matrix,
the fixed-joint force vector, and the equivalent joint loads for the
frames shown in Figs. P6.32 through P6.37.

6.38 Assume that the joint displacements for the frame of
Fig. P6.38 are

8 m

6 m

1

2

4

3

E = 30 GPa
Columns:
A = 75,000 mm2

I = 468(106) mm4

Girder:
A = 52,000 mm2

I = 225(106) mm4

Fig. P6.38
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3 m

3 m

6 m

30 kN/m

100 kN

E, A, I = constant
E = 200 GPa
A = 11,800 mm2

I = 554(106) mm4

Fig. P6.40

2 k/ft

2 k/ft

3 ft

5 ft15 ft

12 ft

E, A, I = constant
E = 4,000 ksi
A = 96 in.2

I = 512 in.4

1

1 2

3

2

Fig. P6.41

9 ft
11 ft

11 ft6 ft 6 ft

2

3

41

E, A, I = constant
E = 10,000 ksi
A = 14.1 in.2

I = 184 in.4

Fig. P6.39

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.1965 m
0.00016452 m

−0.017932 rad
0.19637 m

−0.00016452 m
−0.023307 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Calculate the joint loads causing these displacements. (No loads
are applied to the members of the frame.)

6.39 Assume that the joint displacements for the frame of
Fig. P6.39 are

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.059209 rad
4.1192 in.

−2.7371 in.

0.0041099 rad
3.3212 in.

1.7637 in.

0.02198 rad
−0.048502 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Calculate the joint loads causing these displacements. (No loads
are applied to the members of the frame.)
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1.5 k/ft 1.5 k/ft

16 ft

24 ft

30 ft 30 ft

E = 29,000 ksi
Columns:
A = 20 in.2

I = 723 in.4

Girders:
A = 20.1 in.2

I = 1,830 in.4

50 k

1

1

2

5

4

3

4

2 3

Fig. P6.49

2 k/ft 80 k-ft

24 ft

25 ft 7 ft

E, A, I = constant
E = 29,000 ksi
A = 14.7 in.2

I = 800 in.4

Fig. P6.46

Section 6.6

6.40 through 6.50 Determine the joint displacements, mem-
ber local end forces, and support reactions for the frames shown
in Figs. P6.40 through P6.50, using the matrix stiffness method.
Check the hand-calculated results by using the computer pro-
gram which can be downloaded from the publisher’s website
for this book, or by using any other general purpose structural
analysis program available.

6 m

6 m

12 m

12 kN/m

12 kN/m

30 kN

60 kN

E = 30 GPa
Columns:
A = 93,000 mm2

I = 720(106) mm4

Girders:
A = 140,000 mm2

I = 2,430(106) mm4

Fig. P6.50

Section 6.7

6.51 Develop a general computer program for the analysis of
rigidly connected plane frames by the matrix stiffness method.
Use the program to analyze the frames of Problems 6.40
through 6.50, and compare the computer-generated results to
those obtained by hand calculations.
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7
7.1 Member Releases in Plane Frames and Beams
7.2 Computer Implementation of Analysis 

for Member Releases
7.3 Support Displacements
7.4 Computer Implementation of Support 

Displacement Effects
7.5 Temperature Changes and Fabrication Errors

Summary
Problems

MEMBER RELEASES AND
SECONDARY EFFECTS

Earthquake-Damaged Bridge
(Courtesy of the USGS)
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Section 7.1 Member Releases in Plane Frames and Beams 341

The matrix stiffness analysis of beams and plane frames, as developed in Chap-
ters 5 and 6, is based on the assumption that each member of a structure is
rigidly connected to joints at both ends, so that the member end rotations are
equal to the rotations of the adjacent joints. Whereas these methods of analy-
sis, as presented in preceding chapters, cannot be used to analyze beams and
plane frames containing members connected by hinged connections, they can
be modified relatively easily to include the effects of member hinges in the
analysis. When the end of a member in a plane frame or beam is connected to
the adjacent joint by a hinged connection, the moment at the hinged end must
be zero. Because of this moment-releasing characteristic, member hinges are
often referred to as member releases. In this chapter, we discuss modifications
of the matrix stiffness methods that allow them to be used to analyze plane
frames and beams containing members connected to joints by rigid (i.e.,
moment-resisting) and/or hinged (i.e., simple or shear) connections.

In this chapter, we also consider the procedures for including in matrix
stiffness methods of analysis the effects of support displacements (due to weak
foundations), temperature changes, and fabrication errors. Such secondary ef-
fects can induce significant stresses in statically indeterminate structures, and
must be considered in their designs.

We begin the chapter by deriving the stiffness relationships for members
of plane frames and beams with hinges. A procedure for the analysis of struc-
tures containing member releases is also developed in Section 7.1; the com-
puter implementation of this procedure is presented in Section 7.2. We develop
the analysis for the effects of support displacements in Section 7.3, and discuss
the extension of the previously developed computer programs to include the ef-
fects of support displacements in Section 7.4. Finally, the procedure for in-
cluding in the analysis the effects of temperature changes and fabrication
errors is presented in Section 7.5.

7.1 MEMBER RELEASES IN PLANE FRAMES AND BEAMS
The effects of member releases can be conveniently incorporated in our stiff-
ness methods by modifying the member local stiffness relationships to account
for such releases. Only moment releases, in the form of hinges located at one
or both ends of a member (see Fig. 7.1), are considered herein, because such
releases are by far the most commonly encountered in civil engineering prac-
tice. However, the concepts presented can be readily used to introduce the ef-
fects of other types of member releases (e.g., shear and axial force releases)
into the analysis.

Figure 7.1 depicts the types of member releases considered herein. From a
computer programming viewpoint, it is usually convenient to classify each
member of a beam or a plane frame into one of the four member types (MT )
shown in the figure. Thus, as indicated in Fig. 7.1(a), a member that is rigidly
connected to joints at both ends (i.e., has no hinges), is considered to be of
type 0  (i.e., MT = 0). If end b of a member is connected to the adjacent joint
by a hinged connection, while its opposite end e is rigidly connected to the
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adjacent joint (Fig. 7.1(b)), then the member is classified as type 1 (i.e.,
MT = 1). Conversely, if end b of a member is rigidly attached to the adjacent
joint, but its end e is connected by a hinged connection to the adjacent joint
(Fig. 7.1(c)), then the member is considered to be of type 2 (i.e., MT = 2).
Finally, if a member is attached to joints at both ends by hinged connections
(Fig. 7.1(d)), then it is classified as type 3 (i.e., MT = 3).

The expressions for the member local stiffness matrices k (Eqs. (5.53) and
(6.6)) and the member local fixed-end force vectors Qf (Eqs. (5.99) and (6.15))
derived for beams and plane frames can be used only for members of type 0

342 Chapter 7 Member Releases and Secondary Effects

y

x
b e

(a) Member with No Hinges—Member
Type Zero (MT = 0)

y

x

b e

Hinge

(b) Member with a Hinge at Its Beginning—
Member Type One (MT = 1)

y

x

b e

Hinge

(c) Member with a Hinge at Its End—
Member Type Two (MT = 2)

y

x

b e

Hinge Hinge

(d) Member with Hinges at Both Ends—
Member Type Three (MT = 3)

Fig. 7.1 Member Releases
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Section 7.1 Member Releases in Plane Frames and Beams 343

(MT = 0), because they are based on the condition that the member is rigidly
connected to joints at both ends, so that the member end rotations are equal to
the rotations of the adjacent joints. When an end of a member is connected to
the adjacent joint by a hinged connection, the moment at the hinged end must
be zero. The previous expressions for k and Qf can be easily modified to reflect
the conditions of zero moments at the hinged member ends, as explained in the
following paragraphs.

Local Stiffness Relations for Plane Frame 
Members with Hinges
We begin the development of the modified expressions by first writing the
previously derived stiffness relations for a plane frame member with no hinges,
in explicit form. By substituting the expressions for k and Qf from Eqs. (6.6)
and (6.15), respectively, into the member local stiffness relation Q = ku + Qf

(Eq. (6.4)), and carrying out the necessary matrix multiplication and addition,
we obtain

Q1 = EA

L
(u1 − u4) + FAb (7.1a)

Q2 = EI

L3
(12u2 + 6Lu3 − 12u5 + 6Lu6) + FSb (7.1b)

Q3 = EI

L3
(6Lu2 + 4L2u3 − 6Lu5 + 2L2u6) + FMb (7.1c)

Q4 = EA

L
(−u1 + u4) + FAe (7.1d)

Q5 = EI

L3
(−12u2 − 6Lu3 + 12u5 − 6Lu6) + FSe (7.1e)

Q6 = EI

L3
(6Lu2 + 2L2u3 − 6Lu5 + 4L2u6) + FMe (7.1f )

Members with a Hinge at the Beginning (MT = 1) When end b of a member
is connected to the adjacent joint by a hinged connection, then from Fig. 6.3(b)
we can see that its end moment Q3 must be 0. By substituting Q3 = 0 into
Eq. (7.1c), and solving the resulting equation for the end rotation u3, we obtain

u3 = 3

2L
(−u2 + u5) − 1

2
u6 − L

4E I
F Mb (7.2)

This equation indicates that the rotation u3 (of the hinged end b of the member)
is no longer an independent member coordinate (or degree of freedom), but is
now a function of the end displacements u2, u5, and u6. Thus, the number of
independent member coordinates—that is, the independent end displacements
required to define the displaced member configuration—is now reduced to five
(i.e., u1, u2, u4, u5, and u6). To eliminate the released coordinate u3 from the
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member stiffness relations, we substitute Eq. (7.2) into Eqs. (7.1). This yields
the following member stiffness equations:

Q1 = EA

L
(u1 − u4) + FAb (7.3a)

Q2 = EI

L3
(3u2 − 3u5 + 3Lu6) +

(
FSb − 3

2L
FMb

)
(7.3b)

Q3 = 0 (7.3c)

Q4 = EA

L
(−u1 + u4) + FAe (7.3d)

Q5 = EI

L3
(−3u2 + 3u5 − 3Lu6) +

(
FSe + 3

2L
FMb

)
(7.3e)

Q6 = EI

L3
(3Lu2 − 3Lu5 + 3L2u6) +

(
FMe − 1

2
FMb

)
(7.3f)

Equations (7.3), which represent the modified local stiffness relations for
member type 1 (MT = 1), can be expressed in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3

Q4

Q5

Q6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 3 0 0 −3 3L

0 0 0 0 0 0

− AL2

I
0 0

AL2

I
0 0

0 −3 0 0 3 −3L

0 3L 0 0 −3L 3L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSb − 3

2L
FMb

0

FAe

FSe + 3

2L
FMb

FMe − 1

2
FMb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.4)
or, symbolically, as

Q = ku + Q f

with

k = E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 3 0 0 −3 3L

0 0 0 0 0 0

− AL2

I
0 0

AL2

I
0 0

0 −3 0 0 3 −3L

0 3L 0 0 −3L 3L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.5)
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Section 7.1 Member Releases in Plane Frames and Beams 345

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSb − 3

2L
FMb

0

FAe

FSe + 3

2L
FMb

FMe − 1

2
FMb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The k matrix in Eq. (7.5) and the Q f vector in Eq. (7.6) now represent the
modified local stiffness matrix and the modified local fixed-end force vector,
respectively, for plane frame members of type 1 (MT = 1).

Members with a Hinge at the End (MT = 2) When end e of a member is
hinged, then its end moment Q6 (Fig. 6.3(b)) must be 0. By substituting Q6 = 0
into Eq. 7.1(f), and solving the resulting equation for the end rotation u6, we
obtain

u6 = 3

2L
(−u2 + u5) − 1

2
u3 − L

4EI
FMe (7.7)

Next, we substitute Eq. (7.7) into Eqs. (7.1) to eliminate u6 from the member
stiffness relations. This yields

Q1 = EA

L
(u1 − u4) + FAb (7.8a)

Q2 = EI

L3
(3u2 + 3Lu3 − 3u5) +

(
FSb − 3

2L
FMe

)
(7.8b)

Q3 = EI

L3
(3Lu2 + 3L2u3 − 3Lu5) +

(
FMb − 1

2
FMe

)
(7.8c)

Q4 = EA

L
(−u1 + u4) + FAe (7.8d)

Q5 = EI

L3
(−3u2 − 3Lu3 + 3u5) +

(
FSe + 3

2L
FMe

)
(7.8e)

Q6 = 0 (7.8f)

The foregoing equations can be expressed in matrix form as

Q = ku + Q f

(7.6)
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with

k = E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 3 3L 0 −3 0

0 3L 3L2 0 −3L 0

− AL2

I
0 0

AL2

I
0 0

0 −3 −3L 0 3 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSb − 3

2L
FMe

FMb − 1

2
FMe

FAe

FSe + 3

2L
FMe

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The k matrix as given in Eq. (7.9) and the Q f vector in Eq. (7.10) represent the
modified local stiffness matrix and fixed-end force vector, respectively, for
plane frame members of type 2 (MT = 2).

Members with Hinges at Both Ends (MT = 3) If both ends of a member are
hinged, then both of its end moments, Q3 and Q6, must be 0. Thus, by substi-
tuting Q3 = 0 and Q6 = 0 into Eqs. 7.1(c) and (f), respectively, and solving the
resulting simultaneous equations for the end rotations u3 and u6, we obtain

u3 = 1

L
(−u2 + u5) − L

6EI
(2FMb − FMe) (7.11a)

u6 = 1

L
(−u2 + u5) − L

6EI
(2FMe − FMb) (7.11b)

Next, we substitute the foregoing equations into Eqs. (7.1) to obtain the local
stiffness relations for the member type 3:

Q1 = EA

L
(u1 − u4) + FAb (7.12a)

Q2 = FSb − 1

L
(FMb + FMe) (7.12b)

(7.10)

(7.9)
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Section 7.1 Member Releases in Plane Frames and Beams 347

Q3 = 0 (7.12c)

Q4 = EA

L
(−u1 + u4) + FAe (7.12d)

Q5 = FSe + 1

L
(FMb + FMe) (7.12e)

Q6 = 0 (7.12f)

Equations (7.12) can be expressed in matrix form as

Q = ku + Qf

with

k = EA

L

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.13)

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSb − 1

L
(FMb + FMe)

0

FAe

FSe + 1

L
(FMb + FMe)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.14)

The foregoing k matrix (Eq. (7.13)) and Qf vector (Eq. (7.14)) represent
the modified local stiffness matrix and fixed-end force vector, respectively,
for plane frame members of type 3 (MT = 3). Interestingly, from Eq. (7.13),
we observe that the deletion of the third and sixth rows and columns (which
correspond to the rotational coordinates of the plane frame members) from the
k matrix for MT = 3 reduces it to the k matrix for members of plane trusses
(Eq. (3.27)).

It should be realized that, although the number of independent member
coordinates is reduced due to member releases, the orders of the modified
stiffness matrices k (Eqs. (7.5), (7.9), and (7.13)) and the fixed-end force vec-
tor Q f (Eqs. (7.6), (7.10), and (7.14)) are maintained as 6 × 6 and 6 × 1,
respectively, with 0 elements in the rows and columns that correspond to
the released coordinates. This form of k and Q f eliminates the need to modify
the expression for the member transformation matrix, T, derived in Chapter 6
(Eq. (6.19)), and provides an efficient means of incorporating the effect of
member releases in the computer program developed in Section 6.7.
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Local Stiffness Relations for 
Beam Members with Hinges
As discussed in Chapter 5, in beams subjected to lateral loads, the axial dis-
placements of members are 0. Thus, a member of a beam can have up to four
degrees of freedom: namely, a translation perpendicular to the member’s cen-
troidal axis and a rotation, at each end. The modified stiffness relations for
beam members with releases can be derived by applying the same procedure
just used for members of plane frames. However, it is more convenient to ob-
tain the modified member stiffness matrices k for beams by simply deleting the
first and fourth rows and columns of the corresponding k matrices for plane-
frame members. Similarly, the modified fixed-end force vectors Q f for beam
members can be obtained by deleting the first and fourth rows of the corre-
sponding Q f vectors for plane-frame members.

Members with a Hinge at the Beginning (MT = 1) To obtain the modified
stiffness matrix k for beam members of type 1, we delete rows 1 and 4 and
columns 1 and 4 from the k matrix given in Eq. (7.5) for plane-frame members
of the same type. This yields

k = EI

L3

⎡
⎢⎢⎣

3 0 −3 3L
0 0 0 0

−3 0 3 −3L
3L 0 −3L 3L2

⎤
⎥⎥⎦ (7.15)

Similarly, the modified fixed-end force vector Q f for beam members of type 1
can be obtained by deleting rows 1 and 4 from the Q f vector given in Eq. (7.6)
for plane-frame members of type 1. Thus,

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 3

2L
FMb

0

FSe + 3

2L
FMb

FMe − 1

2
FMb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.16)

The rotation u2 of the hinged end b of the member, if desired, can be evaluated
by using the following relationship:

u2 = 3

2L
(−u1 + u3) − 1

2
u4 − L

4EI
FMb (7.17)

Equation (7.17) is obtained simply by replacing u2, u3, u5, and u6 in Eq. (7.2)
with u1, u2, u3, and u4, respectively.

Members with a Hinge at the End (MT = 2) By deleting the first and fourth
rows and columns from the k matrix given in Eq. (7.9), we obtain the modified
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Section 7.1 Member Releases in Plane Frames and Beams 349

stiffness matrix for the beam members of type 2 (i.e., MT = 2):

k = EI

L3

⎡
⎢⎢⎣

3 3L −3 0
3L 3L2 −3L 0

−3 −3L 3 0
0 0 0 0

⎤
⎥⎥⎦ (7.18)

and by deleting the first and fourth rows from the Q f vector given in Eq. (7.10),
we determine the modified fixed-end force vector for beam members of type 2
(MT = 2):

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 3

2L
FMe

FMb − 1

2
FMe

FSe + 3

2L
FMe

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.19)

The expression for the rotation u4, of the hinged end e of the member, can be
obtained by substituting the subscripts 1, 2, 3, and 4 for the subscripts 2, 3, 5,
and 6, respectively, in Eq. (7.7). This yields

u4 = 3

2L
(−u1 + u3) − 1

2
u2 − L

4EI
FMe (7.20)

Members with Hinges at Both Ends (MT = 3) By deleting the first and
fourth rows and columns from the k matrix given in Eq. (7.13), we realize that
the modified stiffness matrix for beam members of type 3 (i.e., MT = 3) is a
null matrix; that is,

k = 0 (7.21)

which indicates that a beam member hinged at both ends offers no resistance
against small end displacements in the direction perpendicular to its centroidal
axis. (Recall from Section 3.3 that the members of trusses behave in a similar
manner when subjected to lateral end displacements—see Figs. 3.3(d) and (f).)
By deleting the first and fourth rows from the Qf vector given in Eq. (7.14),
we obtain the modified fixed-end force vector for beam members of type 3
(i.e., MT = 3):

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 1

L
(FMb + FMe)

0

FSe + 1

L
(FMb + FMe)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.22)
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and from Eqs. (7.11) we obtain the following expressions for the rotations u2

and u4 of the hinged ends b and e, respectively, of the member.

u2 = 1

L
(−u1 + u3) − L

6EI
(2FMb − FMe) (7.23a)

u4 = 1

L
(−u1 + u3) − L

6EI
(2FMe − FMb) (7.23b)

Procedure for Analysis
The analysis procedures developed in Chapters 5 and 6 can be applied to
beams and plane frames, respectively, containing member releases, provided
that the modified expressions for the stiffness matrices k and fixed-end force
vectors Q f, developed in this section are used for the members with releases
(i.e., MT = 1, 2, or 3). Furthermore, in the analysis of plane frames, the global
stiffness matrix K for members with releases is now evaluated using the matrix
triple product K = TTkT (Eq. (6.29)), instead of the explicit form of K given
in Eq. (6.31), which is valid only for members with no releases (i.e., MT = 0).
Similarly, the global fixed-end force vector Ff for plane frame members with
releases is evaluated using the relationship Ff = TTQ f (Eq. (6.30)), instead of
the explicit form given in Eq. (6.33). The rotations of the hinged member ends,
if desired, can be evaluated using Eqs. (7.2), (7.7), and (7.11) when analyzing
plane frames, and Eqs. (7.17), (7.20), and (7.23) in the case of beams.

Hinged Joints in Beams and Plane Frames
If all the members meeting at a joint are connected to it by hinged connections,
then the joint is considered to be a hinged joint. For example, joint 4 of the two-
story plane frame shown in Fig. 7.2(a) is considered to be a hinged joint,

350 Chapter 7 Member Releases and Secondary Effects

1

5

3 4

2

6

Not a 
hinged joint

Hinged joint

(a) Plane Frame

Fig. 7.2
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(c) Alternative Analytical Model
(12 Degrees of Freedom)

Fig. 7.2 (continued)
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because all three members meeting at this joint are attached to it by hinged con-
nections. However, joint 3 of this frame is not considered to be hinged, because
only one of the three members meeting at this joint is attached by a hinged con-
nection; the remaining two members are rigidly connected to the joint.

As hinged joints cannot transmit any moments and are free to rotate, their
rotational stiffnesses are 0. Thus, inclusion of the rotational degrees of freedom
of such joints in the analysis causes the structure stiffness matrix S to become
singular, with 0 elements in the rows and columns that correspond to the rota-
tional degrees of freedom of the hinged joints. (Recall from your previous
course in college algebra that the coefficient matrix of a system of linear equa-
tions is considered to be singular if its determinant is 0; and that such a system
of equations does not yield a unique solution.) Perhaps the most straightforward
and efficient way to remedy this difficulty is to eliminate the rotational degrees
of freedom of hinged joints from the analysis by modeling such joints as re-
strained (or fixed) against rotations. This approach is based on the realization
that because hinged joints are not subjected to any moments, their rotations are 0;
even though the released ends of the members connected to such a joint can, and
do, rotate. In Fig. 7.2(b), the hinged joint 4 of the example frame is modeled using
this approach. As indicated in this figure, an imaginary clamp is applied to hinged
joint 4 to restrain (or fix) it against rotation, while allowing it to freely translate in
any direction. Joint 4, therefore, has two degrees of freedom—the translations in
the X and Y directions—which are identified as d4 and d5, respectively; and one
restrained coordinate, R18, which represents the reaction moment that develops at
the imaginary clamp. It should be realized that because hinged joints are not sub-
jected to any external moments (or couples), the magnitudes of the imaginary
reaction moments at such joints are always 0. However, the assignment of
restrained coordinate numbers to these imaginary reactions, in accordance with
the previously established scheme for numbering structure coordinates, enables
us to include the effect of hinged joints in the computer programs developed in
Chapters 5 and 6 without any reprogramming.

An alternative approach that can be used to overcome the problem of sin-
gularity (due to the lack of rotational stiffnesses of a hinged joint) is to model
such a joint as rigidly connected to one (and only one) of the members meeting
at the joint. This approach is based on the following concept: as no external
moment is applied to the hinged joint, and because the moments at the ends of
all but one of the members meeting at the joint are 0, the moment at the end of
the one member that is rigidly connected to the joint must also be 0, to satisfy
the moment equilibrium equation (

∑
M = 0) for the joint. This alternative ap-

proach is used in Fig. 7.2(c) to model hinged joint 4 of the example frame. As
shown in this figure, whereas members 2 and 4 are still attached by hinged con-
nections to joint 4, the third member 5 is now rigidly connected to this joint.
Note that because the end of member 5 is now rigidly connected, its member
type, which was 3 (i.e., MT = 3) in the previous analytical model (Fig. 7.2(b)),
is now 1 (i.e., MT = 1), as shown in Fig. 7.2(c). Joint 4 can now be treated as
any other rigid joint of the plane frame, and is assigned three degrees of free-
dom, d4, d5, and d6, as shown in the figure—with d6 representing the rotation of
joint 4, which in turn equals the rotation of the end of member 5.
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Section 7.1 Member Releases in Plane Frames and Beams 353

Needless to state, the two approaches we have discussed for modeling
hinged joints yield identical analysis results. However, the first approach gen-
erally provides a more efficient analytical model in terms of the number of de-
grees of freedom of the structure. From Figs. 7.2(b) and (c), we can see that the
analytical models of the example frame, based on the first and the alternative
approaches, involve 11 and 12 degrees of freedom, respectively.

Hinged joint

20 ft

10 ft 10 ft

25 k

75 k

1.2 k/ft

E, A, I = constant
E = 29,000 ksi
A = 14.7 in.2

I = 800 in.4

(a) Frame

Fig. 7.3

E X A M P L E 7.1 Determine the joint displacements, member end forces, and support reactions for the
plane frame shown in Fig. 7.3(a), using the matrix stiffness method.

S O L U T I O N Analytical Model: The analytical model of the frame is depicted in Fig. 7.3(b). Since
both members 1 and 2, meeting at joint 2, are attached to it by hinged connections, joint 2
is modeled as a hinged joint with its rotation restrained by an imaginary clamp. Thus,
joint 2 has two degrees of freedom—the translations in the X and Y directions—which are
identified as d1 and d2, respectively. Also, for member 1, MT = 2, because the end of this
member is hinged, whereas MT = 1 for member 2, which is hinged at its beginning.

As far as the modeling of joint 4 is concerned, recall that in Chapters 5 and 6 (e.g.,
see Examples 5.7 and 6.5) we modeled such a joint as a rigid joint, free to rotate, with
its rotation treated as a degree of freedom of the structure. However, in light of the dis-
cussion of member releases and hinged joints presented in this section, we can now
eliminate the rotational degree of freedom of joint 4 from the analysis by modeling
member 3 as hinged at its beginning (i.e., MT = 1), which allows us to model joint 4
as a hinged joint with its rotation restrained by an imaginary clamp. Note that the end
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MT � 1

MT � 2

Y

X

1 3

2

(b) Analytical Model

1 2 3 4 5

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

5.0347 + 1,776.3 0 −1,776.3 0 0

0 1,776.3 + 5.0347 0 −5.0347 1,208.3

−1,776.3 0 1,776.3 + 5.0347 0 1,208.3

0 −5.0347 0 5.0347 + 1,776.3 −1,208.3

0 1,208.3 1,208.3 −1,208.3 290,000 + 290,000

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

1 2 3 4 5

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1,781.3 0 −1,776.3 0 0

0 1,781.3 0 −5.0347 1,208.3

−1,776.3 0 1,781.3 0 1,208.3

0 −5.0347 0 1,781.3 −1,208.3

0 1,208.3 1,208.3 −1,208.3 580,000

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

1

2

3

4

5

P f =

⎡
⎢⎢⎢⎢⎢⎢⎣

−9

23.438

0

51.563

−3,375

⎤
⎥⎥⎥⎥⎥⎥⎦

(c) Structure Stiffness Matrix and Fixed-Joint Force Vector 

Fig. 7.3 (continued)
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0.1 k/in.

9.0247

33.025
5,045.8

21.525

21.525

3,834.1

21.525 53.476

15.976 15.976

75 k

3,834.1

53.477

53.477

15.976

15.976

1 3

2

(d)  Member Local End Forces

25 k

75 k

0.1 k/in.

1

2

4

3

33.025 15.976

21.525 53.477

5,045.8

(f) Support Reactions

Fig. 7.3 (continued)

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6

7

8

9

10

11

12

(e) Support Reaction Vector

−33.025 k

−15.976 k

21.525 k

53.477 k

5,045.8 k-in.

0

0
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356 Chapter 7 Member Releases and Secondary Effects

of member 3, which is connected to joint 4, can be considered to be hinged, because
there is only one member connected to the joint that is not subjected to any external
couple. Furthermore, the joint is supported by a hinged support which cannot exert any
reaction moment at the joint. Thus, the moment at the end of member 3, which is con-
nected to joint 4, must be 0; therefore, the member end can be treated as a hinged end.
With its rotation restrained by the imaginary clamp, and its translations in the X and 
Y directions restrained by the actual hinged support, joint 4 is modeled as if it is at-
tached to a fixed support, with no degrees of freedom, as depicted in Fig. 7.3(b).

Thus, the entire frame has five degrees of freedom and seven restrained coordi-
nates, as shown in Fig. 7.3(b).

Structure Stiffness Matrix and Fixed-Joint Force Vector:

Member 1 (MT = 2) Because MT = 2 for this member, we use Eqs. (7.9) and (7.10)
to determine its local stiffness matrix k and fixed-end force vector Q f, respectively.
Thus, by substituting E = 29,000 ksi, A = 14.7 in.2, I = 800 in.4, and L = 20 ft =
240 in. into Eq. (7.9), we obtain

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1,776.3 0 0 −1,776.3 0 0
0 5.0347 1,208.3 0 −5.0347 0
0 1,208.3 290,000 0 −1,208.3 0

−1,776.3 0 0 1,776.3 0 0
0 −5.0347 −1,208.3 0 5.0347 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

To determine the local fixed-end force vector due to the member load w = 1.2 k/ft =
0.1 k/in., we first evaluate the fixed-end axial forces, shears, and moments in a corre-
sponding rigidly connected member by using the expressions giveninsidethefrontcover:

FAb = FAe = 0

FSb = FSe = 0.1(240)

2
= 12 k

FMb = −FMe = 0.1(240)2

12
= 480 k-in.

Next, we substitute the foregoing values into Eq. (7.10) to obtain the local fixed-end
force vector for the released member under consideration:

Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

12 − 3(−480)

2(240)

480 − 1

2
(−480)

0

12 + 3(−480)

2(240)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

15 k

720 k-in.

0

9 k

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To obtain the member’s stiffness matrix K and the fixed-end force vector Ff in the
global coordinate system, we first substitute its direction cosines, cos θ = 0 and
sin θ = 1, into Eq. (6.19), to obtain the transformation matrix.

(2)
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Section 7.1 Member Releases in Plane Frames and Beams 357

T1 = T3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Next, by substituting k1 (Eq. (1)) and T1 (Eq. (3)) into the relationship K = TTkT
(Eq. (6.29)), and performing the necessary matrix multiplications, we obtain

6 7 8 1 2 9

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5.0347 0 −1,208.3 −5.0347 0 0
0 1,776.3 0 0 −1,776.3 0

−1,208.3 0 290,000 1,208.3 0 0
−5.0347 0 1,208.3 5.0347 0 0

0 −1,776.3 0 0 1,776.3 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

����������

����������

� �
� �
� �

Note that K1 is symmetric.
Similarly, by substituting Qf1 (Eq. (2)) and T1 (Eq. (3)) into the relationship

Ff = TTQf (Eq. (6.30)), we obtain

F f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−15
0

720
−9

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

���

���

From Fig. 7.3(b), we observe that the code numbers for member 1 are 6, 7, 8, 1, 2, 9.
Using these code numbers, we store the pertinent elements of K1 and Ff 1 in their proper
positions in the 5 × 5 structure stiffness matrix S and the 5 × 1 structure fixed-joint force
vector Pf , respectively, as shown in Fig. 7.3(c).

Member 2 (MT = 1) No coordinate transformations are needed for this horizontal
member; that is, T2 = I, K2 = k2, and Ff 2 = Qf 2. As MT = 1, we use Eq. (7.5) to obtain

1 2 9 3 4 5

K2 = k2 = k3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1,776.3 0 0 −1,776.3 0 0
0 5.0347 0 0 −5.0347 1,208.3
0 0 0 0 0 0

−1,776.3 0 0 1,776.3 0 0
0 −5.0347 0 0 5.0347 −1,208.3
0 1,208.3 0 0 −1,208.3 290,000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

(4)

Using the fixed-end force expressions given for loading type 1 for the 75 k member load,
we obtain

FAb = FAe = 0

FSb = FSe = 37.5 k

FMb = −FMe = 2,250 k-in.

� �
� �� ������������ ����������������

������������ ����������������� �
� �
� �
� �
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Substitution of the foregoing values into Eq. (7.6) yields

F f 2 = Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

37.5 − 3(2,250)

2(240)

0
0

37.5 + 3(2,250)

2(240)

−2,250 − 1

2
(2,250)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
23.438 k

0
0

51.563 k
−3,375 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

������

������ (5)

The relevant elements of K2 and Ff 2 are stored in S and Pf, respectively, using the mem-
ber code numbers 1, 2, 9, 3, 4, 5.

Member 3 (MT = 1) As E, A, I, L, and MT for member 3 are the same as for member
2, k3 = k2 as given in Eq. (4). Also, since the member is not subjected to any loads,

Ff 3 = Qf 3 = 0

Furthermore, since the direction cosines of member 3 are identical to those of member 1,
T3 = T1 as given in Eq. (3).

To determine the member global stiffness matrix, we substitute k3 from Eq. (4), and
T3 from Eq. (3), into the relationship K = TTkT (Eq. (6.29)), and perform the necessary
matrix multiplications. This yields

10 11 12 3 4 5

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5.0347 0 0 −5.0347 0 −1,208.3
0 1,776.3 0 0 −1,776.3 0
0 0 0 0 0 0

−5.0347 0 0 5.0347 0 1,208.3
0 −1,776.3 0 0 1,776.3 0

−1,208.3 0 0 1,208.3 0 290,000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
3
4
5

The pertinent elements of K3 are stored in S using the member code numbers 10, 11, 12,
3, 4, 5. The completed structure stiffness matrix S and the structure fixed-joint force vec-
tor Pf are given in Fig. 7.3(c).

Joint Load Vector: By comparing Figs. 7.3(a) and (b), we write

P =

⎡
⎢⎢⎢⎢⎢⎣

25
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

1
2
3
4
5

Joint Displacements: By solving the system of simultaneous equations representing the
structure stiffness relationship P − Pf = Sd (Eq. (6.42)), we obtain the following joint
displacements:

d =

⎡
⎢⎢⎢⎢⎢⎣

3.5801 in.
−0.012118 in.

3.5711 in.
−0.030106 in.

−0.0016582 rad

⎤
⎥⎥⎥⎥⎥⎦

1
2
3
4
5

Ans
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Section 7.1 Member Releases in Plane Frames and Beams 359

Member End Displacements and End Forces:

Member 1 (MT = 2) Using the member code numbers 6, 7, 8, 1, 2, 9, we write the
global end displacement vector as

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d1

d2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
3.5801

−0.012118
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Next, we obtain the local end displacement vector u by substituting the foregoing v1

and T1 (Eq. (3)) into the relationship u = Tv (Eq. (6.20)). This yields

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.012118
−3.5801

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

We can now determine the member local end forces Q by substituting u1, k1 (Eq. (1)),
and Qf 1 (Eq. (2)) in the member stiffness relationship Q = ku + Qf (Eq. (6.4)). Thus,

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

21.525 k
33.025 k

5,045.8 k-in.
−21.525 k
−9.0247 k

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

These end forces for member 1 are depicted in Fig. 7.3(d).
To generate the support reaction vector R for the frame, we evaluate the global

end forces F for the member by applying Eq. (6.23) as

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−33.025
21.525

5,045.8
9.0247

−21.525
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

�����

�����

The pertinent elements of F1 are stored in R, as shown in Fig. 7.3(e).
It should be realized that because the member end displacement vectors v and u

are based on the compatibility of the joint and the member end displacements, such
vectors (in the case of members with releases) contain 0 elements in the rows that cor-
respond to the rotations of the released (or hinged) member ends. Thus, we can see
from Eqs. (6) and (7) that the vectors v1 and u1 for member 1 (with MT = 2) contain 0
elements in their sixth rows. We can evaluate the rotation u6 of the released end of this
member by using Eq. (7.7), as

u6 = 3

2(240)
(0 − 3.5801) − 1

2
(0) − 240(−480)

4(29,000)(800)

= −0.021134 rad = 0.021134 rad

Y
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360 Chapter 7 Member Releases and Secondary Effects

Because the member end rotations are the same in the local and global coordinate systems,

v6 = u6 = 0.021134 rad

Member 2 (MT = 1)

u2 = v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

0
d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3.5801
−0.012118

0
3.5711

−0.030106
−0.0016582

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

By using k2 from Eq. (4) and Qf 2 from Eq. (5), we compute the member end forces to be

F2 = Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

15.976 k
21.525 k

0
−15.976 k

53.476 k
−3,834.1 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

�������

������� Ans

The rotation, u3, of the released end of this member, if desired, can be calculated by
using Eq. (7.2).

Member 3 (MT = 1)

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
3
4
5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
3.5711

−0.030106
−0.0016582

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

By using T3 from Eq. (3), we obtain

u3 = T3v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.030106
−3.5711
−0.0016582

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k3 from Eq. (4) and Q f 3 = 0, we obtain the member local end forces as

Q3 = k3u3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

53.477 k
15.976 k

0
−53.477 k
−15.976 k

3,834.1 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

Y
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Section 7.2 Computer Implementation of Analysis for Member Releases 361

7.2 COMPUTER IMPLEMENTATION OF
ANALYSIS FOR MEMBER RELEASES
The computer programs developed in Chapters 5 and 6 for the analysis of
rigidly connected beams and plane frames can be extended, with only minor
modifications, to include the effects of member releases. In this section, we
discuss the modifications in the program for the analysis of plane frames (Sec-
tion 6.7) that are necessary to consider member releases. While the beam
analysis program (Section 5.8) can be modified in a similar manner, the imple-
mentation of these modifications is left as an exercise for the reader.

The overall organization and format of the plane frame analysis program,
as summarized in Table 6.1, remains the same when considering member re-
leases. However, parts V, IX, and XII, and the subroutines MSTIFFL and
MFEFLL, must be revised as follows:

Member Data (Part V ) This part of the program (see flowchart in Fig. 4.3(e))
should be modified to include the reading and storing of the member type, MT,
for each member of the frame. The number of columns of the member data ma-
trix MPRP should be increased from four to five, with the value of MT (= 0,
1, 2, or 3) for a member i stored in the fifth column of the ith row of MPRP. 

Generation of the Structure Stiffness Matrix and Equivalent Joint Load
Vector (Part IX ), and Calculation of Member Forces and Support Reactions
(Part XII) In parts IX and XII of the computer program (see flowcharts in
Figs. 6.24 and 6.31, respectively) a statement should be added to read, for each
member, the value of MT from the fifth column of the MPRP matrix (i.e.,
MT = MPRP (IM, 5)), before the subroutines MSTIFFL and MFEFLL are
called to form the member local stiffness matrix BK, and the local fixed-end
force vector QF, respectively.

Subroutine MSTIFFL A flowchart for programming the modified version of
this subroutine is given in Fig. 7.4 on the next page. As this flowchart indicates,
the subroutine calculates the BK matrix using Eq. (6.6) if MT equals 0, Eq. (7.5)
if MT equals 1, Eq. (7.9) if MT equals 2, or Eq. (7.13) if MT equals 3.

Subroutine MFEFLL A flowchart of the modified version of this subroutine is
shown in Fig. 7.5 on page 363. The subroutine first calculates the fixed-end forces

The member local end forces are shown in Fig. 7.3(d).

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−15.976
53.477
0

15.976
−53.477

3,834.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
3
4
5

�����

Support Reactions: See Figs. 7.3(e) and (f). Ans
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(FAB, FSB, FMB, FAE, FSE, and FME) in a corresponding rigidly connected
member using the equations given inside the front cover. The QF vector is then
formed in accordance with Eq. (6.15) if MT = 0, Eq. (7.6) if MT = 1,
Eq. (7.10) if MT = 2, or Eq. (7.14) if MT = 3.

7.3 SUPPORT DISPLACEMENTS
The effect of small support displacements, due to weak foundations or other
causes, can be conveniently included in the matrix stiffness method of analysis
using the concept of equivalent joint loads [14]. This approach, which was dis-
cussed in Sections 5.6 and 6.5 for the case of member loads, essentially in-
volves applying the prescribed external action (such as a system of member
loads, support settlements, etc.) to the structure, with all of its joint displace-
ments restrained by imaginary restraints. The structure fixed-joint forces that
develop in the hypothetical fixed structure, as reactions at the imaginary

362 Chapter 7 Member Releases and Secondary Effects

Start Subroutine MSTIFFL

End Subroutine MSTIFFL
Return to calling program

Initialize all elements of BK to zero

Arguments: E, A, ZI, BL, NCJT, MT, BK

Z � E*A/BL
BK(1, 1) � Z, BK(4, 1) � −Z
BK(1, 4) � −Z, BK(4, 4) � Z

MT � 0?

MT � 1?

MT � 2?

no

no

no

yes

yes

yes

Z � E*ZI/(BL^3)
BK(2, 2) � 12*Z, BK(3, 2) � 6*BL*Z
BK(5, 2) � −12*Z, BK(6, 2) � 6*BL*Z
BK(2, 3) � 6*BL*Z, BK(3, 3) � 4*(BL^2)*Z
BK(5, 3) � −6*BL*Z, BK(6, 3) � 2*(BL^2)*Z
BK(2, 5) � −12*Z, BK(3, 5) � −6*BL*Z
BK(5, 5) � 12*Z, BK(6, 5) � −6*BL*Z
BK(2, 6) � 6*BL*Z, BK(3, 6) � 2*(BL^2)*Z
BK(5, 6) � −6*BL*Z, BK(6, 6) � 4*(BL^2)*Z

Z � E*ZI/(BL^3), BK(2, 2) � 3*Z
BK(5, 2) � −3*Z, BK(6, 2) � 3*BL*Z
BK(2, 5) � −3*Z, BK(5, 5) � 3*Z
BK(6, 5) � −3*BL*Z, BK(2, 6) � 3*BL*Z
BK(5, 6) � −3*BL*Z, BK(6, 6) � 3*(BL^2)*Z

Z � E*ZI/(BL^3), BK(2, 2) � 3*Z
BK(3, 2) � 3*BL*Z, BK(5, 2) � −3*Z
BK(2, 3) � 3*BL*Z, BK(3, 3) � 3*(BL^2)*Z
BK(5, 3) � −3*BL*Z, BK(2, 5) � −3*Z
BK(3, 5) � −3*BL*Z, BK(5, 5) � 3*Z

Fig. 7.4 Flowchart of Subroutine MSTIFFL for Determining Member Local Stiffness
Matrix for Plane Frames with Member Releases
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Section 7.3 Support Displacements 363

restraints (i.e., at the location and in the direction of each degree of freedom of
the actual structure), are then evaluated. The structure fixed-joint forces, with
their directions reversed, now represent the equivalent joint loads, in the sense
that when applied to the actual structure, they cause the same joint displace-
ments as the original action (i.e., member loads, support settlements, etc.).
Once the response of the structure to the equivalent joint loads has been deter-
mined, the actual structural response due to the original action is obtained by
superposition of the responses of the fixed structure to the original action and
the actual structure to the equivalent joint loads.

TheforegoingapproachisillustratedinFig.7.6 on the next page,for the caseof
supportdisplacements, using an arbitrary three-degree-of-freedom frame as an ex-
ample. Figure 7.6(a) shows the actual frame, whose supports 3 and 4 undergo small

Start Subroutine MFEFLL

Arguments: IML, BL, MT, MP, PM, QF

LDTYPE = MP(IML, 2)

QF(1) = QF(1) + FAB
QF(4) = QF(4) + FAE

End Subroutine MFEFLL
Return to calling program

If MT = 0?

If MT = 1?

If MT = 2?

no

no

If MT = 3?

no

no

yes

yes

yes

yes

Initialize FAB, FSB, FMB, FAE, FSE, FME to zero

Calculate FAB, FSB, FMB, FAE, FSE and FME, for
the value of LDTYPE, using the equations given

inside the front cover
(See flowchart in Fig. 6.28 for details.)

QF(2) = QF(2) + FSB
QF(3) = QF(3) + FMB
QF(5) = QF(5) + FSE
QF(6) = QF(6) + FME

QF(2) = QF(2) + FSB − 3*FMB/(2*BL)
QF(5) = QF(5) + FSE + 3*FMB/(2*BL)
QF(6) = QF(6) + FME − (FMB/2)

QF(2) = QF(2) + FSB − (FMB + FME)/BL
QF(5) = QF(5) + FSE + (FMB + FME)/BL

QF(2) = QF(2) + FSB − 3*FME/(2*BL)
QF(3) = QF(3) + FMB − (FME/2)
QF(5) = QF(5) + FSE + 3*FME/(2*BL)

Fig. 7.5 Flowchart of Subroutine MFEFLL for Determining Member Local Fixed-End
Force Vector for Plane Frames with Member Releases
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364 Chapter 7 Member Releases and Secondary Effects

d2

d3

d1

�1

1

1′

2

3

3′

4

4′

�2

1

2
3

(a) Actual Frame Subjected to Support Settlements

�
Pf 2

Pf3

Pf1

�1

1

2

3

3′

4

4′ �2

1

2
3

(b) Fixed Frame Subjected to Support Settlements

Pf 2

Pf 3
Pf1

1

2

3 4

+

d2

d3

d1

1′
1

2
3

(c) Actual Frame Subjected to Equivalent Joint Loads

Fig. 7.6
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Section 7.3 Support Displacements 365

settlements �1 and �2, respectively, causing the displacements d1, d2, and d3 of
free joint 1. To determine the response (i.e., joint displacements, member forces,
and support reactions) of the frame to the support settlements, we first restrain
all the joint displacements of the frame by applying an imaginary restraint at
joint 1, and subject this completely fixed frame to the prescribed support settle-
ments �1 and �2, as shown in Fig. 7.6(b). As joint 1 of the frame, initially free,
is now restrained from translating and rotating by the imaginary restraint, the
structure fixed-joint forces Pf 1, Pf 2, and Pf 3 develop at the imaginary restraint at
this joint. (A procedure for evaluating structure fixed-joint forces due to support
settlements is developed in a subsequent part of this section.) Next, as shown in
Fig. 7.6(c), we apply the foregoing structure fixed-joint forces Pf 1, Pf 2, and Pf 3,
with their directions reversed, as external loads at joint 1 of the actual frame.

A comparison of Figs. 7.6(a), (b), and (c) indicates that the superposition
of the support settlements and joint loads applied to the frame in Figs. 7.6(b)
and (c) yields only the support settlements the frame is subjected to in
Fig. 7.6(a), because each of the fixed-joint forces in Fig. 7.6(b) is canceled by
its negative counterpart applied as a load in Fig. 7.6(c). Thus, according to the
principle of superposition, the joint displacements d1, d2, and d3 of the frame
due to the support settlements �1 and �2 (Fig. 7.6(a)) must equal the algebraic
sums of the corresponding joint displacements of the fixed frame subjected to
the support settlements (Fig. 7.6(b)), and the actual frame, subjected to no set-
tlements, but to the negatives of the fixed-joint forces (Fig. 7.6(c)). However,
since the displacements of joint 1 of the fixed frame (Fig. 7.6(b)) are 0, the joint
displacements of the frame subjected to the negatives of fixed-joint forces
(Fig. 7.6(c)) must equal the actual joint displacements d1, d2 , and d3 of the
frame due to the support settlements �1 and �2 (Fig. 7.6(a)). In other words,
the negatives of the structure fixed-joint forces cause the same displacements
at the locations and in the directions of the frame’s degrees of freedom as the
prescribed support settlements; and, in that sense, such forces can be consid-
ered as equivalent joint loads.

It should be realized that the foregoing equivalency is valid only for joint
displacements. From Fig. 7.6(b), we can see that the end displacements of the
members of the fixed frame are not 0. Therefore, the member end forces and sup-
port reactions of the actual frame due to settlements (Fig. 7.6(a)) must be
obtained by superposition of the corresponding responses of the fixed frame
(Fig. 7.6(b)) and the actual frame subjected to the equivalent joint loads
(Fig. 7.6(c)).

It may be recalled from Chapters 5 and 6 that, in the case of member loads,
the response of the fixed structure was evaluated using the fixed-end force ex-
pressions for various types of member loads, as given inside the front cover;
and that the fixed-joint force vector Pf was obtained by algebraically adding
the fixed-end forces of members meeting at the joints (via the member code
numbers). A procedure for evaluating the member fixed-end forces, and the
structure fixed-joint forces, due to support settlements is presented in the fol-
lowing paragraphs. With the fixed-joint forces known, the response of the
structure to the equivalent joint loads can be determined, using the standard
matrix stiffness methods described in Chapters 3 through 6.
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Evaluation of Structure Fixed-Joint Forces Due to 
Support Displacements
We begin by establishing a systematic way of identifying the support displace-
ments of a structure. For that purpose, let us reconsider the three-degree-of-
freedom frame of Fig. 7.6(a), subjected to the support settlements �1 and �2.
The frame is redrawn in Fig. 7.7(a), with its analytical model depicted in
Fig. 7.7(b). From Fig. 7.7(b), we observe that the frame has nine support reac-
tions, which are identified by the restrained coordinate numbers 4 through 12.
Thus, the frame can be subjected to a maximum of nine support displacements.
The numbers assigned to the restrained coordinates are also used to identify the
support displacements, with a support displacement at the location and in the
direction of a support reaction Ri denoted by the symbol dsi. Thus, a compari-
son of Figs. 7.7(a) and (b) shows that for the frame under consideration,

ds8 = −�1 and ds11 = −�2 (7.24)

with the remaining seven support displacements being 0. The negative signs

366 Chapter 7 Member Releases and Secondary Effects
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(b) Analytical Model

Fig. 7.7
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assigned to the magnitudes �1 and �2 of ds8 and ds11 indicate that these sup-
port displacements occur in the negative Y (i.e., downward) direction.

To illustrate the process of evaluating a structure’s fixed-joint forces due to
a prescribed set of support settlements, we restrain the joint displacements of
the example frame by applying an imaginary restraint at joint 1, and subject this
hypothetical completely fixed frame to the given support settlements �1 and �2,
as shown in Fig. 7.7(c). The structure fixed-joint forces that develop at the imag-
inary restraint at joint 1 are denoted by Pf 1, Pf 2, and Pf 3 in the figure, with the
fixed-joint force corresponding to an ith degree of freedom denoted by Pf i . To
evaluate the fixed-joint forces, we first determine the displacements that the
support settlements �1 and �2 cause at the ends of the members of the fixed
frame. The free-body diagrams of the three members of the hypothetical fixed
frame are depicted in Fig. 7.7(d). From Figs. 7.7(c) and (d), we observe that,
while the settlements of supports 3 and 4 do not cause any displacement in
member 1, they induce downward displacements of magnitudes �1 and �2, re-
spectively, at the lower ends of members 2 and 3. Note that all other member end
displacements are 0, because all the joint displacements of the fixed frame are 0,
with the exception of the known support settlements. Thus, the end displace-
ments of members 2 and 3, respectively, can be expressed in vector form, as

v f s2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−� 1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

and v f s3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

−� 2

0

⎤
⎥⎥⎥⎥⎥⎥⎦

1
2
3
10
11
12

(7.25)

in which vf s represents the member global fixed-end displacement vector due
to support displacements. The foregoing member global fixed-end displace-
ment vectors can be directly generated using the member code numbers, which
define the member compatibility equations. For example, from Fig. 7.7(b), we
can see that the code numbers for member 2 are 7, 8, 9, 1, 2, 3. By comparing
these member code numbers with the support displacements of the frame,
ds8 = −�1 and ds11 = −�2 (see Eq. (7.24)), we conclude that all the elements
of vf s2 are zero, with the exception of the element in the second row which
equals −�1 (i.e., v(2)

f s2 = ds8 = −�1). Similarly, by examining the code num-
bers 1, 2, 3, 10, 11, 12 of member 3, we realize that the only nonzero element
of vfs3 is in the fifth row and it equals −�2 (i.e., v(3)

f s5 = ds11 = −�2).

Once the member fixed-end displacement vectors vf s have been deter-
mined, they are used to calculate the corresponding member global fixed-end
force vectors due to support displacements, Ff s, through the member global
stiffness relationship (Eq. (6.28)) derived in Chapter 6. By substituting
F = Ff s, v = vf s, and Ff = 0 into Eq. (6.28), we obtain the following relation-
ship between Ff s and vf s:

(7.26)Ff s = Kvf s
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Section 7.3 Support Displacements 369

With the member global fixed-end forces known, the structure fixed-joint
forces due to the support displacements can be evaluated using joint equilib-
rium equations. Thus, for the example frame, we apply the three equations of
equilibrium, 

∑
FX = 0,

∑
FY = 0, and

∑
M = 0, to the free body of joint 1

(see Fig. 7.7(e)) to obtain the following expressions for the fixed-joint forces in
terms of the member fixed-end forces:

Pf 1 = F (2)
f s4 + F (3)

f s1 (7.27a)

Pf 2 = F (2)
f s5 + F (3)

f s2 (7.27b)

Pf 3 = F (2)
f s6 + F (3)

f s3 (7.27c)

The structure fixed-joint force vector for the support settlements of the exam-
ple frame can, therefore, be expressed as

P f =

⎡
⎢⎢⎢⎢⎣

F (2)
f s4 + F (3)

f s1

F (2)
f s5 + F (3)

f s2

F (2)
f s6 + F (3)

f s3

⎤
⎥⎥⎥⎥⎦ (7.28)

As demonstrated in Chapters 5 and 6 for the case of member loads, the
structure fixed-joint force vectors Pf can be conveniently generated by employ-
ing the member code number technique. The application of the technique re-
mains the same in the case of support displacements, except that the elements
of the member global fixed-end force vectors due to support displacements, Ffs,
must now be added into Pf. When a structure is subjected to more than one type
of action requiring evaluation of fixed-joint forces (e.g., member loads and
support settlements), then the fixed-joint forces representing different types of
actions can be conveniently combined into a single Pf vector. For example, in
the case of a frame subjected to member loads and support settlements, the el-
ements of the two types of member fixed-end force vectors—that is, due to
member loads (Ff) and support displacements (Ff s)—can be stored in a single
Pf vector using the member code number technique.

Once the structure fixed-joint forces due to support displacements have
been evaluated, the structure stiffness relations P − Pf = Sd (Eq. (6.42)) can
be solved for the unknown joint displacements d. With d known, the member
global end displacement vector v for each member is determined by applying
the compatibility equations defined by its code numbers. For members that are
attached to the supports that undergo displacements, the displacements of the
supported ends, due to the corresponding support displacements, must be in-
cluded in the member global end displacement vectors v. The inclusion of
support displacements in the v vectors automatically adds the response of the
fixed structure to support settlements (see, for example, Fig. 7.6(b)) into the
analysis, thereby enabling us to evaluate the member local and global end
forces, and support reactions, using the procedures developed in previous
chapters.
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Procedure for Analysis
Based on the discussion presented in this section, we can develop the follow-
ing step-by-step procedure for the matrix stiffness analysis of framed struc-
tures due to support displacements.

1. Prepare an analytical model of the structure, and determine its structure
stiffness matrix S. If the structure is subjected to member loads, then
evaluate its fixed-joint force vector Pf due to the member loads. If the
structure is subjected to joint loads, then form its joint load vector P.

2. Calculate the structure fixed-joint force vector Pf (NDOF × 1) due to
the given support displacements. If a Pf vector was formed in step 1 for
member loads, then store the member fixed-end forces due to support
displacements in the previously formed Pf vector. For each member
that is attached to the supports that undergo displacements, perform the
following operations:

a. Identify the member code numbers, and form the member global
fixed-end displacement vector, vfs, from the specified support dis-
placements, dsi. Note that the support translations are considered
positive when in the positive directions of the global X and Y axes,
and  support rotations are considered positive when counterclock-
wise. For beams, form the member local fixed-end displacement
vector due to support displacements, uf s, using the same process.

b. Evaluate the member global fixed-end force vector due to support
displacements, Ff s, using the relationship Ff s = Kvf s (Eq. (7.26)).
For  beams, evaluate the member local fixed-end force vector due to
support displacements, Qf s, using the relationship Qf s = kuf s.

c. Using member code numbers, store the pertinent elements of Ff s, or
Qf s for beams, in their proper positions in the structure fixed-joint
force vector Pf.

3. Determine the unknown joint displacements d by solving the structure
stiffness relationship, P − Pf = Sd.

4. Compute member end displacements and end forces, and support reac-
tions. For each member of the structure, carry out the following steps.

a. Obtain member end displacements in the global coordinate system,
v, from the joint displacements d and the specified support dis-
placements dsi, by using the member code numbers. For beams, ob-
tain the member local end displacements, u, using the same process,
and then go to step 4c.

b. Determine the member end displacements in the local coordinate
system, u, by using the transformation relationship u = Tv.

c. Calculate the member end forces in the local coordinate system, Q, by
using the stiffness relationship Q = ku + Qf. If the member is not
subjected to any member loads, then Qf = 0. For beams, go to step 4e.

d. Compute the member end forces in the global coordinate system, F,
using the transformation relationship F = TTQ.
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Section 7.3 Support Displacements 371

e. If the member is attached to a support joint, then use the member
code numbers to store the pertinent elements of F, or Q for beams,
in their proper positions in the support reaction vector R.

Fig. 7.8

E X A M P L E 7.2 Determine the joint displacements, member axial forces, and support reactions for the
plane truss shown in Fig. 7.8(a) due to a settlement of 1

2 in. of support 4. Use the
matrix stiffness method.

2

1

3 4
(8

 in
.2 ) (8 in. 2)

(6
 in

.2 )
12 ft 12 ft

16 ft

(a) Truss

E = 29,000 ksi

2

1

3 4 X

Y

3

4 6 8

1

2

5 7

2 31

(b) Analytical Model
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S O L U T I O N This truss was analyzed in Example 3.8 for joint loads. In this example, we use the
same analytical model of the truss, so that the various member and structure matrices
calculated in the previous example can be reused herein.

Analytical Model: See Fig. 7.8(b). The truss has two degrees of freedom and six re-
strained coordinates.

Structure Stiffness Matrix: From Example 3.8,

S =
[

696 0
0 2,143.6

]
k/in. (1)

Joint Load Vector: As the truss is not subjected to any loads,

P = 0 (2)

Structure Fixed-Joint Force Vector Due to Support Displacements: From the analytical
model of the truss in Fig. 7.8(b), we can see that the given .5 in. settlement (i.e., verti-
cally downward displacement) of support joint 4 occurs at the location and in the direc-
tion of the reaction R8. Thus, the given support displacement can be expressed as

ds8 = −0.5 in.

From Fig. 7.8(b), we observe that member 3 is the only member attached to support 4
that undergoes displacement. Thus, using the member’s code numbers 7, 8, 1, 2, we

372 Chapter 7 Member Releases and Secondary Effects

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−49.039

−65.386

0

130.78

49.039

−65.386

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

(c) Support Reaction Vector

3

4

5

6

7

8

2

1

3 4 X

Y

49.039 k 49.039 k

65.386 k 130.78 k 65.386 k

(d) Support Reactions

Fig. 7.8 (continued)
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Section 7.3 Support Displacements 373

form its global fixed-end displacement vector due to support displacement as

v f s3 =

⎡
⎢⎢⎢⎣

v f s1

v f s2

v f s3

v f s4

⎤
⎥⎥⎥⎦

7
8
1
2

=

⎡
⎢⎢⎢⎣

0
ds8

0
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
−0.5

0
0

⎤
⎥⎥⎥⎦ in.

Next, we evaluate the global fixed-end force vector Ffs3 due to the support settle-
ment, for member 3, using the member global stiffness matrix K3 calculated in Ex-
ample 3.8, and Eq. (7.26). Thus,

F f s3 = K3v f s3 =

⎡
⎢⎢⎢⎣

348 −464 −348 464

−464 618.67 464 −618.67

−348 464 348 −464

464 −618.67 −464 618.67

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

−0.5

0

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

232

−309.33

−232

309.33

⎤
⎥⎥⎥⎦

7

8

1

2

k

From the member code numbers, which are written on the right side of Ff s3, we real-
ize that the elements in the third and fourth rows of Ff s3 should be stored in rows 1 and
2, respectively, of the Pf vector. Thus, the structure fixed-joint force vector, due to the
support settlement, is given by

P f =
[ −232

309.33

]
1
2

k (3)

Joint Displacements: By substituting P (Eq. (2)), Pf (Eq. (3)), and S (Eq. (1)) into the
structure stiffness relationship, we write

P − Pf = Sd
[

0
0

]
−

[ −232
309.33

]
=

[
232

−309.33

]
=

[
696 0

0 2,143.6

] [
d1

d2

]

By solving these equations, we determine the joint displacements to be

d =
[

0.33333
−0.14431

]
1
2

in. Ans

Member End Displacements and End Forces:

Member 1 Using the member code numbers 3, 4, 1, 2, we write the global end dis-
placement vector as

v1 =

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦

3
4
1
2

=

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
0.33333

−0.14431

⎤
⎥⎥⎥⎦ in.

Next, we determine the member local end displacement vector u1, using the
transformation matrix T1 from Example 3.8, and Eq. (3.63), as

u1 = T1v1 =

⎡
⎢⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0
0.33333

−0.14431

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
0.08455

−0.35325

⎤
⎥⎥⎥⎦ in.

����
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We can now calculate the member local end forces Q1 by applying the member
stiffness relationship, Q = ku (Eq. (3.7)). Thus, using k1 from Example 3.8, we obtain

Q1 = k1u1 =

⎡
⎢⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0
0.08455

−0.35325

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−81.732
0

81.732
0

⎤
⎥⎥⎥⎦ k

Recall from Chapter 3 that the member axial force equals the first element of the Q1

vector; that is,

Qa1 = −81.732 k

in which the negative sign indicates that the axial force is tensile, or

Qa1 = 81.732 k (T) Ans

By applying Eq. (3.66), we determine the member global end forces as

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎣

0.6 −0.8 0 0
0.8 0.6 0 0
0 0 0.6 −0.8
0 0 0.8 0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−81.732
0

81.732
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−49.039
−65.386

49.039
65.386

⎤
⎥⎥⎥⎦

3
4
1
2

k����

Using the member code numbers 3, 4, 1, 2, we store the pertinent elements of F1 in the
support reaction vector R (see Fig. 7.8(c)).

Member 2

v2 =

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦

5
6
1
2

=

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
0.33333

−0.14431

⎤
⎥⎥⎥⎦ in.

Using T2 from Example 3.8, we calculate

u2 = T2v2 =

⎡
⎢⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0
0.33333

−0.14431

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

−0.14431
−0.33333

⎤
⎥⎥⎥⎦ in.

Next, using k2 from Example 3.8, we determine the member local end forces to be

Q2 = k2u2 =

⎡
⎢⎢⎢⎣

906.25 0 −906.25 0
0 0 0 0

−906.25 0 906.25 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0

−0.14431
−0.33333

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

130.78
0

−130.78
0

⎤
⎥⎥⎥⎦ k

Qa2 = 130.78 k (C) Ans

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

130.78
0

−130.78
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
130.78

0
−130.78

⎤
⎥⎥⎥⎦

5
6
1
2

k����
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Section 7.3 Support Displacements 375

Member 3

v3 =

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦

7
8
1
2

=

⎡
⎢⎢⎢⎣

0
ds8

d1

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
−0.5

0.33333
−0.14431

⎤
⎥⎥⎥⎦ in.

Note that the support settlement ds8 = −0.5 in. is included in the foregoing global
end displacement vector v3 for member 3. Next, using the member’s direction cosines,
cos θ = −0.6 and sin θ = 0.8, and Eq. (3.61), we evaluate its transformation matrix:

T3 =

⎡
⎢⎢⎢⎣

−0.6 0.8 0 0
−0.8 −0.6 0 0

0 0 −0.6 0.8
0 0 −0.8 −0.6

⎤
⎥⎥⎥⎦

and determine the member local end displacements as

u3 = T3v3 =

⎡
⎢⎢⎢⎣

−0.6 0.8 0 0
−0.8 −0.6 0 0

0 0 −0.6 0.8
0 0 −0.8 −0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
−0.5

0.33333
−0.14431

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−0.4
0.3

−0.31545
−0.18008

⎤
⎥⎥⎥⎦ in.

To obtain the member local stiffness matrix, we substitute E = 29,000 ksi,
A = 8 in.2, and L = 240 in. into Eq. (3.27):

k3 =

⎡
⎢⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎥⎦ k/in.

The member local end forces can now be computed as

Q3 = k3u3 =

⎡
⎢⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−0.4
0.3

−0.31545
−0.18008

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−81.732
0

81.732
0

⎤
⎥⎥⎥⎦ k

Thus,

Qa3 = −81.732 k = 81.732 k (T) Ans

Finally, we calculate the member global end forces as

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎣

−0.6 −0.8 0 0
0.8 −0.6 0 0
0 0 −0.6 −0.8
0 0 0.8 −0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−81.732
0

81.732
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

49.039
−65.386
−49.039

65.386

⎤
⎥⎥⎥⎦

7
8
1
2

����

and store the pertinent elements of F3 in the reaction vector R, as shown in Fig. 7.8(c).

Support Reactions: The completed reaction vector R is shown in Fig. 7.8(c), and the
support reactions are depicted on a line diagram of the truss in Fig. 7.8(d). Ans
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Equilibrium Check: Applying the equilibrium equations to the free body of the entire
structure (Fig. 7.8(d)), we write

+ → ∑
FX = 0 −49.039 + 49.039 = 0 Checks

+ ↑ ∑
FY = 0 −65.386 + 130.78 − 65.386 = 0.008 ≈ 0 Checks

+ ∑
M©2 = 0 130.78(12) − 65.386(24) = 0.096 k-ft ≈ 0 Checks

Y

8 m 8 m 8 m

15 kN/m

1
2 3

4

EI = constant
E = 70 GPa
I = 102(106) mm4

(a) Beam

1

2 3

4

3

4

5 6 7

81 2

Y

X

1 2 3

(b) Analytical Model

MT = 2

1 2 1 2

S =
[

3,570 + 3,570 1,785

1,785 3,570 + 2,677.5

]
1

2
=

[
7,140 1,785

1,785 6,247.5

]
1

2

(c) Structure Stiffness Matrix 

Structure Fixed-Joint Force Vector Due to Member Loads

P f =
[ −80 + 80

−80 +120

]
1

2
=

[
0

40

]
1

2

(d)

Fig. 7.9

E X A M P L E 7.3 Determine the joint displacements, member end forces, and support reactions for the
continuous beam shown in Fig. 7.9(a), due to the combined effect of the uniformly
distributed load shown and the settlements of 45 mm and 15 mm, respectively, of
supports 3 and 4. Use the matrix stiffness method.

S O L U T I O N Analytical Model: See Fig. 7.9(b). The structure has two degrees of freedom and six
restrained coordinates. Note that member 3 is modeled as being hinged at its right end
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Section 7.3 Support Displacements 377

(i.e., MT = 2), because the moment at that end of the member must be 0. This
approach enables us to eliminate the rotational degrees of freedom of joint 4 from the
analysis, by modeling it as a hinged joint with its rotation restrained by an imaginary
clamp.

Structure Stiffness Matrix and Fixed-Joint Forces Due to Member Loads:

Members 1 and 2 (MT = 0) By substituting E = 70(106) kN/m2, I = 102(10−6) m4,
and L = 8 m into Eq. (5.53), we evaluate the member stiffness matrices k as

Member 2 −→ 5 1 6 2

Member 1 −→ 3 4 5 1

k1 = k2 =

⎡
⎢⎢⎢⎣

167.34 669.38 −167.34 669.38
669.38 3,570 −669.38 1,785

−167.34 −669.38 167.34 −669.38
669.38 1,785 −669.38 3,570

⎤
⎥⎥⎥⎦

3
4
5
1

5
1
6
2

(1)

P f =
[

0 + 30.122

40 + 30.122 − 10.041

]
1

2
=

[
30.122

60.081

]
1

2

(e) Structure Fixed-Joint Force Vector Due to Member Loads and
Support Displacements

1 276.512 86.976

58.692 61.308

3 4

15 kN/m15 kN/m15 kN/m

85.705

70.713 49.287

2 386.976 85.705

60.159 59.841

1 2 3

(f) Member End Forces

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

58.692

76.512

61.308 + 60.159

59.841 + 70.713

49.287

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

4

5

6

7

8

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

58.692 kN

76.512 kN·m
121.47 kN

130.55 kN

49.287 kN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(g) Support Reaction Vector

15 kN/m

1 2 3
4

58.692 kN

76.512 kN•m

121.47 kN 130.55 kN 49.287 kN

(h) Support Reactions

Fig. 7.9 (continued)
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Using the equations given inside the front cover, we evaluate the fixed-end shears and
moments due to the 15 kN/m uniformly distributed load as

F Sb = F Se = 60 kN F Mb = −F Me = 80 kN · m (2)

Thus, using Eq. (5.99), we obtain the member fixed-end force vectors:

Q f 1 = Q f 2 =

⎡
⎢⎢⎢⎣

60
80
60

−80

⎤
⎥⎥⎥⎦

3
4
5
1

5
1
6
2

(3)

Member 1 Member 2

Next, using the code numbers for member 1 (3, 4, 5, 1) and member 2 (5, 1, 6, 2), we
store the pertinent elements of k1 and k2 into the structure stiffness matrix S, as shown
in Fig. 7.9(c). Similarly, the pertinent elements of Qf 1 and Qf 2 are stored in the struc-
ture fixed-joint force vector Pf, as shown in Fig. 7.9(d).

Member 3 (MT = 2) Because MT = 2 for this member, we use Eqs. (7.18) and
(7.19) to determine its stiffness matrix k and fixed-end force vector Qf, respectively.
Thus, by applying Eq. (7.18), we obtain

6 2 7 8

k3 =

⎡
⎢⎢⎢⎣

41.836 334.69 −41.836 0
334.69 2,677.5 −334.69 0
−41.836 −334.69 41.836 0

0 0 0 0

⎤
⎥⎥⎥⎦

6
2
7
8

(4)

Next, by substituting the values of the fixed-end shears and moments from Eq. (2) into
Eq. (7.19), we obtain the fixed-end force vector for the released member 3 as

Q f 3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 − 3(−80)

2(8)

80 − 1

2
(−80)

60 + 3(−80)

2(8)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

75

120

45

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6

2

7

8

(5)

The relevant elements of k3 and Qf 3 are stored in S and Pf , respectively, using the
member code numbers 6, 2, 7, 8. The completed structure stiffness matrix S, and the
Pf vector containing the structure fixed-joint forces due to member loads, are shown in
Figs. 7.9(c) and (d), respectively.

Structure Fixed-Joint Forces Due to Support Displacements: From the analytical
model given in Fig. 7.9(b), we observe that the given support displacements can be
expressed as

ds6 = −0.045 m ds7 = −0.015 m

As members 2 and 3 are attached to the supports that undergo displacements, we com-
pute, for these members, the fixed-end forces due to support displacements, and add
them to the previously formed Pf vector due to member loads.

378 Chapter 7 Member Releases and Secondary Effects
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Section 7.3 Support Displacements 379

Member 2 Using the member code numbers 5, 1, 6, 2, we form its fixed-end dis-
placement vector due to support displacements, as

u f s2 =

⎡
⎢⎢⎢⎣

u f s1

u f s2

u f s3

u f s4

⎤
⎥⎥⎥⎦

5
1
6
2

=

⎡
⎢⎢⎢⎣

0
0

ds6

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

−0.045
0

⎤
⎥⎥⎥⎦ m

Next, using the member stiffness matrix from Eq. (1) and the member stiffness relation-
ship Qfs = kufs, we evaluate the fixed-end force vector due to support displacements, as

Q f s2 = k2u f s2 =

⎡
⎢⎢⎢⎣

167.34 669.38 −167.34 669.38
669.38 3,570 −669.38 1,785

−167.34 −669.38 167.34 −669.38
669.38 1,785 −669.38 3,570

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0

−0.045
0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

7.53
30.122
−7.53
30.122

⎤
⎥⎥⎥⎦

5
1
6
2

���

���

���

The relevant elements of Qfs2 are now added into the previously formed Pf, using the
member code numbers, as indicated in Fig. 7.9(e).

Member 3 Based on the member code numbers 6, 2, 7, 8, its fixed-end displace-
ment vector, due to support displacements, is written as

u f s3 =

⎡
⎢⎢⎢⎣

u f s1

u f s2

u f s3

u f s4

⎤
⎥⎥⎥⎦

6
2
7
8

=

⎡
⎢⎢⎢⎣

ds6

0
ds7

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−0.045
0

−0.015
0

⎤
⎥⎥⎥⎦ m

Using k3 from Eq. (4), we calculate

Q f s3 = k3u f s3 =

⎡
⎢⎢⎢⎣

41.836 334.69 −41.836 0
334.69 2,677.5 −334.69 0
−41.836 −334.69 41.836 0

0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−0.045
0

−0.015
0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

−1.2551
−10.041

1.2551
0

⎤
⎥⎥⎥⎦

6
2
7
8

����

����

The pertinent elements of Qf s3 are stored in Pf using the member code numbers. The
completed structure fixed-joint force vector Pf, due to member loads and support dis-
placements, is given in Fig. 7.9(e).

Joint Load Vector: Since no external loads are applied to the joints of the beam, its
joint load vector is 0; that is

P = 0
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380 Chapter 7 Member Releases and Secondary Effects

Joint Displacements: By substituting the numerical values of P, Pf , and S into
Eq. (5.109), we write the stiffness relations for the entire beam as

P − P f = Sd[
0
0

]
−

[
30.122
60.081

]
=

[ −30.122
−60.081

]
=

[
7,140 1,785
1,785 6,247.5

] [
d1

d2

]

By solving these equations, we determine the joint displacements to be

d =
[ −1.9541

−9.0585

]
1
2

× 10−3 rad Ans

Member End Displacements and End Forces:

Member 1 Using the member code numbers 3, 4, 5, 1, we write its end displacement
vector as

u1 =

⎡
⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎦

3
4
5
1

=

⎡
⎢⎢⎢⎣

0
0
0
d1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
0

−1.9541

⎤
⎥⎥⎥⎦ × 10−3

(6)

The member end forces can now be calculated using the member stiffness rela-
tionship Q = ku + Qf (Eq. (5.4)). Thus, using k1 from Eq. (1), Qf 1 from Eq. (3), and
u1 from Eq. (6), we calculate

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎣

58.692 kN
76.512 kN · m

61.308 kN
−86.976 kN · m

⎤
⎥⎥⎥⎦

3
4
5
1

�������

Ans

The end forces for member 1 are depicted in Fig. 7.9(f). To generate the support re-
action vector R, we store the pertinent elements of Q1 in R, using the member code
numbers, as shown in Fig. 7.9(g).

Member 2

u2 =

⎡
⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎦

5
1
6
2

=

⎡
⎢⎢⎢⎣

0
d1

ds6

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
−1.9541

−45
−9.0585

⎤
⎥⎥⎥⎦ × 10−3 (7)

Note that the support displacement ds6 is included in the foregoing end displacement
vector for member 2. Using k2 from Eq. (1), Qf 2 from Eq. (3), and u2 from Eq. (7), we
determine

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎣

60.159 kN
86.976 kN · m

59.841 kN
−85.705 kN · m

⎤
⎥⎥⎥⎦

5
1
6
2

�������

�������

�������

Ans

Member 3

u3 =

⎡
⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎦

6
2
7
8

=

⎡
⎢⎢⎢⎣

ds6

d2

ds7

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−45
−9.0585

−15
0

⎤
⎥⎥⎥⎦ × 10−3 (8)
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Section 7.3 Support Displacements 381

90 k

1.5 k/ft125 k-ft

10 ft

10 ft

10 ft 20 ft

E, A, I = constant
E = 29,000 ksi
A = 11.8 in.2

I = 310 in.4

(a) Frame

Y

1

2 3

3

2

5

8

6

9

71

4 X

2

1

(b) Analytical Model

Fig. 7.10

E X A M P L E 7.4 Determine the joint displacements, member local end forces, and support reactions for
the plane frame of Fig. 7.10(a), due to the combined effect of the loading shown and
a settlement of 1 in. of the left support. Use the matrix stiffness method.

S O L U T I O N This frame was analyzed in Example 6.6 for external loading. In this example, we use
the same analytical model of the frame, so that the various member and structure
matrices calculated previously can be reused in the present example.

Analytical Model: See Fig. 7.10(b). The frame has three degrees of freedom and six
restrained coordinates.

The rotation, u4, of the released end of this member, if desired, can be evaluated using
Eq. (7.20). Finally, using k3 from Eq. (4), Qf 3 from Eq. (5), and u3 from Eq. (8), we
calculate the member end forces as

Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎢⎣

70.713 kN
85.705 kN · m

49.287 kN
0

⎤
⎥⎥⎥⎦

6
2
7
8

������

������ Ans

The member end forces are shown in Fig. 7.9(f).

Support Reactions: The completed reaction vector R is shown in Fig. 7.9(g), and the
support reactions are depicted on a line diagram of the beam in Fig. 7.9(h). Ans
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1

2

20
.9

19
 k

19
.3

31
 k

98
.4

41
 k

40
.2

49
 k

80
.4

98
 k

1,
43

1.
7 

k-
in

.

281.39 k-in.

1,
21

8.
6 

k-
in

.

17
.9

43
 k

1,537 k-in.
2 3

7.4235 k 22.576 k

25.325 k 25.325 k

0.125 k/in.

2

1

(c) Member Local End Forces

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

25.313 k

97.404 k

k-in.

−25.325 k

22.576 k

−  1 ,537k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

5

6

7

8

9

(d) Support Reaction Vector

1,431.7

90 k

0.125 k/in.
1,500 k-in.

1,537 k-in.

1

2 3

22.576 k

97.404 k

1,431.7 k-in.

25.313 k

25.325 k

2

1

(e) Support Reactions

Fig. 7.10 (continued)
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Section 7.3 Support Displacements 383

Structure Stiffness Matrix: As determined in Example 6.6, the structure stiffness ma-
trix for the frame, in units of kips and inches, is given by

S =
⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 2,838.48

⎤
⎦ (1)

Structure Fixed-Joint Forces Due to Member Loads: From Example 6.6,

P f =
⎡
⎣ 0

60
−750

⎤
⎦1

2
3

(2)

Joint Load Vector: From Example 6.6,

P =
⎡
⎣ 0

0
−1,500

⎤
⎦1

2
3

(3)

Structure Fixed-Joint Forces Due to Support Displacement: From Fig. 7.10(b), we
observe that the given 1 in. downward displacement of support 1 can be expressed as

ds5 = −1 in.

As member 1 is the only member attached to support 1, we form its global fixed-end
displacement vector due to support displacement, using the member code numbers 4,
5, 6, 1, 2, 3, as

v f s1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v f s1

v f s2

v f s3

v f s4

v f s5

v f s6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
ds5

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

in.

Next, we substitute the member global stiffness matrix K1 (given in Example 6.6) and
the foregoing vf s1 vector into Eq. (7.26), to evaluate the member global fixed-end
force vector, Ff s1, due to support settlement:

F f s1 = K1v f s1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−507.89
−1,021.4

−335.04
507.89

1,021.4
−335.04

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

�����

Based on the member code numbers, we add the elements in the fourth, fifth, and
sixth rows of Ff s1 into rows 1, 2, and 3, respectively, of the previously formed Pf vec-
tor (Eq. (2)), to obtain the structure fixed-joint force vector due to the combined effect
of the member loads and support displacement, as

P f =
⎡
⎣ 0 + 507.89

60 + 1,021.4
−750 − 335.04

⎤
⎦1

2
3

=
⎡
⎣ 507.89

1,081.4
−1,085.04

⎤
⎦ (4)
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384 Chapter 7 Member Releases and Secondary Effects

Joint Displacements: By substituting P (Eq. (3)), Pf (Eq. (4)), and S (Eq. (1)) into
Eq. (6.42), we write the stiffness relations for the entire frame as

P − P f = Sd⎡
⎣ 0

0
−1,500

⎤
⎦ −

⎡
⎣ 507.89

1,081.4
−1,085.04

⎤
⎦ =

⎡
⎣ −507.89

−1,081.4
−414.96

⎤
⎦ =

⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

Solving these equations, we determine the joint displacements to be

d =
⎡
⎣ 0.017762 in.

−1.0599 in.

0.00074192 rad

⎤
⎦1

2
3

Ans

Member End Displacements and End Forces:

Member 1

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
ds5

0
d1

d2

d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0.017762

−1.0599
0.00074192

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using the member transformation matrix T1 from Example 6.6, and Eq. (6.20),
we calculate

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.89443
−0.44721

0
−0.94006
−0.48988

0.00074192

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Next, we use the member local stiffness matrix k1 and fixed-end force vector Qf1

from Example 6.6, and Eq. (6.4), to compute the local end forces as

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

98.441 k
20.919 k

1,431.7 k-in.
−17.943 k
19.331 k

−1,218.6 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

The local member end forces are depicted in Fig. 7.10(c).
The member global end forces F can now be determined by applying Eq. (6.23), as

F1 = TT Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25.313
97.404

1,431.7
−25.314
−7.404

−1,218.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

�����
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Section 7.4 Computer Implementation of Support Displacement Effects 385

7.4 COMPUTER IMPLEMENTATION OF
SUPPORT DISPLACEMENT EFFECTS
The computer programs developed previously can be extended with relative
ease, and without changing their overall organization, to include the effects of
support displacements in the analysis. From the analysis procedure developed
in Section 7.3, we realize that inclusion of support displacement effects essen-
tially involves extension of the existing programs to perform three additional
tasks: (a) reading and storing of the support displacement data, (b) evaluation
of the structure fixed-joint forces due to support displacements, and (c) inclu-
sion of support displacements in the member end displacement vectors, before
calculation of the final member end forces and support reactions.

In this section, we consider the programming of these tasks, with particu-
lar reference to the program for the analysis of plane frames (Section 6.7). The
modifications necessary in the plane truss and beam analysis programs are also
described.

Input of Support Displacement Data The process of reading and storing the
support displacements is similar to that for inputting the joint load data (e.g.,
see flowcharts in Figs. 4.3(f) and 5.20(b)). This process can be conveniently
programmed using the flowchart given in Fig. 7.11 on the next page. The support
displacement data consists of (a) the number of supports that undergo displace-
ments (NSD), and (b) the joint number, and the magnitudes of the displace-
ments, for each such support. As indicated in Fig. 7.11, the joint numbers of the

Using the member code numbers, the pertinent elements of F1 are stored in the reac-
tion vector R (see Fig. 7.10(d)).

Member 2 The global and local end displacements for this horizontal member are

u2 = v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.017762
−1.0599

0.00074192
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k2 and Qf 2 from Example 6.6, we compute the member local and global
end forces to be

F2 = Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25.325 k
7.4235 k

−281.39 k-in.
−25.325 k

22.576 k
−1,537 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

������� Ans

The pertinent elements of F2 are stored in R.

Support Reactions: See Figs. 7.10(d) and (e). Ans
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supports that undergo displacements are stored in an integer vector JSD of order
NSD × 1, with their displacements stored in the corresponding rows of a real
matrix SDJ of order NSD × NCJT. For example, in the case of plane frames,
the support displacement matrix SDJ would be of order NSD × 3, with the sup-
port translations in the X and Y directions and the rotations being stored in the
first, second, and third columns, respectively, of the matrix SDJ.

This subprogram for inputting support displacement data can be conve-
niently added as Part VIc in the computer programs for the analysis of plane
frames (see Table 6.1) and beams (see Table 5.1); and it can be inserted be-
tween Parts VI and VII of the plane truss computer program (see Table 4.1).

Evaluation of Structure Equivalent Joint Loads Due to Support Displace-
ments In this part of the program, the equivalent joint loads, or the negatives
of the structure fixed-joint forces (i.e., −Pf) due to support displacements, are
added to the structure load vector P. A flowchart for constructing this part of
the plane frame analysis program is presented in Fig. 7.12. As this flowchart
indicates, the program essentially performs the following operations for each
member of the structure.

1. First, the program determines whether the member under consideration,
IM, is attached to a support that undergoes displacement, by comparing the
member beginning and end joint numbers to those stored in the support
displacement vector JSD. If the member is not attached to such a support, then
no further action is taken for that member.

386 Chapter 7 Member Releases and Secondary Effects

Start Support Displacement Input

Read NSD

Dimension JSD(NSD), SDJ(NSD, NCJT)

I = 1

I = I + 1

Print Support Displacement Input Data

I ≤ NSD?

Read JSD(I ), SDJ(I, 1), SDJ(I, 2), . . . ,
 SDJ(I, NCJT )

Continue to Next Part

yes

no

Fig. 7.11 Flowchart for Reading and Storing Support
Displacement Data
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Section 7.4 Computer Implementation of Support Displacement Effects 387

2. If the member is attached to a support that undergoes displacement(s),
then its global stiffness matrix GK (= K) is obtained by calling, in order, the
subroutines MSTIFFL (Fig. 7.4), MTRANS (Fig. 6.26), and MSTIFFG
(Fig. 6.27). 

3. Next, the program calls the subroutine MFEDSD to form the member
global fixed-end displacement vector, V (= vfs), due to support displacements.

Start Part IXb

IM = 1

Dimension GK(2*NCJT, 2*NCJT ), BK(2*NCJT, 2*NCJT ),
FF(2*NCJT), V(2*NCJT)

IM ≤ NM?

ICOUNT > 0?

I = MPRP(IM, 3), E = EM(I)
I = MPRP(IM, 4), A = CP(I, 1)

ZI = CP(I, 2), MT = MPRP(IM, 5)
XB = COORD(JB, 1)
YB = COORD(JB, 2)
XE = COORD(JE, 1)
YE = COORD(JE, 2)

BL = SQR((XE − XB)^2 + (YE − YB)^2)
CX = (XE − XB)/BL
CY = (YE − YB)/BL

Call, in order, Subroutines:
MSTIFFL, MTRANS, MSTIFFG

JB = MPRP(IM, 1)
JE = MPRP(IM, 2)

Call Subroutine MFEDSD

Call Subroutine MFEFSD

Call Subroutine STOREPF

Continue to Part X

IM = IM + 1

yes

yes

I = 1
ICOUNT = 0

ICOUNT = 1

I ≤ NSD?

yes

JB or JE = JSD(I)?

yes

no

Initialize all elements of V to zero

I = I + 1nono

no

Fig. 7.12 Flowchart for Generating Structure Equivalent Joint Load Vector Due to Support
Displacements
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As the flowchart in Fig. 7.13 indicates, this subroutine first checks the support
displacement vector JSD to determine if the beginning joint of the member,
JB, is a support joint subjected to displacements. If JB is such a joint, then the
values of its displacements are read from the corresponding row of the support
displacement matrix SDJ, and stored in the appropriate elements of the upper
half of the member fixed-end displacement vector V. The process is then re-
peated for the end joint of the member, JE, with any corresponding support dis-
placements being stored in the lower half of V.

4. Returning our attention to Fig. 7.12, we can see that the program then
calls the subroutine MFEFSD (Fig. 7.14), which evaluates the member global
fixed-end force vector due to support settlements FF ( = Ff s), using the rela-
tionship Ff s = Kvf s (Eq. (7.26)). 

5. Finally, the negative values of the pertinent element of FF are added in
their proper positions in the structural load vector P, using the subroutine

388 Chapter 7 Member Releases and Secondary Effects

yes

Start Subroutine MFEDSD

Arguments: JB, JE, NCJT, NSD, JSD, SDJ, V

I = 1

I ≤ NSD?

J = 1

J ≤ NCJT?

V(J) = V(J) + SDJ(I, J)

yes

J = J + 1

yes

yes

JSD(I) = JB?

no

no

no

no

no

JSD(I) = JE?

J = NCJT + 1

J ≤ 2*NCJT?

V(J) = V(J) + SDJ(I, J − NCJT )

yes

J = J + 1

End Subroutine MFEDSD
Return to calling program

I = I + 1

Fig. 7.13 Flowchart of Subroutine MFEDSD for Determining Member Global Fixed-
End Displacement Vector Due to Support Displacements
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Section 7.4 Computer Implementation of Support Displacement Effects 389

STOREPF, which was developed in Chapter 6 (Fig. 6.30). When these
operations have been completed for each member of the frame, the structure load
vector P contains the equivalent joint loads (or the negatives of the structure
fixed-joint forces) due to support displacements.

This subprogram, designated Part IXb in Fig. 7.12, can be conveniently in-
serted between Parts IX and X of the program for the analysis of plane frames
(see Table 6.1). The flowcharts given in Figs. 7.12 through 7.14 can be used to
develop the corresponding part of the beam analysis program (see Table 5.1),
provided that: (a) the member global vectors V (= vfs) and FF (= Ffs) are re-
placed by the local vectors U (= ufs) and QF (= Qfs), respectively; (b) the
member local stiffness matrix BK (= k) is used, instead of the global matrix
GK (= K), in subroutine MFEFSD; and (c) the subroutine STOREPF devel-
oped in Chapter 5 (Fig. 5.28) is employed to store the negative elements of QF
in the structure load vector P. The process of programming the corresponding
part of the plane truss analysis program is essentially the same as discussed
herein for the case of plane frames, except that the subroutine STOREPF
(Fig. 6.30) should be copied from the plane frame analysis program and added
to the plane truss program.

Calculation of Member Forces and Support Reactions (Part XII) Parts XII of
the programs developed previously (see flowcharts in Figs. 6.31, 5.30, and 4.14)
should be modified to include support displacements in the end displacement

Initialize all elements of FF to zero

J = 1

Start Subroutine MFEFSD

Arguments: NCJT, GK, V, FF

I ≤ 2*NCJT?

J ≤ 2*NCJT?

FF(I) = FF(I) + GK(I, J)*V(J)

yes

yes

End Subroutine MFEFSD
Return to calling program

J = J + 1

I = I + 1 no

no

Fig. 7.14 Flowchart of Subroutine MFEFSD for Determining
Member Global Fixed-End Force Vector Due to Support
Displacements
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vectors of members attached to supports, before the end forces for such mem-
bers are calculated. This can be achieved by simply calling the subroutine
MFEDSD (Fig. 7.13) in these programs, to add the compatible support dis-
placements to the member end displacement vectors. In the plane frame and
truss analysis programs (Figs. 6.31 and 4.14, respectively), the subroutine
MFEDSD should be called after the subroutine MDISPG has been used to form
the member global end displacement vector V (= v) due to the joint displace-
ments d, but before the subroutine MDISPL is called to evaluate the member
local end displacement vector U (= u). In the program for the analysis of beams
(Fig. 5.30), however, the subroutine MFEDSD should be called after the sub-
routine MDISPL has been used to form the member end displacement vector
U (= u) from the joint displacements d, but before the member end forces are
calculated using the subroutine MFORCEL. Furthermore, as discussed previ-
ously, before it can be used in the beam analysis program, the subroutine
MFEDSD (as given in Fig. 7.13) must be modified to replace V with U.

It may be of interest to note that the program for the analysis of plane
frames, which was initially developed in Chapter 6 and has been extended in
this chapter, is quite general, in the sense that it can also be used to analyze
beams and plane trusses. When analyzing a truss using the frame analysis pro-
gram, all of the truss members are modeled as hinged at both ends with
MT = 3, and all the joints of the truss are modeled as hinged joints restrained
against rotations by imaginary clamps.

7.5 TEMPERATURE CHANGES AND
FABRICATION ERRORS
Like support displacements, changes in temperature and small fabrication
errors can cause considerable stresses in statically indeterminate structures,
which must be taken into account in their designs. However, unlike support
displacements, which are generally specified with reference to the global coor-
dinate systems of structures, temperature changes and fabrication errors, like
member loads, are usually defined relative to the local coordinate systems of
members. Therefore, the stiffness methods developed previously for the analy-
sis of structures subjected to member loads, can be used without modifications
to determine the structural responses to temperature changes and fabrication
errors. The only difference is that the fixed-end forces, which develop in mem-
bers due to temperature changes and fabrication errors, must now be included
in the member local fixed-end force vectors QF.

In this section, we derive the expressions for the fixed-end forces that de-
velop in the members of framed structures due to temperature changes and two
common types of fabrication errors. The application of these fixed-end force
expressions in analysis is then illustrated by some examples.

Member Fixed-End Forces Due to Temperature Changes
We can develop the desired relationships by first determining the displace-
ments caused by temperature changes at the ends of members that are free to

390 Chapter 7 Member Releases and Secondary Effects
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Section 7.5 Temperature Changes and Fabrication Errors 391

deform. The fixed-end forces required to suppress these member end displace-
ments can then be obtained, using the member stiffness matrices.

To examine member end displacements due to temperature changes, let us
consider an arbitrary simply supported member of a plane frame, as shown in
Fig. 7.15(a). Now, assume that the member is heated so that the temperature in-
crease of its top surface is Tt and that of its bottom surface is Tb, with the tem-
perature increase varying linearly between Tt and Tb over the depth d of the
member cross-section, as shown in Fig. 7.15(b). Note that the temperature does
not vary along the length of the member. Because the member is simply sup-
ported (so that it is statically determinate), it is free to expand in the longitudi-
nal direction. If we assume that the member cross-section is symmetric about
the xz plane (Fig. 7.15(b)) containing its centroidal axis, then the temperature
increase at the level of the centroidal axis (i.e., at the distance d/2 from the top
or bottom of the member) would be (Tb + Tt)/2. This temperature increase
causes the member’s centroidal axis to elongate by an amount �T :

�T = α

(
Tb + Tt

2

)
L (7.29)

in which α denotes the coefficient of thermal expansion.

L

x

y

x

Temperature increase � Tt

Temperature
increase � Tb

θT

�T

θT θT

θT

b

b

e

e′
Tt+Tb

Tt

2

Tb

d
2
d
2

z

y

(Tb Tt)L
2

θT

θT

d

(a) Simply Supported Member
Subjected to Temperature Change

(b) Temperature Variation
over Member Depth

(c) Member End Rotation

Fig. 7.15
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In addition to the axial deformation �T , the member also undergoes bend-
ing as its top and bottom surfaces elongate by different amounts (because they
are subjected to different temperature increases). For example, as depicted in
Fig. 7.15, if Tb > Tt , then the member bends concave upward, causing the
cross-sections at its ends b and e to rotate inward, as shown. Since the temper-
ature increase is uniform along the member’s length, the rotations of its two
end cross-sections must be equal in magnitude. From Fig. 7.15, we can see that
these member end rotations can be related to the temperature change by divid-
ing one-half of the difference between the elongations of the bottom and top
fibers of the member, by its depth. Thus,

θT = α(Tb − Tt )L

2d
(7.30)

in which θT represents the magnitude of the rotations of the member end cross-
sections which, in turn, equal the slopes of the elastic curve of the member at
its ends, as shown in Figs. 7.15(a) and (c).

Using the sign convention for member local end displacements estab-
lished in Chapter 6, we can express the local end displacement vector uT for the
simply supported member, due to the temperature change, as

uT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−θT

�T

0
θT

⎤
⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6

= αL

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

− (Tb − Tt )/d
Tb + Tt

0
(Tb − Tt )/d

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.31)

in which the rotation of the beginning, b, of the member is negative, because it
is clockwise, whereas the rotation of the member end, e, which has a counter-
clockwise sense, is positive.

The member fixed-end forces necessary to suppress its end displacements
uT can now be established by applying the principle of superposition, as illus-
trated in Fig. 7.16. Figure 7.16(a) shows a fixed member of a plane frame sub-
jected to a temperature increase, causing fixed-end forces to develop at its
ends. In Fig. 7.16(b), the corresponding simply supported member is subjected
to the same temperature change, causing the displacements uT (Eq. (7.31)) at
its ends, but no end forces; in Fig. 7.16(c), the simply supported member is
subjected to the same fixed-end forces that develop in the fixed member of
Fig. 7.16(a), but no temperature change. By comparing Figs. 7.16(a) through
(c), we realize that the response of the fixed member of Fig. 7.16(a) must equal
the superposition of the responses of the two simply supported members of
Figs. 7.16(b) and (c). Therefore, since the end displacements of the fixed
member due to the temperature change are 0 (Fig. 7.16(a)), its fixed-end
forces, when applied to the simply supported beam (Fig. 7.16(c)), must cause
the end displacements, −uT, that are equal in magnitude but opposite in direc-
tion to those due to the temperature change, uT (Fig. 7.16(b)). The forces that
can cause the end displacements −uT in the simply supported member can be
conveniently obtained by premultiplying the negative of the uT vector given in
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Section 7.5 Temperature Changes and Fabrication Errors 393

Eq. (7.31), by the member local stiffness matrix k (Eq. (6.6)). Thus,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSb

FMb

FAe

FSe

FMe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 12 6L 0 −12 6L

0 6L 4L2 0 −6L 2L2

− AL2

I
0 0

AL2

I
0 0

0 −12 −6L 0 12 −6L

0 6L 2L2 0 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
−αL

2

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

− (Tb − Tt )/d

Tb + Tt

0

(Tb − Tt )/d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b e

FSb

FAb

FMb

FMe

FAe

FSe

Temperature
increase � Tt

Temperature
increase � Tb

(a) Fixed Member Subjected to Temperature Change
and Fixed-End Forces (No End Displacements)

(b) Simply Supported Member Subjected to Temperature
Change Only (End Displacements = uT)

b
e

Temperature increase � Tt ΔT

Temperature increase � Tb

θT θT

�

(c) Simply Supported Member Subjected to Fixed-End
Forces Only (End Displacements = −uT)

b

e

ΔT
θT θT

+

FSb

FAb

FMb

FMe

FAe

FSe

Fig. 7.16
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From which we obtain⎡
⎢⎢⎢⎢⎢⎢⎣

FAb

FSb

FMb

FAe

FSe

FMe

⎤
⎥⎥⎥⎥⎥⎥⎦

= Eα

⎡
⎢⎢⎢⎢⎢⎢⎣

A(Tb + Tt )/2
0

I (Tb − Tt )/d
−A(Tb + Tt )/2

0
−I (Tb − Tt )/d

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.32)

Thus, the fixed-end forces for the members of plane frames can be expressed as

(7.33)

The expressions for the fixed-end moments, given in Eqs. (7.33), can also be
used for the members of beams. However, as the beam members are free to ex-
pand axially, their fixed-end axial forces are 0 (i.e., FAb = FAe = 0). Similarly,
the expressions for the fixed-end axial forces, given in Eqs. (7.33), can be used
for the members of trusses; however, the fixed-end moments must now be set
equal to 0 (i.e., FMb = FMe = 0) in Eqs. (7.33), because the ends of truss
members are free to rotate.

The fixed-end force expressions given in Eqs. (7.33) are based on a lin-
early varying temperature change over the depth of the member cross-section.
If the member is subjected to a uniform temperature increase, Tu, over its
depth, then the corresponding expressions for fixed-end forces can be obtained
by simply substituting Tb = Tt = Tu into Eqs. (7.33). This yields

(7.34)

As Eqs. (7.34) indicate, the member fixed-end moments would be 0 in the case
of a uniform temperature change, because such a temperature change has no
tendency to bend the member, but only to cause axial deformation. Equa-
tions (7.34) can be used to determine the fixed-end forces for the members of
plane frames and trusses subjected to uniform temperature changes. As stated
previously, the members of beams are free to expand in their axial directions;
therefore, a uniform temperature change does not cause any fixed-end forces in
such members.

Member Fixed-End Forces Due to Fabrication Errors
In structural analysis terminology, fabrication error is used to refer to a small
initial deformation of a member in its unstressed state. The expressions for

FAb = −FAe = EAαTu

FAb = −FAe = EAα

(
Tb + Tt

2

)

FMb = −FMe = EIα

(
Tb − Tt

d

)
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Section 7.5 Temperature Changes and Fabrication Errors 395

member fixed-end forces due to fabrication errors can be derived in a manner
similar to that for the case of temperature changes. In the following paragraphs,
we develop the fixed-end force expressions for two common types of fabrica-
tion errors.

Errors in Initial Member Length Consider a member of a plane frame with
a specified design length L. Now, suppose that the member is fabricated so that
its initial unstressed length is longer than the specified length L by an amount
ea, as shown in Fig. 7.17. As the distance between the fixed supports is L, the
supports must exert a compressive axial force of magnitude EAea/L on the
member to reduce its length from L + ea to L, so that it can fit between the sup-
ports. Thus, the fixed-end forces that develop in the member due to its fabri-
cated length being too long by an amount ea are

(7.35)

Equations (7.35) can also be used to obtain fixed-end forces for the members
of trusses due to fabrication errors in their lengths.

Errors in Initial Member Straightness Another type of fabrication error com-
monly encountered in structural design involves a lack of initial straightness of
the members of beams and plane frames. Figure 7.18(a) on the next page shows
such a member of a beam, which somehow has been fabricated with an initial
bend, causing a small deflection eb at a distance l1 from the member’s left end. To
determine the fixed-end forces for this member, we first express the member end
rotations θb and θe in terms of the fabrication error eb, as (see Fig. 7.18(a))

θb = eb

l1
and θe = eb

l2
(7.36)

Using the sign convention established for beam members in Chapter 5, we
write the local end displacement vector ue for the member, due to the fabrication

FAb = −FAe = EA

L
ea

Fig. 7.17

b e e′

Fabrication error � ea

Design length � L

ea
EA
L

ea
EA
L

y

x
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error, as

ue =

⎡
⎢⎢⎣

0
−θb

0
θe

⎤
⎥⎥⎦

1
2
3
4

= eb

⎡
⎢⎢⎣

0
−1/ l1

0
1/ l2

⎤
⎥⎥⎦ (7.37)

in which the rotation of the beginning, b, of the member is considered to be
negative, because it has a clockwise sense. The member fixed-end forces
(Fig. 7.18(b)) necessary to suppress the end displacements ue can now be de-
termined by premultiplying the negative of the ue vector by the member local
stiffness matrix k (Eq. (5.53)). Thus,⎡

⎢⎢⎣
FSb

FMb

FSe

FMe

⎤
⎥⎥⎦ = EI

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦ (−eb)

⎡
⎢⎢⎣

0
−1/ l1

0
1/ l2

⎤
⎥⎥⎦

= 2EI eb

L2l1l2

⎡
⎢⎢⎣

3(l2 − l1)

L(2l2 − l1)

3(l1 − l2)

L(l2 − 2l1)

⎤
⎥⎥⎦ (7.38)

396 Chapter 7 Member Releases and Secondary Effects

eb

Initial configuration
due to fabrication error

Design configuration

L

y

x
�1 �2

eb
θb θe

(a) Unstressed Member with Fabrication Error

eb

L

y

x

FSb

FMb

FMe

FSe

(b) Fixed Member with Fabrication Error

Fig. 7.18
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Section 7.5 Temperature Changes and Fabrication Errors 397

Therefore, the fixed-end forces for the members of beams are:

(7.39)

As the fabrication error eb is assumed to be small, it does not cause any axial
deformation of the member; therefore, no axial force develops in the fixed
member (i.e., FAb = FAe = 0). Thus, the expressions for the fixed-end forces
given in Eq. (7.39) can also be used for the members of plane frames.

Procedure for Analysis
As stated at the beginning of this section, the procedures for the analysis of
beams and plane frames, including the effects of temperature changes and fabri-
cation errors, remain the same as developed in Chapters 5 and 6, respectively—
provided that the member fixed-end forces caused by the temperature changes
and fabrication errors are now included in the member local fixed-end force
vectors Q f. In the case of plane trusses, however, the member and structure
stiffness relationships must now be modified, to include the effects of
temperature changes and fabrication errors, as follows: (a) the member local
stiffness relationship given in Eq. (3.7) should be modified to Q = ku + Qf,
(b) the member global stiffness relationship (Eq. (3.71)) now becomes
F = Kv + Ff, and (c) the structure stiffness relationship (Eq. (3.89)) should be
updated to include the structure fixed-joint forces as P − Pf = Sd. The struc-
ture fixed-joint force vector Pf can be generated using the member code num-
ber technique as discussed in Chapter 6 for the case of plane frames.

FSb = −FSe = 6EI eb

L2l1l2
(l2 − l1)

FMb = 2EI eb

Ll1l2
(2l2 − l1)

FMe = 2EI eb

Ll1l2
(l2 − 2l1)

E X A M P L E 7.5 Determine the joint displacements, member axial forces, and support reactions for
the plane truss shown in Fig. 7.19(a) on the next page, due to the combined effect of the
following: (a) the joint loads shown in the figure, (b) a temperature drop of 30° F in
member 1, and (c) the fabricated length of member 3 being 1

8 in. too short. Use the
matrix stiffness method.

S O L U T I O N This truss was analyzed in Example 3.8 for joint loads only, and in Example 7.2 for a
support displacement.

Analytical Model: See Fig. 7.19(b). The analytical model used herein is the same as
used in Examples 3.8 and 7.2.

Structure Stiffness Matrix: From Example 3.8,

S =
[

696 0
0 2,143.6

]
k/in. (1)
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398 Chapter 7 Member Releases and Secondary Effects

Fig. 7.19

150 k

300 k

(8
 in

.2 ) (8 in. 2)

(6
 in

.2 )

12 ft 12 ft

16 ft

E = 29,000 ksi
α = 6.5(10−6)/°F

1 3
2

(a) Truss

2

1

3 4 X

Y

3

4 6 8

1

2

5 7

2 31

(b) Analytical Model

P f =
[

27.144 − 72.5

36.192 + 96.667

]
1

2
=

[
−45.356

132.86

]
1

2
k

(c) Structure Fixed-Joint Force Vector Due to Temperature
Changes and Fabrication Errors
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Section 7.5 Temperature Changes and Fabrication Errors 399

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−31.125

−41.5

0

183

−118.87

158.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

4

5

6

7

8

k

(d) Support Reaction Vector

150 k

300 k

1

2 3 4
31.125 k

41.5 k 183 k 158.5 k

118.87 k

(e) Support Reactions

Fig. 7.19 (continued)

Joint Load Vector: From Example 3.8,

P =
[

150
−300

]
k (2)

Structure Fixed-Joint Force Vector Due to Temperature Changes and 
Fabrication Errors:

Member 1 By substituting E = 29,000 ksi, A = 8 in.2, α = 6.5(10−6)/◦ F, and
Tu = −30° F into Eqs. (7.34), we evaluate the member fixed-end forces, due to the
specified temperature change, as

FAb = −FAe = −45.24 k

Thus, the local fixed-end force vector for member 1 can be expressed as

Q f 1 =

⎡
⎢⎢⎢⎣

FAb

FSb

FAe

FSe

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−45.24
0

45.24
0

⎤
⎥⎥⎥⎦ k (3)

Next, we obtain the global fixed-end force vector for this member by applying the
transformation relationship Ff = TTQf, while using the transformation matrix T1 from
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400 Chapter 7 Member Releases and Secondary Effects

Example 3.8. Thus,

F f 1 = TT
1 Q f 1 =

⎡
⎢⎢⎢⎣

0.6 −0.8 0 0
0.8 0.6 0 0
0 0 0.6 −0.8
0 0 0.8 0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−45.24
0

45.24
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−27.144
−36.192

27.144
36.192

⎤
⎥⎥⎥⎦

3
4
1
2

k����

From the member code numbers 3, 4, 1, 2, which are written on the right side of
Ff 1, we realize that the elements in the third and fourth rows of Ff 1 should be stored
in rows 1 and 2, respectively, of the 2 × 1 structure fixed-joint force vector Pf, as
shown in Fig. 7.19(c).

Member 3 By substituting ea = − 1
8 in. into Eq. (7.35), we obtain

FAb = −FAe = 29,000(8)

20(12)

(
−1

8

)
= −120.83 k

Thus,

Q f 3 =

⎡
⎢⎢⎢⎣

FAb

FSb

FAe

FSe

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−120.83
0

120.83
0

⎤
⎥⎥⎥⎦ k (4)

Using T3 from Example 7.2, we calculate

F f 3 = TT
3 Q f 3 =

⎡
⎢⎢⎢⎣

−0.6 −0.8 0 0
0.8 −0.6 0 0
0 0 −0.6 −0.8
0 0 0.8 −0.6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−120.83
0

120.83
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

72.5
−96.667
−72.5

96.667

⎤
⎥⎥⎥⎦

7
8
1
2

k����

The relevant elements of Ff 3 are stored in Pf using the member code numbers. The
completed structure fixed-joint force vector Pf, due to temperature change and fabri-
cation error, is given in Fig. 7.19(c).

Joint Displacements: By substituting P (Eq. (2)), Pf (Fig. 7.19(c)), and S (Eq. (1))
into the structure stiffness relationship, we write

P − P f = Sd
[

150
−300

]
−

[ −45.356
132.86

]
=

[
195.36

−432.86

]
=

[
696 0

0 2,143.6

] [
d1

d2

]

Solving the foregoing equations,

d =
[

0.28068
−0.20193

]
1
2

in. Ans

Member End Displacements and End Forces:

Member 1

v1 =

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦

3
4
1
2

=

⎡
⎢⎢⎢⎣

0
0
0.28068

−0.20193

⎤
⎥⎥⎥⎦ in.
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Section 7.5 Temperature Changes and Fabrication Errors 401

u1 = T1v1 =

⎡
⎢⎢⎢⎣

0
0
0.006864

−0.3457

⎤
⎥⎥⎥⎦ in.

Next, we calculate the member local end forces by applying the member stiffness
relationship Q = ku + Qf . Thus, using k1 from Example 3.8, and Qf1 from Eq. (3),
we obtain

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0
0.006864

−0.3457

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

−45.24
0

45.24
0

⎤
⎥⎥⎥⎦

from which,

Q1 =

⎡
⎢⎢⎢⎣

−51.875
0
51.875
0

⎤
⎥⎥⎥⎦ k

Thus,

Qa1 = −51.875 k = 51.875 k (T) Ans

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎣

−31.125
−41.5

31.125
41.5

⎤
⎥⎥⎥⎦

3
4
1
2

k����

The pertinent elements of F1 are stored in the support reaction vector R in 
Fig. 7.19(d).

Member 2

v2 =

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦

5
6
1
2

=

⎡
⎢⎢⎢⎣

0
0
0.28068

−0.20193

⎤
⎥⎥⎥⎦ in.

Using T2 from Example 3.8, we obtain

u2 = T2v2 =

⎡
⎢⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0
0.28068

−0.20193

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

−0.20193
−0.28068

⎤
⎥⎥⎥⎦ in.

With Qf 2 = 0 and k2 obtained from Example 3.8, we determine the member local end
forces to be

Q2 = k2u2 =

⎡
⎢⎢⎢⎣

906.25 0 −906.25 0
0 0 0 0

−906.25 0 906.25 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0

−0.20193
−0.28068

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

183
0

−183
0

⎤
⎥⎥⎥⎦ k

Qa2 = 183 k (C) Ans
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402 Chapter 7 Member Releases and Secondary Effects

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎣

0
183

0
−183

⎤
⎥⎥⎥⎦

5
6
1
2

���

Member 3

v3 =

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦

7
8
1
2

=

⎡
⎢⎢⎢⎣

0
0
0.28068

−0.20193

⎤
⎥⎥⎥⎦ in.

u3 = T3v3 =

⎡
⎢⎢⎢⎣

0
0

−0.32995
−0.10339

⎤
⎥⎥⎥⎦ in.

Using k3 from Example 7.2 and Qf 3 from Eq. (4), we calculate

Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎢⎣

966.67 0 −966.67 0
0 0 0 0

−966.67 0 966.67 0
0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
0

−0.32995
−0.10339

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

−120.83
0

120.83
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

198.12
0

−198.12
0

⎤
⎥⎥⎥⎦ k

Qa3 = 198.12 k (C) Ans

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎣

−118.87
158.5
118.87

−158.5

⎤
⎥⎥⎥⎦

7
8
1
2

����

Support Reactions: See Figs. 7.19(d) and (e). Ans

E X A M P L E 7.6 Determine the joint displacements, member end forces, and support reactions for the 
three-span continuous beam shown in Fig. 7.20(a), due to a temperature increase of
10° C at the top surface and 70° C at the bottom surface, of all spans. The temperature
increase varies linearly over the depth d � 600 mm of the beam cross-section. Use the
matrix stiffness method.

S O L U T I O N This beam was analyzed in Example 7.3 for member loads and support settlements.

Analytical Model: See Fig. 7.20(b). The analytical model used herein is the same as
used in Example 7.3.
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Section 7.5 Temperature Changes and Fabrication Errors 403

8 m 8 m 8 m

E, I, � = constant
E = 70 GPa
I = 102(106) mm4

� = 2.36(10–5) / ºC

(a) Beam

d = 600
mm

10°C

70°C
Temperature Variation

1

2 3

4

3

4

5 6 7

81 2

Y

X

1 2 3

(b) Analytical Model

MT = 2

Structure Fixed-Joint Force Vector
Due to Temperature Change

P f =
[ −16.85+ 16.85

−16.85+25.276

]
1

2
=

[
0

8.4252

]
1

2

(c)

17.498 15.554

0.243 0.243

1

15.554 21.387

0.7291 0.7291

2

21.387

2.6734 2.6734

3

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.243

17.498

−0.243 − 0.7291

0.7291 + 2.6734

−2.6734

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

4

5

6

7

8

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.243 kN

17.498 kN.m

−0.9721 kN

3.4025 kN

−2.6734 kN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e) Support Reaction Vector

17.498
kN.m

0.9721 kN 3.4025 kN 2.6734 kN

1 2 3 4

(f) Support Reactions

0.243 kN

(d) Member End Forces

Fig. 7.20
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404 Chapter 7 Member Releases and Secondary Effects

Structure Stiffness Matrix: As determined in Example 7.3, the structure stiffness matrix
for the beam, in units of kN and meters, is

S =
[

7,140 1,785
1,785 6,247.5

]
(1)

Joint Load Vector:

P = 0 (2)

Structure Fixed-Joint Force Vector Due to Temperature Change:

Members 1 and 2 (MT = 0) By substituting the numerical values of E, I, L, �, 
d = 0.6 m, Tt = 10°C and Tb = 70°C into Eq. (7.33), we evaluate the member fixed-
end moments due to the given temperature change as

FMb = −FMe = 70(106)(102)(10−6)(2.36)(10−5)

(
70 − 10

0.6

)
= 16.85 kN·m (3a)

FSb = FSe = 0 (3b)

Thus,

Q f 1 = Q f 2 =

⎡
⎢⎢⎣

0
16.85

0
−16.85

⎤
⎥⎥⎦

3 5
4 1
5 6
1 2

�
�
�
�
�

(4)

Member 1—— —––Member 2

Next, using the member code numbers, we store the pertinent elements of Q f 1 and Q f 2 in
their proper positions in the structure fixed-joint force vector P f , as shown in Fig. 7.20(c).

Member 3 (MT = 2) Because MT = 2 for this member, we substitute the values of
fixed-end moments and shears from Eqs. (3) into Eq. (7.19) to obtain the fixed-end
force vector for the released member 3 as 

Q f 3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 3(−16.85)

2(8)

16.85 − 1

2
(−16.85)

0 + 3(−16.85)

2(8)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

3.1595
25.276

−3.1595
0

⎤
⎥⎥⎦

6
2
7
8

(5)

The relevant elements of Q f 3 are stored in P f using the member code numbers. The
completed structure fixed-joint force vector P f due to the temperature change, is
shown in Fig. 7.20(c).

Joint Displacements: The structure stiffness relationship P − P f = Sd for the entire
beam can be written as[

0
−8.4252

]
=

[
7,140 1,785
1,785 6,247.5

] [
d1

d2

]
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Section 7.5 Temperature Changes and Fabrication Errors 405

By solving these equations, we determine the joint displacements to be 

d =
[

3.6308
−14.523

]
1
2

× 10−4 rad Ans

Member End Displacements and End Forces:

Member 1

u1 =

⎡
⎢⎢⎣

0
0
0
d1

⎤
⎥⎥⎦

3
4
5
1

=

⎡
⎢⎢⎣

0
0
0

3.6308

⎤
⎥⎥⎦ × 10−4

Using k1 from Example 7.3 and Q f 1 from Eq. (4),

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎣

0.243 kN
17.498 kN·m
−0.243 kN

−15.554 kN·m

⎤
⎥⎥⎦

3
4
5
1

������

Ans

The end forces for member 1 are depicted in Fig. 7.20(d). To generate the support 
reaction vector R, the pertinent elements of Q1 are stored in R, as shown in 
Fig. 7.20(e).

Member 2

u2 =

⎡
⎢⎢⎣

0
d1

0
d2

⎤
⎥⎥⎦

5
1
6
2

=

⎡
⎢⎢⎣

0
3.6308

0
−14.523

⎤
⎥⎥⎦ × 10−4

Using k2 from Example 7.3 and Q f 2 from Eq. (4),

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎣

−0.7291 kN
15.554 kN·m

0.7291 kN
−21.387 kN·m

⎤
⎥⎥⎦

5
1
6
2

������

������

������

Ans

Member 3

u3 =

⎡
⎢⎢⎣

0
d2

0
0

⎤
⎥⎥⎦

6
2
7
8

=

⎡
⎢⎢⎣

0
−14.523

0
0

⎤
⎥⎥⎦ × 10−4

Using k3 from Example 7.3 and Q f 3 from Eq. (5),

Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎣

2.6734 kN
21.387 kN·m
−2.6734 kN

0

⎤
⎥⎥⎦

6
2
7
8

�����

����� Ans

The member end forces are shown in Fig. 7.20(d).

Support Reactions: See Figs. 7.20(e) and (f). Ans

26201_07_ch07b_p376-416.qxd  12/2/10  9:18 PM  Page 405

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



406 Chapter 7 Member Releases and Secondary Effects

E X A M P L E 7.7 Determine the joint displacements, member end forces, and support reactions  for the
plane frame shown in Fig. 7.21(a) due to the combined effect of the following: (a) a
temperature increase of 75° F in the girder, and (b) the fabricated length of the left
column being 14 in. too short. Use the matrix stiffness method.

S O L U T I O N This frame, subjected to joint and member loads, was analyzed in Example 7.1.

Analytical Model: See Fig. 7.21(b). The analytical model used herein is the same as
used in Example 7.1.

Structure Stiffness Matrix: As determined in Example 7.1, the structure stiffness ma-
trix for the frame, in units of kips and inches, is

S =

⎡
⎢⎢⎢⎢⎢⎣

1,781.3 0 −1,776.3 0 0
0 1,781.3 0 −5.0347 1,208.3

−1,776.3 0 1,781.3 0 1,208.3
0 −5.0347 0 1,781.3 −1,208.3
0 1,208.3 1,208.3 −1,208.3 580,000

⎤
⎥⎥⎥⎥⎥⎦

(1)

Joint Load Vector:

P = 0 (2)

Structure Fixed-Joint Force Vector Due to Temperature Changes and 
Fabrication Errors:

Member 1 (MT = 2) By substituting the numerical values of E, A, L, and ea = −1
4 in.

into Eq. (7.35), we obtain the member fixed-end forces, due to the specified fabrica-
tion error, as

FAb = −FAe = −444.06 k

FSb = FSe = FMb = FMe = 0

As MT = 2, we use Eq. (7.10) to form the member local fixed-end force vector. Thus,

Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−444.06
0
0

444.06
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Using the member transformation matrix, T1, from Example 7.1, we evaluate the
global fixed-end force vector as

F f 1 = TT
1 Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−444.06

0
0

444.06
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

����

����

Next, using the member code numbers, we store the pertinent elements of Ff1 in their
proper positions in the 5 × 1 structure fixed-joint force vector Pf, as shown in
Fig. 7.21(c).
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Section 7.5 Temperature Changes and Fabrication Errors 407

Hinged joint

20 ft

20 ft

E, A, I, α = constant
E = 29,000 ksi
A = 14.7 in.2

I = 800 in.4

α = 6.5(10−6)/°F

(a) Frame

1

3

4

4

2
1 3

2 4

7

6
10

10

11

12

11
12

8

9

5

MT � 1

MT � 1

MT � 2

Y

X

1 3

2

(b) Analytical Model

P f =

⎡
⎢⎢⎢⎢⎢⎢⎣

207.82

444.06

−207.82

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

(c) Structure Fixed-Joint Force Vector

Due to Temperature Changes

and Fabrication Errors

147.4

147.4 147.4

0.60671

0.60671

0.60448 0.60448

0.61418

0.61418

0.61416

0.61416

0.61416 0.61416

0.61419

0.61419

2

1 3

(d) Member Local End Forces

Fig. 7.21
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408 Chapter 7 Member Releases and Secondary Effects

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6

7

8

9

10

11

12

(e) Support Reaction Vector

0.61418 k

−0.60671 k

−147.4 k-in.

0

−0.61416 k

0.61419 k

0

1

2

4

3

0.60671 k 0.61419 k

0.61418 k 0.61416 k

147.4 k-in.

(f) Support Reactions

Fig. 7.21 (continued)

Member 2 (MT = 1) By substituting the numerical values of E, A,α, and Tu = 75° F into
Eq. (7.34), we evaluate the member fixed-end forces, due to the given temperature change:

FAb = −FAe = 207.82 k

FSb = FSe = FMb = FMe = 0

As MT = 1, we use Eq. (7.6) to form this horizontal member’s local and global fixed-
end force vectors:

F f 2 = Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

207.82
0
0

−207.82
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

����

���� (4)

The relevant elements of Ff 2 are stored in Pf using the member code numbers. The
completed structure fixed-joint force vector Pf, due to the temperature change and fab-
rication error, is given in Fig. 7.21(c).

Joint Displacements: Solving the structure stiffness relationship P − Pf = Sd, we
obtain the following joint displacements.

d =

⎡
⎢⎢⎢⎢⎢⎣

−0.12199 in.

−0.24965 in.

−0.0053343 in.

−0.00034577 in.

0.00053051 rad

⎤
⎥⎥⎥⎥⎥⎦

1
2
3
4
5

Ans
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Section 7.5 Temperature Changes and Fabrication Errors 409

Member End Displacements and End Forces:

Member 1 (MT = 2)

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d1

d2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.12199
−0.24965

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.24965
0.12199
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k1 from Example 7.1 and Qf 1 from Eq. (3),

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.60671 k
−0.61418 k
−147.4 k-in.

0.60671 k
0.61418 k

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

These end forces are depicted in Fig. 7.21(d).

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.61418
−0.60671

−147.4
−0.61418

0.60671
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6
7
8
1
2
9

������

������

The pertinent elements of F1 are stored in R, as shown in Fig. 7.21(e).

Member 2 (MT = 1)

u2 = v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

0
d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.12199
−0.24965

0
−0.0053343
−0.00034577

0.00053051

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k2 from Example 7.1 and Qf 2 from Eq. (4),
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410 Chapter 7 Member Releases and Secondary Effects

F2 = Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.60448 k
−0.61416 k

0
−0.60448 k
0.61416 k

−147.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
9
3
4
5

������

������ Ans

Member 3 (MT = 1)

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
3
4
5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.0053343
−0.00034577

0.00053051

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using T3 from Example 7.1,

u3 = k3v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−0.00034577
0.0053343
0.00053051

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using k3 from Example 7.1 and Qf 3 = 0, we calculate,

Q3 = k3u3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.61419 k
0.61416 k

0
−0.61419 k
−0.61416 k
147.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

The member local end forces are shown in Fig. 7.21(d).

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.61416
0.61419
0
0.61416

−0.61419
147.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
3
4
5

�����

Support Reactions: See Figs. 7.21(e) and (f). Ans

SUMMARY

In this chapter, we have extended the matrix stiffness formulation so that it can be
used to analyze plane-framed structures containing member releases. Further-
more, the formulation has been extended to include in the analysis, the secondary
effects of support displacements, temperature changes, and fabrication errors.
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In the presence of member releases, the overall analysis procedure remains
the same as before, except that the modified expressions for the member local
stiffness matrices k and the fixed-end force vectors Qf, developed in Section 7.1,
must be used for members with releases. If all the members meeting at a joint
are connected to it by hinged connections, then such a joint can be modeled as
a hinged joint with its rotation restrained by an imaginary clamp.

The effects of support displacements are included in the analysis using the
concept of equivalent joint loads. The structure fixed-joint forces, due to the
support displacements, are added to the Pf vector by performing the following
operations for each member that is attached to a support that undergoes
displacements: (a) forming the fixed-end displacement vector vfs from the sup-
port displacements, (b) evaluating the fixed-end force vector Ffs = Kvfs, and
(c) storing the relevant elements of Ffs in Pf using the member code numbers.
Once the structure’s joint displacements have been determined by solving its
stiffness relationship P − Pf = Sd, the member end displacement vectors v are
formed using both the joint displacements d and the specified support dis-
placements. The rest of the procedure for evaluating member forces and sup-
port reactions remains the same as for the case of external loads.

The effects of temperature changes and fabrication errors can be included
in the analysis methods developed previously, simply by including the member
fixed-end forces due to these actions in the local fixed-end force vectors Qf.
The expressions for member fixed-end forces, due to temperature changes and
fabrication errors, are given in Section 7.5.

P R O B L E M S

Problems 411

Section 7.1

7.1 and 7.2 Determine the joint displacements, member end
forces, and support reactions for the beams shown in Figs. P7.1
and P7.2, using the matrix stiffness method.

EI = constant
E = 29,000 ksi
I  = 350 in.4

20 ft 15 ft

1.5 k/ft

Hinge
1 2

1

2

3

Fig. P7.1

EI = constant
E = 70 GPa
I  = 400(106) mm4

6 m 8 m

Hinge

200 kN

Fig. P7.2

7.3 Determine the joint displacements, member end forces,
and support reactions for the beam shown in Fig. P7.3, by mod-
eling member 3 as being hinged at its right end.

EI = constant
E   = 10,000 ksi
I   = 540 in.4 

2 31

24 ft24 ft

3 k/ft
10 k 10 k

8ft 8ft 8ft

1
42 3

Fig. P7.3
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412 Chapter 7 Member Releases and Secondary Effects

7.4 Determine the joint displacements, member end forces,
and support reactions for the beam shown in Fig. P7.4, by mod-
eling member 1 as being hinged at its left end and member 3 as
being hinged at its right end.

10 m 10 m 10 m

EI = constant
E = 30 GPa
I  = 500(106) mm4

30 kN/m

21 3 4

1 2 3

Fig. P7.4, P7.20

EI = constant
E = 200 GPa
I  = 400(106) mm4

2 31

15 m 15 m 15 m

18 kN/m

25 kN/m

120 kN•m

90 kN 90 kN

5m 5m 5m 41

2 3

Fig. P7.5

30 ft

1.5 k/ft

E, A, I = constant
E = 29,000 ksi
A = 10.3 in.2

I  = 510 in.4

10 ft

10 ft

Hinged joint
40 k

Fig. P7.6

7.5 Determine the joint displacements, member end forces,
and support reactions for the beam shown in Fig. P7.5 by mod-
eling member 1 as being hinged at its left end.

7.7 and 7.8 Determine the joint displacements, member local
end forces, and support reactions for the plane frames shown in
Figs. P7.7 and P7.8, by modeling the horizontal member as
being hinged at its right end.

150 kN•m 24 kN/m

125 kN

12 m3 m

8 m

3 m

E, A, I = constant
E = 200 GPa
A = 13,000 mm2

I = 762(106) mm4

1

2

1

2
3

Fig. P7.7

2 k/ft1 k/ft

1 k/ft

25 ft

20 ft

10 ft

A = 9.12 in.2

I = 375 in.4

A = 10.3 in.2

I = 285 in.4

E = 10,000 ksi

1

2
3

1

2

Fig. P7.8

7.9 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
Fig. P7.9, by modeling the horizontal member as being hinged
at its left end and the inclined member as being hinged at its
lower end.

7.6 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
Fig. P7.6, using the matrix stiffness method.
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Problems 413

7.10 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
Fig. P7.10,  using the matrix stiffness method.

7.11 Using a structural analysis computer program, determine
the joint displacements, member local end forces, and reactions
for the frame shown in Fig. P7.11 for the value of the load para-
meter P = 300 kN. What is the largest value of P that can be ap-
plied to the frame without exceeding the drift (maximum hori-

9 m10 m

12 kN/m

E, A, I = constant
E = 30 GPa
A = 35,000 mm2

I  = 152(106) mm4

6 m

6 m

1

3

2

1

2

75 kN

Fig. P7.9, P7.23, P7.33

20 ft

2 k/ft

Girder and columns:
A = 80 in.2

I  = 550 in.4

25 ft

Hinged joints

Hinge

75 k

Diagonals:
A = 4.5 in.2

I  = 67 in.4

E = 29,000 ksi

Fig. P7.10

zontal deflection) limitation of one percent of the frame height?
Assume that the braces (inclined members) are connected by
hinged connections at both ends.

7.12 Solve Problem 7.11 by assuming that the braces are con-
nected by rigid (moment-resisting) connections at both ends.

7.13 Solve Problem 7.11 by assuming that the frame is un-
braced. Note that, instead of developing a new analytical model for
the unbraced frame, the previously developed models of the corre-
sponding braced frames can be modified to eliminate the effect of
bracing by simply using a very small value for the modulus of
elasticity, E, of the bracing members (e.g., E = 0.000001 kN/m2).

6 m 6 m

8 m

8 m

8 m

P

2P
3

P
3

E � 200 GPa

A � 18,200 mm2

I  � 348(106) mm4

Columns:
A � 7,590 mm2

I  � 255(106) mm4

Beams:
A � 1,340 mm2

I  � 3.76(106) mm4

Braces:

Fig. P7.11, P7.12, P7.13

Section 7.2

7.14 Modify the computer program developed in Chapter 5
for the analysis of rigidly connected beams, to include the effect
of member releases. Use the modified program to analyze the
beams of Problems 7.1 through 7.5, and compare the computer-
generated results to those obtained by hand calculations.

7.15 Modify the program developed in Chapter 6 for the
analysis of rigidly connected plane frames, to include the effect
of member releases. Use the modified program to analyze the
frames of Problems 7.6 through 7.10, and compare the computer-
generated results to those obtained by hand calculations.
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due to the combined effect of the loading shown and a settle-
ment of 14 in. of support 3. Use the matrix stiffness method.

7.18 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.18,
due to the combined effect of the loading shown and settlements
of 12 and 14 in., respectively, of supports 3 and 4. Use the matrix
stiffness method.

Section 7.3

7.16 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.16,
due to the combined effect of the loading shown and a settle-
ment of 12 in. of support 2. Use the matrix stiffness method.

414 Chapter 7 Member Releases and Secondary Effects
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Fig. P7.16, P7.28
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1
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Fig. P7.17, P7.29, P7.30
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6
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1
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30 k
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15 ft
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EA � constant

E � 29,000 ksi

A � 6 in.2
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4

7 9
8

Fig. P7.18

7 m 7 m 7 m

EI = constant
E  = 200 GPa
I   = 145(106) mm4

1 4
2 3

1 2 3

Fig. P7.19, P7.34

7.17 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.17,

7.19 Determine the joint displacements, member end forces,
and support reactions for the three-span continuous beam
shown in Fig. P7.19, due to settlements of 8 and 30 mm, re-
spectively, of supports 2 and 3. Use the matrix stiffness method.

7.20 Solve Problem 7.4 for the loading shown in Fig. P7.4 and
settlements of 12,75,60 and 25 mm, respectively, of supports 1,
2, 3, and 4.

7.21 Determine the joint displacements, member end forces,
and support reactions for the beam shown in Fig. P7.21, due to the
combined effect of the loading shown and a settlement of 1 1

4 in.
of the middle support. Use the matrix stiffness method.

7.22 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
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E = 29,000 ksi
I  = 300 in.4

20 ft 20 ft

1.25 I 1.25 I I

15 ft15 ft

50 k50 k

1
2 3

4

1

2 4

3

5

Fig. P7.21

Fig. P7.22, due to a settlement of 25 mm of the right support.
Use the matrix stiffness method.

9 m

E, A, I = constant
E = 200 GPa
A = 7,610 mm2

I  = 216(106) mm4

6 m

1

2

3

21

Fig. P7.22, P7.31, P7.32

20 ft

25 ft

2 k/ft

30 k

E = 4,500 ksi
Columns:
A = 80 in.2

I  = 550 in.4

Girder:
A = 108 in.2

I  = 1,300 in.4

2

1 3

1 4

2 3

Fig. P7.24

7.23 Solve Problem 7.9 for the loading shown in Fig. P7.9 and
a settlement of 50 mm of the right support.

7.24 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
Fig. P7.24, due to the combined effect of the following: (a) the
loading shown in the figure, (b) a clockwise rotation of 0.017
radians of the left support, and (c) a settlement of 3

4 in. of the
right support. Use the matrix stiffness method.

Section 7.4

7.25 Extend the program developed in Chapter 4 for the analy-
sis of plane trusses subjected to joint loads, to include the effect of
support displacements. Use the modified program to analyze the
trusses of Problems 7.16 through 7.18, and compare the computer-
generated results to those obtained by hand calculations.

7.26 Extend the program developed in Problem 7.14 for the
analysis of beams subjected to external loads, to include the ef-
fect of support displacements. Use the modified program to an-
alyze the beams of Problems 7.19 through 7.21, and compare
the computer-generated results to those obtained by hand calcu-
lations.

7.27 Extend the program developed in Problem 7.15 for the
analysis of plane frames subjected to external loads, to include
the effect of support displacements. Use the modified program
to analyze the frames of Problems 7.22 through 7.24, and com-
pare the computer-generated results to those obtained by hand
calculations.

Section 7.5

7.28 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.28,
due to a temperature drop of 100° F in member 2. Neglect the
joint loads shown in the figure. Use the matrix stiffness method;
α = 6.5(10−6)/° F.

7.29 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.29,
due to the combined effect of the following: (a) the joint loads
shown in the figure, (b) a temperature increase of 70° F in mem-
ber 2, (c) a temperature drop of 30° F in member 5, and (d) the
fabricated length of member 4 being 14 in. too long. Use the ma-
trix stiffness method; α = 1.3(10−5)/° F.
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416 Chapter 7 Member Releases and Secondary Effects

7.30 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P7.30,
due to the fabricated lengths of members 3 and 4 being 14 in. too
short. Neglect the joint loads shown in the figure, and use the
matrix stiffness method.

7.31 Determine the joint displacements, member local end
forces, and support reactions for the plane frame of Fig. P7.31,
due to a temperature increase of 50° C in the two members. Use
the matrix stiffness method; α = 1.2(10−5)/° C.

7.32 Determine the joint displacements, member local end
forces, and support reactions for the plane frame of Fig. P7.32,

due to the fabricated lengths of the two members being 15 mm
too short. Use the matrix stiffness method.

7.33 Determine the joint displacements, member local end
forces, and support reactions for the plane frame of Fig. P7.33,
due to the combined effect of the following: (a) the external loads
shown in the figure, and (b) a temperature drop of 60° C in the
two members. Use the matrix stiffness method; α = 10−5/° C.

7.34 Determine the joint displacements, member end forces,
and support reactions for the beam of Fig. P7.34, due to a lin-
early varying temperature increase of 55° C at the top surface
and 5° C at the bottom surface, of all the members. Use the ma-
trix stiffness method; α = 1.2(10−5)/° C and d = 300 mm.

26201_07_ch07b_p376-416.qxd  12/1/10  5:17 PM  Page 416

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



417

8
8.1 Space Trusses
8.2 Grids
8.3 Space Frames

Summary
Problems

THREE-DIMENSIONAL
FRAMED STRUCTURES

Space Truss and its Analytical Model
(Courtesy of Triodetic)
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418 Chapter 8 Three-Dimensional Framed Structures

Up to this point, we have focused our attention on the analysis of plane-framed
structures. While many actual three-dimensional structures can be divided into
planar parts for the purpose of analysis, there are others (e.g., lattice domes and
transmission towers) that, because of the arrangement of their members or
applied loading, cannot be divided into plane structures. Such structures are
analyzed as space structures subjected to three-dimensional loadings. The ma-
trix stiffness analysis of space structures is similar to that of plane structures—
except, of course, that member stiffness and transformation matrices appropri-
ate for the particular type of space structure under consideration are now used
in the analysis.

In this chapter, we extend the matrix stiffness formulation, developed for
plane structures, to the analysis of three-dimensional or space structures. Three
types of space-framed structures are considered: space trusses, grids, and space
frames, with methods for their analysis presented in Sections 8.1, 8.2, and 8.3,
respectively.

The computer programs for the analysis of space-framed structures can be
conveniently adapted from those for plane structures, via relatively straightfor-
ward modifications that should become apparent as the analysis of space struc-
tures is developed in this chapter. Therefore, the details of programming the
analysis of space structures are not covered herein; they are, instead, left as
exercises for the reader.

8.1 SPACE TRUSSES
A space truss is defined as a three-dimensional assemblage of straight pris-
matic members connected at their ends by frictionless ball-and-socket joints,
and subjected to loads and reactions that act only at the joints. Like plane
trusses, the members of space trusses develop only axial forces. The matrix
stiffness analysis of space trusses is similar to that of plane trusses developed
in Chapter 3 (and modified in Chapter 7).

The process of developing the analytical models of space trusses (and
numbering the degrees of freedom and restrained coordinates) is essentially the
same as that for plane trusses (Chapter 3). The overall geometry of the space
truss, and its joint loads and displacements, are described with reference to a
global Cartesian or rectangular right-handed XYZ coordinate system, with
three global (X, Y, and Z ) coordinates now used to specify the location of each
joint. Furthermore, since an unsupported joint of a space truss can translate
in any direction in the three-dimensional space, three displacements—the
translations in the X, Y, and Z directions—are needed to completely establish
its deformed position. Thus, a free joint of a space truss has three degrees of
freedom, and three structure coordinates (i.e., free and/or restrained coordi-
nates) need to be defined at each joint, for the purpose of analysis. Thus,

(8.1)
NCJT = 3
NDOF = 3(NJ) − NR

}
for space trusses
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Section 8.1 Space Trusses 419

The procedure for assigning numbers to the structure coordinates of a
space truss is analogous to that for plane trusses. The degrees of freedom of the
space truss are numbered first by beginning at the lowest-numbered joint with
a degree of freedom, and proceeding sequentially to the highest-numbered
joint. If a joint has more than one degree of freedom, then the translation in the
X direction is numbered first, followed by the translation in the Y direction, and
then the translation in the Z direction. After all the degrees of freedom have
been numbered, the restrained coordinates of the space truss are numbered in
the same manner as the degrees of freedom.

Consider, for example, the three-member space truss shown in Fig. 8.1(a).
As the analytical model of the truss depicted in Fig. 8.1(b) indicates, the struc-
ture has three degrees of freedom (NDOF = 3), which are the translations d1,
d2, and d3 of joint 2 in the X, Y, and Z directions, respectively; and nine
restrained coordinates (NR = 9), which are identified as R4 through R12 at the
support joints 1, 3, and 4.

As in the case of plane trusses, a local right-handed xyz coordinate system
is established for each member of the space truss. The origin of the local
coordinate system is located at one of the ends (which is referred to as the
beginning of the member), with the x axis directed along the member’s
centroidal axis in its undeformed state. Since the space truss members can only
develop axial forces, the positive directions of the y and z axes can be chosen

X

Z

Y

(a) Space Truss

X

Z

Y

R12

R11

R8

R7

R4

R5

R6

R9

R10

P2, d2

P3, d3

P1, d1

1

3

2

4

1

2

3

(b) Analytical Model

Fig. 8.1
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arbitrarily, provided that the x, y, and z axes are mutually perpendicular and
form a right-handed coordinate system (Fig. 8.2).

Member Stiffness Relations in the Local 
Coordinate System
To establish the member local stiffness relations, let us focus our attention on
an arbitrary prismatic member m of a space truss. When the truss is subjected
to external loads, member m deforms and axial forces are induced at its ends.
The initial and displaced positions of the member are shown in Fig. 8.3(a).
As this figure indicates, three displacements—translations in the x, y, and z
directions—are needed to completely specify the displaced position of each
end of the member. Thus, the member has a total of six degrees of freedom or
end displacements. However, as discussed in Section 3.3 (see Figs. 3.3(d) and
(f)), small end displacements in the directions perpendicular to a truss
member’s centroidal axis do not cause any forces in the member. Thus, the end
displacements uby, ubz, uey, and uez in the directions of the local y and z axes of
the member, as shown in Fig. 8.3(a), are usually not evaluated in the analysis;
and for analytical purposes, the member is considered to have only two degrees
of freedom, u1 and u2, in its local coordinate system. Thus, the local end
displacement vector u for a member of a space truss is expressed as

u =
[

u1

u2

]

in which u1 and u2 represent the displacements of the member ends b and e,
respectively, in the direction of the member’s local x axis, as shown in
Fig. 8.3(a). As this figure also indicates, the member end forces corresponding
to the end displacements u1 and u2 are denoted by Q1 and Q2, respectively.

420 Chapter 8 Three-Dimensional Framed Structures
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Fig. 8.2 Local Coordinate System for Members of Space Trusses
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Section 8.1 Space Trusses 421

The relationship between the local end forces Q and the end displace-
ments u, for the members of space trusses, is written as

(8.2)Q = ku

x

z

y

b

b'

e′

e
Q1

Q2

u1 u2

ubz

Displaced position

Initial position

L

uby

uey

uez

m

EA = constant

(a) Member Forces and Displacements
in the Local Coordinate System
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(b)
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b e′

e
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L
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L

x

(c)

Fig. 8.3
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in which k represents the 2 × 2 member stiffness matrix in the local coordinate
system. The explicit form of k can be obtained by subjecting the member to the
unit end displacements, u1 = 1 and u2 = 1, as shown in Figs. 8.3(b) and (c), re-
spectively, and evaluating the corresponding member end forces. Thus, the
local stiffness matrix for the members of space trusses can be explicitly
expressed as

k = EA

L

[
1 −1

−1 1

]
(8.3)

Coordinate Transformations
Consider an arbitrary member m of a space truss, as shown in Fig. 8.4(a), and
let Xb, Yb, Zb, and Xe, Ye, Ze be the global coordinates of the joints to which the
member ends b and e, respectively, are attached. The length and the direction

422 Chapter 8 Three-Dimensional Framed Structures
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Fig. 8.4
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Section 8.1 Space Trusses 423

cosines of the member can be expressed in terms of the global coordinates of
its ends by the following relationships:

L =
√

(Xe − Xb)2 + (Ye − Yb)2 + (Ze − Zb)2 (8.4a)

cos θX = Xe − Xb

L
(8.4b)

cos θY = Ye − Yb

L
(8.4c)

cos θZ = Ze − Zb

L
(8.4d)

in which θX, θY, and θZ represent the angles between the positive directions of
the global X, Y, and Z axes, respectively, and the positive direction of the
member’s local x axis, as shown in Fig. 8.4(b). Note that the origin of the
global coordinate system is shown to coincide with that of the local coordinate
system in this figure. With no loss in generality of the formulation, this conve-
nient arrangement allows the angles between the local and global axes to be
clearly visualized. It is important to realize that the member transformation
matrix depends only on the angles between the local and global axes, regard-
less of whether or not the origins of the local and global coordinate systems
coincide. Also shown in Fig. 8.4(b) are the member end displacements u and
end forces Q in the local coordinate system; the equivalent systems of end dis-
placements v and end forces F, in the global coordinate system, are depicted in
Fig. 8.4(c). As indicated in Fig. 8.4(c), the global member end displacements v
and end forces F are numbered by beginning at member end b, with the trans-
lation and force in the X direction numbered first, followed by the translation
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Y
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F2
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F4

v1 v4

v5

v6

v3
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(c) Member End Forces and End Displacements
in the Global Coordinate System

Fig. 8.4 (continued)
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and force in the Y direction, and then the translation and force in the Z direc-
tion. The displacements and forces at the member’s opposite end e are then
numbered in the same sequential order.

Let us consider the transformation of member end forces and end displace-
ments from a global to a local coordinate system. By comparing Figs. 8.4(b) and (c),
we observe that at end b of the member, the local force Q1 must be equal to the al-
gebraic sum of the components of the global forces F1, F2, and F3 in the direction of
the local x axis; that is,

Q1 = F1 cos θX + F2 cos θY + F3 cos θZ (8.5a)

Similarly, at end e of the member, we can express Q2 in terms of F4, F5, and F6 as

Q2 = F4 cos θX + F5 cos θY + F6 cos θZ (8.5b)

Equations 8.5(a) and (b) can be written in matrix form as

[
Q1

Q2

]
=

[
cos θX cos θY cos θZ 0 0 0

0 0 0 cos θX cos θY cos θZ

]
⎡
⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.6)

Equation (8.6) can be symbolically expressed as Q = TF, with the 2 × 6
transformation matrix T given by

T =
[

cos θX cos θY cos θZ 0 0 0
0 0 0 cos θX cos θY cos θZ

]
(8.7)

Since member end displacements, like end forces, are vectors, which are defined
in the same directions as the corresponding forces, the foregoing transforma-
tion matrix T can also be used to transform member end displacements from
the global to the local coordinate system; that is, u = Tv.

Next, we examine the transformation of member end forces from the local
to the global coordinate system. A comparison of Figs. 8.4(b) and (c) indicates
that at end b of the member, the global forces F1, F2, and F3 must be the com-
ponents of the local force Q1 in the directions of the global X, Y, and Z axes,
respectively; that is,

F1 = Q1 cos θX F2 = Q1 cos θY F3 = Q1 cos θZ (8.8a)

Similarly, at end e of the member, the global forces F4, F5, and F6 can be ex-
pressed as the components of the local force Q2, as

F4 = Q2 cos θX F5 = Q2 cos θY F6 = Q2 cos θZ (8.8b)

We can write Eqs. 8.8(a) and (b) in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θX 0
cos θY 0
cos θZ 0

0 cos θX

0 cos θY

0 cos θZ

⎤
⎥⎥⎥⎥⎥⎥⎦

[
Q1

Q2

]
(8.9)

424 Chapter 8 Three-Dimensional Framed Structures

26201_08_ch08a_p417-464.qxd  12/1/10  5:21 PM  Page 424

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 8.1 Space Trusses 425

As the first matrix on the right side of Eq. (8.9) is the transpose of the transfor-
mation matrix T (Eq. (8.7)), the equation can be symbolically expressed as

F
6 × 1

= TT

6 × 2

Q
2 × 1

(8.10)

It may be of interest to note that the transformation relationship analogous
to Eq. (8.10) for member end displacements (i.e., v = TTu) is not defined for
space truss members, with two degrees of freedom, as used herein. This is be-
cause the local end displacement vectors u for such members do not contain
the displacements of the member ends in the local y and z directions. As dis-
cussed previously, while the end forces in the local y and z directions of the
members of space trusses are always 0, the displacements of the member ends
in the local y and z directions are generally nonzero (see Fig. 8.3(a)). However,
the foregoing limitation of the two-degree-of-freedom member model has no
practical consequences, because the transformation relation v = TTu is needed
neither in the formulation of the matrix stiffness method of analysis, nor in its
application.

Member Stiffness Relations in the 
Global Coordinate System
As in the case of plane trusses, the relationship between the global end forces
F and the end displacements v for the members of space trusses is expressed as
F = Kv, with the member global stiffness matrix K given by the equation

K
6 × 6

= TT

6 × 2

k
2 × 2

T
2 × 6

(8.11)

The explicit form of the 6 × 6 K matrix can be determined by substituting
Eqs. (8.3) and (8.7) into Eq. (8.11) and performing the required matrix multi-
plications. The explicit form of the member global stiffness matrix K, thus
obtained, is given in Eq. (8.12).

K = EA

L

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θX cos θX cos θY cos θX cos θZ −cos2 θX −cos θX cos θY −cos θX cos θZ

cos θX cos θY cos2 θY cos θY cos θZ −cos θX cos θY −cos2 θY −cos θY cos θZ

cos θX cos θZ cos θY cos θZ cos2 θZ −cos θX cos θZ −cos θY cos θZ −cos2 θZ

−cos2 θX −cos θX cos θY −cos θX cos θZ cos2 θX cos θX cos θY cos θX cos θZ

−cos θX cos θY −cos2 θY −cos θY cos θZ cos θX cos θY cos2 θY cos θY cos θZ

−cos θX cos θZ −cos θY cos θZ −cos2 θZ cos θX cos θZ cos θY cos θZ cos2 θZ

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.12)

Procedure for Analysis
The procedure for the analysis of plane trusses developed in Chapter 3 (see
block diagram in Fig. 3.20), and modified in Chapter 7, can be used to analyze
space trusses provided that: (a) three structure coordinates (i.e., degrees of
freedom and/or restrained coordinates), in the global X, Y, and Z directions, are
defined at each joint; and (b) the member stiffness and transformation matrices
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developed in this section (Eqs. (8.3), (8.7), and (8.12)) are used in the analysis.
The procedure is illustrated by the following example.

426 Chapter 8 Three-Dimensional Framed Structures

EA = constant
E = 10,000 ksi
A = 8.4 in.2

X

Z

Y

6 ft

8 ft

8 ft

6 ft6 ft

24 ft

6 ft

100 k 50 k

0

(a) Space Truss

Fig. 8.5

E X A M P L E 8.1 Determine the joint displacements, member axial forces, and support reactions for
the space truss shown in Fig. 8.5(a) by the matrix stiffness method.

S O L U T I O N Analytical Model: See Fig. 8.5(b). The truss has three degrees of freedom, which are
the translations of joint 5 in the X, Y, and Z directions. These are numbered 1, 2, and 3,
respectively. The twelve restrained coordinates of the truss are identified by numbers
4 through 15 in the figure.

Structure Stiffness Matrix:

Member 1 From Fig. 8.5(b), we can see that joint 1 is the beginning joint, and joint
5 is the end joint, for this member. By applying Eqs. (8.4), we determine

L =
√

(X5 − X1)
2 + (Y5 − Y1)

2 + (Z5 − Z1)
2

=
√

(0 + 6)2 + (24 − 0)2 + (0 − 8)2 = 26 ft = 312 in.
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Section 8.1 Space Trusses 427

X

Z

Y

0

5

1
2

3

4

1

7

8

9

4

56

12

10

14

13

15

11

2

3

1

4

2

3

(b) Analytical Model

1 2 3

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(14.338 + 45.918

+14.338 + 45.918)

(57.351 − 91.837

−57.351 + 91.837)

(−19.117 + 30.612

−19.117 + 30.612)

(57.351 − 91.837

−57.351 + 91.837)

(229.4 + 183.67

+229.4 + 183.67)

(−76.468 − 61.224

+76.468 + 61.224)

(−19.117 + 30.612

−19.117 + 30.612)

(−76.468 − 61.224

+76.468 + 61.224)

(25.489 + 20.408

+25.489 + 20.408)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

=

⎡
⎢⎣

120.51 0 22.99

0 826.14 0

22.99 0 91.794

⎤
⎥⎦

1

2

3

k/in.

1 2 3

(c) Structure Stiffness Matrix

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
−

5.5581

22.232

7.4108

1.3838

−2.7677

0.92255

−19.442

77.768

25.923

23.616

47.232

15.744

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

5

6

7

8

9

10

11

12

13

14

15

k

(d) Support Reaction Vector

Fig. 8.5 (continued)
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X

Z

Y

0

5

1
2

3

4

50 k

1.3838

2.7677

0.92255

5.5581

22.232
7.4108

25.923

19.442

77.768

100 k

23.616

15.744

47.232

(e) Support Reactions

Fig. 8.5 (continued)

428 Chapter 8 Three-Dimensional Framed Structures

cos θX = X5 − X1

L
= 0 + 6

26
= 0.23077

cos θY = Y5 − Y1

L
= 24 − 0

26
= 0.92308

cos θZ = Z5 − Z1

L
= 0 − 8

26
= −0.30769

By substituting E = 10,000 ksi, A = 8.4 in.2, L = 312 in., and the foregoing direction
cosines, into Eq. (8.12), we calculate the member’s global stiffness matrix to be

4 5 6 1 2 3

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

14.338 57.351 −19.117 −14.338 −57.351 19.117
57.351 229.4 −76.468 −57.351 −229.4 76.468

−19.117 −76.468 25.489 19.117 76.468 −25.489
−14.338 −57.351 19.117 14.338 57.351 −19.117
−57.351 −229.4 76.468 57.351 229.4 −76.468

19.117 76.468 −25.489 −19.117 −76.468 25.489

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

k/in.��������������
�
�
�

Next, by using the member code numbers 4, 5, 6, 1, 2, 3, we store the pertinent
elements of K1 in the 3 × 3 structure stiffness matrix S in Fig. 8.5(c).
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Section 8.1 Space Trusses 429

Member 2

L =
√

(X5 − X2)
2 + (Y5 − Y2)

2 + (Z5 − Z2)
2

=
√

(0 − 12)2 + (24 − 0)2 + (0 − 8)2 = 28 ft = 336 in.

cos θX = X5 − X2

L
= 0 − 12

28
= −0.42857

cos θY = Y5 − Y2

L
= 24 − 0

28
= 0.85714

cos θZ = Z5 − Z2

L
= 0 − 8

28
= −0.28571

7 8 9 1 2 3

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

45.918 −91.837 30.612 −45.918 91.837 −30.612
−91.837 183.67 −61.224 91.837 −183.67 61.224

30.612 −61.224 20.408 −30.612 61.224 −20.408
−45.918 91.837 −30.612 45.918 −91.837 30.612

91.837 −183.67 61.224 −91.837 183.67 −61.224
−30.612 61.224 −20.408 30.612 −61.224 20.408

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

k/in.���������������
�
�
�

Member 3

L =
√

(X5 − X3)
2 + (Y5 − Y3)

2 + (Z5 − Z3)
2

=
√

(0 − 6)2 + (24 − 0)2 + (0 + 8)2 = 26 ft = 312 in.

cos θX = X5 − X3

L
= 0 − 6

26
= −0.23077

cos θY = Y5 − Y3

L
= 24 − 0

26
= 0.92308

cos θZ = Z5 − Z3

L
= 0 + 8

26
= 0.30769

10 11 12 1 2 3

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

14.338 −57.351 −19.117 −14.338 57.351 19.117
−57.351 229.4 76.468 57.351 −229.4 −76.468
−19.117 76.468 25.489 19.117 −76.468 −25.489
−14.338 57.351 19.117 14.338 −57.351 −19.117

57.351 −229.4 −76.468 −57.351 229.4 76.468
19.117 −76.468 −25.489 −19.117 76.468 25.489

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

k/in.���������������
�
�
�

Member 4

L =
√

(X5 − X4)
2 + (Y5 − Y4)

2 + (Z5 − Z4)
2

=
√

(0 + 12)2 + (24 − 0)2 + (0 + 8)2 = 28 ft = 336 in.
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430 Chapter 8 Three-Dimensional Framed Structures

cos θX = X5 − X4

L
= 0 + 12

28
= 0.42857

cos θY = Y5 − Y4

L
= 24 − 0

28
= 0.85714

cos θZ = Z5 − Z4

L
= 0 + 8

28
= 0.28571

13 14 15 1 2 3

K4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

45.918 91.837 30.612 −45.918 −91.837 −30.612
91.837 183.67 61.224 −91.837 −183.67 −61.224
30.612 61.224 20.408 −30.612 −61.224 −20.408

−45.918 −91.837 −30.612 45.918 91.837 30.612
−91.837 −183.67 −61.224 91.837 183.67 61.224
−30.612 −61.224 −20.408 30.612 61.224 20.408

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
1
2
3

k/in.���������������
�
�
�

The complete structure stiffness matrix S, obtained by assembling the pertinent
stiffness coefficients of the four members of the truss, is given in Fig. 8.5(c).

Joint Load Vector: By comparing Fig. 8.5(a) and (b), we obtain

P =
⎡
⎣ 0

−100
−50

⎤
⎦ k

Joint Displacements: By substituting P and S into the structure stiffness relationship,
P = Sd, we write

⎡
⎣ 0

−100
−50

⎤
⎦ =

⎡
⎣ 120.51 0 22.99

0 826.14 0
22.99 0 91.794

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

By solving the foregoing equations, we determine the joint displacements to be

d =
⎡
⎣ 0.10913

−0.12104
−0.57202

⎤
⎦1

2
3

in. Ans

Member End Displacements and End Forces:

Member 1 Using its code numbers, we determine the member’s global end dis-
placements to be

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0.10913

−0.12104
−0.57202

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

in.

To determine the member’s end displacements in the local coordinate system, we
first evaluate its transformation matrix as defined in Eq. (8.7):

T1 =
[

0.23077 0.92308 −0.30769 0 0 0
0 0 0 0.23077 0.92308 −0.30769

]
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Section 8.1 Space Trusses 431

The member local end displacements can now be calculated by using the relationship
u = Tv, as

u1 = T1v1 =
[

0
0.089459

]
in.

Before we can evaluate the member local end forces, we need to determine the
local stiffness matrix k, using Eq. (8.3):

k1 =
[

269.23 −269.23
−269.23 269.23

]
k/in.

Now, we can compute the member local end forces by using the relationship Q = ku,
as

Q1 = k1u1 =
[−24.085

24.085

]
k

in which the negative sign of the first element of Q1 indicates that the member axial
force is tensile; that is,

Qa1 = 24.085 k (T) Ans

By applying the relationship F = TTQ, we determine the member end forces in
the global coordinate system to be

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−5.5581
−22.232

7.4108
5.5581

22.232
−7.4108

⎤
⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

k�����

Using the member code numbers 4, 5, 6, 1, 2, 3, the pertinent elements of F1 are stored
in their proper positions in the support reaction vector R, as shown in Fig. 8.5(d).

Member 2

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0.10913

−0.12104
−0.57202

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

in.

T2 =
[−0.42857 0.85714 −0.28571 0 0 0

0 0 0 −0.42857 0.85714 −0.28571

]

u2 = T2v2 =
[

0
0.012916

]
in.

k2 =
[

250 −250
−250 250

]
k/in.

Q2 = k2u2 =
[ −3.2289

3.2289

]
k

Qa2 = 3.2289 k (T) Ans

26201_08_ch08a_p417-464.qxd  12/1/10  5:21 PM  Page 431

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



432 Chapter 8 Three-Dimensional Framed Structures

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.3838
−2.7677

0.92255
−1.3838

2.7677
−0.92255

⎤
⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

k�����

Member 3

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0.10913

−0.12104
−0.57202

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

in.

T3 =
[ −0.23077 0.92308 0.30769 0 0 0

0 0 0 −0.23077 0.92308 0.30769

]

u3 = T3v3 =
[

0
−0.31292

]
in.

k3 = k1

Q3 = k3u3 =
[

84.248
−84.248

]
k

Qa3 = 84.248 k (C) Ans

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−19.442
77.768
25.923
19.442

−77.768
−25.923

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

k����

Member 4

v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0.10913

−0.12104
−0.57202

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
1
2
3

in.

T4 =
[

0.42857 0.85714 0.28571 0 0 0
0 0 0 0.42857 0.85714 0.28571

]

u4 = T4v4 =
[

0
−0.22042

]
in.

k4 = k2
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Section 8.2 Grids 433

8.2 GRIDS
A grid is defined as a two-dimensional framework of straight members
connected together by rigid and/or flexible connections, and subjected to loads
and reactions perpendicular to the plane of the structure. Because of their wide-
spread use as supporting structures for long-span roofs and floors, the analysis
of grids is usually formulated with the structural framework lying in a horizon-
tal plane (unlike plane frames, which are oriented in a vertical plane), and sub-
jected to external loads acting in the vertical direction, as shown in Fig. 8.6(a)
on the next page.

Grids are composed of members that have doubly symmetric cross-
sections, with each member oriented so that one of the planes of symmetry
of its cross-section is in the vertical direction; that is, perpendicular to the
plane of the structure, and in (or parallel to) the direction of the external
loads (Fig. 8.6(a)). Under the action of vertical external loads, the joints of
a grid can translate in the vertical direction and can rotate about axes in the

Q4 = k4u4 =
[

55.104
−55.104

]
k

Qa4 = 55.104 k (C) Ans

F4 = TT
4 Q4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

23.616
47.232
15.744

−23.616
−47.232
−15.744

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
1
2
3

k����

Support Reactions: The completed reaction vector R is shown in Fig. 8.5(d), and the
support reactions are depicted on a line diagram of the truss in Fig. 8.5(e). Ans

Equilibrium Check: Applying the equations of equilibrium to the free body of the
entire space truss (Fig. 8.5(e)), we obtain

+ → ∑
FX = 0 −5.5581 + 1.3838 − 19.442 + 23.616 ≈ 0 Checks

+ ↑ ∑
FY = 0 −22.232 − 2.7677 + 77.768 + 47.232 − 100 ≈ 0 Checks

+ ↙ ∑
FZ = 0 7.4108 + 0.92255 + 25.923 + 15.744 − 50 ≈ 0 Checks

+ ∑
MX = 0 22.232(8) + 2.7677(8) + 77.768(8)

+ 47.232(8) − 50(24) ≈ 0 Checks

+ ∑
MY = 0 −5.5581(8) + 7.4108(6) + 1.3838(8) − 0.92255(12)

+ 19.442(8) −25.923(6) −23.616(8) + 15.744(12) ≈ 0
Checks

+ ∑
MZ = 0 22.232(6) − 2.7677(12) + 77.768(6)

− 47.232(12) ≈ 0 Checks

a

a

a
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Fig. 8.6
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(b) Analytical Model
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Section 8.2 Grids 435

(horizontal) plane of the structure, while the grid members may be sub-
jected to torsion, and uniaxial bending out of the plane of the structure.

Analytical Model and Degrees of Freedom
The process of dividing grids into members and joints, for the purpose of
analysis, is the same as that for beams and plane frames—that is, a grid is
divided into members and joints so that all of the members are straight and
prismatic, and all the external reactions act only at the joints. Consider, for ex-
ample, the grid of Fig. 8.6(a). The analytical model of the grid, as depicted in
Fig. 8.6(b), shows that, for analysis, the grid is considered to be composed of
four members and five joints. The overall geometry of the grid, and its joint
loads and displacements, are described with reference to a global right-handed
XYZ coordinate system, with the structure lying in the horizontal XZ plane, as
shown in Fig. 8.6(b). Two global (X and Z) coordinates are needed to specify
the location of each joint.

For each member of the grid, a local xyz coordinate system is established,
with its origin at an end of the member and the x axis directed along the mem-
ber’s centroidal axis in the undeformed state. The local y and z axes are
oriented, respectively, parallel to the vertical and horizontal axes of symmetry

Y

y2

x2

y4

z4

z2

z1

x4

y3

z3

x3

y1

x1

Z

X5

3

4

1 2 z3

x3

y3

Section A–A

2

1

3

4

(c) Member Local Coordinate Systems

A A

Fig. 8.6 (continued)
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(or the principal axes of inertia) of the member cross-section. The positive di-
rection of the local x axis is defined from the beginning toward the end of the
member; the local y axis is considered positive upward (i.e., in the positive
direction of the global Y axis); and the positive direction of the local z axis is
defined so that the local xyz coordinate system is right-handed. The local coor-
dinate systems selected for the four members of the example grid are depicted
in Fig. 8.6(c).

As discussed previously, an unsupported joint of a grid can translate in the
global Y direction and rotate about any axis in the XZ plane. Since small rota-
tions can be treated as vector quantities, the foregoing joint rotation can be con-
veniently represented by its component rotations about the X and Z axes. Thus,
a free joint of a grid has three degrees of freedom—the translation in the Y di-
rection and the rotations about the X and Z axes. Therefore, three structure co-
ordinates (i.e., free and/or restrained coordinates) need to be defined at each
joint of the grid for the purpose of analysis; that is,

(8.13)

The procedure for numbering the structure coordinates of grids is analo-
gous to that for other types of framed structures. The degrees of freedom are
numbered before the restrained coordinates. In the case of a joint with multiple
degrees of freedom, the translation in the Y direction is numbered first,
followed by the rotation about the X axis, and then the rotation about the Z axis.
After all the degrees of freedom have been numbered, the grid’s restrained
coordinates are numbered in the same manner as the degrees of freedom. In
Fig. 8.6(b), the degrees of freedom and restrained coordinates of the example
grid are numbered using this procedure. It should be noted from this figure that
the rotations and moments are now represented by double-headed arrows
(→→), instead of the curved arrows ( ) used previously for plane structures.
The double-headed arrows provide a convenient and unambiguous means of
representing rotations and moments in three-dimensional space. To represent a
rotation (or a moment/couple), an arrow is drawn pointing in the positive di-
rection of the axis about which the rotation occurs (or the moment/couple acts).
The positive sense (i.e., clockwise or counterclockwise) of the rotation (or mo-
ment/couple) is indicated by the curved fingers of the right hand with the ex-
tended thumb pointing in the direction of the arrowheads, as shown in Fig. 8.7.

Member Stiffness Relations in the 
Local Coordinate System
When a member with a noncircular (e.g., rectangular or I-shaped) cross-
section is subjected to torsion, its initially plane cross-sections become warped
surfaces; restraint of this warping, or out-of-plane deformation, of cross-
sections can induce bending stresses in the member. Thus, in the analysis of
grids and space frames (to be developed in the next section), it is commonly

Y

NCJT = 3
NDOF = 3(NJ) − NR

}
for grids
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Section 8.2 Grids 437

assumed that the cross sections of all the members are free to warp out of their
planes under the action of torsional moments. This assumption, together with
the previously stated condition about the cross-sections of grid members being
doubly symmetric with one of the planes of symmetry oriented parallel to the
direction of applied loads, has the effect of uncoupling the member’s torsional
and bending stiffnesses so that a twisting (or torsional deformation) of the
member induces only torsional moments but no bending moments, and vice
versa. With the torsional and bending effects uncoupled, the local stiffness
relations for the members of grids can be obtained by simply extending the
stiffness relations for beams (Chapter 5) to include the familiar torsional stiff-
ness relations found in textbooks on mechanics of materials.

Consider an arbitrary member m of a grid, as shown in Fig. 8.8(a) on the
next page. Like a joint of a grid, three displacements are needed to completely
specify the displaced position of each end of the grid member. Thus, the mem-
ber has a total of six degrees of freedom. In the local coordinate system of the
member, the six member end displacements are denoted by u1 through u6, and
the associated member end forces are denoted by Q1 through Q6, as shown in
Fig. 8.8(a). As indicated in this figure, a member’s local end displacements and
end forces are numbered by beginning at its end b, with the translation and the
force in the y direction numbered first, followed by the rotation and moment
about the x axis, and then the rotation and moment about the z axis. The dis-
placements and forces at the member’s opposite end e are then numbered in the
same sequential order.

The relationship between the end forces Q and the end displacements u,
for the members of grids, can be expressed as

(8.14)Q = ku + Q f

X

Z

Y

Axis of rotation
or moment/couple

Fig. 8.7 Representation of Rotation or Moment/Couple 
in Three-Dimensional Space
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(a) Member Forces and Displacements 
in the Local Coordinate System

E, I, J = constant
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y

Q1, u1 Q4, u4

Q3, u3 Q6, u6

Q2, u2 Q5, u5
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Fig. 8.8 (continued)
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in which k represents the 6 × 6 member stiffness matrix in the local coordinate
system, and Qf denotes the 6 × 1 member local fixed-end force vector.

Like the other types of framed structures, the explicit form of k for grid
members can be obtained by subjecting a member, separately, to unit values of
each of the six end displacements, as shown in Figs. 8.8(b) through (g), and
evaluating the corresponding member end forces.

The stiffness coefficients required to cause the unit values of the member
end displacements u1, u3, u4, and u6, are shown in Figs. 8.8(b), (d), (e), and (g),
respectively. The expressions for these stiffness coefficients were derived in
Section 5.2. To derive the expressions for the torsional stiffness coefficients,
recall from a previous course on mechanics of materials that the relationship
between a torsional moment (or torque) MT applied at the free end of a
cantilever circular shaft, and the resulting angle of twist φ (see Fig. 8.9), can be
expressed as

(8.15)

in which G denotes the shear modulus of the material, and J denotes the polar
moment of inertia of the shaft.

For members with noncircular cross sections, the relationship between the
torsional moment MT and the angle of twist φ can be quite complicated be-
cause of warping [40]. However, if warping is not restrained, then Eq. (8.15)
can be used to approximate the torsional behavior of members with noncircu-
lar cross-sections—provided that J is now considered to be the Saint-Venant’s
torsion constant, or simply the torsion constant, of the member’s cross-section,
instead of its polar moment of inertia. Although the derivation of the expres-
sions for torsion constant J for various cross-sectional shapes is beyond the
scope of this text, such derivations can be found in textbooks on the theory of
elasticity and advanced mechanics of materials [40]. The expressions for J for
some common cross-sectional shapes are listed in Table 8.1. Furthermore, the
torsion constant for any thin-walled, open cross-section can be approximated

φ = MT L

G J

440 Chapter 8 Three-Dimensional Framed Structures

Fig. 8.9 Circular Shaft Subjected to Torsional Moment

L

GJ = constant

φ
MTMT
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by the relationship

J = 1

3

∑
bt3 (8.16)

in which b and t denote, respectively, the width and thickness of each rectan-
gular segment of the cross section.

Returning our attention to Fig. 8.8(c), we realize that the expression for
the stiffness coefficient k22 can be obtained by substituting φ = u2 = 1 and

Cross-Section Torsion Constant

r

r

t

b

d

bf

tw

tf

tf

h

tf

tf

tw tw

h

b

J = 1

2
πr4

J = 2πr3t

J = βb3d for b ≤ d

β = 1

3
− 0.21

b

d

[
1 − 1

12

(
b

d

)4
]

J = 1

3

(
2bf t3

f + ht3
w

)

J = 2b2h2

b/t f + h/tw

Table 8.1 Torsion Constants for Common Member 
Cross-Sections [40, 52]
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MT = k22 into Eq. (8.15), and solving the resulting equation for k22. This yields

(8.17)

The other torsional stiffness coefficient k52 can now be determined by applying
the following equilibrium equation.

+−→→ ∑
MX = 0

GJ

L
+ k52 = 0

(8.18)

The expressions for coefficients k25 and k55 (Fig. 8.8(f)) can be obtained in
a similar manner. Substitution of φ = u5 = 1 and MT = k55 into Eq. (8.15)
yields

(8.19)

and by considering the equilibrium of the free body of the member, we obtain
k25 as

+−→→ ∑
Mx = 0 k25 + GJ

L
= 0

(8.20)

Thus, by arranging all the stiffness coefficients shown in Figs. 8.8(b)
through (g) into a matrix, we obtain the following expression for the local stiff-
ness matrix for the members of grids.

k = EI

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 6L −12 0 6L

0
GJL2

EI
0 0 −GJL2

EI
0

6L 0 4L2 −6L 0 2L2

−12 0 −6L 12 0 −6L

0 −GJL2

EI
0 0

GJL2

EI
0

6L 0 2L2 −6L 0 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.21)

k25 = −GJ

L

k55 = GJ

L

k52 = −GJ

L

k22 = GJ

L
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Section 8.2 Grids 443

The local fixed-end force vector for the members of grids is expressed as
(Fig. 8.8(h))

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎣

FSb

FTb

FMb

FSe

FTe

FMe

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.22)

in which the fixed-end shears (FSb and FSe) and bending moments (FMb and
FMe) can be calculated by using the fixed-end force equations given for load-
ing types 1 through 4 inside the front cover. (The procedure for deriving those
fixed-end shear and bending moment equations was discussed in Section 5.4.)

The expressions for the fixed-end torsional moments (FTb and FTe), due to
an external torque MT applied to the member, are also given inside the front
cover (see loading type 7). To derive these expressions, let us consider a fixed
member of a grid, subjected to a torque MT, as shown in Fig. 8.10(a). If the end
e of the member were free to rotate, then its cross-section would twist clock-
wise as shown in Fig. 8.10(b). Let φ be the angle of twist at end e of the
released member. As portion Ae of the released member (Fig. 8.10(b)) is not
subjected to any torsional moments, the angle of twist, φ , at end e equals that
at point A, and its magnitude can be obtained by substituting L = l1 into
Eq. (8.15); that is,

φ = MT l1

GJ
(8.23)

y
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xFTe

y

z

a

φ = 0
z

FTb
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l1 l2
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eeb
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�
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Fig. 8.10
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Since the angle of twist at end e of the actual fixed member (Fig. 8.10(a)) is 0,
the fixed-end torsional moment FTe must be of such magnitude that, when ap-
plied to the released member as shown in Fig. 8.10(c), it should twist the cross-
section at end e by an angle equal in magnitude to the angle φ due to the torque
MT, but in the opposite (i.e., counterclockwise) direction. The angle of twist
due to FTe can be obtained by substituting MT = FTe into Eq. (8.15); that is,

φ = FTe L

GJ
(8.24)

and the relationship between FTe and the external torque MT can be established
by equating Eqs. (8.23) and (8.24), as

φ = FTe L

GJ
= MT l1

GJ

from which we obtain the expression for the fixed-end torsional moment FTe:

FTe = MT l1

L
(8.25)

The expression for the other fixed-end torsional moment, FTb, can now be
determined by applying the equilibrium condition that the algebraic sum of the
three torsional moments acting on the fixed member (Fig. 8.10(a)) must be 0;
that is,

+−→→ ∑
Mx = 0 FTb − MT + FTe = 0

By substituting Eq. (8.25) into the foregoing equation and rearranging terms,
we obtain the expression for FTb:

FTb = MT

(
L − l1

L

)
= MT l2

L
(8.26)

Member Releases The expressions for the local stiffness matrix k and the
fixed-end force vector Qf, as given in Eqs. (8.21) and (8.22), respectively, are
valid only for members of type 0 (i.e., MT = 0), which are rigidly connected to
joints at both ends. For grid members with moment releases, the foregoing ex-
pressions for k and Qf need to be modified using the procedure described in
Section 7.1. If the member releases are assumed to be in the form of spherical
hinges (or ball-and-socket type of connections), so that both bending and tor-
sional moments are 0 at the released member ends, then the modified local
stiffness matrices k and fixed-end force vectors Qf for the grid members with
releases can be expressed as follows.

For a member with a hinge at the beginning (MT = 1):

k = EI

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 0 −3 0 3L
0 0 0 0 0 0
0 0 0 0 0 0

−3 0 0 3 0 −3L
0 0 0 0 0 0
3L 0 0 −3L 0 3L2

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.27)
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Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 3

2L
FMb

0

0

FSe + 3

2L
FMb

FTe + FTb

FMe − 1

2
FMb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For a member with a hinge at the end (MT = 2):

k = EI

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 3L −3 0 0
0 0 0 0 0 0
3L 0 3L2 −3L 0 0

−3 0 −3L 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.29)

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 3

2L
FMe

FTb + FTe

FMb − 1

2
FMe

FSe + 3

2L
FMe

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.30)

For a member with hinges at both ends (MT = 3):

k = 0 (8.31)

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 1

L
(FMb + FMe)

0

0

FSe + 1

L
(FMb + FMe)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.32)

Note that the members of type 3 offer no resistance against twisting and, there-
fore, cannot be subjected to any torques or torsional member loading.

(8.28)
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Coordinate Transformations
Consider an arbitrary member m of a grid, as shown in Fig. 8.11(a). The orien-
tation of the member in the horizontal (XZ) plane is defined by an angle θ
between the positive directions of the global X axis and the member’s local
x axis, as shown in the figure. The member’s length, and its direction cosines,
can be expressed in terms of the global coordinates of the member end joints,
b and e, by the following relationships.

L =
√

(Xe − Xb)2 + (Ze − Zb)2 (8.33a)

446 Chapter 8 Three-Dimensional Framed Structures
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(c) Member End Forces and End Displacements
in the Global Coordinate System
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Fig. 8.11 (continued)
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cos θ = Xe − Xb

L
(8.33b)

sin θ = Ze − Zb

L
(8.33c)

The member local end forces Q and end displacements u are shown in
Fig. 8.11(b); Fig. 8.11(c) depicts the equivalent system of end forces F and end
displacements v, in the global coordinate system. As indicated in Fig. 8.11(c),
the global member end forces and end displacements are numbered by begin-
ning at member end b, with the force and translation in the Y direction num-
bered first, followed by the moment and rotation about the X axis, and then the
moment and rotation about the Z axis. The forces and displacements at the
member’s opposite end e are then numbered in the same sequential order.

By comparing Figs. 8.11(b) and (c), we realize that at member end b, the
local forces Q1, Q2, and Q3 must be equal to the algebraic sums of the compo-
nents of the global forces F1, F2, and F3 in the directions of the local y, x, and
z axes, respectively; that is (also, see Fig. 8.11(d)),

Q1 = F1 (8.34a)

Q2 = F2 cos θ + F3 sin θ (8.34b)

Q3 = −F2 sin θ + F3 cos θ (8.34c)

Similarly, the local forces at member end e can be expressed in terms of the
global forces as

Q4 = F4 (8.34d)

Q5 = F5 cos θ + F6 sin θ (8.34e)

Q6 = −F5 sin θ + F6 cos θ (8.34f)

Equations 8.34(a) through (f) can be expressed in matrix form as

Q = TF (8.35)

with the transformation matrix T given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos θ sin θ 0 0 0
0 −sin θ cos θ 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θ sin θ

0 0 0 0 −sin θ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.36)

Because the translations and small rotations of the member ends can be treated
as vector quantities, the foregoing transformation matrix also defines the trans-
formation of member end displacements from the global to the local coordinate
system; that is, u = Tv. Furthermore, the transformation matrix T, as given in
Eq. (8.36), can be used to transform member end forces and displacements
from the local to the global coordinate system via the relationships F = TTQ
and v = TTu, respectively.

448 Chapter 8 Three-Dimensional Framed Structures
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Section 8.2 Grids 449

Procedure for Analysis
The procedure for analysis of grids remains the same as that for plane frames
developed in Chapter 6 (and modified in Chapter 7); provided, of course, that
the member local stiffness and transformation matrices, and local fixed-end
force vectors, developed in this section are used in the analysis. The procedure
is illustrated by the following example.

E X A M P L E 8.2 Determine the joint displacements, member end forces, and support reactions for the
three-member grid shown in Fig. 8.12(a), using the matrix stiffness method.

S O L U T I O N Analytical Model: The grid has three degrees of freedom and nine restrained
coordinates, as shown in Fig. 8.12(b).

Structure Stiffness Matrix:

Member 1 From Fig. 8.12(b), we can see that joint 1 is the beginning joint, and joint
4 the end joint, for this member. By applying Eqs. (8.33), we determine the length, and
the direction cosines, for the member to be

L =
√

(X4 − X1)
2 + (Z4 − Z1)

2 =
√

(8 − 0)2 + (6 − 0)2 = 10 m

cos θ = X4 − X1

L
= 8 − 0

10
= 0.8

sin θ = Z4 − Z1

L
= 6 − 0

10
= 0.6

Fig. 8.12

6 m

8 m

20kN/m

20kN/m

Y

X

Z

(a) Grid

E, G, I, J = constant
E = 200 GPa,
I  = 347(106) mm4,

G = 76 GPa
J  = 115(106) mm4
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(b) Analytical Model

Y

X

Z

12

6

5

4

11

10

3
1

2

7

8

9

1 2

3 43

1 2

1 2 3

S =

⎡
⎢⎣

832.8 + 3,855.6 + 1,626.6 2,498.4 + 11,567 −3,331.2 − 6,506.3

2,498.4 + 11,567 10,553 + 46,267 + 1,092.5 −12,905

−3,331.2 − 6,506.3 −12,905 18,081 + 1,456.7 + 34,700

⎤
⎥⎦

1

2

3

=

⎡
⎢⎣

6,315 14,065 −9,837.5

14,065 57,912 −12,905

−9,837.5 −12,905 54,238

⎤
⎥⎦

P f =

⎡
⎢⎣

60 + 80

60

−106.67

⎤
⎥⎦

1

2

3

=

⎡
⎢⎣

140

60

−106.67

⎤
⎥⎦

(c) Structure Stiffness Matrix and Fixed-Joint Force Vector

y

z

5.0455

77.709

0.014686

77.562

0.014686

12.378 12.378

37
5.5

2

67
.01

3
135.32 24.683

5.0455

7.9
90

7

24.668

62.952

144.67

445.06

7.9
90

7

20 kN/m

xy

z

x

x

z

y

20
 kN

/m

Y

Z

X

(d) Member Local End Forces

3

1
2

Fig. 8.12 (continued)
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Section 8.2 Grids 451

Since MT = 0 for this member, we use Eq. (8.21) to determine its local stiffness ma-
trix k. Thus, by substituting E = 200(106) kN/m2, G = 76(106) kN/m2, L = 10 m,
I = 347(10−6) m4, and J = 115(10−6) m4 into Eq. (8.21), we obtain

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

832.8 0 4,164 −832.8 0 4,164
0 874 0 0 −874 0

4,164 0 27,760 −4,164 0 13,880
−832.8 0 −4,164 832.8 0 −4,164

0 −874 0 0 874 0
4,164 0 13,880 −4,164 0 27,760

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

As the member is not subjected to any loads, its global and local fixed-end force
vectors are 0; that is,

F f 1 = Q f 1 = 0

Before we can calculate the member global stiffness matrix K, we need to evaluate
its transformation matrix T. Thus, by substituting cos θ = 0.8 and sin θ = 0.6 into

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.014686 kN

−50.662 kN · m

59.14 kN · m

144.67 kN

−445.06 kN · m

7.9907 kN · m

135.32 kN

−12.378 kN · m

375.52 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

5

6

7

8

9

10

11

12

(e) Support Reaction Vector

(f) Support Reactions

Y

X

Z

375.52

59.14

50.662

0.014686

12.378

135.32

144.67

445.06

7.9907

1

2

3 4

20 kN/m

20
 kN

/m

Fig. 8.12 (continued)
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452 Chapter 8 Three-Dimensional Framed Structures

Eq. (8.36), we obtain

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0.8 0.6 0 0 0
0 −0.6 0.8 0 0 0
0 0 0 1 0 0
0 0 0 0 0.8 0.6
0 0 0 0 −0.6 0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Next, by substituting k1 (Eq. (1)) and T1 (Eq. (2)) into the relationship K = TTkT,
and performing the necessary matrix multiplications, we obtain the following global
stiffness matrix for member 1:

4 5 6 1 2 3

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

832.8 −2,498.4 3,331.2 −832.8 −2,498.4 3,331.2
−2,498.4 10,553 −12,905 2,498.4 4,437.4 −7,081.9

3,331.2 −12,905 18,081 −3,331.2 −7,081.9 8,568.6
−832.8 2,498.4 −3,331.2 832.8 2,498.4 −3,331.2

−2,498.4 4,437.4 −7,081.9 2,498.4 10,553 −12,905
3,331.2 −7,081.9 8,568.6 −3,331.2 −12,905 18,081

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

���������������
�
�
�
�

From Fig. 8.12(b), we observe that the code numbers for member 1 are 4, 5, 6, 1, 2, 3.
By using these code numbers, we store the pertinent elements of K1 in the 3 × 3
structure stiffness matrix S, as shown in Fig. 8.12(c).

Member 2 L = 6 m, cos θ = 0, sin θ = 1

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3,855.6 0 11,567 −3,855.6 0 11,567
0 1,456.7 0 0 −1,456.7 0

11,567 0 46,267 −11,567 0 23,133
−3,855.6 0 −11,567 3,855.6 0 −11,567

0 −1,456.7 0 0 1,456.7 0
11,567 0 23,133 −11,567 0 46,267

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

7 8 9 1 2 3

K2 = TT
2 k2T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3,855.6 −11,567 0 −3,855.6 −11,567 0

−11,567 46,267 0 11,567 23,133 0

0 0 1,456.7 0 0 −1,456.7

−3,855.6 11,567 0 3,855.6 11,567 0

−11,567 23,133 0 11,567 46,267 0

0 0 −1,456.7 0 0 1,456.7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

7

8

9

1

2

3

��������������
�
�
�
�
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Section 8.2 Grids 453

To determine the local fixed-end force vector due to the 20 kN/m member load,
we first evaluate the fixed-end shears and moments by using the expressions for load-
ing type 3 given inside the front cover. This yields

FSb = FSe = 60 kN

FMb = −FMe = 60 kN·m
FTb = FTe = 0

Since MT = 0 for this member, we use Eq. (8.22) to obtain its local fixed-end force vector:

Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

60
0

60
60
0

−60

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Next, by substituting T2 (Eq. (4)) and Qf 2 (Eq. (5)) into the transformation relation-
ship Ff = TTQf, we obtain the global fixed-end force vector for member 2:

F f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

60
−60

0
60
60
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

���

The relevant elements of K2 and Ff 2 are stored in S and the 3 × 1 structure fixed-joint
force vector Pf, respectively, as shown in Fig. 8.12(c).

Member 3 As the local x axis of this member is oriented in the positive direction of
the global X axis, no coordinate transformations are needed; that is, T3 = I. By using
Eq. (8.21) with L = 8 m, we obtain

10 11 12 1 2 3

K3 = k3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1,626.6 0 6,506.3 −1,626.6 0 6,506.3

0 1,092.5 0 0 −1,092.5 0

6,506.3 0 34,700 −6,506.3 0 17,350

−1,626.6 0 −6,506.3 1,626.6 0 −6,506.3

0 −1,092.5 0 0 1,092.5 0

6,506.3 0 17,350 −6,506.3 0 34,700

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

11

12

1

2

3

��������������
�
�
�
�

(6)
FSb = FSe = 80 kN

FMb = −FMe = 106.67 kN · m

FTb = FTe = 0

F f 3 = Q f 3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

80
0

106.67
80
0

−106.67

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

���� (7)
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454 Chapter 8 Three-Dimensional Framed Structures

The complete structure stiffness matrix S and the structure fixed-joint force vec-
tor Pf are given in Fig. 8.12(c).

Joint Load Vector: Because the grid is not subjected to any external loads at its joints,
the joint load vector is 0; that is,

P = 0

Joint Displacements: By substituting P, Pf , and S into the structure stiffness relation-
ship, P − Pf = Sd, we write⎡

⎢⎣
0
0
0

⎤
⎥⎦ −

⎡
⎢⎣

140
60

−106.67

⎤
⎥⎦ =

⎡
⎢⎣

6,315 14,065 −9,837.5
14,065 57,912 −12,905
−9,837.5 −12,905 54,238

⎤
⎥⎦

⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦

or ⎡
⎢⎣

−140
−60
106.67

⎤
⎥⎦ =

⎡
⎢⎣

6,315 14,065 −9,837.5
14,065 57,912 −12,905
−9,837.5 −12,905 54,238

⎤
⎥⎦

⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦

By solving the foregoing simultaneous equations, we determine the joint displace-
ments to be

d =
⎡
⎣ −55.951 m

11.33 rad
−5.4856 rad

⎤
⎦ × 10−3 Ans

Member End Displacements and End Forces:

Member 1

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
d1

d2

d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−55.951
11.33
−5.4856

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−55.951
5.7728

−11.187

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3

Q1 = k1u1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.014686 kN
−5.0455 kN·m
77.709 kN·m

−0.014686 kN
5.0455 kN·m

−77.562 kN·m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

The member local end forces are depicted in Fig. 8.12(d).
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Section 8.2 Grids 455

F1 = TT
1 Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.014686
−50.662

59.14
−0.014686
50.574

−59.022

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

�����

The pertinent elements of F1 are stored in the reaction vector R, as shown in Fig. 8.12(e).

Member 2

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−55.951
11.33

−5.4856

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

× 10−3, u2 = T2v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−55.951

−5.4856

−11.33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

144.67 kN
7.9907 kN·m
445.06 kN·m
−24.668 kN

−7.9907 kN·m
62.952 kN·m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

144.67
−445.06

7.9907
−24.668
−62.952
−7.9907

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
1
2
3

�����

Member 3

u3 = v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−55.951
11.33

−5.4856

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

× 10−3

F3 = Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

135.32 kN
−12.378 kN·m
375.52 kN·m

24.683 kN
12.378 kN·m
67.013 kN·m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

10
11
12
1
2
3

������� Ans

Support Reactions: The completed reaction vector R is shown in Fig. 8.12(e), and the
support reactions are depicted on a line diagram of the grid in Fig. 8.12(f). Ans

Equilibrium Check: The three equilibrium equations (
∑

FY = 0,
∑

MX = 0, and∑
MZ = 0) are satisfied.
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8.3 SPACE FRAMES
Space frames constitute the most general type of framed structures. The mem-
bers of such frames may be oriented in any directions in three-dimensional
space, and may be connected by rigid and/or flexible connections. Further-
more, external loads oriented in any arbitrary directions can be applied to the
joints, as well as members, of space frames (Fig. 8.13(a)). Under the action of
external loads, the members of a space frame are generally subjected to bend-
ing moments about both principal axes, shears in both principal directions,
torsional moments, and axial forces.

As with grids, the analysis of space frames is commonly based on the
assumption that the cross-sections of all the members are symmetric about at
least two mutually perpendicular axes, and are free to warp out of their planes
under the action of torsional moments. As discussed previously in the case of
grids, the bending and torsional stiffnesses of a member are uncoupled if it
satisfies the foregoing assumption.

The process of developing the analytical models, and numbering the degrees
of freedom and restrained coordinates, of space frames is analogous to that for

456 Chapter 8 Three-Dimensional Framed Structures

Y

0

Z

X
Planes of
symmetry

Section A–A
Member cross-section

Space Frame

(a)

A

A

Fig. 8.13
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other types of framed structures. The overall geometry of the space frame, and its
joint loads and displacements, are described with reference to a global right-
handed XYZ coordinate system, with three global (X, Y, and Z) coordinates used
to specify the location of each joint. An unsupported joint of a space frame can
translate in any direction, and rotate about any axis, in three-dimensional space.
Since small rotations can be treated as vector quantities, the rotation of a joint
can be conveniently represented by its component rotations about the X, Y, and
Z axes. Thus, a free joint of a space frame has six degrees of freedom—the trans-
lations in the X, Y, and Z directions and the rotations about the X, Y, and Z axes.
Therefore, six structure coordinates (i.e., free and/or restrained coordinates) need
to be defined at each joint of the space frame for the purpose of analysis; that is,

(8.37)
NCJT = 6
NDOF = 6(NJ ) − NR

}
for space frames

Section 8.3 Space Frames 457

(b) Analytical Model (24 Degrees of Freedom and
24 Restrained Coordinates)
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Fig. 8.13 (continued)
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The procedure for assigning numbers to the structure coordinates of a
space frame is similar to that for other types of framed structures, with the
degrees of freedom numbered before the restrained coordinates. In the case of
a joint with multiple degrees of freedom (or restrained coordinates), the trans-
lations (or forces) in the X, Y, and Z directions are numbered first in sequential
order, followed by the rotations (or moments) about the X, Y, and Z axes,
respectively, as shown in Fig. 8.13(b).

For each member of a space frame, a local xyz coordinate system is estab-
lished, with its origin at an end of the member and the x axis directed along the
member’s centroidal axis in the undeformed state. The local y and z axes are
oriented, respectively, parallel to the two axes of symmetry (or the principal
axes of inertia) of the member cross-section, with their positive directions
defined so that the local xyz coordinate system is right-handed (Fig. 8.13(c)).

Member Stiffness Relations in the
Local Coordinate System
To establish the local stiffness relations, let us consider an arbitrary member m
of a space frame, as shown in Fig. 8.14(a). Like a joint of a space frame, six
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(a) Member Forces and Displacements in the Local Coordinate System
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displacements are needed to completely specify the displaced position of 
each end of the space frame member. Thus, a member of a space frame has 
12 degrees of freedom. In the member local coordinate system, the 12 end dis-
placements are denoted by u1 through u12, and the corresponding member end
forces are denoted by Q1 through Q12, as shown in Fig. 8.14(a). As indicated in
this figure, a member’s local end displacements (or end forces) are numbered
by beginning at its end b, with the translations (or forces) in the x, y, and z di-
rections numbered first in sequential order, followed by the rotations (or mo-
ments) about the x, y, and z axes, respectively. The displacements (or forces) at
the member’s opposite end e are then numbered in the same sequential order.

Fig. 8.14 (continued)
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Section 8.3 Space Frames 463

The relationship between the end forces Q and the end displacements u, for
space frame members, can be expressed in the following, now familiar, form:

(8.38)

with k now representing the 12 × 12 member local stiffness matrix, and Qf

denoting the 12 × 1 member local fixed-end force vector.
The explicit form of k for members of space frames can be conveniently

obtained using the expressions of the stiffness coefficients derived previously
for prismatic members subjected to axial deformations (Section 3.3), bending
deformations (Section 5.2), and torsional deformations (Section 8.2). The stiff-
ness coefficients for a space frame member thus obtained, due to the unit val-
ues of the 12 end displacements (u1 through u12, respectively), are given in
Figs. 8.14(b) through (m). Note that in Figs. 8.14(c), (g), (i), and (m), the mo-
ment of inertia of the member cross-section about its local z axis, Iz, is used in
the expressions for the stiffness coefficients, because the end displacements u2,

Q = ku + Qf
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Fig. 8.14 (continued)
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u6, u8, and u12 cause the member to bend about the z axis. However, in
Figs. 8.14(d), (f ), ( j), and (l), because the end displacements u3, u5, u9, and u11

cause the member to bend about its local y axis, the moment of inertia about the
y axis, Iy, is used in the expressions for the corresponding stiffness coefficients.
The explicit form of the local stiffness matrix k for members of space frames,
obtained by arranging all the stiffness coefficients shown in Figs. 8.14(b)
through (m) in a 12 × 12 matrix, is given in Eq. (8.39).

k = E

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2 0 0 0 0 0 −AL2 0 0 0 0 0

0 12Iz 0 0 0 6L Iz 0 −12Iz 0 0 0 6L Iz

0 0 12Iy 0 −6L Iy 0 0 0 −12Iy 0 −6L Iy 0

0 0 0
GJL2

E
0 0 0 0 0 − GJL2

E
0 0

0 0 −6L Iy 0 4L2 Iy 0 0 0 6L Iy 0 2L2 Iy 0

0 6L Iz 0 0 0 4L2 Iz 0 −6L Iz 0 0 0 2L2 Iz

−AL2 0 0 0 0 0 AL2 0 0 0 0 0

0 −12Iz 0 0 0 −6L Iz 0 12Iz 0 0 0 −6L Iz

0 0 −12Iy 0 6L Iy 0 0 0 12Iy 0 6L Iy 0

0 0 0 − GJL2

E
0 0 0 0 0

GJL2

E
0 0

0 0 −6L Iy 0 2L2 Iy 0 0 0 6L Iy 0 4L2 Iy 0

0 6L Iz 0 0 0 2L2 Iz 0 −6L Iz 0 0 0 4L2 Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The local fixed-end force vector for the members of space frames is ex-
pressed as follows (Fig. 8.14(n)).

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSby

FSbz

FTb

FMby

FMbz

FAe

FSey

FSez

FTe

FMey

FMez

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which FSby and FSbz denote the fixed-end shears at member end b in the
local y and z directions, respectively; and FMby and FMbz represent the fixed-
end moments at the same member end about the y and z axes, respectively. The
fixed-end shears and moments at the opposite end e of the member are defined
in a similar manner. The fixed-end forces due to a prescribed member loading
can be conveniently evaluated, using the fixed-end force expressions given in-
side the front cover. Any inclined member loads must be resolved into their
components in the directions of the member’s local x, y, and z axes before pro-
ceeding with the calculation of the fixed-end forces.

(8.40)

(8.39)
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Member Releases The expressions for k and Qf, as given in Eqs. (8.39) and
(8.40), respectively, are valid only for members rigidly connected to joints at
both ends (i.e., members of type 0, or MT = 0). For members of space frames
with moment releases, the foregoing expressions need to be modified, using
the procedure described in Section 7.1. If the member releases are assumed to
be in the form of spherical hinges (or ball-and-socket type of connections), so
that all three moments (i.e., the bending moments about the y and z axes, and
the torsional moment) are 0 at the released member ends, then the modified
local stiffness matrices k and fixed-end force vectors Qf for the members with
releases can be expressed as follows.

For members with a hinge at the beginning (MT = 1), the modified k is
given in Eq. (8.41):

k = E

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2 0 0 0 0 0 −AL2 0 0 0 0 0
0 3Iz 0 0 0 0 0 −3Iz 0 0 0 3L Iz

0 0 3Iy 0 0 0 0 0 −3Iy 0 −3L Iy 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−AL2 0 0 0 0 0 AL2 0 0 0 0 0
0 −3Iz 0 0 0 0 0 3Iz 0 0 0 −3L Iz

0 0 −3Iy 0 0 0 0 0 3Iy 0 3L Iy 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3L Iy 0 0 0 0 0 3L Iy 0 3L2 Iy 0
0 3L Iz 0 0 0 0 0 −3L Iz 0 0 0 3L2 Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSby − 3

2L
FMbz

FSbz + 3

2L
FMby

0
0
0

FAe

FSey + 3

2L
FMbz

FSez − 3

2L
FMby

FTb + FTe

FMey − 1

2
FMby

FMez − 1

2
FMbz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.42)

(8.41)
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466 Chapter 8 Three-Dimensional Framed Structures

For members with a hinge at the end (MT = 2), the modified k is given in
Eq. (8.43):

k = E

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2 0 0 0 0 0 −AL2 0 0 0 0 0
0 3Iz 0 0 0 3L Iz 0 −3Iz 0 0 0 0
0 0 3Iy 0 −3L Iy 0 0 0 −3Iy 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3L Iy 0 3L2 Iy 0 0 0 3L Iy 0 0 0
0 3L Iz 0 0 0 3L2 Iz 0 −3L Iz 0 0 0 0

−AL2 0 0 0 0 0 AL2 0 0 0 0 0
0 −3Iz 0 0 0 −3L Iz 0 3Iz 0 0 0 0
0 0 −3Iy 0 3L Iy 0 0 0 3Iy 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSby − 3

2L
FMez

FSbz + 3

2L
FMey

FTb + FTe

FMby − 1

2
FMey

FMbz − 1

2
FMez

FAe

FSey + 3

2L
FMez

FSez − 3

2L
FMey

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For members with hinges at both ends (MT = 3), the modified k is given
in Eq. (8.45):

k = EA

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.45)

(8.44)

(8.43)
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and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAb

FSby − 1

L
(FMbz + FMez)

FSbz + 1

L
(FMby + FMey)

0

0

0

FAe

FSey + 1

L
(FMbz + FMez)

FSez − 1

L
(FMby + FMey)

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Coordinate Transformations
The expression of the transformation matrix T for members of space frames can
be derived using a procedure essentially similar to that used previously for other
types of framed structures. However, unlike the transformation matrices for
trusses, plane frames, and grids, which contain direction cosines of only the mem-
ber’s longitudinal (or x) axis, the transformation matrix for members of space
frames involves direction cosines of all three (x, y, and z) axes of the member local
coordinate system with respect to the structure’s global (XYZ) coordinate system.

Consideranarbitrarymembermofaspaceframe,asshowninFig. 8.15(a) on
the next page. The member end forces Q and end displacements u, in the local
coordinate system, are shown in Fig. 8.15(b), and Fig. 8.15(c) depicts the equiv-
alent system of member end forces F and end displacements v, in the global co-
ordinate system. As indicated in Fig. 8.15(c), the global member end forces and
displacements are numbered in a manner analogous to the local forces and
displacements, except that they act in the directions of the global X, Y, and Z axes.

The orientation of a member of a space frame is defined by the angles
between its local x, y, and z axes and the global X, Y, and Z axes. As shown in
Fig. 8.16(a) on page 469, the angles between the local x axis and the global X, Y,
and Z axes are denoted by θxX, θxY, and θxZ, respectively. Similarly, the angles be-
tween the local y axis and the global X, Y, and Z axes are denoted by θyX, θyY, and
θyZ, respectively (Fig. 8.16(b)); and the angles between the local z axis and the
global X, Y, and Z axes are denoted by θzX, θzY, and θz Z, respectively (Fig. 8.16(c)).

Now, let us consider the transformation of member end forces from the
global to a local coordinate system. By comparing Figs. 8.15(b) and (c), we re-
alize that, at member end b, the local forces Q1, Q2, and Q3 must be equal to the

(8.46)
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algebraic sums of the components of the global forces F1, F2, and F3 in the di-
rections of the local x, y, and z axes, respectively; that is (also, see Fig. 8.16),

Q1 = F1 cos θx X + F2 cos θxY + F3 cos θx Z (8.47a)

Q2 = F1 cos θy X + F2 cos θyY + F3 cos θy Z (8.47b)

Q3 = F1 cos θzX + F2 cos θzY + F3 cos θzZ (8.47c)

Equations (8.47) can be written in matrix form as⎡
⎣ Q1

Q2

Q3

⎤
⎦ =

⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦

⎡
⎣ F1

F2

F3

⎤
⎦ (8.48)
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Section 8.3 Space Frames 471

in which

ri J = cos θi J i = x, y, or z and J = X, Y, or Z (8.49)

The local moments Q4, Q5, and Q6, at member end b, can be similarly ex-
pressed in terms of their global counterparts F4, F5, and F6, as⎡

⎣ Q4

Q5

Q6

⎤
⎦ =

⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦

⎡
⎣ F4

F5

F6

⎤
⎦ (8.50)

Similarly, the local forces and moments at member end e can be expressed in
terms of the global forces and moments by the following relationships.⎡

⎣ Q7

Q8

Q9

⎤
⎦ =

⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦

⎡
⎣ F7

F8

F9

⎤
⎦ (8.51)

and ⎡
⎣ Q10

Q11

Q12

⎤
⎦ =

⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦

⎡
⎣ F10

F11

F12

⎤
⎦ (8.52)

By combining Eqs. (8.48) and Eqs. (8.50) through (8.52), we can now ex-
press the transformation relationship between the 12 × 1 member local end
force vector Q and the 12 × 1 member global end force vector F, in the stan-
dard form of

Q = TF (8.53)

in which T represents the 12 × 12 transformation matrix for the members of
space frames. The explicit form of T is given in Eq. (8.54).

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx X rxY rx Z 0 0 0 0 0 0 0 0 0
ry X ryY ry Z 0 0 0 0 0 0 0 0 0
rzX rzY rzZ 0 0 0 0 0 0 0 0 0

0 0 0 rx X rxY rx Z 0 0 0 0 0 0
0 0 0 ry X ryY ry Z 0 0 0 0 0 0
0 0 0 rzX rzY rzZ 0 0 0 0 0 0
0 0 0 0 0 0 rx X rxY rx Z 0 0 0
0 0 0 0 0 0 ry X ryY ry Z 0 0 0
0 0 0 0 0 0 rzX rzY rzZ 0 0 0
0 0 0 0 0 0 0 0 0 rx X rxY rx Z

0 0 0 0 0 0 0 0 0 ry X ryY ry Z

0 0 0 0 0 0 0 0 0 rzX rzY rzZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����������������������������

�����������������������������

�����������������������������

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

The transformation matrix T is usually expressed in a compact form in terms
of its submatrices as

T =

⎡
⎢⎢⎣

r O O O
O r O O
O O r O
O O O r

⎤
⎥⎥⎦ (8.55)

(8.54)
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in which O represents a 3 × 3 null matrix; and the 3 × 3 matrix r, which is
commonly referred to as the member rotation matrix, is given by

r =
⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦ (8.56)

The rotation matrix r plays a key role in the analysis of space frames, and an
alternate form of this matrix, which enables us to specify the member orienta-
tions more conveniently, is developed subsequently.

Since the member local and global end displacements, u and v, are also
vector quantities, which are defined in the same directions as the correspond-
ing forces, the foregoing transformation matrix T can also be used to transform
member end displacements from the global to the local coordinate system; that
is, u = Tv. Furthermore, by employing a procedure similar to that used in the
preceding paragraphs, it can be shown that the inverse transformations of the
member end forces and end displacements, from the local to the global coordi-
nate system, are defined by the transpose of the transformation matrix given in
Eq. (8.54) (or Eqs. (8.55) and (8.56)); that is, F = TTQ and v = TTu. Once the
transformation matrix T has been established for a member of a space frame,
its global stiffness matrix and fixed-end force vector can be obtained via the
standard relationships K = TTkT and Ff = TTQf, respectively.

Member Rotation Matrix in Terms of the Angle of Roll From Eq. (8.56), we
can see that the rotation matrix r consists of nine elements, with each element
representing the direction cosine of a local axis with respect to a global axis, in
accordance with Eq. (8.49). Of these nine direction cosines, the three in the
first row of r, which represent the direction cosines of the local x axis, can be
directly evaluated using the global coordinates of the two joints to which
the member ends are attached. Thus, if Xb, Yb, and Zb and Xe, Ye, and Ze denote
the global coordinates of the joints to which member ends b and e, respectively,
are attached, then the direction cosines of the local x axis, with respect to the
global X, Y, and Z axes, respectively, can be expressed as

rx X = cos θx X = Xe − Xb

L
(8.57a)

rxY = cos θxY = Ye − Yb

L
(8.57b)

rx Z = cos θx Z = Ze − Zb

L
(8.57c)

in which the member length L is given by

L =
√

(Xe − Xb)
2 + (Ye − Yb)

2 + (Ze − Zb)
2 (8.57d)

With the direction cosines of the member x axis now established, we focus
our attention on the question of how to determine the direction cosines of the
local y and z axes using the information about the member orientation that can
be conveniently input by the user of the computer program. Since the x, y, and
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Section 8.3 Space Frames 473

z axes form a mutually perpendicular right-handed coordinate system, it usu-
ally is convenient to define their directions by those of the unit vectors directed
along these axes. Thus, if ix, iy, and iz denote, respectively, the unit vectors in
the directions of the local x, y, and z axes, and IX, IY, and IZ denote, re-
spectively, the unit vectors directed along the global X, Y, and Z axes (see
Fig. 8.17), then the relationship between the local and global unit vectors is
defined by the member rotation matrix r, as⎡

⎣ ix

iy

iz

⎤
⎦ =

⎡
⎣ rx X rxY rx Z

ry X ryY ry Z

rzX rzY rzZ

⎤
⎦

⎡
⎣ IX

IY

IZ

⎤
⎦ (8.58)

The reader may recall from a previous course in statics that if the direction
cosines of two of the three unit vectors, directed along the axes of an orthogo-
nal coordinate system, are known, then those of the third unit vector can be ob-
tained by using a cross (or vector) product of the two known vectors. In the
case under consideration, as discussed previously, the direction cosines of one
of the unit vectors, ix, are defined by the global coordinates of the member ends
(Eqs. (8.57)). Thus, if the user of the computer program can provide, as input,
the direction cosines of either iy or iz (i.e., either the y or the z axis), then the
direction cosines of the remaining third vector can be conveniently established
via the cross product of the two known vectors. However, as the hand

IX

IYiy

IZ
iz

ix

Y
y

x

X

Z

z

Fig. 8.17 Unit Vectors in the Directions of the Local and Global Axes
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calculation of direction cosines of the y or z axis for each member of a struc-
ture can be a tedious and time-consuming chore, this approach is not consid-
ered user-friendly and is seldom used by practitioners.

Instead, most computer programs allow the users to specify the orientation
of the member y and z axes by means of the so-called angle of roll [3]. To de-
fine the angle of roll and to express the direction cosines of the member y and
z axes in terms of this angle, we imagine that the member’s desired (or actual
design) orientation is reached in two steps, as shown in Figs. 8.18(a) and (b).
In the first step, while the member’s x axis is oriented in the desired direction,
its y and z axes are oriented so that the xy plane is vertical and the z axis lies in
a horizontal plane. The foregoing (imaginary) orientation of the member is de-
picted in Fig. 8.18(a), in which the member’s principal axes are designated as
ȳ and z̄ (instead of y and z, respectively), to indicate that they have not yet
been positioned in their desired (or actual design) directions. As discussed pre-
viously, the direction of the local x axis is known from the global coordinates
of the member ends. Since the z̄ axis is perpendicular to the vertical xȳ plane,
a vector z̄ directed along the z̄ axis can be determined by the cross product of
the vector ix and a vertical unit vector IY; that is, 

z̄ = ix � IY = det

∣∣∣∣∣∣
IX IY IZ

rx X rxY rx Z

0 1 0

∣∣∣∣∣∣ = −rx Z IX + rx X IZ (8.59)
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Section 8.3 Space Frames 475

To obtain the unit vector iz̄ along the local z̄ axis, we divide the vector z̄ by its

magnitude 
√

r2
x X + r2

x Z . This yields

iz̄ = − rx Z√
r2

x X + r2
x Z

IX + rx X√
r2

x X + r2
x Z

IZ (8.60)

The unit vector iȳ can now be established by using the cross product iz̄ � ix , as

iȳ = iz̄ � ix = det

∣∣∣∣∣∣∣∣∣

IX IY IZ

− rx Z√
r2

x X + r2
x Z

0
rx X√

r2
x X + r2

x Z

rx X rxY rx Z

∣∣∣∣∣∣∣∣∣
from which we obtain

iȳ =
⎛
⎝− rx XrxY√

r2
x X + r2

x Z

⎞
⎠ IX +

(√
r2

x X + r2
x Z

)
IY −

⎛
⎝ rxY rx Z√

r2
x X + r2

x Z

⎞
⎠ IZ

(8.61)

From Eqs. (8.60) and (8.61), we can see that the transformation relationship
between the global XYZ and the auxiliary local x ȳz̄ coordinate systems can be
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ȳ
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Fig. 8.18 (continued)
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expressed as

⎡
⎢⎣

ix

iȳ

iz̄

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx X rxY rx Z

− rx XrxY√
r2

x X + r2
x Z

√
r2

x X + r2
x Z − rxY rx Z√

r2
x X + r2

x Z

− rx Z√
r2

x X + r2
x Z

0
rx X√

r2
x X + r2

x Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

IX

IY

IZ

⎤
⎥⎦ (8.62)

In the next step, we rotate the auxiliary xȳz̄ coordinate system about its x
axis, in a counterclockwise sense, by the angle of roll �, until the member’s
principal axes are in their desired orientations. The final orientation of the
member thus obtained is depicted in Fig. 8.18(b), in which the member’s prin-
cipal axes are now designated as y and z axes. From this figure, we can see that
the unit vectors along the y and z axes can be expressed in terms of those
directed along the ȳ and z̄ axes, as

iy = cos �iȳ + sin �iz̄ (8.63a)

iz = −sin �iȳ + cos �iz̄ (8.63b)

Thus, the transformation relationship between the auxiliary x ȳz̄ and the actual
xyz coordinate systems is given by⎡

⎣ ix

iy

iz

⎤
⎦ =

⎡
⎣ 1 0 0

0 cos � sin �

0 −sin � cos �

⎤
⎦

⎡
⎣ ix

iȳ

iz̄

⎤
⎦ (8.64)

Finally, to obtain the transformation relationship between the global XYZ and
the actual local xyz coordinate systems, we substitute Eq. (8.62) into Eq. (8.64)
and carry out the required matrix multiplication. This yields

⎡
⎣ ix

iy

iz

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx X rxY rx Z

−rx XrxY cos � − rx Z sin �√
r2

x X + r2
x Z

√
r2

x X + r2
x Z cos �

−rxY rx Z cos � + rx X sin �√
r2

x X + r2
x Z

rx XrxY sin � − rx Z cos �√
r2

x X + r2
x Z

−
√

r2
x X + r2

x Z sin �
rxY rx Z sin � + rx X cos �√

r2
x X + r2

x Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ IX

IY

IZ

⎤
⎦

(8.65)

By comparing Eqs. (8.58) and (8.65), we can see that the member rotation ma-
trix r can be expressed as

r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx X rxY rx Z

−rx XrxY cos � − rx Z sin �√
r2

x X + r2
x Z

√
r2

x X + r2
x Z cos �

−rxY rx Z cos � + rx X sin �√
r2

x X + r2
x Z

rx XrxY sin � − rx Z cos �√
r2

x X + r2
x Z

−
√

r2
x X + r2

x Z sin �
rxY rx Z sin � + rx X cos �√

r2
x X + r2

x Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.66)
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Section 8.3 Space Frames 477

Note that the rotation matrix depends only on the global coordinates of the
member ends and its angle of roll �.Based on the foregoing derivation, the
angle of roll � is defined as the angle, measured clockwise positive when
looking in the negative x direction, through which the local xyz coordinate sys-
tem must be rotated around its x axis, so that the xy plane becomes vertical
with the y axis pointing upward (i.e., in the positive direction of the global
Y axis).

The expression of the rotation matrix r, as given by Eq. (8.66), can be used
to determine the transformation matrices T for the members of space frames
oriented in any arbitrary directions, except for vertical members. This is be-
cause for such members rx X and rx Z are zero, causing some elements of r in
Eq. (8.66) to become undefined. This situation can be remedied by defining the
angle of roll differently for vertical members, as follows. For the special case
of vertical members (i.e., members with centroidal or local x axis parallel to the
global Y axis), the angle of roll � is defined as the angle, measured clockwise
positive when looking in the negative x direction, through which the local xyz
coordinate system must be rotated around its x axis, so that the local z axis
becomes parallel to, and points in the positive direction of, the global Z axis
(Fig. 8.19(b)).

The expression of the rotation matrix r for vertical members can be de-
rived using a procedure similar to that used previously for members with other
orientations. We imagine that the vertical member’s desired (or actual design)
orientation is reached in two steps, as shown in Figs. 8.19(a) and (b) on the
next page. In the first step, while the member’s x axis is oriented in the desired
(vertical) direction, its y and z axes are oriented so that the local z axis is paral-
lel to the global Z axis, as shown in Fig. 8.19(a). As indicated there, the mem-
ber’s principal axes in this (imaginary) orientation are designated as ȳ and z̄
(instead of y and z, respectively). The direction of the local x axis (known from
the global coordinates of the member ends) is represented by the unit vector
ix = rxYIY, while the direction of the z̄ axis is given by the unit vector iz̄ = IZ .
The unit vector iȳ, directed along the ȳ axis, can therefore be conveniently
established using the cross product iz̄ � ix, as

iȳ = iz̄ � ix = det

∣∣∣∣∣∣
IX IY IZ

0 0 1
0 rxY 0

∣∣∣∣∣∣ = −rxY IX (8.67)

Thus, the transformation relationship between the global XYZ and the auxiliary
local x ȳz̄ coordinate system is given by⎡

⎢⎣
ix

iȳ

iz̄

⎤
⎥⎦ =

⎡
⎢⎣

0 rxY 0

−rxY 0 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

IX

IY

IZ

⎤
⎥⎦ (8.68)

In the next step, we rotate the auxiliary x ȳz̄ coordinate system about its x
axis, in a counterclockwise sense, by the angle of roll �, until the member’s
principal axes are in their desired orientations. This final orientation of the
member is depicted in Fig. 8.19(b), in which the member principal axes are
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Section 8.3 Space Frames 479

now designated as the y and z axes. From this figure, we can see that the trans-
formation relationship between the auxiliary x ȳz̄ and the actual xyz coordinate
systems is the same as given previously in Eq. (8.64). Thus, the desired trans-
formation from the global XYZ coordinate system to the local xyz coordinate
system can be obtained by substituting Eq. (8.68) into Eq. (8.64) and perform-
ing the required matrix multiplication. This yields⎡

⎣ ix

iy

iz

⎤
⎦ =

⎡
⎣ 0 rxY 0

−rxY cos � 0 sin �

rxY sin � 0 cos �

⎤
⎦

⎡
⎣ IX

IY

IZ

⎤
⎦ (8.69)

from which we obtain the rotation matrix r for vertical members:

r =
⎡
⎣ 0 rxY 0

−rxY cos � 0 sin �

rxY sin � 0 cos �

⎤
⎦ (8.70)

Member Rotation Matrix in Terms of a Reference Point In most space frames,
members are usually oriented so that their angles of roll can be found by in-
spection. There are structures, however, in which the orientations of some
members may be such that their angles of roll cannot be conveniently deter-
mined. The orientation of such a member can alternatively be specified by
means of the global coordinates of a reference point that lies in one of the prin-
cipal (xy or xz) planes of the member, but not on its centroidal (x) axis.

To discuss the process of determining the member rotation matrix r using
such a reference point, consider the space-frame member shown in Fig. 8.20 on
the next page, and let XP, YP, and ZP denote the global coordinates of an arbitrar-
ily chosen reference point P, which is located in the member’s local xy plane, but
not on its x axis. Since the global coordinates of the member end b are Xb, Yb, and
Zb, the position vector p, directed from member end b to reference point P, can
be written as

p = (XP − Xb)IX + (YP − Yb)IY + (Z P − Zb)Iz
(8.71)

Note that both points b and P are located in the local xy plane and, therefore,
vector p also lies in that plane. Since the direction cosines of the local x axis are
already known from the global coordinates of the member ends, the direction
cosines of the local z axis can be conveniently established using the following
relationship.

iz = ix � p
|ix � p|

(8.72)

in which |ix � p| represents the magnitude of the vector that results from the
cross product of the vectors ix and p. With both ix and iz now known, the direc-
tion cosines of the local y axis can be obtained via the cross product,

iy = iz � ix (8.73)

In the case that the reference point P is specified in the local xz plane of the
member, the direction cosines of the local y axis need to be determined first
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using the relationship

iy = p � ix

|p � ix | (8.74)

and then the direction cosines of the local z axis are obtained via the cross
product

iz = ix � iy (8.75)

It should be realized that the procedure described by Eqs. (8.71) through
(8.75) enables us to obtain the member rotation matrix r directly by means of
a reference point, without involving the angle of roll of the member. However,
if desired, the angle of roll can also be obtained from the global coordinates of
a reference point. To establish the relationship between the angle of roll � and
a reference point P of a member, we first determine the components of the po-
sition vector p in the auxiliary x ȳz̄ coordinate system, by applying the trans-
formation relationship given in Eq. (8.62), as

⎡
⎢⎢⎢⎣

px

pȳ

pz̄

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx X rxY rx Z

− rx XrxY√
r2

x X + r2
x Z

√
r2

x X + r2
x Z − rxY rx Z√

r2
x X + r2

x Z

− rx Z√
r2

x X + r2
x Z

0
rx X√

r2
x X + r2

x Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

(X P − Xb)

(YP − Yb)

(Z P − Zb)

⎤
⎥⎥⎦
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Fig. 8.20
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from which we obtain

px = rx X (X P − Xb) + rxY (YP − Yb) + rx Z (Z P − Zb) (8.76a)

pȳ = − rx XrxY√
r2

x X + r2
x Z

(X P − Xb) +
√

r2
x X + r2

x Z (YP − Yb)

− rxY rx Z√
r2

x X + r2
x Z

(Z P − Zb) (8.76b)

pz̄ = − rx Z√
r2

x X + r2
x Z

(X P − Xb) + rx X√
r2

x X + r2
x Z

(Z P − Zb) (8.76c)

in which px, pȳ , and pz̄ represent, respectively, the components of the position
vector p in the directions of the local x axis and the ȳ and z̄ axes of the auxil-
iary x ȳz̄ coordinate system. Now, if the reference point P lies in the xy plane
of the member as shown in Fig. 8.21, then we can see from this figure that the
angle of roll � and the components of p are related by the following equations:

sin � = pz̄√
p2

ȳ + p2
z̄

and cos � = pȳ√
p2

ȳ + p2
z̄

(8.77)

z

y

P

�

�

ȳ

z̄

p z̄

pȳ

Fig. 8.21
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In the case that the reference point P is specified in the local xz plane, then from
Fig. 8.22 we can see that the relationships between the sine and cosine of �
and the components p can be expressed as

sin � = − pȳ√
p2

ȳ + p2
z̄

and cos � = pz̄√
p2

ȳ + p2
z̄

(8.78)

Equations (8.77) and (8.78) are valid for space-frame members oriented
in any arbitrary directions, including vertical members. However, since
rxX = rxZ = 0 for vertical members, the expressions for pȳ and pz̄ , as given in
Eqs. 8.76(b) and (c), cannot be used; appropriate expressions for the compo-
nents of the position vector p in the auxiliary x ȳz̄ coordinate system must be
derived by applying Eq. (8.68), as⎡

⎢⎣
px

pȳ

pz̄

⎤
⎥⎦ =

⎡
⎢⎣

0 rxY 0

−rxY 0 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

(X P − Xb)

(YP − Yb)

(Z P − Zb)

⎤
⎥⎦

which yields

px = rxY (YP − Yb) (8.79a)
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Section 8.3 Space Frames 483

pȳ = −rxY (XP − Xb) (8.79b)
pz̄ = ZP − Zb (8.79c)

It is important to realize that, for vertical members, Eqs. 8.79(b) and (c)
should be used to evaluate pȳ and pz̄ , whereas for members with other orienta-
tions, these components are obtained from Eqs. 8.76(b) and (c). After pȳ and
pz̄ have been evaluated, the sine and cosine of the member’s angle of roll � can
be determined either by Eq. (8.77) if the reference point lies in the xy plane,
or via Eq. (8.78) if the reference point is located in the xz plane. Once sin �
and cos � are known, the member rotation matrix r can be determined by
Eq. (8.66) if the member is not oriented in the vertical direction, or via
Eq. (8.70) if the member is vertical.

E X A M P L E 8.3 The global coordinates of the joints to which the beginning and end of a space-frame
member are attached are (4, 7, 6) ft and (20, 15, 17) ft, respectively. If the global 
coordinates of a reference point located in the local xy plane of the member are (10.75,
13.6, 13.85) ft, determine the rotation matrix of the member.

S O L U T I O N We determine the member rotation matrix r using the direct approach involving cross
products of vectors, and then check our results using the angle-of-roll approach.

Using the given coordinates of the two ends of the member, we evaluate its
length and the direction cosines of the local x axis, as (see Eqs. (8.57))

L =
√

(Xe − Xb)2 + (Ye − Yb)2 + (Zb − Ze)2

=
√

(20 − 4)2 + (15 − 7)2 + (17 − 6)2 = 21 ft

rx X = Xe − Xb

L
= 20 − 4

21
= 0.7619 (1a)

rxY = Ye − Yb

L
= 15 − 7

21
= 0.38095 (1b)

rx Z = Ze − Zb

L
= 17 − 6

21
= 0.52381 (1c)

Thus, the unit vector directed along the member local x (or centroidal) axis is

ix = 0.7619 IX + 0.38095 IY + 0.52381 IZ (2)

Next, we form the position vector p, directed from member end b to reference point P,
as (Eq. (8.71))

p = (X P − Xb)IX + (YP − Yb)IY + (Z P − Zb)IZ

= (10.75 − 4)IX + (13.6 − 7)IY + (13.85 − 6)IZ

or

p = 6.75 IX + 6.6 IY + 7.85 IZ

With ix and p known, we can now apply Eq. (8.72) to determine the unit vector in the
local z direction. For that purpose, we first obtain a vector z along the local z axis by
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484 Chapter 8 Three-Dimensional Framed Structures

evaluating the cross product of ix and p. Thus,

z = ix � p = det

∣∣∣∣∣∣
IX IY IZ

0.7619 0.38095 0.52381
6.75 6.6 7.85

∣∣∣∣∣∣
= [(0.38095)(7.85) − (6.6)(0.52381)] IX

− [(0.7619)(7.85) − (6.75)(0.52381)] IY

+ [(0.7619)(6.6) − (6.75)(0.38095)] IZ

or

z = −0.46669 IX − 2.4452 IY + 2.4571 IZ

Note that z is not a unit vector. To obtain the unit vector iz, we need to divide z by its
magnitude |z|, which equals

|z| = |ix � p| =
√

(−0.46669)2 + (−2.4452)2 + (2.4571)2 = 3.4977 ft

Thus, the unit vector iz is given by

iz = z
|z| = −0.13343 IX − 0.69909 IY + 0.70249 IZ (3)

The third unit vector, iy, can now be evaluated using the cross product of iz (Eq. (3))
and ix (Eq. (2)). Thus,

iy = iz � ix = det

∣∣∣∣∣∣
IX IY IZ

−0.13343 −0.69909 0.70249
0.7619 0.38095 0.52381

∣∣∣∣∣∣
= [(−0.69909)(0.52381) − (0.38095)(0.70249)] IX

− [(−0.13343)(0.52381) − (0.7619)(0.70249)] IY

+ [(−0.13343)(0.38095) − (0.7619)(−0.69909)] IZ

or

iy = −0.6338 IX + 0.60512 IY + 0.48181 IZ (4)

The member rotation matrix r can now be obtained by arranging the components of ix
(Eq. (2)), iy (Eq. (4)) and iz (Eq. (3)) in the first, second, and third rows, respectively,
of a 3 × 3 matrix. The member rotation matrix thus obtained is 

r =
⎡
⎣ 0.7619 0.38095 0.52381

−0.6338 0.60512 0.48181
−0.13343 −0.69909 0.70249

⎤
⎦ Ans

Alternative Method: The member rotation matrix r can alternatively be determined
by applying Eq. (8.66), which contains the sine and cosine of the angle of roll �. We
first evaluate the components pȳ and pz̄ of the position vector p using Eqs. 8.76(b)
and (c), respectively. By substituting the numerical values of rxX, rxY, and rxZ (from
Eqs. (1)) and the given coordinates of member end b and reference point P into these
equations, we obtain

pȳ = 2.2892 ft

pz̄ = 2.6446 ft
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Procedure for Analysis
The general procedure for analysis of space frames remains the same as that for
plane frames developed in Chapter 6 (and modified in Chapter 7)—provided
that the member local stiffness and transformation matrices, and local fixed-
end force vectors, developed in this section, are used in the analysis.

Section 8.3 Space Frames 485

By substituting these values of pȳ and pz̄ into Eqs. (8.77), we obtain the sine and
cosine of the angle of roll:

sin � = 0.75608 cos � = 0.65448 (5)

Finally, by substituting the numerical values from Eqs. (1) and (5) into Eq. (8.66), we
obtain the following rotation matrix for the member under consideration:

r =
⎡
⎣ 0.7619 0.38095 0.52381

−0.6338 0.60512 0.48179
−0.13343 −0.69907 0.70249

⎤
⎦ Checks

E X A M P L E 8.4 Determine the joint displacements, member end forces, and support reactions for the
three-member space frame shown in Fig. 8.23(a) on the next page, using the matrix
stiffness method.

S O L U T I O N Analytical Model: The space frame has six degrees of freedom and 18 restrained
coordinates, as shown in Fig. 8.23(b).

Structure Stiffness Matrix:

Member 1 By substituting L = 240 in., and the material and cross-sectional prop-
erties given in Fig. 8.23(a), into Eq. (8.39), we obtain the local stiffness matrix k for
member 1:

(1)

Since the member’s local x, y, and z axes are oriented in the directions of the
global X, Y, and Z axes, respectively (see Fig. 8.23(a)), no coordinate transformations
are necessary (i.e., T1 = I ); thus, K1 = k1.

To determine the fixed-end force vector due to the 0.25 k/in. (= 3 k/ft) member
load, we apply the fixed-end force expressions for loading type 3 given inside the front

7 8 9 10 11 12 1 2 3 4 5 6

K1 = k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3,975.4 0 0 0 0 0 −3,975.4 0 0 0 0 0

0 18.024 0 0 0 2,162.9 0 −18.024 0 0 0 2,162.9

0 0 5.941 0 −712.92 0 0 0 −5.941 0 −712.92 0

0 0 0 723.54 0 0 0 0 0 −723.54 0 0

0 0 −712.92 0 114,067 0 0 0 712.92 0 57,033 0

0 2,162.9 0 0 0 346,067 0 −2,162.9 0 0 0 173,033

−3,975.4 0 0 0 0 0 3,975.4 0 0 0 0 0

0 −18.024 0 0 0 −2,162.9 0 18.024 0 0 0 −2,162.9

0 0 −5.941 0 712.92 0 0 0 5.941 0 712.92 0

0 0 0 −723.54 0 0 0 0 0 723.54 0 0

0 0 −712.92 0 57,033 0 0 0 712.92 0 114,067 0

0 2,162.9 0 0 0 173,033 0 −2,162.9 0 0 0 346,067

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7

8

9

10

11

12

1

2

3

4

5

6

�������������������������
�
�
�
�
�
�
�
�
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486 Chapter 8 Three-Dimensional Framed Structures

cover. This yields

FSby = FSey = 30 k

FMbz = −FMez = −1,200 k-in.

with the remaining fixed-end forces being 0. Thus, using Eq. (8.40), we obtain

F f 1 = Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
30
0
0
0

1,200
0

30
0
0
0

−1,200

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9

10
11
12
1
2
3
4
5
6

���� (2)

x

z

y

Z

3 k/ft

20 ft

Y
z

x

y

X

150 k-ft

150 k-ft

20 ft

20 ft

z

y

x

30º

(a) Space Frame

E = 29,000 ksi 
G = 11,500 ksi
A = 32.9 in.2

Iz = 716 in.4

Iy = 236 in.4

J = 15.1 in.4   

Fig. 8.23
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2

1

3

2

3

1

4

10
7

9

12

8

11

16
13

15

18

14

17

3

6

2

5

1 4

21

24

19 22

20

23

Y

X

Z

(b) Analytical Model

Fig. 8.23 (continued)

1 2 3 4 5 6

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3,990.3 −5.2322 0 −627.87 −1,075.4 712.92

−5.2322 4,008.4 0 1,800.4 627.87 −2,162.9

0 0 3,999.4 −2,162.9 712.92 0

−627.87 1,800.4 −2,162.9 634,857 100,459 0

−1,075.4 627.87 712.92 100,459 286,857 0

712.92 −2,162.9 0 0 0 460,857

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

P f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

30

0

0

0

−1,200

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

(c) Structure Stiffness Matrix and Fixed-Joint Force Vector
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L = 240 in.

44.106

58.987

15.894

119.27

0.74272

2,330.5

y

0.25 k/in.

L = 240 in.

2.1722 5.3757

0.74272

1,055

5.3757

2.1722
x

0.76472

11.117

L = 240 in.

x

11.117

0.76472

6.4607

369.67

6.4607

740.31

z
4.6249

515.55

4.702

7.2034

139.65

4.5118

4.6249 1,035

1.7379
362.21

z

720.63

1.7379

4.702

7.2034

4.5118

277.46

(d) Member Local End Forces

2

1

3

x

z

y

y

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.3757 k

44.106 k

−0.74272 k

2.1722 k-in.

58.987 k-in.

2,330.5 k-in.

−4.6249 k

11.117 k

−6.4607 k

−515.55 k-in.

−0.76472 k-in.

369.67 k-in.

−0.75082 k

4.7763 k

7.2034 k

−383.5 k-in.

−60.166 k-in.

−4.702 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(e) Support Reaction Vector

Fig. 8.23 (continued)
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Section 8.3 Space Frames 489

From Fig. 8.23(b), we observe that the code numbers for member 1 are 7, 8, 9, 10, 11,
12, 1, 2, 3, 4, 5, 6. Using these code numbers, we store the pertinent elements of K1

(Eq. (1)) and Ff1 (Eq. (2)) in the 6 × 6 structure stiffness matrix S and the 6 × 1
structure fixed-joint force vector Pf , respectively (Fig. 8.23(c)).

Member 2 Because the length, as well as the material and cross-sectional proper-
ties, of member 2 are identical to those of member 1, k2 = k1 (Eq. (1)).

To obtain the transformation matrix T for member 2, we first determine the di-
rection cosines of its local x axis using Eqs. (8.57), as

rx X = Xe − Xb

L
= 0

rxY = Ye − Yb

L
= 0 − (−20)

20
= 1

rx Z = Ze − Zb

L
= 0

From Fig. 8.23(a), we can see that the angle of roll�for this vertical member is 90◦. Thus,

cos � = 0 and sin � = 1

Y

X1,800 k-in.
1

3

0.25 k/in.
60.166

4.7763

383.50.75082

7.2034

4.702

4.6249 515.55

2.1722 5.3757

Z

1,800 k-in.

44.106
0.74272

2,330.5

58.987

2

0.76472

6.4607

369.67

11.117

(f) Support Reactions

4

Fig. 8.23 (continued)
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490 Chapter 8 Three-Dimensional Framed Structures

By substituting the foregoing numerical values of rxX, rxY, rxZ, cos �, and sin � into
Eq. (8.70), we determine the rotation matrix r for member 2 to be

r2 =
⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦

By substituting this rotation matrix into Eq. (8.55), we obtain the following 12 × 12
transformation matrix for member 2.

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����������������

�����������������

�����������������

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

The global stiffness matrix for member 2 can now be evaluated by substituting k2

(from Eq. (1)) and T2 (Eq. (3)) into the relationship K = TTkT, and performing the
necessary matrix multiplications. This yields

13 14 15 16 17 18 1 2 3 4 5 6

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.941 0 0 0 0 −712.92 −5.941 0 0 0 0 −712.92

0 3,975.4 0 0 0 0 0 −3,975.4 0 0 0 0

0 0 18.024 2,162.9 0 0 0 0 −18.024 2,162.9 0 0

0 0 2,162.9 346,067 0 0 0 0 −2,162.9 173,033 0 0

0 0 0 0 723.54 0 0 0 0 0 −723.54 0

−712.92 0 0 0 0 114,067 712.92 0 0 0 0 57,033

−5.941 0 0 0 0 712.92 5.941 0 0 0 0 712.92

0 −3,975.4 0 0 0 0 0 3,975.4 0 0 0 0

0 0 −18.024 −2,162.9 0 0 0 0 18.024 −2,162.9 0 0

0 0 2,162.9 173,033 0 0 0 0 −2,162.9 346,067 0 0

0 0 0 0 −723.54 0 0 0 0 0 723.54 0

−712.92 0 0 0 0 57,033 712.92 0 0 0 0 114,067

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13

14

15

16

17

18

1

2

3

4

5

6

�������������������������
�
�
�
�
�
�
�
�

The relevant elements of K2 are stored in S (Fig. 8.23(c)).

Member 3 k3 = k1 (given in Eq. (1)).

rx X = Xe − Xb

L
= 0

rxY = Ye − Yb

L
= 0

rx Z = Ze − Zb

L
= 0 − (−20)

20
= 1

(3)
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From Fig. 8.23(a), we can see that � = 30◦. Thus,

cos � = 0.86603 and sin � = 0.5

By applying Eq. (8.66), we determine the rotation matrix for member 3 to be

r3 =
⎡
⎣ 0 0 1

−0.5 0.86603 0
−0.86603 −0.5 0

⎤
⎦

Thus, the transformation matrix for this member is given by

T3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0
−0.5 0.86603 0 0 0 0 0 0 0 0 0 0

−0.86603 −0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −0.5 0.86603 0 0 0 0 0 0 0
0 0 0 −0.86603 −0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −0.5 0.86603 0 0 0 0
0 0 0 0 0 0 −0.86603 −0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −0.5 0.86603 0
0 0 0 0 0 0 0 0 0 −0.86603 −0.5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

������������������������������������������

������������������������������������������

������������������������������������������

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

and the member global stiffness matrix K3 = TT
3 k3T3 is

19 20 21 22 23 24 1 2 3 4 5 6

(4)

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.9618 −5.2322 0 627.87 1,075.4 0 −8.9618 5.2322 0 627.87 1,075.4 0

−5.2322 15.003 0 −1,800.4 −627.87 0 5.2322 −15.003 0 −1,800.4 −627.87 0

0 0 3,975.4 0 0 0 0 0 −3,975.4 0 0 0

627.87 −1,800.4 0 288,067 100,459 0 −627.87 1,800.4 0 144,033 50,229 0

1,075.4 −627.87 0 100,459 172,067 0 −1,075.4 627.87 0 50,229 86,033 0

0 0 0 0 0 723.54 0 0 0 0 0 −723.54

−8.9618 5.2322 0 −627.87 −1,075.4 0 8.9618 −5.2322 0 −627.87 −1,075.4 0

5.2322 −15.003 0 1,800.4 627.87 0 −5.2322 15.003 0 1,800.4 627.87 0

0 0 −3,975.4 0 0 0 0 0 3,975.4 0 0 0

627.87 −1,800.4 0 144,033 50,229 0 −627.87 1,800.4 0 288,067 100,459 0

1,075.4 −627.87 0 50,229 86,033 0 −1,075.4 627.87 0 100,459 172,067 0

0 0 0 0 0 −723.54 0 0 0 0 0 723.54

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

19

20

21

22

23

24

1

2

3

4

5

6

���������������������������
�
�
�
�
�
�
�
�

The complete structure stiffness matrix S and the structure fixed-joint force vector Pf are
given in Fig. 8.23(c).

Joint Load Vector: By comparing Figs. 8.23(a) and (b), we obtain

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1,800 k-in.
0

1,800 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6

Joint Displacements: By substituting P, Pf , and S into the structure stiffness relationship, P − Pf = Sd,
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492 Chapter 8 Three-Dimensional Framed Structures

Ans

Ans

Ans

(5)

and solving the resulting simultaneous equations, we determine the joint displacements to be

d =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.3522 in.

−2.7965 in.

−1.812 in.

−3.0021 rad
1.0569 rad
6.4986 rad

⎤
⎥⎥⎥⎥⎥⎥⎦

× 10−3

Member End Displacements and End Forces:

Member 1

u1 = v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−1.3522
−2.7965
−1.812
−3.0021

1.0569
6.4986

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3

F1 = Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.3757 k
44.106 k

−0.74272 k
2.1722 k-in.
58.987 k-in.
2,330.5 k-in.
−5.3757 k
15.894 k
0.74272 k

−2.1722 k-in.
119.27 k-in.
1,055 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7
8
9
10
11
12
1
2
3
4
5
6

������

The member local end forces are depicted in Fig. 8.23(d), and the pertinent elements
of F1 are stored in the support reaction vector R (Fig. 8.23(e)).

Member 2 v2 = v1 (see Eq. (5)).

u2 = T2v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−2.7965
−1.812
−1.3522

1.0569
6.4986

−3.0021

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3 Q2 = k2u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.117 k
−6.4607 k
−4.6249 k

−0.76472 k-in.
369.67 k-in.

−515.55 k-in.
−11.117 k
6.4607 k
4.6249 k

0.76472 k-in.
740.31 k-in.
−1,035 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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F2 = TT
2 Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.6249
11.117
−6.4607

−515.55
−0.76472
369.67

4.6249
−11.117

6.4607
−1,035

0.76472
740.31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13
14
15
16
17
18
1
2
3
4
5
6

������

Member 3 v3 = v1 (see Eq. (5)).

u3 = T3v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−1.812
−1.7457

2.5693
6.4986
2.4164
2.0714

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3 Q3 = k3u3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.2034 k
4.5118 k

−1.7379 k
−4.702 k-in.
139.65 k-in.
362.21 k-in.
−7.2034 k
−4.5118 k
1.7379 k

4.702 k-in.
277.46 k-in.
720.63 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F3 = TT
3 Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.75082
4.7763
7.2034

−383.5
−60.166
−4.702

0.75082
−4.7763
−7.2034

−762.82
−120.03

4.702

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

19
20
21
22
23
24
1
2
3
4
5
6

������

Support Reactions: The completed reaction vector R is shown in Fig. 8.23(e), and
the support reactions are depicted on a line diagram of the space frame in Fig. 8.23(f).

Ans

Equilibrium checks: The six equations of equilibrium (
∑

Fx = 0,
∑

Fy = 0,∑
Fz = 0,

∑
Mx = 0,

∑
My = 0, and 

∑
Mz = 0) are satisfied for each member

of the space frame shown in Fig. 8.23(d). Furthermore, the six equilibrium equations
in the directions of the global coordinate axes (

∑
FX = 0,

∑
FY = 0,

∑
FZ = 0,∑

MX = 0,
∑

MY = 0, and 
∑

MZ = 0) are satisfied for the entire structure shown
in Fig. 8.23(f).

Ans

Section 8.3 Space Frames 493
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P R O B L E M S

SUMMARY

In this chapter, we have extended the matrix stiffness method to the analysis of
three-dimensional framed structures. The stiffness and transformation relation-
ships for the members of space trusses, grids, and space frames are developed
in Sections 8.1, 8.2, and 8.3, respectively. It should be noted that the overall
format of the stiffness method of analysis remains the same for all types of
(two- and three-dimensional) framed structures—provided that the member
stiffness and transformation relations, appropriate for the particular type of
structure being analyzed, are used in the analysis. A block diagram summariz-
ing the overall format of the stiffness method is shown in Fig. 8.24.

494 Chapter 8 Three-Dimensional Framed Structures

Section 8.1

8.1 through 8.5 Determine the joint displacements, member
axial forces, and support reactions for the space trusses shown
in Figs. P8.1 through P8.5, using the matrix stiffness method.
Check the hand-calculated results by using the computer pro-
gram which can be downloaded from the publisher’s website for
this book, or by using any other general purpose structural
analysis program available.

8.6 Develop a computer program for the analysis of space
trusses by the matrix stiffness method. Use the program to 
analyze the trusses of Problems 8.1 through 8.5, and compare
the computer-generated results to those obtained by hand
calculations.

Section 8.2

8.7 through 8.12 Determine the joint displacements, member
local end forces, and support reactions for the grids shown in
Figs. P8.7 through P8.12, using the matrix stiffness method.
Check the hand-calculated results by using the computer pro-
gram which can be downloaded from the publisher’s website for
this book, or by using any other general purpose structural
analysis program available.

8.13 Develop a program for the analysis of grids by the matrix
stiffness method. Use the program to analyze the grids of
Problems 8.7 through 8.12, and compare the computer-generated
results to those obtained by hand calculations.

For each member:
Evaluate k, Qf , and T

Calculate K = TTkT and Ff = TTQf
Store K in S and Ff  in Pf

Identify degrees of freedom d and
restrained coordinates of the structure

Form joint load vector P

Solve P − Pf = Sd for d

For each member:
Obtain v from d

Calculate u = Tv, Q = ku + Qf  and F = TTQ
Store F in R

Fig. 8.24 Stiffness Method of Analysis
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Z

X

3 m

2 m
9 m

6 m

3 m

75 kN

Y

150 kN

12 m

5 m
0

EA = constant
E   = 70 GPa
A   = 2,000 mm2

3

1

2

4

1
2

3

Fig. P8.1

50 kN

10 m

8 m 8 m

6 m

6 m

100 kN 50 kN

X

Z

0

EA = constant
E   = 200 GPa
A   = 3,800 mm2

1

2

3

4

1

2

3

4

5

Y

Fig. P8.3

Y

X

90 k
60 k

15 ft

8 ft

Z

0

10 ft

6 ft

EA = constant 
E   = 29,000 ksi
A   = 6 in.2

Fig. P8.2

X

Z

40 k

15 ft

15 ft

6 ft

10 ft

8 ft8 ft

(6
)

(6
)

(6)

(6)

(3)

(3)

(3)

(3)

(3
)

0

E = 29,000 ksi

Note: Numbers in parentheses represent cross-sectional areas in in.2

Y

80 k

(6
)

(6
)

(3)

Fig. P8.4
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4 m

X

Z

45 kN

90 kN

90 kN

90 kN

45 kN

2 m

2 m

0

90 
kN

2 m 2 m

10 m

4 m

4 m

4 m

Y

EA = constant
E   = 200 GPa
A   = 4,000 mm2 

8

4

1 2

3

7

6

5 12 10

9

8

11

1

5

2

6

7
3

4

Fig. P8.5

Y

X

Z

0

15 ft 

15 ft 

1.5 k/ft

1.5
 k/

ft

E, G, I, J = constant
E = 4,500 ksi
G = 1,800 ksi
I  = 256 in.4

J  = 311 in.4

1

2

3

21

Fig. P8.7

Y

Z

X

8 m

7.5 m 7.5 m

100 kN

20 kN/m

E, G, I, J = constant
E = 30 GPa
G = 12.5 GPa
I  = 4.8(109) mm4

J  = 3.2(109) mm4

Fig. P8.8

Z

Y

X

125 k-ft

60 k 12 ft

20 ft

0

E, G, I, J = constant
E = 29,000 ksi
G = 11,500 ksi
I  = 623 in.4

J  = 10.9 in.4

21

1

2 3

Fig. P8.9

Section 8.3

8.14 through 8.17 Determine the joint displacements, mem-
ber local end forces, and support reactions for the space frames
shown in Figs. 8.14 through 8.17, using the matrix stiffness
method. Check the hand-calculated results by using the com-
puter program which can be downloaded from the publisher’s
website for this book, or by using any other general purpose
structural analysis program available.

8.18 Develop a program for the analysis of space frames by the
matrix stiffness method. Use the program to analyze the frames
of Problems 8.14 through 8.17, and compare the computer-
generated results to those obtained by hand calculations.

8.19 Develop a general computer program that can be used to
analyze any type of framed structure.
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Y

X

Z

6 m 6 m

12 m

12 m

9 m

150 kN

25
 kN

/m

0

E, G, I, J = constant
E = 200 GPa
G = 76 GPa
I  = 300(106) mm4

J  = 7(106) mm4

Fig. P8.10

Y

X

Z

0

30 ft

15 ft

15 ft
2 k

/ft

2 k/ft

E, G, I, J = constant
E = 29,000 ksi
G = 11,500 ksi
I  = 5,310 in.4

J  = 41.3 in.4

3

1

2

4
3

1

2

Fig. P8.11

6 m

15 kN/m

15 kN/m

15
 kN

/m15
 kN

/m

Y

6 m

X

Z

E, G, I, J = constant
E = 200 GPa
G = 76 GPa
I  = 300(106) mm4

J  = 7(106) mm4

Fig. P8.12

y

z
x

Y

X

Z

Material and cross-sectional
properties are constant:

E = 30 GPa 
G = 12.5 GPa
A = 31,000 mm2

Iz = 106(106) mm4

Iy = 60(106) mm4

J  = 129(106) mm4

10 m

10 m
20 kN/m

20
 kN

/m

y

z

x

x

y
z

5 m

5 m

150 kN

Fig. P8.14
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z

x

z

y
x

y

z

x
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6 m

12 m

15 m
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kN
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X

Y

Z

Material and cross-sectional
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E = 200 GPa 
G = 76 GPa
A = 19,000 mm2
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500 Chapter 9 Special Topics and Modeling Techniques

In this chapter, we consider some modifications and extensions of the matrix
stiffness method developed in the preceding chapters. Also considered herein
are techniques for modeling certain special features (or details) of structures,
so that more realistic analytical models can be created and more accurate struc-
tural responses predicted from the analysis.

We begin by discussing an alternative formulation of the stiffness method
in Section 9.1. As this alternative formulation involves the structure stiffness
matrix for all the coordinates (including the restrained coordinates) of the
structure, it is less efficient for computer implementation than the formulation
used in the preceding chapters. Nonetheless, an understanding of this alterna-
tive formulation provides some important insights into the stiffness method of
analysis. In Sections 9.2 and 9.3, we consider some techniques for reducing a
structure’s degrees of freedom, and/or the number of structure stiffness equa-
tions to be processed simultaneously. These techniques are useful in handling
the analysis of large structures. Section 9.4 is devoted to the modeling of in-
clined roller supports; in the following two sections, we develop techniques for
modeling the effects of offset connections (Section 9.5), and semirigid con-
nections (Section 9.6), in the analysis. The inclusion of shear deformation
effects in the analysis of beams, grids and frames is considered in Section 9.7;
and in Section 9.8, we cover the analysis of structures composed of nonpris-
matic members. Finally, we conclude the chapter by discussing a procedure for
efficiently storing and solving the systems of linear equations that arise in the
analysis of large structures.

9.1 THE STRUCTURE STIFFNESS MATRIX INCLUDING
RESTRAINED COORDINATES—AN ALTERNATIVE
FORMULATION OF THE STIFFNESS METHOD
In the formulation of the matrix stiffness method, as developed in the pre-
ceding chapters, the conditions of zero (or known) joint displacements
corresponding to restrained coordinates are applied to the member force-
displacement relationships before the stiffness relations for the entire structure
are assembled. This approach yields structure stiffness relations that contain
only the degrees of freedom as unknowns. Alternatively, the stiffness method
can be formulated by first establishing the stiffness relations for all the coordi-
nates (free and restrained) of the structure, and then applying the restraint con-
ditions to the structure stiffness relations, which now contain both the degrees
of freedom, and the support reactions, as unknowns.

In the alternative formulation, the structure’s restrained coordinates are
initially treated as free coordinates, and the stiffness relations for all the coor-
dinates of the structure are expressed as

P∗ − P∗
f = S∗ d∗

(9.1)
NC × 1 NC × 1 NC × NC NC × 1

with

NC = NCJT(NJ) = NDOF + NR (9.2)
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Section 9.1 The Structure Stiffness Matrix Including Restrained Coordinates 501

In Eqs. (9.1) and (9.2), NC denotes the number of structure coordinates; P∗

represents the joint forces (i.e., the known external loads and the unknown sup-
port reactions); P∗

f denotes the fixed-joint forces, due to member loads, tem-
perature changes, and fabrication errors, at the locations, and in the directions,
of the structure coordinates; S∗ represents the stiffness matrix for the structure
coordinates (free and restrained); and d∗ denotes the joint displacements (i.e.,
the unknown degrees of freedom and the known displacements corresponding
to the restrained coordinates). The structure stiffness matrix S∗ and fixed-joint
force vector P∗

f can be determined by assembling the member global stiffness
matrices K and fixed-end force vectors Ff, respectively, using the member code
number technique described in the preceding chapters. The application of this
technique remains essentially the same, except that now those elements of K
and Ff that correspond to the restrained coordinates are no longer discarded,
but are added (stored) in their proper positions in S∗ and P∗

f .

As indicated in the preceding paragraph, the structure stiffness relations
(Eq. (9.1)) contain two types of unknown quantities; namely, the unknown
joint displacements and the unknown support reactions. To separate the two
types of unknowns, we rewrite Eq. (9.1) in partitioned-matrix form:

⎡
⎢⎢⎣

P
NDOF × 1

�����
R

NR × 1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

P f

NDOF × 1
�����

R f
NR × 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

S SFR

NDOF × NDOF NDOF × NR

SRF SRR

NR × NDOF NR × NR

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d
NDOF × 1

dR

NR × 1

⎤
⎥⎥⎦�������������� �����

�
�
�
�
�

(9.3)

in which, P, R, Pf, S, and d denote the same quantities as in the preceding chap-
ters; Rf denotes the structure fixed-joint forces corresponding to the restrained
coordinates; and dR denotes the support displacement vector. Note that the Pf

and Rf vectors contain structure fixed-joint forces due to member loads, tem-
perature changes, and fabrication errors. The effects of support displacements
are not included in Pf and Rf, but are directly incorporated into the analysis
through the support displacement vector dR. Each element of the submatrix SFR

in Eq. (9.3) represents the force at a free coordinate caused by a unit displace-
ment of a restrained coordinate. The other two submatrices, SRF and SRR, can
be interpreted in an analogous manner. By multiplying the two partitioned ma-
trices on the right-hand side of Eq. (9.3), we obtain two matrix equations,

P − Pf = Sd + SFRdR (9.4a)

R − Rf = SRFd + SRRdR (9.4b)

which can be rearranged as

(9.5a)

(9.5b)

P − Pf − SFRdR = Sd

R = Rf + SRFd + SRRdR
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E X A M P L E 9.1 Determine the joint displacements, member local end forces, and support reactions for
the plane frame of Fig. 9.1(a), due to the combined effect of the loading shown and a

502 Chapter 9 Special Topics and Modeling Techniques

The procedure for analysis essentially consists of first solving Eq. (9.5a)
for the unknown joint displacements d, and then substituting d into Eq. (9.5b)
to evaluate the support reactions R. With d known, the member end displace-
ments and end forces can be obtained using the procedures described in the
preceding chapters. In the case of structures with no support displacements,
dR = 0, and Eqs. (9.5) reduce to

(9.6a)

(9.6b)

The main advantages of the alternative formulation are that support dis-
placements can be incorporated into the analysis in a direct and straightforward
manner, and the reactions can be more conveniently calculated by using the
structure stiffness relations. However, since the alternative formulation uses
the stiffness matrix for all of the structure’s coordinates, it requires signifi-
cantly more computer memory space than the standard formulation developed
in the preceding chapters, which uses the stiffness matrix for only the free co-
ordinates of the structure. For this reason, the alternative formulation is not
considered to be as efficient for computer implementation as the formulation
developed in the preceding chapters [14].

The application of the alternative formulation is illustrated by the follow-
ing example.

P − Pf = Sd

R = Rf + SRFd

90 k

1.5 k/ft125 k-ft

10 ft

10 ft

10 ft 20 ft

E, A, I = constant
E = 29,000 ksi
A = 11.8 in.2

I = 310 in.4

(a) Frame

Y

1

2 3

3

2

5

8

6

9

71

4 X

2

1

(b) Analytical Model

Fig. 9.1
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Section 9.1 The Structure Stiffness Matrix Including Restrained Coordinates 503

settlement of 1 in. of the left support. Use the alternative formulation of the matrix
stiffness method.

S O L U T I O N This frame was analyzed in Example 6.6 for external loading, and in Example 7.4 for
the combined effect of the loading and the support settlement, using the standard
formulation. 

Analytical Model: See Fig. 9.1(b). In this example, we use the same analytical model
of the frame as used previously, so that the various member matrices calculated in
Example 6.6 can be reused. The frame has three degrees of freedom and six restrained
coordinates. Thus, the total number of structure coordinates is nine.

Structure Stiffness Matrix: By storing the element of the member global stiffness ma-
trices K1 and K2, calculated in Example 6.6, in their proper positions in the 9 × 9
structure stiffness matrix S∗, we obtain, in units of kips and inches, the following
stiffness matrix for all the structure coordinates.

1 2 3 4 5 6 7 8 9

S∗ =
[

S SF R

SRF SR R

]
�����

�
�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1,685.3 507.89 670.08 −259.53 −507.89 670.08 −1,425.8 0 0

507.89 1,029.2 601.42 −507.89 −1,021.4 −335.04 0 −7.8038 936.46

670.08 601.42 283,848 −670.08 335.04 67,008 0 −936.46 74,917

−259.53 −507.89 −670.08 259.53 507.89 −670.08 0 0 0

−507.89 −1,021.4 335.04 507.89 1,021.4 335.04 0 0 0

670.08 −335.04 67,008 −670.08 335.04 13,401.5 0 0 0

−1,425.8 0 0 0 0 0 1,425.8 0 0

0 −7.8038 −936.46 0 0 0 0 7.8038 −936.46

0 936.46 74,917 0 0 0 0 −936.46 149,833

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

8

9

������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�

(1)

Structure Fixed-Joint Force Vector Due to Member Loads: Similarly, by storing the
elements of the member global fixed-end force vectors Ff 1 and Ff 2, calculated in
Example 6.6, in the 9 × 1 structure fixed-joint force vector P∗

f , we obtain

P∗
f =

[
P f

R f

]
�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
60

−750
0

45
1,350

0
15

−600

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7
8
9

���

Joint Load Vector: From Example 6.6,

P =
⎡
⎣ 0

0
−1,500

⎤
⎦1

2
3

(3)

Support Displacement Vector: From the analytical model of the structure in Fig. 9.1(b),
we observe that the given 1 in. settlement of the left support occurs at the location and

(2)

26201_09_ch09a_p499-529.qxd  12/1/10  5:24 PM  Page 503

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



504 Chapter 9 Special Topics and Modeling Techniques

in the direction of restraint coordinate 5. Thus, the support displacement vector can be
expressed as

dR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

(4)

Joint Displacements: By substituting S and SFR from Eq. (1), Pf from Eq. (2), P from
Eq. (3), and dR from Eq. (4) into Eq. (9.5a), we write the stiffness relations for the free
coordinates of the frame as

P − Pf − SFRdR = Sd

⎡
⎢⎣

0
0

−1,500

⎤
⎥⎦ −

⎡
⎢⎣

0
60

−750

⎤
⎥⎦ −

⎡
⎢⎣

−259.53 −507.89 670.08 −1,425.8 0 0
−507.89 −1,021.4 −335.04 0 −7.8038 936.46
−670.08 335.04 67,008 0 −936.46 74,917

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

or
⎡
⎣ −507.89

−1,081.4
−414.96

⎤
⎦ =

⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦

By solving these equations, we determine the joint displacements to be

d =

⎡
⎢⎣

0.017762 in.

−1.0599 in.

0.00074192 rad

⎤
⎥⎦

1
2
3

(5) Ans

Note that these joint displacements are identical to those calculated in Example 7.4.
The joint displacement vector for all the coordinates (free and restrained) of the struc-
ture can be expressed as

d∗ =
[

d
dR

]
�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.017762 in.

−1.0599 in.

0.00074192 rad
0

−1 in.

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7
8
9

�������

(6)
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Section 9.1 The Structure Stiffness Matrix Including Restrained Coordinates 505

Support Reactions: To evaluate the support reaction vector R, we substitute SRF and
SRR from Eq. (1), Rf from Eq. (2), dR from Eq. (4), and d from Eq. (5) into Eq. 9.5(b):
R = Rf + SRFd + SRRdR. This yields

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25.316 k
97.409 k

1,431.7 k-in.

−25.325 k
22.576 k

−1,537 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

Note that these support reactions are the same as those calculated in Example 7.4.

Member End Displacements and End Forces:

Member 1 Using member code numbers and Eq. (6), we obtain

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
1
2
3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d∗
4

d∗
5

d∗
6

d∗
1

d∗
2

d∗
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

0
0.017762

−1.0599
0.00074192

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Next, we use the member transformation matrix T1 from Example 6.6, to calculate

u1 = T1v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.89443
−0.44721

0
−0.94006
−0.48988

0.00074192

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The member local end forces can now be obtained by using the member local
stiffness matrix k1 and fixed-end force vector Q f 1, from Example 6.6, as

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

98.441 k
20.919 k

1,431.7 k-in.

−17.943 k
19.331 k

−1,218.6 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans

Member 2 The global and local end displacements for this horizontal member are

u1 = v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
7
8
9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d∗
1

d∗
2

d∗
3

d∗
7

d∗
8

d∗
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.017762
−1.0599

0.00074192
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ans
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506 Chapter 9 Special Topics and Modeling Techniques

9.2 APPROXIMATE MATRIX ANALYSIS OF
RECTANGULAR BUILDING FRAMES
In building frames of low to medium height, the axial deformations of mem-
bers are generally much smaller than the bending deformations. Therefore, the
number of degrees of freedom of such frames can be reduced, without signifi-
cantly compromising the accuracy of the analysis results, by neglecting the
axial deformations of members, or by assuming that the members are inexten-
sible. In this section, we consider the analysis of rectangular plane frames
composed of horizontal and vertical members which are assumed to be inex-
tensible (i.e., they cannot undergo any axial elongation or shortening).

Consider, for example, the portal frame shown in Fig. 9.2. Recall from
Chapter 6 that the frame actually has six degrees of freedom, when both axial

1 4

2

2′
3 3′

d1 d1

d2

d3

Fig. 9.2 Portal Frame with Inextensible Members (Three Degrees of Freedom)

By using k2 and Q f 2 from Example 6.6, we compute the member local end
forces to be

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25.325 k
7.4235 k

−281.39 k-in.

−25.325 k
22.576 k

−1,537 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

As expected, the foregoing member local end force vectors Q1 and Q2 are identical to
those calculated in Example 7.4.

Ans
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Section 9.2 Approximate Matrix Analysis of Rectangular Building Frames 507

and bending deformations of members are taken into account in the analysis.
However, if the members of the frame are assumed to be inextensible, then the
number of degrees of freedom is reduced to only three. From the deformed
shape of the arbitrarily loaded frame given in Fig. 9.2, we can see that fixed
joints 1 and 4 can neither rotate nor translate, whereas joints 2 and 3 can rotate
and translate in the horizontal direction, but not in the vertical direction
because their vertical translations are prevented by the left and right columns,
respectively, which are assumed to be inextensible. Furthermore, since the
girder (i.e., the horizontal member) of the frame is assumed to be inextensible,
the horizontal translations of joints 2 and 3 must be equal. Thus, the portal
frame has three degrees of freedom, namely d1, d2, and d3, as shown in the
figure.

As another example, consider the two-story three-bay building frame
shown in Fig. 9.3. The frame actually has 24 degrees of freedom when both
axial and bending deformations are included in the analysis. However, if the
members are assumed to be inextensible, then the number of degrees of free-
dom is reduced to 10, as shown in the figure. As this example indicates, the
assumption of member inextensibility provides a means for a significant
reduction in the number of degrees of freedom of large structures. Needless to
say, this approximate approach is appropriate only for frames in which the
member axial deformations are small enough to have a negligible effect on
their response. As the axial deformations in the columns of tall building frames
can have a significant effect on the structural response, the approximate
method under consideration is usually not considered suitable for the analysis
of such structures.

1 2 3 4

8765

1211109

9
67

6

8
6

2

1

10

6

5

1
1

4
1

3

Fig. 9.3 Inextensible Building Frame (Ten Degrees of Freedom)
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508 Chapter 9 Special Topics and Modeling Techniques

The overall procedure for the approximate analysis of rectangular
plane frames remains the same as that for general plane frames, developed in
Chapter 6—provided that the member stiffness relations are modified to ex-
clude the axial effects. As the frame is composed of only horizontal and verti-
cal members, each member now has four degrees of freedom in both the local
and global coordinate systems. The local and global end forces and end dis-
placements for the girders (i.e., horizontal members), and the columns (i.e.,
vertical members), of the frame, are given in Fig. 9.4. To simplify the analysis,
the member local x axis is oriented positive to the right for girders (Fig. 9.4(a))
and positive upward for columns (Fig. 9.4(b)). With the axial effects neglected,
the relationship between the member local end forces, Q, and end displacements,
u, is expressed by the local stiffness matrix k and fixed-end force vector Q f for

(a) Girder End Forces and End Displacements in
Local and Global Coordinate Systems

 Q2, u2
(F2, v2)

 Q1, u1
(F1, v1)

 Q3, u3
(F3, v3)

Q4, u4
(F4, v4)

x

y

m

X

Y

b e

(b) Column End Forces and End Displacements 
in the Local Coordinate System

x

Q2, u2

Q1, u1

Q3, u3

b

e

X

Y

m

 Q4, u4

y

(c) Column End Forces and End Displacements 
in the Global Coordinate System

x

F2, v2

F1, v1

F3, v3

b

e

X

Y

m

 F4, v4

y

Fig. 9.4
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Section 9.2 Approximate Matrix Analysis of Rectangular Building Frames 509

beam members, derived in Chapter 5 (Eqs. (5.53) and (5.99)). Thus, Q =
ku + Q f , with

k = EI

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦ (9.7)

and

Q f =

⎡
⎢⎢⎣

FSb

FMb

FSe

FMe

⎤
⎥⎥⎦ (9.8)

As for the member stiffness relations in the global coordinate system,
for girders (Fig. 9.4(a)) no coordinate transformations are needed; that is,
K (girder) = k and Ff (girder) = Q f. For columns, the transformation matrix,
T (column), can be established via the following relationships between the
local end forces Q and the global end forces F (see Figs. 9.4(b) and (c)):

Q1 = −F1 Q2 = F2 Q3 = −F3 Q4 = F4

or ⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦

from which,

T (column) =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ (9.9)

The expression of the global stiffness matrix for columns, K (column), can
now be obtained by applying the relationship K = TTkT, which yields

K (column) = EI

L3

⎡
⎢⎢⎣

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦ (9.10)

It is important to realize that the assumption of negligibly small axial de-
formations, as used herein, does not imply that the member axial forces are
also negligibly small. As the axial forces do not appear in the member stiffness
relations, the application of the matrix stiffness method yields only member
end shears and end moments. Once the member end shears are known, the
member axial forces can be evaluated by considering the equilibrium of the
free bodies of the joints and members of the structure.
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E X A M P L E 9.2 Determine the approximate joint displacements, member local end forces, and support rea-
ctions for the portal frame shown in Fig. 9.5(a), assuming the members to be inextensible.

S O L U T I O N Analytical Model: See Fig. 9.5(b). The frame has three degrees of freedom—the
translation of the girder in the X direction, and the rotations of joints 2 and 3. The six
restrained coordinates of the frame are identified by numbers 4 through 9 as usual, as
shown in Fig. 9.5(b).

Structure Stiffness Matrix and Fixed-Joint Force Vector: By applying Eq. (9.10) for
members 1 and 3, and Eq. (9.7) for member 2, we obtain the following member global
stiffness matrices (in units of kips and inches):

Member 3 −−→ 7 9 1 3

Member 1 −−→ 4 6 1 2

K1 = K3 =

⎡
⎢⎢⎣

5.3107 −955.93 −5.3107 −955.93
−955.93 229,422 955.93 114,711
−5.3107 955.93 5.3107 955.93
−955.93 114,711 955.93 229,422

⎤
⎥⎥⎦

4
6
1
2

7
9
1
3

0 2 0 3

K2 = k2 = k1 = k3 =

⎡
⎢⎢⎣

5.3107 955.93 −5.3107 955.93
955.93 229,422 −955.93 114,711

−5.3107 −955.93 5.3107 −955.93
955.93 114,711 −955.93 229,422

⎤
⎥⎥⎦

0
2
0
3

(1)

510 Chapter 9 Special Topics and Modeling Techniques

1.65 k/ft

12 k

30 ft

30 ft

E, I = constant
E = 29,000 ksi
I  = 712 in.4

(a) Frame

Fig. 9.5
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From Fig. 9.5(b), we can see that for member 1, the structure coordinates in the
directions of the member end shears and end moments are numbered 4, 6, 1, and 2.
Thus, the code numbers for this member are 4, 6, 1, 2. Similarly, the code numbers for
member 3 are 7, 9, 1, 3. Since the structure coordinates corresponding to the end
shears of member 2 are not defined (because the corresponding joint displacements
are 0), we use 0s for the corresponding member code numbers. Thus, the code num-
bers for member 1 are 0, 2, 0, 3. By using the foregoing member code numbers, the
relevant elements of K1, K2, and K3 are stored in the 3 × 3 structure stiffness matrix S.
Note that the elements of K2 that correspond to 0 code numbers are simply disre-
garded. The structure stiffness matrix thus obtained is

1 2 3

S =
⎡
⎣ 10.621 955.93 955.93

955.93 458,844 114,711
955.93 114,711 458,844

⎤
⎦1

2
3

(2)

The fixed-end shears and moments due to the 0.1375 k/in. (= 1.65 k/ft) uni-
formly distributed load applied to member 2 are calculated as

FSb = FSe = wL

2
= 0.1375(360)

2
= 24.75 k

FMb = −FMe = wL2

12
= 0.1375(360)2

12
= 1,485 k-in.
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(b) Analytical Model

Fig. 9.5 (continued)
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512 Chapter 9 Special Topics and Modeling Techniques

0.1375 k/in.

2

29.89319.607

2

1

19.607

739.38

1.875

64.23

19.607

64.23

10.125

19.607

12 k

1.875

1.875

3

3

29.893

29.893

29.893

10.125

10.125

10.125

1,915.8

1,915.8

10.125

1,729.4

(c) Member End Forces

Fig. 9.5 (continued)

Using Eq. (9.8), we obtain

F f 2 = Q f 2 =

⎡
⎢⎢⎣

24.75
1,485
24.75

−1,485

⎤
⎥⎥⎦

0
2
0
3

(3)

Thus, the structure fixed-joint force vector Pf is given by

P f =
⎡
⎣ 0

1,485
−1,485

⎤
⎦1

2
3

(4)

Joint Load Vector:

P =
⎡
⎣ 12

0
0

⎤
⎦1

2
3

(5)

Joint Displacements: By substituting the numerical values of S (Eq. (2)), Pf (Eq. (4)),
and P (Eq. (5)) into the structure stiffness relationship P − Pf = Sd, and solving
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Section 9.2 Approximate Matrix Analysis of Rectangular Building Frames 513

the resulting system of simultaneous equations, we obtain the following joint
displacements.

d =
⎡
⎣ 1.6141 in.

−0.0070053 rad
0.001625 rad

⎤
⎦1

2
3

Ans

Member End Shears and End Moments:

Member 1

v1 =

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦

4
6
1
2

=

⎡
⎢⎢⎢⎣

0
0
d1

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
1.6141

−0.0070053

⎤
⎥⎥⎥⎦

From Eq. (9.9):

T1 = T3 =

⎡
⎢⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎥⎦ (6)

u1 = T1v1 =

⎡
⎢⎢⎢⎣

0
0

−1.6141
−0.0070053

⎤
⎥⎥⎥⎦

By using k1 from Eq. (1) and Qf 1 = 0, we obtain

Q1 = k1u1 =

⎡
⎢⎢⎢⎣

1.875 k
739.38 k-in.
−1.875 k

−64.23 k-in.

⎤
⎥⎥⎥⎦ Ans

Member 2

u2 = v2 =

⎡
⎢⎢⎢⎣

0
−0.0070053

0
0.001625

⎤
⎥⎥⎥⎦

0
2
0
3

By using k2 from Eq. (1) and Q f 2 from Eq. (3), we calculate

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎣

19.607 k
64.23 k-in.
29.893 k

−1,915.8 k-in.

⎤
⎥⎥⎥⎦ Ans

Member 3

v3 =

⎡
⎢⎢⎢⎣

0
0
1.6141
0.001625

⎤
⎥⎥⎥⎦

7
9
1
3
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514 Chapter 9 Special Topics and Modeling Techniques

9.3 CONDENSATION OF DEGREES OF FREEDOM,
AND SUBSTRUCTURING
A problem that can arise during computer analysis of large structures is that the
computer may not have sufficient memory to store and process information
about the entire structure. A commonly used approach to circumvent this prob-
lem is to condense (or reduce the number of) the structure’s stiffness equations
that are to be solved simultaneously, by suppressing some of the degrees of
freedom. This process is referred to as condensation (also called static con-
densation). For very large structures, it may become necessary to combine con-
densation with another process called substructuring, in which the structure is
divided into parts called substructures, with the condensed stiffness relations
for each substructure generated separately; these are then combined to obtain
the stiffness relations for the entire structure. In this section, we consider the
basic concepts of condensation of degrees of freedom, and analysis using sub-
structures.

Using T3 from Eq. (6), we obtain

u3 = T3v3 =

⎡
⎢⎢⎢⎣

0
0

−1.6141
0.001625

⎤
⎥⎥⎥⎦

Using k3 from Eq. (1) and Qf 3 = 0, we calculate

Q3 = k3u3 + Q f 3 =

⎡
⎢⎢⎢⎣

10.125 k
1,729.4 k-in.
−10.125 k

1,915.8 k-in.

⎤
⎥⎥⎥⎦ Ans

The member end shears and end moments, as given by the foregoing local end force
vectors Q1, Q2, and Q3, are depicted in Fig. 9.5(c).

Member Axial Forces: With the member end shears now known, we can calculate the
axial forces for the three members of the frame by applying the equations of equilib-
rium, 

∑
FX = 0 and 

∑
FY = 0, to the free bodies of joints 2 and 3. The member

axial forces thus obtained are shown in Fig. 9.5(c). Ans

Support Reactions: By comparing Figs. 9.5(b) and (c), we realize that the forces at
the lower ends of the columns of the frame represent its support reactions; that is,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1.875 k
19.607 k

739.38 k-in.
−10.125 k
29.893 k

1,729.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4
5
6
7
8
9

Ans
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 515

Condensation
The objective of condensation is to reduce the number of independent degrees
of freedom of a structure (or substructure, or member). This is achieved by
treating some of the degrees of freedom as dependent variables and expressing
them in terms of the remaining independent degrees of freedom. The relation-
ship between the dependent and independent degrees of freedom is then sub-
stituted into the original stiffness relations to obtain a condensed system of
stiffness equations, which contains only the independent degrees of freedom as
unknowns. From a theoretical viewpoint, the dependent degrees of freedom
can be chosen arbitrarily. However, for computational purposes, it is usually
convenient to select those degrees of freedom that are internal to the structure
(or substructure, or member) as the dependent degrees of freedom. Hence, the
dependent degrees of freedom are commonly referred to as the internal de-
grees of freedom; whereas, the independent degrees of freedom are called the
external degrees of freedom.

As discussed in the preceding chapters, the stiffness relations for a general
framed structure can be expressed as (see, for example, Eq. (6.42))

P = Sd (9.11)

with

P = P − P f
(9.12)

When using the condensation process, it is usually convenient to assign num-
bers to the degrees of freedom so that the external and internal degrees of free-
dom are separated into two groups. The structure stiffness relations (Eq. (9.11))
can then be written in partitioned-matrix form:[

PE

PI

]
=

[
SE E SE I

SI E SI I

][
dE

dI

]
�� ����� ��

�
�
�

(9.13)

in which the subscripts E and I refer to quantities related to the external and
internal degrees of freedom, respectively. By multiplying the two partitioned
matrices on the right side of Eq. (9.13), we obtain the two matrix equations,

PE = SE E dE + SE I dI (9.14)

PI = SI E dE + SI I dI (9.15)

To express the internal degrees of freedom dI in terms of the external degrees
of freedom dE, we solve Eq. (9.15) for dI, as

(9.16)

Finally, by substituting Eq. (9.16) into Eq. (9.14), we obtain the condensed
stiffness equations

PE − SE I S−1
I I PI = (SE E − SE I S−1

I I SI E )dE (9.17)

dI = S−1
I I (PI − SI E dE )
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516 Chapter 9 Special Topics and Modeling Techniques

Note that the external degrees of freedom dE are the only unknowns in
Eq. (9.17). Equation (9.17) can be rewritten in a compact form as 

(9.18)

in which,

(9.19)

and

(9.20)

As the foregoing equations indicate, the solution of the structure stiffness
equations is carried out in two parts. In the first part, P∗

E and S∗
E E are evaluated

using Eqs. (9.19) and (9.20), respectively, and the external joint displacements
dE are determined by solving Eq. (9.18). In the second part, the now-known dE

is substituted into Eq. (9.16) to obtain the internal joint displacements dI. Once
all the joint displacements have been evaluated, the member end displacements
and end forces, and support reactions, can be calculated using the procedures
described in the previous chapters.

It should be realized that analysis involving condensation generally re-
quires more computational effort than the standard formulation in which all of
the structure’s stiffness equations are solved simultaneously. However,
condensation provides a useful means of analyzing large structures whose full
stiffness matrices and load vectors exceed the available computer memory. This
is because, when employing condensation, only parts of S and P need to be as-
sembled and processed in the computer memory at a given time. The basic con-
cept of condensation is illustrated by the following relatively simple example.

S∗
E E = SE E − SE I S−1

I I SI E

P∗
E = PE − SE I S−1

I I PI

P∗
E = S∗

E E dE

E X A M P L E 9.3 Analyze the plane frame shown in Fig. 9.6(a) using condensation, by treating the
rotation of the free joint as the internal degree of freedom.

S O L U T I O N This frame was analyzed in Example 6.6 using the standard formulation. The
analytical model of the structure is given in Fig. 9.6(b).

Condensed Structure Stiffness Matrix: The full (3 × 3) stiffness matrix, S, for the
frame, as determined in Example 6.6, is given by (in units of kips and inches):

1 2 3

S =
⎡
⎣ 1,685.3 507.89 670.08

507.89 1,029.2 601.42
670.08 601.42 283,848

⎤
⎦1

2
3

�������������

�
�
�
�

(1)
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 517

90 k

1.5 k/ft125 k-ft

10 ft

10 ft

10 ft 20 ft

E, A, I = constant
E = 29,000 ksi
A = 11.8 in.2

I  = 310 in.4

(a) Frame

Y

1

2 3

3

2

5

8

6

9

71

4 X

2

1

(b) Analytical Model

Fig. 9.6

in which S is partitioned to separate the external degrees of freedom, 1 and 2, from the
internal degree of freedom, 3. From Eq. (1), we obtain

1 2

SE E =
[

1,685.3 507.89
507.89 1,029.2

]
1
2

(2)

1 2

SI E = [
670.08 601.42

]
3 (3)
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518 Chapter 9 Special Topics and Modeling Techniques

3

SE I =
[

670.08
601.42

]
1
2

(4)

3

SI I = [283,848] 3 (5)

with the inverse of SII given by

S−1
I I =

[
1

283,848

]
(6)

By substituting Eqs. (2), (3), (4), and (6) into Eq. (9.20), we obtain the condensed
structure stiffness matrix:

S∗
E E = SE E − SE I S−1

I I SI E =
[

1,683.7 506.47
506.47 1,027.9

]
k/in. (7)

Condensed Joint Load Vector: Recall from Example 6.6 that

P = P − P f =
⎡
⎣ 0

−60
−750

⎤
⎦1

2
3

���
(8)

from which,

PE =
[

0
−60

]
1
2

(9)

and

PI = [−750] 3 (10)

Substitution of Eqs. (4), (6), (9), and (10) into Eq. (9.19) yields the following con-
densed joint load vector.

P∗
E = PE − SE I S−1

I I PI =
[

1.7705
−58.411

]
k (11)

Joint Displacements: By substituting Eqs. (7) and (11) into the condensed structure
stiffness relationship, P∗

E = S∗
E E dE (Eq. (9.18)), and solving the resulting 2 × 2 sys-

tem of simultaneous equations, we obtain the external joint displacements (corre-
sponding to degrees of freedom 1 and 2), as 

dE =
[

0.021302
−0.06732

]
1
2

in. (12)

The internal joint displacement (i.e., the rotation corresponding to degree of freedom 3),
can now be determined by applying Eq. (9.16). Thus,

dI = S−1
I I (PI − SI E dE ) = [−0.0025499]3 rad (13)

By combining Eqs. (12) and (13), we obtain the full joint displacement vector,

d =
[

dE

dI

]
�� =

⎡
⎣ 0.021302 in.

−0.06732 in.

−0.0025499 rad

⎤
⎦1

2
3

�������
Ans

Note that the foregoing joint displacements are identical to those determined in
Example 6.6 by solving the structure’s three stiffness equations simultaneously.
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 519

In the foregoing paragraphs, we have discussed the application of conden-
sation to reduce the number of independent degrees of freedom of an entire
structure. The condensation process is also frequently used to establish the
stiffness relationships for substructures, which are defined as groups of mem-
bers with known stiffness relations. In this case, condensation is used to elimi-
nate the degrees of freedom of those joints that are internal to the substructure,
thereby producing a condensed system of stiffness relations expressed solely in
terms of the degrees of freedom of those (external) joints through which the
substructure is connected to the rest of the structure and/or supports.

The procedure for condensing the internal degrees of freedom of a sub-
structure is analogous to that just discussed for the case of a whole structure.
The stiffness relations involving both the internal and external degrees of free-
dom of a substructure can be symbolically expressed as

F = Kv̄ + F f (9.21)

in which F and v̄ represent, respectively, the joint forces and displacements for
the substructure; K denotes the substructure stiffness matrix; and F f represents
the fixed-joint forces for the substructure. The matrix K and the vector F f can
be assembled from the member stiffness matrices and fixed-end force vectors
in the usual way. To apply condensation, we rewrite Eq. (9.21) in partitioned-
matrix form as[

FE

FI

]
=

[
KE E KE I

KI E KI I

] [
v̄E

v̄I

]
+

[
F f E

F f I

]
�� ������ �� ���

�
�
�

(9.22)

The multiplication of the two partitioned matrices on the right-hand side of
Eq. (9.22) yields the matrix equations

FE = KE E v̄E + KE I v̄I + F f E (9.23)

FI = KI E v̄E + KI I v̄I + F f I (9.24)

Solving Eq. (9.24) for v̄I ,we obtain

(9.25)

and, substituting Eq. (9.25) into Eq. (9.23), we determine the condensed stiff-
ness relations for the substructure to be

(9.26)FE = K
∗
E E v̄E + F

∗
f E

v̄I = K
−1
I I (FI − F f I − KI E v̄E )

Member End Displacements and End Forces: See Example 6.6.
It is important to realize that, in this example, the submatrices of S and P were

obtained from the corresponding full matrices, for convenience only. In actual com-
puter analysis, to save memory space, the individual parts of S and P are assembled
directly from the corresponding member matrices as they are needed in the analysis.
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520 Chapter 9 Special Topics and Modeling Techniques

in which,

(9.27)

and

(9.28)F
∗
f E = F f E + KE I K

−1
I I

(
FI − F f I

)

K
∗
E E = KE E − KE I K

−1
I I KI E

W

w

L1 L2

E, I = constant

(a) Substructure

Hinge

1 23

1 2

1

2

Y

6

5

3

4

X

(b) Analytical Model

Fig. 9.7

E X A M P L E 9.4 Determine the stiffness matrix and the fixed-joint force vector for the substructure of
a beam shown in Fig. 9.7(a), in terms of its external degrees of freedom only. The
substructure is composed of two members connected together by a hinged joint, as
shown in the figure.

S O L U T I O N Analytical Model: The analytical model of the substructure is depicted in Fig. 9.7(b).
For member 1, MT = 2, because the end of this member is hinged; MT = 1 for member
2, which is hinged at its beginning. Joint 3 is modeled as a hinged joint with its
rotation restrained by an imaginary clamp. Thus, the substructure has a total of five
degrees of freedom, of which four are external (identified by numbers 1 through 4)
and one is internal (identified by number 5).

Substructure Stiffness Matrix: We will first assemble the full (5 × 5) stiffness matrix
K from the member stiffness matrices k, and then apply Eq. (9.27) to determine the
condensed stiffness matrix K

∗
E E .
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Member 1 (MT = 2) Using Eq. (7.18), we obtain

1 2 5 6

k1 = 3E I

L3
1

⎡
⎢⎢⎣

1 L1 −1 0
L1 L2

1 −L1 0
−1 −L1 1 0

0 0 0 0

⎤
⎥⎥⎦

1
2
5
6

Member 2 (MT = 1) Application of Eq. (7.15) yields

5 6 3 4

k2 = 3E I

L3
2

⎡
⎢⎢⎣

1 0 −1 L2

0 0 0 0
−1 0 1 −L2

L2 0 −L2 L2
2

⎤
⎥⎥⎦

5
6
3
4

Using the code numbers of the members, we store the pertinent elements of k1 and k2

in the full 5 × 5 stiffness matrix K of the substructure, as shown in Fig. 9.7(c).
Substituting into Eq. (9.27) the appropriate submatrices of K from Fig. 9.7(c)

and

K
−1
I I =

[
L3

1 L3
2

3E I (L3
1 + L3

2)

]
(1)

we obtain the condensed stiffness matrix for the substructure:

K
∗
E E = KE E − KE I K

−1
I I KI E = 3E I

L3
1 + L3

2

⎡
⎢⎢⎢⎣

1 L1 −1 L2

L1 L2
1 −L1 L1 L2

−1 −L1 1 −L2

L2 L1 L2 −L2 L2
2

⎤
⎥⎥⎥⎦ (2)

Ans

Substructure Fixed-Joint Force Vector:

Member 1 (MT = 2) Using Eq. (7.19), we obtain

Q f 1 = wL1

8

⎡
⎢⎢⎢⎣

5
L1

3
0

⎤
⎥⎥⎥⎦

1
2
5
6
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1 2 3 4 5

K̄ =
[

K̄EE K̄EI

K̄IE K̄II

]
�����

�
�
�

= 3E I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

L3
1

1

L2
1

0 0 − 1

L3
1

1

L2
1

1

L1
0 0 − 1

L2
1

0 0
1

L3
2

− 1

L2
2

− 1

L3
2

0 0 − 1

L2
2

1

L2

1

L2
2

− 1

L3
1

− 1

L2
1

− 1

L3
2

1

L2
2

1

L3
1

+ 1

L3
2

⎤
⎥⎥⎢ ⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎢ ⎥⎦

1

2

3

4

5

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

(c) Full (Uncondensed) Stiffness Matrix for Substructure

F̄f =
[

F̄fE

F̄fI

]
�� = w

8

⎡
⎢⎢⎢⎢⎢⎢⎣

5L1

L2
1

5L2

−L2
2

3L1 + 3L2

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5
�����

(d) Full (Uncondensed) Fixed-Joint
Force Vector For Substructure

Fig. 9.7 (continued)
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522 Chapter 9 Special Topics and Modeling Techniques

Analysis Using Substructures
The procedure for the analysis of (large) structures, divided into substructures,
is essentially the same as the standard stiffness method developed in previous
chapters. However, each substructure is treated as an ordinary member of the
structure, and the degrees of freedom of only those joints through which the
substructures are connected to each other and/or to supports are considered to
be the structure’s degrees of freedom d. The structure’s stiffness matrix S and
fixed-joint force vector Pf, are assembled, respectively, from the substructure
stiffness matrices K

∗
E E and fixed-joint force vectors F

∗
f E , which are expressed

in terms of the external coordinates of the substructures only. The structure
stiffness equations, P − Pf = Sd, thus obtained, can then be solved for the
joint displacements d.

Consider, for example, the nine-story plane frame shown in Fig. 9.8(a). The
frame actually has 20 joints and 54 degrees of freedom; that is, if we were to an-
alyze the frame using the standard stiffness method for plane frames as devel-
oped in Chapter 6, we would have to assemble and solve 54 structure stiffness
equations simultaneously. Now, suppose that we wish to analyze the frame by
dividing it into three substructures, each consisting of three stories of the frame,
as depicted in Fig. 9.8(b). As this figure indicates, for analysis purposes, the
frame is now modeled as having only six joints, at which the three substructures
are connected to each other and to external supports. Thus, the analytical model
of the frame has 12 degrees of freedom and six restrained coordinates.

To develop the stiffness matrix S and the fixed-joint force vector Pf for the
frame, we first determine the substructure stiffness matrices K

∗
E E and fixed-joint

Member 2 (MT = 1) Using Eq. (7.16), we write

Q f 2 = wL2

8

⎡
⎢⎢⎢⎣

3
0
5

−L2

⎤
⎥⎥⎥⎦

5
6
3
4

The relevant elements of Qf 1 and Q f 2 are stored in the full 5 × 1 fixed-joint force vec-
tor  F f of the substructure, as shown in Fig. 9.7(d).

A comparison of Figs. 9.7(a) and (b) indicates that F5 = −W ; that is,

FI = [F5] = [−W ] (3)

Finally, the application of Eq. (9.28) yields the following condensed fixed-joint
force vector for the substructure.

F
∗
f E = F f E + KE I K

−1
I I (FI − F f I )

= w

8(L3
1 + L3

2)

⎡
⎢⎢⎢⎣

5L4
1 + 8L1 L3

2 + 3L4
2

L5
1 + 4L2

1 L3
2 + 3L1 L4

2

3L4
1 + 8L3

1 L2 + 5L4
2

−(3L4
1 L2 + 4L3

1 L2
2 + L5

2)

⎤
⎥⎥⎥⎦ − W

L3
1 + L3

2

⎡
⎢⎢⎢⎣

−L3
2

−L1 L3
2

−L3
1

L3
1 L2

⎤
⎥⎥⎥⎦ (4) Ans
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(a)  Nine-story Plane Frame

Y

X

4

6

4

6

5

10

12

11

3Substructure

2Substructure

1Substructure

(b) Analytical Model of Frame Divided into Three Substructures 

1 23

1

2

39

7

8

16

5

14

13

15

18

17

Fig. 9.8

26201_09_ch09a_p499-529.qxd  12/1/10  5:24 PM  Page 523

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



524 Chapter 9 Special Topics and Modeling Techniques

force vectors F
∗
f E , in terms of the external degrees of freedom of the sub-

structures, using condensation as described earlier in this section. As shown in
Fig. 9.8(c), substructure 1 has six external degrees of freedom; whereas, sub-
structures 2 and 3 each have 12 external degrees of freedom. The pertinent
elements of K

∗
E E matrices and F

∗
f E vectors are then stored in S and Pf, respec-

tively, using the substructure code numbers in the usual manner. By comparing
Figs. 9.8(b) and (c), we can see that the code numbers for substructure 1 are
1, 2, 3, 4, 5, 6; whereas, the code numbers for substructure 2 are 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12. Similarly, for substructure 3, the code numbers are 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18.

Once the structure stiffness matrix S (12 × 12) and the fixed-joint force
vector Pf (12 × 1) have been assembled, the structure stiffness equations,
P − Pf = Sd, are solved to calculate the joint displacement vector d. With d
known, the external joint displacements, v̄E , for each substructure are obtained
from d using the substructure’s code numbers, and then the substructure’s in-
ternal joint displacements, v̄I , are calculated using Eq. (9.25). After the joint
displacement vector v̄ of a substructure has been determined, the end displace-
ments and forces for its individual members, and support reactions, can be
evaluated using the standard procedure described in previous chapters. The
basic concept of analysis using substructures is illustrated by the following rel-
atively simple example.

1

Substructure 1 Substructures 2 and 3

(c) External Degrees of Freedom of Substructures

2

3
4

5

6 9
7 10

8 11

1 4

2

3 6

5

12

Fig. 9.8 (continued)
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 525

E X A M P L E 9.5 Analyze the two-span continuous beam shown in Fig. 9.9(a), treating each span as a
substructure.

S O L U T I O N Analytical Model: The structure is modeled as being composed of two substructures
and three joints, as shown in Fig. 9.9(b). It has one degree of freedom and five
restrained coordinates. As each substructure consists of two beam members connected
together by a hinged joint, we will use the expressions of stiffnesses and fixed-joint
forces for such substructures, derived in Example 9.4, in the present example.

Structure Stiffness Matrix, S: Substituting E = 70(106) kN/m2, I = 200(10−6) m4,
and L1 = L2 = 5 m into Eq. (2) of Example 9.4, we obtain the following condensed
stiffness matrix for the two substructures.

50 kN

18 kN/m

5 m 5 m 5 m 5 m

(a) Beam

EI = constant
E = 70 GPa
I  = 200(106) mm4

Hinge Hinge

Y

X

3

1 6

1 2 3

(b) Analytical Model of Beam Divided into Two Substructures

2 4 5

Substructure 1 Substructure 2

X

2

5

3

4

6

b m e

(c) Analytical Model of a Substructure Composed of Two Beam Members

Y

1

1 2

Fig. 9.9
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75 175

18 kN/m 18 kN/m

275

(d) Member End Forces

1

Substructure 1 Substructure 2

2 1 2

15 15 35 35 80 10 10 100

18 kN/m

50 kN

1 2 2 3

(e) Substructure Forces

15 35 80 100

1 2175 27575

50 kN

18 kN/m
2

31
275

(f) Support Reactions
15 115 100

75

Fig. 9.9 (continued)

Substructure 2 −→ 4 1 5 6

Substructure 1 −→ 2 3 4 1

K
∗
E E1 = K

∗
E E2 =

⎡
⎢⎢⎢⎣

168 840 −168 840
840 4,200 −840 4,200

−168 −840 168 −840
840 4,200 −840 4,200

⎤
⎥⎥⎥⎦

2
3
4
1

4
1
5
6

By comparing the numbers of the external degrees of freedom of a substructure
(Fig. 9.9(c)) to those of the structure degrees of freedom (Fig. 9.9(b)), we obtain code
numbers 2, 3, 4, 1 for substructure 1, and 4, 1, 5, 6 for substructure 2. By adding the per-
tinent elements of K

∗
E E1 and K

∗
E E2,we determine the structure stiffness matrix S to be

1

S = [8,400] 1 kN · m/rad

Structure Fixed-Joint Force Vector Pf :

Substructure 1 By substituting w = 0, W = 50 kN, and L1 = L2 = 5 m into Eq. (4)
of Example 9.4, we obtain the following condensed fixed-joint force vector for sub-
structure 1.

F
∗
f E1 =

⎡
⎢⎢⎢⎣

25
125
25

−125

⎤
⎥⎥⎥⎦

2
3
4
1
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 527

Substructure 2 By substituting w = 18 kN/m, W = 0, and L1 = L2 = 5 m into Eq. (4)
of Example 9.4, we obtain

F
∗
f E2 =

⎡
⎢⎢⎢⎣

90
225
90

−225

⎤
⎥⎥⎥⎦

4
1
5
6

Thus, the fixed-joint force vector for the whole structure is given by

P f = [100] 1 kN · m

Joint Displacements: By substituting P = 0 and the numerical values of S and Pf into
the structure stiffness relation, P − Pf = Sd, we write

[−100] = [8,400] [d1]

from which,

d = [d1] = [−0.011905] rad

Substructure Joint Displacements, and Member End Displacements and End Forces:

Substructure 1 The substructure’s external joint displacements v̄E can be obtained
by simply comparing the substructure’s external degree of freedom numbers with its
code numbers, as follows.

v̄E1 =

⎡
⎢⎢⎢⎣

v̄1

v̄2

v̄3

v̄4

⎤
⎥⎥⎥⎦

2
3
4
1

=

⎡
⎢⎢⎢⎣

0
0
0
d1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
0

−0.011905

⎤
⎥⎥⎥⎦

The substructure’s internal joint displacements can now be calculated, using the
relationship (Eq. (9.25)) v̄I = K

−1
I I (FI − F f I − KI E v̄E ) . Substitution of the numeri-

cal values of E, I, L1, L2, and W into Eqs. (1) and (3) of Example 9.4 yields

K
−1
I I 1 = [0.0014881]

and

FI 1 = [−50]

Similarly, by substituting the appropriate numerical values into the expressions of
KI E and F f I given in Figs. 9.7(c) and (d), respectively, of Example 9.4, we obtain

KI E1 = [ −336 −1,680 −336 1,680 ]

and

F f I 1 = 0

By substituting the numerical values of the foregoing submatrices and subvectors into
Eq. (9.25), we determine the internal joint displacements for substructure 1 to be

v̄I 1 = K
−1
I I 1(FI 1 − F f I 1 − KI E1v̄E1) = [−0.044643]

Thus, the complete joint displacement vector for substructure 1 is

v̄1 =
[

v̄E1

v̄I 1

]
=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0

−0.011905 rad
−0.044643 m

⎤
⎥⎥⎥⎥⎥⎦

1
2
3
4
5

�� Ans
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528 Chapter 9 Special Topics and Modeling Techniques

With the displacements of all the joints of substructure 1 now known, we can deter-
mine the end displacements u, and end forces Q, for its two members (Fig. 9.9(c)) in
the usual manner.

Member 1 (MT = 2) From Fig. 9.9(c), we can see that the code numbers for mem-
ber 1 are 1, 2, 5, 6. Thus,

u1 =

⎡
⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎦

1
2
5
6

=

⎡
⎢⎢⎢⎣

0
0
v̄5

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

−0.044643
0

⎤
⎥⎥⎥⎦

Substituting the numerical values of E and I and L = 5 m into Eq. (7.18), we obtain
the member stiffness matrix,

k1 =

⎡
⎢⎢⎣

336 1,680 −336 0
1, 680 8,400 −1,680 0
−336 −1,680 336 0

0 0 0 0

⎤
⎥⎥⎦

Substitution of k1 and Qf 1 = 0 into the member stiffness relationship, Q = ku + Qf,
yields the following end forces for member 1 of substructure 1.

Q1 = k1u1 + Q f 1 =

⎡
⎢⎢⎢⎣

15 kN
75 kN · m
−15 kN

0

⎤
⎥⎥⎥⎦ Ans

Member 2 (MT = 1)

u2 =

⎡
⎢⎢⎢⎣

−0.044643
0
0

−0.011905

⎤
⎥⎥⎥⎦

5
6
3
4

Applying Eq. (7.15),

k2 =

⎡
⎢⎢⎢⎣

336 0 −336 1,680
0 0 0 0

−336 0 336 −1,680
1,680 0 −1,680 8,400

⎤
⎥⎥⎥⎦

Q f 2 = 0

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎣

−35 kN
0

35 kN
−175 kN · m

⎤
⎥⎥⎥⎦ Ans

Substructure 2

v̄E2 =

⎡
⎢⎢⎢⎣

0
−0.011905

0
0

⎤
⎥⎥⎥⎦

4
1
5
6

From Fig. 9.7(d) of Example 9.4, we obtain

F f I 2 = [67.5]
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Section 9.3 Condensation of Degrees of Freedom, and Substructuring 529

The submatrices K
−1
I I and KI E remain the same as for substructure 1, and FI 2 = 0.

Thus, the application of Eq. (9.25) yields

v̄I 2 = [−0.13021]

and, therefore,

v̄2 =
[

v̄E2

v̄I 2

]
=

⎡
⎢⎢⎢⎢⎢⎣

0
−0.011905 rad

0
0

−0.13021 m

⎤
⎥⎥⎥⎥⎥⎦

1
2
3
4
5

�� Ans

Member 1 (MT = 2)

u1 =

⎡
⎢⎢⎢⎣

0
−0.011905
−0.13021

0

⎤
⎥⎥⎥⎦

1
2
5
6

The k matrix for member 1 of substructure 2 is the same as that for the corresponding
member of substructure 1. Using Eq. (7.19), we calculate

Q f1 =

⎡
⎢⎢⎢⎣

56.25
56.25
33.75
0

⎤
⎥⎥⎥⎦

Thus,

Q1 = k1u1 + Q f1 =

⎡
⎢⎢⎢⎣

80 kN
175 kN · m

10 kN
0

⎤
⎥⎥⎥⎦ Ans

Member 2 (MT = 1)

u2 =

⎡
⎢⎢⎢⎣

−0.13021
0
0
0

⎤
⎥⎥⎥⎦

5
6
3
4

The k matrix for this member is the same as that for member 2 of substructure 1.
Applying Eq. (7.16),

Q f 2 =

⎡
⎢⎢⎢⎣

33.75
0

56.25
−56.25

⎤
⎥⎥⎥⎦

Thus,

Q2 = k2u2 + Q f 2 =

⎡
⎢⎢⎢⎣

−10 kN
0

100 kN
−275 kN · m

⎤
⎥⎥⎥⎦ Ans

The end forces for the individual members of the structure are shown in Fig. 9.9(d).
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530 Chapter 9 Special Topics and Modeling Techniques

Support Reactions: The reaction vector R can be assembled either directly from the
member end force vectors Q, or from the external joint force vectors, FE ,of the sub-
structures. To use the latter option, we first apply Eq. (9.26) to calculate FE . Thus, by
substituting the previously calculated numerical values of K

∗
E E , F

∗
f E , and v̄E into

Eq. (9.26), we obtain

FE1 = K
∗
E E1v̄E1 + F

∗
f E1 =

⎡
⎢⎢⎢⎣

15
75
35

−175

⎤
⎥⎥⎥⎦

2
3
4
1

and

FE2 = K
∗
E E2v̄E2 + F

∗
f E2 =

⎡
⎢⎢⎢⎣

80
175
100

−275

⎤
⎥⎥⎥⎦

4
1
5
6

The foregoing substructure forces are depicted in Fig. 9.9(e). Finally, we calculate the
support reaction vector R by storing the pertinent elements of FE1 and FE2 in their
proper positions in R, using the substructure code numbers. This yields, 

R =

⎡
⎢⎢⎢⎢⎢⎣

15 kN
75 kN · m
115 kN
100 kN

−275 kN · m

⎤
⎥⎥⎥⎥⎥⎦

2
3
4
5
6

Ans

The support reactions are shown in Fig. 9.9(f).

9.4 INCLINED ROLLER SUPPORTS
The structures that we have considered thus far in this text have been supported
such that the joint displacements prevented by the supports are in the directions
of the global coordinate axes oriented in the horizontal and vertical directions.
Because an inclined roller support prevents translation of a joint in an inclined
direction (normal to the incline), while permitting translation in the perpendic-
ular direction, it exerts a reaction force on the joint in that inclined, nonglobal,
direction. Thus, the effect of an inclined roller support cannot be included in
analysis by simply eliminating one of the structure’s degrees of freedom; that
is, by treating one of the structure’s coordinates, which are defined in the di-
rections of the global coordinate axes, as a restrained coordinate.

An obvious approach to alleviate this problem would be to orient the global
coordinate system so that its axes are parallel and perpendicular to the inclined
plane upon which the roller moves. However, this approach generally proves to
be quite cumbersome, as it requires that the joint coordinates and loads, which
are usually specified in the horizontal and vertical directions, be calculated with
respect to the inclined global coordinate system. Furthermore, the foregoing

26201_09_ch09b_p530-571.qxd  12/1/10  5:19 PM  Page 530

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 9.4 Inclined Roller Supports 531

approach cannot be used if the structure is supported by two or more rollers in-
clined in different (i.e., neither parallel nor perpendicular) directions.

A theoretically exact solution of the problem of inclined rollers usually in-
volves first defining the reaction force and the support displacements with ref-
erence to a local joint coordinate system, with axes parallel and perpendicular
to the incline; and then introducing these restraint conditions in the structure’s
global stiffness relations via a special transformation matrix [26]. While this
approach is exact in the sense that it yields exactly 0 displacement of the sup-
port joint perpendicular to the incline, it is generally not considered to be the
most convenient because its computer implementation requires a significant
amount of programming effort.

Perhaps the most convenient and commonly used technique for modeling
an inclined roller support is to replace it with an imaginary axial force member
with very large axial stiffness, and oriented in the direction perpendicular to the
incline, as shown in Figs. 9.10 and 9.11 (on the next page). As depicted there,
one end of the imaginary member is connected to the original support joint by
a hinged connection, while the other end is attached to an imaginary hinged
support, to ensure that only axial force (i.e., no bending moment) develops in
the member when the structure is loaded. In order for the imaginary member to
accurately represent the effect of the roller support, its axial stiffness must be
made sufficiently large so that its axial deformation is negligibly small. This is
usually achieved by specifying a very large value for the cross-sectional area of

(a) Plane Truss with Inclined Roller Support 

θ

θ

Imaginary member with large
cross-sectional area

(b) Analytical Model

Fig. 9.10
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the imaginary member in the analysis, while keeping its length of the same
order of magnitude as the other (real) structural members, to ensure that the
imaginary member undergoes only small rotations. Provided that the foregoing
conditions are satisfied, the axial force in the imaginary member represents the
reaction of the actual inclined roller support.

The main advantage of modeling inclined roller supports with imaginary
members is that computer programs for standard supports, such as those devel-
oped in previous chapters, can be used, without any modifications, to analyze
structures supported on inclined rollers. When analyzing trusses, ordinary truss
members with large cross-sectional areas can be used to model inclined roller
supports (Fig. 9.10). In the case of frames, however, the members used to model
inclined rollers, in addition to having large cross-sectional areas, must be of
type 3 (MT = 3); that is, they must be hinged at both ends, as shown in Fig. 9.11.
As noted before, the cross-sectional area of the imaginary member, used to
model the inclined roller support, should be sufficiently large so that the mem-
ber’s axial deformations are negligibly small. However, using an extremely
large value for the cross-sectional area of the imaginary member can cause some
off-diagonal elements of the structure stiffness matrix to become so large, as
compared to the other elements, that they introduce numerical errors, or cause
numerical instability, during the solution of the structure’s stiffness equations.

532 Chapter 9 Special Topics and Modeling Techniques

(a) Plane Frame with Inclined Roller Support

θ

Imaginary member, hinged at both
ends (MT = 3), and with large 
cross-sectional area

(b) Analytical Model 

θ

Fig. 9.11

26201_09_ch09b_p530-571.qxd  12/1/10  5:19 PM  Page 532

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 9.5 Offset Connections 533

9.5 OFFSET CONNECTIONS
In formulating the stiffness method of analysis, we have ignored the size of
joints or connections, assuming them to be of infinitesimal size. While this as-
sumption proves to be adequate for most framed structures, the dimensions of
moment-resisting connections in some structures may be large enough, relative
to member lengths, that ignoring their effect in the analysis can lead to erro-
neous results. In this section, we discuss procedures for including the effect of
finite sizes of connections or joints in the analysis.

Consider an arbitrary girder of a typical plane building frame, as shown in
Fig. 9.12(a) on the next page. The girder is connected at its ends, to columns
and adjacent girders, by means of rigid or moment-resisting connections. As
indicated in the figure, the dimensions of connections usually (but not always)
equal the cross-sectional depths of the connected members. If the connection
dimensions are small, as compared to the member lengths, then their effect is
ignored in the analysis. In such a case, it would be assumed for analysis pur-
poses that the girder under consideration extends in length from one column
centerline to the next, and is connected at its ends to other members through
rigid connections of infinitesimal size, as depicted in Fig. 9.12(b).

However, if the connection dimensions are not small, then their effect
must be considered in the analysis. As shown in Fig. 9.12(c), rigid connec-
tions of finite size can be conveniently modeled by using rigid offsets, with
each offset being a rigid body of length equal to the distance between the
center of the connection and its edge which is adjacent to the member under
consideration. Thus, from Fig. 9.12(c), we can see that the girder under con-
sideration has offset connections of lengths db and de at its left and right ends,
respectively.

Two approaches are commonly used to include the effect of offset connec-
tions in analysis. In the first approach, each offset is treated as a small member
with very large stiffness. For example, in [13] it is suggested that the cross-
sectional properties of an offset member be chosen so that its stiffness is 1,000
times that of the connected member. The main advantage of this approach is
that computer programs, such as those developed in previous chapters, can be
used without any modification. The disadvantage of this approach is that each
offset increases, by one, the number of members and joints to be analyzed. For
example, the girder of Fig. 9.12(c) would have to be divided into three mem-
bers of lengths db, L, and de, in order to include the effect of offset connections
at its two ends in the analysis.

An alternate approach that can be used to handle the effect of offset con-
nections involves modifying the member stiffness relationships to include the
effect of offsets at member ends. The main advantage of this approach is that a
natural member (e.g., a girder or a column), together with its end offsets, can
be treated as a single member for the purpose of analysis. For example, the
whole girder of Fig. 9.12(c), including its end offsets, would be treated as a
single member when using this approach. However, the disadvantage of this
approach is that it requires rewriting of some parts of the computer programs
developed in previous chapters.
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Fig. 9.12

Column Centerlines

Rigid Connections

L

(a) Girder

L + db + de

db de

(b) Analytical Model Neglecting Connection Sizes

Rigid Offsets

Ldb de

(c) Analytical Model Considering Connection Sizes
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Section 9.5 Offset Connections 535

In the following, we modify the stiffness relations for the members of
plane frames to include the effect of rigid end offsets. Similar procedures can
be employed to derive modified stiffness relations for the members of other
types of framed structures.

Consider an arbitrary member of length L of a plane frame, and let Q and
ū denote the local end forces and end displacements, respectively, at the exte-
rior ends of its offsets, as shown in Fig. 9.13(a). Our objective is to express Q
in terms of ū and any external loading applied to the member between its ac-
tual ends b and e. Recall from Chapter 6 that the relationship between the end
forces Q and the end displacement u, which are defined at the ends b and e of
the member, is of the form Q = ku + Qf, with k and Qf given by Eqs. (6.6)
and (6.15), respectively.

To express Q in terms of Q, we consider the equilibrium of the rigid bod-
ies of the two offsets. This yields (see Fig. 9.13(b))

Q1 = Q1 Q2 = Q2 Q3 = db Q2 + Q3

Q4 = Q4 Q5 = Q5 Q6 = −de Q5 + Q6

which can be written in matrix form as

Q = TQ (9.29)

Rigid offset Rigid offset

y

x

db de
E, I, A = constant

L

mb e

(a) Plane Frame Member with Rigid End Offsets

Q1, u1
¯ ¯

Q3, u3
¯ ¯

Q2, u2
¯ ¯ Q5, u5

¯ ¯

Q6, u6
¯ ¯

Q4, u4
¯ ¯

Q1

Q3
Q3 Q3

Q2

Q4

Q6

Q6

Q5

Q1

Q2

Q2

mb e

(b) Member Forces

¯

¯

¯

Q4
¯

Q6
¯

Q5
¯Q5

db de

Fig. 9.13
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with

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 db 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −de 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.30)

in which T can be considered to be a transformation matrix which translates
the member’s end forces from its actual ends b and e, to the exterior ends of its
rigid offsets.

From geometrical considerations, it can be shown that the relationship be-
tween the end displacements u and ū can be written as

u = T
T

ū (9.31)

By substituting Eq. (9.31) into Eq. (6.4), and substituting the resulting expres-
sion into Eq. (9.29), we obtain the desired stiffness relationship:

(9.32)

with

(9.33)

(9.34)

in which k̄ and Q f represent the modified member stiffness matrix and fixed-
end force vector, respectively, in the local coordinate system. Note that k̄ and
Q f include the effect of rigid offsets at the ends of the member. The explicit
forms of k̄ and Q f , respectively, can be obtained by substituting Eqs. (6.6) and
(9.30) into Eq. (9.33), and Eqs. (6.15) and (9.30) into Eq. (9.34). These are
given in Eqs. (9.35) and (9.36).

Q f = TQ f

k̄ = TkT
T

Q = k̄ū + Q f

536 Chapter 9 Special Topics and Modeling Techniques

(9.35)

k̄ = E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL2

I
0 0 − AL2

I
0 0

0 12 (6L + 12db) 0 −12 (6L + 12de)

0 (6L + 12db) (4L2 + 12Ldb + 12d2
b ) 0 (−6L − 12db) (2L2 + 6Ldb + 6Lde + 12dbde)

− AL2

I
0 0

AL2

I
0 0

0 −12 (−6L − 12db) 0 12 (−6L − 12de)

0 (6L + 12de) (2L2 + 6Ldb + 6Lde + 12dbde) 0 (−6L − 12de) (4L2 + 12Lde + 12d2
e )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Section 9.6 Semirigid Connections 537

Q f =

⎡
⎢⎢⎢⎢⎢⎣

FAb

FSb

db FSb + FMb

FAe

FSe

−de FSe + FMe

⎤
⎥⎥⎥⎥⎥⎦ (9.36)

The procedure for analysis essentially remains the same as developed pre-
viously, except that the modified expressions for the stiffness matrices k̄
(Eq. (9.35)) and fixed-end force vectors Q f (Eq. (9.36)) are used (instead of k
and Qf, respectively), for members with offset connections.

9.6 SEMIRIGID CONNECTIONS
While rigid and hinged types of connections, as considered thus far in this text,
are the most commonly used in structural designs, a third type of connection,
termed the semirigid connection, is also recognized by some design codes, and
can be used for designing such structures as structural steel building frames.
Recall that the rotation of a rigidly connected member end equals the rotation
of the adjacent joint, whereas the rotation of a hinged end of a member must be
such that the moment at the hinged end is 0. A connection is considered to be
semirigid if its rotational restraint is less than that of a perfectly rigid connec-
tion, but more than that of a frictionless hinged connection. In other words, the
moment transmitted by a semirigid connection is greater than 0, but less than
that transmitted by a rigid connection. For the purpose of analysis, a semirigid
connection can be conveniently modeled by a rotational (torsional) spring with
stiffness equal to that of the actual connection. In this section, we derive the
stiffness relations for members of beams with semirigid connections at their
ends. Such relationships for other types of framed structures can be determined
by using a similar procedure.

Consider an arbitrary member of a beam, as shown in Fig. 9.14(a) on the
next page. The member is connected to the joints adjacent to its ends b and e,
by means of rotational springs of infinitesimal size representing the semirigid
connections of stiffnesses kb and ke, respectively. As shown in this figure, 
Q and ū represent the local end forces and end displacements, respectively,
at the exterior ends of the rotational springs. Our objective is to express Q in
terms of ū and any external loading applied to the member.

We begin by writing, in explicit form, the previously derived relationship
Q = ku + Qf, between the end forces Q and the end displacements u, which
are defined at the actual ends b and e of the member. By using the expressions
for k and Qf from Eqs. (5.53) and (5.99), respectively, we write⎡

⎢⎢⎣
Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ = EI

L3

⎡
⎢⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

FSb

FMb

FSe

FMe

⎤
⎥⎥⎦

(9.37)
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¯
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Fig. 9.14
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Section 9.6 Semirigid Connections 539

Figure 9.14(b) shows the forces Q and Q acting at the exterior and interior
ends, respectively, of the member’s rotational springs. As the lengths of these
springs are infinitesimal, equilibrium equations for the free bodies of the
springs yield

Q = Q (9.38)

The displacements u and ū are depicted in Fig. 9.14(c) using an exagger-
ated scale. Because of the infinitesimal size of the springs, the translations of
the spring ends are equal; that is,

u1 = ū1 (9.39a)

u3 = ū3 (9.39b)

The relationship between the rotations (u2 and ū2 ) of the two ends of the
spring, at member end b, can be established by applying the spring stiffness
relation:

Q2 = kb (ū2 − u2)

from which,

u2 = ū2 − Q2

kb
(9.39c)

Similarly, by using the stiffness relation for the spring attached to member end
e, we obtain

u4 = ū4 − Q4

ke
(9.39d)

To obtain the desired relationship between Q and ū, we now substitute
Eqs. (9.38) and (9.39) into Eq. (9.37) to obtain the following equations.

Q1 = E I

L3

[
12ū1 + 6L

(
ū2 − Q2

kb

)
− 12ū3 + 6L

(
ū4 − Q4

ke

)]
+ FSb

(9.40a)

Q2 = E I

L3

[
6Lū1 + 4L2

(
ū2 − Q2

kb

)
− 6Lū3 + 2L2

(
ū4 − Q4

ke

)]
+ FMb

(9.40b)

Q3 = E I

L3

[
−12ū1 − 6L

(
ū2 − Q2

kb

)
+ 12ū3 − 6L

(
ū4 − Q4

ke

)]
+ FSe

(9.40c)

Q4 = E I

L3

[
6Lū1 + 2L2

(
ū2 − Q2

kb

)
− 6Lū3 + 4L2

(
ū4 − Q4

ke

)]
+ FMe

(9.40d)
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Next, we solve Eqs. (9.40b) and (9.40d) simultaneously, to express Q2 and
Q4 in terms of ū1 through ū4. This yields

Q2 = E Irb

L3 R
[6L(2 − re)ū1 + 4L2(3 − 2re)ū2 − 6L(2 − re)ū3 + 2L2reū4]

+ rb

R
[(4 − 3re)FMb − 2(1 − re)FMe] (9.41a)

Q4 = E Ire

L3 R
[6L(2 − rb)ū1 + 2L2rbū2 − 6L(2 − rb)ū3 + 4L2(3 − 2rb)ū4]

+ re

R
[(4 − 3rb)FMe − 2(1 − rb)FMb] (9.41b)

in which rb and re denote the dimensionless rigidity parameters defined as

(9.42)

and

(9.43)

Finally, by substituting Eqs. (9.41) into Eqs. (9.40a) and (9.40c), we determine
expressions for Q1 and Q3 in terms of ū1 through ū4. Thus,

Q1 = E I

L3 R
[12(rb + re − rbre)ū1 + 6Lrb(2 − re)ū2

−12(rb + re − rbre)ū3 + 6Lre(2 − rb)ū4]

+ FSb − 6

L R
[(1 − rb)(2 − re)FMb + (1 − re)(2 − rb)FMe]

(9.44a)

Q3 = E I

L3 R
[−12(rb + re − rbre)ū1 − 6Lrb(2 − re)ū2

+12(rb + re − rbre)ū3 − 6Lre(2 − rb)ū4]

+ FSe + 6

L R
[(1 − rb)(2 − re)FMb + (1 − re)(2 − rb)FMe]

(9.44b)

Equations (9.41) and (9.44), which represent the modified stiffness relations
for beam members with semirigid connections at both ends, can be expressed
in matrix form:

(9.45)Q = k̄ū + Q f

R = 12 − 8rb − 8re + 5rbre

ri = ki L

E I + ki L
i = b, e
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with

k̄ = E I

L3 R

⎡
⎢⎢⎢⎣

12(rb + re − rbre) 6Lrb(2 − re) −12(rb + re − rbre) 6Lre(2 − rb)

6Lrb(2 − re) 4L2rb(3 − 2re) −6Lrb(2 − re) 2L2rbre

−12(rb + re − rbre) −6Lrb(2 − re) 12(rb + re − rbre) −6Lre(2 − rb)

6Lre(2 − rb) 2L2rbre −6Lre(2 − rb) 4L2re(3 − 2rb)

⎤
⎥⎥⎥⎦

(9.46)

and

Q f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FSb − 6

L R
[(1 − rb)(2 − re)FMb + (1 − re)(2 − rb)FMe]

rb

R
[(4 − 3re)FMb − 2(1 − re)FMe]

FSe + 6

L R
[(1 − rb)(2 − re)FMb + (1 − re)(2 − rb)FMe]

re

R
[−2(1 − rb)FMb + (4 − 3rb)FMe]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.47)

The k̄ matrix in Eq. (9.46) and the Q f vector in Eq. (9.47) represent the
modified stiffness matrix and fixed-end force vector, respectively, for the mem-
bers of beams with semirigid connections. It should be noted that these ex-
pressions for k̄ and Q f are valid for the values of the spring stiffness ki (i = b
or e) ranging from 0, which represents a hinged connection, to infinity, which
represents a rigid connection. From Eq. (9.42), we can see that as ki varies from
0 to infinity, the value of the corresponding rigidity parameter ri varies from 0
to 1. Thus, ri = 0 represents a frictionless hinged connection, whereas ri = 1
represents a perfectly rigid connection. The reader is encouraged to verify that
when both rb and re are set equal to 1, then k̄ (Eq. (9.46)) and Q f (Eq. (9.47))
reduce the k (Eq. (5.53)) and Qf (Eq. (5.99)) for a beam member rigidly con-
nected at both ends. Similarly, the expressions of k and Qf, derived in
Chapter 7 for beam members with three combinations of rigid and hinged con-
nections (i.e., MT = 1, 2, and 3), can be obtained from Eqs. (9.46) and (9.47),
respectively, by setting rb and re to 0 or 1, as appropriate.

The procedure for analysis of beams with rigid and hinged connections,
developed previously, can be applied to beams with semirigid connections—
provided that the modified member stiffness matrix k̄ (Eq. (9.46)) and fixed-
end force vector Q f (Eq. (9.47)) are used in the analysis.

9.7 SHEAR DEFORMATIONS
The stiffness relations that have been developed thus far for beams, grids, and
frames, do not include the effect of shear deformations of members. Such
structures are generally composed of members with relatively large length-to-
depth ratios, so that their shear deformations are usually negligibly small as
compared to the bending deformations. However, in the case of beams, grids
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and rigid frames consisting of members with length-to-depth ratios of 10 or
less, and/or built-up (fabricated) members, the magnitudes of shear deforma-
tions can be considerable; therefore, the effect of shear deformations should be
included in the analyses of such structures. In this section, we consider a pro-
cedure for including the effect of shear deformations in the member stiffness
relations, and present the modified stiffness matrix for the members of beams.
This matrix, which contains the effects of both the shear and bending defor-
mations, can be easily extended to obtain the corresponding modified member
stiffness matrices for grids, and plane and space frames.

The relationship between the shearing strain at a cross-section of a beam
member and the slope of the elastic curve due to shear can be obtained by con-
sidering the shear deformation of a differential element of length dx of the
member, as shown in Fig. 9.15. From this figure, we can see that

γ = −dūyS

dx (9.48)

in which γ denotes the shear strain, and ū yS represents the deflection, due to
shear, of the member’s centroidal axis in the y direction. The negative sign in
Eq. (9.48) indicates that the positive shear force S causes deflection in the neg-
ative y direction, as shown in the figure. Substitutions of Hooke’s law for shear,
γ = τ/G, and the stress-force relation, τ = fS S/A, into Eq. (9.48), yield the
following expression for the slope of the elastic curve due to shear.

(9.49)

in which fS represents the shape factor for shear. The dimensionless shape fac-
tor fS depends on the shape of the member cross-section, and takes into account

dūyS

dx
= −

(
fS

GA

)
S
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y

x

γ
−duyS

dx

¯

Fig. 9.15
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Section 9.7 Shear Deformations 543

the nonuniform distribution of shear stress on the member cross-section. The
values of fS for some common cross-sectional shapes are as follows.

fS = 1.2 for rectangular cross-sections

fS = 10/9 for circular cross-sections

fS = 1 for wide-flange beams bent about the major axis, provided that
the area of the web is used for A in Eq. (9.49)

Integration of Eq. (9.49) yields the expression for deflection due to shear; the
total deflection (or slope) of the member due to the combined effect of shear
and bending can be determined via superposition of the deflections (or slopes)
caused by shear and by bending. As discussed in Chapter 5, the equations for the
slope and deflection, due to bending, can be obtained by integrating the moment–
curvature relationship:

d2ū y B

dx2
= M

E I
(9.50)

in which ū y B represents the deflection of the member due to bending.
The expressions for the elements of the modified stiffness matrix k for a

beam member, due to the combined effect of the bending and shear deforma-
tions, can be derived using the direct integration approach. To obtain the ex-
pressions for the stiffness coefficients ki1 (i = 1 through 4) in the first column
of k, we subject a prismatic beam member of length L to a unit value of the end
displacement u1 at end b, as shown in Fig. 9.16. Note that all other member end
displacements are 0, and the member is in equilibrium under the action of two
end moments k21 and k41, and two end shears k11 and k31. From the figure, we

y

x

b

b′

e

u1 = 1
k21

k31k11

x

L

EI = constant

u2 = u3 = u4 = 0

k41

Fig. 9.16
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can see that the shear and bending moment at a distance x from end b of the
member are:

S = k11 (9.51)

M = −k21 + k11x (9.52)

By substituting Eq. (9.51) into Eq. (9.49), and integrating the resulting equa-
tion, we obtain the equation for deflection, due to shear, as

ū yS = −
(

fS

GA

)
k11x + C1 (9.53)

in which C1 denotes a constant of integration. By substituting Eq. (9.52) into
Eq. (9.50), and integrating the resulting equation twice, we obtain the equa-
tions for the slope and deflection of the member, due to bending:

dūy B

dx
= 1

E I

(
−k21x + k11

x2

2

)
+ C2 (9.54)

ū y B = 1

E I

(
−k21

x2

2
+ k11

x3

6

)
+ C2x + C3 (9.55)

As the shear deformation does not cause any rotation of the member cross-
section (see Fig. 9.15), the rotation of the cross-section, θ, results entirely
from bending deformation, and is given by (see Eq. (9.54))

θ = dūy B

dx
= 1

E I

(
−k21x + k11

x2

2

)
+ C2 (9.56)

By combining Eqs. (9.53) and (9.55), we obtain the equation for the total de-
flection, ū y, due to the combined effect of the shear and bending deformations:

ū y = ū yS + ū y B = −
(

fS

GA

)
k11x + 1

E I

(
−k21

x2

2
+ k11

x3

6

)
+ C2x + C4

(9.57)

in which the constant C4 = C1 + C3.
The four unknowns in Eqs. (9.56) and (9.57)—that is, two constants C2

and C4 and two stiffness coefficients k11 and k21—can now be evaluated by ap-
plying the following four boundary conditions:

at end b, x = 0 θ = 0
x = 0 ū y = 1

at end e, x = L θ = 0
x = L ūy = 0

By applying these boundary conditions, we obtain C2 = 0, C4 = 1, and

k11 = 12E I

L3

(
1

1 + βS

)
(9.58)

k21 = 6E I

L2

(
1

1 + βS

)
(9.59)
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Section 9.8 Nonprismatic Members 545

with

(9.60)

The dimensionless parameter βS is called the shear deformation constant.
The two remaining stiffness coefficients, k31 and k41, can now be deter-

mined by applying the equations of equilibrium to the free body of the member
(Fig. 9.16). Thus,

k31 = −12E I

L3

(
1

1 + βS

)
(9.61)

k41 = 6E I

L2

(
1

1 + βS

)
(9.62)

The expressions for elements in the remaining three columns of the k ma-
trix can be derived in a similar manner, and the complete modified stiffness
matrix for rigidly-connected members of beams, thus obtained, is

k = E I

L3 (1 + βS)

⎡
⎢⎢⎣

12 6L −12 6L
6L L2(4 + βS) −6L L2(2 − βS)

−12 −6L 12 −6L
6L L2(2 − βS) −6L L2(4 + βS)

⎤
⎥⎥⎦ (9.63)

From Eq. (9.63), we can see that when the shear deformation constant βS is set
equal to 0, then k of Eq. (9.63) is reduced to that of Eq. (5.53). It should be
realized that the expressions for fixed-end forces due to member loads, given
inside the front cover, do not include the effects of shear deformations. If mod-
ified fixed-end force expressions including shear deformations are desired,
they can be derived using the procedure described in this section.

9.8 NONPRISMATIC MEMBERS
Thus far in this text, we have considered the analysis of structures composed of
prismatic members. A member is considered to be prismatic if its axial and
flexural rigidities (EA and EI ), or its cross-sectional properties, are constant
along its length. In some structures, for aesthetic reasons and/or to save mater-
ial, it may become necessary to design members with variable cross sections.
In this section, we consider the analysis of structures composed of such non-
prismatic members.

Perhaps the simplest (albeit approximate) way to handle a nonprismatic
natural member, such as a girder or a column, is to subdivide it into a sufficient
number of segments, and model each segment by a prismatic member (or
element) with cross-sectional properties equal to the average of the cross-
sectional properties at the two ends of the segment (Fig. 9.17 on the next page).
The main advantage of this approach is that computer programs such as those

βS = 12E I fS

G AL2
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developed in  previous chapters can be used without any modifications. The
main disadvantage of this approach is that the accuracy of the analytical results
depends on the number of prismatic members (or elements) used to model each
nonprismatic member, and an inordinate number of prismatic members may be
required to achieve an acceptable level of accuracy. 

An alternate approach that can be used to handle nonprismatic members
involves formulation of the nonprismatic member’s stiffness relations while
taking into account the exact variation of the member’s cross-sectional proper-
ties. The main advantage of this exact approach is that a natural nonprismatic
member (e.g., a girder or a column) can be treated as a single member for the
purpose of analysis. However, as will become apparent later in this section, the
exact expressions for the stiffness coefficients for nonprismatic members can
be quite complicated [43]. In the following, we illustrate the exact approach via
derivation of the local stiffness matrix k for a tapered plane truss member [26].

Consider a tapered member of a plane truss, as shown in Fig. 9.18(a). The
cross-sectional area of the member varies linearly along its length in accor-
dance with the relationship

Ax = Ab

(
1 − rAx

L

)
(9.64)

in which Ab and Ax denote, respectively, the member’s cross-sectional areas at its
end b, and at a distance x from end b; and rA represents the area ratio given by

rA = Ab − Ae

Ab
(9.65)

with Ae denoting the member’s cross-sectional area at end e, as shown in the
figure.

To derive the first column of the tapered member’s local stiffness matrix k,
we subject the member to a unit end displacement u1 = 1 (with u2 = u3 = u4 = 0),
as shown in Fig. 9.18(b). The expressions for the member axial forces required

546 Chapter 9 Special Topics and Modeling Techniques

Fig. 9.17

(a) Nonprismatic Member

(b) Analytical Model of Nonprismatic Member
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Section 9.8 Nonprismatic Members 547

to cause this unit axial deformation can be determined by integrating the differ-
ential equation for member axial deformation that, for members with variable
cross-sections, can be written as (see Eq. (6.7), Section 6.2)

dūx

dx
= Qa

EAx
(9.66)

From Fig. 9.18(b), we can see that the axial force acting on the member cross-
section at a distance x from its end b is

Qa = −k11 (9.67)

Fig. 9.18

b e

y

x

Ab

Ae

x

L

E = constant

(a) Tapered Plane Truss Member

b
b′ e

y

xk11

k21

k31

u1 = 1

x

L

(b) u1 = 1, u2 = u3 = u4 = 0

k41
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in which the negative sign indicates that k11 causes compression at the member
cross-section. Substituting Eqs. (9.64) and (9.67) into Eq. (9.66), and integrat-
ing the resulting equation, we obtain

ūx = k11L

EAbrA
ln

(
1 − rAx

L

)
+ C (9.68)

in which C is a constant of integration.
The two unknowns, C and k11, in Eq. (9.68) can be evaluated by applying

the boundary conditions:

at end b, x = 0 ūx = 1

at end e, x = L ūx = 0

Application of the foregoing boundary conditions yields C = 1, and

k11 = − EAbrA

L ln(1 − rA)
(9.69)

The three remaining stiffness coefficients can now be determined by applying
the equations of equilibrium to the free body of the member (Fig. 9.18(b)). Thus,

k31 = EAbrA

L ln(1 − rA)
, k21 = k41 = 0 (9.70)

The expressions for elements in the third column of the tapered member’s
local stiffness matrix k can be derived in a similar manner; and, as discussed  in
Section 3.3, all elements of the second and fourth columns of k are 0. The com-
plete local stiffness matrix k for a tapered plane truss member, thus obtained,
is

k = EAbrA

L ln(1 − rA)

⎡
⎢⎢⎣

−1 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0

⎤
⎥⎥⎦ (9.71)
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E X A M P L E 9.6 Using the direct integration approach, derive the expressions for the slope and
deflection at the free end of the tapered cantilever beam shown in Fig. 9.19(a). The
beam has a rectangular cross-section of constant width b, but its depth varies linearly
from h1 at the fixed end to h2 at the free end.

S O L U T I O N The depth and moment of inertia of the beam at a distance x(0 ≤ x ≤ L) from its
free end can be expressed as

hx = h1

(
1 − rh x

L

)

Ix = I1

(
1 − rh x

L

)3
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Fig. 9.19

(a) Tapered Cantilever Beam

y

x

A

A P

x

h1
2

h1
2

h2

L

E = constant

Section A-A
Beam cross-section

hx
2
hx
2

b

in which rh represents the depth ratio given by

rh = h1 − h2

h1
(1)

and I1 = bh3
1/12 = beam’s moment of inertia at its fixed end.

The equations for the slope and deflection can be derived by integrating the dif-
ferential equation for bending of beams with variable cross-sections, which can be
written as (see Eq. (5.5), Section 5.2)

d2ū y

dx2
= M

E Ix
(2)

From Fig. 9.19(b), we can see that the bending moment at the beam section at a dis-
tance x from its fixed end is

M = −P(L − x) (3)

in which the negative sign indicates that the bending moment is negative in accor-
dance with the beam sign convention (Fig. 5.4). Substituting Eq. (3) into Eq. (2) and
integrating, we obtain the equation for slope as

θ = − P L3

2E I1

[
L + rh L − 2rh x

r2
h (L − rh x)2

]
+ C1 (4)

y

x

P

P

PL

x

(b)
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Integrating once more, we obtain the equation for deflection as

ū y = P L3

2E I1r3
h

⎡
⎢⎢⎢⎢⎣

1 − rh(
1 − rh x

L

) + 2 ln

(
1 − rh x

L

)
⎤
⎥⎥⎥⎥⎦ + C1x + C2 (5)

The constants of integration, C1 and C2, are evaluated by applying the boundary con-
ditions that at x = 0, θ = 0 and ū y = 0. Thus,

C1 = P L2

2E I1

(
1 + rh

r2
h

)

C2 = − P L3(1 − rh)

2E I1r3
h

By substituting these expressions for C1 and C2 into Eqs. (4) and (5) we determine the
equations for slope and deflection of the beam as

θ = Px

2E I1

⎡
⎢⎣ x − 2L + rh x(

1 − rh x

L

)2

⎤
⎥⎦ (6)

ū y = P L3

2E I1r3
h

(
1 − rh x

L

)
[

2rh x

L
− r2

h x2

L2
(1 + rh) + 2

(
1 − rh x

L

)
ln

(
1 − rh x

L

)]
(7)

Finally, the expressions for slope and deflection at the free end of the tapered
beam are obtained by setting x = L in Eqs. (6) and (7), respectively. Thus,
Slope (+ ):

θL = − P L2

2E I1(1 − rh)
= − P L2h1

2E I1h2
Ans

Deflection (+ ↑):

ū yL = − P L3

2E I1r3
h (1 − rh)

[−2rh + r2
h (1 + rh) − 2(1 − rh)ln(1 − rh)] Ans

Y

E X A M P L E 9.7 Using a structural analysis computer program, determine the slope and deflection at
the free end of the tapered cantilever beam shown in Fig. 9.20(a). The beam is of
rectangular cross-section of width 150 mm, and its depth varies linearly from 400 mm
at the fixed end to 100 mm at the free end, as shown in the figure. For analysis, divide
the nonprismatic beam into smaller segments, and model each segment by a prismatic
member (element) with a constant moment of inertia based on the average depth of the
segment. Analyze several models of the beam with increasing number of members
(elements) until the values of the desired displacements converge. Compare these
numerical results with the exact analytical solutions for the tapered beam obtained
from the expressions derived in Example 9.6.

S O L U T I O N Seven analytical models of the beam consisting of 1, 2, 3, 4, 6, 9, and 12 segments
were analyzed using the computer program provided with this book. In these models,
each tapered segment was approximated by a member of constant depth equal to the
average depth of the segment. Figure 9.20(b) shows such a three-member model of the
beam.
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Fig. 9.20

(a) Tapered Cantilever Beam
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(b) Three-Member Analytical Model
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(c) Variation of Slope with Number of Members
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Exact Solution
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0.145
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Numerical Results

Numerical values of displacements at the free end of the beam obtained by using
these analytical models are listed in Table 9.1, and plotted versus the number of mem-
bers in Figs. 9.20(c) and (d).

The exact analytical solutions can be evaluated by substituting P = 100 kN,
L = 6 m, E = 70(106) kN�m2, h1 = 0.4 m, h2 = 0.1 m, I1 = 0.15(0.4)3�12 = 0.0008 m4,
and rh = (0.4 − 0.1)�0.4 = 0.75 into the expressions for slope and deflection at the can-
tilever’s free end derived in Example 9.6. Thus,
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Slope:

θL = − P L2h1

2E I1h2
= −0.12857 rad = 0.12857 rad Ans

Deflection:

ū yL = − P L3

2E I1r3
h (1 − rh)

[−2rh + r2
h (1 + rh) − 2(1 − rh) ln(1 − rh)

]

= − 0.32461 m = 324.61 mm ↓ Ans

The exact values of slope and deflection are also given in Table 9.1, along with
the percentage errors of the numerical results with respect to the exact solutions. We
can see from this table and Figs. 9.20(c) and (d) that as the number of members in the
computer model is increased, the numerical results tend to converge toward the exact
solutions. Ans
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Fig. 9.20 (continued)

(d) Variation of Deflection with Number of Members
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Numerical Results

Table 9.1

Slope Deflection

(radians) Error (%) (mm) Error (%)

1 0.13166 2.4034 526.63 62.235

2 0.14090 9.5901 401.66 23.736

3 0.13827 7.5445 361.89 11.485

4 0.13560 5.4678 345.91 6.5617

6 0.13246 3.0256 334.01 2.8958

9 0.13051 1.5089 328.73 1.2692

12 0.12973 0.90223 326.96 0.72395

Exact Solutions 0.12857 324.61

Number of 
Member in 
Analytical Model
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9.9 SOLUTION OF LARGE SYSTEMS OF 
STIFFNESS EQUATIONS
In the computer programs for matrix stiffness analysis developed in previous
chapters, we have stored the entire structure stiffness matrix S in computer
memory, and have used Gauss–Jordan elimination to solve the structure stiff-
ness equations, Sd = P. While this approach provides a clear insight into the
basic concept of the solution process and is easy to program, it is not efficient
in the sense that it does not take advantage of the symmetry and other special
features of the stiffness matrix S. In the case of large structures, a significant
portion of the total memory and execution time required for analysis may be
devoted to the storage and solution, respectively, of the structure stiffness equa-
tions. Accordingly, considerable research effort has been directed toward de-
veloping techniques and algorithms for efficiently generating, storing, and
solving stiffness equations that arise in the analysis of large structures [2, 14, 26].
In this section, we discuss a commonly used procedure that takes advantage of
the special features of the structure stiffness matrix to efficiently store and
solve structural stiffness equations.

Half-Bandwidth of Structure Stiffness Matrices
The stiffness matrices S of large structures, in addition to being symmetric, are
usually sparse, in the sense that they contain many 0 elements. Consider, for
example, the analytical model of the six-degree-of-freedom continuous beam
shown in Fig. 9.21(a) on the next page. The stiffness matrix S for this structure
is also shown in the figure, in which all the nonzero elements are marked by ×s,
and all the 0 elements are left blank. From this figure, we can see that, out of a
total of 36 elements of S, 20 elements are 0s. Furthermore, this figure indicates
that all the nonzero elements of S are located within a band centered on the main
diagonal. Such a matrix, whose elements are all 0s, with the exception of those
located within a band centered on the main diagonal, is referred to as a banded
matrix. In general, a structure stiffness matrix is considered to be banded if

Sij = 0 if |i − j | > NHB (9.72)

where NHB is called the half-bandwidth of S, which is defined as the number
of elements in each row (or column) of the matrix, that are located within the
band to the right of (or below) the diagonal element. Thus, the half-bandwidth
of the stiffness matrix of the continuous-beam analytical model of Fig. 9.21(a)
is 1 (i.e., NHB = 1), as shown in the figure.

Although the total number of nonzero elements of a structure stiffness
matrix remains the same, their locations depend on the order in which the
structure’s joints are numbered. Thus, the half-bandwidth of a structure stiff-
ness matrix can be altered by renumbering the structure’s joints. For example,
if the numbers of two inner joints of the continuous beam of Fig. 9.21(a) are
interchanged, the half-bandwidth of its stiffness matrix is increased to 2
(i.e., NHB = 2), as shown in Fig. 9.21(b). Note that the band of this S matrix
contains both zero and nonzero elements.
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Since the structure stiffness matrices are assembled by storing the pertinent
elements of the member stiffness matrices in their proper positions using mem-
ber code numbers, the half-bandwidth of a structure stiffness matrix equals the
maximum of the differences between the largest and smallest degree-of-
freedom code numbers for the individual members of the structure; that is,

(9.73)

in which MCLi and MCSi denote, respectively, the largest and the smallest code
numbers for member i, which correspond to the degrees of freedom (not the re-
strained coordinates) of the structure.

Considering again the analytical model of the continuous beam of
Fig. 9.21(a), we can see that the code numbers for member 1 are 7, 8, 9, 1; of
these, the first three numbers correspond to the restrained coordinates, and the
fourth number represents a degree of freedom. Thus, the difference between
the largest and smallest degree-of-freedom numbers for this member is
MCL1 − MCS1 = 1 − 1 = 0. Similarly, we can see from the figure that for
members 2 through 6, this difference is 1, and for member 7, it is 0. Thus, the
half-bandwidth for the S matrix equals one. Note that when the numbers of
two inner joints of the beam are interchanged as shown in Fig. 9.21(b), the
difference in degree of freedom code numbers for members 3 and 5 increases
by one, and as a result, the half-bandwidth of the S matrix widens by one
element.

An important property of banded structure stiffness matrices is that the
0 elements outside the band remain 0 during the solution of the structure stiffness
equations (Sd = P); therefore, they need not be stored in computer memory for
analysis. Furthermore, since the structure stiffness matrices are symmetric,
only the diagonal elements, and the elements in the half band above (or below)
the diagonal, need to be stored. As the stiffness matrices of large structures
usually contain relatively few nonzero elements, significant savings in com-
puter memory storage and execution time can be achieved, in the analysis of
such structures, by numbering the joints to minimize the half-bandwidth of the
stiffness matrix, and by storing and processing only the elements on the main
diagonal, and within a half-bandwidth, of the stiffness matrix.

As discussed previously, the minimum possible half-bandwidth of a stiff-
ness matrix can be obtained by numbering the joints of the structure in such an
order that the largest difference between the joint numbers at the ends of any
single member is as small as possible. For the configurations of the framed
structures commonly encountered in practice, a relatively small (if not minimal)
half-bandwidth of the stiffness matrix can usually be achieved by numbering
joints consecutively across the dimension of the structure that has the least
number of joints, as shown in Figs. 9.22 and 9.23 (on page 558).

The elements on the diagonal and in the upper half-bandwidth of S can
be stored compactly in computer memory in a rectangular array Ŝ of order
NDOF × (NHB + 1), as illustrated in Fig. 9.24 on page 559 for a structure with
NDOF = 9 and NHB = 3. As depicted in this figure, the elements in each row

NHB = max{MCLi − MCSi } i = 1, . . . , NM
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Fig. 9.22 Joint Numbering for Minimum Half-Bandwidth (NDOF = 21, NHB = 7)
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Section 9.9 Solution of Large Systems of Stiffness Equations 559

of S on the diagonal and in the half-bandwidth are stored in the same order in
the corresponding row of the compact matrix Ŝ. The location of an element Sij

of S in the compact matrix Ŝ is given by the relationship

Si j = Ŝi,(1+ j− i) for i = 1, 2, . . . , NDOF;
j = i, i + 1, . . . , NHB + i ≤ NDOF

(9.74)

Solution of Banded Structure Stiffness Equations Using
UTDU Decomposition
Although Gauss–Jordan elimination, as discussed in Section 2.4, can be
modified to take advantage of the symmetry and bandedness of structure
stiffness equations, for the analysis of large structures, another type of elimi-
nation method, a decomposition method, is usually preferred. This is because,
in decomposition methods, the solution is carried out in two distinct parts;
namely, decomposition and substitution, with the decomposition part involving
only the structure stiffness matrix S, but not the load vector P. Thus, the results

S11 S12 S13 S14

S22 S23 S24 S25

S33 S34 S35 S36

S44 S45 S46 S47

S55 S56 S57 S58

S66 S67 S68 S69

S77 S78 S79

S88 S89

S99

(a) Full Structure Stiffness Matrix S for NDOF = 9 and NHB = 3

S = 
NDOF = 9

NHB = 3

Symmetric

Fig. 9.24
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of the time-consuming decomposition part can be stored for future use in case
the structure needs to be reanalyzed for different loading conditions. In the fol-
lowing, we present a decomposition method, commonly used for solving large
systems of structure stiffness equations, called the UTDU decomposition
method. The method is first formulated for the fully populated symmetric stiff-
ness matrix S, and is then modified so that it can be used with the banded and
compact forms of the structure stiffness matrix.

As stated previously, in the UTDU decomposition method, the solution of
the structure stiffness equations, Sd = P, is carried out in two parts: decom-
position and substitution. In decomposition, the structure stiffness matrix S is
decomposed (or factored) into the matrix triple product,

S = UT DU (9.75)

in which U is a unit upper triangular matrix (i.e., an upper triangular matrix
with diagonal elements equal to unity); and D is a diagonal matrix. For a
general n-degree-of-freedom system, Eq. (9.75) can be written in expanded
form as

560 Chapter 9 Special Topics and Modeling Techniques

S11 S12 S13 S14

S22 S23 S24 S25

S33 S34 S35 S36

S44 S45 S46 S47

S55 S56 S57 S58

S66 S67 S68 S69

S77 S78 S79

S88 S89

S99

(b) Compact Structure Stiffness Matrix S for NDOF = 9 and NHB = 3

NDOF = 9

NHB + 1 = 4

ˆ = S

 ˆ

Fig. 9.24 (continued)
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Section 9.9 Solution of Large Systems of Stiffness Equations 561

⎡
⎢⎢⎢⎢⎣

S11 S12 S13 · · · S1n

S22 S23 · · · S2n

(symmetric) S33 · · · S3n

· · · · · ·
Snn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
U12 1 0 · · · 0
U13 U23 1 · · · 0
· · · · · · · · · · · · · · ·
U1n U2n U3n · · · 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

D11 0 0 · · · 0
0 D22 0 · · · 0
0 0 D33 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · Dnn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 U12 U13 · · · U1n

0 1 U23 · · · U2n

0 0 1 · · · U3n

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ (9.76)

Multiplying the three matrices on the right side of Eq. (9.76), we obtain
⎡
⎢⎢⎢⎣

S11 S12 S13 · · · S1n

S22 S23 · · · S2n

(symmetric) S33 · · · S3n

· · · · · ·
Snn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

D11 D11U12 D11U13 · · · D11U1n

D11U 2
12 + D22 D11U12U13 + D22U23 · · · D11U12U1n + D22U2n

(symmetric) D11U 2
13 + D22U 2

23 + D33 · · · D11U13U1n + D22U23U2n + D33U3n

· · · · · ·
D11U 2

1n + D22U 2
2n + D33U 2

3n + · · · + Dnn

⎤
⎥⎥⎥⎦

(9.77)

By comparing the corresponding elements of the matrices S and UTDU, on the
left and right sides, respectively, of Eq. (9.77), we can develop an algorithm for
evaluating the elements of matrices D and U. By comparing the elements in
row 1 column 1 of the two matrices, we can see that D11 = S11. With D11

known, the elements in the first row of U can be obtained by equating the re-
maining elements in the first rows of S and UTDU. This yields U12 = S12/D11,
U13 = S13/D11, . . . , U1n = S1n/D11. Next, we equate the corresponding ele-
ments in the second rows of S and UTDU in Eq. (9.77) to obtain the second
rows of D and U, and so on. The general recurrence relationships for computa-
tion of the elements of D and U can be expressed as follows. 

Dii =
⎧⎨
⎩

Sii for i = 1

Sii −
i−1∑
k=1

DkkU 2
ki for i = 2, 3, . . . , NDOF (9.78a)

Ui j =

⎧⎪⎪⎨
⎪⎪⎩

Si j

Dii
for i = 1; j = i + 1, i + 2, . . . , NDOF

1

Dii

(
Si j −

i−1∑
k=1

DkkUkiUkj

)
for i = 2, 3, . . . , NDOF − 1;

j = i + 1, i + 2, . . . , NDOF
(9.78b)

Uii = 1 for i = 1, 2, . . . , NDOF (9.78c)
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The nonzero elements of D and U are computed by starting at the first row
number (i.e., i = 1), and proceeding sequentially to the last row number (i.e.,
i = NDOF ). As implied by Eqs. 9.78(a) and (b), for each row number i, the di-
agonal element Dii (Eq. (9.78a)) must be computed before the elements Uij

(Eq. (9.78b)) of the ith row of U can be calculated.
With the structure stiffness matrix S now decomposed into triangular and di-

agonal matrices, we can now begin the substitution part of the solution process.
Substitution of S = UTDU into the structure stiffness equations, Sd = P , yields

UT DU d = P (9.79)

The substitution part is carried out in two steps: forward substitution, and
back substitution. In the forward substitution step, Eq. (9.79) is written as

UT D d̂ = P (9.80)
with

d̂ = Ud (9.81)

in which d̂ is an auxiliary vector of unknowns. Equation (9.80) can be written
in expanded form as⎡

⎢⎢⎢⎢⎢⎣

D11 0 0 · · · 0
D11U12 D22 0 · · · 0
D11U13 D22U23 D33 · · · 0

· · · · · · · · · · · · · · ·
D11U1n D22U2n D33U3n · · · Dnn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

d̂1

d̂2

d̂3

· · ·
d̂n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

P1

P2

P3

· · ·
Pn

⎤
⎥⎥⎥⎥⎥⎦

(9.82)

from which we can see that the auxiliary unknowns d̂ can be determined by
the simple process of forward substitution, starting with the first row and pro-
ceeding sequentially to the last row. From the first row of Eq. (9.82), we can
see that d̂1 = P1/D11. With d̂1 known, the value of d̂2 can now be deter-
mined by solving the equation in the second row of Eq. (9.82); that is, d̂2 =
(P2 − D11U12d̂1)/D22. Next, we calculate d̂3 by solving the equation in the
third row of Eq. (9.82), and so on. In general, the elements of d̂ can be com-
puted as

d̂i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pi

Dii
for i = 1

1

Dii

(
Pi −

i−1∑
k=1

DkkUki d̂k

)
for i = 2, 3, . . . , NDOF

(9.83)

Once the auxiliary vector d̂ has been evaluated, the unknown joint dis-
placement vector d can be calculated by solving Eq. (9.81), using back substi-
tution. The expanded form of Eq. (9.81) can be expressed as⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 U12 U13 · · · U1,n−1 U1n

0 1 U23 · · · U2,n−1 U2n

0 0 1 · · · U3,n−1 U3n

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 Un−1,n

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

· · ·
dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d̂1

d̂2

d̂3

· · ·
d̂n−1

d̂n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.84)
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From which we can see that the unknown joint displacements d can be deter-
mined by the simple process of back substitution, starting with the last row and
proceeding sequentially to the first row. From the last row of Eq. (9.84), we can
see that dn = d̂n . With dn known, the value of dn−1 can now be determined
by solving the equation in the next to the last row of Eq. (9.84); that is,
dn−1 = d̂n−1 − Un−1, n dn. The back substitution is continued until all the joint
displacements have been calculated. The back substitution process can be rep-
resented by the recurrence equation

di =
⎧⎨
⎩

d̂i for i = NDOF

d̂i −
NDOF∑
k=i+1

Uikdk for i = NDOF − 1, NDOF − 2, . . . , 1
(9.85)

As discussed in the foregoing paragraphs, the UTDU decomposition
procedure for solving structure stiffness equations essentially consists of the
following steps.

1. Decompose the structure stiffness matrix S into a diagonal matrix D,
and a unit upper triangular matrix U, by applying Eqs. (9.78).

2. Calculate the auxiliary vector d̂ using forward substitution (Eq. (9.83)).

3. Determine the unknown joint displacements d by back substitution
(Eq. (9.85)).
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E X A M P L E 9.8 Use UTDU decomposition to solve the following system of structural stiffness
equations.⎡

⎢⎢⎣
5 2 −1 0

6 −3 2
(symmetric) 4 1

7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−19
−22

22
−6

⎤
⎥⎥⎦

S O L U T I O N Decomposition: By applying Eqs. (9.78),

D11 = S11 = 5

U12 = S12

D11
= 2

5
= 0.4

U13 = S13

D11
= −1

5
= −0.2

U14 = 0

U11 = U22 = U33 = U44 = 1

D22 = S22 − D11U 2
12 = 6 − 5(0.4)2 = 5.2

U23 = 1

D22
(S23 − D11U12U13) = 1

5.2
[−3 − 5(0.4)(−0.2)] = −0.5

U24 = 1

D22
(S24 − D11U12U14) = 1

5.2
[2 − 5(0.4)(0)] = 0.38462

D33 = S33 − D11U 2
13 − D22U 2

23 = 4 − 5(−0.2)2 − 5.2(−0.5)2 = 2.5
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U34 = 1

D33
(S34 − D11U13U14 − D22U23U24)

= 1

2.5
[1 − 5(−0.2)(0) − 5.2(−0.5)(0.38462)] = 0.8

D44 = S44 − D11U 2
14 − D22U 2

24 − D33U 2
34

= 7 − 5(0)2 − 5.2(0.38462)2 − 2.5(0.8)2 = 4.6308

Thus,

D =

⎡
⎢⎢⎢⎣

5 0 0 0
0 5.2 0 0
0 0 2.5 0
0 0 0 4.6308

⎤
⎥⎥⎥⎦ U =

⎡
⎢⎢⎢⎣

1 0.4 −0.2 0
0 1 −0.5 0.38462
0 0 1 0.8
0 0 0 1

⎤
⎥⎥⎥⎦

Forward Substitution: Using Eq. (9.83),

d̂1 = P1

D11
= −19

5
= −3.8

d̂2 = 1

D22
(P2 − D11U12d̂1) = 1

5.2
[−22 − 5(0.4)(−3.8)] = −2.7692

d̂3 = 1

D33
(P3 − D11U13d̂1 − D22U23d̂2)

= 1

2.5
[22 − 5(−0.2)(−3.8) − 5.2(−0.5)(−2.7692)] = 4.4

d̂4 = 1

D44
(P4 − D11U14d̂1 − D22U24d̂2 − D33U34d̂3)

= 1

4.6308
[−6 − 5(0)(−3.8) − 5.2(0.38462)(−2.7692) − 2.5(0.8)(4.4)] = −2

Thus,

d̂ =

⎡
⎢⎢⎣

−3.8
−2.7692

4.4
−2

⎤
⎥⎥⎦

Back Substitution: Applying Eq. (9.85),

d4 = d̂4 = −2

d3 = d̂3 − U34d4 = 4.4 − 0.8(−2) = 6

d2 = d̂2 − U23d3 − U24d4 = −2.7692 − (−0.5)6 − 0.38462(−2) = 1

d1 = d̂1 − U12d2 − U13d3 − U14d4 = −3.8 − 0.4(1) − (−0.2)6 − 0(−2) = −3

Thus, the solution of the given system of equations is

d =

⎡
⎢⎢⎢⎣

−3
1
6

−2

⎤
⎥⎥⎥⎦ Ans
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If the structure stiffness matrix S is banded, then the corresponding U matrix
contains nonzero elements only on its diagonal and within the upper half-
bandwidth, as shown in Fig. 9.25(a) on the next page. In such cases, the computa-
tional effort required for solution can be significantly reduced by calculating only
the elements in the upper half-bandwidth of U. From Fig. 9.25(a), we can see that,
in any row number i of U, all the nonzero elements are located in column num-
bers i through i + NHB ≤ NDOF. Similarly, in any column number j of U, the
nonzero elements are located in row numbers j − NHB ≥ 1 through j. Using the
foregoing ranges for the indexing parameters in Eqs. (9.78), (9.83), and (9.85),
we obtain the following modified recurrence formulas for solving the banded
systems of structure stiffness equations by the UTDU decomposition method.

Section 9.9 Solution of Large Systems of Stiffness Equations 565

Decomposition

Dii =
⎧⎨
⎩

Sii for i = 1

Sii −
i−1∑

k=m1

DkkU 2
ki for i = 2, 3, . . . , NDOF

with m1 = i − NHB ≥ 1

Ui j =

⎧⎪⎪⎨
⎪⎪⎩

Si j

Dii
for i = 1; j = i + 1, i + 2, . . . , i + NHB ≤ NDOF

1

Dii
(Si j − Bi j ) for i = 2, 3, . . . , NDOF − 1; j = i + 1, i + 2, . . . , i + NHB ≤ NDOF

with

Bi j =
⎧⎨
⎩

i−1∑
k=m2

DkkUkiUkj for m2 ≤ i − 1

0 for m2 > i − 1

in which, m2 = j − NHB ≥ 1

Uii = 1 for i = 1, 2, . . . , NDOF

(9.86)

Forward Substitution

(9.87)

Back Substitution

(9.88)
di =

⎧⎨
⎩

d̂i for i = NDOF

d̂i −
m3∑

k=i+1
Uikdk for i = NDOF − 1, NDOF − 2, . . . , 1

with m3 = i + NHB ≤ NDOF

d̂i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pi

Dii
for i = 1

1

Dii

(
Pi −

i−1∑
k=m1

DkkUki d̂k

)
for i = 2, 3, . . . , NDOF
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D11 U12 U13 U14

D22 U23 U24 U25

D33 U34 U35 U36

D44 U45 U46 U47

D55 U56 U57 U58

D66 U67 U68 U69

D77 U78 U79

D88 U89

D99

(b) Storage of D and U in Compact Form

U = 
NDOF = 9

NHB + 1 = 4

 ˆ

Fig. 9.25

1 U12 U13 U14

1 U23 U24 U25

1 U34 U35 U36

1 U45 U46 U47

1 U56 U57 U58

1 U67 U68 U69

1 U78 U79

1 U89

1

(a) Upper Unit Triangular Matrix U for a Structure Stiffness Matrix with 
 NDOF = 9 and NHB = 3

U =
NDOF = 9

NHB = 3

Zero
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Section 9.9 Solution of Large Systems of Stiffness Equations 567

As stated before, the elements on the diagonal and in the upper half-
bandwidth of S can be compactly stored in computer memory in a rectangular
array Ŝ of order NDOF × (NHB + 1) (see Fig. 9.24(b)). In an analogous man-
ner, a rectangular array Û, of the same order as Ŝ, can be defined to store the
elements on the diagonal of D and in the upper half-bandwidth of U, as de-
picted in Fig. 9.25(b). As indicated there, the diagonal elements of D are stored
in the first column of Û, and the elements, in each row of U, in the half-
bandwidth, are stored in the same order in the corresponding row of Û. The
locations of the relevant elements of D and U in the compact matrix Û can be
determined by using the following relationships.

Dii = Ûi1 for i = 1, 2, . . . , NDOF

Ui j = Ûi,(1+ j−i) for i = 1, 2, . . . , NDOF − 1;
j = i + 1, i + 2, . . . , NHB + i ≤ NDOF

(9.89)

Applying Eqs. (9.74) and (9.89), we obtain the following modified algorithm
for solving the banded systems of structure stiffness equations, in terms of the
elements of compact matrices Ŝ and Û .

Decomposition

Forward Substitution

(9.91)d̂i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pi

Ûi1

for i = 1

1

Ûi1

(
Pi −

i−1∑
k=m1

Ûk1Ûk,(1+i−k)d̂k

)
for i = 2, 3, . . . , NDOF

(9.90)

Ûi1 =
⎧⎨
⎩

Ŝi1 for i = 1

Ŝi1 −
i−1∑

k=m1

Ûk1Û 2
k,(1+i−k) for i = 2, 3, . . . , NDOF

with m1 = i − NHB ≥ 1

Ûi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ŝi j

Ûi1

for i = 1; j = 2, 3, . . . , NHB + 1

1

Ûi1

(Ŝi j − B̂i j ) for i = 2, 3, . . . , NDOF − 1; j = 2, 3, . . . , NHB + 1 ≤ NDOF − i + 1

with

B̂i j =
⎧⎨
⎩

i−1∑
k=m̂2

Ûk1Ûk,(1+i−k)Ûk,(i+ j−k) for m̂2 ≤ i − 1

0 for m̂2 > i − 1

in which m̂2 = i + j − NHB − 1 ≥ 1
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Back Substitution

(9.92)

In the computer implementation of the foregoing procedure, computer memory
requirements can be reduced by creating only the Ŝ matrix, but not the Û ma-
trix. Each element Ûi j of the Û matrix is now computed and stored in the  Ŝ
matrix in the location originally occupied by the corresponding Ŝij element.
Thus, at the end of the decomposition part of the solution process, the Ŝ matrix con-
tains all the elements of the Û matrix, and can be used in the substitution part of the
solution. Also, this Ŝ matrix, now containing the elements of Û (or D and U), can
be stored for any future reanalysis of the structure for different loading conditions.

In this section, we have considered only one of the many available meth-
ods for solving large systems of structural stiffness equations. For a compre-
hensive coverage of the various solution methods, the reader should refer to
references [2, 14, 26].

SUMMARY

In this chapter, we have considered some extensions and modifications of the
matrix stiffness method developed in previous chapters. We have also consid-
ered techniques for modeling some special features and details of structures, so
that more realistic structural responses can be predicted from the analysis.

We studied an alternative formulation of the stiffness method, which
involves the structure stiffness matrix for all the coordinates (including the
restrained coordinates) of the structure. The advantages of this alternative
formulation are that the support displacement effects can be incorporated into
the analysis in a direct and straightforward manner, and the reactions can be
calculated using the structure stiffness relations. The main disadvantage of this
formulation is that it requires significantly more computer memory than the
standard formulation. 

We presented an approximate method for the analysis of rectangular build-
ing frames, neglecting the effects of member axial deformations. This
approach significantly reduces the number of structural degrees of freedom to
be considered in an analysis. This approximate approach is appropriate only
for frames in which the member axial deformations are small enough, as com-
pared to bending deformations, to have a negligible effect on their responses.

The basic concepts of condensation of structural degrees of freedom, and
analysis using substructures, were discussed. These approaches can be used in
the analysis of large structures to reduce the number of stiffness equations that
must be processed, and solved simultaneously.

di =
⎧⎨
⎩

d̂i for i = NDOF

d̂i −
m3∑

k=i+1
Ûi,(1+k−i)dk for i = NDOF − 1, NDOF − 2, . . . , 1

with m3 = i + NHB ≤ NDOF
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Problems 569

A commonly used technique for modeling an inclined roller support was
described, in which the support is replaced with an imaginary axial force mem-
ber with large axial stiffness, and oriented in the direction perpendicular to the
incline. Modified member stiffness relations, considering the effects of rigid
end offsets, were also presented. Procedures for including the effects of
semirigid connections, and shear deformations, in the analysis, were discussed,
and the analysis of structures composed of nonprismatic members considered. 

Finally, we defined the half-bandwidth of structural stiffness matrices; and
discussed procedures for efficiently numbering the structure’s degrees of free-
dom, and for storing its stiffness matrix in computer memory by taking advan-
tage of its symmetry and bandedness. Also considered was the commonly used
UTDU decomposition method for solving large banded systems of structure
stiffness equations.

P R O B L E M S

Section 9.1

9.1 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P9.1, due
to the combined effect of the loading shown and a settlement of
1
2 in. of support 2. Use the alternative formulation of the matrix
stiffness method.

9.2 Determine the joint displacements, member axial forces,
and support reactions for the plane truss shown in Fig. P9.2, due
to the combined effect of the loading shown and a settlement of
1
4 in. of support 3. Use the alternative formulation of the matrix
stiffness method.

3

4

21

7 ft7 ft 18 ft

1

2
3

EA � constant
E � 29,000 ksi
A � 5 in.2

24 ft

75 k

50 k

Fig. P9.1

2

1

3

4

12 ft

24 ft

16 ft

75 k

150 k

75 k

EA � constant

E � 10,000 ksi

A � 6 in.2

1

23

4
5

Fig. P9.2

9.3 Determine the joint displacements, member end forces,
and support reactions for the three-span continuous beam
shown in Fig. P9.3 on the next page, due to settlements of 8 and
30 mm, respectively, of supports 2 and 3. Use the alternative
formulation of the matrix stiffness method.
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7 m 7 m 7 m

EI = constant
E  = 200 GPa
I   = 145(106) mm4

1 4
2 3

1 2 3

Fig. P9.3

20 ft

25 ft

2 k/ft

30 k

E = 4,500 ksi
Columns:
A = 80 in.2

I = 550 in.4

Girder:
A = 108 in.2

I = 1,300 in.4

2

1 3

1

2

4

3

Fig. P9.4, P9.7, P9.10

10 ft

10 ft

30 ft

75 k-ft
1.5 k/ft

40 k

E, A, I = constant
E = 29,000 ksi
A = 10.3 in.2

I = 510 in.4

2

1

1

2 3

Fig. P9.5, P9.9

3 m

3 m

6 m

30 kN/m

100 kN

E, A, I = constant
E = 200 GPa
A = 11,800 mm2

I = 554(106) mm4

Fig. P9.6

9.4 Determine the joint displacements, member local end
forces, and support reactions for the plane frame shown in
Fig. P9.4, due to the combined effect of the following: (a) the
loading shown in the figure, (b) a clockwise rotation of 0.017 ra-
dians of the left support, and (c) a settlement of 3

4 in. of the right
support. Use the alternative formulation of the matrix stiffness
method.

Section 9.2

9.5 through 9.8 Determine the approximate joint displace-
ments, member local end forces, and support reactions for the
frames shown in Figs. P9.5 through P9.8, assuming the mem-
bers to be inextensible.
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6 m

6 m

12 m

12 kN/m

12 kN/m

30 kN

60 kN

E = 30 GPa
Columns:
A = 93,000 mm2

I = 720(106) mm4

Girders:
A = 140,000 mm2

I = 2,430(106) mm4

Fig. P9.8

L
2

I

E = constant

b e

W

L
2

2I

Fig. P9.11

L
2

2I

E = constant

b e

w

L
2

I

Fig. P9.12

Section 9.3

9.9 and 9.10 Analyze the plane frames shown in Figs. P9.9
and P9.10 using condensation, by treating the rotations of free
joints as internal degrees of freedom.

Section 9.8

9.11 and 9.12 Derive the equations of fixed-end forces due to
the member loads acting on the nonprismatic beams shown in
Figs. P9.11 and P9.12.

Section 9.9

9.13 Solve the following system of simultaneous equations
using the UTDU decomposition method.
⎡
⎣ 20 − 9 15

−9 16 −5
15 −5 18

⎤
⎦

⎡
⎣ d1

d2

d3

⎤
⎦ =

⎡
⎣ 354

−275
307

⎤
⎦

9.14 Solve the following system of simultaneous equations
using the UTDU decomposition method.
⎡
⎢⎢⎢⎢⎢⎣

5 −2 1 0 0
−2 3 −2 4 0

1 −2 1 −1 3
0 4 −1 6 −3
0 0 3 −3 4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

44
−19

38
−31

23

⎤
⎥⎥⎥⎥⎥⎦
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10
10.1 Basic Concept of Geometrically Nonlinear Analysis
10.2 Geometrically Nonlinear Analysis of Plane Trusses

Summary
Problems

INTRODUCTION TO NONLINEAR
STRUCTURAL ANALYSIS

Beekman Tower and Brooklyn Bridge, New York
(Courtesy of Ed Fitzgerald)
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Chapter 10 Introduction to Nonlinear Structural Analysis 573

Thus far in this text, we have focused our attention on the linear analysis of
structures, which it may be recalled, is based on two fundamental assump-
tions, namely, (a) geometric linearity implying that the structure’s deforma-
tions are so small that the member strains can be expressed as linear
functions of joint displacements and the equilibrium equations can be based
on the undeformed geometry of the structure, and (b) material linearity,
represented by the linearly elastic stress-strain relationship for the structural
material. The linear analysis (sometimes also referred to as the first-order
analysis) generally proves adequate for predicting the performance of most
common types of engineering structures under service (working) loading
conditions. However, as the loads increase beyond service levels into the
failure range, the accuracy of the linear analysis gradually deteriorates be-
cause the response of the structure usually becomes increasingly nonlinear
as its deformations increase and/or its material is strained beyond the yield
point. In some structures, such as cable suspension systems, the load carry-
ing capacity relies on geometric nonlinearity even under normal service
conditions. Because of its inherent limitations, linear analysis cannot be
used to predict instability phenomena and ultimate load capacities of
structures. 

With the recent introduction of design specifications based on the ultimate
strengths of structures, the use of nonlinear analysis in structural design is in-
creasing. In a nonlinear analysis, the restrictions of linear analysis are removed
by formulating the equations of equilibrium on the deformed geometry of the
structure that is not known in advance, and/or taking into account the effects of
inelasticity of the structural material. The load-deformation (stiffness) rela-
tionships thus obtained for the structure are nonlinear, and are usually solved
using iterative techniques. 

The objective of this chapter is to introduce the reader to the exciting
and still-evolving field of nonlinear structural analysis. Because of space
limitations, only the basic concepts of geometrically nonlinear analysis of
plane trusses are covered herein. However, it should be realized that a real-
istic prediction of structural response in the failure range generally requires
consideration of the effects of both geometric and material nonlinearities in
the analysis. For a more detailed study, the reader should refer to one of the
books devoted entirely to the subject of nonlinear structural analysis, such
as [8, 9].

We begin this chapter with an intuitive discussion of the basic concept of
geometrically nonlinear analysis, and how it differs from the conventional
linear analysis in Section 10.1. A matrix stiffness formulation for geometri-
cally nonlinear analysis of plane trusses is then developed in Section 10.2.
While a block diagram summarizing the various steps of nonlinear analysis
is provided, the programming details are not covered herein; they are, in-
stead, left as an exercise for the reader. The computer program for geometri-
cally nonlinear analysis of plane trusses can be conveniently adapted from
that for the linear analysis of such structures, via relatively straightforward
modifications that should become apparent as the nonlinear analysis is
developed in this chapter.
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10.1 BASIC CONCEPT OF GEOMETRICALLY 
NONLINEAR ANALYSIS
As stated before, in the linear analysis, the structure’s deformations are assumed
to be so small that the member strains are expressed as linear functions of joint
displacements and the equilibrium equations are based on the undeformed
geometry of the structure. In geometrically nonlinear analysis, the restrictions
of small deformations are removed by formulating the strain-displacement rela-
tions and the equilibrium equations on the deformed geometry of the structure. 

To illustrate the basic concept of geometrically nonlinear analysis, con-
sider the two-member plane truss composed of a linearly elastic material,
shown in Fig. 10.1(a). Note that the truss is symmetric and is loaded symmet-
rically with a vertical load P. Thus, it is considered to have only one degree of
freedom, which is the vertical displacement δ of the free joint 2.

As shown in Fig. 10.1(b), in the linear analysis, the joint displacement δ is
assumed to be so small that the member axial deformations u equal the com-
ponents of δ in the undeformed directions of the members, that is

u ∼= δ sin θ (10.1)

in which, θ denotes the angle of inclination of members in the undeformed
configuration. The member axial strain ε can now be expressed as a linear
function of joint displacement δ as

ε = u

L
∼=

(
sin θ

L

)
δ (10.2)

with L = undeformed length of members. Recall that in linear analysis, the
equilibrium equations are based on the undeformed geometry of the structure.
Figure 10.1(b) shows the free body diagram of joint 2 of the truss in the unde-
formed configuration, with the member axial forces Q inclined in the
undeformed member directions (i.e., at angles θ with the horizontal). By
considering the equilibrium of the joint in the vertical direction, we write

Q ∼= P

2 sin θ
(10.3)

from which we obtain the expression for member axial stress σ ,

σ = Q

A
∼= P

2A sin θ
(10.4)

For linearly elastic material,

σ = Eε (10.5)

By substituting Eqs. (10.2) and (10.4) into Eq. (10.5), we obtain the desired
(stiffness) relationship between the load P and the displacement δ of the truss
based on the linear analysis:

(10.6)P ∼=
(

2E A sin2 θ

L

)
δ

574 Chapter 10 Introduction to Nonlinear Structural Analysis
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In the geometrically nonlinear analysis, we allow the joint displacement δ
to be arbitrarily large, and consider the truss to be in equilibrium in its de-
formed configuration as shown in Fig. 10.1(c). From this figure, we can see
that the member lengths L̄ and orientations θ̄ , in the deformed configuration,
can be expressed in terms of δ as

L̄ =
√

(L cos θ)2 + (L sin θ − δ)2 = L

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ (10.7)

sin θ̄ = L sin θ − δ

L̄
=

sin θ −
(

δ

L

)
√

1 +
(

δ

L

)2

− 2

(
δ

L

)
sin θ

(10.8)
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Fig. 10.1 (continued)
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The member axial deformations and strains are now based on the actual
deformed geometry of the members as

u = L − L̄ = L

⎡
⎣1 −

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ

⎤
⎦ (10.9)

ε = u

L
= 1 −

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ (10.10)

The free body diagram of joint 2 in the deformed configuration of the truss is
shown in Fig. 10.1 (c), in which the member axial forces Q are inclined in the
deformed member directions (i.e., at angles θ̄ with the horizontal). By consid-
ering the equilibrium of the joint in the vertical direction, we write the equilib-
rium equation

Q = P

2 sin θ̄
=

P

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ

2

[
sin θ −

(
δ

L

)] (10.11)

which yields the expression for member axial stress as

σ = Q

A
=

P

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ

2A

[
sin θ −

(
δ

L

)] (10.12)

Finally, by substituting the expressions for strain (Eq. (10.10)) and stress
(Eq. (10.12)) into the stress-strain relationship σ = Eε (Eq. (10.5)), we
obtain the desired nonlinear (stiffness) relationship between the load P and
the displacement δ of the truss:

(10.13)

By comparing the equations used to obtain the linear solution (Eqs. (10.1)
through (10.6)) with those used to derive the geometrically nonlinear solution
(Eqs. (10.7) through (10.13)), we notice two basic differences between the two
types of analyses. The first difference is in the expressions of member axial de-
formation u in terms of the joint displacement δ (Eqs. (10.1) vs. (10.9)). In the
linear analysis, δ is assumed to be so small that u can be expressed as the com-
ponent of δ in the undeformed member direction, thereby yielding a linear
relationship between u and δ (Eq. (10.1). In the geometrically nonlinear for-
mulation, δ is allowed to be arbitrarily large and the relationship between u and
δ is based on the exact geometry of the member’s deformed configuration,
thereby yielding a highly nonlinear relationship between u and δ (Eq. (10.9).
The second basic distinction between the two types of analyses is in the way

P = 2E A

[
sin θ −

(
δ

L

)]
⎡
⎢⎢⎢⎢⎣

1 −
√

1 +
(

δ

L

)2

− 2

(
δ

L

)
sin θ

√
1 +

(
δ

L

)2

− 2

(
δ

L

)
sin θ

⎤
⎥⎥⎥⎥⎦
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the equilibrium equations are established (Eqs. (10.3) vs. (10.11)). In linear
analysis, the equilibrium equation is based on the undeformed geometry of the
truss (thereby neglecting the joint displacement δ altogether). This assumption
yields a direct linear relationship between the member axial force Q and the
joint load P, which does not involve δ (Eq. (10.3)). In geometrically nonlinear
analysis, however, since the equilibrium equation is based on the deformed
configuration of the truss, the expression for Q not only contains P, but also
involves nonlinear functions of δ (Eq. (10.11)). The reader is encouraged to
verify that the linear solution (Eq. (10.6)) can be obtained by linearizing the
geometrically nonlinear solution, that is, by expanding Eq. (10.13) via series
expansion and retaining only the linear term of the series. 

Geometrically nonlinear analysis provides important insight into the stabil-
ity behavior of structures that is beyond the reach of linear analysis. Figure 10.1(d)
shows the response of a typical shallow two-member truss as predicted by the
linear and geometrically nonlinear analyses. These load-displacement plots
are computed using the numerical values:  θ = 30o, L = 3m, E = 70 GPa, and
A = 645.2 mm2. It can be seen from this figure that the accuracy of the linear
analysis gradually deteriorates as the magnitude of load P increases and the
linear solution deviates from the exact geometrically nonlinear solution. With
increasing load, the response becomes increasingly nonlinear as the truss’s stiff-
ness progressively decreases. This decrease in stiffness is characterized by a de-
crease in the slope of the tangent of the load-displacement curve. Note that at
point a, where the curve reaches a peak, the slope of its tangent (called tangent
stiffness) becomes zero, indicating that the structure’s resistance to any further
increase in load has vanished. Point a is referred to as a critical or limit point,
because any further increase in load causes the truss to snap-through into an in-
verted configuration defined by point b on the response curve. The displacement
of the truss at (or just prior to reaching) the critical point can be determined by
setting to zero the derivative of Eq. (10.13) with respect to δ. This yields

δcr = L

[
sin θ − cos θ

√
1

(cos θ)2/3
− 1

]
(10.14)

The critical load Pcr, at which the snap-through instability occurs, can be
calculated by substituting the value of δcr obtained from Eq. (10.14), for δ into
Eq. (10.13).

We can see from Fig. 10.1(d) that the equilibrium configurations defined
by the portion of the response curve between points a and b correspond to load
levels below the critical level. Thus, unless the load magnitude can somehow
be reduced after it has reached Pcr, the truss will snap-through from configura-
tion a into the inverted configuration b (Fig. 10.1(e)).

It should be pointed out that the nonlinear response of the two-member truss
(also known as the von Mises truss) considered herein has been examined by a
number of researchers, and it is frequently used as a benchmark to validate the
accuracy of computer programs for geometrically nonlinear structural analysis.
It has been shown in references [16, 17] that while the shallow trusses (with θ �
69.295o) exhibit snap-through instability as discussed in the preceding para-
graphs, the steep two-member trusses, with  θ � 69.295o, experience bifurcation
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type of instability. As bifurcation instability occurs when the truss loses its
stiffness in the horizontal direction, its detection requires analysis of a two de-
gree-of-freedom model of the truss, instead of the single degree-of-freedom
model used herein. A general formulation for geometrically nonlinear analysis of
multi degree-of-freedom plane trusses is developed in the next section.

10.2 GEOMETRICALLY NONLINEAR ANALYSIS 
OF PLANE TRUSSES
In this section, we develop a general matrix stiffness method for geometrically
nonlinear analysis of plane trusses [33, 45]. The process of developing the an-
alytical models for nonlinear analysis (i.e., establishing a global coordinate
system, numbering of joint and members, and identifying degrees of freedom
and restrained coordinates) is the same as that for linear analysis of plane
trusses (Chapter 3). However, the member local coordinate systems are now
defined differently than in the case of linear analysis. Recall from Chapter 3
that in linear analysis, the local coordinate system is positioned in the initial
undeformed state of the member, and it remains in that position regardless of
where the member actually displaces due to the effect of external loads. In geo-
metrically nonlinear analysis, it is more convenient to use a local coordinate
system that is attached to, and displaces (translates and/or rotates) with, the
member as the structure deforms. As shown in Fig. 10.2, the origin of the local
xyz coordinate system for a member is always located at the beginning, b′, of
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the member in its deformed state, with the x axis directed along the member’s
centroidal axis in the deformed state. The positive direction of the y axis is
defined so that the coordinate system is right-handed, with the local z axis
pointing in the positive direction of the global Z axis. This type of coordinate
system, which continuously displaces with the member, is called an Eulerian
or corotational coordinate system. The main advantage of using such a coordi-
nate system is that it enables us to separate the member’s axial deformation
from its rigid body displacement, which is considered to be arbitrarily large in
geometrically nonlinear analysis.

Member Force-Displacement Relations
To establish the member force-displacement relations, let us focus our attention
on an arbitrary prismatic member m of a plane truss. When the truss is subjected
to external loads, member m deforms and axial forces are induced at its ends.
Figure 10.3 shows the displaced position of the member in its local coordinate
system. Note that because of the modified definition of the local coordinate sys-
tem, only one degree of freedom (that is the member axial deformation) is now
needed to completely specify the displaced position of the member. The axial
deformation u of the member can be expressed in terms of its initial and
deformed lengths (L and L̄ , respectively) as

(10.15)

in which, the axial deformation u is considered as positive when it corresponds
to the shortening of the member’s length, and negative when representing the
elongation. Similarly, the member axial force Q is considered to be positive
when compressive, and negative when tensile. To establish the relationship
between the member’s axial force Q and deformation u, we recall that the
member’s axial stress σ and axial strain ε are defined as

σ = Q

A
and ε = u

L
(10.16)

and for linear elastic material, the stress-strain relationship is given by

σ = Eε (10.17)

u = L − L̄

Q Q

b′ e′
Displaced
position

E A = constant

Initial
length

L

u

x

y

L

Fig. 10.3 Member Axial Force and Deformation in the Local Coordinate System
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Substitution of Eqs. (10.16) into Eq. (10.17) yields the following force-
displacement relation for the members of plane trusses in their local coordinate
systems:

(10.18)

Next, we consider the member force-displacement relations in the global
coordinate system. Figures 10.4 (a) and (b) show the initial and displaced
positions of an arbitrary member m of a plane truss. In Fig. 10.4(a), the
member is depicted to be in equilibrium under the action of (local) axial forces
Q; whereas in Fig. 10.4(b), the same member is shown to be in equilibrium
under the action of an equivalent system of end forces F acting in the directions
of the global X and Y coordinate axes. As indicated in Fig. 10.4(b), the global
member end forces F and end displacements v are numbered in the same man-
ner as in the case of linear analysis (Chapter 3), except that the forces F now
act at the ends of the member in its deformed state.

Now, suppose that a member’s global end displacements v (which may be
arbitrarily large) are specified, and our objective is to find the corresponding
end forces F so that the member is in equilibrium in its displaced position. If
Xb, Yb, and Xe, Ye denote the global coordinates of the joints in their undeformed
configurations, to which the member ends b and e, respectively are attached,
then the initial (undeformed) length L of the member can be expressed (via
Pythagorean theorem) as

L =
√

(Xe − Xb)
2 + (Ye − Yb)

2 (10.19)

Q =
(

E A

L

)
u
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Similarly, we can see from Fig. 10.4(b) that the deformed member length L̄ ,
and the direction cosines of the member in its displaced position, can be
expressed in terms of the initial global coordinates and displacements v of the
member’s ends by the following relationships:

(10.20)

(10.21)

(10.22)

in which, θ̄ represents the angle measured counterclockwise from the positive
direction of the global X axis to the positive direction of the local x axis of the
member in its displaced position. 

By comparing Figs. 10.4(a) and (b), we observe that at end b′ of the mem-
ber, the global forces F1 and F2 must be, respectively, equal to the components
of (local) axial force Q in the directions of the global X and Y axes; that is,

F1 = cX Q (10.23a)

F2 = cY Q (10.23b)

By using the same reasoning at end e′, we express the global forces F3 and F4

in terms of Q as

F3 = −cX Q (10.23c)

F4 = −cY Q (10.23d)

Equations 10.23(a) through (d) can be written in matrix form as
⎡
⎢⎣

F1

F2

F3

F4

⎤
⎥⎦ =

⎡
⎢⎣

cX

cY

−cX

−cY

⎤
⎥⎦ Q (10.24)

or, symbolically as

(10.25)

with the 1 � 4 transformation matrix T given by

T = [ cX cY −cX −cY ] (10.26)

It should be recognized that the set of Eqs. (10.15), (10.18) through (10.22),
and (10.24), does implicitly express F in terms of v, and therefore, is consid-
ered to represent the geometrically nonlinear force-displacement relations for
members of plane trusses in the global coordinate system. Because of the

F = TT Q

cY = sin θ̄ = (Ye + v4) − (Yb + v2)

L̄

cX = cos θ̄ = (Xe + v3) − (Xb + v1)

L̄

L̄ =
√

[(Xe + v3) − (Xb + v1)]2 + [(Ye + v4) − (Yb + v2)]2
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highly nonlinear nature of some of the equations involved, it is quite cumber-
some to express F explicitly in terms of v, as was previously done in the case
of linear analysis. Note that if the global end displacements v of a member are
known, its corresponding end forces F can be evaluated by first calculating L,
L̄ , cX, and cY using Eqs. (10.19) through (10.22); then evaluating the member
axial deformation u and force Q, respectively, by applying Eqs. (10.15) and
(10.18); and finally determining the member global end forces F via
Eq. (10.24). It is important to realize that of all these equations, only one, that is,
Q = EAu/L (Eq. (10.18)), involves the material properties of the member. The re-
maining equations are essentially of a geometric character, and are exact in the
sense that they are valid for arbitrarily large joint displacements.

The foregoing equations are also necessary and sufficient for establishing
the geometrically nonlinear load-deformation relationships for the entire struc-
ture. The procedure for establishing such relations is essentially the same as in
the case of linear analysis, and involves using member code numbers as illus-
trated by the following example.
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E X A M P L E 10.1 By using geometrically nonlinear analysis, determine the joint loads P that cause the
two-member truss to deform into the configuration shown in Fig. 10.5(a) on the
next page.

S O L U T I O N Joint Displacements: Using the analytical model of the truss shown in Fig. 10.5(b),
we express the given deformed configuration in terms of its joint displacement vector,

d =
[

10
−4

]
1
2

in.

Member End Forces: The joint load vector P, corresponding to d, can be determined
by performing the following operations for each member of the truss: (a) obtain the
member’s global end displacements v from d using the member’s code numbers; (b)
calculate the member’s global end forces F using Eqs. (10.15), (10.18) through (10.22),
and (10.24); and (c) store the elements of F into their proper positions in P and the
support reaction vector R, using the member code numbers. Thus,

Member 1 L = 60 in., X1 = Y1 = 0, X2 = 48 in., Y2 = 36 in. By using the member
code numbers 3, 4, 1, 2, we obtain

v1 =

⎡
⎢⎢⎣

0
0
10
−4

⎤
⎥⎥⎦

3
4
1
2

in.

By applying Eqs. (10.20) thru (10.22), we compute the length and direction cosines of
the member in the displaced position to be

L̄ =
√

[(48 + 10) − (0)]2 + [(36 − 4) − (0)]2 = 66.24198 in.

cX = (48 + 10) − (0)

66.24198
= 0.8755777 cY = (36 − 4) − (0)

66.24198
= 0.4830773
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Fig. 10.5 (continued)
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Next, by using Eqs. (10.15) and (10.18), we calculate the member axial deformation
and force as

u = L − L̄ = −6.24198 in. Q =
(

E A

L

)
u = −1,040.33 k

The member global end forces F can now be determined from Eq. (10.25):

F1 = TT Q =

⎡
⎢⎢⎣

0.8755777
0.4830773

−0.8755777
−0.4830773

⎤
⎥⎥⎦ (−1,040.33) =

⎡
⎢⎢⎣

−910.8898
−502.5599
�����

910.8898
502.5599

⎤
⎥⎥⎦

3
4
1
2

k

The elements of F1 are stored in their proper positions in the 2 � 1 joint load vector P
and the 4 � 1 reaction vector R, as shown in Fig. 10.5(c).

Member 2 L = 60 in., X3 = 96 in., Y3 = 0, X2 = 48 in., Y2 = 36 in.

v2 =

⎡
⎢⎢⎣

0
0
10
−4

⎤
⎥⎥⎦

5
6
1
2

in.

L̄ =
√

[(48 + 10) − (96 + 0)]2 + [(36 − 4) − (0)]2 = 49.67897 in.

cX = (48 + 10) − (96 + 0)

49.67897
= −0.7649112

cY = (36 − 4) − (0)

49.67897
= 0.6441357

26201_10_ch10_p572-602.qxd  12/1/10  5:25 PM  Page 585

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Member Tangent Stiffness Matrix
As indicated by the foregoing example, when the deformed configuration d of a
truss is known, the corresponding joint loads P, required to cause (and/or keep
the structure in equilibrium in) that deformed configuration, can be determined
by direct application of the nonlinear force-displacement relations derived in the
preceding subsection. However, in most practical situations, it is the external
loading that is specified, and the objective of the analysis is to determine the cor-
responding deformed configuration of the structure, thereby requiring the solu-
tion of a system of simultaneous nonlinear equations. The computational tech-
niques commonly used for solving such systems of nonlinear equations are
iterative in nature, and usually involve solving a linearized form of the structure’s
load-deformation relations repeatedly to move closer to the (yet unknown) exact
nonlinear solution. Thus, before we discuss such a computational technique in a
subsequent subsection, we develop the linearized form of the force-displacement
relations for the planes truss members in the global coordinate system.

The member force-displacement relationships can be written in terms of
differentials as

(10.27)

in which ΔF and Δv denote increments of member global end forces F and end
displacements v, respectively, and 

Kt =
[
∂ Fi

∂vj

]
; for i, j = 1 to 4 (10.28)

�F = Kt �v

586 Chapter 10 Introduction to Nonlinear Structural Analysis

u = L − L̄ = 10.32103 in. Q =
(

E A

L

)
u = 1,720.172 k

F2 = TT Q =

⎡
⎢⎢⎣

−0.7649112
0.6441357
0.7649112

−0.6441357

⎤
⎥⎥⎦ (1,720.172) =

⎡
⎢⎢⎣

−1,315.779
1,108.024

�����
1,315.779

−1,108.024

⎤
⎥⎥⎦

5
6
1
2

k

Joint Loads and Support Reactions: The completed joint load vector P and the support
reaction vector R are shown in Fig. 10.5(c), and these forces are depicted on a line
diagram of the deformed configuration of the truss in Fig. 10.5(d). Ans

Equilibrium Check: Applying the equations of equilibrium to the free body of the
truss in its deformed state (Fig. 10.5(d)), we obtain

+ →
∑

FX = 0 − 910.8898 + 2,226.668 − 1,315.779 = −0.0008 k ≈ 0 Checks

+ ↑
∑

FY = 0 − 502.5599 − 605.4642 + 1,108.024 = −0.0001 k ≈ 0 Checks

+
∑

M➀ = 0 −2,226.668(32) − 605.4642(58) + 1,108.024 (96) = 0.0044 k-in. ≈ 0 Checks
Y
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is called the member tangent stiffness matrix in the global coordinate system.
Equation (10.28) can be expanded into

Kt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ F1

∂v1

∂ F1

∂v2

∂ F1

∂v3

∂ F1

∂v4

∂ F2

∂v1

∂ F2

∂v2

∂ F2

∂v3

∂ F2

∂v4

∂ F3

∂v1

∂ F3

∂v2

∂ F3

∂v3

∂ F3

∂v4

∂ F4

∂v1

∂ F4

∂v2

∂ F4

∂v3

∂ F4

∂v4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.29)

To determine the explicit form of Kt, we differentiate the expressions of F1

through F4 (Eqs. 10.23(a) through (d)) partially with respect to v1 through v4,
respectively. Thus, by differentiating the expression of F1 (Eq. 10.23(a)) par-
tially with respect to v1, we write

∂ F1

∂v1
= cX

(
∂ Q

∂v1

)
+ Q

(
∂cX

∂v1

)
(10.30a)

To obtain ∂Q/∂v1, we substitute Eqs. (10.15) and (10.20), respectively, into
Eq. (10.18), and differentiate the resulting equation partially with respect to
v1, thereby yielding

∂ Q

∂v1
=

(
E A

L

)
cX (10.30b)

Similarly, by substituting Eq.(10.20) into Eq. (10.21), and differentiating the
resulting equation partially with respect to v1, we obtain

∂cX

∂v1
= − c2

Y

L̄
(10.30c)

and finally, by substituting Eqs. (10.30b) and (10.30c) into Eq. (10.30a), we
obtain the desired partial derivative as 

∂ F1

∂v1
=

(
E A

L

)
c2

X −
(

Q

L̄

)
c2

Y (10.30d)

The remaining partial derivatives of Fi with respect to vj can be derived in a
similar manner. The explicit form of the member global tangent stiffness
matrix thus obtained is [45, 46]

Kt = E A

L

⎡
⎢⎣

c2
X cX cY −c2

X −cX cY

cX cY c2
Y −cX cY −c2

Y
−c2

X −cX cY c2
X cX cY

−cX cY −c2
Y cX cY c2

Y

⎤
⎥⎦ + Q

L̄

⎡
⎢⎣

−c2
Y cX cY c2

Y −cX cY

cX cY −c2
X −cX cY c2

X
c2

Y −cX cY −c2
Y cX cY

−cX cY c2
X cX cY −c2

X

⎤
⎥⎦ (10.31)
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The reader should note that, in the initial (undeformed) configuration of the
member (when θ̄ = θ and Q = 0), the tangent stiffness matrix Kt reduces to the
conventional stiffness matrix K derived previously for linear analysis of plane
trusses in Chapter 3 (Eq. (3.73)).

Equation (10.31) is often written in compact form as

(10.32)

in which the geometric matrix g is given by

g = 1

L̄

⎡
⎢⎣

−c2
Y cX cY c2

Y −cX cY

cX cY −c2
X −cX cY c2

X
c2

Y −cX cY −c2
Y cX cY

−cX cY c2
X cX cY −c2

X

⎤
⎥⎦ (10.33)

Structure Load-Deformation Relations
The geometrically nonlinear structure load-deformation relations for plane
trusses are expressed in the form of joint equilibrium equations:

(10.34)

in which, f is referred to as the internal joint force vector of the structure. The
vector f contains the resultants of internal member end forces at the loca-
tions, and in the directions of, the structure’s degrees of freedom. As shown
previously in Example 10.1, the resultant internal forces f are nonlinear func-
tions of the structure’s joint displacements d. It should be noted that in Ex-
ample 10.1, where the structure’s deformed configuration d was known, no
distinction was necessary between P and f, and the former was assembled di-
rectly from the member end forces F via the member code numbers. How-
ever, when analyzing a structure for its unknown deformed configuration
caused by a specified external loading, it becomes necessary to distinguish
between the external loads P, which remain constant throughout the iterative
process, and the internal forces f that vary as the structure’s assumed de-
formed configuration d is revised iteratively until f becomes sufficiently
close to P, that is, the structure’s equilibrium equations (Eq. (10.34)) are sat-
isfied within a prescribed tolerance.

The structure load-deformation relationships (Eq. (10.34)) can be written
in terms of differentials as

(10.35)�P = St �d

P = f(d)

Kt =
(

E A

L

)
TT T + Q g
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in which ΔP and Δd denote increments of external loads P and joint displace-
ments d, respectively, and 

St =
[

∂ fi

∂dj

]
; for i, j = 1 to NDOF (10.36)

is called the structure tangent stiffness matrix. The structure matrix St can be
conveniently assembled from the member global tangent stiffness matrices Kt

using the member code numbers, as in the case of linear analysis.

Computational Technique—Newton-Raphson Method
Most computational techniques commonly used for nonlinear structural analy-
sis are generally based on the classical Newton-Raphson iteration technique
for root finding. Such an iterative method for geometrically nonlinear analysis
of plane trusses is presented herein. The method of analysis is illustrated
graphically for a single degree-of-freedom structure in Fig. 10.6.

Let us assume that our objective is to determine the deformed configuration
(i.e., the joint displacements) d of a structure due to a given external loading
P. As shown in Fig. 10.6, we begin the process by performing the conventional
linear analysis to determine the first approximate configuration d1 of the struc-
ture. Note that the linearized form of the nonlinear load-deformation relations
(Eq. (10.35)) reduces to the conventional linear stiffness relations (Eq. (3.89))

Section 10.2 Geometrically Nonlinear Analysis of Plane Trusses 589

f1

ΔU2ΔU1

Δd1 Δd2

d3d2d1O d

Load

Linear
solution

Converged
(nonlinear)
solution

Deformation

f2

P

Fig. 10.6  Newton-Raphson Method (for a Single Degree-of-Freedom Structure)
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when applied in the undeformed (initial) configuration of the structure, with 
ΔP = P and Δd = d1; that is,

P = St0 d1 = Sd1 (10.37)

in which St0 denotes the structure tangent stiffness matrix evaluated in the un-
deformed configuration (i.e., d = d0 = 0).

It should be realized that the configuration d1, obtained by solving
Eq. (10.37), represents an approximate configuration in the sense that the
joint equilibrium equations (Eq. (10.34)) are not necessarily satisfied. To cor-
rect the approximate solution, we evaluate the structure’s internal joint force
vector, f1 = f(d1), corresponding to the configuration d1 and subtract it from
the joint load vector P to calculate the unbalanced joint force vector for the
structure

�U1 = P − f1 (10.38)

The unbalanced joint forces ΔU1 are now treated as a load increment and the
correction vector Δd1 is obtained by applying the linearized incremental
relationship (Eq. (10.35) as

�U1 = St1 �d1 (10.39)

with St1 now representing the structure tangent stiffness matrix evaluated in the
configuration d1. A new approximate configuration d2 is then obtained by
adding the correction vector Δd1 to the current configuration d1,

d2 = d1 + �d1 (10.40)

and the iteration is continued until the latest correction vector is sufficiently
small.

Equations (10.38) through (10.40) refer to the first iteration cycle. For
an ith iteration cycle, these equations can be expressed in recurrence form as:

(10.41)

(10.42)

(10.43)

Various criteria can be used in deciding whether the iterative process has
converged. In general, for structures exhibiting softening type of response, the
convergence criteria based on the change in the structure’s configuration be-
tween two consecutive iteration cycles do seem to yield reasonably accurate
results. In the example presented in this chapter, we use a criterion based on a
comparison of the changes, Δdi, in joint displacements to their cumulative

di+1 = di + �di

�Ui = Sti �di

�Ui = P − fi
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values, di, and consider the convergence to have occurred when the following
inequality is satisfied

(10.44)

in which the dimensionless quantity e represents a prescribed tolerance. 
A block diagram summarizing the various steps of the method for

geometrically nonlinear analysis of plane trusses is shown in Fig. 10.7. The
method of analysis is illustrated by the following example.

√√√√√√√√

N DO F∑
j=1

(
�dj

)2

N DO F∑
j=1

(
dj

)2
≤ e
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Evaluate joint load vector P, and calculate first
approximate configuration d using linear analysis (Sd = P)

For each member:
Evaluate v from d

Calculate L (Eq. 10.20), cX (Eq. 10.21), cY (Eq. 10.22), u (Eq. 10.15),
Q (Eq. 10.18), F (Eq. 10.24) and Kt (Eq. 10.31)

Stone F in f and Kt in St

Iteration cycle: i = 1

Form unbalanced joint force vector �U = P − f

Is �d
sufficiently

small?

Yes

No

Solve �U = St �d for �d

d = d + �d 
For each member:
Evaluate v from d

Calculate L, cX, cY, u, Q and F
Store F in R

d = d + �d
i = i + 1

Fig. 10.7 Procedure for Analysis
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E X A M P L E 10.2 Determine the joint displacements, member axial forces, and support reactions for the
truss shown in Fig. 10.8(a) by geometrically nonlinear analysis. Use a displacement
convergence tolerance of 0.1 percent. 

S O L U T I O N Analytical Model: See Fig. 10.8(b). The truss has three degrees of freedom,
numbered as 1, 2, and 3. The three restrained coordinates of the truss are identified by
numbers 4, 5, and 6.

Linear Analysis: We begin by performing the conventional linear analysis of the truss
subjected to the specified joint loads,

P =
⎡
⎣ 0

−2,000
0

⎤
⎦ kN (1)

The member global stiffness matrices can be evaluated by using either Eq. (3.73), or
Eq. (10.31) with θ̄ = θ and Q = 0. These are:

4 5 1 2

K1 =

⎡
⎢⎢⎣

5,781 4,335.7 −5,781 −4,335.7
4,335.7 3,251.8 −4,335.7 −3,251.8
−5,781 −4,335.7 5,781 4,335.7

−4,335.7 −3,251.8 4,335.7 3,251.8

⎤
⎥⎥⎦

4
5
1
2

kN/m

3 6 1 2

K2 =

⎡
⎢⎢⎣

5,781 −4,335.7 −5,781 4,335.7
−4,335.7 3,251.8 4,335.7 −3,251.8
−5,781 4,335.7 5,781 −4,335.7
4,335.7 −3,251.8 −4,335.7 3,251.8

⎤
⎥⎥⎦

3
6
1
2

kN/m

4 5 3 6

K3 =

⎡
⎢⎢⎣

5,645.5 0 −5,645.5 0
0 0 0 0

−5,645.5 0 5,645.5 0
0 0 0 0

⎤
⎥⎥⎦

4
5
3
6

kN/m

The structure stiffness matrix thus obtained is

1 2 3

S =
⎡
⎣ 11,562 0 −5,781

0 6,503.6 4,335.7
−5,781 4,335.7 11,426

⎤
⎦ 1

2
3

kN/m

By solving the linear system of equations P = S d1, we determine the first approxi-
mation configuration to be

d1 =
⎡
⎣ 0.11809

−0.46497
0.23618

⎤
⎦ 1

2
3

m
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2,000 kN

4 m

3 m

4 m

(a) Truss

EA = constant
E   = 70 GPa
A   = 645.2 mm2

31

2

1

3

Y

X

2

1 2

3

5 6

4

(b) Analytical Model

Fig. 10.8

Iteration Cycle 1: Next, for the current deformed configuration d1 of the structure, we
evaluate its internal joint force vector f1 and the tangent stiffness matrix St1 by
assembling the pertinent elements of the member F vectors and Kt matrices, respec-
tively, as follows: 

Member 1

v =

⎡
⎢⎢⎣

0
0

0.11809
−0.46497

⎤
⎥⎥⎦

4
5
1
2

m
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2.3503 m

3′1

2,000 kN

2′

1 2

3

1,000 kN 1,000 kN

(c) Support Reactions

4.1566 m

8.3133 m

Fig. 10.8 (continued)

L = 5 m, L̄ = 4.8358 m, cX = 0.85158, cY = 0.52422, u = 0.16419 m, Q = 1,483.1 kN

4 5 1 2

F =

⎡
⎢⎢⎣

1,263
777.49
���−1,263
−777.49

⎤
⎥⎥⎦

4
5
1
2

kN Kt =

⎡
⎢⎢⎣

6,466.2 4,169.3 −6,466.2 −4,169.3
4,169.3 2,259.9 −4,169.3 −2,259.9

−6,466.2 −4,169.3 6,466.2 4,169.3
−4,169.3 −2,259.9 4,169.3 2,259.9

⎤
⎥⎥⎦

4
5
1
2

(2)

Member 2

v =

⎡
⎢⎢⎣

0.23618
0

0.11809
−0.46497

⎤
⎥⎥⎦

3
6
1
2

m

L = 5 m, L̄ = 4.8358 m, cX = �0.85158, cY = 0.52422, u = 0.16419 m, Q = 1,483.1 kN

3 6 1 2

F =

⎡
⎢⎢⎣

−1,263
777.49
1,263

−777.49

⎤
⎥⎥⎦

3
6
1
2

kN Kt =

⎡
⎢⎢⎣

6,466.2 −4,169.3 −6,466.2 4,169.3
−4,169.3 2,259.9 4,169.3 −2,259.9
−6,466.2 4,169.3 6,466.2 −4,169.3
4,169.3 −2,259.9 −4,169.3 2,259.9

⎤
⎥⎥⎦

3
6
1
2

kN/m    (3)

kN/m 
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Section 10.2 Geometrically Nonlinear Analysis of Plane Trusses 595

Member 3

v =

⎡
⎢⎢⎣

0
0

0.23618
0

⎤
⎥⎥⎦

4
5
3
6

m

L = 8 m, L̄ = 8.2362 m, cX = 1, cY = 0, u = �0.23618 m, Q = �1,333.3 kN

4 5 3 6

F =

⎡
⎢⎢⎣

−1,333.3
0

1,333.3
0

⎤
⎥⎥⎦

4
5
3
6

kN Kt =

⎡
⎢⎢⎣

5,645.5 0 −5,645.5 0
0 161.89 0 −161.89

−5,645.5 0 5,645.5 0
0 −161.89 0 161.89

⎤
⎥⎥⎦

4
5
3
6

kN/m   (4)

By assembling the pertinent elements of the member F vectors and Kt matrices given
in Eqs. (2) through (4), we obtain

1 2 3

f1 =
⎡
⎣ 0

−1,555
70.322

⎤
⎦ 1

2
3

kN St1 =
⎡
⎣ 12,932 0 −6,466.2

0 4,519.7 4,169.3
−6,466.2 4,169.3 12,112

⎤
⎦ 1

2
3

kN/m

By subtracting f1 from P (Eq. 1), we compute the unbalanced joint force vector for the
truss as

�U1 = P − f1 =
⎡
⎣ 0

−2,000
0

⎤
⎦ −

⎡
⎣ 0

−1,555
70.322

⎤
⎦ =

⎡
⎣ 0

−445.02
−70.322

⎤
⎦ 1

2
3

kN

By solving the linearized system of equations ΔU1 = St1 Δd1, we determine the dis-
placement correction vector

�d1 =
⎡
⎣ 0.03380

−0.16082
0.067599

⎤
⎦ 1

2
3

m

To determine whether or not the iteration has converged, we apply the convergence
criterion (Eq. (10.44)) as

√√√√√√√√

3∑
j=1

(
�dj

)2

3∑
j=1

(
dj

)2
=

√
(0.03380)2 + (−0.16082)2 + (0.067599)2

(0.11809)2 + (−0.46497)2 + (0.23618)2 = 0.33231 > e (= 0.001)
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596 Chapter 10 Introduction to Nonlinear Structural Analysis

which indicates that the change in the structure’s configuration is not sufficiently
small, and therefore, another iteration is needed based on a new (second) approximate
deformed configuration d2 obtained by adding the correction Δd1 to the previous
(first) approximate configuration d1, that is,

d2 = d1 + �d1 =
⎡
⎣ 0.11809

−0.46497
0.23618

⎤
⎦ +

⎡
⎣ 0.03380

−0.16082
0.067599

⎤
⎦ =

⎡
⎣ 0.15189

−0.62579
0.30378

⎤
⎦ m

Iteration Cycle 2: 

Member 1

v =

⎡
⎢⎢⎣

0
0

0.15189
−0.62579

⎤
⎥⎥⎦

4
5
1
2

m

L = 5 m, L̄ = 4.7828 m, cX = 0.86809, cY = 0.49641, u = 0.21721 m, Q = 1,962.1 kN

4 5 1 2

F =

⎡
⎢⎢⎣

1,703.2
973.98

−1,703.2
−973.98

⎤
⎥⎥⎦

4
5
1
2

kN Kt =

⎡
⎢⎢⎣

6,705.8 4,069.2 −6,705.8 −4,069.2
4,069.2 1,916.7 −4,069.2 −1,916.7

−6,705.8 −4,069.2 6,705.8 4,069.2
−4,069.2 −1,916.7 4,069.2 1,916.7

⎤
⎥⎥⎦

4
5
1
2

kN/m

Member 2

v =

⎡
⎢⎢⎣

0.30378
0

0.15189
−0.62579

⎤
⎥⎥⎦

3
6
1
2

m

L = 5 m, L̄ = 4.7828 m, cX = �0.86809, cY = 0.49641, u = 0.21721 m, Q = 1,962.1 kN

3 6 1 2

F =

⎡
⎢⎢⎣

−1,703.2
973.98
1,703.2
−973.98

⎤
⎥⎥⎦

3
6
1
2

kN    Kt =

⎡
⎢⎢⎣

6,705.8 −4,069.2 −6,705.8 4,069.2
−4,069.2 1,916.7 4,069.2 −1,916.7
−6,705.8 4,069.2 6,705.8 −4,069.2
4,069.2 −1,916.7 −4,069.2 1,916.7

⎤
⎥⎥⎦

3
6
1
2

kN/m 

Member 3

v =

⎡
⎢⎢⎣

0
0

0.30378
0

⎤
⎥⎥⎦

4
5
3
6

m

26201_10_ch10_p572-602.qxd  12/1/10  5:25 PM  Page 596

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 10.2 Geometrically Nonlinear Analysis of Plane Trusses 597

L = 8 m, L̄ = 8.3038 m, cX = 1, cY = 0, u = �0.30378 m, Q = �1,715 kN

4 5 3 6

F =

⎡
⎢⎢⎣

−1,715
0

1,715
0

⎤
⎥⎥⎦

4
5
3
6

kN Kt =

⎡
⎢⎢⎣

5,645.5 0 −5,645.5 0
0 206.53 0 −206.53

−5,645.5 0 5,645.5 0
0 −206.53 0 206.53

⎤
⎥⎥⎦

4
5
3
6

kN/m

Thus, the structure’s internal joint force vector f2 and the tangent stiffness matrix St2

are given by 

f2 =
⎡
⎣ 0

−1,948
11.722

⎤
⎦ kN St2 =

[ 13,412 0 −6,705.8
0 3,833.4 4,069.2

−6,705.8 4,069.2 12,351

]
kN/m

and the unbalanced joint force vector is obtained as

�U2 = P − f2 =
⎡
⎣ 0

−52.041
−11.722

⎤
⎦ kN

Note that the magnitudes of the unbalanced forces are now significantly smaller than
in the previous iteration cycle. By solving the linearized system of equations ΔU2 =
St2 Δd2, we determine the displacement correction vector

�d2 =
⎡
⎣ 0.0046508

−0.023449
0.0093015

⎤
⎦ m

To check for convergence, we write

√√√√√√√√

3∑
j=1

(
�dj

)2

3∑
j=1

(
dj

)2
=

√
(0.0046508)2 + (−0.023449)2 + (0.0093015)2

(0.15189)2 + (−0.62579)2 + (0.30378)2 = 0.036027 > e (= 0.001)

which indicates that, while the change in the structure’s deformed configuration is
now considerably smaller than in the previous iteration cycle, it is still not within the
prescribed tolerance of 0.1 percent. Thus, we perform another (third) iteration based
on a new approximate deformed configuration d3 of the structure, with

d3 = d2 + �d2 =
⎡
⎣ 0.15189

−0.62579
0.30378

⎤
⎦ +

⎡
⎣ 0.00046508

−0.023449
0.0093015

⎤
⎦ =

⎡
⎣ 0.15654

−0.64924
0.31308

⎤
⎦ m
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598 Chapter 10 Introduction to Nonlinear Structural Analysis

Iteration Cycle 3: 

Member 1

v =

⎡
⎢⎢⎣

0
0

0.15654
−0.64924

⎤
⎥⎥⎦

4
5
1
2

m

L = 5 m, L̄ = 4.7752 m, cX = 0.87044, cY = 0.49228, u = 0.22476 m, Q = 2,030.3 kN

4 5 1 2

F =

⎡
⎢⎢⎣

1,767.2
999.45

−1,767.2
−999.45

⎤
⎥⎥⎦

4
5
1
2

kN Kt =

⎡
⎢⎢⎣

6,740.8 4,052.7 −6,740.8 −4,052.7
4,052.7 1,866.9 −4,052.7 −1,866.9

−6,740.8 −4,052.7 6,740.8 4,052.7
−4,052.7 −1,866.9 4,052.7 1,866.9

⎤
⎥⎥⎦

4
5
1
2

kN/m

Member 2

v =

⎡
⎢⎢⎣

0.31308
0

0.15654
−0.64924

⎤
⎥⎥⎦

3
6
1
2

m

L = 5 m, L̄ = 4.7752 m, cX = �0.87044, cY = 0.49228, u = 0.22476 m, Q = 2,030.3 kN

3 6 1 2

F =

⎡
⎢⎢⎣

−1,767.2
999.45
1,767.2
−999.45

⎤
⎥⎥⎦

3
6
1
2

kN Kt =

⎡
⎢⎢⎣

6,740.8 −4,052.7 −6,740.8 4,052.7
−4,052.7 1,866.9 4,052.7 −1,866.9
−6,740.8 4,052.7 6,740.8 −4,052.7
4,052.7 −1,866.9 −4,052.7 1,866.9

⎤
⎥⎥⎦

3
6
1
2

kN/m

Member 3

v =

⎡
⎢⎢⎣

0
0

0.31308
0

⎤
⎥⎥⎦

4
5
3
6

m

L = 8 m, L̄ = 8.3131 m, cX = 1, cY = 0, u = �0.31308 m, Q = �1,767.5 kN

4 5 3 6

F =

⎡
⎢⎢⎣

−1,767.5
0

1,767.5
0

⎤
⎥⎥⎦

4
5
3
6

kN Kt =

⎡
⎢⎢⎣

5,645.5 0 −5,645.5 0
0 212.61 0 −212.61

−5,645.5 0 5,645.5 0
0 −212.61 0 212.61

⎤
⎥⎥⎦

4
5
3
6

kN/m
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Section 10.2 Geometrically Nonlinear Analysis of Plane Trusses 599

The structure’s internal joint force vector f3 and the tangent stiffness matrix St3 are
given by 

f3 =
⎡
⎣ 0

−1,998.9
0.27365

⎤
⎦ kN St3 =

⎡
⎣ 13,482 0 −6,740.8

0 3,733.8 4,052.7
−6,740.8 4,052.7 12,386

⎤
⎦kN/m

and the unbalanced joint force vector is

�U3 = P − f3 =
⎡
⎣ 0

−1.0925
−0.27365

⎤
⎦ kN

By solving the linearized system of equations ΔU3 = St3 Δd3, we determine the
displacement correction vector

�d3 =
⎡
⎣ 0.000098787

−0.00050706
0.00019757

⎤
⎦ m

To check for convergence, we write

√√√√√√√√

3∑
j=1

(
�dj

)2

3∑
j=1

(
dj

)2
=

√
(0.000098787)2 + (−0.00050706)2 + (0.00019757)2

(0.15654)2 + (−0.64924)2 + (0.31308)2 = 0.00074985 < e (= 0.001)

which indicates that the change in the structure’s deformed configuration Δd3 is now
within the specified tolerance of 0.1 percent and, therefore, the iterative process has
converged.  

Results of Geometrically Nonlinear Analysis: The final deformed configuration of the
truss is given by the joint displacement vector

d = d3 + �d3 =
⎡
⎣ 0.15654

−0.64924
0.31308

⎤
⎦ +

⎡
⎣ 0.000098787

−0.00050706
0.00019757

⎤
⎦ =

⎡
⎣ 0.15664

−0.64975
0.31327

⎤
⎦ m 

Member 1

v =

⎡
⎢⎢⎣

0
0

0.15664
−0.64975

⎤
⎥⎥⎦

4
5
1
2

m

L = 5 m, L̄ = 4.7751 m, cX = 0.87049, cY = 0.49219, u = 0.22493 m, Q = 2,031.7 kN
Qa1 = 2,031.7 kN(C) Ans

Ans
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600 Chapter 10 Introduction to Nonlinear Structural Analysis

F =

⎡
⎢⎢⎣

1,768.6
1,000

−1,768.6
−1,000

⎤
⎥⎥⎦

4
5
1
2

k N (5)

Member 2

v =

⎡
⎢⎢⎣

0.31327
0

0.15664
−0.64975

⎤
⎥⎥⎦

3
6
1
2

m

L = 5 m, L̄ = 4.7751 m, cX = −0.87049, cY = 0.49219, u = 0.22493 m, Q = 2,031.7 kN

Qa2 = 2,031.7 kN (C) Ans

F =

⎡
⎢⎢⎣

−1,768.6
1,000

1,768.6
−1,000

⎤
⎥⎥⎦

3
6
1
2

kN (6)

Member 3

v =

⎡
⎢⎢⎣

0
0

0.31327
0

⎤
⎥⎥⎦

4
5
3
6

m

L = 8 m, L̄ = 8.3133 m, cX = 1, cY = 0, u = −0.31327 m, Q = −1,768.6 kN

Qa3 = 1,768.6 kN (T) Ans

F =

⎡
⎢⎢⎣

−1,768.6
0

1,768.6
0

⎤
⎥⎥⎦

4
5
3
6

kN (7)

Finally, the support reaction vector R is assembled from the elements of the member
F vectors given in Eqs. (5) thru (7) as

R =
⎡
⎣ 1,768.6 − 1,768.6

1,000 + 0
1,000 + 0

⎤
⎦ =

⎡
⎣ 0

1,000
1,000

⎤
⎦ 4

5
6

kN Ans

Equilibrium Check: Applying the equations of equilibrium to the free body of the
truss in its deformed state (Fig. 10.8(c)), we obtain

+ →
∑

FX = 0 Checks

+ ↑
∑

FY = 0 1,000 − 2,000 + 1,000 = 0 Checks

� 
∑

M 1 = 0 − 2,000 (4.1566) + 1,000 (8.3133) = 0.1 kN.m ≈ 0
Checks

Y
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SUMMARY

In this chapter, we have studied the basic concepts of the geometrically non-
linear analysis of plane trusses. A block diagram summarizing the various
steps involved in the analysis is given in Fig. 10.7.

P R O B L E M S

Problems 601

Section 10.1

10.1 Derive the relationships between load P and displacement δ of
the truss shown in Fig. P10.1 by using: (a) the conventional linear
theory, and (b) the  geometrically nonlinear theory. Plot the 
P - δ equations using the numerical values:  θ = 30°, L = 3 m, E =
70 GPa, and A = 645.2 mm2, in the range 0 ≤ δ/L ≤ 0.5, to com-
pare the linear and nonlinear solutions.

δ

LL

θ θ

Undeformed
configuration

Deformed
configuration

P

EA = constant

Undeformed
configuration

(1 in.2)

(3 in.2)

Deformed
configuration

31.178 in.

6.1595 in.

10 ft

3 ft

E = 10,000 ksi

2,250 kN

3 m

4 m 2 m

EA = constant
E    = 10 GPa
A   = 1,200 mm2

Fig. P10.1

Fig. P10.2

Fig. P10.3

Section 10.2

10.2 By using the geometrically nonlinear analysis, determine
the joint loads P that cause the two-member truss to deform into
the configuration shown in Fig. P10.2.

10.3 through 10.5 Determine the joint displacements, mem-
ber axial forces, and support reactions for the trusses shown in
Figs. P10.3 through P10.5 by geometrically nonlinear analysis.
Use a displacement convergence tolerance of one percent.
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602 Chapter 10 Introduction to Nonlinear Structural Analysis

10.6 Develop a computer program for geometrically nonlinear
analysis of plane trusses. Use the program to analyze the trusses
of Problems 10.3 through 10.5, and compare the computer-
generated results to those obtained by hand calculations.

150 kN

4 m 12 m

EA = constant
E    = 70 GPa
A   = 1,200 mm2

16 m

(2 in
.2 ) (2 in.2)

8 ft 8 ft

E = 1,300 ksi

6 ft

6 ft
(1

 in
.2 )

400 k

800 k

Fig. P10.5

Fig. P10.4
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A
A computer program for analyzing two- and three-dimensional framed struc-
tures is available on the publisher’s website www.cengage.com/engineering.
The software, which can be used to analyze plane and space trusses, beams,
plane and space frames, and grids, is based on the matrix stiffness method. It
can also perform geometrically nonlinear analysis of plane trusses. The soft-
ware is designed for use on IBM and IBM-compatible personal computers with
Microsoft Windows® operating systems, and it provides an option for saving
input data into files for subsequent modification and/or execution.

Complete instructions for downloading and installing the software are
provided on the publisher’s website www.cengage.com/engineering/kassimali.

Starting the Computer Software

1. Click the Start button on the taskbar.

2. Point to the menu title Programs and then click the menu item MATRIX
ANALYSIS OF STRUCTURES 2.0—Kassimali; the software’s title
screen will appear.

Inputting Data

The computer software is designed so that any consistent set of units may be
used. Thus, all the data must be converted into a consistent set of units before
being input into the software. For example, if we wish to use units of kips and
inches, then the joint coordinates must be defined in inches, the moduli of
elasticity in ksi, the cross-sectional areas in in.2, the moments of inertia in
in.4, the joint loads and moments in kips and k-in., respectively, and distrib-
uted member loads in k/in.

To start entering data for a structure, click the menu title Project; and then
click the menu item New Project. The input data necessary for the analysis of a
structure is divided into six categories; the data in each category is input by click-
ing on the corresponding menu title and then entering information in the forms
and/or dialog boxes that appear on the screen. The input data categories are:

1. General structural data (project title and structure type)

2. Joint coordinates and supports

3. Material properties

4. Cross-sectional properties

603

COMPUTER SOFTWARE
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5. Member data (beginning and end joint numbers, material and cross-
sectional property numbers, member hinges if applicable, and angle of
roll in the case of space frames)

6. Loads (joint and member loads, support displacements, temperature
changes, and fabrication errors)

Results of the Analysis

Once all the necessary data has been entered, click the menu title Analyze of
the main screen to analyze the structure (Fig. A.1). The software will automat-
ically compute the joint displacements, member end forces, and support
reactions, using the matrix stiffness method. The results of the analysis are
displayed on the screen. The input data as well as the results of the analysis can
be printed by clicking on the menu title Project and then clicking on the menu
item Print, of the main screen.

604 Appendix A Computer Software

Fig. A.1 Main Screen
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B
In this text, we have focused our attention on the matrix stiffness method of struc-
tural analysis, which is the most commonly used method in professional practice
today, and which forms the basis for most of the currently available commercial
software for structural analysis. However, as stated in Section 1.3, another type
of matrix method, called the flexibility method, can also be used for structural
analysis. While the stiffness method can be applied to both statically determinate
and indeterminate structures, the flexibility method is applicable only to indeter-
minate structures. The flexibility method is essentially a generalization in matrix
form of the classical method of consistent deformations, and is generally consid-
ered convenient for analyzing small structures with a few redundants.

In this appendix, we present the basic concept of the flexibility method,
and illustrate its application to plane trusses. A more detailed treatment of this
method can be found in [3] and [52].

Essentially, the flexibility method of analysis involves removing enough
restraints from the indeterminate structure to render it statically determinate.
This determinate structure, which must be statically stable, is called the pri-
mary structure; and the reactions or internal forces associated with the excess
restraints removed from the given indeterminate structure to convert it into the
determinate (primary) structure, are termed redundants. The redundants are
then treated as unknown loads on the primary structure, and their values are de-
termined by solving the compatibility equations based on the condition that the
deformations of the primary structure due to the combined effect of the redun-
dants and the given external loading must be the same as the deformations of
the original indeterminate structure.

Consider, for example, a plane truss supported by five reaction compo-
nents, as shown in Fig. B.1(a) on the next page. The truss is internally deter-
minate, but externally indeterminate with two degrees of indeterminacy. This
indicates that the truss has two more, or redundant, reactions than necessary for
static stability. Thus, if we can determine two of the five reactions by using
compatibility equations based on the geometry of the deformation of the truss,
then the remaining three reactions and the member forces can be obtained from
equilibrium considerations.

To analyze the truss by the flexibility method, we must select two of the
unknown reactions and member forces to be the redundants. Suppose that we
select the horizontal and vertical reactions, R1 and R2,at the hinged support at
joint 5 to be the redundants. The hinged support at joint 5 is then removed from
the given indeterminate truss to obtain the statically determinate and stable

605
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54

3

1 2

1 3

5

42

6 7

100 k

9 ft

2 panels at 12 ft = 24 ft

R1
¯

R2
¯

60
�

EA = constant

(a) Indeterminate Truss

2

1 3

4

5

86.603

115.47

165.47

50 k

86.603 k

115.47

86
.6

03

86
.6

03

144.34

50 0

0

(b) Primary Truss Subjected to External Loading—QaO Vector

�

2

1 3

4

5

0

0 00

1 1

0

1 1k  × R1
¯

(c) Primary Truss Subjected to Unit Value of Redundant R1—First Column of b Matrix ¯

+

Fig. B.1

26201_App_B_p605-611.qxd  12/1/10  5:31 PM  Page 606

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



primary truss, as shown in Fig. B.1(b). The two redundants R1 and R2 are now
treated as unknown loads on the primary truss, and their magnitudes can be de-
termined from the compatibility conditions that the horizontal and vertical de-
flections at joint 5 of the primary truss due to the combined effect of the known
100 k load and the unknown redundants R1 and R2 must be equal to 0. This is
because the deflections in the horizontal and vertical directions of the given in-
determinate truss at the hinged support at joint 5 are 0.

The compatibility equations can be conveniently established by superim-
posing the deflections due to the external loading and the redundants, R1 and

Appendix B Flexibility Method 607

2

1 3

4

5

2.6667

1 01.6667

1.3333 1.3333

1.6667

× R2

(d) Primary Truss Subjected to Unit Value of Redundant R2—Second Column of b Matrix ¯

1

1k

2.6667

2.6667
¯

+

2

1

4

5

5.8494

41
.1

08

86
.6

03
68.513

25 25

75.825

(e) Support Reactions and Member Forces for Indeterminate Truss

45.495

5.8494

79.811

360
�

100 k

35.66

41.108

Fig. B.1 (continued)

26201_App_B_p605-611.qxd  12/1/10  5:31 PM  Page 607

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



R2,acting individually on the primary truss, as shown in Figs. B.1(b), (c), and
(d), respectively. Thus,

�O1 + f11 R1 + f12 R2 = 0 (B.1a)

�O2 + f21 R1 + f22 R2 = 0 (B.1b)

in which �Oi (i = 1, 2) represents the deflection at joint 5 of the primary truss
in the direction of the redundant Ri ,due to the external loading; and the flexi-
bility coefficient fij (i = 1, 2 and j = 1, 2) denotes the deflection of the primary
truss at the location and in the direction of a redundant Ri due to a unit value
of a redundant Rj . Equations (B.1) can be expressed in matrix form as[

�O1

�O2

]
+

[
f11 f12

f21 f22

] [
R1

R2

]
=

[
0
0

]
(B.2)

From the foregoing discussion for the example truss with two degrees of
indeterminacy, we realize that the compatibility equations for a general inde-
terminate structure with ni degrees of indeterminacy can be symbolically ex-
pressed as

(B.3)

in which the ni × 1 vectors R and �O denote, respectively, the unknown re-
dundants, and the deflections of the primary structure at the locations and in the
directions of the redundants due to external loads; and the ni × ni matrix f is
called the structure flexibility matrix. The reader may recall from a previous
course in mechanics of materials or structural analysis [18], that Maxwell’s
law of reciprocal deflections states that for a linearly elastic structure, the
deflection at a point i due to a unit load applied at a point j is equal to the de-
flection at j due to a unit load at i. As the flexibility coefficient fij denotes the
deflection of the primary structure at the location of the redundant Ri due to a
unit value of the redundant Rj , and the flexibility coefficient fji denotes the de-
flection corresponding to Rj due to a unit value of Ri ,according to Maxwell’s
law fij must be equal to fji (i.e., fij = fji). We can thus deduce that for linearly
elastic structures, the flexibility matrices are symmetric.

From Eqs. (B.1) through (B.3), we can see that the elements of the vector
�O and the flexibility matrix f represent deflections of the primary (statically
determinate) structure. Once these deflections have been evaluated, the com-
patibility equations (Eqs. (B.3)) can be solved for the unknown redundants.
With the redundants known, the other response characteristics of the structure
can be evaluated, either by equilibrium or superposition.

The deflections (and the flexibility coefficients) of a primary structure can
be conveniently expressed in terms of the forces and properties of its members,
using the virtual work method. Recall from a previous course in mechanics of
materials or structural analysis [18], that the expression of the virtual work
method for truss deflections is given by 

� =
NM∑
i=1

Qar Qav L

EA
(B.4)

�O + fR = 0
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in which NM denotes the number of members of the truss; Qar represents the
axial forces in truss members due to the real loading that causes the deflection
�,and Qav represents the axial forces in the truss members due to a virtual unit
load acting at the location and in the direction of the desired deflection
�. Equation (B.4) can be expressed in matrix form as

� = QT
avfM Qar (B.5)

in which Qav and Qar denote the NM × 1 vectors containing member axial
forces due to virtual (unit) and real (actual) loads, respectively; and fM is a
NM × NM diagonal matrix containing the member flexibilities (L/EA) on its
main diagonal (i.e., fMij = Li/EiAi for i = j, and fMij = 0 for i �= j ). The diag-
onal matrix fM is sometimes called the unassembled flexibility matrix. In order
to develop the expressions for �O and f in terms of the member forces and
properties, let us define a NM × 1 vector QaO which contains the axial forces
in the members of the primary truss due to the given external loading, and a
NM × ni matrix b, the jth column of which contains member axial forces due
to a unit value of the jth redundant (i.e., Rj = 1 ). The matrix b is commonly
referred to as an equilibrium matrix. In both QaO and b the member axial forces
are stored in sequential order of member numbers; that is, the axial forces in
the ith member are stored in the ith rows of QaO and b, and so on. The member
forces QaO for the example truss are shown in Fig. B.1(b). Note that since the
primary truss is statically determinate, the forces in its members due to the
given external loading can be conveniently evaluated by applying the method
of joints. By using the member forces shown in Fig. B.1(b) and the member
numbers given in Fig. B.1(a), we form the QaO vector for the truss as

QaO =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−50
0

115.47
86.603
86.603

−144.34
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7

k (B.6)

in which the tensile member axial forces are considered to be positive. The first
column of b is obtained by subjecting the primary truss to a unit value of the
redundant R1,as shown in Fig. B.1(c), and by computing the corresponding
member forces by applying the method of joints. The second column of b is
generated similarly by subjecting the primary truss to a unit value of the re-
dundant R2,and by computing the corresponding member axial forces (see
Fig. B.1(d)). The equilibrium matrix b thus obtained is

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1.3333
1 1.3333
0 −2.6667
0 −1
0 0
0 1.6667
0 −1.6667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k/k (B.7)
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The first element, �O1, of the �O vector represents deflection of the
primary truss at the location and in the direction of R1 due to the given external
loading. Therefore, for the purpose of calculating �O1 via the virtual work
method, the real system consists of the given external loading as shown in
Fig. B.1(b), and the virtual system consists of a unit load applied at the location
and in the direction of the redundant R1,which is the same as the system
shown in Fig. B.1(c) (without the multiplier R1). Thus, the virtual work ex-
pression for �O1 can be obtained by substituting QaO for Qar and the first col-
umn of b for Qav in Eq. (B.5); that is,

�O1 = bT
1 fM QaO (B.8)

in which b1 denotes the first column of b. The expression for the second ele-
ment, �O2, of �O , in terms of member axial forces, can be obtained in a simi-
lar manner, and is given by 

�O2 = bT
2 fM QaO (B.9)

with b2 denoting the second column of b. By combining Eqs. (B.8) and (B.9),
we obtain

(B.10)

The expressions for the elements of the flexibility matrix f, in terms of
member forces and properties, can be obtained in a similar manner. For ex-
ample, the virtual and real systems for the evaluation of f12 are shown in
Figs. B.1(c) and (d), respectively, with the corresponding member forces
stored in the first and second columns of b. Therefore,

f12 = bT
1 fM b2

Thus, the entire flexibility matrix f can be expressed in terms of the member
forces and properties as

(B.11)

Finally, by substituting Eqs. (B.10) and (B.11) into Eq. (B.3), we obtain the
structure’s compatibility equations in terms of its member forces and proper-
ties, as

(B.12)

To illustrate the application of the flexibility method to the analysis of
plane trusses, let us reconsider the truss of Fig. B.1. The QaO vector and the 
b matrix for this truss were determined previously, and are given in Eqs. (B.6)

bT fM QaO + (bT fM b) R = 0

f = bT fM b

�O = bT fM QaO
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and (B.7), respectively. The unassembled flexibility matrix for the structure is

fM = 1

EA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 0 0 0 0
0 12 0 0 0 0 0
0 0 12 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 9 0 0
0 0 0 0 0 15 0
0 0 0 0 0 0 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.13)

Substituting Eqs. (B.6), (B.7), and (B.13) into Eq. (B.10), and performing the
required matrix multiplications, we obtain

�O = bT fM QaO = 1

EA

[ −600
−8,883

]
(B.14)

Substitution of Eqs. (B.7) and (B.13) into Eq. (B.11) yields the flexibility
matrix:

f = bT fM b = 1

EA

[
24 32
32 220.33

]
(B.15)

Next, we substitute Eqs. (B.14) and (B.15) into the compatibility equations
(Eqs. (B.12)), and solve the resulting system of simultaneous equations for the
unknown redundants. This yields

R =
[ −35.66

45.495

]
k (B.16)

With the redundants known, the member axial forces in the actual indeter-
minate structure, Qa, can be conveniently evaluated by applying the superposi-
tion relationship (see Figs. B.1(a) through (d)):

(B.17)

Substituting Eqs. (B.6), (B.7), and (B.16) into Eq. (B.17), we determine the
axial forces in the members of the indeterminate truss to be 

Qa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25
25
−5.8494
41.108
86.603

−68.513
−75.825

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

These member axial forces are shown in Fig. B.1(e).

Qa = QaO + bR
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ANSWERS TO SELECTED PROBLEMS

614

2.21 x1 = −2; x2 = 3; x3 = −5

2.23 x1 = 8.7; x2 = −7.5; x3 = −4.2

2.25 x1 = 6; x2 = 7; x3 = 5; x4 = 2

2.27

A−1 =
⎡
⎣ 0.44444 −0.11111 0.22222

−0.11111 0.16239 −0.017094
0.22222 −0.017094 0.26496

⎤
⎦

2.29

A−1 =

⎡
⎢⎢⎢⎣

−0.62656 −0.71396 0.2849 −0.12372

−0.71396 −0.6958 0.2395 −0.052213

0.2849 0.2395 −0.098751 0.13053

−0.12372 −0.052213 0.13053 −0.08059

⎤
⎥⎥⎥⎦

Chapter 3

3.1

5

1

2 3 X

Y 2

3

4 6

1

NDOF � 2, NR � 4

Chapter 2

2.1

C =
⎡
⎣ 8 17 −3

−1 −1 −1
1 −7 1

⎤
⎦; D =

⎡
⎣−2 −1 1

17 −13 −7
−3 −1 9

⎤
⎦

2.3

C = −4; D =
⎡
⎣ 12 −18 6

4 −6 2
−2 30 −10

⎤
⎦

2.5

C =
⎡
⎣−18 −24 21

7 −9 53
38 38 58

⎤
⎦; D =

⎡
⎣−18 7 38

−24 −9 38
21 53 58

⎤
⎦

2.9 (ABC)T = CT BT AT

=

⎡
⎢⎢⎣

1,512 −464 −1,602 1,418
−900 5,300 200 −2,100
−810 −310 942 −620

270 410 −360 130

⎤
⎥⎥⎦

2.11

C =

⎡
⎢⎢⎣

332 76 −332 −76
76 168 −76 −168

−332 −76 332 76
−76 −168 76 168

⎤
⎥⎥⎦

2.13
dA
dx

=
⎡
⎣ −4x 3 cos x −7

3 cos x −2 sin x cos x −9x2

−7 −9x2 6 sin x cos x

⎤
⎦

2.15
dAB
dx

=
⎡
⎣ −120x3 −20x − 60x2

−90x2 −2 − 8x + 45x4

−6 + 28x + 125x4 28 + 24x2

⎤
⎦

2.17

∫ L

0
A dx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5L −L3

2L2 − L4

4

2L5

5
6L

5L3

3
− L2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.19

∫ L

0
AB dx

=

⎡
⎢⎢⎣

10L3

3
+ 9L4

4
+ 2L5

5
−9L − L4 − L6

6

−3L3 + 6L7

7
− L4

2

⎤
⎥⎥⎦

P =
[

12
−20

]
k
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3.11 and 3.13

F9 =

⎡
⎢⎢⎣

−560
−420

560
420

⎤
⎥⎥⎦ kN; Yes

3.15
S =

[
666.23 63.413
63.413 703.22

]
k/in.

3.17
d =

[
0.067082

−0.027951

]
in.

Qa1 = 2.2361 k (T); Qa2 = 24.597 k (C)

R =

⎡
⎢⎢⎢⎣

−1
−2

−11
22

⎤
⎥⎥⎥⎦ k

3.19
d =

[−0.06546
−0.10075

]
in.

Qa1 = 31.639 k (C); Qa2 = 48.283 k (C);
Qa3 = 37.889 k (C)

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

28.97
38.627

−10.609
36.373
31.639

0

⎤
⎥⎥⎥⎥⎥⎥⎦

k

3.21

d =
⎡
⎣ 0.2751

−0.32051
0.23438

⎤
⎦ in.

Qa1 = 85.969 k (T); Qa2 = 133.55 k (C);
Qa3 = 46.875 k (T); Qa4 = 19.775 k (C);
Qa5 = 46.875 k (T)

R =

⎡
⎢⎢⎢⎢⎣

−123.47
28.125

−26.531
−11.671
133.55

⎤
⎥⎥⎥⎥⎦ k

3.23

d =

⎡
⎢⎢⎢⎢⎢⎣

1.5685
0.78427

−1.261
5.2564

−1.5981

⎤
⎥⎥⎥⎥⎥⎦

mm
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3.3 Y

2

4

5

1

6

3
X

2

1

5 7

6 8

4
3

11 12

9

10

NDOF � 8, NR � 4

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−30

0
0

10
0
0

−30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

3.5

k1 = k3 =

⎡
⎢⎢⎣

483.33 0 −483.33 0
0 0 0 0

−483.33 0 483.33 0
0 0 0 0

⎤
⎥⎥⎦ k/in.

k2 =

⎡
⎢⎢⎣

402.78 0 −402.78 0
0 0 0 0

−402.78 0 402.78 0
0 0 0 0

⎤
⎥⎥⎦ k/in.

3.7 1,540 kN (T)

3.9

T1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

T2 =

⎡
⎢⎢⎣

0.6 0.8 0 0
−0.8 0.6 0 0

0 0 0.6 0.8
0 0 −0.8 0.6

⎤
⎥⎥⎦

T3 =

⎡
⎢⎢⎣

−0.28 0.96 0 0
−0.96 −0.28 0 0

0 0 −0.28 0.96
0 0 −0.96 −0.28

⎤
⎥⎥⎦
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Qa1 = 78.427 kN (T); Qa2 = Qa3 = 23.836 kN (C);
Qa4 = 41.205 kN (T); Qa5 = 33.709 kN (C);
Qa6 = 137.68 kN (C)

R =
⎡
⎣ −80

−20
140

⎤
⎦ kN

3.25

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.019447
−0.096374

0.038894
0.044168
0.031186

−0.054995
0.025912

−0.032004

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in.

Qa1 = Qa2 = 18.799 k (T); Qa3 = 5.098 k (T);
Qa4 = 5.098 k (C); Qa5 = 30 k (T);
Qa6 = 23.203 k (C);
Qa7 = 14.665 k (C); Qa8 = 22.835 k (C);
Qa9 = 8.4966 k (C)

R =

⎡
⎢⎢⎢⎣

−10
11.732
41.471
6.7973

⎤
⎥⎥⎥⎦ k

3.29 P = 1,095 kN

Chapter 5

5.1

P =
[−150

0

]
kN · m

5.5 Units: kips and inches

k1 =

⎡
⎢⎢⎣

5.5556 500 −5.5556 500
500 60,000 −500 30,000

−5.5556 −500 5.5556 −500
500 30,000 −500 60,000

⎤
⎥⎥⎦

k2 =

⎡
⎢⎢⎣

11.111 1,000 −11.111 1,000
1,000 120,000 −1,000 60,000

−11.111 −1,000 11.111 −1,000
1,000 60,000 −1,000 120,000

⎤
⎥⎥⎦

5.7 Units: kips and inches

k1 = k4 =

⎡
⎢⎢⎣

9.4401 1,132.8 −9.4401 1,132.8
1,132.8 181,250 −1,132.8 90,625

−9.4401 −1,132.8 9.4401 −1,132.8
1,132.8 90,625 −1,132.8 181,250

⎤
⎥⎥⎦

k2 = k3 =

⎡
⎢⎢⎣

17.901 1,611.1 −17.901 1,611.1
1,611.1 193,333 −1,611.1 96,667

−17.901 −1,611.1 17.901 −1,611.1
1,611.1 96,667 −1,611.1 193,333

⎤
⎥⎥⎦

5.9

Q1 =

⎡
⎢⎢⎣

2.7848 k
1,002.5 k-in.

−2.7848 k
−501.23 k-in.

⎤
⎥⎥⎦; Yes

5.11 FSb = FSe = wL

2
; FMb = −FMe = wL2

12

5.13 FSb = 7wL

20
; FMb = wL2

20
; FSe = 3wL

20
; FMe = −wL2

30

5.15

Q f 1 =

⎡
⎢⎢⎣

135 kN
337.5 kN · m

135 kN
−337.5 kN · m

⎤
⎥⎥⎦ Q f 2 =

⎡
⎢⎢⎣

90 kN
300 kN · m
90 kN

−300 kN · m

⎤
⎥⎥⎦
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X

Y 

1 2 3

4

6

3 5

1

2

NDOF � 2, NR � 4

X

Y 

1 4

2 3

4

8

53 6 7

1 2

NDOF � 2, NR � 6

P =
[−25 k

720 k-in.

]

5.3
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Q f 3 =

⎡
⎢⎢⎣

131.25 kN
281.25 kN · m
56.25 kN

−187.5 kN · m

⎤
⎥⎥⎦

5.17

Q1 =

⎡
⎢⎢⎣

69.52 k
4,945.9 k-in.

2.48 k
4,707.8 k-in.

⎤
⎥⎥⎦; Yes

5.19 Units: kips and inches

S =
[

16.667 500
500 180,000

]

5.21 Units: kips and inches

S =

⎡
⎢⎢⎢⎢⎣

27.341 478.3 1,611.1 0 0
478.3 374,583 96,667 0 0

1,611.1 96,667 386,667 −1,611.1 96,667
0 0 −1,611.1 27.341 −478.3
0 0 96,667 −478.3 374,583

⎤
⎥⎥⎥⎥⎦

5.23 Units: kips and inches

P f = −Pe =
⎡
⎣ 0

30
360

⎤
⎦

5.25 Units: kN and meters

P f = −Pe =

⎡
⎢⎢⎢⎣

337.5
−37.5

−18.75
−187.5

⎤
⎥⎥⎥⎦

5.27
d =

[−1.7673 in.
0.0089091 rad

]

Q1 =

⎡
⎢⎢⎣

14.273 k
1,150.9 k-in.

−14.273 k
1,418.2 k-in.

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

−10.727 k
−698.18 k-in.

10.727 k
−1,232.7 k-in.

⎤
⎥⎥⎦

R =

⎡
⎢⎢⎣

14.273 k
1,150.9 k-in.
10.727 k

−1,232.7 k-in.

⎤
⎥⎥⎦

5.29
d =

[−0.007619
0.0019048

]
rad

Q1 =

⎡
⎢⎢⎣

−20 kN
−40 kN · m

20 kN
−80 kN · m

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

−15 kN
−70 kN · m

15 kN
−20 kN · m

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎣

5 kN
20 kN · m
−5 kN
10 kN · m

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−20 kN
−40 kN · m

5 kN
20 kN
−5 kN
10 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5.31

d =
⎡
⎣ 0.014375

−0.011422
0.014244

⎤
⎦ rad

Q1 =

⎡
⎢⎢⎣

41.615 k
2,267.1 k-in.
30.385 k

−649.85 k-in.

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

1.1538 k
649.85 k-in.

−1.1538 k
−317.54 k-in.

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎣

11.103 k
317.54 k-in.
8.8974 k

0

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎣

41.615 k
2,267.1 k-in.
31.538 k
9.9487 k
8.8974 k

⎤
⎥⎥⎥⎥⎦

5.33

d =

⎡
⎢⎢⎣

−0.019391
0.0071406

−0.0056563
0.017242

⎤
⎥⎥⎦ rad

Q1 =

⎡
⎢⎢⎢⎣

108.87 kN
0

161.13 kN
−392 kN · m

⎤
⎥⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

93.167 kN
392 kN · m

86.833 kN
−344.5 kN · m

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎣

155.97 kN
344.5 kN · m

31.533 kN
120 kN · m

⎤
⎥⎥⎥⎦ R =

⎡
⎢⎢⎢⎣

108.87
254.3
242.8

31.533

⎤
⎥⎥⎥⎦ kN

5.35

d =

⎡
⎢⎢⎢⎢⎣

−1.8705 in.
0.0023884 rad

0
−1.8705 in.

−0.0023884 rad

⎤
⎥⎥⎥⎥⎦
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Q1 =

⎡
⎢⎢⎣

20.363 k
2,335.4 k-in.

−20.363 k
2,551.8 k-in.

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

−29.637 k
−2,551.8 k-in.

29.637 k
−2,782.7 k-in.

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎣

29.637 k
2,782.7 k-in.

−29.637 k
2,551.8 k-in.

⎤
⎥⎥⎦ Q4 =

⎡
⎢⎢⎣

− 20.363 k
−2,551.8 k-in.

20.363 k
−2,335.4 k-in.

⎤
⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎣

20.363 k
2,335.4 k-in.
59.273 k
20.363 k

−2,335.4 k-in.

⎤
⎥⎥⎥⎥⎥⎦

Chapter 6

6.1

618 Answers to Selected Problems

Y 

X

2

3

1 7

9

8

4

5

6

2

1

3

NDOF = 3, NR = 6

Y 

2

3 6

8

7

1

11

129
10

4

5

X

2

1

3

4

NDOF = 6, NR = 6

Y 

X

4

7
9

8

2

13

5
2

3

1

NDOF = 2, NR = 7
P = 0

6

6.5

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

30 k
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

6.3

P =
⎡
⎣ 0

0
−900 k-in.

⎤
⎦
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6.7 Units: kips and inches

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1,244.6 0 0 −1,244.6 0 0

0 12.839 1,540.6 0 −12.839 1,540.6

0 1,540.6 246,500 0 −1,540.6 123,250

−1,244.6 0 0 1,244.6 0 0

0 −12.839 −1,540.6 0 12.839 −1,540.6

0 1,540.6 123,250 0 −1,540.6 246,500

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

829.72 0 0 −829.72 0 0

0 3.804 684.72 0 −3.804 684.72

0 684.72 164,333 0 −684.72 82,167

−829.72 0 0 829.72 0 0

0 −3.804 −684.72 0 3.804 −684.72

0 684.72 82,167 0 −684.72 164,333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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7

Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
20

1,200
0
20

−1,200

⎤
⎥⎥⎥⎥⎥⎥⎦

Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
22.5

1,350
0

22.5
−1,350

⎤
⎥⎥⎥⎥⎥⎥⎦

6.9 Units: kips and inches

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

409.26 0 0 −409.26 0 0
0 2.0243 218.62 0 −2.0243 218.62
0 218.62 31,481 0 −218.62 15,741

−409.26 0 0 409.26 0 0
0 −2.0243 −218.62 0 2.0243 −218.62
0 218.62 15,741 0 −218.62 31,481

⎤
⎥⎥⎥⎥⎥⎥⎦

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

491.11 0 0 −491.11 0 0
0 3.4979 314.81 0 −3.4979 314.81
0 314.81 37,778 0 −314.81 18,889

−491.11 0 0 491.11 0 0
0 −3.4979 −314.81 0 3.4979 −314.81
0 314.81 18,889 0 −314.81 37,778

⎤
⎥⎥⎥⎥⎥⎥⎦

Q f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
27
972
0
27

−972

⎤
⎥⎥⎥⎥⎥⎥⎦

Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4.5
6

270
−4.5

6
−270

⎤
⎥⎥⎥⎥⎥⎥⎦

6.11 Units: kips and inches

k1 = k3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1,500 0 0 −1,500 0 0
0 2.1484 257.81 0 −2.1484 257.81
0 257.81 41,250 0 −257.81 20,625

−1,500 0 0 1,500 0 0
0 −2.1484 −257.81 0 2.1484 −257.81
0 257.81 20,625 0 −257.81 41,250

⎤
⎥⎥⎥⎥⎥⎥⎦

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1,620 0 0 −1,620 0 0
0 2.6 390 0 −2.6 390
0 390 78,000 0 −390 39,000

−1,620 0 0 1,620 0 0
0 −2.6 −390 0 2.6 −390
0 390 39,000 0 −390 78,000

⎤
⎥⎥⎥⎥⎥⎥⎦

Q f 1 = Q f 3 = 0 ; Q f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
25

1,250
0

25
−1,250

⎤
⎥⎥⎥⎥⎥⎥⎦
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6.13
FAb = Wl2

L
; FAe = Wl1

L
;

FSb = FSe = FMb = FMe = 0

6.15

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

128.12 k
−78.786 k
− 5,875 k-in.

−128.12 k
98.786 k

−5,179.3 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

111.62 k
11.038 k

1,942.5 k-in.
−140.46 k
−80.268 k
5,179.3 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−70.97 k
−20.192 k
−2,176.6 k-in.

70.97 k
20.192 k

−1,942.5 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎦

; Yes
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6.17

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.6 0.8 0 0 0 0
−0.8 −0.6 0 0 0 0

0 0 1 0 0 0
0 0 0 −0.6 0.8 0
0 0 0 −0.8 −0.6 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; T2 = I

6.19

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.96 0.28 0 0 0 0
−0.28 −0.96 0 0 0 0

0 0 1 0 0 0
0 0 0 −0.96 0.28 0
0 0 0 −0.28 −0.96 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

6.21

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.44721 0.89443 0 0 0 0
−0.89443 0.44721 0 0 0 0

0 0 1 0 0 0
0 0 0 0.44721 0.89443 0
0 0 0 −0.89443 0.44721 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

T2 = I

6.23 and 6.31

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−2.0939 in.
−0.05147 in.

0.0079542 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1.8078 in.
−0.90922 in.

0.0028882 rad
−2.0939 in.
−0.05147 in.

0.0079542 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1.8078 in.
−0.90922 in.

0.0028882 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

78.786 k
128.12 k

−5,875 k-in.
−98.786 k
−128.12 k
−5,179.3 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−98.786 k
−53.119 k
1,942.5 k-in.
98.786 k
128.12 k

5,179.3 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

51.214 k
−53.119 k
−2,176.6 k-in.

−51.214 k
53.119 k

−1,942.5 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; Yes
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6.25 Units: kN and meters

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

94,770 −123,922 −7,315.2 −94,770 123,922 −7,315.2
167,058 −5,486.4 123,922 −167,058 −5,486.4

60,960 7,315.2 5,486.4 30,480
(symmetric) 94,770 −123,922 7,315.2

167,058 5,486.4
60,960

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

216,667 0 0 −216,667 0 0
1,058.3 6,350 0 −1,058.3 6,350

50,800 0 −6,350 25,400
(symmetric) 216,667 0 0

1,058.3 −6,350
50,800

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F f1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

50
37.5

−156.25
50

37.5
156.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
144
288
0

144
−288

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6.27 Units: kN and meters

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

694.92 0 −5,559.4 −694.92 0 −5,559.4
200,000 0 0 −200,000 0

59,300 5,559.4 0 29,650
694.92 0 5,559.4

200,000 0
59,300

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

117,980 −34,357 −637.59 −117,980 34,357 −637.59
10,203 −2,186 34,357 −10,203 −2,186

37,952 637.59 2,186 18,976
117,980 −34,357 637.59

10,203 2,186
37,952

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F f1 = 0; F f2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
250

−1, 000
0

250
1, 000

⎤
⎥⎥⎥⎥⎥⎥⎦
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6.29 Units: kips and inches

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

78.188 152.84 −212.43 −78.188 −152.84 −212.43
307.44 106.21 −152.84 −307.44 106.21

42,485 212.43 −106.21 21,243
(symmetric) 78.188 152.84 212.43

307.44 −106.21
42,485

⎤
⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

304 0 0 −304 0 0
1.6667 250 0 −1.6667 250

50,000 0 −250 25,000
(symmetric) 304 0 0

1.6667 −250
50,000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F f1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
11.18
223.61

0
11.18

−223.61

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
16.25
875
0

21.25
−1,000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6.33 Units: kN and meters

S =
⎡
⎣ 311,437 −7,315.2 0

−7,315.2 111,760 25,400
0 25,400 50,800

⎤
⎦ P f = −Pe =

⎡
⎣ 50

131.75
−288

⎤
⎦

6.35 Units: kN and meters

S =
[

210,203 −2,186
−2,186 97,252

]
P f = −Pe =

[
250

−1,000

]

6.37 Units: kips and inches

S =

⎡
⎢⎢⎢⎣

382.19 152.84 212.43 0
152.84 309.11 143.79 250
212.43 143.79 92,485 25,000

0 250 25,000 50,000

⎤
⎥⎥⎥⎦ P f = −Pe =

⎡
⎢⎢⎢⎣

0
27.431
651.4

−1,000

⎤
⎥⎥⎥⎦

6.39

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−30 k
−180 k-in.

45 k
0

240 k-in.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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6.41
d =

[
0.0034433 in.
0.0029828 rad

]

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−7.3457 k
16.132 k
517.88 k-in.

7.3457 k
13.869 k

−314.26 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3.2599 k
9.3161 k
314.26 k-in.

−3.2599 k
0.43406 k
−1.7167 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.3457 k
16.132 k
517.88 k-in.

20.461 k
−1.6545 k
−2.8422 k
−1.7167 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.43
d =

⎡
⎣ −0.00026195 m

−0.0043172 rad
0.0078279 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

40.864 kN
−101.59 kN
−417.51 kN · m
−40.864 kN
−23.406 kN

26.577 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−56.756 kN
166.29 kN
267.51 kN · m
56.756 kN
121.71 kN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

43.244 kN
−18.648 kN

26.577 kN · m
259.94 kN
56.756 kN
121.71 kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6.45
d =

[−0.0010826 m
0.010258 rad

]

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

216.53 kN
57.029 kN
304.16 kN · m

−216.53 kN
−57.029 kN

608.31 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

31.198 kN
−216.45 kN
−608.31 kN · m

108.8 kN
−263.55 kN

1,197 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−57.029 kN
216.53 kN
304.16 kN · m
87.686 kN

−30.656 kN
283.47 kN
1,197 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.47

d =

⎡
⎢⎢⎢⎣

0.062194 in.
−0.13533 in.
−0.014529 rad

0.027941 rad

⎤
⎥⎥⎥⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

45.788 k
1.7551 k

−57.433 k-in.

−25.787 k
8.245 k

−813.28 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

18.907 k
19.378 k
813.28 k-in.

−18.907 k
18.123 k

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎣

18.907 k
41.739 k

−57.433 k-in.
−18.907 k

18.123 k

⎤
⎥⎥⎥⎥⎥⎦

6.49

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.8978 in.
−0.02114 in.
−0.011687 rad

3.5004 in.
−1.2117 in.

0.0038711 rad
4.0922 in.

−0.029507 in.
−0.0038888 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

−12.797 k
42.573 k

2,693.5 k-in.
−37.203 k

59.424 k
5,640.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

42.573 k
12.797 k

2,693.5 k-in.
−42.573 k
−12.797 k

991.87 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

52.861 k
20.057 k

−991.87 k-in.
−28.861 k

24.941 k
−4.395 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

60.791 k
−34.925 k

−5,074.2 k-in.
−36.791 k
−10.073 k

4.395 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

59.424 k
37.203 k

5,640.4 k-in.
−59.424 k
−37.203 k
5,074.2 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 7

7.1 d = [−2.6519] in.

Q1 =

⎡
⎢⎢⎣

24.591 k
2,301.9 k-in.
5.4087 k

0

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

−5.4087 k
0

27.909 k
−2,998.6 k-in.

⎤
⎥⎥⎦
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R =

⎡
⎢⎢⎢⎢⎣

24.591 k
2,301.9 k-in.

0
27.909 k

−2,998.6 k-in.

⎤
⎥⎥⎥⎥⎦

7.3
d =

[
0.014375

−0.011422

]
rad

Q1 =

⎡
⎢⎢⎣

41.615 k
2,267.1 k-in.
30.385 k

−649.85 k-in.

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

1.1538 k
649.85 k-in.

−1.1538 k
−317.54 k-in.

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎣

11.103 k
317.54 k-in.
8.8974 k

0

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎢⎢⎣

41.615 k
2,267.1 k-in.
31.538 k
9.9487 k
8.8974 k

0

⎤
⎥⎥⎥⎥⎥⎥⎦

7.5
d =

⎡
⎣ 0.0071406

−0.0056563
0.017242

⎤
⎦ rad

Q1 =

⎡
⎢⎢⎣

108.87 kN
0

161.13 kN
−392 kN · m

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

93.167 kN
392 kN · m

86.833 kN
−344.5 kN · m

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎣

155.97 kN
344.5 kN · m

31.533 kN
120 kN · m

⎤
⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎣

108.87 kN
0

254.3 kN
242.8 kN

31.533 kN

⎤
⎥⎥⎥⎥⎥⎦

7.7
d =

[−0.00026195 m
−0.0043172 rad

]

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

40.864 kN
−101.59 kN
−417.51 kN · m
−40.864 kN
−23.406 kN

26.577 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−56.756 kN
166.29 kN
267.51 kN · m
56.756 kN
121.71 kN

0

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

43.244 kN
−18.648 kN

26.577 kN · m
259.94 kN
56.756 kN
121.71 kN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

7.9

d =
⎡
⎣−0.000901 m

−0.003276 m
0.010155 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.605 kN
46.434 kN

0
−94.605 kN

73.566 kN
−135.66 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

175.62 kN
−13.456 kN

0
−115.62 kN
−31.544 kN

135.66 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.605 kN
46.434 kN

0
−94.605 kN

148.57 kN
0

⎤
⎥⎥⎥⎥⎥⎥⎦

7.11 Pmax = 951.36 kN

7.13 Pmax = 47.453 kN

7.17
d =

⎡
⎣ 0.23122

−0.36987
0.14063

⎤
⎦ in.

Qa1 = 72.258 k (T); Qa2 = 154.11 k (C);
Qa3 = 28.125 k (T); Qa4 = 4.9438 k (T);
Qa5 = 65.625 k (T)

R =

⎡
⎢⎢⎢⎢⎣

−94.758
16.875

−55.242
−43.489
176.61

⎤
⎥⎥⎥⎥⎦ k

7.19
d =

[−0.0036571
0.0017714

]
rad

Q1 =

⎡
⎢⎢⎣

− 4.87 kN
−1.8939 kN · m

4.87 kN
−32.196 kN · m

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

15.624 kN
32.196 kN · m

−15.624 kN
77.176 kN · m

⎤
⎥⎥⎦
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Q3 =

⎡
⎢⎢⎣

−24.147 kN
−77.176 kN · m

24.147 kN
−91.853 kN.m

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4.87 kN
−1.8939 kN · m

20.494 kN
−39.771 kN

24.147 kN
−91.853 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7.21

d =

⎡
⎢⎢⎢⎢⎣

−2.6114 in.
−0.0020419 rad

0
−22.6114 in.

0.0020419 rad

⎤
⎥⎥⎥⎥⎦

Q1 =

⎡
⎢⎢⎣

22.339 k
2,773.2 k-in.

−22.339 k
2,588.2 k-in.

⎤
⎥⎥⎦ Q2 =

⎡
⎢⎢⎣

−27.661 k
−2,588.2 k-in.

27.661 k
−2,390.8 k-in.

⎤
⎥⎥⎦

Q3 =

⎡
⎢⎢⎣

27.661 k
2,390.8 k-in.

−27.661 k
2,588.2 k-in.

⎤
⎥⎥⎦ Q4 =

⎡
⎢⎢⎣

−22.339 k
−2,588.2 k-in.

22.339 k
−2,773.2 k-in.

⎤
⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎣

22.339 k
2,773.2 k-in.
55.322 k
22.339 k

−2,773.2 k-in.

⎤
⎥⎥⎥⎥⎦

7.23

d =
⎡
⎣−0.00089687 m

−0.053264 m
0.0071551 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.171 kN
46.707 kN

0
−94.171 kN

73.293 kN
−132.93 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

175.14 kN
−13.638 kN

0
−115.14 kN
−31.362 kN

132.93 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.171 kN
46.707 kN

0
−94.171 kN

148.29 kN
0

⎤
⎥⎥⎥⎥⎥⎥⎦

7.29
d =

⎡
⎣ 0.30484

−0.15602
0.17587

⎤
⎦ in.

Qa1 = 95.262 k (T); Qa2 = 119.61 k (C);
Qa3 = 35.175 k (T); Qa4 = 36.527 k (C);
Qa5 = 58.575 k (T)

R =

⎡
⎢⎢⎢⎢⎣

−123.4
21.105

−26.598
− 4.7525
133.65

⎤
⎥⎥⎥⎥⎦ k

7.31

d =
⎡
⎣ 0.0053481 m

0.0035829 m
−0.00056336 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

8.7792 kN
−4.3505 kN
−16.873 kN · m
−8.7792 kN

4.3505 kN
−22.282 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.3505 kN
8.7792 kN
30.394 kN · m

−4.3505 kN
−8.7792 kN

22.282 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

8.7792 kN
−4.3505 kN
−16.873 kN · m
−8.7792 kN

4.3505 kN
30.394 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

7.33

d =
⎡
⎣−0.0068989 m

−0.01902 m
0.0095899 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.386 kN
46.572 kN

0
−94.386 kN

73.428 kN
−134.28 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

175.37 kN
−13.548 kN

0
−115.37 kN
−31.452 kN

134.28 kN · m

⎤
⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

94.386 kN
46.572 kN

0
−94.386 kN

148.43 kN
0

⎤
⎥⎥⎥⎥⎥⎥⎦
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Chapter 8

8.1

d =
⎡
⎣ 17.871

−5.0794
−7.7663

⎤
⎦ mm

Qa1 = 24.768 kN (T); Qa2 = 93.974 kN (C);
Qa3 = 107 kN (C)

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.5693
−22.277

9.2822
−52.351

69.802
−34.901
−17.079

102.48
25.619

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

kN

8.3

d =
⎡
⎣ 1.0795

−0.59449
−1.4492

⎤
⎦ mm

Qa1 = 12.47 kN (T); Qa2 = 15.37 kN (T);

Qa3 = 67.569 kN (C); Qa4 = 81.813 kN (C)

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7.7899
−9.7373

0
0

−13.179
7.9076
−42.21
52.763

0
0

70.154
42.092

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

kN

8.5

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.3357
−1.8141

1.5783
4.0207

−1.5814
−1.6683

0.77404
−0.79219
−1.5783

0.86404
−0.97997

1.6683

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mm R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15.75
33.75
−6.75

−29.25
146.25
−29.25
−51.75
146.25
29.25
6.75

33.75
6.75

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

kN

Qa1 = Qa3 = 93.531 kN (C); Qa2 = 151.99 kN (C);
Qa4 = 35.074 kN (C); Qa5 = 66.556 kN (T);
Qa6 = Qa8 = 0; Qa7 = 66.556 kN (C);
Qa9 = 63 kN (C); Qa10 = Qa11 = Qa12 = 18 kN (C)

8.7
d =

[ −0.011755
0.011755

]
rad

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

13.758 k
36.56 k-in.

487.97 k-in.
8.7422 k
−36.56 k-in.
−36.56 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8.7422 k
−36.56 k-in.

36.56 k-in.
13.758 k
36.56 k-in.

−487.97 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13.758 k
36.56 k-in.

487.97 k-in.
17.484 k
13.758 k

−487.97 k-in.
−36.56 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.9

d =
⎡
⎣ −3.4115 in.

0.038485 rad
0.02126 rad

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

46.509 k
−18.507 k-in.
8,177.2 k-in.

−46.509 k
18.507 k-in.

−1,479.9 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−13.491 k
20.1 k-in.

−18.508 k-in.
13.491 k

−20.1 k-in.
−3,219.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

46.509 k
−8,177.2 k-in.
−18.507 k-in.

13.491 k
−20.1 k-in.

−3,219.4 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

8.11

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.77317 in.
0.011346 rad

−0.0032328 rad
−4.529 in.

0.0092457 rad
−0.017808 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7.5755 k
−14.969 k-in.
2,746.4 k-in.

−7.5755 k
14.969 k-in.

−19.229 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7.5755 k
19.229 k-in.
14.969 k-in.
22.425 k

−19.229 k-in.
12.198 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

82.425 k
−12.198 k-in.

18,854 k-in.
−22.425 k

12.198 k-in.
19.228 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7.5755 k
−14.969 k-in.

2,746.4 k-in.
82.425 k

−12.198 k-in.
18,854 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

8.15

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.06273 in.
0.03588 in.

−0.1942 in.
−0.4836 rad

0.001013 rad
0.3067 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.818 k
−5.406 k
−6.013 k
−600.5 k-in.

−0.5053 k-in.
381.5 k-in.
11.81 k
5.968 k

0.01179 k
301.5 k-in.

−2.204 k-in.
477.2 k-in.

−7.996 k
−0.562 k

6.001 k
193.9 k-in.

−1.143 k-in.
−215.9 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.17

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.265 in.
−0.01613 in.

0.3561 in.
0.001313 rad
0.01004 rad

−0.001108 rad
3.266 in.

−0.0151 in.
0.3548 in.

−0.0001316 rad
0.01004 rad

−0.002582 rad
3.271 in.

−0.01613 in.
−0.3561 in.
−0.001313 rad

0.01006 rad
0.001105 rad

−3.271 in.
−0.0151 in.
−0.3548 in.

0.0001316 rad
0.01006 rad
0.002585 rad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.45 k
61.97 k
−4.62 k

−1,378 k-in.
−5.934 k-in.
−2,021 k-in.
−9.255 k

58.03 k
−14.6 k

−2,572 k-in.
−5.934 k-in.

1,758 k-in.
−11.46 k

61.97 k
4.62 k

1,378 k-in.
−5.947 k-in.

2,024 k-in.
9.271 k
58.03 k
14.6 k

2,572 k-in.
−5.947 k-in.
−1,761 k-in.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Chapter 9

9.1 d =
[

0.063295
−0.42908

]
in.

Qa1 = 30.593 k (T); Qa2 = 122.96 k (C);
Qa3 = 24.343 k (T)

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

73.777
98.369
6.816

−23.369
−30.593

0

⎤
⎥⎥⎥⎥⎥⎥⎦

k

9.3 See answer to Problem 7.19.

9.11

FSb = 15W

33
; FMb = 7W L

66
; FSe = 18W

33
; FMe = −5W L

33

9.13 d1 = 6; d2 = −11; d3 = 9

Chapter 10

10.1 (a) P ∼=
(

2E A sin2θ

L

)
δ

10.3  d =
[−0.23233

−1.0581

]
m

Qa1 = 1,827.2 kN (C); Qa2 = 2,152.7 kN (C);

R =

⎡
⎢⎢⎣

1, 624.2
837.11

−1, 624.2
1, 412.9

⎤
⎥⎥⎦ kN

10.5
d =

⎡
⎣−0.040921

3.0647
−3.3036

⎤
⎦ m

Qa1 = 859.34 kN (C); Qa2 = 1,032.5 kN (T);
Qa3 = 1,122.5 kN (C)

R =
⎡
⎣−0.013871

−572.3
722.27

⎤
⎦ kN
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(b) P = 2E A

[
sin θ +

(
δ

L

)]
⎡
⎢⎢⎢⎢⎣

√
1 +

(
δ

L

)2

+ 2

(
δ

L

)
sin θ − 1

√
1 +

(
δ

L

)2

+ 2

(
δ

L

)
sin θ

⎤
⎥⎥⎥⎥⎦
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A
Addition operations, matrix algebra,

27–28, 45
Analysis module, 129, 140–160,

233–245, 322–333
beam computer analysis, 233–245
joint displacements d, 150–152, 238,

329
joint loads P, 148–150, 234–238,

324–329
member end force calculations,

152–159, 239–243, 329–333
plane frame computer analysis,

322–333
plane truss computer analysis,

140–160
structure coordinate number assign-

ment, 54, 140–143, 233–234,
322–324

structure stiffness matrix S, 143–148,
234–237, 324–329

support reactions R, 135–136,
152–159, 239–243, 329–333

Analytical models, 10–11, 22, 49–57, 59,
163–171, 250–255, 350–361,
366–385, 417–498, 530–532

beams, 163–171, 350–361
degrees of freedom, 51–57, 166–168,

252–255
global coordinate system, 49–50,

165–166, 250–252
grids, 433–455
hinged joints, 350–361
inclined roller supports, 530–532
joint displacement d, 53, 252–255
joint load P, 52–56, 168–171
line diagrams for, 11
local coordinate system, 50–52, 166,

251–252
matrix structures and, 10–11, 22
member releases, 350–361, 

366–385

plane frames, 250–255, 350–361
plane trusses, 49–57, 59, 530–532
restrained coordinates, 54–55,

252–255
space frames, 456–494
space trusses, 418–433
structure coordinates, 51–57
support displacements, 366–385
support reactions R, 56, 171
three-dimensional framed structures,

417–498
Angle of roll �, 479–483
Angle of twist �, 440–444
Approximate matrix analysis, 506–514
Arrow notation, 54–55, 168, 254,

435–436
Axial forces, member stiffness, 61–63

B
Banded structure stiffness, 559–568
Beams, 6, 162–248, 348–362, 376–381

analysis modules, 233–245
analytical model, 163–171
bending moment M and, 175–178
bending moment M, 175–178
code number technique for, 202–206
computer analysis, 224–245, 361–363
defined, 6, 163
deflection and, 175–184
degrees of freedom, 166–168
finite-element formulation, 185–191
fixed-end forces, 174–175, 191–197,

206–214
global coordinate system, 165–166
hinged joint analysis, 350–362
hinges, 348–362
input (data) modules, 224–233
joint load P, 168, 206–214
load W and, 191–197
local coordinate system, 166
local member stiffness matrix 

k, 175–184, 188–191, 202–206
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Beams (contd.)
matrix structure classification, 6
member releases, 348–362
member stiffness, 171–184
procedure for analysis, 214–224, 350
sign convention for, 175–176, 195
stiffness relations, 348–350
structure coordinates, 167–168,

233–234
structure fixed–joint forces, 206–214
structure stiffness, 197–206
support displacement analysis, 376–381
support reactions R, 169
virtual work used for, 185–191

Bending moment M, beams, 175–178
Building frames, approximate matrix

analysis of, 506–514

C
Code number technique, 97–102,

202–206, 209, 293–299
beams, 202–206, 209
local member stiffness matrix k,

202–206
plane frames, 293–299
plane trusses, 97–102
structure fixed-joint forces Pf,

206–214, 293–299
structure stiffness matrix S, 97–101,

202–206, 293–299
support reaction R, 101–102

Column matrix, 25
Compatibility conditions, 13–14
Compatibility equations, 89, 91–92,

197–198
beams, 197–198
plane trusses, 89, 91–92
structure stiffness, 89, 91–92, 197–198

Computer analysis, 21, 128–161,
224–245, 317–334, 361–362,
385–390, 532, 603–604. See also
Analysis module; Data input

analysis module, 129, 140–160,
233–245, 322–333

beams, 224–245, 361–362
coordinate number assignment, 54,

140–143, 233–234
cross-sectional property data, 137, 

229, 320
hinged joints, 361–362
inclined roller supports, 532

input (data) module, 129–139,
224–233, 318–322, 385–386

joint data, 132–135, 224–227, 318
joint displacement d, 150–152, 238,

329
joint load P, 148–150, 230–231,

234–238, 321, 324–329
load data, 138–139, 230–232, 321–322
material property data, 136–137, 228,

320
member data, 137, 229–232, 321–322
member force (stiffness) calculations,

152–159, 239–243, 329–333,
389–390

member releases, 361–362, 385–390
plane frames, 317–334, 316–362
plane trusses, 128–161
results, 603–604
software, 21, 603–604
structure coordinate number assign-

ment, 54, 140–143, 322–324
structure stiffness matrix S, 143–148,

234–237, 324–329
support displacements, 385–390
support reactions R, 135–136,

152–159, 227–228, 239–243,
318–321, 329–333, 389

Condensation of degrees of freedom,
514–522

Connections, see Joints
Constitutive relations, 14–15
Coordinate transformations, 76–85,

268–275, 422–425, 446–448,
467–485

end displacements u and forces Q,
268–275, 448, 467–472

global to local system, 77–79
grids, 446–448
local to global system, 79–80
member rotation matrix r, 472–485
plane frames, 268–275
plane trusses, 76–85
space frames, 467–485
space trusses, 422–425
transformation matrix T, 78–80,

471–472
Cross-sectional properties, 137, 229,320

beam computer analysis, 229
input (data) module, 137, 229, 320
plane frame computer analysis, 320
plane truss computer analysis, 137
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D
Data input, 129–139, 224–233, 318–322,

385–386, 603–604
beam computer analysis, 224–233
cross-sectional properties, 137, 

229, 320
joints, 132–135, 224–227, 230–231,

318, 321
loads, 138–139, 230–232, 321–322
material properties, 136–137, 228, 320
members, 137, 229–232, 321–322
plane frame computer analysis,

318–322
plane truss computer analysis,

129–139
software procedure, 603–604
support displacements, 385–386
support reactions R, 135–136,

152–159, 227–228, 318–321
unit consistency and, 130

Decomposition method, 559–568
Deflection, beams, 175–184
Deformable bodies, principle of virtual

work for, 17–20
Deformations, 175–184, 436–437, 440,

443–445, 541–545, 588–589
beams, 175–184
bending moment M, 175–178
deflection, 175–184
grids, 436–437, 440, 443–445
nonlinear structural analysis, 588–589
shape factor, 542–543
shear, 541–545
structure load-deformation relations,

588–589
torsional moment MT, 440, 443–445
warping, 436–437

Degrees of freedom, 51–57, 166–168,
251–255, 418–419, 435–436,
456–458, 514–522

arrow notation for, 54–55, 168, 254,
435–436

beams, 166–168
condensation of, 514–522
defined, 52
external, 515–516
free coordinates, 54
free joint, 52
grids, 435–436
internal, 515
joint displacement vector, 53

joint load vector, 55–56
kinematic indeterminacy, 53
plane frames, 251–255
plane trusses, 51–57
reaction vector, 56
restrained coordinates and, 54–55,

252–255
space frames, 456–458
space trusses, 418–419
structure coordinates, 54

Diagonal matrix, 26
Differential operator matrix D, 73
Differentiation, matrix algebra, 34, 45
Direct integration method, 191–194
Direct stiffness method, 5, 93–94,

197–202
beams, 197–202
plane trusses, 93–94
structure stiffness by, 93–94, 197–202

Displacement, see End displacements u
and forces Q; Support displace-
ments

Displacement functions, 67–72, 185–187
beams, 185–187
finite-element formulation, 67–72,

185–187
plane trusses, 67–72

Do Loop command, 132–134, 144–148,
235–238

input data use of, 132–134
structure stiffness matrix S generation,

144–148, 235–238

E
Elements of a matrix, 24
End displacements u and forces 

Q, 58–61, 63, 152–158, 
171–175, 191–202, 256–259,
268–275, 329–333, 389–390,
437–440, 448, 458–463, 467–472,
533–541

beams, 171–175, 191–202
computer calculation of, 152–159,

329–333, 389–390
coordinate transformations and,

268–275, 448, 467–472
fixed-end forces, 174–175, 191–197
global coordinates, 157–158
grids, 437–440, 448
local coordinates, 60–61, 63, 155–157,

256–259, 437–440
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End displacements u and forces Q (contd.)
member stiffness and, 60–61, 63,

152–158, 171–175, 256–259
offset connections, 533–537
plane frames, 256–259, 268–275,

329–333
plane trusses, 60–61, 63, 152–158
semirigid connections, 537–541
space frames, 458–463, 467–472
structure stiffness and, 197–202
support displacements and, 389–390

Equality operations, matrix algebra, 27,
45

Equilibrium equations, 12–13, 91, 197
beams, 197
matrix structures and, 12–13
plane trusses, 91
structure stiffness and, 91, 197

Equilibrium matrix b, 609–610
Equivalent joint loads, 210–214,

291–293, 324–329, 362–365,
386–389

beams, 210–214
computer evaluation of, 324–329,

386–389
plane frames, 291–293, 324–329
structure fixed-joint forces Pf and,

210–214, 291–293, 362–365
support displacements and, 362–365,

386–389

F
Fabrication errors, member fixed-end

forces due to, 394–410
Finite-element methods, 4, 67–76,

185–191
beams, 185–191
displacement functions, 67–72,

185–187
formulation, 67–76, 185–191
matrix methods compared to, 4
member stiffness matrix k, 74–76,

188–191
plane trusses, 67–76
shape functions, 72–73, 187–188
strain–displacement relationship,

73–74, 188
stress–displacement relationship, 74,

188
symmetry and, 76
virtual work used for, 67–76, 185–191

Fixed-end forces, 174–175, 191–197,
206–214, 260–268, 281–284,
390–410, 463–467

beam members, 174–175, 191–197
direct integration method for, 191–194
fabrication errors and, 394–410
global coordinate system Ff, 281–284
load W and, 191–197
local coordinate system, 260–268,

463–467
member forces Qf, 175, 195–197,

206–207, 209, 260–268, 463–467
member releases, 390–410
member stiffness and, 174–175,

260–268, 281–284
plane frames, 260–268, 281–284
space frames, 463–467
structure fixed–joint forces Pf,

206–214
temperature changes and, 390–394

Fixed-joint forces, see Structure 
fixed-joint forces Pf

Flexibility method, 4–5, 21, 605–611
equilibrium matrix b, 609–610
flexibility coefficient, 608
redundants, 605
static determinacy, 605
stiffness method compared to, 4–5, 21,

605
structure flexibility matrix f, 608–611
truss analysis, 605–611

Forces, see End displacements u and
forces Q; Joint load P; Member
forces Qf; Structure fixed-joint
forces Pf

Framed structures, 5–10, 22, 417–198
defined, 22
matrix structure classification, 

5–10
three-dimensional, 417–498
Free coordinates, 54
Free joint, 52

G
Gauss–Jordan elimination method,

38–45, 150–152
joint displacement d, solution of 

by, 150–152
matrix inversion by, 43–45
simultaneous equations, solutions of

by, 38–43
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Global coordinate system, 49–50, 76–85,
85–89, 157–158, 165–166,
250–252, 268–284, 418, 422–425,
435, 446–448, 457, 467–485

analytical models for, 49–50, 250–252
beams, 165–166
computer calculations in, 157–158
coordinate transformations, 76–85,

268–275, 422–425, 446–448,
467–485

fixed-end forces Qf in, 281–284
grids, 435, 446–448
member end forces and reactions,

157–158
member stiffness matrix K in, 85–89,

157–158, 276–281
member stiffness relations in, 85–89,

276–284, 425
plane frames, 250–252, 268–284
plane trusses, 49–50, 76–85, 85–89,

157–158
space frames, 457, 467–485
space trusses, 418, 422–425
symmetry and, 86
transformation from local system,

79–80
transformation to local system, 77–79

Grids, 7, 9, 433–455
analytical models, 433–455
angle of twist �, 440–444
arrow notation for, 435–436
beginning and end joints, 435–436
coordinate transformations, 446–448
defined, 433
degrees of freedom, 435–436
end displacements u and forces 

Q, 437–440
global coordinate system, 435,

446–448
local coordinate system, 435–448
matrix structure classification, 7, 9
member releases, 444–445
member stiffness relations, 436–445
procedure for analysis, 449–455
Saint-Venant’s torsion constant J for,

440–441
symmetric cross sections of, 433–435
torsional moment MT, 440, 443–445
torsional stiffness coefficients,

440–442
warping, 436–437

H
Half-bandwidth of structure stiffness ma-

trix S, 553–559
Hinges, 342–362

analytical models, 350–361
beam members, 348–362
beginning (MT � 1), 343–345, 348
both ends (MT � 3), 346–347,

349–350
computer implementation, 361–363
end (MT � 2), 345–346, 348–349
hinged joint analysis, 350–362
member type (MT), 342
plane frame members, 343–348,

350–362
procedure for analysis, 350
stiffness relations, 343–350

I
Identity matrix, 27
Inclined roller supports, 530–532
Input module, 129–139, 224–233,

318–322, 385–386. See also Data
input

beams, 224–233
plane frames, 318–322
plane trusses, 129–139
support displacements, 385–386

Integration, matrix algebra, 34–35, 45
Inverse of a matrix, 35–36, 43–45

Gauss-Jordan elimination method,
43–45

square matrix, 35–36
symmetric matrix, 36

J
Joint coordinate matrix, computer 

analysis, 132
Joint displacement d, 53, 89–91,

150–152, 197, 238, 252–255, 329,
547–576

beams, 197, 238
computer solution for, 150–152, 238,

329
degrees of freedom and, 53, 252–255
Gauss–Jordan elimination method 

for, 150–152
nonlinear structural analysis �, 547–576
plane frames, 252–255, 329
plane trusses, 53, 89–91, 150–152
structure stiffness relations, 89–91, 197
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Joint load P, 55–56, 89–91, 148–150,
197, 210–214, 230–231, 234–238,
291–293, 321, 324–329, 362–365,
386–389

analysis module, 148–150, 234–238,
324–329

beams, 168, 197, 230–231, 234–238
computer generation of, 148–150,

234–237, 324–329
degrees of freedom, 52–56
equivalent, 210–214, 291–293,

324–329, 362–365, 386–389
input (data) module, 230–231, 321
member releases, 362–365, 386–389
plane frames, 291–293, 321, 324–329
plane trusses, 55–56, 89–91, 

148–150
storage of in structure load, 237–238,

329
structure fixed-joint forces Pf and,

291–293
structure stiffness relations, 89–91,

197, 291–293
support displacements and, 362–365,

386–389
Joints, 52–56, 89–91, 132–135, 148–152,

197, 206–214, 224–227, 230–231,
252–255, 291–299, 318, 321,
350–362, 419–420, 435–436, 531,
533–541. See also Fixed–joint
forces

beams, 206–214, 224–227, 230–231,
350–362

beginning and end, 52, 419–420,
435–436

code number technique for, 209
computer analysis and, 132–135,

148–152, 224–227, 230–231, 318,
321, 361–362

degrees of freedom, 52–56
displacement d, 53, 89–91, 152–153,

252–255
free, 52
grids, 435–436
hinged, 350–362
input (data) modules, 132–135,

224–227, 230–231, 318, 312
load P, 55–56, 89–91, 148–150, 197,

230–231, 321
local coordinate system, 52, 531
offset connections, 533–537

plane frames, 252–255, 291–299,
350–362

plane trusses, 52–56, 89–91, 132–135,
148–152, 197

semirigid connections, 537–541
space trusses, 419–420
structure fixed-joint forces Pf,

206–214, 291–299
structure stiffness relations, 89–91

K
Kinematic indeterminacy, degree of, 53

L
Line diagrams, 11
Linear structural analysis, 20–22, 573,

576
Load data, 138–139, 230–232, 321–322

beam computer analysis, 230–232
input (data) module, 138–139,

230–232, 321–322
joints, 230–231, 321
matrix, 138–139
members, 231–232, 321–322
plane frame computer analysis,

321–322
plane truss computer analysis,

138–139
Load W, beam fixed-end forces due to,

191–197
Local coordinate system, 50–52, 58–67,

76–85, 155–157, 166, 251–252,
256–275, 419–425, 435–448,
458–485, 531

beams, 166
beginning and end joints, 52, 419–420,

435–436
computer calculations in, 155–157
coordinate transformations, 76–85,

268–275, 422–425, 446–448,
467–485

fixed-end forces Qf in, 260–268,
463–467

force-displacement relationships,
50–52

grids, 435–448
joints, 52, 531
member end forces and reactions,

155–157
member stiffness matrix k in, 60–67,

259–260, 463–466
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member stiffness relations in, 58–67,
256–268, 420–422, 436–445,
458–467

plane frames, 251–252, 256–275
plane trusses, 50–52, 58–67, 76–85,

155–157
space frames, 458–485
space trusses, 419–425
transformation from global system,

77–79
transformation to global system, 79–80

M
Material properties, 136–137, 228, 320

beam computer analysis, 228
input (data) module, 136–137, 228,

320
plane truss computer analysis, 320
plane truss computer analysis,

136–137
Matrix, defined, 24, 45
Matrix algebra, 23–47

addition operations, 27–28, 45
column matrix, 25
diagonal matrix, 26
differentiation, 34, 45
elements of, 24
equality operations, 27, 45
Gauss–Jordan elimination method,

38–45
identity matrix, 27
integration, 34–35, 45
inverse of a matrix, 35–36, 43–45
multiplication by a scalar, 28
multiplication of matrices, 28–32, 45
null matrix, 27
order of, 24–25
orthogonal matrix, 36–37
partitioning, 37–38
row matrix, 25
square matrix, 25–26, 35–36
subtraction operations, 27–28, 45
symmetric matrix, 26, 33, 36
transpose of a matrix, 32–33, 45
triangular matrices (upper and lower),

26
unit matrix, 27
vectors, 25

Matrix structures, 1–22
analytical models, 10–11, 22
beams, 6

classical methods compared to, 3–4
compatibility equations, 13–14
constitutive relations, 14–15
deformable bodies, principle of virtual

work for, 17–20
direct stiffness method, 5
equilibrium equations, 12–13
finite element methods compared to, 4
flexibility method, 4–5, 21
framed structures, 5–10
grids, 7, 9
history of, 2–3
line diagrams, 11
linear analysis, 20–22
nonlinear analysis, 21
plane frames, 6–8
plane trusses, 5–6
principle of virtual work, 15–20
rigid bodies, principle of virtual work

for, 15–17
software for, 21
space frames, 10
space trusses, 7
stiffness method, 4–5, 21
structural analysis, 12–22

MDISPG (member global displacement)
subroutine, 152, 154, 330, 390

MDISPL (member local displacement)
subroutine, 155, 239, 241, 330, 390

Mechanics of materials, principles of for
member stiffness, 61–62

Member code numbers, 97–102. See also
Code number technique

Member data, 137, 229–232, 321–322
beam computer analysis, 229–232
input (data) module, 137, 229–232,

321–322
load data, 231–232, 322
matrix, 137, 231, 321
plane frame computer analysis,

321–322
plane truss computer analysis, 137

Member displacement function, 72–73
Member fixed-end forces Qf, 175,

195–197, 206–207, 209, 260–268,
463–467

beams, 175, 195–197, 206–207, 209
plane frames, 260–268, 281–284
space frames, 463–467

Member force-displacement relations,
580–586
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Member forces, see End displacements
and forces; Fixed-end forces;
Member stiffness

Member releases, 340–416, 444–445,
465–467, 530–532

analytical models, 350–361
beams, 348–362, 376–381
computer analysis, 361–363, 385–390
fabrication errors and, 394–410
fixed-end forces, 390–410
grids, 444–445
hinged joints, 350–362
hinges, 342–362
inclined roller supports, 530–532
plane frames, 343–347, 350–362,

381–385
plane trusses, 371–376
procedures for analysis, 350, 370–371,

397
space frames, 465–467
stiffness relations, 343–350
structure fixed-joint forces 

Pf, 362–385
support displacements, 362–390
temperature changes and, 390–394
types (MT), 341–343

Member rotation matrix r, 472–485
angle of roll �, 472–479
plane frame analysis, 472–485
reference point, 479–483

Member shape function matrix N, 72–73
Member stiffness, 58–67, 74–76, 85–89,

92–93, 152–159, 171–184,
188–191, 202–206, 239–242,
256–268, 276–284, 343–350,
420–422, 425, 436–445, 458–467,
541–545

axial forces, 61–63
beams, 171–184, 188–191, 202–206,

239–242, 348–350
bending moment M and, 175–178
computer calculation of, 152–159,

239–242
deflection and, 175–184
end displacements u and forces Q,

58–61, 63, 152–158, 171–175,
256–259, 268–275, 458–463

finite-element formulation and, 74–76,
188–191

fixed-end forces, 174–175, 260–268,
281–284

force calculations, 152–159, 239–242
global coordinate system, 85–89,

276–284, 425
global matrix K, 85–89, 157–158,

276–281
grids, 436–445
hinges and, 343–350
local coordinate system, 58–67,

155–157, 256–268, 420–422,
436–445

local matrix k, 60–67, 74–76,
175–184, 188–191, 202–206,
259–260, 463–466

mechanics of materials, principles of,
61–62

member releases and, 343–350,
444–445, 465–467

plane frames, 256–268, 276–284,
343–347

plane trusses, 58–67, 74–76, 85–89,
92–93, 152–159

Saint-Venant’s torsion constant J for,
440–441

shear deformations and, 541–545
space trusses, 420–422, 425
structure stiffness matrix S and, 58,

202–206
symmetry and, 76, 86
torsional moment MT, 440, 443–445
torsional stiffness coefficients,

440–442
transformation matrix T, 152–155
warping, 436–437

Member strain–displacement matrix B,
72–73

Member tangent stiffness matrix Kt,
586–588

Member types (MT), 341–343
MFEDSD (member global fixed-end dis-

placement from support displace-
ment) subroutine, 387–388, 390

MFEFG (member global fixed-end) sub-
routine, 328–329

MFEFLL (member local fixed-end force)
subroutine, 235, 237, 239, 328, 330,
361, 363

MFEFSD (member global fixed-end
force from support displacement)
subroutine, 388–389

MFORCEG (member global force) sub-
routine, 157, 330
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MFORCEL (member local force) subrou-
tine, 156–157, 241–242, 330, 390

MSTIFFG (member global stiffness ma-
trix) subroutine, 326–327, 387

MSTIFFL (member local stiffness
matrix) subroutine, 155–156, 235,
239, 326, 330, 361–362, 387

MTRANS (member transformation ma-
trix) subroutine, 152, 154–155, 326

Multiplication of a matrix by a scalar, 28
Multiplication of matrices, 28–32, 45

N
Newton-Raphson computational method,

589–600
Nonlinear structural analysis, 21,

572–602
geometric concepts of, 574–579
joint displacements �, 547–576
linear analysis compared to, 573, 567
member force-displacement relations,

580–586
member tangent stiffness matrix 

Kt, 586–588
Newton-Raphson computational

method, 589–600
plane trusses, 579–600
snap-though instability, 576–579 
stability and, 576–579
structure tangent stiffness matrix St,

589
Nonprismatic members, 545–552
Null matrix, 27

O
Offset connections, 533–537
Order of a matrix, 24–25
Orthogonal matrix, 36–37

P
Partitioning, matrix algebra, 37–38
Plane frames, 6–8, 249–339, 343–347,

350–362, 381–385
analysis module, 322–333
analytical model, 250–255
computer analysis, 317–334, 361–362
coordinate transformations, 268–275
defined, 250
degrees of freedom, 251–255
global coordinate system, 250–252,

268–284

hinged joint analysis, 350–362
hinges, 343–347, 350–362
input (data) module, 318–322
joint displacements d, 252–255,

284–285
joint load P, 284–287
local coordinate system, 251–252,

256–275
matrix structure classification, 6–8
member releases, 343–347, 350–362
member stiffness, 256–268, 276–284
procedure for analysis, 299–317, 350
restrained coordinates, 252–255
stiffness relations, 343–347
structure stiffness, 284–299
support displacement analysis,

381–385
Plane trusses, 5–6, 48–127, 128–161,

371–376, 530–532, 579–600
analysis modules, 140–160
analytical model, 49–57, 59, 530–532
arrow notation for, 54–55
code number technique for, 97–102
computer analysis, 128–161
coordinate transformations, 76–85
defined, 49
degrees of freedom, 51–57
finite-element formulation, 67–76
global coordinate system, 49–50,

76–85, 85–89
inclined roller supports, 530–532
input (data) modules, 129–139
joints, 52–56, 89–91, 132–135, 531
local coordinate system, 50–52, 58–67,

76–85
matrix structure classification, 5–6
member force-displacement relations,

580–586
member stiffness, 58–67, 85–89,

92–93
member tangent stiffness matrix Kt,

586–588
Newton-Raphson computation method,

589–600
nonlinear analysis of, 579–600
procedure for analysis, 105–123
structure load-deformation relations,

588–589
structure stiffness, 89–105
structure tangent stiffness matrix 

St, 589
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Plane trusses (contd.)
support displacement analysis,

371–376
support reaction R, 101–102, 135–136,

152–159
virtual work used for, 67–76

Primary structure, 605
Principle of virtual work, 15–20

deformable bodies, 17–20
rigid bodies, 15–17

Procedure for analysis, plane trusses,
105–123

R
Reaction vector R, 56. See also Support

reactions R
Redundants, 605
Reference point, member rotation matrix

R in terms of, 479–483
Restrained coordinates, 54–55, 252–255,

500–506
degrees of freedom and, 54–55,

252–255
numbering of, 54–55
plane frames, 252–255
plane trusses, 54–55
structure stiffness matrix S and,

500–506
Restraint codes, 135–136, 227, 230, 321

beam computer analysis, 227, 230
plane frame computer analysis, 321
plane truss computer analysis,

135–136
Rigid bodies, principle of virtual work

for, 15–17
Roller supports, 530–532
Row matrix, 25

S
Saint-Venant’s torsion constant J, 440–441
Semirigid connections, 537–541
Shape factor (shear), 542–543
Shape functions, 72–73, 187

beams, 187
finite-element formulation, 72–73, 187
plane trusses, 72–73

Shear deformations, 541–545
Sign conventions, 175–176, 195
Snap-through instability, 576–579 
Software, 21, 603–604. See also Com-

puter analysis

Space frames, 10, 456–494
analytical models, 456–494
coordinate transformations, 467–485
degrees of freedom, 456–458
end displacements u and forces Q,

458–463, 467–472
global coordinate system, 457,

467–485
local coordinate system, 458–485
local stiffness matrix k, 463–466
matrix structure classification, 10
member fixed-end forces Qf, 463–467
member releases, 465–467
member rotation matrix r, 472–485
member stiffness relations, 458–467
procedure for analysis, 485–494
symmetric cross sections of, 456
transformation matrix T, 471–472

Space trusses, 7, 418–433
analytical models, 418–433
beginning and end joints, 52, 419–420
coordinate transformations, 422–425
defined, 418
degrees of freedom, 418–419
global coordinate system, 418,

422–425
local coordinate system, 419–425
matrix structure classification, 7
member stiffness relations, 

420–422, 425
procedure for analysis, 425–433

Square matrix, 25–26, 35–36
diagonal elements of, 25–26
inverse of, 35–36

Stability, structural analysis and,
576–579

Static determinacy, 605
Stiffness, see Member stiffness; Structure

stiffness
Stiffness method, 4–5, 21
STOREPF (store member global 

fixed-end force) subroutine,
237–238, 328–330, 389

STORER (store member forces in support
reactions) subroutine, 158, 241–243

STORES (store structure stiffness matrix
S) subroutine, 146–148, 235–236,
327–328

Strain–displacement relationship, 
73–74, 188

beams, 188
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finite-element formulation, 73–74, 188
plane trusses, 73–74

Stress–displacement relationship, 74, 188
beams, 188
finite-element formulation, 74, 188
plane trusses, 74

Structural analysis, 12–22, 506–530,
545–568, 572–602

approximate matrix analysis, 506–514
building frames, 506–514
comparison of linear and nonlinear,

573, 576
compatibility equations, 13–14
condensation of degrees of freedom,

514–522
constitutive relations, 14–15
deformable bodies, 17–20
equilibrium equations, 12–13
large systems, 553–568
linear, 20–22, 573, 576
nonlinear, 21, 572–602
nonprismatic members, 545–552
principle of virtual work, 15–20
rigid bodies, 15–17
snap-through instability, 576–579 
software for, 21
stability and, 576–579
substructure analysis, 514, 522–530

Structure coordinates, 51–57, 140–143,
167–168, 233–234, 252–255,
322–324

beams, 167–168, 233–234
computer assignment of, 140–143,

233–234, 322–324
defined, 54
degrees of freedom and, 51–57,

252–255
numbering of, 54–55
plane frames, 252–255, 322–324
plane trusses, 51–57, 140–143
restrained coordinates, 54–55, 252–255

Structure fixed-joint forces Pf, 206–214,
291–299, 362–385

assembly of, 293–299
beams, 206–214
code number technique for, 209,

293–299
equivalent joint loads and, 210–214,

291–293, 362–365
evaluation of due to support displace-

ments, 366–369

member fixed-end forces Qf and,
206–207, 209

member releases and, 362–385
physical interpretation of, 206–209
plane frames, 291–299
structure stiffness and, 291–299
support displacements and, 362–385

Structure flexibility matrix f, 608–611
Structure load, storage of joint load in,

237–238, 329
Structure load-deformation relations,

588–589
Structure stiffness, 58, 89–105, 197–206,

284–299
beams, 197–206
code number technique for, 97–102,

202–206
compatibility equations for, 89, 91–92,

197–198
direct stiffness method, 93–94,

197–202
end displacements u and forces Q,

197–202
equilibrium equations for, 91, 197
joint displacement d, 89–91, 197,

284–285
joint load P, 89–91, 197, 284–287,

291–293
matrix S, 58, 94–101, 202–206,

287–291, 293–299
member stiffness relations, 92–93
plane frames, 284–299
plane trusses, 58, 89–105
structure fixed-joint forces Pf and,

291–299
support reaction R, 101–102

Structure stiffness matrix S, 58, 94–101,
143–148, 202–206, 234–238,
287–291, 293–299, 324–329,
500–506, 553–568

analysis module, 143–148, 234–237,
324–329

assembly of, 94–101, 202–206,
293–299

banded structures, 559–568
beams, 202–206, 234–238
code number technique for, 97–101,

202–206, 293–299
computer generation of, 143–148,

234–238, 324–329
decomposition method using, 559–568
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Structure stiffness matrix S (contd.)
Do Loop commands for, 144–148,

235–238
equivalent joint load and, 324–329
half-bandwidth of, 553–559
large system solutions of, 553–568
local coordinate system, 58
local member stiffness matrix k and,

202–206
physical interpretation of, 94–97
plane frames, 287–291, 293–299,

324–329
plane trusses, 58, 94–101, 143–148
restrained coordinates and, 500–506
structure fixed-joint forces Pf and,

293–299
Structure tangent stiffness 

matrix St, 589
Submatrices, 37
Substructure analysis, 514, 522–530
Subtraction operations, matrix algebra,

27–28, 45
Support displacements, 362–390, 

501
analytical models, 366–385
beam analysis, 376–381
computer analysis for, 385–390
equivalent joint loads, 362–365,

386–389
input (data) module, 385–386
member forces, 389–390
plane frame analysis, 381–385
plane truss analysis, 371–376
procedures for analysis, 370–371
restrained coordinates dR, 501
structure fixed-joint forces 

Pf due to, 362–385
support reactions and, 389–390

Support reaction R, 56, 101–102,
135–136, 152–159, 169, 227–228,
230, 239–242, 318–321, 329–333,
389–390

analysis module, 152–159, 239–242,
329–333

beams, 169, 227–228, 230, 
239–242

computer analysis, 135–136, 152–159,
227–228, 230, 239–242, 318–321,
329–333, 389–390

calculation of, 152–159, 239–242,
329–333

input (data) module, 135–136,
227–228, 230, 318–321

plane frames, 318–321, 329–333
plane trusses, 56, 101–102, 135–136,

152–159
restraint codes for, 135–136, 227, 

230, 321
structure stiffness and, 101–102
support displacement and, 

389–390
Symmetric matrix, 26, 33, 36
Symmetry, 76, 86, 433–435, 456

finite-element formulation and, 76
grid cross sections, 433–435
member stiffness matrices, 76, 86
space frame cross sections of, 456

T
Temperature changes, member 

fixed-end forces due 
to, 390–394

Three-dimensional framed structures,
417–498

grids, 433–455
procedures for analysis, 425–433,

449–455, 485–494
space frames, 456–494
space trusses, 418–433

Torsion constant J, 440–441
Torsional moment MT, 440, 443–445
Torsional stiffness coefficients, 

440–442
Transformation matrix T, 78–80,

471–472
Transpose of a matrix, 32–33, 45
Triangular matrices (upper and lower),

26
Trusses, 5–7, 48–127, 128–161,

418–433, 530–532, 579–600,
605–611

computer analysis, 128–161
defined, 5
finite-element formulation, 67–76
flexibility method for, 605–611
inclined roller supports, 530–532
member stiffness relations, 58–67,

85–89, 92–93
nonlinear analysis of, 579–600
plane, 5–6, 48–127, 128–161, 

530–531
space, 7, 418–433
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U
Unassembled flexibility matrix fM,

608–611
Unit matrix, 27

V
Vectors, column matrices as, 25
Virtual work, 67–76.  See also Finite

element method

beams, 185–191
finite-element method using, 67–76,

185–191
plane trusses, 67–76

W
Warping, grids, 436–437
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1.

2.

3.

FSb = Wl2
2

L3
(3l1 + l2)

FMb = Wl1l2
2

L2

FSe = Wl2
1

L3
(l1 + 3l2)

FMe = − Wl2
1 l2

L2

FSb = −6Ml1l2

L3

FMb = Ml2

L2
(l2 − 2l1)

FSe = 6Ml1l2

L3

FMe = Ml1

L2
(l1 − 2l2)

FSb = wL

2

[
1 − l1

L4
(2L3 − 2l2

1 L + l3
1) − l3

2

L4
(2L − l2)

]

FMb = wL2

12

[
1 − l2

1

L4
(6L2 − 8l1 L + 3l2

1)

− l3
2

L4
(4L − 3l2)

]

FSe = wL

2

[
1 − l3

1

L4
(2L − l1) − l2

L4
(2L3 − 2l2

2 L + l3
2)

]

FMe = −wL2

12

[
1 − l3

1

L4
(4L − 3l1)

− l2
2

L4
(6L2 − 8l2 L + 3l2

2)

]

FIXED-END FORCE EXPRESSIONS

Fixed-End Moments, Shears and Axial Forces for Various Loading Conditions

No. Loading Equations for Fixed-End Moments, Shears, and Axial Forces

l1 l2

L

W

FMb

FSb FSe

FMe

b e

l1 l2

L

FMb

FSb FSe

FMe

b e
M

l1

L

FMb

FSb FSe

FMe

b e

l2w
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4.

5.

6.

7.

FSb = w1(L − l1)
3

20L3

{
(7L + 8l1) − l2(3L + 2l1)

(L − l1)

×
[

1 + l2

L − l1
+ l2

2

(L − l1)2

]
+ 2l4

2

(L − l1)3

}

+ w2(L − l1)
3

20L3

{
(3L + 2l1)

[
1 + l2

L − l1

+ l2
2

(L − l1)2

]
− l3

2

(L − l1)2

[
2 + 15L − 8l2

L − l1

]}

FMb = w1(L − l1)
3

60L2

{
3(L + 4l1) − l2(2L + 3l1)

L − l1

×
[

1 + l2

L − l1
+ l2

2

(L − l1)2

]
+ 3l4

2

(L − l1)3

}

+ w2(L − l1)
3

60L2

{
(2L + 3l1)

[
1 + l2

L − l1

+ l2
2

(L − l1)2

]
− 3l3

2

(L − l1)2

[
1 + 5L − 4l2

L − l1

]}

FSe =
(

w1 + w2

2

)
(L − l1 − l2) − FSb

FMe = L − l1 − l2

6
[w1(−2L + 2l1 − l2)

−w2(L − l1 + 2l2)] + FSb(L) − FMb

FAb = Wl2

L

FAe = Wl1

L

FAb = w

2L
(L − l1 − l2)(L − l1 + l2)

FAe = w

2L
(L − l1 − l2)(L + l1 − l2)

FTb = MT l2

L

FTe = MT l1

L

No. Loading Equations for Fixed-End Moments, Shears, and Axial Forces
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w2

L
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L
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